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Abstract

This thesis explores the theoretical foundations of cross-phase modulation (XPM)

between optical fields in the N-configuration atom. This is the process by which

the refractive index experienced by one field can be modulated by controlling the

intensity of another. The electro-optical version of this effect was first discovered by

John Kerr in 1875 and found applications in photonics as a means of very rapidly

modulating the phase and intensity of electromagnetic fields. Due to recent advances

in experimental techniques there has been growing interest in generating nonlinear

optical interactions in coherently prepared atomic ensembles.

The use of coherently prepared media brings the possibility of achieving a much

larger cross-phase modulation than is possible using classical materials. This is

particularly useful when trying to create large optical nonlinearities between low-

intensity electromagnetic fields. Much of the current research into cross-phase mod-

ulation is directed towards realising potential applications in the emerging field of

quantum information processing. Above all, the possibility of constructing an all-

optical quantum computer has been at the heart of much research and controversy

in the field.

In this thesis the theory of steady-state, transient and pulsed cross-phase mod-

ulation is developed. Moreover, care has been taken to relate all research back to

experimentally feasible situations. As such, the relevance of the theory is justified by

consideration of the situation present in rubidium-87. Due to the close relationship

between XPM in the N-configuration atom and electromagnetically induced trans-

parency in the Λ-atom, many similarities and insights act as link between these

two fields. Indeed, it is frequently demonstrated that the key to understanding the

vii
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various properties of XPM in the N-configuration atom is by comparison with the

situation in the corresponding Λ-atom equivalent.
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Introduction

The study of optics has occupied some of the greatest physicists in history and has

been associated with many of its most significant discoveries. Newton’s Opticks [1],

published in 1704, laid many of the foundations of the subject. Among the most

famous of Newton’s insights was the decomposition of white light into a continuous

colour spectrum, as demonstrated by his prism experiments. Further study of bire-

fringent “Iceland Crystal” also led him to postulate the existence of two “sides”, or

polarisations, of light. Newton’s principle aim in Opticks was to explore the proper-

ties of light, rather than to explain their causes. Nonetheless, throughout his work

there is a clear preference for a corpuscular theory of light.

To find the first explanation of light in terms of propagating waves we must

turn to Traité de la lumiere [2], the 1690 work of Huygens. In this book light

is correctly understood as being of a wave-like nature. The text is also notable

for a particularly beautiful account of the determination of the velocity of light by

astronomical observations. Nonetheless, it was only much later in 1803 that Young’s

[3] elegant diffraction experiments conclusively presuaded scientific opinion in favour

of the wave theory of light.

The invention of the modern theory of light must be attributed to Maxwell and

his great unification of light, electricity and magnetism under one mathematical

framework. Since their conception, Maxwell’s equations have played a central role

in the development of physics. For instance, the introduction of Einstein’s “quan-

tum” of light to resolve the black-body radiation problem and the null-result of the

Michelson-Morley experiment led to quantum mechanics and special relativity re-

spectively. Although both of these theories necessitated great shifts in our physical
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paradigms, these shifts occurred whilst leaving the original framework of electro-

magnetism largely intact. Indeed, in the case of special relativity a much greater

insight into the original equations is offered by their new relativistic interpretation.

Despite the extensive history and development of the theory of light, this remains

an active and exciting field of research. Modern (quantum) optics is nowadays used

to investigate nonclassical physics, and has found applications in many branches

of technology. More recently, considerable resources have been directed towards

the development of all-optical quantum computing and quantum cryptography, the

latter of which is now a commercially available technology.

The research presented in this thesis explores the phenomena of cross-phase

modulation in a gas of cold rubidium atoms. This is the process by which the

refractive index experienced by one electromagnetic field is modulated by controlling

the intensity of a second field. The realisation of such an interaction at the quantum-

mechanical level has been proposed as one possible route towards optical quantum

computing. However, on a more fundamental level the study of such nonlinear

optical phenomena are crucial to the continued development of our understanding

of light and matter. As with Newton, we also investigate the properties of optical

phenomena with the long-term aim of extending our understanding of light itself.



Chapter 1

Introduction to Quantum Optics

Quantum optics is the study of electromagnetism at the quantum-mechanical level.

Since the foundations were laid by Dirac in 1927 [4] a wealth of quantum-optical

phenomena have been explored. Among these are spontaneous emission [5], the

Lamb shift [6] and the Casimir force [7]. These early experimental justifications for

the quantisation of the electromagnetic field can be explained, at least qualitatively,

by a semi-classical plus fluctuations model. Using a stochastic model the atoms are

treated quantum-mechanically and fluctuations are added to the classical fields.

More recently a whole range of completely nonclassical features of light have been

investigated. These include squeezed vacuum states [8], sub-Poissonion statistics [9]

and quantum teleportation via entangled states [10]. The non-classical characteris-

tics of the electromagnetic field demonstrated by these experiments provide further

compelling evidence of field quantisation. In addition, the realisation that these

properties can be profitably used has been exploited in the emerging discipline of

quantum information. Indeed, many exciting applications of quantum optics have

been proposed in the fields of quantum information and computing. At present ap-

plications have already been demonstrated in ghost-imaging [11], quantum lithog-

raphy [12] and quantum cryptography [13] and the possibility of optical quantum

computing continues to be explored [14, 15].

This chapter describes the basic theoretical framework of non-relativistic quan-

tum optics, beginning with quantisation of the Maxwell equations. Particular em-

1



2 CHAPTER 1. INTRODUCTION TO QUANTUM OPTICS

phasis is placed on the interaction of classical and quantum fields with linear and

nonlinear materials.

1.1 Classical Electrodynamics

1.1.1 The Maxwell Equations in Dielectric Media

The development of electromagnetism as a unified theory is due to the work of J.C.

Maxwell. The field equations that now bear his name are given by [16]

∇ · D = ρ, ∇× H = J +
∂D

∂t
,

∇ · B = 0, ∇×E = −∂B
∂t
.

(1.1)

In dielectric media the free currents and charges vanish (J = 0, ρ = 0). However,

these four equations alone do not yet provide a complete description of classical

electrodynamics. Rather, it is still necessary to form constitutive relations between

the derived fields D,H and the fundamental fields E, B. The derived fields are

introduced as a convenient way to macroscopically account for the response of atomic

charges and currents to the applied electromagnetic field, which in turn provides a

back-action on E and B themselves.

Originally the constitutive relations were derived from the classical Lorentzian

theory [17] of light-matter interactions. This theory proposed that dielectric ma-

terials consist of bound point charges that couple to the applied electromagnetic

field. Although simple, this model successfully accounts for almost all low-intensity

interactions with bulk materials. However, the advent of quantum mechanics and

the laser brought the possibility of, and requirement for, a more sophisticated theory

of light-matter interactions: quantum optics.

The most general form of constitutive relations in a dielectric medium are given

by the relationships

D = D[E,B], H = H[E,B]. (1.2)
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The square brackets indicate that the relations may depend on the previous values

of the fundamental fields (e.g. magnetic hysteresis). When the constitutive relations

are simple non-hysteretic functions we can write the displacement current D and

magnetic field H as

D = ε0E + P, (1.3)

H =
1

µ0
B − M. (1.4)

Here P and M are the polarisation and magnetisation induced by the fields E and B.

In many non-magnetic dielectric materials it is found that P = P(E) and M = µ0B,

where µ0 is the permeability of free space. Nonetheless, other important relation-

ships are possible. For instance, a wide range materials exist for which a molecular,

crystalline or magnetically-induced isotropy results in constitutive relations of the

mixed form P = P(E,B) and M = M(E,B). Chiral materials such as an aque-

ous sugar solution and certain coherently prepared atomic vapours exhibit these

relationships, the latter of which has been suggested as a route towards negative

refraction [18, 19].

For the work in this thesis it is sufficient to assume constitutive relations of

the non-mixed, non-hysteretic and non-magnetic form: only the polarisation will

vary nonlinearly with the applied electric field. To form solutions of the Maxwell

equations we consider a linearly polarised transverse wave propagating along the

z-axis. One can derive the wave equation for the non-zero component of the electric

field within the paraxial approximation:
(

∂2

∂t2
− c2

∂2

∂z2

)

E(z, t) = −µ0c
2 ∂

2

∂t2
P (z, t). (1.5)

The real-valued solution to this equation E(z, t) and the polarisation source terms

are given in terms of their Fourier components [20] by

E(z, t) =
1

2

∑

n

(

Ene
i(knz−ωnt) + E∗

ne
−i(knz−ωnt)

)

, (1.6)

P (z, t) =
1

2

∑

n

(

Pne
i(knz−ωnt) + P ∗

ne
−i(knz−ωnt)

)

, (1.7)

where the sum is taken over the discrete number of field modes considered. The

simplest relationship between the polarisation and electric field Fourier components
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is that of a linear dependence. Almost all materials exhibit this dependence in the

weak excitation limit, although in some of the most remarkable and useful quantum

systems it is possible to suppress this response [21]. In general the proportionality

constant, known as the electrical susceptibility χ(1), will be frequency dependent.

Pn = ε0χ
(1)(ωn;ωn)En. (1.8)

Substitution of the polarisation back into the source term of the wave equation

results in the dispersion relation

k2
nc

2

ω2
n

= 1 + χ(1) = (η + iκ)2 (1.9)

where we have introduced two new parameters η and κ, whose physical interpre-

tation will soon be explained [22]. To model an absorptive material the electrical

susceptibility must be a complex quantity, χ(1) = χ′(1) + iχ′′(1)). By solving the dis-

persion relation (1.9) for the parameters η and κ in terms of the real and imaginary

parts of the electrical susceptibility it is found that

η2 − κ2 = 1 + χ′(1), (1.10)

2ηκ = χ′′(1). (1.11)

The interpretation of η and κ as the refractive index and absorption (extinction

coefficient) becomes apparent on substitution of k in terms of η and κ back into

each of the Fourier components of (1.6). We find that the electric field can be

expressed as

E(z, t) =
∑

n

(

En exp
[

iωn

(η

c
z − t

)

− κωn

c
z
]

+ c.c.
)

(1.12)

Frequently we are interested in more complex response functions where the linear

susceptibility is accompanied by several other higher-order terms. From the electri-

cal susceptibility the constitutive relations of the Maxwell equations are determined.

In addition, the susceptibility can also be related to the physically measurable quan-

tities of refractive index and absorption.

In the following section we turn to the problem of determining exactly how

light and matter interact. Given this interaction mechanism ways must be found to
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solve the equation of motion for the atomic system and hence deduce its electrical

susceptibility.

1.1.2 The Electric Dipole Interaction

We now turn to deriving the form of the interaction between a classical electro-

magnetic field and a particle of charge e. The Hamiltonian operator of an electron

bound by an atomic potential V (r) and immersed in a external electromagnetic field

is given by

Ĥ =
1

2m
(p̂− eA(r, t))2 + eΦ(r, t) + V (r). (1.13)

Here Φ(r, t) and A(r, t) are the scalar and vector potentials or the external field and

p̂ − eA(r, t) is the canonical momentum of a charged particle [23]. The introduc-

tion of electromagnetic potentials greatly facilitates the solution of many problems

in electromagnetism, the most useful of which are the standard scalar and vector

potentials Φ and A. The fundamental fields are related to these potentials by

B = ∇× A, (1.14)

E = −∇Φ − ∂A

∂t
. (1.15)

The two homogenous Maxwell equations are automatically satisfy by the form of

the scalar and vector potentials. The inhomogeneous Maxwell equations give rise to

evolution equations for the potentials. These are:

∇2Φ +
∂

∂t
(∇ · A) = 0, (1.16)

∇2A− 1

c2
∂2A

∂t2
−∇

(

∇ · A +
1

c2
∂Φ

∂t

)

= 0, (1.17)

when in a space free from charges and currents. Thus, we arrive at two coupled

partial differential equations of motion for the potential functions. At first sight

these two equations appear at least as difficult to solve as the original Maxwell

equations. However, a considerable simplification is possible. Although we have

reduced the six components of the fundamental fields down to four components of

the potentials, the exact choice of potential functions are still somewhat arbitrary.
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That is, the electromagnetic field is invariant under any gauge transformation to the

potentials of the form

Φ′ = Φ − 1

c

∂Λ

∂t
, (1.18)

A′ = A + ∇Λ, (1.19)

where Λ is a scalar function. Depending on the particular situation a definite gauge

may be chosen to simplify the potential evolution equations. In nonrelativistic

quantum optics it is most convenient to work within the Coulomb gauge, for which

∇ ·A′(r, t) = 0. This gauge condition is satisfied if ∇2Λ = −∇ ·A. Since the gauge

condition is of the form of Poisson’s equation a transformation can always be found

that satisfies the Coulomb gauge condition. Applying the gauge condition to the

equations of motion (1.16) we find that ∇2Φ′ = 0. This has the trivial solution

Φ′ = 0. From (1.17) we obtain

∇2A′ − 1

c

∂2A′

∂t2
= 0. (1.20)

Thus, the vector potential satisfies a homogeneous wave equation. We will return

to this wave equation when quantising the electromagnetic field. By transforming

into the Coulomb gauge we have eliminated the scalar potential and have reduced

the Hamiltonian to the form

Ĥ =
1

2m
(p̂− eA′(r, t))

2
+ V (r). (1.21)

A much greater simplification is possible if we also admit one important approxima-

tion. In quantum optics we are commonly working with electromagnetic radiation

of wavelength around that of visible light (λ ≈ 10−7m), whereas atomic dimensions

are typically of the order of 10−10m. It is therefore common to employ the dipole

approximation, where we assume that spatial variations of the electromagnetic field

on the atomic scale are negligible. The scalar and vector potentials can then be

treated as constants over the atomic dimensions. We now use this approximation

and perform one further gauge transformation given by

Φ′′ = −1

c

∂Λ′

∂t
, A′′ = A′ + ∇Λ′, (1.22)
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where Λ′(r, t) = −A′(r, t) · r and ∇(−A′(r, t) · r) ≈ −A′(r, t) By doing so, we find

that the Hamiltonian can be written as

Ĥ =
p̂2

2m
+ V (r) − eE · r. (1.23)

Here the interaction between the field and the charged particle has been reduced to

a single term: HI = −eE ·r known as the dipole interaction. We note that although

the Hamiltonian was derived by transforming into the gauge (1.22) the quantity

E(r, t), and therefore the interaction term, is gauge independent.

1.2 Field Quantisation

1.2.1 The Electromagnetic Field Hamiltonian

The theory presented above amounts to a semiclassical approximation. Whereas

the charged particle is described using quantum mechanics it interacts with a clas-

sical electromagnetic field. Many phenomena in quantum optics can be described

semiclassically, and indeed many more when a semiclassical plus vacuum fluctua-

tions model in employed. However, to understand the full wealth of experimental

observations it proves necessary to quantise the electromagnetic field as well.

In the Coulomb gauge the electromagnetic field is completely described by the

vector potential alone. Solutions to the wave equation (1.20) are given by the trans-

verse waves

A(r, t) =
∑

k,s

ek,s

(

Ak,se
i(k·r−ωt) + A∗

k,se
−i(k·r−ωt)

)

. (1.24)

Here ek,s are a pair of orthogonal polarisation vectors that are perpendicular to the

wave propagation (k·ek,s = 0). We have chosen to solve the wave equation in an cube

of volume L3 with periodic boundary conditions. It is assumed that the cube is free

of charges or currents and that the atom-field interaction volume is negligibly small

compared to the quantisation volume of the cube. In this case there exist a discrete

set of allowed wavevectors that are given by k = (2π/L)(mx, my, mz), {mα ∈ [0,∞)}.
By using (1.14) and (1.15) we find that the electric and magnetic field components
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are given by

E(r, t) = i
∑

k,s

ωkek,s

(

Ak,se
i(k·r−ωt) −A∗

k,se
−i(k·r−ωt)

)

, (1.25)

B(r, t) = i
∑

k,s

(k × ek,s)
(

Ak,se
i(k·r−ωt) − A∗

k,se
−i(k·r−ωt)

)

. (1.26)

Using these solutions we wish to calculate the Hamiltonian of the electromagnetic

field. Classically the total energy of the electromagnetic field in a volume V is given

by the integral over the energy density. In the absence of dielectric material this is

H =
1

2

∫

V

(

ε0E · E +
1

µ
B · B

)

dV. (1.27)

By substitution of the solutions for E and B given above, it is found that

H = 2ε0V
∑

k,s

ω2
k
Ak,sA

∗
k,s. (1.28)

At this point we can gain further insight into the nature of the electromagnetic field

modes by re-writing the field amplitudes Ak,s in terms of the quadrature components

Ak,s =
1

2ωk(εoV)1/2
(ωkqk,s + ipk,s) , (1.29)

A∗
k,s =

1

2ωk(εoV)1/2
(ωkqk,s − ipk,s) . (1.30)

This results in the Hamiltonian taking the form of a summation over an infinite set

independent classical harmonic oscillators:

H =
1

2

∑

k,s

(

p2
k,s + ω2

k
q2
k,s

)

. (1.31)

The recognition that each field mode is equivalent to a harmonic oscillator enables

us to canonically quantise the conjugate classical variables p and q. It is important

to note that since no products of the classical variables appear in the Hamiltonian

there will be no ambiguity when replacing the c-numbers with the corresponding

non-commuting q-numbers operators, (p, q) → (p̂, q̂). The position and momentum

operators are assumed to satisfy the well-known quantisation condition

[q̂k,s, p̂k,s] = i~δk,k′δs,s′, (1.32)
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where all other commutators vanish. It is now possible to rewrite the quantum-

mechanical Hamiltonian in terms of the ladder operators defined by

âk,s =
1

(2~ωk)1/2
(ωkq̂k,s + ip̂k,s) , (1.33)

â†
k,s =

1

(2~ωk)1/2
(ωkq̂k,s − ip̂k,s) . (1.34)

The definition of these operators is almost identical to (1.29) and (1.30) except

that the quadrature components (p̂, q̂) no longer commute. Indeed, the Hamiltonian

(1.28) could not be quantised directly because of the ambiguity when trying to

quantise products of classical variables whose quantum-mechanical equivalents do

not commute. When written in terms of the ladder operators we find that the

Hamiltonian is similar to (1.29), other than for the existence of an infinite zero-

point energy. That is

Ĥ =
∑

k,s

~ωk

(

â†
k,sâk,s +

1

2

)

. (1.35)

The infinite zero-point energy, although appearing problematic at first, causes re-

markably few concerns. Since only differences between energy states are observable

it is largely ignorable in most calculations. Nonetheless, the existence of a infinite

zero-point “background” has been verified by the experimental demonstrations of

the Casimir effect [24] and could be used in conjunction with negative refractive

index materials to demonstrate quantum levitation [25].

1.2.2 Quantum States of the Field

In classical electrodynamics it is often convenient to solve the wave-equation (1.5)

in terms of Fourier components. Classically the state of a single-mode field is com-

pletely described by one complex frequency amplitude. However, the quantum state

of the electromagnetic field, even for a single frequency mode, is much more compli-

cated: this gives rise to the rich diversity of nonclassical effects observed in quantum

optics. Thus, the quantum state must be specified with respect to an infinite set

of basis states. Certain choices of basis states prove particularly useful. The most

straightforward of these are the eigenstates of the Hamiltonian (1.35). For a single
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mode field we have

Ĥ|n〉 = ~ω

(

n̂ +
1

2

)

|n〉 = En|n〉, (1.36)

where n̂ = â†â and

En =

(

n+
1

2

)

~ω. (1.37)

These states are known as Fock- or number-states and range in energy from a lower

bound of E0 = ~ω/2 to infinity in steps of ~ω. A state |n〉 is interpreted as rep-

resenting n photons delocalised throughout the quantisation volume. Notably, the

bounding of the Fock-state spectrum from below is responsible for the impossibility

of forming conjugate phase and number operators [26, 27].

The n-photon eigenstate can be generated from the vacuum by repeated appli-

cation of the creation operator â†:

|n〉 =
(â†)n

√
n!

|0〉. (1.38)

We also note that the set of eigenstates of (1.35) form a complete and orthonormal

basis.
∞
∑

n=0

|n〉〈n| = 1, 〈n|m〉 = δn,m. (1.39)

Another useful set of basis states are the coherent states. These are commonly

defined as eigenstates of the annihilation operator â|α〉 = α|α〉 and are expressed in

terms of the Fock basis by

|α〉 = exp
(

−|α|2/2
)

∞
∑

n=0

αn

√
n!
|n〉. (1.40)

The coherent state has an average number of photons 〈n〉 = |α|2 and a Poissonian

distribution.

p(n) =
〈n̂〉ne−〈n̂〉

n!
. (1.41)

Once again we note that the coherent states form a complete set. However, although

these states form a basis they are not orthogonal. The basis is therefore termed

“over-complete”. The overlap of coherent states is given by

|〈α|α′〉|2 = exp
(

−|α− α′|2
)

. (1.42)
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Clearly coherent states with significantly different eigenvalues α have an exponen-

tially vanishing inner product. The coherent states are also significant because they

are generated by the radiation of a classical dipole oscillator. For a free oscillating

dipole we expect equal excitation of the electric and magnetic field components due

to the equipartition of energy between the field degrees of freedom. Indeed, were

the annihilation and creation operators to become c-numbers we would expect them

to describe counter-rotation vectors of constant magnitude (in the Heisenberg pic-

ture). The quantum-mechanical version in the Schrödinger picture corresponds to

a complete (and constant) knowledge of α - that is an eigenstate of the annihilation

operator â. These two definitions are therefore identical.

1.3 Nonlinear Dielectrics

1.3.1 Classical Description

It was realised early in the development of electromagnetic theory that light-rays

are able to cross paths undisturbed [1, 2]. This essential feature of light in free space

means that interactions between fields are impossible to generate without the use of

a nonabsorbing, nonlinear medium. With the demonstration of the laser by Maiman

in 1960 [28] began a rapid exploration of nonlinear optics. However, even before the

availability of high-intensity coherent light sources, some success had been achieved

in the field. One of the most important nonlinear interactions between an electric

and an electromagnetic field was discovered as early as 1875 by the Scottish physicist

John Kerr [29]. This interaction, the electro-optical cross-phase modulation, now

bears his name: the cross-Kerr effect.

Essentially nonlinear optical interactions occur due to the nonlinear response of

materials to an external electromagnetic field. This in turn generates a nonlinear

back-action on the fields themselves. Whereas previously it was sufficient to assume

that the material polarisation was proportional to the applied field, in general we will

have to take into account higher-order effects. We begin by considering a classical
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material, such as an optical fibre, for which the polarisation is given by

P (t) = P (1)(t) + P (2)(t) + P (3)(t) + ... (1.43)

where P (n)(t) = ε0χ
(n)E(t)n. For centrosymmetric materials the second-order polar-

isation term must vanish in the dipole approximation due to the inversion symmetry

[20]. We suppose that the material is driven by an electric field composed of two

frequency components

E(t) =
1

2
Ea exp[i(kaz − ωat)] +

1

2
Eb exp[i(kbz − ωbt)] + c.c. (1.44)

In this case the third-order polarisation of the material displays a wide variety of

effects. Namely

P 3(t) = ε0χ
(3)E(t)3 (1.45)

= ε0χ
(3)

{(

3

8
|Ea|2 +

3

4
|Eb|2

)

Ea exp[i(kaz − ωat)]

+

(

3

8
|Eb|2 +

3

4
|Ea|2

)

Eb exp[i(kbz − ωbt)]

+
1

8
E3

a exp[3i(kaz − ωat)] +
1

8
E3

b exp[3i(kbz − ωbt)]

+
3

8
E2

aEb exp [(2i(kaz − ωat) + i(kbz − ωbt)]

+
3

8
E2

bEa exp [2i(kbz − ωbt) + i(kaz − ωat)]

+
3

8
E∗2

a Eb exp [−2i(kaz − ωat) + i(kbz − ωbt)]

+
3

8
E∗2

b Ea exp [−2i(kbz − ωbt) + i(kaz − ωat)]

}

These terms represent the parametric processes that occur in a fibre: the self- and

cross-Kerr nonlinearities, third-harmonic generation and four-wave mixing (FWM).

In general the χ(3) nonlinearity is seen to generate a large number of interacting

effects. However, other than the self- and cross-Kerr nonlinearities all other processes

will normally make a negligible contribution due to phase-matching requirements.

Consider the third-harmonic generation at a frequency ω′ = 3ωa. The polarisation

induced at the frequency exp[i(k′z − ω′t)] will have the amplitude

Pω′ =
1

8
E3

a exp[i(3ka − k′)z]. (1.46)
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Since we cannot suppose that the optical fibre will have a linear dispersion relation

then generally k′ 6= 3ka. This results in neighbouring points on the optical fibre

radiating at frequency 3ωa, but out-of-phase with each other. For optimal frequency

conversion it is necessary to phase-match the radiating dipoles by working between

suitable points on the dispersion profile of the fibre [30]. Alternatively one can

employ a secondary non-parametric process (e.g. stimulated Raman scattering) as

is done in supercontinuum generation [31].

This generally leaves only SPM and XPM simultaneously present in the fibre.

Unfortunately, the strength of the nonlinearity generated in an optical fibre is rela-

tively small. Consider the nonlinear refractive index coefficient related to the inten-

sity of the field (δηNL = η
(2)
I I). This is given by [30]

η
(2)
I =

Aeffλγ

2π
, (1.47)

where Aeff is the effective area of the fibre core, λ is the wavelength of light and γ

is the nonlinearity parameter. Typical values for a microstructured optical fibre are

Aeff = πr2, r = 0.8µm, γ = 95W−1km−1, λ = 800nm and η(0) = 1.47. This results

in a nonlinear index of η
(2)
I ≈ 2.4m2W−1. To convert this to the nonlinear index

related to the square of the amplitude δηNL = η(2)|E|2 we use the conversion factor

to find

η(2) =
ε0cη

(0)η
(2)
I

2
≈ 4.7 × 10−23m2V−2. (1.48)

With this we can calculate the nonlinear electric susceptibility of a typical mi-

crostructured optical fibre:

χ(3) =
8η(0)η(2)

3
≈ 1.9 × 10−22m2V−2. (1.49)

We will find in later calculations that the coherent interaction with rubidium-87 in

the N-configuration atom provides a much larger nonlinearity. In addition we are

able to isolate the cross-phase modulation on its own. Thus, although optical fibres

provide a convenient and robust method of generating optical nonlinearities, we are

motivated to find alternative systems in which a single, stronger nonlinearity can be

isolated.
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When only the self-Kerr and cross-Kerr nonlinearities are present the third-order

material polarisation at a frequency ωa is given by

P (3)
a = ε0

3

2
χ(3)(ωa;ωb,−ωb, ωa)|Eb|2Ea + (1.50)

ε0
3

4
χ(3)(ωa;ωa,−ωa, ωa)|Ea|2Ea. (1.51)

For convenience we abbreviate the notation for the self- and cross Kerr susceptibil-

ities such that χ
(3)
s (ωa) = χ(3)(ωa;ωa,−ωa, ωa) and χ

(3)
c (ωa) = χ(3)(ωa;ωc,−ωc, ωa).

The linear and non-linear polarisation terms are substituted into the wave equation

and on Fourier transforming the result we find the dispersion relation

c2k2
a

ω2
a

= 1 + χ(1)(ωa) +
3

4
χ(3)

s (ωa)|Ea|2 +
3

2
χ(3)

c (ωa)|Eb|2. (1.52)

In this case the plane-waves of the Fourier decomposition are clearly still valid

solutions of the non-linear wave equation because frequency conversion processes

have been excluded. The form of this dispersion relation is important, since it

presents the possibility that the linear dispersion associated with χ(1)(ω) term could

be cancelled by the non-linear terms. In this case, it is possible to find non-dispersive

localised excitations of the nonlinear field - commonly known as solitons [32]. For

example, an important example is the bright/dark solitons supported by the self-

phase modulation present in optical fibres with anomalous/normal dispersion [33,

34].

The refractive index and absorption can be calculated by solving the equations

η2
α − κ2

α = Re
{

c2kα

ωα

}

, 2ηακα = Img
{

c2kα

ωα

}

. (1.53)

Given the situation (to be considered later) where only the cross-Kerr interaction

remains, we find that the refractive index and absorption experienced by the electric

field Ea are given by

ηa = 1 +
3

4
|Eb|2Re

{

χ(3)
c (ωa)

}

, (1.54)

κa =
3

4
|Eb|2Img

{

χ(3)
c (ωa)

}

. (1.55)

From this we can see that the cross-Kerr interaction results in a contribution to the

refractive index and absorption of one field that is dependent on the intensity of the
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other. This relationship is reciprocal and is often taken as defining the cross-Kerr

interaction. When a linear response is also present and the system is lossless, then

the refractive index experienced by the field α is

ηa = η(0)
α (ωa) + η(2)

α (ωa, ωβ)|Eβ|2, (1.56)

where α, β ∈ {a, b}, β 6= α. Given that χ
(3)
c is small, the zeroth- and second-order

refractive index terms are found to be

η(0)
α (ωα) =

(

1 + χ(1)(ωα)
)1/2

, (1.57)

η(2)(ωα, ωβ) =
3

4η
(0)
α

χ(3)(ωα, ωβ,−ωβ, ωα). (1.58)

The nonlinear refractive index contribution will also give rise to a phase shift of the

incident plane wave (α) of angle

∆φNL = k0l

(

3

4
|Eβ|2Re

{

χ(3)
c

}

)

, (1.59)

where l is the interaction length and k0 is the magnitude of the free-space wave

vector.

1.3.2 Quantum-Mechanical Description

So far the effect of the cross-Kerr nonlinearity has been considered in a purely

classical context. That is, the quantities considered are all measurable for classical

fields. Let us now consider the effect of the cross-Kerr nonlinearity on quantum

states of the light field. The Hamiltonian of the cross-Kerr nonlinearity is given by

[35]

Ĥ = ~Kn̂an̂b. (1.60)

We can derive this Hamiltonian using a method very similar to the quantisation

of the free electromagnetic field. In this case we consider the energy shift of the

atom due to the electric-dipole interaction with two orthogonal electromagnetic

fields subject to the cross-Kerr interaction. The total energy is given by the volume

integral over the electric field energy density

H =
1

2

∫

V
E ·DdV. (1.61)
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Here the electric field is assumed to consist of two components E(r, t) = Ea(r, t) +

Eb(r, t), which are given by

Eα(r, t) = iωαeα

[

Aαe
i(k·r−ωαt) −A∗

αe
−i(k·r−ωαt)

]

, (1.62)

where ea · eb = 0. The polarisation is given by the cross-Kerr interaction only

P(r, t) =
3

2
ε0χ

(3)|E(ωb)|2Ea(r, t) +
3

2
ε0χ

(3)|E(ωa)|2Eb(r, t). (1.63)

The nonlinear susceptibility is assumed to be real, and therefore lossless. Now, we

choose to integrate the electric field energy density of a volume V. For each of the

fields we find the interaction energy is given by

H = 6ε0Vχ(3)ω2
aω

2
bAaA

∗
aAbA

∗
b . (1.64)

It is now possible to construct the quantum-mechanical Hamiltonian by using the

relationships (1.29-1.30) and (1.33-1.34). After dropping terms associated with the

zero-point energy we find that each of the electromagnetic fields will experience an

interaction with the atom of the form

ĤI =
−3~

2ωaωcχ
(3)

2ε0V
n̂an̂c. (1.65)

The interaction strength is therefore clearly given by

K = −3~ωaωcχ
(3)

2ε0V
. (1.66)

We now ask what effect will this Hamiltonian have on quantum states of the field.

Consider the evolution of two electromagnetic fields, both of which are in Fock

states. If |ψ(0)〉 = |na〉 ⊗ |nb〉 then at a later time the combined state is given by

|ψ(t)〉 = eiKnanbt|na〉 ⊗ |nb〉. (1.67)

Thus, the Fock state experiences a phase shift that is proportional to the product of

the photon numbers. This simple interaction forms the basis of many applications

of the cross-Kerr effect in quantum information/optics.



Chapter 2

Introduction to Quantum

Electronics

In the first chapter we developed a quantum-mechanical description of light in the

presence of a dielectric material. This is the domain of quantum optics. Very

closely related, and nowadays seldom differentiated, is the topic of this chapter:

quantum electronics. Whereas quantum optics focuses on the optical fields, quantum

electronics considers the effect of photons on the quantum state of electrons from

which matter is composed. An understanding of these atom-field interactions has

led to important technological developments such as the laser, optical amplifiers and

laser cooling.

2.1 The Schrödinger Equation

One of the most common problems in life is working out what will happen next.

Given that we can estimate the initial state of a system and know approximate rules

for its evolution, then we can determine its configuration at a later time.

However, in many of the sciences the discovery of the evolutionary rules remains

an outstanding problem. Even when these laws are known estimating the initial

conditions or evaluating the result is often impractical. Nonetheless no discipline

has developed a greater quantitative understanding than that achieved in physics.

17
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Fortunately in the case of quantum optics, the systems studied can often be modelled

with remarkable accuracy using quite straightforward methods.

As physicists we appeal to the framework of mathematics and physical intuition

to form equations from which predictions can be made. In the case of quantum

mechanics the starting point of our investigations is usually the Schödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉, (2.1)

where Ĥ is the Hamiltonian, or “total energy operator”. The Hamiltonian defines

the energy eigenstates

Ĥ|φn(0)〉 = En|φn(0)〉. (2.2)

The Hamiltonian has particular significance in both classical and quantum mechan-

ics. In addition to giving the energy the Hamiltonian also generates the evolution of

the system via either the classical Hamilton-Jacobi equation [23] or the Schödinger

equation. This dual role means that the eigenstates of the Hamiltonian are also

steady states of the probability distribution. The number of eigenstates of the

Hamiltonian is equal to the dimension of the quantum system. The evolution of

each is simply given by

|φn(t)〉 = exp(−iEnt/~)|φn(0)〉. (2.3)

Since these eigenstates form a basis for solutions of the Schrödinger equation, then

the evolution of any pure quantum state can be decomposed in terms of these func-

tions. This provides a powerful and straightforward method for determining solu-

tions of the Schrödinger equation.

2.2 Interaction Pictures

Using the description of quantum dynamics given above results in the time evolution

of the system being described by the state vector. This is known as the Schrödinger

picture. However, it is often convenient to transform the dynamical equations into

other “pictures” where the evolution is contained wholly or partly within the oper-

ators [36]. These are known as the Heisenberg and interaction pictures respectively.



2.3. DRESSED STATES 19

We will have many occasions to transform into an interaction picture during this

thesis.

To transform into an interaction picture we suppose that the Hamiltonian can

be split into two parts

ĤSP (t) = Ĥ ′
SP (t) + Ĥ ′′

SP (t) (2.4)

Commonly, the first term, Ĥ ′
SP , will be time-independent and is responsible for

producing phase changes in the chosen basis states, whereas the second term, Ĥ ′′
SP (t),

represents interactions between these. The interaction picture is defined by the

transformation

|ψIP (t)〉 = Û−1(t)|ψSP (t)〉. (2.5)

Here Û(t) is the unitary operator that generates the time evolution associated with

H ′
SP (t). When this part of the Hamiltonian is time-independent we have

Û(t) = exp

[

−iĤ ′
SP t

~

]

. (2.6)

In this interaction picture the wavefunction now obeys the equation of motion

i~
∂

∂t
|ψIP (t)〉 = ĤIP |ψIP (t)〉, (2.7)

where ĤIP = Û−1(t)Ĥ ′′
SP Û(t) is the representation of the Hamiltonian in the inter-

action picture. The operators transform as Ω̂IP (t) = Û−1(t)Ω̂SP Û(t) and are found

to obey the equation of motion

∂

∂t
Ω̂IP (t) =

i

~

[

Ĥ ′
SP (t),ΩIP (t)

]

−
. (2.8)

2.3 Dressed States

It is well-known that the energy levels of an atom are solutions of the time-independent

Schrödinger equation describing electrons bound by a spherically symmetric poten-

tial. For a single electron atom we have [37]

Ĥ0(r)|φ(r)〉 = E|φ(r)〉. (2.9)
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However, when an external perturbation is applied then the energy levels of the free

atom cease to be eigenstates of the total Hamiltonian Ĥ(r) = Ĥ0(r) + V̂ (r). That

is
[

Ĥ0(r) + V̂ (r)
]

|φ(r)〉 6= E|φ(r)〉. (2.10)

Commonly this occurs due to one or more electromagnetic fields perturbing the

atom via the electric-dipole interaction discussed in Chapter 1. Nonetheless, often

it is still possible to find eigenstates (or at least approximations to them) of the total

Hamiltonian. The atom is said to be dressed by the fields and the new eigenstates

of the total Hamiltonian are named the dressed states.

One of the simplest exactly solvable examples is given by the two-level atom

interacting with a single field mode. In an interaction picture the Hamiltonian is

[26]

ĤIP = ~∆σ22 + ~g
(

σ21â+ σ12â
†) , (2.11)

where ∆ = ω2 − ω1 − ω is the detuning of the electromagnetic field and σij = |i〉〈j|
are the atomic transition operators. In general the solution space will be spanned

by a tensor product between the infinite set of field states and the two states of the

atom given by

|ψ(t)〉 =
2
∑

i=1

∞
∑

n=0

ci,n|i〉A ⊗ |n〉. (2.12)

By inspection of the Hamiltonian we see that only pairs of states will couple to each

other. That is, the infinite set of subspaces {|1〉A⊗|n+1〉, |2〉A⊗|n〉}, n ∈ [0,∞)} are

invariant under the operation of the Hamiltonian. We therefore restrict our analysis

to within one such resonant manifold [38]. The eigenstates of (2.11) are found to be

|C±〉 =
1

N±
(Ω|1〉 + 2λ±|2〉) , (2.13)

where |1〉 = |1〉A ⊗ |n+ 1〉, |2〉 = |2〉A ⊗ |n〉 and N± are the normalisation constants.

Here Ω = g
√
n + 1 is called the Rabi-frequency and gives the interaction strength

in frequency units. The corresponding eigenvalues are

λ± =
1

2

(

∆ ±
√

∆2 + Ω2
)

. (2.14)
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Any initial pure state can be decomposed in terms of the two dressed states and is

easily shown to evolve as

|ψ(t)〉 = c−(0)e−iλ−t|C−〉 + c+(0)e−iλ+t|C+〉. (2.15)

As an example consider the atom initially in the upper state, with n + 1 photons

in the field mode. Then the initial condition |ψ(0)〉 = |2〉 expressed in terms of the

dressed basis is found to be

c−(0) = −N−

2Ω̃
, c+(0) =

N+

2Ω̃
, (2.16)

where Ω̃ =
√

∆2 + Ω2. By substitution of these initial conditions into the general

solution (2.15) the well-known Rabi-solution to the dynamics is deduced:

|ψ(t)〉 =
e−i∆t/2

Ω̃

{

−iΩ sin

(

Ω̃t

2

)

|1〉 +

[

Ω̃ cos

(

Ω̃t

2

)

− i∆ sin

(

Ω̃t

2

)]

|2〉
}

.

(2.17)

It is straightforward to show that Ω̃ is the frequency at which population oscillations

occur between the upper and lower atomic states. When driven by a classical field we

have Ω = −pE/~ and identical population oscillations are observed [39]. However,

when the two-level atom is driven by coherent state (generally considered the most

classical state) then the atom is shown to undergo periodic decay and revival of

the oscillations [40, 41]. This occurs due to interference between the sinusoidal

oscillations corresponding to the various Fock state components of the coherent

state, as shown in (1.40).

Another feature of the two-state atom without a classical analogue is the exis-

tence of zero-field Rabi oscillations. In the semi-classical model an atom prepared

in the upper atomic state will remain there so long as no external classical field

is applied. However, when the interaction with a single field mode is modelled

quantum-mechanically it is seen that an atom initially prepared in the upper atomic

state with no photons present will still experience population oscillations. This is

due to the non-vanishing vacuum Rabi-frequency Ω = g
√

1 and is an example of

reversible spontaneous emission. Both of these quantum-mechanical features of the
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Figure 2.1: (a) The two-level atom interacting with a set of electromagnetic field

modes. (b) When the atom is initially in the excited state and couples to the ground

state via an ensemble of vacuum modes the system is equivalent to semi-classical

photoionisation to a continuum.

Rabi-oscillations have been observed at microwave frequency using rubidium atoms

highly excited into Rydberg states [41].

For transitions at optical frequencies however, it is observed that an excited atom

will rapidly decay into the lower atomic level. This is in contrast to the reversible

population oscillations predicted by the single-mode model described above. We

now turn to the problem of accurately modelling the real atomic dynamics of atoms

with transitions at optical frequencies. We find that the discrepancy between the

theory and experiment can be corrected by including the interaction of the atom

with a continuum of field modes.

2.4 Weisskopf-Wigner Theory

At optical frequencies spontaneous emission often plays the dominant role in the

dynamics of atomic systems. As shown previously, the simple two-level atom inter-

acting with a single field mode is unable to account for the experimentally observed

decay. The first successful method of explaining spontaneous emission was proposed

by Weisskopf and Wigner in 1930 [5]. Following their method we show that by in-

cluding the coupling to a continuum of free-space electromagnetic field modes the
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rate of decay can be deduced.

The Hamiltonian of a two-level atom interacting with a infinite set of field modes

is given by

H = ~ω1σ11 + ~ω2σ22 + ~

∑

s

ωsâ
†
sâs + ~

∑

s

gs(σ+âs + σ−â
†
s), (2.18)

where we have removed the zero-point energy associated with each field mode. We

now restrict the atom to the situation where only one photon is present in one of

the field modes while the atom is in the ground state. The restricted basis can be

written as

|s〉 = |1〉A ⊗ | . . . , 0, 1, 0, . . .〉, (2.19)

|e〉 = |2〉A ⊗ |0, 0, . . . , 0〉, (2.20)

where s ∈ [0,∞) labels which of the infinite set of field modes the photon is in.

Within this basis the Hamiltonian becomes

H = ~ω2σee + ~

∑

s

(ω1 + ωs)σss + ~

∑

s

gs(σs+ + σs−), (2.21)

where σs+ = |e〉〈s|. This Hamiltonian describes an excited state, |e〉, coupled to a

infinite set of lower levels, |s〉. The set of energy levels |s〉 represent the atom in

the ground state with one photon of frequency ωs. Thus, we have transformed our

Hamiltonian into the form of a classical photoionisation problem. To take account

of the infinite set of field modes we change the summation into a three dimensional

integral over the density of states:

∑

s

−→
∫

D(ωs)d
3
ωs. (2.22)

The integral is taken over all possible field modes. Here D(ωs) is the density of

states, which in free space is frequency independent, isotropic and is found to be

D(0) = 2V/(2πc)3. It is important to recall that the dipole coupling element is a

function of both the frequency and orientation of each field mode with respect to

the atomic dipole moment. That is

g(ωs) =
p · êωs

εωs

~
= g(ωs) cos(θ), (2.23)



24 CHAPTER 2. INTRODUCTION TO QUANTUM ELECTRONICS

where θ is the angle between the atomic dipole and the polarisation of the field

mode ωs. Transforming into an interaction picture we get the form of a Hamiltonian

describing the coupling between a single bound state and an isotropic continuum of

free space modes:

H = ~

∫

∆sσssD(0)d3
ωs + ~

∫

g(ωs)(σs+ + σs−)D(0)d3
ωs, (2.24)

where ∆s = ω1 − ω2 + ωs. We assume that the solution to the dynamics is of the

form

|ψ(t)〉 = ce(t)|e〉 +

∫

cs(t)|s〉D(0)d3
ωs. (2.25)

This results in the infinite set of coupled equations for the time-dependent coeffi-

cients:

ċe(t) = −i
∫

g(ωs)cs(t)D(0)dωs, (2.26)

ċs(t) = −i∆scs(t) − ig(ωs)ce(t). (2.27)

We now formally integrate the equation (2.27) and substitute this into the differential

equation (2.26). This transforms the two coupled differential equations into a single

integro-differential equation for the coefficient ce(t). Once the angular integrations

have been performed we find

ċe(t) =
−p2

6π2c3~ε0

∫ ∞

0

dωsω
3
s

∫ t

0

dt′ce(t
′)ei∆s(t′−t). (2.28)

So far this equation is exact. However, we now note that for large values of ∆s

the time integral makes a vanishing contribution, varying approximately as ∝ 1/∆s.

Since only frequencies around resonance contribute significantly, we can make the

approximation ω3
s = ω3

21. Therefore

ċe(t) =
−p2ω3

21

6π2c3~ε0

∫ ∞

ω1−ω2

d∆s

∫ t

0

dt′ce(t
′)ei∆s(t′−t). (2.29)

When the integral over the detunings is evaluated we obtain
∫ ∞

ω1−ω2

d∆se
i∆s(t′−t) = πδ(t′ − t) + iP. (2.30)

The term P is a principle value integral that leads to an energy shift of the state

|e〉. This is due to the dressing of the bare state by the continuum of vacuum modes
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with non-zero Rabi-frequency and is closely related to the Lamb shift in hydrogen

[6, 17]. Normally the energy shift is very small and is absorbed into the definition

of the natural frequency ω21. In fact, this is an elementary example of the method

of renormalisation often used in quantum field theory. Evaluating the time integral

we find that the decay rate of the excited state is

ċe(t) =
−p2ω3

21

6πc3~ε0
ce(t). (2.31)

This is easily solved to give the observed exponential decay of the excited atomic

state:

ce(t) = exp(−Γt/2)ce(0), (2.32)

where the spontaneous decay rate has the value

Γ =
p2ω3

21

3πε0~c3
. (2.33)

We note that the spontaneous decay rate of the excited state is proportional to the

cube of the transition frequency. This explains why decay rates of the order 10Hz

are possible at microwave frequencies, as opposed to 10MHz at optical frequencies.

Spontaneous emission can also be reduced by decreasing the number of field modes

present, as is often done by placing the atom in a high Q-factor cavity.

Commonly spontaneous emission is explained as arising due to stimulated emis-

sion of the atom by the vacuum field modes. It should be noted however, that the

calculation above makes no direct reference to the zero-point fluctuations of the

vacuum fields. These fluctuations are in fact neglected at the very beginning of the

calculation. Indeed, were this explanation complete one would expect spontaneous

absorption of vacuum fluctuations to occur also, contrary to experimental evidence.

In has therefore been suggested that a more classical interpretation of spontaneous

emission should be employed [17]. For instance, when in an excited state the atom’s

own non-vanishing electromagnetic field (Ω 6= 0) should be viewed as causing a ra-

diative reaction that results in decay. This explanation is directly analogous to the

classical Lorentzian theory of radiative decay.
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2.5 Master Equations

In practice the problem of determine the dynamics of an ensemble of multilevel

atoms coupling to a continuum of field modes in arbitrary photon number states is

quite intractable. In addition, often the motion of the atoms, and the associated

collisional and Doppler broadening, should be included in the analysis. Generally,

spontaneous emission is only one of several decoherence mechanisms present. A

more straightforward, and approximate method of accounting for all the degrees of

freedom of the ensemble must be found. We represent the interaction between an

atom and its environment by forming the density matrix equation of motion:

˙̂ρ = − i

~
[Ĥ, ρ̂]− − D̂(ρ̂(t)), (2.34)

where D̂ is the decoherence operator. Our choice of decoherence operator depends on

the decay and dephasing mechanisms which we expect to be present in the system,

and the ease by which the resulting differential equations can be solved. One of the

most general forms of decoherence operator is the Lindblad form [42]

D̂(ρ̂(t)) =
1

2

∑

m

γm

(

[ρ̂L̂†
m, L̂m]− + [L̂†

m, L̂mρ̂]−

)

. (2.35)

Here γm gives the rate of each decay or dephasing process described by the operators

L̂m. For example, a spontaneous emission from an atomic level |2〉 to |1〉 is generated

by the operator L̂ = σ12. Similarly, a pure dephasing between two atomic levels is

represented by L̂ = 1√
2
(σ22 − σ11). Such a dephasing could occur due to an elastic

collision between atoms.

However, an alternative form of decoherence operator also exists, which although

less general, produces a master equation that is much easier to solve. This master

equation is

˙̂ρ(t) = − i

~
[Ĥ, ρ(t)]− − 1

2
[Γ, ρ(t)]+, (2.36)

for which the decay matrix Γ = diag{Γ1,Γ2 . . .}. The main disadvantage of this form

of master equation is that only spontaneous decay and decay induced dephasing can

be modelled by it. For example, elastic collisions that induce dephasing, but not
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atomic transitions, cannot be included by this mechanism. Similarly, no account

can be made for the drift of atoms in and out of the interaction region. This is

particularly significant for systems such as the atomic lambda system, which contains

a pair of nearly degenerate ground states. According to the Maxwell-Boltzmann

distribution there will be an appreciable probability for the atom occupying either

ground state. Therefore, in a thermal gas there will be a constant drift of coherently

prepared atoms out of the laser beam, and a drift of (almost maximally) mixed

states into the interaction region. However, given a sufficiently low density gas (few

collisions, with buffer gas present) prepared at low temperature (lower drift rate,

less mixing and fewer collisions), it is possible to model an atomic system accurately

using the master equation (2.36). This is particular significant since solutions to this

equation are much easier to derive than solutions using the full Lindblad method.

Consider the Schrödinger equation, where the Hamiltonian is no longer necessarily

Hermitian:
∂

∂t
|ψ〉 = − i

~
Ĥ|ψ〉, ≡ ∂

∂t
〈ψ| = − i

~
〈ψ|Ĥ†. (2.37)

If we form the density matrix equation of motion ρ̂ = |ψ〉〈ψ|, we find

˙̂ρ = − i

~

(

Ĥρ̂− ρ̂Ĥ†
)

. (2.38)

Now, we choose the non-Hermitian Hamiltonian to be of the form

Ĥ = Ĥo −
i~

2
Γ̂, (2.39)

where Γ̂ is represented by the diagonal decay matrix given above. Then we can

rewrite the density operator equation of motion as

˙̂ρ = − i

~
[Ĥo, ρ̂]− − 1

2
[Γ̂, ρ̂]+. (2.40)

Clearly, this is exactly the same form as the master equation given above (2.36).

By solving the Schrödinger equation and making the substitution (2.39), where the

eigenvalues of Ĥo become complex, we have also formed solutions to the master

equation. We note that this is more that just a mathematical coincidence. From

examination of the Weisskopf-Wigner theory we have seen that the energy shift and
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decay can be understood as modifications to the real and imaginary parts of the

eigenenergy of the excited state. In addition, as was shown in section 1.3 there exists

a relationship between the Hamiltonian and the electric susceptibility. Thus, the

Kramer-Krönig relations between the real and imaginary parts of the susceptibility

at least suggest that a similar relationship may exist for the transition energies.

One further caveat of the simple master equation (2.36) is that although it can

model decay and decay induced dephasing, it cannot produce a cascade of population

between energy levels. A very simple example of this is given by a system for which

the matrix representation of the Hamiltonian is diagonal. In this case the diagonal

elements of [H, ρ]− vanish and their evolution is dictated by the decay only:

ρ̇pp(t) =

(

−1

2
[Γ, ρ(t)]

)

pp

= −Γppρpp(t). (2.41)

The solution is given by the exponential decay ρpp(t) = exp(−Γppt)ρ(0). That is,

the population that decays from each atomic level is simply “lost” from the system

and does not cascade. We interpret this as the atom spontaneously decaying into a

state outwith our Hilbert space. The decaying behaviour is exactly that predicted

by the Weisskopf-Wigner theory, although in many case the actual rate will vary

significantly from the W.-W. result. This is due to multilevel effects that arise when

energy levels are nearly degenerate and the simple two-level model presented above

is no longer valid [36].

2.6 Electromagnetically Induced Transparency

One of the most striking examples of the quantum nature of light is the double-slit

interference pattern generated over time by an ensemble of individual photons. Sim-

ilarly, the quantum-mechanical nature of matter is elegantly demonstrated by the

corresponding single-electron experiment [43]. However, it is also possible to demon-

strate the quantum-interference of electronic states by using electrons bound within

the atom. This was first recognised by Fano in 1961 when considering the process

of autoionisation [44], by which two two pathways exist for ionisation of an atom



2.6. ELECTROMAGNETICALLY INDUCED TRANSPARENCY 29

Figure 2.2: The atomic lambda system (Λ-system). Two ground states are coupled

to a single excited state that decays at the rate Γ2.

to occur. More recently, the realisation that intra-atomic quantum interference can

produce dramatic effects has been exploited in the phenomena of electromagnetically

induced transparency (EIT).

It is well known that a classical electromagnetic field interacting with a quantum-

mechanical two-level atom will experience a Lorentzian absorption profile. That is,

the electric susceptibility for a density of N/V atoms in the ground state is given

by [39]

χ(∆) =
Np2

~ε0V

∆ + iγ

∆2 + γ2
, (2.42)

where ∆ − iγ is the complex detuning predicted by the Weisskopf-Wigner theory.

However, there is nothing particularly quantum-mechanical about this result. In

fact the same response can be derived by considering the electron as a point charge

trapped within a damped harmonic oscillator [17]. The true quantum-mechanical

nature of bound-state electrons only becomes manifest when multiple excitation

pathways exist and quantum interference can occur. This is analogous to interference

occurring in the double-slit experiment.

We consider an atom consisting of two ground states coupled to a decaying

excited state (Fig. 2.2). This configuration is often called the lambda system (Λ

system). The most straightforward method of understanding the Λ system is to
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consider the dressed states of the Hamiltonian [45]. Working within an interaction

picture and for a semi-classical approximation (or when we restrict ourselves to

within one resonant manifold [38]) the Hamiltonian has the matrix representation

H = ~











0 Ωa/2 0

Ωa/2 ∆a Ωb/2

0 Ωb/2 ∆a − ∆b











, (2.43)

where Ωα, α ∈ {a, b} are the Rabi-frequencies of both fields and ∆a = ω2 − ω1 −
ωa,∆b = ω2 −ω3 −ωb are the detunings. The characteristic polynomial that defines

the eigenvalues (En = ~λn) is

4λ3 − 4λ2(2∆a − ∆b) − λ
[

Ω2
a + Ω2

b − 4∆a(∆a − ∆b)
]

+ (∆a − ∆b)Ω
2 = 0. (2.44)

The eigenvalues can be found by depressing the cubic polynomial and then using

a cosine substitution [36]. However, it is more instructive to consider the situation

when the fields are Raman-resonant with the two photon transition between the

ground states (∆a − ∆b = 0). Then the eigenvalues are easily found to be

λD = 0, λ± =
1

2

(

∆a ±
√

∆2
a + Ω̄2

)

, (2.45)

with Ω̄2 = Ω2
a + Ω2

b . The corresponding eigenstates are

|D〉 =
1

Ω̄
(Ωb|1〉 − Ωa|3〉) , (2.46)

|Φ±〉 =
1

N±
(Ωa|1〉 + Ωb|3〉 + 2λ±|2〉) . (2.47)

The eigenstate |D〉 is called the dark state of the Λ system. It is non-interacting,

or dark, to the electromagnetic fields since the density matrix elements ρ21 and ρ23

vanish. This can be explained by the destructive interference between excitation

from both ground states. That is, the population is shared among the ground states

so as to maintain balanced but anti-phase excitations.

Since |D〉 is an eigenstate and only contains components of the radiatively stable

ground states, we expect that an atom prepared in any mixture of the dressed states

to relax into the equilibrium dark state. By this method an optically thick gas of
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Figure 2.3: The form of the linear electric susceptibilities for (a) two-level atom and

(b) the atomic lambda system.

Λ-atoms can be rendered transparent by the addition of a second Raman-resonant

field and the subsequent relaxation into the dark state.

This procedure is called electromagnetically induced transparency (EIT) and was

first suggested in 1989 by Harris and Imamoǧlu [46] when investigating the possibility

of lasing without inversion (LWI). Since then the field of gas-phase nonlinear optics

has flourished due to the creation of several successful and promising EIT based

schemes. In practice transparency is usually achieved in an atom illuminated by

one weak (Ωa) and one strong (Ωb) field. These are usually named the probe and

pump fields respectively. Within this approximation the linear electric susceptibility

experienced by the probe field is

χ(1)(ωa;ωa) =
4N(∆a − ∆b)|p12|2

~ε0V [4(∆a − ∆b)(∆a − iγ1) − Ω2
b ]
. (2.48)

This electric susceptibility is compared with the two-level case in Fig.(2.3). We

note that due to the presence of the atomic dark-state on resonance, the Lorentzian

absorption profile has been split into two components. These are called the Autler-

Townes components and were observed by spectroscopic analysis of an optically thin

gas in 1955 [47].

Many of the most exciting applications of EIT rely on the region of large normal

dispersion occurring within the EIT transparency window. For instance, it was

demonstrated in 1999 that the high dispersion can be used to reduce the group

velocity of light to 17ms−1 in an ensemble of ultra-cold sodium atoms [48]. Since
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then it has been proposed that slow-light, or dark-state polaritons [49], could be used

to stop and store light pulses to form an optical quantum memory [50]. Indeed, there

has already been considerable success in storing light pulses in both rubidium vapour

[51], doped solids [52] and even at the single photon level [53].

The rapid change of refractive index around resonance can also give rise to a large

cross-phase modulation (XPM) between two electromagnetic fields in the four- and

five-level atoms [54, 55]. This effect forms the foundation of the research undertaken

in this thesis and is extensively explored in the following chapters. Much of the

current interest in the XPM produced in atomic vapours is due to the central role

this interaction plays in many quantum information processing protocols [56, 57].

It has also been suggested as a possible quantum logic gate as part of an all-optical

quantum computer [58, 15, 14].



Chapter 3

Steady-State Cross-Phase

Modulation

In chapter 1 it was demonstrated that cross-phase modulation will occur in any non-

linear centrosymmetric classical material. However, by using coherent interactions

between light and an ensemble of atoms it is possible to produce a much stronger,

and often pure cross-phase modulation. This possibility was first explored when

considering the three-level atom in the EIT configuration. The Λ configuration

does however have serious limitations which will be discussed below. Nonetheless,

by modifying this system to include a fourth atomic level we are able to overcome

many of these problems.

The possibility of achieving large cross-Kerr nonlinearities in the four-level atom,

known as the N-configuration atom, was first suggested by Schmidt and Imamoǧlu in

1996 [54]. It is the investigation of this system in the non-resonant [59, 60] and time-

dependent regimes [61] that constitutes my original work in this thesis. Recently it

has been suggested that equally strong nonlinearities could also be produced in the Λ

atom by using a single-mode cavity to enhance the interaction [62]. This interesting

development has yet to be experimentally realised, but appears to provide another

viable method for the generation of large XPM in atomic systems.

33
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3.1 XPM in the Λ System

To show that cross-phase modulation can be produced in a Λ atom we begin by

working in the EIT limit. In this case the ground states of the Λ atom are coupled

to the excited state by the pump (Ωb) and probe fields (Ωa), see fig. 2.2. The electric

susceptibility experienced by the weak probe field Ωa is

χ =
4N(∆a − ∆b)|p12|2

~ε0V [4(∆b − ∆a)(∆a − iγ) − Ω2
b ]
. (3.1)

Here, the susceptibility has been calculated to first-order in Ωa and to all orders in

Ωb. We now make the approximation that the control field Ωb is strongly detuned,

in particular we have Ωb � (∆b − ∆a)(∆a − iγ). Then the susceptibility can be

Taylor expanded in Ωb to give linear and XPM terms:

χ(1)(ωa;ωa) =
N |p12|2

~ε0V (∆a − iγ)
, (3.2)

χ(3)(ωa;ωa, ωb,−ωb) =
N |p12|2|p34|2

4~3V (∆a − iγ)2(∆a − ∆b)
. (3.3)

The linear term is found to be the usual Lorentzian absorption for an atom in

the ground state and the nonlinear term is the cross-phase modulation which we

required (Fig. 3.1). However, this configuration has a serious drawback: the XPM

is maximal when the probe field is close to resonance with the Lorentzian absorption

peak (see fig.(2.3a)). The essential problem of with XPM in the Λ atom is that the

XPM is obscured by strong Lorentzian absorption. Unfortunately this cannot be

mitigated by working off-resonance since the XPM term decays faster than the linear

absorption.

Recent demonstrations of the XPM generated in the three-level atom have chosen

to operate on resonance of the probe field [63]. In this case the nonlinear suscepti-

bility simplifies to

χ(3)(ωa, ωa, ωb,−ωb) =
4N |p12|2|p23|2

~3V γ2∆b
. (3.4)

In this expression we can see that the strength of the XPM nonlinearity is limited

by the square of the decay rate of the excited state, γ2. For a typical alkali metal

this decay rate is of the order of tens of MHz and severely limits the strength of
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Figure 3.1: The cross-phase modulation χ(3) nonlinear electric susceptibility gener-

ated in the Λ-atom.

the cross-Kerr nonlinearity that can be achieved. For values typical of rubidium-87

and for a control field detuned by 100MHz we find that the XPM produced is only

slightly larger than that created in a microstructured optical fibre (e.g. in fibre

χ(3) ≈ 10−22m2V−2).

3.2 XPM in the N-System

The possibility of achieving a large cross-Kerr nonlinearity in the four-level atom

was first proposed by Schmidt and Imamoǧlu in 1996 [54]. In the configuration

that they suggested three electromagnetic fields were envisaged to interact with an

ensemble of atoms in the N configuration (fig. 3.2). This was analysed in the steady-

state regime for a resonant Λ subsystem. By using the well-known sodium D-line

transitions they proposed that the required four-level atom could be experimentally

realised. In keeping with recent experimental demonstrations [64] we will apply the

theory developed in this thesis to an ensemble of rubidium-87 atoms trapped within

a MOT. The calculations in the following chapter are drawn from the papers [59, 60]

and represent original work of the candidate.
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Figure 3.2: The four-level 87Rb atom. We consider transitions between the hyperfine

components of the rubidium D lines.

3.2.1 A Simple Model

We begin by presenting a very intuitive explanation of XPM in the N-configuration

atom. In this way we show that the XPM is a direct consequence of the electromag-

netically induced transparency response of the Λ subsystem.

As discussed in section 2.6 electromagnetically induced transparency can be in-

terpreted as the trapping of the atom in a dark state. This occurs due to sponta-

neous emission from the excited state rapidly populating the dark superposition of

the ground states given by

|D〉 =
1

Ω̄
(Ωb|1〉 − Ωa|3〉) . (3.5)

Since the state is non-interacting with the fields the eigenenergy of this state can

be shown to vanish (ED = 0, with a suitable choice of zero-point). In the EIT limit

the small amount of atomic population in the ground state |3〉 has the value

ρ33 ≈
Ω2

a

Ω2
b

. (3.6)

We now introduce the third field Ωc that weakly couples to the excited state |4〉. The

weak coupling is due to the large (complex) detuning from resonance |∆c−iΓ4/2| �
0. From second-order perturbation theory we know that the mixing of the energy
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levels will produce a Stark-shift of the state |3〉 equal to

∆E3 ≈ − ~Ω2
c

4(∆c − iΓ4/2)
. (3.7)

Thus we expect that the energy shift of the dark state in the EIT limit will be

given by the product of the population in |3〉 and the energy shift of the level. We

therefore obtain

∆ED = − ~Ω2
aΩ

2
c

4(∆c − iΓ4/2)Ω2
b

. (3.8)

The product between the electromagnetic fields Ωa and Ωc indicates that XPM will

occur. By substitution of the energy contribution into the right hand side of (1.64)

we find that the cross-Kerr susceptibility for an ensemble of atoms (number density

N/V ) is given by

χ(3)(ωa;ωa, ωc,−ωc) =
2N |p12|2|p34|2

3ε0V ~3(∆c − iΓ4/2)Ω2
b

. (3.9)

This is indeed the correct answer when the Λ subsystem is resonant. We note

that the strength of the cross-phase modulation is proportional to the inverse of

the pump intensity (∝ 1/Ω2
b). This is limited however by the requirement that we

operate within the EIT regime, for which Ωb is couples much more strongly that

probe fields.

From this simple EIT based argument we can see that the XPM is produced due

to the Stark-shift of the small amount of population coherently trapped in the |3〉
component of the dark state. By viewing the Stark-shift due to the weak field Ωc as

breaking the Raman-resonance of the EIT system, we can also derive XPM directly

from the EIT linear susceptibility.

3.2.2 A Full Calculation

We now undertake a more rigorous calculation of the cross-phase modulation in

the N-configuration atom. In what follows we remove the requirement that any

of the fields are resonant. In addition to XPM we will therefore expect to find

linear and self-phase modulation contributions to the electric susceptibility. So that

perturbation theory can be used, we also require that the electric fields Ωa and
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Ωc only weakly excite the atom, whereas Ωb is a strong pump field. Given these

constraints it is expected that a cross-Kerr nonlinearity will arise between the weak

probe fields and for the effective Hamiltonian experienced by these fields to be of

the form (1.60).

We begin by modelling a single atom interacting with three continuous-wave

monochromatic electromagnetic fields. Both the atom and the three fields are

treated quantum mechanically. All possible states of the atom are spanned by the

four eigenstates |1〉A, |2〉A, |3〉A, and |4〉A. Similarly, the state of each electromagnetic

field mode ‘x’ can be expanded in the Fock basis {|nx〉 : nx ∈ [0,∞)}.
The state space of the atom and three fields is spanned by the tensor product

between the basis vectors of the individual components. That is, the state of the

atom and three fields can be expanded in a basis of the form

|ψ〉 =

4
∑

i=1

∞
∑

na=0
nb=0
nc=0

ci,na,nb,nc
|i〉A ⊗ |na〉 ⊗ |nb〉 ⊗ |nc〉. (3.10)

To clarify the notation we will henceforth omit the tensor product symbols and use

the shorthand

|i〉A ⊗ |na〉 ⊗ |nb〉 ⊗ |nc〉 = |i, na, nb, nc〉. (3.11)

As shown in Chapter 1, the electromagnetic fields couple to the atom by the electric-

dipole interaction. Considering only energy-conserving terms (the rotating wave

approximation), the total Hamiltonian is written in the Schrödinger picture as

Ĥsp =

4
∑

i=1

Eiσ̂i,i + ~

∑

k={a,b,c}
ωkâ

†
kâk + gkσ̂kâk + g∗kσ̂

†
kâ

†
k. (3.12)

This is an extension of the Jaynes-Cummings Hamiltonian [26] to a three-mode

and four-level atom in the N configuration. Here ωk is the angular frequency of the

electromagnetic field mode ‘k’; â†k and âk are the creation and annihilation operators

and gk and σ̂k are the coupling strengths and atomic-transition operators for the

allowed electric-dipole transitions. The coupling strengths are defined in terms of

the electric-dipole transition-matrix elements pij = eA〈i|r|j〉A by

ga =
p21εa

~
, gb =

p23εb
~

, gc =
p43εc

~
. (3.13)
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Here, εx =
(

~ωx

2ε0V

)1/2

are chosen so that the energy density integral over the mode

volume V gives the total energy in the electromagnetic field [39]. The atomic tran-

sition operators are defined as

σ̂a = |2〉AA〈1|, σ̂b = |2〉AA〈3|, σ̂c = |4〉AA〈3|. (3.14)

It is convenient to transform the Hamiltonian into the interaction picture where the

atomic levels are separated by the multi-photon detunings. This is done by writing

the non-coupling terms of the Hamiltonian in terms of the ‘conversion’ operator

invariants of the Hamiltonian. In this interaction picture we obtain the Hamiltonian

Ĥ = ~ (δ1σ̂22 + δ2σ̂33 + δ3σ̂44) + ~

∑

k={a,b,c}
gkσ̂kâk + g∗kσ̂

†
kâ

†
k. (3.15)

The multi-photon detunings are defined as

δ1 = ∆a = (ω2 − ω1) − ωa,

δ2 = ∆a − ∆b = (ω3 − ω1) − (ωa − ωb),

δ3 = ∆a − ∆b + ∆c = (ω4 − ω1) − (ωa − ωb + ωc).

(3.16)

By considering the action of the Hamiltonian on basis vectors from the set {|i, na, nb, nc〉}
one can show that the system will evolve within a four-dimensional resonant-manifold

[38]. For instance, the state |1, na, nb, nc〉 couples only to the states:

|2, na − 1, nb, nc〉,
|3, na − 1, nb + 1, nc〉,

|4, na − 1, nb + 1, nc − 1〉.

(3.17)

Since every basis vector in the expansion (3.10) can be written as a state belonging

to a resonant manifold of the form (3.17), we need only consider the behaviour of

the system within one such four-dimensional subspace. It is therefore possible to

further simplify our notation by saying that

|1〉 = |1, na, nb, nc〉, |2〉 = |2, na − 1, nb, nc〉,
|3〉 = |3, na − 1, nb + 1, nc〉, |4〉 = |4, na − 1, nb + 1, nc − 1〉.

(3.18)

Thus, by |1〉 we mean the state for which the atom is in the state |1〉A and the field

modes “a”, “b” and “c” are in the number states |na〉, |nb〉 and |nc〉 respectively.
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When performing calculations it is helpful to express the Hamiltonian in matrix

form. All matrices in this section are written with respect to the canonical basis

|1〉 = [1, 0, 0, 0]†, etc. The Hamiltonian therefore has the representation

H = ~

















0 Ω∗
a/2 0 0

Ωa/2 δ1 Ωb/2 0

0 Ω∗
b/2 δ2 Ω∗

c/2

0 0 Ωc/2 δ3

















, (3.19)

where the Rabi-frequencies Ωx are the interaction energies in frequency units and

are defined as

Ωa = 2ga
√
na, Ωb = 2gb

√
nb + 1, Ωc = 2gc

√
nc. (3.20)

We note that the Rabi-frequencies are taken as complex numbers. Although this

is not necessary when investigating the steady-state behaviour, it will prove useful

for comparison with later transient and time-dependent calculations. The form of

the Hamiltonian (3.19) is particularly convenient since it is identical to that used

in semi-classical calculations. Writing the Hamiltonian in this way is possible since

spontaneous emission has been neglected and each state evolves within a single

resonant manifold. Otherwise, transitions could be made to non-resonant manifolds

and it would be insufficient to model each manifold in isolation.

Dressed States and the Effective Hamiltonian

We now use non-degenerate perturbation theory to calculate dressed states of the

atom. From these we can determine the steady-state electric susceptibilities expe-

rienced by the fields. In particular, we hope to show that a cross-Kerr nonlinearity

will arise between the weak probe fields Ωa and Ωc.

We begin by splitting the Hamiltonian into three parts: Ĥ0, V̂a and V̂c. Ĥ0

consists of the four energy levels, where the states |2〉 and |3〉 are coupled by the

field Ωb. This system represents an exactly solvable two-level subsystem with two

additional uncoupled levels. V̂a is the weak coupling from |1〉 to |2〉 due to the

field Ωa and V̂c is the coupling between |3〉 and |4〉 produced by Ωc. The strength
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of the perturbations is parameterised by a single variable each: ξa = |Ωa|/2 and

ξc = |Ωc|/2, whereas the structure is determined by the matrix operators V̂a and V̂c.

This is depicted in the bare atomic basis by Fig. 3.2. Splitting the Hamiltonian in

this way we obtain

Ĥ = Ĥ0 + ξaV̂a + ξcV̂c. (3.21)

The Hamiltonian Ĥ0 of the two-level subsystem has the matrix representation

H0 =

















0 0 0 0

0 δ1 Ωb/2 0

0 Ω∗
b/2 δ2 0

0 0 0 δ3

















. (3.22)

The two perturbations V̂a and V̂c have the representations

Va =

















0 e−iφa 0 0

eiφa 0 0 0

0 0 0 0

0 0 0 0

















, Vc =

















0 0 0 0

0 0 0 0

0 0 0 e−iφc

0 0 eiφc 0

















, (3.23)

where φa = arg(Ωa) and φc = arg(Ωc).

To use perturbation theory we must first determine the eigenstates of the exactly

solvable system Ĥ0. These are given by the uncoupled states |1〉 and |4〉 and the

dressed states of the two-level subsystem:

|φ(0,0)
1 〉 = |1〉, (3.24)

|φ(0,0)
2 〉 = |C−〉 =

1

N−
(Ωb|2〉 + 2(λ− − δ1)|3〉), (3.25)

|φ(0,0)
3 〉 = |C+〉 =

1

N+

(Ωb|2〉 + 2(λ+ − δ1)|3〉), (3.26)

|φ(0,0)
4 〉 = |4〉. (3.27)

Here, N± are the normalisation constants for the two-level subsystem eigenstates.

The corresponding eigenenergies are given by

λ
(0,0)
1 = 0, (3.28)
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λ
(0,0)
2 = λ− =

1

2

(

(δ1 + δ2) −
√

(δ1 − δ2)2 + |Ωb|2
)

, (3.29)

λ
(0,0)
3 = λ+ =

1

2

(

(δ1 + δ2) +
√

(δ1 − δ2)2 + |Ωb|2
)

, (3.30)

λ
(0,0)
4 = 0. (3.31)

Since we are perturbing the atom with two independent interactions Va and Vc, we

expect the eigenenergies and eigenstates to be expressed as Taylor series in both ξa

and ξc. The eigenenergy and eigenstates are therefore assumed to have the form

En =
∞
∑

i,j=0

ξi
aξ

j
cE

(i,j)
n , (3.32)

|φn〉 =

∞
∑

i,j=0

ξi
aξ

j
c |φ(i,j)

n 〉, (3.33)

where E
(i,j)
n (φ

(i,j)
n ) is the term of En (φn) i order in Va and j order in Vc. It also

proves convenient to expand the eigenstate corrections in terms of the unperturbed

basis states:

|φ(i,j)
n 〉 =

∞
∑

s=0

as(i,j)
n |φ(0,0)

s 〉. (3.34)

By substituting these series solutions into the eigenvalue equation for the Hamilto-

nian Ĥ|φn〉 = En|φn〉 we deduce the expression

am(p,q)
n E(0,0)

m + 〈φ(0,0)
m |Va|φ(p−1,q)

n 〉 + 〈φ(0,0)
m |Vc|φ(p,q−1)

n 〉 =

p
∑

i=0

q
∑

j=0

E(i,j)
n am(p−i,q−j)

n .

(3.35)

From (3.35) equations for the a
m(p,q)
n and E

(p,q)
n terms can be found, other than when

m = n. In this case we must examine the normalisation of the eigenstate 〈φn|φn〉 = 1

to derive the expression

p
∑

i=0

q
∑

j=0

4
∑

s=1

a∗s(i,j)n as(p−i,q−j)
n = 0, (3.36)

from which the a
n(p,q)
n terms can be deduced. In practice it will be sufficient during

the calculations to expand the eigenstates to third-order and eigenenergy to fourth-

order. The relevant formulae are listed in appendix A.

We have now finished “setting-up” the system and are prepared to calculate the

approximate dressed states of the atom. However, only the modification caused to
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the bare atomic state |1, na, nb, nc〉 will be of interest. We expect this, because it

is the only radiatively stable state of the unperturbed system. When the strong

coupling field “b” is turned on, we expect the atom to rapidly relax from any mixed

state into this pure dark-state. Indeed, when the atom is perturbed by the fields

“a” and “c” we expect |φ1〉, the perturbed counterpart of |1〉, to remain the most

radiately stable dressed state. It is interesting to note that even when considering

only the unitary dynamics of the system we require spontaneous emission to establish

the atom in an initial pure state.

To fourth-order it is found that the eigenenergy of the state |φ1〉 is found to be

λ1 ≈ ξ2
aλ

(2,0)
1 + ξ4

aλ
(4,0)
1 + ξ2

aξ
2
cλ

(2,2)
1 , (3.37)

where the eigenvalue corrections are

λ
(2,0)
1 = − δ2|Ωa|2

4δ1δ2 − |Ωb|2
, (3.38)

λ
(4,0)
1 =

δ2(4δ
2
2 + |Ωb|2)|Ωa|4

(4δ1δ2 − |Ωb|2)3
, (3.39)

λ
(2,2)
1 = − |Ωb|2|Ωa|2|Ωc|2

4δ3(4δ1δ2 − |Ωb|2)2
. (3.40)

Similarly, the approximate eigenstate |φ1〉 is given in the bare atomic basis to third-

order by

|φ1〉 =

[

1 − |Ωa|2(4δ2
2 + |Ωb|2)

2(δ1δ2 − |Ωb|2)2

]

|1〉 +

[ −2Ωaδ2
4δ1δ2 − |Ωb|2

+
3|Ωa|2Ωaδ2(4δ

2
2 + |Ωb|2)

(4δ1δ2 − |Ωb|2)3

]

|2〉 +

[

ΩaΩ
∗
b

4δ1δ2 − |Ωb|2
− |Ωa|2ΩaΩ

∗
b(8δ1δ2 + 12δ2

2 + |Ωb|2)
2(4δ1δ2 − |Ωb|2)3

]

|3〉 −

ΩaΩ
∗
bΩc

2δ3(4δ1δ2 − |Ωb|2)
|4〉. (3.41)

Since eigenstates of the Hamiltonian are also solutions of the time-independent

Schrödinger equation the evolution of |φ1〉 is described by

|φ1(t)〉 = exp(−iλ1t)|φ1(0)〉. (3.42)

Recalling the definition of the Rabi frequencies (3.20) we may express each of the

eigenvalue terms (3.38),(3.39) and (3.40) in terms of photon numbers. Moreover,
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since the eigenstate |φ1〉 is given to zeroth order by |1, na, nb, nc〉 then we can replace

the photon numbers with their corresponding photon-number operators, when acting

on this state. This is possible because the state |1, na, nb, nc〉 is an eigenstate of the

photon-number operators n̂x with eigenvalues nx. Therefore

|φ1(t)〉 = exp
(

−i
{

Ln̂a + Sn̂2
a +Kn̂an̂c

}

t
)

|φ1(0)〉, (3.43)

where we have defined

L = − δ2|ga|2
δ1δ2 − |gb|2(nb + 1)

, (3.44)

S =
δ2(δ

2
2 + |gb|2(nb + 1))|gb|4

(δ1δ2 − |gb|2(nb + 1))3
, (3.45)

K =
−|ga|2|gb|2|gc|2(nb + 1)

δ3(δ1δ2 − |gb|2(nb + 1))2
. (3.46)

The coupling strengths gx and multi-photon detunings are defined in equations (3.16)

and (3.13) respectively. From the form of the evolution (3.43) we can see that this

is generated by the effective Hamiltonian

Ĥeff = ~
(

Ln̂a + Sn̂2
a +Kn̂an̂c

)

. (3.47)

The coefficients L, S and K represent the linear, self-Kerr and cross-Kerr responses

of the atom. The linear and self-Kerr energy contributions are due to the fields Ωa

and Ωb coupling between the states |1〉, |2〉 and |3〉: this constitutes a Λ subsystem.

However, the cross-Kerr response arises because of the adiabatic Stark shift of the

atomic level |3〉. As shown previously by using the “simple model” for a resonant Λ

subsystem, this will result in a cross-Kerr nonlinearity.

It is well known that when the two-photon transition from |1〉 to |3〉 is resonant

(δ2 = 0), then there is no linear or self-Kerr interaction. This is due to the atom

relaxing into the darkstate of the Λ subsystem (see section 2.6). In this state the

atom is non-interacting, or dark, to the applied fields. Therefore the linear- and

self-Kerr responses vanish (L = S = 0) and the evolution of the system reduces to a

pure cross-Kerr interaction. On Raman-resonance the cross-Kerr coefficient has the

value

K = − |ga|2|gc|2
δ3|gb|2(n̂b + 1)

. (3.48)
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The effective Hamiltonian (3.47) then has the form of Eq. (1.60). That is

Ĥeff = ~Kn̂an̂c. (3.49)

For an ensemble of rubidium atoms prepared in the collective atomic ground state

|{1}, na, nb, nc〉 the effective Hamiltonian is given again by (3.49), where

K =
−N |ga|2|gc|2
δ3|gb|2(n̂b + 1)

(3.50)

and N is the number of atoms in the interaction volume. The enhancement of the

coupling strength by a factor of N is due to the additive nature of the energy for

each non-interacting atom.

Electric Susceptibility

We now calculate the absorption that accompanies the linear, Kerr and cross-Kerr

responses of the atom. To do so, we consider the macroscopic material polarisation

at both the probe field frequencies.

P (t) =
1

2

∑

n={a,c}
Pne

−iωnt + P ∗
ne

iωnt. (3.51)

We expect that the component of polarisation at the frequency ωa will display linear,

self-Kerr and cross-Kerr contributions. Up to third-order we therefore have

Pa = ε0χ
(1)(ωa;ωa)Ea +

3

4
ε0χ

(3)(ωa;ωa,−ωa, ωa)|Ea|2Ea (3.52)

+
3

2
ε0χ

(3)(ωa;ωc,−ωc, ωa)|Ec|2Ea. (3.53)

We note that the electric fields are related to the Rabi-frequencies by

Ea = −Ωaεa
ga

, Ec = −Ωcεc
gc

. (3.54)

It is expected that the macroscopic polarisation (3.51) will be related the microscopic

state of the atom. We begin by constructing the density matrix corresponding to

the approximate eigenstate |φ1〉 (3.41):

ρ = |φ1〉〈φ1|. (3.55)
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In particular, the atom interacts with the electromagnetic fields via the off-diagonal

elements of the density matrix. In the interaction picture these are time-independent

and are given by

ρ21 = 〈2|ρ|1〉, (3.56)

ρ43 = 〈4|ρ|3〉. (3.57)

So far the system has been described by the unitary evolution of the Schrödinger

equation. To model the spontaneous decay of the upper atomic levels (|2〉 and |4〉)
we take the multi-photon detunings of the eigenstate (3.41) as complex [65]. As

shown in section 2.5 this makes the evolution of the non-Hermitian Hamiltonian

equivalent to the density matrix master equation (2.36). Thus, the detunings are

transformed such that

δ1 → δ1 − iγ1, δ3 → δ3 − iγ3. (3.58)

Here γ1 = Γ2/2 and γ3 = Γ4/2 where Γx is the spontaneous decay rate of the atomic

level |x〉. It is now possible to equate the material polarisation with that described

by the off-diagonal density matrix elements in the Schödinger picture. If we have

a dilute ensemble of non-interacting trapped atoms then the material polarisation

scales as the number of atoms per unit volume. Therefore, the polarisation is related

to the off-diagonal density matrix elements by

P (t) =
N

V
(ρ12p21 + ρ34p43 + c.c.) , (3.59)

where pij = eA〈i|r|j〉A are the dipole matrix elements. By Taylor expanding the off-

diagonal density matrix elements in terms of the fields Ωa and Ωc we find expressions

for the linear, self-Kerr and cross-Kerr electric susceptibilities. For the |1〉 ↔ |2〉
transition the linear susceptibility is

χ(1)(ωa;ωa) =
4Nδ2ωa|p12|2

~ε0V [4δ2(δ1 − iγ) − |Ωb|2]
. (3.60)

The self-Kerr susceptibility is found to be somewhat more complicated, and is given

by

χ(3)(ωa;ωa,−ωa, ωa) =
32|p12|4Nδ2(4δ2

2 + |Ωb|2)
3ε0~3V

× (3.61)
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[16γ2
1δ

2
2 − (4δ1δ2 − |Ωb|2)[4iγ1δ2 + 4δ1δ2 − |Ωb|2]]

(4γ1δ2 − 4iδ1δ2 + i|Ωb|2)2(−4iγ1δ2 + 4δ1δ2 − |Ωb|2)3
.

By taking terms of ρ21 of first-order in Ωa and second-order in Ωc we obtain the

cross-Kerr susceptibility:

χ(3)(ωa;ωc,−ωc, ωa) =
2N |p12|2|p34|2|Ωb|2

3ε0~3V (δ3 − iγ3)(4δ2(iγ1 − δ1) + |Ωb|2)2
. (3.62)

For the |3〉 → |4〉 transition we find that only the third-order cross-Kerr susceptibil-

ity is present. Thus, by taking terms in ρ43 of second-order in Ωa and first-order in

Ωc we find that the XPM experienced by the field Ωc is given by

χ(3)(ωc;ωa,−ωa, ωc) =
2N |p12|2|p34|2

3ε0~3(δ3 − iγ3)[4(δ1 − iγ1)δ2 − |Ωb|2][4(δ1 + iγ1)δ2 − |Ωb|2]
.

(3.63)

It is interesting to note that in general the fields Ωa and Ωc will experience different

cross phase modulations. Only on Raman-resonance do we find that the XPM is

reciprocal. In this case the third-order XPM susceptibility experience by both probe

fields is given by

χ(3)(ωa|ωc) =
2N |p12|2|p34|2

3ε0~3V (∆c − iΓ4/2)|Ωb|2
. (3.64)

We note that this is exactly the XPM derived previously using the simple model

in subsection 3.2.1. However, previously we were only able to derive the XPM

experienced by the probe field Ωa, when the Λ subsystem was resonant. Using the

full model explored in this section we have removed these limitations.

3.2.3 Experimental Parameters

We now turn to evaluating our theory for a realistic physical system: an ensemble of

rubidium-87 atoms. The energy level structure is depicted in figure (3.3), showing

only the hyperfine sublevels used. The decay rates and transition strengths for the

D1 and D2 lines are given in table (3.2.3) and are found in Steck’s spectroscopic

data [66]. In passing, we note that the decay rate for the D1 line is very close

to that predicted by the Weisskopf-Wigner theory (predicted: 35.9MHz, observed:

36.1MHz). However, the D2 line deviates significantly (predicted: 76.0MHz, ob-

served: 38.1MHz). This can be explained by the small energy separation between
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the four upper-level hyperfine components of the D2 line. In this case the two-level

model is a poor approximation, and should be extended to include the effect of

nearly degenerate levels [36].

Figure 3.3: The energy level structure of rubidium 87 showing the hyperfine sublevels

used.

The data book [66] also provides the transition strengths for the fine structure

D lines. However, the experimental implementation of the four-level atom proposed

requires the use of hyperfine transitions. It is therefore necessary to derive the dipole

matrix elements for each of the hyperfine components. From [67] we find the relative

line intensities for a quartet. These are enumerated in table (3.2.3) and can easily

be converted into fractions of the total line intensity.

For a two-level atom, the absorption or emission line intensity is given by the

imaginary part of the linear electric susceptibility [39]:

Img
[

χ(1)
]

= − |p|2γ
~ε0(∆2 + γ2)

(ρ11 − ρ22) (3.65)

Assuming that the decay rate of the hyperfine sublevels are equal, then the line

intensity is proportional to the square of the dipole matrix element: I ∝ |p|2. Hence,

by taking the square root of the fractional line intensities of each component, the
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fractional dipole matrix elements can be derived. These are likewise enumerated in

table (3.2.3). From these calculations we find that the dipole matrix elements have

the values

pa = 0.25 × 2.534 × 10−29 = 6.335 × 10−30 Cm, (3.66)

pb = 0.56 × 2.534 × 10−29 = 1.419 × 10−29 Cm, (3.67)

pc = 0.66 × 3.584 × 10−29 = 2.365 × 10−29 Cm. (3.68)

In addition to the dipole matrix elements and decay rates we also require some

knowledge of the experimental set-up, such as the field intensities used, number

of atoms trapped, etc. For these, we use parameters from a recent experimental

demonstration of XPM in rubidium [64]. That is, we have N = 109 atoms contained

within a 3 mm radius sphere, trapped by a MOT. The probe fields are supposed

to be focused to a radius significantly narrower that the trapped cloud, so that the

fields propagate through a cylinder of trapped atoms. The electromagnetic fields

are chosen to have the Rabi-frequencies Ωa = 0.2 MHz, Ωb = 4 MHz and Ωc = 3

MHz. These correspond to the approximate photon numbers, na = 3, nb = 221 and

nc = 44. The fields Ωa and Ωb are on-resonance, whereas the field Ωc is detuned by

∆c = 100 MHz. On evaluation of the cross-Kerr constant K, as given by (3.50), we

find that K = −4.607× 108. This corresponds to a phase-shift of the Fock state by

θ = −1.12 rad,

|{1}, na, nb, nc〉 → exp(−iθ)|{1}, na, nb, nc〉. (3.69)

This is of the order required by many quantum information processing protocols

that require large phase-shifts with relatively few (often single) photons. Next, we

evaluate the optical phase shift caused to the field Ωa. The phase shift it given by

(1.59) and has the value

∆φNL = 0.1 rad. (3.70)

Employing the experimental parameters listed above we also evaluate the linear

(3.60), self-Kerr (3.62) and cross-Kerr susceptibilities (3.62, 3.63). Figure (3.4)

shows the distinctive EIT response of the atom to the Ωa probe field. Notable

features are the narrow transparency window on resonance (∆a = ∆b = 0) and
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Decay rates:

D1 : (52S1/2 → 52P1/2) 2γ1 = ΓD1 = 38.11 × 106s−1

D2 : (52S1/2 → 52P3/2) 2γ2 = ΓD2 = 36.10 × 106s−1

Dipole matrix elements:

D1 : (52S1/2 → 52P1/2) 〈J = 1/2|er|J ′ = 1/2〉 = 2.534 × 10−29Cm

D2 : (52S1/2 → 52P3/2) 〈J = 1/2|er|J ′ = 3/2〉 = 3.584 × 10−29Cm

Nuclear angular momentum I=3/2

Table 3.1: Rubidium 87 Data

D1 J=1/2 D2 J=1/2

F=1 F=2 F=1 F=2

J’=3/2, F’=0 14.3

J’=1/2, F’=1 20 100 F’=1 35.7 7.1

F’=2 100 100 F’=2 35.7 35.7

F’=3 100

Table 3.2: Relative line intensities for the D1 and D2 lines.

D1 J=1/2 D2 J=1/2

F=1 F=2 F=1 F=2

J’=3/2, F’=0 0.25

J’=1/2, F’=1 0.25 0.56 F’=1 0.39 0.18

F’=2 0.56 0.56 F’=2 0.39 0.39

F’=3 0.66

×2.534 × 10−29 Cm ×3.584 × 10−29 Cm

Table 3.3: Fraction of the dipole matrix elements for the D1 and D2 lines.
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steep normal dispersion associated with slow-light propagation. The self-Kerr sus-

ceptibility experienced by the field Ωa is plotted in figure (3.5). Again, due to the

dark-state trapping on resonance the refractive and absorptive components of the

nonlinearity vanish on resonance. However, the transparency window of the SPM

is significantly narrower than for the linear response. Nonetheless, by choosing the

field strengths such that Ωc � Ωa the self-phase modulation is approximately an

order-of-magnitude less that the cross-phase modulation.

Figure (3.6) shows the cross-phase modulation experienced by both probe fields

when the Λ subsystem is resonant (∆a = ∆b = 0). We note that on resonance

(∆c = 0) there is a large absorption and the refractive component of the suscepti-

bility vanishes. However, by increasing the detuning of the field Ωc it is possible to

reach a regime where the ratio of refractive to absorptive nonlinearity is much more

favourable. Typically we work with a detuning of ∆c = 100 MHz for which

Re[χ
(3)
c (∆c = 108)]

Im[χ
(3)
c (∆c = 108)]

≈ 5. (3.71)

In this region, the refractive nonlinearity (χ(3) ≈ 10−7m2V−2) is many orders of mag-

nitude larger than that generated in microstructured optical fibre (χ(3) ≈ 10−21m2V−2)

or the Λ atom (χ(3) ≈ 10−22m2V−2).

3.3 Chapter Summary

In this chapter we have investigated the generation of cross-phase modulation in the

N-configuration atom. By using the remarkable properties of electromagnetically

induced transparency it is possible to generate a very large cross-Kerr nonlinearity.

In general the light fields coupling to the atom will experience a linear response,

self-phase and cross-phase modulation. However, by adjusting the detunings of the

electromagnetic fields it is possible to isolate a large refractive nonlinearity, with

vanishing absorption.

The generation of this nonlinearity can be understood as arising due to the per-

turbation caused to the Λ atom dark-state. When the fields coupling to the Λ atom
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Figure 3.4: The real and imaginary components of the linear electric susceptibility

experienced by the field “a” plotted versus the detuning of the probe field “a” (∆a)

for a resonant pump field “b”
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Figure 3.5: The real and imaginary components of the electric susceptibility expe-

rienced by the field “a” plotted versus the detuning of the probe field “a” (∆a) for

a resonant pump field “b”
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Figure 3.6: The real and imaginary components of the electric susceptibility experi-

enced by the field “α”, α ∈ {a, c} plotted versus the detuning of the probe field “c”

(∆c) for a resonant probe “a” and resonant pump “b”.

are resonant (∆a = ∆b = 0) then the atom becomes transparent (non-absorptive

and non-refractive) to the fields. This is the well-known effect of electromagnetically

induced transparency. By introducing a third weak field it is possible to perturb the

dark-state so as to Stark-shift one of the Λ atom ground states. This breaks the res-

onance requirement of the dark state (∆b 6= 0) and introduces nonlinear absorption

and refraction into the atom. However, by increasing the detuning of the field it is

seen that the absorption decays much more rapidly than the refraction (fig. 3.6).

We are therefore able to produce a large refractive cross-Kerr nonlinearity.

The theory is also shown to be consistent with recent experimental demonstra-

tions of a large XPM generated in rubidium-87. The values of the nonlinear coupling

strength is calculated for an ensemble of 109 rubidium atoms and is seen to be many

orders of magnitude larger than that generated in the Λ atom or microstructured op-

tical fibres. Indeed, the nonlinearity is of ample magnitude to suggest the feasibility

of several XPM based quantum-information processing protocols.
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Chapter 4

Transient Cross-Phase Modulation

In the previous chapter the steady-state cross-phase modulation that occurs in a

N-configuration atom was investigated. Often it is necessary, and indeed interest-

ing, to consider the effect of applying time-dependent fields to atomic systems. In

this chapter we consider one of the most straightforward time-dependent situations:

coherent transients.

Mathematically transient solution are important when studying the time-dependent

behaviour of a system for which the initial state is not one of steady states. In

this case, we expect damping to gradually relax the system towards its long-term

behaviour. In the case of coherent atomic interactions the transient behaviour is

induced by a sudden change in either the intensity or detuning of an applied elec-

tromagnetic field.

4.1 Λ-System Transients

In recent years there has been growing interest in the transient behaviour of the

three-level atom. This has been driven by several motivations. In some cases there

has simply being a desire to gain a deeper understanding of coherent interactions

[68]. Nonetheless, the incentive for much of the research has been from potential

applications. For instance, recent research has suggested that the transient induced

by rapidly sweeping the detuning of a probe field could be used to make low in-

55
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tensity field measurements [69]. However, the greatest incentive towards the study

of transient EIT has been due to the relationship between this and quantum infor-

mation storage. For example recent work employing a room-temperature vapour of

rubidium-87 has determined the non-radiative decay of the hyperfine components

of the 5S1/2 ground state [70]. An accurate knowledge of this as a function of tem-

perature is vital in determining the maximum storage time in dark-state quantum

memory schemes [50]. Again, this experiment was based on controlling the detuning

of the EIT field (in this case an instantaneous shift was made) and observing the

resultant fluctuations in the sample transmission.

Considerable effort has also been expended on investigations of intensity-induced

transients. Commonly these have involved suddenly turning-on or off the fields. One

of the earliest works on EIT transients involved predicting a large absorption of the

probe field when suddenly turned on [68]. This also occurs in the N-configuration

atom, in which we will later study transient XPM. More recently work has con-

centrated on the turn-on and turn-off characteristics of the control field. These

investigation have been motivated by the close relationship to dark-state polariton

based quantum memory schemes [71]. In addition the recent experimental demon-

strations of transient lasing without inversion (LWI) in the three- [72] and four-level

systems [73] have also provided further incentive for the studying this field. Indeed,

in the three-level scheme transient LWI for a weak probe field was demonstrated

even without the need for incoherent pumping.

Despite the wide variety of effects investigated in these papers they all share

some fundamental time-dependent characteristics, intrinsic to the Λ system. This

can be understood by considering the three-level atom on two-photon (or Raman)

resonance. In this case the Hamiltonian can be written as

H =











0 Ωa/2 0

Ωa/2 ∆ Ωb/2

0 Ωb/2 0











. (4.1)

We now introduce a new ordered basis:

|−〉 =
1

Ω̄
(Ωb|1〉 − Ωa|3〉) , (4.2)
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Figure 4.1: The two-photon resonant Λ-atom represented in (a) the bare atomic

basis and (b) with respect to the bright/dark ground state superpositions |±〉 and

the excited state |e〉.

|+〉 =
1

Ω̄
(Ωa|1〉 + Ωb|3〉) , (4.3)

|e〉 = |2〉, (4.4)

where Ω̄2 = Ω2
a + Ω2

b . These are the bright (|+〉) and dark (|−〉) superpositions of

the ground states and the excited state |e〉. We allow the excited state to decay at a

rate Γ2. Using this new basis the Raman-resonant Hamiltonian can be transformed

into the form

H =











0 0 0

0 0 Ω̄/2

0 Ω̄/2 ∆











. (4.5)

Remarkably, we can see that the dark-state has decoupled out of the unitary evolu-

tion of the system. In this basis, the Raman-resonant Λ system has been transformed

into a decoupled dark-state |−〉 and a two-level subsystem formed by |+〉 and |e〉
coupled by the effective field Ω̄. Using this basis we can now form the density matrix

equations of motion for the atom. In particular we find the following equation for

the coherence between the bright and excited states:

ρ̇+e(t) =

[

−Γ2

2
+ i∆

]

ρ+e(t) +
i

2
[ρ++(t) − ρee(t)] Ω̄. (4.6)

Now, we choose to work in the regime for which the excited state decays very rapidly
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(e.g. in alkali metals this is commonly tens of MHz). Then we can assume that the

excited state is never appreciably populated, or ρee ≈ 0. For simplicity we take

∆ = 0, in which case we expect the coherence to rapidly reach a quasi-equilibrium

given by

ρ+e(t) ≈
iρ++(t)Ω̄

Γ2

. (4.7)

We can then substitute this result into the equation of motion for the bright state

ρ̇++(t) =
i

2
[ρ+e(t) − ρe+(t)] Ω̄. (4.8)

Solving this equation of motion we find that the decay of the bright state is given

by

ρ++(t) = ρ++(0) exp

[

−Ω̄2t

Γ2

]

. (4.9)

Since the decay of the bright state occurs only by transitions via the excited state,

then its relaxation will be relatively slow. For values typical in unsaturated EIT

experiments (Ωb � Γ2) the decay rate of the bright state is of the order of less than

1MHz; much less that the excited state decay rate. Thus, when considering the

dynamics of the Λ- and N-configuration systems, the dominant time-scale determin-

ing the dynamics will be the decay rate of the bright state. Although a detailed

discussion of the above papers is unnecessary, the bright state decay rate is seen

to dominate all of the physical processes described in the papers above. We expect

this since any sudden intensity or detuning variation will cause a proportion of the

initial state to reside in the bright superposition of the ground states. It is then the

decay of this population that will define the dominant time-scale of the particular

process. We will see that this is also true when investigating the dynamics of XPM

in the N-configuration atom.

4.2 N-System Transients

Recently there has been growing interest in the transient behaviour of the N-

configuration system. Indeed, there has already been a number of theoretical [74]
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and experimental [75, 76] investigations into transients of the absorptive and refrac-

tive Kerr nonlinearity. We investigate here the situation where the EIT probe field,

Ωa, is suddenly turned on and calculate the transient behaviour of the linear and

nonlinear susceptibilities on both probe transitions. The majority of the results in

the proceeding section have been published by the candidate in [61], although some

of the interpretations are more recent.

To calculate the transient behaviour of the atom when the field Ωa is suddenly

turned on, we first determine the dressed states of the atom - that is, the eigenstates

of the Hamiltonian (3.19). As done in chapter 3 we begin by splitting the Hamilto-

nian into three parts: the two-level subsystem, plus two perturbations (see equation

(3.21)). In order to simplify the calculations the perturbations will be applied con-

secutively rather than simultaneously as before. This has the advantage that only

two first-order perturbations have to be performed. However, it also means that no

information can be deduced about the magnitude or time-dependence of the self-

Kerr effect. Nonetheless, since it has already been shown in chapter 3 that with a

suitable choice of field strengths the SPM is negligible, we feel justified in making

this approximation here.

We perturb the system to first-order by introducing the interaction term V̂c.

To avoid degeneracies in the perturbation series we assume that the detuning δ3

dominates over the other zeroth-order eigenvalues (δ3 � λ±). Since this detuning

will later be taken to be complex (Weiskopf-Wigner decay), the rapid decay from

the state |4〉 will justify this condition even when ∆c = 0. We begin by using the

unperturbed basis states (3.24)-(3.27). To first-order the new eigenstates of the

“intermediate” perturbed Hamiltonian Ĥ ≈ Ĥ0 + εcV̂c are

|φ1〉 ≈ |1〉, (4.10)

|φ2〉 ≈ |C−〉 −
Ωc(λ− − δ1)

δ3N−
|4〉, (4.11)

|φ3〉 ≈ |C+〉 −
Ωc(λ+ − δ1)

δ3N+
|4〉, (4.12)

|φ4〉 ≈ |4〉 +
Ω∗

c(λ− − δ1)

δ3N−
|C−〉 +

Ω∗
c(λ+ − δ1)

δ3N+

|C+〉. (4.13)
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Corresponding to these eigenstates are the second-order eigenvalues

λ1 ≈ 0, (4.14)

λ2 ≈ λ̄− = λ− − |Ωc|2(λ− − δ1)
2

δ3N2
−

, (4.15)

λ3 ≈ λ̄+ = λ+ − |Ωc|2(λ+ − δ1)
2

δ3N
2
+

, (4.16)

λ4 ≈ δ3. (4.17)

However, during later calculations it is found that the expansion of the eigenvec-

tors up to first-order is insufficiently accurate in certain parameter ranges. This is

because during calculations it is sometimes necessary to determine the small dif-

ferences between eigenstates, which may vanish to first-order. Nonetheless, we can

improve the accuracy by self-consistently adjusting the normalisation constants N±

to take account of the Stark-shift of the energy level |3〉 by the field Ωc. We do this

by performing the substitutions

N2
± → N̄2

± = |Ωb|2 + 4(λ̄± − δ1)
2. (4.18)

This modification to the normalisation constants introduces a sufficiently higher-

order correction, without over-complicating the calculations. Using perturbation

theory simultaneously avoids the requirement to make this somewhat intuitive ad-

justment, but it does however make the calculations much more lengthy. We note

that the correction to the eigenvalues could have been performed in two ways: either

by adding on a term to N± proportional to the excitation into the state |4〉, or by

taking account of the Stark-shift to the state |3〉. In the former case the adjustment

would be proportional to ∼ |Ωc|2/δ2
3 and in the later ∼ |Ωc|2/δ3. Since δ3 is assumed

to be large, we see that the later adjustment will produce the largest correction and

is therefore used.

We take account of the probe field Ωa by perturbing the intermediate system

(Ĥ0 + εcV̂c) with the interaction V̂a. During this calculation the approximate eigen-

states (4.10)-(4.13) of the intermediate Hamiltonian are used as our initial eigenbasis.

We find that the perturbed eigenstates are given by

|φ1〉 ≈ |1〉 − ΩaΩ
∗
b

2N̄−λ̄−
|C−〉 −

ΩaΩ
∗
b

2N̄+λ̄+

|C+〉 −
ΩaΩ

∗
bΩc

2δ3(4δ1δ2 − Ω2
b)
|4〉, (4.19)
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|φ2〉 ≈ |C−〉 +
Ω∗

aΩb

2N̄−λ̄−
|1〉 − Ωc(λ− − δ1)

N̄−δ3
|4〉, (4.20)

|φ3〉 ≈ |C+〉 +
Ω∗

aΩb

2N̄+λ̄+

|1〉 − Ωc(λ+ − δ1)

N̄+δ3
|4〉, (4.21)

|φ4〉 ≈ |4〉 +
Ω∗

c(λ− − δ1)

δ3N̄−
|C+〉 +

Ω∗
c(λ+ − δ1)

δ3N̄+

|C+〉. (4.22)

The eigenenergy corresponding to the dressed state |φ1〉 is found to have the value

λ1 ≈ − |Ωa|2δ2
4δ1δ2 − |Ωb|2

. (4.23)

Again, from the dressed state |φ1〉 the steady-state atomic coherences can be again

calculated. These can be shown to furnish identical results for the linear and XPM

responses as in the previous calculations of chapter 3.

4.2.1 Transient Evolution of the Atom

We now determine the evolution given that at time t = 0 the atom is initially

in the ground state (|ψ(0)〉 = |1〉). At this point the electromagnetic field Ωa is

suddenly turned on and the atom will evolve according to the Schrödinger equation

i~∂t|ψ(t)〉 = Ĥ|ψ(t)〉. We note that using (4.19) the initial state of the atom can be

written as

|ψ(0)〉 = |φ1〉 +
ΩaΩb

2N̄−λ̄−

(

|C−〉 −
Ωc(λ− − δ1)

N̄−δ3
|4〉
)

+

ΩaΩb

2N̄+λ̄+

(

|C+〉 −
Ωc(λ+ − δ1)

N̄+δ3
|4〉
)

. (4.24)

In this section we are concerned with the collective behaviour of an ensemble of

atoms, in particular the transient absorption and refraction that can be measured

by transmission through the ensemble. Presently we are not modelling the dynamics

of the laser pulses inside the ensemble. For this reason we can assume that the

variation in intensity of the electromagnetic field across the ensemble is negligible

and that the dipole matrix elements can be adjusted to compensate for the local

phase of the field. Making these assumptions lets us take all the Rabi-frequencies

to be real for the remainder of this chapter.
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We note that in (4.24) the terms |φ1〉 and |C±〉−
Ωc(λ± − δ1)

N̄±δ3
|4〉 are eigenvectors

to at least first-order. Since the evolution of energy eigenstates are particularly

simple, we can show that the evolution of |ψ(t)〉 must be given by

|ψ(t)〉 = exp(−iλ1t)|1〉 +

ΩaΩb

2N̄−λ̃−

[

exp(−iλ̄−t) − exp[−iλ1t]
]

|C−〉 +

ΩaΩb

2N̄+λ̄+

[

exp(−iλ̄+t) − exp[−iλ1t]
]

|C+〉 − (4.25)

ΩaΩbΩc

2δ3

[

λ− − δ1
N̄2

−λ̄−
exp(−iλ̄−t) +

λ+ − δ1
N̄2

+λ̄+

exp(−iλ̄+t) +
exp(−iλ1t)

4δ1δ2 − Ω2
b

]

|4〉.

Furthermore, due to the equivalence between solutions of the master equation and

the non-Hermitian Schrödinger equation (Section 2.5) this solution will also hold

when the multi-photon detunings are taken to be complex, as in (3.58).

The evolution (4.25) simplifies considerably by assuming that the system is op-

erating close to Raman-resonance (δ2 ≈ 0). In this case the linear absorption will

be small. Then the excitation of atoms into the decaying state |2〉 will be negligible

and over a reasonably long time scale we can make the non-depletion approximation,

exp[−iλ1t] ≈ 1. By dropping terms that only contribute to third-order or higher in

Ωc we find that

|ψ(t)〉 = |1〉 +
ΩaΩb

2N̄−λ̄−

[

exp(−iλ̄−t) − 1
]

|C−〉 +
ΩaΩb

2N̄+λ̄+

[

exp(−λ̄+t) − 1
]

|C+〉 −

ΩaΩbΩc

2δ3(4δ1δ2 − Ω2
b)

×
[

1 +
λ+

δ1 + δ2 − 2λ+
exp(−iλ̄−t)

+
λ−

δ1 + δ2 − 2λ−
exp(−iλ̄+t)

]

|4〉. (4.26)

From the expression (4.26) the time-dependent atomic coherences ρ21(t) and ρ43(t)

can be calculated and Taylor expanded in powers of Ωa and Ωc. In turn, these

furnish the time-dependent linear and cross-Kerr electric susceptibilies. The atomic

coherences obtained are

ρ21(t) = ρ
(ss)
21 +

ΩaΩ
2
b

2

[

exp(−iλ̄−t)
N̄2

−λ̄−
+

exp(−iλ̄+t)

N̄2
+λ̄+

]

, (4.27)

ρ43(t) = ρ
(ss)
43 ×

{[

1 +

(

λ+

δ1 + δ2 − 2λ+

)

exp(−iλ̄−t)
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+

(

λ−
δ1 + δ2 − 2λ−

)

exp(−iλ̄+t)

]

× c.c.

}

, (4.28)

where ρ
(ss)
21 and ρ

(ss)
43 are the steady-state atomic coherences calculated in chapter 3.

These are:

ρ
(ss)
21 = − 2Ωaδ2

4δ1δ2 − Ω2
b

− ΩaΩ
2
bΩ

2
c

2δ3(4δ1δ2 − Ω2
b)

2
, (4.29)

ρ
(ss)
43 = − Ω2

aΩ
2
bΩc

2δ3(4δaδ2 − Ω2
b)(4δ

∗
1δ

∗
2 − Ω2

b)
. (4.30)

To elucidate the underlying physical processes it is useful to work in the unsaturated

(Ωb � Γ2) and Raman-resonant (δ2 = 0) limits. This is also the regime in which

experiments will usually be concerned. The expression thus obtained lend themselves

to straightforward physical interpretations. For the atomic coherence on the |1〉 ↔
|2〉 transition we find that

ρ21(t) =
iΩa

Γ2

[

exp

(

−Ω2
b t

2Γ2

+ i
Ω2

ct

4δ3

)

− exp

(

−Γ2t

2

)]

−ΩaΩ
2
c

2Ω2
bδ3

[

1 − exp

(

−Ω2
b t

2Γ2

)]

. (4.31)

The first term of (4.31) clearly represents a transient linear response to the field Ωa,

and the latter term a time-dependent XPM response. For the |3〉 ↔ |4〉 transition

we obtain only a time-dependent XPM response of the form

ρ43(t) = − Ω2
aΩc

2δ3Ω
2
b

[

1 − exp

(

−Ω2
bt

2Γ2

)]2

. (4.32)

The physical interpretation of these results is explained in the following subsection.

4.2.2 Time-Dependent Electric Susceptibilities

We now calculate the time-dependent electric susceptibilities given that at t = 0 the

EIT probe field is suddenly turned on. All other fields are switched on throughout

the interaction. We consider the situation where the fields Ωa and Ωb are Raman-

resonant (δ2 = 0) and the control field is operating well below saturation (Ωb � γ1).

The linear susceptibility experienced by the field Ωa is determined by using the

relationship

χ(1)(ωa) =
2ρ

(1,0)
21 (t)p∗12
ε0E(ωa)

, (4.33)
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where ρ
(α,β)
xy is the α-order in Ωa and β-order in Ωc term of ρxy. In this case ρ

(1,0)
21 (t)

is the first term of (4.31). Thus, the susceptibility is found to be

χ(1)(ωa) =
2iN |pa|2
ε0V ~Γ2

[

exp

(

− Ω2
b

2Γ2
t+ i

Ω2
c

4δ3
t

)

− exp

(

−Γ2

2
t

)]

. (4.34)

It can be seen from Fig. 4.2 that when the field Ωa is turned on, it is subject to

a very large transient absorption [68]. The presence of this very large linear term

also retrospectively justifies our neglecting higher-order effects, such as the transient

SPM.

The form of this transient absorption can readily be explained by the diminishing

coherent excitation of atoms from the state |1〉 into the radiatively decaying state

|2〉. The atom rapidly reaches an equilibrium between coherent excitation and decay,

on a timescale of ∼ 1/Γ2. However, the supply of population to |2〉 gradually

diminishes due to the relaxation of bright superposition of the ground states into

the dark-state of the Λ subsystem. Absorption is therefore limited by the gradual

establishment of electromagnetically induced transparency at a rate ∼ Ω2
b/Γ2. The

relatively long timescale over which relaxation occurs will result in large absorption

when using short pulses or rapidly switched fields. This could put constraints on the

adiabaticity of schemes based on slow pulse propagation through single or double-

EIT [55] configurations.

To gain a more quantitative understanding of the form of (4.34) we work in the

bright/dark and excited state basis (4.2)-(4.4). We begin with the equation for the

coherence between the dark and excited states on resonance:

ρ̇−e(t) = −Γ2

2
ρ−e(t) +

i

2
Ω̄ρ−+. (4.35)

Since the excited state decays rapidly we expect the coherence to relax into a quasi-

steady-state over a very short period of time. Setting ρ̇−e = 0 we find

ρ−e(t) ≈
iΩ̄

Γ2
ρ−+(t). (4.36)

This solution indicates that the coherence between the dark and excited states fol-

lows the ground-state coherence ρ−+(t) to lowest-order. This is a good approxi-

mation when the decay Γ2 is rapid, but does not satisfy the initial conditions of
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Figure 4.2: The time-dependent linear electric susceptibility experienced by the field

Ωa for a resonant Λ subsystem and Ωb = 3 MHz. When the field Ωa is suddenly

turned on, it experiences a very large transient absorption.

our problem (ρ−+ =
ΩaΩb

Ω̄2
, ρ−e = 0). Therefore, to find a better approximation

we must first determine the explicit time-dependence of the ground state coher-

ence. The quasi steady state solution for ρ−e(t) is substituted into the equation

for the coherence between the bright and dark superpositions of the ground states,

ρ̇−+(t) = i(Ω̄/2)ρ−e(t). We obtain

ρ−+(t) = ρ−+(0) exp

(

− Ω̄2t

2Γ2

)

. (4.37)

Again we note that this coherence decays on the timescale of the bright-state re-

laxation. The final step is to substitute the solution for the ground-state coherence

ρ−+ back into (4.35) to form a linear uncoupled differential equation for ρ−e(t). We

try an Ansatz of the form ρ−e(t) = A(t) exp(−Γ2t/2) + B(t), where A(t) and B(t)

are slowly varying functions. The solution is found to be

ρ−e(t) =
iΩaΩb

Ω̄Γ2

[

exp

(

− Ω̄2t

2Γ2

)

− exp

(

−Γ2t

2

)]

. (4.38)

Thus, ρ−e(t) rapidly responds to the injection of coherence from ρ−+(t). Due to the

relaxation of the bright state as the atom evolves into the atomic dark state we see
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that ρ−e(t) slowly decays as the source term ρ−+(t) diminishes. By taking the EIT

limit (ρ−e(t) → ρ12(t), Ω̄ → Ωb) we recover the linear part of the solution derived

previously (4.31).

To calculate the cross-Kerr susceptibilities experienced by the fields Ωa and Ωc

we use the relationships

χ
(3)
c (ωa) =

4ρ
(1,2)
21 p∗a

3ε0E(ωa)|E(ωc)|2
, (4.39)

χ
(3)
c (ωc) =

4ρ
(2,1)
43 p∗c

3ε0E(ωc)|E(ωa)|2
. (4.40)

Using the second term of (4.31) and (4.32) it is seen that the nonlinear susceptibilities

have the values

χ(3)(ωa) =
2N |pa|2|pc|2
3ε0V ~3δ3Ω2

b

[

1 − exp

(

− Ω2
b

2Γ2
t

)]

, (4.41)

χ(3)(ωc) =
2N |pa|2|pc|2
3ε0V ~3δ3Ω2

b

[

1 − exp

(

− Ω2
b

2Γ2
t

)]2

. (4.42)

Again, the cross-Kerr interaction becomes established on a timescale equal to the

relaxation time of the atom into the dark-state. This is to be expected since the

cross-phase modulation occurs in the steady-state due to the adiabatic Stark-shift

of the dark-state by the field Ωc [60].

To explain the form of the transient susceptbilities, or rather the coherence ele-

ments ρ21(t) and ρ43(t) associated with these, we again work in the basis (4.2)-(4.4),

with the addition of the fourth state |4〉. We find that the coherence between the

dark and excited states is given by

ρ̇−e(t) = −Γ2

2
ρ−e(t) +

iΩ̄

2
ρ−+(t) +

iΩaΩc

2Ω̄
ρ4e(t). (4.43)

This is identical to (4.35) except for the addition of a source term proportional

to ρ4e(t). Since we are working in the unsaturated limit we expect ρ4e(t) ≈ 0.

Therefore, any higher-order XPM effects must arise through modifications to the

ground-state coherence (GSC). Taking into account the effect of Ωc the GSC is now

defined by

ρ̇−+(t) =
iΩ̄

2
ρ−e(t) +

iΩaΩb

2Ω̄
ρ4+(t) +

iΩbΩc

2Ω̄
ρ−4(t). (4.44)
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Figure 4.3: The transient cross-Kerr susceptibilities experienced by the fields Ωa and

Ωc when the field Ωa is suddenly turned on. Plotted for a resonant Λ subsystem,

Ωb = 3 MHz and ∆c = 100 MHz.

Again, the assumption is made that coupling between the bright state and |4〉 will

make less of a contribution to the GSC than that due to the dark state coupling to

|4〉. We solve ρ−4(t) in the steady state and use this along with (4.36) to obtain the

equation of motion for the GSC:

ρ̇−+(t) = − Ω̄2

2Γ2
ρ−+(t) − iΩ2

bΩ
2
c

4Ω̄2δ∗3
ρ−+(t) +

iΩaΩ
3
bΩ

2
c

4Ω̄2δ∗3
. (4.45)

The first term of this is clearly identical to that derived previously when considering

only the Λ subsystem. The two additional terms will give rise to 1) a small change

in phase evolution of the GSC and 2) a non-vanishing source term for the GSC due

to the coupling of the dark state to |4〉. Solving (4.45) and substituting the answer

into the equation of motion for ρ−e(t) yields

ρ−e(t) =
iΩaΩb

Ω̄Γ2

[

exp

(

− Ω̄2t

2Γ2
− iΩ2

bΩ
2
ct

4Ω̄2δ∗3

)

− exp

(

−Ω2t

2

)]

(4.46)

−ΩaΩ
3
bΩ

2
c

2Ω̄5δ∗3

[

1 − exp

(

− Ω̄2t

2Γ2

)]

. (4.47)

This is related to the coherence ρ12(t) by the relationship

ρ12(t) =
Ωa

Ω̄
ρ+e(t) +

Ωb

Ω̄
ρ−e(t). (4.48)
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By taking the EIT limit (Ωa � Ωb ≈ Ω̄) we find ρ12(t) ≈ ρ−e(t). The ρ+e(t) term

gives rise to a higher-order transient self-phase modulation. Taking the complex

conjugate of ρ12(t) we recover the result (4.31). The key physical point to note in

this derivation is that transient XPM arises due to a perturbation of the Λ atom

ground state coherence. This perturbation is generated by a constant injection of

coherence by the coupling between the dark state |−〉 and the excited state |4〉.
Once again, XPM in the N-configuration atom is shown to be intimately linked to

coherent population trapping in the atomic dark state.

A similar derivation can be employed to explain the form of the transient XPM

on the ρ43(t) transition, with surprising results. We begin by noting that the ρ43(t)

matrix element is given by

ρ43(t) =
Ωb

Ω̄
ρ4+(t) − Ωa

Ω̄
ρ4−(t). (4.49)

We first determine ρ4+(t) from the equation of motion

ρ̇4+(t) = −iδ3ρ4+(t) +
iΩ̄

2
ρ4e(t) +

iΩaΩc

2Ω̄
ρ−+(t) − iΩbΩc

2Ω̄
[ρ++(t) − ρ44(t)] . (4.50)

Again we take the low excitation limit ρ44(t) ≈ 0, ρ4e(t) ≈ 0 and use the Λ-atom

approximations for ρ−+(t) given by (4.37) and ρ++(t) given by (4.9). Then we obtain

ρ4+(t) =
Ω2

aΩbΩc

2Ω̄3δ3
exp

(

− Ω̄2t

2Γ2

)[

1 − exp

(

− Ω̄2t

2Γ2

)]

. (4.51)

We can see from the form of this equation that coupling between the bright state and

|4〉 vanishes at t = 0 and as t → ∞. However, it does make a significant transient

contribution to the XPM. Essentially this arises due to the different relaxation rates

of the bright state, ρ++(t), and the GSC, ρ−+(t). Solving for the ρ4−(t) element to

lowest-order we obtain

ρ4−(t) =
ΩaΩ

2
bΩc

2Ω̄3δ3

[

exp

(

− Ω̄2t

2Γ2

)

− 1

]

. (4.52)

In contrast to the transient coupling between the bright state and |4〉, the dark state

coupling gradually increases to is maximum value when the atom has fully relaxed.

Combining both contributions from the coupling between the dark/bright states as
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Figure 4.4: Contributions to the ρ43(t) coherence due to the bright and dark states

coupling to |4〉. The coupling between the bright state and |4〉 makes a significant

transient contribution.

the excited state |4〉 we find that in the EIT limit

ρ43(t) =
Ω2

aΩc

2Ω2
bδ3

[

exp

(

−Ω2
b t

2Γ2

)

− 1

]2

(4.53)

Again, this is identical to (4.32). However, the physical interpretation of the above

derivation deviates significantly from what we would expect intuitively. In the steady

state we have seen that XPM arises due to the coupling between the dark state

|−〉 and the excited state |4〉. This behaviour is again found when we consider

the transient XPM on the |1〉 ↔ |2〉 transition. However, from an analysis in the

partly dressed basis we can see that the ρ43(t) transition experiences a significant,

although transient, contribution due to the coupling between the bright and excited

states. The contributions from coupling between the dark/bright states and |4〉 are

compared in figure (4.4).

Thus, it is not entirely true to say that XPM occurs due to the perturbation of

the Λ-atom dark state: a transient contribution from the bright state coupling is

also present.
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4.3 Chapter Summary

In this chapter we have investigated the transient behaviour of the atom when the

EIT probe field (Ωa) is suddenly turned on. One of the most striking features is the

large and relatively long duration transient absorption of the EIT probe. This occurs

due to the finite time required to transfer atomic population from the previously

uncoupled state |1〉 into the new dark state of the Λ subsystem. The rate of this

process is limited by the slow relaxation of the bright state superposition of the

ground states. Thus, the transient absorption is a precursor of the establishment of

electromagnetically induced transparency in the Λ subsystem.

Expressions for the transient cross-phase modulation on the Ωa and Ωc probe

transitions are also derived. In both cases it is seen that XPM arises on a time

scale dictated by the relaxation of the atom into the EIT state. However, the

interpretation of these results in terms of the bright/dark state partly dressed basis

leads to some surprising results. In the case of the Ωa transition, XPM is found to

be generated by the coupling between the dark state and the excited state |4〉. This

is identical to the explanation of XPM given in the steady state regime (subsection

3.2.1). For the Ωc transition however, it is seen that the coupling between the bright

state and |4〉 gives a significant transient contribution. Although it is sufficient

to view XPM as arising to due the perturbation of the Λ-atom dark state in the

steady-state regime, this is not a complete explanation when time-dependent fields

are considered.

From the form of the susceptibilities it can also be seen that the rise time is pro-

portional to the magnitude of the nonlinear susceptibility. Thus, larger nonlineari-

ties will take longer to become established. This could have significant implications

when trying to achieve strong nonlinear interactions between short optical pulses.

Furthermore, since the atom is slow to respond to changes in the probe field, this

indicates that there could be limitations and interesting non-adiabatic behaviour of

the atom when using short pulses on the EIT probe transition. The non-adiabatic

behaviour of the N-configuration atom will be investigated further chapter 5.



Chapter 5

Slowly Pulsed Cross-Phase

Modulation

So far we have considered the interaction of an ensemble of identical atoms with spa-

tially and at least piece-wise temporally constant electromagnetic fields. In many

respects this is a very reasonable approximation. Consider first the temporal varia-

tion of the field.

From the Weisskopf-Wigner theory (2.33), we have seen that the radiative decay

rate of a transition at optical frequencies will be on the order of tens of MHz. Typ-

ically the pulse duration used in experiments will be of the order of many microsec-

onds, although much shorter is possible. Nonetheless, it would seem reasonable to

assume that the atom has sufficient time to relax into a quasi-steady state. As noted

in the previous chapter the actual atomic dynamics in the Λ- and N-configuration

systems is dictated by the much slower relaxation of the bright-state superposition

of the ground states. Therefore, even when using relatively long duration pulses

then non-equilibrium effects should be taken into consideration.

A second and related issue is the assumption that the electromagnetic field is

constant across the dimensions of the atomic sample. Again, we consider typical

parameters: sample length, ls = 10−3m and pulse duration τ = 1µs. In free space

we would therefore expect the pulse length to be of the order

lp = c× τ ≈ 300m. (5.1)

71
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Clearly, the pulse length is much greater than the atomic sample length. However,

due to the remarkable properties of the Λ atom we will see that pulses propagating

through the sample will undergo compression by several orders of magnitude: this

is a natural consequence of slow-light propagation in the atomic ensemble. In turn,

this turns out to be a non-equilibrium effect of the slow bright-state relaxation rate.

5.1 Slowly Varying Envelope Approximation

During the calculations in this thesis, and indeed for most experiments undertaken,

we are able to work within the slowly-varying envelope approximation. That is, we

assume that variations in the classical field amplitude occur on a length scale much

longer than the wavelength of the light. We begin with the Maxwell wave equation:
(

∂2

∂t2
− c2

∂2

∂z2

)

E(z, t) = µ0c
2 ∂

2

∂t2
P (z, t). (5.2)

The electric and polarisation fields have the form

E(z, t) =
E0(z, t)

2
exp[kz − ωt+ φ(z, t)] + c.c. , (5.3)

P (z, t) =
P0(z, t)

2
exp[kz − ωt+ φ(z, t)] + c.c. . (5.4)

where the coefficients E0(z, t) are real, slowly-varying functions of space and time.

The corresponding polarisation terms P0(z, t) may be complex, since the induced

polarisation will generally not be in-phase with the applied electromagnetic field.

Making these assumptions we find coupled first-order wave-equations for the ampli-

tude and phase of the electromagnetic field [42]:
(

∂

∂t
+ c

∂

∂z

)

E0(z, t) = − ω

2ε0
Im [P0(z, t)] , (5.5)

E0(z, t)

(

∂

∂t
+ c

∂

∂z

)

φ(z, t) =
ω

2ε0
Re [P0(z, t)] . (5.6)

When employing a semi-classical approximation we want to relate the macroscopic

polarisation of the material to the off-diagonal elements of the density matrix. In

this case we have

Im [P0(z, t)] =
2N

V
Im[p12ρ21], (5.7)
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Re [P0(z, t)] =
2N

V
Re[p12ρ21], (5.8)

where N/V is the number density of identical atoms in the atomic ensemble.

Throughout this chapter we analyse the propagation of classical pulses through

quantum-mechanical matter: a semi-classical approximation. By doing so we can

model a narrow bandwidth pulse as a plane wave modulated by a slowly varying field

envelope. It is possible to take a similar approach in the fully quantum-mechanical

regime, although the validity of applying this to particular situations is a much

more tricky subject. In general, each Fourier component of the field must be taken

account of in a multi-modal description of the field [77].

5.2 Pulses in the Two-Level Atom

Determining the pulse propagation in an atomic ensemble involves two steps. First,

we solve the density matrix equation of motion (2.34) to obtain the relationship

between the instantaneous polarisation and the history of an applied electromagnetic

field. Then, the polarisation is substituted into the wave-equations (5.5) and (5.6).

This is used to determine a self-consistent solution to the pulse dynamics. In general

finding exact solutions is a difficult, if not entirely impossible task.

However, for certain systems exact solutions can be found. An important ex-

ample arises when we investigate the interaction of a pulse with a two-level atom.

This is examined in the following subsection. The analysis of this problem will help

elucidate the situations where exact solutions exist and the difficulties encountered

when deriving approximate solutions for non-integrable systems.

5.2.1 Self Induced Transparency

For a pulse propagating in the two-level atom it is possible to show that soliton

solutions exist. Remarkably, these solitonic pulses are able to travel undisturbed

through an ensemble of normally absorptive two-level atoms [78]. To show this, we

begin by transforming into the Bloch vector model of the atom. In this picture, the
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Figure 5.1: The state of the two-level atom is described by the position of the vector

s(t) on the Bloch sphere. They dynamics are such that the vector s(t) precesses

around the axis defined by ω(t). The diagram shows the time-independent case of

Rabi-oscillations around a fixed vector ω.

state of the atom is represented by the position of a vector, s(t), on the unit sphere

(Fig. 5.1). The Bloch vector is defined as

s(t) =











u(t)

v(t)

w(t)











=











ρ12(t) + ρ21(t)

i(ρ12(t) − ρ21(t))

ρ11(t) − ρ22(t)











. (5.9)

We find the equation of motion for the Bloch vector by substituting the components,

u(t), v(t) and w(t), into the density matrix equation of motion (2.34). When we

neglect the decay term the dynamics are described the precession equation [26]:

∂s(t)

∂t
= ω(t) × s(t). (5.10)

Here we have assumed that the Rabi-frequency is real and ω = (Ω(t), 0,−∆). For a

time-independent field the Bloch vector will simply precess around ω in a manner

identical to a magnetic dipole around magnetic field lines. The solution of the

problem is straightforward and furnishes the Rabi-oscillations previously discussed.

To solve the time-dependent problem it is first necessary to introduce the concept
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of partial pulse area, defined by

θ(t) =

∫ t

−∞
Ω(t′)dt′. (5.11)

This quantity plays a central role in determining the dynamics of the two-level atom

and has more recently been extended to other multi-level systems [79]. We begin

our solution by trying an Ansatz of the the following form:

v(t,∆) = −F (∆) sin[θ(t)]. (5.12)

The form of this is based on the assumption that the ∆-dependence can be taken

account of by the term F (∆) multiplying the resonant solution. Making this as-

sumption and using the equations of motion for v̇(t) and ẇ(t) we find that

u(t,∆) =
Ω(t)

∆
[F (∆) − 1] , (5.13)

w(t,∆) = F (∆) {cos[θ(t)] − 1} + 1. (5.14)

However, substituting these solutions into the differential equation for u̇(t,∆) yields

the following restriction on the partial pulse area

∂2θ(t)

∂t2
=

1

τ 2
sin θ(t). (5.15)

Thus, for that Ansatz (5.12) to be valid we are restricted to pulses that satisfy

the pendulum equation for θ(t). The nonlinear differential equation (5.15) occurs

frequently in several branches of physics and is particular for possessing solitary-

wave solutions. That is, stable localised pulse-like solutions that are undisturbed

by collisions with each other, up to a phase shift. The spatially varying version of

this equation, the sine-Gordon equation, is often studied in the context of nonlinear

field theories and arises in the theory of Josephson junctions in superconductors [80].

However, most simply, this equation describes a simple pendulum where the angle

θ is made between the radius through the centre of gravity and the vertical.

Given that we want solutions that vanish at t = ±∞ we find the pulse area is

given by

θ(t) = −4 tan−1 [exp[(t− t0)/τ ]] . (5.16)
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By substituting θ(t) into the solution for w(t) we can see that the population will

undergo one cycle as the pulse propagates though the medium, but will be unchanged

afterwards. That is w(−∞,∆) = w(∞,∆) = 1. This corresponds to one “swing” of

the pendulum from θ = 0 to θ = 2π. Differentiation yields the solution to the pulse

envelope

E0(t) =
2~

τp
sech[(t− t0)/τ ]. (5.17)

Thus, the pulse envelope is of the well-known hyperbolic secant form often associated

with solitons. By saying t0 = z/vp and substituting (5.17) into the slowly-varying

Maxwell equation (5.5) we find that the pulse velocity through an inhomogeneously

broadened medium is given by

vp =
c

1 +
Np2ωτ

2~ε0V σ

. (5.18)

Here, N/V is the atomic density and σ is the standard deviation of the normal

distribution of detunings ∆. We have also assumed that the pulse bandwidth is

much narrower than the inhomogeneous broadening and the pulse is resonant with

the distribution peak.

When determining the dynamics of the two-level atom we are limited to a par-

ticular class of exactly integrable soliton solutions. However, the pulsed output of

a laser will generally not be a secant-shaped pulse. We are therefore still unable

to describe how an arbitrary pulse envelope will propagate through an ensemble of

two-level atoms. Although this is impossible in the general case, we next explore

another exactly solvable limit which acts as a very profitable departure point for

approximate calculations.

5.2.2 Adiabatic Following

One natural way to proceed when finding the dynamics of pulses is to assume that

the pulses are slowly-varying and the atomic dynamics will be closely related to

the steady-field Rabi solution. We begin by parameterising the “slowness” of the
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variation of the Hamiltonian [81] by introducing the parameter δ, such that

i~
∂

∂t
|ψ(t)〉 = H(δt)|ψ(t)〉. (5.19)

Here the Hamiltonian is a constant as δ → 0. We can now transform into a “slow-

time” τ = δt. In this new parameterisation the Schrödinger equation is given by

iε
∂

∂τ
|ψ(τ)〉 = H(τ)|ψ(τ)〉, (5.20)

where ε = δ~. Now, we follow [82] and suppose that the Hamiltonian has the form

of the two-level atom is a symmetric trace-zero matrix given by

Ĥ(τ) = H(τ)





cos θ(τ) sin θ(τ)

sin θ(τ) − cos θ(τ)



 . (5.21)

The instantaneous eigenstates of the two-level Hamiltonian are also known as the

adiabatic states. These are found to be

| + (τ)〉 = cos

[

θ(τ)

2

]

|1〉 + sin

[

θ(τ)

2

]

|2〉, (5.22)

| − (τ)〉 = sin

[

θ(τ)

2

]

|1〉 − cos

[

θ(τ)

2

]

|2〉. (5.23)

Corresponding to the adiabatic states |±(τ)〉 are the eigenenergies, given by E±(τ) =

±H(τ). The adiabatic states form a basis for the two-level atom. We can therefore

write the general solution to the dynamics as:

|ψ(τ)〉 = d−(τ)| − (τ)〉 + d+(τ)| + (τ)〉. (5.24)

Working in this basis we find that the equations of motion for the d±(τ) coefficients

are given by

iε





ḋ+(τ)

ḋ−(τ)



 =





H(τ) −iεθ̇/2
iεθ̇/2 −H(τ)









d+(τ)

d−(τ)



 . (5.25)

We now suppose that the solutions are of the form

d±(τ) = exp

[

∓ i
ε

∫ τ

0

H(α)dα

]

c±(τ). (5.26)

Due to the finite rate of variation of the field (θ̇ 6= 0) we expect non-adiabatic

transitions to be induced between the adiabatic states. This manifests itself as
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a time-dependence of the coefficients c±(τ). These are determined by solving the

equations of motion

ċ±(τ) = ∓c∓(τ)
θ̇(τ)

2
exp

[

±2i

ε

∫ τ

0

H(α)dα

]

. (5.27)

In the adiabatic limit the term θ̇(t) is taken to vary sufficiently slowly such that

the rapid oscillation in the exponential of (5.27) will cancel out the slow variations

of c±(τ)θ̇(τ). This causes the coefficients c±(τ) to be constant. The atom is there-

fore observed to adiabatically follow the instantaneous eigenstates. Indeed, this can

be generalised to multi-level atoms to give the general solution to the adiabatic

dynamics

|ψ(t)〉 =
∑

n

dn(0) exp

[

− i

~

∫ t

0

En(α)dα

]

|φn(t)〉, (5.28)

where |φn(t)〉 are the adiabatic states. To find the lowest-order non-adiabatic cor-

rection to the dynamics we begin by assuming that the atom is initially in the

| + (−∞)〉 state. Throughout the evolution c+(τ) ≈ 1 to zeroth order. This results

in the equation of motion for c−(τ):

c−(τ) =
1

2

∫ τ

−∞
θ̇(β) exp

[

−2i

ε

∫ β

0

H(α)dα

]

dβ. (5.29)

However, to solve the above equation poses an essential problem since it cannot

be Taylor expanded in terms of the non-adiabatic parameter ε. This is because

the Laurent expansion of the exponent contains no non-zero positive powers of ε.

Nonetheless, by transforming the equation into an integral in terms of the action,

progress can be made.

5.2.3 Non-adiabatic Corrections

To find a solution of (5.29) we introduce a parameter that is proportional to the

action:

w(τ) = 2

∫ τ

0

dτ ′H(τ ′). (5.30)

This transforms the integral into

c−(τ) =
1

2

∫ w(τ)

−∞

dθ

dw
exp

[

− i
ε
w

]

dw. (5.31)
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This transformation is analogous to a classical Hamilton-Jacobi transformation into

action-angle variables, where the initial momentum in chosen as the energyH(τ) and

the co-ordinate is the slow time τ [23]. The particular benefit of this transformation

is seen when we consider the final state transition amplitude.

c−(+∞) =
1

2

∫ ∞

−∞

dθ

dw
exp

[

− i
ε
w

]

dw. (5.32)

The form of this integral suggests that it could be evaluated by extending w into the

complex plane. The path along the horizontal axis is then replaced by a clockwise

semi-circular contour in the lower half plane [82]. For small ε, the contribution from

the semi-circular path joining +∞ to −∞ will vanish. It is further expected that
dθ

dw
will be analytic at all points, other than at zeros of the Hamiltonian in the

complex-τ plane. At a point τc where H(τc) = 0 there will be a degeneracy of the

eigenvalues in the complex-time plane. Then, the rate of change of θ(w) with respect

to w will be singular. It is therefore possible to push the path along the real axis

downwards until we encounter one of the singularities of
dθ

dw
. For a well behaved

Hamiltonian, it can be shown that the singularity will be simple and is given by [82]

dθ

dw
=

−i
3(w − wc)

, (5.33)

where wc is the value of the action at the complex time τc. Evaluating (5.32) using

Cauchy’s integral theorem we find

c−(+∞) =
π

3
exp

[

−iwc

ε

]

. (5.34)

This answer is correct to first-order in both c+(τ) and adiabaticity parameter ε.

However, comparison with numerical work suggests that it is very close to being

correct to all-orders in c+(τ). In particular we find that even when the non-adiabatic

loss is large (although ε remains small), the exact form of the loss is given by

c−(+∞) = exp

[

−iwc

ε

]

. (5.35)

Several authors have calculated this more exact result by various methods [83, 81].

However, the method relevant to my work here is the method of superadiabatic states

as introduced by Berry [82, 84, 85]. This is examined in the following subsection

and will be applied to the Λ- and N-configuration atoms.
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5.2.4 Superadiabatic States

In this section we follow Berry [82] and define the superadiabatic state as a solution

to the Schrödinger equation of the form

|ψ±(τ)〉 = exp

[

∓ i
ε

∫ τ

0

dτ ′H(τ ′)

] ∞
∑

m=0

εm|um±(τ)〉. (5.36)

Here we have assumed that the solution can be Taylor expanded in terms of the

adiabaticity parameter ε. In particular, the n-th order superadiabatic state is defined

as the solution (5.36) truncated after the εn term. To lowest-order this reduces to

the adiabatic approximation found earlier

|ψ±(τ)〉 ≈ exp

[

∓ i
ε

∫ τ

0

dτ ′H(τ ′)

]

|u0±(τ)〉, (5.37)

where |u0±(τ)〉 are the adiabatic states corresponding to the E(τ) = ±H(τ) eigenen-

ergies. In general the power-series expansion (5.36) will not converge. We can see

this intuitively by considering the situation where the Hamiltonian is equal and

static at t = ±∞. In this case the superadiabatic states |ψ(τ)±〉 will be equal to the

adiabatic states |u0±(τ)〉 at the beginning and end of the evolution (up to a phase

factor). However, from experience we know that for an arbitrary time dependence

non-adiabatic transitions between the instantaneous eigenstates will occur, although

the expansion (5.36) does not allow this possibility.

Nonetheless, the superadiabatic state does form an asymptotic expansion [86]

representing the actual state of the atom. This is useful because the error incurred

by truncating the superadiabatic state is no greater than the first term neglected.

Thus, useful results can be obtained by expanding up to the smallest term, beyond

which the series will diverge.

Now let us calculate the form of the superadiabatic state given that the atom is

initially in the upper adiabatic state. Hence, |ψ(−∞)〉 = |ψ+(−∞)〉 = |u0+(−∞)〉.
We choose to expand each term |um+(τ)〉 of the superadiabatic state with respect

to the adiabatic basis. Thus

|um+(τ)〉 = am(τ)|u0+(τ)〉 + bm(τ)|u0−(τ)〉. (5.38)
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By substitution of the superadiabatic state (5.36) into the Schrödinger equation,

and using the expansion (5.38), we find relationships between the am(τ) and bm(τ)

coefficients:

ȧm(τ) = − i

2H(τ)

(

äm−1(τ) − ȧm−1(τ)
θ̈(τ)

θ̇(τ)
+
θ̇(τ)2

4
am−1(τ)

)

, (5.39)

and

bm(τ) = −2ȧm(τ)

θ̇(τ)
. (5.40)

These recurrence relations are supplemented by the conditions a0(τ) = 1, b0(τ) = 0

and am(−∞) = bm(−∞) = 0, m > 0. With the initial conditions the recurrence rela-

tions completely define the superadiabatic states and give an asymptotic expansion

of the dynamics.

As mentioned previously, the value of using the superadiabatic basis is that it is

possible to calculate the exact final-state transition amplitude (5.35) by first-order

perturbation theory. Working in the n-th order superadiabatic basis the final-state

transition amplitude is [82]

cn−(+∞) = 2iεn
∫ ∞

−∞
dw

a′n+1(w)

θ′(w)
exp

[

−iw
ε

]

. (5.41)

Here the prime denotes a derivate with respect to w. We also transform the re-

currence relations into functions of w, and solving these close to the eigenenergy

degeneracy at τ = τc we find

2i
a′n+1(w)

θ′(w)
=

in+1(n− 1/6)!(n− 5/6)!(1 + 1
6n

)

(w − w)n+1(n− 1)!(−1/6)!(−5/6)!
. (5.42)

Using Cauchy’s integral formula for the pole of (n + 1)-order at w = wc we obtain

the final state transition amplitude. In the nth-order superadiabatic basis this is

cn(+∞) = An exp

[

−iwc

ε

]

, (5.43)

where

An =
2π(n+ 1/6)!(n− 1/6)!

(−1/6)!(−5/6)!(n!)2
. (5.44)

In particular the for higher-order superadiabatic states

A∞ → 1. (5.45)
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It is remarkable that by taking the n→ ∞ limit of the superadiabatic basis we have

derived the correct result, despite the fact that the superadiabatic states themselves

do not converge. Some explanation of this is required. When attempting to cal-

culate the dynamics from |ψ±(τ)〉 directly, it is indeed necessary to truncate the

asymptotic series after the smallest term. However, the final state transition ampli-

tude involves transitions between states. Thus, although the representations of the

states themselves do not converge, the relationship between theses states is given

correctly. This is confirmed by the fact that the transition amplitude in (5.41) goes

as εn. Higher-order superadiabatic states must therefore cling ever more closely to

the actual solution, even if the representations themselves do not converge.

For several examples, the extent of the non-adiabatic loss can be calculated

analytically. As an example consider, the Landau-Zener Hamiltonian [87, 84] given

by

Z(τ) = τ, X(τ) = 1. (5.46)

This results in the action

w(τ) = 2

∫ τ

0

√
1 + τ ′2dτ ′ = τ

√
1 + τ 2 + arcsin[τ ]. (5.47)

The complex degeneracies therefore occur when H(τc) = 0 and give τc = ±i. At this

point in time the action is found to be w(τc) = ±iπ/2 and the final-state transition

amplitude is

c−(∞) = exp
[

− π

2ε

]

. (5.48)

This result has also been extended into the multi-level case for the Landau-Zener

model [88].

5.3 Pulses in the Λ System

We now attempt to apply the method of superadiabatic states to the Λ atom (Fig.

2.2). Unlike previous authors we do not restrict our analysis to an exactly resonant,

non-decaying Λ atom [89]. On the other hand, we do simplify matters by solving

the problem to only first-order in both the EIT probe field and the non-adiabaticity.
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In doing so we will give interesting physical explanations for some familiar results,

and develop a method easily generalised to the N-configuration atom.

In the following work we are concerned with the situation where the probe field

Ωa is time-dependent. To first-order in the EIT field the approximate adiabatic

states are given by

|φ1(τ)〉 = |1〉 − Ωa(τ)Ωb

2N−λ−
|C−〉 −

Ωa(τ)Ωb

2N+λ+
|C+〉, (5.49)

|φ2(τ)〉 = |C−〉 +
Ωa(τ)Ωb

2N−λ−
|1〉, (5.50)

|φ3(τ)〉 = |C+〉 +
Ωa(τ)Ωb

2N+λ+
|1〉. (5.51)

Where the states |C±〉, given by (3.25)-(3.26), are the dressed states of the two-level

subsystem composed of the field Ωb coupling the bare atomic levels |2〉 and |3〉. We

choose to expand the solution in terms of the approximate adiabatic state basis:

|ψ(τ)〉 = d1(τ)|φ1(τ)〉 + d2(τ)|φ2(τ)〉 + d3(τ)|φ3(τ)〉. (5.52)

Substitution of (5.52) into the Schrödinger equation (5.20) yields the equation of

motion for the adiabatic state coefficients. The adiabatic state coefficients are then

found to obey

iε
d

dτ











d1(τ)

d2(τ)

d3(τ)











=











~λ1(τ) εΩ̃∗
−(τ) εΩ̃∗

+(τ)

εΩ̃−(τ) ~λ2(τ) 0

εΩ̃+(τ) 0 ~λ3(τ)





















d1(τ)

d2(τ)

d3(τ)











. (5.53)

The off-diagonal coupling that gives rise to the mixing of the dressed states is given

by

Ω̃±(τ) =
iΩ∗

b

2N±λ±

dΩa(τ)

dτ
. (5.54)

In an analogous way to the two-level atom, we attempt to find solutions to the dy-

namics by expanding the solution in terms of the adiabaticity parameter ε. However,

in a slight departure from the method used by Berry [82, 84, 85] we suppose the

solution has the general form

|ψ(τ)〉 =
3
∑

s=1

exp

[

− i
ε

∫ τ

0

~λ̃s(τ
′)dτ ′

]

|φ̃s(τ)〉, (5.55)
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where |φ̃s(τ)〉 and ~λ̃s(τ) are both asymptotic expansions in ε representing the time-

dependent superadiabatic state and energy. In the limit τ → ±∞ these are identical

to the adiabatic state |φs(τ)〉 and eigenenergy ~λs(τ). By writing the superadiabatic

state in this form we are able to calculate it by using standard non-degenerate

perturbation theory where the Hamiltonian is split into

H0 = ~











λ1(τ) 0 0

0 λ(τ) 0

0 0 λ3(τ)











V =











0 Ω̃∗
−(τ) Ω̃∗

+(τ)

Ω̃−(τ) 0 0

Ω̃+(τ) 0 0











(5.56)

To first-order in the adiabaticity parameter and the EIT field we find that the |φ̃1(τ)〉
superadiabatic state is given by

|φ̃1(τ)〉 = |φ1(τ)〉 − ε
Ω̃−(τ)

~λ−
|φ2(τ)〉 − ε

Ω̃+(τ)

~λ+
|φ2(τ)〉. (5.57)

Written in terms of the real time we have:

|φ̃1(t)〉 = |φ1(t)〉 −
iΩ∗

b

2N−λ
2
−

dΩa(t)

dt
|φ2(t)〉 −

iΩ∗
b

2N+λ
2
+

dΩa(t)

dt
|φ3(t)〉. (5.58)

The eigenenergy corresponding to the superadiabatic state |φ̃1(t)〉 has the value

λ̃1(t) = − δ2|Ωa(t)|2
4δ1δ2 − |Ωb|2

− 4[4δ3
2 + (δ1 + 2δ2)|Ωb|2
(4δ1δ2 − |Ωb|2)3

(

dΩa(t)

dt

)2

. (5.59)

The first term of λ̃1(t) represents the adiabatic eigenenergy of the EIT system and

the second term is the second-order nonadiabatic correction. When both fields

are resonant with the Λ atom, only the nonadiabatic term will contribute. By

replacing the superadiabatic state by its adiabatic approximant we find that under

the influence of a smoothly varying field the state will evolve as

|ψ(t)〉 ≈ c1(0) exp

[

−γ1

∫ t

0

4δ1
|Ωb|4

(

dΩa(t
′)

dt′

)

dt′
]

|φ1(t)〉. (5.60)

We can see that due the gradual variation of the electromagnetic field Ωa(t) the pop-

ulation in the adiabatic state will slowly decay. This result was first demonstrated

by Fleischhauer and Manka [90] when investigating coherent population transfer in

the Λ atom. In this paper they showed that the nonadiabatic loss from the dressed
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state was not exponentially small in the adiabaticity parameter - quite in contrast

to the situation in the two-level atom. However, from the derivation given above we

can see that the nature of the adiabatic loss is quite different in the two situation.

For the two-level atom the loss is caused by non-adiabatic but coherent transition

between the dressed states. On their own, the dressed states are radiatively stable.

However, for the Λ atom described above the loss arises due to the radiative decay

of the superadiabatic state itself. In the model used, the population is simply “lost”

to the environment and does not transfer into one of the other adiabatic states.

The strikingly different behaviour of the nonadiabatic loss is therefore due to quite

different loss mechanisms operating in both situations.

Of particular interest in the work that follows is the off-diagonal density matrix

elements of the EIT transition:

ρ21(t) =
−2Ωa(t)δ2

4δ1δ2 − |Ωb|2
− 2i(4δ2

2 + |Ωb|2)
(4δ1δ2 − |Ωb|2)

2
dΩa

dt
, (5.61)

From here on we assume that the loss from the superadiabatic state is negligible.

When operating close to Raman resonance, and for a slowly varying field this ap-

proximation is quite appropriate for most purposes (except when studying coherent

population transfer of course). From this off-diagonal element, the nonadiabatic

linear electric susceptibility can be calculated:

χ(1)(ωa;ωa, t) =
|p12|2

~ε0Ea(t)

[

4Ea(t)δ2
4δ1δ2 − |Ωb|2

+
4i(4δ2

2 + Ω2
b)

(4δ1δ2 − |Ωb|2)2

dEa(t)

dt

]

. (5.62)

We note that the susceptibility now has an imaginary term that is proportional to

the rate of change on the electric field. Thus, a rapid increase in the field will give

rise to a large absorption and vice-versa. Shortly we will see that this term generates

slow-light propagation in the Λ atom.

As shown in appendix B the first-order nonadiabatic susceptibility is essen-

tially the temporal representation of the linear susceptibility (2.48) Taylor expanded

around the frequency ωa. On resonance of the probe and control fields we have

χ(1)(ωa;ωa, t)Ea(t) = i
dχ(1)

dωa

∣

∣

∣

∣

∆a=0

dEa(t)

dt
=

4i|p12|2
~ε0|Ωb|2

dEa(t)

dt
(5.63)
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The significance of this can be appreciated by substitution of the polarisation P (ωa, t) =

ε0χ̂
(1)(t)Ea(z, t) into the wave equation for the slowly varying envelope (5.5). Rear-

rangement of this equation gives

(

d

dt
+ cg

d

dz

)

Ea(z, t) = 0, (5.64)

where the group velocity is given by

cg =
c

1 +
ωa

2

dχ(1)

dωa

∣

∣

∣

∣

∆a=0

=
c

ng

. (5.65)

Here, ng = 1 + ωa
dη

dωa

∣

∣

∣

∣

∆a=0

is the group refractive index and η(ωa) is the phase

refractive index introduced in chapter 1. By transforming into the temporal repre-

sentation of the susceptibility we gain an insight into the non-adiabatic origin of slow

light. Essentially, the reduced group velocity is caused due to polarisation acting to

coherently absorb the front of the pulse, but amplify the tail. It is this “Lenz-law”

type behaviour that causes the remarkable reductions in group velocity that have

been demonstrated [48].

5.4 Pulses in the N System

The calculations performed in the previous section can quite easily be extended to

the N-configuration atom, as was done in the candidate’s publication [61]. Again

we assume that only the field Ωa is slowly varied. We begin by writing down the

adiabatic states of the N-configuration atom, as determined in section 4.2. These

are

|φ1(τ)〉 = |1〉 − Ωa(τ)Ω
∗
b

2N̄−λ̄−
|C−〉 −

Ωa(τ)Ω
∗
b

2N̄+λ+

− Ωa(τ)Ω
∗Ωc

2δ3(4δ1δ2 − |Ωb|2)
|4〉, (5.66)

|φ2(τ)〉 = |C−〉 +
Ω∗

a(τ)Ωb

2N̄−λ̄−
|1〉 − Ωc(λ− − δ1)

N̄−δ3
|4〉, (5.67)

|φ3(τ)〉 = |C+〉 +
Ω∗

a(τ)Ωb

2N̄+λ̄+

|1〉 − Ωc(λ+ − δ1)

N̄+δ3
|4〉, (5.68)

|φ4(τ)〉 = |4〉 +
Ω∗

c(λ− − δ1)

δ3N̄−
|C−〉 +

Ω∗
c(λ+ − δ1)

δ3N̄+

|C+〉. (5.69)
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We note that only the field Ωa(τ) is time-dependent. All other quantities, such as

the normalisations N±, are functions of the static fields Ωb,Ωc or static detunings

δ1, δ2, δ3. When taking the time-derivative of the states, this makes the calculations

much more straightforward than would be the case if the control field was pulsed.

When the time-derivatives of the adiabatic states are expressed in terms of the

adiabatic basis we find that

|φ̇1(τ)〉 = − Ω∗
b

2N̄−λ̄−

dΩa(τ)

dτ
|φ2(τ)〉 −

Ω∗
b

2N̄+λ̄+

dΩa(τ)

dτ
|φ3(t)〉, (5.70)

|φ̇2(τ)〉 =
Ωb

2N̄−λ̄−

dΩa(τ)

dτ
|φ1(τ)〉, (5.71)

|φ̇3(τ)〉 =
Ωb

2N̄+λ̄+

dΩa(τ)

dτ
|φ1(τ)〉, (5.72)

|φ̇4(τ)〉 = 0. (5.73)

It is notable that to first-order in the probe fields there is no non-adiabatic cou-

pling between the Λ-atom dressed states and the state |φ4(τ)〉. This is because

second-order the terms of the form ΩaΩc have been neglected from the approximate

eigenstates.

Since the instantaneous eigenstates form a basis we may express the solution to

dynamics as

|ψ(τ)〉 = d1(τ)|φ1(τ)〉 + d2(τ)|φ2(τ)〉 + d3(τ)|φ3(τ)〉 + d4(τ)|φ4(τ)〉. (5.74)

By substitution of this solution into the Schrödinger equation we find that the

adiabatic state coefficients obey the differential equation

iε
d

dτ

















d1(τ)

d2(τ)

d3(τ)

d4(τ)

















=

















~λ1(τ) εΩ̃∗
−(τ) εΩ̃∗

+(τ) 0

εΩ̃−(τ) ~λ2(τ) 0 0

εΩ̃+(τ) 0 ~λ3(τ) 0

0 0 0 λ4(τ)

































d1(τ)

d2(τ)

d3(τ)

d4(τ)

















. (5.75)

This matrix equation of motion has exactly the same structure as for the Λ atom,

and therefore we expect the non-adiabatic behaviour of the N-configuration atom

to be qualitatively identical. It should be noted however that the definitions of the

dressed states |φ1(τ)〉, |φ2(τ)〉 and |φ3(τ)〉 contain components of the bare state |4〉.
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This is obviously not present in the Λ atom, and will lead to a quantitative, if not

qualitative change in behaviour between the two systems. Nonetheless the dynamics

are essentially very similar.

By the process of first-order perturbation theory described previously we deduce

the first-order nonadiabatic state and second-order energy. For the nonadiabatic

eigenenergy of the state |φ̃1(τ)〉 we have

λ̃1(τ) = − δ2|Ωa(τ)|2
4δ1δ2 − |Ωb|2

− ε2
4[4δ3

2 + (δ1 + 2δ2)|Ωb|2
(4δ1δ2 − |Ωb|2)3

(

dΩa(τ)

dτ

)2

−

ε2
2|Ωb|2|Ωc|2[6δ2

1 + 8δ1δ2 + 6δ2
2|Ωb|2]

δ3(4δ1δ2 − |Ωb|2)4

(

dΩa(τ)

dτ

)2

. (5.76)

And, the first-order superadiabatic state is found to be given by

|φ̃1(τ)〉 = |φ1(τ)〉 − ε
Ω̃−(τ)

~λ̄−
|φ2(τ)〉 − ε

Ω̃+(τ)

~λ̄+

|φ2(τ)〉, (5.77)

which is identical to the superadiabatic state of the Λ atom although we recall that

the instantaneous dressed states are now defined by (5.66)-(5.69).

From the approximate superadiabatic state we can also determine the off-diagonal

density matrix elements. For the sake of clarity we again consider the case where

the fields are Raman-resonant, δ2 = 0, and the radiative decay is very small (non-

depletion approximation). Thus, we obtain the coherence elements:

ρ21(t) = −Ωa|Ωc|2
2δ3|Ωb|2

− 2i

|Ωb|2
dΩa

dt
+

4i|Ωc|2δ1
δ3|Ωb|4

dΩa

dt
, (5.78)

ρ43(t) = −Ωa(t)Ωc

2δ3|Ωb|2
[

Ωa(t) −
4Γ2

|Ωb|2
dΩa

dt

]

. (5.79)

Considering only the cross-phase modulation terms we note that the adiabatic and

nonadiabatic terms can be written in the form of a retarded “steady state” response

to the fields. That is

ρXPM
21 (t) = −Ωa(t+ ∆t)|Ωc|2

2δ3|Ωb|2
. (5.80)

ρXPM
43 (t) = −|Ωa(t+ ∆t/2)|2Ωc

2δ3|Ωb|2
, (5.81)

where ∆t = −2Γ2/|Ωb|2. The XPM responses of the atom are therefore retarded

by a period on the order of the GSC and bright-state relaxation times. Thus, the
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bright-state relaxation time is again seen to dominate the lag of the nonadiabatic

XPM experienced by a pulse, just as it determines the transient rise-time.

In an identical manner to that performed for the Λ atom, the time-dependent

nonadiabatic susceptibility experienced by the fields Ωa and Ωc can be calculated.

On Raman resonance, the susceptibilities experienced by both the Ωa and Ωc fields

are found to be identical and are

χ(3)
a,c(t) =

2|p12|2|p34|2
3ε0~3δ3|Ωb|2

− 8|p12|2|p34|2Γ2Ėa(t)

3ε0~3|Ωb|4δ3Ea(t)
(5.82)

To see how this form of susceptibility effects the propagation of optical pulse, we

use (5.82) to construct the polarisation terms for the fields Ωa and Ωc:

Pa(z, t) = εχ(1)(t)Ea(z, t) +
3

2
ε0χ

(3)(t)Ea(z, t)|Ec(z, t)|2, (5.83)

Pc(z, t) =
3

2
ε0χ

(3)(t)Ec(z, t)|Ea(z, t)|2. (5.84)

These polarisation terms will give rise to a pair of coupled wave equations for the

fields Ea(z, t) and Ec(z, t). To solve these we first suppose that the field Ec(z, t)

is constant in time and is not appreciably absorbed by propagation through the

medium in Eq. (5.83). The wave equation for Ea(z, t) can then reduces to the linear

partial differential equation
(

d

dt
+ c

d

dz

)

Ea(z, t) = −ωa

2
Img

[

χ(1) +
3

2
χ(3)|Ec|2

]

Ea(z, t). (5.85)

The solution to this equation is found to be of the form

Ea(z, t) = exp(−γz)Ea(z − cgt, 0). (5.86)

This solution describes the propagation of an initial pulse profile Ea(z, 0) at the

group velocity cg. As the pulse propagates through the medium the small absorptive

component of the cross-phase modulation gives rise to a Beer’s Law form decay [42]

of the pulse at the rate γ. On resonance the absorption coefficient is proportional

to the imaginary part of the XPM susceptibility multiplied by the intensity of the

constant field Ec(0, 0):

γ =
3ωa

4c
Img

[

χ(3)(ω21)
]

|Ec(0, 0)|2. (5.87)
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Figure 5.2: The ratio of the cross-phase modulation induced group refractive index

n
(2)
g to the Λ subsystem group refractive index n

(0)
g . Plotted for Ωa = 0.5 MHz,

Ωb = 3 MHz and Ωc = 2 MHz in 87Rb.

The group velocity is given by cg = c/ng where ng is the group index of refraction,

found to be

ng = 1 + n(0)
g + n(2)

g . (5.88)

Here the group refractive index is the sum of two terms: n
(0)
g , the linear term

associated with slow light in the Λ subsystem and n
(2)
g , a contribution due to the

nonadiabatic cross-phase modulation:

n(0)
g =

ωa

2

dχ(1)

dωa

∣

∣

∣

∣

∆a=∆b=0

, n(2)
g =

3

2
|Ec|2Img

[

dχ(3)

dωa

]∣

∣

∣

∣

∆a=∆b=0

. (5.89)

The effect of the nonadiabatic XPM makes a significant contribution to the group

velocity [91, 61], as is plotted in figure 5.2. Here we see that for values typical

of experiments undertaken in rubidium-87 a group velocity reduction of up 40% is

possible. This is as we expect. Due to the identical pattern of nonadiabatic cou-

pling between the dressed states we expect a quantitative, although not qualitative

difference between pulse propagation in the Λ- and N-configuration atoms. For the

phase of the EIT prove field we solve the decoupled wave equation:

c
d

dz
φa(z) =

3

4
ωa|Ec|2Re

[

χ(3)(ω21)
]

, (5.90)
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This has the straightforward solution

φ(z) = ϕz + φ(0). (5.91)

where

ϕ =
3ωa

4c
|Ec(0, 0)|2Re

[

χ(3)(ω21)
]

. (5.92)

Thus, the field accumulates phase at a rate proportional to the XPM refractive

index. The existence of a nonadiabatic (slow-light) response makes no difference to

the phase refractive index.

For the Ec(z, t) field the wave equation for the field amplitude is given by

(

d

dt
+ c

d

dz

)

Ec(z, t) = −ωc

2

{

3

2
Img[χ(3)]Ea(z, t)|Ec(z, t)|2

}

. (5.93)

Here Ea(z, t) is the solution (5.86), which is correct to zeroth-order in Ec(z, t). This

gives rise to a solution of the form

Ec(z, t) = Ec(0, 0) exp

[

−3ωcImg
[

χ(3)
]

4(c− cg)

∫ z−cgt

0

|Ea(z
′, 0)|2dz′

]

. (5.94)

This is best interpreted in the stationary frame of reference of the pulse ζ = z−cgt. In

this frame, the field Ec(z, t) is seen to propagate at a velocity c−cg and suffer a decay

proportional to the XPM induced absorption. Thus the absorption is proportional

to the integral of the intensity of the EIT pulse, past which Ec(z, t) has propagated.

For completeness we include the solution for the phase of the field Ec(z, t):

φc(z, t) = φ(0, 0) exp





3ωcRe
[

χ
(3)
c (ωc)

]

4(c− cg)

∫ z−cgt

0

Ea(z
′)dz′



 , (5.95)

where

Re
[

χ(3)
c (ωc)

]

=
2N |p12|2|p34|2Γ3

3ε0V (∆2
c + γ2

3)|Ωb|2
. (5.96)

Again, the form of this is best understood in the stationary frame of reference of the

pulse Ea(z, t). In this case, the phase is seen to depend on the total XPM induced

“refractive depth” that the field Ec(z, t) has propagated through.
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5.5 Chapter Summary

In this chapter we have explored the time-dependent behaviour of the N-configuration

atom when the EIT probe field is slowly varied. We have shown that by examining

the system in terms of the superadiabatic basis, a method originally employed for the

two-level atom, we can gain a deeper understanding of the nonadiabatic behaviour.

In particular, we have shown that the nonadiabatic response of the cross-phase-

modulation can be written as a retarded version of the steady-state behaviour. The

period of retardation, the “atomic lag” to changes in the applied field, is equal to

the relaxation time of the bright superposition of the ground states. As in the case

of the transient XPM response, the relaxation of the bright state plays a central role

in determining the time-dependent behaviour of the atom; although in the steady

state only the dark state is of significance.

The introduction of the XPM probe field Ωc is also observed to have a signifi-

cant influence on slow-light propagation. For fairly typical values in a rubidium-87

experiment one could expect to obtain changes in the group refractive index of up

to 40 %.



Conclusions

The work presented in this thesis has explored the generation of cross-phase mod-

ulation in the N-configuration atom. Particular emphasis has been placed on the

experimental applicability of the theory to a vapour of cold rubidium-87. In chapter

3 we first explored cross-phase modulation in the steady-state regime. A general

expression was obtained for the magnitude of the linear, self-Kerr and cross-Kerr

responses of the N-configuration atom. As hoped, we found that a very large and

pure cross-phase modulation can be produced. This occurs so long as the detunings

of the electromagnetic fields are adjusted to produce coherent population trapping

in the Λ subsystem and an off-resonant coupling to the fourth level of the N system

by a weak probe. By examining the system in terms of the partly dressed basis we

saw that the generation of the steady-state XPM arises due to the perturbation of

the Λ-atom dark state produced by the parametric coupling to the fourth level of

the N system.

Chapter 4 investigated transient cross-phase modulation induced by the sudden

turn-on of the EIT probe field. It was shown that the decay rate of the bright state

superposition of the Λ-atom ground states dominates the transient dynamics of the

N-configuration atom. Indeed, the rise time of XPM on both probe transitions was

shown to occur on a time scale equal to the relaxation of the atom into the dark

state. In addition, it was shown that the EIT probe field will also experience a very

large transient absorption when suddenly turned-on.

Remarkably, by working in the partly dressed basis it was shown that the tran-

sient XPM experienced on the non-EIT probe transition arises due to contributions

from both the bright and dark states. Thus, although it is coupling between the
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dark state and fourth state that produced XPM with steady fields, a significant

contribution also arises due to coupling between the bright and fourth states in the

transient regime.

Finally, chapter 5 explored the effect of slowly varying the intensity of the EIT

probe field. The theory was developed by constructing the first-order superadiabatic

state of the N-configuration atom. By doing so it was shown that XPM can have

a significant effect on the propagation of slow light through an atomic ensemble.

Again, the response of the atoms to changes in the EIT probe field intensity was

show to “lag” by a period equal to the bright state relaxation time.

Throughout this thesis it has been shown that the greatest physical insight into

atomic dynamics is obtained by working in the dressed (or partly) dressed picture of

the atom. The utility of such an approach is however limited when considering the

dynamics of atoms driven by continuously varying electromagnetic fields. Nonethe-

less, by introducing the concept of superadiabatic states it was shown that similar

insight can be obtained even when the Hamiltonian is a continuous function of time.



Appendix A

Perturbation Theory

In general it is possible to diagonalise any matrix of dimension up to 4×4. However,

in practice the expressions rapidly become unwieldy. Nonetheless, if an exact solu-

tion is not required then non-degenerate time-independent perturbation theory can

be used to determine the eigensystem. Indeed, for systems of dimension higher than

four, exact diagonalisation is generally impossible. Nonetheless, several important

Hamiltonians, such as the simple harmonic oscillator, can be put in diagonal form.

Non-degenerate time-independent perturbation theory is covered extensively in

several undergraduate text books on quantum mechanics [92]. However, the form

developed here will follow a slightly modified approach that makes it more suit-

able to our applications. Namely, we will consider the effect of two independent

perturbations on the eigenstates of the system.

The underlying assumption of perturbation theory is that the system we are

attempting to solve is very similar to one for which exact solutions are already

known. The difference between the Hamiltonian Ĥ of the system of interest and the

exactly solvable Hamiltonian Ĥ0 can be parameterised by some small variables ξi.

We therefore expect to be able to expand the eigenvectors and eigenvalues of Ĥ as

a power series in terms of the ξi’s, as expressed in (3.32) and (3.33).

Using the expressions (3.35) and (3.36) formulae for the low-order corrections

to the energy eigenvalues and eigenvectors can be found. However, for a particular

type of “layered perturbation” a large number of eigenvalue and eigenstate expansion

95



96 APPENDIX A. PERTURBATION THEORY

coefficients will vanish. Indeed, the type of perturbation used in this these (that of

two electromagnetic fields coupling opposite parity states by the dipole interaction)

will be of the layer type. Up to forth-order the non-vanishing eigenvalue terms are

given by

E(2,0)
n = 〈φ(0,0)

n |V̂a|φ(1,0)
n 〉, (A.1)

E(0,2)
n = 〈φ(0,0)

n |V̂c|φ(0,1)
n 〉, (A.2)

E(4,0)
n = 〈φ(0,0)

n |V̂a|φ(3,0)
n 〉 − E(2,0)

n an(0,2)
n , (A.3)

E(0,4)
n = 〈φ(0,0)

n |V̂c|φ(0,3)
n 〉 − E(0,2)

n an(0,2)
n , (A.4)

E(2,2)
n = 〈φ(0,0)

n |V̂a|φ(1,2)
n 〉 + 〈φ(0,0)

n |V̂c|φ(2,1)
n 〉 −E(0,2)

n an(2,0)
n − E(2,0)

n an(0,2)
n .(A.5)

And, up to third-order the non-vanishing eigenstate expansion coefficient terms are

(where n 6= m)

am(1,0)
n =

〈φ(0,0)
m |V̂a|φ(0,0)

n 〉
E

(0,0)
n −E

(0,0)
m

, (A.6)

am(0,1)
n =

〈φ(0,0)
m |V̂c|φ(0,0)

n 〉
E

(0,0)
n − E

(0,0)
m

, (A.7)

am(2,0)
n =

〈φ(0,0)
m |V̂a|φ(1,0)

n 〉
E

(0,0)
n −E

(0,0)
m

, (A.8)

am(0,2)
n =

〈φ(0,0)
m |V̂c|φ(0,1)

n 〉
E

(0,0)
n − E

(0,0)
m

, (A.9)

an(2,0)
n = −1

2

d
∑

s=1

|as(1,0)
n |2, (A.10)

an(0,2)
n = −1

2

d
∑

s=1

|as(0,1)
n |2, (A.11)

am(1,1)
n =

〈φ(0,0)
m |V̂a|φ(0,1)

n 〉 + 〈φ(0,0)
m |V̂b|φ(1,0)

n 〉
E

(0,0)
n −E

(0,0)
m

, (A.12)

am(3,0)
n =

φ
(0,0)
m |V̂a|φ(2,0)

n 〉 − E
(2,0)
n a

m(1,0)
n

E
(0,0)
n − E

(0,0)
m

, (A.13)
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am(0,3)
n =

φ
(0,0)
m |V̂c|φ(0,2)

n 〉 −E
(0,2)
n a

m(0,1)
n

E
(0,0)
n −E

(0,0)
m

, (A.14)

am(2,1)
n =

〈φ(0,0)
m |V̂a|φ(1,1)

n 〉 + 〈φ(0,0)
m |V̂c|φ(2,0)

n 〉 −E
(2,0)
n a

m(0,1)
n

E
(0,0)
n −E

(0,0)
m

, (A.15)

am(1,2)
n =

〈φ(0,0)
m |V̂a|φ(0,2)

n 〉 + 〈φ(0,0)
m |V̂c|φ(1,1)

n 〉 −E
(0,2)
n a

m(1,0)
n

E
(0,0)
n −E

(0,0)
m

. (A.16)
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Appendix B

Operator Representations

B.1 Position and Momentum Operators

In elementary quantum mechanics we are commonly concerned with determining

the properties of the wavefunction represented in real space. That is, the squared

magnitude of the wavefunction gives the probability density of detecting a particle

in a certain region of space (the domain, e.g. −∞ < x < ∞). When using the real

space representation of the wavefunction, the conjugate position and momentum

operators are given by

x̂ = x, p̂ = −i~ d

dx
. (B.1)

However, by Fourier transforming the real-space wavefunction it is possible to con-

struct its momentum-space counterpart. That is, a function whose squared magni-

tude defines the probability density of detecting a particle with a given momentum

(at any point in the domain). For some arbitrary function of the momentum oper-

ator f̂ = f(p̂) we determine the representation in momentum space by considering

the Fourier transform of its action on a wavefunction in real space.

1√
2π~

∫ ∞

−∞
f

(

−i~ d

dx

)

ψ(x) exp(−ipx/~)dx. (B.2)

However, since the operator f(p̂) can be Taylor expanded we can write the integral

as sum of terms of the form

1√
2π~

∫ ∞

−∞

(

−i~ d

dx

)n

ψ(x) exp(−ipx/~)dx. (B.3)
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After n integration by parts, and assuming that the wavefunction and all of its

derivatives vanish as x→ ±∞ we find that the above is equal to

pnψ̃(p), (B.4)

where ψ̃(p) is the momentum space wavefunction. Therefore, the real and momentum-

space representation of an operator are related by

f(p̂) =











f

(

−i~ d

dx

)

, in real space

f(p), in momentum space

(B.5)

Similarly, for the position operator we find x̂ = x in real space and x̂ = i~
d

dp
in

momentum space.

B.2 Susceptibility Operator

The result above is a general property of any operators acting on functions that can

be Fourier transformed. Consider the polarisation of a linear dielectric material:

P̃ (ω) = ε0χ(ω)Ẽ(ω). (B.6)

Here, Ẽ(ω) is the Fourier transform of the time-dependent electromagnetic field and

the susceptibility is the frequency space representation. Again, by Taylor expanding

the electric susceptibility in terms of ω, we find the corresponding temporal-space

representation:

χ(ω̂) =











χ(ω), in frequency space

χ

(

i
d

dt

)

, in temporal space
(B.7)

We note that we rely on the linearity of the dielectric medium to make this trans-

formation. Furthermore, we stress that the description of the susceptibility as an

operator is valid for classical as well as quantum mechanical fields. The use of the

operator formalism is a mathematical device, rather than of physical significance.

As an example, let us consider EIT in the Λ atom. From Eq. (2.48) we can see

that for a resonant control field we can Taylor expand the linear susceptibility to
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first-order in ωa to give

χ(1)(ωa;ωa) =
4∆a|p12|2

~ε0[4∆a(∆a − iγ1) − |Ωb|2]
≈ 4|p12|2

~ε|Ωb|2
(ωa − ω21) (B.8)

Then, by making the substitution ωa → i
d

dt
we get the temporal representation of

the Taylor expanded linear susceptibility:

χ̂(1)(t) =
4|p12|2

~ε0|Ωb|2
(i
d

dt
− ω21). (B.9)

Let us suppose that the susceptibility operator is acting on an almost monochromatic

field. That is, we work in the slowly-varying envelope approximation so that E(t) =

Ea(t) exp(−iωat). Then, the susceptibility operator acting on the field envelope only

is given by

χ̂(1)(t) = i
dχ(1)

dωa

∣

∣

∣

∣

∆a=0

d

dt
=

4i|p12|2
~ε0|Ωb|2

d

dt
. (B.10)

It is seen that the derivative of the susceptibility around resonance is directly related

to the non-adiabatic response of the atom.

A similar process can be undertaken to derive the non-adiabatic cross-Kerr sus-

ceptibility of the Ωa transition in the N-configuration atom. We begin by noting

that the XPM susceptibility can be calculated in the steady state to be

χ(3)(ωa;ωa, ωc,−ωc) =
2N |p12|2|p34|2|Ωb|2

3ε0~3V (δ3 − iγ3)[4δ2(iγ1 − δ1) + |Ωb|2]2
. (B.11)

If we assume that the control field is resonant (∆b = 0) and Taylor expand around

resonance of the probe field we find

χ̂(3)(t) =
2N |p12|2|p34|2
3ε0~3V δ3|Ωb|2

− 8N |p12|2|p34|2Γ23V ε0~
3δ3|Ωb|4

d

dt
. (B.12)

Here we have employed the condition that δ3 is very large and the derivative operator

is taken to be acting on the slowly varying field Ωa(t). Again, this is identical to

that calculated by using the first-order superadiabatic state method in chapter 5.

However, we note that using this method it is not possible to calculate the nonlinear

susceptibility experienced by the Ωc field, due to the nonlinearity with respect to

the pulsed field Ωa. Although, it should be noted that when ∆a = ∆b = 0 the

nonadiabatic XPM experienced by both fields is actually identical.
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