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Abstract

Mark-recapture methods use repeated captures of individually identifiable animals to

provide estimates of properties of populations. Different models allow estimates to be

obtained for population size and rates of processes governing population dynamics. State-

space models consist of two linked processes evolving simultaneously over time. The state

process models the evolution of the true, but unknown, states of the population. The

observation process relates observations on the population to these true states.

Mark-recapture models specified within a state-space framework allow population dy-

namics models to be embedded in inference ensuring that estimated changes in the popu-

lation are consistent with assumptions regarding the biology of the modelled population.

This overcomes a limitation of current mark-recapture methods.

Two alternative approaches are considered. The “conditional” approach conditions on

known numbers of animals possessing capture history patterns including capture in the

current time period. An animal’s capture history determines its state; consequently, cap-

ture parameters appear in the state process rather than the observation process. There

is no observation error in the model. Uncertainty occurs only through the numbers of

animals not captured in the current time period.

An “unconditional” approach is considered in which the capture histories are regarded

as observations. Consequently, capture histories do not influence an animal’s state and

capture probability parameters appear in the observation process. Capture histories are

considered a random realization of the stochastic observation process. This is more con-

sistent with traditional mark-recapture methods.
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Development and implementation of particle filtering techniques for fitting these mod-

els under each approach are discussed. Simulation studies show reasonable performance

for the unconditional approach and highlight problems with the conditional approach.

Strengths and limitations of each approach are outlined, with reference to Soay sheep

data analysis, and suggestions are presented for future analyses.
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Chapter 1

Introduction

Growing international concern over the human impact on the environment has predicated

an increasing need for the development of techniques to assess the current state of many

populations, both plant and animal. Hence, there is a need to monitor biodiversity in

order to determine which populations are endangered, and to develop management strate-

gies that can impact positively on these populations. To be effective tools for managing

populations, these models need to provide reliable predictions about the future impact of

any management strategy. To be meaningful, these predictions need to be made with a

quantifiable degree of precision in order to measure the uncertainty associated with any

model-predicted outcome.

These management models will be formulated based on data collected on the animal

population of interest. These models will then be used to answer important questions

about the population of interest. Two of these will be: “How many animals are there?”

and “Given how many there are now, how many animals will there be in the future?”.

These two questions have inspired a significant body of work: the issue of estimating

animal abundance is addressed in detail in Seber (1982) and Borchers et al. (2002) with

a comprehensive review of the different approaches given by Schwarz and Seber (1999).

1



2

The second question centres on investigating the relationship between the state of the

population at two different points in time. Models are formulated in order to link a time

series of population estimates via dynamic processes that are assumed to drive the evolu-

tion of the population over time. A unified general framework for embedding population

dynamics models in inference is presented in Buckland et al. (2007).

To monitor the dynamics of a population over a period of time it is necessary to obtain

data on that population over a series of time points. The method chosen to analyse these

data is then determined by the requirements of the monitoring study, the nature of the

animal being studied and its environment, the resources available to those performing the

monitoring and the required precision of the estimates obtained. If individual animals

can be identified uniquely, either by their distinctive physical, or chemical (e.g. DNA),

markings or by the application of an identifying tag after initial observation, then mark-

recapture approaches can be used. Mark-recapture methods are important and widely

used methods for analysing time series data based on the repeated observation or capture

of individual animals. These methods can be used to obtain estimates for the population

abundance as well as the vital rates that specify the additions and removals that deter-

mine the changes in abundance over time.

An overview of mark-recapture methodology is given in chapter 2, with emphasis on

obtaining inference on the dynamics of animal populations. Classical models, with focus

on the estimation of survival and capture rates, are summarised and the main extensions

and developments to these are also discussed. Alternative models that explicitly incor-

porate a recruitment process are discussed in detail. The remainder of the chapter then

summarises the developments of mark-recapture models from a Bayesian perspective that

allows more complex models to be fitted to mark-recapture data.
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The existing mark-recapture analyses are limited with reference to inference on the

population dynamics. The construction of the models is often determined by computa-

tional expediency rather than any requirement to embed a biologically realistic structure

in inference. A review of statistical approaches to modelling the dynamics of wild ani-

mal populations is presented in chapter 3. Modelling population dynamics using matrix

models (Caswell, 2001) is described and the benefits and limitations of this approach are

outlined. Fitting matrix models to data using these methods can often fail to account

for the various sources of uncertainty associated with the model specification and the

population being studied. Although the statistical models reviewed in chapter 2 offer

an integrated modelling approach to account for uncertainty, they typically fail to incor-

porate an explicit population dynamics model. The integrated approach presented by

Buckland et al. (2007) is discussed in detail and will form the framework for the new

approaches developed in this thesis. Suitable models will need to integrate the time-series

of mark-recapture data with the assumed population dynamics model whilst accounting

for the various sources of uncertainty. Within a Bayesian framework, state-space models

satisfy these requirements and their general structure, fitting methods and inference are

discussed in detail in chapter 3.

The chief aim of this thesis is to develop techniques that allow dynamic ecological

processes to be embedded into mark-recapture analyses. A new approach is proposed

whereby a population dynamics model is embedded into a state-space model structure

for analysing mark-recapture data in order to ensure that the resulting model inference is

consistent with what is assumed to be known about the biological processes of the system

being studied. This approach incorporates the flexible state-space modelling framework

that allows complex ecological processes to be specified as components of an embedded
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population dynamics model. Using this approach it is possible to mitigate against some

of the limitations of the existing mark-recapture methods described in chapter 2.

In chapter 4 one of two alternative approaches is presented. The “conditional” ap-

proach restricts the numbers of animals that were not captured at each time period to be

consistent with the observed data. That is, under this “conditional” approach the model

structure is conditional on the known numbers of animals that were captured at each time

period. There is no observation error because the the model parameters relating to cap-

ture are included in the state process as opposed to the observation process. Stochasticity

enters the model only through those animals that are not captured in the current time

period. The general approach to formulating these models and their specific application to

mark-recapture data is presented in chapter 4. Simulation methods are discussed and par-

ticle filtering techniques for fitting models under the “conditional” approach are described.

A more efficient fitting algorithm for the models constructed under the “conditional”

approach is described in chapter 4. This “bottom-up” algorithm initialises model fitting

by first focussing on the evolution of the population over the most recent time period.

Inferences to earlier time periods then proceeds by simulating backwards in time. The

justification for this is presented in more detail in chapter 5. It can be summarised as

an attempt to increase the probability that the trial density, required under the particle-

filtering fitting approach, respects the conditioning imposed by the observed animals at

each time period. The states simulated under the model fitting algorithm need to be

consistent with the observed mark-recapture data. The details of this alternative fitting

algorithm when applied to a relatively simple state-space model are presented in chap-

ter 5. This approach will not be possible for models for which the state process model

depends on state at a previous time period (e.g. density dependence).
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An alternative approach to embedding a population dynamics model within a mark-

recapture analysis is introduced in chapter 6. The prime distinction from the “conditional”

approach is that this “unconditional” approach does not condition on the recorded mark-

recapture data. Stochasticity now occurs in the modelling framework via the observa-

tion process which models the relationship between simulated states and the observed

measures on those states. In common with the “conditional” approach, a state-space

modelling framework and particle-filter based fitting methods are both still used for this

“unconditional” approach. This approach is compared in detail with the “conditional”

approach in chapter 6 and the formulation of the model, fitting methods and inference

are all presented in detail.

Applications of these two new approaches: the “conditional” and “unconditional” are

discussed in chapter 7. Studies based on simulated data are presented with a detailed

analysis provided on the efficacy of both approaches when fitting the same simulated

data. Further simulation studies were used to investigate the general performance of each

model fitting approach. Multiple populations were simulated and repeated analyses were

performed on each of these populations using the model fitting methods specified under

each approach. Analyses of variance were performed to investigate the relative contribu-

tions of different sources of error to the variability in the average state and parameter

estimates produced by each model fitting approach. A real mark-recapture data set from

a monitoring study on a population of Soay sheep was analysed under both approaches

using existing studies to inform the choice of population dynamics models used in the

analysis. The results are presented in chapter 7.

Chapter 8 provides a summary of the work presented and discussed in the thesis.
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Limitations to the new approaches developed in chapters 4 to 6 are presented and areas

requiring future research are discussed.



Chapter 2

Capture-Recapture Methods

2.1 Introduction

The study of an ecological system from a statistical perspective can often lead to the fol-

lowing questions of interest. What processes affect the system? How can these processes

be described in a mathematical context? Therefore, one of the major roles of statistics

in ecology is to construct and test models that can be used to simulate accurately the

biological processes that are assumed to drive the dynamics of the system being studied.

The ecological systems discussed in this thesis will be limited to those that can be

analysed using open population capture-recapture methods. Capture-recapture methods

may also be referred to as Mark-Recapture methods during this thesis and these two

terms can be assumed to be interchangeable. This chapter will provide an overview of

the methods currently used to obtain inference on the dynamics of an animal population

using capture-recapture methods.

In general, when investigating the dynamics of an animal population the choice of

modelling approach will be determined by the aims of the study. A natural aim of such

a study would be to obtain estimates of the total abundance of the population. Another

7
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desirable aim would be to obtain estimates of the demographic parameters assumed to

be fundamental to the changes in the size of the population. For example, birth rates

and immigration rates determine the additions to the population whereas mortality rates

and emigration rates determine the removals from the population over time. Capture-

recapture models can be used to obtain estimates for the population size, addition rates

and removal rates although not all models can yield all three types of estimate.

One of the main distinctions in the classification of capture-recapture models is be-

tween those suitable for closed or open population studies. Although this thesis will not

consider closed population models it is useful to elucidate the distinction in a capture-

recapture modelling context. Closed populations are ones that do not experience any

temporary or permanent changes to the population size; that is, the total abundance

remains constant for the entire duration of the sampling period. Open populations are

defined as those that can experience additions in the form of births and/or immigration

and permanent removals in the form of deaths and/or emigration during the course of

the study. Consequently open population studies are defined as having sufficient time

between sampling occasions to expect some additions or losses from the sampled popula-

tion. Therefore, when modelling open populations extra parameters must be incorporated

in addition to those that are used for closed populations, to model the changes to the

population.

Closed population models, by themselves, are of limited usefulness when investigating

the dynamics of animal populations as they require the assumption that births and deaths

can effectively be ignored. This restrictive assumption naturally restricts their utility to

short-term sampling periods during which constant abundance is a realistic possibility.

However, if there is still significant animal movement from migration in and out of the
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study area these closed population approaches can no longer be applied reliably. There

has been a significant body of work produced on these closed population methods with re-

cent summaries provided by Borchers et al. (2002) and Williams et al. (2002, pp. 289-314).

Both open and closed models can be used with the same study to improve the derived es-

timates. Pollock’s robust design (Pollock et al., 1990; Kendall and Nichols, 1995; Williams

et al., 2002, pp.523-544) was conceived to overcome potential problems with bias in esti-

mates of population size which can arise if the underlying assumptions of open population

models are not met. Closed population estimates of abundance are robust to heterogene-

ity in the estimated capture probability and, under Pollock’s design, are recommended

for estimation of abundance with open population models being used for survival rate

estimation. These models will not be discussed in detail in this thesis but are referred

to as a future research direction in Chapter 8. From this point on the main focus of the

thesis will be on open population models and the increased flexibility this paradigm offers.

We assume that the capture-recapture studies discussed in the following sections con-

sist of K ≥ 1 sampling occasions. During each sampling occasion some of the animals are

“captured” and these can then be classified in two distinct categories: those that have

been captured previously and those that have not. The newly captured animals either

possess natural, individually distinct, markings or they are given unique distinguishing

codes (or marks). These natural markings or issued codes are recorded and, if physically

captured, the animals are then released back into the population. Previously caught (and,

therefore marked) animals have their identifying codes recorded and are then also released

back into the population. The linked, but separate, processes of capture and marking can

involve deleterious physical contact with the animal. For example, the capture process

may involve setting a grid of traps and waiting for the animals in the study area to enter

them. There then exists the potential for some of the trapped animals to be affected
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through stress or physical injury. Also, although somewhat less likely, the process of giv-

ing each animal a unique identifying code, or mark, can be physically damaging to the

animal. If the mark consists of a tag fixed to an animal (e.g. by being punched through its

ear) then the animal can be injured. Therefore, in the context of capture-recapture mod-

els, animals that are injured during the capture process and not subsequently released, or

that are purposefully removed for other reasons, are referred to as “losses on capture”.

The use of the phrase “captured” can imply that the animal is physically restrained in

the form of a trap. Although this can be the case, the actual mechanism for capture and

marking does not always involve physical restraint; there are many cases in which this

would be impractical if not impossible. Some animals, or organisms more generally, can

be “captured” from distance simply by the observation of some mark or tag. For example,

neck collars or leg rings on birds are a common form of tag that can be observed from

distance. In these cases, the sampling process consists of attempting to resight marked

animals. The initial tagging of the animals may require them to be physically captured

but after this initial capture, future captures consist only of the identifying mark being

observed. Equally, there are scenarios in which the organism does not even need to be

physically captured initially. For some species, individual animals can be identified by

unique natural markings. For example, whales (Gowans and Whitehead, 2001), seals

(Harrison et al., 2006), and tigers (Karanth and Nichols, 2000) can be identified from

photographs of their markings.

The K ≥ 1 sampling occasions will then result in a record of captures and/or obser-

vations for each animal that is uniquely identified at some point during the study. The

record for an individual animal is referred to as its capture history and consists of a row
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vector of length K comprised of 1s and 0s indicating whether an animal was caught (de-

noted by a 1) or not caught (denoted by a 0) on each occasion.

Modelling based on this capture history form of data structure focuses on the develop-

ment of probabilistic models that explain adequately the biological processes which can

engender the observed capture history data. The development of appropriate probabilistic

models requires a suitable choice of parameterisation. The simple closed population mod-

els for capture-recapture require only the specification of capture parameters due to the

restrictive assumption that the population remains at some fixed, but unknown, total for

the duration of the sampling study. The more flexible nature of open population models,

in which the composition of the population is allowed to vary over the course of the study,

necessitates a larger number of processes to be included in the probabilistic models, and

consequently, a larger number of associated parameters. The most flexible and general

open population capture-recapture models can incorporate both additions and losses of

animals throughout the course of the sample study.

After the completion of a general long-term open population capture-recapture study,

the main parameters and quantities of interest will consist of two types of estimates.

Firstly, estimates of the abundance at various points throughout the study and secondly,

estimates of the demographic parameters relating to additions (often referred to as re-

cruitments in the literature) and removals between each sampling occasion. Depending

on the assumptions made about the model structure, additions may incorporate both

birth and immigration and removals may incorporate both mortality and permanent em-

igration. The ability to estimate these quantities of interest is then determined by the

information collected in the capture-recapture study. In this general open population

capture-recapture study there are two main sources of information; firstly, that obtained
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from recapturing animals that have been previously marked and secondly, that obtained

from comparing the numbers of previously marked animals with the numbers of unmarked

animals captured during each sampling occasion. The first source of information is ad-

equate if the aim of the study is solely to estimate survival rates of marked individuals,

whereas both sources of information are required to estimate population sizes and num-

bers of additions at each sampling occasion.

The estimation of survival rate can be the prime aim of a study (Cormack, 1964;

Buckland, 1982; Lebreton et al., 1992). In these approaches, the fitted models are condi-

tional on the initial capture of an animal with the emphasis then being on the processes

that determine the subsequent entries in the animal’s recorded capture history. As noted

in Cormack (1964), there is no provision in these models for estimating the population

abundance and, as described in Lebreton et al. (1992), the recapture of previously marked

animals is simply modelled as a function of survival and capture probabilities and does

not depend on population abundance. A particular form of this type of study is one

in which inference is based solely on recoveries (recapture and subsequent removal from

the population) of previously marked animals. Band recovery models are examples of this

type and in this scenario the first recapture consists of the recovery of the identifying band

or tag from the body of the animal. Clearly, there can be at most a single recapture, and

inference is based on the losses of these individuals from the population over the period

of the study. A general analysis using numerical solutions to maximum likelihood formu-

lations for these band recovery models is given by White (1983), and a comprehensive

description of the theory and application of band recovery models is given by Brownie

et al. (1985). The mark-recapture survival analysis in Buckland (1982) incorporates both

tag return and capture-recapture data to provide estimates of survival parameters that

are less influenced by departures from the restrictive assumptions of homogeneous capture



13

probabilities across all animals.

This chapter presents a review of the development of capture-recapture methodology.

The classical modelling approaches are introduced and explained with major extensions

and developments to these approaches discussed in detail. Extensions that have particular

relevance to obtaining inference on population dynamics within a mark-recapture analysis

are examined in detail. More recent development have seen capture-recapture analyses

embedded within a Bayesian framework. This section of this review chapter introduces

some of the important recent developments in this area of research by focusses on each in

turn.

The models discussed in Section 2.2 will be restricted to those that are conditional

on the initial capture of an animal. The standard assumptions and resulting structure

of simple capture-recapture models of this type will be introduced in the next section.

The following sections broadly follow the structure of Chapters 17 and 18 of Williams

et al. (2002) and provide an outline of the development of the use and analysis of open

population capture-recapture studies.

2.2 Capture-Recapture Models Single Age

The simplest form of open population capture-recapture model consists of a single cohort

of animals being monitored over the duration of the study. This is often referred to as a

‘single-age’ model and is defined such that the survival and capture parameters are as-

sumed to be homogeneous for all sampled animals regardless of when they were captured

or their age at the time of capture.

The capture history data can be expressed in the form of a capture history matrix,
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X = The matrix of capture histories.
K = Number of sampling occasions.

MK+1 = Total number of animals that have been captured at least once
during the study.

ω = A zero-one indicator vector denoting the capture history: ω =(
δ

(ω)
1 , δ

(ω)
2 , . . . , δ

(ω)
K

)
where δ

(ω)
i = 1 or 0 forj = 1, . . . , K if the ani-

mal was caught on the jth occasion or not. There are 2K possible
patterns, one of which represents the null pattern: ω1 = (0, 0, . . . , 0)
i.e. those animals that were present at some stage but never caught.

xω = Number of animals having the capture history pattern ω

Table 2.1: Notations and definitions for the xω representation of single-age capture-
recapture models.

X. The total number of individuals caught during the study is denoted as MK+1, thus

the matrix X will have MK+1 rows. If there are a total of K sampling occasions during

the study then X will have K columns. Therefore, if i represents an individual animal

(i = 1, 2, . . . ,MK+1) and j represents the sampling occasion (j = 1, 2, . . . , K) then the el-

ement Xij takes the value 1 if the ith animal was caught during the jth sampling occasion,

and 0 if the ith animal was not caught during the jth sampling occasion. This notation is

defined in Table 2.1.

Using the definitions in Table 2.1, inference from capture-recapture studies is based

on the the number xω of animals having the capture history pattern ω. Although there

are 2K possible capture history patterns, the null pattern corresponding to an animal

that exists in the population yet is never captured is not included in the analysis. This

is because these models are constructed to be conditional on the first capture of the ani-

mals and thus require an animal to be captured on at least one occasion. The inference

is then based only on the observable capture histories, that is, those histories that con-

tain at least one capture. For example, in a three-period study there are eight possible

capture histories, of which seven are observable and the other is the null pattern. The
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mij = Number of animals released in period i that are next captured in
period j (j > i).

Ri = Number of releases in period i.

Table 2.2: Notations and definitions for the mij-array representation of single-
age capture-recapture models.

numbers of animals attaining these observable capture histories can then be expressed

as x111, x110, x101, x100, x011, x010, x001 and the required likelihood can be constructed from

these data.

An alternative, but equally common, representation for the data that can be fit to

these single-age models is an mij-array. As defined in Table 2.2, the entries in this array

correspond to the numbers of animals first captured and released during sampling period i

that are then not captured again until sampling period j (1 ≤ i < j ≤ K)1. For example,

m13 denotes the number of animals that were first captured during the first sampling

occasion and subsequently marked and released but then were not captured during the

second sampling occasion before being captured again during the third sampling occasion.

The total, Ri, corresponds to the number of animals released back into the population

after the ith sampling occasion. If it is assumed that there are no losses on capture the

number of animals released after the ith sampling occasion is given by

Ri =
i−1∑
r=1

mri 1 ≤ i < K.

It should also be noted that the individual capture history patterns, ω, can contribute

to multiple values in the mij array. For a three-period study an animal with the capture

history pattern x111 will be released after the first, second and, assuming it is not lost on

1Note that the indexes i and j differ between the xω and mij summary representations.
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pi = The probability that a marked animal in the study population dur-
ing sampling period i is captured during sampling period i

φi = The probability that a marked animal in the study population dur-
ing sampling period i survives until i + 1 and remains in the pop-
ulation

χi = The probability that an animal alive in the study population during
sampling period i is not captured again during any future sampling
period.

Table 2.3: Further notations and definitions for the single-age capture-
recapture models.

capture, the third capture occasions and will therefore contribute to R1, R2 and poten-

tially R3. Equally, the animal will contribute to both m12 since it was released in period 1

before being captured and released in period 2, and m23 since it was then captured again

in period 3.

2.2.1 The Cormack-Jolly-Seber Model

The above mij array representation is a common way to represent data for the single

age Cormack-Jolly-Seber model (Cormack, 1964; Jolly, 1965; Seber, 1965). To express

the conditional Cormack-Jolly-Seber2 models for the capture-recapture data three further

parameters are defined in Table 2.3.

It is not necessary to always use the parameter χi as it is constructed from previously

specified parameters: the capture and survival probabilities pi and φi respectively. How-

ever, the model expression is somewhat easier to interpret when the χi parameterisation is

used. For a K sample study, no animals can be seen again after the Kth sampling occasion

and therefore χK = 1. For sampling occasions i < K, χi can be calculated recursively as:

χi = (1− φi) + φi(1− pi+1)χi+1 (2.2.1)

2hereafter referred to as CJS
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The composition of Equation (2.2.1) manifests the two different ways in which an animal

can avoid being recaptured after sampling occasion i: it can ‘die’ and therefore perma-

nently leave the population (which has probability 1 − φi) or it can survive and remain

in the population without ever being recaptured (which has probability φi(1− pi+1)χi+1).

With regard to the ‘survival’ parameter φi it should be noted that the parameter refers to

the probability that the ith individual remains in the population available to be sampled.

This happens as a combination of two separate processes: firstly the individual animal

must survive and secondly the individual animal must not permanently leave the popula-

tion by emigrating. Hence, the process referred to as ‘survival’ is a combination of both

true survival and non-emigration.

Having defined the required survival and capture probabilities the modelling approach

for the capture history data can now be specified. These models are conditional on first

capture so the initial state of the model consists of animals that have been caught, marked

and released. Then, a released animal can either remain alive until period 2 with proba-

bility φ1 or it can die. If it survives, it can be caught with probability p2 or it can remain

uncaught. The development of this system over the first two sampling periods is shown

in Figure 2.1.

This modelling structure is then repeated through all periods in the study and can

be used to model an observed capture history in terms of the probabilities associated

with the survival and capture processes. Consider a five period study and consider an

individual animal that was captured during the 2nd and 4th sampling occasions but was

not captured during the 3rd occasion. The capture history pattern for this animal can

then be written as 01010. This history is modeled by conditioning on the first observed

capture which occurred in the 2nd period and then expressing the remainder of the history
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Figure 2.1: Diagram of events and associated probabil-
ities for an animal released in period 1 of a two-period
study under the CJS model for open populations

as:

Pr(01010|First capture during period 2) = φ2(1− p3)φ3p4χ4.

For the observed capture history 01010 the model must include survival from periods 2

to 3 (which has probability (φ2), non-capture in the 3rd period (which has probability

1− p3), survival from periods 3 to 4(which has probability φ3), capture in the 4th period

(which has probability p4) and the probability of not being captured again after period 4

which is given by χ4 = (1− φ4) + φ4(1− p5) = 1− φ4p5.

The above expression for the capture history is actually conditional on both the first

capture and the animal’s fate after the last observed capture. For example, if the animal

had been lost on capture or else removed from the population and not released after being

captured in the 4th period then the model for the 01010 history would be:

Pr(01010|First capture during period 2 and removal at period 4) = φ2(1− p3)φ3p4.

The difference is that in the latter case the animal is removed from the population after
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Capture History Probability

100 (1− φ1) + φ1(1− p2)(1− φ2p3)
101 φ1(1− p2)φ2p3

110 φ1p2(1− φ2p3)
111 φ1p2φ2p3

Table 2.4: Capture histories and associated probabil-
ities, conditional on capture in the first sample, for R1

animals under a three-period CJS model.

period 4 so there is no need to model any events following the last observed capture and

the χ4 term is no longer included.

Consider the R1 animals; these animals have been captured and released into the

population after the first capture occasion. If a three-period sampling study is assumed

then the animal can experience one of the following capture histories: 100,101,110 or 111.

Constructing the capture history pattern probabilities in the same way as for the five-

period example above, Table 2.4 shows the probabilities associated with the four possible

capture history patterns for the R1 animals.

From the construction of the capture history probabilities in this manner it can be seen

that χ3 = 1, χ2 = (1−φ2)+φ2(1−p3) = 1−φ2p3 and χ1 = (1−φ1)+φ1(1−p2)(1−φ2p3) =

(1 − φ1) + φ1(1 − p2)χ2. Since each of the R1 animals must take one of these four

mutually exclusive capture histories the probability distribution of these four histories

can be constructed as a conditional multinomial distribution:

Pr({xω} |R1) =
R1!∏
ω xω!

[(1− φ1) + φ1(1− p2)(1− φ2p3)]x100 [φ1(1− p2)φ2p3]x101

×[φ1p2(1− φ2p3)]x110 [φ1p2φ2p3]x111 (2.2.2)
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This can be expressed more concisely in terms of the χi (i = 1, 2, 3) values:

Pr({xω} |R1) =
R1!∏
ω xω!

[χ1]x100 [φ1(1− p2)φ2p3]x101

×[φ1p2χ2]x110 [φ1p2φ2p3]x111

where χ3 = 1 and is thus omitted. The index ω in the denominator of Equation (2.2.2)

denotes the range of the four possible capture history patterns: 100, 101, 110 and 111.

The model for the entire data set of capture histories needs to include the probabilities

for the animals that are released after the second sampling period having been uncaught

during the first period. These animals are denoted as u2 and will exhibit capture history

patterns with 01 as their first two entries. For the three-sample study being considered

there are only two such histories: 011 and 010, the animals are either caught again during

the final capture period or they are not. The conditional multinomial3 distribution for u2

is then:

Pr({x010, x011} |u2)
u2!

x010!x011!
[1− φ2p3]x010 [φ2p3]x011 (2.2.3)

The probabilistic model for the three period study does not incorporate terms corre-

sponding to animals that are first released after the third (final) sampling occasion. The

aim of the model is to construct a probabilistic description of the fate of an animal (i.e.

its capture history) conditional on the time of initial release. If the initial release is only

after the final capture occasion then there is no remaining information in the capture his-

tory to model the animal’s fate. Hence, the 001 history is not included in the probability

distribution. Equally, the null history 000 is not included as this capture history pattern

corresponds to animals that are never captured or observed and therefore can not be a

component of a model that conditions on first capture.

3Actually a binomial distribution in this case
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Eight possible capture history patterns can occur in the three period study under con-

sideration, but only six are included in the conditional model. The conditional probability

model for these six possible capture histories which are observed for animals released after

initial capture in either of the first two periods is then given by the product of Eqs (2.2.2)

and (2.2.3).

This form of model expression denoted in Eqs (2.2.2) and (2.2.3) specifies a fully pa-

rameterised CJS model. That is, the index i on both the capture parameters pi and

survival parameters φi indicates that both processes can have time-specific values. Re-

duced forms of CJS models exist and these can allow for fixed values of pi, φi or both.

These reduced model forms as well as other special cases and extensions to the CJS model

will be discussed later in this chapter.

2.2.1.1 Model Assumptions

The probabilistic form of, and the inference obtained from, a model is determined by

the inherent assumptions made about the system being studied. For the Cormack-Jolly-

Seber model the assumptions (Pollock et al., 1990; Williams et al., 2002), with a more

fully specified set in (Burnham et al., 1987), are often given as:

1. Every marked animal present in the population at the time of sampling period i

(i = 1, 2, . . . , K) has the same probability of being captured or resighted, pi.

2. Every marked animal present in the population immediately after the ith sample has

the same probability, φi, of survival until the (i+1)th sampling period (i=1,2,. . . ,K-

1).

3. Marks are recorded accurately and are neither lost, overlooked or misread.
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4. All sampling periods are instantaneous and recaptured animals are released imme-

diately after the sample.

5. All emigration from the sampled area is permanent.

6. The fate of each animal with respect to capture and survival probability is indepen-

dent of the fate of any other animal.

Assumption (4) is that all sampling periods are instantaneous. In practice this is unlikely

to be the case and instead the assumption is that the duration of the sampling period is

very small relative to the time between sampling periods, that is the interval over which

the rate of survival will be estimated. If the sampling period is long then this could in-

crease the heterogeneity of survival amongst released animals. For example, if mortality

can occur during the sampling period then an animal released at the beginning of a long

sampling period may have a lower probability of surviving to some future point in time

than an animal released at the end of the sampling period.

Assumptions (1) and (2) relate to the implicit assumption of homogeneity for the

capture and survival probabilities used to construct the probabilistic model for the ob-

served capture history patterns. This assumption is not always a reasonable one and the

true survival and capture probabilities can often be better described as functions of de-

mographic or environmental factors attributed to the individual captured animal rather

than assuming common rates across all captured animals in a given time period. Williams

et al. (2002) categorise these characteristics as belonging to one of four possible classes

determined by both the measurement of the characteristic (discrete or continuous) and

the range of values taken by the attribute for an individual animal (static or dynamic).

A brief summary of each is given in the following paragraphs.
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A static attribute is defined as one that does not change for an individual animal over

the course of the study. For example, gender is typically static for vertebrates and the

capture and survival rates may differ between males and females of a particular species.

Gender is also a discrete attribute and therefore the capture history data can be mod-

elled in two ways. Firstly, the data could be separated by gender and two independent

analyses could be carried out, one for the males and one for the females. However a more

parsimonious approach would be to analyse all of the data in one model in which some

parameters are specific to gender but others are assumed to be common across genders.

Another static attribute that may affect survival probability throughout an animal’s

existence could be the animal’s weight at birth. Birth weight can be treated as either dis-

crete or continuous. If the animals are grouped into a different categories of weight then

separate studies could be carried out for each weight class. This can lead to some loss of

information from the data and also may result in models that have an excessive number

of parameters. An alternative to this approach would be to view the birth weight as a

continuous variable and to model survival as a function of it. This scenario is therefore

an example of a static, continuous variable.

Dynamic attributes are ones that change for a specific animal over time. These dy-

namic characteristics can affect the survival and capture parameters for an individual

animal and can be classified as either discrete or continuous. For discrete, dynamic

variables the probability model that determines how the variable changes over time can

determine the manner in which they are incorporated into the capture history probability

model. Some discrete dynamic variables evolve over time in an entirely predictable way.

For example, the age of animal in a dynamic variable that is typically measured discretely

and changes in a deterministic fashion; the age of animal in period i+ 1 will be predicted
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with certainty if its age in period i is known. Capture-recapture models for multiple age

classes that are comprised of age-specific parameters are discussed from a band-recovery

perspective in Brownie et al. (1985) and from a more general CJS perspective in Pollock

et al. (1990) and Lebreton et al. (1992). Alternatively discrete, dynamic variables can

evolve in a stochastic manner in which case a model will need to be developed to predict

the probabilities of the transitions between the different values taken by the dynamic

variable. For example, if it can be assumed that capture and survival rates vary by loca-

tion (as a proxy for habitat type) then the probability of capture during period i and the

probability of survival from period i to i+ 1 are dependent on the location of the animal

at time i. If the location of an animal can be categorized into discrete location categories

(rather than recording the exact co-ordinates), then an animal in location A at time i

may remain in the same location at time i + 1 or may have moved to location B. These

transitions are modelled probabilistically such that an animal in location A at time i is

in location A at time i + 1 with probability ψAAi and is in location B at time i + 1 with

probability ψABi . Models in which animals can move between discrete states during the

course of the study are referred to in the literature as multistate models (Brownie et al.,

1993; Nichols et al., 1994; Nichols and Kendall, 1995; Schwarz and Arnason, 1996).

The final class of characteristics are those which are both continuous and dynamic,

these are discussed in detail in Section 2.2.5.

The fifth assumption, that all emigration from the sampled area is permanent, is nec-

essary to interpret the model-based inference associated with the estimate of capture p̂.

If a capture history contains the sub-pattern 101 then the 0 in the middle is assumed to

represent the event of non-capture with probability 1− p. It is assumed that the animal

was present in the population sample area but remained uncaught during that period.
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If the assumption of permanent emigration was relaxed and temporary emigration was

allowed then this could result in an alternative interpretation of the middle 0: that the

animal was unavailable for capture at that time. In this case the interpretation of p̂ must

be modified and estimates of capture and survival rates may well be biased (Kendall,

1999), although the bias for survival may be quite low.

The final assumption is that the fates of any two individual animals are independent.

This can be violated, for example, animals that habitually aggregate in family groups or

herds may not exhibit independent fates. Violation of this assumption does not typically

impact on the point estimates of the capture and survival rates but it can induce bias with

regard to the variance assumptions made implicit by the use of a multinomial model. To

accommodate the extra variation induced by the potential non-independence of animal

fates, quasilikelihood methods can be considered (Burnham et al., 1987; Lebreton et al.,

1992).

2.2.1.2 Model Estimation

The probability model defined as the product of Equations (2.2.2) and (2.2.3) and the

associated data consisting of the observed capture history patterns ω and the number of

animals possessing that history, xω, is used to estimate the model parameters. The basis

of this inference is the construction of the appropriate maximum likelihood expression for

the model (Burnham et al., 1987). Using the same notation as Williams et al. (2002) the

general expression for conditional models of a single-age CJS study can be expressed as

follows. Define πω = f({φi} , {pi}) (i = 1, 2, . . . , K) as the probabilities associated with

each capture history; the use of f(·) simply denotes that these capture history probabilities

are functions of the survival and capture probabilities across all K periods. Then, the
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conditional probability distribution of the observed capture histories {xω} is:

Pr({xω} | {ui} ; {φi} , {pi}) =

∏K−1
i=1 ui!∏
ω xω!

∏
ω

πxωω (2.2.4)

As before, the index ω ranges over all possible observed capture histories, but with the

null pattern corresponding to an animal never being captured (00 . . . 00) and the pattern

corresponding to a first release after the final capture occasion (00 . . . 01) not included in

the general expression. From a maximum likelihood perspective the terms on the right-

hand side of Equation (2.2.4) give the likelihood function for the survival and capture

parameters, L({φi} , {pi}). Hence this expression can be maximised to obtain maximum

likelihood estimates of the survival and capture probabilities.

The parameterisation of the model expressed in Equation (2.2.4) allows for both cap-

ture and survival probabilities to be fully time-specific. This full model was examined

initially by Cormack (1964) who focussed on a survival model, and then by Jolly (1965)

and Seber (1965) who included the estimation of abundance and births. Together these

formalised methods give rise to the Cormack-Jolly-Seber name for models of this type.

Their examination of these models led to the derivation of closed-form estimators for the

identifiable survival and capture parameters. They show that a K-period sampling study

with time specific capture and survival probabilities will contain 2K − 3 identifiable and

estimable parameters. Closed-form estimators can only be obtained separately for the

survival parameters φ1, φ2, . . . , φK−2 and the capture parameters (p2, p3, . . . , pK−1). The

parameters pK and φK−1 can only be estimated as the product φK−1pK and cannot be

estimated separately.

The lack of identifiability of these parameters can be understood using the intuitive

explanation in Williams et al. (2002, pp. 424). To estimate the capture probability during
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sampling period i, pi, two quantities are required: firstly, the number of animals that are

known to be alive during the ith sampling period and secondly, the proportion of these

animals that are then captured during sampling period i. The first quantity is obtained

from the numbers of animals caught during both of the sampling periods preceding and

following the ith one. Conditional on this total, the second quantity is then just the

number of these animals that were caught in the ith sampling period. Thus, the number

of animals known to be alive during the ith sampling period is given, in the ω notation,

as ∑
ω1..0..1

x..1..0..1.. +
∑

ω..1..1..1..

x..1..1..1..

where the central element in each pattern correspond to the capture status during sam-

pling period i. The ..1.. notation simply indicates a sub-pattern consisting of any combi-

nation of 0s and 1s for a set of sampling occasions that includes at least one 1. The index

ω1..0..1 ranges over all possible capture history patterns ω that include capture both before

and after the ith sample; and similarly for the ω111 index. Then an intuitive estimate for

the capture parameter in the ith sample would be:

pi =

∑
ω1..1..1

x..1..1..1..∑
ω1..0..1

x..1..0..1.. +
∑

ω1..1..1
x..1..1..1..

However, from the data there exists no known total of animals of animals that existed

in the population prior to the initial sample and therefore there is no subset of animals

to condition on. Thus, the first quantity is unobtainable and, consequently, no estimate

can be obtained for the initial capture probability p1. Similarly, for the final sampling

occasion, K, there are no future sampling occasions so there are no means to estab-

lish the total number of animals known to be alive at K. Therefore, the first quantity

is again unobtainable and the final capture probability pK cannot be estimated separately.
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2.2.1.3 Reduced-Parameter Models

The full CJS model in which both survival and capture probabilities are time-specific

provides an extremely flexible modelling formulation. However, due to the requirement

to estimate each parameter separately this generality incurs a penalty by yielding es-

timates that may lack precision. The estimates of time-specific model parameters will

typically have larger associated variances than the equivalent estimates of parameters

whose values are fixed over time. The gain in precision available when capture and/or

survival parameters are constrained to be constant over time has led to the development

of reduced-parameter CJS models (Jolly, 1982). The number of parameters that can be

identified and estimated separately will change depending on which parameters are con-

strained to be constant over time.

As a notational convention, the full time-specific CJS model can be denoted φt, pt

where the t subscript indicates that parameter can take a different value for each separate

period. Therefore, φt, p represents a model in which survival probabilities are still time

specific but capture probabilities are assumed to be constant over time. That is pi = p

for (i = 2, 3, . . . , K) which yields a model consisting of K − 1 survival probabilities and

a single capture probability. By imposing the constraint that pK = p the elements of

the product φK−1pK can now be separated to obtain an estimate for φK−1. Thus, all

K − 1 survival probabilities can be estimated along with the single capture probability

p. Similarly, for the model φ, pt the capture probabilities are time dependent and take

separate values for each of the time periods 2 to K but the survival probabilities are

now constant yielding a single survival probability which is the same for each of the time

periods 1 to . . . , K − 1. By imposing the restriction that all survival rates are equal such

that φK−1 = φ an estimate for pK can be obtained. All K − 1 capture probabilities can

be estimated along with the single survival probability φ.
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The element of time is important in determining the interpretation of constant prob-

abilities. Capture is assumed to occur instantaneously and involve a constant amount

of effort but for models in which this is not the case it can be reasonable to ask what

the assumption pi = p actually means. If the duration of the capture occasion varied

greatly over different sampling occasions then the assumption of a constant probability of

capture may not be realistic. If in one month the capture occasion consisted of a single

trapping day but the following month it consisted of an entire week of trapping then the

assumption that the capture probabilities are the same on both occasions is probably

quite unreasonable. A reasonable question to then ask is whether the per-unit time rate

of capture is similar across the two sampling periods. One approach to answering this

question is to model capture as pi = pti where ti denotes the duration, in units of time,

of the capture occasion and p is the per-unit-time capture rate measured in the same

units as ti. A similar, and more common occurrence, is when the length of time between

sampling occasions varies significantly. In this case the assumption of a constant proba-

bility of survival between consecutive sampling occasions is not realistic and the solution

is, as before, to model survival in terms of unit time such that φi = φti where φ is the

per-unit-time survival rate (Pollock et al., 1990).

Finally, the simplest CJS capture-recapture model is denoted φ, p and represents a

study in which both survival and capture parameters are assumed to be constant over

time and the sampling periods. There are only two parameters to be estimated for this

version of the CJS model. In general, the reduced-parameter models can be expressed in

exactly the same form as in Equation (2.2.4) with the constant parameters being used

in place of the time-specific ones in the full expression for each πω term. There exist no

general closed-form expressions for these reduced-parameter models and computational
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numerical approximation methods are required to obtain maximum likelihood estimates

of the parameters in these models. The assumptions of these models can be tested using

Likelihood-Ratio-Tests (LRT) (Lebreton et al., 1992; Williams et al., 2002, pp. 53-54)

which typically compare nested models against a more general alternative to determine

whether the fit of the model can be improved by removing the constraints on parameters.

For example a LRT can be constructed to investigate if survival is time-specific by com-

paring the constrained model φ, pt against the general model φt, pt.

The modelling approaches discussed in Section 2.2.1.1 allowed capture and survival

probabilities to be expressed as functions of variables that could be either discrete or

continuous and either static or dynamic. These approaches can also be incorporated into

the reduced-parameter models just discussed. The developments of Lebreton et al. (1992)

provide a detailed framework in which these models can be specified. For example, if a set

of time-specific covariates X = {x1i, x2i, . . . } for each period i is specified then the GLM-

like approach of Lebreton et al. (1992) involves expressing the parameter of interest as a

linear function of the explanatory covariates. For example if the belief was that capture

was a function of multiple covariates, X, and associated parameters β = {β0, β1, . . .}, the

relationship can be expressed as

pi = f (Xβ) = f

(
β0 +

∑
j

βjxij

)

where the β0 term corresponds to an intercept term in the model and a column of 1s

in the design matrix X. Then the functional form of the link function f needs to be

assumed to obtain the inverse function f−1 which will allow the model for capture during

i to be expressed in a form that is linear in the parameters to be estimated (the β). This

linearisation is crucial in order for the estimates of β to be obtained using GLM theory. A

commonly chosen function is the logit or logistic function as it is invertible and provides a
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flexible bounded form that constrains the estimates of the response variable (the capture

probability pi in this case) to lie between 0 and 1. For example, using the logit link the

capture probability for sampling occasion i can be written as

p̂i =
exp

(
β̂0 +

∑
j β̂jxij

)
1 + exp

(
β̂0 +

∑
j β̂jxij

) . (2.2.5)

This approach is equally viable for the full time-specific CJS model φt, pt and the reduced-

parameter model in which survival is constant across all pairs of consecutive periods φ, pt.

The approach of Lebreton et al. (1992) goes on to formulate suitable CJS model parame-

terisations for multiple groups if it is believed that capture and survival parameters may

be common within distinct cohorts (e.g. gender or spatial location). Their “parallelism”

approach provides a useful constraint on the parameters by specifying an assumed rela-

tionship between the way in which the parameters vary over time across cohorts. For

example, male and female capture may not take the same values at the same sampling

occasions but they may exhibit the same pattern of temporal variation. The general

CJS model formulation in Eq. (2.2.4) can also be parameterised to accommodate a trap

response in both capture and survival probabilities (Lebreton et al., 1992). The use of

physical tagging or baited traps may, respectively, decrease or increase the probability

that a previously trapped animal is trapped again, given that it is available to be cap-

tured. Equally, trapping or tagging an animal may be a traumatic event that decreases

the animal’s subsequent survival rate. For both of these scenarios the trap-response is

assumed to be temporary with the dependence only occurring for the period immediately

following a capture occasion. Thus, if there is trap-response for survival then captured

animals will, post-capture, survive from period i to period i + 1 with one probability,

uncaptured animals will survive the same period with a different probability but they will

share the same survival probabilities after period i+ 1.
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Individual covariate models are an even more flexible approach to trying to account for

the heterogeneity in the data. The equality of survival and capture probabilities across all

individuals in a population is unlikely to be true. Grouping animals into cohorts that are

assumed to possess common probabilities is still unlikely to remove all the heterogeneity

in the data. As discussed in section 2.2.1.1, it may be possible to explain individual level

differences in capture and survival rates using a series of measurable GLM-like covariates.

These individual covariate models are again constructed using a GLM-framework with

the emphasis usually being on static, continuous variables. Dynamic variables can be

more difficult to model in a non-Bayesian context although, as discussed in Section 2.2.3,

a multistate modelling can be used to model capture and survival rates as functions of

discrete and dynamic covariates.

2.2.1.4 Model Selection

The selection of models in classical (non-Bayesian) capture-recapture analyses requires

that an initial model be found that provides an acceptable fit to the data. Conditional on

this initial acceptable model, alternative models can be selected on the basis of LRTs. Un-

der this paradigm, model selection is framed as a hypothesis test in which a more general

model is compared to a nested4 model. These model comparisons proceed sequentially

with the more general models being compared to reduced-parameter models using LRTs

(Brownie et al., 1985; Burnham et al., 1987; Lebreton et al., 1992). Equally, the simplest

model can be chosen as the starting point and can then be compared with increasingly

complex models with LRTs used to determine if the increase in complexity is warranted.

Score tests (Catchpole and Morgan, 1996) can also be used in this manner, starting from

4the more general model with constraints on its parameters
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the simplest model, with the aim being to reduce the chance of fitting overly complicated

models to data.

An optimisation framework can also be used to determine the choice of model. The

use of information-theoretic approaches to model selection requires the specification of

an optimisation criterion and Akaike’s Information Criterion (Akaike, 1974) is the most

commonly used one. The information-theoretic criterion combines a goodness-of-fit test

by favouring the model that produces the largest log-likelihood value (evaluated at the

maximum likelihood estimates) with a penalty term that favours a parsimonious model

parameterisation. The model producing the smallest AIC value will be selected, thus, the

more simple of two models with equal likelihood evaluations will be preferred. The AIC

provides a relative goodness-of-fit measure rather than an absolute measure as provided

by the standard contingency-table based tests. This means that a model with the smallest

AIC may be the best fitting of the group of models it was compared with but this does

not mean the model necessarily matches the data well.

Rather than using a sequential procedure to simply select a single best model on

which to base all inference it is more justifiable to incorporate the uncertainty in choosing

between a range of models into the precision associated with an estimator. The use of

relative AIC values can allow the uncertainty of selecting models to be incorporated into

the parameter estimation process. If there are a set of models then AICmin denotes the

minimum AIC value across all models in the set and AICs denotes the AIC value for

model s. Firstly, the differences between these values for each model are defined, δs =

AICs−AICmin. Then, the weights are calculated as exp (−δs/2) and can be considered as

the relative support for model s given the data and the other models. Normalising these
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values produces the weights:

ws =
exp (−δs/2)∑S
s=1 exp (−δs/2)

where S denotes the number of models being compared. Then if there exists a parameter

θ that can be assumed to be common to all compared models, the weighted estimate of θ

is given by

θ̂s =
S∑
s=1

wsθ̂s

where θ̂s is the estimate of the parameter θ under model s and ws is the weight cor-

responding to model s. Buckland et al. (1997) provide a detailed discussion of how to

incorporate model uncertainty into inference and how potential bias in inference due to

model misspecification can be considered to be a component of the variance associated

with model based estimates. Model selection issues are covered in detail in Burnham and

Anderson (2002).

2.2.2 Multiple-Age Models

The previous sections reviewed the classical CJS models for populations in which the re-

strictive assumption was made that survival and capture probabilities are not functions of

an animal’s age. In many biological populations this assumption is not always valid and

there has been substantial work done to develop models in which survival and capture

probabilities can vary with age.

The discussion in Section 2.2.1.1 already noted that age can be considered to be a

discrete and dynamic covariate which allows the animals to be classified into age-based

cohorts. The evolution of this dynamic covariate is deterministic so that, assuming the

duration between sampling occasions is known, the animals in age class j in period i will,
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assuming they survive, be in age class j + 1 in period i + 1. Of course, age classes can

span a range of years and can span different ranges, depending on the assumed biology

of the animal being studied, to define relatively homogeneous cohorts.

The structure of the data is broadly similar to that for the single-age models (Sec-

tion 2.2). For the age-specific models the age of each animal at initial capture must be

known, as well as the animal’s capture history. By knowing an animal’s age at first cap-

ture the deterministic nature of the evolution of an animal’s age means that its age will

be known on all future occasions. If the animal’s age is not known on first capture then

the types of model which can be used to analyse the data are reduced in number. If

the age-structure of a model is relatively crude consisting of only a small number of age

classes (e.g. new-borns and adults) which are clearly distinguishable on capture then it

may be possible to use certain types of multiple age models (Pollock, 1981). However, in

more complicated models it may be the case that a more detailed form of age-structure is

used (e.g. age classes for each year of birth). If it is only possible to distinguish between

a small number of distinct age classes on capture but not to distinguish animals by year

of birth then only those animals caught and marked in the first age class identifiable on

capture will have known ages in subsequent years. These cohort models (Buckland, 1982;

Pollock et al., 1990) then require animals to be marked in the first identifiable age class

to produce estimates of age-specific capture and survival parameters. To assess any vari-

ation in capture and survival probabilities across different age classes it is important to

consider the requirement for the duration between sampling periods to closely match the

time taken for animals to move between consecutive age-classes. The general CJS model

structured by cohorts has capture and survival probabilities that are specific to both time

and age cohort. A result of this formulation allows the model to be viewed as a series of

separate CJS models for each cohort. Each cohort is based on those animals caught and
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marked in the first age class (typically “young” or age-0 animals) and a separate multi-

nomial distribution conditional on the releases at each time period can be constructed for

each cohort of first age class releases. Since the parameters are specific to time and age

each combination of time and age will be unique to specific cohorts, for example animals

that are in the second age class in period 2 will have different parameters for capture and

survival compared to animals in all other age classes in period 2.

2.2.3 Multistate Models

The age-cohort models of the previous section can be thought of as a special case of the

more general multistate model extension to the single-age CJS models. Multistate models

can be defined as models that allow transitions between states. Generally these transi-

tions are assumed to be stochastic rather than deterministic as in the age-cohort models.

As noted in Section 2.2.1.1, the CJS model can be extended to accommodate dynamic,

discrete variables such as location or phenotype. If it is assumed that capture and survival

probabilities vary according to some measurable variable then it may be appropriate to

stratify the population into distinct groups, which are assumed to be relatively homoge-

nous, according to the values taken by the variable with separate analyses conducted for

each group. This approach can work for static, discrete variables (e.g., gender) but for

dynamic variables that change stochastically over time it can be difficult to define ap-

propriate groups. For example, if breeding status was assumed to impact on the health

and activity of animals it may be reasonable to assume there are different probabilities

of capture and survival for breeders compared to non-breeders. However, in this scenario

simply stratifying the population into two groups determined by breeding status on first

capture may not be appropriate as animals that breed in period i are unlikely to breed

in every single subsequent period, equally, animals that are non-breeders in period i will
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not necessarily stay as non-breeders for the remainder of the study. The breeding status

of animals not captured in period i will not be known either, providing further modelling

complications. A multistate modelling approach allows the capture and survival proba-

bilities to vary by state and also allows animals to move between those states from one

time period to another and is more appropriate for these scenarios.

Schwarz et al. (1993) use matrix model extensions of the tag-recovery models developed

by Brownie et al. (1985) to develop a general likelihood based approach to formulating

multistate models. Brownie et al. (1993) also adopt a likelihood based approach and

expand on the approach of Schwarz et al. (1993) by considering “Markovian” models in

which state transition probabilities between periods i and i+1 are functions of the current

state at i as well as “memory” models in which the transition probabilities depend not

only on the state at i but also on the state at i−1. The multistate model formulation can

also be used to address ecological questions concerning the transition rates between states

(e.g., estimating site fidelity) or the influence of life history on vital rates (e.g., testing

the association between breeding history and survival rates) (Nichols et al., 1994; Nichols

and Kendall, 1995). A detailed discussion of the structure, assumptions and estimation

techniques for multistate models is provided by Brownie et al. (1993) and Williams et al.

(2002, pp. 454-468).

2.2.4 Reverse Time Models

Another important development in the analysis of capture-recapture data is the reverse-

time approach (Pradel, 1996). Under this approach the model structure is conditional on

the last observed capture histories and the data are considered in reverse time order to

obtain inference on the “recruitment” process. The data and model structure are both

fairly similar to those discussed in Section 2.2 with the data, as before, consisting only of



38

observable capture histories. However, in contrast to the previously examined models the

capture history pattern 00 . . . 01 is now included whereas 10 . . . 0 will not be. The model

structure differs only through the temporal direction and this necessitates the definition

of two new parameters for the model (Table 2.5). The parameters γi are referred to by

Pradel (1996) as “seniority” parameters as they model the probability that an animal

present in the population immediately prior to period i was present immediately after

i− 1 and must therefore be “old” in some sense.

γi = The probability that an animal present in the population immedi-
ately prior to period i is was present immediately after the (i−1)th

sample. - the seniority probabilities
p′i = The probability that an animal present in the population immedi-

ately after the ith sample was captured during the ith sample.
ξi = The probability of not being seen prior to the ith sampling occasion

for an animal present in the population immediately prior to the
ith sample.

Table 2.5: Notations and definitions for the Pradel’s reverse-time models

It should be noted that losses on capture are handled slightly differently in these

reverse-time models compared to the usual conditional forward-time CJS approach. Un-

der the forward-time approach animals that were not released after capture in sampling

period i were simply not included in the Ri releases and their capture history pattern

would not include any events following the observed capture in i. For the reverse-time

model, given that the model is conditioned on the last-observed capture an animal cap-

tured in sampling period i cannot have been lost on capture on any previous occasion.

Thus, the fate of an animal following its last observed capture does affect the forward-time

CJS models, but it does not affect the reverse-time models which ignore all events after

the last observed capture.
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The parameter ξi is analogous to the forward-time CJS model parameter χi (see

Eq. (2.2.1)) and can be defined recursively as

ξi = (1− γi) + γi(1− p′i+1)ξi+1 for i = 2, 3, . . . , K (2.2.6)

with ξK = 1. The construction of this recursive definition is similar to that for the χi but

in this case comprises the two different ways in which an animal can be seen prior to the

ith sample. Firstly, the animal may be a new entry to the populations, that is it is not a

survivor from the (i − 1)th period (which has the probability 1 − γi). Alternatively, the

animal is a survivor (which has probability γi), was not caught in the previous sample

(with probability 1− p′i) and was not seen prior to the (i− 1)th sample (which has prob-

ability ξi−1).

Using the parameters defined in Table 2.5 conditional multinomial models can be

constructed in a similar manner to those for the forward-time CJS models. The models

condition on the animals caught for the last time on each sampling occasion and then use

the numbers of these animals, xω, exhibiting each of the capture history patterns ω along

with the probabilities of attaining these histories to construct the appropriate conditional

multinomial model. As with the CJS models only the observed capture histories are in-

cluded in the model, thus the null pattern corresponding to an animal that is present

in the population at some point but never observed is not included in the model. Also,

as the history pattern consisting of K − 1 0’s followed by a 1 was not included in the

CJS formulation as no events occurred after the final possible capture, the analogous case

holds here where the pattern consisting of a 1 followed by K − 1 0’s is not included as no

events occur prior to the last observed capture.

Many of the assumptions and estimation procedures for these reverse-time models
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are broadly analogous to the forward-time versions. Also the reverse-time models can

be extended to accommodate a multistate structure (Nichols and Hines, 2002) which

allows investigation into a wide range of estimation questions. The relative influence

of animals across different states on the evolution of the population in a specific state

can be investigated using these models and thus provide an appropriate framework for

metapopulation analysis.

2.2.5 Incorporating Auxiliary Data

Capture-recapture studies can benefit significantly from incorporating auxiliary data into

the model structure. As noted in Section 2.2.1.1, the use of covariates enables a more

parsimonious approach to be taken in preference to conducting entirely separate analy-

ses for cohorts of animals that are assumed to exhibit homogeneity with regard to the

parameters of interest. The parsimonious approach may also increases the precision of

all parameter estimates as all of the data is used in the estimation process. Information

on animal level phenotypic covariates or environmental variables may, when incorporated

into the capture-recapture analysis, provide a much improved prediction of the capture

and survival rates compared to the standard CJS model analysis. A second reason is

that the investigator may wish to explore a variety of biological hypotheses about the

relationships between the parameters being estimated and the covariates.

Most studies that incorporate auxiliary information (Pollock, 2002) use covariates that

can commonly be classified as either individual animal level covariates or group or envi-

ronmental covariates. The group or environmental covariates will often be assumed to be

dynamic variables which vary between sampling occasions but remain constant over the

animals in the group (e.g., environmental indexes such as the North Atlantic Oscillation).

Individual animal level covariates are, by contrast, usually assumed to be static variables
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which are constant over time (e.g., birth weight). In much of the existing literature on

capture-recapture studies that incorporate auxiliary information the analyses are condi-

tional on the observed values of the covariates; typically no distribution of the covariate

is specified. If the auxiliary information consists of a static variable then the modelling is

relatively simple. Since CJS models condition on marked animals no unmarked animals

are included in the model. Therefore, for static variables that can be recorded at any

point in time there will be no missing covariate values and the analysis can be relatively

straightforward.

For continuous and stochastic covariates the analysis becomes more problematic. For

variables of this type some essentially arbitrary discretisation can be imposed to create

a series of states and the transitions between them can be modelled using the multistate

approach. For example, if it was believed that an animal’s weight may influence its prob-

abilities of survival and capture then this effect could be modelled by defining a sequence

of discrete weight classes and specifying a model for the transition probabilities between

them. These multistate models have the advantage that they can include time-specific

covariates which vary on an individual level. Also, there is no distribution specified that

constrains the covariate. The parameters (capture, survival and state transition rates)

for animals in each individual state can vary independently from the parameters in any

of the other states. However, this multistate approach of discretising continuous variables

(e.g. Nichols et al. (1992)) can lead to a loss of information that may conceal any re-

lationship, present in the data, between the variable and capture or survival rates. The

large number of parameters required for the multiple states may mean it is not the most

parsimonious model. Equally problems may arise with the fit of the chosen model. The

choice of discretisation can be effectively arbitrary and the assumption of homogeneity

within states may be violated if the continuous auxiliary variable is classified into too few
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discrete states resulting in decreased precision for the parameter estimates. Conversely, if

a large amount of grouping is imposed then the data may not contain enough information

for all the parameters in the model, thus rendering some of them unidentifiable. As noted

in Bonner and Schwarz (2006), another downside to this approach is that multistate mod-

els implicitly assume that all animals in a single state behave identically but will behave

differently if they belong to different states. Therefore, animals with observed covariate

values either side of a state classification boundary will be assumed to behave differently

when their covariate values may in fact be very similar.

An alternative approach (Lebreton et al., 1992) is to use a GLM-like modelling struc-

ture which allows the capture and survival rates to depend on linear combinations of

variables (or covariates) through a “link” function of specified form. Lebreton et al.

(1992) advocate using a scaled logistic link function as it constrains the estimated prob-

abilities to lie in the plausible range of 0 to 1. The advantage to their approach over the

multistate models is that it utilises the flexibility of GLMs allowing both discrete and

continuous covariates to be incorporated in the linear predictor. An assumption implicit

in this approach is that the relationships between the parameters of interest and the aux-

iliary information can be described using these relatively simple link functions. Typically,

the form of the relationship determined by the link function is assumed to be constant over

time which may not always be realistic. Also, as noted in Bonner and Schwarz (2006) the

common use of the logistic function imposes the constraint that the relationship between

the parameter being estimated and an explanatory covariate is monotonic. They suggest

exploring the use of piecewise functions such as polynomials or splines to obtain more

flexible relationships. One of the main issues with the GLM-like modelling approach is

that whilst it can be extremely effective for static covariates problems arise for dynamic

time-dependent ones when an animal is not captured. For static covariates that can be
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observed at any time the value remains the same, and therefore known, for the duration

of the study regardless of whether the animal is captured again after the initial release or

not. For dynamic covariates that evolve deterministically, such as age, the missing values

of the covariate can be interpolated.

For dynamic covariates that evolve stochastically on an individual basis, any sampling

occasion during which the individual is not captured will result in a missed value of the

covariate. Equally, for static variables that can only be recorded at a specific time (e.g.

birth weight) the issue of missing covariates makes analysis more problematic. A full

model analysis requires some method of modelling the distribution of the missing values

taken by the covariate over the duration of the study (Pollock, 2002; Bonner and Schwarz,

2006). Pollock (2002) suggests that, in addition to the discretising continuous variables

approach of Nichols et al. (1992) in which the weights of meadow voles were classified into

discrete weight states, an alternative would be to develop a full likelihood approach by

integrating out unobserved covariates. As with the GLM-like approach (Lebreton et al.,

1992) this method requires the distribution of the covariate to be specified with regard

to how it evolves over time. Alternatively Pollock (2002) suggests conducting an anal-

ysis conditional on the covariates in the context of a missing data problem. Under this

scenario the EM algorithm (Dempster et al., 1977) could be used to model the change in

covariates over time.

Pollock (2002) also advocates Bayesian methods for the full likelihood approach and

as a way of dealing with missing covariate values. The model likelihood can be evaluated

using numerical integration to integrate out the missing values or Markov Chain Monte

Carlo (MCMC) methods can be used to impute the missing values which can be treated as

variables to be estimated in a Bayesian framework. A summary of Bayesian approaches
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to the analysis of Capture-Recapture studies is given in Section 2.5. The approach of

Bonner and Schwarz (2006) utilises a Bayesian methodology to provide a solution to the

problem of modelling capture and survival rates using continuous stochastic covariates

that vary with both time and individual.

The use of auxiliary information in capture-recapture models presents some issues

regarding goodness-of-fit tests (White, 2002). If models are not fitting well then it is rec-

ommended (Pollock, 2002) to adjust the AIC and the variance of the parameter estimates

to correct for possible over-dispersion in the data. A correction parameter, c, is required

but White (2002) notes that

no general, robust, procedures are currently available for estimating c.

White (2002) also warns against placing too much faith in the model-based relationships

between auxiliary variables and estimated parameters unless the auxiliary variable is in-

cluded as a component of a “manipulative investigation”. Without this the relationship

can only be described as correlative.

2.2.6 Summary

The previous sections have introduced Cormack-Jolly-Seber models which provide open-

population estimates based on observed capture history data. The open-population form

of these models requires an extension of the closed population formulation by means of

incorporating non-stationary survival rates. The models are conditioned on the first cap-

ture of an animal and therefore the data consists of all capture histories containing at least

one capture. The numbers of animals recaptured during the study are conditioned on the

number of releases during each sampling period of the number of unmarked animals, only

once it has been marked initially is an animal available to be released for resampling. As
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a result the model only uses part of the information that is available in the sample and

a more efficient use of the data would require the uncaptured animals to be incorporated

into the model. This will be discussed in more detail in Section 2.3. The data structure

used for the CJS model results in a conditional statistical form consisting of the product

of a series of multinomial distributions for each cohort of recaptured animals. This model

form can be constructed as a likelihood from which maximum likelihood estimates and

their variances can be derived.

Numerous extensions to the CJS models were discussed with incorporating a cohort-

structure one of the most prominent extensions covered in the literature. Using flexible

GLM-type models or framing the CJS models in a multistate context allowed age, pheno-

typic and geographical covariates to be incorporated into the general modelling approach

and enabled capture and survival parameters to be modelled as functions of auxiliary data.

By imposing constraints on the time-specific, cohort-based CJS models, a wide variety of

biological hypotheses could be examined through hypothesis testing, via likelihood ratio

tests, to compare nested models.

Although the models discussed so far can provide an extremely flexible framework in

which to study the capture and survival parameters of a population, the models are still

limited to inference on these rates. By incorporating additional stochastic elements into

the CJS models the events before initial capture become part of the model framework

which expands the range of biologically interesting quantities that can be estimated from

the model. Inference on recruitment, mortality and population abundance can all be made

using this expanded modelling approach and these ideas are discussed in Section 2.3.
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2.3 Extending Mark-Recapture Models

The previous chapter focussed on the development of the classical Cormack-Jolly-Seber

model for estimating survival and capture rates in an open population. This chapter

considers the estimation of both recruitment into the population and of population size.

Much of the methodology used to formulate and analyse these models is an extension of

that in Section 2.2. The data itself are constructed in the same way with animals being

marked, released and recaptured at a series of discrete sampling periods throughout the

study. The models in Section 2.2 were conditional on first capture and the capture histories

were then expressed in terms of the probabilities of subsequent capture and survival events.

This conditional component appears in some of the models in this section.

This section will compare the classical CJS model with the broader techniques dis-

cussed here. Different approaches to formulating models that can produce estimates of

population abundance and recruitment will be discussed and compared. Extensions to

the models and the use of auxiliary information will also be covered briefly. The structure

of this section will broadly follow the outline of Williams et al. (2002, 495-522).

2.3.1 The Jolly-Seber Model

The estimation of abundance and recruitment using the models discussed in this sec-

tion requires information on the numbers of animals caught on each occasion that have

remained uncaught previously. From this information the ratio of marked animals to

previously unmarked animals in a sample is used to obtain an estimate for the population

size during that sampling period.

The models in this section will be restricted to focus on the single-age class structure.

One reason for this is that abundance cannot be estimated for the first age-class in an
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age-cohort structured model using only count data. To estimate the abundance for the

first age-class an estimate of the associated capture probability is required. For a time-

specific age-structured study the capture probability for the first age-cohort in the ith

sample is estimated conditionally on the number of animals in the first age-cohort that

are known to be alive (through capture) during the ith sampling period. However, there

can be no total of first age-cohort animals known to exist in the population owing to

previous and subsequent capture since there were no animals in a younger age-class in a

previous sampling occasion. Consequently, there is no subset of animals to condition on

and no estimate can be obtained for the capture probability of the first age class. Con-

sequently, single-age models have been the basis for much of the formal development of

abundance estimation techniques (Jolly, 1965; Seber, 1965; Pollock et al., 1990; Schwarz

and Arnason, 1996). Equally, it can be difficult to assign “older” animals to the correct

age-cohort on first capture.

The Cormack-Jolly-Seber model was discussed in section 2.2 and comprised a single-

age model with time-specific capture and survival probabilities. Of the three studies the

model was based on Jolly (1965) and Seber (1965) include components in their models

that allow for the estimation of population size and abundance whereas Cormack (1964)

focuses on the conditional modelling of survival and capture parameters. Hence, if pop-

ulation abundance and recruitment are incorporated into the modelling framework the

resulting classical model is referred to as the Jolly-Seber (henceforth JS) model.

2.3.1.1 Model Formulation

The data structure for the single-age JS model is broadly similar to that of Section 2.2.

Capture-history data once again consist of the set x =
[
xω1 , xω2 , . . . , xω2K

]
where xω
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denotes the number of animals exhibiting capture history pattern ω and there are 2K

possible capture history patterns for a K sample study. The notation of Williams et al.

(2002, 495-522) includes terms to explicitly model losses on capture whereby individuals

are removed from the population. These terms are omitted here and the notational con-

ventions of Pollock et al. (1990) are adopted instead to provide a more direct comparison

with the expressions in Section 2.2. The definition of several of the parameters used in

the formulation for the CJS models (see Section 2.2 and Table 2.3) differs slightly for the

JS model. For the JS model, the ui represent the number of unmarked animals captured

in the ith sample whereas for the CJS model they were defined as the number of animals

that are released after the ith sampling period having been previously uncaught. Thus,

for the CJS model they were restricted to only those animals that had been captured and

then subsequently released, whereas under the JS model the ui can be either released or

removed following capture. Table 2.6 contains the notation for the JS models discussed

in this section and consists of both model parameters that are unknown random variables

to be estimated and observed statistics.

To compare the model formulation for the CJS and JS models it is constructive to com-

pare the probabilistic representations for analogous components of the respective models.

To compare with Equation (2.2.2), the JS formulation of the model component for un-

marked animals captured in the first period, u1 is presented. Considering the capture

histories available for a three-sample study yields the model formulation:

Pr({xω} |u1) =

[
U1!

u1! (U1 − u1)!
pu1

1 (1− p1)U1−u1

]
×
{

u1!∏
ω xω!

[χ1]x100 [φ1(1− p2)φ2p3]x101

× [φ1p2χ2]x110 [φ1p2φ2p3]x111} (2.3.1)
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Parameters

Mi = The number of marked animals in the population at the time of the
ith sampling period (i = 1, . . . , K).

Ni = The total number of animals in the population available to be cap-
tured in the ith sampling period (i = 1, . . . , K).

Ui = The number of unmarked animals in the population at the time of
the ith sampling period (i = 1, . . . , K).

Bi = The number of new animals entering the population between sam-
pling periods i and i + 1 and present at the time of the (i + 1))th

sampling period (i = 1, . . . , K − 1).
pi = The probability that an animal in the study population during sam-

pling period i is captured during sampling period i (i = 1, . . . , K).
φi = The probability that an animal in the study population during sam-

pling period i survives until i + 1 and remains in the population
(i = 1, . . . , K − 1).

χi = The probability that an animal alive in the study population during
sampling period i is neither captured nor observed again during any
future sampling period (i = 1, . . . , K).

Statistics

mi = The number of marked animals captured in the ith sample (i =
1, . . . , K).

ui = The number of unmarked animals captured in the ith sample (i =
1, . . . , K).

ni = mi+ui, the total number of animals captured in the ith sample
(i = 1, . . . , K).

Ri = The number of the ni that are released after the ith sample (i =
1, . . . , K − 1).

ri = The number of the Ri releases at i that are recaptured (i =
1, . . . , K − 1).

zi = The number of animals caught before sample period i, not caught
during i, and recaptured on some sampling period after i (i =
2, . . . , K − 1).

Table 2.6: Parameters and Statistics for the single-age Jolly-Seber model.

where the index ω ranges over the capture histories including capture on the first sampling

occasion: 100, 101, 110 and 111.
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From comparison with Equation (2.2.2) it can be seen that, under the JS approach,

the representation of the model component for animals first caught in sampling period

1 does not condition on the new releases from the first sample. Instead the first term is

a binomial term that models the number of unmarked animals that are captured during

the first sample u1 from the available population of initially unmarked animals U1. The

initial capture probability p1 did not appear in Eq. 2.2.2 but it does in Eq. 2.3.1. For a

three-sample study the full model for the capture history data is obtained by considering

each group of previously unmarked animals captured on each sampling occasion, u1, u2

and u3 formulating their probabilistic expressions, as in Eq. 2.3.1, and taking their prod-

uct.

2.3.1.2 Model Assumptions

The modelling assumptions for the Jolly-Seber model are analogous to those listed for

the Cormack-Jolly-Seber model in Section 2.2.1.1. However, an important difference oc-

curs for the first assumption. Under the CJS model it was assumed that every marked

animal in the population at the time of the ith sample has the same probability of being

recaptured. This is modified for the JS model since the capture parameter pi applies

to both marked and unmarked animals as can be seen in Eq. 2.3.1. Therefore, under

the JS model, the first assumption is modified to state that every animal present in the

population at the time of the ith sample i = 1, 2, . . . , K has the same probability, pi of

being captured. By including both marked and unmarked animals in the assumption of

homogeneous capture probability there are now additional ways in which this assumption

can be violated. If certain animals within the population are more likely to be caught

than others and this distinction is upheld for the duration of the study then the sample of

marked animals obtained will tend to consist of those individuals with the higher capture
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probabilities. This leads to a difference in the average capture probabilities for the marked

and unmarked animals, even though the assumption is that they are equal, and will lead

to a biased estimate of population abundance. One example would be if capture probabil-

ity is determined by permanent trap-response. In this scenario the marked and unmarked

animals will have different capture probabilities. For the conditional CJS models this is

not a problem as they condition on first capture and so every observed animal included in

the data will have the same recapture probability. For the JS models the marked animals

are used to estimate the capture probability under the assumption that the same capture

probability applies to the unmarked animals; the presence of trap-response violates this

assumption.

As discussed for the Cormack-Jolly-Seber model (see Sections 2.2.1.1 and 2.2.5) there

are a variety of approaches that have been developed to allow the models to meet the

required assumptions. Many of these suggestions can be implemented for the Jolly-Seber

models also. Grouping the population into (assumed) homogeneous strata is a common

way of accounting for variation in the capture and survival probabilities associated with

static and discrete variables. Discrete dynamic variables can be analysed using further

extensions of the models. If the value of the variable changes deterministically (e.g. age),

special reduced forms of multistate models can be formed in which transition probabilties

between states are known a priori. The more general case of discrete dynamic variables

that evolve stochastically can be approached using a multistate model formulation (see

Section 2.3.2.2). Incorporating auxiliary information into the JS model formulation is

discussed in more detail in Section 2.3.3.
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2.3.1.3 Estimation

As for the Cormack-Jolly-Seber models (see Section 2.2.1.2) estimation techniques are

based on numerically maximimising the appropriate likelihood functions. In particular

the component of Eq. (2.3.1) that does not contain the unknown random variables Ui can

be used to obtain maximum likelihood estimates of the survival, φi, and capture, pi, pa-

rameters respectively. Although the historical emphasis has been on obtaining analytical

solutions, modern methods emphasise the use of numerical solutions.

The extensions to the CJS model allow the JS model to estimate both recruitment

and population abundance. The remaining sections will primarily focus on the estimators

for these random variables. The definitions provided in Table 2.6, can be used to express

the closed-form estimators for the relevant parameters. For example, a moment estimator

for abundance (Pollock, 2002) can be shown to be:

N̂i =
niM̂i

mi

(2.3.2)

where mi, ni and M̂i are the marked and total numbers of animals captured and the

estimated total number of marked animals in the population in the ith sample respectively.

The approximately unbiased analogue of Eq. (2.3.2) is often used for JS models with time-

specific capture and survival rates and is given (Pollock et al., 1990) as

Ñi =
(ni + 1)M̃i

mi + 1
(2.3.3)

where

M̃i = mi +
(Ri + 1)zi
ri + 1

(2.3.4)

and ∼ denotes approximately unbiased estimators. For the estimator of recruitment
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between i and i+ 1, the relationship

E [Ni+1|Ni, Bi] = Bi + φi (Ni − ni +Ri) (2.3.5)

is constructed and is comprised of two components: the new recruits in the ith sample

(Bi) and the survivors from the previous sample (φi (Ni − ni +Ri)). The term −ni +Ri

represents losses on capture. Using Eq. 2.3.5, an estimator of recruitment between i and

i+ 1 is given (Pollock et al., 1990) as:

B̂i = N̂i+1 − φ̂i
(
N̂i − ni +Ri

)
, (2.3.6)

where

φ̂i =
M̂i+1

M̂i −mi +Ri

. (2.3.7)

The approximately unbiased version (Pollock et al., 1990) is given as:

B̃i = Ñi+1 − φ̃i
(
Ñi − ni +Ri

)
, (2.3.8)

where

φ̃i =
M̃i+1

M̃i −mi +Ri

. (2.3.9)

It should be noted that all of the above abundance and recruitment estimators require the

estimation of the capture probability pi. As capture probability can only be estimated for

periods 2, 3, . . . , K−1 (see Section 2.2.1.2), the abundance and recruitment estimates are

only available for periods 2, 3, . . . , K − 1 and 2, 3, . . . , K − 2 respectively. Approximate

variances and covariances for the estimated parameters are described in Pollock et al.

(1990). It should also be noted (Buckland, 1980) that the survival estimates can exceed

unity and estimated recruitment may be negative under the Jolly-Seber model. Equally,

analytic confidence intervals may contain values outwith the biologically feasible range,

even if the point estimates of the parameters themselves lie within the permissible range.
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To address these issues Buckland (1980) uses a parametric bootstrap to estimate both

confidence intervals and variances. However, Buckland (1980) notes that, in general, the

simulation-based approach will not always work on the standard Jolly-Seber estimates

as some may take impossible values. Instead the method will only work for modified

estimates such as those presented in Buckland (1980). Also, the use of the parametric

bootstrap in Buckland (1980) fails to provide variance estimates for parameters corre-

sponding to the first or last sample periods in the study owing to the non-identifiability

of these parameters under the Jolly-Seber model. A solution to this involves the use of

bootstrapping encounter histories (Buckland and Garthwaite, 1991) and conditioning on

the number of observed capture histories. This approach yields variance estimates and

robust confidence intervals for all estimated parameters in the classical Jolly-Seber model.

2.3.1.4 Special Cases

So far the focus has been on single-age Jolly-Seber models with a time-specific param-

eterisation for both survival and capture rates. Extensions for this model have been

investigated and are summarised in Pollock et al. (1990). Firstly, the special cases of

partially open models are considered.

The first type of partially open model is the death-only model in which births and

immigration are assumed to be negligible. This form of this model is now similar to that

of the CJS model, however in this case the initial number of animals is not known. In

this scenario deaths and (permanent) emigration are both allowable processes. By reduc-

ing the number of parameters required to be estimated (no estimates of the births are

needed) the precision of the remaining parameters increases. These models are described

in Jolly (1965) as a special case of his general open model and it should be noted that

the population abundance estimates can now be made for i = 1, 2, . . . , K − 1 unlike for
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the JS model estimates in Eq. (2.3.2) which were not defined for the first time period.

Expression for the parameter estimates and their associated variances are presented in

Jolly (1965) and Pollock et al. (1990).

The second form of model is the births-only model in which there are no deaths or

emigration in the model and change is the result of recruitment (births and immigration)

alone. In this scenario the number of marked animals in the population at sampling

period i, Mi, becomes a known statistic rather than an unknown random variable. The

known nature of the Mi results in Lincoln-Petersen type estimators (Williams et al., 2002,

pp. 291-293) of population size and is defined for i = 2, 3, . . . , K. If no losses on cap-

ture are allowed in this model then the estimate of new recruits during period i simply

becomes the difference in population estimates between periods i and i + 1. That is,

B̂i = N̂i+1 − N̂i. Expressions for the parameter estimates and their associated variances

are again given in Jolly (1965) and Pollock et al. (1990).

Reduced-parameter models (Jolly, 1982) have also been considered as restricted ver-

sions of the general Jolly-Seber model. These models are suitable for scenarios in which

both births and deaths may occur and it may be reasonable to assume that survival

and/or capture are constant throughout the study. The approaches in Crosbie and Manly

(1985) and Schwarz and Arnason (1996) also describe reduced-parameter model formula-

tions and will be discussed in Section 2.4. The three alternative models can be classified

as:

1. The Jolly-Seber model with time-specific survival and capture parameters. (φt, pt)

2. The Constant Survival model with constant survival parameters φ1 = φ2 = . . . φK−1.

(φ, pt)
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3. The Constant Capture model with constant capture parameters p1 = p2 = . . . pK .

(φt, p)

4. The Constant Survival and Capture model with both survival and capture param-

eters constant over the study. (φ, p)

If the assumptions made in the reduced-parameter models are reasonable then Jolly (1982)

demonstrates that the parameter estimates will experience a gain in precision. Using

reduced-parameter models can also lead to a larger number of sampling occasions for

which the parameters can be estimated. Under the model (φ, p), abundance can be esti-

mated for each time period. Under these reduced parameter models there are no closed

form expressions for the maximum likelihood estimates and these need to be obtained

using iterative numerical optimisation techniques. Jolly (1982) provides estimators for

the variances and covariances under the reduced-parameter models. It should also be

noted that the requirement to use numerical methods provides all possible intermediate

possibilities.

2.3.2 Extensions

The Jolly-Seber model can also be extended and generalised in similar ways to the

Cormack-Jolly-Seber model through the specification of an age-cohort structure or a

state-based model classification. Many of the ideas behind these models were introduced

in Sections 2.2.2-2.2.3 and only a brief review will be presented here.

2.3.2.1 Multiple Age Models

The focus of the preceding sections has been on the single-age Jolly-Seber model (Jolly,

1965; Seber, 1965) which defines animals as belonging to a single state. Fully age-specified

models were considered in Section 2.2.2 where the sampling design allowed the age of each
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captured animal to be accurately determined. Consequently, it is possible to obtain age-

specific abundance estimates for each of the central K − 2 sampling periods and for all

but the first age class. Pollock’s robust design (Pollock et al., 1990; Kendall and Nichols,

1995; Williams et al., 2002, pp.523-544) can be used to obtain estimates of abundance for

the age class 0.

The other form of age-cohort models discussed in Section 2.2.2 in which age is known

only for marked animals typically do not allow abundance estimation. These cohort mod-

els (Buckland, 1982; Pollock et al., 1990) are typically used for animals marked as young

or age 0. These models are appropriate when it is not possible to easily age animals but

there is reason to believe that the survival rate may be age-dependent. Due to the fact

that the unmarked animals caught in period i, ui, cannot be assigned an age-class no age-

specific capture rates can be determined and, consequently, no abundance estimation is

possible for these forms of cohort-models. It is possible to obtain cohort and time-specific

survival estimates (Buckland, 1982; Pollock et al., 1990). Pollock et al. (1990) obtains

survival estimates for a study in which the newly marked animals in each year are defined

as a cohort and the time since marking is recorded. For this form of study Buckland

(1982) notes that survival rates are functions of both time since marking and temporal

effects and describes analyses which emphasise one or other of these effects.

2.3.2.2 Multistate Models

Once again, the discussion on extending the Cormack-Jolly-Seber model to a multistate

modelling framework (see Section 2.2.3) covered many of the issues that are relevant

to performing a similar expansion for the Jolly-Seber model. When populations were

classified by states for both the Markovian and memory models discussed in Section 2.2.3,
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the capture probability was modelled as being both state and time-specific. Hence, if the

focus of inference was on the animals belonging to state g during sampling period i, a

Horvitz-Thompson like estimate (Borchers et al., 2002) of the abundance for that state

would be given as

N̂ g
i =

ngi
p̂gi

where n̂gi is the number of animals in state g at time i that are caught during period

i, and p̂gi is the estimated capture probability for that specific group of animals. If the

population was classified into a total of G states then the total abundance for animals

across all states is obtained by summing the state-specific abundance estimates:

N̂
∑
i =

G∑
g=1

N̂ g
i .

Once again, a state specific estimate of capture, p̂gi , is required to obtain an abundance

estimate and this implicitly assumes that the marked and unmarked animals in state g

during sample period i possess the same capture probabilities.

This is still an active area of research and no efficient parameterisation of the multistate

Jolly-Seber model has yet been published. A framework respecting proper conditioning

has yet to be developed.

2.3.3 Auxiliary Data

Many of the ideas for incorporating auxiliary information into Jolly-Seber models for

analysing capture-recapture data have been covered in the discussion on Cormack-Jolly-

Seber models in Section 2.2.5. Many of the techniques outlined in Lebreton et al. (1992)

and reviewed by Pollock (2002) are applicable to the Jolly-Seber models. By extend-

ing the analysis of capture-recapture data to estimate population abundance Jolly-Seber
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models incorporate unmarked animals which can result in auxiliary information being un-

recorded for animals that are not observed. The problem of modelling missing covariate

values is well suited to Bayesian modelling techniques and recent developments of exten-

sions to capture-recapture models (Link and Barker, 2004, 2005; Bonner and Schwarz,

2006; Schofield and Barker, 2008; Dupuis and Schwarz, 2007) use a Bayesian framework

to impute missing covariate values when modelling demographic parameters as functions

of covariates (see Section 2.5).

2.3.4 Model Selection

An alternative approach to Eq. (2.3.1) for expressing the distribution function for the

observed data in a Jolly-Seber model is now presented. This approach is described in

detail in Williams et al. (2002, 495-522) and is based on the approach of Seber (1982).

This approach models the data using the mij-array statistics introduced in Section 2.2.

The significant property of this approach is that it decomposes the distribution function

into three separate likelihood components. Using the original notation in Table 2.6 and

the extra notation in Table 2.7 the model can be expressed as

Pr ({ui} , {di, d′i} , {mij}) = P1({ui} | {Ui} , {pi})

×P2(di, d
′
i|mi, ui), ηi, η

′
i)

×P3(mij|Ri, φi, pi) (2.3.10)

The first component of this decomposition models the capture of unmarked animals and

takes the same binomial form as the first term in Eq 2.3.1:

P1({ui} | {Ui} , {pi}) =
K∏
i=1

[
Ui!

ui! (Ui − ui)!
puii (1− pi)Ui−ui

]
(2.3.11)
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The second component of Eq. 2.3.10 models the marked and unmarked animals that are

not released back into the population after capture and can be expressed as:

P2({di, d′i} | {mi, ui}), {ηi, η′i}) =
K∏
k=1

[(
mi

di

)
(ηi)

di(1− ηi)mi−di
]

×
K∏
k=1

[(
ui
d′i

)
(η′i)

d′i(1− η′i)ui−d
′
i

]
(2.3.12)

The third component of Eq. 2.3.10 models the conditional probability distribution of the

animals recaptured at each period and is given by:

P3({mij} | {Ri} , {φi, pi}) =
K−1∏
i=1

Ri!

(mi,i+1)!(mi,i+2)! . . .mi,K !(Ri − ri)!
(φipi+1)mi,i+1

× {[φi(1− pi+1)φi+1pi+2]mi,i+2 . . . (2.3.13)

. . . [φi(1− pi+1)φK−1pK ]mi,Kχ
Ri−ri
i

}
(2.3.14)

This component is simply the Cormack-Jolly-Seber conditional model for the marked

animals that are released back into the population Ri. It could also be written using the

expression in Eq. (2.2.4) if the conditioning was on the number of unmarked animals ui

caught in each sampling period.

Assessing the goodness-of-fit for the JS models and comparing nested models is based

on component P3 of the likelihood representation in Eq.(2.3.10). This component con-

ditions on the number of releases in each time period and incorporates the subsequent

capture-history data on these marked animals. Therefore, since the classical goodness-of-

fit and model comparison tests are calculated using the capture histories of the animals,

they are typically based on the P3 component of the likelihood. The second component

P2 is included for completeness but typically does not form a part of classical inference

on Jolly-Seber models, although tests could be performed if issues such as the temporal
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Parameters

ηi = The probability that a marked animal captured during sampling
period i is released back into the population.

η′i = The probability that an unmarked animal captured during sampling
period i is released back into the population.

Statistics

mij = The number of marked animals captured and released on the ith

sample that are next caught on sampling period j (i = 1, . . . , K −
1 and j = i+ 1, . . . , K).

di = The numbers of mi that are not released back into the population
at i.

d′i = The numbers of ui that are not released back into the population
at i.

Table 2.7: Extra Parameters and Statistics for an alternative representation of
the single-age Jolly-Seber model.

variation of release rates or equality between the release rates for marked and unmarked

animals were of interest. The first component, P1, is useful in the estimation of popula-

tion abundance but is not used to assess model goodness of fit. However in alternative

parameterisations (Crosbie and Manly, 1985; Schwarz and Arnason, 1996) the entry of

previously unmarked animals, ui, is explicitly modelled using entry probabilities. These

parameterisations then allow the ui to be incorporated into the model selection and fit

assessment inference.

The mechanics of model selection and goodness-of-fit testing for the Jolly-Seber model

follow much the same procedures as discussed in Section 2.2.1.4 for the Cormack-Jolly-

Seber models. The use of an information-theoretic approach to model selection such

as AIC and its small-sample analogues are preferred to the more traditional approaches

involving likelihood ratio tests. Incorporating model uncertainty into inference by aver-

aging across multiple models and weighting each parameter estimate by the model AIC
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can provide more robust parameter estimates and is also recommended.

2.4 Alternative Models

Expressing the Jolly-Seber model in the decomposed likelihood form of Eq. (2.3.10) en-

ables a direct comparison to be made with some of the major alternative developments of

the Jolly-Seber model. Many of these alternatives are likelihood-based and adopt a similar

form of likelihood decomposition to that given for the mij-array sufficient statistics based

representation of Eq. (2.3.10). The three components P1, P2 and P3 can be thought of as

modelling initial capture, removals and recaptures respectively. The alternative models

discussed in the following sections typically retain the form of the P2 and P3 components

but offer alternative models for the way in which animals first enter the population, these

models are encapsulated in the P1 component of the likelihood.

The open population models covered so far allow for a population to experience both

recruitment and removals. The removals are typically defined as deaths, emigration or

losses on capture and, although there is often confounding of estimates of mortality as

distinguished from emigration, these processes are explicitly included in the CJS and JS

models through the survival parameters φ and the losses on capture parameters η, η′. The

estimation of recruitment is a more complicated issue and the existing model structure

(see Eqs (2.2.3),(2.3.10) does not include any stochastic component with which to explic-

itly model recruitment. Instead, as in Eq. (2.3.6), the estimate of recruitment is obtained

deterministically from the difference between the estimated abundance at one time period

minus the estimated number of survivors from the previous time period. Therefore, the

Bi’s are not incorporated into the model and their estimates are obtained from condition-

ing of the number of unmarked animals, Ui, estimated to exist in the population at each

time period.



63

The alternative models for the initial capture component, P1, have focused on the

recruitment process (Crosbie and Manly, 1985; Cormack, 1989; Schwarz and Arnason,

1996). The approach of Schwarz and Arnason (1996) synthesises the earlier developments

of Crosbie and Manly (1985) and expands on their approach to provide a general mod-

elling framework that explicitly incorporates a recruitment process and can incorporate all

the simple Jolly-Seber models into a single modelling paradigm. This section reviews the

alternative models that have been proposed to incorporate a specific recruitment model

and begins with a description of some of the problems with the previous models before

describing the Schwarz and Arnason (1996) approach.

2.4.1 Model Structure

The Jolly-Seber (Jolly, 1965; Seber, 1965) approach assumes that the unmarked animals

in the population, the Ui are fixed parameters and that the recruits to the population

can be expressed in terms of the Ui’s as B̂i = Ûi−1φ̂i(Ûi − ui). This then allowed the first

component, P1, to be expressed in the products of binomials form given in Eq. (2.3.11).

From P1, an estimate of Ui can be obtained: Ûi =
ui
p̂i

. The relationship between Bi and

Ui can then be used to estimate the net recruits B̂i. However, Schwarz and Arnason

(1996) noted several problems with this approach. With the births not appearing in the

likelihood it is difficult to impose any restrictions on the estimates of Bi. For example,

there is no simple way to ensure that known periods experiencing no recruitment can

be implemented as a model constraint. The numerical evaluation of the likelihood can

result in negative estimates for the Bi; there is no clear way to maximize the likelihood

ensuring that all estimated Bi are non-negative. The reduced-parameter models of the

general Jolly-Seber model, in which the model is restricted to either no-births, no-deaths
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or both, cannot be expressed using the reduced form of P1.

One approach to ensuring the numerical optimisation of the likelihood results in non-

negative birth estimates centered on log-linear models (Cormack, 1989). These models

included a parameter Ψi defined such that the number of unmarked individuals in the

population at the time of the (i+1)st sample is Ψi times the number of unmarked animals

surviving from the ith sample. From this formulation, the relationship between uncaught

animals and births is given by

Ui+1 = Ui(1− pi)φiΨi = Ui(1− pi)φi +Bi.

The parameterisation of the models formulated by Cormack (1989) has a direct corre-

spondence with the rates for capture, survival and recruitment in the usual JS models.

The advantage of this approach is that negative estimates of recruits can be avoided

by constraining the Ψi to be non-negative. However, there are some disadvantages to

this approach. The Ψi are only an indirect estimate of the Bi and it can be difficult to

obtain the equivalent restriction on the Ψi to impose a constraint on the Bi. Deriving

standard errors of the back-transformed parameters of biological interest is a non-trivial

process and no method is presented to do so. This issue is later resolved (Cormack, 1993).

The approach taken by Schwarz and Arnason (1996) builds on the work of Crosbie

and Manly (1985) who reparameterised the Jolly-Seber model by defining a new “super-

population” parameter. This parameter, Ni, is defined as the total number of animals

that exist in the population at i and survive until the next sample time, thus it gives

the number of animals available to be sampled in the population at any point during the

study. They define the parameter, Bi, as the number of animals that enter the population

between sampling occasions i and i + 1 and are available to be sampled at i + 1. The
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relationship between these two parameters is then

N =
K−1∑
i=0

Bi (2.4.1)

where B0 = N1 since all the animals in the population initially, N1, are new entries relative

to the first sampling occasion. Schwarz and Arnason (1996) then model these random

variables Bi as realisations from a multinomial distribution. The Bi’s are referred to

as births and in this context the term birth is used to define any mechanism by which

new animals can enter the population and can encompass birth, immigration, etc. The

multinomial model for the Bi includes entry parameters βi which determine the point

at which the new births enter the sampling population. Hence the births model can be

expressed as

{B1, . . . , BK−1} ∼ Multinomial(N ; β1, . . . , βK−1) and B0 = N −
K−1∑
i=1

Bi. (2.4.2)

They then define another set of parameters which are given, recursively, as Ψ1 = β0 and

Ψi+1 = Ψi(1− pi)ψi + βi. These parameters are used to model the number of unmarked

animals that, as a proportion of the superpopulation N , are in the population and cap-

tured on each sampling occasion. The sum for Ψi+1 consists of the two components, firstly

the probability that an animal was in the previous population, avoided capture in i and

survived until i + 1 and secondly the probability that the animal was a new recruit in

period i. From this definition it can be seen that Ψipi corresponds to the capture of un-

marked animals at sampling period i. This results in a multinomial model for the capture

of previously unmarked animals at each sampling occasion

{u1, . . . , uK} ∼ Multinomial(N ; Ψ1p1,Ψ2p2, . . . ,ΨKpK).
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This corresponds to the first component P1 of the standard Jolly-Seber distribution func-

tion (Eq. 2.3.11) and can be written as:

P ′1({ui} |N, {βi} , {pi} , {φi}) =
N !

u1!u2! . . . uK !(N − u·)!

[
1−

K∑
i=1

Ψ1pi

]N−u· K∏
i=1

(Ψipi)
ui

(2.4.3)

where P ′1 corresponds to the Schwarz-Arnason form of P1, and u· denotes the total number

of unmarked animals captured during the study,

u· =
K∑
i=1

ui.

The N−u· term represents all the animals that exist in the superpopulation but are never

caught. The expression P ′1 is a function of the parameters N, {βi} , {pi} and {φi}, which

are subject to the constraint:
K−1∑
i=0

βi = 1.

Then, by conditioning on the total number of unmarked animals observed during the

study (u·) a further factorisation of P ′1 can be performed:

P ′1({ui} |N, {βi} , {pi} , {φi})

= P ′1a({u·} |N)P ′1b({ui} |u·, {βi} , {pi} , {φi})

=

 N !

u·!(N − u·)!

[
K∏
i=1

Ψipi

]u· [
1−

K∏
i=1

Ψipi

]N−u·
×

{
u·

u1!u2! . . . uK !

K∏
i=1

(
Ψipi∑K
i=1 Ψipi

)ui}
(2.4.4)

Of these two components the first, P ′1a, models the split between the animals in the su-

perpopulation that are caught at some point during the study and those that are not.

The second component, P ′1b, is restricted to the animals that are caught at least once and

models the temporal distribution of their initial captures.
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Combining the standard forms for P2 and P3 (see Eq. 2.3.10) with the new Schwarz-

Arnason (Schwarz and Arnason, 1996) representation of P1 produces the entire distribu-

tion function:

Pr ({ui} , {di, d′i} , {mij}) = P ′1a(u·|N)

×P ′1b({ui} |u·, {βi} , {pi} , φi)

×P2({di, d′i} | {mi, ui}), {ηi, η′i})

×P3({mij} | {Ri} , {φi, pi}) (2.4.5)

The likelihood model formulations in Eq. (2.3.11) and Eq. (2.4.4)) are different in the pa-

rameterisations but they are both based on exactly the same observed capture-recapture

data. They also have common components P2 and P3. Therefore, the alternative expres-

sions in Eq. (2.3.11) and Eq. (2.4.4) are statistically equivalent.

2.4.2 Model Assumptions

The alternative expression for the model component P1 required the specification of some

new parameters, the entry probabilities βi. These parameters model the probabilities that

a member of the superpopulation is not present on the study area (i.e. available to be

sampled) until sampling period i, but then enters the population and can be caught on

sampling occasion i+ 1. The key assumption relating to these entry probabilities is that

of homogeneity. It is assumed that all animals in the superpopulation that have yet to

enter the population have an equal chance of belonging to the next cohort of recruits.

For example, animals of different gender are not assumed to have different probabilities

of making the transition to the population during the same period.
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The use of the multinomial distribution implicitly requires the assumption that the

fates of the animals are independent. By including the entry probabilities, the “fate” of

an animal incorporates not only the usual capture and survival parameters but also the

entry of an animal into the sampling population. The independence assumption should

still hold unless there are strong reasons why the entry of one animal to the population

may influence the entry of another, for example, multiple births per family.

2.4.3 Estimation

The estimation of the model parameters is performed chiefly through numerical maximi-

sation of the likelihood equations (Schwarz and Arnason, 1996). The full likelihood can

be expressed as the product of a sequence of multinomial and binomial terms (Schwarz

and Arnason, 1996) and it can be demonstrated that the conditional MLEs derived in

this way are asymptotically equivalent to the unconditional MLEs5.

Schwarz and Arnason (1996) chose to estimate the model parameters using a logit

link function as a means of ensuring that all estimates are kept within the parameter

space. The estimates are then derived from the following components of the data: the

estimates of survival and capture rates are based on the recaptures of previously marked

animals, the estimates of new recruits to the sampling population are based on the pro-

portions of unmarked animals that are captured on each occasion and the estimate of the

superpopulation size is based on the total number of unmarked animals captured during

the sampling study. Hence, the capture {p̂i}, survival
{
φ̂i

}
and entry

{
β̂i

}
probability

estimates can be obtained from numerical maximisation of the product P ′1bP2P3. These

5The conditional likelihood estimates will differ from the MLEs if constraints are applied to the model
parameters.
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estimates p̂i, φ̂i and β̂i can then be used with P ′1a to estimate the superpopulation size N .

N̂ =
u·∑K

i=1 Ψip̂i
(2.4.6)

As with both the Cormack-Jolly-Seber (Section 2.2.1.2) and the Jolly-Seber (Section 2.3.1.3)

models not all of the parameters are identifiable. The capture probability on the first sam-

ple, p1, cannot be estimated and φK−1pK can only be estimated as a product. Along with

the constraint that
∑K−1

i=0 βi = 1 there are 3K − 3 parameters that can be estimated

under the full time-specific model (Schwarz and Arnason, 1996). The lack of identifiable

estimates for p1 and pK makes estimation of the superpopulation total N̂ difficult for

the fully time-specific model. Imposing the constraints p1 = pK = 1 is recommended

by Schwarz and Arnason (1996). Estimates of time-specific abundance and recruitment

are also given and it is demonstrated that the usual estimates (Crosbie and Manly, 1985;

Pollock et al., 1990) are obtained.

The variances are derived asymptotically and those obtained for φi and pi are the

same as in Pollock et al. (1990). The recruits Bi are assumed to be random variables

which adds a component of variance to the asymptotic variances of B̂i and N̂i. If there

are no constraints on the βi, or only simple constraints such as βi = constant then this

extra source of variance is removed. However, for more general constraints Schwarz and

Arnason (1996) note that there is no general method for deriving the variance.

2.4.4 Other Models

As with the Jolly-Seber models the alternative model proposed by Schwarz and Arnason

(1996) can be simplified into a reduced parameter form by the use of constraints on the pa-

rameters. Setting all the survival parameters equal to 1 will obtain the birth-only model.
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Setting β1 = 1 and all other entry probabilities to zero will give the death-only model.

Both of these simplified models yield the same estimators as given in Pollock et al. (1990).

Constraining the parameters can also be used to investigate temporal effects on cap-

ture, survival and recruitment rates. However, Schwarz and Arnason (1996) note that

parameters in models with temporal variation in capture probabilities can experience

identifiability problems and advocate using constant capture probabilities where possible.

Extending the model to incorporate covariates is also possible. Discrete, static covari-

ates can be modelled by expanding the model to multiple groups and discretised dynamic

covariates can be modelled using a multistate modelling approach. Alternatively a GLM-

based approach (Lebreton et al., 1992) can be used to model the parameters as a function

of multiple covariates.

2.5 Bayesian Methods for Capture-Recapture

2.5.1 Introduction

Capture-recapture methods have undergone considerable development since what are now

seen as the archetypes of capture-recapture modelling were first formally represented

(Cormack, 1964; Jolly, 1965; Seber, 1965). With recent extensions of these models often

requiring ever-more complicated likelihood formulations (e.g. extensions to hierarchical

models (Link and Barker, 2004; Clark et al., 2005)) the numerical evaluation of the models

using classical likelihood methods can become prohibitively complex (Link and Barker,

2005). One alternative approach to investigating these models is to embed the inference

within a Bayesian framework.
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Pollock (1991) reviewed the use of capture-recapture in the estimation of demographic

parameters and noted that the structure of Bayesian analysis of time series data, in which

some statement of prior knowledge is updated sequentially as new information enters the

system, is well suited to the analysis of capture-recapture data. The studies typically take

place over a series of sampling occasions thus making it appropriate to update the model

upon receipt of the new observations.

Another potential advantage of analysing capture-recapture data using Bayesian mod-

els is the issue of parsimony. Link and Barker (2005) note that for even relatively simple

models, such as the fully time-specific Jolly-Seber model, for any sampling study con-

ducted over a significant number of occasions, the number of parameters to be estimated

can soon become prohibitive. Even the most parsimonious models, as determined by care-

ful model selection, may still consist of a large number of parameters precluding succinct

descriptions of the data. Depending on the purpose of the study many of the parameters

may even be considered to be nuisance parameters (Poole, 2002). These can be compli-

cated to handle in the classical modelling context and the use of Monte Carlo Bayesian

methods can provide a more simple, yet still formal, approach to analysing the models.

This section will review the use of Bayesian techniques in capture-recapture analyses

focusing on important recent developments.

2.5.2 Closed Populations

Although closed population experiments are outwith the scope of this thesis, there has

been some notable work performed on investigating behavioural response of animals using

Bayesian techniques to model capture-recapture data. Yang and Chao (2005) define

models to analyse both permanent and temporary effects on capture probabilities and fit
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these models using a bivariate Markov chain approach. In the case of permanent effects

an animal’s capture probability changes permanently after first capture and thus capture

probability only differs across marking status. For short term effects it is assumed that

only the most recent capture occasion affects the current capture probability. Pollock

(1991) and Borchers et al. (2002) cover the traditional closed-population behavioural

response model, Mb, in which an animal’s capture probability is determined by its marked

status. There exist two probabilities: one for animals that have been marked and one for

animals that have yet to be captured. Yang and Chao (2005) create a simple bivariate

state-space model (see Chapter 3) in which states are determined by both marking and

current capture status. They define three states:

a = {0, 0} The animal is uncaught and unmarked.

b = {0, 1} The animal is uncaught and is marked.

c = {1, 1} The animal is caught and marked.

and the associated probabilities for plausible transitions:

Pac = The probability an animal unmarked in period i is caught in i+ 1.

Pbc = The probability a marked animal uncaught in period i is caught in i+ 1

Pcc = The probability a marked animal caught in period i is caught again in i+ 1.

Then the difference Pbc − Pac measures the permanent trap response effect. The differ-

ence Pcc − Pbc measures the temporary trap response as any difference is determined by

the most recent capture history. If Pcc = Pbc then the model reduces to the classical

behavioural-response model Mb. A conditional likelihood based on only the observable

capture histories is chosen over the full likelihood for four principle reasons. Firstly, the

full likelihood considers uncaught animals but because these animals are never captured

no covariate values can be observed for them. This makes extending the usual likelihood

method to include covariates difficult, however missing values can be dealt with within

an MCMC process (Link and Barker, 2005; King et al., 2006; Dupuis and Schwarz, 2007).
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By making the likelihood conditional on observable animals this problem is avoided. Sec-

ondly, for large population sizes the computationally more simple conditional MLEs will

be asymptotically similar to the unconditional MLEs, although Yang and Chao (2005)

don’t specify how large the population needs to be for adequate closeness. Thirdly the

conditional MLE is equivalent to a Horvitz-Thompson type estimator as discussed in

Borchers et al. (2002). Fourthly, the conditional MLE is invariant to rescaling the data,

whereas the unconditional MLE is not (Chao et al., 2000). For example if data {u1, u2, u3}

are analysed and yield an estimate N̂ then if the observations are scaled by a factor (say

10, to give {10 ∗ u1, 10 ∗ u2, 10 ∗ u3}) then the corresponding estimate N̂ will not be scaled

by that same factor.

Yang and Chao (2005) discuss extensions to their behavioural model and note that the

classic Mtb model is unidentifiable as is the temporal effects extension to their bivariate

permanent behavioural effects model. However, an extended model with temporal effects

and temporary behavioural effect can be identified under the definition of appropriate

constraints. They also discuss the incorporation of covariates to establish a bivariate

model with temporal, behavioural and heterogeneity effects analogous to the classical

Mtbh model. The restrictive assumption that the covariates are static is made to avoid

missing-covariate problems on the occasions the animal is not captured. The transition

probabilities can then be considered in the GLM-framework described in Lebreton et al.

(1992) and logistic models are used to relate the probabilities to their explanatory covari-

ates. The results of their investigations suggest that the classical models perform poorly

when analysing data generated from a population exhibiting a temporary behavioural

effect. They suggest their Markov models allow new interpretations of the behaviour of

animals during the study and provide more satisfactory population estimates when there

are only temporary behavioural effects.
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2.5.3 Survival Analysis

Poole (2002) provides a description of a Bayesian approach to modelling survival in a

capture-recapture study. The models are fitted using MCMC methods to obtain samples

from the joint posterior distribution of the model parameters. The techniques described

are then extended to account for missing data which can arise when sampling occasions

were missed during the experiment. The proposed extension is deemed to be simpler to

apply for CJS models than other standard approaches to dealing with missing data such

as the EM Algorithm (Dempster et al., 1977) or MCMC data augmentation (Gilks and

Roberts, 1996).

Poole (2002) focuses on the CJS model, restricting inference to the survival and cap-

ture parameters so the data consists only of animals that have been captured at least

once. Therefore, the CJS model likelihood as described in Cormack (1964) is used as the

basis for Monte Carlo fitting via a Markov chain. The Markov chain is constructed so that

it produces an approximation to the joint posterior of the capture/sighting probabilities

pi and the survival probabilities φi. For the full data set, in which the mark-recapture

data is available for all years, the target posterior distribution is simply the product of

the CJS likelihood and the prior on the survival and capture parameters. An algorithm

for component-wise Metropolis-Hastings updates is then described. For the missing-data

case Poole (2002) notes that the usual solution is simply to regard the missing data as

extra variables that need to be estimated. Although effective in many situations, Poole

(2002) argues that it cannot be applied here due to high interdependence in the data.

For example, under the CJS model every animal included in the model must have been

captured at least once and this imposes the constraint that
∑
bj =

∑
cj since both sum
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to the number of captured animals where cj is the number of marked animals seen for

the last time at time j and bj is the number of animals marked for the first time at time

j. Simply proposing values for any missing capture histories will change the values of the

CJS likelihood for the other time periods. Poole (2002) suggests dealing with a missing

capture occasion by modelling the survival from the preceding sampling occasion as a rate

that extends over the missing occasion. The prior can also be altered in accordance with

this re-paramaterisation.

From the example analysis detailed in Poole (2002), the posterior Bayesian estimates

of the survival parameters are in strong agreement with analytic CJS estimates. For sim-

plicity the chosen priors on all survival and capture parameters were uniform but Poole

(2002) acknowledges that more complex prior specifications are possible. Specifically, if

correlations among survival probabilities are known to exist the results are likely to be

improved by explicitly modelling these correlations as part of the Bayesian analysis, al-

though Poole (2002) states that the feasibility of this approach is unknown. However,

Link and Barker (2005) model demographic parameters by specifying a bivariate normal

prior on the joint distribution of survival and fecundity rates and successfully fit their

resulting model to capture-recapture data.

2.5.4 Extending the Model

An extension to the Jolly-Seber model developed by Crosbie and Manly (1985) and

Schwarz and Arnason (1996) was presented in Section 2.4 in which the birth process

was explicitly incorporated into the likelihood formulation. A similar extension is investi-

gated by Link and Barker (2005) who develop a hierarchical extension to the CJS model

to model relationships amongst demographic parameters. They develop an analysis of
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capture-recapture data that allows inference to be made about the relationships between

survival and birth processes rather than focussing on survival or abundance alone. The

Schwarz-Arnason model (Schwarz and Arnason, 1996) is analysed and an alternative pa-

rameterisation is presented. They introduce the parameter fi which is defined as a birth

rate parameter and is given by fi = βi
di

where

di+1 = diφi + βi (2.5.1)

for i = 1, 2, . . . , K − 1 and d1 = β0. The fi are then used to replace the entry probabil-

ities βi in the Schwarz-Arnason model. The di can be thought of as approximating the

proportion of the superpopulation N that constitute the population in the ith period Ni

under the assumption of no losses on capture. Link and Barker (2005) note that fi ≈ Bi
Ni

represents an index to per capita birth rates as opposed to the index of total births rep-

resented by the Schwarz-Arnason parameter βi ≈ Bi
N

where both these approximations

are based on assuming no losses on capture. They also demonstrate that all of the in-

formation on the parameters β0 and N is contained in the Schwarz-Arnason likelihood

component P ′1a({u·} |N) and note that, without making some untestable assumptions,

the capture histories contain no information about β0 and N . Consequently, they deter-

mine the statistic u· to be approximately ancillary to the parameters in the model that

require estimation. Hence, their extensions to the CJS model are based on the P ′1b (see

Eq. (2.4.4)) likelihood component of the Schwarz-Arnason model (Schwarz and Arnason,

1996).

The formulation of their likelihood is analogous to that of the Schwarz-Arnason ex-

tension (see Eq. 2.4.5) to the three component product for the Jolly-Seber model (see

Eq. 2.3.10). Their reparameterisation is chosen so that the model is expressed entirely in

terms of identifiable parameters.
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They define

λi = φipi+1 + φi(1− pi+1)λi+1, i = 1, 2, . . . , K − 1 (2.5.2)

where λK−1 = φK−1pK . Thus, λi represents the probability of an animal remaining in

the population and being recaptured after sample i conditional on it being released after

capture in sample i. Another new parameterisation is established with the definition

τi =
φi−1pi
λi−1

, i = 2, 3, . . . , K − 1 (2.5.3)

which represents the probability of being recaptured in sample i relative to the probability

of being recaptured after sample i − 1. These two definitions are used in an alternative

parameterisation of the CJS component of the likelihood formulation. Link and Barker

(2005) decompose this component (which is equivalent to P3 - see Eq. (2.3.14)) into

conditionally independent binomial distributions. The first component

L2a =
K−1∏
i=1

(
Ri

ri

)
(λi)

ri(1− λi)Ri−ri (2.5.4)

then models the future recaptures of each cohort of animals that are marked and released

following the ith sampling occasion and takes the product of these terms. The second

component

L2b =
K−1∏
i=2

(
Ti
mi

)
(τi)

mi(1− τi)Ti−mi (2.5.5)

includes the new term Ti which is formally defined as the number of animals marked and

released prior to sampling period i that are then recaptured at some sampling occasion

j, i ≤ j ≤ K. It is defined recursively with T2 = r1, and Ti+1 = Ti −mi + ri, for i =

2, 3, . . . , K − 2. This allows for the less formal definition that Ti is the number of animals
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released before sampling period i that are known to be recaptured on some future sam-

pling occasion but have not yet been recaptured (hence the subtraction of the mi terms).

Therefore, the component P ′3b (Eq. (2.5.5)) models the split between animals that are

recaptured in the ith sample and those that are recaptured after the ith sample and again

takes the product of these terms.

Then the likelihood, as a function of all model parameters θ, specified by (Link and

Barker, 2005) is expressed as the product of three components:

L(θ) ∝ L1({νi})L2({pi} , {φi})L3({pi} , {φi} , {fi}), (2.5.6)

where the first component L1 contains the νi parameters which are the release proba-

bilities for animals following capture at the ith sample. It is analogous to the losses on

capture component P2 (Eq. (2.3.12)) of the Jolly-Seber model, although the losses on

capture are not modelled separately for marked and unmarked animals in the Link and

Barker (2005) formulation. As noted previously, the second component L2 = L2a × L2b

represents the CJS model and is equivalent to P3 (Eq. (2.3.14)) in the Jolly-Seber model.

The third component L3 is equivalent to P ′1b (see Eq. (2.4.4)) and models the temporal

distribution of the animals’ initial captures. The likelihoods are then expressed solely in

terms of identifiable parameters and MLEs can be obtained in closed form. Link and

Barker (2005) note that the MLEs for the parameters φi, pi and νi are the classical Jolly-

Seber solutions (Jolly, 1965; Seber, 1965; Pollock et al., 1990). Details of the MLE form

of the other parameters are provided by Link and Barker (2005).

Link and Barker (2005) also specify a bivariate distribution for transformations of

the fecundity and survival parameters fi and φi respectively. They choose a bivariate
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normal distribution with mean vector µ and variance-covariance matrix Σ and spec-

ify a log transform for the fi and a logit transform for the φi. Therefore, their full

likelihood consists of the statistics D = [{ui} , {mi} , {Ri} , {ri}] and the parameters

θ = [{φi} , {pi} , {νi} , {fi} , {µi} , {Σi}] . The full model expression also requires the spec-

ification of a prior due to the use of Bayesian model fitting methods. Link and Barker

(2005) briefly detail the assumptions they make and the choice of prior this results in.

As discussed in his review paper (Schwarz, 2001) notes the lack, at the time, of in-

vestigations into the utility of the JS model in estimating population abundance. As

noted by Link and Barker (2005), one possible reason for this, as suggested by Schwarz

(2001), is the lack of appropriate parameterisation of the model to obtain direct inference

about birth rates. Specifically, Schwarz (2001) notes the lack of comparable procedures

for the birth parameters when compared to those developed by Lebreton et al. (1992)

for survival and capture parameters. By focussing on modelling the interactions of de-

mographic parameters, Link and Barker (2005) chose to express the likelihood in terms

of Eq. (2.5.6) which enables them to express the model in terms of parameters relating

directly to fecundity fi instead of the less biologically relevant βi used by Schwarz and

Arnason (1996). Link and Barker (2005) also claim that the factorisation of the likelihood

simplifies the incorporation of hierarchical modelling and is necessary for the generation

of suitable candidates as part of the MCMC fitting-algorithm. If losses on capture do

occur then they can be modelled using the L1 component (see Eq. (2.5.6)) and, although

fi can still be considered a birth parameter, its interpretation is modified to being the

number of births per animals that would have existed in the population during period i

if there had been no losses on capture.
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2.5.5 Bayesian Multistate Models

A further extension to the general multistate Jolly-Seber capture-recapture model (Schwarz

and Arnason, 1996) is developed by Dupuis and Schwarz (2007). To address potential

problems with estimator bias incurred by heterogeneity in the capture and survival rates

methodology has been developed in which animals are classified into states. This clas-

sification can be based on static variables (e.g. gender) (Schwarz and Arnason, 1996)

or on stochastic variables (e.g. movement between geographical regions) (Schwarz et al.,

1993). When there is movement between states these models are unable to produce esti-

mates of abundance. A Bayesian treatment for the movement case was presented by King

and Brooks (2002b) although they did not address the issue of abundance. The super-

population approach described in Schwarz and Arnason (1996) is extended to model the

appearance of new entrants into the population between sampling occasions. The missing

value problem is given an alternative approach owing to the model structure requiring

that both unrecorded states prior to an animal’s first capture as well as the full set of

unobserved states for animals that are never marked are incorporated into the modelling

framework.

The observed data are decomposed into two interlinked vectors for the ith animal: xi

simply records the standard capture history pattern of 1’s and 0’s and zi records the

covariate value observed on each occasion corresponding to a 1 (the animal is observed)

in xi. No covariate is recorded on occasions corresponding to 0’s in xi. Independence

is assumed with respect to the processes of capture, survival and movement and move-

ment is assumed to be a first-order Markov process. The model probabilities are now

defined to be a function of state as well as time which would increase the complexity of

the likelihood-based models defined in Schwarz and Arnason (1996). Dupuis and Schwarz

(2007) define zi,t as the state of animal i at time t such that if zi,t = r then animal i
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is present in the sampling population and is alive in state r at time t. Also, if zi,t = ∗,

animal i has not yet entered the sampling population at time t. Using these variables, the

number of animals from the superpopulation that enter into the sampling population in

state r between times t and t+ 1 is given by: Et(r) =
∑N

i=1 Izi,t=∗,zi,t+1=r, where I(c) is an

indicator function taking the value 1 if condition c is true and 0 otherwise. Similarly, the

number of animals in the population in state r at time t is given by Nt(r) =
∑N

i=1 Izi,t+1=r.

Hence, the number of animals per state and the number of new entrants are not param-

eters in their own right but simply functions of other variables. The priors are assumed

to be independent of each other with specific emphasis placed on the independence of the

priors on the survival parameters and the superpopulation.

Dupuis and Schwarz (2007) introduce a blocking design to simulate missing covariate

data. The blocks are determined by capture history with blocks of Type I corresponding

to the occasions before first capture, Type II corresponding to occasions in which the

animal was not captured that occur between occasions of the animal’s first and last ob-

served capture, Type III corresponding to occasions after the last observed capture until

the end of the study and Type IV corresponding to the scenario where an animal is not

seen on any of the sampling occasions. Thus, each of these blocks corresponds to a set

of missing values and the distribution of these blocks, conditional on the observed cap-

ture histories can be derived (Dupuis and Schwarz, 2007). The joint distribution of the

missing covariate blocks for an animal that has been captured at least once is shown to

be the product of the distribution of the missing covariates in the individual blocks. The

missing data are simulated conditionally on the superpopulation N and a set of sufficient

statistics summarising all the marks and captures attributed to animals across all states

are simulated using multinomial distributions. They note that their blocking approach to

data-augmentation produces an ergodic Markov chain even when some transitions between
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states are impossible. In comparison, the component-by-component data-augmentation

approach (King and Brooks, 2002b) can be non-ergodic.

The posterior distribution for the superpopulation is simulated and, for the two altern-

tative priors used, can be shown to be negative binomial with parameters determined by

the number of animals marked during the study and derived probability λ of any animal

being marked during the population. The value of λ is simply the probability of an animal

moving into a particular state (from another state or entering from the superpopulation)

and surviving summed across all states and all time periods. For posteriors of the other

parameters the complete data likelihood is derived and decomposed into three separate

components: one for the survival and state transition parameters, one for the entry pa-

rameters and one for the capture parameters.

The imposition of constraints on parameters and the identifiability of the parame-

ters is also investigated. A reparameterisation is required on the entry probabilities to

allow suitable constraints to be imposed. Dupuis and Schwarz (2007) also note that

there exists a correspondence between the unidentifiable parameters in the classical Jolly-

Seber model (see Sections 2.2.1.2 and 2.3.1.3) and in their multistate extension. The full

time-specific model has confounded initial immigration, state distribution and capture

parameters which cannot be estimated separately without imposing identifiability con-

straints on the parameters.

The approach developed by Dupuis and Schwarz (2007) allows the combination of a

super-population approach with a Bayesian analysis. The approach extends the existing

methods of analysing multistate capture-recapture studies and proposes a more computa-

tionally efficient algorithm for dealing with missing covariate information within a MCMC
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framework. There is no attempt at model selection but Dupuis and Schwarz (2007) note

that one approach to MCMC model selection is covered in detail in King and Brooks

(2002b) in which RJMCMC is used to move between a potentially vast array of alterna-

tive model specifications. Also, the model could incorporate a prior covariance structure

to investigate interactions between the model parameters.

2.5.6 Unified Approaches

2.5.6.1 A Flexible General Model

A general approach to constructing a factorised likelihood for a fully time-specific mul-

tistate capture-recapture model is developed by Barker and White (2004). The model

formulation allows for integrated analyses involving recoveries of dead animals and re-

sightings of marked animals in addition to the usual recapture data. The model contains

recruitment, survival, movement, capture, recovery and resighting probabilties, all of

which can be modelled as time-specific or can be restricted for special reduced-parameter

models. For the classical approaches it is often the case that the parameterisations that

are convenient for computing estimates from a likelihood are not necessarily the most ap-

propriate for exploring biological relationships. The factorisation approach decomposes

the likelihood so that different components correspond to different information in the

data allowing the likelihood to be formulated dependent on the inferential aims of the

investigator and the information available in the data. Barker and White (2004) refer

to their general approach as the “mother-of-all-models” (hereafter MOAM) approach.

They detail the range of mark-recapture modelling techniques available in the powerful

software package MARK (White and Burnham, 1999; White et al., 2001) and note that

the correct choice of model is determined by the available data and the parameters of
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interest. Choosing the correct model is a non-trivial exercise and the choice of parame-

terisation can influence the manner in which constraints can be imposed on the model.

MARK incorporates constraints for capture-recapture models in a GLM-framework (Le-

breton et al., 1992) and requires constraints to be able to be expressed linearly so that

they can be incorporated into the design matrix. Alternative model parameterisation

can lead to non-linear constraints which then cannot be applied within this framework.

They recommend developing automated modelling routines that satisfy four main require-

ments: firstly, they should incorporate integrated analyses of data from multiples sources,

secondly, they should incorporate non-linear constraints and allow estimates of functions

of parameters, thirdly, they should be able to overlook nuisance parameters and finally,

they should enable hierarchical extensions to be incorporated. Hierarchical models (Clark,

2003; Link and Barker, 2004; Clark et al., 2005; Link and Barker, 2005) allow the relation-

ship between parameters and their explanatory covariates to be modelled to investigate

questions of biological interest.

Barker and White (2004) consider the Schwarz-Arnason (Schwarz and Arnason, 1996)

refinement of the work by Crosbie and Manly (1985) and their extension to the JS like-

lihood. By expressing the likelihood as the product of a standard CJS component for

modelling the observable capture histories and a component for modelling the temporal

distribution of first captures, Barker and White (2004) note that incorporating the second

component provides a way of including birth and population growth models in many of

the open population models in MARK at the time. They describe a very general model

consisting of the core CJS component with multistate factors incorporated into the model.

This flexible form can be applied to most of the models in MARK. The multistate models

can present some difficulties (Lebreton and Pradel, 2002) in terms of numerical optimi-

sation as the complexity of their surface can result in multiple local maxima, especially
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when constraints are imposed. The complexity and multi-dimensionality of the surface

also makes graphical exploration of the likelihood prohibitively difficult. The approach

of sequentially optimising the likelihood function (Schwarz and Arnason, 1996) over cap-

ture occasions could help to highlight problem areas of the likelihood surface allowing for

more targeted exploration. Nuisance parameters are often required in the full likelihood

of capture-recapture models even when inference may be focused on a small subset of all

model parameters. Barker and White (2004) suggest model selection to reduce the num-

ber of nuisance parameters could be an option although they note that choosing one from

a potentially vast array of plausible models, all with different restrictions on the param-

eters, can obscure biological inference. Model averaging (Buckland et al., 1997) would

seem more appropriate depending on the focus of the inference. Specifying a general

model with few constraints and comparing it to reduced models with constraints on the

parameters corresponding to the biological hypothesis of interest may be a more efficient

exploration of a priori desirable regions of model space. However, this approach may

result in biologically interesting models being missed if they lay in a region of parameter

space not deemed to be worth exploring. A Bayesian approach to model selection that

explores vast regions of model space relatively efficiently is referred to as RJMCMC (King

and Brooks, 2002b). Other alternatives suggested by Barker and White (2004) include

specifying a hierarchical model in which nuisance parameters can be modelled as random

effects and using a conditional likelihood approach. The latter approach is only applicable

when the sufficient statistics can be modelled with conditional distributions that are only

functions of the parameters of interest.

Barker and White (2004) suggest that hierarchical models are becoming increasingly

important but comment that the formulation of a hierarchical likelihood for recent ex-

tensions to Jolly-Seber models can result in extremely complex models whose solution
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requires multi-dimensional numerical integration techniques. An alternative is to use

Bayesian methods in which Monte Carlo simulation can be used to approximate the in-

tegration process and obtain a posterior distribution. Summaries of this posterior can

then provide the experimenter with the distributions of the quantities of interest. With

the specification of a uniform prior the resulting posterior distribution is the scaled like-

lihood and the mode of this is equivalent to the MLE. The use of hierarchical models sits

naturally within the Bayesian paradigm (Link and Barker, 2004) and the specification of

prior distributions on the model parameters can be considered analogous to specifying a

hierarchical model in the classical JS model context.

2.5.6.2 A Unified Model

As something of a companion piece to the work of Barker and White (2004) in developing

a flexible general likelihood formulation, Schofield and Barker (2008) develop an approach

to specifying a unified capture-recapture model using a hierarchical framework. As with

Link and Barker (2004, 2005) a flexible hierarchical parameterisation is advocated as a

means to specify relationships between parameters of interest and external covariates to

investigate biological hypotheses. For example, it may be assumed that the vital rates in

the population are a function of the abundance or density of the animals being studied.

Capture-recapture models such as the Jolly-Seber model and its extensions can be used

to obtain abundance estimates and then these estimates can be incorporated into a model

for density dependence. However, as discussed in the review paper of Seber and Schwarz

(2002), classical methods for the analysis of capture-recapture data have possessed limited

tools with which to estimate density dependence. Although the flexible hierarchical like-

lihood developed by Link and Barker (2005) allows for some demographic relationships to

be specified their models do not allow the relationships to be a function of abundance, thus

limiting their utility for investigating density dependence. Schofield and Barker (2008)
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note that it may be the case that some constraints cannot be expressed as “deterministic

functions of parameters that are explicitly expressed in the likelihood”, especially if the

biological parameters of interest have been transformed to make the likelihood evaluation

more tractable.

The model developed by Schofield and Barker (2008) can incorporate missing in-

formation and is fitted using Bayesian multiple imputation which allows demographic

parameters to be explicitly specified in the model. The model formulation considers a

superpopulation N and explicitly defines matrices for the capture histories, times of birth

and times of death for all animals in the superpopulation. Simple biological constraints

are imposed on the births and deaths to ensure that each animal can only be born and

die once and that the birth event must occur prior to the death event. By specifying the

birth and death matrices the demographic processes of biological interest can be modelled

directly and can be summarised as a function of the elements of the matrices. The capture

process is modelled using a binomial distribution analogous to P ′1a in the Schwarz-Arnason

expanded form of the Jolly-Seber likelihood decomposition (see Eq. (2.4.4)). Deaths are

modelled individually as a series of Bernoulli trials conditional on the animal being alive

at the beginning of the sample. Births are modelled using a per capita birth rate anal-

ogous to the fecundity parameter in Pradel (1996) and the birth rate used by Link and

Barker (2005). This gives a more biologically natural birth rate than the Schwarz and

Arnason (1996) parameterisation (see (2.4.2)).

From the form specified for their model Schofield and Barker (2008) use a Bayesian

approach to obtain the joint posterior distribution on the unknown parameters (capture,

survival, per capita birth rates and superpopulation total) and missing data (unobserved

times of birth and death). This posterior is proportional to the full likelihood which
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can be expressed as the product of the conditional distributions for the capture, survival

and birth processes. If the assumption is made that the demographic and capture rates

are fully time-specific and modelled as fixed-effects a careful choice of prior distribution

(Beta’s in this case) and appropriate reparameterisation6 yields full conditional distribu-

tions of known functional form thus allowing a more efficient MCMC fitting algorithm.

Partially unobserved covariates are given the usual Bayesian treatment and are up-

dated with the parameters during each fitting iteration. The models developed by Schofield

and Barker (2008) incorporate individual-specific time-varying categorical covariates (e.g.

breeding status) and can accommodate both the typical Markovian models as well as

Memory models (see Section 2.2.3 and Brownie et al. (1993)). Movement models can also

be included and are defined as modelling an animal’s availability for capture or movement

into and out of the sampling population. This can be modelled explicitly using Marko-

vian transitions between states of availability or can be subsumed into a “no movement”

model under two scenarios. Firstly, permanent migration occurs and times of birth and

immigration are combined to give recruits and times of death and emigration combine to

give removals. Hence survival probabilities are now removal rates and birth rates become

recruitment rates. Secondly, random migration occurs and the probability of capture

now combines capture and availability for capture. Continuous stochastic individual-level

covariates require a continuous model to simulate the unobserved covariates (see Sec-

tion 2.2.5 and Bonner and Schwarz (2006)). The explicit data structure in which times

of birth and death are recorded allows the model parameters to be functions of the ran-

dom variables defined using the birth and death times. Population vital rates can then

be related to functions of the numbers of births and deaths in the previous time period,

which is effectively density-dependence.

6of the birth rates/entry probabilities
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The model framework developed by Schofield and Barker (2008) is extremely flexi-

ble and covers standard capture-recapture models as well as missing data models. The

composition of the model as the product of conditional distributions can be extended to

accommodate more complex models. The standard core of the model remains the same

with additional components representing the extension (e.g. density dependence) added

to the model. This structure is the component-based MOAM framework (Barker and

White, 2004).



Chapter 3

Modelling the dynamics of wild
animal populations

The previous chapter gave a detailed review of the development of research into the con-

struction and analysis of models for capture-recapture data. However, the formulation

of many of these modelling approaches focused on the form taken by the likelihood and

were designed with a view to tractability and computational expediency rather than a

full attempt to create biologically realistic models that capture adequately the underlying

physical dynamics of the population of study.

This chapter reviews existing developments in the formulation of models that attempt

to embed population dynamics into their structure. A particular modelling framework

which constitutes a flexible component-based approach to formulating models that can

be fit to discrete time-series data is then explained in detail.

We begin this section by discussing the traditional approaches to fitting models to the

dynamics of animal populations.

90
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3.1 Overview

Under these traditional approaches existing knowledge about the animal population of

interest would be used to construct models in an attempt to capture adequately the be-

haviour of those physical processes believed to dominate the dynamics of the population.

The specification of the model that is assumed to approximate the system of interest can

be summarised as consisting of three features (Krzanowski, 1998).

Firstly, a statistical modeller wishes to investigate the behaviour of a particular system

and is able to observe and measure output produced by this system. Having collected

a sample of data from the target population of interest the statistical modeller is then

usually interested in testing some personal idea, or hypothesis, about the dominant be-

haviour of the system. The modeller is required to specify the mathematical form of the

process which they believe best describes the dominant behaviour and which is consistent

with the collected data. This mathematical form is often referred to as the systematic or

deterministic component of the model.

Secondly, the modeller also needs to consider the random fluctuations that can occur

in the system. Conducting the same experiment repeatedly and measuring the outputs

from the system will very rarely produce the same output on each occasion. The mod-

eller can observe the level of variation in the collected outputs and can then incorporate

their beliefs about the nature of this stochastic component into the model. Thirdly, the

modeller defines the relationship between the deterministic and stochastic components.

When constructing these types of models it is necessary for the modeller to establish

the relationships and dependencies between the variables of interest. It is also vital that
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the modeller has a good understanding of the inputs to the model, that they understand

the nature of the transformation implemented on these inputs by the model and that they

can identify accurately the outputs from these transformations.

These traditional approaches based on mathematical models typically offer no formal

framework for quantifying the level of uncertainty associated with the model parameters

or the conclusions obtained from the analyses. In the majority of the traditional ap-

proaches there are two main sources of uncertainty that are often inadequately accounted

for (Thomas et al., 2005). Firstly, there is uncertainty surrounding the specification of

input parameters. The input parameters are either obtained from previous studies of

survey data deemed to have suitably close parallels with the current situation of interest

or from expert opinion when no such suitable studies exist. Secondly, the choice of form

for the underlying process believed to adequately capture the dominant characteristics of

the true population dynamics can be quite subjective. The choice of model is typically

motivated by the desire to find the simplest model that is able to explain the greatest

proportion of the recorded observations. The modeller will also usually wish to derive

a model which produces outputs that are relatively insensitive to small changes in the

model inputs. Another desirable characteristic of any candidate model is that it should

be easy to use; the form of the model should, ideally, be easily interpretable and the

implementation of the calculations required by the model should be reasonably straight-

forward. Thomas et al. (2005) sum up this approach succinctly by saying that the process

of formulating a model “represents an attempt to construct a parsimonious, robust and

tractable characterization of the system under study”.

In traditional approaches based on mathematical modelling, the modeller will typi-

cally specify a population dynamics model. This model can be either deterministic or
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stochastic. The performance of these models is then assessed either through analytical

or simulation-based methods. On the basis of this form of assessment the parameters in

the model can then be adjusted, or “tuned” until they provide a suitable match to the

observed data. The quality of this matching is often determined in a relatively informal

way. The matrix models of (Caswell, 2001) can be classified under this type of approach.

Uncertainty in parameters has been investigated by simulating ranges of plausible values

for each of the model parameters, projecting forward according to the specified model

and measuring the uncertainty in the resulting output. Assessing the extent to which

the outputs are affected by the alternative choice of parameter values is often referred to

as a “Sensitivity Analysis”. The “ad hoc” nature of this process arises from the often

subjective choice of alternative parameter values used in the sensitivity analysis as well

as the criteria used to interpret the significance of the results. Also, there is no formal

relationship that specifies the relationship between the model and the observed data un-

der this approach. The significant advance in this area was the development of a unified

framework that would account for the uncertainty in the structure and parameterisation

of the model as part of the model fitting (Thomas et al., 2005).

3.2 Recent Developments

These traditional approaches to incorporating stochastic variation into the model for-

mulating process will often fail to adequately account for significant sources of uncer-

tainty. Modelling approaches which incorporate both process error and measurement

error have been developed for animal population dynamics. The fisheries industry is an

area that experienced significant development in the formulation of new modelling tech-

niques (Schnute, 1994; Newman, 1998; Meyer and Millar, 1999; Millar and Meyer, 2000a).

Schnute (1994) introduces a general approach to developing sequential models for the
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dynamics of fisheries. The traditional approaches to constructing fisheries models can be

separated into two main classes; stock recruitment models (Millar and Meyer, 2000b) or

catch-at-age models (Millar and Meyer, 2000a). The stock recruitment approach mod-

els the current level of fish stock recruitment as a function of the sizes of fish stocks at

previous time periods. The catch-at-age models necessitate the derivation of a function

that describes the linkage between the number of fish of a particular age category (say,

A) caught at the current time period with the number of fish in the previous age category

(A-1), caught in the previous time period.

Schnute (1994) describes three main approaches to formulating sequential dynamics

models. The first approach incorporates error only from the observations; the parame-

ters of the process model completely determine the dynamics of the fish stocks. For these

types of models Schnute (1994) describes the linkage between theoretical and observed age

structures and how the parameters of the deterministic process model can be adjusted to

obtain an optimal fit to the data. The second approach allows the sequential population

process equations to include error but regards the observations as being known exactly.

Schnute (1994) raises the issue that, for models created under this paradigm, the output

can be highly sensitive to the manner in which the process error is introduced to the mod-

elling framework. The third approach describes techniques for simultaneously allowing

both measurement and process error to be incorporated into the models; an example of

this approach is described by Millar and Meyer (2000b).

The models Schnute (1994) develop are sequential in form whereby the characteristics

of interest for the population being modelled, and their linkage with the recorded ob-

servations, are defined at a sequence of distinct time points. These models allow for the

accommodation of non-stationary behaviour providing that the requisite process equations
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describing the evolution of the dynamics can be specified for each distinct time period.

To make the calculations described by Schnute (1994) tractable a number of simplifying

assumptions are required. The distributions of the stochastic elements of process and

observation are assumed to be normal (Gaussian) and the form taken by the process and

observation equations is assumed to be linear. Models of this set are typically referred

to as normal dynamic linear models and the necessary calculations for estimating the

parameters can be performed using the Kalman filter (Besbeas et al., 2002, 2003, 2005),

with specific application to a fisheries model presented in Newman (1998).

Although the normal dynamic linear models can incorporate both process and ob-

servation error simultaneously the required assumptions of normality and linearity are

fairly restrictive. By sacrificing reality for computational expediency these models can

still often fail to capture adequately the true stochastic nature inherent in the underlying

population dynamics. A relaxation of the assumption of linearity allows the use of the

extended Kalman filter which uses linear approximations to fit non-linear process and

observation equations to the observed data. When the stochastic elements of the model

are Gaussian, the extended Kalman filter is optimal; however when the dynamic system

is non-Gaussian the extended Kalman filter is only the best linear predictor (Carlin et al.,

1992). There exists the potential for the difference between the best linear predictor and

the optimal forecast to be substantial.

When attempting to transform realistic population dynamics models into a framework

of normal dynamic linear models the resulting transformed models often convey behaviour

that is significantly altered and no longer realistic. Realistic population dynamics models

that are non-linear and non-Gaussian would often be far less tractable than their normal

and linear counterparts. Recent developments in computer intensive simulation methods
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have allowed complicated statistical estimation procedures to be applied to these prob-

lems. Sequential Monte Carlo Methods (Doucet et al., 2001; Liu, 2001) and Markov Chain

Monte Carlo (Gilks et al., 1996), hereafter MCMC, represent extremely powerful tools for

fitting more flexible, and potentially more realistic, animal population dynamics models

to observed data. These statistical estimation procedures have been applied to a vari-

ety of animal population dynamics models which incorporate non-Gaussian process and

measurement errors and have non-linear form. Recent applications include models for red

deer (Cervus elaphus) (Trenkel et al., 2000), South Atlantic albacore (Thunnus alalunga)

(Millar and Meyer, 2000b), and grey seals (Halichoerus grypus) (Thomas et al., 2005).

In many of these recent applications the modelling approaches have shared certain

common features. Although the complete specification of the models differed between

the studies, there were several components of the models that were common to each of

the projects. This motivated the development of a unified framework that allows the

joint definition of both population dynamics models and the measurements taken on a

population (Buckland et al., 2004; Thomas et al., 2005; Newman et al., 2006).

In the following section a generalised approach to formulating a framework that allows

stochastic population dynamics models to be embedded into statistical inference is de-

scribed. Although the modelling approach can be applied to a wide variety of situations,

the following section will describe the structure of these models only in the context of

modelling animal population dynamics.
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3.3 State-space models for animal population dynam-

ics

3.3.1 Introduction

The general framework outlines a procedure for formulating models which possess useful

features that have frequently not been included in published models. One of the main

advantages of this approach is the flexibility it offers in specifying the underlying pop-

ulation dynamics model. The model structure allows for a number of processes to be

combined into a single model and each process can be either deterministic or it can incor-

porate stochastic variation. The flexibility derives from the manner in which the model is

specified. By identifying distinct sub-processes that are believed to drive the population

dynamics, the models can be constructed in a modular way. Each sub-process is modelled

separately but then linked together to define the complete population dynamics model.

Conceptually this can be thought of as connecting a series of different building blocks

together to construct the required overall structure.

A second feature of this generalised approach is the ability to allow for model un-

certainty to be part of the inferential framework. Using this approach it is reasonably

straightforward to examine the outputs from a series of plausible models and quantifying

the uncertainty associated with selecting a suitable model is now couched in a formal

statistical framework. From a practical viewpoint another advantage of the formulation

of these types of models is that the risk associated with potential population management

strategies can be quantified in a formal manner. The modelling framework incorporates

three of the main sources of uncertainty (stochastic variation of the process model, mea-

surement error and model uncertainty) and alternative management strategies can be

investigated with the outputs reflecting this uncertainty.
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The modelling approach can be considered as an extension of the matrix modelling

framework described by Caswell (2001). The departures from that framework can be clas-

sified as three main aspects. Firstly, an observation model that can be either deterministic

or stochastic is explicitly added to the model framework. The observed measurements are

directly linked to the underlying states of the population via this observation model and

therefore become fully integrated into the modelling framework. The manner in which the

model is defined is the second main departure. Each process that is believed to influence

the underlying dynamics of the population (e.g. birth, survival, movement, maturation,

etc.) is modelled separately and can be either stochastic or deterministic. Each model of

an individual process is often referred to as a sub-process model. Separating the processes

enables each individual sub-process to be defined easily before they are linked together

to form the overall population dynamics model of the required structure. This approach

to constructing the models is far simpler to implement than attempting to specify fully

complex dynamics models in a single stage. The third main departure is that each of the

sub-process models can be represented in the form of a matrix. The matrix will represent

the expected values of the sub-process and an associated random error term can be incor-

porated depending on whether the sub-process is stochastic or deterministic. However, it

should be noted that the matrix representation will sometimes only be an approximation

to the dynamics modelled by the subprocesses. When the expected values of properties

of the population (e.g. abundances) at the current time are a non-linear function of the

same properties at a previous time period, the matrix representation is only approximate.

This approach is taken further in Buckland et al. (2007) where non-linear operators are

considered for the subprocesses; these become matrices in the linear case.

An example of this non-linearity would be if a sub-process for survival was modelled
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as being dependent on the density of the population. Although this matrix representation

can be conceptually convenient as an approach to constructing complex models, it typi-

cally does not form part of the process of fitting the models to the observed data. The

sub-process models can be represented as either probability density functions (pdfs) or

probability mass functions (pmfs) for continuous or discrete sub-process models respec-

tively and it is these probability functions that are used in the fitting process.

The product of the matrices representing the individual subprocesses is a generalized

Leslie matrix (Caswell, 2001). In its simplest form, when all subprocesses are modelled

without a stochastic element, the product is a deterministic population projection matrix

(Buckland et al., 2004; Thomas et al., 2005) and the matrix based approach to model

definition is illustrated with an example of this kind:

Consider a population that can be classified into three age classes. We then define a

vector

nt =


n0,t

n1,t

n2,t


where ni,t is the number of animals of age i in year t for i = 0, 1 and n2,t is the number

of animals of age 2 or greater in year t.

Assume that there are three processes believed to govern the dynamics of this animal

population. Firstly, there is a maturation process whereby animals that begin the year in

one age class have matured to the next age class over the course of the year. The matrix
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representation for this process is:

M =


0 0 0

1 0 0

0 1 1


This models the ageing process of the population. The animals that are age 0 at the

beginning of the year become age 1 at the end of the year. Animals that are age one at

the beginning become age two or greater by the end of the year and animals already aged

two or greater remain in that age class.

The composition of this population immediately after the maturation process can be

represented in matrix notation. Post-multiplying the matrix representing the maturation

process by the vector of states at time t− 1 yields the following post-maturation vector:
0

n0,t−1

n1,t−1 + n2,t−1

 =


0 0 0

1 0 0

0 1 1



n0,t−1

n1,t−1

n2,t−1

 .
Thus, after maturation, all animals that were one year old at time t − 1 (n1,t−1) now

move to element denoting those animals aged two or greater joining those already there

(n2,t−1). Also, after maturation there will be no animals of age zero in the population

until the birth process has occurred hence the 0 in the first element of the post-maturation

vector above. All the newborn animals in time t−1 (n0,t−1) have now matured to become

one-year-olds and thus occupy the second element of the post-maturation vector.

Secondly, there is a birth process where the parameter π is the mean number of young

produced by each mature animal each year. Only animals one year old or more are capable
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of breeding. This birth process is represented in matrix form as follows:

B =


0 π π

0 1 0

0 0 1


The 1’s on the diagonal of the matrix indicate that the numbers of animals aged one year

old or more do not change. The first row of the matrix generates the number of new

young produced by the animals capable of breeding.

Thirdly, there is a survival process where φi is the annual probability of survival for

an animal belonging to age class i. This process is represented in matrix form as:

S =


φ0 0 0

0 φ1 0

0 0 φ2


This matrix generates the numbers of animals in each age class that survive to the next

year.

The dynamics model for this population can then be written as:
n0,t

n1,t

n2,t

 =


φ0 0 0

0 φ1 0

0 0 φ2




0 π π

0 1 0

0 0 1




0 0 0

1 0 0

0 1 1



n0,t−1

n1,t−1

n2,t−1

 = SBAnt−1

The population dynamics model can then be expressed as a product of the three matrices

representing the individual sub-processes:
n0,t

n1,t

n2,t

 =


φ0π φ0π φ0π

φ1 0 0

0 φ2 φ2



n0,t−1

n1,t−1

n2,t−1

 = Lnt−1
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The matrix L, which is the product of the matrices S,B and A, is an example of a gen-

eralised Leslie matrix (Buckland et al., 2004). It should be noted that this particular

expression differs from the standard Leslie matrix in that the standard representation the

processes of adult survival and reproduction are convolved into a single fecundity process.

Fecundity simply models the breeding adults that survive whereas the above formulation

separates the survival and reproduction processes. Explicitly modelling each subprocess

in this way increases the flexibility of the modelling approach.

This particular formulation of the model is deterministic as stochastic variation has

not been incorporated in any of the subprocesses. The extension of this approach to

encompass fully stochastic models is described in the next section.

3.3.2 State-space model structure

State-space models (Harvey, 1989) describe dynamic systems as consisting of two linked

processes which are regarded as a pair of time series running in parallel. One of these pro-

cesses is the state process which describes the true underlying state of the population at a

sequence of successive time steps. A realisation of the state process at time t, here defined

as nt, t = 0, 1, 2, . . . , T , is a vector of states, some of which may be unobservable. The

elements of these vectors correspond to the numbers of animals belonging to particular,

mutually exclusive, categories. For example, elements of the state vector may represent

the number of five year old males in region A or the number of immature females in region

B. The other time series is the observation process, a realisation of which at time t is here

defined as yt, t = 1, 2, . . . , T . The observation process provides a correspondence between

the unobserved true states and the recorded measurement on the population and is com-

pletely observable; each element of the observation vector corresponds to a measurement

or estimate of some category of the population. For both vectors, nt and yt, the index
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t represents an instant in time. The duration between t − 1 and t is the period of time

during which all distinct subprocesses occur once only. For example, consider modelling

the dynamics of a population by yearly intervals and let this evolution include a survival

process that includes two temporally defined survival rates within a year (e.g. summer

and winter survival rates). For this situation the survival process would need to split into

two distinct subprocesses; one corresponding to each temporal survival rate.

Although the notation for the index t implies equally spaced intervals it is perfectly

possible for the intervals to represent different lengths of time. For models of animal pop-

ulation dynamics that demonstrate regular behaviour and that are observed at a series

of regularly spaced time points (e.g. an annual trapping survey) the assumption that

the state and observation processes follow regular time series is justifiable. However, if

the intervals are not equally spaced care must be taken when interpreting estimates of

parameters. For example, in a capture-recapture analysis it may be assumed that the

probability of survival is constant across time (i.e. between consecutive sampling occa-

sions) and only a single constant parameter (say, φ) is used to model survival. If the

sampling intervals are not evenly spaced then the use of constant φ is not justified and a

more appropriate approach would be to interpret φ as a constant per-unit-time survival

rate and to model inter-period survival as a function of time such as φd = φd (Pollock

et al., 1990) where d is the time between consecutive sampling occasions and is measured

on the same scale as per-unit-time survival (e.g. days, weeks, months etc.).

Although the state and observation vectors are linked, they can be of different dimen-

sion. The components of yt do not always correspond to each individual component of

the state vector, nt. They usually represent the combined total of several elements of the

state vector. For example, consider a population of adult red deer being surveyed using
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the analysis of dung counts; the observations would not contain any information about

the age of the deer producing the dung. The state vector, however, may well categorise

the animals by age; in this case a component of the observation vector would represent

the aggregation of a subset of components of the state vector.

Full realisations of the state and observation processes over the entire time series are

denoted n0:T and y1:T respectively, where n0:T = n0,n1, . . . ,nT and y1:T = y1,y2, . . . ,yT .

To be able to model the evolution of the states over time the values taken by the states

at the very beginning of the period of time covered by the model need to specified. The

evolution of these initial states, n0, during the first time period is then determined by

the subprocesses. The values of states at the end of this first time period are denoted

by the state vector n1. The first observation vector, y1, will then contain components

that correspond to either some elements of the state vector, n1, or to combined totals of

multiple elements.

The state and observation processes will be represented as probability functions. These

functions will be referred to as pdfs without making a distinction between probability mass

functions representing discrete distributions and probability density functions representing

continuous distributions. In terms of mathematical representation, when the pdfs are

expressed they will be written as integrals on continuous parameter space rather than

summations on discrete parameter space. The complete formulation of a state-space

model consists of three probability density functions: one that generates the initial state

vector, one that models the evolution of the state vector from one time period to the next

and one that describes the correspondence between the observation vector and the state
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vector. They are written as:

Initial state distribution =g0(n0|Θ) (3.3.1a)

State Process distribution =gt(nt|nt−1,nt−2, . . . ,n0,Θ)

=gt(nt|nt−1,Θ) (3.3.1b)

Observation Process distribution =ft(yt|nt,Θ) (3.3.1c)

where t = 1, 2 . . . , T is the time index and Θ represents a vector of all the parameters in-

volved in the model from both the observation and state processes. For state-space models

of animal population dynamics these parameters may often include survival probabilities,

population carrying capacity, removal probabilities and parameters for observation noise

which reflects potential uncertainty in the recorded observations. The state process dis-

tribution (3.3.1b) is assumed to be first-order Markovian which means that the current

state vector, nt, is assumed to depend only on the value of the previous state vector, nt−1,

and the parameters Θ and not on the value of the states in any previous time periods.

A more general form of models, Hidden Process models (Newman et al., 2006), do not

require this first-order Markovian condition but otherwise have many parallels with the

state-space model structure.

3.3.3 State-space model inference

The nature of the statistical inference obtained from these types of models often in-

volves summarising the state vectors nt and the model parameters Θ, both of which are

conditional on the observed data yt. When making inferences about the states in the

population, there are three principal distributions that are often of interest.

Firstly, if the object of inference is to examine the distribution of the current states
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conditional on all observed data up to the current time period t (1 ≤ t ≤ T ) then the

distribution p(nt|y1:t,Θ) will be required. This distribution is referred to as the filtered

distribution and is used if the object of inference is to estimate the current state of the

population given all of the data up until the current time period. This approach to infer-

ence would be appropriate for population monitoring schemes that wish to obtain updated

estimates of the current population as soon as new observations are made.

Secondly, the distribution of some particular past state of the population conditional

on all the observed data up to the current time period t is useful when retrospective

investigation of a population is the object of inference. This distribution is denoted as

p(nr|y1:t,Θ) where r < t and is referred to as the smoothed distribution. Inference based

on smoothed estimates of the state involves the use of the full time series of observations

made across the entire duration of the study from time 1 to time t to estimate the state

vector at time r. Therefore smoothed estimates can be used to modify the estimates of

the population at some past time r (r < t) given the data that was observed both post

and prior to r.

Thirdly, the distribution of future states of the population given all the observed data,

up to time T , is useful when the object of inference is to obtain an estimate of some future

state of the population based only on the data observed up to the current period. This

distribution is denoted as p(nr|y1:T ,Θ) where r > T and is referred to as the predicted

distribution. These distributions may be used for population management strategy de-

cisions such as examining the future effect on the population of current levels of harvesting.

The evaluation of these distributions can be viewed as the result of integrating or
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summing over the appropriate portion of the states. For example, if the object of in-

ference was to attain the maximum likelihood estimates of the parameters Θ then the

likelihood needs to be evaluated. To do this, the joint distribution of the states, n1:T , and

observations, y1:T , is obtained:

p(n1:T ,y1:T |Θ) = g0(n0,Θ)
T∏
t=1

ft(yt|nt,Θ)gt(nt|nt−1,Θ) for t = 0, 1, . . . , T (3.3.2)

The marginal distribution of the observations y1:T , conditional on the parameters Θ, is

then obtained by either summation or integration over the states, n1:T , depending on

whether the distribution is discrete or continuous. This distribution is the likelihood and

is given as:

p(y1:T |Θ) =

∫
n0

· · ·
∫
nT

{
T∏
t=1

ft(yt|nt,Θ)gt(nt|nt−1,Θ)dnt

}
g0(n0,Θ)dn0 for t = 0, 1, . . . , T

(3.3.3)

As a second example, the smoothed distribution p(n1:T |y1:T ,Θ) can be obtained using

a similar approach based on integration and an application of Bayes Theorem. The

smoothed distribution can be expressed in the following way using Bayes Theorem:

p(n1:T |y1:T ,Θ) =
p(n1:T ,y1:T |Θ)

p(y1:T |Θ)
(3.3.4)

which, using (3.3.2), can be expressed as:

p(n1:T |y1:T ,Θ) =
g0(n0,Θ)

∏T
t=1 ft(yt|nt,Θ)gt(nt|nt−1,Θ)

p(y1:T |Θ)
(3.3.5)

Consider a random variable X which has a continuous distribution for which the pdf is

f , the expectation E[X] is denoted as:

E[X] =

∫
s

xf(x)dx (3.3.6)
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where S is the set of possible values X can take.

To make inferences based on the smoothed distribution it is useful to calculate the

expectation of the states at some time t, (1 < t < T ), conditional on all the observations

y1:T and the parameters Θ. Using (3.3.6) the expectation can be expressed as follows:

E[nt|y1:T ,Θ] =

∫
n0

· · ·
∫
nT

ntp(nt|y1:T ,Θ)dn0 . . .nT (3.3.7)

Then, using (3.3.5), the expectation can be written as:

E[nt|y1:T ,Θ] =

∫
n0
· · ·
∫

nt
nt

{∏T
t=1 ft(yt|nt,Θ)gt(nt|nt−1,Θ)dnt

}
g0(n0,Θ)dn0

p(y1:T |Θ)
(3.3.8)

This expression allows inferences to be made about some state nt conditional on the re-

alisation of the entire observation process.

Another application of Bayes’ Theorem is used to obtain the posterior distribution of

the model parameters Θ conditional on all the observed data y1:T . This distribution is

central to Bayesian inference and is calculated by:

p(Θ|y1:T ) =
p(y1:T |Θ)p(Θ)∫
Θ
p(y1:T |Θ)p(Θ)

=
p(y1:T |Θ)p(Θ)

f(y1:T )
(3.3.9)

where the numerator is the product of the prior p(Θ) and the likelihood p(y1:T |Θ) (see

Eq. 3.3.3). The denominator f(y1:T ) is then obtained by integrating the numerator over

the range of the parameters Θ. This evaluates to a constant and therefore the posterior

distribution is proportional to the product of the prior for the model parameters Θ and

the likelihood of the parameters given the data. The evaluation of this constant can be

intractable and methods to evaluate the posterior distribution that can overcome this

problem are discussed in Section 3.3.6.
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3.3.4 The State Process

The pdf gt(·) represents the state process model which models the processes driving the

evolution of the system under study. Under the state-space model structure this pdf is

typically stochastic and represents the variation engendered by the processes. The state-

process can be considered to consist of a number of separate sub-processes each modelled

with their own pdf (Buckland et al., 2004; Thomas et al., 2005; Buckland et al., 2007). One

advantage of this approach is that each individual sub-process can be modelled separately

from the others which allows a greater degree of flexibility in the approach to constructing

the models. This approach provides a useful framework for testing hypotheses about the

particular structure of the model. For example, a population dynamics model for red deer

is assumed to be governed by three processes: birth, movement and survival. There may

be broad agreement amongst biologists with regard to the birth and movement processes,

but there could be some debate with regard to whether the same survival model is ap-

propriate for both males and females. Modularising the state process thus allows these

alternative theories to be more easily accommodated and allows hypotheses to be tested.

The sub-processes are assumed to be discrete and to occur sequentially rather than

simultaneously. Under these assumptions the pdf gt can be expressed as a series of linked

probability functions, each of which represents a separate sub-process, with gr,t denoting

the probability function for the rth sub-process. The link between consecutive probability

functions is defined such that the input to one sub-process is taken to be the output from

the previous sub-process with ur,t denoting the resulting state of the population following

the rth sub-process occurring between time periods t− 1 and t. Then, if there are k such

sub-processes that operate between these time periods the evolution of the state vector
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over this time can be denoted as:

u1,t ∼ H1,t(n0:t−1,Θ),u2,t ∼ H2,t(n0:t−1,u1,t,Θ), . . . ,nt ≡ Hk,t(n0:t−1,u1,t, . . . ,uk,t,Θ)

where each distribution denoted by Hr,t corresponds to the appropriate sub-process pdf.

The dependency on n0:t−1 in all but the first of the distributions given above does not

arise if the state process pdf is assumed to be first-order Markov. In this case, if a time

period is redefined as the duration between sub-processes, the structure is conceptually

that of a state-space model that does not have observations at each time period. This

resulting model could then be fitted using standard state-space model methods.

Although this modular approach to model construction does allow greater flexibility it

also results in an increased level of complexity for the state process distribution function

and the model likelihood. This is because the evaluation of the state process pdf involves

integrating over the states immediately following each of the separate sub-processes. This

integration is constrained by the values of the current states, nt, and the state from the

previous time period, nt−1. By adopting this modular approach to constructing the state

process model the state pdf can be written as:

gt(nt|n0:t−1, θ) =

∫
uk−1,t

k∏
r=1

gr,t(ur,t|n0:t−1,u1,r−1:t,Θ)du1,k−1:t

where u1:r,t = u1,t,u2,t, . . . ,ur,t denotes the first r sub-processes of the sequence that

generates the current state vector, nt, from the previous state vector, nt−1.

If each sub-process is assumed to be first-order Markov the state process pdf can be
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written as:

gt(nt|nt−1,Θ) =

∫
uk−1,t

· · ·
∫

u1,t

g1,t(u1,t|nt−1,Θ)×

[
k−1∏
r=2

gr,t(ur,t|ur−1,t,Θ)

]
×gk,t(nt|uk−1,t,Θ)du1,t, . . . , duk−1,t (3.3.10)

The pdf for the rth individual sub-process generates a realisation, ur,t, that is now

conditional on the model parameters and the realisation, ur−1,t, of the immediately pre-

ceding sub-process only. Evaluating the state process pdf is necessary to calculate the

likelihood (3.3.3). The complexity of performing the required calculations for any state

process defined by multiple sub-processes can often prove to be prohibitive. Alternative

approaches, such as sequential Monte Carlo procedures, that do not require the explicit

evaluation of the likelihood are therefore extremely attractive.

To fully define the structure of the state process model there are a couple of conven-

tions required. Firstly, it is assumed that a single survey of the animal population of

interest occurs in the time interval (t−1, t] and this observation occurs just as the system

advances from time period t − 1 to time period t. It is possible to extend the modelling

approach to include a variable number of survey occasions (Buckland et al., 2004) but for

ease of representation the examples in this section will be assumed to have one survey

corresponding to each time period. Also, the time periods between surveys can be irreg-

ularly spaced since the time intervals in which all intermediate sub-processes are realised

do not have to be constant. The time period from the end of the (i− 1)th interval to the

beginning of the ith interval does not have to be the same for each value of i. Furthermore,

the duration of the ith interval can itself vary across the different intervals. Secondly, the

starting point of the model is assumed to be the initial state vector n0 as opposed to any

of the intermediate states u·,1 between n0 and n1. The values of the initial states n0 are
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required to implement the evaluation of the model likelihood but they are unknown. The

first recorded observations, y1, only correspond to the states at t = 1 and therefore no

elements of n0 can be known. Instead they are drawn from the initial state distribution

Eq. (3.3.1a).

Referring back to the Leslie matrix representation discussed in section 3.3.1 it can be

seen that the modular approach to modelling the intermediate sub-processes can, under

certain conditions, result in a very clear representation of the appropriate sequence of

the sub-processes as well as their cumulative effect. If the sub-processes are first-order

Markov and if the realisation of a sub-process can be expressed as a linear function of the

preceding sub-processes then the conditional expectation of the states at time t, given the

states at time t− 1, can be expressed as the product of matrices. Assume that there are

three sub-processes in the model and that they form a sequence of three discrete processes

with the input to one process being taken as the output from the preceding process. The

evolution of the system from the states at time t− 1 to the states at time t is illustrated

schematically below:

nt−1
g1,t−−→ u1,t

g2,t−−→ u2,t
g3,t−−→ u3,t = nt

The conditional expectation of the states at time t, conditional on the states at time t−1

is denoted by Ent|nt−1 . Using similar notation to denote the conditional dependencies of

the expectations the expression can be written as:

Ent|nt−1 = Eu1,t|nt−1

{
Eu2,t|u1,t

[
Ent|u2,t [nt]

]}
If all the sub-processes are first-order Markov and if the expectation of the ith sub-process

ui,t conditional on ui−1,t is a linear function of ui−1,t for any i > 0, then the conditional
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expectation of the states at t can be written as follows:

Ent|nt−1 = DkDk−1Dk−2 . . . D1nt−1

where each matrix D represents a single sub-process and the expectation is given directly

as the product of the matrices representing these individual sub-processes.

3.3.5 The Observation Process

The schematic diagram in Fig. 3.1 describes the manner in which the state and observation

processes are linked via the modular sub-process approach. The states at the previous time

period, nt−1, evolve to the current states, nt, by means of the intermediate sub-processes,

the u·,ts. The observation process model pdfs, ft−1 and ft, connect the observations yt−1

and yt to the corresponding states nt−1 and nt respectively.

Time t− 1 Time t
Unknown states nt−1 nt . . .

‖ State Process︷ ︸︸ ︷
g1,t−−→ u1,t

g2,t−−→ u2,t
g3,t−−→ . . .

‖
Intermediate states uk,t−1 uk,t . . .

ft−1 ↓ Observation process ft ↓
Observation
process

Observations yt−1 yt . . .

Figure 3.1: Schematic diagram of state and observation processes with linked sub-
processes mapping the evolution of the state.

Observational data are collected on the population of interest and are used to make

inferences about the states of the population and the parameters of the sub-processes

which are assumed to drive the underlying population dynamics. The observational data



114

are not necessarily assumed to come from a single source, for example, studies of red deer

Cervus elaphus have incorporated both census and cull information (Trenkel et al., 2000)

and some avian studies (northern lapwing (Vanellus vanellus) and grey heron (Ardea

cinerea)) have incorporated census data, survival rate data and information on weather

conditions (Besbeas et al., 2002). The observational data is also not assumed to be

collected at regular intervals and, as discussed previously, the approach to formulating

these state-space models allows for varying durations of the intervals. In a similar fashion

to the state process model, the observation process model can be either stochastic or

deterministic. The function of the observation process is to model the relationship between

the collected observational data and the unknown underlying states in the population. The

observational data is stored in the observation vector and this will occasionally consist

of components that are exactly equal to components of the state vector. Equally, the

components in the observation vector could represent the summation of multiple elements

of the state vector with no associated stochastic error. An example of the latter situation

would be if the observational data consisted of a complete census in which no distinction

was made across different components of the population. In this case the observational

data would be the total population and the observation process would just sum all of

the components of the state vector. In the cases when the observation process model is

deterministic the form of the likelihood (Eq. (3.3.3)) becomes simplified. The component

of the likelihood corresponding to the observation process, ft, will simply equal 1 for

the states, nt, which correspond exactly to the relevant components of the observation

vector yt. Otherwise, f(yt|nt,Θ) will equal 0. In these cases the process of evaluating the

integral to obtain the likelihood consists of integrating just the state process pdf over the

appropriate subspace of all state vectors over the time intervals, n0:T . This appropriate

subspace is defined as those states that map correctly to the corresponding observation

vector. Then, (using the notation of Buckland et al. (2004)), the mapping from the
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state vector nt to the observation vector yt is represented as m(nt) and the appropriate

subspace can then be expressed as

νt = {nt : m(nt) = yt} . (3.3.11)

Then, the posterior distribution (see Eq. 3.3.9) can be expressed as

p(Θ|y1:T ) =

∫
n0

∫
ν1

· · ·
∫
νT

{
T∏
t=1

gt(nt|nt−1,Θ)dnt

}
× g0(n0,Θ)dn0 (3.3.12)

This would be the form of the posterior obtained for a single-state population on which

measures were observed without error.

3.3.6 Fitting the models.

In section 3.3.3 the expression for the posterior distribution of parameters (Eq. (3.3.9))

was defined and required the calculation of the denominator term f(y1:T ). The evalua-

tion of this term is typically a high-dimensional integration problem due to the number

of parameters in the models. Even for cases in which the integration need only be per-

formed over a subspace of the states (see Section 3.3.5) the resulting integrals are still

high dimensional. Analytic solutions can be obtained in some special cases as mentioned

in Section 3.2. For the normal dynamic linear models (Harvey, 1989; Schnute, 1994) the

required integration can be performed analytically using the Kalman filter. For example,

these models have been applied to fisheries data (Newman, 1998) and avian population

time series data (Besbeas et al., 2002, 2003, 2005).

In wildlife populations it is often unrealistic to assume the dynamics of the model

of interest can be adequately approximated using linear expressions or that the associ-

ated error distribution can be assumed to be normal. Without making the restrictive

assumptions required by the Kalman filter, the direct evaluation of the integrals is still
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problematic. A solution to this problem is the use of Monte Carlo integration techniques.

These methods are used to approximate the posterior distribution using simulation meth-

ods which avoid the need for explicit evaluation of f(y1:T ).

Computer intensive Monte Carlo methods are useful for fitting complex likelihood

models such as those outlined in the previous sections and typically couch model fitting

and inference in a Bayesian framework. The Monte Carlo methods can be split into two

general, albeit overlapping, classes of inferential procedures: MCMC (Gilks et al., 1996)

and sequential importance sampling (hereafter SIS)(Doucet et al., 2001) with both ap-

proaches described in Liu (2001).

Using the approach in Newman et al. (2006), a general description is given on the way

in which both approaches can be applied to fit models that can be classified within the

state-space framework and this is summarised in the following paragraphs.

The expected value of a random variable X is calculated using (3.3.6). More generally,

if the pdf for X is p, the expectation of some function of X, E[ϑ(X)] is defined as:

E[ϑ(X)] =

∫
ϑ(X)p(x)dx (3.3.13)

These integrals can be evaluated using Monte Carlo simulation techniques and samples

can be generated for the target pdf p(x). For Bayesian inference p(x) typically represents

the posterior distribution (Eq. 3.3.9). If it is possible to simulate directly from the target

pdf p(x), simple Monte Carlo integration can be used. The procedure is conceptually

simple; a large number (say, N) of samples x∗1, x
∗
2, . . . , x

∗
N are drawn from the target pdf

p(x) and the expectation in Eq. 3.3.13 is obtained by evaluating ϑ(x∗) for each xϑ in the
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sample and then averaging over all samples. Thus,

Ê[ϑ(X)] =
1

N

N∑
i=1

ϑ(x∗i ). (3.3.14)

However, it is not always possible to directly sample from the the target pdf p(x). In

this case one alternative method is to sample from some alternative, feasible pdf q(x).

This alternative distribution is typically referred to as the trial pdf. Since q(x) is unlikely

to be equivalent to p(x) the evaluation of the integral in Eq. (3.3.14) is no longer valid.

Instead, the sample values drawn from the trial pdf x∗1, x
∗
2, . . . , x

∗
N must be adjusted to

take account of the fact that they came from q(x) not p(x). The adjustment is determined

by the ratio between the target and trial pdfs evaluated for each drawn value. Formally,

the weight w1(x∗) for a particular x∗ is given by p(x∗)
q(x∗)

. The estimates of the integral can

now be expressed as:

Ê[ϑ(X)] =
1

N

N∑
i=1

ϑ(x∗i )
p(x∗i )

q(x∗i )
=

1

N

N∑
i=1

ϑ(x∗i )w1(x∗i ). (3.3.15)

This technique is usually referred to as importance sampling in the literature where the

weight or “importance” of a drawn value is determined by how closely the trial pdf mirrors

the target pdf when evaluated at the drawn value.

A problem with importance sampling as described above can arise in certain instances.

If p(x) cannot be sampled from directly it can also be difficult to evaluate p(x) which is

necessary for the evaluation of the weight w1(x). The difficulty will arise when the target

pdf p(x) can be expressed as the product of components of which some are intractable.

For example, if p(x) = h(x)c it may be that h(x) is tractable but the constant c is

not. This is precisely the case that can arise in Bayesian inference where p(x) represents

the posterior distribution (Eq. 3.3.9) and the intractable constant c is the denominator
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f(y1:T ). The necessary adjustment to the calculation of the weights then requires the

intractable constant c to be cancelled out. Thus, if the weights are defined as

w2(x∗[i]) =
ch(x∗[i])

q(x∗[i])∑N
j=1 c

h(x∗[j])

q(x∗[j])

=

h(x∗[i])

q(x∗[i])∑N
j=1

h(x∗[j])

q(x∗[j])

the evaluation of the integral can be obtained using

N∑
i=1

ϑ(x∗[i])w2(x∗[i])

Having obtained a sample x∗[1], x∗[2], . . . , x∗[N ] from a trial pdf q(x) and calculated

the weights w2(x∗[1]), w2(x∗[2]), . . . , w2(x∗[N ]) it is possible to convert the sample into a

sample from the target pdf p(x). This can be performed using a procedure referred to

as bootstrap resampling or sampling importance resampling (SIR) (Smith and Gelfand,

1992). The procedure is, again, conceptually simple and involves the x∗s being resampled

with replacement according to the weights w2(x∗)s. The draws from the sample whose

evaluation under the trial pdf most closely mirrors the evaluation under the tractable

component of the target pdf are given the highest weights. These high weighted particles

will tend to be the ones chosen multiple times in the bootstrap resample and therefore

the draws deemed to be most closely representative of the target pdf are the ones that

dominate the resampled set.

With specific focus on the state-space model formulation, inference on unknown el-

ements in the model can be obtained using a combination of importance sampling and

bootstrap resampling. The approach is referred to as sequential importance sampling with

resampling (SISR) and can be applied for the situation in which both the parameters, Θ,

and the states, nt, are unknown. For the simple case, assume that the parameters Θ are

known and only the states, nt, need to be estimated. Hence, the target distribution is the
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posterior of the states nt conditional on all the data observed up to time t, y1:t. In the

simplest application of the SISR algorithm the trial pdf for the unknown states at time t,

nt, is simply the state process pdf (Eq. (3.3.1b)) at time t. That is, q(nt) = gt(nt|nt−1,Θ).

The weights will then be

w2(nt) ∝
gt(nt|nt−1,Θ)× ft(yt|nt,Θ)

gt(nt|nt−1,Θ)
= ft(yt|nt,Θ) (3.3.16)

Thus, the weights are proportional to the observation pdf ft(yt|nt,Θ) at time t and the

resampled states, nt, will be ascribed higher weights the better the fit they provide to the

observations. This approach yields filtered estimates of the states, nt, given y1:t for each

value of t.

The extension of the approach to the situation in which both the states, nt, and the

parameters, Θ, are unknown is conceptually similar to that described for obtaining filtered

estimates of the states alone. The basic sequential importance sampling (SIS) algorithm

when applied to state-space models requires the joint prior distribution on the parameters

and initial states, g0(n0,Θ) = g(Θ)×g0(n0|Θ), to be defined. A large number, R, of “par-

ticles” are then simulated from this prior distribution. The rth (r = 1, 2, . . . , R) particle is

defined as a pair of state and parameter vectors (n
[r]
0 ,Θ

[r]) where n
[r]
0 is the rth realisation

of the initial population n0 and Θ[r] is the rth realisation of the parameters of the model.

The algorithm proceeds with each particle being projected forward stochastically accord-

ing to the state process model for time 1 so that n
[r]
1 is simulated from g1(n1|n[r]

0 ,Θ
[r]).

The target pdf to be estimated is the filtered state distribution g1(n1|y1,Θ), and the trial

distribution is the state process g1(n1|n[r]
0 ,Θ

[r]) for each particle. Then, from Eq. (3.3.16)

h(n
[r]
1 )

q(n
[r]
1 )
∝ f1(y1|n[r]

1 ,Θ
[r])g1(n1|n[r]

0 ,Θ
[r])

g1(n1|n[r]
0 ,Θ

[r])
= f1(y1|n[r]

1 ,Θ
[r]).
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Normalising these weights yields

w
[r]
3 =

f1(y1|n[r]
1 ,Θ

[r])∑R
i=1 f1(y1|n[i]

1 ,Θ
[i])
. (3.3.17)

Thus, from Eq. 3.3.17, the particles are resampled with their weights proportional to the

likelihood evaluated for any observations at t = 1 and the surviving particles (n
[r]
0 ,n

[r]
1 ,Θ

[r])

form an approximate sample from the posterior filtered distribution of g1(n1|y1,Θ). The

process is then repeated with surviving resampled particles projected forward to the next

time period using the state process distribution. The resulting predicted state distribu-

tions are then adjusted using the weighted resample where weights are calculated using

the observation process distribution. At each time point the resampled particles provide

an estimate of the distribution of the filtered states and parameters. Repeating this for-

ward projection followed by weighted resampling until the resampling at the last time

period T has been carried out produces an estimate of the posterior parameter density

given all the data (see Eq. (3.3.9)).

Although the SIS approach is applicable to obtaining inference on unknown parameters

as well as states, there are some well-known problems with the basic approach (Doucet

et al., 2000, 2001). The principal problem that can arise is “particle depletion”. The

resampling step in the SIS algorithm involves N particles being drawn with the proba-

bility of selection given by the weight associated with the particle. Those particles with

the highest weights will occur most frequently in the sample and particles with only very

small weights will rarely occur. Hence, a small number of high weighted particles can

come to dominate the weighted bootstrap resample resulting in an approximate posterior

distribution that may be a very poor representation of the true posterior state and param-

eter densities. This problem propagates through time with the dominant particles being
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resampled at each time step and constituting a greater proportion of the resampled par-

ticles as the number of time steps increases. Thus, over a long time series with a modest

number of initial particles the posterior may be dominated by only a handful of unique

particles leading to poor approximations to the posterior. Within each sampling step the

problem becomes worse if the distribution of particle weights is very skewed with most of

the weight accorded to a small number of particles. Running the simulation again could

result in a very different group of particles becoming dominant and thus result in high

variation of the posterior distribution across simulations. This variation is often referred

to as Monte Carlo variation and there are various techniques that have been developed

to reduce it.

Various techniques to mitigate particle depletion are discussed in Liu (2001) and

Doucet et al. (2001). One of the most commonly adopted approaches is kernel smoothing

(Trenkel et al., 2000; Liu and West, 2001; Newman et al., 2006). This aims to reduce

the impact of particle depletion by introducing some new parameter values in proximate

parameter space of ‘good’ particles, that is those that are supported by the observed data

and thus have high likelihood weight. The parameters of each particle are perturbed

whereby values for the parameters are drawn from a specified density kernel (typically

Multivariate Normal and centered on the mean of the original parameter values) and

are added to the original parameters. A smoothing parameter λ (or d in Liu and West

(2001)) is used to control the degree of perturbation and effectively makes the perturbed

parameter set a weighted average of the original parameters and the values simulated

from the density kernel. Typically, if the smoothing parameter is 0 there is no smoothing

and the perturbed parameters are just the original parameters and the algorithm is just

the non-parametric weighted bootstrap (Smith and Gelfand, 1992). If λ = 1 there is
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maximal smoothing and the perturbed parameters are determined by the choice of den-

sity kernel with the original parameters only influencing the perturbed parameters in the

specification of the mean and variance-covariance structure of the density kernel. The

algorithm is then a parametric weighted bootstrap. Simply perturbing the parameters

induces increased variance in the distributions of the parameters. The approach of Liu

and West (2001) incorporates shrinkage into a kernel smoothing approach to maintain the

mean and variance of the parameters, at least on some scale. It should also be noted that

kernel smoothing introduces bias into inference due to the perturbation of parameters;

the link between the simulated states and associated parameter values in a given particle

is broken. This results in approximate Bayesian inference for the posterior parameter dis-

tributions. Finally, kernel smoothing is only really necessary when the focus is on static

unknown parameters. It is not typically required for the elements of the state vectors as

they regenerate themselves via the state process.

The auxiliary particle filter (Pitt and Shephard, 1999) is another refinement to the

basic SIS algorithm and an application of this technique with reference to a grey seal

(Halichoerus grypus) population is presented in (Thomas et al., 2005). At time step t

an “auxiliary” resample of the particles is taken with the sampling weights determined

by the expected likelihood of the states at time step t + 1, conditional on the observed

data at t + 1. The set of resampled particles is projected forward from t to t + 1 and is

then updated (or corrected) using likelihood weights. This is very similar to the weighted

bootstrap resample but in this case the likelihood weights are calculated differently and

must incorporate the contribution from the auxiliary resampling step. Again, this re-

finement hopes to reduce Monte Carlo variation by increasing the number of resampled

particles that are expected to be projected into the region of state and parameter space

best supported by the data. Increasing the number of parameters in the “good” regions
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of state and parameter space reduces the variance of the likelihood weights attributed to

the resampled particles and therefore reduces the effect of particle depletion.

Residual sampling (Liu and Chen, 1998; Liu, 2001) can also be used to mitigate the ef-

fects of particle depletion. By using residual sampling instead of simple random sampling

at the weighted resampling stage of the fitting algorithm the obtained set of resampled

particles will have the same expected distribution as under simple random sampling but

will have smaller Monte Carlo variance. The SIS approaches invoke a resampling step to

generate a sample from the distribution of the current state of the population given all

of the data up until the current time period. (Carpenter et al., 1999) also propose an

improvement to the basic SIR particle filter via a stratified resampling approach. This

filtering approach exhibits greater accuracy and precision when compared to the SIR fil-

ter. As a result of the resampling step, SIS provides filtered estimates and a smoothing

process needs to be implemented to obtain the same output as would be obtained un-

der an MCMC fitting approach. Filtered estimates are useful when dealing with online

dynamical systems with states that require updating as soon as new observations are

recorded. However, for offline problems such as wildlife population dynamics, interest is

typically greatest in inference based on smoothed estimates of states and parameters that

takes into account the observed data over the entire study.

Markov chain Monte Carlo methods are an alternative approach that can be used

to approximate the posterior distribution (Eq. (3.3.9)). A Markov chain is simulated

such that the stationary distribution, the values the iterative scheme converges toward,

is the desired posterior distribution of the states n1:T and parameters Θ. The strength of

these approaches are based on the construction of the chain and the manner in which it
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can be decomposed into conditional blocks of states and parameters. As described ear-

lier, sequential importance sampling approximates the posterior by iteratively calculating

weights at each time period conditional on previous weights. This reduces the problem

of estimating high dimensional posterior distributions by breaking up the approximation

process into a series of more tractable evaluation steps. Analogously, Markov chain Monte

Carlo methods also reduce the estimation problem to a series of evaluation steps. For the

MCMC approach blocks of states and parameters are simulated conditional on the values

of the other blocks of states and variables in the chain. The choice of how to classify

parameters and states in different blocks then becomes a crucial component of imple-

menting MCMC algorithms. Many issues surrounding the choice of blocking schemes and

the specification of suitable proposal distributions are covered in Gilks and Roberts (1996).

Both SIS and MCMC based fitting approaches are considered in Buckland et al. (2007).

A detailed comparison of the relative strengths of SIS and MCMC approaches to inference

on state-space models for the dynamics of wild animals populations is given in Newman

et al. (2009). The performance of both approaches is compared for both real and simulated

data sets. A set of criteria are defined to assess the relative performance of the methods:

the ease of implementing the fitting routine, the computational efficiency of running the

algorithm and the accuracy of estimates produced. A bespoke MCMC approach to fitting

a state-space model for which the data are informative relative to the priors is observed to

be the “best” general choice. However, they also note that the choice of approach should

be determined by the formulation of the state-space model being fitted and the observed

data to which the model is fitted.



Chapter 4

The Conditional Approach to
Embedding Population Dynamics
into Mark-Recapture Models

4.1 Overview of existing approaches

The previous chapters have reviewed some of the major developments in the analysis of

capture-recapture data and have provided a detailed introduction to the theory underpin-

ning state-space models: an extremely flexible framework that can be used to fit complex

ecological models to data. This chapter will focus on an alternative approach to modelling

mark-recapture data in open populations compared to those previously described.

As discussed in Chapter 2 the approaches to analysing capture-recapture data have

typically focussed on the estimation of survival. The existing approaches based on

the Cormack-Jolly-Seber (Cormack, 1964; Jolly, 1965; Seber, 1965) formulation model

capture-recapture data by conditioning on the first capture of an animal and modelling

the probability of the animal being recaptured. From this type of analysis it is possible

to obtain estimates of survival rates and capture rates but not abundance. The more

general Jolly-Seber models (Jolly, 1965; Seber, 1965) include a likelihood component that

125
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models the unmarked (or uncaptured animals) in the population and this allows estimates

of abundance, as well as survival and capture, to be obtained.

The typical process used to obtain estimates of survival and abundance is to obtain the

values of the model parameters that maximise the model likelihood; that is, the values that

can be considered the most likely given the data in the likelihood. These estimates can

have closed-form expressions for certain model parameterisations (i.e. fully time-specific

parameters in the JS model) see Eqs. (2.3.9) and Pollock et al. (1990). From these closed

forms it can be seen that a natural estimate for survival (Eq. (2.3.9)) is the ratio between

the number of marked animals estimated to be alive in the population just before the

end of the current period and the number of marked animals in the population at the

start of the current period. Similarly, estimates of abundance (Eq. (2.3.2)) are obtained

using the number of marked animals in the population at the start of the current period

scaled by the proportion of animals caught in the current sample that were marked. The

former quantity is unknown in open population studies and needs to be estimated using

the number of animals that survive to be recaptured in future samples. Recruits to the

population, often referred to as births, are then estimated deterministically conditional

on the estimates of abundance and survival. Thus, the number of births is typically esti-

mated as the difference between the population size at the current sample and the number

of survivors from the previous sample.

With these conventional approaches there are some obvious limitations. From Eq. (2.3.6)

it can be seen that, assuming there are no losses on capture (that is ni − Ri = 0), it is

quite possible for the estimate of births in the current time period to be negative. More

generally, these conventional approaches do not prohibit biologically infeasible estimates

from being obtained. If it is assumed that breeding females in a population can give
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birth to singletons only, then a biologically realistic model should constrain the estimated

number of births to not exceed the number of breeding females in the population. These

problems arise from the deterministic calculation of the estimated births; the manner in

which births are calculated is a by-product of the form assumed for the model likelihood.

The actual birth process itself is not explicitly incorporated into the model.

It is possible to impose constraints when fitting models using existing techniques to

respect certain assumed biological relationships. For example, adding a constraint to en-

force the number of animals at time t + 1 to be no greater than the number of animals

at time t plus the number of breeders at time t would allow the biological assumption

that you can have no more than one birth per adult on average to be respected. This

constrained maximisation approach may well lead to convergence problems due to the

complexity of the engendered likelihood surface. Equally, the constrained maximum like-

lihood no longer respects the asymptotic properties such as normality and unbiasedness.

Similarly, it can be possible to obtain estimates of survival that exceed unity under the

Jolly-Seber model. This chapter describes a new approach which ensures the estimated

parameters in the model and the estimated changes in the population over time are con-

sistent with what is assumed to be known about the biology of the population. By

formulating capture-recapture models in a state-space modelling framework it is possible

to embed a population dynamics model into the inferential procedure and thus restrict

the model estimates to the biologically feasible regions of state-space.

In Chapter 2 the general form of the Jolly-Seber model with time-specific survival φt

and capture pt was introduced and an expanded version of the likelihood formulation was

given in Eq. (2.3.10). This split the likelihood into three components that modelled the
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capture of unmarked animals, the losses on capture of marked animals and the condi-

tional probability of recapturing marked animals. The basic form and its extensions were

shown to form the basis for much of the work that has been done on open population

capture-recapture studies. The extension shown in Eq. (2.3.10) allowed loss (or death) of

animals on capture to be incorporated into the model. Known deaths on capture can arise

when animals are marked with identifying tags that are returned when found on a dead

animal. Thus, the JS likelihood can be extended to incorporate tag-return information to

model known deaths (Buckland, 1980). The likelihood can also be simplified somewhat

for reduced parameter models in which either survival φt and/or capture pt are constant

over time (Jolly, 1982) (see Section 2.3.1.4). To address potential heterogeneity problems

extensions to the likelihood by classifying the population into approximately homoge-

neous groups have been developed. Age-structured cohort models have been developed

(Pollock, 1981; Buckland, 1982; Brownie et al., 1985; Pollock et al., 1990; Lebreton et al.,

1992) (see Section 2.2.1.1). More general multistate models in which animals can move

between states stochastically have been developed (Schwarz et al., 1993; Brownie et al.,

1993; Nichols et al., 1994; Nichols and Kendall, 1995) (see Section 2.2.3). Alternatively,

unexplained variation in the data can be incorporated into the model using auxiliary in-

formation to make φt and/or pt functions of covariates (Lebreton et al., 1992; Pollock,

2002). If the covariates are measured on the individual level then time-varying individ-

ual covariates can also be incorporated into the Cormack-Jolly-Seber model framework

(Bonner and Schwarz, 2006) (see Section 2.2.5) with Dupuis and Schwarz (2007) devel-

oping a multistate Jolly-Seber capture-recapture model that uses data augmentation to

accommodate missing covariates in the model.

All of these refinements and extensions of the basic Jolly-Seber likelihood have pro-

vided the modeller with a flexible suite of techniques that can allow more biologically
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realistic models to be fit to data. However, there are still limitations owing to the lack

of any embedded population dynamics model in these extensions. The extensions to the

Jolly-Seber likelihood developed by Crosbie and Manly (1985) and refined by Schwarz

and Arnason (1996) explicitly incorporate the birth process. They consider a superpop-

ulation of all animals that are available to be sampled at some point during the study

and model the proportion of this superpopulation that enter the sampling population at

each time (see Section 2.4). The sampling population is simply defined as the animals

that are present in the population and available to be captured during a particular time

step. Therefore the new entrants from the superpopulation at each time step can be re-

garded as births or immigrants. This approach was further extended by Link and Barker

(2005) who reparameterised the models under the Schwarz and Arnason (1996) approach

by replacing the parameter controlling the proportion of superpopulation entries at each

time step with a fecundity parameter that indexed the per-capita recruitment rates. This

reparameterisation is felt to yield a more biologically realistic interpretation with regard

to per-capita recruitment rates.

General approaches to providing a unified capture-recapture model (Barker and White,

2004; Schofield and Barker, 2008) emphasise the generality of the extensions to the Jolly-

Seber modelling framework and propose the construction of component-based models in

which the likelihood is formulated dependent on the inferential aims of the study and the

limitations in the data. Both approaches allow for a birth process to be included in the

likelihood and the unified approach of Schofield and Barker (2008) explicitly constructs

matrices of times of birth and death for the animals in the population thus allowing certain

demographic processes of interest to be modelled as functions of the summary statistics on

births and deaths. For more details of these extensions that incorporate birth processes

see Sections 2.5.4-2.5.6.2.
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However, under these modelling approaches it is not always possible to incorporate

certain forms of constraints on the model parameters. This can be especially problematic

if the biological parameter of interest has been transformed for computational expediency.

Without imposing extra constraints on these models, these approaches can still yield in-

ference that fails to respect what is assumed to be biological reality. For example, if it

is assumed that mature females can produce only singletons during a breeding season,

there are no internal constraints in these models that will ensure the estimated number of

births does not exceed the estimated number of mature females. Also, the modeller may

wish to construct a system in which birth rate was constant over time but the number

of births was constrained by the number of mature females in a time period. Barring

constrained maximisation, there is no mechanism to include these joint constraints in any

of the these extended models, that is, there is no population dynamics model embedded

in inference for these approaches. State-space models (Chapter 3) provide an extremely

flexible framework that can be used to fit complex ecological models and can accommo-

date embedded population dynamics models. Thus, by adopting a state-space approach

to modelling capture-recapture data the limitations of the existing Jolly-Seber based ap-

proaches can be mitigated.

4.2 Formulating the Models

The state-space modelling approach to capture-recapture models can be split into two

alternative approaches: the conditional or the unconditional approach. The focus of this

chapter will be on the former approach but it is useful to elucidate the philosophical dif-

ferences between the two alternative approaches. The data used to fit the models will be

the usual matrix of individual capture histories as described in Section 2.2. The manner
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in which the mark-recapture data are conditioned on in the model is the key distinction

between the two approaches and leads to two different ways of incorporating the data into

the modelling framework.

For the conditional approach, the conditioning is on those capture history patterns

that include capture in the current time period. Hence, the capture history associated

with an animal determines the state the animal is assigned to. For each time period

the model is conditioned on the number of animals that were observed during that time

period. That is, the number of animals to have a capture history pattern which includes

capture in the current time period is known exactly for each time period. Consequently,

there is no error associated with this observation process and there is a direct correspon-

dence between elements in the state vector and the observed number of capture histories

containing capture in the current period. The unknown elements of the state vector cor-

respond to the capture histories that do not contain capture in the current period. Hence,

stochasticity enters the model framework through the modelling of the number of animals

that are present in the population but remain unobserved in the current time period.

Thus, propagating the state vectors through time conditional on the capture history data

is what gives rise to the name for the conditional approach. It is possible to categorise the

state classification by other covariates (e.g. gender, location, age) in addition to capture

history, but for the examples presented in the following chapters the principle variable

used to determine state allocation is the observed capture history pattern associated with

each animal.

For the unconditional approach there is no conditioning on the matrix of capture his-

tory patterns. Consequently, the capture histories are now regarded as observations on

the evolving state process and whether an animal is captured or not does not influence its
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state. Under this modelling approach stochasticity enters the model through the capture

process and the observed capture histories are then regarded as a single random realisation

of this stochastic capture process. This is more consistent with the classical Jolly-Seber

capture-recapture methods summarised earlier and in recent work on developing state-

space models for capture-recapture data (Giminez et al., 2007) this is also the approach

taken.

In the standard definition of the three model processes that constitute a state-space

model (Eqs (3.3.1a)-(3.3.1c)) the vector of parameters Θ contained all the parameters

used in the model for both the state and the observation processes. If θ now denotes the

vector of parameters that are used solely in the state process and ψ denotes the vector

of parameters that are used solely in the observation process then Θ can be defined as

Θ = (θ,ψ). In the standard state-space formulation the observation process (see Chap-

ter 3.3.5) models the assumed relationship between the observed data and the states in

the population. For a state-space representation of a capture-recapture model (Giminez

et al., 2007) the observation process would be given by the capture process and would

be a function of the probability of capture pt. Thus the parameters relating to capture

would appear in ψ. Under the conditional approach the capture process determines the

observed capture histories and, consequently, the state of an animal. Hence, the param-

eters relating to the probability of capture will appear in the vector of state parameters

θ. However, under the unconditional approach, the parameters relating to capture do

appear in the vector of observation model parameters ψ.

A further important distinction needs to be made between the conditional and un-

conditional approaches with reference to the interpretation of the model structure. By

restricting the conditional model to operate on the observed capture histories at each time
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point the model inference is restricted to the population that generated this specific set

of observed capture histories. The conditional approach can therefore be said to assume

a “population model” in which the population is of some fixed but unknown size. The

unconditional model allows for stochasticity in the capture process and therefore allows

for two conceptually different interpretations of the model inference. A population model

may still be assumed in which, as for the conditional case, the population is of some

unknown but fixed size and, contrasting with the conditional case, each realisation of

the stochastically modelled capture histories corresponds to this fixed population. Al-

ternatively a superpopulation model may be assumed in which each realisation of the

stochastically modelled capture histories corresponds to a different population. For the

superpopulation approach a state process model also needs to be specified as a compo-

nent of the likelihood. This then stochastically models the entry probabilities of births

into the population for each time period thus determining the possible range of observed

capture histories for each realisation of the population. A more detailed discussion of the

distinction between population and superpopulation approaches is given in section 6.2.1.

4.3 The Conditional Approach

As described in Section 4.2, for the conditional approach Θ = θ, since due to the param-

eters relating to the capture process now belonging to the vector of state parameters θ,

there are no observation parameters ψ. There is still an observation process model but

it is deterministic and degenerate because for year t the number of animals with capture

histories that include capture in time t are observed without error. Thus there is an equiv-

alence between these observed totals and the corresponding elements of the state vector

nt. The state vector for time t also contains elements corresponding to animals that are

present in the sampling population but are not caught in time t and it is these elements
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that are modelled through the state process pdf at time t, gt(nt|nt−1, θ) (see Eq. (3.3.1b)).

The particular structure of the probability functions for the observation and state

processes can be best understood using a simple example. Consider a conditional model

in which the state an animal belongs to is determined solely by its capture history. Then

each element of the state vector nt will correspond to the numbers of animals possessing a

possible capture history pattern at time t. The state vector can be decomposed as shown

in Table 4.1.

st = the vector of numbers of animals for all capture history
patterns at time t that include capture in time t.

s̆t = the vector of numbers of animals for all capture history
patterns at time t that exclude capture in time t.

nt =

[
st
s̆t

]
= the vector of numbers of animals for each possible cap-

ture history pattern in time t.

Figure 4.1: Notation for decomposition of state vector nt.

The notation s̆t is used rather than ut for the unseen elements in the state vector at

time t to avoid confusion with the intermediate vector after process k in time t, uk,t.

This decomposition splits the state vector into an observed vector, st, and an unob-

served vector, s̆t. This state vector representation can then be used for the observation

process model. From Eq. (3.3.1c), the observation process distribution is typically ex-

pressed as ft(yt|nt, ψ). Under the conditional approach the observation pdf at time t is

deterministic and degenerate and can be expressed as:

ft(yt|nt) = ft(yt|st) =

{
1 if st = yt

0 otherwise
.

It is this conditioning on the observed components st of the states at time t that defines
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the conditional approach.

4.3.1 Simulation Methods

This section develops the model fitting approach using the sequential importance sam-

pling (SIS) methods that were introduced in Section 3.3.6.

In the context of SIS, model fitting methods require the simulation of state vectors.

Therefore, for the conditional approach, model fitting methods must ensure that for any

simulated state vector at time t n∗t , the elements corresponding to st need to match exactly

to the corresponding totals in the observed data at time t yt otherwise the weight in the

importance sampling step will be zero. For example, consider a two sample study for a

single group of animals in which state elements are determined solely by capture history.

At time t = 2 there are four possible capture histories, 00, 01, 10 and 11. Hence,

n2 =


n2,00

n2,01

n2,10

n2,11

 =

[
s2

s̆2

]
=


n2,01

n2,11

n2,00

n2,10



Then, the observed elements are s2 =

[
n2,01

n2,11

]
and the unobserved elements are s̆2 =[

n2,00

n2,10

]
. The observation vector at time t = 2 is y2 =

[
y2,01

y2,11

]
. Thus, any simulated vector

for n∗2 must generate s2 such that s2 = y2 for each element. For a population classified

as a single group (e.g. no classification by different genders, ages or locations etc.) at

time t the observation vector yt, and therefore st, will consist of t elements corresponding

to capture history patterns including capture at the time t. The observation pdf is then
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degenerate and will evaluate to 0 unless every simulated state element corresponding to a

capture history pattern which includes capture on the most recent time period is exactly

equal to the corresponding element of the observation vector. That is, if sj,t 6= yj,t for any

j = 1, . . . , t then ft(yt|st) = 0.

The vector s̆t consists of the unknown elements in the state vector at time t and it is

these elements that are modelled stochastically through the state process pdf gt(nt|nt−1, θ).

Assuming the capture-recapture data are collected on T sampling occasions, any simu-

lated element of s̆t must be consistent with the previously determined state elements

s1:t−1, the current known state elements st and the known values of future state elements

st+1:T . The fitting algorithm therefore must be able to simulate the stochastic elements of

the state process pdf under the constraints imposed by conditioning on the entire series

of known state elements, s1:T . This requirement makes fitting the models a complex and

involved process.

To simplify the notation it is assumed that the parameters Θ and the initial states n0

are known and dependencies on these will be implicit in the following expressions. The

aim of using these sequential importance sampling methods is to obtain a sample from

some specified target distribution. For the conditional approach to fitting state-space

models to data the target pdf will typically be the conditional distribution for the filtered

estimates of the states at time t, gt(nt|y1:t).

As described in Section 3.3.6, the simplest implementation of the SIS fitting algorithm

occurs when, at each sampling step, the trial density q() is simply the state process pdf at

time t, that is q(nt) = gt(nt|nt−1) (omitting the dependency on Θ). This simple approach

is highly inefficient for fitting state-space models under the conditional approach. The
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state process pdf simply models the stochastic progression of the states of the popula-

tion through time irrespective of the observations or measures that have been made on

the system. Thus, any generated state vectors nt are unlikely to have an st sub-vector

that corresponds exactly with the observation vector yt, hence, for the majority of the

simulated nt = [st, s̆t]
′ (where ′ denotes the transpose of the vector) it will be the case

that sj,t 6= yj,t for some j ∈ (1, . . . , t). Consequently, ft(yt|nt) = 0 for the majority of nt

simulated from the state process pdf. Therefore, the majority of the weights under the

most simple SIS implementation will be zero making the procedure highly inefficient.

The necessary solution is to develop a trial pdf that respects the constraints imposed

on the simulated state vectors by the observed data. Let n∗t denote a simulated state vec-

tor from a trial pdf. The aim is to develop a suitable trial density so that any generated

state vector n∗t satisfies f(n∗t |yt) = 1. Conceptually, this can be seen as the logical end-

point of the auxiliary particle filter with all resampled auxiliary particles being restricted

to the region of state and parameter space defined by the data.

If such a trial density is denoted as h(nt|yt,nt−1) then, from Eq. (3.3.16), the weights

accorded to the simulated state vector n∗t are

w ∝ f(yt|n∗t )gt(n∗t |nt−1)

h(n∗t |yt,nt−1)
(4.3.1a)

=
gt(n

∗
t |nt−1)

h(n∗t |yt,nt−1)
(4.3.1b)

where f(yt|n∗t ) = 1 since all the constraints imposed by the data have been met by the

trial density h(); that is s∗t ≡ yt. Note the inclusion in the trial pdf h() of the state at

the previous time period nt−1. This is included because it can contain information on nt

that is not contained in the observed data yt, for example uncaptured animals at t that

were caught at t− 1 are not included in yt but can act as a constraint on nt.
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Under the basic SIS approach, where the state pdf was the trial density and the sim-

ulation of state vectors was not constrained by the observed data, it could be shown that

to calculate the weights associated with a simulated state vector n∗t only the likelihood

needed to be evaluated (Eq. (3.3.17)). The trial pdf gt(n
∗
t |nt−1) was used solely to generate

candidate particles, n∗t , and did not need to be evaluated. However, under the trial density

proposed to meet the constraints the weight evaluation becomes more complicated. From

the expression for Eq. (4.3.1b) it can be seen that the evaluation of the weights involves

evaluating both gt(n
∗
t |nt−1) and h(n∗t |yt,nt−1) or at least their ratio up to some constant

of proportionality. Directly evaluating g(n∗t |nt−1) can be complicated, especially when

inference on the model processes may be convolved (Buckland et al., 2004). Convolutions

can arise when a state element in nt represents the summation of elements generated via

intermediate sub-processes. The sub-process elements that are summed may have be-

longed to different states in nt−1 and therefore, for a multistate model with state-specific

transition rates, their probabilities of evolving from nt−1 to nt are not necessarily the

same. These differing ancestral paths need to be accounted for when evaluating the trial

pdf h(). The need to evaluate probabilities over multiple convolved scenarios can make

evaluation of g(n∗t |nt−1) difficult.

To increase the tractability of the calculations required for the importance sampling

weights it may be necessary to calculate the weight based on elements of the inter-

mediate vectors u1:k,t for which the state process pdf can be more easily evaluated.

For example, consider a z-element state vector nt from which one element is obtained

by summing components of the intermediate vector u1,t that preceded it, e.g. n1,t =

u1,1,t+u5,1,t+u9,1,t+u13,1,t where u1,1,t is the first element in the vector u1,t which denotes

the intermediate states after the first sub-process, u5,1,t is the fifth element in u1 and so on.
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In this case, to evaluate the weights the values (u1,1,t, u5,1,t, u9,1,t, u13,1,t, n2,t, n3,t, . . . , n3,t)

need to be simulated using the trial pdf h() and evaluated under both the state pdf

g(n∗t |nt−1) and the trial pdf h(n∗t |yt,nt−1) where n∗t now represents the expanded vector,

including the intermediate state elements that are simulated subject to the constraints

imposed by the data.

The implementation of this model fitting importance sampling procedure is then de-

fined by the choice of trial pdf h() and the appropriate expansion of the simulated state

vector. These choices can be somewhat ad-hoc leading to bespoke fitting procedures for

particular modelling problems, however there are some general commonalities between

possible approaches. The following discussion investigates these issues from a heuristic

perspective.

To investigate potential expansions of the state vector it can be constructive to produce

directed graphs that represent the evolution of a state vector over a single time period.

An initial starting point nt−1 is considered and the evolution of this state vector via

each of the sub-processes assumed to be in the model is then graphed as a process tree

diagram. The tree therefore begins with each element of the state vector representing a

‘parent node’ at the top of a tree. Then branches are added to each node to denote the

various fates that can be attributed to the animals in the parent node. For each of these

intermediate nodes further branches are added to correspond to the possible outcomes of

a particular sub-process. After all the branches attributable to the various sub-processes

have been added the resulting final set of nodes will represent the final fates of the animals

classified in the initial parent nodes. For example, consider a relatively simple population
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consisting of two states at time t− 1,

nt−1 =

[
n1,t−1

n2,t−1

]

corresponding to animals that were unobserved and observed in time period t − 1 re-

spectively. There are two sub-processes assumed to model the dynamics of this system:

survival and capture. It is assumed that the animals in the population survive from t− 1

to t with probability φt. It is assumed that the animals in the population are captured at

sampling period t with probability pt. This example can be represented schematically by

the simple trees displayed in Figure 4.2. For this example, the state vector at time t, nt

is then given by collapsing the elements of u2,t such that

nt =

[
n1,t

n2,t

]
=

[
u1,2,t + u3,2,t

u2,2,t + u4,2,t

]

This collapsing process is also illustrated in Figure 4.2. As a result of this collapsing pro-

cess the intermediate states generated by the capture sub-process are combined into two

groups: one corresponding to animals captured in t, the other corresponding to animals

not captured in t. It can then be seen that attempting to evaluate the weights using di-

rect evaluation of the state pdf g(n∗t |nt−1) involves convolutions as both the captured and

uncaptured elements in nt are obtained by summing across elements of the intermediate

states. In this case “expanding” the state vector would be equivalent to replacing n∗t with

u∗2,t.

For many population dynamics models constructed in a state-space modelling frame-

work the expanded state vector can be obtained using a semi-automated procedure. In

Section 3.3.1 the generalised Leslie matrix approach to representing the evolution from

nt−1 to nt (Buckland et al., 2004; Thomas et al., 2005) was discussed. For the simple
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Figure 4.2: Process Tree diagram for the evolution from nt−1

to nt via the sub-processes for the simple example.

example discussed above, if S denotes the survival matrix and C denotes the capture

matrix the expectation of the states E[nt] could then be written

E[nt] =

[
n1,t

n2,t

]
=

[
1− pt 1− pt
pt pt

][
φt 0

0 φt

][
n1,t−1

n2,t−1

]
= CSnt−1

The semi-automated approach then involves expanding the matrix representation of each

sub-process to ensure that each row of the matrix contains at most a single positive en-

try. If a single component of an intermediate or state vector is obtained by performing

operations on multiple components of the preceding vector then there is a convolution.

Expanding the matrices can remove this problem. For the simple example above, the

number of animals that were captured at t is a convolution of both observed and unob-

served animals at t − 1 that then survived to be captured at t. Hence, the expanded

capture matrix will now look like

Cex =


1− pt 0

0 pt

1− pt 0

0 pt


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It can then be seen that CexSnt−1 = E[u2,t], which was the earlier suggestion for the

‘expanded’ state vector.

Choosing the trial pdf h() is again non-trivial. For animal populations in general

and often those analysed in a capture-recapture framework, the functional form of the

sub-processes is often multinomial. Consequently, the elements in the state vector nt

are functions of multinomial random variables as are the elements in the expanded state

vector. The correspondence between elements of the state vector nt and the observation

vector yt can lead to another source of stochasticity in the modelling framework. As noted

in Section 3.3.5 the observation vector can have components that correspond exactly to

those in the state vector but it could also be the case that some elements of yt represent

the summation of multiple elements of nt. Therefore, there needs to be a splitting pro-

cess which allocates yt across suitable elements of nt. For example, in the simple case

described above the observation vector yt consists of a single element corresponding to

the number of animals captured during t. This observed total acts as a constraint on the

simulation of the intermediate vectors u1 and u2 and therefore yt needs to be allocated

across appropriate elements of the extended state vector, which in this case is equivalent

to u2,t. An obvious choice to split a discrete total into a set of discrete elements would

be a multinomial distribution. Hence, multinomial densities are often used for both the

sub-process and splitting functions thus making multinomial trial densities an appropriate

choice for h(). Having determined the functional form of the densities it is then necessary

to determine how to specify the appropriate parameters for the multinomial distributions.

The generalised Leslie matrix representation of the models can also be used in one

approach to determining the rate parameters of the multinomial splitting functions. Con-

ceptually, the multinomial rates represent the relative probabilities of an individual animal



143

being assigned to each of the possible elements. These relative probabilities can be ap-

proximated by the ratios of the expected values, under the state process model, for each of

the appropriate elements of the expanded state vector nt. The generalised Leslie matrix

representation immediately provides a straightforward method of obtaining approximate

expected values by multiplying together the matrix components representing each sub-

process.

Using the simple example again, the expected values of the extended state vector are:

E[u2,t] =


u1,2,t

u2,2,t

u3,2,t

u4,2,t

 =


1− pt 0

0 pt

1− pt 0

0 pt


[
φt 0

0 φt

][
n1,t−1

n2,t−1

]
=


(1− pt)φtn1,t−1

ptφtn1,t−1

(1− pt)φtn2,t−1

ptφtn2,t−1


The total observed number of animals caught at t is given as yt = y1,t. From the above

Leslie matrix approximation to the expected values, the appropriate elements are

E[u2,2,t] = ptφtn1,t−1

E[u4,2,t] = ptφtn2,t−1

Then, the expected proportion of y1,t that is assigned to u2,2,t is approximated by

r2,2,t =
E[u2,2,t]

E[u2,2,t] + E[u4,2,t]
=

n1,t−1φtpt
n1,t−1φtpt + n2,t−1φtpt

=
n1,t−1

n1,t−1 + n2,t−1

Since the total y1,t is only split over two elements the distribution here is binomial. Thus,

a possible trial density for simulating a value u∗2,2,t could be:

u∗2,2,t ∼ Binomial(y1,t, r2,2,t)

Then, u∗4,2,t is simply y1,t − u∗2,2,t. This still leaves the intermediate vector corresponding
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to survival ut and the elements {u1,2,t, u3,2,t} corresponding to non-capture to be esti-

mated from the trial pdf h(). Given that the vector nt−1 is assumed known and the

values
{
u∗2,2,t, u

∗
4,2,t

}
have been assigned it is possible to simulate values for the remaining

unknown states conditional on the values that are known or have been simulated so far.

Binomial distributions are assumed for the sub-processes relating to survival and capture.

From Figure 4.2, it can be noted that

p(u1,1,t|n1,t−1) =

(
n1,t−1

u1,1,t

)
(φt)

u1,1,t(1− φt)n1,t−1−u1,1,t (4.3.2a)

p(u2,1,t|n2,t−1) =

(
n2,t−1

u2,1,t

)
(φt)

u2,1,t(1− φt)n2,t−1−u2,1,t (4.3.2b)

p(u∗2,2,t|u1,1,t) =

(
u1,1,t

u∗2,2,t

)
(pt)

u∗2,2,t(1− pt)u1,1,t−u∗2,2,t (4.3.2c)

p(u∗4,2,t|u2,1,t) =

(
u2,1,t

u∗4,2,t

)
(pt)

u∗4,2,t(1− pt)u2,1,t−u∗4,2,t (4.3.2d)

Due to the survival and capture processes both being specified as binomial functions it

can also be noted that

p(u∗2,1,t|n1,t−1) =

[(
n1,t−1

u∗2,2,t

)
(φtpt)

u∗2,2,t(1− φtpt)n1,t−1−u∗2,2,t

]
p(u∗4,1,t|n2,t−1) =

[(
n2,t−1

u∗4,2,t

)
(φtpt)

u∗4,2,t(1− φtpt)n2,t−1−u∗4,2,t

]
Then, the distribution of u1,1,t conditional on the known value n1,t−1 and the just simulated

u∗2,2,t is given by:

p(u1,1,t|u∗2,2,t, n1,t−1) =
p(u∗2,2,t|u1,1,t)p(u1,1,t|n1,t)∑

u∗2,2,t≤u′≤n1,t−1
p(u∗2,2,t|u′)p(u′|n1,t−1)

(4.3.3)

Once the value u∗1,1,t has been simulated, the value u∗1,2,t is then obtained deterministically:

u∗1,2,t = u∗1,1,t − u∗2,2,t.

A similar process yields the conditional distribution of u∗2,1,t conditional on the known
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value n2,t−1 and the just simulated u∗4,2,t.

Then, the component of the weights contributed by the state process pdf g(n∗t |nt−1)

is given by the product of the binomials in Eq’s. (4.3.2a)-(4.3.2d):

g(n∗t |nt−1) =

(
n1,t−1

u∗1,1,t

)
(φt)

u∗1,1,t(1− φt)n1,t−1−u∗1,1,t (4.3.4)

×
(
n2,t−1

u∗2,1,t

)
(φt)

u∗2,1,t(1− φt)n2,t−1−u∗2,1,t

×
(
u∗1,1,t
u∗2,2,t

)
(pt)

u∗2,2,t(1− pt)u
∗
1,1,t−u∗2,2,t (4.3.5)

×
(
u∗2,1,t
u∗4,2,t

)
(pt)

u∗4,2,t(1− pt)u
∗
2,1,t−u∗4,2,t (4.3.6)

and the component of the weights from the trial density pdf h(n∗t |yt,nt−1) are:

h(n∗t |yt,nt−1) =

(
y1,t

u∗2,2,t

)
(r2,2,t)

u∗2,2,t(1− r2,2,t)
y1,t−u∗2,2,t

×
p(u∗2,2,t|u1,1,t)p(u1,1,t|n1,t)∑

u∗2,2,t≤u′≤n1,t
p(u∗2,2,t|u′)p(u′|n1,t)

×
p(u∗4,2,t|u2,1,t)p(u2,1,t|n2,t)∑

u∗4,2,t≤u′≤n2,t
p(u∗4,2,t|u′)p(u′|n2,t)

(4.3.7)

Hence, using the expressions in Eq’s. (4.3.6) and (4.3.7), the weights for the entire vector

nt are evaluated as in Eq. (4.3.1b):

w ∝ gt(n
∗
t |nt−1)

h(n∗t |yt,nt−1)
.

In general, evaluating the weights at each time step will consist of two main steps.

Firstly, in the event of convolutions, observed totals need to be split across the appropriate

elements of the expanded state vector using rates determined by ratios of expected values.

Secondly, the remaining unknown elements of the expanded state vector are simulated

from trial densities that are functions of the multinomial (often binomial) distributions
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assumed for the sub-processes. These trial densities are conditional on known values from

data and the values simulated from the de-convolving splitting process. At each time

step t, every term that is evaluated under the proposed trial density ht() should also be

evaluated under the state process pdf gt(). The following section describes a model con-

sisting of multiple sub-processes such that the direct evaluation of gt(nt|nt−1) is difficult

and contains convolutions. A fitting algorithm is developed and approaches to simulating

the expanded state vector using appropriate conditional distributions are suggested.

4.4 An Application to Models for Capture-Recapture

Data

The notation and structure of this model is similar to that developed in Section 3.3 of

Buckland et al. (2004). A model for a capture-recapture survey is constructed with the

population classified into two age-cohorts: juveniles and adults. Animals are classified as

adults when they reach age 1 and become sexually mature. To simplify the model struc-

ture, only the female population will be modelled but the methods are readily extensible

to include males.

It is assumed that the general open-population capture-recapture processes are present

in the model: survival, capture and recruitment. To keep the model relatively simple it is

assumed that there is no migration between the population area and any external area.

Therefore, survival relates solely to animals that die rather than including emigrants and,

more importantly in view of a constrained model, the term births relates solely to ani-

mals that are born to surviving adults in the population and does not include immigrants.

The survival process is assumed to be binomial for both juveniles and adults. The
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parameters φj and φa denote, for juveniles and adults respectively, the probabilities of

an individual animal surviving from the beginning of one time period t to immediately

before the beginning of the next time period t+1. It is assumed that this juvenile survival

probability is constant for all juveniles across all time periods and the adult survival prob-

ability is also assumed constant across all adults and all time periods, although extending

the model to time-specific survival (φj,t, φa,t) is straightforward.

The birth process is also modelled as a binomial density with the parameter π denoting

the probability of a surviving animal giving birth to a single offspring. The assumption

that a breeding animal is only able to produce, at most, a single young may well be unreal-

istic for some animal populations. However, this assumption does simplify the exposition

of the algorithm implementation and should serve to make the mechanics of this example

more transparent.

Following the birth process a single sample is taken as part of the capture-recapture

study. Juvenile animals are assumed to be distinguishable from adults when captured.

Once an animal matures it is assumed that its age cannot be identified on capture if it has

not been previously captured as a juvenile with known period of birth. In year t juveniles

are caught with probability pj and adults are caught with probability pa. There is no t

subscript to denote time dependence in the capture rates as it is assumed that the juvenile

capture probability is constant across all juveniles and all time periods and, similarly, that

the adult capture probability is assumed constant across all adults and all time periods.

It is also assumed that there is no mortality between the birth process and the capture

process (although a sub-process could be incorporated to model this if it was thought to

be viable biologically) and that there are no losses on capture. An animal that is alive

during the birth process will still be alive and available for capture during the sampling
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period. As with survival and births, capture is modelled using binomial densities for both

juvenile and adult capture. From the parameters defined for these processes the vector of

model parameters to be estimated is then θ = {φj, φa, π, pj, pa}.

4.4.1 State and Observation Vector

In the conditional approach to modelling capture-recapture data, as defined in Section 4.2,

the elements of the state vector nt correspond to the capture-history patterns that are

possible at time t. Therefore, nt consists of the numbers of animals (abundances) that

exhibit each possible capture-history pattern. In classical capture-recapture analyses the

capture-history patterns for animals that were not caught in the current time period make

no distinction between animals that were alive but remained undetected and those that

were dead and were unavailable to be sampled. However since survival is modelled as

a component of the processes that generate the state vector nt, only animals that are

alive at t will be included in the elements of nt. For example, the element n100,3 would

correspond to the animals that were caught on the first capture occasion and survived to

the current year but were uncaught in the last two years.

For animals grouped into a single state there are 2t possible capture histories. How-

ever, this is conceptually a multistate model in which the animals are classified as either

juveniles or adults. Therefore, if the distinction between animals first caught as juveniles

and those first caught as adults is maintained, animals in each of these two groups can

exhibit any of the observed capture history patterns and the state vector nt will then con-

tain 2 ∗ 2t elements. For this model a reduced version of this full state vector nt is used.

The distinction is only maintained for one year after initial capture between those animals

that are first captured as juveniles and those that are first captured as adults to make the
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parameter controlling juvenile survival, φj, identifiable. As discussed in Section 2.2.1.2

the identifiability of parameters in a classical capture-recapture analysis depends on the

information contained in the data. To estimate survival rates for a particular cohort both

initial captures and future recaptures of that cohort need to be recorded. Hence, the

number of juveniles captured during the sampling period for time t and the number of

these that are recaptured at t + 1 both need to be known to estimate φj. The marked

juveniles in time t that survive through until the capture process in time t+1 are labelled

as yearlings. The unmarked juveniles in time t that survive until t + 1 are not observed

and therefore do not contribute to the estimate of φj; they are labelled as adults in t+ 1.

As a notational convention the subscripts j, y and a correspond to juveniles, yearlings and

adults respectively.

With these definitions in place the initial states n0 and the state vectors for the first

three time periods are represented in Figure 4.3.

n0 =

[
nj,0
na,0

]
→ n1 =


nj0,1
nj1,1
na0,1

na1,1

→ n2 =



nj0,2
nj1,2
ny10,2

ny11,2

na00,2

na01,2

na10,2

na11,2


→ n3 =



nj0,3
nj1,3
ny10,3

ny11,3

na000,3

na001,3

na010,3

na100,3

na011,3

na101,3

na110,3

na111,3


Figure 4.3: The elements of the state vectors nt for t = 0, 1, 2, 3.
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The subscripts indicate the age class of the animal, j, y or a, the capture history pat-

tern and the time t. The length of the capture histories is determined by the known

length of time an animal has been in the population. For example, animals born in time

t will not have been available for capture prior to the sampling occasion on time t and

thus only exhibit a capture history pattern with entries corresponding to the years in

which they were alive. This distinction no longer holds once an animal has matured and

is classified as an adult which occurs at age 1 for unmarked juveniles and at age 2 for

yearlings. Biologically there is no distinction between adults and yearlings; yearlings are

capable of breeding and are considered to be mature adults. The distinction is maintained

solely for modelling purposes to allow the estimation of juvenile survival. For example,

at time t = 3 the vector nt contains the element ny10,3 which corresponds to animals that

were born and captured during the second time period, survived through to the third

time period but were not captured. In the fourth time period surviving animals from

ny10,3 will be assigned to either na0100,4 or na0101,4 if they are not caught or if they are

caught respectively. Equally, surviving animals from na010,3 will be assigned to one of

those two elements dependent on capture status during the fourth time period. Therefore

both na0100,4 and na0101,4 represent fates that can be attained by animals following two

different progression paths through the model. In general, elements of nt correspond to

sums over the surviving numbers of animals from multiple elements of nt−1. The initial

state vector consists of juveniles and adults that have yet to be marked.

The observation vector yt consists of the numbers of animals that are observed to

display a capture history pattern that includes capture in sampling period t. As such, it

represents a subset of the elements in nt. The observation vectors for the first three time

periods are given in Figure 4.4.
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y1 =

[
nj1,1
na1,1

]
→ y2 =


nj1,2
ny11,2

na01,2

na11,2

→ y3 =


nj1,3
ny11,3

na001,3

na011,3

na101,3

na111,3


Figure 4.4: The observation vectors yt for t =
1, 2, 3

From Figure 4.4 it can be seen that no animals with capture-history patterns ending

in 0 are included. These elements do exist in the state vectors and, under the conditional

approach, it is these unobserved elements that induce stochasticity in the modelling frame-

work.

The sub-processes assumed to drive the underlying dynamics of the model are survival,

birth and capture. The birth process also coincides with the deterministic maturation

process which advances all surviving juveniles from the previous time period to be adults

or yearlings depending on their capture status in the previous time period. Using the

basic structure discussed in Section 3.3.4 the sub-processes are assumed to be discrete and

generate nt from nt−1 by acting sequentially with each sub-process taking as its input the

output from the preceding sub-process. It is assumed that a period begins immediately

after the capture-recapture sample from the previous time period has been taken. Then

the order in which the sub-processes are assumed to be applied is survival first followed

by birth and maturation followed by capture. The definitions of the intermediate vectors

are as follows:
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u1,t = the number of animals in nt−1 that survive through until

time t.

u2,t = the number of juveniles produced by the surviving ani-

mals u1,t and the number, after age incrementation, of

adults in u1,t.

u3,t = the numbers of animals in u2,t that are marked or re-

captured in time t.

It is assumed that the state process at time t, gt, can be expressed as a series of linked

probability functions, each of which corresponds to a specified sub-process, with gr,t de-

noting the probability function for the rth sub-process. For this model, g1,t corresponds to

survival, g2,t corresponds to birth and g3,t corresponds to capture. If the distribution Hr,t

then corresponds to the sub-process pdf gr,t the evolution of the states can be expressed

as follows:

u1,t ∼ H1,t(nt−1, (φj, φa)),u2,t ∼ H2,t(u1,t, π),u3,t ∼ H3,t(u2,t, (pj, pa))

The state and intermediate vectors for the evolution from the initial states n0 to the states

in the system immediately after the capture sub-process are given in Figure 4.5.

n0 =

[
nj,0
na,0

]
g1,1−−→ u1,1 =

[
u1(1),1

u2(1),1

]
g2,1−−→ u2,1 =


u1(2),1

u1(1),1

u2(2),1

u2(1),1

 g3,1−−→ u3,1 =



u1(3j0),1

u1(3j1),1

u1(3a0),1

u1(3a1),1

u2(3j0),1

u2(3j1),1

u2(3a0),1

u2(3a1),1


Figure 4.5: Evolution of the initial states n0 via the intermediate sub-
processes.

The subscripts in the intermediate state elements contain three pieces of information.
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The first value indicates the “parent node” (see Section 4.3.1) associated with that ele-

ment. The first number in the parentheses denotes which of the sub-process vectors the

element is a component of and, if it is present, the two character alpha-numeric label

indicates age and capture status. The final value following the comma indicates the time

period. Using the directed graph approach introduced in Section 4.3.1 a process tree il-

lustrating the evolution of this system from the initial states n0 is produced in Figure 4.6.

u1(3j0),1 u1(3j1),1 u1(3a0),1 u1(3a1),1

u1(2),1 u1(1),1

u1(1),1

nj,0

u2(3j0),1 u2(3j1),1 u2(3a0),1 u2(3a1),1

u2(2),1 u2(1),1

u2(1),1

na,0 n0

u1,t

u2,t

u3,t

1−pj
��




 pj

��44444
1−pa

��




 pa

��44444

1

##GGGGGGG
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1−pj
��




 pj
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1−pa
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 pa

��44444

1
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Figure 4.6: Process Tree diagram for the evolution from n0 via the sub-processes for
the capture-recapture study.

In Figure 4.6 the parameters next to the branches indicate the rate parameters of

the binomial distributions that have been specified for the survival, birth and capture

processes. The process tree diagram gives a clear indication of the dynamics of the

system. It should be noted that in the representation of the intermediate vector u2,1,

which denotes the state of the system after both the survival process and the birth and

maturation process have occurred, the second and fourth elements correspond to the

number of survivors from t = 0 that are classified as adults at t = 1. For the intermediate

states in general time period t, there is no mortality during the birth process and age

incrementation is a deterministic process so all parent nodes that survive from time t,

denoted by u1,t+1, will be classified as adults at time t + 1 and will constitute half of
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the elements of u2,t+1 with the other half denoting new juveniles born to the survivors.

An alternative representation of u2,1 with subscripts that perhaps make this relationship

more obvious is:

u2,1 =


u1(2j),1 = u1(2),1

u1(2a),1 ≡ u1(1),1

u2(2j),1 = u2(2),1

u2(2a),1 ≡ u2(1),1


An explanation of the notation in Figures 4.5 and 4.6 along with the interpretation

of each component of the intermediate vectors is given in Table 4.1. It should be noted

Element Description

nj,0 = The initial number of juvenile animals in the population at the start
of the study. These animals are all unmarked.

u1(1),1 = The number of initial juveniles that survive from t = 0.
u1(2),1 = The number of new juveniles produced by the initial juveniles that

have survived from t = 0.
u1(3j0),1 = The number of new juveniles that are not caught during the sam-

pling period at t = 1.
u1(3j1),1 = The number of new juveniles that are caught during the sampling

period at t = 1.
u1(3a0),1 = The number of animals that were initial juveniles at t = 0 but have

survived and have not been caught during the sampling period at
t = 1.

u1(3a1),1 = The number of animals that were initial juveniles at t = 0 but have
survived and have been caught during the sampling period at t = 1.

Table 4.1: Definitions of the notation for the evolution of initial juveniles from n0 via
the three sub-processes of survival, birth and capture. An intermediate node element is
denoted as uα(β),γ where α indexes the parent node, β indicates the sub-process (1 =
survival, 2 = birth, 3 = capture) and γ denotes the time period.

that nt 6= u3,t. Elements of nt represent sums across the elements of u3,t and therefore

an appropriate mapping of u3,t → nt needs to be determined. For example, each parent

node produces a child node u·(3j1),t that represents the number of new juveniles that are

marked in t having been born to the surviving members of the parent node at t− 1. The
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observed number of marked juveniles at time t is given by y1,t = nj1,t. When recorded

in the capture-history data these marked juveniles are captured independently from their

parents so the ancestry of these new juveniles is unknown. Therefore, the value of nj1,t

is obtained by summing across all child nodes that correspond to marked juveniles. An

equivalent sum across all unmarked juvenile nodes is required to obtain nj0,t. For this

conditional system, and for t ≥ 2, there will be eight elements of nt that involve summing

over multiple elements of u3,t. As can be seen from Figure 4.3, for t ≥ 2 the state vector

nt will consist of elements corresponding to unmarked and marked juveniles, to uncaught

and caught yearlings and to 2t distinct capture-history patterns. Thus, nt will consist of

2t + 4 elements for t ≥ 2. The summations arise because animals that are designated as

juveniles or yearlings at t − 1 will, if they survive, be designated as adults at t and will

share common capture history patterns with surviving animals that were designated as

adults at t−1. In addition to the sums for the unmarked and marked juveniles, for t > 2,

the other three sets of sums occur for the following capture-history patterns:

1. Animals from both nj0,t−1 and na{q1},t−1 will contribute to both na{q1}0,t and na{q1}1,t,

where the pattern {q1} is a string of t− 1 zeros.

2. Animals from both ny10,t−1 and na{q2}10,t−1 will contribute to both na{q2}100,t and

na{q2}101,t where the pattern {q2} is a string of t− 3 zeros.

3. Animals from both ny11,t−1 and na{q2}11,t−1 will contribute to both na{q2}110,t and

na{q2}111,t where the pattern {q2} is a string of t− 3 zeros.

Hence, for the progression from t = 0 to t = 1 the state vector n1 is obtained from

the intermediate vector u3,1 representing the states in the system immediately after the
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capture process using the following collapsing structure:

n1 =


nj0,1

nj1,1

na0,1

na1,1

 =


u1(3j0),1 + u2(3j0),1

u1(3j1),1 + u2(3j1),1

u1(3a0),1 + u2(3a0),1

u1(3a1),1 + u2(3a1),1


Using the notational definitions in Table 4.1 and the state vector and intermediate state

vector structure represented in Figures 4.3 and 4.5 the deterministic collapsing structure

to obtain n2 from u3,2is represented in Figure 4.7.

n2 =



nj0,2
nj1,2
ny10,2

ny11,2

na00,2

na10,2

na01,2

na11,2


=



∑4
j=1 uj(3j0),2∑4
j=1 uj(3j1),2

u2(3j0),2

u2(3j1),2

u1(3a0),2 + u3(3a0),2

u1(3a1),2 + u3(3a1),2

u4(3a0),2

u4(3a1),2


Figure 4.7: Relationship between
the state vector n2 and the inter-
mediate states after capture at time
t = 2: u3,2.

Therefore, Figure 4.7 contains the expression for the eight summations that constitute

the elements of n2. Those elements in n2 that do not comprise the sum of multiple com-

ponents correspond to the uncaught and caught yearlings at t = 2. These animals are

only generated by marked juveniles at time t = 1; no adult parent node can contribute

to the yearlings so there is no convolution when determining the ancestry of yearlings at

t = 2. This holds for all time periods t = 2, 3, . . . , T . In general, for t > 2, any capture

history pattern (consisting of t elements) that includes a 1 anywhere in the first t − 3

entries can only have been generated by a single element of the state vector at t − 1.
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These state elements will be referred to as mono-parent elements whereas the eight state

elements at time t that are obtained from summing over multiple elements of the interme-

diate state vector u3,t are multi-parent elements. The evaluation of the trial density for

simulated abundances for these capture-history patterns corresponding to mono-parent

elements does not involve convolutions.

Let n
[j]
t represent the set of elements in the state vector nt that correspond to the

abundances of juvenile animals at time t. Similarly, let n
[a]
t represent the set of elements

in the state vector nt that correspond to the abundances of adult animals, including

yearlings, at time t. Using this superscript notation the distributions of the sub-processes

can then be written as:

u1,t,[j]|nt−1,[j] ∼ Binomial(nt−1,[j], φj) (4.4.1a)

u1,t,[a]|nt−1,[a] ∼ Binomial(nt−1,[a], φa) (4.4.1b)

u2,t,[j]|u1,t ∼ Binomial(u1,t, π) (4.4.1c)

u2,t,[a]|u1,t = u1,t (4.4.1d)

u3j1,t|u2,t,[j] ∼ Binomial(u2,t,[j], pj) (4.4.1e)

u3a1,t|u2,t,[a] ∼ Binomial(u2,t,[a], pa) (4.4.1f)

Then, from Eq. (4.4.1e), the deterministic relationship u3j0,t = u2,t,[j] − u3j1,t yields the

values for the components of u3,t corresponding to unmarked juveniles. Similarly, from

Eq. (4.4.1f), the deterministic relationship u3a0,t = u2,t,[a] − u3a1,t yields the values for the

components of u3,t corresponding to adults that are not captured during the sampling

period at t.

As discussed in Section 4.3.1 the generalised Leslie matrix expansion provides two
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useful tools for fitting these conditional models to data. Firstly, they have utility for

choosing a trial density h() and an associated expanded state vector to make the evalua-

tion more tractable. Secondly, the de-convolution of components of the evaluation process

can require splitting observed totals across multiple elements of the expanded state vector.

Taking the product of the individual matrix representations of the sub-processes produces

the (approximate) conditional expectations of the elements of the expanded state vector.

These approximate expectations can be used to determine appropriate proposed splitting

rates for the observed totals.

In terms of matrix representations let St denote the survival process matrix, Bt the

birth and maturation process matrix and Ct the capture process matrix where t denotes

the process acting from time t− 1 to t. Then, the approximate conditional expectations

can be expressed as Ent|nt−1 [nt] = CtBtStnt−1. For t = 1 the matrix representations are:

S1 =

[
φj 0

0 φa

]
B1 =


π 0

0 1

π 0

0 1

 C1 =


1− pj 0 1− pj 0

pj 0 pj 0

0 1− pa 0 1− pa
0 pa 0 pa


The matrix representation of C1 incorporates both the capture process and the collapsing

of the intermediate vector u3,1 to obtain nt−1. As discussed in Section 4.3.1, expanding

the matrices to have at most one non-zero entry per row helps to avoid convolutions in

the evaluation of the state pdf and trial pdf densities. The specification of C1 will lead to
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convolutions and an obvious expansion yields:

Cex,1 =



1− pj 0 0 0

pj 0 0 0

0 1− pa 0 0

0 pa 0 0

0 0 1− pj 0

0 0 pj 0

0 0 0 1− pa
0 0 0 pa


Using this expanded matrix the approximate conditional expected values of the expanded

state vector are

Enex1 |n0 [n
ex
1 ] = Cex,1B1S1n0 =



(1− pj)πφjnj,0
pjπφjnj,0

(1− pa)φjnj,0
paφjnj,0

(1− pj)πφana,0
pjπφana,0

(1− pa)φana,0
paφana,0


where nex1 denotes the expanded state vector. It should be noted that for this particular

time step nex1 ≡ u3,1. The same form of expansion can be applied to Ct for all time steps

t ∈ (1, T ) to yield an expanded state vector. As mentioned previously, the convolutions

only arise for multi-parent elements of nt. The state vector nt−1 will contain 2t−1 + 4

elements which will generate an intermediate vector u3,t containing 2t+1 + 16 elements.

Of these elements in u3,t, 2t−1 + 4 of them will be summed to give nj0,t and another

2t−1 + 4 of them will be summed to give nj1,t. Also, two elements each will be summed

for each of the other six sums, meaning another 12 elements of u3,t are involved in the
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summations. Therefore, a total of 2t + 20 elements of u3,t are used for the sums required

by the mapping from u3,t to the multi-parent elements of nt. The remaining 2t − 4 ele-

ments of u3,t represent mono-parent elements of nt. This leads to a heuristic approach to

determining the expanded state vector for this particular capture-recapture population

dynamics model. The expanded state vector should consist of the 2t + 20 elements of u3,t

that are components of sums and the 2t − 4 elements of nt that are mono-parent nodes.

This is equivalent to the intermediate vector u3,t and is exactly the extended state vector

that is obtained using the generalised Leslie Matrix representation of the model with the

expanded capture matrix Cex,t.

4.4.2 Fitting the Model

Having developed a procedure for determining the appropriate form for the extended state

vector it is now necessary to define a trial density h() from which simulated state vectors

n∗t are drawn that obey all constraints imposed by conditioning on the entire series of

known state elements, s1:T . As discussed in Section 4.3, any simulated state vectors that

fail to obey the constraints will have weight zero in the importance sampling step of model

inference. Expressing this formally, from Eq. (4.3.1a) the weights for the simulated state

vectors are given as

w ∝ f(yt|n∗t )gt(n∗t |nt−1)

h(n∗t |yt,nt−1)
(4.4.2)

where

ft(yt|n∗t ) = ft(yt|s∗t ) =

{
1 if s∗t = yt

0 otherwise
.

Therefore, the aim of choosing an appropriate trial density ht() is to ensure that ft(yt|n∗t ) =

1. As will be discussed in more detail later on in this section, the specification of a model

that generates expanded state vectors which satisfy every single constraint imposed by the
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entire set of observed capture-histories and the model structure is prohibitively complex

and laborious for a non-trivial model. The aim of choosing ht() is now to increase the

probability that ft(yt|n∗t ) = 1.

Using the heuristic approach introduced in 4.3.1 the trial density ht() will consist of

functions of binomial and multinomial distributions to model the constrained evolution

of the system from t − 1 to t. For example, a multinomial will be used to split the ob-

served total of marked juveniles at time t across the appropriate elements of the expanded

state vector n∗t with the splitting rates determined by the ratios of the expected values

E[ui(3j1),t] for i = 1, 2, . . . , 2t−1 + 4. Binomial splitting functions will be used to split the

multi-parent elements of nt across the appropriate elements of n∗t . Elements in the in-

termediate vectors can then be obtained using deterministic processes conditional on the

simulated splits and observed data or they can be drawn stochastically using constrained

conditional distributions that are functions of the binomials specified in Eqs. (4.4.1a)-

(4.4.1f).

Under the sequential approach to model fitting discussed in Section 3.3.6 the initial

step typically involves simulating the initial states from their prior distribution (Eq. (3.3.1a))

g0(n0|Θ). Alternatively they can be assumed to be known. The directed process tree



162

diagram in Figure 4.6 illustrates the progression of the model from n0 to n1. From Sec-

tion 4.4.1 the expanded state vector is equivalent to u3,1 and

Eu3,1|n0 [u3,1] =



(1− pj)πφjnj,0
pjπφjnj,0

(1− pa)φjnj,0
paφjnj,0

(1− pj)πφana,0
pjπφana,0

(1− pa)φana,0
paφana,0


The observation y1,1 = nj1,1 needs to be split across u13j1,1 and u23j1,1. A binomial

splitting function is used to simulate the values. As for the example in Section 4.3.1, the

rate parameter is determined using the ratio of the approximate expected values of the

appropriate expanded state vector elements:

u∗1(3j1),1|nj1,1 ∼ Binomial(nj1,1,
φjnj,0

φjnj,0 + φana,0
)

with u2(3j1),1 = nj1,1 − u1(3j1),1. Similarly, the observation y2,1 = na1,1 needs to be split

across u13a1,1 and u23a1,1:

u∗1(3a1),1|na1,1 ∼ Binomial(na1,1,
φjnj,0

φjnj,0 + φana,0
)

with u2(3a1),1 = na1,1 − u1(3a1),1. The values in Figure 4.8 in green font denote elements

that are assumed known or have been simulated from the trial density pdf h1(). Unknown

values that are still to be simulated are denoted in plain black font. The current structure

of the process tree is one that reoccurs frequently throughout the model and a general

algorithm can be developed to generate the unobserved elements in trees demonstrating

this structure. The key features of this structure for a process tree generated from the ith
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Figure 4.8: Process Tree diagram for the evolution from n0 after splitting over convo-
lutions. “Known” values denoted in green font.

(i = 1, 2, . . . , 2t + 4) element of the state vector at time t− 1 are:

1. The abundance of the parent node (an element of ni,t−1) is assumed known.

2. The abundance of marked juveniles in the ith tree ui(3j1),t has been simulated via

splitting.

3. The abundance of captured adults in the ith tree ui(3a1),t is assumed known.

4.4.3 The Conditional Generation Approach Algorithm

A general procedure, which shall be referred to as the conditional generation approach

(CGA) algorithm, can now be specified. Again, for the process tree generated from the

ith element of the state vector at time t − 1 there are two objectives under the CGA

algorithm: firstly, to stochastically simulate a value for ui(1),t subject to the constraints

imposed by ni,t−1, u∗i(3j1),t and u∗i(3a1),1 and secondly, to stochastically simulate a value for

ui(2j),t subject to the constraints imposed by u∗i(1),t and u∗i(3j1),t. The dependence on the

parameters Θ is implicit in the following distributions to reduce the notation.

Simulating survivors

The first objective is to simulate ui(1),t, the number of animals from ni,t−1 that survive

until the end of time period t = 1. To reduce notation define v = ni,t−1, w = ui(1),t,
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x = ui(2j),t, y = ui(3j1),t, and z = ui(3a1),t. Also, assume that ni,t−1 represents juvenile

animals born in time t− 1. Then, the distributions are:

w|v ∼ Binomial(v, φj) (4.4.3)

z|w ∼ Binomial(w, pa) (4.4.4)

x|w ∼ Binomial(w, π) (4.4.5)

y|x ∼ Binomial(x, pj) (4.4.6)

y|w ∼ Binomial(w, πpj) (4.4.7)

For the entire tree generated from v, the unknown elements of interest are w and x,

whilst the elements with values assumed to be known (from simulation) are v, y and z.

Then, the conditional joint distribution of w and x given y, z and v is

p(w, x|y, z, v) =
p(w, x, y, z, v)

p(y, z)
=
p(y, z|w, x, v)p(w, x, v)

p(y, z)

=
p(y|x)p(z|w)p(x|w)p(w|v)∑v

w′=max(y,z)

∑w′

x′=y p(y|x′)p(z|w′)p(x′|w′)p(w′|v)
(4.4.8)

The objective is to simulate w = ui(1),t which requires the marginal distribution of w given

y, z and v. This is given by

p(w|y, z, v) =
p(y|w)p(z|w)p(w|v)∑v

w′=max(y,z) p(y|w′)p(z|w′)p(w′|v)
for max(x, y) ≤ w ≤ v (4.4.9)

Thus, under the CGA the trial density ht consists of a function of the binomial distribu-

tions specified in Eqs. (4.4.1a) - (4.4.1f). The range of plausible values that w can take

is conditional on the simulated values for x, y and v. Therefore, to simulate a value for

w all possible values of w need to be enumerated and the marginal density p(w|y, z, v)

evaluated for each. This process produces a set of all plausible values of w, each with

an evaluated probability, thus forming a non-uniform finite discrete distribution on the

range of w. A procedure is then needed to draw random deviates from this distribution
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and a method based on the alias method with table look-up (Devroye, 1973) is used. See

Appendix A for details.

Simulating births

The second objective is to simulate ui(2j),t, the number of new juveniles that are born

to the survivors from ni,t−1. Using the notation and distributions specified above, the

unknown element of interest is now just x, with w assumed known having been simulated

in the previous procedure. Therefore to generate x, the distribution of x conditional on

the simulated w,y and z is required:

p(x|w, y, z) =
p(w, x, y, z)

p(w, y, z)

=
p(y|x)p(z|w)p(x|w)

p(y, z|w)

=
p(y|x)p(z|w)p(x|w)

p(y|w)p(z|w)

=
p(y|x)p(x|w)

p(y|w)
for y ≤ x ≤ w (4.4.10)

As before, x can be considered a random variable with its support constrained by y

(obtained from the simulated split of the observed value of nj1,t) and w (the number of

survivors from the parent node simulated previously). The distribution for x will again

be non-uniform finite discrete and a value for x∗ can be drawn using the alias method.

Figure 4.9 displays the elements of a single arbitrary (juvenile) process tree. The

green font denotes elements whose values are now assumed known, either directly from

the data or from simulation. The only remaining unknown values are ui(3j0),t and ui(3a0),t

the unmarked juveniles and uncaught adults generated by the ith tree respectively. These
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Figure 4.9: Process Tree diagram for the evolu-
tion from nt−1 after simulation of elements using
the CGA algorithm. “Known” values denoted in
green font.

are obtained deterministically as:

ui(3j0),t = ui(2j),t − ui(3j1),t

ui(3a0),t = ui(1),t − ui(3a1),t

This conditional generation approach can be applied to the unknown elements of any pro-

cess tree exhibiting the three key features specified earlier. In the above explanation of

the CGA it was assumed that ni,t−1 represents juvenile animals born in time t−1, equally

it could represent adult animals. In the latter case the juvenile survival probability φj in

the above expressions and diagrams should be replaced with an adult survival probability

φa.

Referring back to the earlier example, the CGA can be applied to the sets of el-

ements generated by each parent node in n0. Thus, an application of the CGA al-

gorithm can be used to obtain a simulated value for u1(1),1 conditional on the values{
n∗j,0, u

∗
1(3j1),1, u

∗
1(3a1),1

}
and a simulated value for u1(2j),1 conditional on the simulated
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values
{
u∗1(1),1, u

∗
1(3j1),1

}
. The same process is applied to generate values of u2(1),1 and

u2(2j),1. The construction of the weights for this model fitting algorithm is an involved

process and, to avoid repetition with material in the next Chapter, details are omitted in

this section. One approach to calculating weights for a particular model fitting algorithm,

constructed according to the assumptions of the conditional approach, is presented in de-

tail in the next Chapter.

It should be noted that this conditional generation approach is not fully conditional

in that it does not automatically condition on the full set of known state elements, s1:T ,

across the duration of the study. For the first time period only the simulated initial states

n0 and the observations

s1 =

[
nj1,1

na1,1

]
act as constraints on the values that are simulated for the expanded state vector. For

example, there is no conditioning on the simulation of na0,1 = u1(3a0),1 +u2(3a0),1 to ensure

that the observed future values stemming from this node are biologically feasible. The

evolution of the elements nj0,1 and na0,1 of the state vector at time t = 1 through until time

t = 2 will produce the elements in the intermediate vector u3,2, u1(3a1),2 and u4(3a1),2. These

elements correspond to surviving animals from nj0,1 and na0,1 that were captured as adults

during the sampling occasion in t = 2. Summing these elements of u3,2 yields na01,2 =

u1(3a1),2 + u4(3a1),2. This capture-history pattern 01 contains a 1 in the rightmost position

which means this element is observed and na01,2 represents the known abundance of adult

animals that were captured during t = 2 but were not captured during t = 1. There is

no constraint on the simulation of nj0,1 and na0,1 to ensure that nj0,1 + na0,1 ≥ na01,2. In

general, a sequential approach to fitting these population dynamics models to capture-

recapture data will simulate state elements at some time t = tα that are implausible given
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the observation at some future time t = tβ. A particle that contains these implausible

state elements will have a zero importance sampling weight at time t = tβ. The occurrence

of zero-weighted particles then increases the rate of particle depletion and can result in a

skewed distribution of the final weights as discussed in Section 3.3.6. One approach that

aims to reduce the particle depletion is discussed in the next Chapter.



Chapter 5

The Bottom Up Implementation of
the Conditional Approach

5.1 Introduction

The following section details the implementation of the bottom-up approach to fitting the

conditional capture-recapture model framework to the observed capture-histories. The

example will consider a three period study, T = 3, in which the duration of each period

is assumed to be equal. Within each of these three periods the population is assumed

to evolve subject to survival and recruitment with measures taken on this population

modelled by the capture processes. As for the general approach detailed in the previous

chapter the same assumptions are made and reviewed briefly here. The first such as-

sumption is that the population experiences no migration and therefore mortality refers

solely to animals that die rather than animals that emigrate. Secondly, recruitment is

assumed to be determined solely by the number of new juveniles born into the population

during a single time period, no animals are assumed to immigrate from outside of the

population study area. The order of the processes is, as in the general method, assumed

to be survival, birth and capture.

Time period t (t = 1, 2, 3) begins immediately after the conclusion of the sampling

169
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occasion in time period t − 1. The survival process then models the survival of the an-

imals from the end of the sampling occasion until the beginning of the breeding season.

The birth and maturation process then models the recruitment to the population of new

juveniles born to the surviving mature adults. Following the birth process the capture

process then models the observation of the animals in the population. It is assumed that

there is no mortality during either the birth or the capture processes. The population is

classified into two age-cohorts: juveniles and adults. Juveniles born in time t− 1 mature

to become adults immediately prior to the birth process in time t. The group of adults

known to be one-year-old in time t is defined as those animals that were marked as ju-

veniles in time period t−1. This distinction allows the estimation of juvenile survival rates.

The general theory for the bottom-up approach to model fitting will be described for

fitting capture-history data obtained from a general T period study. Examples will be

given for a three period study to illustrate the appropriate application for the various

steps involved in fitting the model.

5.2 Simulation from T to T-1

As outlined in Sections 3.3.2 fitting state-space models under traditional approaches typ-

ically involves simulating the initial states n0 from some prior distribution (e.g. see

Eq. (3.3.1a)) before using a specified trial distribution (often the state process distribu-

tion, Eq. (3.3.1b)) to simulate the states at time 1, n∗1, conditional on these initial states.

As previously defined, the n∗t notation denotes a state vector simulated from some trial

density and distinguishes the simulated states from the true, but unknown, state vector

nt. Then, assuming an SIS fitting approach is being implemented (see Section 3.3.6), the

filtered states are obtained by resampling the particles using a weighted sampling scheme.
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The weights are determined by the choice of trial density and, assuming the state process

pdf is the chosen trial density, the weights are proportional to the model likelihood. This

likelihood, f1(y1|n∗1), is evaluated for the elements of the state vector n∗1 corresponding

to the observed measures on the states y1. Once this resampling process has been com-

pleted the trial distribution is then used to simulate the states at time 2, conditional on

the filtered states at time 1 and the same pattern of simulation, weighting and resampling

occurs for each time period until the final sample at time T .

Fitting the model using the bottom-up approach requires an alternative strategy that

begins with the most recent time period t = T . Therefore, the initial focus of the fitting

algorithm is on the state vectors nT−1 and nT and the intermediate states describing the

evolution between them. These state and intermediate elements will be simulated from a

trial density hT () that aims to increase the probability that all constraints imposed by the

observed abundances of capture-history patterns are met. From Section 4.3 it was seen

that the state vector at time t can be decomposed into two mutually exclusive vectors,

nt = [st, s̆t]
′. st contains the abundances of animals for all capture-history patterns that

include capture in year t. s̆t contains the abundances for all capture-history patterns that

do not include capture in year t. The first step in the bottom-up approach is to set the ob-

served elements of the state vector nT to the values of the observations yT . Thus, for this

example T = 3 s∗T ≡ yT , and from Figures 4.3 and 4.4 the initial allocation of elements in

nT can be represented as shown in Figure 5.1. A similar process is performed to set the

observed elements s∗t equal to the observations yt at all time periods t = 1, . . . , T − 1.

The next step is then to consider simulating elements of the expanded vector n∗T to

make the evaluation of the trial density hT () for the simulated states tractable. From Sec-

tion 4.4.1 it was demonstrated that an appropriate expansion of the state vector nT was
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y3 =


yj1,3
yy11,3

ya001,3

ya011,3

ya111,3

 ≡ s∗3 =


n∗j1,3
n∗y11,3

n∗a001,3

n∗a011,3

n∗a111,3

 =⇒ n∗3 =



nj0,3
yj1,3
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ya111,3


Figure 5.1: Assigning the observed elements of nT
for T = 3.

equivalent to the intermediate vector u3,T that describes the state of population immedi-

ately after the sampling occasion in time T . Thus, the next task is to simulate values for

the elements of the intermediate vector u3,T conditional on the observed and unobserved

states s∗T−1 and s̆∗T−1 respectively.

5.2.1 Splitting the Juveniles

The total number of new juveniles marked at time T is assumed to be known exactly and

corresponds to the sum across all elements of the intermediate vector u3,T that correspond

to marked juveniles. This can be expressed as

nj1,T =
2T−1+4∑
k=1

uk(3j1),T

and the requirement is then to split nj1,T across the relevant elements of u3,T . The splitting

is performed using the same approach as that described in 4.4.2. The generalised Leslie

matrix representation of the population dynamics of this model allows the approximate

expected values of each intermediate and state vector to be obtained. The process is made
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more complicated under the bottom-up approach because the elements of s̆T−1 will not

have been approximated at this stage of model fitting. The calculation of approximate

expected values is then performed in two stages:

1. Define u
[s]
·(3j1),T as the set of elements of u3,T corresponding to marked juveniles that

are generated by parent nodes belonging to sT−1. Then the expectation of these

elements is attained in the usual way:

E[u
[s]
·(3j1),T |sT−1, θ] = sT−1φ·πpj

where φ· =

{
φj if the element of st corresponds to an abundance of juvenile animals

φa if the element of st corresponds to an abundance of adult animals

2. Define u
[̆s]
·(3j1),T as the set of elements of u3,T corresponding to marked juveniles that

are generated by parent nodes belonging to s̆T−1. Also, define u
[̆s]
·(3a1),T as the set

of elements of u3,T corresponding to captured adults that are generated by parent

nodes belonging to s̆T−1. The expectation of u
[̆s]
·3j1,T is then

E[u
[̆s]
·3j1,T |sT−1, θ] = πpj

u
[̆s]
·3a1,T

pa

The second stage requires some more explanation. The two trees in Figure 5.5 denote the

evolution of the population between the second and third time periods for the animals

represented in the parent nodes. The first tree (Figure 5.5a) begins with nj1,2, the total

abundance of marked juveniles after capture in the second time period. This state element

is observed and therefore belongs to s2. Consequently the expected value can be obtained

by following the path along the branches in Figure 5.5a to obtain

E[u2(3j1),2|nj1,2, θ] = nj1,2φjπpj.
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The second tree (Figure 5.5b) begins with na10,2, the abundance of adult animals that were

captured during the first time period and survived, without being captured, through the

second time period. The state element is unobserved and belongs to s̆2. At this point in

the fitting process it will not yet have been simulated and therefore its value is unknown.

Consequently the expected value is obtained by conditioning on the value of u7(3a1),3 which

represents the number of the na10,2 animals that survive the third time period and are

captured during the third sampling occasion. Dividing this total by the adult capture

rate pa approximates the number of na10,2 that survived from the second time period.

Multiplying this by the birth rate π then approximates the number of juveniles that are

produced by these surviving adults. Multiplying this by the juvenile capture rate pj then

yields the approximate number of marked juveniles that were produced by the survivors

from the initial na01,2 adults.

u2(3j0),3 u2(3j1),3 u2(3a0),3 u2(3a1),3
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(a) Tree with observed parent node
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(b) Tree with unobserved parent node

Figure 5.5: Examples of trees generated from observed and unobserved
parent nodes describing the evolution of the population from time t = 2
until time t = 3.

There is one further complication with this approach; convolutions. As discussed on

page 157 for the capture-recapture models under the conditional approach there are multi-

parent state elements at time t that are obtained from summing over multiple elements
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of the intermediate state vector u3,t. Therefore, the value of u·(3a1),t will not always

correspond to a single element of yt and, consequently, will not be known exactly. This

is the case for all the elements of the intermediate vector u3,3 that correspond to animals

that are not captured during the second sampling occasion but survive the third time

period and are captured during the third sampling occasion. These animals are generated

from the elements of s̆2 which are the parent nodes nj0,2, ny10,2, na00,2 and na10,2. It can

be seen that surviving adults from both the nj0,2 and na00,2 state elements will contribute

to the observed state element na001,3. Equally the surviving adults from both ny10,2 and

na10,2 will contribute to na101,3. Therefore, in general, for unobserved parent nodes in nT−1

that produce captured adults which contribute towards a multi-parent element of nT , the

expected value of marked juveniles will only be obtained for the sum across multiple

elements of u
[̆sT−1]

(3a1),T−1. For the three time period example, the expected values of neither

u13j1,3 nor u53j1,3 can be estimated directly as only the sum na001,3 = u13j1,3 + u53j1,3 is

known. Therefore the expectation of u1(3j1),3 + u5(3j1),3 is obtained using the technique in

stage 2 detailed previously:

E[u1(3j1),3 + u5(3j1),3|na001,3, θ] =
πpjna001,3

pa
.

A similar situation occurs when estimating the expected values of u3(3j1),3 and u7(3j1),3.

Thus, the approximate expected values for juveniles marked in the third sampling occasion
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are obtained as follows:

E[u1,3j1,3 + u5,3j1,3|na001,3] = e1 =
πpjna001,3

pa

E[u2,3j1,3|nj1,2] = e2 = nj1,2φjπpj

E[u3,3j1,3 + u7,3j1,3|na101,3] = e3 =
πpjna101,3

pa

E[u4,3j1,3|ny11,2] = e4 = ny11,2φaπpj

E[u6,3j1,3|na01,2] = e5 = na01,2φaπpj

E[u8,3j1,3|na11,2] = e6 = na11,2φaπpj

These approximate expected values are then used to obtain the rates for a multinomial

split of the observed total of marked juveniles nj1,3. Let

ri =
ei∑6
i=1 ei

for i = 1, 2, . . . , 6

then

u∗•(3j1),3 ∼ Multinomial (nj1,3; {r1, r2, . . . , r6}) (5.2.1)

where u∗•(3j1),3 denotes the six elements

{
u∗1,3j1,3 + u∗5,3j1,3, u

∗
2,3j1,3, u

∗
3,3j1,3 + u∗7,3j1,3, u

∗
4,3j1,3, u

∗
6,3j1,3, u

∗
8,3j1,3

}
.

Let u
[s2]
(3j1),3 denote the elements of u3,3 which record the numbers of marked juveniles gener-

ated from the elements in s2. The elements in the vector s2 correspond to the abundances

of animals with a capture history pattern that included capture in time t = 2. Then,

each element of u
[s2]
(3j1),3 can be assigned after the multinomial split in Equation (5.2.1).

For the general T period study, after splitting the marked juveniles in this way it is then

necessary to consider assigning the adults captured at time T to the appropriate elements

of the intermediate vector u3,T .
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5.2.2 Splitting Observed Adults

In general, convolutions also occur when simulating values for elements of the intermediate

vector u3,T that correspond to animals captured at time T . As discussed on page 157,

for conditional models in which the state classification is determined by capture history

and age-cohort, there are several instances in which elements of the state vector nT are

obtained by summing multiple elements of u3,T . The general form of the capture history

patterns for these multi-parent nodes are enumerated on page 155. For the three time

period example it can be seen that na001,3, na101,3 and na111,3 are the multi-parent elements

of s3 and are given by the following sums over elements of u3,3:

na001,3 = u1,(3a1),3 + u5,(3a1),3 (5.2.2a)

na101,3 = u3,(3a1),3 + u7,(3a1),3 (5.2.2b)

na111,3 = u4,(3a1),3 + u8,(3a1),3. (5.2.2c)

It can also be seen that the multi-parent nodes are the same as those that led to convo-

lutions when splitting the marked juveniles. The only observed multi-parent node at time

T which has observed parent nodes at time T − 1 is na{q2}111,T where the pattern {q2} is

a string of T − 3 zeros. Thus, for the three period study, T = 3, and it can be seen that

animals from both ny11,2 and na11,2 will contribute to na111,3. Define u
[s2]
(3a1),3 as the set of

elements of u3,3 which correspond to adult animals captured in sample period 3 that were

also captured in period 2. Then it is necessary to split the observed total na111,3 over two

elements of u
[s2]
(3a1),3: u4,(3a1),3 and u8,(3a1),3. The directed graph in Figure 5.6 illustrates

the relationship between the elements that need to be estimated and known state element

values that act as constraints in the estimation process. The intermediate processes are

implicit in the graph and the parameters on the branches represent the product of the

parameters φa, 1, pa over the three consecutive sub-processes: survival, maturation and



178

n ny11,2

u4(3a1),3

na111,3

u8(3a1),3
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Figure 5.6: A directed graph to illustrate the convolu-
tion of na111,3 from the parent nodes ny11,2 and na11,2.
Intermediate nodes are omitted for clarity. Green text

denotes known values.

capture. It is assumed that

u4(3a1),3|ny11,2 ∼ Binomial(ny11,2, φapa)

u8(3a1),3|na11,2 ∼ Binomial(na11,2, φapa).

Then, the first task is to simulate a value for u4(3a1),3. The range of possible simulated

integer values is given by:

max(0, na111,3 − na11,2) ≤ u∗4(3a1),3 ≤ min(na111,3, ny11,2)

Thus, define

a = {max(0, na111,3 − na11,2), . . . ,min(na111,3, ny11,2)} .

Then, a splitting rate using the ratio of the approximate expected values for u4(3a1),3 and

u8(3a1),3 is calculated

rsp =
φapany11,2

φapany11,2 + φapana11,2

.

The density associated with each possible split of na111,3 into the pairs
{
u4(3a1),3, u8(3a1),3

}
is then evaluated

p(ai|na111,3, ny11,2, na11,2) =

(
na111,2

ai

)
(rsp)

ai(1− rsp)na111,2−ai for all ai ∈ a
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Then, these densities are normalised:

pi,norm =
p(ai|na111,3, ny11,2, na11,2)∑
i p(ai|na111,3, ny11,2, na11,2)

for all ai ∈ a (5.2.3)

Therefore, the values ai and associated probabilities from Equation (5.2.3), pnorm, form

a non-uniform finite discrete distribution on the range of a. The Alias method with table

look-up (Appendix A) can then be used to draw a value for u4(3a1),3. Once this is done,

the value for u8(3a1),3 is obtained deterministically as u8(3a1),3 = na111,3 − u4(3a1),3. For the

general T period study, the observed total na{q2}111,T needs to be split over the elements

u4(3a1),3 and uT+5(3a1),3.

5.2.3 Filling in the Trees

Having completed both the splitting of the observed marked juveniles at time T , nj1,T ,

and the splitting of convoluted observed numbers of marked animals na{q2}111,T , it is now

possible to calculate elements of the intermediate vectors u1 and u2. For all process trees

generated by observed parent nodes at time T −1, sT−1, the elements u
[sT−1]∗
3j1 and u

[sT−1]∗
3a1

will be known or will have been simulated by this stage. Hence, there will be K = 2T−2 +2

elements in sT−1 and for k = 1, 2, . . . , K the kth process tree in Figure 5.7 can be con-

structed. The notation in Figure 5.7 has been simplified and the superscript [sT−1] has

been omitted. The index k refers only to the elements in [sT−1] rather than all elements

in [nT−1]. For example u2(1),T denotes the number of ny11,T−1 animals that survive from

the previous year, rather than the survivors from nj1,T−1.

By applying the CGA algorithm (see page 163), values for uk(1),T and uk(2),T can then
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Figure 5.7: Process Tree diagram for the
evolution from sk,T−1 after splitting over
convolutions. “Known” values denoted in
green font.

be drawn and the remaining unknown elements of u
[sT−1]∗
3,T can be obtained deterministi-

cally:

u∗k(3j0),T = u∗k(2),T − u∗k(3j1),T

u∗k(3a0),T = u∗k(1),T − u∗k(3a1),T .

The next step is to complete the split of all remaining observed elements of sT that are

yet to be assigned to individual elements of u3,T .

5.2.4 Splitting across Convolutions

Following on from section 5.2.1, u∗1,3j1,3 + u∗5,3j1,3 and u∗3,3j1,3 + u∗7,3j1,3 both represent

convolutions, each of which requires an appropriate split to assign simulated values to

the remaining elements of u•3j1,3. Also, it can be seen from Eqn.’s (5.2.2a) and (5.2.2b)

that the multi-parent elements of n3 with unobserved parents nodes in n2 will also require

splitting.
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For Observed Ancestral Nodes

In general, for the T period study it can be seen that u∗3(3a1),T +u∗7(3a1),T = na{q2}101,T where

q2 denotes a sequence of T − 3 zeroes. The current task is to then determine appropriate

splitting rates for both the marked juveniles and captured adults that are generated by

the third and seventh nodes of nT−1. It can be seen in the second enumerated convolution

on page 155 that both ny10,T−1 and na{q2}10,T−1 will contribute to the multi-parent element

na{q2}101,T where {q2} is a string of T − 3 zeros. Also, for T ≥ 3, it can be seen that the

element ny10,T−1 is generated from the process tree with nj1,T−2 as a parent node such

that u2(3a0),T−1 = ny10,T−1. Equally, for T ≥ 3, the element na{q2}10,T−1 is generated from

the process tree with na{q2}1,T−2 as a parent node such that u6(3a0),T−1 = na{q2}10,T−1.

ny11,T−1

nj1,T−2

ny10,T−1

na{q2}101,T

na{q2}10,T−1

na{q2}1,T−2

na{q2}11,T−1

nT−2

nT−1

nT

φjpa

}}{{{{{{{{ φj(1−pa)

!!CCCCCCCC

φapa !!CCCCCCCC

φapa}}{{{{{{{{

φa(1−pa)

}}{{{{{{{{
φapa

!!CCCCCCCC

Figure 5.8: Process Tree diagram for splitting the convoluted element
na{q2}101,T conditional on observed ancestral elements. “Known” values de-
noted in green font.

The process tree diagram in Figure 5.8 illustrates the relationship between the ob-

served elements nj1,T−2,na{q2}1,T−2, the unobserved nodes ny10,T−1,na{q2}10,T−1 and the

total that requires splitting na{q2}101,T . The observed elements at T − 2 and T − 1 that

contribute to the convolved total na{q2}101,T can be thought of as the ancestral elements.

To ensure that simulated values for the state elements ny10,T−1 and na{q2}10,T−1 satisfy the

constraints imposed by the observed capture-history data s1:T it is necessary to include

the observed elements of nT−1 generated by the ancestral nodes in nT−2. For example; a
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simulated value of ny10,2 obtained from splitting na101,3 needs to be constrained so that it

cannot exceed either the value of its parent node, nj1,1, or the value nj1,1 − ny11,2 which

denotes the number of surviving marked juveniles from time t = 1 that have not been

recaptured in the second sampling period.

The simulated values of ny10,T−1 and na{q2}10,T−1 are then determined using the fol-

lowing approach. Firstly, to simplify the notation, define the following terms:

N1 = nj1,T−2

N2 = na{q2}1,T−2

v = ny11,T−1

w = ny10,T−1

x = na{q2}10,T−1

y = na{q2}11,T−1

z = na{q2}101,T .

Then, define the required distributions:

w|N1 ∼ Binomial(N1, φj(1− pa))

x|N2 ∼ Binomial(N2, φa(1− pa))

z| {w, x} ∼ Binomial((w + x), φapa).

Using these definitions the range of values that w can take to respect the constraints

imposed by the observed capture-history data is:

max(z −N2 + y, 0) ≤ w ≤ (N1 − v)
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and for x is

max(z −N1 + v, 0) ≤ x ≤ (N2 − y).

Given these ranges, define w as the set of integer values {max(z −N2 + y, 0), . . . , (N1 − v)}

consisting of L elements and x as the set of integer values {max(z −N1 + v, 0), . . . , (N2 − y)}

consisting of M elements. Then the joint conditional density for each possible pair

{wl, xm} for l = 1, . . . , L and m = 1, . . . ,M is evaluated:

p(wl, xm|N1, N2, v, y, z) =

(
N1

wl

)
(φjpa)

wl(1−φjpa)N1−wl×
(
N1

xm

)
(φapa)

xm(1−φapa)N1−xm

×
(
wl + xm

z

)
(φapa)

z(1− φapa)wl+xm−z

These densities are then normalised:

plm,norm =
p(wl, xm|N1, N2, v, y, z)∑

max(z−N2+y,0)≤w′≤(N1−v)
max(z−N1+v,0)≤x′≤(N2−y)

p(w′, x′|N1, N2, v, y, z)
. (5.2.4)

Define awx as the set of length L × M of pairs {wl, xm} (for l = 1, . . . , L and m =

1, . . . ,M). Then these pairs awx each have an associated probability given by Equa-

tion (5.2.4) and thus form a non-uniform finite discrete distribution on the range of awx.

A pair of values {wl, xm} can then be drawn using the Alias algorithm with table look-up.

Given simulated values n∗y10,T−1 and n∗a{q2}10,T−1 it is now possible to apportion the

observed number of marked adults na{q2}101,T to the intermediate vector elements u3(3a1),T

and u7(3a1),T . This is done using the splitting approach, described in section 5.2.2, that

was used to apportion na111,3 to u4(3a1),3 and u8(3a1),3. Similarly the convolved number of

marked juveniles, u∗3(3j1),T + u∗7(3j1),T , obtained from the juvenile splitting in section 5.2.1

can be allocated to u∗3(3j1),T and u∗7(3j1),T separately using the splitting approach from sec-

tion 5.2.2. For the example when T = 3, consider the process tree diagram in Figure 5.12.
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(a) Tree with parent node ny10,2
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(b) Tree with parent node na10,2

Figure 5.12: The process trees with parent nodes ny10,2 and na10,2 from
t = 2 to t = 3 after the convolved totals of marked juveniles and observed
adults have been split across the appropriate elements of the intermediate
vector u3,3. Known or simulated values are in green font.

The parent nodes and the observed child nodes (the marked juveniles and the captured

adults) are all now either known from the data or have been simulated. The remaining

unknown elements: the numbers of surviving adults, the numbers of new juveniles and

the numbers of these that are not captured during the sampling at time t = 3 for each

tree, can be simulated using the CGA algorithm as in section 5.2.3.

For Unobserved Ancestral Nodes

In the previous section the splitting of the marked juveniles and captured adults at-

tributable to the third and seventh elements of nT−1 involved the use of observed ancestral

parent nodes (the nj1,T−2 and na{q2}1,T−2 elements) and observed ancestral brethren (the

ny11,T−1 and na{q2}11,T−1 elements). These observed ancestral nodes were then used to

restrict the plausible range of values for the simulated elements ny10,T−1 and na{q2}10,T−1

and ensure the values were consistent with the constraints imposed by the capture-history

data.

In general, for the T period study it can be seen that u∗1(3a1),T + u∗5(3a1),T = na{q2}001,T
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where q2 denotes a sequence of T − 3 zeroes. The first enumerated convolution on

page 155 shows that both nj0,T−1 and na{q2}00,T−1 will contribute to this multi-parent

element na{q2}001,T . It can then be seen that both of these parent nodes are unobserved

and the splitting method of section 5.2.2 cannot be used. The ancestral parent node for

na{q2}00,T−1 is na{q2}0,T−2 which is unobserved and currently unknown. Similarly nj0,T−1

is obtained by summing all u(3j0),T−2 elements which are generated from both known and

unknown elements at time T − 2. Hence, the previous approach in which observed ances-

tral nodes were used to determine appropriate simulated values cannot be used either.

u1(3j0),T + u5(3j0),T u1(3j1),T + u5(3j1),T u1(3a0),T + u5(3a0),T u1(3a1),T + u5(3a1),T

u1(2),T + u5(2),T u1(1),T + u5(1),T

u1(1),T + u5(1),T

1−pj
yyrrrrrrr pj
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1−pa
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Figure 5.13: Combined intermediate nodes generated by parent nodes nj0,T−1 and
na{q2}0,T−1. “Known” values are in green font.

To make the necessary evaluation tractable it is expedient to combine the intermedi-

ate nodes that are generated by the parent nodes nj0,T−1 and na{q2}0,T−1. The process

tree diagram for these intermediate elements is shown in Figure 5.13 and illustrates the

feasible combinations. The parent elements are not included in this combined tree as the

survival probabilities for the juveniles, φj, and the adults, φa, are allowed to differ. It is

assumed that the birth parameter π and the capture probabilities pj, pa do not vary by

the age of the animals in the parent nodes and are therefore the same for the processes

that cause the population to evolve from each parent node.

Using this combined form for the intermediate elements the total u1(1),T + u5(1),T can

be simulated using the Negative Binomial to approximate the true distribution. Given
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the observed number of captured adults at time T that have the capture history pattern

0 {q2} 001 (where q2 denotes a string of T − 3 zeroes), the negative binomial distribution

can be used to approximate the distribution of the total number of these adults that were

available for capture at time T . Hence, it is assumed:

u1(1),T + u5(1),T ≈ NegBinomial
(
u1(3a1),T + u5(3a1),T , pa

)
.

The approximation is necessary because u1(3a1),T+u5(3a1),T can feasibly be zero which leads

to computational errors when simulating from this negative binomial density using the

standard function in the statistical software package R. The implemented approximation

is then

u1(1),T + u3(1),T + 1 ≈ NegBinomial
(
u1(3a1),T + u5(3a1),T + 1, pa

)
and once a simulated value of (u1(1),T + u5(1),T + 1)∗ is obtained, one is subtracted from

this total to give the simulated number of animals that were uncaught in the first T − 1

sampling periods and are currently alive.

Having simulated the value (u1(1),T + u5(1),T )∗ the next task is to determine an appro-

priate split. This can be obtained using a technique similar to that described in stage 2

in section 5.2.1. Although nj0,T−1 is not known, its observed counterpart nj1,T−1 is an

element of sT−1 and is therefore known exactly. Conditioning on this known value it is

then possible to obtain an approximate expected value for u1(1),T :

E[u1(1),T |nj1,T−1] = φj(1− pj)
nj1,T−1

(pj)
.

Similarly, although nj0,T−1 ∈ s̆T−1, the counterpart nj1,T−1 ∈ sT−1 and is therefore known,

hence an approximate expected value for u1(1),T is given by

E[u5(1),T |na{q2}1,T−1] = φa(1− pa)
na{q2}1,T−1

(pa)
.
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Then, a binomial distribution can be used to split (u1(1),T + u3(1),T )∗ where the rate

parameter is determined by the ratio of these two approximate conditional expectations:

u∗1(1),T |
{

(u1(1),T + u3(1),T )∗, nj1,T−1, na{q2}1,T−1

}
∼

Binomial

(
(u1(1),T + u3(1),T )∗,

nj1,T−1φj(1− pj)pa
nj1,T−1φj(1− pj)pa + na{q2}1,T−1φa(1− pa)pj

)
(5.2.5)

Once a value is simulated for u∗1(1),T , the value of u∗5(1),T is obtained deterministically since

u∗5(1),T = (u1(1),T + u5(1),T )∗ − u∗1(1),T .

Having split the sum across the appropriate elements of the intermediate vector u1,T ,

n u1(1),T

u1(3a1),T

na{q2}001,T

u5(3a1),T

u5(1),T

n

pa
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pa
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Figure 5.14: A directed graph to illustrate the con-
volution of na001,T across the trees containing the sim-
ulated elements u∗1(1),T and u∗5(1),T . Green text denotes

known values.

the next step is to split the surviving number of adults (u1(3a1),T + u5(3a1),T )∗ = na{q2}001,T

across the first and fifth trees. The relationship between these elements is represented in

Figure 5.14. The process used in section 5.2.2 to split summations of elements of u3,T

that corresponded to elements of sT can be used here. The sub-process distributions are
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again assumed to be Binomial such that

u1(3a1),T |u∗1(1),T ∼ Binomial(u∗1(1),T , pa)

u5(3a1),T |u∗5(1),T ∼ Binomial(u∗5(1),T , pa)

The range of plausible values for u1(3a1),T is then given by

max(0, na{q2}001,T − u5(1),T ) ≤ u1(3a1),T ≤ min(na{q2}001,T , u1(1),T )

and the set A is then defined as

A =
{

max(0, na{q2}001,T − u5(1),T ), . . . ,min(na{q2}001,T , u1(1),T )
}
.

The density associated with each possible split of na{q2}001,T across u1(3a1),T and u5(3a1),T

is then evaluated as

p(Ai|na{q2}001,T , u
∗
1(1),T , u

∗
5(1),T ) =

(
u∗1(1),T

Ai

)
(pa)

Ai(1− pa)u
∗
1(1),T

−Ai

×
(

u∗5(1),T

na{q2}001,T −Ai

)
(pa)

na{q2}001,T−Ai(1− pa)u
∗
5(1),T

−na{q2}001,T−Ai . (5.2.6)

These densities are then normalised

pAi,norm =
p(Ai|na{q2}001,T , u

∗
1(1),T , u

∗
5(1),T )∑

i p(Ai|na{q2}001,T , u∗1(1),T , u
∗
5(1),T )

for all Ai ∈ A (5.2.7)

such that the values A and their associated probabilities as obtained in Equation (5.2.7)

form a non-uniform finite discrete distribution on the range of A. A pair of values{
u∗1(3a1),T , u

∗
5(3a1),T

}
can then be drawn using the Alias method with table look-up. Having
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drawn these values, their unknown complements can be obtained deterministically as

u∗1(3a0),T = u∗1(1),T − u∗1(3a1),T

u∗5(3a0),T = u∗5(1),T − u∗5(3a1),T

A similar approach is used for splitting u1(3j1),T + u5(3j1),T across the first and fifth trees.

There is a slight added complexity for this splitting process in that the densities need

to be evaluated over the birth and juvenile capture processes rather than just the adult

capture process. However the general process is much the same as for the split of the cap-

tured adults. If the model for the birth process allows an individual animal to produce

more than a single young in a breeding season then the simulation and evaluation of state

and intermediate elements under the trial density h() becomes more complicated. This is

discussed in further detail in section 5.7

Having completed the split of both the captured adult state element na{q2}001,T and the

marked juveniles (u1(3j1),T + u5(3j1),T )∗ across the first and fifth trees it is now possible to

simulate values of new juveniles born to the surviving animals u1(1),T and u5(1),T . This is

done for both trees using the ‘Simulating births’ section of the CGA algorithm described

on page 165. Having simulated values for u∗1(2),T and u∗5(2),T it is then simple to assign

values to u∗1(3j0),T and u∗5(3j0),T using the deterministic relationship:

u∗1(3j0),T = u∗1(2),T − u∗1(3j1),T

u∗5(3j0),T = u∗5(2),T − u∗5(3j1),T
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5.2.5 Simulating Unobserved Parent Nodes

For observed ancestral nodes

After dealing with the required splitting over the convolutions of observed adults detailed

in section 5.2.2 and the associated convolutions of marked juveniles, there still remain

elements of s̆T that need to be simulated. If the study is based on more than three

sampling occasions, T > 3, then certain elements of s̆T−1 can be estimated using their

ancestral parent nodes (if known) and related elements of sT and sT−1. Simulating these

values can then allow elements of s̆T to be estimated.

na1101,T

na110,T−1

ny11,T−2 na11,T−2

na111,T−1

φa(1−pa)

}}||||||||||||

φpa
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vvmmmmmmmmmmmmmmmmmm

φapa

!!BBBBBBBBBBBB

Figure 5.15: A directed graph to illustrate
the relationship between the unobserved el-
ement na110,T−1 and its observed ancestral
parent, child and brethren nodes. Green

text denotes known values.

Consider an example for a study consisting of four sampling occasions T = 4. The

state element na110,T−1 belongs to s̆T−1 and is therefore unobserved. It is also a multi-

parent element as the surviving animals from both ny11,T−2 and na11,T−2 will contribute

to the total na110,T−1. It is also the sole parent node for the state element na1101,T which

is an element of sT and is known exactly. The relationships between these state elements

are illustrated in the directed graph in Figure 5.15.
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Then the following distributions are assumed:

na110,T−1|(ny11,T−2 + na11,T−2) ∼ Binomial(ny11,T−2 + na11,T−2, φa(1− pa))

na1101,T |na110,T−1 ∼ Binomial(na110,T−1, φapa).

Equally, it is assumed that

na1100,T |(ny11,T−2 + na11,T−2) ∼ Binomial
(
(ny11,T−2 + na11,T−2), (φa(1− pa))2

)
.

As can be seen in Figure 5.15, the ancestral parent nodes ny11,T−2 + na11,T−2 contribute

to both the observed state element, na111,T−1, and the unknown state element of inter-

est, na110,T−1. Thus, conditioning on the observed value, na111,T−1, the viable range for

na110,T−1 is determined as

na1101,T ≤ na110,T−1 ≤ (ny11,T−2 + na11,T−2 − na111,T−1).

Defining the set of values ans = {na1101,T , . . . , (ny11,T−2 + na11,T−2 − na111,T−1)} the den-

sities associated with each element of ans are obtained using the earlier distributions:

Let

Ai =

(
ans,i

na1101,T

)
(φapa)

na1101,T (1− φapa)ans,i−na1101,T

Bi =

(
ny11,T−2 + na11,T−2

ans,i

)
(φa(1− pa))ans,i(1− φa(1− pa))ny11,T−2+na11,T−2−ans,i

C =

(
ny11,T−2 + na11,T−2

na1101,T

)
(φa(1− pa)φapa)na1101,T (1− φa(1− pa)φapa)ny11,T−2+na11,T−2−na1101,T

Then,

p(ans,i|na1101,T , na111,T−1, na11,T−2, ny11,T−2) =
Ai ×Bi

C
. (5.2.8)
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These densities are then normalised

p(ans.norm,i) =
p(ans,i|na1101,T , na111,T−1, na11,T−2, ny11,T−2)∑
i p(ans,i|na1101,T , na111,T−1, na11,T−2, ny11,T−2)

=
AiBi∑
i(AiBi)

∀ans,i ∈ ans,i. (5.2.9)

As in the approaches covered previously, the values ans and the associated probabilities

obtained from Equation (5.2.9) form a non-uniform finite discrete distribution on the

range of ans. A value for n∗a110,T−1 is then drawn using the Alias method with table look-

up.

From Figure 4.3 it can be seen that n∗a110,T−1 is the 11th element of nT−1, when T = 4.

Hence, the surviving number of n∗a110,T−1 adults produce u11(3j1),T new juveniles that are

marked during the capture occasion in time T . The simulated value u∗11(3j1),T will have

been obtained using the technique described in step 2 in Section 5.2.1 since na1101,T is

known exactly. Thus, u∗11(3j1),T , u11(3a1),T = na1101,T and n∗a110,T−1 are all either simulated

or known at this point. Hence the CGA algorithm (see page 163) can be applied to sim-

ulate values of u11(1),T and u11(2),T . Having done this the values of u11(3j0),T and u11(3a0),T

are obtained deterministically as described in Section 5.2.3.

This process is then repeated for all elements of s̆T−1 that are constrained by elements

of sT−2 and, in turn, constrain elements of sT . Each of the mono-parent elements belonging

to s̆T−1 that have yet to be simulated will, by definition, have only one ancestral parent

node in s̆T−2. The simulated process is ultimately the same for these cases as for the

example with convolutions given above and represented in Figure 5.15.
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For unobserved ancestral nodes

For the elements of s̆T−1 that do not have observed ancestral parent nodes, that is they

have parent nodes that are elements of s̆T−2, the above approach cannot be implemented.

Denote the set of these elements by s̆
[̆sT−2]
T−1 and assume it consists of V elements. At this

stage all multi-parent elements of nT will have been split over the appropriate elements of

u3,T . Therefore, each element s̆
[̆sT−2]
v,T−1 will produce a number of surviving adults that are

captured at T , uv(3a1,T ), that is known exactly. Then, the approximate negative binomial

approach, as described on page 185, can be used to simulate a value for uv(1),T . Therefore,

this proposed component of the trial density is

uv(1),T + 1 ≈ NegBinomial
(
uv(3a1),T + 1, pa

)
and once the value of (uv(1),T + 1)∗ is obtained one is subtracted from it to give the simu-

lated number of s̆
[̆sT−2]
v,T−1 animals that survived after the capture process in T−1 until time T .

Having simulated u∗v(1),T and with u∗v(3j1) obtained from the split of the marked juve-

niles, nj1,T , using the technique described in step 2 in Section 5.2.1, a simulated value for

u∗v(2),T can be obtained using the CGA algorithm. The number of new juveniles, u∗v(2),T ,

born to the surviving adults, u∗v(1),T , is simulated using the technique described in the

“Simulating Births” section on page 4.4.3. In terms of the simplified notation used in

the description, x represents the value that needs to be simulated, u∗v(2),T , conditional on

both w, which represents u∗v(1),T , and y, which represents u∗v(3j1),T . Therefore, u∗v(2),T will

have a non-uniform finite discrete distribution and a value can be drawn using the Alias

algorithm.

At this stage all of the elements of the intermediate vectors denoting new juveniles,

u2,T , and surviving animals, u1,T , will have been simulated. All elements of u3,T will



194

also now have been simulated, assigned known values or set deterministically, conditional

on the simulated elements of u1,T and u2,T . To complete the simulation of all state and

intermediate elements that describe the population’s evolution between times T−1 and T ,

the state elements belonging to s̆
[̆sT−2]
T−1 need to be generated. The element of s̆

[̆sT−2],∗
v,T−1 can

be simulated using the approximate negative binomial approach described in the above

section. It is assumed that

s̆
[̆sT−2],∗
v,T−1 + 1 ≈ NegBinomial

(
u∗v(1),T + 1, φ·

)
where φ· is φj if s̆

[̆sT−2],∗
v,T−1 corresponds to the unmarked juveniles at time T − 1 and is φa

for all other elements of s̆
[̆sT−2],∗
T−1 . As before, one is subtracted from the simulated value of

(s̆
[̆sT−2]
v,T−1)∗ to obtain a simulated value for the unobserved state element s̆

[̆sT−2],∗
v,T−1 at time T−1.

5.2.6 Completion of state vector at T

After the completion of the preceding steps all elements of the intermediate vectors,

u1,T ,u2,T and u3,T will have been simulated as will all previously unknown elements of

the state vector at time T − 1, nT−1. It still remains to specify the elements of s̆T that

have yet to be assigned values. Given that all elements of the intermediate vector, u3,T ,

that corresponds to the state of population immediately after the sampling occasion in

time T have been specified, it is a simple process to specify the remaining elements of s̆T .

For example, the number of unmarked juveniles that are alive in the population after the

sampling occasion at time T is given by

nj0,T =
2T−1+4∑
i=1

ui(3j0),T

The other elements of s̆T are either mono-parent elements, thus having direct correspon-

dence with a single element of u3,T , or are multi-parent elements obtained by summing
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across two elements of u3,T .

This final step completes the process of simulating all elements of the state vectors at

times T and T − 1 as well as all elements of the intermediate vectors u1,T ,u2,T and u3,T

that map the evolution of the population from the end of the sampling period in time

T −1 to the end of the sampling period in time T . The final state vector n∗T then contains

elements that correspond to the most recent observations on the population as well as

elements that correspond to estimates of the abundance of subsets of the population that

are classified as alive but unobserved during the sampling process at time T .

5.2.7 Evaluating the densities

A general approach to fitting state-space models to mark-recapture data using the condi-

tional approach was discussed in section 4.4.2. As specified in Eq. (4.4.2), the weight for

a simulated state vector calculated for a single time period is proportional to the ratio

of the state process distribution, gT (), to the trial density hT (). Given that all the re-

quired state and intermediate elements have been simulated by this stage to produce the

expanded vector, the evaluation of the densities under both the state process distribution

(Eq. (3.3.1b)) and the trial density h() now becomes tractable.

For this model, in which it was assumed an adult animal could have at most one

young per breeding season, it is assumed, under the state process gt(), that the survival,

birth and capture processes are all modelled with binomial distributions. Therefore, the

cumulative effect of these sub-processes on the evolution of the animals in a tree corre-

sponding to a single parent node can be modelled with two multinomial distributions.

One multinomial is used to represent the fates of the initial animals in the tree; that is
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those animals represented in the parent node (the element of nT−1). The other multino-

mial then represents the newborn animals, the corresponding elements of u2,T , that are

introduced into the population as the progeny of the surviving animals from the parent

node. These two multinomials are evaluated for each tree (i.e. for each element of nT−1)

and the product of all these multinomials is taken to give the density under the state

process distribution gT (nT |nT−1).

ur(3j0),T ur(3j1),T ur(3a0),T ur(3a1),T

ur(2),T ur(1),T

ur(1),T

nr,T−1

1−pj
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(a) Nodes for multinomial 1
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(b) Nodes for multinomial 2

Figure 5.19: A single process tree with the elements used in the evaluation of the first
multinomial are in green font in graph (a), the elements used in the evaluation of the second
multinomial are in green font in graph (b). φ• corresponds to φj/φa if nr,T−1 denotes
juveniles/adults.

Consider the tree generated by the rth element of nT−1 (1 ≤ r ≤ 2T−1 + 4). The

elements used in the evaluation of each of the two multinomials for this rth tree are illus-

trated in Figure 5.19. The first multinomial models the fates of the animals represented

by the parent node n∗r,T−1. During the evolution of the population from the states at time

T − 1 to those at time T there are three fates that can befall the animals in the parent

nodes. Firstly, the animals can survive from time T − 1 and are captured during the

sampling process at time T , these animals are denoted by u∗r(3a1),T . Secondly, the animals

can survive from time T − 1 but are not captured during the sampling process at time T ,

these animals are denoted by u∗r(3a0),T . Finally, the animals can fail to survive the period



197

between the end of sampling at time T − 1 and the beginning of the breeding season at

time T , these animals are then obtained as the difference between the parent node and the

number of animals that are known or simulated to have survived. Hence, if the number

of animals from the rth parent node nr,T−1 that die are denoted as u∗r(dead),T−1 this value

can be obtained as

u∗r(dead),T = n∗r,T−1 − (u∗r(3a0),T + u∗r(3a1),T )

Hence, the multinomial (more precisely, trinomial) distribution for the fates of the animals

in the parent node n∗t,T−1 is given as

u∗r(3a0),T , u
∗
r(3a1),T , u

∗
r(dead),T ∼ Multinomial(n∗r,T−1;φ·(1− pa), φ·(pa), 1− φ·).

The second multinomial models the fates of the newborn animals represented by the

intermediate state element u∗r(2),T that are produced by the surviving animals u∗r(1),T .

There are, as before, three mutually exclusive and exhaustive ways in which the new ani-

mals can be classified. Firstly, the newborn animals can be captured during the sampling

process at time T , these animals are denoted by u∗r(3j1),T . Secondly, the newborn animals

can remain uncaught during the sampling process at time T , these animals are denoted

by u∗r(3j0),T . Finally, the surviving adults, u∗r(1),T , can be split between those animals that

breed and those that do not produce any young. This distinction needs to be incorpo-

rated into the model and necessitates the definition of the number of non-breeding adults.

These animals are obtained as the difference between the number of survivors from the

parent node and the number of new juveniles that are known or simulated to have been

produced. Hence, if the number of non-breeding adults is denoted as u∗r(nb),T this value is

obtained as

u∗r(nb),T = u∗r(1),T−1 − (u∗r(3j0),T + u∗r(3j1),T )

Hence, the multinomial (more precisely, trinomial) distribution for the fates of the new
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born juveniles in time T is given as

u∗r(3j0),T , u
∗
r(3j1),T , u

∗
r(nb),T ∼ Multinomial(u∗r(1),T−1; π(1− pj), πpj, 1− π).

Then, let adr,T = (u∗r(3a0),T , u
∗
r(3a1),T , u

∗
r(dead),T ) denote the set of intermediate ele-

ments corresponding to the three classifications of possible fates for the animals rep-

resented by the parent node nr,T−1. Similarly, define the set of intermediate elements

corresponding to the three classifications of new juveniles for the rth tree as njr,T =

(u∗r(3j0),T , u
∗
r(3j1),T , u

∗
r(nb),T ). Then the evaluation of the state process pdf is given by

gt(nT |nT−1) =
2T−1+4∏
r=1

p(adr,T |nr,T−1)p(njr,T |ur(1),T ) (5.2.10)

where

p(adr,T |nr,T−1) =
n∗r,T−1

u∗r(3a0),T ! u∗r(3a1),T ! u∗r(dead),T !
×

[φ•(1− pa)]u
∗
r(3a0),T [φ•(pa)]

u∗
r(3a1),T [1− φ•]u

∗
r(dead),T (5.2.11a)

p(njr,T |ur(1),T ) =
u∗r(1),T

u∗r(3j0),T ! u∗r(3j1),T ! u∗r(nb),T !
×

[π(1− pj)]u
∗
r(3j0),T [π(pj)]

u∗
r(3j1),T [1− π]u

∗
r(nb),T (5.2.11b)

This expression can be shown to be equivalent, but more concise notationally, to taking

the products of the pdfs representing each individual subprocess.

The evaluation of the trial density h(u∗3,T |yT ,n∗T−1) where u∗3,T is the expanded state

vector (see page 160) is then achieved by evaluating the series of probability functions

that are specified in sections 5.2.1:5.2.6.

However, due to the “bottom-up” nature of the model fitting process the trial density
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can more accurately be written as

hT (u∗3,T , s̆
∗
T−1|yT ,yT−1,yT−2).

The elements that need to be specified to evaluate the trial density are those contained in

the intermediate vector u∗3,T and those in s̆∗T−1 which are the unobserved components of the

state vector at time T −1. Therefore, all of these elements combine to form the expanded

state vector necessary to make the density evaluation tractable. It can be seen that the

simulation of the intermediate vector u∗3,T is conditional only on the constraints imposed

by the observed capture histories recorded during the samples at times T and T − 1. As

seen in section 5.2.5 the generation of the elements in s̆∗T−1 is typically conditional on the

already simulated elements of u∗3,T as well as the observed capture histories during the

sampling at time T − 2. Therefore the only elements of n∗T−1 that act as constraints on

the simulated values of u∗3,T are themselves determined by the observed capture histories

yT−1. Hence the simulation of the expanded vector
[
u∗3,T , s̆

∗
T−1

]
is conditional on these

three sets of observations and by specifying the trial density in this form the dependency

on the observed capture histories is made explicit.

The list of processes described in sections 5.2.1:5.2.6 can be summarised as follows:

a) Section 5.2.1 - splitting the observed juveniles captured during sampling at T over

individual and convolved trees.

b) Section 5.2.2 - splitting the observed adults captured during sampling at T over

convolved nodes where possible.

c) Section 5.2.3 - the CGA algorithm is used to simulate the intermediate nodes for

trees with a known parent node element and with elements corresponding to cap-

tured juveniles and adults also assumed known.
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d) Section 5.2.4 - splitting convolved elements of intermediate vectors over trees ema-

nating from either observed or unobserved ancestral nodes.

e) Section 5.2.5 - simulating parent nodes corresponding to animals that were alive but

not captured during sampling at T − 1 for trees emanating from either observed or

unobserved ancestral nodes.

f) Section 5.2.6 - completing the specification of the state vector nT through assigning

individual or summed elements of u3,T .

Each element in the state vector nT and the preceding intermediate vectors, u1,T , u2,T

and u3,T , should appear in the density evaluation under both the state process pdf gT ()

and the trial density pdf hT (). Due to constraints imposed by the observed data yT ,

many of the state and intermediate elements are set deterministically, which means that

any component of the trial density associated with their simulation can only evaluate to

unity. As a consequence, these components are not explicitly included in the evaluation

of the trial density pdf.

Under a standard sequential importance sampling scheme, see Section 3.3.6, the ratio

between the evaluated state process distribution, gT (), and the trial density hT () deter-

mines the weights by which the particles are resampled to obtain the filtered states. These

filtered states would then be projected forward across the next time period and resampled

according to the updated importance sampling weights. However, under the bottom-up

approach this (re)sampling step cannot be applied due to the impact any new observa-

tions yT+1 will have on the previously simulated states n∗1:T .

This problem can be illustrated by considering the impact a new observation would

have on the mechanism used to calculate the sampling weights under both the basic
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sequential importance sampling approach and the bottom-up fitting approach. Consider

a set of n particles (as defined in Section 3.3.6) and consider again the definition of the

weight assigned to a simulated state vector (see Eq (4.3.1)). The weight accorded to the ith

particle (i = 1, . . . , n) for the simulated states n∗T+1 conditional on the new observations

yT+1 under the basic SIS approach is obtained as follows where the ∗ superscript is omitted

for clarity:

w
(i)
T+1 ∝

p(n
(i)
T+1|y1:T+1)

hT+1()

∝
fT+1(yT+1|n

(i)
T+1)p(n

(i)
T+1|y1:T )

p(yT+1|y1:T )

hT+1(n
(i)
T+1|n

(i)
T ,y1:T+1)

∝
fT+1(yT+1|n

(i)
T+1)p(n

(i)
T |y1:T )gT+1(nT+1|n

(i)
T )

p(yT+1|y1:T )

hT+1(n
(i)
T+1|n

(i)
T ,y1:T+1)

∝
fT+1(yT+1|n(i)

T+1)p(n
(i)
T |y1:T )gT+1(nT+1|n(i)

T )

hT+1(n
(i)
T+1|n

(i)
T ,y1:T+1)

∝ p(n
(i)
T |y1:t)gT+1(nT+1|n(i)

t )

hT+1(n
(i)
T+1|n

(i)
T ,y1:T+1)

∝ w
(i)
T

gT+1(nT+1|n(i)
T )

hT+1(n
(i)
T+1|n

(i)
T ,y1:T+1)

. (5.2.12)

In the above formulation fT+1() denotes the observation process distribution (see Eq. (3.3.1c)),

gT+1() denotes the state process distribution (see Eq. (3.3.1b)), hT+1() denotes the trial

density or proposal distribution, p(n
(i)
T |y1:T ) denotes the pdf of the filtered states nT con-

ditional on the observed data up to time T and the other distributions p() do not need

to be made explicit. The original definition of hT+1() is used to maintain consistency

with the notation introduced in section 4.3.1 as well as to preserve a degree of clarity in

the above equations. The alternative expression for hT+1 can be substituted in and the

following underlying argument remains valid.
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The sequential nature of the weight calculation can be seen from Eq. (5.2.12). The

filtered states at time T , n∗T , are projected forward to time T + 1 under the trial density

hT+1() and are therefore constrained by the new observations yT+1. The updated weight

w
(i)
T+1 is then simply obtained by scaling the previous weight w

(i)
T by the ratio between

the evaluated state process and trial distributions, gT+1()/hT+1(). Therefore, for any t

(t = 1, . . . , T − 1), given the current weight w
(i)
t , the updated weight w

(i)
t+1 is given by

w
(i)
t+1 ∝ w

(i)
t

gt+1(nt+1|n(i)
t )

ht+1(n
(i)
t+1|n

(i)
t ,y1:t+1)

. (5.2.13)

Thus, once the weights at t for the ith particle are obtained under the basic SIS approach,

the weighting for any future resampling due to the addition of new observations does not

require any recalculation of these existing weights. That is, under the sequential approach,

the simulated states n∗0:t are conditional only on the observations up to time t, y1:t, and

therefore do not change in the presence of new observations yt+1. This is not the case for

the bottom-up fitting approach.

Consider again the three time period example. Section 5.2.4 described the simulation

of the convolved intermediate vector components u∗3(3a0),3 and u∗7(3a0),3 that sum to give

the state element n∗a100,3. This state element is effectively conditioned on the simulated

values of u∗3(3j1),3 + u∗7(3j1),3 and the observed value na101,3. However there is no condi-

tioning that ensures the simulated value of the convolved state element n∗a100,3 will be

biologically feasible given any future observation. For example, if the population was

monitored for a further time period and a mark-recapture sampling process occurred at

t = 4 then this new vector of observed capture histories y4 would contain the element

na1001,4 corresponding to adult animals that were marked initially in the first sampling

occasion but were not captured again until the fourth sample. To be biologically feasible

the number of animals that were marked initially in the first sample but not captured
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in the second or third samples (na100,3) must be at least as large as the number of these

animals that survive from the first time period and are then recaptured in the fourth time

sample: (na1001,4).

The aim of simulating states under the trial density ht() can be thought of as an at-

tempt to increase the probability that ft(yt|n∗t ) = 1. For this example it is quite possible

that the states simulated under h3() will lead to f4(y4|n∗4) = 0 since there is no feature

in the trial density h3() that ensures n∗a100,3 ≥ na1001,4; a condition that is required due

to the constraints imposed by y4. Thus, for any particle containing the simulated state

element n∗a000,3 such that n∗a100,3 < na1001,4, under the conditional generation approach, the

observation process distribution f4(y4|n∗4) will evaluate to zero and the updated weight

for that particle will be zero. Hence, proceeding in a sequential manner and updating the

weights whenever new observations occur can result in significant particle depletion.

To try and reduce the potential particle depletion it is necessary to adopt an approach

that increases the probability that all simulated states n0:t+1 respect the constraints im-

posed by all observed data y0:t+1. Under the bottom-up approach the inclusion of new

observations yt+1 requires the entire set of state vectors over all time periods n0:t+1 to

be simulated to replace the previous set n∗0:t. That is, the simulated states are updated

whenever new observations enter into the model and can therefore be considered smoothed

estimates of the true states. By adding new observations to the model the previously sim-

ulated states must change to respect the constraints imposed by the new observation.

The existing particle weights will therefore change in accordance with the new observa-

tion at time t+1 and, consequently, cannot be updated sequentially. The particle filtering

approach used to fit the models to the observed data under the bottom-up conditional

generation approach is then akin to an importance sampling approach (see Section 3.3.6).
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Under an importance sampling approach the posterior distribution of the states and

associated parameters is then obtained by a single weighted sampling step that occurs

only after the state process densities gt
(
n∗t |n∗t−1

)
and trial densities ht(n

∗
t |n∗t−1,yt) are

evaluated at each time period t for 1 ≤ t ≤ T .

Therefore, before a sampling step can be implemented it is necessary to simulate

the remaining unknown state elements s̆0:T−2 across all time periods conditional on the

observations y1:T and the currently simulated states n∗T−1:T . The fitting procedure is

detailed in the remainder of this chapter.

5.3 Simulation from t = T − 1 to t = 2

Following the completion of the processes described in Section 5.2 the next step is to use

those processes to simulate the elements of the expanded vector such that the evaluation

of the trial density ht() is tractable for 3 ≤ t ≤ T − 1. As was the case for the previ-

ous time period an appropriate expanded vector is the combined vector
[
u∗3,t, s̆

∗
t−1

]
for

3 ≤ t ≤ T − 1. The elements of u3,t and s̆∗t−1 are then simulated using a sequence of

processes similar to those detailed on page 200.

The simulation from T − 1 to 2 can then be thought of as a sequential process in

which the state vector nt−1 and intermediate state vectors u1,t,u2,t and u3,t are simulated

conditional on the previously simulated state vector n∗t and the observations yt−1:T . The

processes used to simulate the expanded state vector
[
u∗3,t, s̆

∗
t−1

]
under the trial density

ht() are identical for each time period t between T − 1 and 2. Due to the definition of

yearlings and the effect this has on the structure of the state vector n1, the processes

required to simulate the state and intermediate vector elements mapping the transition
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between the second and first time periods differ to those described here. This is discussed

in more detail in Section 5.4.

The methods detailed in the following sections are only implemented if the bottom-up

conditional generation approach is used to fit models to data gathered from at least four

separate mark-recapture sampling periods. For three samples or less, T ≤ 3 and therefore

T − 1 ≤ 2 meaning that model fitting is completed using the methods of Sections 5.4 and

5.5 without needing to use the approach covered in section 5.3.

5.3.1 Assigning Known Values

The elements of nT−1 have all been assigned or simulated using the methods in the pre-

vious section. These values can then be assigned to the appropriate elements of the

intermediate vector u3,T−1 which represents the state of the population immediately after

the sampling process during time period T − 1. To do this an index needs to be produced

of the mono-parent elements of nT−1. By identifying these nodes a direct correspondence

between the parent node in nT−1 and the intermediate node in u3,T−1 can be established

and the values then assigned.

Section 5.3.2 discusses the automated approach to identifying the multi-parent ele-

ments. However, before performing this step it is useful to first focus on splitting the

elements of nT−1 that correspond to adults into two lists; one for those elements also in

the vector of observed elements sT−1 and the other for those elements also in the vector

of unobserved elements s̆T−1.

This automated method can be applied to the state vectors in each time period t

for 2 ≤ t ≤ T − 1. Consider the elements of the state vector at time t − 1, nt−1, that
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NoCE Elements Index

Unobserved
1 na000,3 5
2 na010,3, na100,3 7,8
1 na110,3 11

Observed
1 na001,3 6
2 na011,3, na101,3 9,10
1 na111,3 12

Table 5.1: Runs of consecutive ob-
served/unobserved elements in n3. NoCE
represents the Number of Consecutive Elements.

correspond to adult animals. From Figure 4.3 it can be seen that for t ≥ 2 the first

four elements of nt correspond to juveniles (nj0,t and nj1,t) and adults that were marked

as juveniles in the previous sampling period (ny10,t and ny11,t). The remaining elements

represent the surviving adults in the population classified by capture-history pattern. Due

to this form of classification it is relatively straightforward to automate the procedure for

determining which of the elements of nt belong to either list. It can be seen that, in terms

of the sequences of consecutive elements corresponding to either observed or unobserved

animals, the adult elements observe a pattern based on binomial coefficients given by

appropriate rows of Pascal’s triangle. For example, at time t = 3 it can be seen (see

Figure 4.3) that the numbers of consecutive elements corresponding to animals that were

captured during the sampling process at t follows a (1 : 2 : 1) pattern; the third row of

Pascal’s triangle. This is replicated for the runs of consecutive elements corresponding

to animals that were observed at time t. The sequences of elements are presented in

Table 5.1. For time t = 4 the same pattern can be seen with both sequences following a

(1 : 3 : 3 : 1) pattern (see Table 5.2).

By observing the “Index” column in Tables 5.1 and 5.2 it can be seen that the runs of
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NoCE Elements Index

Unobserved

1 na0000,4 5
3 na0010,4, na0100,4, na1000,4 7,8,9
3 na0110,4, na1010,4, na1100,4 13,14,15
1 na1110,4 19

Observed

1 na0001,4 6
3 na0011,4, na0101,4, na1001,4 10,11,12
3 na0111,4, na1011,4, na1101,4 16,17,18
1 na1111,4 20

Table 5.2: Runs of consecutive observed/unobserved ele-
ments in n4. NoCE represents the Number of Consecutive
Elements.

consecutive elements of nt alternate between the observed and unobserved sequences. For

example, in the eight adults elements of n3 (indexed from 5 to 12), there is 1 unobserved

element followed by 1 observed element which is then followed by 2 unobserved elements

which are followed by 2 observed elements and so on. This regular pattern allows the

generation of the two lists to be automated using a simple recursive procedure. For the

state vector at time t, define the following sequences:

U1 =

(
t− 1

0

)
= 1

U2 = 1 +

(
t− 1

1

)
: 2×

(
t− 1

0

)
+

(
t− 1

1

)
= 3 : t+ 1

Uη = max(Uη−1) +

(
t− 1

η − 2

)
+ 1 : max(Uη−1) +

(
t− 1

η − 2

)
+

(
t− 1

η − 1

)
for 3 ≤ η ≤ t− 1

for η ∈ 3, 4, . . . , t − 1. Then define the sequence Uunobs = {U1, U2, . . . , Ut}. Add 4 to

each of these values and this gives the indexes of the elements of nt that correspond to

adult animals that are not captured during the sample process at time t. To obtain the

corresponding indexes for the adult animals observed at time t the following sequences
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are defined:

S1 = 1 +

(
t− 1

0

)
= 2

Sη = max(Sη−1) +

(
t− 1

η − 1

)
+ 1 : max(Sη−1) +

(
t− 1

η − 1

)
+

(
t− 1

η

)

for η ∈ 3, 4, . . . , t− 1. Then, similarly to above, the required composite sequence is given

by defining Sobs = {S1, . . . , St} and adding 4 to each of the values. The sequence Sobs

will then denote which elements of nt corresponding to adult animals are contained in the

vector st and will correspond to the vector of observations at time t, yt, excluding the

first two elements yj1,t and yy11,t.

Hence, the two required sequences of indexes are obtained. The next step is to auto-

mate the fitting algorithm to identify which of these elements correspond to multi-parent

nodes.

5.3.2 Assigning Known Multi-Parent Values

For the general model introduced in Section 5.1 the population was defined to consist

of two age cohorts meaning that the state vectors were classified primarily by capture-

history pattern but also by age-class structure. As was described on page 155, for this

type of population classification, there are three different scenarios in which multi-parent

elements of nt−1 that do not correspond to juvenile animals are obtained by summing

across two elements of u3,t−1 for 2 ≤ t ≤ T . This section describes the automated cre-

ation of the indexes defining the association between the multi-parent elements of nt and

their connection to the elements of u3,t and nt.
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As noted on page 155, the state vector at time t, nt, consists of 2t + 4 elements. Of

these, 2t elements correspond to the non-yearling adult animals. The three scenarios lead-

ing to convolved capture history patterns as detailed on page 155 lead to the multi-parent

elements of nt. Each of these three scenarios describes a pair of parent nodes at t−1 that

will contribute to a pair of elements contained in nt of which one element will correspond

to adult animals that are unobserved at time t with the other element being the observed

analogue. Consequently, six of the adult nodes in each state vector will be multi-parent

elements. For the age and capture history pattern classification used to construct the state

vectors in the preceding examples these six elements can be identified along with their

parent nodes in nt−1. Consequently, the correspondence between the multi-parent ele-

ments in nt and the elements in the intermediate vector u3,t can now be determined. This

allows the known or simulated values of the six multi-parent elements to be split across

the appropriate elements of u3,t. The relationships between the multi-parent elements of

nt, their corresponding elements of u3,t and their parent nodes in nt are given in Table 5.3.

For example, the elements n1,t−1 and n5,t−1 denote uncaught juveniles at t − 1 and

adult animals that remain unmarked after t − 1 capture occasions respectively. Each of

these parent nodes produces child nodes that represent the number of initial animals that

survive through to the capture occasion at time t. The surviving animals from the parent

node n1,t−1 (= nj0,t−1) are then split into those animals that are not captured at time t

(u1(3a0),t) and those that are (u1(3a1),t); the third and fourth elements of u3,t respectively.

Similarly, the surviving animals from n5,t−1 are split across u5(3a0),t and u5(3a1),t: the 19th

and 20th elements of u3,t respectively. It can be seen that both u1(3a0),t and u5(3a0),t cor-

respond to adult animals that have not been marked during any of the first t capture

occasions. Hence, the element n5,t is obtained by the sum u1(3a0),t + u5(3a0),t: that is the

sum of the 3rd and 19th elements of u3,t. Similarly, the element n6,t is obtained by the sum
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nt−1 u3a0,t u3a1,t Index Sum nt

1 3 4 3 + 19 5

5 19 20 4 + 20 6

3 11 12 11 + 27 8

7 27 28 12 + 28 t+ 7

4 15 16 15 + (4t+ 19) 2
(
1 +

(
t−1

1

))
+ 5

t+ 5 4t+ 19 4t+ 20 16 + (4t+ 20) 2
(
1 +

(
t−1

1

))
+
(
t−1

2

)
+ 5

Table 5.3: Index for splitting multi-parent elements of nt across the in-
termediate vector u3,t. The fifth column indexes the multi-parent nodes
elements of nt. The fourth column gives the indexes of elements of u3,t

that sum to give the multi-parent nodes. The second and third columns
give the indexes of elements of u3,t corresponding to unobserved and ob-
served adults respectively. The first column indexes the elements of nt−1

that contribute to the multi-parent nodes elements of nt.

u1(3a1),t + u5(3a1),t: that is the sum of the 4th and 20th elements of u3,t. From Table 5.3

it can be seen that the appropriate pair of indices for summing the elements of u3,t is

fixed for the first three rows but becomes a function of t for the remaining rows. This

allows the process of assigning the multi-parent elements of nt to u3,t to be implemented

automatically in the fitting algorithm.

By using the indexes obtained in Sections 5.3.1 and 5.3.2 it is then possible to iden-

tify the multi-parent nodes and determine which of these correspond to observed animals

and which denote unobserved animals. Section 5.3.4 describes the methods used to sim-

ulate an appropriate allocation of multi-parent elements of nt to the related nodes of the

intermediate vector u3,t.
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5.3.3 Splitting the Juveniles

At this point all state elements in nT−1 have been simulated and thus all elements of

u3,T−1 corresponding to a single element of nT will also be set to that value. The next

step is to allocate the number of juveniles at time T − 1 to the appropriate elements of

u3,T−1.

By applying the techniques in Section 5.2.5 the unknown elements of the state vector

nT−1 have been simulated. Thus, the element n∗j0,T−1 denotes the simulated number of

juvenile animals that were uncaught during the capture occasion in period T − 1. At

this stage both n∗j0,T−1 and nj1,T−1 are known; through simulation and directly from the

observed data yT−1 respectively. Both of these totals can then be divided and allocated

to the appropriate elements of u3,T−1 using the approach detailed in Section 5.2.1. The

required rates for the multinomial split of the unmarked juveniles are obtained using the

same techniques as for the marked animals. For the simple form of the model described

in section 5.1 in which the juvenile and adult capture rates, pj and pa respectively, are

constant within a particle the calculation of the splitting rates is simplified. In this case

the required rates for the multinomial splits of both the marked and unmarked juveniles

will be equivalent. The only difference in calculating the splitting rates for each of these

totals is the use of the parameters pj or 1− pj for the observed and unobserved juveniles

respectively. Since these parameters are constant across all nodes within a particle they

cancel out in the calculation of the ratios of expected values. More generally, for the

simple form of the model the required rates for the multinomial splits of both the marked

and unmarked juveniles do not depend on the values of either the birth rate parameter

π or the juvenile capture rate parameter pj. In more complex models either one or both

of the birth and juvenile capture probabilities may vary according to the element of the

state vector nT−2. These rates may be set independently or they may be modelled as
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functions of external covariates (see section 2.2.5). For example, it may be believed that

the probability of producing a juvenile in year t is influenced by the parent’s capture

history in year t − 1. For these more complex cases the simplification no longer applies

and the splitting rates for marked and unmarked juveniles need to be calculated separately.

For example, consider the split of the marked and unmarked juveniles at time T − 1.

These juveniles need to be split over the relevant elements of the intermediate vector

u3,T−1. For the simple model, as noted in section 5.3.2, the state vector at T − 2 nT−2,

consists of 2T−2 + 4 elements. Thus, both the marked and unmarked juveniles need to

be split over 2T−2 + 4 elements. However, as noted in the earlier description of splitting

juveniles (section 5.2.1), the convolutions of capture histories that result in multi-parent

elements mean the splitting rates cannot be obtained for all elements, hence the full split

cannot yet be calculated. From the generation of the indexes used to classify the observed

(section 5.3.1) and multi-parent (section 5.3.2) elements it can be seen that the splitting

rates, for both marked and unmarked juveniles, cannot be obtained separately for the

first, fifth, third or seventh elements. Hence, due to these convolutions, for this initial

multinomial based split the marked and unmarked juveniles can only be apportioned

into 2T−1 + 2 distinct parts. Thus, with reference to Equation (5.2.1), if ri denotes the

multinomial rate parameter for the ith scaled expected value then the distributions used

to simulate the split of unmarked and marked juveniles are:

u∗•(3j0),T−1 ∼ Multinomial
(
n∗j0,T−1; {r1, r2, . . . , r2T−1+2}

)
u∗•(3j1),T−1 ∼ Multinomial (nj1,T−1; {r1, r2, . . . , r2T−1+2})

where u∗•(3j0),3 and u∗•(3j1),3 denote the 2T−1 + 2 elements that the unmarked and marked

juveniles respectively are split across. As discussed earlier, for the simple model form the

splitting rates r are the same for both distributions.
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5.3.4 Completing the loop

Having completed the initial split of the marked and unmarked juveniles the model fitting

continues by broadly following the same series of processes that are outlined on page 200.

Splitting across Convolutions

Using the indexes from sections 5.3.1 and 5.3.2 it can be seen that the only multi-parent

element observed at T − 1 that is obtained from parent elements that have both been

observed at T−2 is nς,T−1 where ς = 2
(
1 +

(
T−2

1

))
+
(
T−2

2

)
+5. Again, in this context, “ob-

served at T −1” means that the capture history pattern associated with that element will

contain a 1 in the (T − 1)th position. The process of splitting the observed adults nς,T−1

across the known parent nodes is conducted using the technique described in section 5.2.2.

ny11,2 na11,2

u4(3a0),3 u4(3a1),3 u8(3a0),3 u8(3a1),3

na110,3 na111,3

φa(1−pa)

�����������
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φa(1−pa)

�����������
φapa

��?????????

��?????????
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Figure 5.20: A directed graph to illustrate the con-
volution of na110,3 from the parent nodes ny11,2 and
na11,2 after splitting the value na111,3. Intermediate
nodes are omitted for clarity. Green text denotes
known/simulated values.

Having split the observed adults it is now necessary to incorporate the splitting of the

associated multi-parent element that is unobserved at T−1 and is obtained from observed
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parent nodes. This split is conditional on the values obtained from splitting the observed

adults nς,T−1. This conditional splitting can be illustrated with an example. Assume that

the time-series of observed capture histories is extended to four capture occasions (i.e.

T = 4) and the initial model fitting from time T to T − 1 had been completed. Then the

observed multi-parent element na111,3 will have just been split over the trees generated by

the observed parent nodes ny11,2 and na11,2. It now remains to split the unobserved multi-

parent elements na110,3 over those same trees. The directed graph in Figure 5.20 is similar

to Figure 5.6 but now incorporates the multi-parent element na110,3 that is unobserved at

time 3 (i.e. T − 1). At this stage both u4(3a1),3 and u8(3a1),3 will have been simulated and

are therefore assumed known. Analogously to the example in Section 5.2.2 it is assumed

that

u4(3a0),3|ny11,2 ∼ Binomial(ny11,2, φa(1− pa))

u8(3a0),3|na11,2 ∼ Binomial(na11,2, φa(1− pa)).

Then, conditional on the simulated split of the observed multi-parent element na111,3, the

range of possible simulated integer values for u4(3a0),3 is:

max(0, na110,3 − na11,2 + u8(3a1),3) ≤ u∗4(3a0),3 ≤ min(ny11,2 − u4(3a1),3, na110,3)

The same techniques as in section 5.2.2 are then used with the splitting rate being obtained

from the ratio of the approximated expected values for u4(3a0),3 and u8(3a0),3. The densi-

ties for each possible pair of
(
u4(3a0),3, u8(3a0),3

)
values are then obtained and normalised

to form a non-uniform discrete distribution on the possible range of u4(3a0),3. The Alias

method with table look-up is then used to simulate the pair of elements
(
u∗4(3a0),3, u

∗
8(3a0),3

)
.

For this example, having now simulated the splitting of all the relevant child nodes

for the trees generated by the observed parent nodes ny11,3 and na111,3 the intermediate
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elements u4(1), u8(1), u4(2) and u8(2) can all be set deterministically. This property can be

described more generally. For the trees generated by elements of sT−2, it is not necessary

to use the CGA algorithm to simulate the values of the associated intermediate nodes

u1,T−1 or u2,T−1. This contrasts with the techniques described in section 5.2.3 and is due

to the splitting of both the unmarked and marked juveniles as described in section 5.3.3.

Consider the trees generated by elements of sT−2; the child nodes corresponding to un-

marked and marked juveniles have both been simulated by this stage whereas in the initial

simulation from time T to T − 1 the unmarked juveniles were unknown. Therefore, using

the same notational syntax as in Figure 5.7, the elements uk(3j0),T−1 and uk(3j1),T−1 have

both been simulated at this stage. This means the element representing the number of

new-born juveniles uk(2),T−1 attributed to the kth element of nT−2 is set deterministically

as

uk(2),T−1 = uk(3j0),T−1 + uk(3j1),T−1

thus negating the use of the CGA algorithm for this component of the fitting algorithm.

Similarly, after the necessary splitting of the multi-parent elements of nT−1 corresponding

to adults, the elements in uk(1),T−1 can be set deterministically.

Studying the indexes in sections 5.3.1 and 5.3.2 it can also be seen that the multi-parent

elements n8,T−1 and nT+6,T−1 are obtained from the unobserved parent elements n3,T−2

and n7,T−2. These parent elements are themselves generated by the observed ancestral

elements n2,T−3 and n6,T−3. It is then necessary to simulate these multi-parent elements

which can be done using the techniques described in section 5.2.4. The difference in

this case is that both n8,T−1 and nT+6,T−1 will have been simulated during the initial

model fitting from T to T − 1. Hence, the simulated values for the unobserved multi-

parent elements need to be constrained by both the observed and previously simulated

values at T − 1. Continuing the earlier example it can be seen that na100,3 and na101,3 are
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both convolved elements and their sum na100,3 + na101,3 denotes the number of surviving

animals, including both those animals that were juveniles during the first capture occasion

as well as those that were adults, that were caught during the first but not the second

capture occasions. Then, with reference to the notation on page 182, the following general

definitions are made:

N1 = nj1,T−3

N2 = na{q2}1,T−3

v = ny11,T−2

w = ny10,T−2

x = na{q2}10,T−2

y = na{q2}11,T−2

z = na{q2}100,T−1 + na{q2}101,T−1.

Where the pattern {q2} is a string of T − 4 zeros. For this example T = 4 and therefore

q2 is not needed. Hence, for this example the required distributions are:

w|N1 ∼ Binomial(N1, φj(1− pa))

x|N2 ∼ Binomial(N2, φa(1− pa))

z| {w, x} ∼ Binomial((w + x), φa).

Note the change of the rate parameter in the distribution z| {w, x}. The generation of a

plausible pair of values for the parent nodes (ny10,3, na010,3) is then performed using the

methods discussed in section 5.2.4. For the general case, given these simulated values the

multi-parent nodes n8,T−1 and nT+6,T−1 can then be apportioned to the elements of the in-

termediate vector u3,T−1 specified by the indexes in the third and fourth rows of Table 5.3.

This splitting is performed as described in section 5.2.2 and these techniques are also used
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to allocate the convolved sums of juveniles, both unmarked (u∗3(3j0),T−1 + u∗7(3j1),T−1) and

marked (u∗3(3j1),T−1 + u∗7(3j1),T−1) to the relevant individual elements of u3,T−1. The re-

maining intermediate elements for the trees generated by the parent nodes n3,T−2 and

n7,T−2 are then obtained deterministically as previously described.

The indexes in sections 5.3.1 and 5.3.2 show that the final pair of multi-parent elements

n5,T−1 and n6,T−1 are also obtained from unobserved parent elements: n1,T−2 and n5,T−2.

However, there is no direct correspondence between these parent elements and observed

ancestral elements at time T − 3; therefore the previous method of conditional splitting

cannot be applied in this case. During the initial stage of model fitting these multi-

parent elements were split using the methods introduced in section 5.2.4. Given that

the state element n∗5,T−1 will have been simulated during the initial fitting stage it is not

necessary to simulate the sum u∗1(1),T−1 + u∗5(1),T−1 using the adjusted negative-binomial

approach introduced in section 5.2.4. Instead, the splitting of the multi-parent nodes

can be obtained using multinomial distributions with rate parameters determined by

the expected values of the relevant elements of the intermediate vector u3,T−1. These

expectations are obtained using the technique described earlier in stage 2 of section 5.2.1.

For example:

E[u1(3a0),T−1|n2,T−2] =
n2,T−2

(pj)
× (1− pj)× φj × π × (1− pa).

and

E[u5(3a0),T−1|n6,T−2] =
n6,T−2

(pa)
× (1− pa)× φa × π × (1− pa).

The ratio of these two conditional expectations is then used to determine the rate param-

eter for the binomial distribution used to split the simulated multi-parent element n∗5,T−1

over the intermediate nodes u1(3a0),T−1 and u5(3a0),T−1. A similar procedure is invoked to



218

simulate the splitting of the observed adult element n6,T−1 as well as that of the sim-

ulated components of both the observed and unobserved juveniles: u∗1(3j1) + u∗5(3j1) and

u∗1(3j0) + u∗5(3j0) respectively. If the state process parameters do not vary by state element

then it can be seen that the splitting rate will be the same for each of the four simulated

splits. Once simulated, these split values can then be summed appropriately to give the

values assigned to the numbers of surviving adults and new juveniles, contained in u1,T−1

and u2,T−1 respectively.

Simulating Unobserved Parent Nodes

Having both completed the splitting of the multi-parent elements of nT−1 and simulated

the associated intermediate nodes the next step is to consider any remaining elements of

s̆T−2 that are still to be simulated. Using similar arguments to those in section 5.2.5 it

can be shown that, if T ≥ 5, there will be elements of s̆T−2 that can be estimated by

conditioning on observed or simulated elements of sT−1, sT−2 and u1,T−1.

In section 5.2.5, where t = T −1, the constraint on the minimum simulated value of s̆t

was imposed by the appropriate elements of st+1. For the main loop, where t ∈ (T − 2, 2),

this minimum constraint is imposed by the simulated value of u1,t+1. This is because both

st and s̆t will have been simulated by this stage and summing the elements, after the ap-

propriate splitting if required, yields the values of u1,t+1 which denote the numbers of

surviving animals from nt. Accordingly, the rate parameter for the binomial distribution

relating the unobserved parent node in s̆t to its minimum allowable value is adjusted. Now

it will simply consist of the survival rate (φj or φa) rather than the product of survival and

capture as was the case in Equation Ai on page 192. For example, consider a model being

fitted to capture history data obtained from 5 capture occasions. In this scenario T = 5
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and the interest lies in simulating a value for na110,T−2. The relationship between this

element and the constraints imposed upon it by observed or simulated state elements is

illustrated in the directed graph in Figure 5.21. By comparing Figure 5.21 to Figure 5.15

it can be seen how the methods of section 5.2.5 can be applied in these scenarios.

na1100,T−1 na1101,T−1

u18(1),T−1

na110,T−2

ny11,T−3 na11,T−3

na111,T−2
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Figure 5.21: A directed graph to illustrate the rela-
tionship between the unobserved element na110,T−2 and
its observed ancestral parent, child and brethren nodes.

Green text denotes known values.

To implement this approach there needs to be an observed ancestral element of st−1

to act as a constraint on the maximum allowable value for the corresponding simulated

unobserved element of s̆∗t . As was noted in section 5.2.5 this is not always the case. For

this scenario, given the minimum constraints of u1,t+1, the values of the unobserved state

elements in s̆t that have unobserved parent nodes in st−1 can be simulated using the ap-

proximate negative binomial approach described in section 5.2.5.

At this stage all elements of the state vector nT−2 will have been simulated along with

all the elements of the intermediate vectors u1,T−2, u2,T−2 and u3,T−2 thus mapping the

assumed evolution of the population between the sampling period in T − 2 and that in
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T − 1.

5.3.5 Evaluating the Densities

Having simulated all required elements from T − 2 to T − 1 it is now necessary to eval-

uate the densities under both the state process distribution and the trial density. The

evaluation of the density under the state process once again consists of taking the prod-

uct of two multinomial densities for each ‘tree’ generated by an element of nT−2: one

modelling the fate of the initial adults and the other modelling the fate of the new-born

juveniles. The product of all these multinomial density pairs is then evaluated to obtain

gT−1 (nT−2|nT−1).

Evaluating the trial density,

hT−1(u∗3,T−1, s̆
∗
T−2|n∗T−1,yT−2,yT−3),

requires an approach similar to that for the fitting of the model evolution from time T to

T − 1. As in section 5.2.7, the expanded vector, required to make the evaluation of the

densities tractable, is the combination of intermediate vector denoting the capture status

at time T−1 and the unobserved elements of the state vector at time T−2:
[
u∗3,T−1, s̆

∗
T−2

]
.

The trial density is comprised of the probability functions specified in sections 5.3.3:5.3.4.

These are broadly similar to those that were listed previously (page 200) and can be sum-

marised as follows:

a) Section 5.3.3 - splitting both the observed and unobserved juveniles alive during

sampling at T − 1 over individual and convolved trees.

b) Section 5.3.4 - this section described the following processes:
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• splitting the observed adults captured during sampling at T −1 over convolved

nodes.

• splitting the unobserved adults that were alive but not captured during sam-

pling at T − 1 over convolved nodes.

• splitting convolved elements of intermediate vectors over trees emanating from

either observed or unobserved ancestral nodes.

• simulating non-convolved parent nodes corresponding to animals that were

alive but not captured during sampling at T − 1 for trees emanating from

either observed or unobserved ancestral nodes.

As can be seen from comparing this list to that on page 200, the main difference between

these sets of processes is that the requirement to simulate intermediate nodes is much re-

duced for fitting the model to the observations recorded between sampling occasions t = 2

and t = T − 1. When modelling the evolution between times t − 1 and t the elements

of the state vector nt will have already been simulated during the fitting of the previous

time period. Hence, due to the correspondence between nt and u3,t, the only simulation

required is that to split convolutions across multiple elements of u3,t. The remaining

intermediate nodes are then obtained deterministically and the technique described in

Section 5.2.3 is not required in this part of the fitting process.

Having simulated the state vector n∗T−2 using the techniques in sections 5.3.3:5.3.4 the

time index is reduced from T −2 to T −3 and the same fitting procedure is then repeated

to simulate n∗T−3 and all associated intermediate nodes. This incremental fitting approach

is then continued until n∗2, the states denoting the population immediately following the

capture occasion at time t = 2, has been simulated. This looping approach can be imple-

mented between time periods t = T − 1 and t = 2 for any general T . Hence this chapter
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describes a general algorithm that can be applied to fit models, of the structure specified

previously, to capture-recapture data consisting of T capture occasions for general T , such

that T > 2.

The looping procedure can no longer be applied as the transition of the population

between times t = 2 and t = 1 does not involve the simulation of yearlings at time t = 1.

This feature of the model and its impact on the fitting algorithm are discussed in the next

section.

5.4 Simulation from 2 to 1

This section of the model fitting algorithm describes the procedures necessary to simulate

the state vector at time t = 1, n∗1, and the intermediate nodes u1,2, u2,2 and u3,2. Many

of the fitting techniques used for this section of the model will be identical in structure to

those previously discussed. Hence, only a relatively brief outline will be given. As with

the previous sections, the first required process is to establish the relationship between the

elements of the state vector at t, in this case n∗2, and the elements of the final intermediate

vector, in this case u3,2. This relationship is described in the following section.

5.4.1 Assigning Known Adult Values

The elements of n∗2 that summarise the population after the second sampling occasion

were first represented in Figure 4.3. Also, the relationship between these state elements

and the intermediate elements in u3,2 was earlier illustrated in Figure 4.7. These figures

illustrate that of the eight elements in n∗2, four correspond exactly with individual ele-

ments of u3,2.
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n1 u3a0,2 u3a1,2 Index Sum n2

1 3 4 3 + 11 5

3 11 12 4 + 12 6

Table 5.4: Index for splitting multi-
parent elements of n2 across the inter-
mediate vector u3,2. The fifth column
indexes the multi-parent nodes elements
of n2. The fourth column gives the in-
dexes of elements of u3,2 that sum to
give the multi-parent nodes. The second
and third columns give the indexes of
elements of u3,2 corresponding to unob-
served and observed adults respectively.
The first column indexes the elements
of n1 that contribute to the multi-parent
nodes elements of n2.

For the previous time periods 3 ≤ t ≤ T it could be seen, in Table 5.3 and the ac-

companying description in section 5.3.2, that there were always six convolved capture

histories denoted by multi-parent elements that needed to be assigned to the appropriate

elements of the intermediate vector after capture u3,t. From Figures 4.3 and 4.7 it can be

seen that the fitting process will involve splitting only two convolved capture histories for

those non-juvenile elements of n2. Those two multi-parent elements are n∗a00,2 and n∗a01,2

and the indexes for splitting these elements are given in Table 5.4.

Having identified the multi-parent elements of n∗2 the next two sections describe how

this affects the simulated split of both juvenile elements of n∗2 as well as the method for

splitting the multi-parent elements across the appropriate nodes of the intermediate vec-

tor u3,2.
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5.4.2 Splitting the Juveniles

Each state vector nt (for 1 ≤ t ≤ T ) contains elements corresponding to unmarked and

marked juveniles, nj0,t and nj1,t respectively. At this stage of the model fitting both

of these elements will be assumed known, either from direct observation in the case of

nj1,2 or from simulation in the case of n∗j0,2. The splitting process is then performed

using the methods described in section 5.3.3. For this time period each of the elements

corresponding to juvenile animals at time t = 2 can only be apportioned to three distinct

categories due to the convolution discussed in section 5.4.1. The expectation for the

number of juveniles apportioned to these convolved unobserved parent nodes is then

obtained using the technique in stage 2 of section 5.2.1. As discussed in section 5.3.3 the

rates for splitting both the observed and unobserved juveniles will be equivalent for the

simple model.

5.4.3 Splitting across Convolutions

From section 5.4.1 it was seen that na00,2 and na01,2 are multi-parent elements that are

both generated from the unobserved parent nodes nj0,1 and na0,1. The necessary splitting

is then implemented using the techniques described in the final paragraphs of section 5.3.4.

Multinomial distributions are constructed with rate parameters again determined by the

expected values of the relevant elements of u3,2. For this section of the model the appro-

priate conditional expectations are then:

E[u1(3a0),2|n2,1] =
n2,1

(pj)
× (1− pj)× φj × π × (1− pa)

and

E[u3(3a0),T−1|n4,1] =
n4,1

(pa)
× (1− pa)× φa × π × (1− pa).

The calculation of the rates and the simulation of the resulting model splitting then
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follow the techniques in section 5.3.4. As before, both the observed multi-parent element

na01,2 and the simulated convolved components of the observed and unobserved juveniles

(u∗1(3j1),2 + u∗3(3j1),2 and u∗1(3j0),2 + u∗3(3j0),2) are split across the tree emanating from nj0,1

and na0,1. Using the same argument as in section 5.3.4, the rates for all four of these

simulated splits will be equivalent.

Once these remaining elements of the intermediate vector u∗3,2 have been simulated the

usual deterministic procedure can occur with the appropriate summations of u∗3,2 enabling

the other intermediate vectors u2,2 and u1,2 to be specified. All that remains is to simulate

the unobserved elements of the state vector at time t = 1, n1, and this is discussed in the

following section.

5.4.4 Simulating Unobserved Parent Nodes

From section 5.4.1 it can be seen that the vector s̆1 of unobserved elements of the state

vector n1 consists of just two elements; the juvenile animals that were not caught during

the first sampling occasion and the adult animals that were alive but were not caught

during the first sampling occasion. Hence,

s̆1 = [nj0,1, na0,1] .

Once again, as described in section 5.2.5, there are no elements in s0 and thus no

constraints on the simulated values of s̆∗1. Instead the approximate negative binomial

technique introduced in section 5.2.5 is used here with u1,1 and u3,1 acting as the mini-

mum constraints on nj0,1 and na0,1 respectively.

Having completed this step all elements of the state vector n∗1 and the associated

intermediate vectors describing the population after survival u∗1,2, birth and maturation
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u∗2,2 and capture u∗3,2 have now been simulated.

5.4.5 Evaluating the Densities

As in the previous sections the densities associated with the fitting process from t = 2

to t = 1 detailed in the preceding section now need to be evaluated. The density for the

state process distribution is calculated in precisely the same manner as in section 5.2.7.

The usual pair of multinomial distributions are evaluated for each tree generated by the

elements of n1 and their product is taken across all trees to give the density g2 (n2|n1).

To evaluate the trial density, h2(u∗3,2, s̆
∗
1|n∗2,y1), the expanded vector is the usual com-

bination of the intermediate vector denoting the capture status at time 2: u∗3,2 and s̆∗1 the

unobserved elements of the state vector at time t = 1. Then, the techniques of section 5.3.5

are replicated and the probability functions for the stochastic processes described in sec-

tions 5.4.2:5.4.4 are evaluated. Those processes can be summarised as follows:

a) Section 5.4.2 - splitting both the observed and unobserved juveniles alive during

sampling at t = 2 over individual and convolved trees.

b) Section 5.4.3 - splitting the unobserved adults that were alive but not captured

during sampling at t = 2 over convolved nodes.

c) Section 5.4.4 - simulating non-convolved parent nodes corresponding to animals

that were alive but not captured during sampling at T − 1 for trees emanating from

unobserved ancestral nodes.

A comparison with the processes listed in sections 5.2.7 and 5.3.5 reveals the number of

separate processes required decreases over (reverse) time in line with the dimension of

the expanded state vector. With fewer elements in the expanded state vector to simulate
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fewer processes are needed to specify the trial density at time t: ht().

The final section of the model fitting algorithm maps the transition between the states

at time t = 1 and the initial states at time t = 0. The details of this procedure are given

in the next section.

5.5 Simulation from 1 to 0

As discussed in section 3.3.3 the Bayesian approach to formulating and fitting this form

of state-space model requires a prior distribution to be specified for the parameters of

the model and the initial states n0. Therefore, the state elements n∗j0,0 and n∗a0,0 can be

assumed to be known and thus provide a further constraint to the simulated values of the

intermediate nodes u1,1, u2,1 and u3,1.

The simulation, from the prior, of the state vector n0 =
[
n∗j0,0, n

∗
a0,0

]′
can be imple-

mented in several ways. The simplest is to simply specify independent priors on each of

the two elements and simulate from those distributions. An alternative approach would be

to specify a prior on the total number of animals, both juveniles and adults, that existed

at time t = 0 and then to split this total into two categories: juveniles and adults. This

latter approach requires the specification of a splitting parameter, ν, that will determine

how the total animals are distributed across the two elements. Hence, if N0 denotes the

total number of animals at time t = 0, then the split can be simulated using the following

distribution:

n∗j0 ∼ Binomial (N0, ν) . (5.5.1)

Once n∗j0 is simulated it is clear to see that n∗a0 is obtained deterministically as n∗a0 =

N0 − n∗j0.
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Given that the state vectors n∗1 and n∗0 have now both been simulated the next step

is to simulate the intermediate nodes.

5.5.1 Splitting across convolutions

The evolution of the population between n0 and n1 via the intermediate sub-processes

was represented in the tree diagram in Figure 4.6. From this diagram and the known

structure of the state vector n1 the relationship between u3,1 and n1 can be seen to be

the following:

nj0,1 = u1(3j0),1 + u2(3j0),1

nj1,1 = u1(3j1),1 + u2(3j1),1

na0,1 = u1(3a0),1 + u2(3a0),1

na1,1 = u1(3a1),1 + u2(3a1),1.

From these equations it can be seen that each element of n∗1 is a multi-parent element

as it is convolved over two elements of the intermediate vector u3,1. Since both parent

elements n∗j0,0 and n∗a0,0 are assumed known after simulation these multi-parent elements

can be split using the techniques described in sections 5.2.2 and 5.3.4. The splits of the

adults and juveniles can be considered separately as in the previous sections. Firstly the

observed adults n∗a1,1 are split across u∗1(3a1),1 and u∗2(3a1),1 by drawing from the appropriate

non-uniform discrete distribution using the Alias method as in section 5.2.2. The split of

the unobserved, but previously simulated, adults n∗a0,1 across u∗1(3a0),1 and u∗2(3a0),1 is then

conditional on the simulated split of n∗a1,1 and proceeds using the approach described in

section 5.3.4. The same approach holds for the juveniles with the split of the unobserved

juveniles n∗j0,1 being simulated conditional on the split of the observed juveniles n∗j1,1.
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Having simulated the splits of all four multi-parent elements of n1 the intermediate

vector u3,1 is fully specified and the elements of the remaining intermediate vectors can

be specified deterministically using the relationships illustrated in Figure 4.6.

5.5.2 Evaluating the densities

The evaluation of both the state and trial densities is relatively straightforward for the

final time period. The usual approach for evaluating the density under the state process

model as described in section 5.2.7 is applied again here. Each of the two elements in n0

generated trees that represent the stochastic processes that model the evolution of the

population from t = 0 to t = 1. The processes for a single tree are modelled using the

pair of multinomial distributions defined in Eq. (5.2.11a) and Eq. (5.2.11b). The density

g1 (n1|n0) is then obtained by taking the product over the four multinomials used to model

the two trees.

The trial density can be expressed in the following form:

h1(u∗3,1,n
∗
0|n∗1, N∗0 ).

The vector n∗0 can be used instead of s̆∗0 in the above density expression as they are

equivalent. No animals are captured in year 0 and thus s̆∗0, which denotes the abun-

dances for all unobserved capture-history patterns that do not include capture in year 0,

is equivalent to the state vector at time 0: n∗0. The simulation of n0 is necessarily condi-

tional on the value of N∗0 drawn from the prior and this is specified explicitly in the trial

density. The expanded vector required for the evaluation of the trial density is then the

combination of the final intermediate vector at time 1: u∗3,1 and the initial state vector n∗0.

For fitting the observations in the initial time period of this model there are only two
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sets of stochastic processes that are used to simulate the unknown state elements under

the trial density. Firstly, the splitting process used to apportion N∗0 to n∗j0,0 and n∗a0,0

and secondly those processes involved in splitting the multi-parent elements of n1 across

the intermediate vector u3,1. The techniques of section 5.3.5 are then used to evaluate

the densities for each process and the product of these yields the component of the trial

density for this initial time period: h1.

5.6 Calculating the Weights

The final processes described in section 5.5 completed the simulation of the elements of

all state and intermediate vectors across the entire time series from t = 0 to t = T .

The densities under the state process and the proposed trial process have also both been

evaluated for the evolution of the population during each of the T time periods. These

individual densities then need to be combined to give an overall density associated with

the set of simulated state and intermediate vectors. The concept of a “particle” was

introduced in section 3.3.6 and the term is used here to define the set of state, interme-

diate and parameter vectors {n0,u1,1,u2,1,u3,1, . . . ,nT−1,u1,T ,u2,T ,u3,T ,Θ}. Then, for

this particular particle, the density under the state process, g(n1:T |n0:T−1), is obtained by

taking the product of the state densities over all time periods. Using the notation defined

in Eq. (5.2.11) this can be expressed as follows:

g(n∗1:T |N0) =
T∏
t=1

gt(n
∗
t |n∗t−1) =

T∏
t=1

2t−1+4∏
r=1

p(ad∗r,t|n∗r,t−1)p(nj∗r,t|u∗r(1),t). (5.6.1)
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Similarly, the density under the proposed trial process is obtained by taking the prod-

uct over the trial densities evaluated for each time period:

h(u∗3,1:T , s̆
∗
0:T−1|y1:T , N0) = hT (u∗3,T , s̆

∗
T−1|yT ,yT−1,yT−2)

×
T−1∏
t=3

ht(u
∗
3,t, s̆

∗
t−1|n∗t ,yt−1,yt−2)

× h2(u∗3,2, s̆
∗
1|n∗2,y1)

× h1(u∗3,1,n
∗
0|n∗1, N∗0 ). (5.6.2)

The general concept of deriving a weight associated with an individual particle was

introduced in section 3.3.6 and was refined in the context of a model fitting approach that

conditioned on the full series of observations over all time periods, y1:T , in section 4.4.2.

From the general expression given in Eq (4.4.2), if the condition that f(y1:T |n∗1:T ) = 1 is

satisfied, the weight for a single particle is obtained using the following ratio of densities:

w ∝ g(n∗1:T |N0)

h(u∗3,1:T , s̆
∗
0:T−1|y1:T , N0)

.

Assume that a large number, Np, of these particles are simulated using the approach

described in this chapter. Omitting the superscript ∗ to make the notation clearer; using

Eq’s (5.6.1) and (5.6.2) the weight for the ith (i = 1, 2, . . . , Np) particle can be expressed
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as follows:

w[i] ∝
gT

(
n

[i]
T |n

[i]
T−1

)
hT (u

[i]
3,T , s̆

[i]
T−1|yT ,yT−1,yT−2)

×
T−1∏
t=3

gt

(
n

[i]
t |n

[i]
t−1

)
ht(u

[i]
3,t, s̆

[i]
t−1|n

[i]
t ,yt−1,yt−2)

×
g2

(
n

[i]
2 |n

[i]
1

)
h2(u

[i]
3,2, s̆

[i]
1 |n

[i]
2 ,y1)

×
g1

(
n

[i]
1 |n

[i]
0

)
h1(u

[i]
3,1,n

[i]
0 |n

[i]
1 , N

[i]
0 )
. (5.6.3)

These weights are then normalised such that

w[i] =
w[i]∑Np
i=1w

[i]

although the actual calculation of these normalised weights is often performed on the log

scale for computational reasons when dealing with very small weights for some particles.

This is often the case for the bottom-up conditional approach as the weights are con-

structed from the product over the multiple densities specified under the trial density h().

If these particles are then resampled using a single importance sampling step with

their weights calculated as in Eq (5.6.3), the surviving particles will form an approximate

sample from the posterior distribution of g(n1:T |y1:T ,Θ). Equally, due to only a single

importance sampling step being viable, an equivalent approach to obtaining estimates

of individual parameters is to take the weighted average across all particles of the val-

ues of that parameter in the particles. The weights are, again, the importance sampling

weights. This equivalent approach then avoids the need to resample and discard informa-

tion present in the data. As noted in section 5.2.7, the bottom-up conditional approach
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to simulating elements of state and intermediate vectors produces a smoothed approxi-

mation to the posterior distribution.

5.7 Extension to Multiple Births

The population dynamics model outlined in section 5.1 included a model for the birth

process that allowed mature animals to produce, at most, a single young during the breed-

ing period. Although appropriate for certain animal populations, this restriction is not

always realistic and the model can be easily extended to incorporate multiple births. As

mentioned in section 5.2.4, by extending the birth process to allow an individual animal

to produce more than a single young in a breeding season, the construction of the trial

density h(), and subsequent implementation of the fitting algorithm, becomes more com-

plicated.

The underlying techniques used to constrain the simulated states are the same as

those described in the chapter for the single birth model, however the details of the

implementation do vary. Consider a birth process process that allows a single mature

female to produce either 0, 1 or 2 young per breeding season with probabilities π0, π1 and

π1 respectively. Consider a single particle where u1,t represent an arbitrary element of the

intermediate vector u1,t that denotes the surviving animals from the state vector at time

t− 1, nt−1. Then, the distribution of the birth model can be specified as follows:

u2,t,[j]|u1,t ∼
u1,t∑
z=1

ϕ×Multinomial(1, c(π0, π1, π2)) (5.7.1)

where ϕ denotes the set of the possible number of juveniles produced by an individual

mature animal: 0, 1 or 2 for this model. Simulating a draw from this multinomial model

with yield a string of three values, two 0’s and a 1 with the position of the 1 corresponding
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to the element in ϕ. For example, a multinomial draw of 001 corresponds to an adult

producing twins. Taking the product of ϕ with the draw from the multinomial then yields

the number of young produced by that individual animal. This process is repeated for

each individual animal in the element u1,t and the resulting simulated births are summed

to give u2,t,[j], the total number of juveniles produced by the surviving animals in u1,t.

Equation (5.7.1) then replaces Equation (4.4.1c) in the earlier list of distributions for each

component of the process model.

The implementation of the fitting algorithm using this new birth process model begins

with the construction of expected values. The expected number of juveniles produced by

a single mature female is 0 ∗ π0 + 1 ∗ π1 + 2 ∗ π2 = π1 + 2 ∗ π2. Thus, in the calculation

of the expected values in the previous sections of this chapter the parameter π should be

replaced by π1 + 2 ∗ π2.

Further changes are necessary with regard to implementing the conditional generation

algorithm (section 4.4.3). Consider again equations (4.4.9) and (4.4.10), used to simulate

the number of survivors and births respectively. The range of valid values for survivors

was defined as max(y, z) ≤ w ≤ v. For the multiple birth situation the y captured juve-

niles could have been produced by fewer than y surviving adults. Hence, for the example

in which adults can produce two young at most, the range of valid values for survivors is

redefined as max(y/2, z) ≤ w ≤ v. Similarly, for simulating births, the range of valid val-

ues is redefined as y/2 ≤ x ≤ w. The evaluation of p(x|w) and p(y|w) will also change in

accordance with the new birth process model defined in Equation (5.7.1). For a particular

value of w there will be multiple ways in which x juveniles could have been produced and

each needs to be evaluated with summation over all such possible combinations giving the

required probability. For example, if 10 adults produced 4 juveniles then, if a breeding
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adult could produce no births, singletons or twins, this could be achieved by either four

adults each having singletons, one adult producing twins and two producing singletons or

two adults both producing twins. This increases the complexity of the evaluation proce-

dure.

The construction of the trial density needs to be amended for every component that

requires the evaluation of the probability of a certain number of juveniles being produced

conditional on observed counts of capture history patterns. This approach may result in

the confounding of the birth parameters π1 and π2 for populations that exhibit average

birth rates of less than one young per breeding adult per time period. For this situation

there may not be enough information to obtain good inference on the relative contribu-

tions of singletons and twins to the observed counts of capture history patterns. The

study on the real dataset in chapter 7 allows this issue to be explored in more detail.

5.8 Discussion

One of the limitations to the conditional generation approach, as described in section 4.4.2,

is that it does not generate particles according to the full conditional distribution. It is

fully conditional for the evolution of the system within a single time period but not for

the entire duration of the study. This meant that, for a particular particle, state elements

could be simulated at some time period tα that were not consistent with observations at

some later time period tβ. That particular particle would therefore be implausible and

would be assigned a weight of zero; it could not be included in the weighted resample of

particles used to approximate the smoothed posterior distribution of states. The motiva-

tion behind the “bottom-up” approach to simulating the state and intermediate vectors

was to develop a trial density that increases the probability of all constraints, as imposed
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by the observed abundances of capture-history patterns, being met when compared to the

approach described in section 4.4.2. However, the implementation of this “bottom-up”

approach again uses proposal distributions that do not fully respect the conditioning on all

observed abundances. The algorithm does not ensure that the state elements simulated at

each time-step are consistent with the entire series of observed capture history patterns

y1:T . Consequently, as with the approach in section 4.4.2, the bottom-up conditional

approach to simulating the states can produce implausible particles. These implausible

particles will be assigned zero weight and are therefore not included in the approximate

posterior distribution. So, the method itself is fully conditional in that all particles with

non-zero weight will respect the constraints. The issue arises with regard to the efficiency

of the algorithm and the proportion of the particles simulated via the proposal density

that do not fully respect the conditioning. Applications of this approach based on both

real and simulated data are presented in Chapter 7.



Chapter 6

The Unconditional Generation
Approach to Embedding Population
Dynamics into Mark-Recapture
Models

6.1 Introduction

The conceptual distinction between the conditional and unconditional approaches to mod-

elling capture-recapture data within a state-space modelling framework was discussed in

section 4.2. However, both approaches possess certain key commonalities. As with the

conditional approach, the unconditional approach also allows for a population dynamics

model to be embedded in the modelling framework and thus attempts to overcome some

of the limitations with the existing open population models for mark-recapture data as

discussed in section 4.1.

As was described in Section 3.3.2, formulating a state-space model requires the spec-

ification of models for the initial states as well as the state and observation processes at

time t (0 ≤ t ≤ T ). These probability distributions then map the evolution of the sys-

tem over a period of time that was demarcated into discrete intervals with observations

237
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or measures taken on the system at these discrete points. One approach to developing

algorithms for fitting state-space models to mark-recapture data was developed under a

set of modelling assumptions defined as the conditional approach; this is covered in detail

in chapters 4 and 5. A salient feature of this approach is that the probability distribution

used to specify the observation process is degenerate; the state elements corresponding

to animals captured at time t are observed without error. Thus, the uncertainty in the

model for period t relates only to the elements of the state vector at t which correspond

to animals that are not caught during that period. As was illustrated in Section 5.1 the

requirement to generate simulated particles that satisfy the constraints imposed by the

observed measures at each time period complicates the model fitting process in compari-

son with the more traditional state-space modelling approaches and generally requires an

‘ad hoc’ approach to specifying the details of the fitting algorithm. The unconditional

approach relaxes this restriction and, consequently, the model fitting process is somewhat

simpler and can be generalised more easily.

Under the conditional generation approach to fitting state-space models to mark-

recapture data the state elements were determined by an animal’s capture history together

with any other factors such as age or gender that could be used to specify the composition

of the state vectors during each period t. The stochasticity in this approach then related,

at each time period t, only to those abundances associated with capture history patterns

that did not include capture during sampling at t. Consequently, the model parameters

relating to the capture process appeared in the model for the state process rather than the

observation process. In the unconditional approach this is no longer the case as there is

no conditioning on the capture history data and the states are not determined by capture

history pattern. Under this approach, stochasticity arises in the modelling framework via

the relationship between the simulated states and the observed measures on those states.
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This relationship is modelled by the observation process and the observed capture his-

tory patterns can be regarded as one of many possible realisations of the capture process.

Hence, for the unconditional approach, the state and observation process models are now

specified in the more traditional manner with the parameters relating to capture proba-

bility occurring in the observation process model only. Therefore this approach is more

compatible with the traditional state-space modelling approaches reviewed in Section 3.

The unconditional approach is described, formalised and discussed in more detail in

the following sections. In the following sections the terms “observed” and “captured” are

used interchangeably.

6.2 Comparison to Existing Approaches

By incorporating a state-space modelling framework into the analysis of capture-recapture

data the form of the likelihood representing the capture history patterns is a simpli-

fied version of that in more conventional mark-recapture analyses. To illustrate this

point, consider the conventional mark-recapture likelihood for the Jolly-Seber models

(Section 2.3.1). The required notation was defined in Tables 2.6 and 2.3. Consider again

the three-sample study example used in section 2.3.1.1. The Jolly-Seber model formu-

lation for the component relating to the unmarked animals that were first captured in

the first sampling period was given in Eq. (2.3.1). The full Jolly-Seber likelihood for

this three-sample study is obtained by taking the product over the likelihood components

corresponding to unmarked animals captured for the first time on each sampling occa-

sion. Hence, considering each component in turn it is necessary to separate the capture

history patterns into sets corresponding to the time of first capture and thus condition

on the time of first capture when constructing the likelihood component. Therefore, the



240

index ω1 denotes the set of capture histories including capture on the first sampling occa-

sion: {100, 101, 110, 111}. Similarly, ω2 = {010, 011} and ω3 = {001}. Hence xωt denotes

the abundances associated with the capture history patterns in the set ωt. Given these

definitions, the three components can be expressed as follows:

Pr({xω1} |u1) =

[
U1!

u1! (U1 − u1)!
pu1

1 (1− p1)U1−u1

]
×
{

u1!∏
ω1
xω1 !

[χ1]x100 [φ1(1− p2)φ2p3]x101

× [φ1p2χ2]x110 [φ1p2φ2p3]x111
1

1

}
(6.2.1a)

Pr({xω2} |u2) =

[
U2!

u2! (U2 − u2)!
pu2

2 (1− p2)U2−u2

]
×
{

u2!∏
ω2
xω2 !

[χ2]x010 [φ2p3]x011

}
(6.2.1b)

Pr({xω3} |u3) =

[
U3!

u3! (U3 − u3)!
pu3

3 (1− p3)U3−u3

]
×
{

u3!∏
ω3
xω3 !

[χ3]x001

}
(6.2.1c)

The value of ut in the above equations is given by the sum of the abundances in the

set xωt . It can also be seen that χ3, the probability that an animal released in the final

sample period is not recaptured, is, by definition, unity; the animals released following

capture in the final period cannot be re-captured as there are no future capture occasions

in this study.

Then, the full Jolly-Seber likelihood is obtained as the product of equations (6.2.1a),(6.2.1b)

and (6.2.1c):

L({p1, p2, p3} , {φ1, φ2} |ω1, ω2, ω3) =
3∏
t=1

Pr({xωt} |ut).

This expression is for a single-age population in which no distinction is made between

different age cohorts in terms of the parameterisation of the model. The t suffix allows
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the parameter to vary by time period but every animal, regardless of age, will have a

common set of parameters for a given time period.

An alternative formulation of the conventional mark-recapture likelihood can be ob-

tained in which the distinction between the components relating to the capture process

and those relating to survival is emphasised. The required notation is given in Table 6.1

and borrows heavily from the earlier definitions used in the Jolly-Seber likelihood above.

The only significant difference is the use of st rather than nt to denote the number of

animals caught at the start of period t. This is done simply to avoid confusion with the

vector notation nt which denotes the state elements at time t.

Nt = number of animals in the population immediately before births in
period t;

Mt = number of marked animals, before capture at t, in the population
immediately before births in period t;

Ut = Nt −Mt = number of unmarked animals in the population imme-
diately before births in period t;

st = number of animals caught at the start of period t;
mt = number of marked animals caught at the start of period t;
ut = st−mt = number of unmarked animals caught at the start of period

t;
rt = number of animals captured and then released in period t and

caught at some future occasion;
zt = number of animals that are caught before period t, not caught dur-

ing t but are recaptured at some future occasion;
χt = probability that an animal released in period t is not recaptured.

Table 6.1: Notation for the conventional mark-recapture model.

For this alternative formulation it is assumed that the population evolves according

to the combination of survival and birth processes. The capture process then determines

what proportion of the population is observed during each time period. As with the
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conventional Jolly-Seber formulation it is assumed that each animal in the population

has the same capture probability, pt, in period t, and the same survival probability, φt,

from year t to year t + 1. Under these assumptions the mark-recapture model based on

T capture occasions can be expressed as in Seber (1965) as a multinomial model which

takes the following likelihood form (omitting constants):

T∏
t=1

Ut!

(Ut − ut)!
pstt (1− pt)zt+Ut−ut

T−1∏
t=1

φrt+ztt χst−rtt . (6.2.2)

From comparison with Equation (6.2.1) it can be seen that the omitted constant terms are

the products across all time periods of the factorials of the abundances for the observed

capture history patterns:
∏T

t=1

∏
ωt
xωt !. These observed patterns are known exactly and

therefore do not need to be estimated and can be excluded from the likelihood formulation.

It can also be seen that, constants aside, the expressions in Equations (6.2.1) and (6.2.2)

are equivalent. The utility of expressing the likelihood in the form of Equation (6.2.2) is

that it allows a concise but flexible expression that can be used to fit state-space models

to mark-recapture data. This will be discussed in more detail in section 6.5.

6.2.1 Population and Superpopulation modelling

As noted in section 4.2 the conditional approach is said to assume a “population model”

in which the population is of fixed but unknown size whereas the unconditional approach

may assume either a population model or a superpopulation model. That section pro-

vided a relatively brief description of the distinction between the “population” and the

“superpopulation” approaches to modelling mark-recapture data. This can be expanded

upon by first charting the existence of these terms in the mark-recapture literature.
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In the context of analysing mark-recapture data the term “superpopulation” first ap-

pears in reference to the model formulation and parameterisation developed by Crosbie

and Manly (1985). The term doesn’t appear in that specific paper but rather in the work

of Schwarz and Arnason (1996) that was based on the parameterisation first developed by

Crosbie and Manly (1985). A definition of the distinction between the superpopulation

and population approaches based on the work by Schwarz and Arnason (1996) is provided

by Williams et al. (2002, 508-510). Kendall (1999) offers a similar definition of the terms.

Adopting the definitions given in Williams et al. (2002, 508-510) a “superpopulation” is

defined as the total number of animals present over the entire study, some fraction of

which are available to be caught during each time period. This available fraction is then

defined as the “population”. In the Schwarz-Arnason approach the superpopulation N

for a K sample study is given by the sum
∑K−1

i=0 Bi, where Bi denotes the number of new

animals that are available to be sampled in time period i + 1 that were not available to

be sampled at time period i. These new animals can be thought of as recruitments or

additions to the animals available to be sampled and will often be assumed to represent

a realisation of some birth or immigration process. Conceptually the superpopulation N

is some fixed, but typically unknown, constant. Also, the Bi can be thought to denote

the members of this superpopulation that are assumed to become part of the population

available to be sampled during the (i + 1)th time period, with their entry probability

depending on the entry parameters βi. These entry probabilities are simply defined as

βi = Bi
N

which is just the relative frequency of total net births that enter the population

between sample occasions i and i+ 1.

Therefore, under the unconditional approach, if a population model is assumed the re-

sulting analysis will focus inference from the model fitting on parameter estimates that are

based solely on the animals captured at each sampling occasion. The likelihood function
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for the observations then simply equates to the observation process model; the observed

data in the likelihood comprises only the animals captured at each sampling occasion,

consequently only the parameters relating to the capture process need to be included.

Alternatively, the approach to analysis based on a superpopulation model focuses the

inference on parameter estimates that are now based on the model for unmarked animals

entering the population and being available for capture as well as the observed numbers of

captures on a given sampling occasion. Equally, the model needs to include a component

for the marked and unmarked animals leaving the population. In this case, the likeli-

hood function for the observations then needs to incorporate the process by which these

unmarked animals enter the population and become available to be sampled. Therefore,

under the unconditional approach, the distinction between the population and superpopu-

lation models can be conceptualised as the difference in the components of their respective

likelihoods. For the population model approach only the observation process model ap-

pears in the likelihood because the probability of observing is determined solely by the

observation process. Each simulated realisation of the population assumes the same fixed

population and therefore any differences in the samples of captured animals obtained dur-

ing each realisation are due to the observation process. For the superpopulation model

approach, the probability functions for both the observation and state processes are used

to construct the likelihood because each realisation is assumed to correspond to a different

population. Thus, for the superpopulation approach, the number of animals available to

be sampled, as well as the sample itself, differs across realisations. Hence, any differences

in the samples of captured animals obtained during each realisation are due to both the

state and observation processes.

As noted in section 4.2, for the conditional approach the model formulation can only be

conceptualised in terms of a “population model”; that is, the population being modelled
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is of some fixed but unknown size. In this context a fixed population means that each

simulated realisation of the population is assumed to correspond to the same true, but

unknown, value at each particular time period. The population is not assumed to be

fixed temporally, that is the population can vary in abundance over time. The observed

abundances of captured animals at each time period then correspond to observations

on a single population. For the conditional approach the observation process model is

degenerate and due to the state elements being determined by capture history pattern

the parameters associated with the capture process appear in the model for the state

process rather than the observation process. The conditional approach then only allows

a population model to be assumed due to the requirement to condition on the exact

totals of animals observed at each capture occasion. If the capture process is allowed to

be stochastic then the observed abundances of capture histories can be viewed as just

a single realisation of all possible capture histories that could have obtained under the

assumed model. Then, by assuming each realisation corresponds to a different population

a superpopulation model can be used to analyse the observed data from a mark-recapture

study.

The methods in the next section will focus on the construction and implementation of

a fitting algorithm for analysing mark-recapture data using the unconditional approach

assuming a population model.

6.3 Formulating the Model

The unconditional approach is relatively simple when compared to the conditional ap-

proach in both underlying concept and model formulation. As with the conditional ap-

proach the models to be fitted are constructed using the standard state-space methodol-

ogy. Under the unconditional approach the models are then fitted to the observed capture
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histories by essentially evaluating a single multinomial distribution. This is in marked con-

trast to the requirement to evaluate multiple densities for each of the component processes

that constitute the trial density, as necessitated by the conditional approach.

The usual standard state-space model definitions of an initial state distribution, a

state process distribution and an observation process distribution are required to define

the assumed form of the underlying process. For consistency with earlier models the

time index is defined as t = 1, 2, . . . , T and Θ represents the vector of all the parameters

involved in the model from both the observation and state processes. More precisely,

Θ = (θ, ψ) where θ denotes the state process parameters and ψ denotes the observation

process parameters. Framing the analysis within a Bayesian approach calls for a prior

distribution $(θ, ψ) to be specified on the model parameters. Using these definitions the

distributions under the state space model formulation are:

Initial state distribution = g0(nt|n0θ) (6.3.1a)

State Process distribution = gt(nt|nt−1,nt−2, . . . ,n0, θ) = gt(nt|nt−1, θ)

(6.3.1b)

Observation Process distribution = ft(yt|nt, ψ). (6.3.1c)

These equations are, as expected, virtually identical to those of Equation (3.3.1) with

the only difference being the explicit parameterisation of the state and observation pro-

cess distributions. The specification of Equation (6.3.1b) assumes a first-order Markov

process: the states at time t depend only the states in the preceding time period t − 1.

By relaxing this assumption and retaining a dependence on earlier years the models are

no longer state-space but rather “hidden process” models.
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Under the conditional approach to fitting these state-space models the capture his-

tory of an individual animal determined the state it was assigned to. One consequence

of this was that the parameters corresponding to probability of capture {p1, p2, . . . , pT}

appeared in θ the set of state process parameters. For the unconditional approach capture

is treated as a stochastic process that only enters the model through the specification of

the probability distribution for the observation process. However, the form of the data

used to fit the models under the unconditional approach means that the evaluation of

the likelihood is dependent on both the observation process parameters ψ and the state

process parameters θ.

Under the unconditional approach it is assumed that each animal that is captured on

at least one occasion can be identified uniquely. Under this assumption each individual

animal will be assigned an associated capture history pattern that spans the duration of

the entire study [0, T ]. As discussed in section 2.2, for each capture occasion the corre-

sponding element of the capture history pattern for each animal will consist of a 1 if it

was captured during that sampling occasion and a 0 if it was not. It is assumed that

there are T sampling occasions during the study and that N animals have existed in the

population during the study period, of which a total of M distinct individuals are marked

on at least one occasion. The data consisting of the possible capture history patterns can

then be represented using the format demonstrated in Table 6.2.

The “ID” column in Table 6.2 denotes the index value assigned to each individual an-

imal that occurs in the population of animals available for capture at some point during

the study. The first M rows represent the capture history patterns associated with each

of the distinct animals observed on at least one occasion during the study. For example,

consider the first three sampling occasions: the first row indicates that an animal was
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ID
Sampling Occasion

1 2 3 · · · T

1 1 0 1 · · · 0
2 0 0 1 · · · 0
3 0 1 0 · · · 1
...

...
...

...
. . .

...
M − 1 1 0 1 · · · 1
M 0 0 0 · · · 1
M + 1 0 0 0 · · · 0
...

...
...

...
. . .

...
N − 1 0 0 0 · · · 0
N 0 0 0 · · · 0

Table 6.2: Example of the
structure of capture histo-
ries.

observed, and consequently first marked, during the first sampling occasion, was not cap-

tured during the second sampling occasion but was recaptured during the third sampling

occasion. The first M rows will all contain at least a single 1 as these are the capture histo-

ries for the M individuals that were marked at least once during the study. The following

N−M rows will consist of 0s in every column as they represent the animals that were part

of the population and were available for capture during the study but were not caught

at any point. Therefore, N represents the fixed but unknown total population over the

duration of the study and is one of the parameters that can be estimated during inference.

The total M capture history patterns for animals that were observed at least once

are then summarised to give the abundances of animals corresponding to each of the

possible distinct capture history patterns that include at least one capture. The number

of animals that are assigned to the capture history corresponding to the null pattern,

ω1 = (0, 0, . . . , 0) (Table 2.1), representing no captures during the study period, cannot
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be known unless some necessary constraints are imposed. For example, the total number

of animals alive in the study area immediately before the study began would need to be

known and some strong assumptions about the sub-processes that drive the dynamics

of the population over time would need to be made. If it can be assumed reliably that

the population is completely closed; that is no animals can enter or leave the population

during the study period then these assumptions, together with the knowledge of the initial

number of animals will allow the number of animals that were present in the population

at some point during the study period but never captured to be calculated. For many

studied ecological systems, these assumptions can prove to be unrealistically restrictive

and possessing that degree of knowledge about the population would render the mark-

recapture experiment redundant.

6.4 The State Process

The state process under the unconditional approach operates in a manner similar to that

outlined in Section 3.3 for the general formulation of state-space models. The difference

between the state process for the unconditional approach compared to the conditional

approach is that the sub-process modelling capture is no longer included in the state pro-

cess. Instead, as with the traditional state-space model formulation, the capture process

is incorporated into the model structure through the observation process.

The specification of the state process is consistent with that presented in Section 3.3.

It is constructed from individual components for each assumed biological process which

allows the state process to be specified in terms of a series of linked sub-processes that

are assumed to operate sequentially with the output of one sub-process being the input

to the following sub-process. Again, it shall be assumed that each specified sub-process

operates on discrete time and that the order of the sub-processes remains the same across
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each distinct time period.

In the following illustrative examples the dynamics of the population over time are

assumed to be driven by two sub-processes: a survival process and a birth and matura-

tion process. Both the survival and birth processes are modelled stochastically whereas

maturation is specified as a deterministic process; if a juvenile animal survives from the

previous time period then it will become mature and will be classified as either a yearling

or an adult. This age-structure for the population under the unconditional approach is

the same as that for the conditional approach section 4.4.1. The population is classified by

age and is divided into three distinct, mutually exclusive categories: juveniles, yearlings

and adults. Juveniles animals are those that are born in time period t immediately before

sampling occasion t. Those uncaught juveniles that survive the post-capture period until

the start of the next time period t + 1 will mature and be classed as adults by the time

of the sampling occasion t + 1. Animals classified as yearlings immediately before the

sampling occasion at t+ 1 will be defined as adult animals that were caught as juveniles

in the sampling occasion during the time period t. Therefore, as was seen for the condi-

tional approach, the distinction between “yearling” and “adult” exists as an artefact of

the birth and capture processes and, as explained in section 4.4.1, allows the estimation

of juvenile capture rates. More generally, the parameterisation and distributions for these

processes are the same as those given for the conditional approach in section 4.4.

Therefore, for the unconditional approach there are only two sub-processes that drive

the underlying dynamics of the model. Consequently, there will be only two intermediate

vectors required to denote the state of the population after evolving according to the

sub-process. This compares to the three intermediate vectors required for the conditional

approach. The intermediate states of the system will be stored in the vectors v1,t and v2,t
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and they are defined as follows:

v1,t = the number of animals in nt that survive through until

time t+ 1.

v2,t = the number of juveniles produced by the surviving an-

imals v1,t and age incrementation of the those animals

in v1,t.

The state process distribution, as defined in section (6.3.1b), can then be expressed

as gt = g1,t ∗ g2,t where g1,t and g2,t are the probability distributions used to model the

survival and birth processes respectively. Then, using the definitions of the intermediate

state vectors (v1,t,v2,t) and the probability distributions of the sub-processes that generate

them, the evolution of the initial population to time t = 1 is illustrated schematically in

Figure 6.1.

n0 =

[
nj,0
na,0

]
g1,1−−→ u1,1 =

[
u1(1),1

u2(1),1

]
g2,1−−→ u2,1 =


u1(2),1

u1(1),1

u2(2),1

u2(1),1


Figure 6.1: Evolution of the initial states n0 via
the intermediate sub-processes.

The definitions for the subscripts in the notation for the state elements are the same

as those specified in section 4.4.1. Comparing Figures 6.1 and 4.5 the equivalence between

the intermediate state vectors for the evolution of the population from the initial states

n0 via the survival and birth sub-processes under both the conditional and unconditional

approaches can be seen. The equivalence can be expressed as u1,1 ≡ v1,1 and u2,1 ≡ v2,1.

The difference between the approaches in terms of the structure of the intermediate vec-

tors used to summarise the population after each sub-process is the lack of a capture pro-

cess component in the composition of the state process under the unconditional approach.



252

Again, adopting the approach of section 4.4.1, the tree diagrams in Figure 6.2 provide

a schematic representation of the evolution of the population over the first time period.

The rate parameters associated with the survival and birth processes are next to the rel-

evant branches of the trees.

v1(2),1 v1(1),1

v1(1),1

n1,0

v2(2),1 v2(1),1

v2(1),1

n2,0 n0

v1,t

v2,t

1

��44444
π

��






φj
��

1

��44444
π

��






φa
��

Figure 6.2: Evolution from n0 to n1 for the unconditional approach

The schematic representation in Figure 6.2 can be expressed in terms of the distribu-

tions of the sub-process. The notation of section 4.4.1 is once again replicated to highlight

the distinction between the survival rates φj and φa. Let n
[j]
t and n

[a]
t represent the set of

elements in the state vector nt that correspond to the abundances of juvenile and adult

animals respectively at time t. Then the distributions of the sub-processes can then be

written as:

u
[j]
1,t|n

[j]
t−1 ∼ Binomial(n

[j]
t−1, φj) (6.4.1a)

u
[a]
1,t|n

[a]
t−1 ∼ Binomial(n

[a]
t−1, φa) (6.4.1b)

u
[j]
2,t|u1,t ∼ Binomial(u1,t, π) (6.4.1c)

u
[a]
2,t|u1,t ≡ u1,t. (6.4.1d)

Using Equations (6.4.1c) and (6.4.1d), Figure 6.2 and the equivalence between v2,1 and
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u2,1 it can be seen that the even numbered elements of v2,1 correspond to the survivors

from the animals represented in n0 and the odd numbered elements correspond to the

new-born juveniles produced by these survivors. This equivalence also means that the

definitions of the elements of the intermediate vectors are the same as those given previ-

ously in Table 4.1.

Having examined the evolution of the population over the first time period it is con-

structive to examine the structure of the state vector at future time periods. Figure 6.3

represents the state vectors for the initial animals t = 0 and for the population at the end

of the first and second time periods.

n0 =

[
n0,j

n0,a

]
→ n1 =


n1,jj

n1,ja

n1,aj

n1,aa

→ n2 =



n2,jjj

n2,jja

n2,jaj

n2,jaa

n2,ajj

n2,aja

n2,aaj

n2,aaa


Figure 6.3: The elements of the state vec-
tors nt for t = 0, 1, 2 for the unconditional ap-
proach. The rightmost character of the sub-
scripts on each element denotes current age
class: either juvenile j or adult a. The pre-
ceding characters denote the ancestry of the
animal by giving the time of entry of its an-
cestors. A jja suffix denotes animals that are
adults at time 2 that were born in time 1 to
animals that were initially juveniles (at time
0).

From a comparison between Figures 6.1 and 6.3 it can be seen that there is an equiva-

lence between the state vector at time 1, n1, and the intermediate states that summarise
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the population after the first survival and birth processes, u2,1. Hence,
u1(2),1

u1(1),1

u2(2),1

u2(1),1

 ≡

n1,jj

n1,ja

n1,aj

n1,aa


and this relationship, that u2,t ≡ nt, holds for any time period t. Therefore, there is

no need to perform any summing of elements of u2,t to obtain the state vector nt. In

short, using the parlance of the conditional approach, there are no convolutions in the

correspondence between the “parent” and “child” nodes. Each element of the state vector

nt−1 will produce two “child” node elements in u2,t and equivalently nt. Thus, with the

initial vector n0 consisting of two elements it is easily seen that the state vector at time

t will consist of 2t+1 elements.

With regard to the notation used in Figure 6.3, the elements of the state vectors rep-

resent the abundances of animals classified by their ancestry. The rightmost character

of the subscripts on each element in the state vectors denotes the current age class of

the animal, indicating whether it is a juvenile j or an adult a. The preceding characters

then denote the ancestry of the animal by denoting the times periods during which its

ancestors entered the population. For example, the subscript jja would represent an

animal that is an adult during t = 2 but was born in the previous time period t = 1

to an animal that was a juvenile at the start of the study t = 0. As will be discussed

in section 4.4.2, recording the time of entry into the population is necessary to correctly

evaluate the probabilities of occurrence for each of the capture history patterns. This

requirement to distinguish between groups of animals by their ancestral paths prevents

combining together animals that are subject to the same model (i.e. share common pa-

rameters) from their time of entry into the population. This therefore adds a necessary
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level of complexity to the classification of the elements in the state vectors.

6.5 The Observation Process

One of the key distinctions between the unconditional and conditional approaches is the

difference in the structure of the data that is used in the model fitting process. As

described in Section 6.3, the full series of observations at time t, yt, consists of the abun-

dances for the capture history patterns that include capture on at least one occasion

between 0 : t. This contrasts with the conditional approach in which the vector of obser-

vations at time t, yt, consisted of the known abundances of animals with capture history

patterns that included capture in year t.

The observations in yt are obtained by considering the capture histories exhibited by

each individual animal that was observed at least once during the first t capture occasions

and then summing across common capture history patterns. Thus, the first M rows of

the matrix of capture histories, as illustrated in Table 6.2, provide the necessary informa-

tion to construct the vector of abundances of capture history patterns containing at least

once capture. Care should be taken to distinguish between juveniles, yearlings and adults

for the population structure described in section 6.4. This issue is discussed in detail in

section 6.6.3. The observation vectors specified under the conditional and unconditional

approaches are represented in Figures 6.4 and 6.5 respectively.

Comparing Figure 6.5 with Figure 6.4 it can be seen that by relaxing the requirement

to condition on the animals that were observed at each time period the dimension of the

observation vector for time t is increased. It should also be noted that the capture history

patterns that do not contain a single capture are, by definition, unobserved throughout
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y1 =

[
nj1,1
na1,1

]
→ y2 =


nj1,2
ny11,2

na01,2

na11,2

→ y3 =


nj1,3
ny11,3

na001,3

na011,3

na101,3

na111,3


Figure 6.4: The observation vectors yt for t =
1, 2, 3 for the conditional approach

y1 =

[
nj1,1
na1,1

]
→ y2 =


nj1,2
ny10,2

ny11,2

na01,2

na10,2

na11,2

→ y3 =



nj1,3
ny10,3

ny11,3

na001,3

na010,3

na100,3

na011,3

na101,3

na110,3

na111,3


Figure 6.5: The observation vectors yt for t =
1, 2, 3 for the unconditional approach

the study and are therefore not included in the observation vectors. Thus, the juveniles

that are not detected during the sampling process at time t, nj0,t, and the adult animals

with the null capture history pattern, na0...0,t, are the only capture history patterns not

to be incorporated into the observation vector. The reduced dimension of the vectors of

observations under the conditional approach results from the requirement to condition on

observed capture history pattern abundances that are known with certainty. This can be

explained by examining the relationship between the state and observation vectors under

both the conditional and unconditional approaches.

For the unconditional approach the uncertainty in period t relates to the probability

of capture which is modelled through the observation process at t as defined in (6.3.1c).
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The capture process, as defined in section 4.4, is then used to model the relationship be-

tween the elements of the state and observation vectors at time t. The stochastic nature

of this binomial capture process thus introduces uncertainty at each time period t into

the correspondence between the states nt and the observed capture history patterns yt.

This uncertainty means that the form of the correspondence between the elements of nt

and yt is less obvious under the unconditional approach than it was under the conditional

approach. For the conditional approach there was a direct correspondence between the

individual elements of the vectors; the elements of the observed vector corresponded, ei-

ther exactly or through summation, to the state elements that represented abundances of

observed animals. This relationship thus determinined the constraints for the conditional

generation algorithm.

For the unconditional approach the state vector, nt, simply gives the numbers of an-

imals, as categorised by their ancestry, that are available to be captured immediately

after the new juveniles enter the population during time period t. As indicated in Ta-

ble 6.2, the observed capture histories can be expressed in matrix form and consist of M

rows with each row corresponding to the capture history for a unique individual caught

at least once. The key point about this representation of the population is that a 0 in

the ith element of the row simply indicates that the animal was not captured during the

ith sampling occasion. It does not distinguish between those animals that were present

in the population but evaded capture and those animals that were not available to be

captured (i.e. they had died before the ith capture occasion or were born after the ith

capture occasion). The state vector only includes the numbers of animals that are alive

during each period hence the disparity between the observation and state vectors. It is

this disparity that is modelled by the observation process. The fitting algorithm will then

need to account for animals that have died at some stage during the study yet still make
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a contribution to the observed abundances of capture history patterns.

The likelihood formulation for conventional mark-recapture models was discussed in

section 6.2. From the expression of Equation (6.2.2) it can be seen that the likelihood

includes the parameters relating to both the survival and capture processes. By applying

the unconditional approach within a state-space modelling framework the likelihood for

the observations becomes simpler when compared to the conventional likelihood. The

survival and birth processes do not need to be specified as part of the observation process

model because they are already accounted for in the state process model. Hence, the state

model determines the abundances of animals assigned to each state in the population with

the observation model then determining the relationship between the underlying states

and the measures taken on these states. For example, if it is assumed that all animals in

the population can be grouped into a single state at each period t, the likelihood given in

Equation (6.2.2) can be re-written as:

L (ψ|s1, . . . , sT ) =
T∏
t=1

(
Nt

st

)
(pt)

st(1− pt)Nt−st (6.5.1)

where pt ≡ pt(ψ) is defined to allow the probability of capture to be a function of the

observation model parameters ψ.

The likelihood of the observations in Equation (6.5.1) is constructed from the product

of components, with each component corresponding to a single time period t. Each of

these components represents the probability of observing the number of animals caught

at the start of a period, st, given the number of animals in the population available to be

captured in that period, Nt. This is simply the observation process model, as defined in
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Equation (6.3.1c), therefore:

ft(yt|nt, ψ) = ft(st|Nt, ψ) =

(
Nt

st

)
(pt)

st(1− pt)Nt−st .

This specification of the likelihood of the observation allows the model to be fitted using

any of the model algorithms described in Section 3; specifically, the approaches developed

in Buckland et al. (2004), Thomas et al. (2005), Newman et al. (2006) and Buckland et al.

(2007).

The simple likelihood of Equation (6.5.1) requires the assumption that all animals can

be grouped into a single state. This means the observation vector yt simply becomes a

scalar st which is defined, as in Table 6.1, as the number of animals caught at the start of

period t. Also, the state vector nt consists only of a single element and thus was written

as the scalar Nt. The value of Nt denotes the total number of animals in the population

at the beginning of period t and this is determined by the state model. This simple

model can be readily expanded to the vector case. Consider state and observation vectors

consisting of K states such that

nt =


n1,t

n2,t

...

nK,t

 and yt =


s1,t

s2,t

...

sK,t

 .

The resulting likelihood for the observations can now be expressed as:

L (ψ|y1, . . . ,yT ) =
T∏
t=1

ft(yt|nt, ψ) (6.5.2)
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where the observation process for period t is defined as:

ft(yt|nt, ψ) =
K∏
k=1

(
nk,t
sk,t

)
(pk,t)

sk,t(1− pk,t)nk,t−sk,t . (6.5.3)

For this k-state model pk,t is defined as the probability of an animal in state k being

captured in period t. The definition of pk,t is an extremely flexible one. As discussed in

section 2.2.1.3 the probability of capture can be defined to be either constant over time

and state, (pk,t = p), constant over state pk,t = pt, constant over time pk,t = pk or, as cur-

rently defined, dependent on both. Equally, as discussed in section 2.2.5, the probability

of capture can be modelled as a function of covariates, such as previous capture history

for example, which can include auxiliary data if available. Alternatively, a random effects

model could be used to model the capture rates.

The formulations of the likelihoods in Equations (6.5.1) and (6.5.2) serve to illustrate

the distinction between the observation processes under the conditional and unconditional

approaches. For the unconditional approach the observed captures (st and yt in Equa-

tions (6.5.1) and (6.5.2) respectively) are included in the likelihood rather than the state

process and therefore do not influence an animal’s state.

6.6 Fitting the Models

This section describes an alternative approach to formulating the likelihood for the ob-

served data using the unconditional approach and presents a detailed explanation of the

implementation of the model fitting algorithm. This unconditional fitting algorithm builds

on the existing techniques for state-space and mark-recapture modelling approaches dis-

cussed earlier. Comparing the conditional and unconditional approaches it can be seen

that the model formulation under the conditional approach is closer in structure to the
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N = Total number of animals that have formed part of the population
at any time during the interval [0, T ]

ω = A zero-one indicator vector denoting the capture history: ω =(
δ

(ω)
1 , δ

(ω)
2 , . . . , δ

(ω)
T

)
where δ

(ω)
i = 1 or 0 for i = 1, . . . , T if the an-

imal was caught on the ith occasion or not. There are 2T possible
patterns, one of which represents the null pattern: ω1 = (0, 0, . . . , 0)
i.e. those animals that were present at some stage but never caught.

xω = Number of animals having the capture history pattern ω

Table 6.3: Definitions and notation for the unconditional approach.

state-space model as opposed to conventional mark-recapture models. The reverse is true

for the unconditional approach. The fitting process centers on the construction of a multi-

nomial likelihood that models the partitioning of the total population over the study into

the distinct capture history patterns. It is the manner in which the rates for this multi-

nomial likelihood are calculated that marks a departure from existing methods of fitting

models to mark-recapture data.

To begin describing the fitting algorithm it is first necessary to formally define the

terms used. The notation in Table 6.3 shares much in common with the definitions given

in Table 2.1 and Equation (6.2.1). This reflects the strong parallels between the basic

data structure for the unconditional approach and conventional mark-recapture models.

From the definitions in Table 2.1 it can be seen that the total number of animals that

have appeared in the population throughout the duration of the study is given by the

abundances for each capture history pattern summed across all possible patterns. That

is

N =
2T∑
j=1

xωj (6.6.1)

where xωj denotes the abundance for the jth capture history pattern ωj. For a T

sample study there are 2T distinct and mutually exclusive capture history patterns. The
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implementation of the unconditional fitting algorithm then requires that the probabilities

of each capture history pattern occurring need to be evaluated. The technique used to do

this is discussed in the next section.

6.6.1 Evaluating Probabilities

To illustrate this component of the fitting algorithm the example model as introduced

in section 6.4 will again be used. The probabilities for each capture history pattern are

determined by the combined effect of the state and observation processes. Thus, the

first step is to obtain a population of N animals by generating a single realisation of the

state vectors for the entire study, n0:T . As with the conditional generation approach, the

initial states can be obtained via simulation from a prior using the methods described

in section 5.5. Given this starting point sequential applications of the survival and birth

processes, using the distributions in Equations (6.4.1a):(6.4.1d), for each time period are

then performed to simulate the remaining states and intermediate vectors as illustrated

in Figures 6.1 and 6.3.

Given the full set of state vectors n0:T the total number of animals that were available

to be captured at some point during the study is given by summing the components of the

initial states, n0, and all components of the states at time t that correspond to juvenile

animals born in that time period. As can be seen from Fig 6.1, for this example, the state

vector at time t, (t > 0) contains 2t elements of which the odd-numbered ones denote the

new-born juveniles. Hence,

N = nj,0 + na,0 +
T∑
t=1

2t∑
i=1

n2i−1,t. (6.6.2)

The next required step is to establish the correspondence between the components of
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njaa,2 − njaaa,3 = Animals that were juveniles at t = 0 and died before the third
capture occasion.

naaa,2 − naaaa,3 = Animals that were adults at t = 0 and died before the third capture
occasion.

njaaa,3 = Animals that were juveniles at t = 0 and were available for capture
during the third capture occasion.

naaaa,3 = Animals that were adults at t = 0 and were available for capture
during the third capture occasion.

njja,2 − njjaa,3 = Animals that were born during t = 1 to an initial juvenile and died
before the third capture occasion.

naja,2 − najaa,3 = Animals that were born during t = 1 to an initial adult and died
before the third capture occasion.

njjaa,3 = Animals that were born during t = 1 to an initial juvenile and were
available for capture during the third capture occasion.

najaa,3 = Animals that were born during t = 1 to an initial adult and were
available for capture during the third capture occasion.

Table 6.4: The number of animals, by state element, that can exhibit a 110 capture history
pattern.

Equations (6.6.1) and (6.6.2). Effectively this is equivalent to establishing the correspon-

dence between the state elements nt and the observations yt at each time period. The

elements of nt denote animals that are alive at t, whereas the abundances for the cap-

ture history patterns denoted in yt include animals that died before the capture process

during time t. Hence the equivalence between the components involves summing over

those animals that die but still exhibit the particular capture history pattern of interest.

For example, consider the pattern 110. For a population structured with two age classes:

juveniles and adults, there are eight combinations of state elements that could possibly

exhibit this pattern. These combinations then sum to give the total number of animals

that could exhibit a 110 capture history pattern. The elements of n2 and n3 that are com-

bined for this pattern are given in Table 6.4. Summing these elements gives the following

relationship:

x110 = njaa,2 + naaa,2 + njja,2 + naja,2.
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Thus, by summing the eight components the expression becomes simplified as there is no

cumulative contribution from the elements in n3. Including all eight combinations may

seem somewhat redundant as the same information is contained in just four elements of

n2. In terms of determining the correspondence between the state elements and the ob-

served abundances for the capture history patterns this specification is indeed redundant.

However, including all possible combinations is necessary to calculate the rates of the

multinomial likelihood for the observed data.

The rates for the multinomial likelihood are the set of probabilities
{
rω1 , . . . , rω2T

}
where the probability rωj corresponds to the capture history pattern ωj. There are sev-

eral equivalent approaches to calculating these rates with the equivalence determined by

the specification of those parameters ψ used by the capture process. The most general

approach is perhaps most easily explained by considering each individual animal that oc-

curred in the population simulated under the state process. During this implementation

of the state process via stochastic simulation, the point at which the animal entered the

population, tent and the point at which it departed the population, tex, should both be

stored. This can be achieved by assigning an index value to each animal in a new cohort of

juveniles that enter the population in each time period. The index values corresponding

to the animals from these cohorts that then fail to survive to the next period are stored

with this process being repeated for each time period. Thus, once the state process has

simulated the population of N animals over the study period, these N individuals are

grouped into cohorts defined by their particular entry and exit times. In general, the

cohort indexed by (tent, tex) denotes the number of animals that were born during the

time period tent and died during the time period tex. For example, the cohort indexed

by (tent = 1, tex = 3) denotes the number of animals that were born during the first time

period (i.e. were juveniles during the capture occasion in time t = 1) but died during
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Capture History Probability

010 (1− pi,1)pi,2(1− pi,3)
100 pi,1(1− pi,2)(1− pi,3)
110 pi,1pi,2(1− pi,3)
000 (1− pi,1)(1− pi,2)(1− pi,3)

Table 6.5: Capture histories and associated prob-
abilities for the animal Ai given that it belongs to
the (tent = 1, tex = 3) cohort.

the third time period (i.e. were not available to be caught during the during the capture

occasion in time t = 3).

After assigning each animal in the population to one of these cohorts the next stage is

to consider which possible capture history patterns these individual animals could have

displayed. For example, those animals in the (tent = 1, tex = 3) cohort had died before

the third capture occasion and therefore could not exhibit any capture history pattern

that indicated a capture in the third element. So, in the case of a three sample study,

the only viable capture history patterns for the animals in the (tent = 1, tex = 3) cohort

are 010, 100, 110 and 000. None of the patterns 001, 011, 101 or 111 could be exhibited by

this cohort. Having determined the viable capture history patterns, the next step is to

consider each individual animal in this cohort separately and then evaluate the probability

of that animal exhibiting each of the viable capture history patterns. Let pi,t denote the

probability of animal Ai (i = 1, 2, . . . , N) being captured during the capture occasion at

time t. Then, if animal Ai belongs to the (tent = 1, tex = 3) cohort the probabilities of

this animal exhibiting each of the four viable histories are presented in Table 6.5.

This process is then repeated for the animals in each of the possible (T+1)(T+2)
2

cohorts
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until the probability of exhibiting each possible capture history pattern has been calcu-

lated for all N individuals. Let Pr (ωj|Ai) denote the probability of animal Ai exhibiting

the capture history pattern ωj. Then, the rate rωj for the capture history pattern ωj is

obtained by taking a weighted sum of the probabilities Pr (ωj|Ai) over all N animals.

The weight attributed to animal Ai is denoted as Pr(Ai). For this population model

approach it is assumed a priori that each animal has the same weight in this sum; that

is Pr(Ai) = 1
N

. Under this weighting approach the rate rωj can be thought of as the “av-

erage” probability of any animal in the population exhibiting the capture history pattern

ωj. The rates for the multinomial likelihood are now defined formally in Equation (6.6.3)

with ψi denoting the set of parameters for the observation process associated with animal

Ai.

rωj = Pr (ωj) =
N∑
i=1

Pr (ωj|Ai, ψi)Pr (Ai) (6.6.3)

By allowing the capture rate to vary both by individual and by time period the resulting

model is saturated with N × T capture parameters. By making more restrictive assump-

tions about the parameterisation of the capture process this cohort-based approach can

be used to simplify the process of calculating the probabilities for each capture history

pattern. An example is presented in the next section.

6.6.2 The General Approach

As discussed in the previous section, the general approach to fitting models under the

unconditional approach requires each animal to be considered in turn. This process is

simplified by grouping animals that share common capture probabilities for each time pe-

riod. All the animals belonging to an individual group will then have the same probability

of exhibiting a specific capture history pattern. If the population can be partitioned into

K such groups the rate associated with capture history pattern ωj can now be calculated
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using the expression in Equation (6.6.4). Nk is defined as the number of distinct animals

that are assigned to group K such that N =
∑K

k=1 Nk. In this case the weights are

determined by group size and are simply the relative frequencies of the K groups.

rωj = Pr (ωj) =
1

N

K∑
k=1

NkPr (ωj|Nk, ψk) (6.6.4)

The rates calculated using Equations (6.6.3) and (6.6.4) will be equivalent but the ap-

proach indicated in Equation (6.6.4) will typically be more efficient.

This approach to calculating the rates can be applied to the usual example population.

The parameterisation and structure of the state and observation models are the same as

for the model outlined in section 4.4. The population is subject to evolution according to

binomial survival and birth processes as specified in Equations (6.4.1a):(6.4.1d). Measures

taken on this system are modelled using a binomial capture process and consist of the

observed abundances for the possible capture history patterns exhibited by the animals.

It is assumed that the population consists of two distinct age classes: juveniles and adults

and that the model parameters relating to the survival and capture processes differ by

age class.

For this population the groups that share common capture probabilities for each time

period will be the cohorts defined by the entry and exit times. For a study consisting of

three sampling occasions, T = 3, there are (T+1)(T+2)
2

= 10 distinct cohorts. Using the

(tent, tex) cohort indexing from section 6.6.1 the 10 cohorts are

{(0, 1), (0, 2), (0, 3), (0, •), (1, 2), (1, 3), (1, •), (2, 3), (2, •), (3, •)}

where tex = • corresponds to animals that did not exit the population during the duration

of the study. Then, each capture history pattern ω is consider in turn and the probabilities,
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as in Table 6.5, are evaluated for each (tent, tex) cohort. These probabilities are presented

in Table 6.6. It should be noted that the 0 entries in Table 6.6 relate to capture history

patterns that are not attainable by the animals in the corresponding cohort.

Then, to calculate the rates using Equation (6.6.4) it is necessary to establish the

abundances, Nk, that correspond to each of the 10 cohorts. Table 6.4 effectively represents

the total number of animals that could exhibit a 110 capture history pattern partitioned

by tent, tex cohort. The same process used to generate that break-down is then applied

to the entire population of N animals and the Nk’s can then be expressed as functions of

the elements of the state vectors n0:T . For this three occasion example, the contributions

to the abundances for each of the 10 tent, tex cohorts are given in Table 6.7. Summing the

components then returns the abundance for that cohort. For example, the animals that

entered the population during the first time period and left during the third time period

would belong to the 1, 3 cohort and the abundance of this cohort is then

N(1,3) = njja,2 − njjaa,3 + naja,2 − najaa,3.

Repeating this process for each cohort then yields a vector of abundances.

The probabilities from Table 6.6 and the abundances obtained from Table 6.7 are

then combined to calculate the probability associated with each capture history pattern.

The entries in Table 6.6 form a 2T × (T+1)(T+2)
2

matrix. Switching the rows and columns

and multiplying this resulting matrix by the vector obtained from summing the rows in

Table 6.7 nearly completes the calculation of the multinomial rates
{
rω1 , . . . , rω2T

}
. For

example, using Equation (6.6.4) and Tables 6.7 and 6.6 the probability associated with
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Cohort Pattern

(tent, tex) 000 001 010 100

(0, 1) 1 0 0 0

(0, 2) 1− pa 0 0 pa

(0, 3) (1− pa)2 0 (1− pa)pa pa(1− pa)
(0, •) (1− pa)3 (1− pa)2pa (1− pa)pa(1− pa) pa(1− pa)2

(1, 2) 1− pj 0 0 pj

(1, 3) (1− pj)(1− pa) 0 (1− pj)pa pj(1− pa)
(1, •) (1− pj)(1− pa)2 (1− pj)(1− pa)pa (1− pj)pa(1− pa) pj(1− pa)2

(2, 3) (1− pj) 0 pj 0

(2, •) (1− pj)(1− pa) (1− pj)pa pj(1− pa) 0

(3, •) 1− pj pj 0 0

(a) First four histories.

Cohort Pattern

(tent, tex) 011 101 110 111

(0, 1) 0 0 0 0

(0, 2) 0 0 0 0

(0, 3) 0 0 p2
a 0

(0, •) (1− pa)p2
a pa(1− pa)pa p2

a(1− pa) p3
a

(1, 2) 0 0 0 0

(1, 3) 0 0 pjpa 0

(1, •) (1− pj)p2
a pj(1− pa)pa pjpa(1− pa) pjp

2
a

(2, 3) 0 0 0 0

(2, •) pjpa 0 0 0

(3, •) 0 0 0 0

(b) Remaining histories.

Table 6.6: Probabilities for capture history patterns by entry and exit times
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Cohort
Components of Abundance

(tent, tex)

(0, 1) nj,0 − nja,1 na0 − naa,1
(0, 2) nja,1 − njaa,2 naa1 − naaa,2
(0, 3) njaa,2 − njaaa,3 naaa2 − naaaa,3
(0, •) njaaa,3 naaaa3

(1, 2) njj,1 − njja,2 naj1 − naja,2
(1, 3) njja,2 − njjaa,3 naja2 − najaa,3
(1, •) njjaa,3 najaa3

(2, 3) njjj,2 − njjja,3 njaj2 − njaja,3 najj2 − najja,3 naaj2 − naaja,3
(2, •) njjja,3 njaja,3 najja,3 naaja,3

(3, •) njjjj,3 njjaj,3 njajj,3 njaaj,3

najjj,3 najaj,3 naajj,3 naaaj,3

Table 6.7: Abundances for each (tent, tex) cohort.
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capture history pattern 110 is:

r110 = Pr (110) =
1

N

10∑
k=1

NkPr (110|Nk, (pj, pa)) (6.6.5)

=
1

N

{
1

N
p2
a [(njaa,2 − njaaa,3) + (naaa,2 − naaaa,3)]

+ p2
a(1− pa) [njaaa,3 + naaaa,3]

+ pjpa [(njja,2 − njjaa,3) + (naja,2 − najaa,3)]

+ pjpa(1− pa) [njjaa,3 + najaa,3]
1

N

}
.

This procedure is then repeated for each of the capture history patterns and, using the

definitions from Table 6.3, these rates can then be used in the multinomial likelihood

given in Equation (6.6.6).

L(Θ|ω1, . . . , ω2T ) =
N !

2T∏
j=1

xωj !

2T∏
j=1

r
xωj
ωj (6.6.6)

The set of capture history patterns used in the evaluation of the multinomial likelihood

consists of 2T individual patterns, one of which is the null pattern corresponding to those

animals that were present in the population but never captured during the study. These

animals are represented by the N −M individuals from Table 6.2. The abundance of

animals with the null capture history pattern is then obtained by taking the difference

between the total number of animals that were present during the study, as determined

by Equation (6.6.2), and the number of animals that were captured at least once during

the study. Thus, for the three sampling occasion example,

x000 = nj,0 + na,0 +
3∑
t=1

8∑
i=1

n2i−1,3 −
8∑
j=2

xωj (6.6.7)

and the likelihood in Equation (6.6.6) can be evaluated.
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6.6.3 Extending The General Approach

The general approach in section 6.6.2 set out the required approach to evaluating the

model likelihood for the observed abundances of the capture history patterns. This ap-

proach was valid when the observations made no distinction between the age of the animals

exhibiting those capture history patterns. However for the state-space model defined by

the observation and state processes given in sections 6.4 and 6.5 it can be seen from

Figure 6.5 that the vector of observations yt maintains a distinction between juveniles,

yearlings and adults. Under this structure there are 4 + 2t possible capture history pat-

terns that can be exhibited by animals that have existed in the population between times

0 and t.

This then requires the multinomial likelihood to be expressed as in Equation (6.6.8)

where the sums and products range over 4 + 2t separate cohorts.

L(Θ|ω1, . . . , ω4+2T ) =
N !

4+2T∏
j=1

xωj !

4+2T∏
j=1

r
xωj
ωj (6.6.8)

Using the approach of section 6.6.2 and partitioning the population into cohorts defined

by their entry and exit times allows this extended likelihood to be calculated relatively

easily. The four extra capture history patterns that now appear in Equation (6.6.8) cor-

respond to capture history patterns denoting unobserved juveniles j0, observed juveniles

j1, unobserved yearlings y10 and observed yearlings y11 at time T . This reduced notation

is used only in reference to the capture history patterns that include all T capture oc-

casions. In other words, for a three sample study the j0 notation could be equivalently

expressed as j000 but the first two zeros denoting non-capture due to absence from the
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population are omitted for simplicity.

Three of these four extra patterns are observed and thus their totals are fixed whereas

the abundance of unobserved juveniles needs to be simulated. It is determined in a manner

similar to that discussed in section 6.6.2 for the abundance of adults exhibiting the null

capture history pattern. The total number of juveniles produced in the final time period

is

nj0,T + nj1,T =
2T∑
i=1

n2i−1,T

and the number of juveniles captured during time T is simply the first elements of the

observation vector yT . Hence,

nj0,T =
2T∑
i=1

n2i−1,T − nj1,T .

The rates rω correspond to the proportions of animals in the population exhibiting the

capture history patterns ω. Hence, the rates for each of these four extra patterns need

to be determined. Consider again the matrix of probabilities in Table 6.6. Multiplying

each column of this matrix by the vector of abundances obtained from summing the rows

in Table 6.7 and dividing the resulting vector by the population size N gives the rela-

tive probabilities by (tent, tex) cohort for each of the 2T capture history patterns. Then,

summing together the rows according to time of entry results in a (T + 1) × 2T matrix,

D, that gives the relative probabilities by time of entry into the population for each of

the 2T capture history patterns. These probabilities can then be used to obtain the rates

rω for these four extra capture history patterns. For example; for a three sample study

the rate ry10 corresponds to yearlings that were not observed in the third sample and,

by definition, a yearling was captured as a juvenile in the previous time period. Hence,

the subscript notation for this cohort, y10, assumes implicitly that any yearling at time
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t would not have been present in the population at t − 2 and therefore an equivalent

alternative subscript notation for this example is y010. The xy10 animals exhibiting this

capture history pattern will then be those animals that were born during the second pe-

riod and captured as juveniles during the second capture occasion. Hence, the relevant

probability for ry10 is the element of D that corresponds to those animals that exhibit a

010 capture history pattern and entered the population during the second period. The

value of ry10 is given in Equation (6.6.9).

ry10 =
1

N

{
1

N
pj [(njjj,2 − njjja,3) + (njaj2 − njaja,3) + (najj2 − najja,3) + (naaj2 − naaja,3)]

+ pj(1− pa) [njjja,3 + njaja,3 + najja,3 + naaja,3]
1

N

}
(6.6.9)

A similar procedure is then used to obtain the other three multinomial rates. Thus,

the relevant probability for rj0 is the element of D that corresponds to those animals

that exhibit a 000 capture history pattern and entered the population during the third

period. For rj1 the relevant element corresponds to the 001 capture history pattern and

entry during t = 3. Finally, for ry11 the relevant element corresponds to the 011 capture

history pattern and entry during t = 2. It should be noted that for this example the

observed abundances in yT for the patterns a000, a001, a010 and a011 do not include the

juvenile or yearling animals that exhibit those patterns. Therefore the rates for the eight

capture history patterns ra000, ra001, . . . , ra111 will not all be equivalent to those used in the

likelihood that was given in Equation (6.6.6). Due to the required distinction between

juveniles, yearlings and adults in this extended approach the relationship between the
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rates in Equations (6.6.6) and (6.6.8) is

r000 = rj0 + ra000

r001 = rj1 + ra001

r010 = ry10 + ra010

r011 = ry11 + ra011.

Alternatively, and as for any model, the rates for the multinomial likelihood can be ob-

tained using the fully general approach in Equation (6.6.3). Ultimately, both approaches

will allow the likelihood in Equation (6.6.8) to be evaluated for a realisation of the pop-

ulation.

The construction of the likelihood in Equation (6.6.8) means that sequential impor-

tance sampling is not an appropriate inferential procedure for fitting the models specified

under the unconditional approach. In Equation (6.5.2) it was shown how the likelihood

determined by that model structure can be expressed as the product of year-specific com-

ponents. This is not the case for the likelihood determined by Equation (6.6.8). To

evaluate the set of multinomial rates rω for the likelihood based on the observations at

time t it is necessary to include the parameters that are used to construct the likelihood

at time t − 1. This is because the observations at time t will include the data that was

used to determine the observed capture histories, and consequently the likelihood, at time

t−1. The likelihood at time t is based on observed data from the first t capture occasions

rather than just data from the capture occasion at t alone. Therefore, the likelihoods at

each time t are not independent and the likelihood based on the abundances of observed

capture history patterns for the entire study cannot be expressed as their product.
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As a result of this, model fitting for the unconditional approach then uses the impor-

tance sampling techniques discussed in section 3.3.6. For the unconditional approach a

particle refers to the set of state and parameter vectors {n0,T ,Θ}. The likelihood for the

observations yT in Equation (6.6.8) is evaluated for each particle and the weights required

for the sampling procedure are then proportional to the likelihood. That is:

w ∝ N !
4+2T∏
j=1

xωj !

4+2T∏
j=1

r
xωj
ωj

and these weights are then normalised as described in section 5.6.

Using an importance sampling approach to the fitting procedure will, as discussed in

section 5.6, produce an approximate sample from the posterior distribution of g(n1:T |y1:T ,Θ).

It should be noted that the unconditional approach can, as with the conditional approach,

suffer from the simulation of implausible particles. From Equation (6.6.7) it can be seen

that the simulated number of animals that were present in the population during the study

without ever being observed is obtained by taking the difference between the model-based

number of animals that have entered the population and the total number of animals that

have been observed. It is possible that, for an individual particle, the application of the

state process may simulate a total population size N that is smaller than the actual

number of animals observed throughout the study. This scenario would result in a neg-

ative number of unseen animals and thus produce an implausible particle which would

then be assigned zero weight and excluded from the posterior sample. A similar problem

can occur when calculating the value of xj0 in the extended likelihood of Equation (6.6.8).

One of the defining features of the unconditional approach is that, in contrast to the

conditional approach, the simulation of state elements is not constrained by the observed
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abundances of capture history patterns. This may result in the population at a particular

time period being implausible when compared with the observed capture history patterns.

For example, the number of animals that enter the population at time T−1 and survive to

the end of the study may not be large enough to have generated the number of yearlings

that exhibited a y11 capture history pattern in the observed data. From the simulation

results presented in Chapter 7, this problem is not that pronounced for the relatively

simple models considered so far. However this potential limitation should not be ignored

and incorporating some form of conditioning on the state process, but not to the extent

and complexity of that required in the conditional approach, is a potential area for further

research.

This chapter has focussed on developing the methodology for fitting model developed

under the unconditional population approach. This allows a comparison to be made

between the the fitting algorithms developed under the population models assumed under

both the conditional and unconditional approaches. Developing the methodology for

fitting models under the unconditional superpopulation approach is an area of future

research. Applications of the unconditional approach to fitting models based on both real

and simulated data are presented in Chapter 7.



Chapter 7

Simulation Studies and Analysis of
Real Data

7.1 Outline

The previous chapters have presented the conditional and unconditional approaches to

fitting state-space models to mark-recapture data by way of embedding a population dy-

namics model into the inference. The motivation for each approach has been presented

and the structure of each fitting algorithm has been specified with illustrative examples

based on a simple model structure. These examples can be developed still further by way

of simulation studies.

Simulation studies allow the performance of the model and the efficacy of the phi-

losophy of the approach to be investigated. Simulating data allows the investigator to

analyse model output by comparing it to a known truth. Knowing truth, in the context

of model parameters and state elements, provides a simple metric by which to determine

how well the model is able to distinguish the signal from the noise. The aim of devel-

oping these approaches is to devise flexible integrated modelling techniques that draw

from both existing mark-recapture and state-space modelling theory. By embedding a

278
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population dynamics model into the mark-recapture analysis the resulting parametric in-

ference should be consistent with what is assumed to be known about the population

being studied. Simulation studies allow this issue to be investigated and can serve to

highlight practical issues that arise when applying the approaches. Simulation studies are

performed for both the conditional and unconditional approaches in sections 7.2.3 and

7.2.4.

Whilst simulation studies are an excellent tool for investigating the performance of a

model, the artificially constructed data used in the simulation may not accurately repre-

sent real data. Therefore, attempting to fit models to real data under both approaches

is constructive and can reveal potential limitations in the modelling framework that were

not apparent from the simulation studies. Section 7.3 describes an application to Soay

Sheep data using the same model form as was investigated in the simulation studies.

In section 7.4 the performance of the model fitting algorithms over multiple simulations

is investigated. The degree of uncertainty relating to posterior summaries is often of

interest and performing multiple simulations allows the investigator to distinguish between

the component of this uncertainty that can be attributed to the state process and that

which is the result of Monte Carlo variation. It should also be noted that, for this chapter,

all analyses based on the unconditional approach assume a population model.

7.2 Analysis of Simulated Data

The simulation study begins with a realisation of a single population. The structure of

this population will be the same as that defined in section 4.4. The evolution of the

population over a series of T time periods can then be simulated using the sub-processes

of survival and birth. The simulation begins by specifying an initial cohort of N0 animals
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that is then split into two age cohorts: juveniles (with probability τ) and adults. These

two cohorts are then projected forward stochastically through the survival process. Ju-

veniles survive with probability φj, adults with probability φa. It is assumed that these

rates are constant over time. The surviving animals then produce new juveniles via the

stochastic birth process with π denoting the probability that an animal produces a single

young for that time period. The surviving animals are subject to a deterministic ageing

process; surviving juveniles from time t − 1 are classified as adults at time t, surviving

adults from time t − 1 are, naturally, still classified as adults at time t. Each surviving

animal is then subjected to a stochastic capture process and is observed with probability

pj if a juvenile and pa if an adult. Following the capture process the cycle of sub-processes

is repeated beginning again with survival. This process continues until the final capture

occasion at time T at which point all elements of the state and intermediate vectors will

have been simulated. The set of Equations (4.4.1a):(4.4.1f) define the functional forms

of the stochastic sub-processes used to simulate the population, all of which are binomial

for this model.

From Figures 6.4 and 6.5 it can be seen that the structure of the observations made on

this simulated population differ under the two approaches. For the conditional approach

the observed data at time t consists of the counts of capture history patterns including

capture in the most recent time period. Under the unconditional approach the observed

data at time t consists of the counts of capture history patterns that include capture at

least once during the study. So, although the structure of the observation vectors y0:T

may differ between approaches, the same data is used for both the conditional and un-

conditional approaches. The parameter values used to simulate the observed data will be

fixed a priori and can be chosen to create populations displaying certain characteristics.

For example, setting the birth rate π and the splitting rates τ both to 0 will result in the
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Parameter Symbol Value

Juvenile Survival φj 0.7

Adult Survival φa 0.8

Juvenile Capture pj 0.5

Adult Capture pa 0.6

Birth π 0.4

Population Split τ 0.3

Table 7.1: Fixed parameters used to
simulate the population.

simulation of a population consisting solely of adults that declines in abundance over time.

For the simulation studies covered in this section a population, and the resulting

observed data, will be simulated using the parameters specified in Table 7.1. An initial

total N0 will also need to be specified and will be taken to be 100 for the simulations in

this section.

Model fitting under each approach is initiated by simulating a large number of parti-

cles. This requires drawing values for the parameters, Θ = (φj, φa, π, pj, pa, τ), from some

prior distribution. One possible approach to this is discussed in the next section.

7.2.1 Simulation of priors

The model-fitting process is embedded within a Bayesian framework and this approach

necessitates the specification of a prior distribution for the parameters and states of in-

terest (see (3.3.1a)). This prior is specified as a joint prior distribution on the priors and

states and is typically comprised as the product of prior distributions for each individual

parameter if the parameters are assumed to be independent a priori.
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For these simulation studies the derivation of these component prior distributions is

kept relatively simple. All of the parameters Θ = (θ, ψ) that were specified in the state

and observation processes in the previous chapters correspond to rates of binomial dis-

tributions with the exception of the multinomial parameters that are required for a birth

process that allows a single adult to produce more than one progeny during each breeding

occasion. Consequently, a necessary restriction is that all of these parameters must be

bounded between 0 and 1 and the mechanism used to simulate from the prior distribution

must respect this constraint.

One suitable approach is to specify the mean value of the prior for each parameter

of interest, along with the associated variance. The specification of the variance then

allows the prior distribution for the parameter to be “spiked”, where the majority of the

probability mass is spread over a small range of values, or “flat”, where the probability

mass is distributed evenly between the boundary values 0 and 1.

To simulate a general parameter of interest, α, the mean µα and variance σ2
α are both

specified. The prior on α is then obtained using the following process:

a Define µl as the inverse logistic transform of µα such that µl = log(µα)− log(1−µα).

b Using this transformed variable µl define a random variable X such that: X ∼

Normal (µl, σ
2
α).

c Draw a sample of size Nα from the normal pdf X.

d Transform the resulting sample x1, x2, . . . , xNα using the logistic transformation to

obtain a sample for α. The ith element of the sample is thus defined as

α̃i =
exp(xi)

1 + exp(xi)



283

This sample of Nα draws α̃1, α̃2, . . . , α̃n is then centered about µα and bounded between

0 and 1 as required.

This is just one possible approach to simulating the values of the priors. Examples

of more detailed prior elicitation for state-space or hidden process models for biological

populations include studies on red deer (Cervus elaphus) (Trenkel et al., 2000), winter-

run chinook salmon (Oncorhunchus tshawytsha) (Newman et al., 2006) and grey seals

(Halichoerus grypus) (Thomas et al., 2005).

7.2.2 Fitting the models

Having drawn a set of Npart values for each parameter in Θ = (φj, φa, π, pj, pa, τ) the

model fitting algorithms are then applied to simulate the state elements and produce

posterior distributions on the parameters of interest.

A simplified pseudo-algorithm then outlines the importance-sampling based model

fitting approach with the specific details varying for the conditional and unconditional

approaches:

a Specify a set of values for the parameters (φj, φa, π, pj, pa, τ) that will be regarded

as the “true” values.

b Choose an initial population size N0 and simulate splitting this total into juveniles

and adults.

c Simulate a single realisation of a population from the state process pdf gt(nt|nt−1,Θ)

which is given by the product of the survival and birth processes.

d Simulate the observed animals in this population using the stochastic capture pro-

cess. For the conditional and unconditional approaches store those abundances
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corresponding to the capture history patterns that comprise the observed vector at

each time period.

e Generate Npart sets of n0 which is defined as

n0 =

[
nj,0

na,0

]

and Npart sets of Θ using the method in section 7.2.1. Do this for both approaches.

f For the conditional approach generate a sample of size Npart of the unobserved

elements s̆T of nT from the trial pdf hT (). These simulated observed elements

will be constrained to be consistent with the observed data obtained in step d.

Increment the index in decreasing time to generate Npart samples of s̆T−1 from the

trial pdf hT−1() conditional on n̆T and the observed data. Repeat until s̆1 has

been simulated and thus all elements of n0:T have been specified. Call this sample

n∗,i0:T,cga, i = 1, . . . , Npart.

g For the unconditional approach simulate a sample of size Npart of n1:T from the

trial pdf which is defined to be the state process pdf and does not include a capture

process. Call this sample n∗,i0:T,uga, i = 1, . . . , Npart.

h Calculate Npart weights for the conditional approach that are proportional to the

ratio of the product of the trial densities ht() at time t to the product of the state

process pdf at time t. Normalise the weights and assign the weight w∗,icga to the

sample n∗,i0:T,cga, θ
∗,i.

i Calculate Npart weights for the unconditional approach that are the proportional to

the multinomial likelihood for the observed capture history patterns as expressed by

Equation (6.6.8). Normalise the weights and assign the weight w∗,iuga to the sample

n∗,i0:T,uga, θ
∗,i.
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j Use the particles n∗,i0:T,cga, θ
∗,i and associated weights w∗,icga to obtain weighted sum-

maries on the posterior distributions on n0:T,cga, θ from the conditional approach.

k Use the particles n∗,i0:T,uga, θ
∗,i and associated weights w∗,iuga to obtain weighted sum-

maries on the posterior distributions on n0:T,uga, θ from the unconditional approach.

Implementing fitting routines using the steps of this pseudo-algorithm will yield ap-

proximations to the the smoothed posterior distributions for the parameters and states

under both the conditional and unconditional approaches. As explained in section 5.2.7,

the bottom-up conditional generation approach does not allow a sequential importance

sampling scheme to be applied. The unconditional approach is also unable to accommo-

date a sequential resampling scheme. A single importance sampling step, via a weighted

bootstrap resample, could be utilised for both approaches to obtain posterior summaries.

However, this resampling step increases Monte Carlo error by removing particles that

provide information about the posterior distribution. All required inferences can be made

using weighted averages that retain all the information in the data and this is the ap-

proach used for the model fitting processes in this chapter. It should be noted that, even

with the restrictions imposed on the simulation of states for the conditional approach,

this fitting algorithm can be quite inefficient as many of the particles may be assigned low

weights. This means computer resources have been effectively wasted on projecting these

“bad” particles through time that will have little contribution to the posterior. Various

approaches to boosting the number of “good” particles in a posterior sample have been

developed, details of which can be found in Liu and Chen (1998); Carpenter et al. (1999);

Pitt and Shephard (1999); Liu and West (2001); Liu (2001).

One tool that can be used to assess the extent of this problem is the effective sample

size. This provides a metric by which to judge the performance of the model fitting
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algorithm in terms of particle depletion and the distribution of the weights associated

with each particle. Assume that Npart particles are simulated and, after an application

of the model fitting algorithm, they are assigned the set of weights
{
w1, w2, . . . , wNpart

}
.

These weights will be assigned the value zero if they correspond to invalid particles. The

set of weights is then used to obtain the effective sample size (ESS) using the expression

in Equation (7.2.1).

cv2 =

Npart∑
i=1

(wi − w̄)2

(Npart − 1)× w̄2

ESS =
Npart

1 + cv2
(7.2.1)

Therefore, the less variation present in the weights, the smaller the value of cv2 and,

consequently, the larger the value of the effective sample size ESS. This determines the

effective number, out of the initial Npart particles, of independent particles that constitute

the sample from the posterior. The smaller the ESS is, the more variable the weights are

and the larger the Monte Carlo variation which simply means different simulation runs

give appreciably different results.

Each model fitting algorithm is now applied to the same simulated population with the

same set of priors used for each approach. The priors are generated using the technique

in section 7.2.1 with the means (µα) and variances (σ2
α) as specified in Table 7.2. The

values for each σ2
α are on the untransformed scale rather than the probability scale. The

value σ2
α is simply a parameter that is used to control the precision of the priors after

transformation rather than give the variance of the transformed sample. Plots of the

distributions of the six independent priors are presented in Figure 7.1

Both fitting approaches are initialised with 50000 particles consisting of simulated
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φj φa pj pa π0, π1 τ

Prior Means: µα 0.5 0.85 0.65 0.5 0.7,0.3 0.4

Prior Variances: σ2
α 1 1 1 1 1,1 1

Table 7.2: Specification of parameters µα and σ2
α used to sim-

ulate priors for the unconditional approach. Values for σ2
α are

on the logit scale.

states n0 and draws from the priors for the parameters Θ. The results are presented in

sections 7.2.3 and 7.2.4.

7.2.3 Conditional Approach

This conditional fitting approach had 21973 plausible particles remaining after the model

had been fitted to all the observed data. Fitting the model using 50000 particles took 16

hours and 7 minutes. The effective sample size based on these surviving particles is 6.153.

This is a rather small effective sample size and inference should be undertaken carefully

in this situation. The small effective sample size obtained for this analysis is a feature

that was observed under many alternative analyses based on the fitting algorithm for the

conditional approach. This may imply that a small effective sample size is an artefact

of the proposal densities constructed in the fitting algorithm rather than the model not

fitting the data well. For the analysis of this simulated data, the proposed model being fit

to data is of the same form as the model used to generate the data; hence, a low effective

sample size is unlikely to be a result of poor model fit.

Sample output from the model fitting process under the conditional approach is now

presented to illustrate the performance of the process and to allow direct comparison

with the results from the unconditional approach as presented in Section 7.2.4. Table 7.3

summarises the posterior distributions of the state elements that denote the surviving
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Figure 7.1: Density plots of priors for survival, capture, birth and population split rates
simulated using the parameters specified in Table 7.2. Truth denotes the value of the
parameter used to simulate the population.

population immediately following the second capture occasion. The column headed “Ex-

pected” contains the expected value of the state elements. This is obtained by taking the

initial 100 animals and multiplying this total by the true population parameters. This

process is iterated over each time period and can be thought of as providing the abun-

dance for each state and intermediate vector that would be obtained if the population

was projected forward deterministically with the the parameters fixed at their true values.
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State Median Mean Truth LCL UCL Expected CV

nj0 15 14.60 17 6 25 16.60 0.392

nj1 18 18.00 18 18 18 16.60 0

ny10 7 6.38 10 1 12 4.31 0.446

ny11 3 3.00 3 3 3 6.47 0

na00 21 20.60 12 10 26 14.20 0.279

na01 22 22.00 22 22 22 21.30 0

na10 23 23.50 16 17 28 14.80 0.121

na11 20 20.00 20 20 20 22.20 0

Table 7.3: Summary for state vector at t = 2 for the conditional approach.
Expected values denote projected state totals obtained by multiplying the
initial 100 animals by the true population parameters and iterating this
process over each time period.

For example, EΘ[na1,1|N0,Θ] = N0(τ(φjpa) + (1− τ)(φapa)). For a single realisation of a

population the column headed “Truth” is the more important to compare the posterior

means against. The expected value of the states can be used to assess the performance of

the model fitting algorithm by averaging the posterior means over multiple simulations.

This is investigated in Section 7.4.

It is immediately clear that all state elements corresponding to animals that were cap-

tured at time t = 2 are fixed at the true, observed, values and have a variance of zero.

The posterior summaries for the states in n2 corresponding to animals that were alive but

remained uncaught at t = 2 seem to match well with the true population values. The only

exception to this is the posterior for na10 which denotes adult animals that were captured

at time t = 1 and were alive, but uncaught, during the capture process at time t = 2.

The posterior mean of 23 is significantly larger than the true value of 16 and the interval

for na10 excludes this true value.
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Having examined some of the states, it is worth investigating the model’s performance

with regard to the posterior distributions of the model parameters Θ. These distribu-

tions are summarised in Table 7.4 and can be compared with the priors as well as the

true values given in Table 7.1. It can be seen that the posterior means seem to give a

reasonable summary of the true underlying parameters that were used to simulate the

data. The intervals for all but one parameter include the true value; the only exception

being the interval for φa adult survival. The lower limit of this interval just excludes the

true parameter value of 0.8 and it can also be noted that the posterior mean for φa moves

away from the true value relative to the location of its prior. For all other parameters

the means of their posteriors move towards the true value relative to the location of their

priors. For this particular realisation of a population it seems that the conditional gener-

ation approach is working; albeit the small effective sample size should induce a note of

caution into this analysis.

It can also be noted that the posterior distributions for the parameters corresponding

to processes acting on adult animals have lower variances than the posteriors for rates

associated with juvenile animals. Adult survival (φa) has a lower variance than juvenile

survival (φj) and the same relationship is observed between adult and juvenile capture

rates. This reflects the relative amounts of information in the data in the observed cap-

ture history patterns for juveniles and adults. The largest CV is that for the posterior

of the population splitting parameter τ which should come as no real surprise as there is

very little information in the data to allow this parameter to be estimated precisely. It

should also be noted that Table 7.4 displays only the six independent parameters. The

value of π1 (the average number of singletons produced by a mature female in one year)

will determine the value of π0 since π0 + π1 = 1. Hence the posterior variance will be

equal for both parameters.
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Prior Posterior

Parameter Mean Var Median Mean Var CV LCL UCL

φj (0.7) 0.500 0.04343 0.768 0.708 0.01820 0.191 0.4550 0.854

φa (0.8) 0.811 0.02003 0.875 0.889 0.00206 0.051 0.8040 0.966

pj (0.5) 0.628 0.03910 0.501 0.538 0.01170 0.201 0.3750 0.736

pa (0.6) 0.501 0.04330 0.522 0.541 0.00328 0.106 0.4630 0.667

π1 (0.4) 0.322 0.02132 0.312 0.340 0.00437 0.195 0.2540 0.480

τ (0.3) 0.417 0.04153 0.276 0.294 0.01820 0.459 0.0841 0.545

Table 7.4: Summary of model parameters for the conditional approach. True parameter
values denoted in ( ).

To enable a direct comparison to be made between the output from the conditional

and unconditional model fitting processes it is expedient to summarise the data into two

age-based cohorts at each time period: juveniles and adults (including yearlings). No

distinction is now made between those animals that were captured at time t and those

that weren’t. Table 7.5 now summarises the posterior distributions for the total juveniles

and total adults at each time step. The large CVs at time t = 0 for both juveniles and

adults are a result of the split of the initial 100 animals being made irrespective of any

conditioning on observed data. The conditional fitting approach again seems to be per-

forming quite well over each time period with all intervals including the true totals for the

two cohorts. As noted before, there is more information in the data regarding the adult

animals and this is illustrated by the smaller CVs for the adult cohorts when compared

with the juvenile cohort at time time step.

The bottom-up conditional model fitting approach seems to have performed reasonably

well, albeit having incurred significant particle depletion from the initial 50000 particles.

The same true population and set of priors was then used to investigate the efficacy of
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Time t Median Mean Truth LCL UCL Expected CV

t = 0 29 29 40 9 56 30 0.475

t = 1 28 28 37 22 38 30 0.136

t = 2 33 32.6 35 24 43 33 0.176

t = 3 34 34.4 34 23 46 35.9 0.175

(a) Simulated juveniles.

Time t Median Mean Truth LCL UCL Expected CV

t = 0 71 70.5 60 44 91 70 0.199

t = 1 87 86.4 79 74 92 77 0.0566

t = 2 99 95.5 83 78 103 83.2 0.0798

t = 3 112 108 92 87 117 89.8 0.0855

(b) Simulated adults.

Table 7.5: Posterior summary of age classes over time obtained under the conditional
approach. Expected values denote projected state totals obtained by multiplying the initial
100 animals by the true population parameters and iterating this process over each time
period.
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the unconditional model fitting approach. By simulating a matrix of capture history pat-

terns and indexing the entry and exit times of each animal that occurred in the simulated

population over the duration of the study, it was possible to appropriately format the

data to enable analysis under both modelling approaches. Specifically, it was necessary to

summarise the true states at each time period in the formats required by each modelling

approach. Section 7.2.4 presents summary output from using the unconditional approach

to modelling the data obtained from this true population.

7.2.4 Unconditional Approach

This fitting approach was implemented with an initial 50000 particles of which 26610

survived until the end of the fitting process without simulating an invalid state element.

These survivors produced an effective sample size of 115.98. This is considerably larger

than the effective sample size obtained under the conditional approach in the previous

section and is indicative of a pattern observed from fitting multiple simulated data sets

as noted in section 7.4. Fitting models using the restrictive conditional approach seems

to result in a more variable distribution of posterior weights for the particles than when

the unconditional approach is used. A greater range of values is obtained for the weights

under the conditional approach when compared with the unconditional approach.

Inference based on these surviving particles begins with summary data on the poste-

rior samples of the state elements n0:T . As an example of the model output, Table 7.6

contains the summary data for the state element representing the population after the

birth process during the second time period. The posterior means and medians for n2

seem to closely match the true states that were simulated in the original population with

the intervals for each state element containing the true value. The posterior obtained for
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State Median Mean Truth LCL UCL Expected CV

njjj 1 1.83 3 0 7 2.35 1.170

njja 5 6.08 12 0 21 5.88 0.859

njaj 5 6.45 10 0 16 6.72 0.715

njaa 19 22.00 19 3 65 16.80 0.657

najj 3 3.66 5 0 9 6.27 0.651

naja 13 12.90 16 3 21 15.70 0.350

naaj 16 16.40 17 4 29 17.90 0.353

naaa 58 55.40 36 9 82 44.80 0.308

Table 7.6: Summary for state vector at t = 2 for the unconditional ap-
proach. Expected values denote projected state totals obtained by multiply-
ing the initial 100 animals by the true population parameters and iterating
this process over each time period.

the analysis under the conditional approach is dominated by significantly fewer particles

than the posterior under the unconditional approach. This is reflected in the relatively

wide intervals and moderately large CVs observed in Table 7.6 compared to those ob-

tained under the conditional approach.

The posterior distributions of the model parameters Θ are given in Table 7.7. The

posterior means can then be compared with the true values from Table 7.1 as well as the

means of the priors. Once again the posterior means are consistent with the true values

although only three of the six independent posterior means are closer to the true value

when compared to the location of the prior. The posteriors for adult survival φa, juvenile

capture pj and birth rate π1 all have posterior probability masses centered further away

from truth than their corresponding prior masses. The intervals for each parameter do

contain the true values and it can be observed that the adult intervals are narrower than

their juvenile analogues; the posteriors for both adult survival and capture display lower

variance than the posteriors for juvenile survival and capture. It can also be seen that the
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Prior Posterior

Parameter Mean Var Median Mean Var CV LCL UCL

φj (0.7) 0.500 0.04343 0.733 0.715 0.02150 0.2050 0.422 0.937

φa (0.8) 0.811 0.02003 0.911 0.902 0.00311 0.0618 0.763 0.983

pj (0.5) 0.628 0.03910 0.664 0.675 0.01930 0.2060 0.424 0.911

pa (0.6) 0.501 0.04330 0.513 0.514 0.00267 0.1000 0.410 0.623

π1 (0.4) 0.322 0.02132 0.285 0.298 0.00526 0.2440 0.182 0.463

τ (0.3) 0.417 0.04153 0.298 0.329 0.03310 0.5520 0.084 0.871

Table 7.7: Summary of model parameters for the unconditional approach. True parameter
values denoted in ( ).

largest variance is associated with the posterior mean for the splitting parameter τ . This

is not particularly surprising as there is little information in the data to set the population

splitting rate.

For this particular population, when comparing Tables 7.4 and 7.7, the performance

of the conditional approach seems to be superior in that the posteriors are usually closer

to the true values under the conditional approach when compared to the unconditional

approach. It can also be noted that the posterior variances for each parameter are gener-

ally greater under the unconditional approach than under the conditional approach. The

conditional approach may be expected to exhibit a higher level of precision as a result

of the different, more restrictive, assumptions that are made when specifying the fitting

algorithm for the chosen state-space model. However, both approaches produce intervals

on the posterior distributions that include truth for most parameters.

Posterior summaries by age-cohort and time period are presented in Table 7.8. Once

again the unconditional approach performs well and produces summaries of states that

closely match truth for the time periods containing observed animals. The initial state
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Time t Median Mean Truth LCL UCL Expected CV

t = 0 30 32.6 40 7 87 30 0.57

t = 1 27 27.7 37 18 39 30.8 0.196

t = 2 28 28.3 35 19 42 33.3 0.209

t = 3 28 29.1 34 19 48 35.9 0.261

(a) Simulated juveniles.

Time t Median Mean Truth LCL UCL Expected CV

t = 0 70 67.4 60 13 93 70 0.276

t = 1 87 86.1 79 74 96 77 0.0649

t = 2 97 96.4 83 79 109 83.2 0.0833

t = 3 109 108 92 85 127 89.8 0.105

(b) Simulated adults.

Table 7.8: Posterior summary of age classes over time obtained under the unconditional
approach. Expected values denote projected state totals obtained by multiplying the initial
100 animals by the true population parameters and iterating this process over each time
period.

vector n0 is simulated by splitting the 100 initial animals with no influence from the

recorded observations. This resulting freedom is reflected in the large CVs at t = 0 for

both juveniles and adults. The greater amount of information contained in the observed

capture history patterns that relates to adult animals is reflected by the smaller CVs at

each time period for the adults compared to the juveniles.

From comparing Tables 7.5 and 7.8 there is little difference between the performance

of the modelling approaches when applied to this population. Both the conditional and

unconditional approaches simulate totals of juveniles and adults at each time step that

match closely with the true data. It could be argued that the conditional approach does

a better job of simulating the juveniles at times t = 2 and t = 3 but the differences are
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not especially pronounced. It should be noted that there is greater uncertainty associated

with the posterior distributions produced by the unconditional approach when compared

to those produced by the conditional approach and this can be seen by comparing the

CVs.

7.3 Application to Soay Sheep

This section investigates the utility of the model fitting algorithms developed under the

assumptions of the conditional and unconditional approaches with regard to fitting real

data. This is not an attempt to reveal new insight into the data but instead should be

viewed as an illustrative example of the efficacy of the modelling approaches when fitting

a relatively simple model structure to the observed capture history data.

The data for this application consist of the population of Soay sheep (Ovis aries) on

Hirta (St Kilda). This population has been well documented and examples of existing

studies can be found in Milner et al. (1999), Catchpole et al. (2000), Coulson et al. (2001)

and King et al. (2006). These studies will provide the summary information used for

the elicitation of the prior distributions for the model parameters. The large number of

analyses performed on these Soay sheep data provide considerable information about the

parameters and population size over time and give a basis against which the performance

of the two modelling approaches can be judged.

7.3.1 The Data and Model Formulation

The analysis is based on mark-recapture-recovery data for the Soay sheep from the Village

Bay area of Hirta, in the St. Kilda archipelago off the west coast of Scotland. Further

details are provided in the previously cited studies. The animals are classified by gender
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and their year of birth is recorded. The extensive nature of the monitoring scheme has

resulted in more than 95% of the sheep in the Village Bay area having been marked by

2000 (Catchpole et al., 2000). The data on the individual sheep consists of capture history

patterns as described in Chapter 2. However, in addition to the usual sequence of 1’s and

0’s denoting capture or non-capture respectively, some capture history patterns may also

contain a 2 which denotes the recovery of a dead animal. The simple model structure

used in the following analysis does not incorporate a recovery component, although such

an extension is possible in theory, and for the purpose of the model fitting process it is

assumed that recoveries are regarded as non-captures and labelled as 0’s.

The data also contain various individual level covariates that include time-invariant

measures, genetic information and time-varying covariates. A discussion of time-invariant

and time-varying covariates with regard to modelling assumptions is presented in sec-

tion 2.2.1.1. The analysis in King et al. (2006) focuses on the time-invariant covariates:

sex, coat type, horn type and birth weight. Environmental covariates that apply to all

animals in the population, such as population density and weather variables, are also

considered. The weather variables studied in King et al. (2006) are the winter North

Atlantic Oscillation, the total rainfall in both March and the autumn, and the average

March temperature. The justification for the choice of these covariates is given in King

et al. (2006).

The analyses conducted under the conditional and unconditional approaches will be

based on mark-recapture data for the three years from 1996 to 1999. A total of 640 female

sheep are included in this subset of the full Soay data. Analyses on longer time series of

the data were attempted but required an excessive number of initial particle streams to

avoid extreme particle depletion. Due to the restrictions imposed by the relatively simple
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population dynamics model used in the model fitting process the data will be restricted

to the females in the population.

The population dynamics model assumed for the following Soay sheep analyses takes

the same form and parameterisation as that described in the examples in Chapters 4 and 5

and defined in section 4.4. The initial population in 1996 is assumed to consist of juvenile

and adult females. An initial total population is specified and then split into the juvenile

and adult cohorts using a binomial process with rate τ . For this process τ represents the

probability that an animal in the initial population is assigned to be a juvenile. After

splitting, both cohorts are subject to an annual survival process with φj and φa denoting

juvenile and adult survival respectively. Juvenile females alive at time t that survive to

time t + 1 are assumed to mature and become capable of breeding during time period t.

These mature females will then be classified as adults at t + 1. The surviving females

are then subject to a birth process that stochastically simulates new juveniles. For the

Soay sheep a multiple birth process model is specified as the sheep are capable of pro-

ducing twins as well as singletons. This requires the specification of the birth parameters

(π0, π1, π2) where πj for j = 0, 1, 2 denotes the probability of an individual mature female

producing j juveniles during the breeding season. Then, for each mature female, a draw

is made from the multinomial distribution where the value 0, 1 and 2 are simulated with

probabilities π0, π1 and π2 respectively. These simulated births are then summed to give

the total number of juveniles produced by mature females for that time period.

The survival, maturation and birth processes are the biological processes included in

the state process models under both the conditional and unconditional approaches. The

capture process also needs to be specified. Each animal present in the population at

time t is subjected to a stochastic capture process and is captured with probability pj if a
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juvenile and pa if an adult. This same sequence of sub-processes then occurs until the final

capture occasion at time T (1999). For the Soay analyses conducted in the next sections

T = 3. The functional forms of the stochastic sub-processes that constitute the embedded

population dynamics model are specified in the sets of Equations (4.4.1a):(4.4.1b) and

(4.4.1d):(4.4.1f). Due to the multinomial birth process the functional form specified in

Equation (4.4.1c) is replaced by that in Equation (7.3.1):

u2,t,[j]|u1,t ∼
u1,t∑
r=1

Multinomial(1;π0, π1, π2). (7.3.1)

The capture history patterns for the individually identifiable Soay sheep that were

observed in the population between 1996 and 1999 are used to construct the observed

data under the different formats required by the two model fitting approaches. The usual

distinctions apply and are briefly reviewed again. The observed data at each time point

t for the conditional approach consists of the abundances corresponding to the distinct

capture history patterns that include capture during time period t. For the unconditional

approach the observed data at time t consists of the abundances of capture history pat-

terns that include capture at some point between 1996 and 1999.

7.3.2 Prior Elicitation

Due to the multiple birth process in this model structure there are now eight parameters in

the model: τ, φj, φa, π0, π1, π2, pj, pa. Only seven of these are independent as by definition

π0 +π1 +π2 = 1. For an initial analysis on the Soay data a relatively parsimonious model

is assumed in which all parameters are time-invariant, remaining constant across all three

time periods. However, age-specific survival and capture rates are assumed, with distinct

rates assumed for juveniles and adults (including yearlings). The analyses conducted in

Catchpole et al. (2000) are used to inform the choice of prior means for each of these
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seven parameters.

The survival rates can be obtained from Table 6 in Catchpole et al. (2000). The rates

are specified for two different classifications of horn-type, either scurred or non-scurred,

and for four distinct age categories: lambs, yearlings, adults and seniors. It is assumed

that horn-type affects the survival of lambs only and therefore the rates for the other three

age categories are the same across horn-type. Hence, a point estimate of adult survival

(φa) is 0.919. The survival rates for lambs are estimated as 0.752 and 0.518 for scurred

and non-scurred horns respectively. It is reported in Catchpole et al. (2000) that there

were 188 animals with scurred horns and 538 animals with non-scurred horns. Using

these totals to take a weighted average of survival for all lambs without distinguishing by

horn-type yields a juvenile survival rate (φj)of 0.578.

In their discussion section Catchpole et al. (2000) obtain an average capture probabil-

ity for all females of 0.93. The elicitation of estimates for a juvenile capture rate is a little

more convoluted. Due to the model structure described in section 7.3.1, juvenile capture

can be regarded as a confounding of juvenile post-natal survival and subsequent capture.

The embedded population dynamics model specified in section 7.3.1 it is assumed that

there is no juvenile mortality between the moment of their birth and the following capture

occasion. However, the existing studies identify a degree of post-natal mortality in the

Soay population and this needs to be incorporated into the estimate of juvenile capture for

this model structure. Then, given a capture probability of 0.93 for females and a survival

probabilty of 0.578 for juveniles, the probability of a female juvenile surviving after birth

and being captured is then 0.578 ∗ 0.93 = 0.538. Hence, a prior mean for juvenile capture

rate is 0.538.
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The existing studies on the Soay sheep data typically focus their inference on estimates

of survival and capture rates. There are no explicit estimates provided for the distribution

of birth rates in these studies. The supplied Soay data includes records of the numbers of

juveniles born to observed animals during the monitoring study. Using the first 11 years

of data the estimates of the distribution of birth rates can be obtained. By examining the

relative frequencies of births the estimates 0.496, 0.439, 0.065 are obtained for π0, π1, π2.

However the recorded births include both males and females whereas the observed capture

history patterns that constitute the data used in the following analyses correspond only

to females. Hence, for the specified population dynamics model in section 7.3.1, the birth

parameters are a convolution of birth rates and gender split.

Table 8 in the supplementary material associated with Coulson et al. (2001) classifies

the composition of the population of Soay sheep by age and gender at each time period.

When averaged across all time periods, approximately 18% of the population consisted of

female lambs. For males lambs this figure was 16%. Thus, the relative split of juveniles

was assumed to be roughly 1 : 1. Using this estimate the birth rates could be adjusted

to represent the probability of a single mature female giving birth to no female lambs,

a female singleton or female twins. The resulting estimates for the birth rates of female

juveniles are 0.748, 0.219 and 0.033.

The same source of information (Table 8 in Coulson et al. (2001)) can also be used

to obtain an estimate for the population splitting parameter τ . The average proportion

of mature females in the population over the course of the study is obtained by summing

the averages specified for female yearlings, female adults and older females. From this

it can be estimated that, on average, 47% of the population of Soay sheep are classified

as mature females in a given time period. The corresponding figure for female juveniles

was earlier seen to be 18%. The ratio between these two proportions yields the relative
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φj φa pj pa π0, π1 τ

Prior Means: µα 0.580 0.919 0.538 0.930 0.748,0.219 0.277

Prior Variances: σ2
α 1 1 1 1 1,1 1

Table 7.9: Specification of parameters µα and σ2
α used to simulate priors for

the Soay sheep analysis. Values for σ2
α are on the logit scale.

proportion of juvenile females to adult females in the Soay population. Thus, a prior

mean for the population splitting rate τ can be set at 0.277.

The final prior value to be specified is that of the initial population of female Soay

sheep in 1996. From the observed Soay data a total of 270 individual animals were cap-

tured in 1996. Due to the high adult capture rates obtained from previous studies it was

assumed that the 270 individual represented the majority of the sheep that were available

to be caught in 1996. Hence, a prior was then simulated for the initial population using

a left-truncated Poisson distribution with parameter 290. The left-truncation was set at

270 as this provided a lower limit on the population known to have existed at the start

of the study.

The priors are then simulated using the approach detailed in section 7.2.1. The means

(µα) and variances (σ2
α) used to implement this prior simulation algorithm are given in

Table 7.9. These values of 1 for each σ2
α is on the untransformed logit scale rather than

the probability scale. With regard to the birth rates; once prior values have been simu-

lated for π0 and π1 given π0, the prior value for π2 is set deterministically to respect the

constraint that π0 + π1 + π2 = 1. The same set of priors will be used for fitting models

under both the conditional and unconditional approaches.
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An initial analysis was performed on the full Soay data set consisting of all indi-

viduals captured on at least one occasion between 1996 and 1999. A model was fitted

to this observed data using a fitting algorithm based on the assumptions of the condi-

tional approach. Of the 500000 particles that were simulated from priors centered on

the values specified in Table 7.9, 461861 plausible particles remained after model fitting

and these particles yielded an effective sample size of only 1.346. A second analysis was

then conducted in which the model fitting approach developed under the unconditional

algorithm was used. In this instance the same 500000 initial particles from the analysis

under the conditional modelling approach were used and 270448 of them remained after

model fitting. The effective sample size based on these particles was 7.916. Although an

improvement on the result obtained under the conditional approach, this effective sample

size is still too small for reliable inference to be made on the output from the model fit-

ting. The results from these analyses do not adequately represent the utility of the fitting

algorithms. To improve the results of analyses on this dataset two options were consid-

ered: either repeating these analyses increasing the number of particles until the effective

sample size attained a suitable level or sub-sampling the data to allow more flexibility in

the fitting process.

All analyses were performed using algorithms written for the statistical software R

(see http://cran.r-project.org/). With regard to the first option, running both fitting

algorithms simultaneously for the initial analyses took 132 hours using an i686 proces-

sor with CPU speed of approximately 3.06GHz. From monitoring the weights associated

with the particles it was observed that even an exponential increase in the number of

particles resulted in little growth in the effective sample size under the conditional gener-

ation approach. The computational burden and time required to obtain a suitably large

effective sample size were deemed to be excessive and a more efficient solution was sought.
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The second option was the chosen solution. The high adult survival and capture

probabilities, means of 0.930 and 0.919 respectively, resulted in a proposal density that

severely restricts the viable state and parameter space the posterior could occupy. Un-

der this parameterisation the observed data effectively represented the majority of adult

animals that were present in the population during each sampling occasion. The fitting

algorithm under the conditional approach therefore had very little flexibility with regard

to the number of unobserved animals that could be simulated subject to the constraints

imposed by the observed counts. Similarly, 46% of the initial particles were implausible

for the fitting algorithm specified under the unconditional approach. The complexities

in the data were not adequately accounted for in the structure of the model. The sim-

ple form of the state-space model specified for the Soay population dynamics and the

high adult capture and survival rates used to set the priors were not consistent with the

mark-recapture data. One approach to addressing this problem is to sub-sample from the

original dataset to reduce the proportion of the animals that were detected during each

capture occasion. With the current parameterisation, conditional on survival, the prob-

ability of not seeing an adult animal during the three period study is (1 − 0.919)3 ≈ 05.

Removing a proportion of observed captures would result in the detection probability

falling to a level that corresponds to some of the sheep not being observed. For example,

retaining only 30% of the captures would result in the probability of missing a sheep over

the duration of the study being approximately (1− (0.3× 0.919))3 ≈ 0.38.

To further increase the flexibility of the model time-varying parameters were allowed.

From smaller scale simulations, not presented here, it was observed that temporal vari-

ability in survival provided the best results in terms of increasing the effective sample
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φj,1 φa,1 φj,2 φa,2 φj,3 φa,3

Prior Means: µα 0.580 0.919 0.580 0.919 0.580 0.919

Prior Variances: σ2
α 0.5 0.5 0.5 0.5 0.5 0.5

Table 7.10: Specification of parameters µα and σ2
α used to simulate

priors for survival rates in the analysis of the sub-sampled Soay data.
Values for σ2

α are on the logit scale.

size relative to the earlier analysis based on constant parameters. Alternative parameter-

isations may well provide a superior fit to the data but they would require a new fitting

algorithm to be written to fit models under the conditional approach. Due to the com-

plexity of constructing these fitting algorithms this is left as an area for future research.

Allowing survival rates to vary by time requires the definition of some new notation.

Let φj,t and φa,t denote the probabilities of survival from time t− 1 to time t for juveniles

and adults respectively. Table 7.10 now contains the means and variances used to generate

draws for the priors for the six parameters required to model time-varying survival. To

decrease the capture rate of the Soay sheep 70% of the captures were discarded. The

matrix of capture-history patterns for the sheep data was examined and each entry of ‘1’

(corresponding to a capture) was re-assigned a value of either 0 or 1 with probabilities

0.7 and 0.3 respectively. Accordingly, the means used to generate the priors for the non-

survival parameters are given in Table 7.11. From the initial analysis it was noted that

the relatively wide priors may contribute to the efficiency of the algorithm. The variance

of the priors was reduced accordingly; each prior variance was calculated using value of

0.5 for the parameter σ2
α in contrast to the value of 1 used in the initial analysis. These

values of 0.5 and 1 are on the untransformed scale rather than the probability scale.
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pj pa π0, π1 τ

Prior Means: µα 0.1614 0.279 0.748,0.219 0.277

Prior Variances: σ2
α 0.5 0.5 0.5,0.5 0.5

Table 7.11: Specification of parameters µα and σ2
α used to

simulate priors for capture, birth and population split for the
Soay sheep analysis. Values for σ2

α are on the logit scale.

7.3.3 Conditional Approach

The model with time-varying survival was fit to the sub-sample of the Soay data using the

algorithm based on the assumptions of the conditional approach. An initial 250000 parti-

cles were simulated from the priors and their distributions are summarised in Table 7.12.

Following the fitting process a total of 220796 particles were still plausible with respect

to the constraints imposed by the data. The effective sample size for these remaining

particles was only 1.349. This is virtually identical to the effective sample size obtained

under the initial conditional analysis. This extremely small value renders any attempted

subtle interpretation of the summaries on the posterior virtually meaningless.

The usual summary output of the posterior distributions is produced to investigate

the behaviour of the fitting approach. Table 7.13 presents a summary of the posterior

distribution of the state elements defining the population of female Soay sheep immedi-

ately after the second capture occasion. The states corresponding to animals that are

captured during the second capture occasion are, as required, fixed at the values specified

in the observed data. This is reflected in the CVs of zero for these four elements. The

small ESS is reflected in the narrow intervals for the four elements that are simulated dur-

ing the importance sampling fitting approach. Three of the elements, nj0, ny10 and na10,

have medians that match either the upper or lower limits of their corresponding inter-

vals. Therefore, due to such a small ESS these intervals are rendered virtually meaningless.
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Parameter Prior Mean Prior SD

φj,1 0.5760 0.1158

φa,1 0.9114 0.04109

φj,2 0.5756 0.1157

φa,2 0.9112 0.04111

φj,3 0.5758 0.1157

φa,3 0.9113 0.04105

pj 0.1723 0.07026

pa 0.2897 0.09877

π0 0.7368 0.06823

π1 0.2263 0.06846

π2 0.0370 0.01831

τ 0.2872 0.09855

Table 7.12: Summary of priors for each
parameter for the Soay sheep application.
Survival rates are allowed to vary by time
period.
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State Median Mean LCL UCL CV

nj0 43 45.8 43 81 0.3730

nj1 31 31.0 31 31 00

ny10 16 15.0 6 16 0.3630

ny11 4 4.0 4 4 00

na00 114 115.0 105 130 0.0804

na01 50 50.0 50 50 00

na10 49 50.0 49 57 0.1060

na11 17 17.0 17 17 00

Table 7.13: Summary for state vector at t = 2 for
the conditional approach to the Soay sheep analysis.

The distribution of the animals across these eight state elements reflects the posterior

means for the adult capture and survival rates denoted in Table 7.14. In the initial analysis

on the full data set the posterior means for the captured and uncaptured juveniles were

not consistent with the priors on the parameters or the simple structure of the model.

For this analysis, albeit from a very small effective sample size, the posterior summaries

for the elements of the state vector at t = 2, presented in Table 7.13, are more consistent

with the data and the model structure when compared to the initial analysis. Having

examined the posterior distributions on one state vector, attention can now be turned to

the posterior distributions on the parameters Θ.

The posteriors for Θ are summarised in Table 7.14 and should be compared with the

prior distributions summarised in Table 7.12. The posterior means are, in general, rea-

sonably close to the prior means for many of the parameters but there is some change of

location. The posterior means for juvenile survival at each time period are 0.5300, 0.5420

and 0.5390 respectively and these are compared to their prior means of 0.5760, 0.5756
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Parameter Median Mean Var CV LCL UCL

φj,1 0.5310 0.5300 0.005560 0.1410 0.4400 0.6460

φa,1 0.9320 0.9290 0.001020 0.0344 0.8610 0.9420

φj,2 0.5460 0.5420 0.004610 0.1250 0.4360 0.5790

φa,2 0.8700 0.8750 0.001260 0.0405 0.8700 0.9470

φj,3 0.5440 0.5390 0.004470 0.1240 0.4250 0.5830

φa,3 0.9580 0.9510 0.001870 0.0455 0.8710 0.9580

pj 0.3950 0.3760 0.012000 0.2910 0.2040 0.3950

pa 0.3050 0.3050 0.001010 0.1040 0.2460 0.3290

π0 0.7310 0.7260 0.001430 0.0520 0.6660 0.7310

π1 0.2390 0.2410 0.001280 0.1480 0.2150 0.2930

π2 0.0299 0.0325 0465 0.6640 0.0274 0.0859

τ 0.1660 0.1870 0.016600 0.6900 0.1660 0.3920

Table 7.14: Summary of model parameters for the Soay sheep example
under the conditional approach. Survival rates were allowed to vary by
time period.

and 0.5758. This suggests that juvenile survival may be slightly lower at each time period

than initially assumed. The posterior means for adult survival increase, relative to the

priors, in the first and third time periods but decreases in the second time period. This

could suggest that the mean adult survival was lower during the second time period than

in the first and third time periods. However, due to the small sample size it is unwise to

draw too many conclusions of this nature. The low effective sample size may well reflect

the susceptibility of this model fitting framework to high Monte Carlo error. A repeated

analysis could yield a posterior that is, once again, dominated by a single particle and

this particle could contain quite different parameters and states to that which dominates

the posterior in this current analysis. Hence, it is dubious to assume that this posterior

is a good approximation to the true distribution of states and parameters.
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The posterior means for capture rates, for both juveniles and adults, do move away

from their priors with the relative magnitudes of the capture rates switching between the

age classes. That is, the posterior mean for juvenile capture is greater than that for adult

capture which is in contrast to the prior. The posterior means for the birth parameters

do not change very much when compared to the priors. The precision of the posterior

distributions of the parameters noticeably increases, as evidenced by the decrease in the

posterior variances, when compared to the priors. Again, this is an artefact of the sig-

nificant particle depletion observed when fitting this model. The fact that the posterior

means are either at, or in close proximity to, the limits of the intervals reiterates the effect

of particle depletion and the resulting skewed distribution of weights in this analysis.

In the original analysis both adult capture and survival were assumed to be very high.

A consequence of this was that the abundances of states corresponding to unobserved

mature animals would be very low. At each time period t the element with the largest

abundance was that which corresponded to the adult female sheep that are captured dur-

ing t and all preceding time periods. This element was fixed at its observed total and,

because it constitutes the majority of adult animals alive in the population at time t,

this resulted in the elements corresponding to non-capture at time t exhibiting very low

abundances for that first analysis. This presented some complications for the model fit-

ting algorithm implemented under the assumptions of the conditional approach. As was

discussed in Section 5.6, even for the bottom-up implementation of the fitting algorithm,

it is possible to produce implausible particles due to the use of proposal distributions that

do not fully respect the conditioning on the three years of observed data. When simu-

lating states with very low abundances it is quite possible that a state element simulated

at some time tβ would not be consistent with observations at some earlier time period

tα. For example, a simulated value of 1 in an unobserved element ni,tβ at time tβ may
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Time t Median Mean LCL UCL CV

t = 0 45 51.6 45 111 0.669

t = 1 65 67.3 65.8 94 0.221

t = 2 74 76.8 74 112 0.223

t = 3 88 91.2 88 123 0.202

(a) Simulated juveniles.

Time t Median Mean LCL UCL CV

t = 0 242 237 195 242 0.118

t = 1 242 241 226 251 0.0339

t = 2 250 250 242 264 0.0419

t = 3 273 274 269 301 0.0509

(b) Simulated adults.

Table 7.15: Posterior summary of age classes over time for the conditional approach to
the Soay sheep data.

be inconsistent with a value of 0 in the observed element nk,tα at time tα when ni,tβ is a

direct descendant of nk,tα via mono-parent elements only. For a three period study the

duration is too brief for many of these potentially problematic relationships between an-

cestral elements to develop but these problems have been observed in studies of simulated

data.

Summaries of the posterior distributions on the states aggregated into two age-cohorts

are presented in Table 7.15. These summaries reflect aspects of the model fitting that

have been identified previously in this section. Once again the probability masses of the

posterior distributions are centred on narrow intervals with the posterior means or medi-

ans attaining, or lying close to, the limits of the intervals for both juveniles and adults at

all time periods. The most variable aggregated states are the initial juveniles and initial
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adults. This mirrors the behaviour observed in the earlier simulation studies and reflects

the lack of information available in the data to inform the estimate of the population

splitting parameter τ . The aggregated states in the first time period are obtained by

simulating a random split of the initial population with no conditioning on the observed

data. Thus, the animals in the initial time period are subject to the fewest constraints

under the model fitting process and consequently exhibit the largest CVs. Comparing

Tables 7.15a and 7.15b, it can be seen that the CVs are smaller for the adults than the

juveniles during the same time period. This is to be expected as an artefact of the data

and bottom-up fitting algorithm. The observed counts of capture history patterns contain

more information about adult animals than juveniles. The low rates drawn for the priors

on capture allow the model to exhibit some flexibility in the posterior for the aggregated

states; a capture rate of 1 would result in the aggregated states being fixed at the total

counts of observed animals. Thus, the model structure and the amount of information in

the data place a greater restriction on the posterior for total adult females than for the

total juvenile females. This is reflected in the CVs.

7.3.4 Unconditional Approach

The same sub-sampled Soay data are now analysed using the fitting algorithm based on

the assumptions of the unconditional approach. The same 250000 particles simulated

from the priors (Table 7.12) were used to initialise the approach. After the model fitting

had been completed there were 214011 plausible particles remaining. The effective sample

size based in these particles is 378.74. This ESS is considerably larger than that obtained

under the conditional approach and allows more meaningful inference to be made. It can

also be seen that by sub-sampling the Soay data to reduce the proportion of animals that

are observed, the ESS has dramatically increased from the value of 7.916 obtained for the
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State Median Mean LCL UCL CV

njjj 2 2.11 0 6 0.923

njja 6 6.93 1 17 0.675

njaj 10 11.80 2 26 0.524

njaa 34 36.90 11 75 0.441

najj 11 11.60 4 22 0.397

naja 34 34.30 19 51 0.229

naaj 59 59.40 39 85 0.201

naaa 188 186.00 133 228 0.129

Table 7.16: Summary for state vector at t = 2
for the unconditional approach to the Soay sheep
analysis.

initial analysis under the unconditional approach.

As for the conditional approach, summary output of the posterior distributions of the

states at time t = 2 is obtained. These states define the population of female Soay sheep

immediately after the birth process during the second time period. Table 7.16 contains

the summary data for these eight state elements. The extremely small number of par-

ticles that contributed to the posterior under the conditional approach meant that the

intervals constructed from the weighted particles were extremely narrow. The increased

ESS reflects lower Monte Carlo variation in the estimates of the posterior means when

compared to the output from the model fitting under the conditional approach. How-

ever, the larger ESS results in wider intervals due to the greater number of particles that

contribute to the posterior. This is an artefact of the exceptionally small ESS obtained

under the conditional approach. With a slightly larger ESS the variance estimates would

be expected to exhibit very high Monte Carlo variation and, simply by chance, could be

very large or very small. The small ESS for the analysis under the conditional approach
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Time t Median Mean LCL UCL CV

t = 0 293 293 271 320 0.046

t = 1 320 320 284 355 0.0578

t = 2 350 349 293 400 0.0737

t = 3 384 384 302 461 0.0969

Table 7.17: Posterior summary of total population
over time for the unconditional approach to the Soay
sheep data.

is likely to result in posterior summaries that exhibit greater bias than those obtained

for the analysis under the unconditional approach. Due to the single particle dominating

the posterior for the conditional analysis it is not meaningful to compare the posterior

variances for the state elements obtained under each approach.

Obviously, the states in Table 7.16 do not reflect the animals’ capture status so there

are no states fixed at observed values under this approach. The element corresponding

to those mature females that are still present in the population at time t = 2 having en-

tered the initial population as adults exhibits a large abundance. This is consistent with

the high initial population and the high survival rates for mature females. The posterior

summaries for the total population abundance over time are given in Table 7.17. From

this is can be seen that the posterior means of 320, 350 and 384, at times t = 1, t = 2 and

t = 3 respectively, are reasonably consistent with the known minimum abundances of 331,

332 and 360. The posterior mean for the population abundance seems to underestimate

the true value at time t = 1 but otherwise there is a good correspondence between the

posterior means and the known minimum abundances over time.
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Parameter Median Mean Var CV LCL UCL

φj,1 0.5460 0.544 0.011600 0.1970 0.3430 0.7500

φa,1 0.9240 0.918 0.001200 0.0378 0.8330 0.9670

φj,2 0.5770 0.577 0.014200 0.2070 0.3380 0.8230

φa,2 0.9170 0.906 0.002330 0.0533 0.7820 0.9640

φj,3 0.5900 0.578 0.013500 0.2010 0.3270 0.7840

φa,3 0.9210 0.916 0.001450 0.0415 0.8310 0.9710

pj 0.3300 0.310 0.012000 0.3530 0.0882 0.4870

pa 0.2850 0.285 0.003460 0.2070 0.1380 0.4200

π0 0.6770 0.680 0.005020 0.1040 0.5510 0.8360

π1 0.2850 0.284 0.005300 0.2560 0.1230 0.4120

π2 0.0319 0.036 0295 0.4770 0.0131 0.0789

τ 0.2600 0.265 0.007510 0.3270 0.1200 0.4670

Table 7.18: Summary of model parameters for the unconditional ap-
proach to the Soay sheep analysis.

The summaries of the posteriors for the model parameters Θ are presented in Ta-

ble 7.18. Once again there is no significant difference between the posterior and prior

means for many of the model parameters. The posterior means for juvenile survival at

each time period are 0.544, 0.577 and 0.578 respectively and these are compared to their

prior means of 0.5760, 0.5756 and 0.5758. The intervals for juvenile survival at each time

period overlap considerably suggesting that the model fitting process has not yielded any

large differences between the time-specific rates. Adult survival also does not vary across

the time periods although all the posterior means for three parameters φa,1, φa,2 and φa,3

are slightly greater than their prior means. The posterior summaries for the capture rates

move from the priors in a similar fashion to that exhibited in the conditional analysis.

As for that analysis the posterior mean for the juvenile capture rate is greater than that

for adult Soay sheep although both parameters have overlapping intervals. The point es-

timates are reasonably similar across analyses although the posterior means for both the
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juvenile and adult capture rates are lower under the unconditional analysis than under

the conditional analysis.

The posterior means for birth rates mark a departure from the prior means and suggest

that the relative frequencies of singletons and twins increase and decrease respectively

when compared to the prior means. The average number of female yearlings produced

by mature females increases slightly relative to the prior. The analyses, both conditional

and unconditional, seem to produce broadly similar posterior distributions for Θ. The

posterior survival rates for both analyses across all time periods do not move far away

from their prior locations. The posterior capture rates change, relative to the priors, in

the same directions and with similar magnitudes. The posterior birth rates demonstrate

some contrast with very little change exhibited under the conditional approach but a more

noticeable one occurring under the unconditional approach. The precision of the posterior

distributions of the parameters again increases relative to the priors. The ESS of 1.3

obtained under the conditional approach explained the low estimated posterior variances

observed for that analysis. In general, particle depletion will typically lead to higher

Monte Carlo variation in the posteriors for the estimates, until approximately unitary

ESSs are obtained. For this analysis under the unconditional approach the posterior

variances are significantly smaller than those for the priors. Due to the reasonably large

ESS of 370, it is likely that this reflects the data providing information about the value

of the parameters, relative to what was specified in the priors.

Table 7.19 presents summaries of the posterior distributions on the aggregated juve-

niles and adults for each time period. The pattern exhibited in Table 7.19 is similar to

that seen for the conditional approach in Table 7.15. For the model fitting under the

conditional approach a single particle dominated the posterior for the aggregated mature
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Time t Median Mean LCL UCL CV

t = 0 72 74.6 32 130 0.328

t = 1 77 78.1 55 105 0.163

t = 2 85 84.9 58 119 0.173

t = 3 94 95.4 67 132 0.183

(a) Simulated juveniles.

Time t Median Mean LCL UCL CV

t = 0 218 218 164 259 0.11

t = 1 241 242 207 270 0.0629

t = 2 264 264 227 301 0.0738

t = 3 289 289 231 347 0.0953

(b) Simulated adults.

Table 7.19: Posterior summary of age classes over time for the unconditional approach to
the Soay sheep data.

females and the narrow intervals in Table 7.15b supported this. The corresponding in-

tervals in Table 7.19b are wider and reflect the combined effect of the lack of required

conditioning, the larger ESS and the posterior variation under the unconditional approach.

Due to the small ESS obtained under the conditional approach it is difficult to quantify

whether the wider intervals in Table 7.19b are due to the lower Monte Carlo variation or

if it is a function of the model and data under the unconditional approach.

In both Table 7.19a and Table 7.19b the CV decreases between the initial time period

and the remaining times which then display broadly similar CVs. This may be an artefact

of the fitting algorithm developed under the assumptions of the unconditional approach.

The observed capture history data consists of the abundances for the capture history pat-

terns that include capture on at least one occasion during the study. This data provides
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information about the composition of the population at each time period during which

a capture occasion occurred but does not contain any information that can be used to

determine the relative frequencies of juveniles and adults in the initial population. How-

ever, this assumed bias due to the fitting algorithm may be a particular feature of this

state-space model with the given priors. Further investigations should be conducted to

establish the relative veracity of these ideas.

7.3.5 Discussion

The structure of the models fitted to the observed capture history patterns in sections 7.3.3

and 7.3.4 is much simplified when compared to models selected in the analyses performed

by Catchpole et al. (2000) and King et al. (2006). The classical models fitted by Catch-

pole et al. (2000) use maximum likelihood techniques to estimate survival, capture and

recovery probabilities. The final model chosen for female Soay sheep models the survival

parameters as age-dependent functions of the size of the population, the environmental

covariate March rainfall and the individual covariate horn-type. Capture and recovery

probabilities are modelled as being fully time-dependent.

The age structure for female Soay sheep is analysed in Section 4.1 of Catchpole et al.

(2000) with models exhibiting a variety of age structures being fitted to the data and then

compared using AIC. The age structure specified for the models in section 7.3.1 consisted

of separate survival rates for juveniles and adults and is denoted as the φ1, φa model in

Catchpole et al. (2000). This model has the second-highest AIC of all age structured

models considered by Catchpole et al. (2000). Thus, the evidence from existing studies

is that, even discounting the effect of other covariates, the survival rates for female Soay

sheep require a more complicated age structured model than that specified in section 7.3.1.
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The Bayesian analysis of King et al. (2006) suggests that there is strong posterior

support that age structured survival parameters are functions of coat type, birth weight,

North Atlantic Oscillation (NAO) index and population size. The contribution of horn-

type, March rainfall, March temperature and autumn rainfall are also incorporated into

the model-averaged parameter estimates. Again, there is clear evidence that the assump-

tion of an age structure consisting of juveniles and adults alone is far too simplistic to

capture adequately the true underlying model for survival rates.

Attempting to fit these more complex model structures using the algorithms devel-

oped under the assumptions of the conditional approach can be problematic. Specifically,

incorporating age dependency into the models for the survival, capture or birth processes

cannot be performed in the traditional way when a bottom-up fitting algorithm is used.

Denote the population at time t by Nt. If the probability of an animal surviving from time

t−1 to time t is dependent on the population at t−1, Nt−1, then this density dependence

can be incorporated into more traditional “top-down” sequential approaches with relative

ease. However, for the bottom-up approach, once the state vector nt has been simulated,

the estimate of Nt and the survival rates are used to estimate the unknown population

Nt−1. Therefore, due to the reverse-time progression of the model fitting algorithm, the

population at t− 1, Nt−1, cannot be used to determine survival rates between time t− 1

and t because it is currently unknown. One possible approach to overcome this issue

would be to use the total number of animals captured at time t as a proxy for the popula-

tion size. This total would be known exactly at each time period for the model structure

specified under the conditional fitting approach. However, if capture rates were assumed

to be highly variable over time this observed total would not provide a good indication

of the total population at each time period.
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Attempts to fit more complex models have yet to be successful. Computational prob-

lems and extremely small effective sample sizes have prevented any meaningful analyses

from being obtained. Developing more complicated models that allow a greater degree of

flexibility in the age structure of a population is an area that requires further research.

Specifying extra age classes would require the state and intermediate vectors to be ex-

panded and would result in a more complex fitting algorithm. If the age on first capture

of every recorded animal was able to be determined accurately then this expanded model

would remove some of the convolutions of observed adults due to multi-parent nodes that

exist in the existing model structure under the conditional approach. For example, if the

elements of the state vector now classified animals by both capture history pattern and

age then only yearlings would mature to become two-year-old adults with either a 100 or

a 101 capture history pattern. Adults with a 100 or 101 capture history pattern would

be at least three years old and would therefore contribute to a different state element. If

the exact age of each observed animal was not recorded then attempting to incorporate

this form of age structure into the model would result in many more convolutions. For

example, the observed abundance of all adult animals with a 0001 capture history pattern

would need to be split across all possible age classes that could produce adults with that

capture history pattern.

More work needs to be done to develop these model fitting algorithms under both ap-

proaches to allow more complicated model structures to be incorporated into the analysis.

7.4 General Simulation Analysis of Approaches

This section of the investigation provides a more detailed examination of the perfor-

mance of the model fitting algorithms under each of the conditional and unconditional
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approaches. The same techniques described in section 7.2 can be applied again for this

study. A single population is simulated via the processes specified for survival, birth and

capture using specified values for these model parameters. Vectors of observed data are

then obtained from this population realisation in the formats required for each approach.

An application of each of the model fitting algorithms ensues based on Npart initial parti-

cles and the resulting posterior summaries for the states and parameters are stored. This

process is then repeated a series of nrep times; that is, the same population is analysed

under both approaches nrep times resulting in nrep sets of samples from the posterior pa-

rameters and states. This is equivalent to a single analysis based on Npart × nrep initial

particles. The initial particles here will simply consist of the initial total N0 and the set

of parameters used in the survival, birth and capture processes. By conducting multiple

analyses on the same observations it is possible to quantify the degree of Monte Carlo

variation engendered by the fitting algorithm.

After the set of nrep analyses are completed a new population is simulated thus gener-

ating new observed data and this new population is analysed nrep times with Npart initial

particles drawn for both approaches for each replicated analysis. A total of npop popu-

lations are simulated which means the entire simulation study will consist of npop × nrep

samples from the posterior distributions for each of the model fitting approaches. This

two-level replication, of multiple analyses on multiple populations generated from the

same initial parameters, allows the uncertainty in the posterior to be apportioned into

two components: that which can be attributed to Monte Carlo variation and that which

is due to process error. This can be formally analysed using the standard application of

ANOVA tests.
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For consistency with the single simulated populations generated in section 7.2 the pa-

rameters used to simulate each of the npop populations are the same as those in Table 7.1.

The specification and simulation from the prior distributions for each of these six model

parameters proceeds in the manner outlined in section 7.2.1 where the mean and variance

controlling parameters for each prior need to be specified. This specification will vary

depending on both the population structure being investigated and focus of the inference.

Using the notation from section 7.2.1 it can be seen that setting the variance controlling

parameter σ2
α to zero, results in a corresponding prior for α that is fixed at µα; that is, all

the probability mass is placed on µα. By fixing the priors in this way the inference of the

model fitting algorithm is restricted to the state elements. This approach then provides a

clearer illustration of the ability of the model algorithms to re-create the population from

which the observed data was obtained.

The next sections present the results from simulation studies used to investigate model

performance in a variety of situations. For the first scenario 25 separate populations will

be simulated with each analysis being repeated 4 times on each of these populations to

produce 100 samples from the posterior distribution on states and parameters. Each

model fitting will be based on 5000 initial particles. In summary, npop = 25, nrep = 4 and

Npart = 5000 for the following study.

7.4.1 Two Age Classes. Fixed Priors

The first situation focuses on the simulation of populations composed as outlined in sec-

tion 7.2. The priors are fixed at the values used to simulate each of the populations, hence

there is no need to produce posterior summaries for these parameters.
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φj φa pj pa π0, π1 τ

Prior Means: µα 0.7 0.8 0.5 0.6 0.6,0.4 0

Prior Variances: σ2
α 0 0 0 0 0,0 0

Table 7.20: Specification of parameters µα and σ2
α used to

simulate priors for each parameter. Values for σ2
α are on the

logit scale.

For this simulation the means and variances specified in the prior generation routine

are given in Table 7.20. The initial population size for this and all simulation studies

discussed in this chapter is 100 animals.

The 100 model fittings under the conditional approach produced an average ESS of

59.250; with the corresponding figure for the unconditional approach being 1372.757.

Thus, as was noted in section 7.2, the average effective sample size is greatly increased

by relaxing the requirement to condition on the observed capture history patterns at

each time step. This also helps to illustrate the effect of particle depletion on the esti-

mates; on average a significantly larger proportion of the initial particles simulated for

the unconditional approach had non-zero weight compared to those for the conditional

approach. The weights produced for the conditional approach have most of their proba-

bility mass distributed around a narrow range of positive values but also exhibit a spike

at zero. Whereas, on average, the weights under the unconditional approach have a less

pronounced spike at zero and exhibit a more uni-modal distribution. Table 7.21 defines

the column headings used in Table 7.22 which summarises the effects of the different dis-

tribution of particle weights under each approach.

Due to the parameters being fixed there is nothing of interest in the posterior summary

on the parameters and this part of the model output is omitted for this set of simulations.
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Label Definition

Exp. Val = The expected value of the quantity of interest.

µ̂ = The posterior means of the quantity of interest.

µ̂x̄ = The mean of the posterior means obtained from the 100 simulations.

µ̂SD = The standard deviation of the posterior means obtained from the
100 simulations.

σ̂ = The posterior standard deviation of the quantity of interest.

σ̂x̄ = The mean of the posterior standard deviations obtained from the
100 simulations.

σ̂SD = The standard deviation of the posterior standard deviations ob-
tained from the 100 simulations.

Table 7.21: Definitions of the symbols and labels used in the summary tables.

7.4.1.1 State Summary

Each of the 100 model fittings results in a posterior sample of state elements under each

approach. For each of these samples the weights for the 5000 particles and the simu-

lated values contained in the particles are used to produce point estimates and associated

standard errors for the model parameters and the unknown state elements. The point

estimates will just be the weighted mean across all surviving particles and the distribution

of these means across simulations is then summarised.

The population generated by the fitting algorithms in each of the 100 simulations can

be summarised by aggregating the states at each time period into two elements classified

by age-cohort: all juveniles and all adults that are alive in the population following the

sampling occasion at t. This data is then presented in Table 7.22. The column headings

used in Table 7.22 are defined in Table 7.21. For this state summary the “quantity of

interest” will be the aggregated age cohort abundances at each time period. Thus, the

“Exp. Value” column denotes the expected abundances for those state aggregations that
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CGA UGA

Time Total Exp. Val µ̂x̄ µ̂SD σ̂x̄ σ̂SD µ̂x̄ µ̂SD σ̂x̄ σ̂SD

t=0
J 30 30.01 0.9603 4.414 0.5029 30.04 0.2416 4.577 0.08086

A 70 69.99 0.9603 4.414 0.5029 69.96 0.2416 4.577 0.08086

t=1
J 30.8 29.78 3.124 3.042 0.4194 30.33 1.833 3.651 0.07538

A 77 76.57 2.073 2.979 0.3682 76.61 1.713 3.343 0.08231

t=2
J 33.26 33.44 4.183 3.143 0.4008 33.32 3.143 3.589 0.08073

A 83.16 82.42 3.638 3.498 0.3491 82.84 3.239 4.495 0.06683

t=3
J 35.93 35.79 3.611 3.773 0.4712 35.84 3.578 3.91 0.1224

A 89.81 89.06 5.654 4.639 0.7601 89.39 5.044 5.631 0.115

Table 7.22: Summaries on the Posteriors of aggregated states for the multiple simulations anal-
ysis with priors fixed at truth. J denotes aggregated juveniles, A denotes aggregated adults.
CGA denotes the summaries obtained under the conditional generation approach. UGA denotes
summaries obtained under the unconditional approach.

are based on a population with an initial 100 animals. This population is simulated using

the approach in section 7.2 based on the parameter values in Table 7.20. The expected

values are then obtained by multiplying the elements of the state vectors by the parame-

ters associated with the sub-processes that drive the population. A similar idea was used

to obtain the expected values in the splitting rates derived in section 5.2.1.

It can be seen from Table 7.22 that both the conditional generation approach and the

unconditional approach are performing extremely well, on average, in terms of simulating

the expected aggregated totals for the two age classes at each time. There is less variabil-

ity in the posterior means under the unconditional approach compared to the conditional

approach for all age cohorts and time periods which supports the disparity in average
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effective sample sizes for both approaches. However the difference decreases as the time

period increases; that is the variability about the posterior means was roughly the same

under both approaches at time t = 3 but was markedly more for the conditional approach

relative to the unconditional approach at time t = 0. The standard deviation associated

with the posterior means is roughly equal for both approaches although the variability

of the standard deviation associated with the posterior means is, again, greater for the

conditional approach.

7.4.1.2 Analysis of Variance for States

As discussed in section 7.4 the model fitting algorithms are applied to each of the 25

populations 4 times. Then, an analysis of variance can be conducted to investigate the

composition of the uncertainty associated with variability of the posterior mean for the

quantity of interest which, as before, is the aggregated age cohort abundances at each time

period for this set of simulations. Define inter-population variation as the variance of the

posterior mean for the quantity of interest across the 25 populations, and intra-population

variation as the variance of the posterior mean across the four replicates of a given pop-

ulation. Then, this ANOVA approach can determine whether the inter-population or

intra-population variation makes the larger contribution to the overall variance.

Table 7.23 contains the relevant ANOVA output for both approaches with the third,

fourth and fifth columns representing the relative degree of variation due to the repeated

analyses on the same population, analysing different populations and the interaction be-

tween them respectively. It can be seen that, for the conditional generation approach in

Table 7.23a, the F -Ratio for including population as a factor is highly significant but the

F -Ratio for including replicate as a factor is not. This is supported by examining the
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fourth column and noting that over 90% of the variance in the posterior means for the

aggregated states is explained by using different populations. Thus, the inter-population

variation comprises a much greater component of variation than the intra-population

variation. Process error seems to significantly outweigh Monte Carlo error for this set of

simulations. Table 7.23b demonstrates this even more strongly.

This approach is extended in the next section by allowing the model parameters Θ to

be drawn from prior distributions rather than set at fixed values.

7.4.2 Two Age Classes. Variable Priors

This modelling scenario once again focuses on populations exhibiting the same structure

as in section 7.2. Initial draws of size Npart, in this case 10000, are made for each parame-

ter from the prior distributions specified using the values in Table 7.24. For this scenario

10 distinct populations will be simulated with each model fitting analysis being repeated

10 times per population. This will yield 100 samples from the posterior distribution on

the states and parameters. In summary, for this scenario, npop = 10, nrep = 10 and

Npart = 10000 for the following study. As before it is assumed that there are 100 animals

present in the population at the start of the mark-recapture study.

The simulated draws from the prior distributions are summarised in Table 7.25. The

fourth column in that table headed “True Value” simply denotes the value taken by

that parameter when used to simulate the true population. This true population yields

the data that is then used by the model fitting algorithms. Again it is noted that the

birth parameters π0, π1 have the same prior standard deviation due to the constraint that

π0 + π1 = 1.
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Scaled Sums of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop Pr(≥ F ) Rep.

t=0
J 0.03727 0.4016 0.5611 1 0.9555 0.006883 0.1983

A 0.03727 0.4016 0.5611 1 0.9555 0.006883 0.1983

t=1
J 0.003511 0.9483 0.04815 1 3.108 4.36e-38 0.1645

A 0.00168 0.9234 0.07495 1 2.063 2.488e-31 0.6577

t=2
J 08051 0.9845 0.01471 1 4.162 1.636e-56 0.2765

A 0.002552 0.9708 0.02668 1 3.62 3.153e-47 0.08496

t=3
J 0.001562 0.9667 0.03174 1 3.593 1.495e-44 0.323

A 06753 0.987 0.01234 1 5.625 3.016e-59 0.2767

(a) ANOVA output for the conditional approach.

Scaled Sums of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop Pr(≥ F ) Rep.

t=0
J 0.01979 0.7915 0.1887 1 0.2404 3.093e-17 0.06488

A 0.01979 0.7915 0.1887 1 0.2404 3.093e-17 0.06488

t=1
J 2.428e-05 0.998 0.002004 1 1.824 1.262e-87 0.8319

A 01277 0.9977 0.002171 1 1.704 2.237e-86 0.2462

t=2
J 1.32e-06 0.9994 05939 1 3.127 1.236e-106 0.9836

A 3.161e-05 0.9987 0.001245 1 3.222 4.608e-95 0.6111

t=3
J 2.476e-06 0.9995 04693 1 3.56 2.572e-110 0.944

A 2.604e-05 0.9993 07023 1 5.019 5.167e-104 0.4506

(b) ANOVA output for the unconditional approach.

Table 7.23: ANOVA output for conditional and unconditional approaches for the multiple
simulations analysis with priors fixed at truth. J denotes aggregated juveniles, A denotes
aggregated adults.
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φj φa pj pa π0, π1 τ

Prior Means: µα 0.5 0.85 0.65 0.5 0.7,0.3 0.4

Prior Variances: σ2
α 1 1 1 1 1,1 1

Table 7.24: Specification of parameters µα and σ2
α used to sim-

ulate priors for each parameter where priors are neither centered
on truth nor fixed.

Parameter Prior Mean Prior SD True Value

φj 0.5012 0.2072 0.7

φa 0.8101 0.1422 0.8

pj 0.6231 0.1969 0.5

pa 0.4989 0.2090 0.6

π0 0.6791 0.1453 0.6

π1 0.3209 0.1453 0.4

τ 0.4158 0.2045 0.3

Table 7.25: Summary of prior distributions for each pa-
rameter where priors are neither centered on truth nor fixed.
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The 100 model fitting simulations were then conducted using a procedure similar to

that outlined in the pseudo-algorithm of section 7.2.2. This resulted in an average ESS

obtained for the conditional approach of 4.737; with the unconditional approach yielding

an average of 32.500. Both of these values are notably smaller than their corresponding

values in section 7.4.1 and such a small ESS for the conditional approach may result in

the model fitting process exhibiting large Monte Carlo error. Equally, it would be unwise

to place too much faith in inference based on such a small effective sample size. As seen

in Table 7.23a, a small ESS can result in a significant proportion of the uncertainty in

the model being explained by random variation across each simulation rather than by a

population or replicate effect.

The stochastic simulation of parameters from a joint prior distribution means that for

this scenario the posterior sample of the model parameters will be of interest. The main

issue will be to determine the relative performance of the model fitting algorithms with

regard to their ability to correctly identify the true population parameters.

7.4.2.1 Posterior Summary

The weighted bootstrap samples obtained from each of the 100 simulations are used to

approximate the posterior distributions for each quantity of interest under each mod-

elling approach. As for the state summary in section 7.4.1 point estimates and associated

standard errors are obtained for each model parameter. The distributions of the point

estimates are then summarised in Table 7.26 in the same format as was defined in Ta-

ble 7.21. Then for each parameter under both modelling approaches the distributions of

the posterior means and standard deviations are summarised.
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CGA UGA

Parameter µ̂x̄ µ̂SD σ̂x̄ σ̂SD µ̂x̄ µ̂SD σ̂x̄ σ̂SD

φj 0.6935 0.07530 0.09936 0.02999 0.6905 0.05486 0.11860 0.01581

φa 0.8428 0.05587 0.06424 0.02574 0.8379 0.05684 0.07011 0.01364

pj 0.5885 0.09739 0.10320 0.03225 0.5881 0.07624 0.11860 0.01426

pa 0.5750 0.04500 0.06186 0.01684 0.5800 0.05204 0.06313 0.01064

π0 0.6320 0.06390 0.07924 0.02334 0.6263 0.06023 0.08969 0.01920

π1 0.3680 0.06390 0.07924 0.02334 0.3737 0.06023 0.08969 0.01920

τ 0.4105 0.12170 0.20040 0.06393 0.3723 0.05868 0.20400 0.03173

Table 7.26: Summaries on the posterior distribution of the model parameters Θ for the multiple
simulations analysis with priors neither centered on truth nor fixed. CGA denotes summaries
obtained under the conditional generation approach. UGA denotes summaries obtained under
the unconditional generation approach.

It can be seen that, on average, the conditional generation approach performs reason-

ably but sometimes struggles to accurately estimate the true parameters that generated

the 10 simulated populations. Estimated adult capture rate pa is smaller than the juve-

nile capture rate pj for both the conditional and unconditional approaches although the

capture rates are quite close to one another in both cases. This could also be an effect of

the small effective sample size; with only 4 effective particles in the posterior sample it is

not surprising that some atypical behaviour is exhibited. It should also be noted that the

posterior mean of pj does not move very far from the prior mean and the average stan-

dard deviation for pj is the second largest under the conditional approach and the largest

under the unconditional approach. This may suggest that there was relatively weak in-

formation in the data for estimating the juvenile capture rate. It should also be noted

that the relatively short time series of observations may result in the parameters being

confounded; for example the birth rate π1 and juvenile capture pj may well be confounded.
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7.4.2.2 Analysis of Variance for Parameters

As for the aggregated states in the previous section the simulation output can be analysed

to investigate what influence different sources of variance that contribute to the uncer-

tainty in the posterior estimates of the parameters. Specifically the division between

inter-population and intra-population variance is of interest.

Consider the conditional approach; it can be seen from the F -Ratios in Table 7.27a

that population should be included as a factor but replicate should not be for all parame-

ters. There is strong evidence that including population as a factor explains a significant

proportion of the variation in the posterior estimates for that parameter. However, the

proportion of the variation that is attributed to the interaction term is quite sizeable for

the conditional approach supporting the idea that the small effective sample size will lead

to Monte Carlo variation. Examining the output for the unconditional approach it can

be seen that the larger effective sample size corresponds to a much greater significance

attached to the F -Ratio for including population as a factor. However there is some weak

evidence to suggest that replicate should be included as a factor for juvenile capture pj.

Apart from τ all other parameters have over 90% of the variance in their posterior means

explained by the difference between simulated populations. Process error then outweighs

Monte Carlo error under the unconditional approach but the small average ESS of the

conditional approach sees a less pronounced difference between the two sources of varia-

tion.

7.4.2.3 State Summary

Similar behaviour is then also displayed in Table 7.28. Looking at the distribution of

the means on the aggregated states it seems that both the unconditional and conditional
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Sum of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop. Pr(≥ F ) Rep.

φj 0.04897 0.6354 0.3156 1 0.07492 4.443e-16 0.2036

φa 0.03427 0.6186 0.3471 1 0.05559 9.712e-15 0.5392

pj 0.02131 0.7202 0.2585 1 0.09690 5.933e-20 0.6695

pa 0.04439 0.5612 0.3944 1 0.04477 1.97e-12 0.4369

π0 0.01380 0.6342 0.3520 1 0.06358 7.462e-15 0.9537

π1 0.01380 0.6342 0.3520 1 0.06358 7.462e-15 0.9537

τ 0.08645 0.2634 0.6501 1 0.12110 07278 0.3085

(a) ANOVA output for the conditional approach.

Sum of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop. Pr(≥ F ) Rep.

φj 0.012430 0.9000 0.08755 1 0.05459 7.7e-39 0.2616

φa 0.004037 0.9487 0.04727 1 0.05655 9.151e-50 0.6454

pj 0.009847 0.9478 0.04232 1 0.07586 1.343e-51 0.0394

pa 0.001966 0.9669 0.03116 1 0.05178 4.167e-57 0.8195

π0 0.010630 0.9193 0.07009 1 0.05993 9.345e-43 0.2179

π1 0.010630 0.9193 0.07009 1 0.05993 9.345e-43 0.2179

τ 0.008957 0.6236 0.36740 1 0.05838 3.212e-14 0.9909

(b) ANOVA output for the unconditional approach.

Table 7.27: ANOVA output for model parameters for the conditional and unconditional
approaches for the multiple simulations analysis with priors neither centered on truth nor
fixed.
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approaches are doing quite well at matching the expected average totals. Each approach

produces average means that are extremely close to one another for both age cohorts and

at all time periods. From comparing the standard deviations of the posterior means, µ̂SD,

under each approach it seems that the variability of the posterior means for the aggre-

gated states between simulations is greater under the conditional generation approach.

However this difference is more pronounced for the states at t = 0 and t = 1 with the

differences being quite small for times t = 2 and t = 3. However the variability within

simulations, as given by the mean of the posterior standard errors σ̂x̄ is typically greater

for the unconditional approach. This is also observable in Table 7.22. These results make

intuitive sense. The conditional approach rejects any simulated particle that contains a

state element that is inconsistent with the observed capture histories. This restrictive

condition means that there is a smaller region of state-space that can be occupied under

the conditional approach compared to the unconditional approach. Consequently, the

aggregated juveniles and adults are restricted under the conditional approach and this

reduced variability is reflected in the smaller values of σ̂x̄ under the conditional approach.

7.4.2.4 Analysis of Variance for States

The ANOVA output in Table 7.29a corresponds to the two-way analysis on the posterior

samples obtained under the conditional approach. Consistent with previous analyses, it

can be seen that, under the conditional approach, there is little information in the data,

for any simulated population, that allows the accurate determination of the distribution

of the initial animals. There is a population effect but no replicate effect on the initial an-

imals; the variation in the posterior distribution for the adults and juveniles at time t = 0

arises from the stochastic splitting process applied to each individual initial population.

This population based variation is greater than that which can be attributed to repeating
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CGA UGA

Time Total Exp. Val µ̂x̄ µ̂SD σ̂x̄ σ̂SD µ̂x̄ µ̂SD σ̂x̄ σ̂SD

t=0
J 30 40.71 12.63 20.67 6.724 37.06 6.043 20.8 3.262

A 70 59.29 12.63 20.67 6.724 62.94 6.043 20.8 3.262

t=1
J 30.8 30.22 6.204 5.028 1.417 30.29 5.645 5.974 0.9608

A 77 80.27 5.275 6.067 2.129 79.82 4.066 6.432 0.9816

t=2
J 33.26 33.14 7.447 5.538 1.928 33.09 6.814 6.44 1.402

A 83.16 87.72 8.359 8.045 3.083 87.46 8.335 8.36 1.278

t=3
J 35.93 34.82 9.022 6.914 2.398 34.96 8.789 8.008 2.114

A 89.81 97.92 12.49 11.08 4.077 96.92 13.05 11.48 1.936

Table 7.28: Summaries on the Posteriors of aggregated states for the multiple simulations
analysis with priors neither centered on truth nor fixed. J denotes aggregated juveniles, A
denotes aggregated adults.
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analyses on the same population. The F -Ratios for including population as a factor are

significant for both juveniles and adults for all time periods t = 0 : 3. As with the earlier

simulation study it appears that process error comprises a larger proportion of the total

variance exhibited by the aggregated states than Monte Carlo error. Equally, Table 7.29b

demonstrates that process error is the main source of variation in the posterior samples of

the aggregated states under the unconditional approach. Once again it can be observed

that, of the total error, process error owing to fitting different populations forms a greater

proportion of the total error under the unconditional approach than under the conditional

approach.

7.4.3 Two Age Classes. Variable Priors centred on truth.

A third analysis of multiple simulations was conducted to investigate the issue of prior

sensitivity. As with the scenario presented in section 7.4.2, 10 distinct populations will

be simulated and each model fitting analysis is repeated 10 times per population for both

the conditional and unconditional approaches. Each of these 100 model fittings will be

based on initial samples of 10000 particles, with the prior distributions specified using the

values in Table 7.30. Thus, for this third analysis npop = 10, nrep = 10 and Npart = 10000.

Once again the initial population is assumed to consist of 100 animals at the start of the

simulated mark-recapture study.

The simulated draws from these prior distributions are summarised in Table 7.31.

After performing the 100 model fittings average ESS’s of 5.958 and 61.488 were ob-

tained under the conditional and unconditional approaches respectively. These values are

still smaller than those obtained in section 7.4.1 for model fitting based of priors fixed

at the true parameter values. However, there is an appreciable increase in the average
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Scaled Sums of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop Pr(≥ F ) Rep.

t=0
J 0.07561 0.27 0.6544 1 12.57 06128 0.4162

A 0.07561 0.27 0.6544 1 12.57 06128 0.4162

t=1
J 0.01562 0.8118 0.1726 1 6.173 5.392e-27 0.6043

A 0.0118 0.6605 0.3277 1 5.249 4.283e-16 0.9647

t=2
J 0.01062 0.849 0.1404 1 7.41 1.166e-30 0.7241

A 0.0136 0.7712 0.2152 1 8.317 3.14e-23 0.8189

t=3
J 0.007072 0.8262 0.1667 1 8.977 9.592e-28 0.9407

A 0.0111 0.806 0.1829 1 12.42 4.544e-26 0.8364

(a) ANOVA output for the conditional approach.

Scaled Sums of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop Pr(≥ F ) Rep.

t=0
J 0.012530 0.6288 0.35870 1 6.012 1.456e-14 0.9681

A 0.012530 0.6288 0.35870 1 6.012 1.456e-14 0.9681

t=1
J 0.005181 0.9490 0.04582 1 5.616 2.725e-50 0.4331

A 0.003611 0.8999 0.09652 1 4.045 2.7e-37 0.9601

t=2
J 0.002684 0.9687 0.02858 1 6.780 1.302e-58 0.5770

A 0.002789 0.9702 0.02698 1 8.293 1.283e-59 0.5037

t=3
J 0.002267 0.9736 0.02414 1 8.745 1.398e-61 0.5770

A 0.002750 0.9792 0.01805 1 12.980 1.131e-66 0.2149

(b) ANOVA output for the unconditional approach.

Table 7.29: ANOVA output for conditional and unconditional approaches for the multiple
simulations analysis with priors neither centered on truth nor fixed. J denotes aggregated
juveniles, A denotes aggregated adults.
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φj φa pj pa π0, π1 τ

Prior Means: µα 0.7 0.8 0.5 0.6 0.6,0.4 0.3

Prior Variances: σ2
α 1 1 1 1 1,1 1

Table 7.30: Specification of parameters µα and σ2
α used to

simulate priors for each parameter where priors are centered
on truth but not fixed.

Parameter Prior Mean Prior SD True Value

φj 0.6702 0.1891 0.7

φa 0.7597 0.1633 0.8

pj 0.4970 0.2063 0.5

pa 0.5819 0.2048 0.6

π0 0.5893 0.1570 0.6

π1 0.4107 0.1570 0.4

τ 0.3301 0.1903 0.3

Table 7.31: Summary of prior distributions for each pa-
rameter where priors are centered on truth but not fixed.
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CGA UGA

Parameter µ̂x̄ µ̂SD σ̂x̄ σ̂SD µ̂x̄ µ̂SD σ̂x̄ σ̂SD

φj 0.7045 0.08796 0.09701 0.02517 0.6988 0.07078 0.1224 0.019930

φa 0.8069 0.05618 0.06191 0.01675 0.8138 0.05123 0.0696 0.009661

pj 0.5059 0.06449 0.09093 0.03006 0.5078 0.05201 0.1025 0.015420

pa 0.6154 0.05867 0.06155 0.01659 0.6053 0.04447 0.0612 0.006867

π0 0.5903 0.06535 0.08438 0.02539 0.5897 0.05008 0.0926 0.008894

π1 0.4097 0.06535 0.08438 0.02539 0.4103 0.05008 0.0926 0.008894

τ 0.3274 0.11940 0.18040 0.06379 0.3222 0.03505 0.1871 0.021210

Table 7.32: Summaries on the posterior distribution of the model parameters Θ for the multiple
simulations analysis with priors centered on truth but not fixed.

ESS under both approaches when compared to the values in section 7.4.2 based on priors

centered away from the true values. Unsurprisingly the average model performance, in

the context of the ESS metric, is best when using fixed priors centered on truth and de-

creases as variability is introduced into the priors and decreases still further when priors

are centered away from truth. These simulations also illustrate the increased level of

particle depletion experienced under the conditional approach when compared to the un-

conditional approach. The average ESS of 5.958 under the conditional approach is, once

again, quite small and results in Monte Carlo error forming a larger component of the

total variation exhibited in the posteriors across the simulations than is observed under

the unconditional approach.

7.4.3.1 Posterior Summary

The posterior summaries are obtained under each approach and averaged across all 100

simulations. The resulting distributions are summarised in Table 7.32 in the usual format.
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Both model fitting approaches seems to behave well and don’t produce posteriors that

move significantly away from the true parameter values. Although the movement is min-

imal in some cases it can be observed that all parameters do move closer to the true

parameters that were used to simulate each of the 10 population realisations. By compar-

ing Tables 7.26 and 7.26 it seems that, for this set of simulations, there is less variation in

the point estimates as indicated by the µ̂SD column. That is, when the priors are centered

on truth the posterior means seem to vary less across simulations than when the priors are

not centered on truth. It can also be seen that, when the priors are centered on truth, there

is generally less variation in the precision of the posterior point estimates as indicated by

the σ̂SD. The exceptions to this are the parameters associated with juvenile survival (φj)

and capture (pj). That is, when the priors are centered on truth the posterior standard

deviations for each parameter seem to vary less across simulations than when the pri-

ors are not centered on truth. Hence, for the unconditional approach, this suggests that,

across simulations, the posterior distributions for the parameters exhibit less variability in

both location and precision when the priors are centered on truth than when they are not.

This distinction is not observed for the conditional approach. This may be a result of

the low ESS’s observed for the both sets of simulations: those based on priors centered

on truth and those based on priors not centered on truth. It can be observed that there

is greater variability in both the posterior means and posterior standard deviations for all

parameters across the 100 simulations under the conditional approach when compared to

the unconditional approach.
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7.4.3.2 Analysis of Variance for Parameters

The general interpretation of Table 7.33 is similar to that for Table 7.27. For the condi-

tional output an examination of the F-Ratios in Table 7.33a again provides strong evidence

that population, but not replicate, should be included as a factor when explaining the

variation across simulations in the posterior means for each parameter. A comparison

with Table 7.27a suggests that centering the priors on truth reduces the proportion of

the variation that is attributed to the interaction term for all parameters apart from the

splitting parameter τ . Once again, when compared to the output for the unconditional

approach in Table 7.33b, the small ESS results in a greater level of Monte Carlo varia-

tion as evidenced by the greater proportion of variation attributed to the interaction term.

Comparing Table 7.33b with Table 7.27b again yields little marked difference between

the average performance of the unconditional approach for the simulations based on priors

centered on truth and those based on priors not centered on truth. When compared to

Table 7.27b it can be seen that the proportion of variation explained by the differences

between simulated populations generally increases for the simulations based on priors

centered on truth. The exception to this is, again, the population splitting parameter τ .

Inspecting the F-Ratios it is seen, for most parameters, that population, but not replicate,

explains the variation in posterior means induced by the different simulations. For this

set of simulations there is some evidence to suggest that replicate could also be included

as a factor to explain the variation observed for the birth rate π0.

As with the earlier analysis of the simulations based on priors that were not centered

on truth it can be seen from this analysis that process error significantly outweighs Monte

Carlo error under the unconditional approach. A similar conclusion can be reached for the

conditional approach although the differences between the error sources is less pronounced.
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Sum of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop. Pr(≥ F ) Rep.

φj 0.01923 0.7564 0.2243 1 0.08752 2.051e-22 0.6431

φa 0.01638 0.7567 0.2269 1 0.05590 2.866e-22 0.7513

pj 0.01501 0.7333 0.2517 1 0.06416 1.622e-20 0.8438

pa 0.02808 0.7994 0.1725 1 0.05838 8.744e-27 0.1750

π0 0.02524 0.7127 0.2621 1 0.06502 1.189e-19 0.5581

π1 0.02524 0.7127 0.2621 1 0.06502 1.189e-19 0.5581

τ 0.02972 0.2173 0.7529 1 0.11880 0.01099 0.9527

(a) ANOVA output for the conditional approach.

Sum of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop. Pr(≥ F ) Rep.

φj 0.003724 0.9611 0.03519 1 0.07042 6.09e-55 0.48530

φa 0843 0.9842 0.01492 1 0.05098 4.691e-70 0.86440

pj 0.012270 0.9426 0.04517 1 0.05175 2.057e-50 0.01628

pa 0.001565 0.9862 0.01219 1 0.04424 1.371e-73 0.33500

π0 0.008739 0.9657 0.02551 1 0.04983 1.7e-60 0.00314

π1 0.008739 0.9657 0.02551 1 0.04983 1.7e-60 0.00314

τ 0.018490 0.5983 0.38320 1 0.03488 2.348e-13 0.91280

(b) ANOVA output for the unconditional approach.

Table 7.33: ANOVA output for model parameters for the conditional and unconditional
approaches for the multiple simulations analysis with priors centered on truth but not fixed.
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CGA UGA

Time Total Exp. Val µ̂x̄ µ̂SD σ̂x̄ σ̂SD µ̂x̄ µ̂SD σ̂x̄ σ̂SD

t=0
J 30 33.23 11.72 18.22 6.171 32.34 3.656 19.05 2.103

A 70 66.77 11.72 18.22 6.171 67.66 3.656 19.05 2.103

t=1
J 30.8 29.59 3.818 5.29 1.586 30.87 3.783 6.071 0.6538

A 77 76.93 3.709 6.186 1.484 77.5 2.827 6.585 0.6456

t=2
J 33.26 34.55 6.724 5.672 1.764 34.42 4.881 6.645 0.7832

A 83.16 83.18 5.833 7.311 2.001 84.64 5.258 8.248 0.7262

t=3
J 35.93 38.45 7.156 6.991 2.265 38.37 6.127 8.038 1.051

A 89.81 92.88 10.03 9.77 2.93 94.07 8.929 11.23 1.293

Table 7.34: Summaries on the Posteriors of aggregated states for the multiple simulations
analysis with priors centered on truth but not fixed. J denotes aggregated juveniles, A de-
notes aggregated adults. CGA denotes summaries obtained under the conditional generation
approach. UGA denotes summaries obtained under the unconditional approach.

7.4.3.3 State Summary

The summary presented in Table 7.34 leads to similar conclusions to those based on the

previous simulation study as summarised in Table 7.28. Both modelling approaches seem

to be doing a very good job, on average, of accurately matching the expected aggregated

state totals representing juveniles and adults at each time step. Inspecting the standard

deviations of the posterior means, µ̂SD, again indicates that the variability of the posterior

means for the aggregated states is greater under the conditional approach. This difference

is most pronounced for the posteriors on the initial states; the differences are relatively

small for the other time periods. A similar pattern is observed for the standard deviations

of the posterior standard deviations, σ̂SD, in that the variability of the posterior standard
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deviations is greater under the conditional approach. This mirrors what was observed for

posterior summaries for the model parameters.

Comparing Table 7.28 and Table 7.34 it can be seen that the standard deviations of

the posterior means, µ̂SD, are smaller for the simulations based on priors centered on

truth than for those based on priors that are not centered on truth. This holds for both

the unconditional and conditional approaches. Similarly, the standard deviations of the

posterior standard deviations, σ̂SD, exhibit a similar pattern of behaviour. When the

priors are centered on truth there is less variation in the precision of the posterior point

estimated for the aggregated states at each time step. This holds for the unconditional

approach and holds for the conditional approach over all aggregated states apart from the

total number of juveniles at time t = 1. Hence, for both the modelling approaches, when

compared to the simulations based on priors not centered on truth, it seems that, across

simulations, the posterior distributions for the aggregated states exhibit less variability

in both location and precision when the priors are centered on truth.

7.4.3.4 Analysis of Variance for States

The summary information presented in Table 7.35a is consistent with that presented in

Table 7.29a for the previous simulation study. As before, there is evidence for a popula-

tion effect but no replicate effect on the distribution of posterior means for the aggregated

states at each time step. The variation that occurs in these posterior means is primarily

explained by the differences due to the 10 simulated populations rather than the repeated

analyses of those populations. However, the variation in the posterior means for the ini-

tial animals is mostly explained by the differences between the 100 individual analyses

which again supports the idea that there is little information in the data to estimate the
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splitting parameter τ . Comparing Tables 7.29a and 7.35a does not produce a clear effect

on the composition of the total variation exhibited by the posterior means. For example,

centering the priors on truth reduces the proportion of the variation that is attributed to

the different populations for the initial animals. However, the effect differs for animals at

the second and third time periods. For both of these time periods, centering the priors

on truth results in more of the variation in aggregated juveniles being explained by the

population term. However, for the posterior means of aggregated adults, centering the

priors on truth results in less of the total variability being explained by the population

term.

A comparison with Table 7.27a suggests that centering the priors on truth reduces the

proportion of the variation that is attributed to the interaction term for all parameters

apart from the splitting parameter τ . Once again, when compared to the output for the

unconditional approach in Table 7.33b, the small ESS results in a greater level of Monte

Carlo variation as evidenced by the greater proportion of variation attributed to the in-

teraction term.

A comparison between Table 7.35b and Table 7.29b results in similar conclusions to

those made when comparing the analysis of variance on the posterior means of the param-

eters. As with that analysis it can be seen that, for simulations based on priors that are

centered on truth, the proportion of the total variation that is attributed to the difference

between populations increases for all but the initial aggregated states. It can be seen in

Table 7.35b that there is some weak evidence to suggest that replicate could be included

as a factor to explain the variation observed in the posterior means for the aggregated

juveniles at times t = 1,t = 2 and t = 3. The F-ratios for all aggregated states suggest

that population should be included as a factor.
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Scaled Sums of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop Pr(≥ F ) Rep.

t=0
J 0.02591 0.2259 0.7482 1 11.66 0.008065 0.9691

A 0.02591 0.2259 0.7482 1 11.66 0.008065 0.9691

t=1
J 0.01765 0.6727 0.3096 1 3.799 5.969e-17 0.8611

A 0.05943 0.5246 0.4160 1 3.690 2.722e-11 0.2575

t=2
J 0.008116 0.8754 0.1165 1 6.690 6.11e-34 0.7708

A 0.04871 0.6754 0.2759 1 5.804 2.313e-18 0.1325

t=3
J 0.02030 0.8382 0.1415 1 7.121 2.416e-30 0.2547

A 0.01818 0.7983 0.1835 1 9.980 6.827e-26 0.5362

(a) ANOVA output for the conditional approach.

Scaled Sums of Squares

Rep. Pop. Int. Total Est sd Pr(≥ F ) Pop Pr(≥ F ) Rep.

t=0
J 0.01329 0.6119 0.37480 1 3.638 8.223e-14 0.9665

A 0.01329 0.6119 0.37480 1 3.638 8.223e-14 0.9665

t=1
J 0.006849 0.9670 0.02610 1 3.764 3.977e-60 0.0201

A 0.006855 0.9569 0.03629 1 2.813 2.398e-54 0.1024

t=2
J 0.005448 0.9803 0.01422 1 4.856 8.042e-71 0.0012

A 0.003623 0.9775 0.01885 1 5.231 6.795e-66 0.0955

t=3
J 0.003704 0.9827 0.01360 1 6.096 1.243e-71 0.0160

A 06222 0.9855 0.01389 1 8.884 2.583e-71 0.9300

(b) ANOVA output for the unconditional approach.

Table 7.35: ANOVA output for conditional and unconditional approaches for the multiple
simulations analysis with priors centered on truth but not fixed. J denotes aggregated
juveniles, A denotes aggregated adults.
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When compared with the analysis based on simulations that used priors not centered

on the true parameter values the same general conclusions can be reached. Process error

still significantly outweighs Monte Carlo error under both the conditional and uncondi-

tional approaches for all aggregated states bar those for the initial animals. The effect

is less pronounced under the conditional approach but it still apparent. Using priors

centered on truth does increase the disparity between the relative contributions of these

two error sources to the total variability. However this increase is not particularly large

and does not significantly alter the interpretation of the efficacy of the modelling approach.

7.4.4 General Summary

In general, there does appear to be some degree of prior sensitivity in the model with

regard to the proximity of the posterior means to the true values for both the model

parameters and the aggregated states of the expected population. The extremely small

average ESS exhibited by the model fitting under the conditional approach requires these

results to be interpreted with a degree of caution. Further larger-scale comparisons could

be conducted using more initial particles to address the issue of particle depletion.

Both modelling approaches seem to perform well on average. There is an appreciable

improvement in the accuracy of the posterior means for both parameters and states when

the priors are centered on truth. These simulations yielded larger effective sample sizes

than the simulations based on priors that were not centered on truth and they exhibited

less variability in both the location and precision of the posterior distributions. However

these improvements were mostly fairly minor and the model fitting algorithms performed

well when using priors that were not centered on truth.
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7.5 Discussion

The simulation study has allowed the performance of these fitting algorithms to be inves-

tigated in detail. It can be seen that, for this particular population structure, simulations

based on fixed priors set at the true values return posterior densities that have their prob-

ability mass centered close to the true values of the states. Thus, the fitting algorithms

replicate truth quite successfully. Even when variability is introduced by simulating the

model parameters and initial states from prior distributions it was seen that the models

still performed reasonably well. However, it was noted that both approaches can still be

affected by particle depletion caused by the simulation of implausible states. As expected,

the effect is stronger for the conditional approach than for the unconditional approach.

It also seems that the model fitting algorithms are reasonably consistent and differences

between the posterior samples based on different analyses are more pronounced when

different populations are analysed rather than when the same population is analysed re-

peatedly.

These exploratory analyses, including that on the Soay sheep data, provide numerous

avenues for further research. The nature of the model fitting implemented under the con-

ditional generation approach automatically raises questions about suitable goodness-of-fit

diagnostics. The complexity of the trial pdf that was constructed for the relatively simple

population used in these simulation studies reduces the viability of specifying a general

and flexible approach to applying the conditional generation techniques. The current ap-

proach is extremely model specific: both the traditional state and observation processes

are required to be known or at least well approximated to develop an effective conditional

generation algorithm. The unconditional approach is the more flexible of the two and does

typically return a larger effective sample size when both models are applied to the same
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population. However, the current implementation of the approach does not require the

states to be consistent with the observed capture history patterns and can consequently

suffer from particle depletion. One approach to investigating whether or not the fitting

algorithm code works as intended has been developed by Cook et al. (2006). This involves

a simulation-based method using the uniformity of posterior quantiles to establish the ef-

ficacy of the code used to run the model fitting algorithms. The approach is embedded

within a Bayesian framework and illustrated with an application to an MCMC fitting

routine. The methods should be adaptable for any iterative Bayesian fitting process and

would be worth examining in the context of the algorithms developed under the condi-

tional and unconditional approaches.



Chapter 8

General Discussion and Future
Directions

This thesis described the formulation of approaches to modelling that allowed population

dynamics to be embedded into inference on mark-recapture data. Fitting algorithms were

developed under two alternative approaches: (1) The “conditional” approach in which in-

ference was conditional on the numbers of animals known to be captured at each time

point thus leading to the parameters relating to the capture process to be incorporated

into the state process equation and (2) The “unconditional” approach in which the cap-

ture process is included in the observation process equation and there is no conditioning

on the known abundances of captured animals. From the simulation analyses presented

in chapter 7 it could be seen that the fitting algorithms under both the conditional and

unconditional approaches produced posterior distributions on the states and parameters

that were, on average, consistent with the true values.

The analysis on the Soay sheep dataset, also presented in chapter 7, yielded disap-

pointing results. The effective sample sizes generated by both fitting algorithms were

extremely small; with the effect being more pronounced under the conditional approach

when compared with the unconditional approach. Due to the posterior distribution on

351
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the states and parameters being dominated by a single particle under the conditional

approach there is a danger that the results can be over-interpreted. It is difficult to draw

meaningful conclusions regarding the performance of the model-fitting algorithm under

the conditional approach. The situation is not greatly improved for the analysis based

on fitting the mark-recapture data on the Soay sheep population using the model-fitting

algorithm proposed under the unconditional approach. This immediately suggests further

avenues for research.

Further investigation is needed into the efficiency of the fitting algorithms developed

under both approaches with greater emphasis on those developed under the conditional

approach. The nature of the requisite conditioning that defines the conditional approach

results in a fitting algorithm that typically produces posterior distributions of very high

dimension. All parameters that are fixed at a particular time interval and all elements

of the state and intermediate vectors for each time period are included in the posterior

distribution. The constraints imposed by conditioning on those animals that were known

to be caught at each time period results in posterior distributions that are restricted to

regions of viable state and parameter space. In this context viable state space is defined

as the set of state elements that are consistent with the observed abundances of captured

animals over the duration of the monitoring study. Accounting for these restrictions in

the fitting algorithm seems to result in smaller effective sample sizes being obtained when

compared with the unconditional approach.

Examining the output from the analyses in chapter 7 it is clear that, when compared

to the unconditional approach, fitting models under the conditional approach produces

weights that are more variable about their mean value. Under the importance sampling
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fitting procedures it can be seen that the conditional approach produces a smaller pro-

portion of implausible particles. However the distribution of the weights associated with

these plausible particles is more skewed under the conditional approach than for the equiv-

alent distribution under the unconditional approach. Thus, it seems that although the

conditional generation of states results in fewer implausible particles being obtained, the

unconditional generation results in a more even distribution of the weights over the sur-

viving particles. This is, most likely, a reflection of the different assumptions under each

approach to constructing suitable models, specifically the manner in which the observed

data are incorporated into the analysis. Under the unconditional approach the observed

data enters the model framework through the capture history patterns that have been

recorded in the final time period. This allows a greater level of flexibility in the possible

paths taken by the animals when exhibiting a particular capture history pattern. That

is, the unconditional approach requires the evaluation of the probabilities of an individual

animal exhibiting each of the possible capture histories recorded in the final time period.

For a study consisting of T capture occasions, consider a single capture history pat-

tern. If there are multiple paths that would result in an animal displaying this capture

history pattern and each of these paths has approximately the same probability of occur-

rence then each path would provide an approximately equal contribution to the weight

for that particular particle. Under the conditional approach the possible paths that an

animal could have travelled to exhibit a particular capture history pattern are typically

restricted to a smaller range. Under the conditional approach the data enters the model

framework through the known captures at each time period. This results in a far more

prescribed path for the animals simulated under the fitting methods for the conditional

approach. This restriction on the plausible life histories displayed by the simulated ani-

mals results in weights that are more skewed than those obtained under a less restrictive
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model fitting approach. In effect, the particles simulated under the conditional approach

need to satisfy a much larger set of criteria than do those simulated under the uncon-

ditional approach. Therefore, simulating particles subject to these criteria increases the

number of particles that are consistent with the observed data. However, the restrictions

imposed on the viable parameter and state space by these criteria results in fewer particles

that meet all criteria well and, consequently, fewer particles that are assigned high weights.

This is reflected in the analysis on the multiple simulation study presented in sec-

tion 7.4. It can be seen that the smaller effective sample size for the model fitting

conducted under the conditional approach, as opposed to the unconditional approach,

results in smaller average weighted standard deviations for the posteriors of the model

parameters and aggregated states.

A further issue arises with regard to the efficiency of the model fitting algorithms de-

veloped under the conditional approach. The specification of the trial density presented in

chapter 5 means that the duration of the fitting algorithm is a function of the population

size. Increasing the number of animals that are either known or simulated to exist in the

population increases the time it takes for the model fitting algorithm to run. This can

be understood by considering section 5.2.2. In this section the observed number of adults

that correspond to convolved totals are required to be split across the appropriate trees.

The method for performing this split involved obtaining a non-uniform finite discrete dis-

tribution on the range of possible splits. The probability associated with each of these

possible values then needed to be calculated to use the alias method with table look-up

as a means of drawing a particular split. Hence, assuming the model parameters remain

the same, increasing the known or simulated abundance of the population at each time

period will result in a larger range of plausible splits for a convolved total. A larger range
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of splits engenders a larger range of associated probabilities and this increased computa-

tion burden increases the time taken for the fitting algorithm to be performed. A similar

situation occurs when applying the conditional generation approach (see section 4.4.3) to

simulate survivors and births for certain trees.

One potential future avenue for research is to develop a more efficient trial density

that doesn’t require all possible probabilities to be calculated when the fitting algorithm

needs to draw a value from a non-uniform finite discrete distribution on the range of

possible values. Potentially a flexible probability function could be specified that would

provide an adequate approximation to the discrete-valued probability mass function for

this distribution. This in turn raises questions regarding the desired level of “adequacy”

of any approximation and the value of the trade-off between the increased efficiency of

the algorithm and the loss of accuracy. It should also be noted that the fitting algorithm

under the conditional approach is of greater utility when dealing with smaller populations.

It is more important to ensure that all state and intermediate nodes are consistent with

the known number of animals alive at each time period if those known abundances are

small. As a rather trivial example, if the abundance of a simulated state element is two

less than the true value this is less of an issue if truth is 1000 than if truth is 2. The

probability mass functions that arise due to the form of the trial density specified in the

fitting algorithm constructed under the conditional approach need to be identified. Then,

if these functions can be approximated adequately this may increase the efficiency of the

algorithm with no crucial loss of precision. As previously mentioned, this trade-off needs

to be investigated in more detail.

The fitting algorithm specified under the unconditional approach experiences a sim-

ilar functional dependency on simulated population size but for different reasons. For
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this algorithm the dependency arises from the need to evaluate the probabilities of each

individual animal exhibiting each of the possible capture history patterns. This effect is

somewhat mitigated by grouping the animals into cohorts defined by their times of entry

and exit into the population (see section 6.6.1). Performing this classification means that

only the numbers of animals belonging to those cohorts need to be calculated with each

cohort member exhibiting the same probabilities. This approach can also accommodate

a model with time-specific survival and capture rates. Models that incorporate animal

level covariates (e.g. horn type in Soay sheep) would require an alternative classification

of cohorts to be specified to group animals by common life-history parameters. The orig-

inal, less efficient, evaluation of particle weights, by calculating the probabilities of each

individual animal exhibiting each capture history pattern, easily accommodates models

with animal level covariates.

The fitting algorithms developed under each of the approaches can be inefficient with

regard to both the level of particle depletion they exhibit and the resulting skewed distri-

bution of the weights. The Soay sheep analyses in chapter 7, was conducted by running

each fitting algorithm simultaneously, with an initial 250000 particles for each. This took

approximately 16 hours using parallel processing across three processors with CPU speeds

ranging between 1 and 2.2GHz. As mentioned previously, these analyses yielded effective

sample sizes that were extremely low under the conditional approach but adequate for

inference under the unconditional approach . Attempts to increase the number of parti-

cles resulted in memory allocation errors when using the software R (see http://cran.r-

project.org/). Further use of parallel processing can increase the speed of the fitting

algorithms. However, to avoid memory allocation errors, this would necessitate a more

advanced routine to be written for harvesting the particles with non-zero weights. Equally,

during the development of these fitting algorithms it was often the case that excessive
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particle depletion was experienced when fitting to more than three years of capture his-

tory data.

Further research is needed to investigate alternative fitting algorithms. The methods

discussed in chapter 4 presents the general theory behind the conditional approach and

chapter 5 describes one possible methodology for developing a fitting algorithm under

the assumptions of the conditional approach. The construction of the trial density was

key to the fitting algorithm, and it was seen (section 5.6) that this particular form of the

trial density does not generate particles according to the full conditional distributions as

specified under the conditional approach. Alternative trial densities could be investigated

in which the conditioning was extended to a larger window of observed capture history

patterns. Under the current “bottom-up” approach, the densities associated with the sim-

ulated states and intermediate vectors at t are conditional on the observed abundances at

time t−1. If the parent node at time t−1 is unknown then, depending on the status of the

appropriate ancestral node, the fitting algorithm conditions on observed abundances at

time t−2. When simulating the number of surviving animals and the number of new-born

juveniles these surviving animals produced, it seems reasonable to restrict conditioning to

those observed values that provide natural limits, where available. That is, the observed

number of animals at time t − 1, the number of those animals that were encountered at

time t and the number of juveniles produced by the survivors that were encountered at

time t. This component of the trial density is described in detail in section 4.4.3. However,

if the ancestral nodes are not observed, an alternative model fitting algorithm could be

considered in which the most closely related element corresponding to a known abundance

is used as a constraint. A state element that corresponds to a known abundance but is

only loosely connected to the element being simulated will not provide a great deal of

information with which to constrain the range of plausible values for that element. As
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before, the computational burden of incorporating this constraint on the fitting process

should be weighed against the gain in accuracy resulting from restricting the viable state

space.

Developing a fully conditional fitting algorithm over multiple time periods of data is

extremely complicated for the high-dimensional state-space models that result from the

model structure specified under the conditional approach. The fully conditional approach

would require a large number of extra constraints to be specified. For example, any sim-

ulated value for a state element corresponding to animals that were not observed at time

t would need to meet constraints imposed by each and every related known abundance.

The simulated element would need to be large enough to produce adequate numbers of

descendants that were observed for all future years t + 1, t + 2, . . . , T and small enough

not to be implausible given the known numbers of ancestors in previous time periods

t−1, t−2, . . . , 1. Specifying all such constraints is a non-trivial process and incorporating

them all into a fitting algorithm will significantly increase its complexity. As the inter-

relation between state and intermediate elements decreases, the amount of information

provided by one element about the other is also likely to decrease. That is, the greater

the number of sub-process realisations that need to occur to model the life history path

between two elements, the less information they provide about the plausible range of val-

ues each can take. In other words, the more closely related two elements are, the more

information they are likely to provide about one another. With this in mind it is worth

considering what a suitable level of conditioning would be. Increasing the complexity of

a model fitting algorithm to make it fully conditional over four time periods may not

add a significant amount of information to that which is obtainable from a model fitting

algorithm that is fully conditional over only three time periods. Further investigation is
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required into developing alternative trial densities under the assumptions of the condi-

tional approach that respect an increased level of conditioning. The trade-off between

decreased particle depletion and increased computational burden is worth examining.

An alternative avenue of research is to consider incorporating Pollock’s robust design

(Pollock et al., 1990; Kendall and Nichols, 1995; Williams et al., 2002, pp.523-544) into the

algorithms under each approach. Nichol’s and Kendall’s refinements and developments

of the robust design aim to produce estimates of capture rates that are more robust to

heterogeneity than the equivalent estimates obtained under an open population model.

This results in estimates of abundance that are also less biased by heterogeneity in capture

rates. The robust design uses both the long-term open population models that are fitted to

data from ’primary’ sampling occasions as well as the short-term closed population mod-

els fitted to short-term ’secondary’ sampling occasions. It is assumed that these repeated

secondary sampling occasions occur over a time period in which the population can be

assumed to be closed. By considering both primary and secondary sampling occasions, it

is possible to identify more model parameters and to test certain modelling assumptions;

for example, the initial capture rate can be distinguished from the recapture rate under

this approach. The capture histories obtained from the secondary sampling occasions also

provide extra information about the model parameters and results in improved precision

of parameter estimates. By improving the inference on the population estimates at each

primary sampling occasion the robust design may help to improve the performance of the

conditional and unconditional fitting algorithms. Heterogeneity in capture probabilities

may be negatively impacting the model fit and a robust design approach would help to

investigate this issue. By obtaining more precise estimates of a greater number if identi-

fiable parameters incorporating a robust approach can help to identify limitations in the

conditional and unconditional algorithms.
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The performance of the model fitting algorithms can be investigated by examining the

likelihood surface. Relatively simple procedures such as obtaining the MLEs of model pa-

rameters can potentially be used to tune the performance of the algorithms. Comparing

the MLEs to posteriors modes also allows algorithm performance to be monitored; if the

modes are far from the MLEs then this would suggest the algorithm is not functioning

as expected. Optimisation routines such as simulated annealing can be used to approxi-

mate the likelihood surface and obtain inference on marginal distributions of parameters

of interest. These approaches can provide information on the efficacy of the algorithms:

are they producing the ’right’ answers? Allied to these issues is the consideration of the

covariance structure of the model. The prior structure for the Bayesian implementation of

the conditional and unconditional approaches is predicated on the assumption of indepen-

dent parameters. Although expedient in terms of computational complexity this may not

be a realistic assumption. Consideration should be given to specifying a more complex

prior structure on the parameters that incorporates covariance terms. For example, a

multivariate normal distribution could be considered and the variance-covariance matrix

given by the Hessian matrix obtained from maximum likelihood estimation of the param-

eters. By obtaining an improved approximation to the underlying covariance structure

in the models, the fitting process may be greatly improved. A more careful selection of

proposal distributions to reflect these issues would be worth investigation.

One of the overarching aims of this thesis was to develop a general methodology for

constructing state-space models that allows population dynamics to be embedded into a

mark-recapture analysis. This outline of this approach borrows heavily from that which

is described by Buckland et al. (2007). They advocate a flexible ‘building-block’ ap-

proach to formulating models that can incorporate population dynamics and are fitted
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to a discrete time series of data. The details of this and other, similar, approaches are

given in chapter 3. Within the context of model fitting algorithms developed under the

conditional approach, the form taken by the algorithm is too dependent on the choice

of biological sub-processes, the order in which they occur and the parameterisation of

those processes to allow for highly automated fitting of the models. Steps 5 to 11 of the

simplified pseudo-algorithm in section 7.2.2 outline a general model fitting approach but

the details in step 6 will be determined by the specified structure of the model. The

structure of the state vector and the information contained in the mark-recapture data

will determine the conditioning that is contained in the model fitting algorithm. As dis-

cussed in Buckland et al. (2007), environmental stochasticity can be incorporated into

the model by allowing parameters to vary across time periods. Equally, the probabilities

for assumed biological processes could be modelled as functions of covariates; Buckland

et al. (2004) use logistic functions for this purpose. Buckland et al. (2007) also note that

individual level covariates can be incorporated into the analysis by modelling individual

states in the population. The choice of parameterisation can then determine the structure

of the state and intermediate vectors for the state-space models constructed under the

conditional approach. The relationship between the observed data and the state vector

then determines the level of convolution present in the model. In the relatively simple

state-space models formulated in chapter 4, the elements of the state vector were classified

by age-cohort (juveniles and adults including yearlings) and capture history pattern. An

alternative state-space model could be specified in which the elements of the state vector

are classified by individual level covariates as well as age-cohort and capture history pat-

tern. Although both of these models could be fit to the same observed data, the fitting

algorithm for the alternative model will incorporate different constraints from those under

the more simple model. The sensitivity of the model fitting algorithm to the structure of

the state vectors and the manner in which parameters are assumed to vary (temporally
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or as a function of covariates) reduces the extent to which the fitting algorithm can be

automated.

Further research needs to be conducted to examine the extent to which the model

fitting algorithms can be automated under the conditional approach. The absence of con-

ditioning in the fitting algorithms constructed under the unconditional approach makes

automating the algorithm more viable. The “full” unconditional method involves calcu-

lating the probabilities for each of the possible capture history patterns for each animal

that has been part of the population over the duration of the study. This method will al-

low any model to be incorporated into the model fitting algorithm as evaluation is based

on individual animals. Grouping a nimals with common life-history parameters allows

for a more efficient implementation of this model-fitting algorithm. The question then

becomes, is it possible to automate this grouping over common parameters? The group-

ing will naturally depend on the choice of parameterisation specified for the state-space

model. If individual-level covariates are included in the model then the state structure

can be expanded to include a single animal in each state element; this would then be

equivalent to the implementation of the full method. Environmental stochasticity mod-

elled by temporal variation in parameters can be incorporated by grouping animals by

their times of entry and exit. Similarly, grouping by discrete covariate value will allow

the model fitting algorithm to incorporate different forms of environmental stochasticity.

Automating model fitting algorithms developed under the assumptions of the conditional

approach is complex due to the issue of conditioning on known data. The absence of

this requirement under the unconditional approach allows model fitting algorithms to be

developed that can be automated once the choice of parameterisation is specified.

The conditional and unconditional approaches are both embedded with a Bayesian
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inferential framework. This allows more complex models to be formulated and fitted and

allows various sources of uncertainty to be accounted for. Typically, existing fitting meth-

ods for population dynamics (e.g. matrix models (Caswell, 2001)) do not intrinsically

account for uncertainty in either the model parameters or the model structure. Statisti-

cal models can account for various sources of uncertainty but are often formulated from

an empirical standpoint with no explicit embedded population dynamics component to

the model structure. State-space modelling within a Bayesian framework provides an

integrated approach to the formulation and fitting of models. An importance sampling

approach used to implement the model fitting algorithms under both approaches was cho-

sen due to the success of SIS methods in fitting state-space, or hidden-process, models

with embedded animal population dynamics (Buckland et al., 2004; Thomas et al., 2005;

Newman et al., 2006; Buckland et al., 2007). The results from the Soay analysis indicate

there are problems with the implementation of the importance sampling approach for

the fitting algorithms constructed under the conditional and unconditional approaches.

Clearly, further work needs to done on investigating both the choice of an appropriate

trial density, or importance distribution in the nomenclature of Newman et al. (2009),

and the choice of Monte Carlo fitting procedure. The relative performance of SIS and

MCMC approaches to making inferences, within a Bayesian context, on the states and

parameters of state-space models for animal population dynamics is discussed in Buck-

land et al. (2007) with a detailed treatment given in Newman et al. (2009).

The approach used by Newman et al. (2009) to determine which of the Monte Carlo

approaches is better involved assessment of relative performance for three criteria: ease

of implementation, computational efficiency and accuracy. Denoting a state-space model

with the acronym SSM, they concluded that “for both SIS and MCMC, ease, efficiency,

and accuracy are a function of both the SSM formulation and the available data.”. The
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recommendations given in Newman et al. (2009) are worth investigating to see if an ap-

preciable improvement in model performance can be obtained for the models developed

in this thesis. From their investigations they conclude that implementing an MCMC ap-

proach that has been designed specifically for the particular state-space model and where

the recorded data are informative relative to the priors is the “gold-standard” in terms of

satisfying the three criteria. It provides the best trade-off between the complexity of the

fitting algorithm and the resulting computational efficiency.

Careful selection of an appropriate expanded state vector (see section 4.3.1) to include

latent states increases the tractability of the calculations required for the weights used in

an importance sampling based fitting approach. Highly complex state-space models that

include multiple intermediate subprocesses can be more complicated to fit under MCMC

based approaches than under SIS approaches. However, Newman et al. (2009) note that,

as for SIS approaches, a careful choice of expanded vector increases the tractability of the

state process pdf such that the acceptance probabilities in a Metropolis-Hastings algo-

rithm can be more easily obtained, thus allowing MCMC approaches to be implemented.

Newman et al. (2009) suggest that a carefully specified MCMC sampler often exhibits

a greater degree of efficiency when compared to SIS. However the performance can be

similar if the data provide little information relative to the priors. One possible future

direction of research could be to investigate the performance of MCMC based fitting al-

gorithms under both the conditional and unconditional approaches. The requirement to

condition on the observed data may make the specification of an efficient proposal dis-

tribution extremely difficult. Existing software such as OpenBUGS (MRC Biostatistics

Unit, Cambridge, UK) can be used to fit state-space models to data using MCMC (Rivot

et al., 2004). However the complexity of the model form obtained under the conditional

approach is likely to require model-specific software to be written. The independence of
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the model parameters is also worthy of investigation as Newman et al. (2009) note that

the MCMC based fitting algorithms can experience poor rates of convergence if there are

high correlations between parameters and states. Alternative proposal distributions can

be investigated to address this issue.

Further investigation is also required into the use of model diagnostics to assess the

performance of the algorithm and the quality of fit produced by the model fitting al-

gorithm with reference to its utility for model selection. Classical goodness-of-fit tests

for capture-recapture experiments are described in Pollock et al. (1990). As discussed in

section 2.2.1.4, the classical methods use information-theoretic approaches to model se-

lection such as AIC. A weighted average over multiple models, with weights proportional

to model AICs, can accommodate model uncertainty into the parameter and state esti-

mates produced by the models. Further research into Bayesian analogues of the classical

goodness-of-fit tests and model selection approaches is required. Bayesian p-values (Gel-

man et al., 1996) are regarded as a useful method for assessing goodness-of-fit. Bayesian

model averaging is illustrated with application to survival models on mark recovery and

recapture data in Brooks et al. (2000). It can also be incorporated into SIS fitting algo-

rithms (Buckland et al., 2004) in which priors are specified to reflect the relative plau-

sibility of each member of a set of defined models. For MCMC based fitting algorithms

RJMCMC techniques can be used to move between potentially viable alternative models

(King and Brooks, 2002a,b). Applying these model selection techniques to the types of

models developed in this thesis allows further analysis of model uncertainty under both

approaches.

Section 6.2 compares the superpopulation and population approaches to formulating

models under the conditional and unconditional approach. The conditional approach is
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restricted to assume a population model whereas the unconditional approach allows for

both population and superpopulation models to be specified. The models developed in

chapter 6 assumed a population model. Further research is needed into the development

of superpopulation models under the unconditional approach.

In the course of this thesis theoretical models, under two alternative approaches, have

been successfully developed that incorporate an embedded population dynamics compo-

nent. The general behaviour of the models when fitted to simulated data was encour-

aging. Limitations of the modelling approaches were exposed by their application to a

real-life dataset. Further work needs to be done to increase the utility of these mod-

elling approaches when applied to real, often complex, animal populations that have been

monitored as a mark-recapture study.
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Appendix A

The Alias Method

The Alias Method is a means by which we can draw random deviates from a non-uniform

finite discrete distribution. This section describes the method and provides examples to

illustrate its application.

If we wished to draw a random deviate x from a Uniform distribution on the range

(1, n). Since each of the integers 1, .., n has the same chance, p = 1/n, of being selected

one method of generating x would be by drawing a value y where Y Uniform(0, 1) and

setting x = dnye. In a geometric framework this approach is equivalent to partitioning

the unit square by dividing the x-axis into n strips of equal width to describe slabs in the

plane, as illustrated in Fig A.1.

We then draw random uniform (x, y) coordinates in this rectangle and return the

value of the strip the coordinate lies in. For a uniformly distributed range of values the

y coordinates are not important, it is only the value of the x-coordinate that determines

which value we draw from the range (1, n).
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Figure A.1: Partitioning of the unit square when n = 5

If we expand this approach to drawing random variates from ranges of discrete val-

ues with non-uniform probabilities the usefulness of the geometric interpretation becomes

more apparent. If we have a discrete range of values x1, . . . , xn and assign the probabil-

ities p1, . . . , pn to these values the idea now is to rearrange the probability mass so that

we have a rectangle subdivided into strips of equal width, as before, but this time these

strips are partitioned into vertical subregions.

For example, Figure A.2 illustrates the re-allocation of the probability mass on x1, x2, x3

(Figure A.2a) to create a rectangle with the appropriate vertical partitioning (Figure A.2b).

Any single strip will never need to be divided into more than two vertical subregions,

one part associated with the original value xi and the other associated with an alternative

value xj for some j 6= i. This alternative value will be referred to as the alias value. Once

we have rearranged the probability mass into strips subdivided into vertical subregions

we then need to devise a method to select one of the values. As before, conceptually, we

draw random uniform (x, y) coordinates in the probability mass rectangle and return the
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(a) We want to go from this. . . (b) . . . to this.

Figure A.2: Example figure of re-arranging the probability mass to form a rectangular
region demarcated into sub-regions.

value of the region the coordinate lies in. An efficient way of doing this is to create an

alias table containing the values in the discrete range (x = x1, . . . , xn), their associated

probabilities (p = p1, . . . , pn), the alias values (a = a1, . . . , an) and threshold values

indicating the proportion of the strip’s total probability mass taken by the original value

(q = q1, . . . , qn). Thus, the elements of the vector q are then defined as

qi =
height of lower part of rectangle i

height of rectangle i
.

The alias table for the above example is:

i xi pi ai qi

1 x1 1/3 x1 1

2 x2 1/6 x3 0.5

3 x3 1/2 x3 1

To obtain a draw from a range of n non-uniformly distributed discrete values we generate
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two variates from a uniform distribution on (0, 1). So we have:

U1, U2 ∼ U(0, 1)

Let M = dnU1e

Then if U2 = qM return xi else return aM .

In the random uniform (x, y) coordinates framework the value of U1 represents the x-

coordinate and determines which strip we look in and the value of U2 represents the

y-coordinate and determines which vertical sub-region we choose in the strip. An efficient

method of creating the alias table is described in the following section.

A.1 Basic Alias Algorithm:

We wish to draw random deviates from a range containing n discrete values x1, x2, . . . , xn.

The ith value in the range, xi, has a probability mass of pi. We begin by creating an alias

table which is achieved using the following procedure:

(1) Create vectors x,p, a and q all of length n so that:

• x contains the n discrete values: x[i] = xi

• p contains the probability masses of the discrete values: p[i] = pi

• a contains the n discrete values: a[i] = x[i]

• q contains the scaled probability masses: q[i] = Npi

(2) Set up two lists: L and H to contain indices for lower and higher values of qi such

that:

• If qi

{
< 1 i ∈ L (assign the value i to the list L)

≥ 1 i ∈ H (assign the value i to the list H)
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• If L is empty then we have a Uniform distribution and we can stop.

(3) While the list L is non-empty we continue with the following steps:

(a) Select an index j from L and an index k from H.

(b) Set = a[j] = x[k]q[k] = q[k]− (1− q[j])

(c) If q[k] < 1

{
then remove the index k from the list H

and add the index k to the list L

(d) Remove the index j from L.

If the list L is empty then stop, otherwise go to (3)(a).

Once the alias table is complete we then proceed as described before and draw two

variates from a Uniform distribution on (0, 1).

A.2 An Example

This section provides an example of how to implement the Alias algorithm.

We begin with a set of 5 values x1, . . . , x5 and their associated probability masses 0.15,

0.05, 0.3, 0.2 and 0.3. We set up the vectors as directed and display them in a table. Our

initial table is then

We have L = {1, 3}
H = {4, 5}

i xi pi ai qi

1 x1 0.15 x1 0.75

2 x2 0.05 x2 0.25

3 x3 0.3 x3 1.5

4 x4 0.2 x4 1

5 x5 0.3 x5 1.5

We have L = {1, 2}
H = {3, 4, 5}
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We select the index 2 from L and the index 3 from H. So, a[2] = 3 and q[3] =

1.5 − (1 − 0.25) = 0.75. q[3] is less than one so we remove index 3 from H and add

it to L. We also remove index 2 from L. The table now becomes:

We have L = {1, 3}
H = {4, 5}

i xi pi ai qi

1 x1 0.15 x1 0.75

2 x2 0.05 x3 0.25

3 x3 0.3 x3 0.75

4 x4 0.2 x4 1

5 x5 0.3 x5 1.5

We have L = {1, 3}
H = {4, 5}

L is non-empty so we go back to step (3)(a). and choose two more indices. Choosing

index 1 from L and index 5 from H we find: a[1] = 5 and q[5] = 1.5− (1− 0.75) = 1.25.

Now q[5] is not less than one so all we can do is to remove the index 1 from L. The table

then becomes:

We have L = {1, 3}
H = {4, 5}

i xi pi ai qi

1 x1 0.15 x5 0.75

2 x2 0.05 x3 0.25

3 x3 0.3 x3 0.75

4 x4 0.2 x4 1

5 x5 0.3 x5 1.25

We have L = {3}
H = {4, 5}

L is still non-empty so we go back to step (3)(a). and choose two more indices. Choosing

index 3 from L and index 5 from H we have: a[3] = 5 and q[5] = 1.25− (1− 0.75) = 1.

Since q[5] is still not less than one all we can do is the remove the index 3 from L. The

table then becomes:



384

We have L = {1, 3}
H = {4, 5}

i xi pi ai qi

1 x1 0.15 x5 0.75

2 x2 0.05 x3 0.25

3 x3 0.3 x5 0.75

4 x4 0.2 x4 1

5 x5 0.3 x5 1

We have L = {}
H = {4, 5}

L is empty so we now have our Uniform distribution. We have rearranged the probability

mass region (Figure A.3a) into the uniform rectangle shown in Figure A.3b.

(a) Initial distribution (b) Re-arranged uniform distribution

Figure A.3: Example figure of re-arranging the probability mass for a more complicated
distribution to form a rectangular region demarcated into sub-regions.

We now generate two random deviates from a uniform distribution on (0, 1) and obtain

U1 = 0.461 and U2 = 0.842. We set M = dnU1e = d5 × 0.461e = d2.305e = 3. Since

U2 = 0.842 > 0.75 = q3 we return a3 = x5.


