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Abstract

This thesis is aimed at extending the spherical barotropic contour-advective semi-

Lagrangian (CASL) Algorithm, written in 1996 by David Dritschel and Maarten

Ambaum, to more complex test cases within the shallow-water context. This is an

integral part for development of any numerical model and the accuracy obtained

depends on many factors, including knowledge of the initial state of the atmosphere

or ocean, the numerical methods applied, and the resolutions used.

The work undertaken throughout this thesis is highly varied andy produces im-

portant steps towards creating a versatile suite of programs to model all types

of flow, quickly and accurately. This, as will be explained in later chapters, im-

pacts both public safety and the world economy, since much depends on accurate

medium range forecasting. There shall be an investigation of a series of tests which

demonstrate certain aspects of a dynamical system and its progression into more

unstable situations — including the generation and feedback of freely propagating

inertia-gravity waves (hereafter “gravity waves”), which transmit throughout the

system. The implications for increasing forecast accuracy will be discussed.

Within this thesis two main CASL algorithms are outlined and tested, with the ac-

curacy of the results compared with previous results. In addition, other dynamical

fields (besides geopotential height and potential vorticity) are analysed in order to

assess how well the models deal with gravity waves. We shall see that such waves

are sensitive to the presence, or not, of sharp potential vorticity gradients, as well

as to numerical parameter settings. In particular, large time-steps (convenient for

semi-Lagrangian schemes) may not only seriously affect gravity waves, but may

also have an adverse impact on the primary fields of height and velocity. These

problems are exacerbated by a poor resolution of potential vorticity gradients,

which we shall attempt to improve.
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Chapter 1

The shallow-water system

1.1 Introduction

This thesis concentrates on using a Contour-Advective numerical method [13, 16]

for solving the Shallow Water Equations (SWEs), which describe the motion of a

thin layer of fluid held down by gravity. The details of the SWEs are outlined in

many books (e.g. see Bibliography: [30, 53]) and have been used as an idealised

model of a planet’s atmosphere or oceans for many years. They are capable of

describing diverse nonlinear fluid phenomena, including vortices and gravity waves,

over a broad range of spatial and temporal scales.

This flexibility means that a comprehensive understanding of their solution prop-

erties is difficult to achieve. However, by studying these (single and multi-layer

[51]) models a surprisingly accurate picture of meso and large-scale flows in the

continuously stratified ocean or atmosphere can be gained. This has become of

particular importance in recent years, with Global Circulation Models (GCMs)

forecasting large-scale atmospheric evolution over a period of decades, leading to

valuable insights into the possible ways our climate could change.

1



Chapter 1. The shallow-water system 2

1.2 The single-layer SWEs

Fluid dynamics is characterised by both wave propagation and advection in and

out of different regions, which allows certain properties of the fluid, such as the

density, to change. Other properties, like the mass, which cannot be created or

destroyed, only change due to the transport of mass across each region interface.

There is therefore the requirement of an explicit equation, that must be satisfied

at all times, ensuring the conservation of mass over the entire fluid region. In

addition, we will need to know how a fluid element will react to forces imposed on

it, taken from Newton’s laws of motion, describing the rate of change of momentum

of a body under an external force.

1.2.1 The spherical coordinate system

As the Earth can be taken as approximately spherical, many current global circu-

lation models use a spherical coordinate system and the algorithms detailed within

this thesis are no exception. We will use the meteorological definition of spherical

coordinates, shown in figure (1.1), where λ is the azimuthal angle from the x-axis1

with 0 ≤ λ ≤ 2π and where φ is the polar angle from the equatorial plane2, with

−π/2 ≤ φ ≤ π/2. We must also consider the rotation of the Earth, which requires

all frames of reference to include a rotational vector, ΩE.

Taking an inviscid (negligible friction), adiabatic fluid element (one not subject to

external heating), the equations expressing momentum balance (Euler’s equation)

1θ is denoted λ when referred to as the longitude.
2ϕ = 90◦ − φ, where φ is the latitude.
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Figure 1.1: The unit sphere outlining the spherical polar coordinate system
———————————————

and mass continuity can be expressed as follows, [30],

Du

Dt
+ 2ΩE × u = −∇Φ , (1.1)

∂Φ

∂t
+ ∇ · (Φu) = 0 (1.2)

where u is the layer mean horizontal velocity, Φ = gh is the geopotential (the

potential energy of a unit mass, relative to h = 0 taken as sea level) and h is the

local fluid height. The geopotential embodies hydrostatic balance, which states

that the pressure increases with depth, i.e. the force of gravity (buoyancy)must

balance the vertical pressure gradient, from which one obtains the hydrostatic

balance relation

∂p

∂z
= −ρg . (1.3)

If the density, ρ, remains constant, then equation (1.3) implies that the horizontal

flow is independent of the height and vertical acceleration is negligible.

Indeed, in the shallow-water system, the horizontal scale of the flow is much larger
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Figure 1.2: Flows, like the above gravity wave structure, in the atmosphere
are shallow with only weak vertical motions, leading to density (or temperature)

surfaces which can be taken as nearly horizontal
———————————————

than the depth of the fluid and therefore, in equation (1.2), only components

parallel to the Earth’s surface are retained. An example can clearly be seen in

figure (1.2) with a large scale structure being far wider than it is tall.

We also non-dimensionalise lengths by the Earth’s radius (not shown, although

commonly denoted a), and time by Tday = 2π/ΩE, where the rotational frequency

ΩE = 7.292× 10−5s−1. That is, our unit of length is the radius of the Earth and

unit of time is one day.

Furthermore, the shallow-water approximation retains only the local vertical com-

ponent of the rotational vector and hence we can define the Coriolis parameter

(or frequency) as f = 2ΩE sin φ. Upon taking a local vertical unit vector, k, this
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leads to the momentum equation, (1.1), in the standard SWE form,

Du

Dt
+ fk× u = −∇Φ . (1.4)

1.3 Vorticity and divergence

Taking (x, y, z) as local Cartesian coordinates pointing eastwards, northwards and

upwards, the two-dimensional velocity (denoted u = (u, v)) consists of just two

components, u and v, directed eastward and northward respectively. On a sphere

of unit radius, we have dx = rdλ and dy = dφ, where λ and φ denote longitude

and latitude respectively, and r = cos φ is the horizontal radius from the axis of

rotation.

The curl (denoted ∇×) and divergence (∇·) of the velocity field, lead us to the

vorticity (denoted ζ) and divergence (δ) fields, which completely define the flow.

As such, instead of using u and v, many numerical algorithms use the vorticity

and divergence

ζ =
1

r

∂v

∂λ
− 1

r

∂

∂φ
(ru) , (1.5)

δ =
1

r

∂u

∂λ
+

1

r

∂

∂φ
(rv) (1.6)

as the prognostic variables (most convenient for spectral models where the hori-

zontal derivatives can be calculated exactly).

Within the SWEs, the fluid height is also separated into a constant mean value, H,

and a deviation, h′, i.e. h = H +h′. The mean short-scale gravity wave speed may

then be defined as c =
√

gH. In the following, we make use of the dimensionless

height anomaly given by h̃ = h′/H.
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Figure 1.3: Diagram showing the basic spherical geometry layout to com-
pliment the definition of the SWEs on the unit sphere in equations (1.7) to

(1.9).
———————————————

In spherical coordinates, with r ≡ cos φ, as in figure (1.3), the SWEs take the form

Du

Dt
− fv + uv tan φ = −c2

r

∂h̃

∂λ
, (1.7)

Dv

Dt
+ fu− u2 tan φ = −c2 ∂h̃

∂φ
, (1.8)

∂h̃

∂t
+ ∇ · ((1 + h̃)u) = 0 . (1.9)

Therefore, the full equations in terms of our shallow-water variables ζ, δ and h̃

become

∂ζ

∂t
+ fδ = −∇ · (uζ) , (1.10)

∂δ

∂t
+ c2∇2h̃− fζ = 2J(u, v)−∇ · (u ·∇u) , (1.11)

∂h̃

∂t
+ δ = −∇ · (uh̃) , (1.12)
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where J is the Jacobian operator,

J(u, v) =
1

r

(
∂u

∂λ

∂v

∂φ
− ∂u

∂φ

∂v

∂λ

)
.

Streamfunctions, ψ and χ, of the two-dimensional flow can be defined such that

the flow velocity is given by the relation

u = k×∇ψ + ∇χ , (1.13)

where k is the local vertical unit vector. Here, χ is commonly referred to as the

divergence potential, see equation (1.16) below. This separation into rotational

and divergent parts is called the “Helmholtz decomposition”.

With the Laplace-Beltrami operator for a sphere of unit radius,

∇2 =
1

cos2 φ

∂2

∂λ2
+

1

cos φ

∂

∂φ

(
cos φ

∂

∂φ

)
, (1.14)

the vorticity and divergence are related to ψ and χ via

∇2ψ = ζ , (1.15)

∇2χ = δ . (1.16)

Hence, the velocity components are recovered from ζ and δ by solving the Poisson

equations (1.15) and (1.16) for ψ and χ and differentiating them in equation (1.13).

1.3.1 Potential vorticity

Divergence and vorticity play a large part in the numerical method. However an

even more important dynamical quantity can be derived, namely the Potential
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Vorticity (hereafter PV). Since this is a central quantity in the contour-advective

method, the fundamental significance of PV shall be outlined, following [72].

Given the shallow-water momentum equation in the form

Du

Dt
+ f × u = −c2∇h̃ , (1.17)

where f = fk, we can define a vector as the curl of the horizontal velocity alone

(ω = ∇×u) which, due to the fact that the horizontal components of ω are zero,

means

ω = kζ . (1.18)

After re-arranging equation (1.17) in the following form

∂u

∂t
+ (ω + f)× u = −∇

(
c2h̃ +

|u|2
2

)
, (1.19)

taking its curl and using the vector identity

(u ·∇)u =
1

2
∇(u · u)− u× (∇× u) =

1

2
∇(|u|2)− u× ω ,

we arrive at the vorticity equation

∂ζ

∂t
+ (u ·∇)(ζ + f) + (f + ζ)∇ · u = 0 , (1.20)

or

∂ζ

∂t
+ (u ·∇)(ζ + f) + (ζ + f)δ = 0 . (1.21)

Using the definition of the material derivative, D/Dt = ∂/∂t+u·∇ and combining

equation (1.21) and (1.12), one finds the expression of material PV conservation,

namely

Dq

Dt
= 0 , (1.22)
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where

q ≡ ζ + f

1 + h̃
(1.23)

is the PV in a rotating shallow-water system, first derived by Rossby, [60] and in

a general form by Ertel, [22–25].

PV is a unique variable, not only because of its material conservation (essential in

semi-Lagrangian and CASL algorithms) in the absence of dissipation and heating,

but also because of the role it plays in “balance” or PV inversion (see [17, 38, 44, 49]

and section 1.5 below).

PV is the primary field used to follow the evolution of fluid elements, as seen e.g. in

the atmosphere and oceans, and will feature strongly in Chapter 2, when we come

to describe the model in detail. The SWEs in terms of the prognostic variables

(q, δ, h̃) used by the algorithm are the set of equations

Dq

Dt
= 0 , (1.24)

∂δ

∂t
+ c2∇2h̃− f 2h̃ = f(ζ − fh̃) + 2J(u, v)−∇ · (u ·∇u) , (1.25)

∂h̃

∂t
+ δ = −∇ · (uh̃) . (1.26)

1.4 Elliptic equations and the concept of balance

As previously mentioned, the vorticity and divergence are paramount to modelling

flow on the sphere and so, to obtain (u, v) from ζ and δ, one must solve the Poisson

equations for the streamfunction and divergence potential, seen previously as

∇2ψ = ζ , ∇2χ = δ .
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These are examples of elliptic equations. Using the relations

u =
1

r

∂χ

∂λ
− ∂ψ

∂φ
and v =

∂χ

∂φ
+

1

r

∂ψ

∂λ
,

the velocity components then may be computed directly.

Other elliptic equations may arise e.g. in the numerical time-stepping (see section

2.3) and also when diagnosing “balance”, here defined as the component of the

flow directly attributable to PV. This gives rise to the Helmholtz operator, H,

defined by

H = ∇2 − f 2

c2
. (1.27)

This operator already appears on the left hand side of equation (1.25).

1.5 Achieving balance

1.5.1 Balance in the atmosphere and oceans

In the Earth’s atmosphere and oceans, and possibly other planetary atmospheres,

[6], PV advection (generally) dominates inertia-gravity wave propagation and

therefore the fluid motion principally depends on the PV distribution. This leads

to the idea of imposing balance relations to extract the part of dynamics at-

tributable to PV, [38]. Unfortunately, this approach is not precise and balance

is, to some extent, ambiguous, e.g. [18, 38].
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Given the general equation of motion (cf. equation (1.1)) in the form inclusive of

pressure and density

Du

Dt
+ 2ΩE × u = −∇p

ρ
−∇Φ , (1.28)

we can expect that (at least for sufficiently slow motions) a flow will exhibit ap-

proximate “geostrophic balance”, and in which the Coriolis acceleration (2ΩE×u)

balances the horizontal pressure gradient (i.e. a sufficiently small Rossby number),

and “hydrostatic balance”, in which buoyancy (∇Φ) balances the vertical pres-

sure gradient. However, balance can mean more than this — it can be defined in

a multitude of ways, see e.g. [17, 18, 30, 44, 53, 71] amongst others.

As a consequence, there have been many approaches to diagnosing the balance

within a dynamical system, e.g. see [45, 72] and references therein. However,

these approaches have rarely been exploited in the design of accurate numerical

algorithms. That is, while balance may dominate the flow evolution, this is not

explicitly taken into account!

1.5.2 Balance within the numerical method

As will be discussed in Chapter 5.2, balance within numerical models can be

understood in terms of the amount of gravity-wave excitation within the system.

The concept of balance is supported by observational data, with observed flows

often having little deviation or imbalance in the form of gravity waves, [45].

Erroneous gravity wave production is often thought of as the numerical breakdown

of balance and a greater understanding of balance can be gained by studying a

hierarchy of balance conditions, in various numerical algorithms, [49, 64, 74]. De-

tection and separation of these falsely generated gravity waves and those correctly
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modelled is immensely challenging however, and these waves are sensitive to both

resolution and the type of numerical algorithm used [17].

In order to compute the balance within a system we must distinguish between

the large-scale motions, dominated by sub-inertial frequency vortical motions (de-

scribed by the PV) and the higher frequency gravity waves, of generally weaker

amplitude (not induced by PV), [11]. The problem with this wave-vortex de-

composition (or balance-imbalance decomposition) is that it is not unique and so

approximations must be made, based on reductions of the full non-linear equations.

Where the gravity waves are artificially damped within a numerical model, this

approximation also leads to a filtering of a significant portion of vortical motion,

[17, 18, 45, 51, 64].

To accurately include wave-vortex decomposition in the algorithm, a careful choice

of the prognostic variables must be made. We use directly the PV and, as will

be outlined in a new approach, in Chapter 5.1, the remaining variables should be

chosen such that they vanish in the limit of rapid rotation and strong stratification

(i.e. small Rossby and Froude numbers, as we shall see in later chapters). These

variables represent the imbalance to leading order, i.e. the departure from balance

between flow variables assumed in the wave-vortex decomposition.

A more matched representation between PV and the other prognostic fields leads

to a gain in accuracy, with less false generation of gravity waves within the sys-

tem. Indeed, each addition in the algorithm hierarchy shows that it is possible

to maintain non-linear balance in the presence of sharp PV gradients, without

resorting to explicit diffusion. As discussed in [49], where there is an underlying

balance within the system, this must be preserved by implementing that balance

in the numerical algorithm. Otherwise, by transferring energy from vortices to

waves erroneously (due to sometimes inevitable truncation errors), it is possible
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to lose balance. This, of course, is most prevelant in low to medium resolutions

and longer time simulations.



Chapter 2

The contour-advective

semi-Lagrangian method

2.1 An introduction to discretisation

There are a number of techniques used to create and discretise the spherical do-

main, or sections thereof. Common methods include finite differencing, where a

regular grid is superimposed on the sphere and the parameters of the SWEs are

approximated by low order polynomials at the grid points. This is a simple and

successful method, but may lead to areas requiring separate treatment, due to the

inevitable irregularity of the grid. An extension of this method, which can reduce

the grid problems, is that of finite elements. Here, a mesh of geometric shapes is

used to fill the domain. The solution to the SWEs would then be approximated

by smooth functions at the mesh intersections.

Spectral (and pseudo-spectral) methods use global functions, such as Fourier-

Legendre (spherical harmonic) series or high order polynomials, to approximate

14
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the solution of the partial differential equations by a system of ordinary differen-

tial equations and solving them using a time-stepping method. For more simple,

well behaved systems of partial differential equations, spectral methods give a high

degree of accuracy and efficient computation.

There are also more recent methods for efficiently solving the SWEs in spherical

geometry. For example, the cubed sphere method, introduced for solving partial

differential equations in [59], shows how starting with a regular grid over a cube

you can expand the sides in order to generate six coordinate systems over a sphere,

much like inflating a Rubik’s cube.

We will also introduce the use of a new type of regular grid in Chapter 6, used

in [51], which gives an improvement in accuracy compared with the ‘standard’

regular grid arrangement.

2.1.1 The hybrid approach

Due to the complex nature of global fluid dynamics within the SWEs, a hybrid

approach is taken by the CASL method. This discretises the domain using spec-

tral Fast Fourier Transforms (hereafter FFTs) in longitude and finite differencing

in latitude. The computational expense of the FFTs, given Nλ longitudinal grid

points, increases as O (Nλ log Nλ) for each latitude circle, and finite differencing

over Nφ latitudes, implemented via a tridiagonal solver routine, which is more

efficient, requires O (Nφ) operations per longitudinal wavenumber. The combined

cost is therefore O (NφNλ log Nλ). By contrast, a purely spectral method (using

Legendre transforms) requires O (N3
λ log Nλ) operations to invert Laplace’s equa-

tion, [32, 42, 52].
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2.2 Contour-advection

Eulerian advection is observed from a fixed point in space as the fluid evolves

past that point. This means regular grid spacing is able to be maintained, but

the numerical methods using this scheme will require very small time-steps in

order to maintain stability. With Lagrangian advection, the observer follows a

single fluid particle whilst the system evolves around them. This is typically a

more stable method to compute numerically (with many methods applying larger

time steps, discussed with the Rossby wave test case in Chapter 4) and allows

fine-scale structure to be followed. However, the grid spacing does not stay rigid

as the system evolves, potentially making computation more expensive as time

progresses.

It seems feasible, therefore, to represent conservative tracer fields such as the

PV, which typically contain fine-scale structures, in a Lagrangian form and fields

without such properties in an Eulerian form. In order to maintain stability, yet

employ the fastest possible methods, the CASL model does exactly this — using

both Lagrangian and Eulerian representations within the algorithm, [13]. With

this hybrid approach, CASL is able to increase model accuracy by resolving the fine

scale structure, running below grid resolution, whilst actually increasing numerical

computation efficiency (see Chapter 10.1 for previous results of computational time

comparisons with another numerical method).

In addition, the CASL algorithm advects PV contours with a method known as

“contour-advection”, [38, 48, 54, 76]. The tracer field of PV is represented by

a series of contours on a given (constant value) surface or level, shown in figure

(2.1), with each contour represented by nodes. These nodes are then advected

to their new position in time using the velocity, interpolated from an Eulerian
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Figure 2.1: PV contour example on constant density shallow-water surface.
———————————————

representation. This is a relatively simple procedure in the shallow-water system,

but it is possible to extrapolate this method to a multi-layer environment, [12, 17].

The standard semi-Lagrangian scheme must interpolate the PV field at each time

step, in turn leading to diffusive advection [16]. The lack of this diffusive advection

within the CASL method leads to an improvement in the representation of the

PV field from the increased ability to handle sharp PV gradients, [16]. The use of

contour-advection in this manner allows us to include small-scale structures not

visible in the grid generated representation of the field, without compromising the

efficiency of the algorithm.

2.2.1 Contour to grid conversion

A crucial step in the speed of the CASL algorithm is the use of the fastest possible

method in converting the fine-scale Lagrangian PV field into a coarser Eulerian

representation, [13]. Given n nodes on the PV contours, this should therefore cost

O(n) operations.

In spherical geometry the domain is only periodic in longitude, however much of

the original doubly-periodic algorithm was able to be carried over, due to the use

of equally spaced grid points in latitude and longitude, [9]. The routine must first

determine which (if any) longitudes are crossed by adjacent nodes, xi and xi+1 say,
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of a PV contour. This section of contour is an arc, due to the inherently curved

surface on which the contours lie. The range of longitudes where this crossing

occurs is given by the difference in longitudes, λi+1 and λi, where

λi = tan−1

(
yi

xi

)
,

[9]. Using the (integer) values of

λi+1 + π

∆λf

and
λi + π

∆λf

, (2.1)

where ∆λf = ∆λ/mg is the fine-grid longitude spacing, the indices for each lon-

gitudinal crossing is found. For the fine-grid, mg is normally taken to make this

grid four times finer and the resulting ‘inversion’ grid is then used to convert the

PV contours to gridded values. This preserves some of the fine-scale circulation,

[13]. Similarly, we have ∆φf = ∆φ/mg, where mg = 4.

For each λ, the latitude, φ is determined from the requirement that for a crossing

point x,

x = (r cos λ, r sin λ, z) , (2.2)

where r = cos φ and z = sin φ, lies on the same arc, i.e.

x · (xi × xi+1) = 0 . (2.3)

With ai = (ai, bi, ci) = xi × xi+1, we have

z

r
= tan φ = −ai cos λ + bi sin λ

ci

. (2.4)

The index of the latitude is then given by the integer value of (φ + π/2)/∆φf , cf.

equation (2.1).
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Figure 2.2: PV grid schematic showing the velocity inversion grid (left) and
the PV conversion grid (right) — demonstrating the fine scale detail able to be

resolved in the PV field.
———————————————

Given the direction and magnitude of the PV jump across the contour (denoted

∆q), an array of PV jumps is then built up for the grid points. Finally, the PV

field, to within an overall constant, is obtained by summing these jumps, from the

south pole to the north pole. This constant is fixed by the requirement that the

global average vorticity ζ = 0. This follows since ζ = ∇2ψ and the integral of a

Laplacian is zero over the sphere, [8–10].

It is then economical to average this fine-grid PV field back to the inversion grid,

[13]. Each iteration of this step therefore doubles the grid scale, halving the number

of grid points in each direction using a standard nine-point area-weighted average

of the grid points surrounding (and including) the target grid point. Surprisingly,

this averaging loses little accuracy, preserving the most important characteristics

of the PV field, [13]. This step exploits the fact that the details of the fine-

scale PV do not matter for computing the velocity, but rather only their gross

characteristics matter1. The CASL model then calculates the velocity field from

this ‘coarse grained’ PV field, together with h̃ and δ.

1This is justified by observations that velocity spectra decay with decreasing scale, [27, 28, 76].
In addition, the decay in velocity is faster than that for the PV field in this case.
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2.2.2 Contour surgery

Since there is no lateral PV diffusion implemented in the CASL method in order

to maintain stability, the sub-grid scale processes must be dealt with explicitly to

avoid a cascade to small-scale structure. The requirement to control the complexity

of the contours during their evolution is achieved using a method termed “Contour

Surgery”.

Developed in 1988 by D. Dritschel and outlined in [8, 10], this procedure removes

filamentary structure on the contours, below a given scale, δ, where δ = 1
4
µ2L.

Here L is the pre-set characteristic length-scale of the PV distribution and µL

is approximately equal to the maximum spacing between adjacent nodes on a

contour. In order to determine this scale, work originally done in [76] found

it appropriate to retain fine-scale PV structure up to ten times finer than the

smallest scale of the advecting field. As such, the surgical scale is typically taken

as δ = ∆φ/10, where ∆φ is the latitude grid spacing, [17].

The surgical process involves searching for nodes that are sufficiently close to-

gether, which could be a costly procedure where the number of nodes is large and

surgery is called every other time step. In order to minimise the cost of imple-

menting this step, the contours are pre-sorted in order of PV level and since only

contours on the same level may possibly reconnect, each level is treated separately,

where appropriate. Furthermore, a point by point search of a pair of contours is

only made if they could potentially be close enough.

Surgery is a very impressive technique, alleviating the requirement (in the im-

proved CASL algorithms) for hyperviscosity (or for hyperdiffusion), commonly

used in atmosphere and ocean dynamic modelling — see Chapter 2.4.3 for further

discussion on diffusion. In addition, since the surgical scale is typically a tenth
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Figure 2.3: Contour Surgery, fundamental to the CASL model. With two PV
contours separated by a preset value, δ, or less will be subject to surgery shown

in figures (2.4) to (2.6).
———————————————

that of the (inversion) grid scale (and perhaps below, see [48, 76]), it can be ex-

pected that the features and structure found in the CASL method are typically

reliable down to the grid scale and somewhat beyond, a quality not shared by

conventional grid-based models.

The complete surgery procedure thus reconnects contour nodes on the same level

(or nodes on the same contour) when they get closer than a prescribed distance

δ. An example is given for two PV contours closer than δ in figure (2.3). The

contour surgery procedure then recalculates the relevant nodes (figure (2.4)) and

the contours are then reconnected to these new nodes (figure (2.5)).

Following the surgical procedure, nodes on each PV contour are redistributed to

compensate for increased (or decreased) curvature and length, [8, 10, 13], shown

in figure (2.6). The mean curvature between nodes i and i+1, denoted κi, is given

for each i by the cubic-spline interpolation routine, [8, 10]. From this, a modified

value is calculated from

κ̃i =
√

κ2
i + 1/L2

in order to keep the node spacing greater than µL (here L is a prescribed large-

scale length of the flow). With x the position of a fluid element, the distance di ≡
|xi+1 − xi| and a weight w = di/(d

2
i + 4δ2) is calculated to obtain an intermediate
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averaged curvature, namely

κ̌i =
wi−1κ̃i−1 + wiκ̃i

wi−1 + wi

,

itself averaged with the value at node i + 1 to give the final curvature over four

nodes, κ̄i. The number of nodes used per unit length for the contour is then

re-calculated by

(κ̄iL)1/2

µL
+ κ̄i or

2

δ
, (2.5)

whichever is smaller.
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Figure 2.4: Midpoint node is calculated

Figure 2.5: Node is shifted to the calculated midpoint

Figure 2.6: PV contours are then re-sequenced.
———————————————

2.3 Time-stepping

The height and divergence fields are already represented in an Eulerian manner and

these are discretised and time-stepped using a pseudo-spectral scheme, mentioned

in Chapter 2.1 and discussed in Chapter 2.4.1, where all spatial derivatives are

computed in spectral space and all product terms are computed in physical space.

There are a number of methods used to integrate the SWEs in time. The most
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popular are variations on the Runge-Kutta method, the Adams Bashforth and

the leap-frog scheme, for example [19] and others. The semi-implicit leap-frog

procedure, [63], used in the CASL algorithm is also widely utilised in spectral

models. In this procedure time derivatives are centred, i.e.

∂δ

∂t
≈ δn+1 − δn−1

2∆t
, (2.6)

and all linear terms appearing on the left hand sides of equations (1.25) and (1.26)

are averaged over time levels, i.e.

δ → δn+1 + δn−1

2
.

The result for equations (1.25) and (1.26) is

δn+1 − δn−1

2∆t
+ c2H

(
h̃n+1 + h̃n−1

2

)
= Sδ , (2.7)

h̃n+1 − h̃n−1

2∆t
+

δn+1 + δn−1

2
= Sh , (2.8)

where Sδ and Sh are the right hand sides of equations (1.25) and (1.26), respec-

tively, and H is the Helmholtz operator introduced in equation (1.27).

Letting δ̄ = (δn+1 + δn−1)/2 and h̄ = (h̃n+1 + h̃n−1)/2, we can rewrite for example

δn+1 − δn−1

2∆t
=

δ̄ − δn−1

∆t
. (2.9)

Then, with S
′
δ = Sδ+δn−1/∆t and S

′
h = Sh+h̃n−1/∆t, the above discrete equations

reduce to

δ̄

∆t
+ c2Hh̄ = S

′
δ , (2.10)

h̄

∆t
+ δ̄ = S

′
h (2.11)
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and substituting δ̄ from equation (2.10) into (2.11) gives (after some rearranging),

[
c2H− 1

∆t2

]
h̄ = S

′
δ −

S
′
h

∆t
. (2.12)

Finally, one can recover the next time-step from δ̄ = S
′
h − h̄/∆t and

h̃n+1 = 2h̄− h̃n−1 ,

δn+1 = 2δ̄ − δn−1 .

This time-stepping method is used due to the fact it is unconditionally stable for

the linearised equations [63].

At each time-step the PV contours are updated by contour advection, using a

standard 3rd-order Adams-Bashforth scheme, while h̃ and δ are updated by the

above semi-implicit leap-frog method. In order to maintain synchrony of even and

odd time levels, a standard Robert-Asselin filter, [1, 58], is also applied to the

prognostic variables, that is, the field δ at time t is replaced by a combination of

the field at t−∆t, t and t + ∆t. i.e. , from [16],

δn ← δn + A
[
δn+1 − 2δn + δn−1

]
, (2.13)

which effectively damps high-frequency modes. By choosing a small coefficient, A,

we can damp small-scale, high-frequency, artificial gravity waves, as discussed in

[64].

2.4 Benefits of the CASL method

The CASL model is not restricted to the shallow-water case, indeed CASL was

developed first for quasi-geostrophic (QG) flow in [13] and has since been widely
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extended to the more complete ageostrophic systems governing the dynamics seen

in the atmosphere and ocean, [15, 46, 47, 71]. For a more general system, the

vertical structure of the fluid is also prescribed, and PV is advected on density or

potential temperature surfaces, [38].

The most common methods for solving the SWEs are the pseudo-spectral (PS) and

semi-Lagrangian (SL) methods. In each case, the divergence and mass equations

are solved in the same way, outlined above for the CASL method. The differences

between the three methods lie in the solution of the vorticity equation, as follows.

2.4.1 The pseudo-spectral method

In this method, equation (1.10) is replaced with

∂ζ

∂t
+ ∇ · ((ζ + f)u) = −ν(−∇2)nζ . (2.14)

The term on the right is known as “hyperdiffusion” and is required by the PS

method for numerical stability, [43]. The coefficients, ν and n > 1, are generally

chosen such that the smallest features (those comparable to the grid-scale) are

effectively dissipated.

2.4.2 The semi-Lagrangian method

As the name suggests, the CASL method is based on the SL scheme, using the

principal of PV conservation as the central property of the SWEs. For this case,

we have of course that the prognostic variable ζ is replaced with q and we have

material conservation, equation (1.22). The SL method solves this conservation

via trajectory integration,

dx

dt
= u(x, t) , (2.15)
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since q does not change following the fluid element. Therefore, to determine q

at t + ∆t, two steps are required. First, given the arrival point at t + ∆t of a

fluid element (necessarily a grid point), xa, equation (2.15) must be integrated

backward in time in order to determine the departure point, xd, at time t. Then,

since xd does not typically land on a grid-point, q must be interpolated at xd and

time t, hence giving the value of q at xa and at time t+∆t due to PV conservation.

For further details of the SL method, see references [3, 32, 57, 65], outlining the

schemes used and applying specific methods to forecast models.

2.4.3 Where CASL differs

The major difference between the SL and CASL methods is that the SL method

interpolates q from a grid at each time step, effectively introducing diffusion, [32].

This diffusion tends to be greater than that introduced for hyper-viscosity in the

PS method, [16]. The SL scheme abandons the Lagrangian PV description at

every time-step, thereby losing control of conservation.

Using contour-advection and PV, in comparisons with the PS and SL methods,

the CASL method has already shown an improvement in accuracy in a variety

of contexts, [14, 16]. Furthermore, by implementing a spectral FFT method in

longitude and second-order centred finite differencing in latitude, costly Legendre

transforms, required in a PS method in latitude, are avoided. Because of this,

the CASL method has been shown to be extremely cost effective with respect to

computational power. Not only has it been proved that the spectral method’s

accuracy is no greater than that of finite differencing for complex PV fields, [61],

but at any given accuracy, contour-advection is 10 to 100 times faster than these

other numerical methods in shallow-water simulations, [16].
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The CASL method controls the cascade of PV to smaller scales through contour

surgery, and therefore diffusion is virtually eliminated. For grid-based models,

this diffusion is critical in order to stop the buildup of artificial structures at the

grid scale. At lower resolutions, whilst all models suffer from a poor estimation

of the advecting velocity field, the PS and SL methods incur further accuracy

degradation through excessive diffusion.

As will be discussed further, the CASL scheme used does not omit gravity waves,

and is therefore not a ‘balanced model’. However, importantly, the latest version of

the algorithm has been shown to recover the underlying balance expected, [51, 61].

This shows a great improvement in numerical accuracy and an almost complete

elimination of erroneous gravity waves within the system.

Much of this thesis will focus on gravity waves appearing in the SWE system and

their potential impact in weather forecasting, climate and ocean models. Grav-

ity waves force the use of a small time-step, which severely undermines model

efficiency. General circulation models with large time-steps often have artificially

damped gravity waves, since short wavelength gravity waves are considered noise

in the numerical system. This method for controlling gravity waves will be chal-

lenged in Chapter 4.



Chapter 3

Initial testing

3.1 Introduction

In this section the core routines within the CASL algorithm are tested for their

accuracy in a series of calculations. The main aspects of the algorithm include the

representation of the underlying grid, the contour representation of PV and the

inversion procedure used to determine the advecting velocity field from the PV.

The algorithm, introduced in Chapters 1 and 2, uses the prognostic variables of

PV, depth and divergence (q, h̃, δ), and throughout this algorithm shall be referred

to as “CA0”.

Since PV advection typically dominates shallow-water flow, we first verify the

methods for calculating the velocity are accurate. This can be demonstrated with

two examples, where the exact velocities are known.

29
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Figure 3.1: Rigid body rotation on the sphere about an arbitrary axis.
———————————————

3.1.1 Rigid rotation

First consider a simple barotropic rigid rotation about a defined axis (specified by

the angles φ = φc and λ = λc) in order to confirm the accuracy of the tridiagonal

solver routine and finite differencing. Here we have q = f around the axis of

rotation, shown in figure (3.1), centred at (φc, λc). The longitudinal and latitudi-

nal velocity components are computed via inverse FFTs of the streamfunction’s

spectral transform and centred finite differencing.

These computed velocity components were compared to the exact velocities (com-

puted within the test algorithm, given (φc, λc)) and the root mean squared (RMS)

errors were calculated in the usual manner. This very simple test case confirmed

that, for a very simple flow, the tridiagonal solver routine has the desired accu-

racy, O(n−2), with increasing number of (latitudinal and longitudinal) grid points

(resolution, n) leading to a squared reduction in error (trivial, not shown).
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3.1.2 Single PV patch

Next, we consider a variation on the previous case, namely a single circular vortex,

placed at varying latitudes on the sphere. The vortex is represented by a patch of

uniform PV. There will therefore be a jump, or discontinuity, around the edge of

the vortex where the value of PV changes. Whilst this may seem a trivial example,

in fact, the discontinuity in PV at the edge of the vortex makes this test more

challenging than one might expect. It is also an important example to document,

as these sharp PV gradients are often seen in the atmosphere and oceans, [76].

The calculations for this test case are carried out using the barotropic limit of the

SWEs, obtained by setting δ = 0 and h = 1 in equations (1.10) to (1.12), corre-

sponding to incompressible flow. The PV, from equation (1.23), then simplifies to

the absolute vertical vorticity

q = ζ + f , (3.1)

and remains conserved, i.e.

Dq

Dt
= 0 .

Since δ = 0, then (from equation (1.16)) χ = 0 and hence we need only invert

∇2ψ = ζ ,

or, from equation (3.1),

∇2ψ = q − f (3.2)

to find u and v.

A specific section of code was therefore written in which the vortex points are

converted to spherical coordinates and the centre of the PV patch rotated, such

that it lies over the pole. To do this, the central latitude φc and longitude λc are
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Figure 3.2: PV patch on rotated sphere.
———————————————

given, defining the axis of symmetry for the patch:

xc = cos φc cos λc ,

yc = cos φc sin λc ,

zc = sin φc .

In this test case, λc = 0 and so, only the latitude of the vortex was changed. Then

the PV field corresponding to rigid rotation within the patch was set up, using

equation (3.1), around a rotated z coordinate

zr = xc cos φ cos λ + yc cos φ sin λ + zc sin φ , (3.3)

with ψ, from equation (3.2), computed for inversion (here, cos φ provides a natural

area weight required for the nine-point averaging of the PV field).

From the inversion procedure, the velocities are calculated both along and perpen-

dicular to the contour. The root mean squared (RMS) errors are then obtained

in the usual manner, by comparing the velocity field from numerical inversion to
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the exact velocities in a coordinate system in which the centre of the vortex lies

at the North pole, see figure (3.2). This presents a more interesting test case to

further study the effects of resolution on the accuracy of CA0.

3.2 A closer look at inversion and grid resolution

As discussed, PV inversion uses fast Fourier transforms (FFTs) in longitude and

second-order finite differencing in latitude to calculate the velocities at each node

on each contour. The RMS errors for velocities perpendicular and tangential to

the contour were calculated for patches of radius 10◦ with φc = 0◦, 10◦, ..., 90◦ and

λc = 0◦. RMS errors in the velocity perpendicular to the contour are expected to

be small as there is no perpendicular component in the exact velocity.

For any numerical method, increasing the resolution should lead to a decrease in

errors, from which the efficiency and accuracy of the algorithm can be deduced.

Increasing the number of grid points used on the sphere gave the expected results

(not shown) — the perpendicular velocity RMS error at the contour decreases as

O (
n−2

φ

)
. This shows that the inversion routine, based on second-order differencing

in φ, was giving the expected level of accuracy.

A common grid for spherical spectral models takes the number of points in lati-

tude to be half the number of points in longitude, i.e. nφ = nλ/2. Here though we

use a semi-spectral approach with second-order finite differencing in latitude and

Fourier series in longitude. Extra resolution is used in latitude to compensate for

the higher errors expected in finite differencing compared to Fourier (Legendre)

series. Since the tridiagonal solver implemented is much more efficient than FFTs,

it makes sense to increase the number of latitudinal grid points used (cyclic reduc-

tion method). The RMS errors produced for nφ = nλ/2 are compared for those



Chapter 3. Initial testing 34

nφ = nλ/2 nφ = nλ

RMS Error Tangential Velocity 2.36× 10−2 2.07× 10−2

RMS Error Perpendicular Velocity 1.34× 10−3 5.62× 10−4

RMS Error Zonal Velocity 2.18× 10−3 6.59× 10−4

RMS Error Meridional Velocity 8.63× 10−4 8.05× 10−4

Table 3.1: RMS errors for the velocity components given, comparing ratios
used for the number of grid points, nλ and nφ.

———————————————

with equal grid points, nλ = nφ, in table (3.1) for φc = 45◦. This simple amend-

ment leads to significant improvements, except for the tangential and meridional

velocities, as discussed below.

3.2.1 Further resolution tests

The baseline resolution in the CASL model is a 128 × 128 latitude/longitude

grid, with a grid four times finer in each direction used in converting the contour

representation of PV to gridded values — refer back to figure (2.2) for an example

of this grid ratio. Changing the PV conversion to velocity grid scale ratio showed

little improvement beyond four.

To quantify the error on this anisotropic grid, a 10◦ radius vortex, placed at 0◦

longitude, with centre varying in 10◦ increments between 0◦ and 90◦ latitude, was

examined. The results for 1282, 2562 and 5122 resolutions are shown in figures (3.3)

and (3.4). These follow a clear trend, with the RMS errors for perpendicular, zonal

and meridional velocities decreasing like n−2
λ and RMS errors for the tangential

velocity decreasing like n−1
λ with increasing resolution.

The error in tangential velocity is perhaps unexpected. However, the tangential

velocity of the exact solution exhibits a point jet (or wedge) profile, with a discon-

tinuity in its derivative. The numerical rounding off of the jet maximum always

produces an error of O(n−1
λ ), irrespective of the numerical inversion method used,
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Figure 3.3: RMS error for tangential velocity

Figure 3.4: RMS error for perpendicular velocity
———————————————
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Figure 3.5: Approximation of the idea of using a stepped vortex edge (blue
line) to create a smoother appearance of PV (red line).

———————————————

[13]. On the other hand, the tangential velocity does not influence the shape of a

contour, and is not important in practise.

3.3 A smoother approach

The test programme was adapted to smooth the vortex edge and compare the

results to the previous section. In order to do this simply, layers were introduced

over a finite bandwidth — see figure (3.5) for an idea of how this layered vortex

edge is set up in comparison to the step in PV at the vortex edge (black line in

figure).

Instead of a single jump in PV, there is now a series of small jumps. This gives the

edge a smoother appearance and should minimise the tangential velocity errors

produced by a large jump in PV across the vortex edge. This was tested by

placing the vortex centre at latitudes 10◦, 45◦ and 80◦ with 2, 4, 6, 8, 10, 15 and

20 PV levels, and bandwidths of 0◦, 1◦, 5◦ and 10◦. All these permutations were

considered, with the results summarised in figures (3.6) to (3.8) for a vortex patch

placed at 10◦ latitude (the other results are similar). The RMS errors for each
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Figure 3.6: Vortex patch bandwidth results, showing the RMS errors for the
overall RMS velocity error. Shown are bandwidths 0 (diamond markers, where
appropriate), 1 (square markers), 5 (triangular markers) and 10 (cross markers),
used on a patch placed at 10◦ latitude and the number of levels shown along

the x-axis.
———————————————

part of the velocity field (overall, as well as inside and outside the patch) and for

u and v are plotted against the number of levels at 1282 resolution.

We can see that the error reduces and flattens out on increasing the number of

levels in the vortex edge. Results also indicate that there is little further gain in

accuracy upon taking more than 10 levels and a bandwidth greater than 10◦, at

this resolution. Notably, now doubling resolution leads to a four-fold reduction

in all errors, showing that one can recover the O(n−2
λ ) behaviour of second-order

finite differencing with smooth PV distributions. In conclusion, we have found that

sharp variations in PV limit the order of accuracy for any form of PV inversion

on a grid.
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Figure 3.7: Vortex patch bandwidth results, showing the RMS errors for
velocities inside (top graph) and outside (bottom graph) the patch along the
latitudinal direction. Shown are bandwidths 0 (diamond markers, where ap-
propriate), 1 (square markers), 5 (triangular markers) and 10 (cross markers),
used on a patch placed at 10◦ latitude and the number of levels shown along

the x-axis.
———————————————
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Figure 3.8: Vortex patch bandwidth results, showing the RMS errors for
velocities along the longitudinal direction. Shown are bandwidths 0 (diamond
markers, where appropriate), 1 (square markers), 5 (triangular markers) and 10
(cross markers), used on a patch placed at 10◦ latitude and the number of levels

shown along the x-axis.
———————————————



Chapter 4

Rossby-Haurwitz waves

4.1 Introduction to Rossby waves

To further test the CASL model, we shall now re-examine a basic test case used for

spherical shallow-water numerical models1, and underscore the need for accurate,

high resolution models of atmospheric and ocean dynamics. The Rossby-Haurwitz

test case, first proposed by Williamson et al. [77], has been examined using a wide

variety of shallow-water models in previous papers. Here, two Contour-Advective

Semi-Lagrangian (CASL) models are considered, and results are compared with

previous test results. We go further by modifying this test case in a simple way to

initiate a rapid breakdown of the basic wave state. This breakdown is accompanied

by the formation of sharp potential vorticity gradients (fronts), placing far greater

demands on the numerics than the original test case does. We also examine other

dynamical fields, besides the height and potential vorticity, to assess how well

the models deal with gravity waves. Such waves are sensitive to the presence,

1The following two chapters have been reproduced from a paper by R. K. Smith & D.
Dritschel, JCP September 2006, cited [64]. Some points, such as specific CASL methods, will
have been touched on previously. However, for continuity within these chapters I have chosen
not to remove minor duplications.

40
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or not, of sharp potential vorticity gradients, as well as to numerical parameter

settings. In particular, large time steps (convenient for semi-Lagrangian schemes)

can seriously affect gravity waves, but can also have an adverse impact on the

primary fields of height and velocity. These problems are exacerbated by a poor

resolution of potential vorticity gradients.

4.2 Outlining the Rossby-Haurwitz wave test

Rossby-Haurwitz waves are steadily propagating solutions of the fully nonlinear

non-divergent barotropic vorticity equation on the sphere, [35]. This case is useful

for testing numerical models as it can be described exactly by analytic formulae

and, although the SWEs do not have analytic solutions, a Rossby-Haurwitz initial

condition is expected to evolve nearly steadily. This motivated Williamson et al. to

propose Rossby-Haurwitz waves as one of seven standard test cases in [77].

In the following, as in all previous tests on this case, a zonal wavenumber of 4 is

used. It was believed that a zonal wavenumber greater than 5 was unstable, [37],

but as recently shown by Thuburn & Li in [67], this wavenumber 4 case is actually

also weakly unstable and will eventually break down once perturbed. In fact, even

truncation errors cause instability.

4.2.1 The numerical method

A previous comparative study (Dritschel, Polvani & Mohebalhojeh 1999, hereafter

referenced [16]) demonstrated that explicit PV conservation can greatly improve

the accuracy of shallow-water simulations in the f -plane context. Here, we extend

this approach to spherical geometry. The CASL model used here, CA0, replaces

equation (1.10) with equation (1.22), thus making the prognostic variables (q, δ, h̃).
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The PV is represented in a fully Lagrangian way as material contours, between

which the PV is uniform and across which it jumps by a specified value ∆q (see

[13] for details). This is the basis of “Contour-Advection”. Other variables are

held on a grid, and evolved in a conventional way. A common grid for spherical

spectral models takes the number of points in latitude to be half the number of

points in longitude, i.e. nφ = nλ/2. Here though we use a semi-spectral approach

with second-order finite differencing in latitude and Fourier series in longitude.

Extra resolution is used in latitude to compensate for the higher errors expected

in finite differencing compared to Fourier (Legendre) series. By experimentation,

using nφ = nλ was found to be optimal, in terms of representing the velocity field,

when balancing accuracy and efficiency for flows having sharp vorticity gradients.

Indeed, as mentioned in the CASL method, for a vorticity discontinuity, one may

show that the formal accuracy of the spectral approach is no greater than that for

second-order finite differences, [61].

Time-stepping of δ and h̃ makes use of the standard semi-implicit leap-frog pro-

cedure introduced in the previous chapter, [56], together with the Robert-Asselin

filter to ensure stability. After extensive testing, we found that the filter coefficient

A can be chosen as small as c∆t/a, where ∆t is the time-step and a is the Earth’s

mean radius, [61]. For large time-steps, A is limited to 0.2.

Also, whilst not explicit in the basic equations, some kind of numerical diffusion

is often added to reduce aliasing errors and filter poorly resolved short-scale (and

typically high-frequency) motions. The explicit use of PV in CA0 permits much

weaker diffusion for stability, [16] — much of the difficulty faced by conventional

models includes the resolution of sharp gradients of PV (fronts) and small-scale

filamentary structures, common features in the atmosphere and oceans. Even in

contour advection, it is impossible to keep up with this scale cascade entirely, and

thin filaments are removed by ‘surgery’ ([13] and references therein), here at a
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tenth of the latitude spacing of grid points. This however results in much better

material conservation of PV than is possible in conventional methods (cf. [16]).

For the fields δ and h̃, a ‘Broutman’ spectral filter is applied to their nonlinear

tendencies (cf. [17]). This filter is applied in longitude only, and essentially removes

all azimuthal variations shorter than two grid lengths at the equator (where the

upper third wavenumbers m > nλ/3 are strongly damped). The specific form used

is F (m) = exp[−α(ξ/r)10], for m ≥ 2, where ξ = (m − 2)/(M − 2), M = nλ/2

and α is chosen so that F (M) = 10−14. Wavenumbers m = 0 and 1 are not

damped. Approaching the poles, r → 0, an increasing proportion of wavenumbers

are filtered. This is consistent with the decreasing spacing of longitudes. If one

omits the r = cos φ factor, the filter is not adequate to ensure numerical stability

in polar regions.

The above, purely longitudinal filter, is often sufficient for numerical stability. But

occasionally numerical noise develops in latitude, and some damping appears to

be necessary. Here, this is done by adding latitudinal diffusion to the δ and h̃

tendencies (using the discrete Laplacian operator). Only a very small damping

rate of D = 0.01 per day was necessary at the equivalent maximum wavenumber

in latitude. The results are insensitive to this coefficient, as shown explicitly at

the end of this chapter.

4.2.2 The initial flow

A complete description of the test case is given by Williamson et al. [77], so only a

few key aspects are noted here. The initial velocity is non-divergent (δ = 0) with

the streamfunction (in dimensional units) given by

ψ = −a2ω sin φ + a2K cosR φ sin φ cos Rλ , (4.1)
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Figure 4.1: Initial Rossby-Haurwitz height (left) and PV (right) fields, plotted
as a function of longitude −π < λ < π and latitude −π/2 < φ < π/2. Positive
contour levels are solid, while negative ones are dashed. Contour levels displayed

are ±∆/2, ±3∆/2, etc., where ∆ is the contour interval.
———————————————

where a = 6.37122 × 106m, ω = K = 7.848 × 10−6s−1 and R = 4. Haurwitz,

[35], showed that the initial height field moved west to east without deviation in

a non-divergent barotropic model and that the angular velocity, ν, was given by

the relation

ν =
R(3 + R)ω − 2Ω

(1 + R)(2 + R)
. (4.2)

The velocity components are given by

u = aω cos φ + aK cosR−1 φ
(
R sin2 φ− cos2 φ

)
cos Rλ , (4.3)

v = −aKR cosR−1 φ sin φ sin Rλ , (4.4)

and vorticity by

ζ = 2ω sin φ−K sin φ cosR φ(R2 + 3R + 2) cos Rλ . (4.5)

The initial height field h is chosen to be “in balance with” the velocity field, by

requiring the initial divergence tendency to be zero. The analytical form of h,

from [77], is obtained from the streamfunction by the relation

gh = gh0 + a2 (A(φ) + B(φ) cos Rλ + C(φ) cos(2Rλ)) , (4.6)
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where

A(φ) =
ω

2
(2Ω + ω) cos2 φ +

1

4
K2 cos2 φ[(R + 1) cos2 φ

+(2R2 −R− 2)− 2R2 cos−2 φ] , (4.7)

B(φ) =
2(Ω + ω)K

(R + 1)(R + 2)
cosR φ[(R2 + 2R + 2)

−(R + 1)2 cos2 φ] , (4.8)

C(φ) =
1

4
K2 cos2R φ

[
(R + 1) cos2 φ− (R + 2)

]
. (4.9)

The minimum fluid height occurs at the poles, where h0 = 8000m, and the mean

fluid height is H = 9523m. We use a height contour interval of 120m, and a PV

contour interval of 9.3385 × 10−6s−1 to compare directly with [67]. The initial

height and PV fields are shown in figure (4.1).

Using a variety of numerical parameters, the CA0 model was run for 40 days.

The benchmark case employed a resolution of 1282, a time-step of ∆t = 0.0025 of

a day (a little less than half the Courant-Friedrichs-Lewy (CFL) criterion time-

step (where the maximum Courant number, taken to be c∆t/∆x is below one)

∆tCFL = ∆φ/c = 0.0059387, where c =
√

gH = 305.59ms−1), and a latitudinal

damping coefficient of D = 0.01. The results at early times (figure (4.2)) closely

reproduce those found by [67] using independent models.

4.2.3 Why re-visit this test case?

While this test case has been carried out in many previous studies, attention has

been largely focused on the early time evolution of the height field, which exhibits

little variation — see figure (4.2). Thuburn & Li (2000) illustrate the PV as well,

which is also a simple field at early times (they show day 8). They also take the

test case further in time and find that the stability of the Rossby-Haurwitz wave
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Day 3 Day 6 Day 9

Figure 4.2: Height field at days 3, 6 and 9 (left to right): cf. [67].
———————————————

h̃ q δ

Figure 4.3: Height, PV and Divergence fields (left to right) at day 35. The
divergence contour interval is 0.001 days−1 in this and subsequent figures.

———————————————

is sensitive to numerical error. In particular, the flow breaks down between 30 and

40 days, depending on numerical parameters and the model employed.

Qualitatively similar behaviour is found when using the CA0 model. The flow

becomes noticeably unstable around day 30. By day 35, the PV and divergence

fields have become turbulent, as exhibited in figure (4.3). PV gradients sharpen

into virtual discontinuities, fronts, which dominate the subsequent evolution. The

divergence field becomes highly structured, only in part from gravity waves (see

below). This complex late time behaviour was not anticipated in the design of this

test case, but it is in fact more characteristic of realistic atmospheric and oceanic

flows than is the simple early time behaviour.

This turbulent flow puts severe demands on the numerics, at least if one tries

to maintain accuracy. Numerical parameters, particularly the time-step and the

diffusion coefficient, need to be carefully chosen to represent the flow — both the

vortical part and the gravity wave part — as accurately as possible while keeping
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Day 0 Day 5 Day 10

Figure 4.4: Perturbed height (top) and PV (bottom) fields at the initial time,
then days 5 and 10 (left to right).

———————————————

numerical stability. This is a balancing act, as both accuracy and stability are

flow dependent.

The key point is that the test case must be sufficiently demanding for numerical

methods intended for the core of more realistic atmospheric and oceanic models

(as advocated by [16]). The test case must also be reproducible, i.e. insensitive to

numerical noise. This is not true of any of the test cases proposed by Williamson

et al. [77]. But the Rossby-Haurwitz test case does suggest a simple modification:

we can seed the instability so that at least the early complex stages of the flow are

reproducible.

4.3 Modification of the Rossby wave test

A broad-scale small-amplitude disturbance was added to the dimensionless height

anomaly h̃ at t = 0 to destabilise the flow quickly. The disturbance has the form

(xx0 + yy0 + zz0)/40, where (x, y, z) are the Cartesian coordinates of a point on

the sphere, and (x0, y0, z0) is a specific point located at latitude φ = 40◦ and

longitude λ = 50◦. Using the benchmark parameter settings (1282 resolution,

∆t ≈ 0.43521∆tCFL, and a damping coefficient D = 0.01), the flow evolution is
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shown in figure (4.4). Within just a few days the flow breaks down into a complex

assortment of fronts and vortices, most evident in the PV field. The maximum

Froude number, Fr = |u|/c(1 + h̃)1/2, reaches 0.435 (the time mean is 0.35) and

the minimum and maximum Rossby numbers, Ro = ζ/2ΩE, reach −0.80 and 0.87.

The height field distorts significantly, but remains broad-scale. In particular, there

is no visible trace of gravity waves in this field.

4.3.1 Numerical sensitivity

We examine next the sensitivity to the choice of numerical parameters. The effect

of resolution is shown in figure (4.5), for the height, divergence and PV fields at

day 15 and at resolutions 642, 1282, 2562, and 5122. In each case, the time-step

is just under half the CFL value (so it varies with resolution), and D = 0.01.

Rapid convergence with resolution occurs, with minor differences between the

highest resolution cases (as found previously in the f -plane context in [16]). The

time-averaged r.m.s. height differences between the highest resolution case and the

others are 1.71%, 7.41% and 26.0%, for 2562, 1282 and 642 resolutions respectively

(these are percentages of the r.m.s. height anomaly in the highest resolution case).

The PV differences are 3.00%, 7.87% and 19.1%. The differences diminish sharply

with resolution, most strongly for the smoother height field, as expected. The

PV differences are created by advection errors, arising mainly from errors in the

velocity field. Numerical convergence is less marked for the divergence field, which

exhibits errors of 16.0%, 33.6% and 60.4% (i.e. only inversely proportional to

spatial resolution). The instantaneous errors grow in time as the solutions diverge,

but the dependence on resolution is similar — see figure (4.6).

As elaborated in the next section, a significant part of this error arises from the

poor numerical representation of the underlying PV-controlled balanced motions
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h̃ q δ

Figure 4.5: Effect of varying resolution on the perturbed fields. Height
anomaly (left), PV (middle) and divergence (right) at day 15 are compared

at 642, 1282, 2562 and 5122 resolution (top to bottom).
———————————————

when using h̃ and δ as prognostic variables [49, 50]. This leads to excessive noise,

particularly near the poles (seen here in δ at the two highest resolutions), which

can sometimes cause the model to blow up, even with larger latitudinal damping.

This noise does not develop in the more advanced model, CA1, described in the

following section.

The effect of time-step is shown in figure (4.7), for the height field at day 15 and

for time steps ∆t = 0.00125, 0.0025, 0.005, 0.01, 0.02 and 0.04 (corresponding

to 0.210, 0.43521, 0.842, 1.684, 3.368 and 6.735∆tCFL) (note: [67] used ∆t ≈
7∆tCFL). The time-averaged r.m.s. height differences between the finest time-step

case and the others (in order of increasing ∆t) are 0.534%, 1.11%, 2.25%, 4.81%

and 7.59%. (The corresponding PV differences are 0.43571%, 0.744%, 1.33%,

1.48% and 3.94%.) Using larger time steps is not nearly as detrimental as using
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Figure 4.6: Instantaneous percentage r.m.s. error in height anomaly (top), PV
(middle) and divergence (bottom) versus time. The errors for 642 (solid bold),
1282 (solid) and 2562 (dashed) resolutions are computed relative to the average

r.m.s. field amplitudes in the 5122 resolution case.
———————————————
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Figure 4.7: Effects of varying time-step on the perturbed height field at day 15.
The time-step increases in factors of 2 from the upper left (where ∆t = 0.00125)

to the lower right (where ∆t = 0.04).
———————————————

Figure 4.8: Effects of varying damping on the perturbed height field at day
15. Damping coefficients 0.1 and 0.01 are compared (left and right).

———————————————

coarser spatial resolution, but errors are clearly noticeable for time-steps much is

excess of tCFL (errors for divergence are much higher, ranging from 40 to 80%).

The errors stem in part from the semi-implicit scheme, which couples the equations

for height and divergence, fields which are often very different in character. The

height field tends to be dominantly balanced and slowly evolving (like the PV),

while the divergence tends to contain significantly more high frequency motions,

i.e. gravity waves. Simply slowing down the waves in the semi-implicit scheme

does not eliminate them — indeed they may be more easily excited by the vortical

motions. This coupling can, and arguably should, be avoided, as the results of the

next section demonstrate.

Finally, the latitudinal damping coefficient has no perceptible impact on the so-

lution accuracy, for 0.01 ≤ D ≤ 0.1 — see figure (4.8). Time-averaged r.m.s.
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differences in h̃, δ and PV are just 0.314%, 4.82% and 0.43532%. Values of D

smaller than 0.01 however lead to numerical instability in some cases.



Chapter 5

An improved numerical method

5.1 Introduction to CA1

Previous work [17, 49] identified a new approach to significantly improving so-

lution accuracy at little extra computational cost. The CA0 model differs from

conventional models principally in the way that it handles PV conservation. Oth-

erwise, it uses standard variables, at least for spectral models. But there is another

important aspect of PV which is not treated explicitly, namely the way in which

PV controls much of the fluid motion, through underlying “balance relations” (see

[38, 44]). For example, at small Rossby and Froude numbers, geostrophic balance

may be expected to hold everywhere except near the equator. This balance implies

that the height field is instantaneously related to the PV field (in general via an el-

liptic operator). Now suppose one tried to run a shallow-water model under these

conditions, with the height field as one of the prognostic variables. Balance implies

there is a direct link between height and PV at any time, but the numerics does

not see this and instead integrates the height field as an independent variable. Of

course it should, one might believe, in order to also capture gravity waves, motions

not part of the balance. But the problem is that numerical discretisation errors,

53
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both in space and in time, make it difficult to maintain the underlying balance,

and the errors show up erroneously as gravity waves.

A way around this problem is to use a set of prognostic variables which better

distinguishes balanced motions and gravity waves, ideally PV and a pair of ‘wave’

variables (cf. [17, 49]). The idea is to represent the departure from balance by

these ‘wave’ variables. Then, to recover the original variables h̃, u and v, one

solves a series of elliptic problems, like in “PV inversion” [44], but involving the

complete set of new variables (see below). The crucial point is that these elliptic

problems reduce to balance relations when the ‘wave’ variables are ignored. This

feature leads to a significant reduction in erroneous gravity waves, and it improves

the prediction of the dominant balanced motions.

In reality, there is no pair of variables that represent pure gravity waves for nonlin-

ear flows, and efficiency considerations force a compromise. Here, we use a pair of

variables that proved optimal in the f -plane context, see [49], taking into account

robustness, accuracy, and efficiency. One of the variables is the velocity divergence

δ = ∇ · u, already used in CA0. The other is the acceleration divergence

γ = ∇ · Du

Dt
= fζ − βu− c2∇2h̃ (5.1)

where β = df/dφ = 2ΩE cos φ.

In the f -plane context, γ/f is the ageostrophic vorticity. The prognostic equations

for δ and γ are straightforwardly obtained using equations (1.10) and (1.12), [11].

This model is referred to as CA1.

The primitive variables (h̃, u, v) are recovered from the new ones (q, δ, γ) as follows.

First, the divergence potential χ is recovered directly from δ using equation (1.6).

This then gives the divergent part of the velocity field from equation (1.13). The

non-divergent part involving ψ however requires ζ, which depends on q and h̃. So,
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we need h̃ to proceed. An equation for h̃ is available in the definition of γ, which

however depends on u and hence ψ. So, the equations for h̃ and ψ are coupled.

But, they are both linear, given (q, δ, γ). In practise, the equations are solved

iteratively, rewriting equation (5.1) as

(
∇2 − f 2

c2

)
h̃ = f

(
ζ − fh̃

)
− βu− γ (5.2)

with terms on the right-hand-side evaluated using previous iterates. Numerically,

these equations converge exponentially fast, so that only a few iterations are re-

quired to achieve convergence (here when the maximum pointwise difference be-

tween successive h̃ iterates is less that 10−8).

5.2 CA1 results for the Rossby-Haurwitz test case

First of all, no latitudinal damping was found to be necessary for CA1. Divergence

fields are noticeably smoother, not because of diffusion, but because the underlying

balance is better respected.

At early time periods, the CA0 and CA1 results differ negligibly for the original

Rossby-Haurwitz wave test. But this only tests the correctness of the numerical

model. To test accuracy, we need to look at how the models deal with a com-

plex flow having a wide range of spatial and temporal scales. We focus on the

perturbed Rossby-Haurwitz case, which destabilises quickly and reproducibly. At

the benchmark resolution, 1282 and ∆t ≈ 1
2
∆tCFL, the height and PV fields differ

little between the models, see figures (5.1) and (5.2), which compare the main

fields given by CA0 and CA1, but the divergence field is significantly smoother in

CA1. Movies of the dynamical evolution show that the pattern of δ moves with

the PV, indicating that even δ is dominantly balanced in this flow. Time-averaged
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Day 5 Day 10 Day 15

Figure 5.1: CA0 perturbed fields at days 5, 10 and 15 (left to right). Top row:
height. Middle row: divergence. Bottom row: PV.

Figure 5.2: CA1 perturbed fields at days 5, 10 and 15 (left to right). Top row:
height. Middle row: divergence. Bottom row: PV.

———————————————
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Day 5 Day 10 Day 15

Figure 5.3: Acceleration divergence (γ) at days 5, 10 and 15. Contour interval:
0.02 days−2.

———————————————

r.m.s. differences between the fields in the two models are 1.77%, 8.62% and 2.46%,

for h̃, δ and PV respectively. Note that the divergence error is most significant.

Convergence is faster in CA1, as seen for instance when comparing time-steps of

∆t = 0.00125 and ∆t = 0.0025, for which h̃, δ and PV differences are 0.43513%,

21.7% and 0.349%, compared to 0.534%, 40.2% and 0.43571% in CA0. Also, when

comparing 2562 and 1282 resolutions, h̃, δ and PV differences are 4.82%, 27.3%

and 5.65% in CA1, while they are 5.76%, 29.0% and 6.53% in CA0.

The field of acceleration divergence γ, never previously illustrated, is shown in

figure (5.3) at times corresponding to figures (5.1 and 5.2). This field is more

highly structured than δ, with many more small-scale features.

Largest values occur within strong cyclonic vortices, which tend to be more ageostrophic

than anti-cyclonic vortices in shallow-water flows, [55]. Again however the pattern

of γ largely follows PV (not shown), indicating that γ like δ is dominantly bal-

anced. Ideally, we would like to use a better choice of ‘wave’ variables, e.g. the first

time derivatives of δ and γ (cf. [49, 50]), but the reduced computational efficiency

and the potential lack of robustness for strongly ageostrophic flows indicate that

it is impractical to do so. Nonetheless, CA1 does appear to build in a degree of

balance, which — perhaps surprisingly — includes equatorial regions. Overall, γ

and δ contribute little to the fluid motion, as seen for example when comparing

the meridional velocity v at day 15 with its ‘balanced’ counterpart v0 (obtained
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Figure 5.4: The Meridional velocity v (left), its ‘balanced’ counterpart v0

(middle), and the difference v − v0 (right) at day 15. Note that the contour
intervals are 5ms−1 for v and v0, but only 0.5ms−1 for v − v0.

———————————————

from the PV alone by imposing δ = γ = 0), see figure (5.4). Differences are no

more than a few percent, even at the equator. This important finding underscores

the utility of this choice of variables for modelling spherical shallow-water flows.

In addition, δ = γ = 0 balance may prove useful for diagnosing fluid motion near

the equator, where geostrophic balance fails.

5.3 Conclusion

We have revisited one of the standard test cases proposed for the shallow-water

equations in spherical geometry using an explicitly PV-conserving contour-advection

model. Our results closely reproduce previous results obtained with a variety of

different models at early times. At late times, Thuburn & Li demonstrated that

this simple test breaks down into a complex turbulent flow. This suggested a small

modification of the original test to exploit the physical instability and obtain a

rapid and reproducible turbulent breakdown of the original flow. This, we argue,

is a better test for numerical methods being considered for implementation in more

realistic global atmospheric and oceanic models. The flow develops a wide range

of spatial and temporal scales, and properly challenges numerical models. This is

important.

The new contour-advection model introduced here copes well with this complex-

ity by explicitly conserving PV and preserving dynamically active sharp gradients
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(fronts). This is a major advantage of contour advection, and one which is not

lessened when non-conservative diabatic effects are taken into account [14]. We

also found that it is important to preserve the underlying balance, the implicit

control exerted by PV, in these flows. To this end, we extended an idea, first

implemented in the f -plane context, of using a new set of prognostic variables

which distinguishes balanced vortical motions and unbalanced gravity waves, at

least to leading order [49]. At almost no extra computational expense, this signif-

icantly improves the accuracy of the balanced part of the flow, and in turn, the

unbalanced part as well. This simple transform may be worthwhile extending to

more realistic contexts.



Chapter 6

Further developments in CASL

6.1 Modification to fourth-order finite differenc-

ing in latitude

Next, we discuss a recent development in the latitudinal representation of variables

in the CASL algorithm. Two main improvements have been made — the use of

fourth-order compact differencing and the use of a shifted grid in latitude, at

“half-latitudes”, to increase accuracy at the poles. The algorithm modifications

were carried out by Ali Mohebalhojeh and David Dritschel at the University of

St Andrews. In [51], the fourth-order routine is introduced within the CASL

method and many of the numerical details from that paper have been reproduced

here, cited where appropriate. This extension of the CASL algorithm is tested

under simple and more complex conditions by the author to provide validation of

the improvements and allow the reader to note the advancements made and the

impacts on CASL calculations.

In addition, a new type of regular grid is also introduced. In [51], polar boundary

conditions were found to cause a loss of formal accuracy from fourth-order to

60
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third-order. This can be avoided by the use of a grid shifted half the latitudinal

grid-length, ∆φ, from the poles. This allows straightforward differentiation with

respect to φ across the poles, effectively removing any need for boundary conditions

there (indeed the sphere has no boundary). As in [51], with the full grid points

given as φ∗j = −π/2 + j∆φ, for j = 0, 1, . . . , N , we can define the new half-grid

points as φj = −π/2 + (j − 1/2)∆φ, for j = 1, 2, . . . , N .

6.1.1 Fourth-order CASL models

As a continuation of Chapter 1.4, where the Helmholtz operator for second-order

finite differencing (H) was introduced, we must also discuss a second operator,

arising in the semi-implicit time-stepping of both δ and γ, which takes the form

Γ = ∇2 − c2/(∆t)2, with ∆t the time step. Here, we outline how these operators

are treated using fourth-order compact differencing.

We first consider the Helmholtz equation

(
∇2 − f 2

c2

)
h̃ =

(
1

cos2 φ

∂2

∂λ2
+

1

cos φ

∂

∂φ
cos φ

∂

∂φ
− f 2

c2

)
h̃ = F , (6.1)

where F represents the terms on the right hand side of the acceleration divergence

equation (equation (5.2)). This is the central equation used to obtain the height

field from γ and q. For each longitudinal Fourier component with wavenumber m,

we have that F = F̂m(φ)eimλ and the solution for equation (6.1) is therefore of the

form h̃ = ĥm(φ)eimλ, with the relation for ĥ, from [51],

d2ĥ

dφ2
− tan φ

dĥ

dφ
−

(
m2

cos2 φ
+

f 2

c2

)
ĥ = F̂ . (6.2)

Using the notation

Γ̂ =
dĥ

dφ
and Γ̂φ =

d2ĥ

dφ2
,
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one may obtain the fourth-order compact relations for the first and second latitu-

dinal derivatives of h̃, from [51], as

1

6
Γ̂j−1 +

2

3
Γ̂j +

1

6
Γ̂j+1 =

ĥj+1 − ĥj−1

2∆φ
, (6.3)

1

12

(
Γ̂φ

)
j−1

+
5

6

(
Γ̂φ

)
j
+

1

12

(
Γ̂φ

)
j+1

=
ĥj+1 − 2ĥj + ĥj−1

(∆φ)2
. (6.4)

The general result for points (j = 2, 3, . . . , N − 1), from [51], is

Aj




ĥ

Γ̂




j−1

+ Bj




ĥ

Γ̂




j

+ Cj




ĥ

Γ̂




j+1

=




Ĝj

0


 , (6.5)

where

Ĝj =
1

12
F̂j−1 +

5

6
F̂j +

1

12
F̂j+1 ,

and Aj, Bj, and Cj are the 2× 2 matrices

Aj =




1

(∆φ)2
− 1

12

(
f 2

j−1

c2
+

m2

cos2 φj−1

)
− 1

12
tan φj−1

1

2∆φ

1

6


 ,

Bj =



− 2

(∆φ)2
− 5

6

(
f 2

j

c2
+

m2

cos2 φj

)
−5

6
tan φj

0
2

3


 ,

Cj =




1

(∆φ)2
− 1

12

(
f 2

j+1

c2
+

m2

cos2 φj+1

)
− 1

12
tan φj+1

− 1

2∆φ

1

6


 .

For the polar points, j = 1 and j = N , separate treatment is required, [51]. To

be able to use the differencing relations in equations (6.3) and (6.4), φ must vary

monotonically when crossing the poles. This is possible by noting that equation
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(6.2) is valid if φ is extended periodically from [−π/2, π/2] to [−π/2, 3π/2] in

crossing the north pole and to [−3π/2, π/2] in crossing the south pole, [51]. Con-

sequently, sign changes in the cosine and tangent functions must be considered at

the poles.

For odd wavenumber m, we have ĥ0 = −ĥ1, Γ̂0 = Γ̂1 and F̂0 = −F̂1 because

of a sign change due to the phase shift of π in eimλ when crossing the south

pole. There is a further sign change in Γ̂ when crossing the pole, coming from

the latitudinal derivative. The above relations together with cos φ0 = − cos φ1

and tan φ0 = − tan φ1 are used to remove contributions from the point j = 0 in

equation (6.5) for j = 1 (note, A1 is not used).

In a similar fashion, ĥN+1 = −ĥN , Γ̂N+1 = Γ̂N , F̂N+1 = −F̂N , cos φN+1 =

− cos φN , and tan φN+1 = − tan φN are used to remove contributions from the

point j = N + 1 in equation (6.5) for j = N (now, CN is not used). The result,

from [51], is

B1 =



− 3

(∆φ)2
− 3

4

(
f 2

1

c2
+

m2

cos2 φ1

)
−3

4
tan φ1

− 1

2∆φ

5

6


 ,

BN =



− 3

(∆φ)2
− 3

4

(
f 2

N

c2
+

m2

cos2 φN

)
−3

4
tan φN

1

2∆φ

5

6


 .



Chapter 6. Further developments in CASL 64

For even m, we have ĥ0 = ĥ1, Γ̂0 = −Γ̂1, F̂0 = F̂1, ĥN+1 = ĥN , Γ̂N+1 = −Γ̂N , and

F̂N+1 = F̂N . These result in similar relations for B1 and BN :

B1 =



− 1

(∆φ)2
− 11

12
(
f 2

1

c2
+

m2

cos2 φ1

) −3

4
tan φ1

1

2∆φ

1

2


 ,

BN =



− 1

(∆φ)2
− 11

12
(
f 2

N

c2
+

m2

cos2 φN

) −3

4
tan φN

− 1

2∆φ

1

2
.


 .

For the Poisson equation,

∇2ψ = F , (6.6)

the same relations are used for non-zero m, omitting the f 2/c2 term. For m = 0,

the Poisson equation is singular and the zonally averaged solution (ψ̄) is known

only to within a constant. The dynamically important quantity is the latitudinal

derivative, dψ̄/dφ, and not ψ̄ itself. Using the auxiliary variable

Ῡ =
dψ̄

dφ
cos φ

and multiplying equation (6.6) by cos φ, the equation for m = 0 becomes

dῩ

dφ
= F̄ cos φ = Ḡ . (6.7)

To discretise equation (6.7), we use the fourth-order compact relation relating the

derivative of a function at half-grid points to the function values at full-grid points

(denoted by Ῡ∗
j), [26, 68],

1

22
Ḡj−1 + Ḡj +

1

22
Ḡj+1 =

12

11

(
Ῡ∗

j − Ῡ∗
j−1

∆φ

)
. (6.8)

The boundary condition at the south and north poles are Ῡ∗
0 = Ῡ∗

N = 0, and



Chapter 6. Further developments in CASL 65

equation (6.8) is solved for (j = 1, 2, . . . , N−1). For consistency with the boundary

conditions, we require that
∑N

j=1

[
1
22

Ḡj−1 + Ḡj + 1
22

Ḡj+1

]
= 0 (this is the fourth-

order expression for the integral of G with respect to φ). To enforce this consistency

requirement, we modify Fj to Fj −C, where C is a constant to be determined by

the consistency condition, given by [51] as

C =
Ḡ1 + 12

11

∑N−1
j=2 Ḡj + ḠN

cos φ1 + 12
11

∑N−1
j=2 cos φj + cos φN

. (6.9)

Note that Ḡ0 = F̄0 cos φ0 = −F̄1 cos φ1 = −Ḡ1 and therefore Ῡ∗
1 = ∆φ

24
(21Ḡ1 + Ḡ2),

which enables us to solve equation (6.8) for Ῡ∗
j recursively, as follows

Ῡ∗
j = Ῡ∗

j−1 +
∆φ

24
(Ḡj−1 + 22Ḡj + Ḡj+1) (j = 2, . . . , N − 1) . (6.10)

The full grid, Ῡ∗, is then interpolated to the half-grid using the fourth-order

compact interpolation, from [26],

1

6
Ῡj−1 + Ῡj +

1

6
Ῡj+1 =

2

3
(Ῡ∗

j−1 + Ῡ∗
j) , (6.11)

for Ῡ1, Ῡ2, . . . , ῩN . In crossing the poles, there are two sign changes for Ῡ, one

due to the cosine function and the other due to the latitudinal derivative, giving

Ῡ0 = Ῡ1 and ῩN+1 = ῩN . Therefore, equation (6.11) for j = 1 and j = N

becomes

7

6
Ῡ1 +

1

6
Ῡ2 =

2

3
Ῡ∗

1 (6.12)

1

6
ῩN−1 +

7

6
ῩN =

2

3
Ῡ∗

N−1 , (6.13)

which together with equation (6.11), for (j = 2, . . . , N−1), constitute a tridiagonal

system.
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6.2 The new CASL algorithms

As in [51], we shall denote the second-order, full grid algorithms, seen in previous

chapters as CA0 and CA1, as CA2−fg

h̃,δ
and CA2−fg

δ,γ , respectively. The new half-grid,

fourth-order algorithms, corresponding to the above prognostic variable choices,

will be denoted as CA4−hg

h̃,δ
and CA4−hg

δ,γ .

6.2.1 Examination of fourth-order finite differencing and

the γ field

The acceleration divergence field, γ, was found to also provide valuable diagnostics

for comparison and subsequent improvements in the CASL algorithms. Upon

viewing the γ fields for the second and fourth-order algorithms it was clear that,

whilst differences were expected, this field was susceptible to developing noise

around the poles in both second and fourth-order algorithms.

To help resolve this issue, a simple smooth test case was devised by D. Dritschel

in order to quickly and easily see where any problem areas occurred within the γ

fields of CA2−fg
δ,γ and CA4−hg

δ,γ . This test case considered a non-divergent flow with

the streamfunction given by

ψ = Azr1

(
3

5
− z2

r1

)
, (6.14)

where zr1 is a rotated z coordinate computed from a given latitude (default 30◦)

and longitude (default 60◦) and A is a given constant (default 1). The vorticity

is then given by ζ = −12ψ. Additionally, a dimensionless height anomaly of the

form

h̃ = B

(
z2

r2 −
1

3

)
, (6.15)
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h̃ q γ

Figure 6.1: Initial depth, PV and acceleration divergence fields for the accel-
eration divergence test case.

———————————————

in which zr2 is another rotated z coordinate, given by latitude (default −45◦) and

longitude (default −90◦) and B is a constant (default 0.2).

The exact fields of depth, divergence, vorticity, acceleration divergence and velocity

components are then computed analytically and the initial condition (shown in

figure (6.1)) is then run by the CASL algorithms so that the fractional RMS

errors computed at initial time for each field may be found.

One crucial point was highlighted by an erroneous increase in RMS error in the

γ field on increasing resolution. This was found to be due to a lack of Broutman

filtering acting upon the Laplacian solver routine. Such a filter is routinely used

in computing longitudinal derivatives, and for consistency, we found that it should

also be included when applying the Laplace operator. This led to substantial im-

provements near the poles, restoring second and fourth-order accuracy to CA2−fg
δ,γ

and CA4−hg
δ,γ , respectively. For a detailed analysis of the effect of this filtering, see

Chapter 7.1.2 and the discussion regarding table (7.3).

Two main links between the acceleration divergence field and other fields were

noted. Changes made during fourth-order algorithm testing included variation

of the PV jump value with resolution. This was fixed at all resolutions in the

original Rossby test case in order to maintain a direct comparison to previous

contour intervals shown by Thuburn and Li in [67]. At higher resolutions, however,

it makes sense to reduce the PV jump for increased accuracy. This results in a
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Resolution Error for CA2−fg
δ,γ Error for CA4−hg

δ,γ

1282 0.02098163 0.001587233

2562 0.01035668 0.000686866

5122 0.00510787 0.000311070

Table 6.1: Fractional RMS errors in the vorticity field for CA2−fg
δ,γ and CA4−hg

δ,γ

at resolutions 1282, 2562 and 5122 for the γ test case.
———————————————

Resolution Error for CA2−fg
δ,γ Error for CA4−hg

δ,γ

1282 0.00110117 0.000619827

2562 0.00053003 0.000275764

5122 0.00025858 0.000127800

Table 6.2: Fractional RMS errors in the acceleration divergence field for
CA2−fg

δ,γ and CA4−hg
δ,γ at resolutions 1282, 2562 and 5122 for the γ test case.

———————————————

reduction in noise within the γ field upon increasing resolution and reducing the

PV jump value. Further details are provided in the next chapter.

Tables (6.1) and (6.2) show the fractional RMS errors for vorticity (top) and ac-

celeration divergence (bottom) with varying resolution, after the corrections men-

tioned to the CASL algorithms were made. Here, as expected, the errors decrease

with increasing resolution and the fourth-order CASL algorithm has less fractional

RMS errors for both vorticity and acceleration divergence fields. The equivalent

RMS errors for zonal and meridional velocity components (not shown) were com-

parable between the second and fourth-order algorithms, again as expected, since

the test case produces a very smooth initial flow and therefore the initial numerical

fields should be (and are) very close to the analytical fields. We also note that,

although the results in both fields detailed is better than second-order accurate

for CA4−hg
δ,γ , true fourth-order accuracy has not yet been attained and this point

shall be revisited in the following chapter.



Chapter 7

Fourth-order finite differencing in

CASL

7.1 Comparisons for the perturbed Rossby test

case

Having identified and implemented changes required within the algorithms for a

simple smooth flow, we now return to the modified Rossby-Haurwitz test case for

more rigorous analysis of the fourth-order algorithms.

Figure (7.1) shows the initial conditions for the perturbed Rossby test case, de-

tailed earlier. Both second and fourth-order algorithms are given to corroborate

earlier results. The point to note, however, is the difference in the initial acceler-

ation divergence, γ, field. In the fourth-order result, the field is much smoother

and the sharp edges seen in the second-order contours are removed.

69
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h̃ q γ

Figure 7.1: Initial conditions for the perturbed Rossby test case for the second
(top) and fourth-order (bottom) CASL algorithms. Fields shown are the height

(left column), PV (middle) and acceleration divergence (right).
———————————————

Figure (7.1) was obtained by computing γ from the input fields of h and q (δ = 0),

i.e. from the discretised form of equation (5.1). It is apparent that this discreti-

sation leads to significant differences in the gamma fields already at t = 0. These

differences affect other fields (notably divergence) at subsequent times. After care-

ful analysis of the early time evolution of the flow at resolutions up to 10242, it

became clear that the problem lies with the 4th-order algorithm, not with the

original 2nd-order one (see section 7.1.1 below). At the time of writing, the source

of this potential numerical error has not been found. Nevertheless, the 4th-order

results are presented for completeness.

Figure (7.2) gives a direct comparison between CA2−fg
δ,γ and CA4−hg

δ,γ algorithms at

1282 resolution, for the perturbed Rossby test case at later times. As shown, the

PV field remains very similar in detail between the two algorithms, as expected,

since the flow is dominated by PV and fourth-order accurate advection only slightly

changes the position of the PV contours. There are however, visible differences

between the fields on increasing finite differencing order at this resolution (1282).

Figure (7.3) gives a subsequent comparison for increasing resolution on the fourth-

order algorithms, comparing CA4−hg
δ,γ at resolutions 642, 1282 and 2562.
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Day 5 Day 10 Day 15

———————————————

Figure 7.2: Detailed comparisons of h̃ (top), q (middle) and γ (bottom) for the
second-order CA2−fg

δ,γ (top section) and fourth-order CA4−hg
δ,γ (bottom section)

algorithms at days 5, 10 and 15 (left to right) of the perturbed Rossby test case
at 1282 resolution.

———————————————

Resolution Comparison Depth field Divergence field

642 to 1282 0.259822702 0.492281762

1282 to 2562 0.114428535 0.353599199

Table 7.1: Relative RMS differences in the depth and divergence fields for
CA2−fg

δ,γ at resolutions 642, 1282 and 2562 for the Rossby-Haurwitz test case.
———————————————
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Day 5 Day 10 Day 15

———————————————

Figure 7.3: Resolution comparison of h̃ (top), q (middle) and γ (bottom) for
the fourth-order CA4−hg

δ,γ at 1282 resolution (top section) and at 2562 resolution
(bottom section) for days 5, 10 and 15 (left to right) of the perturbed Rossby

test case.
———————————————

Resolution Comparison Depth field Divergence field

642 to 1282 0.304378660 0.914773193

1282 to 2562 0.133703858 0.789378828

Table 7.2: Relative RMS differences in the depth and divergence fields for
CA4−hg

δ,γ at resolutions 642, 1282 and 2562 for the Rossby-Haurwitz test case.
———————————————
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Day 5 Day 10 Day 15

Figure 7.4: Comparison of δ fields for CA2−fg
δ,γ (top) and CA4−hg

δ,γ (bottom)
algorithms for days 5, 10 and 15. Contour interval for all images 0.002 days−1.

———————————————

Tables (7.1) and (7.2) show the Relative RMS differences between depth and di-

vergence fields as the resolution is increased. These results do not show the desired

(expected) trend of a decrease in the RMS errors, given the improvement in finite

differencing order.

Treating the divergence fields separately, figure (7.4) shows the divergence fields

for the CA2−fg
δ,γ and CA4−hg

δ,γ algorithms, at days 5 and 10. As can be seen, there is

significantly more detail and fine-scale structure in the fourth-order algorithm at

the same contour interval. This, together with the erroneous RMS error results,

warrants further investigation.

7.1.1 Further analysis of the fourth-order algorithm at high

resolutions

Due to the previous unexpected results, a detailed analysis of the updated CASL

algorithm was made, during which an interesting anomaly was discovered. At very

early time periods, the second and fourth-order algorithms were found to differ

in certain fields. Upon closer examination, the divergence field was noted to be

significantly different at the standard resolution of 1282.
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2nd-order 4th-order

Figure 7.5: Comparison of the depth field for t = 0.02, t = 0.04, t = 0.06,
t = 0.08 and t = 0.1 (days) at 1282 resolution for the second-order (left) and

fourth-order (right) algorithms.
———————————————
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In order to diagnose this issue, a very short time integration (0.1 days) was exam-

ined to study the initial evolution of the divergence and height fields. The results

of this analysis are displayed in figure (7.5). In this figure, it can be seen that

during the evolution of the flow, by day 0.1, the height field is different between

the two algorithms.

To understand the reason for this difference, the divergence fields were examined

for the same time periods, shown in figure (7.6). This figure indicates that there

may a problem, at least in the initialisation, of one of the algorithms. The results

below indicate that the problem lies within the fourth-order algorithm. To deter-

mine the nature of this variation in divergence fields, we carried out a convergence

study for both algorithms at early times. Figure (7.7) shows time t = 0.02 for

varying resolutions. Clearly seen is that upon increasing resolution, the second-

order algorithm converges almost immediately, whereas the number of contours in

the fourth-order algorithm simply reduce by a factor of two on each doubling of

resolution.

Figure (7.8) gives the full picture, showing that, at t = 0.1, the fourth-order

algorithm is tending to converge to the results of the second-order algorithm,

which shows much faster convergence. A. Mohebalhojeh (private communication)

believes that the error stems from the calculation of γ from equation (5.1) initially,

which appears to be much more sensitive in the fourth-order algorithm. This is

currently under investigation.

In subsequent chapters, a ramped initialisation procedure is used in the fourth-

order algorithm, thereby avoiding any potential error arising from the discretisa-

tion of equation (5.1).
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2nd-order 4th-order

Figure 7.6: Comparison of the divergence field for t = 0.02, t = 0.04, t = 0.06,
t = 0.08 and t = 0.1 (days) at 1282 resolution for the second-order (left) and

fourth-order (right) algorithms.
———————————————
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2nd-order 4th-order

Figure 7.7: Comparison of the divergence field for t = 0.02 (days) for 1282,
2562, 5122 and 10242 resolution for the second-order (left) and fourth-order

(right) algorithms.
———————————————

7.1.2 Energy and momentum conservation

We next compare the second and fourth-order CASL algorithms in terms of their

global conservation properties. The energy, E, and angular momentum (neglecting

momentum due to rigid rotation), J , about the Earth’s axis are conserved in the

absence of forcing and dissipation. They are given by the double integrations over
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2nd-order 4th-order

Figure 7.8: Comparison of the divergence field for t = 0.1 (days) for 1282,
2562, 5122 and 10242 resolution for the second-order (left) and fourth-order

(right) algorithms.
———————————————

the domain Ω, as follows,

E =
1

2

∫ ∫ (
(1 + h̃)|u|2 + c2h̃2

)
dΩ , (7.1)

J =

∫ ∫ (
(1 + h̃)u + ΩEh̃ cos φ

)
dΩ . (7.2)

We also non-dimensionalise these quantities by the planetary radius and one day

and so all graphs relating to these values do not carry dimesnions. Figure (7.9)

shows the variation of energy and angular momentum over the 20 day integration in
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———————————————

Figure 7.9: Comparison of energy (top) and momentum (bottom) values for
the second and fourth-order CASL algorithms at 1282 and 2562 resolutions for

the perturbed Rossby wave case, introduced in Chapter 4.3.
———————————————
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Algorithm Energy t = 0 Energy t = 20 % Increase

1282 CA2−fg
δ,γ 0.344125 0.383368 11.4

2562 CA2−fg
δ,γ 0.345203 0.367717 6.5

1282 CA4−hg
δ,γ 0.345404 0.348580 0.9

2562 CA4−hg
δ,γ 0.345526 0.346479 0.3

Momentum t = 0 Momentum t = 20 % Increase

1282 CA2−fg
δ,γ 0.602741 0.652292 8.2

2562 CA2−fg
δ,γ 0.602640 0.631128 4.7

1282 CA4−hg
δ,γ 0.603904 0.609155 0.9

2562 CA4−hg
δ,γ 0.602933 0.603962 0.2

Table 7.3: Conservation of energy and momentum for second and fourth-order
CASL algorithms for a 20 day Rossby test case at 1282 and 2562 resolutions.

———————————————

the perturbed Rossby wave test case, for both CA2−fg
δ,γ and CA4−hg

δ,γ . Conservation

at resolutions of 1282 and 2562 has been analysed to assess the impact fourth-

order finite differencing has on these diagnostics. As can be seen, the lower 1282

resolution CA4−hg

h̃,δ
shows better conservation properties in E and J than even the

2562 resolution CA2−fg
δ,γ .

Table (7.3) gives the initial and final values of energy and angular momentum,

corresponding to figure (7.9), and the improvement to conservation for fourth-

order compact finite differencing can clearly be seen.

As an additional note, it is worth including the difference that the Broutman filter-

ing on the Laplacian within the algorithm makes on the conservation of energy and

angular momentum. At 1282 resolution, without this filtering, the energy within

CA2−fg
δ,γ increased by 11.5% and CA4−hg

δ,γ increased by 1.5%. The angular momen-

tum also increased by 8.2% and 1.2% for the respective second and fourth-order

algorithms. The major increase in conservation properties, however, becomes clear

at higher resolution where, at 2562 resolution without filtering, energy increased
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by 7.4% and 0.6% for second and fourth-order algorithms respectively and momen-

tum increased by 5.4% and 0.5%. As table (7.3) shows, with the relevant filtering

in place, the increases in both energy and momentum values are greatly reduced

over the 20 day integration, especially at higher resolutions.

7.2 OPV balance

Bringing the points from Chapters 1.5.1 and 1.5.2 together and using a technique

known as Optimal PV balance (OPV balance), [18, 74], it has been shown that

a system remains close to balance if the initial conditions are close to balance,

[18, 45]. In observed geophysical flows, balance is thought to hold to a high degree

for meso and large-scale fluid dynamics, where the fluid motion is significantly

weaker than the Earth’s rotation and is also strongly stratified, [45].

In order to create initial “balanced conditions” for the models the fields are first

set to zero. Then, with the PV contours held fixed, the PV carried by each fluid

particle (or contour) is multiplied by a ramp function, varying smoothly from 0 to

1, during each (non-physical) integration time. The fluid particles are allowed to

move freely after the first forward ramp and the conditions will vary at the end

of each backwards integration, with remaining non-zero motions due to internal

gravity waves (IGWs). These IGW motions are then removed for the forward

integration. Any difference in the PV distribution at the end of the forward

integration is removed by resetting it to the actual PV configuration. This is

repeated until convergence (when maximum differences in h̃ between successive

forward integrations is less than 10−7), with the particle distribution thus found

for the start of the ramp period, usually in 6 to 8 cycles, [17, 74].

The period of this PV ramping was analysed in order to build a picture of how this

affected the fields. To demonstrate simply the concept of OPV balance within the
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Figure 7.10: RMS values for the divergence (pink) and acceleration divergence
(blue) fields for varying initialisation periods. Please note the different scale for

each field.
———————————————

SWEs for CASL, the single vortex patch test case from Chapter 3.1.2 was used at

1282 resolution, with a single vortex patch of width 15◦ placed at 15◦ latitude and

0◦ longitude.

Analysis of the divergence and acceleration divergence fields, since such fields tend

to be less balanced than the primary fields of height and velocity, was carried out

and RMS values of these fields were calculated for the initialisation periods (days)

0.1, 1, 2, 3, 4, 5 and 10. The results of these tests are shown in figure (7.10).

As can be seen a plateau is reached after 2 to 3 days, consistent with previous

findings. Excessively long ramp periods cannot be used in general due to the

winding up of PV contours. In this example, the PV patch is superimposed on a

background rigid rotation and during the backward integration this patch winds

the planetary vorticity contours around it. The forward integration then unwinds

the vorticity, however excessively long ramp periods cause a loss of convergence in
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the procedure.



Chapter 8

Equatorial atmosphere and ocean

dynamics

8.1 Global atmospheric circulation

It was noted by sailors navigating the globe that, for approximately 5◦ latitude

either side of the equator, there is very still, rising air in this region. This led to the

term “doldrums” for the equatorial region. Solar radiation warms near surface air

over the Earth’s equator, leading to warmer air rising over this area. This rising

air then moves into the cooler zone of higher latitudes, which naturally (from

continuity) cools and sinks, moving at lower altitudes back towards the equator.

Therefore, approximately 20◦ to 30◦ either side of the equator, blowing towards the

lower pressure doldrums, are the trade winds, named for their ability to quickly

propel ships as they steadily blow at about 12 miles per hour. In the Northern

hemisphere the trade winds blow from the north-east, whereas the Southern hemi-

sphere trade winds blow from the south-east. This convergence of trade winds leads

us to the modern term for the equatorial region, the Inter-Tropical Convergence

84
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Figure 8.1: Diagram showing the Walker circulation.
———————————————

Zone (hereafter ITCZ). This circulation dominates the weather patterns seen in

the ITCZ, with warm, rising equatorial air leading to significant precipitation.

8.1.1 Walker circulation

East to west, over the Pacific ocean, there is a circulation of air along the equator

caused by the pressure gradient between the cool, dry, high pressure system over

the eastern Pacific and the warm, wet, low pressure system over the western Pa-

cific. The low pressure system causes warm air to rise over the west, whereas the

high pressure system leads to cooler air sinking over the east. This generates an

overturning flow which is west to east at high altitudes and east to west at low

altitudes. An image of this circulation can be seen in figure (8.1)1. This circu-

lation is known as the Walker circulation, named after the English physicist Sir

Gilbert Walker, who theorised the southern oscillation phenomenon, which will be

discussed in Chapter 8.3.

1Figures 8.1 to 8.4 courtesy of nsipp.gsfc.nasa.gov
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Figure 8.2: Diagram showing the ocean thermocline level and Walker circu-
lation during normal conditions.

———————————————

“It is a natural supposition that there should be in weather free oscillations with

fixed natural periods, and that these oscillations should persist except when some

external disturbance produces discontinuous changes in phase or amplitude.” —

Sir Gilbert Walker, [75].

8.2 Ocean temperature and circulation

The ocean surface itself absorbs much of the sun’s radiation, heating the surface

layer. Below this surface layer, however, the temperature drops rapidly and where

this occurs we have the observed transition depth, where the temperature suddenly

drops, known as the thermocline [29, 33]. Along this temperature gradient there is

significant mixing, where cold, deep fluid interacts with warm surface fluid [69, 70].

The trade winds across the Pacific ocean in turn interacts with the ocean surface,

giving the observed sea surface temperature (SST), with warmer SSTs seen in

the West. How much the trade wind stress affects the SST can be quantified by
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observing the thermocline depth across the Pacific, shown, including the observed

Walker circulation during normal conditions, in figure (8.2). The interface between

warm surface fluid and cold deep ocean fluid means that a thermocline near the

surface is mixing more cold, deep fluid with that near the surface (hence cooler

SST) than a thermocline at lower depth, where less surface mixing occurs hence

warmer SST.

As shown in figure (8.2), the normal thermocline level across the Pacific creates

ocean upwelling off eastern coastlines. This means that nutrient rich, cold water is

brought to the surface, increasing fish stocks, vital to those areas. It has been noted

that in a recent paper in Nature that the Walker circulation may be decreasing

[73]. This, as we shall see in the following chapter, may lead to more violent and

unpredictable weather events and declining fish stocks.

8.3 The ENSO phenomenon

8.3.1 Introduction

In the following chapters another important phenomenon will be investigated nu-

merically, namely the generation and propagation of a special type of gravity wave

— the equatorial Kelvin wave, [7, 30, 39]. These waves are key to the El Niño

Southern Oscillation phenomenon (ENSO). In the ENSO phenomenon, the SST

in the East Pacific sea is affected by a positive feedback term due to Kelvin waves.

This system is very complex, and was raised at a conference for collaboration in

mathematical geosciences and ocean dynamics in Breckenridge, USA 2006 by Eli

Tziperman, see for example [20, 69, 70].

A heuristic understanding of ENSO can be discussed by using basic models, e.g.

the delayed oscillator model [4, 66], to show the feedback effects of different aspects
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within ENSO. We shall be concentrating on one effect, namely Kelvin waves, which

propagate along the equator, as it is most relevant to the previous work within

the CASL model. This effect highlights the importance of gravity wave modelling

and how improving full global circulation models, in a similar manner, may gain

more insight into less well understood phenomena. Remarkably, such basic models

can prove to be extremely useful in understanding climate variability. Once the

phenomena present are understood within an idealised model, then more complex

models may be used for a more rigorous study. Most surprising is the accuracy

of basic models when relating to observational data, in spite of the complexity of

a real climate system, for example with reference to TOPEX/Poseidon satellite

data in [2, 40]. This shows the systems observed are largely governed (at least at

large scales) by a relatively simple low order set of dynamics, often showing little

deviation from a “balanced” flow [45].

I have chosen to include a pedagogical description of the ENSO model below2.

This is not strictly a requirement for the test case to be outlined for the CASL

model, but it will show how even the most idealised test case can include complex

and real life phenomena, which may be used to further understand important

dynamical systems.

First, let us consider the mean states involved in this phenomena, which, for the

ENSO model, include both the ocean and atmospheric dynamics, detailed in the

introduction to this chapter. The mean trade winds are easterly, with warm air

rising over the west Pacific and cold air sinking over the east Pacific. The easterly

trade wind stress causes warm water to collect in the east Pacific which leads to

an east-west gradient in SST, shown for August 2006 in figure (8.3). This, in turn,

causes feedback effects in the Walker circulation and mean wind stress.

2For more advanced detail of ENSO, see http://www.pmel.noaa.gov/tao/elnino/nino-
home.html from which the El Niño images in this thesis have been taken
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Figure 8.3: The Sea Surface Temperature showing the East-West temperature
gradient across the equatorial region of the Pacific Ocean.

———————————————

8.3.2 Building the El Niño mechanism

The thermocline and wind stress play a very important part in ENSO variations

around the mean state; SST changes during ENSO are accompanied by a decline

in the Walker circulation, which weakens the easterly trade winds. This starts a

cycle of events which play the main part in El Niño and La NiN̂a (the cooling mode

of ENSO) events. Figure (8.4) shows a graphical representation of the observed

thermocline and Walker circulations during an El Niño event and a La NiN̂a event.

During El Niño the decline in easterly trade winds leads to a depression in the

thermocline depth in the east Pacific and rise in thermocline depth in the west.

The subsequent reduced upwelling in the east leads to less nutrient rich, cold water

mixing at the surface, meaning fish stocks are greatly reduced, as mentioned.

Precipitation moves eastward with the warmer SST, often leading to a drought in

Indonesia and Australia and subsequent flooding in Peru.

The El Niño phenomenon tends to peak towards the end of the year and there



Chapter 8. Equatorial atmosphere and ocean dynamics 90

Figure 8.4: Graphical comparison of the thermocline state during an El Niño
event (top) and then a La NiN̂a event (bottom), including the corresponding

Walker circulations in the atmosphere.
———————————————

is a several year time scale between events (the reasons for which are still not

fully understood). This is a world-wide event: the effects of ENSO are reflected

in severe global weather events, typically with intense wet weather in America

and drought, with subsequent fires, in Australia. To put into perspective the

importance of understanding and modelling these events, the (poorly predicted)

1997-1998 El Niño event was responsible for fires, droughts and floods which killed
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21,000 people in Indonesia [78], and the financial impact was estimated to be in

the region of $32 billion (source: BBC News August 2001).

8.3.3 Ending the El Niño event

In its mean state, the easterly wind forcing is balanced by an ocean pressure

gradient, due to the thermocline near to the surface, in the East Pacific (i.e. the

mean state SST is cooler in the East, resulting in what is called the cold tongue).

Due to the weakening of the trade winds, outlined in Chapter 8.3.2, the thermocline

depth changes across the Pacific. This creates both Kelvin waves (which deepen

the thermocline depth, inducing an SST heating) and Rossby waves (which have

the opposite effect) and this is physically manifested in a “wavy” thermocline

layer.

This system of Rossby and gravity waves plays the main part in the delayed oscil-

lator mechanism theory [4, 66], whereby the “warm” Kelvin waves are restricted

to the equator, travelling towards the east at the start of the El Niño. The slower,

“cold” Rossby waves travel a few degrees off the equator towards the west and

will eventually reflect off the western boundary. Then, travelling east as “cold

Kelvin” waves, they will eventually start a La NiN̂a event, meaning the El Niño

mechanism stops. The amplitude of these waves are typically tens of meters, with

a wavelength of between 100 and 1000km. The Kelvin waves cross the Pacific in

2 months, where the Rossby waves take around 8 months and the La NiN̂a event,

occurring at that time, ends the system of events. This system, although governed

by a relatively simple set of dynamics, is still poorly calculated, both by statis-

tical and numerical methods and, since there are such widespread climatological
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(and financial) implications, it is a vitally important event to isolate and under-

stand why there seems to be a certain random factor involved in the phenomenon,

[20, 70].



Chapter 9

Generation and detection of

Kelvin waves

The following chapter combines the previous work on the CASL algorithm and

observed gravity waves, detailed in the previous chapter. Here the fourth-order

CASL algorithm is used to diagnose equatorial Kelvin waves observed in the ENSO

phenomenon and references to other work on gravity waves will introduce the

reader to the complex links between the ENSO phenomenon and Kelvin waves.

9.1 Analysing equatorial waves

Kelvin waves can only travel along the equator, meaning they have no meridional

velocity (v = 0). The shallow-water equations in a local Cartesian coordinate
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system reduce to

∂u

∂t
= −c2∂h̃

∂x
, (9.1)

fu = −c2∂h̃

∂y
, (9.2)

∂u

∂x
= −∂h̃

∂t
, (9.3)

for a small-amplitude (linear) disturbance to a state at rest.

Combining equations (9.1) and (9.2), one obtains

∂2u

∂t2
= c2∂2u

∂x2
, (9.4)

which has a solution of the form u = E(y)F (x ± ct), with E and F arbitrary

functions. The only physical solution, following [30], is that of an eastwardly

propagating gravity wave, u = E(y)F (x − ct), with h̃ = c−1E(y)F (x − ct), for

consistency with equation (9.3). The y dependence, E(y), is determined from

equation (9.2), which, with f = βy near the equator implies that βyE = −cdE
dy

,

whose solution is of the form

E(y) = Ae−y2/2λ2

, (9.5)

where λ =
√

c/β is the equatorial Rossby deformation length. Hence the Kelvin

wave is trapped near the equator.

In the oceans, at the thermocline a typical wave speed [30] is

c =
√

g′H ≈ 2.2 ms−1 , (9.6)

so λ ≈ 300km, or about 3◦ of latitude.
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In order to diagnose the Kelvin waves at the equator, a topographic structure

can be placed near the equator in order to generate gravity waves in the flow

over it. Examining the tendency of the fluid depth ∂h̃/∂t along the equator will

allow us to see the waves, without seeing the stationary topographic structure

itself. However, to distinguish Kelvin waves (ukw, h̃kw) from other types of motion

present, we minimise, in an energy norm sense, the differences u−ukw and h̃− h̃kw.

That is, we minimise

1

2

∫ 2π

0

dλ

[(
∂u

∂t
(λ, 0, t)− ∂ukw

∂t

)2

+

(
∂v

∂t
(λ, 0, t)

)2

+c2

(
∂h̃

∂t
(λ, 0, t)− ∂h̃kw

∂t

)2

 , (9.7)

while requiring h̃kw = ũkw/c, the relation satisfied by all Kelvin waves. Here, we

minimise the function ∂ũkw/∂t.

The solution is obtained by taking the functional derivative with respect to ∂ukw/∂t:

−
(

∂u

∂t
− ∂ukw

∂t

)
− c

(
∂h̃

∂t
− 1

c

∂ukw

∂t

)
= 0 , (9.8)

whose solution is

∂ukw

∂t
= c

∂h̃kw

∂t
=

1

2

(
∂u

∂t
+ c

∂h̃

∂t

)
. (9.9)

For pure Kelvin waves and nothing else, this solution is exactly what one would

expect.

9.2 Topography

As indicated in the previous chapter, gravity waves are likely to be generated when

flow passes over topography. Taking an idealised case of rigid body rotation on the
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Figure 9.1: Complex topography.
———————————————

sphere, a Gaussian topographic distribution can then be placed at varying lati-

tudes in order to examine the gravity wave production arising from the interaction

between the fluid motion and the topography.

Figure (9.1) gives an example of more complex topography, which may be taken

as an uneven ocean base, or mountain range.

This is an important piece of the puzzle for the CASL algorithm. In global cir-

culation models, topography has a major influence on the flow and as such its

addition is essential to modelling realistic flows.

Within the CASL algorithms, there is a topographic contribution to both the

height, divergence and ageostrophic tendencies, arising from the differentiation of

the momentum equation (1.1), expressed as

Du

Dt
+ 2ΩE × u = −∇(ghtot) , (9.10)

where ghtot is the hydrostatic pressure and the total free surface height, htot, is

split into the fluid depth, h, and the height prescribed by the topography, hb, as

follows

Du

Dt
+ 2ΩE × u = −∇(g(h + hb)) . (9.11)
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Figure 9.2: The Gaussian hill problem. The circle represents a topographic
hill with Gaussian distribution, placed at various latitudes, as detailed.

———————————————

The mass continuity equation is the same as before, since this equation arises from

integrating ∇ · u = 0 over the fluid depth h, not the full depth.

In a similar method to the OPV balance, described in Chapter 7.2, the topography

is ramped up over a 3 day period to establish a non-trivial flow. This addition of

topography within the momentum equation and the main SWE equations (1.10)

to (1.12), generates a flow.

9.3 The Gaussian hill test case

As a simple test case, which will lead to the formation of gravity waves in a more

natural manner, a topographic hill with a default Gaussian distribution of height

half the fluid depth and a width of 15◦ was set up. This topographic structure

is then placed at varying latitudes φ = 0◦, 5◦, 15◦, 45◦... etc on a rigidly rotating

flow with the PV given by the relation q = 2ΩEz. The flow in the absence of

topography is therefore 0 in the rotating frame. A graphical representation is

shown in figure (9.2).
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Figure 9.3: Comparison of the energy in second and fourth-order CASL sim-
ulations for a mid-latitude topographic hill.

———————————————

9.4 Results

9.4.1 Finite differencing comparison

To begin with a reference case of a mid-latitude topographic hill, placed at 45◦

latitude, was run in order to compare the second and fourth-order numerical meth-

ods. To show the improvement in accuracy with the fourth-order algorithm, the

values for energy and angular momentum were again looked at for both algorithms

in this simple scenario.

The introduction of topography brings some changes to the calculation of the

energy and momentum within the system - indeed the angular momentum is no

longer conserved within the system, since the topography breaks the rotational

symmetry of the domain. The changes to energy, introduced in equation (7.1),

amount to replacing h̃ by h̃(h̃ + 2hb).
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Figure 9.4: Regression analysis for the fourth-order energy over 20 days.
———————————————

As shown in figure (9.3), the energy of the system is very well conserved in both

second and fourth-order algorithms, due to the system being much smoother than

the Rossby-Haurwitz test case already examined. Despite this, the fourth-order

algorithm does show a slight improvement in conservation. Over the twenty day

calculation, the energy in the second-order algorithm increases by 3%, whereas the

fourth-order algorithm actually returns to the same value, showing no increase at

all. The RMS error, calculated over the 20 days is 3.69 × 10−6 and 3.39 × 10−6

respectively, indicating a marginal increase in accuracy with the fourth-order finite

differencing.

Figure (9.4) gives a more detailed view of the energy values from the fourth-order

algorithm via a regression analysis. The energy values from the simulation are

shown as the blue dots, while the pink line is the best-fit line via regression. As

can be seen, the general trend of the data is an increase of 2% over 20 days.

Over a longer period of time, for the CA4−hg
δ,γ algorithm, the energy is nevertheless

well conserved in this simple test case. During a 100 day run, with the hill placed
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near in the equatorial region, the energy increases by 7%.

9.4.2 Effect of topographic placement on Kelvin waves

Next, the effects of placement of the topographic hill, with regards to the genera-

tion of equatorial Kelvin waves, shall be examined.

In order to excite Kelvin waves, it seems logical to place the hill near the equator.

In the following, a hill placed at latitudes between 0◦ and 15◦ shall be examined. To

visualise the Kelvin waves along the equator, the equatorial depth and velocity field

values were saved and the tendencies computed in order to remove the mountain

structure itself. Figure (9.5) gives a hodograph plot of the height tendency ∂hkw/∂t

at the equator, given a Gaussian hill structure placed at 5◦ latitude. Longitude

goes from left to right and time (0-10 days) from bottom to top. This shows clearly

the generation and propagation of Kelvin waves, with the diagonal lines visible

having a slope equal to c, the phase speed of the Kelvin waves.

Figure (9.6) shows the dependence of Kelvin wave production on the location of

the hill. Shown is the Kelvin wave amplitude (the RMS value of ∂hkw/∂t along the

equator) when the topographic hill is placed at 5◦ and then at 15◦. The amplitude

clearly reduces when the Gaussian hill is further from the equator. Figure (9.7)

shows in more detail the sensitivity of the Kelvin wave to the placement of the

hill. A hill placed directly over the equator generates the strongest Kelvin waves.

There is a marked reduction for a hill placement greater than 1◦ latitude and, as

shown in figures (9.8) and (9.10) (showing the time evolution of the Kelvin wave

amplitude for various hill locations), a hill placed at 45◦ still gives quantative wave

production at the equator, appearing to mirror the low-latitude results.
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Figure 9.5: Time plots of equatorial height tendency from a flow over a topo-
graphic hill placed at at 5◦ latitude.
———————————————
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Figure 9.6: Kelvin wave amplitude with hill at 5◦ and 15◦ over a 30 day
integration.

———————————————

Figure 9.7: Kelvin wave amplitude with hill at selected latitudes from 0◦ to
45◦ as shown.

———————————————
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Figure 9.8: Average Kelvin wave amplitude with the hill at selected latitudes,
showing the reduction in the amplitude of the Kelvin waves as the hill placement

is varied as per figure (9.7).
———————————————

Using the hodograph plots, we further investigate the results of Kelvin wave gener-

ation from mid-latitude and polar topography. Figure (9.9) shows how the struc-

ture of the equatorial waves changes with the position of the hill. At mid-latitude

there is a very unstructured appearance to the Kelvin wave amplitude, however

this again smoothes out as the hill moves to higher latitudes. It is possible that,

at higher latitudes, there are other gravity waves being produced that are prop-

agating from pole to pole. This may explain the “bands” seen in the equatorial

hodograph plot with the hill at 85◦.

To summarise, figure (9.10) shows the instantaneous amplitude of the Kelvin waves

at the equator for a hill placed at latitudes 0◦ to 90◦ in 5◦ increments at the times

stated. As can be seen, the amplitude rapidly drops as the topographic structure

is placed further from the equator. However, the effects of Kelvin wave amplitude

never completely diminish as the topography moves to higher latitudes. Indeed,

Kelvin waves are enhanced for topography placed at high latitudes, with a local
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Figure 9.9: Time plots of equatorial height tendency from a flow over a hill
placed at 45◦ and 85◦ latitude.

———————————————
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Figure 9.10: Kelvin wave amplitude at the equator with a Gaussian hill struc-
ture placed at the latitudes given along the x-axis at times t = 0, t = 10 and

t = 20 (days).
———————————————

maximum occurring for a hill placed at roughly 75◦. Again, this is possibly due

to gravity waves propagating from pole to pole.

This simple experiment shows there is a global impact of localised topography. In

fact, the method of “growing” the topography used here may be analogous to a

volcanic eruption (raising the fluid depth locally). The effects of volcanic eruptions

have been documented to reduce the global average temperature of the Earth by

around 0.5◦C, due to the large quantity of aerosol emissions. More significantly,

research by the University of Virginia has found that El Niño phenomena often

occur in years when there is a volcanic eruption in the tropical region (roughly 23◦

either side of the equator), [62]. In our idealised study, we have found that equa-

torial topography induces the strongest Kelvin waves, a main feature of ENSO.
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Figure 9.11: Kelvin wave amplitude with hill at 5◦ over 200 days.
———————————————

9.5 Conclusions for Kelvin wave analysis

In addition to previous analysis, a much longer 200 day integration was run in

order to determine the long-term impact of a hill placed 5◦ from the equator.

Figure (9.11) shows the amplitude of the Kelvin waves at the equator for that 200

day period. Whilst the pattern appears chaotic, after roughly 100 days one may

infer an oscillatory pattern over 22 to 30 days.

What has been shown in this chapter is that equatorial Kelvin waves diagnosed

within results from the CASL methods, are clearly seen to be easily generated

by topography in the equatorial region. Since these waves play a key part in the

ENSO mechanism, their analysis here provides an indication of their sensitivity to

disturbances near the equator, and is the first step to better understanding their

role in ENSO.
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9.6 Linking the Kelvin wave analysis to ENSO

phenomenon detailed in previous work

This section aims to provide value in the previous analysis of Kelvin waves and the

important role they play in the ENSO phenomenon by visiting previous work on

El Niño events. [21] describes how altimeter data has been filtered to show Kelvin

waves in the ocean thermocline. This imagery was then used to hypothesise a

link between atmospheric phenomenon, known as the Madden Julian Oscillation

(MJO), which displays westerly wind bursts, and the ENSO phenomenon, via the

resulting production of oceanic Kelvin waves, [34, 41]. In particular, [34] assumes

that the existing SST field is advected by anomalous currents to produce the

anomalous warming, seen in the first few months of the 1982 El Niño, induced

by downwelling Kelvin wave fronts. This connection was first hypothesised by

Gill [31] and subsequent numerical experiments with nonlinear oceanic models,

[34], have supported this basic premise. In this paper a primitive two-layer model

is initialised to the conditions seen in June 1982 and a zonally confined uniform

westerly wind patch was introduced, moving eastward 1 degree per day. This

shows similarities to the simplistic test case presented in the previous chapter and

proved to closely model the 1982 El Niño events.

The CASL method has captured the Kelvin waves in detail, allowing quick analysis

of the effect of varying the position of topography, creating a pertubation leading

to the generation of varying strengths of Kelvin waves. More recently, a case

study by Yu et. al in 2003 [79] also speculates the effects of westerly wind bursts

on the ENSO mechanism indicated by observation and data. This continuing line

of enquiry into the ENSO mechanism shows that the full extend of the inter-

relationships found between the ocean and atmosphere, leading to severe weather

events such as El Niño and La Nina are still not fully understood. It is the authors
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hope that analysis of the key dynamics, such as the Kelvin and Rossby waves, in

these systems, using more advanced and detailed modelling techniques lead to a

greater understanding and prediction of the ENSO phenomenon.



Chapter 10

Conclusions

Within this thesis variations of the CASL model have been outlined. The original

two-dimensional barotropic algorithm was modified to suit the SWEs in spherical

geometry. Several modifications of the original SWE algorithm were implemented

that led to significant improvements in accuracy, without compromising efficiency.

The unique merits of the CASL method include the representation of PV by con-

tours, detailed in Chapter 2.2.1, which allows the model to retain fine details of

this theoretically conserved field without severe detriment to the efficiency of the

algorithm. Finite differencing procedures, presented under simple test conditions

in previous chapters were modified to take advantage of this efficiency and again

increase accuracy for the main fields of depth, divergence and PV.

Focusing on a standard test case, the dynamical fields’ dependence on numerical

parameters was assessed. This led to further improvements in the algorithm,

demonstrated for the same test case. An important extension to this test case was

also implemented and this resulted in a more reproducible, rigorous numerical

analysis of the algorithm. The perturbation of the Rossby-Haurwitz test case

leads to some important messages: the original test cases, commonly used in

benchmarking numerical methods, may now be revised to more rigorously test the

109



Chapter 10. Conclusions 110

numerics on the ever increasing power of today’s computers. This allows one to

focus on areas commonly thought of as complex, not only gaining feedback quickly,

but also to a higher degree of accuracy. In addition, the time-step used by many

numerical methods was shown to present an issue and a maximum time-step was

recommended for use in this test case in order to ensure an acceptable degree of

accuracy.

Using the results from the test case extension, an improved numerical method

was detailed and the repercussions documented, with back-to-back testing of the

two methods. This improved algorithm, exploiting the near balance exhibited by

shallow-water flows at moderate Froude and Rossby numbers, showed an increase

in accuracy, with conservation improved and dynamical fields more accurately

represented.

After taking inspiration from many talks given at a conference on modern mathe-

matical methods in physical oceanography in Colorado, the CASL algorithm was

applied to study the genesis of the equatorial Kelvin waves, with emphasis on

linking the results to the El Niño Southern Oscillation phenomenon in Chapter

8. Whilst a complete understanding of this phenomenon is still some way off, the

effect of topography at varying latitudes on equatorial Kelvin waves was examined

and some interesting results were gained from this analysis.

10.1 Further areas of research within the Vortex

Dynamics Group, St Andrews

The successful inclusion of simple topography acting in the CASL method within

this thesis and the “real-world” ENSO mechanism test case presented leads to the

idea for development of realistic topography. This would be a major undertaking,
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Figure 10.1: Satellite water vapour data.
———————————————

but could lead to significant gains in further development within realistic test

conditions. Figure (10.1) gives an indication as to how complex true atmospheric

dynamics can be, even on a global scale.

In addition, for longer duration test cases, a slight relaxation of overall PV conser-

vation may improve the results gained. This relaxation is seen within atmospheric

and oceanic observations and certain constraints, placed on the properties of mix-

ing and transport of particles across atmospheric layers, may thus be able to be

revised [36]. The introduction of non-conservative effects acting on the PV field

would then allow processes such as thermal forcing and Ekman transportation to

be included within the algorithm [14].

Work currently being undertaken by members within the Vortex Dynamics group

includes the testing and development of a multi-layer model and the implications

of this advance are wide ranging. Examining the stratification of the atmosphere

and oceans — beyond the highly-idealised shallow-water approximation made here

— is important for realistic modelling. For example, the Atlantic meridional over-

turning circulation carries warmer waters to northern latitudes, returning the cool
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water towards the equatorial regions. The slowing of this process over the past 50

years has implications for the climate over Europe [5] and, as such, carries much

weight in the search for an accurate global model.

Specific to the CASL algorithm, Dr. Ali Mohebalhojeh has recently implemented

an extension to the CAδ,γ algorithm outlined in Chapter 6 to multiple layers, with

diabatic forcing. The algorithm is applicable to models of the atmosphere from

middle troposphere to mesosphere. As a continuation, this shall be tested and fur-

ther extended to include continuous stratification with comprehensive treatment

of lower and upper boundaries.

Finally, to demonstrate the speed at which the CASL method is able to resolve fine-

scale detail, Prof Dritschel’s comparison of CASL and pseudo-spectral methods at

resolutions of 5122 for the CASL method vs the 40962, required by the pseudo-

spectral algorithm used, for a Navier-Stokes simulation show that much higher

Reynolds numbers1, Re, are able to be achieved with the CASL model.

Figure (10.2) shows the pseudo-spectral and CASL algorithm comparison at the

resolutions above. With the very high Reynolds numbers able to be captured

within the CASL method, at a fraction of the computational cost, many more fine

detail structures are retained which do contribute to the flow. The overall time

taken for the models to complete the run is vastly different due to the very high

resolution required by the pseudo-spectral method in order to achieve a suitable

level of detail for comparison, clearly a major advantage of the CASL method.

1Within geophysical fluid dynamics, such high Reynolds numbers are incredibly difficult to
obtain in numerical simulation and this may be seen as a major stumbling block for many models
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PS CASL

Figure 10.2: PV fields at days 12 (top) and 16 (bottom) for a Navier-Stokes
flow. The pseudo-spectral method, at 40962 resolution, took 8 days on 32 pro-
cessors (left) and the CASL method, at 5122 resolution, required just 0.1 days

on 1 processor (right).
———————————————
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