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Abstract

Enzymatic fluorination of natural products is extremely rare. Of the 4000 halogenated
natural products identified, only 13 possess a fluorine atom. The C-F bond forming
enzyme from the soil bacterium, Streptomyces cattleya, remains the only native enzyme
to be identified that is capable of such biochemistry. It generates 5 -fluoro-5-
deoxyadenosine (5'-FDA) from S-adenosyl-L-methionine (SAM) and F. The
“fluorinase” is the first committed step toward the biosynthesis of the two
fluorometabolites, 4-fluorothreonine and fluoroacetate, via the common intermediate,
fluoroacetaldehyde (FAId). The enzymatic steps responsible for the conversion of 5'-
FDA to the fluorometabolites remained to be fully characterised when this project began.

Previously, a purine nucleoside phosphorylase was identified that was capable of
generating 5-fluorodeoxyribose-1-phosphate (5-FDRP) from 5-FDA. 5-FDRP is
subsequently isomerised to 5-fluorodeoxyribul ose-1-phosphate (5-FDRulP) by an aldose-
ketose isomerase enzyme.

Chapter 2 describes the identification of the isomerase gene from the genomic DNA of S
cattleya and the corresponding protein product was capable of generating 5-FDRulP from
5-FDRP.

The next intermediate, FAId, is generated from 5-FDRulP by a fuculose adolase.
Attempts to identify the aldolase gene from S cattleya were unsuccessful, however a
putative fucul ose aldolase from Streptomyces coelicolor was isolated that could generate
FAId from 5-FDRulP, which is described in Chapter 3.

Following the identification and over expression of a PLP-dependant transaldolase,
which generates 4-fluorothreonine (4-FT) from FAId and L-threonine in S cattleya,
Chapter 4 details the successful in vitro reconstitution of fluorometabolite biosynthesis
using five over- expressed enzymes.

In Chapter 5, attempts to develop a novel assay for fluorinase activity was explored. The
colorimetric detection of L-methionine produced by the fluorinase in a coupled L-amino
acid oxidase and horseradish peroxidase assay, leading to the oxidation of a dye
substance. This was carried out with interest in developing a high-throughput assay for
fluorinase mutants, generated by random mutagenesis, in order to identify those with
increased activity. In the event, it proved unsuccessful.
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1 | ntroduction

1.1 Natural productsin medicine

Plant natural products have been used to treat and cure disease since the very beginning
of medicine.* Today’s advanced screening and detection techniques, and the discovery of
a wealth of marine sources of natural products® means that therapeutic agents derived
from natural sources remain a maor avenue toward drug discovery and devel opment.
The use of natural products as the source of novel therapeutics peaked in the Western
pharmaceutical industry between 1970 and 1980, and between 1981 and 2002 around
49% of the 877 small molecule New Chemical Entities (NCE’s) were natural products,
semi-synthetic natural product analogues or synthetic compounds based on natural-
product pharmacophores.® Indeed over 25% of all drugs currently in circulation have
their origins in natural products, and more than 80% of the world’s population rely on
natural extracts for primary healthcare.* It is therefore unsurprising that, in the wake of
annual worldwide pharmaceutical spending of more than US$30 hillion, this is a

significant area in modern drug discovery.

Natural products have evolved to complement normal metabolic processes, usualy as a
defence mechanism after a period of active growth, in a nutrient-deficient environment.

Although plants are the most abundant sources of secondary metabolites, bacteria, fungi



and increasingly marine organisms are also useful resources for natural product
discovery. The mgority of low molecular weight natural products can be categorised into
akaoids, terpenoids, polyketides, glycosides and phenolic compounds. Large natural

product molecules include the ribosomal and non-ribosomal peptides. °

Figure 1.1. Selected natural products; artemisinin 1, camptothecin 2, shikonin 3, taxol 4.

Intensive studies on these natura products and the enzymatic mechanisms by which they
are generated has lead to a greater understanding of the ecologica role of these
substances, as well as providing frameworks for elaboration in medicina and organic
chemistry. Some of the most powerful anti-cancer and anti-malarial compounds currently
in production are natural product compounds. Artemisinin 1°, camptothecin 2%, shikonin

3°, and taxol 4™ are significant examples (Figure 1.1).



1.2 Biological halogenation

More than 4000 natural products have been isolated from natural sources™ that
incorporate chlorine, fluorine, bromine or iodine atoms. Representatives of this group
display a wide range of biologica activities, including anticancer and antibiotic
properties.’? These halogenated products have been isolated from bacteria, fungi, marine

algae, lichens, higher plants, mammals and insects.
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Figure 1.2. Structurally diverse halogenated compounds; nordysidenin 5 (Lyngbya majuscule)™® 4,

diiodotyrosine 6 (G. cavollini), bromoform 7 (marine algae) and fluoroacetate 8

Brominated secondary metabolites are most commonly identified from marine organisms
and chlorinated metabolites are the more prevalent in terrestrial organisms. In contrast,
the generation of fluorinated and iodinated compounds are far less common. Hal ogenated
secondary products exhibit wide structural diversity, as the examples in Figure 1.2 show.
The presence of a halogen atom is critical for biological activity for many of these
compounds. This has been observed in the antibiotic vancomycin 16, which requires two

chlorine atoms in order to achieve a clinically active conformation™, and the antitumour



compound rebeccamycin 18, which loses antimicrobial activity when the chlorines are

removed.®

1.3 Enzymatic halogenation

Recently, more details have emerged on the mechanism by which halogens are
incorporated into organic compounds. For a long period, haloperoxidases were thought to
catalyse al haogenation reactions. However the identification of a greater number of
halogenated natural products, combined with more sophisticated techniques to elucidate
the mechanisms of halogenation, have led to the recent re-evaluation of enzymatic

hal ogenation into several distinct categories.

1.3.1 Haloper oxidases and halogenases

The generation of a reactive hypohalite species by two-electron oxidation of halide ion is
one of the main strategies for enzymatic halogenation. This method is used to halogenate
electron-rich carbon centres of natural products and occurs by two distinct mechanisms,
which seperates the two classes of halogenating enzymes that perform this biochemistry;
the haloperoxidases and the halogenases. Hydrogen peroxide is used by the

hal operoxidase class, whereas molecular oxygen is used by the hal ogenase class.



1.3.1.1 Haloper oxidases

Haloperoxidases are a group of enzymes that catayse the halogenation of organic
compounds in the presence of H,O,. The first halogenating enzyme to be characterised
was from the bacterium Caldariomyces fumago, during an investigation into the
biosynthesis of the chlorinated metabolite, caldariomycin 9. *' It was observed that the
enzyme responsible for this halogenation required a chloride ion and H,O,. As a result,

this enzyme was named a ‘ chloroperoxidase’ .*®

a. c

HO., é,OH
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Other haloperoxidases have been identified from a wide range of prokaryotes and
eukaryotes™. They are classified by the halide source that they use; chloroperoxidases are
able to incorporate chloride, bromide and iodide, bromoperoxidases use bromide and
iodide, and iodoperoxidases only iodide. There are no haloperoxidases capable of
incorporating fluoride as a halide source. These enzymes can be further subcategorised
according to their catalytic mechanism; those that contain a haem group, those which

contain vanadium and those that do not contain metal ions, the perhydrol ases.



1.3.1.1.1 Haem containing haloper oxidases (H-HPOSs)

The chloroperoxidase from C. fumago contains a haem group, and is the prototypical
haem-dependant haloperoxidase. During haogenation, hypohalous acid (HOCI) is

generated as the halogenating agent in the presence of H,O, and halide ions (Scheme

1.1).
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Scheme 1.1. Formation of hydrochlorous acid by haem-dependent hal operoxidases.™

Chloroperoxidases are capable of the dichlorination of electron rich carbon centres, for

example at the 3- and 5- carbons of the amino acid tyrosine.*® The reaction is proposed to

proceed via the binding of H,O, to the axial position of the ground state Fe"-porphyrin

complex. This is followed by the removal of water to generate the Fe'V-oxo species,

known as compound | (Scheme 1.1), which forms an Fe'"

-hypohalite species in the
presence of halide. This reactive intermediate can directly halogenate substrates at the
active site, or free hypohalous acid can be released to cause remote halogenation away

from the active site.



1.3.1.1.2 Vanadium containing haloper oxidases (V-HPOSs)

Studies on the halogenation of marine natural products have reveadled a different
haloperoxidase from marine algae which required vanadium instead of iron for
halogenation.”® These enzymes are thought to be responsible for the majority of
halogenation events during the biosynthesis of marine natural products. Vanadium-
dependant bromoperoxidases are well distributed through seaweeds.”* Vanadium-
dependant chloroperoxidases have also been found in terrestrial fungi and two bacterial
species.®? Like the H-HPOs, the metal centre of V-HPO binds hydrogen peroxide and
activates it for attack by halide ion. However unlike H-HPQs, the vanadium is not redox
active and maintains its oxidation state (V(V)) throughout the catalytic cycle (Scheme

1.2).
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Scheme 1.2. The formation of vanadium-bound hypobromite by vanadium-dependant bromoperoxidases.™

1.3.1.1.3 Perhydrolases

Halogenating enzymes that do not possess a haem or metal group, but that are dependant
upon hydrogen peroxide for activity are the perhydrolases. These enzymes have been
isolated from the soil bacterium Sreptomyces lividans and the proteobacterium

Pseudomonas fluorescens.”® The reaction mechanism of these enzymes proceeds via the



formation of an acyl-enzyme intermediate by the reaction of a short-chained carboxylic
acid with a serine residue at the active site® The addition of H,O, causes the
perhydrolysis of the acyl-enzyme intermediate, forming a peracid which then in turn

oxidises halide ions to hypohal ous acids, the hal ogenating agent (Scheme 1.3).%
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Scheme 1.3. The proposed enzymatic mechanism of perhydrolases.?®

1.3.1.2 Halogenases

Hal ogenases are a group of enzymes that catal yse the halogenation of organic compounds

in the presence of molecular oxygen.

1.3.1.2.1 Flavin-dependant halogenases

Enzymatic halogenation via hypohalite can also be catalysed using molecular oxygen as

the oxidant and flavin as the redox cofactor. The first halogenase of this nature to be



characterised was PrnA from P. fluorescens® #" %

involved in the production of 7-
chlorotryptophan 11 from free tryptophan 10 on the biosynthetic pathway of the anti-

fungal compound pyrrolnitrin 14 (Scheme 1.4).
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Scheme 1.4. The biosynthetic steps to pyrrolnitrin 14 in P. fluorescens.®?

Members of this family of halogenase enzymes have subsequently been identified in the
production of chlorotetracyclin 15%, vancomycin 16%°, calicheamicin®, balhimycin®, and

pyoleuterin 17 biosynthesis (Figure 1.4).
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Figure 1.4. Some products of Flavin-dependant halogenases.

The crystal structure of the PrnA halogenase was recently elucidated at St Andrews
University by J. Naismith and co-workers®. Also C. Walsh and co-workers identified an
enzyme capable of the identical transformation to 7-chlorotryptophan (RebH) in the
biosynthesis of the natural product, rebeccamycin 18 (Scheme 1.5)*. This enzyme was

also crystallised.®
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Scheme 1.5. The chlorination of 7-chlorotryptophan as the first step in rebeccamycin 18 biosynthesis.®

Subsequently, a mechanism for the regioselective chlorination of tryptophan 10 by PrnA

and RebH was proposed (Scheme 1.5).
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Scheme 1.6. Mechanism of halogenation by RebH (and PrnA). 3%
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Crystal structures of PrnA and RebH reveal the flavin binding domain with a chlorideion

bound in a pocket on the solvent-protected face of the pocket.® *

The tryptophan
binding pocket is located 10 A away from the flavin cofactor, with a narrow channel
connecting the two sites which prevents direct interaction between the substrate and
oxidised flavin. It is proposed that chloride ion attack on the distal oxygen of the oxidised
flavin produces an enzyme trapped HOCI that can diffuse toward the substrate binding
site, specifically the side-chain of a lysine residue. A conserved lysine residue in the
tryptophan 10 binding site (Lys79, RebH) first reacts with HOCI to generate a less
reactive, but more selective, lysine-chloroamine species with a half life of 28 h.** In the

presence of tryptophan 10, the selective chlorination at the 7- position occurs to generate

the product 7-chlorotrytophan 14.

Halogenases catalysing chlorination at the 5- and 6- positions of tryptophan 10 have aso
been described.*® 3" These homologous enzymes produce a single chlorotryptophan
isomer, exemplifying the control of regioselective halogenation by this class of
hal ogenases. These hal ogenases are aso thought to be responsible for the halogenation of

aromatic substrates in secondary metabolite biosynthesis.

1.3.2 Halogenation using halogen radicals

The identification of halogenated natural products such as the marine molluscicide
barbamide 19 from the cyanobacterium Lyngbya majuscule,®® the antibiotic
armentomycin 20 from Streptomyces armentosus™ and the plant toxin syringomycin 21*

(Figure 1.5) demonstrates that chlorine is incorporated at unactivated carbon centres.
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These centres are not obviously ameanable to electrophilic halogenation and therefore a
radical mechanism for halogenation was proposed. Recent in vitro reconstitution of the
barbamide 19%, syringomycin 21* and armentomycin 20* biosynthetic pathways
revealed that ferrous iron, chloride, oxygen and a-ketoglutarate («KG) are required for
enzymatic activity. These mononuclear non-haem iron halogenases are imbedded in the
non-ribosomal peptide synthetase (NRPS) assembly lines, and act on the methyl groups

of the thiolation domain-tethered amino acids.
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Figure 1.5. The chlorinated natural products barbamide 19%°, armentomycin 20* and syringomycin 21.*

1.3.2.1 Chlorination by Fe(l1)/aK G-dependant halogenases

The chlorination step involved in the biosynthesis of armentomycin 20 is carried out by

an Fe(I1)/aKG-dependant halogenase, CytC3 (Scheme 1.7). This halogenase adds two
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chlorine atoms to the termina methyl group of L-2-aminobutyric acid (Aba) 22.
Chlorination occurs when the amino acid is attached to the thiolation domain (CytC2),

during armentomycin 20 biosynthesis.*?

O O (@)
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Scheme 1.7. Halogenation of L-2-aminobutyric acid 22 to armentomycin 20 by CytC3.%

Characterisation of the intermediates during the CytC3-catalysed chlorination of the Aba-
S-CytC2 complex revea that halogenation proceeds via the formation of a Fe(IV)-oxo
species with similar characteristics to Fe(11)- and aK G-dependant dioxygenases. In these
dioxygenases, Fe(IV)-oxo is a key catalytic intermediate which removes hydrogen from
the substrate molecule to form a substrate radical and an Fe(l11)-OH species.® * Iron is
coordinated by two histidines and one carboxylate residue (i.e an aspartic acid or
glutamic acid) in a “facia triad”.* 4 Recently, the X-ray structure of the halogenase
responsible for chlorination in syringomycin 21 biosynthesis revealed that the active site
iron is coordinated by two histidine residues, and that the carboxylate residue is replaced
by chloride ion which coordinates to iron.* It was determined that the Fe(IV)-oxo species

catalyses C-H cleavage to initiate substrate halogenation® (Scheme 1.8).
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Scheme 1.8. Proposed mechanism for CytC3. R= L-2-aminobutyric acid.*

Binding of dioxygen to Fe(ll) in halogenases leads to the formation of a Cl-Fe(1V)-oxo
species, activating the substrate for halogenation by abstraction of hydrogen to form the
substrate radical and a CI-Fe(111)-OH intermediate. The oxidative transfer of the chlorine
atom to the substrate radical results in product formation and reduction of iron to the

Fe(11) oxidation state at the active site.

It appears that the Fe(I1)/aK G-dependant hal ogenases have evolved from dioxygenases as
they are analogous in many respects. These enzymes have been developed in order to
halogenate non-activated carbon centres and they generate a variety of haogenated

natural products.
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1.4 Biological fluorination

Although fluorine is the most abundant halogen in the earth’s crust (ranging from 270-
740 ppm), compared to that of chlorine (10-180 ppm),® incorporation into organic
compounds is extremely limited.> 2 Its ability to form largely insoluble salts (e.g.
fluorospar) with inorganic cations, leads to very poor bioavailability. Fluorine is the
smallest of al of the halogens, with an atomic radius only slightly larger than hydrogen.
However fluorinated natural products are extremely rare and their numbers do not appear
to be increasing despite extraction, isolation and screening methods becoming more
sophisticated.>® The low bioavailability coupled with fluoride ion being a very poor
nucleophile in water (only 1.3 ppm in sea water), makes it a poor candidate for
enzymology. Fluoride ion cannot be oxidised like the other halogens by the
haloperoxidases to form an X species because its redox potential is too low
(Table 1.1).>* > As a direct result, very few biologica systems have evolved to

incorporate fluoride into organic compounds.

Halogen, Heat of hydration, | Standard redox potential
X X" [KJ mol™ (E%)
F 490 -3.06
Cr 351 -1.36
Br 326 -1.07
I 285 -0.54

Table 1.1. Heat of hydration and standard redox potential for the halogens.> *°
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1.4.1 The organo-fluorine compounds

Only seven classes of organic compounds that contain fluorine have been identified.

Three of these compounds are found in plants.

1.4.1.1 Organo-fluorine metabolites from plants

1.4.1.1.1 Fluor oacetate 8

Fluoroacetate 8 is the most abundant fluorinated metabolite found to date. It is largely
biosynthesised as a toxin by some plants and one bacteria. Fluoroacetate 8 was first
isolated from the South African shrub Dichapetalum cymosum, where the leaves of this

plant were known to be toxic to cattle.*®

o

1.

F

Many other species from the Dichapetalum genus have been shown to contain high levels
of fluoroacetate 8 in their leaves.>” *® *° In Australia, more than forty plant species from

the Leguminosae genus have been shown to contain traces of fluoroacetate 8.
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1.4.1.1.2 Fluorocitrate 23

The toxicity of fluoroacetate 8 is due to its in vivo activation to fluoroacetyl CoA 26,

which is then combined with oxal oacetate by citrate synthase.

Ho,c,  ©OH
HO,C.__CO,H

£

23

This highly stereospecific reaction generates the toxic stereocisomer, (2R, 3R)-
fluorocitrate 23, a competitive inhibitor of aconitase; the subsequent enzyme in the citric
acid cycle® This has a toxic effect on cells, because the pathway through which cellular

energy is generated is blocked by this “lethal synthesis’® (Scheme 1.9).
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Scheme 1.9. The ‘lethal synthesis' of fluorocitrate 23 from fluoroacetyl-CoA 26 and oxal oacetate.®*
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1.4.1.1.3 Fluor oacetone 24

Fluoroacetone 24 was first identified in the Australian plant Acacia georginae as a
“volatile” organo-fluorine compound.®* * However due to problems with the
derivatisation of these compounds, it is possible that fluoroacetaldehyde 40 (FAId) may

be the metabolite as suggested in theinitia report itself.

HJ\CHB

F

24

1.4.1.1.4 Fluorinated fatty acids

o-Fluorooleic acid 25 was discovered as a constituent (~3%) of the seed oil of the West

African plant Dichapetalum toxicarium.*

NN NN TN NS COH
F
25
More recent evaluation has reveadled up to six more fluorinated fatty acids in D.

toxicarium with varying chain lengths and all of which possess a fluorine atom at the

terminal carbon (©).®® This may occur as a direct incorporation of fluoroacetyl-CoA 26
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during fatty acid biosynthesis rather than direct synthesis of an analogue by the plant

itself (Scheme 1.10).

@ o)
Hk fatty acid biosyrthesis
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Scheme 1.10. The putative incorporation of fluoroacetate in w-fluorofatty acid biosynthesis in D.
toxicarium.

1.4.1.2 Organo-fluorine metabolites from marine sour ces

1.4.1.2.1 5 -Fluorouracil derivatives from the sponge Phakellia fusca

The only example of marine natural products containing a fluorine are the 5-fluorouracil
alkaloids, 27-31 which were isolated from the sponge Phakellia fusca from the South
China Sea.® Five compounds were isolated, including compounds 29 and 31 which are

known to possess anti-tumour activity®’. The remaining three were novel compounds.
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27 28 29 30 31
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There appears to be some doubt over the biosynthesis of these compounds. They may
have been accumulated as a result of industrial contamination in the ocean, and then

uptake by the sponge, rather than a de novo biosynthesis.®

1.4.1.3 Organo-fluorine metabolites from bacteria

1.4.1.3.1 Nucleocidin 32

Nucleocidin 10 is an anti-trypanosoma antibiotic isolated from the actinomycete
bacterium Streptomyces calvus.®® It possesses a fluorine atom at the 4' position of the
ribosyl ring system® and was the first organo-fluorine compound to be isolated from a
bacterial source. Further attempts to re-isolate nucleocidin 32 have failed, possibly due to

high levels of sub-culturing, which appears to have lead to aloss of biosynthetic capacity.
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1.4.1.3.2 Fluor oacetate 8 and 4-fluor othreonine 33 from Streptomyces
cattleya

The actinomycete Streptomyces cattleya was first recognised for its production of the -
lactam antibiotic thienamycin,”® subsequently its ability to generate organo-fluorine
metabolites was discovered.” Extracts containing fluoroacetate (FAc) 8 and 4-
fluorothreonine (4-FT) 33 could be obtained during optimisation of thienamycin
production.”* It was discovered that growth media containing soy-bean casein was
responsible for supplying fluoride for biosynthesis (0.7% inorganic fluoride).
Fluorometabolite production occurs after alag of up to five daysin S. cattleya resting cell

suspensions, 2 indicating that the fluorometabolites are secondary metabolites.
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It has since been established that these fluorometabolites are synthesised by an enzyme
capable of catalysing formation of the C-F bond. The conversion of ATP and inorganic
fluoride to three fluorinated metabolites by cell free extracts of S. cattleya was shown by
¥F NMR.” Further experiments established that S-adenosyl methionine (SAM) 34 was
also capable of being fluorinated under similar conditions. SAM 34 is metabolically
related to ATP; SAM synthetase promotes a reaction between ATP and L-methionine to

produce SAM 34.” F-NMR showed that SAM 34 was converted to 5'-fluoro-5'-
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deoxyadenosine (5'-FDA) 35 by a “fluorination” enzyme contained in the cell free

extract (Scheme 1.11).
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Scheme 1.11. The generation of 5'-FDA 35, 5'-FDI 34, 4-FT 33 and FAc 8 from ATPin S. cattleya.

Further inspection of the fluorinated products by ES-MS analysis also revealed the
generation of the shunt product 5 -fluoro-5-deoxyinosine 36 (5'-FDI), produced by the
action of an endogenous deaminase on 5'-FDA 35 in the cell free extract.”* Time course
YE.NMR experiments revealed that 5'-FDA 35 synthesis by the fluorination enzyme is
the first committed step on the biosynthetic pathway to FAc 8 and 4-FT 33 in S

cattleya™ """ (Scheme 1.11).
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1.5 Enzymatic C-F bond formation

1.5.1 Mutant glycosidases

Generation of the C-F bond has significance in the synthesis of commercial organo-
fluorine compounds for use in the agrochemical, pharmaceutical and fine chemicals
industries.”® " Enzymatic formation of the C-F bond i.e. converting inorganic fluoride to
organic fluorine, was first reported in mutant glycosidases that were capable of
generating a-fluoroglycosides as transient intermediates from dinitrophenyl (DNP)

activated sugars ®* ® (see Scheme 1.12).
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Scheme 1.12. The proposed mechanism of enzymatic C-F bond formation by mutant glycosidases.®* &

1.5.2 Thefluorinasefrom S. cattleya

The enzyme responsible for C-F bond formation in S cattleya, 5’ -fluorodeoxyadenosine
synthase (fluorinase), was purified from wild type cell free extracts. SDS-PAGE showed
that the fluorinase has a subunit mass of 32 kDa.”® The fluorinase enzyme found in

S cattleya is the only native enzyme identified so far able to form the C-F bond.
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Subsequent size exclusion chromatography reveaed that this protein had a native mass of
180 kDa, revealing that the active protein exists as a hexamer.” N-Terminus amino-acid
anaysis and trypsin digest enabled the design of PCR primers which were used to
amplify the fluorinase gene (flA) from the genomic DNA of S cattleya by J. Spencer and
co-workers at Cambridge University.* Gene walking using these primers identified the
location of the fluorinase gene within the genomic DNA and more recently a 10 kb gene
cluster containing other genes involved in the fluorometabolite pathway of S cattleya
was identified (Figure 1.5).%* Sequencing of fIA showed it to be 897 base pairs in length,

82, 83

coding for a protein of 299 amino acids corresponding to a monomer of 32 kDa, and

confirming the initial purification results.

flE fID fic fiB flA fIF fIG flH il fid fIK fiL

€ = P e P o P G e P

ORF Start/Stop (bp) Length (aa) Function/Homology

E 130-795¢ 222 DNA binding regulatory protein
D 857-1504c¢ 216 Dehalogenase/Phosphatase

C 1845-3036 397 MFS permease

B 3057-3953¢ 299 5'-FDA phosphorylase

A 4173-5069 299 5'-FDA syntase

F 5197-5751 185 DNA binding regulatory protein
G 5951-6652 234 DNA binding regulatory protein
H 6652-8052¢c 467 Na*/H* antiporter

| 8§314-9780 489 Homocysteine lyase

J 9803-10195 131 DNA binding protein

K 10592-10176c 139 Thioesterase/acyltransferase

L 10700-11374 225 DNA binding regulatory protein

Figure 1.5. Organisation of the 10kb gene cluster from S. cattleya, highlighting the fluorinase (flA, red) and
the PNP (fIB, green) genes which mediate the first two enzymes (steps a and b) of fluorometabolite
biosynthesis. The annotations for the remaining genes are deduced from sequence homol ogies.®®
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The cloned flA was then inserted into a pET28(a) plasmid and was over expressed in E.
coli in the presence of IPTG. Fluorinase can be purified to around 9 mg/ml using nickel
affinity and size exclusion chromatography. Kinetic data showed a catalytic rate constant
(ke) Of 0.07 min™ and a Michaelis constant (K,) for F of 2 mM and 74 pM for SAM
34." The low affinity for fluoride is thought to be linked to the difficulty with which the

enzyme secures the desol vated fluoride ion due to its high heat of hydration. > *°

1.5.2.1 Crystal structure of the fluorinase

Crystallisation of both wild-type and the over expressed fluorinase was carried out in
order to determine its structure. Structures were solved with SAM 34 bound (PDB 1RQP)
and also with the products of the fluorination reaction, 5’ -FDA 35 and L-methionine
bound (PDB 1RQR). These studies showed that the fluorinase is a hexamer, consisting of

adimer of trimers (Figure 1.7) constructed from 32 kDa monomers (Figure 1.6).%*

Figure 1.6. Monomeric structure of the fluorinase (PDB 1RQP). The N-terminal domain is coloured red,
C-terminal domain in blue, 20 amino acid ‘loop’ in green.®
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The X-ray structure of the fluorinase revealed that the 299 amino acid monomer was
organized into two main domains, the amino- and carboxy- terminals. The N-termina
domain consists of residues 8-180 forming a seven stranded -sheet which is contained
between a-helices.® Within the N-terminus, an extended loop, consisting of residues 98-
114 is apparent. This loop is putatively involved in the formation of the trimer and
catalytically active hexamer structures, although its true role is not very clear.®* The
smaller C-terminal domain (residues 195-298) is made up of a 5- and a 4-stranded

antiparallel p-sheet.®

Figure 1.7. SAM-bound trimeric structure of the fluorinase (PDB 1RQP). The N-terminal domain is
coloured red, C-terminal domains in blue, 20 amino acid loops in green, linker regions in magenta and the
substrate SAM in yellow.®

The trimeric X-ray structure of fluorinase revealed that the three N-terminal domains are
arranged in a 3-fold axis, making intimate contacts with each other.> The three C-

termina domains make contacts with N-terminal domains from neighbouring monomers.
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X-ray structures with the substrates SAM 34 and the product, 5'-FDA 35, reveded that
the active site of the fluorinase islocated at the interface between neighbouring N- and C-
termina domains in the trimeric structure. The active form of the fluorinase was

identified as adimer of trimers. &

Asn2ls
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Figure 1.8. Selected residues at the active site of fluorinase involved in H-bonding with A) SAM 34 (PDB
1RQP) and B) 5-FDA 35 B (PDB 1RQR). N-terminal residues are coloured red, C-terminal residues
blue.®
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1.5.2.2 M echanism of the fluorinase

The crystal structure of the fluorinase with SAM 34 or 5'-FDA 35 bound do not have
water molecules near the fluorine pocket.® This suggests that fluoride ion is desolvated at
the reaction centre. This desolvation is compensated for by two hydrogen bonds to
Ser158. A third hydrogen bond is formed with Thr80, which is predicted to break its
ground state hydrogen bond to the backbone carbonyl of Prol54 and form a new
hydrogen bond with fluoride, as fluoride becomes fully desolvated.” # The fluoride ion
isfurther stabilised at the active site by the positively charged sulphur of SAM 34 (Figure
1.9A).% The full desolvation of fluoride ion is driven by the binding of SAM 34.
Dehydrated fluoride ions are potent nucleophiles, and SAM 34 then gets attacked to
generate 5'-FDA 35 and L-methionine (Figure 1.9B). Stereospecific deuterium labelling
studies, at the 5'-pro-S site of SAM 34, was used to show that the newly formed C-F
bond occurred with an inversion of configuration, indicative of an Sy2 reaction.®®
QM/MM calculations have suggested that the fluorinase lowers the barrier for C-F bond
formation by 39 kJ mol™ and a 10°fold increase in the rate of reaction compared with the

(non-existant) reaction in solution.”
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Figure 1.9. Proposed mechanism of the fluorinase determined by X-ray crystallography®, QM/MM
calculations”” and labelling studies.®® A) Ground state interactions with SAM 34 and fluoride ion. B)
Transition state. C) Completed reaction.
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Recent mechanistic studies using isothermal titration calorimetry (ITC) have revealed
more information about substrate/product binding during fluoride turnover.®” Structural
studies using the apo (without adenosine bound at the active site) enzyme have reveaded
the presence of 4 water molecules in the active site in the place of adenosine. ® During
5-FDA 35 generation by the fluorinase, fluoride ion binds before SAM 34 in the
cataytic cycle. The K, of fluoride is high (10 mM), and increases in the presence of high
SAM 34 concentrations (47 mM in the presence of 300 pM SAM 34%") which indicates
competitive binding at the active site. It is suggested that fluoride ion will passively
diffuse into the active site of fluorinase, and upon binding of SAM 34 (K= 6.5 pM®) it
becomes trapped. SAM 34 binding also squeezes out any remaining water in the active
site, leading to the full desolvation of the fluoride ion. In the reverse direction, it was
discovered that 5'-FDA 35 binds first, and upon this event the binding site for L-
methionine is formed through reorganization of the protein, specifically residues Thr75 to
Arg85 and consequently Alads to Glul02, located on the 20 amino acid loop determined

in the X-Ray structure. ®

1.5.2.3 Site directed mutagenesis of the fluorinase

Site directed mutagenesis of the fluorinase has been useful for exploring the roles of
individual residues of the active site during the mechanism of catalysis. These methods,
based upon analysis of the crystal structure and QM/MM calculations have established

the putative hydrogen bonding networks important for catalysis and the integrity of the
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active site pocket. Dr Xiaofeng Zhu (University of St Andrews) generated several site
specific mutants, with an interest in determining the mechanistic roles of specific residues
a the active site®” Four residues were identified from the crystal structure of the
fluorinase that were thought to be critical to its catalytic activity, Ser158, Thr80, Phel56

and Asp16.

1.5.2.4 Serine 158 fluorinase mutant

The role of Ser158 has been discussed previously and a mutant possessing a glycine
residue at this position exhibited only 8% activity compared to the native enzyme.®” The
crystal structure of this mutant revealed that a water molecule had take the place of the
OH side chain of S158, suggesting that this residue is critical in the desolvation of
fluoride ion. Serl58 was also mutated to an alanine, to generate the mutant S158A.
Alanine is a non-polar amino acid, with alipophilic methyl group. This mutant exhibited
38% activity.®” In both of these mutants, disruption to the hydrogen bond network has a
significant effect upon the cataytic activity of the fluorinase, but the more lipophilic
alanine presumably promotes desolvation over the less lipophilic glycine, and hence was

amore efficient catalyst.

1.5.2.5 Threonine 80 fluorinase mutant

The threonine residue at position 80 (Thr80) in the fluorinase lines the fluoride binding
pocket. Theoretical studies carried out by W. Thiel and H. Senn in Milheim suggest that

H bonding between a tyrosine at position 157 and the side chain OH of Thr80 (1.83A)
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stabilizes the pocket (Figure 1.9).”" Substituting this residue with alanine (Thr80A
mutant), a non-polar residue with a CHs side group, eliminates this H bond interaction
and diminishes the enzyme's activity (15% activity). When Thr80 was however
exchanged for a serine then the mutant retained almost full activity (95 %). Notably the
integrity of the important hydrogen bond has been maintained in converting Thr80 to

serine.

1.5.2.7 Structural homologs and the origins of the fluorinase

1.5.2.7.1 Thechlorinase
In 2007, the gene for an enzyme was discovered from the marine actinomycete
Salinispora tropica in a gene cluster responsible for the biosynthesis of the chlorinated

natural product, salinisporamide A 36.%
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The first committed step in the biosynthesis of 36 is through the action of a SAM-
dependant chlorinase, Sall, generating 5'-chlorodeoxyadenosine 37.%° Not only is the
halogenation mechanism analogous to the fluorinase, the chlorinase also shows 35%

amino acid identity to the fluorinase enzyme and exhibits identical characteristics in its
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tertiary structure. Closer analysis of the active site reveals that similar residues are
required for SAM 34 coordination. The way in which the halide is bound differs
somewhat. Notably a glycine residue (Gly131) replaces Serl58 and a tyrosine residue
(Tyr70) replaces Thr80 in the fluorinase. The chlorinase is incapable of fluorination,
unlike the fluorinase, which aso accepts chloride ion as a substrate.®® Crystallography
has revealed that chloride ion sits in the active site at approximately 180° from the C-5°
carbon of SAM 34, consistent with an Sy2 mechanism, as exhibited by the fluorinase.
Currently it is presumed that the reaction mechanism of halide ion binding and

desolvation is similar to the fluorinase.

1.5.2.7.2 The Duf62 Superfamily

A BLAST search of the fluorinase amino acid sequence reveals homology (25-38%) with
arange of proteins named the domains of unknown function-62 (duf-62), identified in a
series of genome sequencing projects but as the name suggests their function was yet to
be reveadled. These proteins are generally localized in extremophile and pathogen-related
microorganisms. Four of these enzymes have been subjected to X-ray crystallography
studies and recently the duf-62 from the deep sea vent-dwelling bacterium Pyrococcus
horikoshii OT3 was identified as a SAM-dependant hydroxide adenosyltransferase.®*
Duf-62 from P. horikoshii is thermostable at 80 °C and has aK, for SAM 34 of 39.2 uM
and a kex Of 0.14 s (similar to the fluorinase of 0.07 s%). The X-ray structure of this
enzyme (PDB 1WUS8) reveads remarkable similarities to both the chlorinase and

fluorinase enzymes (Figure 1.10), also consisting of a trimer made up of three identical
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monomers. The X-Ray structures also reveal an adenosine bound to the protein at the

subunit interfaces, clearly identifying the active sites of these proteins.

Figure 1.10. X-ray crystal structures of the fluorinase (blue)®, chlorinase (pink) ® and duf-62 from P.
horikoshii OT3.

Despite the structural similarities with these halogenating enzymes, duf-62 is incapable of
performing fluorination or chlorination reactions in the presence of high halide ion
concentrations and SAM 34. However it is able to catalyse the conversion of SAM 34 to
produce adenosine and H*. Labelling studies using **OH, and GC-MS analysis revealed

that activated water was used as a nucleophile to attack the eectrophilic C-5' carbon.™

(Scheme 1.13).
NH
NHs* N 2 NH,
. rMe ¢ SN X
O N = o </ ' //'N
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Ee— x: e OHOH L-Met OHOH
H 34

Scheme 1.13. Most likely mechanism for the duf-62 enzyme from P. horikoshii, deduced by *OH,
labelling and GC-MS analysis.™
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The substitution by hydroxide ion, generated from activated water is probably an Sy2
process in a similar manner to fluorinase. There are three conserved amino acids in the
duf-62 proteins that are not present in the chlorinase or the fluorinase (Asp68, Arg75 and
His127). These residues are H-bonded together in a triad and may be involved in the

catalytic cycle.™

The function of the duf-62 proteins is still unclear, however it may be involved in a
sensitive regulation of pH as it produces one H* for every reaction cycle. It also has an
optimal pH of 8.5 and is completely inactivated at pH 5, suggesting a regulatory role for
this protein. It appears from amino acid sequence homologies that these duf-62 proteins
are relatives of the halogenating fluorinase and chlorinase enzymes, athough the active

sites evolved in different directions from their ancestors.

1.5.2.8 The metabolic fateof 5-FDA in S. cattleya

The fluorinase enzyme from S cattleya is the first committed step in the production of
the fluorometabolites 4-FT 33 and FAc 8.”" Previous work in our research group has
revedled some of the biosynthetic steps and intermediates in the pathway to
fluorometabolite production. Scheme 1.14 below reveals the status of the pathway when

this project started.
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Scheme 1.14. The fluorometabolite pathway in S. cattleya, enzymes and intermediates, at the beginning of
this project. Broken lines indicated steps which had yet to be characterized.

Following the generation of 5’'-FDA 35 from SAM 34 and fluoride ion by the fluorinase,
the next transformation in the fluorometabolite pathway is carried out by a purine
nucl eoside phosphorylase (PNP)*, which converts 5'-FDA 35 to 5-fluoro-5-deoxyribose-
1-phosphate 38 (FDRP).* The gene, FIB, responsible for this enzyme is located directly
alongside the fluorinase in the gene cluster identified by J. Spencer and co-workers.
(Figure 1.5).2 PNPs catalyse the reversible phosphorolysis by inorganic phosphate and
the glycosidic bond of purine ribo- and deoxyribonucleosides to generate the free purine
and a (deoxy)ribose sugar.* The FIB gene encodes a protein of 299 amino acids with a
molecular weight of ~36 KDa. A BLAST search reveals that this PNP belongs to a family
of 5 -methylthioadenosine phosphorylases (MTAPs), a key component of the
L-methionine salvage pathway, discussed in Chapter 2. Over expression of this enzyme

in E. coli was achieved, although the protein formed was largely insoluble.*®
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The sugar-phosphate, 5-FDRP 38 has been isolated and characterized from partialy
purified cell free extracts of S cattleya.® A further intermediate, 5-fluorodeoxyribulose
phosphate 39 (5-FDRUIP) has also been identified from cell free extracts of S cattleya.””
It is proposed that this is the next intermediate in the biosynthetic pathway, generated
from 38 by an aldose-keto isomerase (Scheme 2.10, Chapter 2), also involved in the
L-methionine salvage pathway. Sugars such as 5-FDRulP 39 are well known as products
of aldolases, particularly fuculose aldolases. These enzymes are aso capable of utilizing
these sugars as substrates to generate dihydroxyacetone phosphate (DHAP) and an
associated aldehyde. In this case FAId 40 is formed as the last common intermediate in

4-FT 33 and FAc 8 biosynthesis.

1.5.2.9 The 4-fluor othreonine transaldolase (4-FTase) genefrom S.
cattleya

The final step in 4-FT biosynthesis in S. cattleya involves a pyridoxal phosphate (PLP)
dependant transal dolase enzyme that mediates a cross-over reaction between L-threonine
and fluoroacetaldehyde 40 to yield 4-FT 33 and acetaldehyde. The few bacterial PLP
threonine aldolases that have been identified to date utilize acetaldehyde and glycinein a
direct condensation reaction.” The S cattleya enzyme does not utilize glycine but instead

carries out a mechanistically more elaborate reaction (Scheme 1.15).%
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Scheme 1.15. Minimal mechanism of the PLP-transaldolase involved in the final step of 4-FT 33
biosynthesisin S cattleya.”

The generation of 4-FT 33 by the PLP-transaldolase requires the presence of the amino
acid L-threonine, the co-factor PLP and the fluorinated intermediate FAId 40.%° The gene
for this 4-FT transaldolase enzyme is not in the 10kb flA gene cluster and this gene was
identified through a reverse genetic approach after purification and N-terminal
sequencing of the wild type 4-FT transaldolase by Dr Hai Deng (University of St
Andrews).* Tria and error PCR and subsequent chromosomal gene walking identified a
2.2 kbp DNA sequence, which contained a complete open reading frame (FTase) of ~1.9

kbp (1905 bp).*

The FTase coded for a 634 amino acid protein composed of two domains (Figure 1.11).
The larger domain (440 amino acids) is homologous to the PLP binding domain of serine
hydroxylmethyl transferase (SHMT) enzymes in micro-organisms such as archaea and
thermophilic bacteria (~35 % amino acid identity). The smaller domain (145 amino
acids) has homology with the phosphate binding domain of bacterial ribulose-1-
phosphate-4 epimerases (araD) or L-fuculose adolases (>28%). A region of 35 amino
acids between the SHMT-like and araD-like domains appears to act as a linker, perhaps
bearing no catalytic function. The PLP transaldolase appears to have a hybrid

construction with key binding motifs from these enzymes. Enzymes from the araD
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superfamily catalyse reversible adol/retro-aldol carbon-carbon bond cleavage, often

100, 101

resulting in epimerization, which is similar in nature to the PLP-transaldolase

reaction.

1 MPSSVNRTSRTEPAGHHREFPLSLAAIDELVAEEEAEDARVLHLTANETVLSPRARAVLA
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Figure 1.11. The full amino acid sequence of the PLP-transaldolase from S. cattleya with three main
domains. Red= putative SHM T-PLP binding domain. Black= putative linker domain and Blue= putative

phosphate binding domain of bacterial epimerase/aldolase. %

Expression of the 4-FT transaldolase in E. coli lead to the generation of insoluble
inclusion bodies. Therefore in order to generate an active protein, the gene was inserted
into Streptomyces lividans on an E. coli:Streptomyces shuttle vector, enabling over

expression and purification of this enzyme by affinity chromatography.

1.5.2.10 A rolefor aldehyde dehydrogenasein the fluorometabolite
pathway of S. cattleya

The enzyme responsible for the oxidation of FAId 40 to FAc 8 in the fluorometabolite
pathway of S cattleya has been attributed to an NAD®-dependant aldehyde
dehydrogenase (E.C.1.2.1.69). The activity of this aldehyde dehydrogenase observed in

the prepared CFE of S cattleya after 4 days growth.'® This suggests that this enzymeisa

part of secondary metabolism, committed to the fluorometabolite pathway and not
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performing some other function. The gene for this enzyme has yet to be characterized and
it was not found in the 10 kb gene cluster. However it was discovered that a homologous
enzyme from yeast was capable of carrying out the same reaction, albeit with aK,, 6 fold
higher.'%? The NAD*-dependant aldehyde dehydrogenase from Saccharomyces cerevisiae
(E.C. 1.215) is commercialy available, and a minimal scheme for the reversible

oxidation of FAId 40 to FAc 8 in the presence of NAD(P)* and water is shown in Scheme

1.16.
o
J
NaD(P)* + H0O + =
FAld 40
fluoroacetaldeyde dehyrogenase
(S. cattleya)/
aldehyde dehydrogenase
(S. cerevisiae)
O
NAD(P)H + HLOH
F
FAC 8

Scheme 1.16. A minimal scheme for the irreversible oxidation of FAId 40 to FAc 8 by aldehyde
dehydrogenase from S. cerevisiae, in the presence of NAD(P)* and water. % 102

1.5.2.11 Application of the fluorinase: Positron emission tomography

Positron emission tomography (PET) is a non-invasive imaging technique used for
medical imaging and diagnostics.® The technique uses radiotracers labelled with
positron emitting radionuclides with various in vivo properties that permit imaging of the
distributions of binding ligands that have been taken up into metabolising tissues. The

most common PET radionuclides are *'C, **F, *°0 and >N which have half lives of 20,
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110, 2 and 10 minutes respectively. Fluorine-18, with a relatively long haf life
(tl’zz 110 m), permits more time for radiochemical synthesis and purification for useinin
vivo experiments and therefore is an attractive radionucleotide for PET. [**F] Fluoride is
generated in a cyclotron in very high specific activity (~ G BQ's), without the need for a

cold carrier ([*°F] fluoride) to be added.'®

The most common radiotracer in this arena is [*°F]-labelled 2-fluorodeoxyglucose (FDG)
which has routinely been used in brain and tumour imaging.*® The discovery of specific
adenosine'® and uridine'® receptors in the brain also increases the significance of these
compounds with regard to neurological imaging. This has led to extensive studies using
radiolabelled nucleosides such as the adenosine analogue, 2’ -fluoro-2'-deoxyadenosine
and preliminary work with this compound has shown promising results in the evaluation

of tumour cell proliferation.’®

1.5.2.11.1 PET-labelled production of fluorinated metabolites

The radioactive isotope [®F] can be incorporated into 5'-FDA 35 by the fluorinase
enzyme (Scheme 1.17). Two [*®F] compounds have been synthesised that are also
intermediates in the fluorometabolite pathway of S. cattleya, [*°F]-FAId 40™° and [*®F]
5'-FDA 35."! [*®F]-FAld 40 was generated for use as a [*®F]-fluoroethylating agent and
synthesis of the adenosine analogue [*®F]-5'-FDA 35 was achieved with only a ~1%
radiochemica yield (RCY).* With over expressed fluorinase however, the enzymatic

method towards radiolabelled [*°F]-5'-FDA 35 was achieved with RCY s of up to 95%.'*
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This was accomplished by first coupling the fluorinase to an L-amino acid oxidase, which

removed the co-substrate L-methionine and a so prevented the reverse reactions.

N
NH3" N & NH,
O\[})\///"S+Nle </ I N 18 AN
N //I F < , )
O N NT >\
ey "
5-fluoro-
OHOH deoxyadenosine OH OH
synthase (fluorinase)
34 [**F-5-FDA

Scheme 1.17. Production of [*®F]-5'-FDA by fluorinase.*?

Secondly a deaminase was added to produce a second |abelled purine nucleoside, [**F]-
5'-fluorodeoxyinosine 36. Most recently, fluorinase and various nucleotide
phosphorylase-coupled base swap experiments have been carried out. This involved the
biocatalytic removal of the adenosine base of [®F]-5'-FDA 35 and then utilising the
reversible nature of nucleotide phosphorylases to generate nucleoside analogues with

uracil bases (Figure 1.18).***
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Scheme 1.18. [*®F]-5'-Fluorodeoxyuracil derivatives generated by fluorinase-coupled base swapping
experiments.™

There appears to be potential for using the fluorinase to produce [*®F]-radiolabelled
nucleosides for PET imaging of certain cancers, and other fluorinated compounds.
Aggressive cancers can take up these fluorometabolites through the purine nucleotide
salvage pathway, due to the high demand for energy to fuel growth and replication.
['®F] through PET imaging offers a sensitive visual technique for cancer diagnosis and

treatment by deploying suitable tracers e.q. [**F]-FDG.



1.6 Analytical M ethods

1.6.1 F NMR spectr oscopy

F NMR is used in this thesis as an analytical tool for identifying the production of
fluorometabolites and intermediates generated by enzymes identified from Streptomyces
cattleya. This technique allows the identification of fluorinated products without the need
for isolating the metabolite. Coupling of fluorine (*°F, 1= 1/2) with hydrogen (*H, I= 1/2)
allows the chemical environment of the fluorine to be determined (Figure 1.12). Figure
1.13 shows the *F-NMR spectras of two fluorinated secondary metabolites, fluoroacetate

8 and 4-fluorothreonine 33 from S cattleya.

HVRZ
H
47 Hz U

25 Hz

Figure 1.12. Typical J coupling of an organo-fluorine compound by °F NMR.
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Figure 1.13. *°F NMR spectra of (A), fluoroacetate 8 and (B), 4-fluorothreonine 33.
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The **F NMR spectrum (Spectrum A above) of FAc 8, revedls that the fluorine of the
fluoromethyl group is atriplet. The corresponding spectrum B for 4-FT 33 is a doublet of
doublets of doublets arising from coupling to the non-equivalent methylene protons and

then the vicinal methine-proton.

F NMR Chemical Shift

Intermediate
(ppm)
5 -FDA 35 -2315
5 -FDRP 38 -231.3
5 -FDRuIP 39 -231.8
FAId 40 -231.45
FAc8 -217.4
4-FT 33 -231.2
4-FDI 36 -231.35

Table 1.2. **F NMR chemical shifts of the identified intermediates of the fluorometabolite pathway in S.
cattleya.

The chemica shifts of FAc 8 (-217.4 ppm) and 4-FT 33 (-231.2 ppm) are easily

distinguishable, as are the other fluorinated metabolites on the biosynthetic pathway

(Table 1.2).
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1.6.2 I sothermal titration calorimetry

Isothermal titration calorimetry (ITC) is a sensitive technique used to determine
intermolecular recognition and binding of ligands to macromolecules such as proteins. It
can be used to determine the thermodynamic relationships of ligand binding, giving
guantitative values of free energy change (AG), enthalpy (AH) and entropy (AS) which
allows the accurate characterization of binding events. The Ka, and stoichiometry of

binding can aso be effectively measured by this technique.
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Figure 1.14. Schematic diagram of an ITC sample cell, and typical results of an ITC experiment. A= Raw
data power difference upon ligand titration. B= Raw data converted according to molecular concentration
of thetitrant and titrand.™

ITC is a direct method used to measure the heat change on formation of a binding
complex a a constant temperature.® Figure 1.14 shows a schematic of an ITC

experiment.*”® At a constant temperature, either the ligand or the macromolecule of
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interest (the ‘titrant’) istitrated into a solution containing its putative binding partner (the
‘titrand’). The titrand is contained within a cell consisting of a highly efficient thermal
conducting material (e.g. gold). There is adso a reference cell which contains sample
buffer. Both of these cells are surrounded by an adiabatic jacket and are maintained at a
constant temperature set by an operating computer terminal. The temperature of the cells
is measured as a value of power (J ) required to maintain the cells at a constant
temperature. Typically a smal volume of the titrant is injected into the sample cell in
stepwise manner using a fixed volume. The injections are separated in time (~180 s) to
alow for the heat of binding to be measured for that particular injection event. Upon
binding of the titrant to the titrand, heat is released or absorbed depending on the binding
relationship. This heat change effects the amount of power (J s*) required to maintain a
constant temperature in the sample cell. The difference in power required between the
sample and reference cells is measured, and converted to produce quantitative values for

the binding properties listed above.

ITC has been used extensively in drug discovery, alowing for the screening of
compounds against protein targets."> Recently this technique has also been successfully
used to determine the binding parameters and mechanisms of the fluorinase, providing
interesting insights into the binding order of substrates and products.?” ITC is used in this

thesis to determine putative binding of several molecules to protein targets.
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1.7 Conclusions and project aims

The fluorometabolite pathway of S cattleya has been well characterized with several
intermediates and enzymes identified. Two putative enzymatic steps remained to be
characterized at the enzymatic level when this project began; that for the conversion of
5-FDRP 38 to 5-FDRuUIP 39 by an isomerase and that of the conversion of 5-FDRulP 39
to FAId 40 by the action of an aldolase. The identification of these enzymes became the

initial research focus of this project.
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2 The identification of an isomerase from S. cattleya

The identification of 5-FDRP 38%and 5-FDRulP 39% as intermediates in the
fluorometabollite biosynthesis pathway of S cattleya reveded some interesting
similarities with the SAM-derived L-methionine salvage pathway. It was postulated that
5-FDRuUlP 39 is generated by an isomerisation directly from 5-FDRP 38. The

SAM-methionine pathways in bacterigt!®117118.119120121.122 g yeggt123

arevery smilar to
that observed in fluorometabolite biosynthesis in S cattleya. In this chapter the
identification of two enzymes from Sreptomyces, capable of performing the

isomerisation of 5-FDRP 38 to 5-FDRulP 39 is described.

2.1 Methionine salvage pathway

The methionine salvage pathway was first identified in the bacteria Klebsiella

116120 and then subsequently in Bacillus subtilis.?" % |_-Methionine is an

pneumoniae
essential amino acid, and is involved in many cellular functions such as the initiation of
protein synthesis, methylation of DNA and rRNA as well as the biosynthesis of cysteine,
phospholipids and polyamines. Energetically, the de novo synthesis of L-methionine is

expensive, and consequently the L-methionine salvage pathway has developed as a key
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process for the recycling of both L-methionine and sulphur for redistribution within the
cell.’® |dentified intermediates in the L-methionine salvage pathway of both K.
pnuemoniae™® and B. subtilis® include 5'-S-methylthioadenosine (MTA),
methylthioribose 1-phosphate (MTR-1-P), with methylthioribul ose-1-phosphate (M TRul-

116-122

1-P) generated directly downstream (see Scheme 2.1). These intermediates are

analogous to intermediates of fluorometabolite biosynthesis.
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Scheme 2.1. Illustration of the intermediates and enzymes from the L-methionine salvage pathway
identified from B. subtilis and K. pnuemoniae with particular focus on the compounds analogous to those
involved in the fluorometabolite pathway from S. cattleya.'**%

2.2 Methylthioriboseisomerases (M TRIS)

The enzymatic step responsible for the generation of MTRul-1-P from MTR-1-P in the

methionine salvage pathway is an adose-ketose isomerase.'®? These enzymes were
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identified from B. subtilis (E.C. 5.3.1.23) and the YPR118W gene from the yeast,

Saccharomyces cerevisiae.™

1A BLAST search using the sequence of the

methylthioribose-1-phosphate isomerase (MTRI) of B. subtilis reveals homology with a

number of genes belonging to the PFAM family PF01008* and the TIGR 00512 and

00524 families (See Figure 2.1).
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Figure 2.1. Selected sequences from a BLAST search of the MTRI from B. subtilis. Sequences shown are
from B. subtilis MTRI, Geobacillus sp WCH70 Trandation initiation factor (TIF), Geobacillus
thermodenitrificans MTRI and Geobacillus sp G11IMC16 TIF respectively. Regions of homology are
highlighted in blue.

Genes belonging to PF01008 contain the a-, B-, and 8- subunits of eukaryotic initiation

factor 2B (elF2B) found in yeast and mammals.*®* However they lack the e-subunit,

which is responsible for the catalytic activity of these elF2Bs. In eukaryotic tranglation

initiation, heterotrimeric el F2 acts in the presence of GTP and Met-tRNA to interact with
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the 40S ribosomal subunit and other initiation factors to form the 43S preinitiation
complex. This complex is responsible for the binding of the 5 -end of mMRNA, before
scanning in the 3'-direction for the AUG initiation codon. AUG is identified by codon-
anticodon recognition through GTP hydrolysis which is triggered by another initiation
factor, elF5. The subsequent complex is necessary for the formation of the 80s initiation
complex through the binding of the large ribosomal subunit and the release of trandlation
initiation factors from the 40S subunit, resulting in trandation initiation. elF2-GDP is
released, el F2B then binds and catalyzes the exchange of GDP for GTP so that the cycle

can start again.

As well as encompassing the well characterised el F2B proteins, the PF01008 family aso
includes a subfamily of proteins known as the el F2B-related proteins. This subfamily has
homology with the elF2B proteins and is known to exist in eukaryotes, archaeae and
eubacteria however their roles in these organisms are largely unknown. The existence of
these elF2B-like proteins in non-eukaryotes is particularly intriguing, as there is no
evidence that implicates IF2 proteins in prokaryotic tranglation initiation. Many of these
proteins have been annotated as putative translation initiation factors based on homology
with proteins of this function. However recent studies have identified enzymes from B.

121

subtilis*** and Saccharomyces cerevisiae’ as MTR-1-P isomerases (MTRIS), an enzyme

with 37% sequence identity to that involved in the methionine salvage pathway. Enzymes

of this type are capable of converting MTR-1-P to MTRul-1-P.2+1%
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221 MTRI crystal structures

Two MTRIs have recently had their crystal structure elucidated, YPR118W from S
cerevisae'®® and the MTRI from B. subitilis.*®® Only the MTRI from B. subtilis has been
crystallized with a substrate bound to the active site, in the form of MTRul-1-P (PDB
2YVK).' This has revealed several candidates for the key catalytic residues at the active
site, and also gives some clues on the mechanism of these enzymes. The residues that are
putatively involved in substrate binding can be separated into three groups:. Those that
hydrogen bond with 1) the phosphate group, 2) the backbone oxygens and hydrogens of

ribulose and 3) those which have hydrophaobic interactions with the methylthio group.

The residues within reasonable H-bonding distance of the phosphate moiety are the side
chains of Arg51 (3.37 A), Arg94 (2.72 A), GIn199 (3.27 A), Lys251 (2.96 and 3.11 A)
and the backbone amide of Gly52 (3.16 A) (Figure 2.2B). The Asn250 (3.43 A) and
Asp240 (3.99 A) residues probably interact with the C2 carbonyl of ribulose. The C3
hydroxyl is coordinated by C160 (3.61 A) and to water a molecule located in the active
site, and the OH of C4 with Asp240 (2.42 A) and the backbone amide of Ala53 (3.01 A)

(Figure 2.2C).
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Figure 2.2. The crystal structure of the putative active site from the MTRI of B. subtilis with 5-MTRul-1-P
bound.*”® A= Hydrophobic interactions with the methylthio group. B= Putative hydrogen bonding to the
phosphate group. C= Putative hydrogen bonding to the backbone of ribulose. All distances measured arein
A.

The side chains of Pro54, Alal62, Alal66 and Thrl67 are thought to exhibit hydrophobic
interactions with the methylthio group (Figure 2.2A). All of these residues are highly
conserved amongst MTRIs from various species, apart from three residues. Alal62 is
commonly substituted for threonine, Alal66 for valine and Thrl67 for serine. Although
they are not absolutely conserved, the residues with which they are substituted exhibit

similar structural properties and therefore interact similarly at the active site.
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The crysta structure of an MTRI from S. cerevisiae revealed the monomeric structure
possesses two main domains, the N- and C- terminas.**® The N-termina domain,
consists of 138 residues and shows structural homology to the pollen allergen phl 6 (PDB
entry INLX) and ATP Synthase subunit C (PDB entry 1C17).?® The C-terminal domain
has structural homology to ribose-5-phosphate isomerase from E. coli (PDB entry
1LK Z)."*" This evidence suggests that proteins that possess similar structures are capable
of the isomerisation of sugar-phosphate moieties. The active MTRI protein from both B.
subtilis and S cerevisiae are homodimers, which has been determined by gel filtration
and X-ray structure studies. These elF2B proteins are monomeric which is a further

difference between MTRI proteins and el F2Bs.

Despite the identification of a number of MTRI’s, kinetic data is rare. Quantitative
kinetic data is difficult to produce due to problems with the synthesis of MTR-1-P.
Currently the only route to MTR-1-P is through the conversion of commercially available
5 -MTA by a deaminase to 5 -methylthioriboseinosine (5-MTI) and then phospholytic
cleavage of the base by a purine nucleotide phosphorylase (PNP) to generate 5-MTR-1-P
(Scheme 2.2). The same approach can be used to generate 5-FDRP 38 using synthetic

5'FDA 35 as a starting material %’
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Scheme 2.2. The generation of the substrate of MTRIs. X= F¥, SMe.

5-MTA, 5-MTR-1-P and 5-M TRul-1-P have all been characterized by *H NMR™®, and a
method for the colorimetric assay of reducing sugars'® can be modified to quantitatively
measure the isomerization reaction.’” So it is possible to anal yze the isomerization with a

view to attaining kinetic data, providing that you can generate enough substrate.

2.2.2 Putative mechanisms for MTRIs

The catalytic mechanism of MTRI’s has yet to be eucidated. It is well known that in
sugars with a free anomeric OH (hemiacetals), the sugar equilibriates between the
ring-opened aldehyde and the ring closed hemiacetal (Scheme 2.3). However the

presence of the phosphate group at the 1-position stops such ring-opening.
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OoH OH OH OH

Scheme 2.3. Classical ring opening of a 5-membered sugar.

MTRIs belong to the aldose-ketose isomerases, which catalyse the isomerisation of its
cyclic substrate.*? Crystallization of the MTRI from B. subtilis with substrate bound at
the active site, has triggered discussion of possible mechanisms for this reaction. Two
putative mechanisms for aldose-ketose isomerases have been put forward.™*® These are
the cis-enediol and hydride transfer mechanisms. Analysis of the active site structure of
MTRI from B. subtilis does not discriminate against either of these putative mechanisms

(Scheme 2.4).*%
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Scheme 2.4. Proposed reaction mechanisms of MTRIs based on the active site residues from the crystal
structure of an MTRI from B. subtilis. Reaction steps 2A and 3A represent the proposed cis-enediol
mechanism. Steps 2B and 3B represent the proposed 1,2-hydride shift mechanism.*?

2.2.2.1 Cis-enediol mechanism

The putative mechanisms in Scheme 2.4 begin with binding of the phosphate group to the
positively charged region generated by the side chains of Arg51, Arg94 and Lys251. This
triggers a conformational change in the MTRI structure, isolating the active site and
substrate from solvent. The side chain of Asp240 is expected to play a role as either a
proton donor or acceptor. Protonation to the ring oxygen of MTR-1-P would trigger the
ring opening. In the cis-enediol mechanism (steps 1 to 2A in Scheme 2.3) Cysl160
removes the proton from C2 and the resulting flow of electrons forms a double bond

between C1 and C2 to generate the cis-enediol intermediate (2A and 3A, Scheme 2.3).
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Asp240 mediates proton transfer between O2 and O4 simultaneously, and the proton
abstracted by Cys160 is donated back to form the MTRul-1-P product.*”® This
mechanism is potentially facilitated by the isolation of the active site from solvent in the

process of substrate binding.*®

2.2.2.2 Hydride transfer mechanism

The hydride transfer mechanism (2B and 3B, Scheme 2.4) would be initiated by
protonation by the side chain of Asp240 to O2 of MTR-1-P.** This would initiate ring
opening and Cys160 may stabilize the positive charge generated at C1. The hydride on
C2 then transfers to C1, following the flow of electrons from O2 to C2, forming a

carbonyl and generating the product, MTRul-1-P.*%

Xylose isomerase (XI1), aso a adose-ketose isomerase, is thought to proceed via a
hydride shift mechanism.**" *** Previous work involving the MTRI from B. subtilis in
D,0 by NMR and Mass spectrometry are similar to results gained from X1, however they
are inconclusive. NMR and GC-M S studies could not detect deuterium incorporation into
the product, MTRul-1-P a C1.2® This effectively rules out the cis-enediol mechanism.
Although only implied by this negative result, the hydride shift in this case remains to be

proven.

2.2.2.3 Phosphate transfer mechanism

The presence of a phosphate group and its putative effects upon the stability of the

5-MTR-1-P molecule have prompted the proposal of a third mechanism for the catalytic
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activity of MTRIs. This mechanism involves phosphate transfer to the C2 OH causing a
keto-enol tautomerism. In the presence of the enol, the oxygen at C1 would attack the
phosphate causing it to return to its initial position and the molecule then isomerizes to,
ribul ose-1-phosphate (Scheme 2.5).
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Scheme 2.5. A putative phosphate transfer mechanism for isomerisation of 5-FDRP 38 to 5-FDRul P 39.

The proposed phosphate transfer mechanism implicates the role of a basic amino acid

side chain in the active site, to deprotonate C2 and trigger phosphate transfer. Crystal
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structures of the MTRI from B. subtilis have identified Asp240 as a potential key
catalytic residue, and this residue is conserved amongst all known MTRIs. This residue
sits in a hydrophobic pocket in the active site. Hydrophobicity has been reported to
increase the pK, of Asp26 in thioredoxin of E. coli from 4.4 to 7.5.* This increase in
pK, may also occur in MTRIs and consequently Asp240 may act as a base to trigger ring
opening in this mechanism. It may also explain why enzymes of this type are found to be
most active under basic conditions (~ pH 8). There may also be aneed for stabilisation of
the enol transition state, in order for the second phosphate transfer to occur. The residues
Argbl, Gly52, Arg94, GIn199 and Lys251 have been implicated in the hydrogen bonding
of the phosphate moiety of MTRul-1-P. It appears that significant changes in the

interactions at the active site would be required for phosphate transfer to occur.

2.3 ldentification of an MTRI from S. coelicolor

The peptide sequences of the known MTRIs from S cerevisiae and B. subtilis was used
in a BLAST search against the full Streptomyces coelicolor genome database.™® This
search highlighted a putative trandation initiation factor within the S. coelicolor genome
(SC0O3014) with 38% and 33% identity to the S cerevisiae and B. subtilis MTRIs
respectively. SCO3014 possesses an open reading frame (ORF) of 1124 bp, and encodes
a peptide of 39.1 kDa (39135 Da). With a knowledge that MTRIs have been consistently
mis-annotated because of their close homology with elFs, the peptide sequence for
SCO3014 was aigned alongside the known MTRIs in order to assess if this may aso

have been a case of mis-annotation (Figure 2.3).
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Figure 2.3. Alignment of the sequences of the known MTRIs from B. subtilis and S. cerevisiae with the
sequence of the putative trandation initiation factor SCO3014 from S coelicolor. Blue= conserved
residues. Red= conserved catalytic residues determined from B. subtilis. Green= catalytic residues
substituted by residues common in other MTRIs.

The alignment of the amino acid sequence of the putative initiation factor SCO3014 from

S codlicolor reveals many regions of homology with known MTRIs (Figure 2.3). The

putative catalytic residues located in the active site of the MTRI from B. subtilis

(highlighted in red in Figure 2.3) are aso conserved in SCO3014, suggesting that they

may serve the same function. Particularly, Asp240 and Cys160 are conserved across al

three peptide sequences, and their putative role in the catalysis of isomerisation has been

discussed previously (Chapter 2.2.1). There are some small differences (highlighted in

green) in the active site residues, however these residues are not absolutely conserved

amongst MTRIs. In these cases, Alal62 is often exchanged to a threonine residue,

Alal6eb to a valine and Thr167 is often substituted for a serine. This variation is aso

shown to occur in the YPR118W sequence. These observations suggest that SCO3014
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may well have been mis-annotated, and that its function is that of an MTRI. It became an
objective to amplify the SCO3014 gene and overexpress the protein product in order to

assay it for this activity.

2.3.1 SC0O3014 amplification

The genetic sequence of SCO3014 is complete and specific DNA primers were designed
inthe 5’ -3 complement and 3'-5' reverse complement directions, with EcoRI and Xhol

restriction sites respectively (Table 2.1).

Primer/ Restriction Site Sequence5'-3'
Forward/ EcoRl gcaggaggaattcatatggctgatcaggacgcege
Reverse/ Xhol ccctcacgecgcetcgagttagetaatcgttacctgg

Table 2.1. Specific DNA primers for the amplification of SCO3014 from S. coelicolor DNA. Red= DNA
complementary to SCO3014. Blue= Restriction enzyme sites.

Genomic DNA was prepared from S coelicolor and SCO3014 was amplified using the
primers described in Table 2.1 and using the pFu DNA polymerase. In the event, a PCR
product of about 1.1 kb was identified by DNA gel analysis (Figure 2.4). The PCR
product highlighted in Figure 4 was then excised from the gel and purified in water to

give ~65 ng/pl of DNA.
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Figure 2.4. UV photograph of the 1% agarose gel containing the product of the PCR of SCO3014 from
S coelicolor genomic DNA using the primers from Table 2.1.

2.3.2 Expression of the SCO3014 protein in E. coli

The prepared PCR DNA, and the E. coli expression plasmid pHISTEV were digested by
EcoRI and Xhol restriction enzymes for 4 h at 37°C. The DNA preparations were then re-
purified and introduced to each other in a 3:1 (PCR : pHISTEV) ratio, in the presence of
T4 DNA ligasefor 16 h at 4 °C. The ligation product was then transfected into competent
E. coli BL21 (DE3) Gold cells and colonies were selected for resistance to kanamycin.
Resistant clones were then picked from the petri dish and subjected to colony PCR using
the primers in Table 2.1. Those colonies that exhibited a PCR product of ~1.1 kb were
then picked and inoculated in LB medium (5 ml) containing kanamycin in a 15 ml
falcon tube (agitated for 16 h at 37°C). The cells were then pelleted by centrifugation and

the recombinant plasmid extracted and prepared for DNA sequencing using the QIAPrep

Spin Miniprep Kit.
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tggatggaaaaatttcecctetagaaataattttgtttaactttaagaaggagatatacatatgtegtactaceticaccatcaccatcacgatt
acgatatcccaacgaccgazaacctgtattttcagggegecATGGCTGATCAGGACGCGCGAAACGGCGAGGA
CAAGCGGCCGACCGGGATACCGGCCCTTCGCTGGGAGGAACCCCCCCAGGGCCCGETGC
TGGTGCTGCTGGACCAGACCAGGTTGCCGGCCGAGGAGGTCGAGCTGGTCTGCACGGAC
CCGGCCGCGCTGGTGGAGGCGATCCGCTCGCTCGCCGTGCGCGGGGCACCGCTGCTGE
GCATCGCGGGCGGCTACGGCGTCGCGCTCGCCGCCGTACGGGGCTTICTAGGTCGAGGAG
GCCGCGGCGGECELTGGLEGEGEGEECECGECCCGACCGCGGTGAACCTCGCCGTCGGGGETGC
GCCGGGCGCAGGCCGCGCACCGGGAGGCGCTCGCCGGGACCGGETGACACCCGGCAGGC
CGCCCGGGCGGCGCTGGCCGCGGCAAGGGCGCTGCACCGGGAGGACACCGAGGCCAGC
GCCCTGATGGCCGCGCACGGACTCGCGCTGCTCGACGAGCTGCTGCCCGCCGGAGEACA
CCGCGTCCTCACGCACTGCAACACCGGTTCGCTGGTGTCGGAGGGGGATGTGACCGCCTT
TCGCGGTTGCTCTCTCGGCGCACCTATCGGGACGGCTGCTACGGCTGTGGGTGGACATAT
GCGTCCCTTGTCTGTAGGGTGCTCGCAGAACGTATACGAGAGGTCCTCCACGACTTGCGTA
CACCTTGCTCCCCAACAAAGCGGAATTTTCATGTTTCCTGAGGGGAGAAGCTGACCCTTAAT
TGATT

Figure 2.5. Confirmed DNA sequence of SCO3014-pET28 recombinant plasmid. Black= pHISTEV, Red=
SCO3014.

The presence of SCO3014 in pHISTEV was confirmed by DNA sequencing (Figure 2.5).
The SCO3014-pHISTEV recombinant plasmid was then transfected into E. coli BL21
Gold competent cells and the SCO3014 protein was expressed after incubation with IPTG
(1mM) for 16 h at 16°C. Following Ni%" affinity chromatography, samples from the cell
free extract, cell debris, supernatant, column flow through, column wash, and column
elution were mixed with SDS dye at 95 °C for 5 min. Samples were then loaded onto a
1 mm 4-12% Bis-Tris gel submerged in MES SDS running buffer for SDS PAGE
anaysis. The resulting SDS-PAGE revealed a band in the eluent fraction of ~40 kDa

(Figure 2.6).
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40kDa

Figure 2.6. SDS PAGE of the Nickel Column Purification of MTRI from S. coelicolor. 1) SDS PAGE
protein ladder 2) Cell Free Extract. 3) Supernatant. 4) Column Flow Through. 5) Wash. 6) Elution.

The expression of SCO3014 was confirmed by in-gel tryptic digest and analysis of the
resultant peptides by nanoLC-ESI MSMS (UltiMate (Dionex) and Q-Star Pulsar XL
(Applied Biosystems)). The MS/MS data file generated was analysed using the Mascot
2.1 search engine (Matrix Science, London, UK) against an internal database consisting
of a bacterial genome background to which the SCO3014 sequence (amongst others) had
been added. The data was searched with tolerances of 0.2 Da for the precursor and
fragment ions. Trypsin was used as the cleavage enzyme and up to one missed cleavage
was assumed. Carbamidomethyl modification of cysteines was selected as a fixed

modification and L-methionine oxidation was selected as a variable modification.

The elution fraction following Ni?* affinity chromatography contained the Hiss tagged

protein product of SCO3014 (~2 mg/ml). This fraction was concentrated (2ml) and
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subjected to FPLC size exclusion (Figure 2.7). Size exclusion chromatography using
phosphate buffer (10mM, pH 7.8) reveded that the SCO3014 protein eluted between 75
and 80 ml (the highlighted region of Figure 2.7) with a protein concentration of 1.3
mg/ml. This data indicates that the soluble MTRI exists as a dimer and supports the
hypothesis that this protein is not an initiation factor, as active elF proteins exist as

MONOMEY'S.

m AL

100

IEI ZID 4ID I':I‘EI & 1DID 12IE| ml I
Figure 2.7. Chromatogram obtained by size exclusion using a Superdex 200 column (120 ml) after the

injection of a sample (2 ml) from the eluent fraction of the Ni** affinity chromatography for the SCO3014
protein product. The highlighted region exhibits the elution fraction containing SCO3014.
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After size exclusion chromatography, the fractions containing the SCO3014 protein
product were identified by SDS PAGE anaysis. Another level of purification was
required due to the lack of baseline separation as illustrated in Figure 2.7. This was
achieved by concentrating the pooled fractions containing the SCO3014 protein (2 ml),
and applying the sample to HiTrap Q HP anion exchange column (Amersham
Biosciences, UK) equilibriated with phosphate buffer (10 mM, pH 7.8). The proteins
contained in the sample were seperated by increasing the concentration of NaCl (from a

1M stock) and the resulting chromatogram is shown in Figure 2.8.
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Figure 2.8. Chromatogram obtained by anion exchange, using a HiTrap Q HP column, of the concentrated
SCO3014 protein fraction after size exclusion chromatography. SCO3014 eluted between fractions 49 and
53 at aNaCl concentration of 300 mM (highlighted red). Blue line= UV monitoring at 280 nm. Green line=
NaCl concentration, ranging from 0 to 500 mM.

During anion exchange chromatography, the SCO3014 protein eluted from the column in
the presence of 300 mM NaCl, giving relatively pure protein. The fractions containing

SCO3014 were pooled, and concentrated (2 ml). The resultant sample was then injected
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to a 5 ml HiTrap desat column (Amersham Biosciences, UK) equilibriated with

phosphate buffer (10 mM, pH 7.8) to remove NaCl from the sample (Figure 2.9).
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Figure 2.9. Chromatogram obtained by desalting (HiTrap desalting column, 5 ml) of a sample (2 ml)
containing the SCO3014 protein after anion exchange chromatography. Sample via numbers are shown in
red, UV at awavelength of 280 nmin blue and the conductivity (i.e salt) in brown.

The resultant chromatogram (Figure 2.9) indicates that the desalting process was
successful. Sample vials 2 and 3 were pooled resulting in a final product containing

~ 1.3 mg/ml of relatively pure SCO3014 protein.

2.3.3 Assay of the SCO3014 protein

The putative MTRI protein was then incubated with 5-MTRP generated from
synthetically produced 5'-FDI 36, itself generated by treatment of 5 -FDA 35 with a

commercialy available adenosine deaminase. Treatment of 5'-FDI 36 with a PNP then
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generated 5-FDRP 38. This was achieved from synthetic 5'-FDA 35 (supplied by M.
Onega), suspended in phosphate buffer (20 mM, pH 7.5) and incubated with adenosine
deaminase (5 mg/ml, Sigma UK) for 1 h at 37 °C. The reaction was stopped by heat
deactivation at 95 °C for 5 min, and then centrifuged at 12,000 rpm for 2 min. The
resulting supernatant was removed and incubated with commercially available PNP
suspended in phosphate buffer (5 mg/ml, 20 mM, pH 7.5) for 16 h at 37 °C. The reaction
was stopped by heat deactivation at 95 °C for 5 min, and then centrifuged at 12,000 rpm
for 2 min. A sample of the supernatant was then examined by *°F NMR, and a second
sample was incubated with the SCO3014 protein product for 6 h at 37 °C. A control
experiment was set up identically without the SCO3014 protein preparation. The
reactions were stopped by heat deactivation and centrifugation as before and the

supernatants were subject to °F NMR analysis (Figure 2.10).

| ] | | |
- 226 -228 - 230 - 232 -234 [ppm]

Figure 2.10. °F {*H} NMR spectra of 5-FDRP 38 incubated with MTRI from S. coelicolor for 6 hours at
37°C and a control without the MTRI protein added.
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Previous work in the research group had identified the *>F NMR chemical shift associated
with 5-FDRulP 39 as -231.8 ppm.*% Following incubation of SCO3014 with a
preparation of 5-FDRP 39, F NMR analysis revedled a new signa at -231.8 ppm
consistent with isomerisation. After 6 hours incubation at 37 °C a peak corresponding to
5-FDRulP 39 was identified by *°F NMR (Figure 2.10). The results clearly show that the
over expressed protein was indeed an MTRI from S coelicolor. Perhaps even more
interestingly, this enzyme is capable of isomerising a substrate with fluorine at the
5-position as opposed to the thiomethyl group, its natural substrate in the L-methionine

salvage pathway.

2.4 |dentification of an MTRI from S. cattleya

The goa now was to identify an analogous MTRI genein S cattleya. The isolation of the
enzyme from S coelicolor gave us a framework to scan the genome of another close
relative to S cattleya, that of Streptomyces avermilitis. A BLAST search against the full
S avermilitis genome, using the protein sequence of SCO3014, enabled the
indentification of a protein of 346 amino acids (SAV6658) with 45% homology to a
putative el F2 initiation factor. The identification of this sequence of high homology to a
known MTRI afforded confidence to align the two sequences from S. codlicolor and S.
avermilitis in order to establish highly conserved regions within the amino acid
sequences. These are shown in Figure 2.11. From these highly conserved sequences, it
was possible, with the use of a S. cattleya-specific codon usage table (Figure 2.12), to
design degenerate DNA primers in order to attempt to isolate and amplify a gene from

genomic DNA from S cattleya.
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SAVEE5EN-346 TMSVYMSQK- - - - - - - - - LREEVDW- - - - TEMNSEAR I AU HRETETIQVREYDG D42
SCO20745-380 1TMADODARNGEDKRPTG I PELREWEEPPEEP VIEYEL R AEEVELWVCTHRPAA EGG
SAVEESEM-346 44 R A1 EA A WLEBEREGWDRTOML AMWVER | RA [gele]
SCO30T4-380 5T R SiEA LLEEI G AVRE- - - - - - - FEMEEBABMA L AG A105
SAVGEEEEM-346 100 MCMDRYVLTRFDE®E- - - - - - - - - - DAY ERARYCQ WG BN R ARG TS A D KR 145
SCO301404-380 106 MGMREACAAHREABAGTED TROAARBEA AR AL H TEBRSARMABHEL A - D E 160
SAVGEEEEM-346 146 VAADRPL ABATA LM | RELHARSCEEY WY A S 201
SCO3I04M4-380 161 LLPAGGH SEVSGEE FAaMALAARRSERERR LWY A 216G
SAVEEEE-346 202 LWQEG | PHY WO ARG AGTILR LERY M@ T TWE VL 267
SCO3014r9-380 217 YEAARNDMAY TLL TEN GESLFAA WL o] < =AY SYPLEW2T2
SAVGEHEN-346 208 ACARMAG | LA T LSIATEDGH | ELRGEA L I Rz02
SCO207459-380 272 LARNHHY \ W FDEFDEASHEVEQRFGY TEVTAPQVPWVAGAGG F 322
SAVEESEM-346 303 T ABSRGH G R G L R LEVSAGELFPGE- - - - - - - - HLR 346
SCO30T45-380 320 W LETOAY FE Al E WEPWTTEALASLCARSROWTIS 380

Figure 2.11. Alignment of putative MTRI from S.coelicolor SC0O3014 and a homologous protein from S.
avermilitis SAV6658. Conserved residues highlighted in blue, putative catalytic residues highlighted in red.

Following the alignment of the peptide sequences of SCO3014 and SAV 6658, degenerate
PCR primers were designed for attempted PCR amplification using S. cattleya genomic
DNA as the template. This amplification was carried out by Dr Hai Deng (University of
St Andrews). In the event a 288 bp PCR product was amplified and sequence comparison
indicated a deduced amino acid sequence with 90% homology to SCO3014 and
SAV6658. Chromosomal walking (Dr H. Deng) from this DNA fragment resulted in the
sequencing of a 1161 bp ORF (MTRI-Sca) shown in Figures 2.12 and 2.13. The deduced
amino acid sequence gives a putative protein consisting of 386 amino acids with a

molecular weight of 38.22 kDa.

73



gaacacgcgtegtttacctccggggtgagagtectggtecggtcageteggteacctectgecgecgegegaageecgeccegegeccggctecgegec
cggcccggaacggteggtacggeggeggeaccgggecaccacgaccggecggectcggacgaattgegecgegeccgttcaacgecteegeteege
ggggcagactgacgacatgggtgat cagtccgtacagectttggecaagggeacggggt ccgggaccecggagecgaaaccegct ctcegetgg
gaagagcctcccgaagggeccgtgetggt ot ect cgaccagacceggcet ceeegt cgaggaggt cgaactgt tctgtacggacgt gecegegct
cgtccaggccat cegtaccctcgeegteecgeggegegecgetgetcggget cgecggagegtacggegt cgecctggecgecgecegt ggetacy
acgtcgggceaggecgecgacgaact cgecggegeccggeccaccgecgt caacct ctectacggggtgegecgegegetggecgegtacegtac
cgcggt caccggeggegecgacgacacgggegeggeggeggecaccet cgecgaggecegegegcet gcacgecgaggacgecagggecage
gaacgcatggcccgcaacggectggegct getggacgaact cgtceceeggeggegget accgggt get gacccactgcaacaccggegeect gg
tctcecggeggegagggeaccgecctggecgt cgtectcgeecgeccaccgeggeggact cetgegeegget gtgggt ggacgagacccggecgct
gctccagggcegeceggct gaccgectacgaggecgeccgggeeggegt cgcccacacgttgetgecggacggegeggecgggtegetcttegeg
gccggegaggt cgacgeggtget gat cggegecgaccggat cgeecgeggacggct cgaccgecaacaaggt cggeaget accegcetggeegtc
ctcgeceggtaccacaacgt cocctt cgtegtggt cgeccecaccaccacgat cgacct ggecacccecegacggeaccgegat cgaggtggagea
gcgecccgegcaggaggt gaccgaget gaccggaccgegecceggeceggaccgegagggegecaccggeat ceeegtegegeecetgggea
cgceggegtacaacceggegttcgacgt caccecgeccgaactgat caccgeegt ggt caccgagaccggegtggect cceeggt caceggct ce
tccatageegecct ggecgeccgecceggeccegt cegegeccagecgtgacggect cgacggt cgt cat cecgecgecgat gacgaccegtcacee
gtcaccgatgacgaccgtcecttee

Figure 2.12. The MTRI-Sca ORF identified from S. cattleya genomic DNA after degenerate PCR and gene
walking targeted towards MTRI identification. Red= ORF of 1161 bp.

SCa-386 TMEDOEVOPLAKGTGSGTPEPKPALRWEEPPEGPWLYLLDOQTRLPYVEEVELFCTDWP G6

SCaf-386 GF ALVOAIRTLAVRGAPLLGLAGAYGWVALAAARGYDVGOAADELAGARPTAWVNLSEYGW 112
SCal-386 113 RRALAAYRTAVTGGADDTGAAAATLAEARALHAEDARASERMARNGLALLDELYPG 1628
SCar-386 168 GEYRWLTHCNTGALVSGEEGTALAVYVLAAHRGGLLRRLWYDETRPLLOGARLTAYE 224
SCa1-386 225 AARAGWAHTLLPDGAAGSLF AAGEVDAVL IGADR I AADGSTANKVGSYPLAVLARY 280
SCaf-386 281 HMWPFWYWAPTTTIDLATPDGTAIEVEQRPAQEVTELTGPRPGPDREGATG | PWAPR 336

SCal-386 33 LGTPAYNPAFNYTPFPELITAVYVTETGWASPYWTGSS | AALAARPGPYWRAGP 386

Figure 2.13. The 386 amino acid sequence derived from the 1161 bp ORF which was identified by
degenerate PCR using genomic DNA from S cattleya.

2.4.1 Amplification of MTRI-Sca

Alignment of the amino acid sequence from the identified ORF of S cattleya with those
from the known MTRIs from S. coelicolor (SCO3014) and B. subtilis is shown in Figure

2.14.
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Figure 2.14. Alignment of amino acid sequence derived from the 1161 bp ORF obtained by degenerate
PCR using genomic DNA from S. cattleya with the known MTRIs from S. coelicolor (SCO3014) and B.
subtilis. Conserved amino acids are shown in blue. Red= Conserved putative catalytic residues. Green=
Common variations in putative catalytic residues within MTRIs.

The subsequent alignment reveals that the putative protein sequence from S. cattleya

contains many of the conserved putative catalytic residues that have been identified in

other MTRIs.*?> The amino acid sequence from this ORF had ~75% identity to the

putative isomerase from S coelicolor. This suggests that the ORF identified from the

genomic DNA of S cattleya is likely to an MTRI. As aresult, the specific DNA primers

shown in Table 2.3 were designed.
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Primer/ Restriction Site Sequence5'-3

Forward/ EcoRl GCAGGAGGAATTCCATGGGTGATCAGTCCGTACAGCCTTTGGC

Reverse/ Xhol CGCCGCTCGAGCGGAAGGGACGGTCGTCATCGGTGAC

Table 2.3. Specific DNA primers designed for the PCR of the putative MTRI from S. cattleya from
genomic DNA

Genomic DNA was prepared from S. cattleya and the putative MTRI gene was amplified
using the primers described in Table 2.3 and using the pFu DNA polymerase. In the
event, a PCR product of about 1.1 kb was identified by DNA gel anaysis (Figure 2.15).
The PCR product highlighted in Figure 2.15 was then excised from the gel and purified in

water to give ~80 ng/pl of DNA.

1.5 kb
1 kb

500 hp
250 bp

MTEI-Sca

Figure 2.15. UV photograph of the 1% agarose gel containing the product of the PCR MTRI-Sca from
S cattleya genomic DNA using the primers from Table 2.3.
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2.4.2 Expression and purification of MTRI-Sca in E. coli

The prepared PCR DNA, and the E. coli expression plasmid pHISTEV were digested by
EcoRI and Xhol restriction enzymes for 4 h at 37°C. The restricted DNA preparations
were then repurified into water and introduced in a 3:1 (PCR : pHISTEV) ratio, in the
presence of T4 DNA ligase for 16 h at 4°C. The ligation product was then transfected
into competent E. coli BL21 (DE3) Gold cells and colonies were selected for resistance
to kanamycin. Resistant clones were then picked from the petri dish and subjected to
colony PCR using the primers in Table 2.3. Those colonies that exhibited a PCR product
of ~1.1 kb were then picked and inoculated in 5 ml LB medium containing kanamycin in
a 15 ml facon tube (agitated for 16 h at 37°C). The cells were then pelleted by
centrifugation and the recombinant plasmid extracted and prepared for DNA sequencing

using the QIAPrep Spin Miniprep Kit (Figure 2.16).

tggatggaaaaatitcecectetagaaataattttgtttaactttaagaaggagatatacatatgtcgtactacctticaccatcacecatcacgatt
acgatatcccaacgaccgaaaacctgtattttcagggegecATGGGTGATCAGTCCGTACAGCCTTTGGCCAAG
GGCACGGGGTCCGGGACCCCGGAGCCGAAACCCGCTCTCCGCTGGGAAGAGCCTCCCGA
AGGGCCCGTGCTGGTCCTCCTCGACCAGACCCGGCTCCCCGTCGAGGAGGTCGAACTGTT
CTGTACGGACGTGCCCGCGCTCGTCCAGGCCATCCGTACCCTCGCCGTCCGCGGCGCEC
CGCTGCTCGGGCTCGCCGGAGCGTACGGCGTCGCCCTGGCCGCCGCCCGTGGCTACGAC
GTCGGGCAGGCCGCCGACGAACTCGCCGGCGCCCGGCCCACCGCCGTCAACCTCTCCTA
CGGGGTGCGCCGCGCGCTGGCCGCGTACCGTACCGCGGTCACCGGCGGCGCCGACGAC
ACGGGCGCGGCGGCGGCCACCCTCGCCGAGGCCCGCGCGCTGCACGCCGAGGACGCCA
GGGCCAGCGAACGCATGGCCCGCAACGGCCTGGCGCTGCTGGACGAACTCGTCCCCGGC
GGCGGCTACCGGGTGCTGACCCACTGCAACACCGGCGCCCTGGTCTCCGGCGGCGAGGG
CACCGCCCTGGCCGTCGTCCTCGCCGCCCACCGCGGCGGACTCCTGCGCCGGCTGTGGG
TGGACGAGACCCGGCCGCTGCTCCAGGGCGCCCGGCTGACCGCCTACGAGGCCGCCCG
GGCCGGCGTCGCCCACACGTTGCTGCCGGACGGCGCGGCCGGGTCGCTCTTCGCGGCC
GGCGAGGTCGACGCGGTGCTGATCGGCGCCGACCGGATCGCCGCGGACGGCTCGACCG
CCAACAAGGTCGGCAGCTACCCGCTGGCCGTCCTCGCCCGGTACCACAACGTCCCCTTCG
TCGTGGTCGCCCCCACCACCACGATCGACCTGGCCACCCCCGACGGCACCGCGATCGAG
GT

Figure 2.16. Confirmed DNA sequence of the PCR product using the primers from Table 2.3 with S
cattleya genomic DNA. Black = pHISTEV vector. Red= Putative MTRI.
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The presence of the putative MTRI gene in pHISTEV was confirmed by DNA
sequencing (Figure 2.16). The MTRI-pHISTEV recombinant plasmid was then
transfected into E. coli BL21 Gold competent cells and the SCO1844 protein was
expressed after incubation with IPTG (1mM) for 16 h at 16°C. Following Ni®* affinity
chromatography, samples from the cell free extract, cell debris, supernatant, column flow
through, column wash, and column elution were mixed with SDS dye at 95 °C for 5 min.
Samples were then loaded onto a 1 mm 4-12% Bis-Tris gel submerged in MES SDS
running buffer for SDS PAGE analysis. The resulting SDS-PAGE revealed a band in the

eluent fraction of ~40 kDa (Figure 2.17).

12345

a0 kDa

40 kDa

Figure 2.17. SDS-Page of the progressive purification of S cattleya isomerase over-expressed in E. coli. 1)
Protein molecular weight markers (Fermentas); 2) cell-free extract; 3) cell-free extract supernatant; 4)
column wash from Ni-affinity column; 5) Eluent from Ni-affinity column; The identity of the protein was
confirmed by MS-M S mass spectrometry.

The elution fraction following Ni?* affinity chromatography contained the protein
product of MTRI-Sca (~2 mg/ml). This fraction was concentrated (2ml) and subjected to

FPLC ge filtration (Figure 2.18). Gel filtration using phosphate buffer (10mM, pH 7.8)
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revealed that the SCO3014 protein eluted between 56 and 60 ml (the highlighted region
of Figure 2.7) with a protein concentration of 1.3 mg/ml. This data indicates that the

soluble MTRI exists as adimer and is unlikely therefore to be an initiation factor elF.
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Figure 2.18. Chromatogram obtained by size exclusion using a Superdex 200 column (120 ml) after the
injection of a sample (2 ml) from the eluent fraction of the Ni** affinity chromatography for the MTRI-Sca
protein product. The red region exhibits the elution fraction containing dimeric MTRI-Sca protein, the
green represents tetrameric MTRI-Sca.

Analysis of the MTRI-Sca protein product by size exclusion chromatography revealed
that the expressed protein was present in solution in two forms, as a homodimer and a
homotetramer. The homotetramer eluted from the gel filtration column after ~65 ml
(green area, Figure 2.18), and the homodimer after ~75 ml (red fraction, Figure 2.18).

Samples were taken from the column eluant that corresponded to each of these fractions,
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and the eluted protein was identified as MTRI-Sca by SDS PAGE (Figure 2.19) and also

by MS-MS analysis.

1 2 3 4 5 6 7 8 9 10

40 1Da

Figure 2.19. SDS-PAGE of the size exclusion fractions from S. cattleya isomerase over-expressed in E.
coli. 1) Protein molecular weight markers (Fermentas); 2) Ni?" affinity eluent 3) Fractions 40-45 ml 4)
Fractions 45-50 ml; 5) Fractions 50-55 ml. 6) Fractions 65-67. 7) Fractions 67-70 ml. 8) Fractions 70-72
ml. 9) Fractions 72-75 ml. 10) Fractions 75-78 ml. The identity of the protein was confirmed by MS-MS
mass spectrometry.

The size exclusion analysis of over expressed MTRI-Sca shows that either the protein
product has been expressed in two forms, or there is a transient movement between the
two. It was particularly important to determine this information in order to enter X-ray
crystal trials with this protein. To establish whether each, or both of the soluble forms of
MTRI-Sca are transient or fixed. The eluant containing the dimeric form of the protein

(the major product) was collected and pooled and left for 6 hours at room temperature.
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Following this period, the pooled fractions were concentrated to 2 ml and subject to a
second round of size exclusion chromatography, using the same method as before (Figure

2.20).
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Figure 2.20. Chromatogram obtained by size exclusion using a Superdex 200 column (120 ml) after the
injection of a 2 ml sample from the eluent fraction of the Ni?* affinity chromatography for the MTRI-Sca
protein product. The red region exhibits the elution fraction containing dimeric MTRI-Sca protein.

The results of a second size exclusion chromatography on the protein product of MTRI-
Sca reveals that only the homodimer is present and that the homodimeric form of this
protein is stable. The homodimer-containing fractions were then collected, to a final
concentration of ~2 mg/ml in phosphate buffer (10 mM. pH 7.8). The data in Figure 2.20

suggest that formation of the homotetrameric protein occurs as an artefact of
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overexpression in an E. coli host, and not as a transient form in the presence of
concentrated protein. As the mgjor protein product of MTRI-Sca exists as a homodimer,
combined with the fact that known MTRIs are active as dimers, this form of the proteinis

assumed to be the native, active structure.

2.4.3 Assay of MTRI-Sca

The MTRI-Sca protein product was then incubated with 5-FDRP 38 generated from
synthetic produced 5-FDA 35 via 5-FDI 36 by commercially available adenosine
deaminase and PNP respectively. Synthetic 5'-FDA 35 was suspended in phosphate
buffer (100mM, pH 7.5) and incubated with adenosine deaminase (Sigma, UK) for 1 h at
37 °C. The reaction was stopped by heat deactivation at 95 °C for 5 min, and then
centrifuged at 12,000 rpm for 2 min. The resulting supernatant was removed and
incubated for 16 h at 37 °C. The reaction was stopped by heat deactivation at 95 °C for 5
min, and then centrifuged at 12,000 rpm for 2 min. A sample of the supernatant was then
analysed by *°F NMR, and a second sample was incubated with the MTRI-Sca protein
product (~0.1 mg) for 6 h at 37 °C. The reaction was stopped by heat deactivation and
centrifugation as before and the supernatant was subject to >F NMR analysis (Figure

2.21).
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Figure 2.21. F{*H} NMR 5-FDRP incubated with the putative MTRI from S. cattleya for 6 h at 37°C.

Upon incubation of the MTRI-Sca protein with a preparation of 5-FDRP 38, analysis by
YF NMR reveded a new signa at -231.8 ppm. This peak is consistent with the
generation of the open sugar 5-FDRulP 39 (Figure 2.21). The results clearly show that the
MTRI-Sca protein was an MTRI from S cattleya. Similarly to its homolog from S
coelicolor (SC0O3014), MTRI-Sca is capable of performing the isomerisation of the
fluorinated substrates, 5-FDRP 38 to 5-FDRulP 39. The MTRI-Sca protein may well be
the enzyme responsible for isomerisation in the elaboration of fluorometabolites in S

cattleya as well as playing adual role in the methionine salvage pathway.
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2.4.3.1 Assay of MTRI-Sca in the presence of EDTA

It is known that some & dose-ketose isomerases require two divalent cations (e.g. Zn**) in
order to be catalytically active. This is the case for xylose isomerase.**? The MTRIs from
B. subtilis, S cerevisiae and S coelicolor do not require such metals for activity. Studies
on the cell free extracts of S cattleya revealed that incubation with EDTA does not

inhibit the isomerisation of 5-FDRP 38 to 5-FDRulP 39. ¥’

It was important to establish at this stage if the isomerase identified from S cattleya was
inhibited by the presence of EDTA. Accordingly MTRI-Sca (0.1 mg) in phosphate buffer
(20 mM, pH 7.8) was incubated with synthetic 5-FDRP in the presence of EDTA (1 mM)
(6 hours, 37 °C). The reaction was stopped by heat deactivation (95 °C, 5 min), followed
by centrifugation (12,000 rpm, 2 min). The resulting supernatant was removed and the
volume made up to 700 pl using ultrapure water. The mixture was then added to D,O
(100 pl) and subject to °F NMR. The resulting **F NMR spectrum is shown in Figure

2.22.
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Figure 2.22. *F{*H} NMR spectra of MTRI-Sca incubated with 5-FDRP 38 in the presence of EDTA
(2 mM) and a control without the MTRI-Sca protein (blue)

Incubation of MTRI-Sca in the presence of 1 mM EDTA did not appear to reduce
catalytic activity. A new product signal peak at -231.8 ppm was clear, which corresponds
to the production of 5-FDRulP 38 (Figure 2.22). Thus the MTRI does not appear to be
dependant upon divalent ion co-factors. It is aso known from previous in vitro studies
that the fluorometabolite pathway in S cattleya is not inhibited by the presence of

EDTA.Y

2.4.3.2 In vitro generation of 5-FDRulP from fluorideion

MTRI-Sca was now assayed for its ability to generate 5-FDRulP 38 in the reconstitution

of the first three steps of the fluorometabolite pathway in vitro. This could be achieved by
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over expressing the fluorinase, PNP and isomerase in E. coli and to generate 5-FDRulP
39 from SAM 34 and fluoride ion in a one-pot reaction. The fluorinase and PNP (FIB)
genes from S cattleya have been reported, and successful over expression of these
proteins in E. coli has been achieved through previous work within the research group.
The identification now of an isomerase from S cattleya, that is capable of converting 5-
FDRP 38 to 5-FDRulP 39, opens up the possibility to reconstitute the pathway in vitro
from SAM 34 and fluoride ion to generate 5-FDRulP 39. Establishing this route to 5-
FDRulP 39 will have connotations to the viability of reconstituting the complete

pathways to 4-FT 33 and FAc 8 in vitro.

The assay for the MTRI-Sca in this case is incubation of the protein with the fluorinase,
and PNP enzymes in the presence of SAM 34 and fluoride ion. The reaction was
followed by °F NMR. The fluorinase and PNP genes were inserted into the E. coli
expression vectors pET28(b) and pLou respectively and transfected into E coli (BL21
Gold) competent cells. Expression and purification of these proteins was identical to that
of MTRI-Sca. They were purified to final concentrations of ~1 mg/ml in phosphate buffer
(10 mM, pH 7.6). Equimolar amounts (0.1 mg) of these proteins were incubated together
in the presence of SAM 34 (2 mM) and fluoride ion (50 mM) for 16 h at 37°C. A control
experiment was set up with the MTRI-Sca protein excluded from the reaction, and the
experiments were run simultaneously. The reactions were stopped by heat deactivation
(95°C, 5 min) and centrifuged (12,000 rpm, 2 min). The resulting supernatant was made
up to avolume of 700 ul, and D,O (100 pl) was added. The resulting mixture was then

subject to **F NMR, and typical spectraare shown in Figure 2.23.
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Figure 2.23. F{*H} NMR spectra of the MTRI-Sca protein in an in vitro pathway experiment starting
from SAM 34 and fluoride ion. The blue spectrum represents a control experiment, without the MTRI-Sca
protein. The red spectrum represents an experiment with the MTRI-Sca protein incubated alongside the
fluorinase and PNP enzymes from S. cattleya overexpressed in E. coli.

Figure 2.23 clearly shows the conversion of 5-FDRP 38, generated by an in vitro
reconstitution of the fluorometabolite pathway from SAM 34 and fluoride ion, to the
product 5-FDRulP 39. In the presence of MTRI-Sca, the *>F NMR spectra revealed three
organofluorine signals at -231.41 ppm, -231.60 ppm and -231.85 ppm respectively. In
these experiments 5’ -FDA 35 (-231.60) and 5-FDRP 39 (-231.41 ppm) remain, with 5’-
FDA the mgjor product of the reaction. This indicates that the PNP enzyme is acting as a
bottleneck in both of these experiments. In the experiment containing MTRI-Sca, 5-
FDRP is diminished, but is still present suggesting that the isomerisation reaction has at
some point reached an equilibrium. Control experiments where the MTRI-Sca protein
was excluded from the reaction show the accumulation of 5-FDRP 38 and 5'-FDA 35

only. Both were confirmed by the add-mixing of synthetic samples.”* ¥ These results
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show that the MTRI-Sca is indeed capable of converting 5-FDRP 38, generated from

fluorideion, to 5-FDRuIP 39.

2.4.4 1sothermal titration calorimetry of MTRI-Sca with putative
substrates

With the isomerase from S cattleya in hand, it became a focus to identify the nature of
binding at the active site of the enzyme. Two putative compounds were identified as
structural homologs to the ribulose-1-phosphate moiety. They were dihydroxyacetone

phosphate (DHAP) and glycerol-3-phosphate (LG3P).

DHAP is a key intermediate in metabolism and is involved the Calvin cycle, ether lipid
biosynthesis and L-methionine salvage pathways. Its mgor biochemical role is in the
metabolic pathway of glycolysis, where it is a breakdown product of fructose-1-
phosphate. L3GP is also an intermediate in glycolysis, and is responsible for the entry of
glycerol into the glycolytic pathway. The glycerol-3-phosphate shuttle is used to rapidly
generate NAD" in the brain and skeletal muscle through the activity of glycerol-3-
phosphate dehydrogenase. The oxidation of L3GP at C2 position yields DHAP. Both
L3GP and DHAP possess structural similarities to the ribulose-phosphate substrate for

MTRIs (Scheme 2.5).
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5-FDRulP 39

Scheme 2.5. Structural similarities between L3GP, DHAP and 5-FDRulP 39.

Due to this structural similarity it was thought that LG3P and DHAP may display some
affinity for the active site of MTRI-Sca. Isothermal calorimetry (ITC) was used to try and

explore this affinity.

Accordingly, the MTRI-Sca protein was over expressed and dialysed into Hepes buffer
(10 mM, pH 7.8) to afinal concentration of 20 uM (1.6 mg/ml). Both DHAP and L3GP
(Sigma Ltd, UK) were also suspended in the same buffer to a concentration of 600 uM.
Solutions were degassed with a Thermovac degasser (Microcal Inc, USA). The protein
solution was applied to the sample cell of a VP-ITC Microcalorimeter (Microcal Inc,
USA) and the DHAP solution was loaded to the injection syringe and the cell jacket was
equilibriated a 25 °C. An initial injection of 2 pl over 10 s followed by 180 s
equilibriation, was followed by 29 subsequent injections of 5 ul over a 10 s time period

with 180 s between injections. The subsequent results are shown in Figure 2.24.
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Figure 2.24. The ITC results following incubation of the MTRI-Sca in Hepes buffer (10 mM, pH 7.8) with
A.DHAP and B. L3GP.

Results for the ITC of MTRI-Sca with DHAP and L3GP did not reveal any heat of
binding to the active site of the enzyme for either putative ligand. Both of these
molecules have fewer hydrogen bonding sites available than the confirmed isomerisation
product 5-FDRuUIP 39, and as a result may not possess the necessary characteristics to

initiate efficient binding.
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245 A Rolefor MTRI-Scain S. cattleya

The L-methionine salvage is a critical process in many organisms, and the enzymes
involved are clearly part of primary metabolism. In S cattleya, the fluorinase and the
PNP are located in a 10 kb gene cluster.® Fluorometabolite production occurs after 5
days of incubation in optima medium for growth, suggesting that fluorometabolite
production occurs as a consequence of secondary metabolism.”? This raises the question
of whether this enzyme is a primary metabolism enzyme, that exists as part of the
L-methionine salvage pathway but that it is also capable of elaborating fluorometabolites
i.e. it may have adua role. However it may only be a secondary enzyme, expressed |later
in the growth cycle of S. cattleya specifically to perform this step in fluorometabolite

biosynthesis. Thisis unresolved.

Some clues to the origin of MTRI-Sca can be found by using information from the
genomic DNA of its homolog from S coelicolor, SCO3014. Figure 2.25 shows the
location of SCO3014, and the genes that are located next to it in the genomic DNA.
Unlike B. subtilis and S. cerevisiag, the MTRI gene is not located in a gene cluster

consisting of the component parts of the methionine salvage pathway.
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Figure 2.25. SCO3014 and the organisation of the surrounding genes in the genomic DNA of S. coelicolor.
SCO3011= putative lipoprotein. SCO3012= putative two-component system histidine kinase. SCO3013=
putative two-component system response regulator. SCO3014= MTRI (highlighted in red). SCO3015=
putative integral membrane protein. SCO3016= putative integral membrane protein. SCO3017= putative
secreted protein. SCO3018= putative regulatory protein.'*

The genes surrounding SCO3014 are documented in Figure 2.25. In the identification of
MRTI-Sca, some information concerning the surrounding genomic DNA was uncovered
during gene walking. Immediately downstream from the MTRI-Sca, 70 bp of genomic
DNA were also reveded. Trandation of this DNA into its subsequent peptide sequence
and BLAST search against the genomic database of S. codlicolor identified that this DNA
corresponds to a homolog SCO3013, the gene immediately downstream of the MTRI in
S codlicolor (Figure 2.26). Although this information is very limited, on the face of it, it
implies that the MTRI-Sca is organised within the genomic DNA of S cattleya in the

same way.
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atgggtgatcagtccgtacagectttggecaagggcacggggtccgggace ccggage cgaaacccgetectcocgetggg
aagagecteecgaagggeccgtgetggtectectegaccagaceceggeteceegtegaggaggtegaactgttetgtacy
gacgtgcccgogetegtecaggecateccgtacectegeogtecgoeggoegoegoecgoetgetocgggctegoecggagegtacg
gegtegecctggecgecgecegtggetacgacgtegggeagygocgecgacgaactogecggegeccggeecacegec
gtcaacctctcctacqggggtagcgecgegoegetgge cgegtac cgtaccge gatcac cgooggogcc gacgacacggoc
gcggeggeggecacectegecgaggeccgegegetgeacgecgaggacgecagggecagegaacgeatggecege

aacggcctggogetgetggac gaactegtec ceggeggeggetaccegggtgctgace cactgeaacaccggegec oty

gtctceggeggegagggeaccgeectggecgtegtectegeocgeccacegeggeggactectgegeeggetgeggatg
gacgagacccggccgetgetecagggcogec cggetgaccgectacgaggecgeccgggecggegtegeccacacgtt
gctgecggacggegeggccgggtegeteticgeggecggegaggtegacge ggtgetgateggegecgaceggateqg
cecgeggacggcetegaccgecaacaaggteggcagetacecgetggecgtectegeccggtaccacaacgteccctiegt
cgtggtcgcoccococaccaccacgatcgacctggoccac ccoccgjacggoaccgogatcgaggtggagecagegecoccgege
aggaggtgaccgagctgaceggacegege cceggeccggaccgegagyggegecaccggeateccegtegegecect
gggcacgccggegtacaaccrcggegticgacgtcaccoccgeccgaactigaicaccgecgtggtcaccgagaccggogt
ggcctecceggteaccggetectecatagecgeectggecgeccgececcggeccegteegegeccageegtgacggec
tcgacggtegtcatccgecgec gatgac gaccgtcaccegtcac cgatgacgaccgteccttccg

Figure 2.26. MTRI-Sca ORF and followed by a 70 bp sequence, homologous to SCO3013 from S.
codlicolor (highlighted in red).

The generation of a cosmid library of the genomic DNA of S cattleya was carried out by
Dr Ha Deng (University of St Andrews). Interestingly it was discovered that both MTRI-
Sca and the fluorometabolite cluster were present in the same 40 kb fragment, i.e they
were present on the same cosmid. The exact location of MTRI-Sca, and its position
relative to the 10 kb gene cluster remains to be identified by the genome mapping project
of S cattleya that is currently being undertaken in a collaboration with the University of

Edinburgh.

2.5 Conclusions

Two enzymes have been identified from Streptomyces that are capable of performing the
isomerisation of 5-FDRP 38 to the subsequent intermediate in the fluorometabolite
pathway of S cattleya, 5-FDRulP 39. The MTRI identified from S coelicolor was
initially annotated as a putative trandation initiation factor, a common error associated

with MTRIs. As a result of these studies, this has been corrected. Alignments of this
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putative peptide sequence reveal that conserved residues associated with the catalytic
activity of MTRIs were present. Amplification of the gene and itsinsertion into an E. coli
expression vector allowed the over-expression of the SCO3014 protein in good yield (~5
mg/L). The incubation of the over expressed SCO3014 protein with 5-FDRP 38 revealed

that 5-FDRulP 39 had been generated.

This demonstrated that enzymes of this class are capable of isomerisation of the
fluorinated substrate analogue and gave a target for the identification of its homolog
which may be involved in the fluorometabolite pathway in S cattleya. The SCO3014 and
SAV6421 (a putative MTRI from S avermitilis) were aligned to identify conserved
regions for the design of degenerate PCR primers. Degenerate PCR and gene walking
revealed a 1161 bp ORF, which were trandated and through BLAST search analysis
against the S coelicolor genome revealed high homology with the SCO3014 peptide
sequence. The subsequent amplification of this ORF and insertion into an E. coli
expression vector allowed the over-expression of the putative MTRI in good yield (~5
mg/L). Incubation of this protein with 5-FDRP 38 generated from synthetic 5’ -FDA 35,
and generated from fluoride ion in the presence of the fluorinase and PNP enzymes from
S cattleya both produced the 5-FDRulP 39 intermediate. Consequently, an enzyme
capable of the isomerisation reaction of the fluorometabolite pathway was identified. It
remains to be confirmed whether MTRI-Sca is an enzyme of primary or secondary

metabolism, a question that may be answered by genome mapping of S. cattleya.

94



3 DHAP aldolases from Streptomyces

This chapter describes the over expression of a dihydroxyacetone phosphate (DHAP)
dependant adolase from S coelicolor. The enzyme was isolated with a view to
identifying the gene of its homolog from S. cattleya, an enzyme which is involved in
fluorometabolite biosynthesis, and generates fluoroacetaldehyde 40 from 5-fluoro-5-

deoxyribul ose phosphate (5-FDRulP) 39 in aretro-aldol reaction.

3.1 Dihydroxyacetone phosphate (DHAP) dependant aldolases

DHAP dependant aldolases are of interest synthetically as they form a C-C bond and
generate two stereogenic centres by the aldol addition of DHAP and an adehyde
acceptor. DHAP aldolases can generate four different stereochemical outcomes and each
is catalysed by an individual subset of enzymes within the DHAP adolase family
(Scheme 3.1). Because these aldolases construct two stereogenic centres in one reaction
they are valuable biotransformation catalysts. '3 137 138 139,190 A || of these aldolases show
absolute substrate specificity for DHAP, however they can accept a variety of different

aldehyde el ectrophiles giving product diversity as biotransformation catal ysts.
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Scheme 3.1 L-fuculose-1-phosphate adolase (L-FucA) (E.C. 4.1.2.17), L-rhamnulose-1-phosphate
aldolase (L-RhuA) (E.C. 4.1.2.19), L-tagatose-1,6-bisphosphate aldolase (L-TagA) (E.C. 4.1.2.40) and L-
fructose- 1,6-bisphosphate aldolase (L-FruA) (E.C. 4.1.2.13)* 1 R= OH.

3.1.1 Mechanism of class| aldolases

DHAP dependant aldolases fall into Class | or Class Il. The different classes catalyse
identical reactions however the mechanisms by which they operate are different. 4% 142
Class | adolases are generally homotetrameric enzymes that form a Schiff-base
intermediate during the catalytic cycle.** These enzymes are usually found in eukaryotes
or higher organisms, although Class | aldolases have been reported in prokaryotes.*** The

generally accepted mechanism for Class | aldolases proceed via the formation of a Schiff-

base intermediate between a y-amino lysyl group at the active site, and the carbonyl of
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DHAP.*> 1% A general mechanism for the Class | fructose 1,6-bisphosphate aldolase is

shown in Scheme 3.2.

NH, Enzyme Enzyme

Enzyme GAP 1 GAP
NW]N\/\I
NH,
Enzyme Enzyme
NW]NW N\I\I‘IJVV\I

Scheme 3.2. General mechanism for Class | L-fructose 1,6-bisphosphate aldolase (L-FruA).®

3.1.2 Mechanism of Class || DHAP aldolases

Class Il DHAP dependant aldolases are usualy found in prokaryotes and lower
eukaryotic organisms such as yeast, fungi and algae*’ Class Il enzymes are
homodimeric and require a divalent metal ion, usually Zn®* as an essential Lewis acid co-
factor. As aresult, they can be inhibited by chelating compounds such as EDTA, which
sequester the Zn**, inactivating the enzyme. The mechanism of Class Il aldolases is
highlighted in Scheme 3.3. The mechanism for this reaction in the aldol direction is

initiated by deprotonation at C3 of DHAP by the glycolic acid side chain of the glutamic
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acid 73 residue of L-FucA from E. coli (Glu73). The resultant ene-diolate is stabilized by
Zn*" complexation. A nucleophilic attack at the carbon si face of the adehyde results in

subsequent C-C bond formation.**" 1%

His

HC TG . =N
2T, 7
‘His

Cﬁ/o L-Fuc1P
Glu73 Oj/ O H

o0

Glu73

Scheme 3.3. Mechanism of the Class || DHAP dependant aldolase, L-FucA from E. coli.**®

3.2 DHAP aldolasesfrom S. cattleya

Previous work in the research group has identified two DHAP adolases from S. cattleya
that were capable of utilizing FAId 40 as a substrate in conjunction with DHAP.® These
aldolases were first identified by the observation that two diastereoisomers, 5-FDRulP 39

and 5-FDXulP 42 accumulated on incubation of FAlId 40 and DHAP in cdl free
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extracts.™ ¥ Stereochemical analysis of DHAP aldolase products using non-fluorinated
substrates indicated that L-FucA generates the (3R, 4R) stereoisomer (Scheme 3.1). 24" 142
This is consistent with the action of a L-fuculose adolase, to generate 5-FDRuIP 39,

which is aproven intermediate in flurometabolite biosynthesisin S. cattleya.®”’

L-FucA, as well as the other Class |l addolases, are capable of utilising a wide variety of
aldehyde substrates. Studies have shown chloroacetaldehyde is accepted as a substrate by
L-FucA from E. coli.*** A suggested mechanism for FAId 40 incorporation in 5-FDRulP

39 synthesis is shown in Scheme 3.4.

Y113

Scheme 3.4. Suggested catal ytic mechanism for fuculose aldolase using FAId 40 as a substrate.

Attempts to isolate the native L-FucA from active cell free extracts of S cattleya failed,

however in that effort, a L-FruA aldolase responsible for 5-FDXulP 42 production was
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successfully purified.® It therefore became a research focus to identify the aternative
L-FucA gene from S cattleya in order to over-express this enzyme and exploreitsrolein

fluorometabolite biosynthesis.

3.3 Identification of an L-fuculose aldolase from S. cattleya.

In an attempt to identify the L-FucA gene a reverse genetics approach was used. A
BLAST search using L-FucA from E. coli (E.C. 4.1.2.17) revealed severa putative
adolases from a number of different bacteria including Streptomyces coelicolor,
Sreptomyces avermilitis, Saccharopolyspora erythraea, Rubrobacter xylanophilus and
Methylobacterium extorguens. The peptide sequences for these aldolases are aigned in
Figure 3.1. The alignment reveals that they all possess the key catalytic residues, Glu73

and Tyr112, identified from L-FucA from E. coli.'*’
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Figure 3.1. Alignment of the peptide sequences of L-FucA from E. coli and the putative L-FucAs
SCO01844, SAV6421, Saccharopolyspora erythraea, Rubrobacter xylanophilus and Methylobacterium
extorquens respectively. These homologs were identified by BLAST search. Conserved catalytic residues
identified in L-FucA (Glu73 and Tyr113) are highlighted in red. Other conserved residues are highlighted
in shades of blue; the dark blue residues are absolutely conserved throughout this family of aldolases.

The peptide sequence of L-FucA from E. coli was used to screen against the proteome
databases of S coelicolor and S avermilitis, the two Streptomyces organisms which have
been the subject of full genome sequence analysis.™*> *° This search highlighted a gene,
CO01844, from S coelicolor which had a 40% identity to E. coli L-FucA, and it aso

highlighted the SAV6421 gene from S avermilitis with 42% identity to this gene
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(Figure 3.2). The SCO1844 is a gene of 723 bp and encodes a protein of 240 amino acids
with amolecular weight of 25 kDa (24988 Da). SAV 6421 is a gene of 726 bp, encoding a
protein of 241 amino acids and with a molecular weight of about 25.8 kDa (25891 Da).
Both of these genes are annotated as putative fuculose aldolases. When the peptide
sequences of these Streptomyces genes are aligned, highly conserved regions between the

two become obvious. These regions include the putative catalytic residues (Figure 3.2).

SCO18449-240 THMTYSRAGEAESASEFRD AAGDPTAEFRPAREA - - - AE AR 45
SAVE2-241 THMAEQRRDERDAGEY - - HFOERREEGQRDEWAR oo SIB 47
SCO184470-240 47 5 [&] DBAT o] TIE 25
SAVES2-241 42 T E A e S 25
SCO1B44-240 96 ADFe L P TAR 144
SAVES2 241 a7 T-TD T LI el e
SCOTB441-240 145 A AE RGML D AG £ R T TSED 183
SAVEIZ-241 1456 T P ENMPF R ED A Q A ATEFP 193
SCO18447-240 194 L W HSRS P AL WT RS- 240
SAVEIZ-241 184 i | LTET E E&" AG FGR 241

Figure 3.2. Peptide sequence alignment of SCO1844 and SAV6421 respectively showing 70% sequence
identity. Catalytic residues are highlighted in red. Conserved residues are highlighted in blue.

3.3.1 Degenerate PCR primer design

Alignment of the peptide sequences of the putative L-FucAs, SCO1844 and SAV6421,
revealed that they possess 70% sequence identity and that there are many regions of
homology. These regions are highlighted in blue in Figure 3.2. Conserved peptide
sequences consisting of about 7 to 10 amino acids were identified from the alignment of
these two proteins. These short peptide sequences were subject to reverse trandation, in
order to reveal the possible DNA sequences that could code for the selected amino acids.

Reverse tranglation revealed that there is a lot of degeneracy in the putative DNA codes
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i.e. there are many different combinations of DNA that could code for the amino acid
sequence in question. The way in which DNA is translated to generate proteins differs
from organism to organism. In order to best guess the DNA sequence present in
S cattleya, and design more accurate degenerate DNA primers for PCR, a codon usage
table for S cattleya was used.™ The codon usage table documents all of the identified
proteins from S cattleya and the DNA sequences that encode them. Each amino acid is
encoded by a DNA triplet, and the possible combinations of triplet DNA codes are
expressed as a percentage of their occurrence in the genes of proteins from S. cattleya. It
is therefore possible to interpret the output from reverse trandation, in terms of the
likelihood that these sequences would arise in the L-FucA gene from S cattleya. Those
DNA sequences that are rare in S. cattleya were disregarded in the design of candidate
degenerate primers to reduce the degeneracy. The subsequent primers are tabulated in
Table 3.1. DNA sequences were identified that occur most often in protein expression
from S cattleya for designing degenerate primers. The primers were designed in two
groups, the forward and reverse primers respectively (Table 3.1). The forward primers
were designed to the predicted 5'-3' sequence of the gene as deduced from the amino
acid sequence from the N-termina end of the anticipated protein. The reverse primers
were designed as 3'-5' complements of the gene from amino acid sequences nearer the C-

termina domain of the putative protein.

3.3.2 Degenerate PCR for fuculose aldolasein S. cattleya

The forward and reverse degenerate primers were then used in combination with each

other in PCR reactions using the Tag DNA polymerase in the presence of S cattleya
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primer in atrial and error manner.

genomic DNA, i.e. each forward primer was used in conjunction with each reverse

Forward Primers | Peptide Sequence | Degenerate Primer 5'-3’
Fuc Ald A LVVGTSGN tsgtsgtsggsacswssggsaacg
Fuc Ald B LDGRQVLG cctsgacggsrgscacgtsctstac
Fuc Ald C ELPMHLAVY garctscesatgcacctsgesgtstac
Fuc Ald D TSGNVSVRV ccwssggcaacgtswssgtsgge
Fuc Ald E LVPELP ctsgtscesgagetsceseys

Fuc Ald F NVSVRVGD saacgtswssgtsmgsgtsggsgac
Fuc Ald G HTHAVHA scacgcsgtscacgesacsge

Fuc AldH GVPY(D/E)RLTP | gtsccstacgasmgsctsacsce
Reverse Primers | Peptide Sequence | Degenerate Primer 5'-3’
Fuc Ald | ERLRGY GQ gtgscegtascescysagsckytc
Fuc Ald J ETAQLEWMCR | cygcacatccaytcsaggtgsgesg
Fuc Ald K PVRVAPYA cgtasggsgcsacgecsacsy

Fuc Ald L LVPELP srgsggsagetesggsacsag

Fuc AldM QAYDRTAQ ctgsgesgtsckgtegtasgectg
Fuc Ald N ALGGPVR gegtasggsgcesacscksacsg

Table 3.1. Degenerate primers designed from conserved regions of SCO1844 and SAV6421. S=gor ¢, W=
aort,R=aorg,M=cora Y=cort,K=gort.

The length of the expected PCR product was approximated using the distance in amino
acid residues between targeted regions in the SCO1844 and SAV 6421 peptide sequences
shown in Table 3.2. The PCR products from these degenerate combinations were

analysed using 1% agarose TAE gel electrophoresis alongside a 1kb DNA ladder. The
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subsequent gels were imaged using a UV lamp. Figures 3.3 and 3.4 show examples of

these degenerate PCR products and the subsequent DNA gel analysis.

Forward

Primers

Reverse

Primer A B C D E F G H
| 545 441 414 558 321 249 336 504
J 477 357 315 459 222 450 258 405
K 327 207 165 [ 72 300 108 255
L 270 150 108 252 15 243 33 198
M 456 339 297 441 204 432 240 387
N 309 192 150 294 57 300 92 240

Table 3.2. The approximate expected length (base pairs) of amplified DNA fragments using different
combinations of degenerate primers from Table 1. These were estimated using the peptide sequences of
SCO1844 and SAV6421.

L33 4 9 8§97 8

1 kb
500 b

Figure 3.3. UV photograph of 1% Agarose DNA Gel containing degenerate PCRs for L-FucA from S
cattleya genomic DNA. Different lanes represent different combinations of forward and reverse primers:
1=100 bp DNA Ladder. 2= Fuc Ald F and Fuc Ald M. 3= Fuc Ald F and Fuc Ald N. 4= Fuc Ald F and
Fuc Ald J. 5= Fuc Ald G and Fuc Ald M. 6= Fuc Ald G and Fuc Ald N. 7= Fuc Ald G and Fuc Ald |. 8=
Fuc Ald G and Fuc Ald J
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1 kb

500 b

Figure 3.4. UV photograph of 1% Agarose DNA Gel containing degenerate PCRs fo L-FucA from S
cattleya genomic DNA. Different lanes represent different combinations of forward and reverse primers:
1= 100 bp DNA Ladder. 2= Fuc Ald A and Fuc Ald M. 3= Fuc Ald A and Fuc Ald N. 4= Fuc Ald A and
Fuc Ald J. 5= Fuc Ald B and Fuc Ald J. 6= Fuc Ald C and Fuc Ald M. 7= Fuc Ald C and Fuc Ald I. 8= Fuc
Ald C and Fuc Ald J.

Severa candidate PCR products emerged from these experiments, and these were excised
from the gel and purified into nuclease free water. The purified DNA was then ligated
into pGem T easy vector (Promega, UK) using T4 DNA ligase. The recombinant plasmid
was transfected into E. coli IM109 competent cells and positive clones were identified by

151 several white colonies from

ampicillin resistance and the blue/white colony assay.
each PCR product were picked from the petri dish and inoculated into 5 ml LB media
containing ampicillin, the cells were then grown overnight in 15 ml falcon tubes. Cells
were then spun down and the supernatant was removed to revea the cell pellet, from

which the recombinant plasmids were purified into ultrapure water using the QIAprep

Spin Miniprep Kit (Qiagen, UK) and prepared for DNA sequencing.
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The resultant PCR product sequences were analysed by transating the confirmed DNA
sequence to the corresponding amino acid sequence.™ The peptide sequences were
BLAST searched in an attempt to match them with peptide sequences from L-FucAs.
This method has been successful in the past in our hands through the isolation of the
isomerase gene from the genomic DNA of S cattleya. However despite many attempts to
isolate sequence associated with the L-FucA from S. cattleya, this trial and error method

proved unsuccessful.

These L-FucA experiments have revealed the limitations of this method. High levels of
conservation in the target amino acid sequences are important for the success of this
approach and perhaps the target enzyme has a relatively low level of identity to the S
coelicolor and S avermilitis enzymes. The full genome sequence of S cattleya is
currently being undertaken and there is a particular interest in identifying the gene

responsible for L-FucA in this organism.

3.4 Amplification of a putative L-FucA gene from Streptomyces
coelicolor

It remained a research focus to reconstitute the fluorometabolite pathway in vitro and
therefore it was still necessary identify a surrogate L-FucA to reconstitute this pathway.
We had two candidates in hand, thus over-expression of the putative L-FucA from S
coelicolor, SCO1844 became an objective. It was clear from aignment of the peptide
sequences from E.coli L-FucA and SCO1844 that the catalytic residues identified in the

E. coli L-FucA, are also conserved in SCO1844 (Figure 3.5).*
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Sc01844ﬁ-24ﬂ 1 TYSRAGGAEGAGEPDREAAGDPTAEPAREAAWAELYANARRTVAD W
E coli@-224  TH----- - ERMKLARG | I DMCLEMTRLEEN22

SC0184d r-290 50 W popaTevBlL cBrovLBlTEVE Tos
E. coli /1-22¢ 240 e-m EI< ESHIVF IBenBixHEEE KD - =71
SC01844 240 Pm RADPGER T 2 LBvrELEPv T8 L B 47
E. coli #1-224 m osREDEN N o IBuRs BA | A~ 8120
SC01844 o240 -PVRWV AELARGMLD TecBEruAE Tl T e TS D105
E. coli #1-224 121 NSIPC RELSEHVAL |<m Ko T HEGLMlacEVN EI< L 16D
200184 rz290 108 RTacLBwWMER assvPeHSPEsLETrac L BeE@TERLRS
E coli #4224 170 LAHEVEVLAoEvERTLA I ToPvE- villsoee | BvlL Bk kT IEE 215

Figure 3.5. Peptide sequence alignment of L-FucA from SCO1844 and E. coli L-FucA respectively.
Catalytic residues Glu73 and Tyr113 are highlighted in red, conserved regionsin blue.

Accordingly, specific DNA primers for SCO1844 were designed in the 5'-3' and 3'-5’
direction with EcoRI and Hind Ill restriction sites respectively (Table 3.3). Genomic
DNA was prepared from S. coelicolor and SCO1844 was amplified by PCR using the
primers described in Table 3.3 and using the KOD DNA polymerase. This enzyme,
isolated from the extreme thermophile, Thermococcus kodakaraensis KOD1, possesses
high processivity levels similar to Taqg polymerase with high-fidelity proofreading
capacity similar to pFu polymerase. In the event a PCR product of ~700 bp was identified

by DNA gel anaysis (Figure 3.6). This product was then excised and purified to ~100

ng/pl of DNA.
Primer / Restriction Site Sequence5'-3'
Forward / EcoRl CCTCCGCCGGAATTCATGACGTATTCGCGG
Reverse/Hind 111 GAAGGAGCAAGCTTTCAGCTTCGCTGCCCG

Table 3.3. Specific DNA primers for amplification of SCO1844 from S. coelicolor genomic DNA.
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The prepared PCR DNA, and the E. coli expression plasmid pHISTEV? were digested
by EcoRl and Hindlll restriction enzymes for 4 h. The DNA preparations were then
purified again and introduced to each other in a 3:1 PCR:pHISTEV ratio in the presence
of T4 DNA ligase for 16 h at 4°C. The ligation product was then transfected into
competent E. coli BL21 Gold cells and colonies were selected for resistance to
kanamycin. Resistant clones were then picked from the petri dish and subjected to colony
PCR using the primersin Table 3.3. Those colonies that exhibited a PCR product of ~700
bp were then picked and inoculated in LB medium (5 ml) containing kanamycin in a 15
ml falcon tube (agitated for 16 h at 37°C). The cells were then pelleted by centrifugation
and the recombinant plasmid extracted and prepared for DNA sequencing using the

QIAPrep Spin Miniprep Kit (Figure 3.7).

1kb

750 bp 8001844

Figure 3.6. The 1% agarose gel containing the product of the PCR of SC0O1844 from S. coelicolor genomic
DNA using the primers from Table 3. 1= 1 kb DNA Ladder. 2= SC0O1844 PCR.
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aCcCCollgggccicaaacgggicigagggguungcigaaggagaciaacgatggegalgggacgcgecigageggedcataagegoggeggug
ggtgttacgccaactgacgctacatgctgtgcttagccagctcttcgatttccateettcecgcacgttgaccggeticegtcagta

Figure 3.7. Confirmed DNA Sequence of SCO1844-pHISTEV recombinant plasmid. Black = pHISTEV,
Red = SCO1844.

3.4.1 Expression and purification from E. coli of a putative L-FucA
from Streptomyces coelicolor

The presence of SCO1844 in pHISTEV was confirmed by DNA sequencing (Figure 3.7).
The SCO1844-pHISTEV recombinant plasmid was then transfected into E. coli BL21
Gold competent cells and the SCO1844 protein was expressed after incubation with IPTG
(1mM) for 16 h at 16°C. Upon loading of the protein to the Ni** column, the nickel resin
undergoes a very obvious colour change giving a brilliant turquoise. Thisis a very useful
early indicator that SCO1844 has been expressed with a Hise-tag. Following Ni?*
chromatography, samples from the cell free extract, cell debris, supernatant, column flow
through, column wash, and column elution were mixed with SDS dye at 95 °C for 5 min.
Samples were then loaded onto a 1 mm 4-12% Bis-Tris gel submerged in MES SDS
running buffer for SDS PAGE analysis. The resulting SDS-PAGE revealed a band in the

eluent fraction of ~25 kDa (Figure 3.8).
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30 kDa

25 kDa S0 1644

Figure 3.8. SDS PAGE of SCO1844 gene product purification from E. coli BL21 Gold. Lane 1= Protein
Ladder. Lane 2= CFE. Lane. 3= Cell Debris. 4= Supernatant. 5= Column flow through. 6= Column wash.
7= Elution. 8= Gel Filtration.

The expression of SCO1844 was confirmed by in-gel tryptic digest and analysis of the
resultant peptides by nanoLC-ESI MSMS (UltiMate (Dionex) and Q-Star Pulsar XL
(Applied Biosystems)). The MS/MS data file generated was analysed using the Mascot
2.1 search engine (Matrix Science, London, UK) against an interna database consisting
of a bacterial genome background to which the SCO1844 sequence (amongst others) had
been added. The data was searched with tolerances of 0.2 Da for the precursor and
fragment ions, using trypsin as the cleavage enzyme up to one missed cleavage was
assumed. Carbamidomethyl modification of cysteines was a fixed modification and L-
methionine oxidation was selected as a variable modification. The identity of the

SCO1844 protein product gel band was confirmed with a Mascot Score of 673.
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The fraction containing the SCO1844 protein was concentrated (2ml) and subjected to
FPLC gel filtration (Figure 9). Gel filtration using phosphate buffer (10mM, pH 7.8)
revealed that the active protein eluted between 67 and 77 ml (the highlighted region of
Figure 9) with a protein concentration of 1.3 mg/ml. SDS-PAGE analysis of the pooled
fractions containing SCO1844 revealed that following size exclusion chromatography,
relatively pure protein had been attained (Figure 3.9). Data from size exclusion
chromatography indicated that the soluble SCO1844 protein is dimeric, consistent with

other Class || aldolases 4" 148
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Figure 3.9. Chromatogram obtained by size exclusion using a Superdex 200 column (120 ml) after
injection of a sample (2 ml) from Ni?" chromatography of SCO1844. Revealing that the protein is a dimer.
Highlighted area= Elution volume (~72 ml).
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3.4.2 Enzymatic assay of the SCO1844 Protein

With the purified SCO1844 protein in hand, the objective was to examine its aldolase
activity against appropriate substrates, i.e. could the SC0O1844 protein perform the aldol
reaction using FAId 40 as a substrate as suggested in Scheme 4? Accordingly an
incubation of DHAP (1mM, Sigma Ltd UK) with synthetic FAId 40 (1 mM) generated
from fluoroethanol ™ in the presence of SCO1844 (0.1mg) (37 °C, 6 h) was explored.
The reaction was terminated by heat deactivation (95 °C, 5 min), and the reaction
solution was centrifuged (12,000 rpm, 2 min). The subsequent supernatant was removed
and the volume made up to 700 pl with ultrapure water, before adding D,O (100 ul). The

sample was then subjected to **F NMR, and a typical spectrum is shown in Figure 3.10.
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Figure 3.10. **F NMR spectra of the incubation of SCO1844 with DHAP (1mM) and FAId 40 (1 mM) for
6 h at 37 °C. Aldol products 5-FDRulP 40 and 5-FDXulP 42/ 5-FDRhuP 41 are clearly identifiable.
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F NMR analysis of the adol reaction with SCO1844 L-FucA indicated residual FAId
40 and fluoroethanol. Fluoroethanol originates from the starting preparation of FAId 40
by incomplete oxidation. However, two new °F NMR signals were observed at -228.15
ppm (dt, 2J= 47.0 Hz and 3J- 16.0 Hz) and -231.36 ppm (dt, Jrn 47.0 Hz and *Jr4
16.0 Hz) in a 2:1 ratio respectively (Table 3.4). These signals were absolutely absent in
control experiments without protein. The signal at -231.36 clearly correlates to 5-
FDRulP 39 which had already been established as an intermediate in the fluorometabolite

pathway in S. cattleya.”’

The major product with the chemical shift -228.15 is difficult to assign definitively. 5-
FDXuIP 42, the (3S, 4R) diastereoisomer to 5-FDRulP 39, has previously been identified
as a product of afructose adolase purified from cell free extracts of S. cattleya (Scheme
3.1) and possesses a similar chemical shift by **F NMR.*" ¥ 12 This product may also
be the alternative (3R, 4S) diastereoisomer, 5-fluorodeoxyrhamnulose-1-phosphate 41
(5-FDRhuP) (Scheme 3.1). We tentatively suggest that this product is the 5-FDRhuP 41
diastereoisomer. In order to enzymatically generate the 5-FDXulP 42 diastereocisomer,
configurational inversion at C3 would be required. As it is accepted that the absolute
configuration at the C3 position is conserved upon reaction with electrophiles this
outcome appears unlikely 1 148 134 155 156, 157 A |55 if an epimerisation event was
occurring to generate 5-FDXulP 39, a diastereoisomer product ratio of 1:1 would be
expected, in this case a 2:1 ratio is observed experienced (Table 3.4). This may be
exacerbated especially with “alien” FAId 40 as a substrate which may promote some

level of epimerisation of the products.
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Generation of the 5-FDRhuP 41 diastereoisomer would be consistent with the widely
observed lack of full stereospecificity of fuculose aldolases. Aldol products with the
opposite configuration at the C4 position are common. The stereointegrity of these
enzymes is dependant on the orientation of the aldehyde substrate in the active site
pocket. C4 stereochemistry is determined by the presentation of the aldehyde’s si or re
face for attack by the enzyme-DHA P-enediolate complex (Scheme 3.3). It is conceivable
that this could account for the production of 5-FDRhuP 41. Previous observations in the
literature suggest that the major product of the SCO1844 aldol reaction is 5-FDRhuP 41,
however the two possible outcomes are difficult to distinguish as they possess the same
F NMR characteristics. It may be that the signal at -228.15 ppm (Figure 3.10) is aresult

of amixture of these enantiomers.

10 mM | 10 mM | 10 mM | 10 mM
Phosphate Phosphate Phosphate Phosphate
Buffer ~ pH | Buffer ~ pH | Buffer  pH | Buffer pH 7.6
7.6 37°C, 6h | 7.6 RT, 24h | 7.6 4°C, 24h | + 10 uM
Integration. | Integration. | Integration. | ZnSO,
37°C, 6h
I ntegration.
Fluor oethanol 1.0 10 1.0 10
FAId 40 0.79 0.40 0.50 0.76
5-FDRulP 39 0.07 0.21 0.30 0.04
5-FDRhuP 41/ 0.15 0.25 0.06 0.08
5-FDXulP 42
Diastereomeric Ratio 2.1:10 121 1.5 2.0:1.0
(5-FDXulP 42/5-
FDRhuP 41
:5-FDRulP 39)

Table 3.4. The products of the incubation of SCO1844 with FAId 40 with DHAP at different temperatures
and in the presence of ZnSO, (10 pM) and EDTA (1 mM) in comparison with a control experiment.
Figures are a value of the integrated area under signal peaks of the products, against fluoroethanol as a
standard.
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3.4.2.1 Thealdol reaction by SCO1844 at different temperatures

Incubation temperature shown to effect the stereointegrity of L-FucAs in the adol
direction.”™” ™ To this effect, three different aldol reactions with SCO1844, FAId 40 and
DHAP were set up identically as before. They were then incubated separately, one at
37 °C for 6 h, one at room temperature for 24 h and the last at 4 °C for 24 h. The samples
were terminated by heat deactivation (95 °C, 5 min), and the reaction solution was
centrifuged (12,000 rpm, 2 min). The subsequent supernatant was removed and the
volume made up to 700 pl with ultrapure water, before adding D,O (100 pl). The sample
was then subjected to *°F NMR, and a typical spectrum is shown in Figure 3.11 and the

subsequent product integrals are tabulated in Table 3.4.
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Figure 3.11. ¥F{'H} NMR of the adol addition of FAId 40 and DHAP at different incubation
temperatures. 1= 37 °C for 6 h, 2= room temperature (RT) for 24 h and 3= 4 °C for 24 h.
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The diastereoisomeric product ratio of SCO1844 in the aldol addition of FAld and DHAP
is profoundly affected by the temperature of that incubation. At 37 °C the
diastereisomeric ratio is more than 2:1 with the major product being the “wrong”
diasterecisomer, 5-FDRhuP 42 (or 5-FDXulP 41). At room temperature, in a longer
incubation, this ratio is nearer 1:1, but the magor product is again the alternative
configuration. However, upon incubation at 4 °C, the diastereisomeric ratio is 5:1 with 5-
FDRuUIP 39 as the magjor product. This effect is consistent with knowledge about the
effect of temperature on L-FucAs, that reducing the temperature significantly alters
improves the diastereoisomeric ratio of the product towards 3R, 4R, the expected product

of fuculose aldolases. *®

3.4.2.2 Retro-aldol assay for SC0O1844

The ability of the SCO1844 protein product to catalyse the adol reaction between FAId
40 and DHAP to generate 5-FDRuUlP 39 has been demonstrated. SCO1844 was now
assayed for its ability to catalyse the retro-aldol reaction, generating FAId 40 and DHAP
from 5-FDRuUIP 39. There are no commercia or synthetic routes to 5-FDRulP 39
available, and to date the only way to generate this compound for such as assay is
enzymaticaly from SAM 34 and fluoride ion (see Scheme 3.5). The fluorinase and PNP
genes from S. cattleya have been reported, and they have each been successfully over
expressed in E. coli. The availability of an isomerase capable of converting 5-FDRP 38 to

5-FDRUIP 39 (described in Chapter 2) alows us to reconstitute the fluorometabolite
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pathway in vitro from SAM 34 and fluoride ion in the presence of these three enzymes to

generate 5-FDRulP 39.

The putative retro-aldol reaction of a fuculose adolase will result in the generation of
FAd 40 and DHAP. The assay for the SCO1844 in this case involves incubation of the
SCO1844 protein with the fluorinase, PNP and isomerase in the presence of SAM 34 and
fluoride ion. The reaction was followed by **F NMR. The fluorinase, PNP and isomerase
genes were inserted into E. coli expression vectors pET28(b) and pHISTEV and
transfected into E coli (BL21 Gold) competent cells. Expression and purification of these
proteins was carried out similarly to that for SCO1844. The enzymes were each purified
to final concentrations of ~1 mg/ml in phosphate buffer (10 mM, pH 7.6). Equimolar
amounts (0.1 mg) of these proteins were then incubated together in the presence of
SAM 34 (2 mM) and fluoride ion (50 mM) for 16 h at 37°C. A control experiment was
set up with SCO1844 excluded from the reaction, and the experiments were run
simultaneously. The reactions were stopped by heat deactivation (95°C, 5 min) and
centrifuged (12,000 rpm, 2 min). The resulting supernatant was made up to a volume of
700 pl, and D,O (100 pl) was added and the product mixtures were then analysed by *°F
NMR. A typical **F NMR product spectra of areaction and a control are shown in Figure

3.12.
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Figure 3.12. ®F {*H} NMR spectra of the aldol reaction of SCO1844 in an in vitro fluorometabolite
pathway experiment starting from SAM 34 and fluoride ion. The blue spectrum represents a control
experiment, without the SCO1844 protein. The red spectrum represents an experiment with the SCO1844
protein incubated alongside the fluorinase, PNP and isomerase enzymes from S. cattleya.

Figure 3.12 clearly shows the generation of FAId 40 from 5-FDRulP 39, in the presence
of the SCO1844 protein product. In the control experiment where the SCO1844 protein
was excluded from the reaction, then no FAId 40 is generated and 5-FDRulP

accumulates. Clearly SCO1844 is responsible for that transformation.

3.4.2.3 Inhibition of SCO1844 by EDTA

The catalytic activity of fuculose aldolases is dependant upon the presence of Zn** at the
active site (Scheme 3.3). They are therefore inhibited by the presence of EDTA, which

sequesters the active site Zn?*, inhibiting catalysis. The response of the SCO1844 protein
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to the presence of EDTA would give a further insight into its activity, as it has only
previousy been annotated as a putative fuculose aldolase. Accordingly SCO1844
(0.1 mg) in phosphate buffer (10 mM, pH 7.6) was incubated with synthetic FAId 40 (1
mM) and DHAP (1 mM) in the presence of EDTA (1 mM) (6 hours, 37 °C). The reaction
was stopped by heat deactivation (95 °C, 5 min), followed by centrifugation (12,000 rpm,
2 min). The resulting supernatant was removed and the volume made up to 700 pl using
ultrapure water. The mixture was then added to D,O (100 pl) and subject to *°F NMR.

An example of the resulting spectrum is shown in Figure 3.13 and the corresponding

product profiles are tabulated in Table 3.4.
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Figure 3.13. ®F{*H} NMR spectrum of SCO1844 incubated with FAld 40 (1 mM) and DHAP (1 mM) for
6 h at 37 °C. The red spectrais SCO1844 incubated with EDTA (1 mM). The blue spectrais a control
experiment. Product profiles are tabulated in Table 3.4.
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Incubation of SCO1844 in the presence of 1 mM EDTA apparently abolished any
observable catalytic activity, arresting the production of both the 5-FDRulP 39 and 5-
FDXulP 42/ 5-FDRhuP 41 (**F NMR, Figure 3.13). This is consistent with the idea that
catalytic activity of SCO1844 is dependant upon a divalent ion cofactor, most likely in
the form of Zn*". These results are also consistent with those expected for Class I

aldolases, and are further evidence that SCO1844 is an enzyme of this type.

Previous studies involving the over-expression and purification of the L-FucA adolase
from E. coli have revealed that Ni** affinity chromatography has an inhibitory effect on
the enzyme. Crystal structure studies of fuculose aldolase from E. coli have revealed that
aZn® ion is coordinated to three histidine residues (Scheme 3.3).**" Inhibition probably
occurs as the Ni* interacts with the active site histidines, stripping the enzyme of Zn**.
There are many reports of the restoration of such activity after incubation of the enzyme
with up to 10mM, ZnSO, solution after Ni?* purification.™ ** However, upon elution of
SCO1844 from Ni%" affinity chromatography there was no apparent inhibition or loss of

activity exhibited (Figure 3.13).

3.4.2.4 Inhibition of SCO1844 by Zn**

L-FucA is also reported to be inhibited by Zn?* in solution even at low concentration.
That is, too much Zn** has a negative effect on catalytic activity. It is therefore necessary
to dialyse the protein into a Zn**-free buffer in order to restore activity.'® In the light of
this it was important to establish a role for Zn** in the activity of the SCO1844 aldolase.
Accordingly the SCO1844 enzymes was taken up (0.1 mg) in phosphate buffer (10 mM

pH 7.6) and incubated with DHAP (1 mM) and FAId 40 (1 mM) with and without the
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addition of ZnSO, (10 uM) for 6 hours at 37 °C simultaneously. The reactions were then
stopped by heat deactivation (95 °C, 5 min) and centrifugation (2 min, 12,000 rpm). The
volume of the resulting supernatant was made up to 700 pl with ultrapure water. D,O
(100 pl) was then added and the resulting mixture was subject to *°F NMR andysis. A

typical spectrum is shown in Figure 3.14 and product distributions are elaborated in Table

3.4.
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Figure 3.14. F{*H} NMR of the incubation of SCO1844 with FAld 40 (1 mM) and DHAP (1mM) for 6 hours
at 37°C. The blue spectrum represents the control. The red spectrum has ZnSO, (10 uM) added.

There is some evidence for the inhibitory effect of Zn** as shown in Table 3.4.
Integration of the signals assigned to 5-FDRulP 39 and 5-FDXulP 41/ 5-FDRhuP 42
reveals that the presence of just 10 uyM ZnSO, in solution reduces the activity of
SCO1844 by about a half compared to a buffer without any added Zn?*. The same
experiment was attempted with 50 and 100 uMm ZnSO, in solution. Both of these

experiments resulted in the immediate precipitation of the SCO1844 protein, and
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complete abolition of activity. It is noteworthy that the inhibition by Zn?* does not

significantly affect the diastereoisomeric ratio of the products of the reaction.

3.5 Conclusions

The putative fuculose adolase gene SCO1844 from S. coelicolor was identified as a
surrogate aldolase for the purpose of reconstituting the fluorometabolite pathway in vitro.
The SC0O1844 gene was amplified from genomic DNA using PCR and inserted into an
E. coli expression system, from which the protein was efficiently overexpressed and
purified. The active SCO1844 protein is a dimer, susceptible to EDTA inactivation. It is
apparently inhibited by Zn?* in solution, consistent with our knowledge of Class Il
fuculose aldolases. Incubation of the SCO1844 protein with its donor substrate DHAP
and a FAId 40 resulted in the production of 5-FDRulP 39 as well a diastereoisomer, 5-
FDXulP 42 or 5-FDRhuP 41. A lack of stereospecificity was exhibited by the enzyme in
the aldol direction. The protein also efficiently catalysed the reverse reaction, generating

FAId 40 from 5-FDRulP 39 in an in vitro reconstitution experiment.

Attempts to isolate the gene for L-FucA, putatively involved in fluorometabolite
biosynthesis, from S cattleya genomic DNA were unfortunately unsuccessful. The
designing of degenerate primers in a similar manner to the method employed in
identifying an isomerase from S cattleya was unable to detect the L-FucA gene.
Identification of this gene will become a focus after sequencing of the S cattleya

genome, which is currently underway.
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4 Thein vitro reconstitution of fluor oacetate and 4-

fluor othreonine biosynthesis

The availability of gene clusters, responsible for natural product assembly is opening up
the possibility of total natural product synthesis by biotransformation. Thisis emerging as
a new and alternative approach to organic synthesis. An added benefit of using this
approach is that reaction conditions are mild, and the enzyme catalysed reactions are
extremely stereoselective and can give rise to stereochemical complexity. The in vitro
reconstitution of natural product pathways has already been used to generate clinically
important polyketides such as enterocin.’®? It has also been used in the characterization of
the metabolic pathways of halogenated natural products, identifying the necessary co-
factors and steps involved in halogenation.**** Following the identification of the
fluorinase from S. cattleya, work within the research group has been concentrated on the
identification of the intermediates and the subsequent enzymatic steps in the biosynthetic
pathway of FAc 8 and 4-FT 33. Recently, the enzymatic synthesis of radiolabelled [**F]
molecules using the fluorinase as the C-F bond catalyst was achieved for PET
analysis.*** 3 Reconstitution of the fluorometabolite in vitro pathway would also open
up the possibility of generating novel [*®F]-labelled compounds for this technique and

thus became a research focus.
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The identification of an isomerase from S cattleya capable of converting 5-FDRP 38 to
5-FDRUIP 39 (Step ¢, Scheme 4.1) and a fuculose aldolase from S. coelicolor capable of
generating FAId 40 from 5-FDRuUlP 39 (Step d, Scheme 4.1) has been described in
Chapters 2 and 3 respectively. Aldehyde dehydrogenases are commercialy available
(Sigma Ltd, UK) (Step f, Scheme 4.1) and with the successful over expression of the PLP
transaldolase (Step e, Scheme 4.1) prospects of reconstituting the entire fluorometabolite

pathway, in vitro emerged.

4.1 Thefluorometabolite pathway in S. cattleya

The 10kb gene cluster was identified by J. Spencer at Cambridge in 2005, was described
in Chapter 1.2 Adjacent to fluorinase were a number of genes which appear to be
involved in the biosynthesis and regulation of the fluorometabolite pathway (Figure 1.5).
The fluorinase flA gene is in the middie of the cluster and the immediate upstream gene
fIB, has been shown to express a purine nucleotide phosphorylase (PNP) enzyme which is
selective for the conversion of 5'-FDA 5 to 5-FDRP 6% % (step b, Scheme 4.1). Severa
regulatory and resistance genes were al so identified although their exact roles are unclear.
However, the genes for the remaining three biosynthetic enzymes (enzyme steps c-e,
isomerase, aldolase and PLP transaldolase, Scheme 4.1) are not in the gene cluster, and
thus only the flA (fluorinase) and fIB (PNP) gene products, are available by PCR and over

expression from this cluster sequence.

With the isomerase from S. cattleya and the surrogate fuculose aldolase from S

coelicolor in hand then an enzyme for al steps for the synthesis of FAc 8 and 4-FT 33
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was available. The next phase of the research aimed to recombine these enzymes in vitro
to affect a complete biotransformation of these fluorometabolites from fluoride ion. FAId
40 has been established as the last common intermediate feeding into each of the
fluorometabolites 8 and 33. ™ An NAD(P)* dependent fluoroacetaldehyde
dehydrogenase has been purified® which oxidises FAld 40 to fluoroacetate (FAC) 8.
Separately the pyridoxa phosphate (PLP) dependant enzyme described in Chapter 1 was
available, which mediates a trans-aldol reaction between L-threonine and FAId 40 to

generate 4-FT 33.%°

? NH NH
+H3N/,, o 2 2
N SN N SN
< ‘S
+5-Mme N7 N fluorinase . N™ N PNP
o —— o] —F o
Q F \/—\/ iPO3% N
OH OH OH OH OH OH OPO3
Step a Step b
SAM 34 5-FDA 35 5-FDRP 38
OH O 4-fluoro-threonine Step ¢ Isomerase
o transaldolase(4-FTase)
F NHg+ PLP e} aldolase
oo OH O
4-fluorothreonine 33 P HKH - KK)J\/OPOB,Z'
Step f F 40 Step d F (=)H
Kci NAD* 5-FDRibulP 39
F OH fluoroacetaldehyde

dehydrogenase

fluoroacetate 8

Scheme 4.1. Current status of fluorometabolite biosynthesisin S. cattleya showing metabolic intermediates
and the enzyme steps a-f and co-factors invol ved.
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4.2 In vitro reconstitution of fluorometabolite biosynthesis

The biosynthetic pathway from fluoride ion and SAM 34 to FAc 8 in S. cattleya requires
five enzymes (Scheme 4.1). The flA and fIB genes from the 10kb gene cluster of S
cattleya code for the fluorinase and the PNP enzymes which catalyse the first two stepsin
fluorometabolite biosynthesis.®® The efficient over-expression of the fluorinase enzyme
has previously been described® and the enzyme is readily available and stable. Attempts
at over-expression of the PNP enzyme in E. coli by PCR amplification of the fIB gene
from genomic DNA (S cattleya), were only partialy successful. Although the protein

83, 95

could be expressed successfully it was largely insoluble and it proved difficult to
obtain sufficiently soluble protein for biotransformation assays. To get around this
problem, the fIB gene was fused to a modified pMAL vector, pLOU, coding for a maltose

binding protein.®® This PNP was used in subsequent biotransformations.

The expression and purification of the isomerase from S cattleya and the fuculose
adolase from S coelicolor have been described previousdy in Chapters 2 and 3
respectively. The fluorinase, PNP, isomerase and fuculose adolase were all over-
expressed in E. coli and purified by Ni-affinity and size exclusion chromatography to ~1
mg/ml in phosphate buffer (PBSA). The identities of these over-expressed enzymes was
confirmed by SDS-PAGE and MS-MS analysis. The resulting SDS-PAGE gd is shown

inFigure4.1.
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Figure 4.1. SDS-PAGE of enzymes, used in recongtitution experiments. 1. Protein molecular weight
markers (Fermentas); 2.The fluorinase (FIA); 3. The PNP (FIB); 4. MTRI (MTRI-Sca); 5. Fuculose aldolase
(SC0O1844). The identity of the proteins was confirmed by nanoLC-ESI MSMS (UltiMate (Dionex) and Q-
Star Pulsar XL (Applied Biosystems)of atryptic digestion of the partialy purified protein.

4.2.11nvitro FAc 8 biosynthesis

Aldehyde dehydrogenase from S cerevisiae (Sigma Ltd) was suspended in phosphate
buffer (10 mM, pH 7.8). A solution of NAD(P)" (Sigma Ltd) was adjusted to a final
concentration of 20 mM. With all of the enzymes and co-factors in hand, it was possible
to combine them and to follow the production of FAc 8 by *F{*H} NMR. All of the
pathway enzymes were added into an eppendorf tube (1.5 ml) to afina concentration of
0.1 mg/ml. They were incubated with SAM 34 (1.4 mM, Sigma Ltd), KF (35 mM, Sigma
Ltd), NAD(P)* (1 mM, Sigma Ltd) for 6 h at 37 °C. During the reaction, aliquots (100 pl)

wereremoved at 0, 1, 2, 3, 4, 6 and 24 h. The reactions were stopped by heat deactivation

128



a (95 °C, 5 min) followed by centrifugation of (2 min,12,000 rpm). The supernatant was
then made up to avolume of 700 pl, to which DO (100 pl) was also added. The resulting

mixture was then subjected to *°F{ *H} NMR analysis (Figure 4.2).

Figure 4.2 shows that after 2 h, two organofluorine signals with chemical shifts of
-231.55 ppm and -217.35 ppm emerged. The mgor signal at -231.55 ppm was confirmed
as 5'-FDA 35 by add-mixing with a synthetic standard. The minor signal at -217.3 ppm
was confirmed as FAc 8 by add-mixing with a reference compound (Sigma Ltd). The
product ratios from the spectra are tabulated in Table 4.1, calculated by integration of the

signas.
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Figure 4.2. F{*H} NMR spectra of the time course experiments from the reconstitution of the FAc 8
biosynthesis pathway of S. cattleya in vitro. The reaction mixture was assayed at 0, 1, 2, 3, 4, 6 and 24 h.

Time(h) | FDA 35:FAc 8

0 0

1 0

2 551

3 4:1

4 2.6:1

6 2.7:1

24 2.2:1

Table4.1. Theratio of the products from the in vitro FAc 8 biosynthesis with time.

130



The results from Figure 4.2 and Table 4.1 show that reconstitution of the FAc 8
biosynthetic pathway has been successful. With each enzyme in equimolar
concentrations, only two fluorinated products are observed by *F NMR, corresponding
to 5’-FDA 35 and FAc 8. The accumulation of 5'-FDA 35 as the major product in al of
the time course experiments reveals that the PNP (Step b, Scheme 4.1) is a bottle neck in
this reaction. After 3-4 h of reaction, the fluorinase (Step a, Scheme 4.1) has reached an
equilibrium as evidenced by the accumulation of 5’ -FDA 35. After 3 h, the ratio of 5'-

FDA 35: FAc 8 beginsto decrease as more 5'-FDA 35 is converted to FAc 8.

There is no evidence from >F NMR of the accumulation of any other fluorometabolite
intermediates in the reaction medium. In these reactions, any 5 -FDA 35 converted to
5-FDRP 38 by the PNP enzyme is immediately converted to 5-FDRuUlP 39 by the
isomerase, which in turn instantly undergoes the retro-aldol reaction catalysed by the
fuculose aldolase to produce FAId 40. The advent of FAld 40 production, in the presence
of the aldehyde dehydrogenase from S cerevisiae and high concentrations of its co-
factor, NAD(P), drives the equilibrium from FAId 40 to FAc 8 in an irreversible

reaction. After 24 h the product ratio of 5’ -FDA 35:FAc 8 has leveled out at around 2:1.

4.2.2 In vitro reconstitution of the 4-FT pathway

The enzyme preparations (Steps a-d, Scheme 4.1) involved in the first four steps of the in
vitro biosynthesis of FAc 8 were also used in attempts to generate 4-FT 33 starting from
SAM 34 and fluoride ion. The recent identification, over-expression and purification of

the PLP-dependant transaldolase (FTase), responsible for the generation of 4-FT 33 from
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FAId 40 and L-threonine from S cattleya has previously been described. The FTase gene
was then subcloned into the pXY 2000 E coli-Streptomyces shuttle vector with restriction
sites of Ndel and EcoRI. The resultant plasmid pXY-ScaFTase was transfected into
protoplasts of S lividans TK24*® (by Dr Hai Deng, University of St Andrews™). The
FTase gene was introduced into the Streptomyces lividans TK24 strain via the E. coli -
Streptomyces shuttle vector pX'Y 2000.1%% Apramycin resistant clones were grown in the
YEME medium and protein over-expression was induced by the addition of thiostrepton
(10ug/mL).**®* The enzyme was then partialy purified by affinity column
chromatography. Enzyme expression in S lividans was low, however expression was

confirmed by MS-M S sequencing of the partially purified protein (Figure 4.3).

f edc b a

70 kDa
B0 kD=

Figure 4.3. SDS-Page of the progressive purification of 4-FTase over-expressed in S lividans. a. Protein
molecular weight markers (Fermentas). b. Cell-free extract. c¢. Cell-free extract supernatant;
d. Cell-free extract precipitant. e. Eluent after Ni-affinity column. f. Protein molecular weight markers
(Fermentas). The identity of the protein was confirmed by nanoLC-ES| MSMS.

The over-expression of Streptomyces genes eg. in E. coli often leads to insoluble protein
(inclusion bodies). Proteins that exhibit this are often expressed in Streptomyces hosts,

and even then is expression poor. The FTase is typical of this, however the over
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expressed protein (Figure 4.3) was suspended in phosphate buffer (PBSA) and
concentrated to ~0.25 mg/ml. This preparation was subsequently used in the bio-

transformations.

4.2.2.11nvitro 4-FT biosynthesis

All of the pathway enzymes were added into an eppendorf tube (1.5ml) to a final
concentration of 0.1 mg/ml. They were incubated with SAM 34 (1.4 mM, Sigma), KF (35
mM, Sigma), PLP (0.7 mM, Sigma) and L-threonine (35 mM, Sigma) for 16 h at 37 °C.
The reaction was stopped by heat inactivation (95 °C, 5 min) followed by centrifugation
(2 min at 12,000 rpm). D,O (100 pl) was then added to the supernatant and subject to

PRI} NMR analysis. A typical *F{*H} NMR spectrais shown in Figure 4.4.

| | | | | T
-215 -220 -225 - 230 -235 [ppm]

Figure4.4. F{*H} NMR spectra of 4-FT 33 generated in vitro.
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The ®F{'H} NMR spectra reveded that the combination of al of the constituent
enzymes results in an efficient conversion with a single organo-fluorine product (-232.0
ppm). This signal corresponds to the production of 4-FT 33. The identity was confirmed
by add-mixing with a synthetic sample of 4-FT 33. Unlike the reconstituted FAc 8
pathway, there are no other fluorometabolites detected by °F{*H} NMR analysis from
this experiment. This suggests that the FTase reaction pulls the equilibrium in the
direction of 4-FT 33 synthesis. The absence of other fluorinated intermediates suggests
that the reaction was still occurring after 16 h incubation. An equilibrium for 4-FT 33
generation by the FTase was not reached, this was most likely because of the introduction

of high concentrations of L-threonine (35 mM) in the reaction medium.

To further confirm the identity of 4-FT 33 the product solution was subjected to *°F-
NMR (500MHz) but without { *H} -decoupling and the coupled signal compared to that of
asynthetic sample of 4-FT 33. The resulting spectrais shown in Figure 4.5. This reveaed
that the organofluorine product had an identical **F-NMR signal at -232.0 ppm with a
characteristic multiplicity (d.t 2Jur 46.9 Hz, *J4r 25.0 Hz) to that of the synthetic standard

of 4-FT 33.
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Figure 4.5. ®F NMR of 4-FT 33 generated by thein vitro reconstitution of the fluorometabolite pathway
compared with a synthetic standard of 4-FT 33 (dt, J -232.0, 2y 46.9 Hz, *Jye 25.0 Hz).

In order to confirm unambiguously the generation of 4-FT 33, a sample of the reaction
mixture was subject to GC-MS analysis (Dr J.T.G Hamilton, Queens University, Belfast).
The sample was lyophilized and then treated with N-methyl-N-(trimethylsilyl)
trifluoroacetamide (60 min, 100°C). This treatment per-trimethylsyilylates the amino acid
and then GC-MS analysis was carried out on a silica capillary column. The resulting total

ion chromatogram (T1C) and mass spectra are shown in Figures 4.6 and 4.7 respectively.
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Figure 4.6. GC-MStotal ion chromatogram of the persilylated 4-FT 33. Thered arrow indicates the
presence of 4-FT 33 determined by comparison with a synthetic 4-FT 33 standard.
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Figure 4.7. GC-MS mass spectra of the persilylated 4-FT 33. Two massions are prevalent, 218 amu and

236 amu. Inset is the spectra generated from a 4-FT 33 standard.

136



The GC-MS mass spectrum (Figure 4.7) of the persilylated derivative of 4-FT 33
revealed predominant mass ions at 218 and 236 amu respectively. It has previously been
reported that after such derivatisation, 4-FT 33 undergoes cleavage to form two different
mass fragments on GC-MS analysis (Figure 4.9). It is well established that the mass ion
at 218 amu is an indicator for a- amino acids. The mass ion a 236 amu is indicative of

the presence of 4-FT 33.1%

lon 218

—_—

OTl (@)

OTMS

™S

lon 236

Figure 4.9. The established fragmentation of the 4-FT 33 molecule after derivitisation by persilylation, and
the corresponding masses.'®

The combination of *F NMR and GC-MS has unambiguously confirmed the generation
of 4-FT 33 by the reconstitution of the fluorometabolite pathway from SAM 34 and

fluorideion in aone-pot reaction.

4.2.2.2 Invitro 4-FT 33 reconstitution control experiments

A series of experiments were now conducted where either al of the enzymes were

combined, or for control reactions, one enzyme was omitted from the in vitro
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recombination biotransformations. ldentities of intermediates were re-confirmed by add-
mixing reference compounds of 4-FT 33, FAId 40, 5-FDA 35, 5-FDRP 38, 5-FDRulP 39
and 5'-FDI 36 into product solutions of the relevant experiments for further analysis by

BEAHINMR.

4.2.2.2.1 SAM and fluorideion omission

All of the enzymes and co-factors except SAM 34 were combined (F, PLP, L-threonine)
for 16 h at 37 °C. In another similar experiment, all of the enzymes and cofactors (in
PBSA buffer) were combined except for fluoride ion and incubated similarly. The
reactions were stopped by heat deactivation at (95 °C, 5 min), and centrifuged (12,000
rpm, 2 min). The resulting supernatant was removed and D,O added (100 pl) before
being subject to *F{*H} NMR analysis. As expected, there was no organo-fluorine
production, confirming that both SAM 34 and fluoride ion are necessary for

fluorometabolite production in these in vitro experiments.

4.2.2.2.2 Fluorinase omission

All of the enzymes and co-factors (SAM 34, F, PLP, L- threonine) except the fluorinase
(FIA) were combined and incubated for 16 h at 37 °C. The reaction was stopped by heat
deactivation at 95 °C for 5 min, and centrifuged (12000 rpm, 2 min). The resulting
supernatant was removed and added to D,O (100 ul) before being subject to *°F{*H}
NMR analysis. Omission of the fluorinase arrests organo-fluorine production, because the

crucia C-F bond forming enzyme is removed from the reaction. These results show that
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the fluorinase, and its associated substrates are critical for C-F bond formation and

fluorometabolite production in the reconstitution experiments.

4.2.2.2.3 PNP omission

Removing the PNP enzyme from the bio-transformation was then explored. To this effect
al of the enzymes and co-factors (SAM 34, F, PLP, L-threonine), except the PNP (FIB),
were combined and incubated for 16 h at 37 °C. The reaction was stopped again by heat
inactivation, and the resulting supernatant was analysed as before by °F{*H} NMR

analysis (Figure 4.10).

NH;
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Figure 4.10. The F{*H} NMR spectrum of the products of the reconstituted 4-FT 33 reaction with PNP
omitted from the reaction.

F{'H} NMR analysis of this reaction reveals two organofluorine signals, with chemical
shifts of -231.36 and -231.52 ppm in aratio of 0.88:1 respectively. The mgor signa at -

231.52 ppm is consistent with the generation of 5-FDA 35, which is expected to
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accumulate in this experiment. The minor signal at -231.36 corresponds to 5'-FDI 36, a
product which arises from enzymatic deamination of 5-FDA 35% by adenosine
deaminase. This conversion has previously been identified in cell free extracts of S
cattleya, where it is particularly active. In this case it arises from alow level activity of

the deaminase in the S lividans FTase preparation (see 4.2.2.2.6).

4.2.2.2.4 | somer ase omission

Analysis of the reconstituted pathway, with the omission of the isomerase enzyme, was
then explored similar to the experiments described above. All of the enzymes and co-
factors (SAM 34, F, PLP, L-threonine) except the isomerase (MTRI-Sca) were
combined. The reaction was stopped after 16 h by heat deactivation, and the resultant

F{*H} NMR spectrum is shown in Figure 4.11.

Figure 4.11 shows the °F{*H} NMR spectrum indicating accumulation of three
organofluorine peaks with the chemical shifts-231.32, -231.33 and -231.51 ppm and with
a product ratio of 0.43:1:0.34 respectively. The mgor product of the reaction at -231.33
ppm was attributed to 5’ -FDI 36, which as in the previous experiment is generated by the
enzymatic deamination of 5'-FDA 35 (-231.51 ppm). The reduction in the intensity of the
signal for 5-FDA 35 relative to that of 5'-FDI 36 is consistent with the latter being a
shunt product,®® and that 5'-FDA 35 is the substrate for the PNP enzyme. The third signal
at -231.32 ppm corresponds to 5-FDRP 38, the result of phosphorolytic cleavage of the
adenosine base of 5-FDA 35 by the PNP enzyme and the logical result of this

incompl ete biotransformation.
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Figure 4.11. The *F{*H} NMR spectrum of the 4-FT 33 bio-transformation with the isomerase omitted
from the reaction.

4.2.2.2.5 Fuculose aldolase omission

The role of the surrogate fuculose aldolase from S coelicolor in the reconstitution
experiment was then investigated. In a similar vein, al of the enzymes and co-factors
(SAM 34, F, PLP, L-threonine) except the fucul ose aldolase (SCO1844) were combined
and incubated for 16 h at 37 °C. The reaction was stopped and the resulting supernatant

was analysed by **F{*H} NMR. The spectrum is shown in Figure 4.12.
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Figure 4.12. The ®F{*H} NMR spectrum of the 4-FT 33 bio-transformation with fuculose aldolase
(SC0O1844) omitted from the reaction.

The resultant **F{*H} NMR spectra revealed the accumulation of four organofluorine
signals, at -231.30, -231.34, -231.51 and -231.82 ppm and the product ratios are tabulated
in Table 2. The minor signa at -231.30 ppm corresponds to 5-FDRP 38, the product of
the enzymatic phosphorylation of 5 -FDA 35 by the PNP (FIB) enzyme. The signd at
-231.34 ppm is the major product of this reaction and corresponds to 5'-FDI 36, which
indicates the activity of an adenosine deaminase acting on 5’ -FDA 35 (-231.51 ppm). The

accumulation of 5'-FDA 35, reveals that the PNP enzyme is once again rate limiting in
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the reaction. The fina signal, with a chemical shift of -231.82 ppm, corresponds to the
production of 5-FDRulP 39, the product of ring opening and isomerisation of 5-FDRP 38
catalysed by the isomerase (MTRI-Sca). The generation of 5-FDRulP 39 appears to be
efficient as there is only a small amount of residual 5-FDRP 38 detected in the reaction
mixture and, as the isomerase is a reversible reaction,** in this experiment al of the

intermediates accumulate up until 5-FDRulP 39.

4.2.2.2.6 PL P-dependant transaldolase omission

Finally the 4-FT 33 forming enzyme, FTase was left out of the reaction in order to
determine its role in the pathway. The reaction was carried out similarly to those
previously, but with PBS buffer used in the place of FTase. The reaction was again
stopped by heat deactivation and D,O (100 pl) was added to the resulting supernatant for

F{*H} NMR analysis (Figure 4.13).
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Figure 4.13. The ®F{'H} NMR spectrum of the 4-FT 33 bio-transformation with the PLP-dependant
transal dolase (SCO1844) omitted from the reaction.

The resultant *F{*H} NMR spectra revealed the accumulation of just two organofluorine
signals, at -231.53 ppm and -231.55 ppm, the product ratios are detailed in Table 4.2. The
minor product, with a chemical shift of -231.53 ppm was shown to be FAld 40 by add-
mixing a synthetic standard with the reaction products. The mgor product (-231.55 ppm)
corresponds to the accumulation of 5-FDA 35, which was again confirmed by add-

mixing with a synthetic reference sample. The accumulation of 5’ -FDA 35 identifies the
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PNP enzyme as a bottle neck in these reactions, limiting the downstream conversion to

other intermediates in the pathway.

The accumulation of FAId 40 is the expected outcome of this experiment, with no
downstream enzyme to convert FAId 40, the last common intermediate between FAc 8
and 4-FT 33 to the final fluorometabolites. However unlike the previous control
experiments, there is no accumulation of other intermediate compounds between 5’ -FDA
35 to FAId 40. This may be rationalised by the results revealed in Chapter 3, whereby the
SCO1844 fucul ose aldolase product is shown to be extremely efficient at generating FAId
40 via the retro-aldol reaction of 5-FDRulP 39. However, it is not so efficient in the
reverse (aldol) direction. In fact, this fuculose aldolase is more efficient in generating an
aternate diastereoisomer to 5-FDRuUlIP 39, 5-FDXulP 42 or 5-FDRhuP 41 at temperatures
above 4 °C. There is no evidence from *F{*H} NMR of an aternate diastereoisomer
being generated in this reaction and it is therefore deduced that this is because the
equilibrium for this aldolase activity significantly favours the production of FAId 40 over
the reverse reaction to 5-FDRuIP 39 and 5-FDXulP 42/ 5-FDRhuP 41. As a direct result,
the action of this enzyme pulls the equilibrium of the entire pathway towards the
generation of FAId 40, reducing the accumulation of upstream intermediates on the
pathway. This in turn prevents the other enzymes from catalysing reverse reactions on
their accumulated substrates. It is also noteworthy that no 5'-FDI 36 is generated in this
reaction, suggesting that the adenosine deaminase activity displayed in the other

reconstitution control experimentsis contained in the FTase enzyme preparation.
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4.2.2.3 Summary

The ®F{*H} NMR spectrafrom all of the reconstitution experiments are summarized in

Figure 4.17, and the subsequent product ratios are tabulated in Table 4.2.
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Figure 4.17. A summary of the resultant **F{*H} NMR spectra of in vitro reconstituted biotransformations
when fluoride ion was incubated at 37°C for 16h with cloned and over-expressed enzyme combinations.
Control experiments were carried out by removing one enzyme each in a stepwise manner. Experiment A;
minus the fluorinase. B; minus the . C; minus the isomerase. D; minus the fuculose aldolase (S
codlicolor). E; minusthe PLP transaldolase (expressed in S. lividans). F; Complete pathway.
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Fluorometabolite
5-FDA 5-FDRP 5-FDRulP FAId 4-FT 5 -FDI
Experiment

Fluorinase

PNP 1.0 - - - - 0.88
| somer ase 0.34 0.43 - - - 1.0
Fuculose Aldolase 0.21 0.05 0.16 - - 1.0
PLP Transaldolase 1.0 - - 0.56

Table 4.2. Theratios of the products from the reconstitution control experiments, with one component of
the pathway removed and the complete pathway experiment.

The product ratios from the reconstitution experiments (Table 4.2) illustrate the
consequences of the stepwise remova of the enzymatic components of the in vitro
fluorometabolite pathway. It is clear that in the presence of the fluorinase, the identified
intermediates along the fluorometabolite pathway accumulate only upon incubation with

the necessary enzyme preparations.

The activity of an adenosine deaminase, a low-level contaminant in the FTase
transaldolase preparation, removes more than half of the 5-FDA 35 generated by the
fluorinase to the shunt product 5'-FDI 36.* As 5'-FDI 36 cannot be metabolized by the
PNP from S cattleya, this product accumulates, directing organic fluorine away from the

pathway. However in the presence of all of the component enzymes, and with high
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concentrations of L-threonine (35 mM) and PLP (0.7 mM), the equilibrium of the PLP-
dependant transaldolase is driven towards the 4-FT 33 product effectively making it
irreversible. It is interesting to note that 5’ -FDI 36 is not an identified product in whole
cell bio-transformations of S cattleya, but is often observed in CFE’'s. As such this
prevents the accumulation of preceding fluorometabolites intermediates, and

consequently inhibits the generation of 5’-FDI 36 as 5'-FDA 35 does not accumulate.

4.3 Conclusions

The biotransformation of the fluorometabolites FAc 8 and 4-FT 33 has been achieved by
the in vitro reconstitution of the enzymatic steps that effect their synthesisin S cattleya.
The fluorinase, PNP and MTRI identified from S cattleya were over expressed in E. coli
and purified. A putative fuculose aldolase was identified from S. coelicolor as a surrogate
enzymatic step to that in S. cattleya. The fluorinase from S. cattleya is the key C-F bond
forming enzyme and incubation with the PNP, MTRI and the fuculose aldolase led to the
production of FAld 40, the last common intermediate in FAc 8 and 4-FT 33 biosynthesis.

The gene for the FTasg, responsible for FAld 40 conversion to 4-FT 33 in the presence of
L-methionine, was recently identified, sequenced and cloned, by Dr Ha Deng
(University of St Andrews). This enzyme was over expressed in S lividans and the
partially pure protein product was used to affect 4-FT 33 synthesis in the reconstitution
experiments. The commercialy available aldehyde dehydrogenase from S. cerevisae was

used in conjuction with the other pathway enzymes to successfully generate FAc 8.
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The ability to recombine all of the enzymes to reconstitute the biotransformation of 4-FT
33 in particular, from fluoride ion opens up the possibility of utilising the approach to
prepare 4-[*°F]-FT from [**F]-fluoride. This is currently being explored to affect a

radiolabelled synthesis of 4-[*°F]-FT.
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5 The development of a novel fluorinase assay

5.1 Introduction

The low cataytic rate of the fluorinase enzyme makes it unsuitable for large-scale
biocatalysis applications.”® 2 3 |t is therefore attractive to explore methods by which

the activity of fluorinase can be increased, for more wide scale application.

5.1.1 Mutagenesis of the fluorinase: Application of the C-F bond

One of the hotspots in modern biochemistry is the accelerated evolution of proteins,'** 1%

particularly improving enzyme performance, through directed evolution or rationa
design. Directed evolution is the “low frequency introduction of random mutations in a
gene of interest”.!®® Rational design is the changing of a specific residue in an enzyme,
identified using structural and mechanistic information. Mutating the gene of awild type
enzyme to increase its activity or stereoselectivity has attracted a lot of interest and has

yielded some successes. """
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5.1.2 Crystallography and computational studies: Site-directed
mutagenesis of the fluorinase

Crystal structure and QM/MM calculations”’ have established the putative hydrogen
bonding networks important for catalysis and the integrity of the active site pocket of the
fluorinase. Rational design extending from these analyses is unlikely, however, to yield
site-directed mutants with improved kinetics. The active site possesses intricate H-
bonding networks which are essential for catalysis. It is more likely that mutations
beyond the active site, may have a more profound effect on the catalysis. Random
mutagenesis can lead to enzyme mutants with increased activity, caused often by asingle
residue change which would not be predicted to effect catalysis. In these cases it is much
harder to predict the effect of any one mutation on catalysis. The identification of
individual residues outside the active site using this method would then form the basis of
saturation mutagenesis at that particular residue, which may yield further improvements

in reactivity.

5.2 A novel assay for fluorinase activity

To succeed at random mutagenesis for enzyme evolution, certain pre-requisites must be
satisfied.’® The most crucial of these is the requirement for a reliable high-throughput
assay that is capable of identifying mutant enzymes with increased activity. By its nature,
random mutagenesis produces many thousands of mutants. The vast mgority of these
mutants are negative, with only very few likely to produce a positive effect. The
development of an assay that is capable of screening thousands of mutants at once in

order to identify the positive mutantsis critical.
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5.2.1 L-amino acid oxidase and hor seradish per oxidase-coupled assay
for L-methionine detection.

A novel assay has been developed by Ingenza™""*"®

that incorporates an L-amino acid
oxidase (LAAOQ), horseradish peroxidase (HRP) and the dye 3',3-diaminobenzidine
(DAB). This assay is capable of producing a colour change as a direct indicator of L-
methionine concentration in solution, it was applied to the fluorinase reaction in order to

detect the product L-methionine, which is co-produced with 5 -FDA 35.

5.2.2 L-amino acid oxidases

LAAOs are homodimeric flavoenzymes containing non-covaently bound FAD as a
cofactor. They catalyse the stereospecific oxidative deamination of amino acid substrates

to the corresponding a-keto acids with the concomitant production of ammonia and

hydrogen peroxide (Scheme 5.2).1%°

HO, O,

~

E-FAD(0X) E-FADHb(red)

coo coo H,O coo
NH;"

NH,* o

Scheme 5.2. A general mechanism for the reaction catalysed by LAAOs. ®
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These enzymes are widely distributed in many different organisms and have been
purified from the bacteria Rhodococcus opacus'® and snake venom.*®” In each case their

crystal structures have been determined.*® *°

The LAAOs of bacteria, fungal and plant species are utilized in nitrogen starved
conditions during which time their expression is upregulated. Upon LAAO expression
amino acids, purines, nitrate, proteins and/or peptides are metabolized in the absence of

any readily metabolisable nitrogen sources e.g. ammonium, glutamine and glutamate.

The function of the LAAOs identified from snake venom is poorly understood. It is

thought that they may play arole in apoptosis™® "

, interact with platelets responsible for
blood clotting or they may act directly as toxins.'”* LAAOs are the major component of
many snake venoms and as such they are relatively easy to purify. The snake venom

LAAO from Crotalus adamanteus, the venomous rattlesnake, is commercially available.

5.2.3 Hor seradish peroxidase

Horseradish peroxidase (HRP) is a prototypical hemoprotein peroxidase which isisolated
from the roots of horseradish. This protein is capable of catalysing the oxidation of small
organic substrates in the presence of hydrogen peroxide. Biological oxidation reactions

catalysed by HRP involve high-oxidation state Fe intermediates (Figure 5.1).
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Figure 5.1. Oxidation states of Fe in the catalytic cycle of horseradish peroxidase. R= DAB.*

The ferric state (ground state) of the HRP enzyme reacts with H,O; to give compound |, a
two-€lectron oxidized species in which the hemeis oxidized to aferryl porphyrin zt cation
radical. Compound | undergoes successive reductions by small molecule substrates to
first generate compound Il and then again to return to the ground state. One turn of the
peroxidase cycle by HRP generates two oxidized substrate molecules (Figure 5.1), which
initiates a colour change in a colorimetric assay. A typical substrate for the colorimetric
assay of HRP is 3,3-diaminobenzidine (DAB) (Scheme 5.2). Such dye molecules are
used in immunohistochemical staining, often in the identification of cancers.* It is

noteworthy that this reaction occurs in the absence of small molecules as substrates.*”"*"
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5.3LAAO and HRP-coupled liquid phase assay of L -methionine
concentration

The combination of an LAAO and HRP in the presence of L-methionine and the
colorimetric substrate DAB was investigated as a possible visual assay for the fluorinase.
The assay is based upon the production of L-methionine as a rate determining side-
product of the fluorination reaction. L-Methionine is a substrate for LAAO, producing
H,O, and NHz as a result of oxidative deamination.’®’ The resultant H,O, is then
converted by the horseradish peroxidase, which acts to catalytically oxidise two DAB
molecules. Oxidised DAB dimerises, causing a change in colour to an insoluble brown

product (Scheme 5.2). The rate and intensity of the colour change is indicative of the rate

of reaction.
NH
O NH2
INH2 NH
S .
horseradish peroxidase O NHz
_— NH
e
H202 HN
O NH2
NH NH2 O
NH2 NH

DAB — — !

Polymerised DAB and Colour Change

Scheme 5.2. The catalytic oxidation and dimerisation of DAB by HRP.
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The assay was applied to fluorinase activity either as a purified solution (liquid phase) to
follow the fluorination reaction in real time or expressed intracellularly (solid phase) in

order to assay mutant fluorinase clones expressed in E. coli.

5.3.1 Theliquid phase assay

For the liquid phase assay the colour change caused by DAB dimerisation was monitored
by UV spectroscopy (480 nm, with an extinction coefficient of 5,500 M™* ). The colour
change was related to the specific activity of the fluorinase. Snake venom LAAO from C.
adamanteus (Sigma Ltd, UK) was used in these experiments. DAB with a metal enhancer
(cobalt) was also purchased, which is intended to intensify the colour change caused by

oxidation of DAB by H,0O, and HRP.}"

5.3.1.1 Liquid phase assay controls

In order to establish the proof of principle of the liquid phase assay, two sets of control
experiments were carried out. L-Methionine (Sigma Ltd, UK) was suspended in ultra-
pure water (100 mM). Commercially available LAAO and HRP were suspended in
phosphate buffer (10 mM, pH 7.5) to final concentrations of 5 mg/ml and DAB solution
was prepared using the manufacturers instructions, into ultrapure water (one tablet, 25

ml).

In eleven separate experiments LAAO, HRP (0.5 mg/ml respectively) and DAB solution

(40 pl) were added into a UV cuvette. L-Methionine (100 mM) was then added to
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different final concentrations (0, 0.0125, 0.025, 0.05, 0.1, 0.125, 0.2 0.25, 0.5, 1, 2 mM
respectively). The solutions were then made up to afinal volume of 1 ml using ultrapure
water, and the reactions were measured after incubation in the dark after 10 and 30 minin

a spectrophotometer (480 nm) (Figure 5.2).

045
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035 - *
03
0.25

+0

02 * Abs 480 10rrins
015 4= ® Abs 480 30rrins

OD480

0.1
0.05 1

]

™

L-methionine {mM)

Figure 5.2. A graph showing the colour change of DAB monitored at 480 nm using the components of the
liquid phase assay in the presence of different L-methionine concentrations . Values were taken after 10
(blue) and 30 min (pink) incubation at room temperature, with logarithmic error values of R,= 0.93 and
0.90 respectively.

The data was presented in Figure 5.2 and shows that the UV response of oxidized DAB is
directly linked to the concentration of L-methionine in the solution. After 10 min, the
relationship between the the OD value and L-methionine concentration exhibits a typical
saturation curve with Michaelis-Menten kinetics. As such a logarithmic curve can be
fitted to these results, with low error (R,=0.93). This curve behaves as a one-substrate

reaction, indicating that the two-enzyme coupled production of oxidized DAB from
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L-methionine is working efficiently in a combined system. The rate of change in OD
becomes non-linear in these assays at more than ~0.25 mM of L-methionine in solution.
The colour change of these experiments peak at ~0.35 (ODggo) a an L-methionine
concentration of 0.5 mM. This suggests that other factors, such as DAB availability and
the concentration of enzymes are affecting the rate of colour change in the presence of L-

methionine concentrations higher than 0.25 mM.

After 30 min incubation, the relationship between L-methionine concentration and OD is
nearly identical to that after 10 min and a log curve can again be fitted to the data
(R2=0.93). There are very small differences in the OD values attained after 10 and 30
min, suggesting that the colour change reaction has concluded after 10 min. It can be
concluded that the DAB dimerisation in this assay, is capable of indicating L-methionine

concentration close to real time.

A further six experiments were then set up in an identical manner using the same
components with different L-methionine concentrations (0, 0.0125 0.025 0.05 0.1, 0.2
mM). In the subsequent assays, the DAB preparation was used which included a metal
enhancer (Co?"), reported to increase the intensity of the OD response of DAB oxidation.
The reactions were measured after incubation in the dark, again for 10 and 30 min at RT
and DAB dimerisation was monitored by UV (480 nm). The data are presented in Figure

5.3.
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Figure 5.3. The OD,g of DAB with Co®* ametal enhancer using the components of the liquid phase assay
in the presence of different L-methionine concentrations . Values were taken after 10 (blue) and 30 m
(pink) incubation at room temperature, with logarithmic error values of R,= 0.96 and 0.95 respectively.

This liquid phase assay with DAB (Co?*) with arange of L-methionine concentrations for
10 min with a curve fitted revealed lower errors than the previous experiments (R,=
0.96). The L-methionine concentration range in these experiments covered the linear
range of the ODggy response previously determined in Figure 5.4 above. Conversions
after 30 min showed a similar shaped curve to that observed after 10 min incubation with
low error (Ro= 0.95), however the OD4gy response was more intense. The ODgygp values
that are recorded in Figure 5.3 at 10 min are significantly lower than those at 30 min
suggesting that DAB oxidation is slower, in the presence of Co*". However, at similar

conversions, the colour change is more intense.

The data from a comparison of DAB vs DAB (Co®") after both a 10 min and 30 min

incubation are compared in Figures 5.4 and 5.5 below.
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Figure 5.4. A comparison of the linear colour change of DAB (blue) and DAB (Co®") (pink) using the
components of the liquid phase assay in the presence of different L-methionine concentrations . Values
were taken after 10 min incubation at RT, with linear error values of R,= 0.96 and 0.95 respectively.
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Figure 5.5. A comparison of the linear colour change of DAB and DAB (Co?") using the components of
the liquid phase assay in the presence of different L-methionine concentrations. Values were taken after 30
min incubation at RT, with logarithmic error values of R,= 0.99 and 0.95 respectively.
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It is clear that Co®* has an enhancing effect after both 10 and 30 min incubation. This is
particularly apparent at L-methionine concentrations below 0.1 mM. DAB (Co?*")
produces an OD gy change that is ~30 % greater than DAB aone. Figures 5.4 and 5.5 also
shows that using DAB aone, there is alimit to L-methionine detection in these assays at
about 0.02 mM. This limit of detection is not apparent when using DAB with the metal
enhancer. However, the linear response of DAB (Co®) is curtailed in comparison to
DAB aonei.eit becomes non-linear at lower L-methionine concentrations. The response
of DAB alone maintains its linearity at L-methionine concentrations higher than 0.1 mM,

and as the DAB with metal enhancer response diminishes the two experiments have near

identical ODgygg at 0.2 mM.

5.3.1.1.1 Conclusions

From these experiments it can be concluded that the LAAO-HRP coupled assay in
solution is capable of detecting L-methionine through the oxidation of DAB in a single
substrate Michaelis-Menten response. LAAO and HRP are sufficiently coupled to alow
guantitative analysis of the OD4g response to L-methionine. It has been determined that
DAB oxidation in these reactions occurs within at least 10 min of incubation with L-
methionine, and holds prospects for a fluorinase assay. The experiments were also
compared with a second dye substrate, DAB with Co** as an enhancer. The OD.g
response was increased marginally with Co?*, however this modification had a lag time
and a less linear relationship at L-methionine concentrations above 0.1 mM relative to

DAB done. For these reasons, this second dye was not considered a good candidate for
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future assays. With this model study in place, an assay of the fluorinase was now

explored.

5.3.1.2 A fluorinase assay

In order to explore the DAB oxidation as a UV-based fluorinase assay, the fluorinase
enzyme was over expressed and purified to ~10 mg/ml into phosphate buffer (10 mM, pH
7.8) as described previoudly. It was combined with commercialy available LAAO and
HRP which were dissolved in phosphate buffer (10 mM, pH 7.5) to final concentrations
of ~5 mg/ml. A DAB solution was prepared in ultrapure water (25 ml) and then LAAO,
HRP (0.5 mg/ml respectively), DAB solution (40 ul), SAM 34 (1 mM), fluoride (20 mM)
were combined in a1l ml UV cuvette for a zero time reading and the fluorinase (0.6 mg)
was added to initiate the reaction. Control experiments were set up simultaneously, with
the fluorinase, SAM 34 and fluoride omitted individually from the reactions. All of the
subsequent reactions were then incubated at room temperature for 90 min and monitored
by UV (480 nm) every 2 min. The time versus ODgy data is presented in Figure 5.6

below.

Figure 5.6 clearly indicates that fluorinase activity can be detected using this novel assay.
Incubation of the fluorinase with SAM 34 and fluoride ion led to the generation of
oxidized DAB over time in alinear relationship to a maximum 0.38 ODgy after 120 min,
which corresponds to ~1 mM L-methionine. Control experiments revealed that in the
absence of one of the components of the fluorinase reaction, DAB oxidation was

significantly reduced. In the absence of the fluorinase, some DAB oxidation is apparent,
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corresponding to about a third (0.11 ODgg, 120 min) of that achieved in the presence of
the fluorinase. This reveals that there is a significant background reaction causing DAB
oxidation in these assays. In the absence of fluoride ion, the oxidation of DAB is aso
diminished (Max OD4gp 0.11), revealing that the presence of fluorideion in thereactionis
critical in order to effect the oxidation of DAB in these experiments. The final control
experiment, with SAM 34 omitted from the reaction, reveals a very low level of DAB
oxidation (0.025 OD4gp, 120 min). This indicates that the SAM 34 preparation is the

source of the background reaction exhibited in the other control experiments.
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Figure 5.6. Fluorinase assays monitoring the Absorbance of DAB versus time. Red= Complete reaction.
34. Yelow= minus fluorinase. Pink= minus KF. Blue= minus SAM 34.

It is possible that the background reaction is caused by contaminating L-methionine in
the SAM 34 sample, as a result of SAM 34 breakdown over time. Commercialy

available SAM 34 isonly ~90 % pure, and according to the manufacturer will degrade at
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a rate of 10 % every hour at room temperature in solution. Therefore there is a time-
dependant release of SAM 34 degradation products in the course of these reactions,
which may mask the release of L-methionine as a consequence of the activity of the
fluorinase. This effect probably results in the exceptionally high estimation of
L-methionine from this assay (1 mM). In the control experiment with fluoride ion
omitted, the presence of the fluorinase enzyme may have some stabilizing effect on SAM
34. In this case, the initia rate of SAM-derived DAB oxidation is reduced compared to
the control in which fluorinase is omitted from the reaction. This may also suggest that
the presence of F has a role in SAM 34 degradation. As a result it is difficult to
accurately assess the effect of SAM 34 degradation on the final results of these liquid

phase assays.

5.3.1.2.1 Liquid phase assay of the fluorinase: Pre-treated SAM

In order to reduce the effect of SAM 34 degradation in these reactions, attempts to “clean
up” SAM 34 prior to its use in these experiments were undertaken. It was noted
previously that the HRP enzyme is capable of reducing H,O in the absence of DAB or

equivalent substrates.*”""

A pre-treatment was envisaged in order to oxidise the contaminating L-methionine
contained in the SAM 34 preparation before adding the DAB substrate. This should
reduce the background DAB oxidation experienced in the liquid phase assays. To this
effect, all subsequent SAM 34 solutions used were first incubated with the LAAO and

HRP enzymes for 20 min at room temperature before the remaining assay components
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were added (Figure 5.7). Thus any L-methionine should be oxidized, prior to the

fluorinase reaction assay.
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Figure 5.7. Comparison of controls with SAM 34 and pre-treated SAM 34. Each control has a component
of the fluorinase-liquid phase assay removed.

The pre-treatment has a clear effect and was capable of reducing the effect of SAM-
derived oxidation by approximately 66 %. Indeed the pre-treatment reduced the
background reaction rates to those controls in the absence of SAM 34. This experiment
reinforced the idea that the background reaction was indeed due to contaminating L-

methionine in the SAM 34 preparation.

Following the relative success of the “clean-up” of SAM 34 it was felt that this method
could be used as a quantitative real time assay of the fluorinase reaction. To this effect,
pre-treated SAM 34 solution was prepared as previously described and the liquid phase

assay components were set up as described above. The assays were conducted with
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different SAM 34 concentrations (0, 0.25, 0.5, 1 and 2 mM) and incubated at room
temperature. DAB oxidation was followed by UV (480 nm) every 10 min and the

resulting colour change (OD4gp) over timeis shown in Figure 5.8 below.
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Figure 5.8. The UV absorbance of DAB at 480 nm over time in liquid phase assays containing different
concentrations of SAM 34,

Figure 5.8 shows the OD.gy change over time of the fluorinase reaction at different
concentrations of SAM 34. In all of the reactions there is a burst in ODagq after 10 min,
which is attributed again to residual products of SAM 34 breakdown affecting a colour
response as previously described. After the initial burst in colour change the ODygo
response establishes a secondary linear relationship. This response is attributed to the
activity of fluorinase. Despite cleaning up SAM 34, residual L-methionine is present,
masking the initial activity of fluorinase in these experiments. As expected, the overall

OD.g change, and consequent fluorinase activity, is influenced by SAM 34
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concentration. It is possible to determine a difference in the rate of the fluorinase reaction

in these liquid phase assays.

In order to validate this assay it was then compared with an established fluorinase assay
which uses HPLC to detect 5'-FDA 35,*° in the assay mixtures. Samples (10 pl) were
taken from the experiments described in Figure 5.8 after 30, 60 and 90 min respectively.
These samples were subject to heat deactivation (95 °C, 5 min) and centrifugation
(12,000 rpm, 2 min), before being made up to 100 ul with ultrapure water. The resulting
mixture was subject to HPLC analysis to determine the FDA 35 concentration compared
to DAB oxidation. The resultant 5’-FDA 35 concentration calculated from these samples
were plotted against the measured OD4gg Value attained in the liquid phase assay of that

sample (Figure 5.9).
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Figure 5.9. The OD g, response of the liquid phase assay plotted against the concentration of FDA 35 in

samples analysed by HPLC. R?=0.72.
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The results of HPLC determination of 5 -FDA 35 concentration (by HPLC) was
compared to the OD4gp (L-methionine oxidation) in Figure 5.9. A line of best fit reveds
an approximately linear relationship although its statistical significance (R?*= 0.72) is
poor. However we can determine from these results that there is a relationship between
5 -FDA 35 production by the fluorinase and the OD,gy generated by the liquid phase
assay. This data also reveals that there is athreshold limit of around 0.02 mM 5’ -FDA 35
(and therefore L-methionine) before a change in OD4g is effected. Thisis consistent with
the DAB response recorded in previous analysis (Figures 5.4 and 5.5), using L-
methionine standards. Discrepancies in the response of the liquid phase assays compared
with the 5'-FDA 35 concentration are most likely due to the background effects of SAM

34 degradation and the preparation of sample for HPLC analysis.

The quantitative analysis of the kinetics of the fluorinase reaction was explored using the
liquid phase assay with pre-treated SAM 34, however results were an order of magnitude

different from those attai ned using the more accurate HPL C methodol ogy.”® &

5.3.2 Conclusions

A new fluorinase assay has been developed measuring L-methionine release by LAAO,
HRP and DAB. It has been demonstrated that there is a linear relationship between DAB
oxidation and L-methionine concentration. Coupling of this assay with the fluorinase (L-
methionine released) was achieved. Comparisons with control assays gave confidence
that colour change of DAB dimerisation in the liquid assay is induced by the fluorinase

activity.
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There is a significant background rate due to SAM 34 degradation products, which
prevented the accurate analysis of fluorinase activity in solution. “Cleaning up” SAM 34
using LAAO and HRP in the absence of a dye substrate is effective at reducing the initial
background rate which is ~30 % of untreated preparations. However, SAM 34, which is
unstable at room temperature, continues to degrade throughout the reaction. This, coupled
with the relatively low activity of the fluorinase, makes it difficult to determine fluorinase
activity accurately. The measured K, of SAM 34 using these assays (790 uM) is two
orders of magnitude higher than that determined using the more accurate HPLC

methodol ogy.

A comparison of DAB oxidation (OD,g) with the 5'-FDA 35 concentration in solution
also revealed high error rates for the new assay. Discrepancies in these values suggests
that the liquid phase assay is not capable of generating reliable quantitative data, most
likely again due to a background reaction, low catalytic turnover of the fluorinase at a
non-optimal temperature and the threshold L-methionine concentration for DAB
oxidation. In practice, it is difficult to generate reproducible quantitative results using this
liquid phase assay. However it has some utility for determining the real time activity of

the fluorinase after purification without the need for HPLC analysis.

This assay may have a role if adapted to visually highlight E. coli colonies expressing

mutant fluorinase clones. Such an assay is required to screen after random mutageness,

to identify improved activity by high-throughput methods.
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5.3.1.3 Solid phase assay for the fluorinase

A solid phase assay to determine fluorinase activity was explored, based upon the same
principles as the liquid phase assay. It was developed in conjunction with Ingenza, a
company in Edinburgh, involved in the evolving amine oxidases. Solid phase assays are
used by Ingenza to identify active mutant clones of these oxidases, expressed by

individual colonies of E. coli cells (Figure 5.10)."" 7% 179

Figure 5.10. Photograph of E. coli cells transfected with mutant amine oxidase clones. Positive mutants are
identified by DAB oxidation, which is produced in a rate-determining manner.'"®

It was envisaged that coupling the production of L-methionine, a side product of the
fluorinase reaction, to an adapted version of the liquid phase assay, could provide a
method for screening mutated fluorinase in E. coli colonies. The fluorinase gene,
subjected to random mutagenesis, would be entered into an E. coli expression vector and
used to transform competent E. coli cells. In the presence of IPTG, the mutant genes can
then be expressed to generate the corresponding enzyme mutant. Each individual E. coli

colony represents one mutant copy of the fluorinase gene. As a result, following the
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expression of the mutant enzymes, those with enhanced activity can be identified using
the colourimetric solid phase assay, as shown in Figure 5.10 above. The solid phase assay
was developed for the high-throughput screening of fluorinase mutants, as it is capable of
screening thousands of mutants simultaneously (Figure 5.11).
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Figure 5.11. Schematic process of the solid phase assay of many thousands of mutant fluorinase plasmids,
generated by random mutagenesis. It may be possible to undergo several rounds of mutation to generate
mutants with significantly improved activity identified by the rate-determining production L-methionine
leading to the oxidation of DAB.

Unlike the liquid phase assay, a solid phase assay does not require enzyme purification
and enables many rounds of mutagenesis and analysis over a short period of time. In this
assay, competent E. coli cells are transformed with an expression plasmid containing a
mutated gene plated on antibiotic-containing LB Agar plates, with IPTG to drive the
expression of the mutant enzyme. The resulting cell colonies can then be faithfully

removed from the agar surface with filter paper and exposed to cold-shock conditions,
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which crack some of the cells open, making their cell membranes leaky. This exposes the
over expressed mutant enzyme to the assay mixture containing substrates for the desired
reaction and the LAAO, HRP and DAB components for the colorimetric assay. Once
exposed to the assay mixture, in the case of fluorinase, L-methionine will be produced
during the generation of 5-FDA 35 from SAM 34 and fluoride ion. The released L-
methionine should initiate the dimerisation of DAB in the immediate area of the colony.
Colonies which have expressed active fluorinase should be identifiable by a change in
colour, attributed to the oxidation of DAB. These colonies can be picked and used as a
starting point for protein over-expression and purification. New mutant genes can then be

characterized and also subject to further rounds of mutagenesis for iterative improvement.

In order to determine the proof of principle for this assay, competent E. coli cells
transformed with the Fla-pET28(a) vector were used to test the ability of the solid phase
method to identify individual clones expressing active fluorinase. Competent cells were
transformed with the fluorinase plasmid and plated onto LB Agar plates which contained
kanamycin and IPTG (1 mM, 16 h, 37 °C). An identical, control experiment was set up

simultaneously without IPTG, preventing fluorinase expression.

Colonies from each plate were then faithfully removed from the surface of the Agar
plates using sterile filter paper and subject to cold shock in liquid nitrogen (20 s) before
being allowed to thaw at room temperature. A wash solution (1 ml) was prepared
containing LAAO and HRP (0.75 mg) and fluoride ion (125 mM) and soaked into a fresh

filter disc and the excess fluid removed. The discs containing cells were subject to the
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wash solution, in order to remove any L-amino acids liberated by the cold shock

procedure not associated with fluorinase activity.

After a 30 min incubation a second solution was prepared (2 ml), containing LAAO, HRP
(0.25 mg respectively), fluoride ion (187.5 mM), SAM 34 (5 mM) and DAB (250 pl).
This solution was soaked onto two sterile filter paper discs, in fresh petri dishes and the
excess fluid was removed. The filter discs containing the cell colonies were placed over
the top, ensuring contact across the whole surface of the discs, and incubated at 37 °C.
The plates were monitored every 15 min for colour change and the assays were removed
from incubation after 30 min. A typical result is shown in Figure 5.12. Identical assays
were aso set up using DAB (Co®) in the place of DAB. Typical results of these

experiments are shown in Figure 5.13.

Figure 5.12. Two typical solid phase assays. The plate on the left shows colour change caused by active
fluorinase, and on the right is a control where fluorinase has not been expressed by removing IPTG from
the growth media.
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The solid phase assay of the fluorinase appeared partialy successful in that colonies
induced to express the fluorinase enzyme were capable of oxidizing DAB when
compared to control experiments. However the fluorinase-expressing colonies were not
so well distinguished by this procedure certainly by comparison with Ingenza assays
monitoring amine oxidase-expressing E. coli colonies. There is also a significant level of

background coloration reaction which occurred in the control plates.

Figure 5.13. The solid phase assay using DAB and a metal enhancer on the left, control is on the right
(without IPTG).

In the assays using DAB (Co®"), there was no significant difference between the control
and expressed fluorinase experiments. This suggests that there is either an adventitious
side-reaction taking place, most likely with L-methionine derived from SAM 34
degradation, or that L-methionine produced by the fluorinase reaction is diffusing from
the point a which it is generated. These effects are more prevalent when DAB (Co®*) was
used as the substrate for HRP. As a result, DAB aone was used for all subsequent

experiments.
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5.3.1.3.2 Salid phase assay of fluorinase using pre-treated SAM

Optimization of the liquid phase assay reveded a significant background reaction rate,
caused by the contaminating degradation of SAM 34. It proved possible to reduce the
background reaction by up to 60 % by a pre-treatment with LAAO/HRP. Thus in an
attempt to improve the solid phase assay, a similar pre-treatment was explored. In these
experiments, the cells and solutions were set up exactly as previously described, except
that in the assay mixture, SAM 34 was preincubated (30 min, RT) in the presence of
LAAO and HRP in order to remove any residua L-methionine in the SAM 34 sample.

Typical results of these assays are shown in Figure 5.14 below.

Figure 5.14. Two typical solid phase assays with pre-treated SAM 34. The assay on the right-hand side, is
acontrol (without IPTG).

The solid phase assays using pre-treated SAM 34 revealed a significant reduction in DAB

oxidation when compared with typical assays shown in Figure 5.12. Clearly the mgjority

of DAB oxidation occurring in the previous assays was actually generated by the
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oxidation of SAM 34 breakdown products, rather than the fluorinase. In these
experiments it was aso apparent that DAB oxidation occurs in the control reactions,
without fluorinase. This background reaction may be attributed to low-level SAM 34
breakdown during the course of the experiment at 37 °C. There appears to be some
difference between the control experiments and those assays where the fluorinase is
expressed. This indicates that the fluorinase reaction is affecting DAB oxidation. Unlike
Ingenza' s assays, these assays do not identify individual colonies with active fluorinase.
It appears that that there is significant diffusion of L-methionine, generated by the

fluorination reaction, away from the fluorinase-expressing colonies.

5.3.1.3.3 L-methionine diffusion in agar assays

The main difference between the solid phase assay for amine oxidases compared with
these fluorinase assays is that, in these experiments, LAAO is added in solution. The
amine oxidase enzymes under assay were capable of producing H,O, directly from
various amine substrates.'””*”® As these oxidases were expressed intracellularly, any
amine substrates would be oxidized in and around the colonies themselves, generating
localized H,0O,. This results in lighting up individual colonies when HRP causes the
oxidation of DAB. In the fluorinase assays, the LAAO is in solution with HRP and this
leads to diffusion of the L-methionine from its source. Consequently DAB oxidation does

not highlight the individual colonies so effectively.

To exemplify the influence of L-methionine diffusion, an experiment was set up,

whereby all of the components of the solid phase assay (LAAO, HRP, DAB) were
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combined with 2 % agar in a petri dish to form an agar plate solid phase. Sample discs (5
mm diameter) of filter paper were then soaked in L-methionine (1 mM), and then dried
and placed carefully onto the agar. A typical result is shown after a 30 min incubation at

RT in Figure 5.15 below.

Figure 5.15. A solid phase agar assay incubated with filter paper discs soaked in L-methionine at room
temperature for 30 min.

Figure 5.15 shows that even in the presence of 2 % agar, and using a dried localized
source of L-methionine, DAB oxidation by the LAAO-HRP coupled assay is very
diffuse. It can be assumed that the same effect is occurring in the solid fluorinase assays
and that a localized LAAO is necessary for the identification of individual E. coli

colonies.
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5.4 Conclusions

A significant colour change was identified using the solid phase fluorinase assay.
However, it was found that this colour change was aso occurring, to a lesser extent in
control reactions, most probably as aresult of SAM 34 degradation. Despite reduction in
the background reaction by pre-treatment of SAM 34, identification of individual
colonies was not possible using this assay. It was found that in the LAAO-HRP assay,
L-methionine diffuses from its origin before being oxidized by LAAO. In previous work
using this technique, the oxidation of aminesis carried out by amine oxidases which have
been expressed intracellularly. As aresult amines are only oxidized in the immediate area

of the colony, concentrating DAB oxidation to the colony itself (Figure 5.10).

Attempts to limit the diffusion of L-methionine using agar were not successful, and
colour change in control experiments revealed that this effect was significant. The
identification of a bacterial LAAO from R. opacus capable of the oxidation of L-
methionine,™®® opened the possibility of expressing this gene on a low copy plasmid
alongside mutant fluorinase. However, this LAAO does not express in E. coli and work
by Ingenza reveded that this LAAO aso acts on SAM 34 as a substrate (personal
communication), something that does not appear to occur using the snake venom LAAO.

Therefore this line of research was not pursued.

In conclusion, the LAAO-HRP assay in both the liquid and solid forms is capable of
detecting fluorinase activity. However this effect is masked by the adventitious effect of

SAM 34 degradation in solution, an effect observed in both forms of the assay. In the
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solid phase assay, diffusion of L-methionine across the assay prevented identification of
individual colonies expressing active fluorinase. As a result, this assay was judged not
suitable for identifying mutant fluorinase clones in a high-throughput manner. The
identification of an LAAO gene, which can be expressed in E. coli aongside the
fluorinase gene, may make this technique a viable tool in the future. This would enable
the solid phase assay of the fluorinase to be comparable to the successful assays

previously used by Ingenza.
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Conclusion and Future Work

The work in this thesis has detailed the successful validation of the intermediates and
enzymes involved in the fluorometabolite pathway in S. cattleya. This was achieved by
effecting an in vitro biosynthesis of the fluorometabolites using recombinately over
expressed enzymes, identified from S cattleya and also surrogate enzymes from other
organisms. Consequently, 4-FT 33 and FAc 8 were generated from fluoride ion and SAM
by metabolism of 5’ -FDA produced by the fluorinase. Concurrently, the accumulation of
intermediates involved in fluorometabolite biosynthesis was also achieved. This work
also identified an isomerase enzyme at the genomic level from S, cattleya that is capable
of utilising 5-FDRP 38 to generate 5-FDRuUlP 39. The reannotation of a homologous
enzyme found in S. coelicolor was also accomplished. A fuculose aldolase, aso from S.

codlicolor, has aso been identified and characterised.

The fluorinase has been used extensively as a biocatalyst to generate novel [*®F]-labelled
PET compounds. The successful in vitro generation of 4-FT 33 in particular has opened a
route to an [*°F]-labelled version of this amino acid. Future work is needed to optimise
the expression and reaction conditions of the reconstitution experiments to generate
enough material to be a valid tool for PET. Also the ability to accumulate intermediates
in the fluorometabolite pathway, opens up these new compounds to PET trials. This
application of the fluorinase will aso drive further efforts to identify a robust high-
throughput assay for the fluorinase and the identification of the mechanism of the

isomerase, and its potential role in S. cattleya will aso be an interesting topic to explore.
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6 Experimental

6.1 General Methods

All  commercial reagents, chemicals or enzymes were purchased from Sigma
Biochemicals, Fluka, Promega, Novagen and Fermentas unless otherwise stated. The
following commercial enzymes were used. 5'-Adenylic acid deaminase (E.C. 3.5.4.6,
from Aspergillus species, A1907, 0.11 unitmg) and immobilised PNP (E. coli, donated
by GlaxoSmithKline, E.C. 2.4.2.1). pFu DNA polymerase (E.C. 2.7.7, M7741), GoTagq™
DNA polymerase (Promega, M5122), KOD polymerase (Novagen, 71085-3). PCR
primers were designed in house and purchased from MWG Biotech. The competent cells
BL21(DE3), BL21 (DE3) GOLD, C43(DE3), BL21 Star™, Rosetta 2 (DE3), and DH50.

were purchased from Invitrogen in 50 pl aliquots.

All microbiological work was carried out in a Galenkamp flowhood under sterile
conditions unless otherwise stated. Glassware, media and consumables were sterilised by
autoclaving. Centrifugation (>1000 ul) was carried out on a Beckman JA instrument at
14,000 rpm, at 20,000 (JA 25.50) or at 9,000 rpm (JLA 9.100). An Eppendorf 5415C

centrifuge was used for microcentrifugation of volumes less than 1000 ul. Cell free
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extracts for protein purification were acquired through sonication using a Sonics and
Materias Inc., Vibra Cell. Ultra-pure water was collected from a USF Elga Maxima

water supply system.

6.1.1 High Performance Liquid Chromatography (HPLC)

HPLC was carried out on aVarian Prostar system, consisting of a solvent delivery system
(230, Prostar), a dua wavelength UV-Vis detector (325, Prostar) and a Prostar 400
autosampler. An analytical hypersil 5 pum C-18 column (250x10 mm, Phenomenex) was
used at aflow rate of 1 ml/min. Sample volumes of 100 pl were used, of which 20 pl was
automatically injected. Solvents were HPLC grade and filtered before use. The mobile
phases consisted of two solvents, A, 50 mM KH,PO,: acetonitrile (95:5) and solvent B,
50 mM KH,PO;,: acetonitrile (80:20). Runs were monitored at 254 nm by gradient elution

over 30 min from 0% B to 100% B.

6.1.2 °F NMR Spectr oscopy

F NMR analyses were performed on Bruker Avance 500 MHz (operating at 470 MHz)
or Varian unity 500 MHz (operating at 470 MHz) spectrometers. All °F NMR
spectroscopy was carried out using D,O (~ 10 %) as an internal reference. Chemical
shifts are given in ppm and coupling constants (J) are given in Hertz (Hz). Spectral
coupling patterns are designated as follows; d: doublet and t: triplet. Spectra were

analysed using TopSpin™ V. 2.1 (Bruker BioSpin).
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6.2 Growth and maintenance of S. cattleya on agar

Sreptomyces cattleya NRRL 8057 was originally supplied by Prof. D. B. Harper at the
Queens University of Belfast, Microbia Biochemistry Section, Food Science
Department, Belfast. Cultures were maintained on agar plates containing soybean flour
(2 % wl/v), mannitol (2 % w/v), agar (1.5 % w/v) and tap water. The plates were
incubated at 30 °C for 28 days or until sporulation could be detected. The resultant static

cultures were stored at 4 °C for future use.

6.2.1 Culture medium and growth conditions of S. cattleya

Streptomyces cattleya seed and batch cultures were grown in conical flasks (500 ml)
containing chemicaly defined medium (90 ml). The medium was prepared as follows.
Sterile ultra-pure water (450 ml) was added to ion solution (150 ml), filtered carbon
solution (75 ml), (see Section 5.1.4), sterile phosphate buffer (75 ml, 150 mM, pH 7.0)
and sterile potassium fluoride (3 ml, 0.5 M). The seed cultures were prepared by
transferring spores from a static culture as described above, and added to a conical flask
(500 ml) containing chemically defined medium (90 ml). After incubation for 6 d at
28 °C on an orbital shaker (180 rpm), an aliquot (0.3 ml) of spores was used to inoculate
the batch cultures. The batch cultures were incubated at 28 °C, on an orbital shaker at 180

rpm for 6-8 d.
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6.2.2 Mediafor growing S. cattleya

6.2.2.1 lon solution

The following reagents were added to ultra-pure water (900 ml).

NH,CI 6.759
NaCl 2259
MgS04.7H,0 2259
CaCOs 1.13g
FeS0O,.7H,0 0.113g
CoCl,.6H,0 0.045¢
ZnS0,4.7H0 0.045¢.

The solution was sterilised by autoclaving prior to use.

6.2.2.2 Carbon source solution

The following reagents were added to ultra-pure water (900 ml).
glycerol (45 Q)

monosodium glutamate (22.5 g)

myo-inositol (1.8 g)

para-aminobenzoic acid (450 pl of freshly prepared solution 1 mg/ml)

The solution was sterilised by filtration into pre-sterilised Schott bottles.
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6.3 Preparation of resting cell culturesof S. cattleya

After 6 days of growth, S. cattleya cells were harvested by centrifugation (9,100 rpm / 25
min) and the resulting pellet was washed three times with phosphate buffer (50 mM, pH
6.8). After the final wash, the bacterial pellet was stored at —-80 °C or could be used
directly for genomic DNA extraction using the Wizard™ genomic DNA purfication kit

(Promega).

6.4 Transfor mation of Competent Cells

Chemically competent E. coli cells were purchased from Invitrogen (BL21 (DE3), C43
(DE3) and DH5a) or derived from them. To transform these cells, each aliquot (50 ul)
was mixed gently on ice and alowed to thaw for 3-5 min. After thawing, 200 ng of
plasmid DNA solution (~1-2 pl) was added directly to each aiquot, stirred gently and
returned to ice for 5 min. The cells were then exposed to 42 °C for exactly 30 s, before
returning to ice for 2 min. SOC medium (250 pl) was added to each via and the vials
were then incubated at 37 °C whilst shaking at 250 rpm for 60 min. An aliquot (50 pl) of
the transformed cells was then added to agar plates containing antibiotic determined by
the plasmid vector that was used, distributed using a plate spreader, and maintained at
37 °C for 16 h. Single colonies from these plates were then added to LB medium (10 ml)
(containing 0.01 % antibiotic) and shaken on an orbital shaker for 16 h at 37°C. From this
culture, aliquots (1 ml) were taken and glycerol (100%) added to a concentration of 50%

and the aliquots stored at -80°C.
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6.5 Over expression vectors

The E.coli expression vectors PET28(a) (novagen) and pHISTev (from Dr. H. Liu,
University of St Andrews) were used to over express and purify enzymes used in this
thesis. For expression of the PNP (FIB) from S cattleya, the pLou vector (from Dr.
L.Mgjor, University of St Andrews) was used, encoding a maltose binding protein (malE)
to help with folding of the expressed protein. They each generate a Hisg tag, enabling
nickel column purification, as described below. For degenerate PCR, the pGem™-T Easy
vector (Promega) was used in conjunction with GoTaq polymerase (Promega) for
preparation for DNA analysis. For expression in S lividans, the pXY200 E. coli-

Streptomyces shuttle vector was used (see Figure 6.1).
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Figure6.1. Plasmid vectors used for overexpression and DNA analysisin thisthesis.
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6.6 Nickel column chromatography

Cells (5 g) were resuspended in phosphate buffer (100 mM, pH 7.8), containing
imidazole (10 mM), and stirred for 30 min at 4 °C. The suspension was then sonicated,
x10 at 60 cycles for 1 min, and the cell debris removed by centrifugation (9,000 rpm for
20 min) and then the supernatant retained as a CFE. A sample of the cell debris was
resuspended and retained for SDS page analysis. Purification was carried out on a NiSO,4
charged resin.

Sample Buffer (11): 10 mM Phosphate Buffer pH 7.8
10 mM Imidazole

Loading Buffer (500 ml): 10 mM Phosphate Buffer pH 7.8
30 mM Imidazole

Eluting Buffer (500 ml): 10 mM Phosphate Buffer pH 7.8
500 mM Imidazole

The column was pre-equilibriated with 4 to 5 column volumes of Sample Buffer. The
protein sample was loaded and the column washed by 4 to 5 volumes of Loading Buffer
to remove endogenous proteins. Elution was carried out with 4 column volumes of
Eluting Buffer. Protein concentration was monitored by Nanodrop and SDS PAGE and
the Hise-tag was cleaved with thrombin (Sigma T-4648, 1 unit/mg protein) by incubation

for 16 h at 4 °C.
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6.7 Fast Performance Liquid Chromatography

6.7.1 Size Exclusion Chromatography

Protein purification was carried out on an ACTA Basic system. Size exclusion
chromatography was performed using a High Load 16/60 Superdex 200 column
(Amersham Biosciences). The column was equilibriated using phosphate buffer (10mM,
pH 7.8) a 1 ml/min for 4 or 5 column volumes. Protein samples were reduced to 2 ml
using 10,000 MW microcentrifuge membranes and injected. Elution was monitored at

280 nm at Iml/min in samples of 4 ml.

6.7.2 Anion exchange chromatography

Protein purification was carried out on an ACTA Basic system. Size exclusion
chromatography was performed using a HiTrgp™ Q HP 100 ml column (Amersham
Biosciences). The column was equilibriated using phosphate buffer (10 mM, pH 7.8) at 1
ml/min for 4 or 5 column volumes. Protein samples were reduced to 2 ml using 10,000
MW microcentrifuge membranes and injected. Elution of the protein was achieved by
increasing the buffer B (1 M NaCl) from 0 to 30 % (i.e. 0-0.3 M) over 30 min, monitored

at 280 nm at 1 ml/minin samples of 4 ml.

6.7.3 Desalting chromatography

Protein purification was carried out on an ACTA basic system at room temperature. Size
exclusion chromatography was performed using a HiTragp™ Q HP 100 ml column

(Amersham Biosciences). The column was equilibriated using 10 mM phosphate buffer
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pH 7.8 a 1ml/min for 4 or 5 column volumes. Protein samples were reduced to 2 ml
using 10,000 MW microcentrifuge membranes and injected. Elution of the protein was
monitored at 280 nm at 1 ml/min in samples of 1 ml and salt removal monitored by

conductivity.

6.8 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)

SDS-PAGE was performed on an Invitrogen XCell SureLock™ mini-cell apparatus
connected to an Amersham Pharmacia biotech EPS 301 power supply operating at a
constant current of 125mA for 35 min. NUPAGE™ Bis-Tris 10 well gels containing

4-12 % of acrylamide were used.

Protein samples for SDS-PAGE analysis were prepared by adding 5 pl of NUPAGE™
LDS sample buffer (Invitrogen, NPOOO7) to 20 ul of protein sample, and the protein was
denatured at 100 °C for 3 minutes. A sample (10-20 ul) was then added to the sample
wells of the pre-cast NUPAGE™ Bis-Tris gel. Prestained pageruler™ protein ladder

(SM0661, Fermentas) was used as a guide for MW determination.

The gel was stained by soaking and was agitated in Coomassie blue G250 dye for 30 min.
Destaining was achieved by submerging in water and microwaving for 10 min at full
power. Stain solution is composed of coomassie blue G250 (2.0g), methanol (400 ml),

glacia acetic acid (70 ml) and ultra pure water (530 ml).
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6.9 DNA Gel Electrophoresis

DNA gels were performed on a HOEFER™ HE33 mini horizontal submarine unit
(Amersham Biosciences Ltd), using a power pac 300 (Bio Rad), operating at a constant
current of 110 V for 30 min. DNA gels were prepared by adding 1 % w/v agarose to 1X
TAE solution prepared as described below. The solution was heated until liquid at full
power in a microwave, before cooling to 40 °C in a water bath. 5 pl ethidium bromide
was then mixed with ~40 ml of this solution and set into a DNA gel casting tray, using a
comb to generate 12 wells. DNA samples were thoroughly mixed with blue/orange
loading dye (Promega, cat no. G190A) and Generuler™ 1 kb and 100 bp ladders dyed
similarly and used as a standard. DNA gels were analysed under UV light, and bands
excised using a scapd for purification by the SV Wizard™ Gel and PCR Cleanup Kit

(Promega) according to manufacturers instructions.

6.9.1 TAE Buffer

For 1 litre of 50 x TAE buffer the following reagents were added:

2M Tris base
1M glacia acetic acid (100%) (57.19 ml = 1 mole)
100 ml 0.5 M Na, EDTA (pH 8.0)

H,0 up to 1000 mi
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6.10 Polymer ase chain reaction (PCR)

PCR reactions were carried out on a TC-512 PCR machine (Techne). DNA primers were
designed in-house with appropriate restriction enzyme sites and ordered from MWG
Biotech. They were received in a freeze-dried form, and subsequently dissolved into
nuclease free water to afinal concentration of 100 pM/pl. This stock solution was further
diluted to 20 pM/ul, and 1 pl each of forward and reverse primer solutions were used in
the PCR reactions. PCR programmes were determined by the length of insert and the
DNA polymerase used for amplification. DM SO was added to fina concentration of 6 %

in all PCR reactions with Streptomyces DNA as atemplate.

6.11 MS-MS Mass Spectrometry

Proteins identified by SDS-PAGE analysis were excised and subject to MS-MS by A.
Houston and Dr. C. Botting (University of St Andrews). The identity of excised protein
bands was confirmed by in-gel tryptic digest and analysis of the resultant peptides by
nanoLC-ESI MSMS (UltiMate (Dionex) and Q-Star Pulsar XL (Applied Biosystems)).
The MS/MS data file generated was analysed using the Mascot 2.1 search engine (Matrix
Science, London, UK) against an internal database consisting of a bacteria genome
background to which the FTase sequence (amongst others) had been added. The datawas
searched with tolerances of 0.2 Dafor the precursor and fragment ions. Trypsin was used
as the cleavage enzyme with up to one missed cleavage assumed. Carbamidomethyl
modification of cysteines was selected as a fixed modification and L-methionine

oxidation as a variable modification.
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6.12 GC-M S Mass Spectrometry

GC-MS analysis was carried out by Dr. J. Hamilton (Queen's University, Belfast).
Lyophilised samples were per-trimethylsilylated by addition of N-methyl-N-
(trimethylsilyl) trifluoroacetamide and heating for 60 min at 100 °C. GC-MS analysis
was performed on an Agilent 5890 GC instrument which was directly attached to an
Agilent 5973A mass selective detector (MSD). The GC was equipped with an Ultra 1
fused-silica capillary column (Agilent Technologies; 12 m x 0.25 mm x 0.17 um). The
oven temperature was programmed to hold for 1 min at 100 °C and then ramped at
10 °C/min to 300 °C. The injector and transfer line temperatures were set at 250 °C and
the per-trimethylsilylated sample (1 ul) automatically injected in the splitless mode. The
MSD was operated in the full scan mode measuring ion currents between m/z 30 and 500

amu.

6.13 Fluorinase and purine nucleotide phosphorylase expression.

E. coli BL21 (DE3) Gold cells were transformed with the pET28(a) plasmid containing
the FIA gene. The pLou plasmid construct containing the FIB gene was transformed
similarly. 20 ul of cell stock containing 50 % glycerol was added to 20 ml LB containing
0.05% (100mg/ml) kanamycin and incubated at 37 °C for 16 h. Aliquots (2.5 ml) were
transferred to 2 | flasks containing 750 ml LB and 0.05 % ampicillin and incubated until
the solution reached an O.D of 0.6 at 600 nm. The flasks were then cooled to 4 °C before

induction by 0.01% IPTG (100 mg/ml) at 16 °C for 16 h. The cells were harvested by
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centrifugation at 9,000 rpm for 20 min, and then the supernatant was discarded and the

cell pellet either stored at -80°C or used directly for further protein purification.

6.14 PL P dependant transaldolase expression and purification

The plasmid pXY -ScaFTase was transfected into protoplasts of S. lividans TK24 by Dr
Hai Deng, followed by the standard procedure.®® The transfected S lividans protoplasts
were then plated in SFM medium with MgCl, (10 mM) at 30 °C for 16 h and flooded
with apramycin (ImL, 25 pg/ml). After 3-5 d incubation at 30 °C, the surviving spores
were picked up and grown in 10 ml YEME medium supplied with apramycin (50 pg/ml)
at 28 °C until the spores were observed. Then the medium was incubated with YEME
medium (100 ml) supplied with apramycin (50 pg/ml) at 28 °C for 60 h and the protein
was induced by adding thiostreptin (10 pg/m) for another 24 h. The cells were harvested
and subject to sonication. The cell-free extract was partialy purified by Ni?*
chromatography and subjected to SDS-PAGE and MS-MS analysis. The enzyme activity
was monitored by incubation with FAld 40 (1 mM), PLP (20 uM) and L-threonine (1

mM) at 37 °C for 16 h for *°F NMR analysis.

6.14.1 SFM Medium

The following reagents were added in 1 L ultrapure water:
Mannitol 20g

Soya flour 20g

Sterilization by autoclaving
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6.14.2 Yeme Medium

The following reagents were added in 1 L ultrapure water:
Y east extract 3g

Bacto-peptone 5g

Malt extract 39

Glucose 10g

Sucrose 340 g
after autoclaving add MgCl2.6H20 to 5 mM

6.15 SC0O3014 from S. coelicolor and MTRI-Sca from S. cattleya

6.15.1 Gene Amplification

Genomic DNA from S. codlicolor and S cattleya was prepared as a template for the
amplification of SCO1844 and the MTRI-Sca ORFs in the presence of the primers from
Tables 2.1 and 2.3 respectively. PCR reactions were performed in 20 ul of final volume
with 6 % DM SO and pFu DNA polymerase (1.5 unit, Promega). The PCR reaction was
preheated to 98 °C for 5 min, followed by 30 cycles of denaturation at 95 °C for 1 min,
annealing at 58°C for 1 min and extension at 72 °C for 1-2 min dependent on the size of
DNA amplification, with 7 min infilling at 72 °C. The PCR products were subjected to
DNA gd anaysis. In a1l % agarose TAE gdl, run in TAE buffer at 100 V for 30 min.
Gels were then analysed by UV, DNA bands were purified by the SV Wizard Gel
Cleanup Kit to ~100 ng/ul. The excised DNA bands were subjected to 4 h digestion by
the EcoRl and Xhol restriction enzymes as was the pHISTev vector according to
manufacturer’s instructions. All of the DNA preparations were then repurified into

nuclease-free water using the SV Wizard Gel Cleanup Kit. The final DNA concentrations
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were measured by nanodrop. The SCO01844 and MTRI-Sca preparations were
individually incubated with the pHISTev preparation in the presence of T4 DNA ligasein
a ratio of 3:1 respectively for 16 h at 4 °C. The ligation mixture was then used to
transform competent E. coli BI21(DE3) Gold cells by heat shock. Recombinant plasmids
were purified by the QIAPREP™ spin miniprep kit (Qiagen) according to manufacturer’s
specifications. DNA sequencing was carried out by Dundee University Sequencing

Service, and al DNA was prepared according to their requirements.

6.15.2 Protein Overexpression

The resultant plasmids pHISTev-SC0O1844 and pHISTev-MTRI-Sca were introduced into
E. coli BL21 (DE3) Gold (Stratagene) competent cells and grown in Luria broth
containing kanamycin (50 pg/ml) at 37 °C until an absorbance of 0.6 at 600 hm was
reached. The proteins were over expressed by adding IPTG (1 mM) and cells were | eft to
grow at 16 °C for 16 h. Cells were then harvested by centrifugation and were subject to
sonication for lysis. The cell-free extract with PBS and imidazole (10 mM) was then
centrifuged (2x, 20,000g) at 4 °C for 15 min. The supernatant was subjected to Ni-
affinity chromatography and the active fractions were eluted by adding PBS buffer with
imidazole (100 mM). The eluent was dialysed for 16 h at 25 °C by adding thrombin (0.5
unit; Sigma Aldrich Co. Ltd.,) The dialysate was then subjected to size exclusion
chromatography (Column, Amersham Co), anion exchange chromatography, followed by

desalting and SDS-PAGE, confirmed by MS-MS of the excised SDS-PAGE gel band.
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6.15.3 Assays

6.15.3.1 5-FDRP Generation

5-FDRP 39 was generated from synthetic 5’ -FDA 35 (prepared by M. Onega and Dr. M.
Winkler, University of St Andrews). 5’ -FDA 35 was dissolved into phosphate buffer (10
mM, pH 7.8) to afinal concentration of 20 mM. Commercially available 5 -adenylic acid
deaminase (0.1 mg) was then incubated with this solution for 2 h at 37 °C. The reaction
was stopped by heat deactivation (95 °C, 5 min) and centrifugation (12,000 rpm, 2 min).
A sample of the supernatant was made up to a volume 800 pl with ultrapure water and
D,0 (100 pl) for °F NMR analysis. Following confirmation of 5-FDI 36 generation, the
supernatant was incubated with commercially available PNP (0.1 mg) for 16 h at 37 °C.
The sample was then stopped by heat deactivation (95 °C, 5 min) and centrifugation
(22,000 rpm, 2 min). A sample of the supernatant was made up to a fina volume of 800
pul with ultrapure water and D,O (100 pl) for °F NMR analysis. The supernatant was

then removed and stored at -20 °C until required for the assay.

6.15.3.2 SCO3014 and M TRI-Sca Assay

The purified SCO3014 and MTRI-Sca proteins were incubated with 25 pl of 5-FDRP 38
solution for 6 h at 37 °C. MTRI-Sca was also preincubated with 1 mM EDTA for 30 min
at 37 °C before incubation with 5-FDRP 38 in a similar manner. Control experiments
were also set up in the absence of SCO3014 or MTRI-Sca. All of the above reactions

were stopped by heat deactivation (95 °C, 5 min) and centrifugation (12,000 rpm, 2 min)
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a sample of the supernatant was made up to 800 ul with ultrapure water and 100 pl D,O

for *F NMR for analysis.

6.15.3.3 Reconstituted M TRI -Sca assay

The fluorinase, PNP (FIB) and MTRI-Sca were purified as detailed above into phosphate
buffer (10 mM, pH 7.8) to afinal concentration of ~1 mg/ml. They were added (0.1 mg)
into an eppendorf (1.5 ml) in the presence of 2 MM SAM 34, and 50 mM KF and
incubated for 16 h at 37 °C. Control experiments were also set up in the absence of the
MTRI-Scaprotein. All of the above reactions were stopped by heat deactivation (95 °C, 5
min) and centrifugation (12,000 rpm, 2 min). A sample of the supernatant was made up to

800 pl with ultrapure water and 100 pl DO for **F NMR analysis.

6.15.3.4 | sothermal titration calorimetry (ITC)

ITC experiments were carried out using a VP-ITC device (microCal, Northampton, MA).
The MTRI-Sca protein was purified as before and dialyzed against 10 mM HEPES buffer
(pH 7.8), and the DHAP and L-G3P ligands were dissolved in the same buffer to a final
concentration of 600 uM. All solutions were degassed and the ligand solutions were
injected at 25 °C into the sample cell containing ~1.4 ml of MTRI-Sca with the
concentration around 20 puM. Each titration consisted of an initial injection (1 pl)

followed by 25 subsequent injections (5 pl) of the ligands with 180 s intervals.
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Calorimetric data was analysed using MicroCa ORIGIN software using a single binding

site model!.

6.16 Fuculose aldolase

6.16.1 Degenerate PCR of the fuculose aldolase from S. cattleya

DNA fragments amplified using a combination of two degenerate primers (Table 3.2) by
PCR reactions, were performed in 20 pl of final volume with 6 % DMSO and GoTaq
DNA polymerase (1.5 unit, Promega) in the presence of S. cattleya genomic DNA as a
template. The samples were preheated in 98 °C for 5 min, followed by 30 cycles of
denaturation at 95 °C for 1 min, annealing at 55 °C for 1 min and extension at 72 °C for 1-
2 min depending on the size of DNA amplification, with 7 min infilling at 72 °C. The
PCR products were subjected to DNA gel analysis. In a 1 % agarose TAE gdl, run in
TAE buffer at 100 V for 30 min. Gels were then analysed by UV, DNA bands were
purified and ligated into the pGEM-T easy vector and transfected into JLM 109 competent
cells and plated on agar plates in the presence of X-Ga for blue-white screening
detection. Selected colonies were picked from the agar plate and grown in LB media
containing ampicillin at 37 °C for 16 h. The media was then centrifuged, and the resultant
cell pellet was used for plasmid extraction, using the QlIAprep Spin Miniprep Kit
(Qiagen, 27104). The resultant plasmids were subject to DNA sequencing at Dundee

University according to their specifications.
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6.16.2 Amplification of SCO1844 from S. coelicolor genomic DNA

Genomic DNA from S. coelicolor was prepared as a template for the amplification of
SCO1844. PCR reactions were performed in a final volume of 20 pl, with 6 % DMSO
and pFu DNA polymerase (1.5 unit, Promega) in the presence of the primers from Table
3.3. The PCR reaction was preheated to 98 °C for 5 min, followed by 30 cycles of
denaturation at 95 °C for 1 min, annealing at 58 °C for 1 min and extension at 72 °C for 1-
2 min dependent on the size of DNA amplification, with 7 min infilling at 72°C. The PCR
products were subjected to DNA gel anaysis. In a1 % agarose TAE gel, run in TAE
buffer at 100 V for 30 min. Gels were then analysed by UV, DNA bands were purified by
the SV Wizard Gel Cleanup Kit to ~80 ng/pl. The ORF SCO1844 was subjected to 4 h
digestion by the EcoRIl and Hindlll restriction enzymes as was the pHISTev vector
according to manufacturers instructions. The DNA was then repurified into nuclease-free
water using the SV Wizard™ Gel Cleanup Kit and the final DNA concentration was
measured by nanodrop. The SCO1844 and pHISTev preparations were then incubated in
the presence of T4 DNA ligasein aratio of 3:1 respectively for 16 h at 4 °C. The ligation
mixture was then used to transform competent E. coli BI21(DE3) Gold cells by heat

shock.

6.16.3 Over-expression of the putative fuculose aldolase from S.
coelicolor in E. cali

The resultant plasmid pHISTev-SC0O1844 was introduced into E. coli BL21 (DE3) Gold
(Stratagene) competent cells and grown in LB medium containing kanamycin (50ug/ml)

at 37 °C until an absorbance of 0.6 at 600 nm was reached. The SC0O1844 protein was
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over expressed by adding IPTG (1 mM) and cells were left to grow at 16 °C for 16 h.
Cells were then harvested by centrifugation and were subject to sonication for lysis. The
cell-free extract with PBS and imidazole (10 mM) was then centrifuged (2 x, 20,000 g) at
4 °C for 15 min. The supernatant was collected by passing through a Ni-affinity column
(Qiagen) and the active fractions were eluted by adding PBS buffer with imidazole (100
mM). The eluent was dialysed for 16 h at 25 °C by adding thrombin (0.5 unit; Sigma Ltd)
The dialysate was then subjected to size exclusion chromatography. The active fractions
gave a monomeric mass of 25 kDa by SDS-PAGE, confirmed by MS-MS of the excised

SDS-PAGE gel band.

6.16.4 Assay of the SCO1844 protein

6.16.4.1 Aldol Reaction

The protein product of SCO1844 was over expressed and purified as described previously
to a fina concentration of ~1 mg/ml. DHAP was purchased from Sigma and a stock
solution in ultrapure water of 20 mM was made. Synthetic FAId 40 was prepared from
fluoroethanol according to previous methods (M. Onega, University of St Andrews), to a
final concentration of ~20 mM. 0.1 mg of the SCO3014 protein was incubated with
DHAP (1 mM) and FAId 40 (~ 5mM) for either 6 h at 37 °C, or 24 hat RT and at 4 °C. A
control experiment without the SCO1844 protein was aso set up alongside this assay.
The above reactions were stopped by heat deactivation (95 °C, 5 min) and centrifugation
(22,000 rpm, 2 min). The supernatant was made up to 800 pl with ultrapure water and

100 pl D,0O for *F NMR analysis for confirmation of 5-FDRulP 39 generation.
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6.16.4.2 Aldol time coursereaction

The SCO1844 protein (0.1 mg) was incubated with DHAP (1 mM) and FAId 40 (~ 5mM)
for 6 h at 37 °C. Samples (100 ul) were taken at 10 min, 20 min, 30 min, 40 min, 50 min,
1 h, 2 hand 3 h. The samples were stopped by heat deactivation (95 °C, 5 min) and
centrifugation (12,000 rpm, 2 min). The supernatant was made up to 800 pl with

ultrapure water and D,O (100 pl) for *F NMR analysis.

6.16.4.3 Aldol reaction with EDTA incubation

The SC0O1844 protein (0.1 mg) was preincubated with EDTA (1 mM) for 30 m at 37 °C
before being incubated with DHAP (1 mM) and FAId 40 (~ 5mM) for 6 h at 37 °C. A
control reaction was also set up using the SCO1844 protein without EDTA incubation
and the assay solution incubated in a similar manner. The samples were stopped by heat
deactivation (95 °C, 5 min) and centrifugation (12,000 rpm, 2 min) and the supernatant

was made up to 800 pl with ultrapure water and DO (100 pl) for *>F NMR analysis.

6.16.4.4 Aldol reaction with Zn?" incubation

The SCO1844 protein (0.1 mg) was preincubated with Zn®* at different concentrations
(20, 20 and 100 uM) before being incubated with DHAP (1 mM) and FAId 40 (~ 5mM)
for 6 hat 37 °C. A control reaction was also set up using the SCO1844 protein without

Zn** and incubated in a similar manner. The samples were stopped by heat deactivation
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(95 °C, 5 min) and centrifugation (12,000 rpm, 2 min). The supernatant was made up to

800 pl with ultrapure water and D,O (100 pl) for **F NMR analysis.

6.16.4.5 Reconstituted SCO1844 assay: Retro-aldol reaction

The fluorinase, PNP (FIB) and MTRI-Sca and SCO1844 proteins were purified as
detailed above in phosphate buffer (10 mM, pH 7.8) to afina concentration of ~1 mg/ml.
They were added (0.1 mg) into an eppendorf (1.5 ml) in the presence of 2 mM SAM 34,
and 50 mM KF and incubated for 16 h at 37 °C. Control experiments were also set up in
the absence of the SCO1844 protein. All of the above reactions were stopped by heat
deactivation (95 °C, 5 min) and centrifugation (12,000 rpm, 2 min). A sample of the
supernatant was made up to 800 pl with ultrapure water and DO (100 pl) for **F NMR

anaysis.

6.17 In vitro reconstitution of FAc 8 from inorganic fluorideion

The fluorinase, PNP, isomerase and fuculose adolase were al over-expressed in E. coli
and purified to homogeneity by Ni-affinity and size exclusion chromatography to ~1
mg/ml in PBS buffer. The aldehyde dehydrogenase and its cofactor, NAD(P) were
purchased and dissolved into PBS buffer. All of the pathway enzymes were added into an
eppendorf tube (1.5 ml) to afinal concentration of 0.1 mg/ml. They were incubated with
SAM (1.4 mM), KF (35 mM) and NAD(P)" (1 mM, Sigma Ltd) for 24 h at 37 °C.
Samples were removed after O, 1, 2, 3, 4, 5, 6 and 24 h. The samples were stopped by

heat inactivation (95 °C, 5 min) followed by centrifugation (2 min, 14,000 g), the
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supernatant was then made up to 700 pl and D,O (100 pl) was added. Control
experiments were carried out by removing the aldehyde dehydrogenase from the reaction
(enzymes and substrates/cofactors) replacing with an equivalent volume of PBS, whilst
subject to the same conditions and analysis. FAc 8 production was confirmed by *°F{ *H}

NMR, by add-mixing with a synthetic reference compound (Sigma Ltd).

6.17.1 PBS Buffer
In 1 L ultrapure H,O:
8 gNaCl

0.2gKCl

1.44 g Na,HPO,

0.24 g KH-PO,

Adjusted pH to 7.5 with HCI
Sterilized by autoclaving.

6.18 In vitro reconstitution of 4-FT from inorganic fluorideion

The fluorinase, PNP, isomerase and fuculose adolase were al over-expressed in E. coli
and purified to homogeneity by Ni-affinity and size exclusion chromatography to ~1
mg/ml in PBS buffer. The PLP transaldolase was purified as previously described to
approximately 0.25 mg/ml in PBS buffer. All of the pathway enzymes were added into an
eppendorf tube (1.5 ml) to afinal concentration of 0.1 mg/ml. They were incubated with
SAM (1.4 mM), KF (35 mM), PLP (0.7 mM) and L-threonine (35 mM) for 16 h at 37 °C.
The reaction was stopped by heat inactivation at 95 °C for 5 min followed by

centrifugation of 2 min at 14,000 g, and then the supernatant was then made up to 700 pl
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and 100 pl D,O was added. The resultant mixture was subject to *°F NMR analysis.
Control experiments were carried out by removing a single component of the reaction
(enzymes and substrates/cofactors) in turn and replacing with an equivalent volume of
PBS and subject to the same conditions and analysis. 4-FT 33 production was confirmed

by *F{*H} NMR, *F NMR and GC-MS after lyophilisation of the samples.

6.19 Solid Phase Assay

An aiquot (10 pl) of stock solution of E. coli (DE3) transformed with pET28(a)
containing the fluorinase gene was added to 1 ml LB broth containing kanamycin
(0.01%). The aliquot was then shaken at 250 rpm at 37 °C for 2 h, and a sample (5 ul)
was added to an LB agar plate containing kanamycin and IPTG (1 mM). Control
experiments were carried out without IPTG added to the growth medium. The cells were
spread evenly using a plate spreader and then incubated at 37 °C for 16 h. After this
period, filter paper discs were placed over the surface of the plates, and pressure was
applied from above in order that colonies on the plate were transferred faithfully to the
filter paper. The filter paper was then removed and placed in liquid nitrogen for 10-15 s,
and then allowed to thaw at RT. A second filter paper disc was then placed in a Petri dish
and soaked in 1 ml wash solution (see below), and excess liquid was removed. The filter
paper disc containing the cell colonies was then placed on top of the filter paper and wash
solution ensuring that no bubbles existed between the two discs. The Petri dish was then
covered, and placed in a container with a damp cloth to ensure moisture retention, and

then put in an incubator at 37 °C for 90 min. At the same time, the assay mixture minus
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diaminobenzidine (DAB) was prepared, and left at room temperature until the next step.
After 90 min DAB (the assay mix was also prepared using SIGMA FAST™ DAB with
CoCl, (Sigma D-0426)) was added to the assay mixture and a separate filter paper disc
was placed in another Petri dish, which was then soaked with 1 ml assay mixture, and the
excess removed. The filter paper containing cell colonies was then removed from the
wash filter paper, and transferred to the assay mixture-containing filter paper. Again it
was ensured that no bubbles existed between the two sheets of filter paper, and that cell
colonies were facing up. The assay Petri dishes were again placed in a container with a
damp cloth, and incubated at 37 °C and then monitored at regular 15 min intervals for

colour change.

6.19.1 Wash Solution (to make 4 mls):
ultra pure water (2 ml)
snake venom |-amino acid oxidase (Sigma A-9253) (1 mg/ml) (1 ml)

horseradish Peroxidase (Fluka 77335) (1 mg/ml) (1 ml)
potassium fluoride (BDH Laboratory Reagents 29613) (500 mM) (1 ml)

6.19.2 Assay Mixture (to make 4 mls):

snake venom |-amino acid oxidase (1 mg/ml) (0.5 ml)
horseradish peroxidase (1 mg/ml) (0.5 ml)

potassium fluoride (500 mM) (1.5 ml)

s-adenosyl-l methionine (Sigma A-7007) (20 mM) (0.5 ml)
SIGMA FAST™ 3,3 -diaminobenzidine (Sigma D-4418) (0.5 ml)

6.19.3 Solid phase agar assay with L-methionine controls

All enzymes and DAB stock solutions were prepared as above. A 1 mM L-methionine
stock solution was also prepared using ultrapure water. A 2 % agar solution was prepared

using ultrapure water and the resulting mixture was heated at full power in a microwave
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until the solution was homogenous. The solution was then cooled to 40 °C in awater bath
and 25 ml was removed into a 50 ml falcon tube. To this mixture, LAAO (1 ml, 5
mg/ml), HRP (1 ml, 5 mg/ml) and DAB were added to the solution stirred at 40 °C. The
resulting mixture was then poured into a petri dish and cooled until solid at RT. Filter
paper discs were made by a hole punch and soaked into the L-methionine stock solution.
They were then dried in open air (10 min). The discs were then placed onto the solidified
assay plate, and incubated for 30 min a 37 °C. DAB oxidation was then anaysed

visualy.

6.20 Liquid phase assay

The fluorinase enzyme was purified as previously described (Section 6.13) and
concentrated to 9.93 mg/ ml in phosphate buffer (10 mM, pH 7.8). LAAO (1 mg/ml),
HRP (1 mg/ml), DAB, SAM (20 mM) and KF (500 mM) solutions were set up as
previously described. Fluorinase was added to a final concentration of ~0.6 mg/ml,
LAAO and HRP to 0.1 mg/ml, KF to 20 mM and 40 ul of DAB solution was incubated
with varying concentrations of SAM 34 (0, 0.25, 0.5, 1 and 2 mM) and made up to 1 ml
using ultrapure water in microcuvettes. The optical density was measured at 480 nmin a
spectrophotometer over a period of 90 min, with a reading taken automatically every 10
min. The concentration of L-methionine was determined using a standard curve (see
Figure 5.2) by correlating the extinction co-efficient of DAB (5,500 M™Y. The steady-
state kinetic parameters were obtained by fitting the initial velocity against the substrate
concentrations according to the Michaelis-Menten equation. Liquid assay samples (20 pl)

were taken for HPLC analysis at 30, 60 and 90 min. Samples were subjected to
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denaturing conditions of 95 °C for 3 min, then spun a 14,000 rpm for 3 min. Aliquots
(20 pl) of the supernatant were then resuspended in ultra pure water to make 100 pl,
which was then subjected to HPLC analysis. 5'-FDA 35 concentrations were determined
by reading from the standard curve, which was created by injecting known concentrations

of synthetic 5’-FDA 35 into the HPLC machine.

6.20.1 L-Methionine assays

LAAO (1 mg/ml), HRP (1 mg/ml) and DAB, solutions were prepared as previously
described. L-methionine (Sigma) was suspended to a final concentration of 100 mM in
ultrapure water. LAAO and HRP were added to afinal concentration of 0.1 mg/ml and 40
pl of DAB solution was incubated with varying concentrations of L-methionine (0, 0.125,
0.25, 0.5, 1 and 2 mM) and made up to 1 ml using ultrapure water in microcuvettes. The
optical density was measured at 480 nm in a spectrophotometer after 10 and 30 minin a

spectrophotometer at 480 nm.
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