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Abstract

This article investigates a probabilistic
model to describe how signs form words
in Ancient Egyptian writing. This applies
to both hieroglyphic and hieratic texts.
The model uses an intermediate layer of
sign functions. Experiments are concerned
with finding the most likely sequence of
sign functions that relates a given se-
quence of signs and a given sequence of
phonemes.

1 Introduction

Ancient Egyptian writing, used in Pharaonic
Egypt, existed in the form of hieroglyphs, often
carved in stone or painted on walls, and some-
times written on papyrus (Allen, 2000). Hiero-
glyphs depict people, animals, plants and vari-
ous kinds of objects and geographical features. A
cursive form of Ancient Egyptian writing, called
hieratic, was predominantly written on papyrus.
Most hieratic symbols can be seen as simplified
hieroglyphs, to such an extent that it is difficult
for the modern untrained eye to tell what is de-
picted. Because hieratic handwriting varied con-
siderably over time, with notable differences be-
tween regions and scribes, the creation of com-
puter fonts for hieratic is problematic, and con-
sequently scholars commonly resort to publishing
hieratic texts in a normalized hieroglyphic font.
Since Version 5.2, Unicode contains a selection
of 1071 hieroglyphs. Henceforth we will use the
term sign to refer to a hieroglyph or a hieratic sym-
bol.

The Ancient Egyptian language is in the fam-
ily of Afro-Asiatic languages, which includes the
Semitic languages (Loprieno, 1995). As in scripts
of several Semitic languages (e.g. Hebrew, Arabic,
Phoenician), only consonants are written. Modern
scholars use between 24 and 25 letters to translit-
erate Egyptian texts in terms of these consonants.

Most are written as Latin characters, some with di-
acritical marks, plus aleph Z and ayin c. An equal
sign is commonly used to precede suffix pronouns;
thus sd

¯
m means “to hear” and sd

¯
m=f “he hears”.

A dot can be used to separate other morphemes;
for example, in sd

¯
m.tw=f, “he is heard”, the mor-

pheme .tw indicates passive.
The Ancient Egyptian writing system itself is a

mixture of phonetic and semantic elements. The
most important are phonograms, logograms, and
determinatives. A phonogram is a sign that repre-
sents a sequence of one, two or three letters, with-
out any semantic association. A logogram repre-
sents one particular word, or more generally the
lemma of a word or a group of etymologically re-
lated words. A determinative is commonly written
at the end of a word, following phonograms, to
clarify the meaning of a word; in their most ob-
vious use, determinatives disambiguate between
homophones, or more precisely, different words
consisting of the same consonants. In addition,
there are typographical signs, for example, three
strokes that indicate the plural form of a noun (also
used for collective nouns). More classes of signs
can be distinguished, such as the phonetic deter-
minatives, which tend to be placed near the end
of a word, next to normal determinatives, but their
function is phonetic rather than semantic, i.e. they
repeat letters already written by phonograms.

What makes automatic analysis of Ancient
Egyptian writing so challenging is that there was
no fixed way of writing a word, so that table-
lookup is largely ineffective. Even within a sin-
gle text, the same word can often be found written
in three or more different ways. Moreover, one
sign can often be used in different functions, e.g.
as phonogram or as determinative. Some signs
can be used as different phonograms with differ-
ent sound values. Together with the absence of
word boundary markers, this makes it even hard to
segment a text into words.



Generalizing statements can be made about
writings of words. Typically, either a word starts
with a number of phonograms, covering all the let-
ters of the stem, possibly some covered more than
once, followed by one or more determinatives, or a
word starts with a logogram, possibly followed by
one or more phonograms especially for endings,
possibly followed by one or more determinatives.
More phonograms can follow the determinatives
for certain suffixes. This coarse description is in-
adequate however to model the wide spectrum of
writings of words, nor would it be sufficient to dis-
ambiguate between alternative analyses of one se-
quence of signs.

These factors motivate the search for an ac-
curate and robust model that can be trained on
data, and that becomes more accurate as more
data becomes available. Ideally, the model should
be amenable to unsupervised training. Whereas
linguistic models should generally avoid unwar-
ranted preconceptions, we see it as inevitable that
our model has some knowledge about the writing
system already built in, for two reasons. First,
little training material is currently available, and
second, the number of signs is quite large, so
that the little training material is spread out over
many parameters. The a priori knowledge in our
model consists of a sign list that enumerates possi-
ble functions of signs and a formalization of how
these functions produce words. This knowledge
sufficiently reduces the search space, so that prob-
abilistic parameters can be relatively easily esti-
mated.

In our framework, a sign function is formally
identified by the combination of (a) the one or
more signs of its writing, (b) its class, which could
be ‘phonogram’, ‘logogram’, ‘determinative’, etc.,
(c) zero, one or two values, depending on the class.
One example is the phonogram function for sign

with sound value r. There is a logogram func-
tion for the same sign, with as value the lemma rZ,
“mouth”. A typographical function for the three
stokes may have a semantic value ‘plural’ and a
phonetic value that is the masculine plural ending
-w.

The problem we will address in the experiments
is guessing the sign functions given the signs and
the letters. This is related to the problem of au-
tomatically obtaining transliteration from hiero-
glyphic text. As far as we are aware, the earli-
est work to attempt this was Tsukamoto (1997). It

relied on simple Unix applications such as ‘grep’
and ‘sed’. The same problem was addressed
by Rosmorduc (2008), using manually produced
rewrite rules. Further work along these lines by
Barthélemy and Rosmorduc (2011) uses two ap-
proaches, namely cascades of binary transducers
and intersections of multitape transducers, with
the objective to compare the sizes of the resulting
automata.

A more modest task is to automatically align
given hieroglyphic text and transliteration, as
considered by Nederhof (2008), who used an
automaton-based approach with configurations,
similar to that in Section 4, except that manually
determined penalties were used instead of proba-
bilities.

Relating hieroglyphic texts and their Egypto-
logical transliteration is an instance of relating
two alternative orthographic representations of the
same language. The problem of mechanizing this
task is known as machine transliteration. For ex-
ample, Knight and Graehl (1998) consider trans-
lation of names and technical terms between En-
glish and katakana, and Malik et al. (2008) con-
sider transliteration between Hindi and Urdu. An-
other very related problem is conversion between
graphemes and phonemes, considered for example
by Galescu and Allen (2002).

Typical approaches to solve these tasks involve
finite-state transducers. This can be justified by
the local dependencies between input and output,
that is, ultimately the transliteration can be broken
down into mappings from at most n to at most m
symbols, for some small n and m. For Ancient
Egyptian however, it is unclear what those bounds
on n andmwould be. In this sense, Ancient Egyp-
tian may pose a challenge to the Regularity hy-
pothesis from Sproat (2000). For this reason we
do not exclusively rely on finite-state methods in
this paper.

2 Sign list

Essential to the application of our model is an an-
notated sign list. We have created such a list in the
form of a collection of XML files.1 Apart from
being machine-readable, these files can also be
converted to human-readable web pages. Among
other things, the files gather knowledge about
the various functions of the 1071 signs from the

1http://mjn.host.cs.st-andrews.ac.uk/
egyptian/unicode/



Unicode repertoire, gathered from a number of
sources, the foremost of which is Gardiner (1957).
The annotated sign list is necessarily imperfect
and incomplete, which is due to inadequacies of
the Unicode set itself (Rosmorduc, 2002/3; Polis
and Rosmorduc, 2013), as well as to the nature
of Ancient Egyptian writing, which gave scribes
considerable freedom to use existing signs in new
ways and to invent new signs where existing signs
seemed inadequate. We have furthermore ignored
the origins of signs, and distinguish fewer nuances
of sign use than e.g. Schenkel (1971).

Our functions are divided into logograms, deter-
minatives, phonograms, phonetic determinatives
and typographical signs. The typographical signs
include for example the three strokes that indicate
plurality or collectivity. Another example is the
single stroke, which can function as ‘semogram
marker’, that is, it indicates that a neighboring sign
has a semantic function (as logogram or determi-
native) rather than a function as phonogram. Other
examples of typographical signs include the nu-
merals.

We further distinguish between determinatives
that are used with a class of semantically related
words, and determinatives that are specific to one

word. For example, the “tree” determinative
is used with various nouns related to trees, plants
and wood, whereas the determinative depicting a

mooring post is only used to write the word mnjt,
“mooring post”. Where a determinative is specific
to one word, the same sign can often be used as
logogram as well, that is, the sign can be used to
write a word without accompanying phonograms.

For example, can as logogram stand on its
own for h

˘
r, “to fall”, but it is determinative in

, h
˘

r, where it is preceded by two phono-
grams for h

˘
and r, respectively.

A few combinations of signs have a single func-

tion as a group. For example, is a phono-

gram nn, whereas an isolated can only be a

phonogram nh
˘

bt. The combination of signs
is a determinative for a “group of people”.

The sign list contains (very rudimentary) infor-
mation about the morphological structure of words
written by logograms, in particular the stem and
the gender (of nouns). The motivation is that this
is necessary in order to match sign occurrences to

transliterations. For example, the information that
the word nmtt, “step”, denoted by the logogram

, is feminine can be used to infer that uses of
the logogram in plural writings should be matched
to nmtwt, “steps”, with the feminine plural end-
ing -wt in place of the feminine singular ending

-t. Similarly, the logogram , for h
¯

nj, “to row”,
is accompanied by information that its stem is h

¯
n,

so we can identify the use in the writing of h
¯

n=f,
“he rows”, without the weak consonant j, which
disappears in most inflections.

3 Corpus

There is currently only one comprehensive corpus
of Late Egyptian, which is still under development
(Polis et al., 2013). Corpora of Middle Egyptian,
the object of our study, are scarce however. More-
over, we are not aware of any available corpora of
hieroglyphic texts in which each sign is annotated
with its function. One attempt in that direction
was reported by Hannig (1995, p. XXXV), with
the objective to determine the ratios of frequen-
cies of four main classes of signs, using the first
40 lines of the text of Sinuhe.

It follows that in order to train and test our
model, we had to create our own annotated cor-
pus.2 As yet, it is of modest size, including just
two classical texts, known as The Shipwrecked
Sailor (P. Leningrad 1115) and Papyrus Westcar
(P. Berlin 3033). For the convenience of annota-
tion of the text with sign functions, the text was
linearized, that is, information about horizontal
or vertical arrangement of signs was discarded.
Whereas the positioning of signs relative to one
another can be meaningful, our current models do
not make use of this; if necessary in the future, the
exact sign positions can be extracted from another
tier of annotation.

We normalized the text by replacing graphical

variants, such as and , by a canonical rep-
resentative, using machine-readable tables that are
part of our sign list. We also replaced compos-
ite signs by smallest graphemic units. For exam-
ple, we replaced a single sign consisting of three
strokes (typographical sign for plurality or collec-
tivity) by three signs of one stroke each. Motiva-
tions for this include convenience and uniformity:

2As part of the St Andrews corpus, of which data
and code can be retrieved from http://mjn.host.cs.
st-andrews.ac.uk/egyptian/texts/



in typeset hieroglyphic texts one may prefer to use
three separate strokes and fine-tune the distance
between them to obtain a suitable appearance.

Disregarding damaged parts of the manuscripts,
the segmented texts of The Shipwrecked Sailor
and Papyrus Westcar comprise 1004 and 2669
words, respectively. These were annotated with
functions, using a customized, graphical tool. In
this tool one can select known functions for signs,
as present in the XML files mentioned in Sec-
tion 2, but the tool also gives the option to create
new functions that are not covered by the sign list.

Per word, we have the sequence of signs of the
hieroglyphic writing, the sequence of letters of the
transliteration, and a sequence of functions. Each
function in this sequence is linked to one or more
signs, and in the case of e.g. a phonogram or lo-
gogram, a function is also linked to one or more
letters. Different kinds of functions were already
discussed in Section 2. In addition to these, there
is the artificial ‘spurious’ function, which is used
when a sign has no obvious purpose. There is also
the ‘mult’ function, which is linked to repeated
(’multiple’) occurrences of signs, to denote duals
or plurals. (Ancient Egyptian had a dual form for
nouns, next to the plural form; e.g. the dual noun
rdwj, with masculine dual ending -wj, means “pair
of legs”; see Figure 1a.)

An important document in this process was an
annotation manual that helped to disambiguate
contentious cases, of which there were many. For
example, we have characterized a phonogram ear-
lier as a sign used to represent sound value, rather
than a semantic relation to a certain concept. How-
ever, in many cases it is not immediately obvious
whether two words that share letters are seman-
tically (etymologically) related. One example is

the sign , which is primarily used as logogram
for nt

¯
r, “god”. It is also used in the writing of

the word snt
¯
r, “incense”, and one may naively in-

terpret it as phonogram there. Although the ex-
act etymology and even the correct transliteration
of this word are uncertain, it is highly likely that
the sign is not merely chosen for its sound value,
but for its semantic relationship to nt

¯
r, “god”, per-

haps derived from nt
¯
r with the causative prefix s-,

or perhaps in combination with the verb sn, “to
smell”, as suggested by de Vartavan (2010). Hence
the sign must certainly be analyzed as logogram
rather than phonogram in both nt

¯
r and snt

¯
r.

We have as far as possible relied on conven-

tional wisdom, but on several occasions we had
to resort to informed guesses, making additions to
the annotation manual to ensure consistency.

Some more examples of annotations are given
in Figure 1. In (b) we see use of the three strokes
to indicate plural, with masculine plural ending
-w; the singular noun is d

¯
bc, “finger”. In (c), a lo-

gogram consisting of two signs represents the stem
of the verb mZZ, “to see”. A phonogram writes the
second letter of the stem once more. Of the mor-
pheme .tw, which indicates passive, only the t is
represented by a sign. Illustrated in (d) is that one
letter may be represented by several phonograms.
In particular, consecutive phonograms may over-
lap one another in the letters they cover.

In our annotation, each sign is connected to ex-
actly one function. We have imposed this con-
straint to simplify our model, which is discussed
in the next section. In the case of repeated signs
that indicate dual or plural, only second and pos-
sibly third occurrences are connected to the ‘mult’
function, as in Figure 1a, whereas the first occcur-
rence is connected to a ‘log’ or ‘det’ function (and
on rare occasions a ‘phon’ function) as appropri-
ate.

4 Model

The examples in the previous section show that
a sequence of functions can be the intermediary
between a sequence of hieroglyphic signs and a
sequence of letters of the transliteration. We as-
sume that each function is associated with one sign
or several signs occurring consecutively, which
means that the sequence of signs is formed sim-
ply by concatenating the signs gathered one by one
from the sequence of functions. In terms of au-
tomata, one can think of functions as appending
signs at the end of a tape, or in other words, the
tape head moves strictly left-to-right.

The relation between the sequence of functions
and the transliteration is more involved however.
In fact, the sequences of functions as we have
presented them provide insufficient information to
fully specify the sequence of letters. In the exam-
ple of Figure 1c, the letters coming from the re-
spective functions would string together to mZZtf
rather than mZ.tw=f. In order to complement the
information contained in a sequence of functions
so as to fully specify the transliteration, we have
added two new types of functions. The first we
call epsilon-phonograms. Such a function acts



a: “my (two) legs”

phon phon det mult(2) log

r d w j = j

b: “your fingers”

log typ(plur) phon

d
¯

b c w = k

c: “he is seen”

log phon phon phon

m Z . t w = f

d: “water”

phon phon phon phon phon det(liquid)

n w y

Figure 1: Annotations in the corpus, all from the
Shipwrecked Sailor.

as a phonogram in the sense that letters are gen-
erated, but it does not correspond to any hiero-
glyphic signs (in other words, it corresponds to the
empty, or epsilon string of signs).

The second newly added type of function we
call a jump. Here we conceive of the translitera-
tion as a tape that is being written left-to-right, but
with the possibility that the tape head moves back-
ward, by applying a jump with a negative value.
Thereafter, some letters already written may be

written again, or rather, scanned, as letters on the
tape cannot be changed after they have been writ-
ten. By applying a jump with a positive value,
the tape head may also move forward, across let-
ters already written, but not across unwritten tape
squares at the right end of the tape.

A further constraint is that jumps may only
be applied immediately preceding a function that
(re)writes one or more letters. This is to exclude
spurious ambiguity. For example, without this
constraint, we could at will apply a jump preced-
ing a determinative or following a determinative;
the constraint excludes the former. Similarly, an
epsilon-phonogram may not be immediately fol-
lowed by a jump.

With such constraints, an annotation from our
corpus can be extended in exactly one way with
epsilon-phonograms and jumps to account for the
relation between signs and letters. For exam-
ple, the sequence of functions from Figure 1c is
extended to have a jump one position backward
following the logogram. Further, three epsilon-
phonograms for ‘.’, ‘w’ and ‘=’, are inserted be-
tween the existing phonograms. In the example of
Figure 1d, several jumps with values -1 and -2 are
needed.

To make the preceding more precise, we intro-
duce the concept of configuration, which gathers
three kinds of information, viz. (a) the letters al-
ready written on the tape, (b) the current position
of the tape head, and (c) a collection of Boolean
flags. Initially, the tape is empty, the tape head is
at the beginning of the tape, and all flags are false.
One of the flags indicates whether the preceding
function was a jump, another indicates whether
the preceding function was an epsilon-phonogram.
These two flags are needed to exclude spurious
ambiguity, as explained earlier. One more flag will
be discussed later.

In a given configuration, only a subset of func-
tions is applicable. For example, if the tape con-
tains n and the input position is 0, then a phono-
gram with sound value nw is applicable, resulting
in tape content nw with the input position 2. How-
ever, in the same configuration, with tape content
n and input position 0, a phonogram with sound
value t is not applicable, as letters on the tape may
not be changed.

In general, every function has a precondition,
that is, a set of constraints that determines whether
it is applicable in a certain configuration, and a



Phonogram with sound value γ.
Pre γ is prefix of β or β is prefix of γ.
Post If β was prefix of γ and βδ = γ,

then δ is added at end of tape.
Input position incremented by |γ|.
‘jump’ and ‘epsphon’ flags set to false.

Logogram for word γ.
Pre i = 0 or (stem after causative prefix)

i = 1 and α = s .
β is prefix of γ.

Post For δ such that βδ = γ,
δ is added at end of tape.

Input position incremented by |γ|.
‘jump’ and ‘epsphon’ flags set to false.

Determinative not specific to any word.
Pre ‘jump’ and ‘epsphon’ flags are false.
Post Tape and input position unchanged.

Phonetic determinative with sound value γ.
Pre γ is substring of α.
Post Tape and input position unchanged.

Jump with value j.
Pre ‘jump’ and ‘epsphon’ flags are false.

0 ≤ i+ j ≤ |αβ|.
Post Input position becomes i+ j.

‘jump’ flag set to true.

Table 1: Preconditions and postconditions of the
most important functions. We assume the tape
content is αβ and the input position is i = |α|, i.e.
the length of α. In other words, the tape content
following the input position is β.

postcondition, which specifies how its application
changes the configuration. The most important
functions are characterized in this manner in Ta-
ble 1.

Note that epsilon-phonograms together with the
‘spurious’ functions guarantee that the model is
robust against mistakes (either by the modern en-
coder or by the ancient scribe) and against gaps
in our knowledge of the writing system. That is,
given a sequence of signs and a sequence of let-
ters, we can always find at least one sequence of
functions that connects the two together.

Our model has specialized functions in place of
the generic typographical functions as they occur
in the corpus. For example, the three strokes, for
‘plurality or collectivity’, in the model correspond
to several different functions with different pre-

a: “beautiful (women)”

phon phon phon phon det typ(plur)

n f r w t

b: “its fields”

log phon det typ(plur) phon

s h
˘

w t = f

Figure 2: Two annotations from Papyrus Westcar,
showing the complications of the feminine plural.

conditions and postconditions. Firstly, the three
strokes may be purely semantic, in the writing of a
collective noun in singular form, where they do not
represent any letters. If the plural strokes do sig-
nify plurality in the grammatical sense, they cor-
respond to the -w ending of masculine plural, or
to the -wt ending of feminine plural. The same
holds for the ‘mult’ functions as they occurs in the
corpus; they must be replaced by several different
functions if we consider them at the granularity of
preconditions and postconditions.

In our corpus we have linked functions marking
plural only to the w from the ending, whether it is
the -w ending of masculine plural or the w that is
the first letter of the -wt ending of feminine plural.
This is because the t of the feminine ending would
normally be accounted for already by another sign,
which could be a phonogram or logogram, as illus-
trated in Figure 2a and 2b.

The same two examples also illustrate the chal-
lenge that feminine plural poses to a left-to-right
automaton model. When the feminine t is written
to the tape, the sign corresponding to the w in front
of the t is not seen until many steps later. One pos-
sible solution is to use lookahead, but this appears
difficult to extend with probabilities. Instead, we
have introduced an additional flag. This is set to
true when a substring wt is seen in the input, to-
gether with a phonogram for t or a logogram for a



feminine noun. This flag indicates that an occur-
rence of a plural marker (the three strokes or re-
peated occurrences of determinatives) is required
later for completing the analysis, by recognizing
the end of the word, or for continuing the analysis
into the next morpheme within the same word, e.g.
a suffix pronoun =f as in Figure 2b.

A peculiar phenomenon in Egyptian writing is
honorific transposition, which means that a sign
or word is written first, even though its linguistic
position is further to the end of a word or phrase.
This applies in particular to gods and kings. For
example, The Shipwrecked Sailor has dwZ.n=f
n=j nt

¯
r, “he thanked the god for me”, with the

sign for nt
¯
r, “god”, written before the signs for

dwZ.n=f n=j. Where there is honorific transpo-
sition in the corpus spanning more than one word,
all these words are put in the same segment. Our
model presently does not capture honorific trans-
position however, which means accuracy is poor
for the (few) cases in the corpus.

5 Probabilities

After having captured the relation between se-
quences of signs and sequences of letters solely in
terms of sequences of functions, the next step is to
estimate their probabilities. An obvious candidate
is a simple N -gram model:

P (fn1 ) =
∏
i

P (fi | f i−1
1 ) ≈

∏
i

P (fi | f i−1
i−N+1)

Here f1, . . . , fn is a sequence of functions, end-
ing in an artificial end-of-word function, and f ji
is short for fi, . . . , fj . In our experiments, esti-
mation of P (fi | f i−1

i−N+1) is by relative frequency
estimation.

About 4000 functions are compiled out of the
entries of the sign list. Added to this are dynami-
cally created functions, such as numbers, epsilon-
phonograms and jumps. Because little training
material is available, this means a considerable
portion of these functions is never observed, and
smoothing techniques become essential. We use
Katz’s back-off (Katz, 1987) in combination with
Simple Good-Turing (Gale and Sampson, 1995).

Functions are naturally divided into a small
number of classes, such as the class of all phono-
grams and the class of all logograms. Using these
classes as states, we obtain a second type of model
in terms of (higher-order) HMMs (Rabiner, 1989;
Vidal et al., 2005). For fixedN , and with ci denot-

ing the class of function fi, we have:

P (fi|f i−1
i−N+1) ≈ P (ci|ci−1

i−N+1) ∗ P (fi|ci)

Estimation of both expressions in the right-hand
side is again by relative frequency estimation, in
combination with smoothing.

It should be noted that not all sequences of func-
tions correspond to valid writings. Concretely, in
the configuration reached after applying functions
f i−1
1 , the preconditions of function fi may not

hold. As a result, some portion of the probabil-
ity mass is lost in invalid sequences of functions.
We see no straightforward way to avoid this, as the
model discussed in Section 4, which allows jumps
of the tape head, cannot be captured in terms of
finite-state machinery.

6 Results

In our experiments, the training corpus was Pa-
pyrus Westcar and the test corpus was The Ship-
wrecked Sailor. We have considered but rejected
the possibility of taking two disjoint parts of both
texts together as training and test corpora, for ex-
ample taking all odd words from both texts for
training and all even words for testing. The argu-
ment against this is that many words occur repeat-
edly in the same text, and therefore there would be
a disproportionate number of words that occur in
both training and test material, potentially leading
to skewed results.

Our objective is now to guess the correct se-
quence of functions, given the sequence of signs
and the sequence of letters of a word. We deter-
mined recall, precision, and F-measure, averaged
over all words in the test corpus. This was done
after removing jumps and epsilon-phonograms, so
that we could take the annotations from the corpus
as gold standard. We have also ignored how func-
tions are linked to letters; the main motivation for
this was to be able to define a suitable baseline, as
described next.

Among all sequences of functions that corre-
spond to a given sequence of signs, the baseline
model yields the one that maximizes the product
of the (unigram) probabilities of those functions.
Note that a function can correspond to one, two
or more signs, so that all relevant partitions of the
given sequence of signs need to be considered.
As this ignores the letters altogether, the baseline
is independent of the model of Section 4, avoid-



ing the intricacies of preconditions and postcondi-
tions.

For a concrete example, consider Figure 1b as
gold standard. The ‘relevant’ items are (1) the

logogram function of for the lemma d
¯

bc, “fin-
ger”, tied to the first sign, (2) the typographical
function of the three strokes, with meaning ‘plu-
ral’ and realised as letter w, tied to the next three

signs, and (3) the phonogram function of with
sound value k, tied to the last sign. Recall and
precision are 100% if ‘retrieved’ are exactly these
three items.

We implemented the N -gram models and
HMMs from Section 5. An acyclic finite automa-
ton is first created, with states representing con-
figurations together with the last N − 1 functions
or classes. Transitions are labelled by functions,
and have weights that are negative log probabili-
ties determined by the chosen probabilistic model.
Most of the functions directly come from the sign
list. Other functions are dynamically constructed,
on the basis of the input signs, as for example ty-
pographical functions representing numbers. An-
other example is the ‘mult’ function, which is gen-
erated if a pattern of one or more signs occurs two
or more times. Final states correspond to config-
urations that have input pointers at the ends of the
sequence of signs and the sequence of letters, and
all Boolean flags set to false.

The shortest path from the initial state to a final
state is extracted using the shortest-path algorithm
of Dijkstra (1959). The labels on this path then
give us the list of functions on the basis of which
we compute recall and precision.

Results are given in Table 2. It is unsurpris-
ing that the models with N = 1 improve over
the baseline. Although the baseline is also defined
in terms of unigram probabilities, it ignores con-
sistency of the sequence of functions relative to
the letters. The first-order HMM performs better
than the unigram model. This can be attributed
to smoothing. For example, the unigram model
will assign the same low probability to a spurious
function unseen in the training material as to an
unseen phonogram, although phonograms overall
are far more likely. The first-order HMM however
suitably models the low probability of the class of
spurious functions.

For N greater than 1, the HMMs perform less
well than the N -gram models. This suggests that
the probabilities of functions depend more on the

R P F1
baseline 86.0 86.0 86.0
N -gram
N = 1 90.6 90.6 90.6
N = 2 94.4 94.4 94.4
N = 3 94.4 94.4 94.4
HMM
N = 1 91.4 91.4 91.4
N = 2 91.8 91.8 91.8
N = 3 92.0 92.0 92.0
interpolation of N -gram and HMM
N = 1 90.5 90.5 90.5
N = 2 94.8 94.8 94.8
N = 3 95.0 94.9 94.9

Table 2: Experimental results: recall, precision,
F-measure.

exact identities of the preceding functions than on
their classes. The best results are obtained with
linear interpolation of the N -gram model and the
HMM, weighted 9:1, for N = 3.

7 Conclusions and outlook

Our contributions include the design of an an-
notated corpus of sign use, allowing quantitative
studies of the writing system, and serving to doc-
ument rare uses of signs. The second main contri-
bution is a probabilistic model of how signs fol-
low one another to form words. The model is
amenable to supervised training. Unsupervised
training will be the subject of future investigation.

Next to automatic transliteration and alignment,
our model was designed to improve the accuracy
of a tool that automatically turns scanned pages
of Sethe (1927) into the encoding of Nederhof
(2002), using OCR and image parsing. We found
that a bottleneck is that some common signs, such

as (phonogram for Z) and (phonogram
for tjw), are indistinguishable in Sethe’s handwrit-
ing. It remains to be investigated whether our
probabilistic model would on average assign a
higher probability to the correct sign in context.
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