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Abstract

This Thesis probes the usefulness of non-classical correlations within imperfect continuous
variable decoherent quantum systems. Although a consistent function and practical useful-
ness of these correlations is largely unknown, it is important to examine their characteristics
in more realistic dissipative systems, to gain further insight into any possible advantageous
behaviour. A bipartite separable discordant state under the action of controlled loss on
one subsystem was considered. Under these conditions the Gaussian quantum discord not
only proved to be robust against loss, but actually improves as loss is intensified. Harmful
imperfections which reduce the achievable level of discord can be counteracted by this con-
trolled loss. Through a purification an explanation of this effect was sought by considering
system-environment correlations, and found that a flow of system-environment correlations
increases the quantumness of the state. Entanglement recovery possibilities were discussed
and revealed the importance of hidden quantum correlations along bi-partitions across the
discordant state and a classically prepared “demodulating” system, acting in such a way as
to partially cancel the entanglement preventing noise. Entanglement distribution by sepa-
rable states was studied by a similar framework, in an attempt to explain the emergence of
quantum entanglement by a specific flow of correlations in the globally pure system. Dis-
cord appears to play a less fundamental role compared to the qubit version of the protocol.
The strengthening of non-classical correlations can be attributed to a flow of classical and
quantum correlations. This work proves that discord can be created in unique ways and,
in select circumstances, can act to counteract harmful imperfections in the apparatus. Due
to this advantageous behaviour discord indeed may ultimately aid in more applicable “real
world” applications, which are by definition decoherent.
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Chapter 1

Introduction

The undoubtable crowning achievement of modern science is the construction of a simple

and elegant description of the universe, as composed of seemingly inexplicable and esoteric

phenomena. The complexities of the macroscopic world can be remarkably attributed to

the behaviour of just three particles and four forces.

All physical objects are constructed from varying configurations of three particles: neu-

trons, protons and electrons, later discovered to be themselves composed of smaller entities

known as quarks. Underpinning these building blocks is quantum theory. Three of the four

forces, namely the strong and weak nuclear forces in operation within the atomic nucleus

and the electromagnetic force holding atoms and molecules together, can be best described

by quantum theory. The fourth force is perhaps the most commonly known but is one for

which, as yet, there is no sufficient and satisfactory quantum description, the force of gravity.

Quantum theory was based on a foundation of unexpected and bewildering natural phe-

nomena not explained by any existing scientific framework at the time of its conception. The

term ‘quantum’ was introduced into physics in 1901 by Max Planck in context of “quanta

of matter and electricity”. Lightly speaking, Planck concluded from his work on black body

radiation that light must be emitted in packets of energy called ‘quanta’ [1], originating

from the Latin referring to a discrete quantity. Whilst this concept was considered as a

purely mathematical manoeuvre, it was later supported by the work of Albert Einstein on

the photoelectric effect, thus concluding that light appears to exhibit legitimate particle

properties [2]. This was revolutionary since the only existing description of light was based

on the unquestionable work of James Clerk Maxwell, that light is an electromagnetic wave

propagating through space [3]. Combining these discoveries lead to what is referred to as

the wave-particle duality of light. Duality is mathematically represented by a combination

of Planck’s postulation of the proportionality between the frequency of a quanta of light

(or photon) and its energy, E = h̄ω, and de Broglie’s relation between momentum and

wavelength, λ = h̄/p later proposed in 1925.

In 1926, Schrödinger published his wave equation based on classical energy conservation

2



CHAPTER 1. INTRODUCTION 3

using quantum operators, solutions of which are the wave functions for the quantum system,

ih̄
∂

∂t
Ψ = ĤΨ

where the wavefunction formulation treats the particle as a quantum harmonic oscillator.

This marks the inspiration for the Copenhagen interpretation of quantum mechanics, relating

the squared modulus of the wave function, to the probability density of measuring a particle

at a given time and place.

A generalisation of the wavefunction description of a quantum state is the density op-

erator. This is used to include the possible uncertainty in state preparation. The density

operator is defined using a statistical ensemble of quantum states {|Ψn〉} in Hilbert space

with probabilities {pn} as

ρ̂ =
∑
n

pn|Ψn〉〈Ψn|.

By choosing an arbitrary basis {|i〉}, one can define the density matrix as a positive semi-

definite1, normalised Hermitian matrix,

ρ =
∑
ij

|i〉〈i|ρ̂|j〉〈j|.

A density matrix is seen to describe the two general classes of state, those that are considered

as pure states with Tr[ρ2] = 1, and a statistical mixture of pure states known as mixed states

with 0 ≤ Tr[ρ2] < 1.

Born from quantum theory was the concept of quantum information. The birth of

quantum information is considered to be in the paper published by Einstein, Podolsky and

Rosen in 1935 [4] which introduced questions leading the concept of quantum entanglement

— although this term was later officially coined by Schrödinger [5]. The thought experiment

considered a so-called EPR state of two systems A and B, each described by two conjugate

quantities, which interact briefly and then sent to two separate locations. The aim of

the thought experiment was to conclude the incompleteness of Heisenberg’s uncertainty

principle [6], which states that if one quantity is measured and thus fully determined, then

the other conjugate quantity of the same system must become indeterminate. The EPR

paradox concluded that it was possible that if one conjugate quantity of A is determined,

then the corresponding quantity of system B will be undetermined even if no contact occurs

between the two systems. The conclusion of this result was that the total information of a

bipartite system AB is not merely composed of the joint information of the two individual

systems. This “spooky action at a distance” is what is defined as quantum entanglement.

Imperative work by Ben Schumacher lead to the revolutionary interpretation that quan-

tum information is physical, and as such can be measured and quantified [7]. Quantum

information is measured in units of qubits (or quantum bits), a quantum analogy to the

classical bit. A qubit is seen as an informational representation of a physical particle itself,

and since any physical object can be described by its information, a qubit is treated as a

one-to-one correspondence to a physical particle. Much like a classical bit, a qubit has two

1A positive semi-definite matrix M is one which satisfies x∗Mx ≥ 0 for all complex matrices x.
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possible states denoted |0〉 and |1〉, however the most notable difference is that a qubit may

be in both configurations simultaneously. It is possible for a qubit to be in a linear combina-

tion of states |ψ〉 = α|0〉+ β|1〉, more commonly known as a superposition state, which is at

the heart of quantum entanglement in larger systems containing two or more qubits. α and

β are complex numbers and their square modulus define the probability of being in either of

the two extreme configurations. With having two states, which form an orthonormal basis of

a two-dimensional vector space, qubits are said to exist in a finite dimensional Hilbert space.

A combination of many qubits then exists in a larger Hilbert space defined as H =
⊗n

i=1Hi.
One indispensable description in quantum information processing is the von Neumann

entropy defined as

S(ρ) = −Tr[ρ log ρ], (1.1)

with ρ being the density matrix of a state. The entropy provides an indication to the level

of disorder within a system such that if S(ρ) = 0, the state is considered to be pure, hence

the entropy of a system indicates its departure from a pure state system, or the degree of

mixing present. This tool is in turn used to define the entire information contained within

a bipartite state beyond that described by the joint entropy of the two individual systems

alone, termed the total quantum mutual information, i.e.,

Iq(ρAB) = S(ρA) + S(ρB)− S(ρAB). (1.2)

Developed from the concept of entropy and mutual information was quantum discord. Dis-

cord is a measure of correlations in a bipartite mixed state which are classified as non-classical

and so includes quantum entanglement. There however exist a set of states which, although

are strictly non-classical, do not possess quantum entanglement. The ultimate usefulness

and practical implications of these states have been a topic of immense interest and continue

to attract much attention. The following Thesis aims to provide new insight to the func-

tionality of states which possess these class of correlations, particularly within dissipative

systems with numerous sources of loss.

The outline of this Thesis is as follows: The necessary foundational material will be con-

tained within Part I divided into Chapter 2 which will provide an essential introduction to the

extension into infinite-dimensional Hilbert space in the form of continuous variable quantum

optical principles; Chapter 3 will give an extensive explanation of quantum entanglement

including methods of quantification; Chapter 4 will elaborate on the possible correlations by

discussing non-classicality in general, including quantum discord. The knowledge of these

Chapters will then be applied in Part II. Chapter 5 will introduce an original scheme in-

volving a bipartite dissipative system, serving as the main focus of this Thesis. Relating to

this, in the latter half of Chapter 5 a previously unconsidered insight will be given to the

protocol for entanglement distribution via separable ancilla. Chapter 6 will then contain

some concluding remarks and highlight the main results and insights introduced.



Chapter 2

Continuous Variable Systems

With the rapid development of quantum information science in recent years, and the goal

of realisable quantum technologies in the near future, it is inspiring how the quantum inter-

pretation of the physical world has progressed. In particular, the revolutionary development

of the quantum mechanical interpretation of light. Until Einstein in 1905, light was solely

thought of as a classical object with the behaviour of a wave. It was not until Lanard’s

work on the photoelectric effect that later prompted Einstein to propose that light, instead

of completely filling space, possesses a “grainy” structure. Of course we now know these

‘grains’ to be wave packets of light known as photons. Consequentially, light exhibits both

the properties of a wave and also of being composed of particles [2]. This was the first formal

proposal of a quantum effect and earned Einstein a Nobel Prize in 1921.

Now in the 21st century further revelations are ever-occurring particularly with the fields

of optical computing and transformation optics. The content of this Chapter is designed

to provide a fundamental introduction to the quantum properties and mathematical repre-

sentation of light crucial to studies in later Chapters. We begin by introducing the field of

quantum optics in general and the main connections to quantum informational concepts.

Until finally converging to a distinct set of states of which we are concerned, namely, Gaus-

sian states. Everything introduced in this Chapter (and much more) has been covered

extensively in literature such as [8–12].

2.1 Introductory Quantum Optics

Quantisation of Multimode Free Electromagnetic Field

During the years of 1861 and 1862, Maxwell introduced a set of intrinsic partial differential

equations relating the electric and magnetic fields [3]. Maxwell was one of the first to

determine that the speed of propagation of an electromagnetic wave was the same as the

speed of light, thus contributing to the conclusion that electromagnetic waves and visible

light were one and the same. The electric field E will induce a local dipole moment in

a dielectric medium since it will cause the charges to move, this will cause an electric

displacement field D = ε0E in free space, where ε0 is the permittivity of free space. The

5
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magnetic field H and magnetic induction B are related similarly as H = µ0B, where µ0 is

the permeability of free space. Free space refers to the assumption that there are no present

sources of radiation and no charges. The formal presentation of Maxwell’s equations are of

the form:

∇×E = −∂B

∂t
, ∇×H =

∂D

∂t
, ∇ ·B = 0, ∇ ·D = 0. (2.1)

Note that the permittivity, ε, and permeability, µ, of the material through which the light

travels are unity since we are concerned with free space only. The first relation is Faraday’s

law of induction, the second is Ampère’s law, amended by Maxwell to include the displace-

ment current, the third and fourth relations are Gauss’ laws for the electric and magnetic

fields.

The quantisation of the electromagnetic field is done by promoting the classical fields

to operators and impose commutation relations, thus establishing the interpretation that a

classical field is an expectation value of a quantum observable. The promoted field operators

Ê, D̂, Ĥ, B̂ thus now describe a quantum field. The electric and magnetic induction fields

may now be cast in terms of their vector potential Â, which satisfies the wave equation and

the Coulomb gauge condition

∇2Â− 1

c2
∂2Â

∂t2
= 0 and ∇ · Â = 0, (2.2)

where

Ê = −∂Â

∂t
and B̂ = ∇× Â. (2.3)

subject to the boundary conditions that the fields will be negligible at infinity. Note that

the speed of light c in the wave equation (2.2) is related to free space parameters as c =

(ε0µ0)−1/2. The classical vector potential can be written as a superposition of plane waves,

given in the form

A(r, t) =
∑
k,s

eks

[
Aks(t)e

ik·r +A∗ks(t)e
−ik·r] , (2.4)

where Aks(t) is the amplitude of the field, with k the wave vector, and eks the real polari-

sation vector of two orthogonal, independent polarisations, s and s′. The quantised vector

potential is then recast as

Â(r, t) =
∑
k,s

(
h̄

2ωkε0V

) 1
2

eks

[
âks(t)e

ik·r + â†ks(t)e
−ik·r

]
, (2.5)

where ωk is the frequency of the mode. Continuing from this, the electric and magnetic field

operators can be written, using Eq.’s (2.3), as

Ê(r, t) = i
∑
k,s

(
h̄ωk
2ε0V

) 1
2

eks

[
âkse

i(k·r−ωkt) − â†kse
−i(k·r−ωkt)

]
,

B̂(r, t) =
i

c

∑
k,s

(
h̄ωk
2ε0V

) 1
2
(

k

|k|
× êks

)[
âkse

i(k·r−ωkt) − â†kse
−i(k·r−ωkt)

]
,

(2.6)
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respectively, the operator âks is defined such that

Âks =

(
h̄

2ωkε0V

) 1
2

âks. (2.7)

The total energy of the electromagnetic field is given by the Hamiltonian

Ĥ =
1

2

∫
V

(
ε0Ê

2 +
1

µ0
B̂2

)
dV, (2.8)

which, by substituting in Eq.’s (2.6) is recast as

Ĥ =
1

2

∑
k,s

h̄ωk

(
â†ksâks + âksâ

†
ks

)
. (2.9)

These operators in turn satisfy the commutation relations,

[âk,s, âk′,s′ ] = [â†k,s, â
†
k′,s′ ] = 0,

[âk,s, â
†
k′,s′ ] = δkk′δss′ ,

(2.10)

with âk,s and â†k,s being defined as the photon annihilation and creation operators respec-

tively. Acting together to define the photon number operator as n̂ks = â†k,sâk,s. The photon

number is raised and lowered by the creation and annihilation operators respectively, placing

the state into a different eigenstate, |n〉, of the photon number operator. It is important to

note that, when considering a vacuum, the energy of the state |0〉 is non-zero, i.e., it contains

random fluctuations. This can be interpreted as an analogue of the zero point oscillations

in a harmonic oscillator in its ground state.

The Fock (or number) states, |n〉 are defined as the eigenstates of the number operator

n̂. The Fock state then represents a state of n photons. Let us consider now application of

the creation and annihilation operators to a single-mode Fock state,

â|n〉 =
√
n|n− 1〉, where â|0〉 = 0,

â†|n〉 =
√
n+ 1|n+ 1〉.

(2.11)

Note that when the annihilation operator is applied to the ground state |0〉, this must return

zero. Intuitive as this is the lowest energy state containing zero photons and thus cannot be

brought to a lower energy state with n < 0. From this, the photon number n can then be

interpreted as the number of excitations above the vacuum state, i.e.,

|n〉 =

(
â†
)n

√
n!
|0〉. (2.12)

In order to progress with the quantisation of the field, the canonically conjugate oper-

ators x̂k,s and p̂k,s must be introduced, modelling observable quantities and satisfying the
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following similar commutation relations,

[x̂k,s, x̂k′,s′ ] = [p̂k,s, p̂k′,s′ ] = 0,

[x̂k,s, p̂k′,s′ ] = ih̄δkk′δss′ .
(2.13)

Within the multimode setting, the so-called annihilation and creation operators can be

defined in terms of these canonically conjugate operators as,

âks = (2h̄ωk)
− 1

2 [ωkx̂k,s + ip̂k,s]

â†ks = (2h̄ωk)
− 1

2 [ωkx̂k,s − ip̂k,s]
(2.14)

respectively, with the Hamiltonian of the electromagnetic field in Eq. (2.9) becoming recast

as

Ĥ =
∑
k,s

h̄ωk

(
â†ksâks +

1

2

)
,

=
∑
k,s

h̄ωk

(
n̂ks +

1

2

)
,

(2.15)

using the definition of the photon number operator n̂ks = â†ksâks.

Fock (Number) States

The generalised Fock state of a multimode field is the product of all the Fock states in the

field and so is of the form,

|{nj}〉 =
∏
j

(
â†j

)nj√
nj !
|{0}〉, (2.16)

where {nj} is the set of all Fock states for j modes. The energy of a Fock state is given by

eigenvalues of the Hamiltonian,

Ĥ|nj〉 = Ej |nj〉 =
∑
j

h̄ωj

(
nj +

1

2

)
, (2.17)

hence the energy of the vacuum state is E0 = 1
2 h̄ω0. An important property of Fock states

is that they form a complete set of orthonormal states, i.e.,

〈nj |nk〉 = δj,k and
∑
j

|nj〉〈nj |= 1. (2.18)
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Quadrature States

To begin we must reintroduce the operators x̂ and p̂ termed as quadrature operators defined

in the most simple form using Eq.’s (2.14) with h̄ = 1 as,

x̂ =
1√
2

(
â† + â

)
,

p̂ =
i√
2

(
â† − â

)
,

(2.19)

which appear in the real and imaginary components of the “complex” amplitude â as,

â =
1√
2

(x̂+ ip̂) , (2.20)

In quantum optics the common interpretation of these operators are as the conjugate “po-

sition” and “momentum” of a quantum system in phase-space due to the commutation

relation it satisfies,

[x̂, p̂] = i. (2.21)

However, in actuality they are loose interpretations of these physical quantities, since for a

single photon the concept of position and momentum are not easily defined. These labels are

chosen as these operators exhibit a similar connection as between position and momentum.

Alternate definitions of these quadratures are as the “amplitude” and “phase” of light,

since they satisfy the same commutation relation. The quadrature states are defined as the

eigenstates of the quadrature operators and similarly to Fock states (discussed above) are

orthogonal and complete

x̂|x〉 = x|x〉, 〈x|x′〉 = δ(x− x′),
∫ ∞
−∞
|x〉〈x|dx = 1l,

p̂|p〉 = p|p〉, 〈p|p′〉 = δ(p− p′),
∫ ∞
−∞
|p〉〈p|dx = 1l.

(2.22)

From these quadrature operators it is possible to define the position and momentum distri-

butions associated with a state with wavefunction ψ(x) as

ψ(x) = 〈x|ψ〉, ψ̃(p) = 〈p|ψ〉, (2.23)

where the quadrature states are simply related by a Fourier transform. More generally

speaking, the position and momentum distributions for the nth Fock state are defined as,

ψn(x) = 〈x|n〉 =
Hn(x)√
2nn!π1/4

e−
x2

2 ,

ψ̃n(p) = 〈p|n〉 =
Hn(p)√
2nn!π1/4

e−
p2

2 ,

(2.24)

where Hn are the Hermite polynomials.



CHAPTER 2. CONTINUOUS VARIABLE SYSTEMS 10

Coherent States

Coherent states are a set of states seen to give rise to the most sensible classical limit, and

thus are termed the “most classical” quantum states [13–15]. Coherent states are defined

with respect to the creation and annihilation operators as follows

â|α〉 = α|α〉, 〈α|â† = α∗〈α|, (2.25)

where α is an arbitrary complex number defined as α = |α|eiθ with |α| and θ the amplitude

and phase respectively. The normalised form of a coherent state is provided through the

completeness of Fock states as,

|α〉 =

∞∑
n=0

cn|n〉 = exp

(
−|α|

2

2

) ∞∑
n=0

αn√
n!
|n〉. (2.26)

Substituting Eq. (2.12) we have an expression for the coherent state as,

|α〉 = exp

(
−|α|

2

2

)
exp(â†α)|0〉. (2.27)

Since it can be written that exp(−α∗â)|0〉 = |0〉, the coherent state can be recast as,

|α〉 = D̂(α)|0〉, with D̂(α) = exp

(
−|α|

2

2

)
exp(â†α)exp(−α∗â). (2.28)

The operator D̂(α) is a unitary operator,

D̂†(α) = D̂(−α) = [D̂(α)]−1, (2.29)

which acts as a displacement operator. Hence a coherent state is interpreted as a displaced

vacuum state, or displaced form of the ground state of the harmonic oscillator.

Properties of the coherent states that are of note are:

• the probability of finding n photons in a coherent state |α〉 is given by a Poisson

distribution, namely,

p(n) =
〈n〉ne−〈n〉

n!
(2.30)

where 〈n〉 = 〈α|â†â|α〉 = |α|2 is the mean photon number.

• the coherent state is a minimum uncertainty state given by the saturated Heisenberg’s

uncertainty principle, i.e.,

∆x∆p =
1

2
, (2.31)

where ∆x is the standard deviation of x such that ∆2x is the variance of x. Uncertainty

will be discussed in more depth later in this Section.

• coherent states form an over complete set. This follows from the completeness of Fock

states discussed earlier. Summing over n photons is simply the unit operator, such
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that
1

2

∫
|α〉〈α|dα = 1l, (2.32)

which acts as the completeness relation for coherent states. In addition, coherent

states are non-orthogonal with,

〈α|β〉 = exp

(
−|α|

2

2
− |β|

2

2
+ α∗β

)
⇒ |〈α|β〉|2= exp(−|α− β|2)), (2.33)

since they are not eigenstates of a Hermitian operator.

Coherent states are of particular interest as they describe the state of ideal laser light

and hence allows for the physical interpretation and experimental realisation of quantum

concepts.

Uncertainty and Squeezing

The uncertainty of canonically conjugate operators, related by the widely used uncertainty

relation presented by Heisenberg, is at the heart of quantum mechanics [6]. Considering the

quadrature operators given in Eq. (2.19) with commutation relation in Eq. (2.21) leads to

Heisenberg’s uncertainly relation for quadrature observables as

∆x∆p ≥ 1

2
. (2.34)

Minimum uncertainty states, e.g. coherent states, are those for which this relation is satu-

rated. Consider now the instance where the uncertainty of one observable is varied within

a minimum uncertainty state. If ∆x is decreased, in order for Heisenberg’s relation to hold,

the uncertainty of the corresponding canonically conjugate observable ∆p must increase.

This proportional change in uncertainty is a process known as “squeezing”. As a conse-

quence if ∆2x or ∆2p < 1
4 , then the state is squeezed. Considering now the extremal case

where the exact position x in the minimum uncertainty state is known. By Heisenberg’s

uncertainty principle, the uncertainty of the momentum will be infinity, thus implying that

both canonically conjugate quadratures cannot simultaneously be known to an exact cer-

tainty at a given time. Perfect (or infinite) squeezing will correspond to an unphysical state.

The squeezing is parameterised by the squeezing parameter, r, such that the variances of

the quadratures read as

∆2x =
1

2
e−2r and ∆2p =

1

2
e2r. (2.35)

Moreover, as will be discussed in the next Section, the squeezing of a state can be imple-

mented as a unitary operation on the vacuum state |0〉, with the squeezing operator defined

as

Ŝ(r) = exp
[r

2

(
(â†)2 − â2

)]
, (2.36)

first introduced in [16–18]. In fact all minimum uncertainty states are displaced squeezed

vacuum states [19].
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Hilbert Space

The Hilbert space was originally introduced as a generalisation to Euclidean three-dimensional

space. A set of quantum states known as pure states may be represented by unit vectors

(or state vectors) residing in a complex Hilbert space, also known as the state space. The

remaining set of quantum states are known as mixed states, corresponding to a statistical

mixture of pure states. It is interesting to note that different distributions of pure states can

generate physically indistinguishable, equivalent, mixed states. Both pure and mixed states

are described by their so-called density matrix, ρ, which is a positive, semi-definite Hermitian

matrix in Hilbert space. The density matrix is defined by choosing an orthonormal basis

{|un〉} such that

ρmn =
∑
i

pi〈um|ψi〉〈ψi|un〉 = 〈um|ρ̂|un〉 (2.37)

where ρ̂ is the density operator given by

ρ̂ =
∑
i

pi|ψi〉〈ψi|, (2.38)

where pi is the probability of the system being in a states |ψi〉. A bipartite state ρ =

ρ1 ⊗ ρ2 will then exist in the composite Hilbert space i.e., the tensor product of individual

Hilbert spaces, H = H1 ⊗ H2. When discussing continuous variable systems, an infinite-

dimensional Hilbert space is considered. Hence a vacuum or coherent state, for example,

are pure quantum states in an infinite-dimensional Hilbert space.

Let us now consider the physical description of quantum states and the mathematical

space in which they are seen to exist. As mentioned briefly in the description of classes of

states, this will involve the introduction of phase-space as well as the probabilistic nature of

quantum systems.

2.2 Phase-Space Quasi-Probability Distributions

2.2.1 Wigner Function

Classically it is possible to define a system as being at a single point in phase-space described

by a pair of incompatible observables, e.g., position and momentum. However, due to

Heisenberg’s uncertainty principle, it is not feasible to observe a system’s position and

momentum simultaneously. If an ensemble of particles is considered, the results would form

a statistical representation of the system as probability distributions P (x) and P (p), with

the joint distribution describing the entire state. The Wigner function was introduced as

the quantum analogue to these distributions and was one of the earliest introduced quasi-

probability distributions [20]. The phase space probability distribution has as a one-to-one

correspondence with the density matrix. For an arbitrary density operator ρ̂ corresponding

to a quantum state the Wigner function is defined as

W(x, p) =
1

2πh̄

∫ +∞

−∞

〈
x+

q

2

∣∣∣ ρ̂ ∣∣∣x− q

2

〉
eipq/h̄dq, (2.39)
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where
∣∣x− q

2

〉
are the eigenkets of the position operator. This can be derived as the Fourier

transform of the Weyl ordered characteristic function. If the state with density matrix ρ is

a pure state then the Wigner function will read

W(x, p) =
1

2πh̄

∫ +∞

−∞
φ∗
(
x+

q

2

)
φ
(
x− q

2

)
eipq/h̄dq. (2.40)

Integrating over the position (momentum) will yield the probability density for the mo-

mentum (position) variable, respectively, i.e.,∫ +∞

−∞
W(x, p)dp =

1

2πh̄

∫ +∞

−∞

∫ +∞

−∞
φ∗
(
x+

q

2

)
φ
(
x− q

2

)
eipq/h̄dpdq

=

∫ +∞

−∞
φ∗
(
x+

q

2

)
φ
(
x− q

2

)
δ(q)dq

= |φ(x)|2

(2.41)

The position (momentum) space wavefunction can then be transformed into co-ordinate

space by a Fourier transform. Although the Wigner function can be decomposed into prob-

ability densities of position and momentum, it is however not a true probability distribution

as it can become negative for some non-classical states and it is of course not possible to mea-

sure both position and momentum simultaneously. It is for these reasons that the Wigner

function is termed as a quasi-probability distribution.

Key properties that define the Wigner representation are given in [20, 21] and outlined

as:

• The Wigner function is real and normalised∫∫
all space

W(x, p)dxdp = 1, W(x, p) =W∗(x, p). (2.42)

• A rotation in phase-space by a unitary operator U(θ) = eiθ is simply given by

ρ→ U(θ)ρU†(θ)

W(x, p)→W(x cos θ − p sin θ, x sin θ + p cos θ).
(2.43)

The Wigner function is also bounded by the constraint that

|W(x, p)|≤ 1

π
, (2.44)

which stems from expressing the Wigner function using Wigner’s formula and the

Cauchy-Schwarz inequality1 so that

|W(x, p)|2 ≤ 1

(2π)2

∫ ∞
−∞

∣∣∣〈x− q

2
|ψ
〉∣∣∣2 dq ∫ ∞

−∞

∣∣∣〈x+
q

2
|ψ
〉∣∣∣2 dq =

1

π2
(2.45)

1The Cauchy-Schwarz inequality states that for two square integrable complex valued functions f and g;
|
∫
f∗(x)g(x)dx|2≤ (

∫
|f(x)|2dx)(

∫
|g(x)|2dx).



CHAPTER 2. CONTINUOUS VARIABLE SYSTEMS 14

• One of the more significant properties of the Wigner function is the overlap formula.

This property is remarkable as it allows to calculate expectation values in a classical

fashion. Consider first two operators (not necessarily Hermitian) Â1 and Â2,

Tr[Â1Â2] = 2π

∫ +∞

−∞

∫ +∞

−∞
W1(x, p)W2(x, p)dxdp

=

∫ +∞

−∞

∫ +∞

−∞

〈
x+

q

2

∣∣∣ Â1

∣∣∣x− q

2

〉〈
x+

q

2

∣∣∣ Â2

∣∣∣x− q

2

〉
dqdx

=

∫ +∞

−∞

∫ +∞

−∞
〈x′| Â1 |x′′〉 〈x′| Â2 |x′′〉 dx′dx′′

=

∫ +∞

−∞
〈x′| Â1Â2 |x′〉 dx′.

(2.46)

In setting the operators to a density operator ρ̂ and an operator Â this is recast as,

Tr[ρÂ] = 2π

∫ +∞

−∞

∫ +∞

−∞
Wρ(x, p)WA(x, p)dxdp. (2.47)

The notability of this is that it will give the expectation values of the state ρ, where

Wρ(x, p) will represent the classical phase-space density and 2πWρ(x, p) the physical

quantity averaged with respect to WA(x, p).

Although the Wigner function is the most predominantly used quasi-probability distribu-

tion, others exist which provide alternative advantages. Namely the Q-function [22], the

P-function, classified with the Wigner function as s-parameterised quasi-probability distri-

butions [23,24]. This Thesis will only require the use of the P-function which is introduced

in the next Section.

2.2.2 Glauber-Sudarshan P-function

The Glauber-Sudarshan P-function is an alternative representation of the phase-space dis-

tribution of a quantum system [25, 26]. Unlike the Wigner function, the P-function is a

quasi-probability distribution in which observables are expressed in normal order, i.e., cre-

ation operators to the left and annihilation operators to the right. This representation is

sometimes preferred over alternative representations describing light in phase-space since

typical optical observables, such as the photon number operator, are naturally expressed

in normal order, n̂ = â†â. The density matrix of a coherent state is defined using the

P-function as,

ρ =

∫
P(α)|α〉〈α|d2α, (2.48)

where P(α) is real since ρ is Hermitian, and since it is a probability distribution in phase-

space,

Tr(ρ) =

∫
P(α)

∑
n

〈α|n〉〈n|α〉d2α = 1. (2.49)



CHAPTER 2. CONTINUOUS VARIABLE SYSTEMS 15

If a quantum state has a classical analogue e.g. a coherent state, then P(α) is non-

negative everywhere, typical of an ordinary probability distribution. However, if the quan-

tum system has no classical analogue (it is non-classical), for example an entangled system,

then P(α) is ill-defined. It will be negative somewhere or is more singular than a Dirac delta

function. The concept of non-classicality will be discussed in greater detail in Chapter 4.

The explicit form of the P-function reads as,

P(α) =W(α)e−
1
2 |α|

2

=
e−

1
2 |α|

2

π

∫
〈−u|ρ|u〉D̂(α) d2u

=
e

1
2 |α|

2

π

∫
〈−u|ρ|u〉e−uα

∗+u∗α d2u, where D̂(α) = e|α|
2−uα∗+u∗α,

(2.50)

where |u〉 and |−u〉 are coherent states and α = a+ib, achieved by taking the reverse Fourier

transform of 〈−u|ρ|u〉.
Now that an effective representation of quantum states has been presented, let us now

converge to a particular and unique set of quantum states classified as Gaussian. It is this

set of states that this Thesis will focus on, for reasons which will become apparent in the

next Section.

2.3 Gaussian States

In quantum information theory there is focus on a specific set of quantum states known

as Gaussian states, described by a Gaussian Wigner function. These states are consid-

ered for various reasons, the more relevant of which is that Gaussian states and Gaussian

maps (maps that transform one Gaussian state to another) can be described by a simple

mathematical formalism, known as the symplectic formalism. Examples of these are squeez-

ing, displacements, rotations and beamsplitter transformations. Another valid advantage is

when considering an experimental setting, Gaussian states are much more readily available

in that vacuum and coherent state are Gaussian, and Gaussian maps are easily experimen-

tally achievable. Vast literature exists on Gaussian states, some great sources are provided

in Ref. [27–30].

There exists a unique phase-space representation for an N -mode Gaussian state described

by a Gaussian Wigner function of the form2,

W(x1, p1, . . . , xN , pN ) =
exp

[
−
(
R> − d>

)
γ−1 (R− d)

]
πN
√

detγ
(2.51)

where R = (x1, p1, . . . , xN , pN )> and d = (〈x1〉, 〈p1〉, . . . , 〈xN 〉, 〈pN 〉)> is a vector of the first

moments i.e. displacements. The matrix γ is the covariance matrix describing the Gaussian

2Note that the commutation relation used here is [x̂j , p̂k] = iδjk, other definitions are used with use of
the commutation relation [x̂j , p̂k] = 2iδjk
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Figure 2.1: Wigner function representations of a vacuum state (left) and squeezed vacuum state
in phase-space (right).

state and is defined for [x̂i, p̂j ] = iδi,j as

γlm =
〈
R̂lR̂m + R̂mR̂l

〉
− 2〈R̂l〉〈R̂m〉. (2.52)

One example of a Gaussian Wigner function representation is that of a squeezed state given

by the simple equation

W(x, p) =
1

π
exp[−x2e2r − p2e−2r], (2.53)

noting that in the case of a vacuum state the squeezing parameter r will be zero, both state

representations are illustrated in Fig.’s 2.1.

This gives an indication of the simplicity of the Gaussian formalism since states can be

fully characterised by their first and second moments. Remarkably, an implication of the

Marcinkiewicz Theorem [31–33] is that to fully describe a continuous variable state, one

must either only consider the first two moments (as in the case for Gaussian states) or one

must consider all of them.

2.3.1 Gaussian Maps

A quantum channel is defined as a quantum operation which is trace preserving [34]. In

the most simple instance these operations are reversible and are described by unitary trans-

formations U such that U†U = 1l. A Gaussian unitary channel will thus transform one

Gaussian state to another, i.e., it is a Gaussian map.

In the context of phase-space, all Gaussian maps can be represented by a symplectic

operation as opposed to a unitary operation in terms of a Hamiltonian. Fig. 2.2 illustrates

three transformations of Gaussian states as contours in phase-space, namely a displace-

ment, squeezing and a rotation. In order for a symplectic operation to represent a physical

operation it must satisfy the condition

SΩS> = Ω ⇒ detS = 1, (2.54)

where a state represented by a covariance matrix γ can then be transformed as SγS> = γ′
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Figure 2.2: Contours of Gaussian state in phase-space following a Gaussian transformation: (a)
displacement of vacuum state gives a coherent state, (b) squeezed vacuum state, (c) rotation of
squeezed vacuum state. Dotted circle/ellipse indicates original state and solid shape the post-
transformation state.

and Ω is the symplectic matrix given by

Ω =

N⊕
j=1

ω, ω =

(
0 1

−1 0

)
. (2.55)

As mentioned previously, some of the most fundamental transformations are Gaussian maps

and thus can be represented by a symplectic operation. A rotation in phase-space can be

written as

Sr(θ) =

(
cos θ sin θ

− sin θ cos θ

)
, (2.56)

for some phase shift angle θ. The symplectic squeezing operation can be written as

Ssq(r) =

(
er 0

0 e−r

)
. (2.57)

where r is the squeezing parameter equivalent to that defined in Eq.’s (2.35).

A slightly more sophisticated operation, which will be utilised throughout this Thesis,

is a beamsplitter transformation. This will involve a symplectic transformation on two

Gaussian modes. A beamsplitter is an optical device allowing the interaction of two input

modes, resulting in two output modes consisting of a combination of the input modes (Fig.

2.3). In general, the beamsplitter can have a variable transmittivity to reflectivity ratio,

allowing control of the output modes. However a balanced ratio is generally considered

as the most common case. In the Heisenberg picture the beamsplitter will transform the

annihilation operators, â, b̂, via a linear non-unitary Bogoliubov transformation as(
â′

b̂′

)
=

(
T R

R −T

)(
â

b̂

)
, T 2 +R2 = 1, (2.58)
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Figure 2.3: Schematic diagram of a beamsplitter with input modes â, b̂ and output modes â′, b̂′.
Physically is a cube made from two triangular glass prisms glued together at their base. The
thickness of the resin layer is adjusted such that half of the light incident through one port is
reflected and the other half is transmitted due to frustrated total internal reflection.

where T and R are the transmittivity and reflectivity of the beamsplitter respectively. The

symplectic form of the beamsplitter interacting a two-mode system is written in the most

general form as

SBS(T,R) =


T 0 R 0

0 T 0 R

R 0 −T 0

0 R 0 −T

 , (2.59)

where for the most common case of a balanced beamsplitter T = R = 1√
2
. A fundamental

state which will be discussed is the two mode squeezed vacuum (TMSV) state constructed

by the combination, via a balanced beamsplitter interaction, of two orthogonally squeezed

vacuum modes, i.e.,

γTMSV = SBS

(
1/
√

2, 1/
√

2
) (
Ssq(r) γvac S

>
sq(r)⊕ Ssq(−r) γvac S>sq(−r)

)
S>BS

(
1/
√

2, 1/
√

2
)
.

(2.60)

Interestingly, from the aforementioned transformations it is possible to simulate the Einstein-

Podolsky-Rosen state as a TMSV in which the positions and momenta of the two modes are

maximally entangled3 in the limit of infinite squeezing, r →∞.

Homodyne and Heterodyne Detection Homodyne and heterodyne are detection pro-

cesses for arbitrary squeezed light not restricted to the Gaussian scenario. The concept is

to mix the signal field, containing the squeezing, with a strong coherent field known as the

local oscillator. Fig. 2.4 illustrates a schematic of balanced homodyne detection. As standard

with a balanced beamsplitter, the input states (â, b̂) and output states (ĉ, d̂) following a

3The concept of entanglement will be introduced extensively in Chapter 3.
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Figure 2.4: Schematic of a balanced homodyne detection with signal â and local oscillator b̂. Photo-
detectors will measure the photo-currents of the output modes and their difference is measured by
the photo-current combiner.

beamsplitter interaction are related as

â =
1√
2

(ĉ− id̂),

b̂ =
1√
2

(d̂− iĉ).
(2.61)

Photo-detectors are placed in the output modes and the difference in their intensities is

measured, or more specifically, the expectation values of photon operators are compared,

i.e.,

〈n̂cd〉 = 〈ĉ†ĉ− d̂†d̂〉 = i〈â†â− b̂†b̂〉, (2.62)

by use of Eq.’s (2.61). Now, since mode b is in a coherent state of the form |βe−iωt〉, with

β = |β|e−iψ and ψ = θ − π/2, the differences in intensities can be written of the form,

〈n̂cd〉 = 2|β|
〈

1

2

{
â0e
−iθ + â†0e

iθ
}〉

, (2.63)

where â = â0e
−iωt. From this, by changing the phase ψ of the local oscillator b̂ and hence

the angle θ, it is possible to measure a chosen quadrature of the signal field. This angle is

generally chosen to yield the maximum level of quadrature squeezing. Heterodyne detection

is a similar method of detecting radiation by non-linear mixing with the fundamental differ-

ence that the local oscillator will be shifted in frequency, whereas in homodyne detection,

the signal field and local oscillator have identical frequencies.

2.3.2 Symplectic Analysis of Gaussian States

The symplectic formalism was first proposed by Williamson in 1935 [35], stating that a

2N × 2N real symmetric covariance matrix γ representing a feasible physical state will
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satisfy Heisenberg’s uncertainty relation as

γ + iΩ ≥ 0, (2.64)

as well as postulating that any 2N × 2N positive definite real matrix can be diagonalised

and transformed into the so-called symplectic form

γν = SγS> =

N⊕
j=1

(
νj 0

0 νj

)
, (2.65)

where νj are the symplectic eigenvalues defined as the eigenvalues of |iΩγ|. Due to this, the

determinant of γ is clearly given by
∏
j ν

2
j . The density matrix representation of a state is

connected to symplectic eigenvalues, and by association to the covariance matrix as

ρνj =

N⊗
j=1

2

νj + 1

∞∑
n=0

(
νj − 1

νj + 1

)n
|n〉j j〈n|. (2.66)

Heisenberg’s uncertainty principle can be recast according the symplectic eigenvalues

implying that for a physical state, νj ≥ 1 for all j. A particularly important symplectic

invariant is the seralian [36], defined in terms of the symplectic eigenvalues,

∆(γ) =

N∑
j=1

ν2
j . (2.67)

An even more simplistic definition for the symplectic eigenvalues and seralian is available

when considering bipartite Gaussian states. But first, later in this Thesis the method of

purification of a system will become imperative. Holevo and Werner in [37] outlined a

procedure for this based on the fact that thermal states are purified by EPR states and

derived that for a N -mode Gaussian state ρA, there exist a purifying reference system R

such that ρAR is a pure Gaussian state. The covariance matrix of this pure system is given

by some symplectic transformation S such that

γAR =

(
γA SC

S>C> γν

)
where C :=

N⊕
j=1

√
νj − 1σz (2.68)

where σz is the third Pauli matrix and ρA = TrR[ρAR].

Bipartite Gaussian States

Consider a group of systems split across two locations A and B, having N modes and M

modes respectively. The covariance matrix of the entire system can be put into the general

form

γ =

(
γA γC
γ>C γB

)
, (2.69)
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where γA is a 2N × 2N matrix, γB a 2M × 2M matrix and γC contains the correlations

between modes at locations A and B.

Throughout the course of this Thesis a focus will be put on the instance where only a

single mode will be present at location A and B. In this simple case there exists a local

symplectic transformation that will transform any covariance matrix into standard form

defined as

γsf =


a 0 c+ 0

0 a 0 c−
c+ 0 b 0

0 c− 0 b

 . (2.70)

with the correlation elements satisfying c+ = −c− := c ≥ 0.

The local invariants of the standard form matrix can be expressed in terms of these

matrix elements as

det(γsf ) = (ab− c2+)(ab− c2−), ∆(γsf ) = a2 + b2 + 2c+c−, (2.71)

and the symplectic eigenvalues are given by

ν± =

√
∆±

√
∆2 − 4 det(γsf )

2
(2.72)

The particular significance of these invariants in relation to quantum correlations will become

apparent in Chapter 3. Furthermore, purity — or rather the degree of mixedness of the state

— can be tested for bipartite systems from its covariance matrix such that if

µ =
1√

det(γ)
= 1, (2.73)

the state is pure and for 0 ≤ µ < 1 the state is mixed. For systems containing three

subsystems the purification of the system is valid if,

∆ij = detij + 1, (2.74)

or using entropies

S(ρij) = S(ρk), (2.75)

hold for all permutations of the subsystems.

It is now necessary to link this quantum mechanical representation of physical states to

a fundamental concept and tool within quantum information processing, that of entropy.

2.4 Entropy and Quantum Information

The concept of entropy was first introduced in a thermodynamical context as a measure

of the disorder of a quantum system, or simply speaking, a measure of how many ways a

thermodynamical system can be arranged [38]. The entropy of a pure state can only ever
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increase upon measurement. Mixed states on the other hand have an entropy that can

decrease upon measurement. As a result of the disorder of a quantum state, its ability to

form correlations increases, therefore the entropy of a system, in an information theoretical

context, can be interpreted as the capacity of a system to form correlations. This will be

discussed in more detail in Section 4.4.

In dealing with a bipartite quantum system, consisting of systems A and B the total

information contained therein can be quantified by the quantum mutual information, defined

as

Iq(ρAB) = S(ρA) + S(ρB)− S(ρAB), (2.76)

where S(ρA) denotes the marginal entropy of subsystem A and S(ρAB), the joint entropy of

states. Specific measures of entropy, both classical and quantum, will be defined in Section

2.4.1. The quantum mutual information thus captures all of the information of states ρA
and ρB composing the larger composite state ρAB .

The classical correlation in a quantum system is defined as the difference in marginal

entropy of one subsystem after a measurement is performed on the remainder of the system,

and is operationally related to the amount of perfect classical correlations which can be

extracted from the system [39], i.e.,

J (ρAB) = S(ρA)− inf
{Π̂j}
H{Π̂j}(ρA|ρB), (2.77)

where inf{Π̂j}H{Π̂j}(α|β) corresponds to the quantum conditional entropy, the entropy of

the first subsystem subject to a measurement on the second, optimised over all possible

measurements. The specific set of measurements that will be considered in the Thesis will

be discussed later in Section 4.1.1. A direct result of this is that, in a purely classical system,

I(ρAB) = J (ρAB)

⇒ S(ρAB) = inf
{Π̂j}
H{Π̂j}(ρA|ρB) + S(ρB),

(2.78)

thus the joint entropy of the system is the sum of the conditional entropy of subsystem A

and the marginal entropy of subsystem B, such that if A is undisturbed by a measurement

on B then the joint entropy S(ρAB) will be zero.

2.4.1 Entropic Measures

So far entropy has been referred to as a general concept and quantity. This Section aims

to provide an outline of two significant entropic measures namely the famous von Neumann

entropy [40, 41] and the lesser known Rényi-2 entropy, both introduced as special cases of

the Rényi-α entropy.

Rényi-α entropies were first introduced by Alfréd Rényi as a generalisation of the usual

concept of entropy [42]. These entropies not only encompass the Hartley (or max) entropy,

min-entropy and collision entropy, but also the Shannon entropy [43] and consequently, the

von Neumann entropy. More recently preliminary work has been done to link the Rényi-α

entropy to free energy in [44]. The Rényi-α entropy for classical probability distributions is
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defined as

Hα(P ) =
1

1− α
log2

(
N∑
k=1

pαk

)
, α > 0 and α 6= 1, (2.79)

where P is a distribution P = (p1, p2, . . . , pN ). By implementation of L’Hôpital’s Rule 4 in

the limit of α→ 1, Eq. (2.79) reduces to the Shannon entropy as

H1(P ) = lim
α→1
Hα(P ) =

N∑
k=1

pk log2

1

pk
. (2.80)

The quantum analogue to the Rényi-α entropy is given by

Sα(ρ) =
1

1− α
ln Tr(ρα) (2.81)

where ρ is the density matrix describing a quantum state. Considering again the case when

α → 1, Eq. (2.81) will reduce to the von Neumann entropy introduced as quantifying the

departure of the system from a pure state and defined as

S1(ρ) = −Tr[ρ ln ρ]. (2.82)

Consequently, for an N -mode Gaussian state the von Neumann entropy is calculated as

S(ρ) =

N∑
j=1

f(νj), (2.83)

where νj are the symplectic eigenvalues and

f(x) =

(
x+ 1

2

)
ln

(
x+ 1

2

)
−
(
x− 1

2

)
ln

(
x− 1

2

)
. (2.84)

is a monotonically increasing function of x. The von Neumann entropy has the properties

of both subadditivity, given by

|S(ρA)− S(ρB)|≤ S(ρAB) ≤ S(ρA) + S(ρB), (2.85)

and strong subadditivity, given by

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) ⇔ S(ρA) + S(ρC) ≤ S(ρAB) + S(ρBC). (2.86)

In recent publications, focus has increasingly been placed on the significance of the case

when α = 2. It is suggested that this so-called Rényi-2 entropy is a much more natural

entropic measure of a quantum state, particularly within the Gaussian setting. Considering

the instance when α = 2, the entropy is of the form S2(ρ) = − ln Tr[ρ2]. At first glance it is

4L’Hôpital’s rule states that for two differentiable functions f and g on an open interval I: limx→∞
f(x)
g(x)

=

limx→∞
f ′(x)
g′(x)

.
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clear that this entropy is fundamentally linked to the purity of the state ρ, since a state is

pure if Tr[ρ2] = 1 and mixed otherwise.

The Gaussian Rényi-2 entropy of a state ρ represented by a covariance matrix γ reads

as

S2(ρ) =
1

2
ln(det γ), (2.87)

which again shows an inherent link to the purity of the state since a state is pure if its

covariance matrix satisfies Eq. (2.73).

The question of whether the von Neumann entropy is the most natural of entropies

arises from the fundamental conjecture that the minimum output entropy conjecture for

bosonic channels, proven for all Rényi-α entropies for α ≥ 2 [29, 45–47]. Most recently it

has also been proven for the case of α→ 1 i.e., the von Neumann entropy, by Giovannetti et

al. [48]. It has been shown in [49] that the Rényi-2 entropy arises naturally from phase-space

sampling for Gaussian states as

H(Wρ) = −
∫
R2N

Wρ(ζ) ln [Wρ(ζ)] d2Nζ

=

∫
R2N

1

πN
√

det γ
exp

(
−ζ>γ−1ζ

) [
ζ>γ−1ζ +N lnπ +

1

2
ln(det γ)

]
d2Nζ

=

2N∑
j=1

νj
2νj

+N lnπ + S2(ρ)

= N(1 + lnπ) + S2(ρ)

(2.88)

where an integration has been performed in phase-space coordinates ζ such that γ is diago-

nalised, νj are the eigenvalues of the matrix and N = nA +nB is the total number of modes

of the composite system. This can be extended to represent Shannon relative entropy as

H(Wρ1
‖ Wρ2

) =

∫
R2N

Wρ1
(ζ) ln

(
Wρ1

(ζ)

Wρ2(ζ)

)
d2Nζ

= −H(Wρ1
) +

∫
R2N

1

πN
√

det γ1
exp

(
−ζ>γ−1

1 ζ
) [
ζ>γ−1

2 ζ +N lnπ +
1

2
ln(det γ2)

]
d2Nζ

=
1

2
ln

(
det γ2

det γ1

)
−N +

2N∑
j=1

γ1,jj

2γ2,j

=
1

2

[
ln

(
det γ2

det γ1

)
+ Tr

(
γ1γ
−1
2

)]
−N

(2.89)

where γn,j denote the eigenvalues of γ, and γn,ij are its individual matrix elements. The

validity of the final step is due to the invariance of the quantity Tr
[
γ1γ
−1
2

]
under a change

of basis.

From this ‘Rényi relative entropy’ a Gaussian formalism for the quantum mutual infor-

mation was constructed [50]. Consider a composite system divided into two subsystems ρA
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and ρB . The quantum mutual information between these two subsystems can be written as

H(WρAB
‖ WρA⊗ρB ) = H(WρA) +H(WρB )−H(WρAB

)

=
1

2
ln

(
det γA det γB

det γAB

)
= S2(ρA) + S2(ρB)− S2(ρAB)

= I2(ρA:B),

(2.90)

since Tr
[
γ1γ
−1
2

]
= 2N . It is clear that this is analogous to the von Neumann definition of

mutual information Eq. (2.76). This Gaussian Rényi-2 mutual information is positive semi-

definite as it coincides with the Shannon mutual information of the Wigner function of ρAB
and has the operational interpretation of the total quadrature correlations of the composite

state ρAB since Eq. (2.90) describes the required extra amount of discrete information to

be transmitted over a continuous variable channel which will allow the construction of the

complete joint Wigner function of ρAB as opposed to the two marginal Wigner functions.

In Ref. [50] the development of the Gaussian Rényi-2 formalism was extended further

to include a quantum conditional entropy optimised over all single mode Gaussian mea-

surements. Any measurement considered is described by positive operator valued measure

(POVM)5 of the general form on nB modes

ΠB(η) = π−nB

 nB∏
j=1

ŴBj (ηj)

 ρΠ
B

 nB∏
j=1

Ŵ †Bj
(ηj)

 (2.91)

where Ŵ is the Weyl displacement operator

ŴB(ηj) = exp
(
ηj b̂
†
j − η

∗
j b̂j

)
,

b̂j =
1√
2

(
q̂Bj

+ ip̂Bj

)
,

π−nB

∫ ∏
B

(η)d2nBη = 1l

(2.92)

and ρΠ
B is the density matrix of a nB-mode mixed Gaussian state with covariance matrix

ΓΠ
B . The covariance matrix of the conditional state of A when a measurement is performed

on subsystem B is given by the Schur complement

γ̃Π
A = γA − γC(γB + ΓΠ

B)−1γ>C . (2.93)

5A positive operator valued measure (POVM) is a measure with elements which are non-negative self-
adjoint operators on a Hilbert space.
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From this the Gaussian Rényi-2 classical correlations can be written in the form

J2

(
ρA|B

)
= S2(ρA)− S2(ρA|η),

= sup
ΓΠ

B

1

2
ln

(
det γA
det γ̃Π

A

)
.

(2.94)

In general Rényi-α entropies for α 6= 1 are not subadditive, thus implying that quantities

such as the quantum mutual information, in Eq. (2.90), can become negative, and so is then

a meaningless correlation measure. However, Rényi-2 entropy satisfies a strong subadditivity

inequality for all Gaussian states ρABC ,

S2(ρAB) + S2(ρBC) ≤ S2(ρABC) + S2(ρB),

⇒1

2
ln

(
det γAB det γBC
det γABC det γB

)
≥ 0.

(2.95)

The consequence of this is that the core of quantum information theory can be consistently

recast within the Gaussian scenario, using the simpler and physically natural Rényi-2 entropy

as opposed the von Neumann entropy.

This Chapter has introduced the basic mathematical framework necessary to understand

the continuous variable implementation of quantum information. This included a discussion

on Gaussian states, which are a key set of quantum states physically realisable and mathe-

matically convenient due to their unique covariance matrix description. A short discussion

was also held regarding some essential quantum optical transformations and an alternative

entropic measures. The Chapters to come will utilise this framework to introduce some

key concepts such as quantum entanglement and quantum discord of which this Thesis is

concerned.



Chapter 3

Quantum Entanglement

The birth of quantum entanglement is considered to have taken place in 1935 when Ein-

stein, Podolsky and Rosen published a paper entitled “Can quantum-mechanical description

of physical reality be considered complete?”, of which the answer was no [4]. It was consid-

ered that if in the case of two physical quantities described by non-commuting operators

(position and momentum), the knowledge of one precludes the knowledge of the other, then

the quantum mechanical theory of physical reality must be incomplete. At the time of the

EPR paper, the quantum mechanical interpretation of physical reality was challenged by

local realism. “Realism” implies the existence of a probability distribution dependent on how

the global state is generated and thus that there must be a pre-existing outcome for any pos-

sible measurement before the measurement is made. “Locality” implies that a measurement

choice and outcome of one subsystem should not impact the result of a measurement on the

remaining subsystem. This interpretation was proved to be contradicted by the EPR para-

dox. The concept explored in this thought experiment is: given two quantum systems, if the

information contained in the entire system cannot simply be described by each subsystem

individually, then the additional information contained therein defines quantum entangle-

ment. By this, it can be stated that one subsystem cannot be fully understood without

considering its counterpart. Einstein found the apparent “spooky action at a distance” (or

“spukhafte Fernwirkung”) [51] to be contradictory to reality and was fundamentally uncom-

fortable with the concept of its validity. The same year, in the journal Naturwissenschaften,

Schrödinger coined the term “Verschränkung”, meaning “entanglement”. Schrödinger de-

veloped his famous thought experiment of a cat, which exists simultaneously in a state of

being alive and dead, to help illustrate the difference in classical and quantum mechanics,

and in turn the concept of quantum superposition exhibited by an entangled state [5].

In 1952, building on earlier work by de Broglie [52], Bohm suggested a deterministic

interpretation of quantum theory that incorporates “hidden variables” [53], the values of

which effectively determine, from the moment of separation, the outcomes of the measure-

ment. Implying that each particle carries all the necessary information and no information

is required to be transmitted from one system to the other at the time of measurement.

It was then in 1964 that Bell proposes his famous theorem allowing researchers to later

experimentally, and definitively, rule out any hidden variables operating locally to justify

27
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quantum entanglement outcomes [54–57]. The outcome of this is that if the theorem holds,

then entanglement could be explained through purely local effects. If violated, some amount

of non-locality must be occurring, as standard quantum mechanics would predict. Bell’s

theorem was experimentally tested for the first time in 1972 in Berkeley by measuring the

polarisations of a pair of photons [58]. Although the inequality is indeed found to be violated,

some loopholes existed in the experiment. It was not until 1982 that the French physicist

Alain Aspect performed an even stronger test of entanglement, confirming that non-local

effects do exist [59–61].

Fundamental applications of quantum entanglement were then introduced from 1984 in

the form of quantum cryptography, which would use photons from an entangled system to

create a secure key [62]. It was also found in 1993 that entanglement can be used to teleport

a particle’s quantum information from one place to another [63], first experimentally verified

separately by Zeilinger and De Martini groups (1997–1998) [64, 65]. The distance record of

sending entangled photons across 144 kilometers, between two of the Canary Islands, was

set in 2007 by Zeilinger’s group [66].

The improved comprehension of quantum entanglement has been remarkable in the past

two decades. The phenomenon is no longer one which exists between photons or electrons,

the effects of quantum entanglement have been witnessed between vibrational states of two

spatially separated, millimetre-sized diamonds at room temperature [67]. The dimensional

limit to which entanglement can persist appears to be expanding with quantum proper-

ties such as wave-particle duality been found in molecules the size of Buckminsterfullerenes

(or Bucky-balls)1 [68]. Research involving practical purposes of quantum entanglement are

becoming ever more popular as the world edges closer to the inevitable development of

physical quantum technologies, including quantum computers [69] and quantum cryptogra-

phy [70,71].

3.1 Characterising Bipartite Entanglement

3.1.1 Bell’s Inequality and Local Realism

Let us consider a hypothetical world in which local realism is the valid interpretation of

the physical world and focus on a bipartite system within this world. Each system SA and

SB will have two parameters assuming the values s(n,1) and s(n,2) respectively, which are

independent of observation, where n corresponds to an individual system. In this instance

Bell’s CHSH inequality [55] will read as

|〈s(A,1)s(B,1)〉+ 〈s(A,1)s(B,2)〉+ 〈s(A,2)s(B,1)〉 − 〈s(A,2)s(B,2)〉|≤ 2 (3.1)

where 〈s(A,j)s(B,k)〉 is the average over the case where s(A,j) is measured, and simultaneously,

s(B,k) is also measured. This inequality is born from the probability distribution dependent

on how the global state is generated. However in quantum mechanics, in the majority of

cases if the system possesses entanglement, Bell’s inequality will be violated yielding a value

1Bucky-balls are spherical fullerene molecules with a cage-like structure made of twenty hexagons and
twelve pentagons, with a carbon atom at each vertex and a bond along each edge.



CHAPTER 3. QUANTUM ENTANGLEMENT 29

of 2
√

2 > 2, although there exist so-called Werner state for which this is not the case. The

set of states which provide a saturation of this inequality, appropriately known as Bell states.

These represent maximally entangled bipartite states, defined as,

|Φ±〉 =
1√
2

(|s(A,1)s(B,1)〉 ± |s(A,2)s(B,2)〉), (3.2a)

|Ψ±〉 =
1√
2

(|s(A,1)s(B,2)〉 ± |s(A,2)s(B,1)〉). (3.2b)

3.1.2 Definition of an Entangled State

The definition of quantum entanglement was put forward as a contradiction. That is, an

entangled state is one which cannot be considered as separable and thus written as a tensor

product of the density matrices of its subsystems [72,73]2,

ρAB =
∑
j

pjρA,j ⊗ ρB,j , (3.3)

where ρn,j is the density matrix of subsystem n and pj is its associated probability. Hence

it appears that entanglement is equivalent to non-separability.

Within the covariance matrix formalism for Gaussian states, it was shown by Werner

and Wolf [74] that a bipartite state is considered separable if it can be expressed as a direct

sum of the covariance matrices of the subsystems, i.e. a product state

γAB ≥

(
γA 0

0 γB

)
. (3.4)

In the case of the inequality being saturated, the covariance matrix will correspond to a state

which solely possesses classical correlations and thus exhibits no quantum entanglement.

This qualitative definition holds only with respect to pure states, however the more complex

case of mixed sates is discussed in Chapter 4.

Local Operations and Classical Communication (LOCC)

One of the most important properties of quantum entanglement is its Local Operations

and Classical Communication (LOCC) constraint. Considering two states which are per-

fectly entangled, the presence of entanglement would be synonymous to a perfect quantum

communication channel. In actuality however, noise will inevitably play a detrimental role

to this communication channel. One option to counteract these noisy channels is to use

LOCC, which can be used to form classical correlations. If a bipartite quantum state is

then used to successfully perform a particular task which cannot be explained by classical

correlations alone, the solution must be that the ability to perform the task must be due

2In Ref. [72] Werner used the words “classically correlated”, but the term “separable” was chosen by
Peres in Ref. [73] and is more frequently used nowadays.
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to some unconsidered quantum correlations present in the state. Therefore LOCC cannot

create entanglement. The set of possible LOCC operations is vast, with the possible clas-

sical correlations being implemented before or after a local operation. As a result, there is

no complete and simplified characterisation of LOCC operations, as a consequence, other

classes of operations possessing traits pertaining to local operations must be considered.

Although separable states can be easily created from LOCC operations, on the opposite

end of the spectrum there exist quantum states in finite-dimensional Hilbert spaces that

are said to be maximally entangled. These states by definition yield a maximally mixed

state when one subsystem is traced out. However in an infinite-dimensional Hilbert space,

a maximally entangled state could only be achieved by taking, for example, a two-mode

squeezed vacuum state in the limit of infinite squeezing, r → ∞. For any entangled state,

the constraint on entanglement is that it cannot emerge nor increase under LOCC operations,

although a local unitary operation may have the effect of decreasing entanglement.

3.2 Separability Criteria

As discussed, the definition of an entangled state, and hence entanglement, is based on the

concept that if a state cannot be classified as separable, it is entangled. Arising from this

are a number of separability criteria which serve as a verification of the presence or absence

of entanglement. It is important to note that the resolution power of different separability

criteria can vary, leading to an objective definition of the ‘border’ between separable and

entangled states, such that separable according to one criteria can appear non-separable

according to another.

Before introducing the main separability criterion used within this Thesis, it is necessary

to present the notion of a positive but not completely positive map. A positive map, as the

name suggests, will act in such a way as to transform a positive matrix3 i.e. the density

matrix, to another positive matrix. The positivity of the resulting state determines its

validity as a quantum state. In addition, a map Z is positive if it preserves the property

of being Hermitian. Considering a bipartite system with density matrix ρAB , using Choi’s

theorem [75], a map Z is defined as positive if,

(1l⊗ Z)ρAB = (1l⊗ Z)

∑
j

pjρA,j ⊗ ρB,j

 =
∑
j

pjρA,j ⊗ ZρB,j . (3.5)

If the resulting density matrix is positive, the map is known as completely positive. However,

to utilise this theorem for the purposes of identifying entanglement, those maps which are

positive but not completely positive are of interest. A quantum state is then considered to

be separable if and only if

(1l⊗ Z)ρAB ≥ 0, (3.6)

for positive but not completely positive maps.

3A positive matrix is defined as one possessing positive eigenvalues.
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3.2.1 Peres-Horodecki Criterion (PPT)

One of the most recognised separability criteria for bipartite and multipartite quantum

systems is the Peres-Horodecki criterion [76, 77]. Popularly known as the PPT criterion

due to its use of a positive partial transpose4, this criterion is based on a positive but not

completely positive map. It was demonstrated in [77] that the PPT criterion is necessary

and sufficient for quantum states ρAB defined in the Hilbert space HAB = HA ⊗HB as in

Eq. (3.3) for dimensions dA = 2 or 3 and dB = 2 where the PPT of one subsystem, say ρA,

simply defined by the density matrix

ρ>A

AB =
∑
j

pjρ
>
A,j ⊗ ρB,j , (3.7)

corresponds to a valid density matrix, with the superscript >n indicating with respect to

which subsystem the transpose is being performed. It was also shown that the Peres-

Horodecki criterion is sufficient for separability when dA · dB ≤ 6.

The Peres-Horodecki criterion has been extended to continuous variable systems by Si-

mon [78], where it is interpreted as the time reversal of one subsystem. Consider a bipartite

state with a covariance matrix basis (xA, pA, xB , pB), PPT on subsystem B will result in

a change of basis as (xA, pA, xB , −pB). Note that although performing a time reversal

on an individual quantum system will lead to a valid density matrix, this is not guaranteed

when performing time reversal on a subsystem of a larger global system.

In respect to the symplectic formalism for Gaussian states, PPT can be represented by

a symplectic Gaussian map as

λA|B =

 N⊕
j=1

1lj

⊕( M⊕
k=1

σz,k

)
(3.8)

where N and M denote Hilbert dimensions of subsystems A and B respectively and σz
is the third Pauli spin matrix. From Ref. [78] the separability criterion for a bipartite

Gaussian state is fully characterised by the lower symplectic eigenvalue of the partially

transposed system, ν̃−. The state ρAB is considered separable if and only if ν̃− ≥ 1, thus ν̃−
fully characterises the entanglement, a fact which is considered in a later following Section

introducing a range of basic entanglement measures.

3.2.2 Other Separability Criteria

This Section will serve as a brief introduction to other popular existing separability criteria,

chosen due to their simplicity as well as their frequent use in literature [79].

4The partial transpose simply refers to the transpose of one subsystem whilst the remaining subsystems
are unchanged.
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Duan’s Inseparability Criterion

Duan et al. introduced an inseparability criterion for continuous variable systems and proved

that it provides a sufficient condition for entanglement in any bipartite states, and for all

Gaussian states the criterion provides a necessary and sufficient condition for inseparability

[80]. Consider two operators

û = |m|x̂1 +
1

m
x̂2, and v̂ = |m|p̂1 −

1

m
p̂2, (3.9)

for ∀m > 0 and m ∈ R, the variance of these operators is then given by

〈(∆û)2〉ρ + 〈(∆v̂)2〉ρ ≥ m2 +
1

m2
. (3.10)

The Gaussian counterpart relies on the state being expressed in a standard form covariance

matrix similar to Eq. (2.70) but with a1 6= a2 and b1 6= b2. The operators then become

[81,82]

û = |m0|x̂1 −
c+
|c+|

1

m0
x̂2, and v̂ = |m0|p̂1 −

c−
|c−|

1

m0
p̂2, (3.11)

where m0 = 4

√
b1 − 1

a1 − 1
= 4

√
b2 − 1

a2 − 1
and so the inseparability criterion becomes,

m2
0

a1 + a2

2
+
b1 + b2

2m2
0

− |c+|−|c−|≥ m2
0 +

1

m2
0

. (3.12)

for bipartite Gaussian states.

Range Criterion

Consider a state ρAB where the dimensions of the two subsystem yield dA · dB > 6. In this

case there exists states that are entangled but separable according to PPT, therefore another,

separability criterion is required to detect the entanglement of these states independent of

the PPT criterion. One such criterion based on positive but not completely positive maps

where the chosen map is not decomposable is the range criterion [83].

The range criterion states that if the state ρAB is separable, then by definition, there

exists a set of product vectors {ψiA ⊗ φiB} that span the range of ρAB , while {ψiA ⊗ (φiB)∗}
spans the range of the partial transpose ρ>B

AB , where the complex conjugate is taken in the

same basis as the partial transposition on ρAB .

Reduction Criterion

A reduction map is defined as a linear map Λr : SdA×dB → SdA×dB such that Λr[ρAB ] =

1l(Tr[ρAB ])− ρAB , with ρAB ∈ SdA×dB and 1l the identity operator. The reduction criterion

[84, 85] then states that if a state ρAB ∈ SdA×dB is separable, then (1l ⊗ Λr)[ρAB ] ≥ 0, i.e.,

the following two conditions hold

ρA ⊗ 1lB − ρAB ≥ 0, 1lA ⊗ ρB − ρAB ≥ 0,
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where ρA and ρB are the reduced density matrices of the subsystems SA and SB respectively.

3.3 Entanglement Measures

Now that quantum entanglement has been defined and discussed, it is necessary to continue

by introducing some quantitative measures of entanglement. Those to be introduced are

considered to be the core measures relevant to this Thesis, however there exist a wide range

of general and tailored entanglement measures outlined in Ref. [86].

3.3.1 Entropy of Entanglement

The most fundamental measure of quantum entanglement in a bipartite pure state is that

defined by the entropy of entanglement [5]. This measure is simply defined as the von

Neumann entropy of one of the reduced subsystems, i.e.,

ER(ρAB) = S(ρA) = S(ρB), (3.13)

where, for instance, ρA = TrB [ρAB ]. Of course ER(ρ) cannot increase under LOCC as

necessary. Note that for a pure state the entropy of the global system is zero; implying

that the disorder of the reduced systems will be greater than that of the global system.

The entropy of entanglement is typically rarely used as a measure in itself, but rather is

implemented in more sophisticated measures seen in Section 3.3.3.

3.3.2 Distillable Entanglement and Entanglement Cost

The concept of distillable entanglement is based on the transformation of N copies of a

combined state ρAB by LOCC, to a minimum of M copies of a maximally entangled state.

The best possible conversion rate over all possible LOCC schemes is defined as the distillable

entanglement [86–88]

ED(ρAB) = max
{LOCC}

lim
N→∞

Mout

Nin
. (3.14)

In being sent by a noisy channel, ED(ρAB) will indicate the rate at which a noisy mixed

state can be converted into maximally entangled states e.g., Bell pairs. In the continuous

variable setting, although the concept of distillable entanglement can be understood, it is

impossible to compute, even for the special case of Gaussian states.

The converse to distillable entanglement would be the number of maximally entangled

states necessary to create a state ρAB using LOCC, this is a process knowing as ‘dilution’

and defines the entanglement cost as [89],

EC(ρAB) = min
{LOCC}

lim
N→∞

Min

Nout
. (3.15)

Although the entanglement cost and distillable entanglement are in general considered to

be converses of one another, performing dilution then distillation (or vice versa) would

not be classified as a unitary operation since the initial and output state would differ,
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essentially it can be stated that the entanglement cost acts as an upper bound to the

distillable entanglement for a bipartite state ρAB .

3.3.3 Entanglement of Formation

The entanglement of formation represents the minimum achievable entanglement over all

possible pure state decompositions of a bipartite state ρAB ,

EF (ρAB) = inf

∑
j

pjER(|ψj〉〈ψj |) : ρAB =
∑
j

pj |ψj〉〈ψj |

 , (3.16)

where the entanglement in the pure states is measured using the entropy of entanglement

Eq. (3.13).

Recently, progress has been made in the extension of the entanglement of formation to a

Gaussian setting. The first established definition was for mixed symmetric bipartite states,

remarkably solved and found to yield a simple analytical form for Gaussian states, reading

as,

EF (ρAB) = max{0, h(ν̃−opt)}, (3.17)

with

h(x) =
(1 + x)2

4x
log

[
(1 + x)2

4x

]
− (1− x)2

4x
log

[
(1− x)2

4x

]
, (3.18)

so that the entanglement of formation is a monotonically decreasing function of the minimum

symplectic eigenvalue of the partially transposed covariance matrix γ̃. Marian & Marian [90]

expanded this by defining the Gaussian entanglement of formation (GEoF) for a number

of arbitrary bipartite Gaussian states, defined by specific relations between standard form

parameters 5. These derivations follow the Gaussian interpretation suggested in [91].

Most recently, Adesso et al. [92, 93] presented a Gaussian entanglement of formation

formalism for a generally mixed bipartite Gaussian state, defined using the von Neumann

entropy, as

EvNF (ρ) = h(ν̃−opt) (3.19)

with ν̃−opt being the symplectic eigenvalue of the partial transpose of the corresponding

optimal pure state defined as

ν̃−opt =
√
mopt −

√
mopt − 1, (3.20)

51. symmetric two mode Gaussian states (TMGS) whose standard form parameters are b1 = b2 =: b,
c = |d|= −d > 0; 2. two mode squeezed thermal states (TMSTS) whose standard form parameters are
b1 ≥ b2, c = |d|= −d > 0; 3. TMGS at the separability boundary such that ν̃− = 1

2
; 4. TMGSs whose

smallest symplectic eigenvalue ν− = 1
2

.
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where

mθ(γsf ) =

(
c+
(
ab− c2−

)
− c− + cos(θ)

√(
b− a

(
ab− c2−

)) (
a− b

(
ab− c2−

)))2

×

[
2
(
ab− c2−

)( (
a2 + b2 + 2c−c+

)
+
(
a2 − b2

)
sin(θ)

√√√√1−
(
c+
(
ab− c2−

)
+ c−

)2(
b− a

(
ab− c2−

)) (
a− b

(
ab− c2−

))
−

cos(θ)
(
c2−c+

(
a2 + b2

)
+ c−

(
a2
(
1− 2b2

)
+ b2

)
− abc+

(
a2 + b2 − 2

)
+ 2abc3−

)√(
b− a

(
ab− c2−

)) (
a− b

(
ab− c2−

))
)]−1

+ 1

(3.21)

and mopt ≡ minθ{mθ(γsf )}, where θ ∈ [0, 2π] and a, b and c± are elements of the standard

form covariance matrix γsf given by Eq. (2.70).

Using a similar formalism, the GEoF defined using Rényi-2 entropy was also developed

as

ER−2
F (ρ) =

1

2
ln

(
inf
θ
mθ(a, b, c+, c−)

)
. (3.22)

The optimal θ minimising mopt can be found numerically for general two-mode Gaus-

sian states, and analytically for relevant sub-classes of states, including symmetric states,

squeezed thermal states, and so-called GLEMS (Gaussian Least Entangled Mixed States for

given local and global purities).

3.3.4 Squashed Entanglement

The squashed entanglement was first introduced in a series of papers by Tucci [94–99] and

is defined for a tripartite system ρABE as

ES = inf
E

[
1

2
I(ρABE)

]
, with TrE [ρABE ] = ρAB , (3.23)

where the quantum conditional mutual information (CMI) defined as

I(ρABE) = I(A;B|E) = S(ρAE) + S(ρBE)− S(ρABE)− S(ρE), (3.24)

satisfies a strong subadditivity property and I(A;B|E) ≥ 0 [100]. The squashed entangle-

ment is a convex entanglement monotone serving as a lower bound to the entanglement of

formation EF (ρ) and an upper bound to the distillable entanglement ED(ρ) defined previ-

ously. As a direct result of this the squashed entanglement will be equivalent to the entropy

of entanglement ER(ρ) for pure states [101].

3.3.5 Relative Entropy of Entanglement

The quantum relative entropy is often considered to be a pseudo-distance measure between

one quantum system and another possessing specific properties. The relative entropy is

defined as

S(ρ ‖ σ) := Tr[ρ log ρ− ρ log σ]. (3.25)
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Although the relative entropy is considered to be a measure of correlations, this is not strictly

true since S(ρ ‖ σ) 6= S(σ ‖ ρ). The relative entropy of entanglement is then defined as

ERE(ρAB) := infσ∈χS(ρAB ‖ σ), (3.26)

where χ is the set of separable states. Therefore the relative entropy of entanglement asks

for the minimum distance between the state ρAB and the closest separable state belonging

to χ. The Gaussian relative entropy of entanglement for particular classes of Gaussian states

can be found in Ref.’s [102,103].

3.3.6 Negativity and Logarithmic Negativity

The Negativity of a quantum state ρAB was first introduced by Zyckowski et al. [104] and

later verified as a legitimate entanglement measure by Vidal and Werner [105]. It is defined

as the sum of the eigenvalues of the partially transposed state and can be written, in reference

to the density matrix ρ and the covariance matrix γ of a Gaussian state, as

N (ρAB) =
1

2
Tr

(√
(ρ>A

AB)2 − ρ>A

AB

)
=

1

2
‖ ρ>A

AB ‖ −1,

N (γAB) =
1

2
(
∏
k

ν̃−1
k − 1), for k : ν̃k < 1,

(3.27)

where ‖ · ‖ denotes the trace norm, and if ν̃k ≥ 1 then N (γAB) = 0. The usefulness of

the Negativity is in its simplicity to compute for both discrete and continuous variables,

however it lacks the desirable property of additivity. This is overcome by the Logarithmic

Negativity [106] defined as

LN (ρAB) = log2(1 + 2N (ρAB)) = log(‖ ρ>A

AB ‖),

LN (γAB) = −
∑
k

ln ν̃k, for k : ν̃k < 1,
(3.28)

where LN (γAB) = 0 if ν̃k ≥ 1. Interesting properties of the Logarithmic Negativity to note

are that it acts as an upper bound to the distillable entanglement (see Section 3.3.2) and

also that a PPT entangled state can still indicate zero Logarithmic Negativity.

The purpose of this Chapter was to introduce the origin and concept of quantum en-

tanglement as the fundamental phenomenon in quantum information theory. We discovered

not only indicators, but explicit quantitative measures of this remarkable property. The

information presented here will prove to be essential in the discussion of more complex and

less investigated characteristics of a quantum system. Throughout this Chapter the strict

distinction has been made between what one may consider to be classically correlated or

quantum correlated, and that these are the only realms in which a state may exist. In the

next Chapter we will discover the incompleteness of this description and explore the general

concept of non-classicality. Particular focus will be placed on mixed bipartite states, where

there exists a more broad description of quantumness, of which quantum entanglement is a

subset.



Chapter 4

Non-Classicality

Disclaimer: Note the slightly unconventional use of the terms “non-classically cor-

related” and “quantum correlated”. I shall define the set of non-classically corre-

lated states as those exhibiting non-zero quantum discord, and the set of quantum

correlated states to be a subset of these states explicitly possessing quantum entan-

glement. Therefore entangled states are covered under the umbrella of discordant

states. This is further illustrated in Fig. 4.1.

The concept of the non-classicality of physical bipartite systems has long been estab-

lished, but has soley focused on what is now known to be subset of states defined by quan-

tum entanglement. In actuality it is the discrepancy of what is considered as quantum

correlated or non-classically correlated which has been a relatively recent development. In

previous Chapters, suggestions have been made regarding the incompleteness of the case in

which if a state does not possesses quantum entanglement, it is considered classical. Whilst

this is the case for bipartite pure states, for more realistic bipartite mixed states there can

arise the situation whereby a state will be separable, but possesses non-classical correla-

tions not defined by quantum entanglement. Within the context of this Thesis, the general

distinction is made between quantum correlated and non-classically correlated. Quantum

correlated states are those which have entanglement and are a subset of states which are

classified as non-classically correlated. So when a state is classified as non-classical, it may

or may not exhibit entanglement properties (see Fig. 4.1). It is well known that there exist

a discrepancy between separable states and those considered to be truly classical [107].

An early example of the implementation of non-classical correlations beyond entangle-

ment is within the deterministic quantum computation with one quantum bit (DQC1) pro-

tocol [69] later developed in [108, 109]. The protocol involves a collection of qubits in the

completely mixed state coupled to a single control qubit that has non-zero purity. The initial

state, operations, and measurements in the protocol appear to indicate a natural bipartite

split between the control qubit and the mixed collection. Although there is no entanglement

present, it has been shown that non-classical correlations of some degree are present which

may play a role in a computational speed-up.

Various indicators of the presence of non-classicality beyond entanglement have been

37
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Figure 4.1: Classification of physical states according to the presence of classical, quantum or
general non-classical properties. E denotes quantum entanglement and D quantum discord. In
what remains states classified as quantum are those exhibiting quantum entanglement and are
considered a subset of non-classical states.

established and proven imperative in the attempt to understand non-classicality in greater

depth. There has been a huge expansion in the interest of non-classicality within quantum

information theory in recent years, but still the official significance of non-classical corre-

lations, particularly within separable states, is largely unknown and is the topic of some

controversy when considering the usefulness of the phenomenon relative to quantum en-

tanglement. There exists a vast body of literature indicating that these correlations may

prove not only useful, but more robust than entanglement within the context of noisy chan-

nels [108–119].

4.1 Non-Classicality Indicators

In this Section a selection of non-classicality indicators will be presented. Particular focus

will be placed on quantum discord, as this is currently the most predominant measure and

as such, is the only one used in later Chapters. Non-zero quantum discord will then serve

as an analogy to non-classically correlated states in the discussion of what one defines as a

classical state.

4.1.1 Quantum Discord

There are in general two classes of quantum discord, a measurement-based discord and a

distance-based discord. Although both shall be introduced in this Section, a particular focus

will be placed on the measurement-based approach. Quantum discord has been extensively

discussed is various literature such as [120–125].
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Measurement-Based Quantum Discord

In 2001 Ollivier and Zurek first introduced the notion of a measurement-based quantum

discord [126] as another kind of non-classical correlation different from entanglement1. It

was defined as the discrepancy of two quantities, which in a classical context, are equivalent.

Consider a classical bipartite state composed of two variables A and B, the total mutual

information and the classical correlation present in this system are defined respectively as

I(A : B) = H(A) +H(B)−H(A : B) (4.1a)

J←(A : B) = H(A)−H(A : B) (4.1b)

where H denotes the Shannon entropy, which can be interpreted as the ignorance of the

observers (in the essence that if the Shannon entropy is non-zero the state is considered as

mixed) and where the left arrow indicates an averaging of the entropy over possible values

of B and a right arrow for an averaging over possible values of A. Whilst in the classical

setting one can, in principle, obtain all information of the system without disturbing it, these

quantities will be equivalent, which is intuitive since the total correlations in the system

must only be classical. Considering now the quantum setting, the quantum analogies of

these quantities are as defined in Eq.’s (2.76, 2.77),

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (4.2a)

J←(ρAB) = S(ρA)− inf
{Π̂j}
H{Π̂j}(ρA|ρB). (4.2b)

where S is considered as the von Neumann entropy and so the determination of value now

constitutes a measurement. The quantum conditional entropy will be optimised over all

possible measurements. Galve et al. [127] proved for qubits the optimality of orthogonal

measurements for rank-2 states in calculating discord. Clearly, as we are now consider-

ing a quantum state, measurements will disturb the system. There will exist more than

merely classical correlations, therefore these quantities are no longer equivalent. It is this

discrepancy that defines quantum discord,

D←(ρAB) = I(ρAB)− J←(ρAB),

= S(ρB)− S(ρAB) + inf
{Π̂j}
H{Π̂j}(ρA|ρB)

(4.3)

often referred to “one-way quantum discord”.

Significant properties of the original measurement-based discord include:

1. non-symmetry i.e., D←(ρAB) 6= D→(ρAB). Although a symmetric version exists de-

fined simply as

D↔(ρAB) = max{D←(ρAB),D→(ρAB)} (4.4)

appropriately named the “two-way quantum discord” which will be zero for classical-

classical (CC) states only [128,129].

1Quantum discord was also independently introduced by Henderson and Vedral in Ref. [130].
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2. non-negativity i.e., D←(ρAB) = D→(ρAB) ≥ 0.

3. the majority of physical bipartite states have non-zero discord such that the set of CC

states are negligible in the whole Hilbert space. Also, any such CC state requires only

a small generic perturbation to drive it to a positive-discord state [107].

4. D(ρAB) = 0 if and only if the state is completely classical and thus measurement

cannot cause disruption. It has been proven however that a non-unitary operation

may lead to the emergence of discord from a classical state [131].

5. unaffected by local unitary transformations e.g. beamsplitter transformations.

6. equivalence to the entropy of entanglement for bipartite pure states.

7. quantum discord cannot be shared [132]. This property is based on Bohr’s postulate us-

ing modern tools from quantum information theory. Bohr’s idea that if a measurement

device is in a non-classical state the measurement results cannot be communicated

perfectly by classical means. In this, part of the information in the measurement ap-

paratus is lost and the amount of lost information coincides with the quantum discord.

In Ref. [132] it was shown that for pure system-apparatus states quantum communica-

tion does not provide any advantage when measurement results are communicated to

more than one party. In addition it was demonstrated that quantum communication

to two parties on a mixed system-apparatus state appeared to be superior.

A popular example of a quantum state which is defined as separable whilst possessing

quantum discord is the Werner state [72], defined as

ρ(ψ, p) =
1l

4
(1− p) + p|ψ〉〈ψ|, (4.5)

where |ψ〉 is a maximally entangled Bell state as presented in Eq. (3.2). If p < 1/3 then

the Werner state is not entangled, however for values of 0 < p < 1/3 the state will have

non-zero quantum discord.

A pivotal moment in the evolution of the notion of quantum discord was within a paper

by Ferraro et al. [107]. In this the authors aimed to discredit discord as a useful resource

within quantum information. It is claimed that states with zero discord are in fact negligible

in any Hilbert space dimension. It is likely that a state chosen at random will have non-zero

discord and that if a state has zero discord, a generic arbitrary perturbation transforms the

state into one with non-zero discord. Whilst for some this result indeed did raise serious

doubts regarding the potential application of quantum discord, for most, this was seen as a

remarkable and encouraging result. Ferraro et al.’s result demonstrates that zero quantum

discord states are rare to find, and consequently the mere presence of quantum discord does

not imply its usefulness. But this of course does not exclude the possibility of a valuable

association of discord to the usefulness in some task [107].
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Gaussian Quantum Discord

An extension to the original definition has been made to continuous variable Gaussian states

by Adesso et al. [133] and Giorda et al. [134] simultaneously (although in the latter a

definition is only given for bipartite Gaussian squeezed thermal states). The purpose of

defining a Gaussian discord is due to the simple symplectic formalism used in their analysis,

described in Section 2.3.2. In addition, Gaussian states are seen to be the most physically

realisable of quantum states, since vacuum, coherent and squeezed states are all Gaussian.

The Gaussian quantum discord as introduced in Ref. [133] is defined as

D←(γAB) = f
(√

B
)

︸ ︷︷ ︸
S(ρB)

− (f(ν+) + f(ν−))︸ ︷︷ ︸
S(ρAB)

+ inf
σ0

f
(√

det ε
)

︸ ︷︷ ︸
inf{Π̂j}

H{Π̂j}
(ρA|ρB)

, (4.6)

where ν± are the symplectic eigenvalues of the two-mode covariance matrix γAB from Eq.

(2.72) and f(x) is given by Eq. (2.84).

The measurements performed are assumed to be a set of local projective measurements

{Π(j)
B } = {|jB〉〈jB〉} on subsystem B. The state of the whole system related to the mea-

surement is

ρAB|j =
1

pj
(1lA ⊗Π

(j)
B )ρAB(1lA ⊗Π

(j)
B ), (4.7)

with 1lA the identity matrix and pj = Tr[(1lA⊗Π
(j)
B )ρAB(1lA⊗Π

(j)
B )] the probability of obtain-

ing outcome j. The conditional entropy component can thus be written as S(ρA|{Π(j)
B }) =∑

j pjS(ρA|j), with ρA|j = TrB [ρAB|j ] being the reduced density matrix.

The quantum conditional entropy is restricted to generalised Gaussian positive operator

valued measurements (POVMs) on subsystem B written, in general, as

ρB(ν) =
1

π
ŴB(ν)ρ0

B(ν)Ŵ †B(ν), (4.8)

where ŴB(ν) is the Weyl operator (Eq. (2.92)), and ρ0
B is the density matrix of a single-mode

Gaussian state. It was shown to be sufficient to restrict to pure single-mode Gaussian states

with covariance matrix Γ0. The conditional state of subsystem A after the measurement on

subsystem B has a covariance matrix given by the Schur complement ε = γA − γC(γB +

Γ0)−1γ>C . The optimised post-measurement state infσ0 det ε is given by

inf
σ0

det ε =



2C2+(B−1)(D−A)+2|C|
√
C2+(B−1)(D−A)

(B−1)2

if (D −AB)
2 ≤ (1 +B)C2 (A+D) ,

AB−C2+D−
√
C4+(D−AB)2−2C2(AB+D)

2B

Otherwise.

(4.9)

where A = det γA, B = det γB , C = det γC and D = det γAB . The term ‘infσ0
det ε’ rep-

resents the optimised quantum conditional entropy of two systems over the set of Gaussian

measurements. The separate scenarios refer to different types of Gaussian measurements, a

notable class of states falling under the first case are squeezed thermal states for which the
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conditional measurement is minimised by heterodyne measurements (as introduced in [134]),

the second case corresponds to homodyne measurements. Key properties of Gaussian quan-

tum discord include (in addition to those applicable to the original discord):

1. almost all bipartite Gaussian states have Gaussian quantum discord.

2. for bipartite mixed separable states, Gaussian discord is less than or equal to 1.

Gaussian measurements are generally thought to be optimal for Gaussian quantum discord

in that a Gaussian measurement will tend to disturb the state the least. However, studies are

still ongoing regarding the implementation of non-Gaussian measurements (such as photon

counting2) on Gaussian states and whether they may be least disturbing for certain states

[135,136]. Pirandola et al. in Ref. [137] proved that, for a large set of Gaussian states, that

the Gaussian quantum discord is optimised by Gaussian measurements.

Operational Gaussian Discord (OGD)

More recently an “operational Gaussian discord” definition has been established by S.

Rahimi-Keshari et al. in Ref. [138]. This is a discord measure which can be experimen-

tally measured by using local and joint Gaussian measurements and is defined as

DOGD(B → A) = HminGL (Ã|B̃)−HminGJ (Ã|B̃), (4.10)

where HminGL (Ã|B̃) is the minimum conditional entropy of A after performing local Gaussian

measurements on A and B, and HminGJ (Ã|B̃) is the minimum conditional entropy of the same

subsystem after performing a joint Gaussian measurement on A and B. The entropies are the

continuous (differential) Shannon entropy of Gaussian probability distributions, which for a

single mode are given by 1
2 ln(det γ̃) + ln(2πe) [138], with γ̃ being the covariance matrix of

the probability distribution. In this notation, Ã and B̃ denote the entropies calculated using

outcome probability distributions of the measurements, since all the probability distributions

are Gaussian. To calculate the OGD one must simply minimise the determinants of the

covariance matrices of the conditional Gaussian probability distributions for the outcomes

of local and joint Gaussian measurements. It is suggested that this measure might be useful

for quantifying non-classical correlations in resources of other Gaussian protocols that involve

Gaussian states, operations, and measurements.

Distance-Based Quantum Discord

Another definition of quantum discord is as a distance-based measure. The relative entropy-

based discord was introduced by Modi et al. [139] and defined as

Drel(ρ) = min
χ∈C
S(ρ ‖ χ) = min

χ∈C
[S(χ)− S(ρ)], (4.11)

2Photon counting is a technique where individual photons are counted using some single photon detector
(SPD). Counting efficiency is determined by any electronic losses that are present in the system and the
quantum efficiency. An SPD can be a configured photodetector such as a photomultiplier.
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where C denotes the set of all classical states and

S(ρ ‖ χ) = Tr[ρ log2 ρ− ρ log2 χ] (4.12)

is the relative entropy. Qualitatively speaking, this measure will seek for the minimum

pseudo-distance between a state ρ and the closest classical state χ. Hence if the state ρ

is completely classical, Drel(ρ) will be zero. This resource has the advantage of placing all

correlations on an equal footing from its pseudo-distance nature, this allows a quantitative

comparison of different classes of correlations.

An additional distance-based measure of quantum discord is the geometric discord [140]

which is defined by

Dgeo(ρ) = min
χ
‖ ρ− χ ‖2, (4.13)

where the classical states χ are of the form p1|ψ1〉〈ψ1|⊗ρ1 + p2|ψ2〉〈ψ2|⊗ρ2 with
∑
i pi = 1.

The square norm of the Hilbert-Schmidt space is denoted ‖ · ‖, |ψi〉 are the orthonormal

basis of subsystem A and ρi are the density matrices of subsystem B. A disadvantage of

geometric discord is that it is in general difficult to experimentally measure, however a tight

lower bound has been established by Girolami and Adesso [141] without the need for full

state tomography.

4.1.2 Dynamics of Quantum discord

This Section will serve as a brief introduction to examples illustrating the dynamics of

quantum discord in Markovian and non-Markovian environments, enabling further insight

into the nature of quantum discord and its complexities. Let us first consider discord in

cavity quantum electrodynamics (QED) [142–146]. It has been extensively proven that

entanglement, during the evolution of a two-qubit state, may disappear for a finite time,

in a phenomenon known as “entanglement sudden death” [147–153]. However, it has been

established that almost all quantum states are discordant states, and that discord proves to

be more robust than entanglement in Markovian environments, to such a degree that there

is no quantum discord sudden death [154–157].

For a system of two non-interacting atoms within a dissipative cavity, the level of quan-

tum discord can reach asymptotic values even when the average photon number of the cavity

field is relatively large [142]. In [143] two spatially separated and dissipative cavities con-

tained a two-level system in each. In a weak coupling limit, discord will essentially remain

at zero for the finite time. Contrary to this, when a strong coupling limit is considered,

quantum discord sudden death is non-existent whilst entanglement sudden death persists.

Most studies of quantum discord are set within Markovian environments. However, it

has been witnessed that a proportion of quantum discord can be temporarily stored in a non-

Markovian environment, and then later returned back into the system. This phenomenon

has been referred to as “sudden birth of discord”, noting that however the existence of

“sudden birth of entanglement” has not yet been confirmed [158].

Recently, the propagation of quantum correlations via a spin-1/2 chain was investi-

gated [159]. The role of magnetic field in the dynamics of quantum discord was also dis-
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Figure 4.2: State merging protocol for a tripartite state ρABC aiming to transfer A to B at the
possible cost of using some extra entanglement. The amount of entanglement used is equal to the
discord between A and a common reference system C.

cussed. Quantum discord can be transported more efficiently than entanglement for many

initial conditions and working points. The effects of Dzyaloshinskii-Moriya interaction3

upon quantum discord of a spin-star system has been investigated in [145]. The results of

this show that strong Dzyaloshinskii-Moriya interaction can increase quantum discord and

thermal entanglement. However, a strong magnetic field and high temperature can decrease

quantum discord and thermal entanglement.

The dynamics of quantum entanglement and discord of two coupled double quantum dots

interacting with an oscillator bath has been investigated in [146]. The results of this paper

show that quantum discord is more robust to dissipation than entanglement of formation

of this system. Particularly, they pointed out that, even in the case of high temperatures,

quantum discord could be finite in the asymptotic limit [146].

From these examples it clear that quantum discord appears to have significance in a

broad range of protocols which indicates its dynamicity. Edging further, let us now consider

some well known operational implementations and interpretations of quantum discord.

4.1.3 Operational Interpretation of Quantum Discord

The operational interpretation of quantum discord has attracted much attention in recent

years with some interesting developments given in Ref. [162].

Extended State Merging If one starts with a tripartite state ρABC , state merging is a

process by which A and B transfer part-A of the state to B whilst maintaining coherence

with a reference C [163]. The entanglement consumption due to this merging will correspond

to the discord present (see Fig. 4.2). Both parties A and B have knowledge of the state they

3The anti-symmetric exchange defined as the contribution to the total magnetic exchange interaction
between two neighbouring magnetic spins, Si and Sj [160,161].
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share and can carry out arbitrary LOCC on the state. The end goal is to create n copies of

ρABC such that the resulting state ρBB′C possesses a state B′ which essentially plays the

same role as state A. The total entanglement consumption used in state merging of A to B

is defined as

Γ(A〉B) = EF (A : B) + S(A|B), (4.14)

where S(A|B) is the conditional entropy with a measurement on subsystem B and EF (A : B)

is the entanglement of formation, which defines the minimum pure state entanglement that

A and B need to consume to create ρAB by LOCC. By use of the Koashi-Winter relation

defined later in Section 4.4, the discord can be defined as D←(AC) = Γ(A〉B). This states

that the discord between states A and C, with a measurement on C, is equal to the total

entanglement consumption in extended state merging from A to B [162]. This was seen

to be the first link between the value of quantum discord and the information about the

performance or cost of a particular task.

Dense Coding Consider a sender A and receiver B sharing a quantum state ρAB . In

this, the sender has the ability to transmit more classical information than if the system

was merely classical. If encoding is performed on A by unitary rotations, the correction that

the sender could achieve by sending a classical system with an equal dimension to that of

subsystem ρA is exactly the coherent information

I(A〉B) = S(B)− S(AB). (4.15)

The coherent information thus describes the usefulness of a quantum state as a resource

for dense coding. However, in the most general scenario described in Ref’s. [164–167], A

encodes a message by means of general quantum operations ΛA : MdA →Md′A
, where dA is

the dimension of the original subsystem of A, d′A is the dimension of the subsystem sent to

B and Md denotes the set of d× d complex matrices.

If the encoding is applied at the level of single copies of the shared state ρAB , the dense

coding single-copy capacity is equal to

χ(A〉B) := log2 d
′
A + max

ΛA

I(A′〉B), (4.16)

where the maximisation is over all quantum operations with output dimension d′A and

I(A′〉B) is the coherent information of (λA⊗1lB)[ρAB ]. From this log2 d
′
A can be considered

as a classical contribution to the capacity, thus one can focus on the quantum advantage

associated with dense coding given by

∆(A〉B) := max
ΛA

I(A′〉B). (4.17)

The following connection between quantum discord and dense coding was given in Ref.

[162] as

D←(AC)−D←(BC) = ∆(C〉A)−∆(C〉B). (4.18)

This provides an operational meaning in terms of performance to the differences in discord,
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Figure 4.3: Output state from a device-independent QKD protocol. Local systems A and B
have correlated variables X and Y , respectively, which are processed into a secret key. Secret key
extracted by applying POVMs on local systems A and B. Eavesdropper steals information from
system E, while the extra system P is controlled by eavesdropper and completes the purification of
the global state ΦABEP .

stating that the difference in the discord of AC and BC, both measured by C, is the same

as the difference in the dense coding capacity from C to either A or B. Note that if C sends

subsystems with the same dimension to A and B, this difference can be written as

D←(AC)−D←(BC) = χ(C〉A)− χ(C〉B), (4.19)

i.e., in terms of the dense coding capacity itself. The same difference in discord can be

related to the coherent information,

D←(AC)−D←(BC) = I(A〉C)− I(B〉C) = I(C〉A). (4.20)

Quantum Cryptography Quantum key distribution (QKD) is a process at the heart

of quantum cryptography, traditionally reliant on the presence of quantum entanglement,

distillable or bound. In Ref. [168] Pirandola considered a general form of a device-dependent

QKD protocol in which noise affecting the device or apparatus is assumed to be trusted,

i.e. not coming from an eavesdropper but from the action of the environment. Moreover

a so-called device-independent version was also considered. In contrast to the former the

device-independent protocol captures minimal requirements related to security and robust-

ness against inefficiencies, and attributes it to an eavesdropper that cannot be trusted. The

aim of this work was to align the non-orthogonal properties of a discordant state to the

orthogonality essential to QKD. It was found that although the inefficiencies and noise may

disrupt the distribution or distillation of entanglement, a secure key is still extractable due

to the presence of non-zero quantum discord.

The device-independent protocol discussed in [168] (see Fig. 4.3) considered when loca-

tions A and B share a bipartite state ρAB which can be purified by two systems. One system

(ρE) accessible to an eavesdropper at location E, while the other system (ρP ) is inaccessible

and accounts from the presence of trusted noise, e.g., coming from imperfections in the state

preparation and/or detections.

In the device-independent protocol the system P is controlled by the eavesdropper. The
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secret key rates are given by

K→(AB) := sup
{Mx}

K(B|X) = Ic(A〉B) (4.21a)

K←(AB) := sup
{My}

K(A|X) = Ic(B〉A) (4.21b)

where K(B|X) := I(B,X)− I(E,X) and I(A,B) = S(A)− S(A|B) is the Holevo bound4

and coherent information Ic(A〉B) and its reverse Ic(B〉A) quantify the maximum distillable

entanglement by LOCC. The discord acts as an upper bound to these secret key rates such

that

K→(AB) = D(A|B)− EF (A,E) ≤ D(A|B) (4.22a)

K←(AB) = D(B|A)− EF (B,E) ≤ D(B|A). (4.22b)

This is a scenario where key distribution may occur in the complete absence of entanglement,

provided that there is non-zero discord. Moreover, it was discussed that any manner of

‘prepare and measure’ QKD protocols — with a security based on the non-orthogonality of

quantum states — can be recast into an “entanglement-free device-dependent form” based

on a classical-quantum (CQ) state5, with non-zero discord transmitted through the imperfect

channel.

Although quantum discord is the most prominent measure of non-classical correlation,

other measures exist and are well established. The following Section will aim to provide a

brief insight into the more popular alternative measures on offer.

4.2 Other Non-Classicality Indicators

Measurement induced disturbance (MID) was first introduced by Luo [169] and was based

on the fundamental principle that one can obtain all the information of a classical system by

performing measurements without causing disruption. The post-measurement state will be

completely classical and as such, any correlations contained within the state can be described

fully by the classical mutual information. MID is defined as

M(ρAB) = min
Π

{
I(ρAB)− I(ρΠ

AB)
}
, (4.23)

with ρΠ
AB =

∑
i,j [(Π

(i)
A ⊗ Π

(j)
B )ρAB(Π

(i)
A ⊗ Π

(j)
B )]. Clearly, MID can be considered easy to

calculate since it involves no optimisations as in the original definition of quantum discord.

An improved indicator followed this, aptly named an ameliorated measurement-induced dis-

turbance (AMID) [170–172], which serves as a more faithful symmetric indicator optimised

over joint local POVM measurements ΠAB = ΠA ⊗ ΠB on both subsystems, and therefore

reads as

MA(ρAB) = inf
ΠAB

{I(ρAB)− I(ρ′AB)}. (4.24)

4The upper bound to the amount of information which can be known about a quantum state.
5A classical-quantum (CQ) state is one defined as ρAB =

∑
i pi|i〉〈i|⊗ρB,i.



CHAPTER 4. NON-CLASSICALITY 48

Hence AMID will capture the quantumness of correlations signalled by minimal state dis-

turbance after optimised local measurements.

The Gaussian ameliorated measurement induced disturbance (GAMID) was introduced

by Mǐsta et al. in [173], which looks at the optimised gap between the classical and quantum

mutual information after local Gaussian measurements. In this, an analytic form of GAMID

was found for important subclasses of bipartite Gaussian states including symmetric states

and squeezed thermal states, including pure states. GAMID was also compared the Gaus-

sian entanglement of formation, which identified lower and upper bounds for GAMID as a

function of the GEoF. Moreover, GAMID appeared to consistently exceed the GEoF for all

two-mode Gaussian states, enforcing a hierarchy between these two forms of non-classicality.

Another popular indicator of non-classicality is quantum deficit, based on the work ex-

traction from a quantum system in a heat bath. When considering a classical system with

no quantum correlations, the total work (WT ) that can be extracted from the entire system

is the same amount of work, which could be extracted from individual subsystems by local

operations and classical correlations, WLOCC . However, this equality does not hold for those

systems which possess quantum correlations, i.e. WT 6= WLOCC . The quantum deficit is

then defined as the difference between these two amounts of extracted work.

Now that the definition of non-classicality has been full established it is interesting to

note different, more intricate definitions of what one may consider to be classical, and by

association, non-classical.

4.3 Differing Definitions of Non-Classicality

The essence of the definition of measurement-based Gaussian quantum discord is that a

classical state is defined as one which possesses zero discord. This occurs when the standard

form covariance matrix becomes diagonal and thus contains no x or p correlations between

systems A and B, i.e. c− = c+ = 0 in Eq. (2.70). States defined as classical in this sense are

known as Classical-Classical (CC) states, and constitute the main class of classical states

in an information theoretic context. Ferraro and Paris discussed in [174] the discrepancy

of the set of C-classical states and P-classical states. P-classical states are mixtures of

Glauber coherent states, having a well-defined P-function (see Section 2.2.2). The authors

show that the sets of C-classical and P-classical states are almost disjoint and that the

two definitions are not only inequivalent, but maximally so. Generic CC states appear

to exhibit quantumness in their P-function, and P-classical states have non-zero quantum

discord. Recently this has been extended to an experimental setting and shown that almost

all P-classical input states generate outputs that are not C-classical. In fact, the more

P-classical the resources at the input, the less C-classicality at the output. It was also

shown that the P-classicality at the input determines the potential of generating output

entanglement [175].

Moreover, aside from this discrepancy between an information theoretic and quantum

optics definition of classicality, there exist even more subtle differences in the definition of

classicality within CC states. CC states are defined as those which possess zero quantum

discord, however, this is found to be dependent on the exact definition of quantum discord.
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The original definition of quantum discord and the Gaussian extension were presented in

terms of the von Neumann entropy, the quantum equivalent of the Shannon entropy. It

was not until recently that Adesso et al. introduced Gaussian quantum discord in terms

of a Rényi-α entropy for the case of α = 2 [50] (see Section 2.4.1). The quantum mutual

information and classical correlation have been defined in terms of Rényi-2 entropies in Eq.’s

(2.90, 2.94). Hence the Gaussian quantum discord can be written as

D2(ρ(A|B)) = I2(ρ(A:B))− J2(ρ(A|B))

=
1

2
ln

(
det γA det γB

det γAB

)
− sup

ΓΠ
B

1

2
ln

(
det γA
det γ̃Π

A

)
= inf

ΓΠ
B

1

2
ln

(
det γB det γ̃Π

A

det γAB

) (4.25)

with γ̃Π
A = γA−γC(γB+ΓΠ

B)−1γ>C is the covariance matrix of subsystem A after an optimised

Gaussian measurement is performed on subsystem B, defined as

inf
ΓΠ
B

det γ̃Π
A =



a
(
a− c2+

b

)
if (ab2c2− − c2+(a+ bc2−))(ab2c2+ − c2−(a+ bc2+)) < 0,

2|c−c+|
√

(a(b2−1)−bc2−)(a(b2−1)−bc2+)+(a(b2−1)−bc2−)(a(b2−1)−bc2+)+c2−c
2
+

(b2−1)2

Otherwise.

(4.26)

Form this definition, zero discord (and hence a CC state) exists when either there are no

position or momentum correlations between subsystem A and B, i.e., c− = 0 or c+ = 0,

proving as a result that the Rényi-2 definition appears to be a less sensitive indicator of

quantum discord. Therefore one must be careful to clarify the exact definition of what is

classified as classical.

Thus far a number of fundamental properties have been defined for continuous variable

states and some remarkable relationships recognised. The next Section will serve to provide

an introduction to the most focused upon relation in this Thesis, the Koashi-Winter relation.

4.4 Koashi-Winter Relation

The Koashi-Winter relation stems from the unique property of monogamy of entangle-

ment [176], capturing the trade-off between entanglement and classical correlation. The

monogamy of entanglement implies that if a pair of systems A and B are maximally entan-

gled, e.g. |Ψ−〉 = (|01〉 − |10〉)/
√

2, neither system can be entangled to a third system C.

In addition to this, it is found that neither system can possess even classical correlations

with C. Similarly, if a pair of systems A and B contains a maximum amount of classical

correlations, then neither system can possess entanglement with any third party.

In [176] Koashi and Winter considered a tripartite state ρABC and an ensemble {pi|ψi〉}
which minimises the entanglement of formation (EoF) (see Section 3.3.3). There exists a
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measurement outcome i with probability pi which leaves the state of A and B in |ψi〉. From

the definition of J←(ρ),

J (ρA : ρC) ≥ S(ρA)−
∑
i

piS(Tr[|ψi〉〈ψi|]),

= S(ρA)− EF (ρAB),

(4.27)

where S(ρ), EF (ρ) and J←(ρ) represent the marginal entropy, entanglement of formation

and one-way classical correlation, respectively. This equality holds for all pure states ρABC
since the concept of non-classical states with zero entanglement has not been taken into

account.

Linking this equality to discord can be simply done by substituting Eq. (4.3) into Eq.

(4.27) giving

S(ρA) = EF (ρAB) + I(ρAC)−D←(ρAC),

⇒ S(ρAC) +D←(ρAC) = EF (ρAB) + S(ρC).
(4.28)

The relation thus allows for the illustration of how general non-classical correlation flows

within a tripartite system. A number of relations can arise from this connection such as the

difference in the marginal entropies of two subsystems in terms of discord,

S(ρBC)− S(ρAC) = D←(ρAC)−D←(ρBC) (4.29a)

S(ρA)− S(ρB) = D←(ρAC)−D←(ρBC). (4.29b)

where use has been made of the purity relation S(ρij) = S(ρk) for a tripartite state ρijk.

These relations were used in an interesting analysis of tripartite Gaussian states in Ref. [177].

In this Chapter the notion of non-classicality was introduced. A notable class of states

which are strictly non-classical, while remaining separable, were identified. The most de-

veloped and widely accepted measure of non-classicality in bipartite mixed states, quantum

discord, was extensively discussed. This Chapter also included a general definition of what

one may consider as classical, and how this definition must be strictly laid in place, since there

exists a wide array of definitions for the set of classical states. The concepts, definitions and

tools defined here, particularly Gaussian quantum discord, will now be implemented into

specific schemes to attempt to identify new information in regards to its usefulness as a

quantum resource.
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Chapter 5

Gaussian Discord in a

Dissipative Quantum System

The Gaussian formalism is being constantly expanded in order to strengthen quantum in-

formation theory, this extends to Gaussian quantum discord. Gaussian quantum discord is

receiving increasing attention and is believed to aid in an ultimate conclusion to the practi-

cal usefulness of non-classical correlations in a quantum system. It has recently been shown

that for a number of popular classes of Gaussian states, the Gaussian quantum discord cor-

responds to the true quantum discord1 [137]. Theoretically speaking, Gaussian mixed states

are of specific interest since it is possible to fully describe each state by its first and second

moments, i.e. a covariance matrix. Experimentally, mixed Gaussian states are readily real-

isable, being constructible from pure coherent, squeezed and vacua states. Mixed states are

also considered to be more realistic in the sense that they can be perceived as pure states

following some degree of mixing with the environment, which is rather infeasible to prevent

in reality.

The following presents original work, formally introduced in Ref. [178], focused on the

study of Gaussian quantum discord in a realistic, noisy environment. The scheme considered

is designed so to be as basic as possible, to allow focus on the fundamental properties of the

correlations present therein. A deeper insight into the complexities of the system, and in

particular how Gaussian discord can increase under local loss, is achieved by considering a

globally pure state in which the bipartite separable discordant system is contained. We find

that the discord dynamics can be attributed to the flow of correlations with the global sys-

tem (system and environment) using the Koashi Winter relation. We thus pinpoint the role

of system-environment correlations and the manner in which the flow of correlations to the

environment affects the system. The theoretical establishment of general non-classical cor-

relations from system-environment correlations was discussed for qubits in [179]. Recently,

experimental evidence has been proposed linking the open-system dynamics of entanglement

to correlations with environment and discord [180].

This Chapter will unveil, experimentally and in theory, how the environment can con-

1True quantum discord is defined as that which is optimised over all general local measurements.
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tribute to the manifestation of quantum properties. As a final factor, a conceptual discussion

will be presented on the optimisation of this counter-intuitive property of the system, de-

termining the ideal properties a state must possess to benefit most from controlled local

dissipation. A conclusion is then held regarding the hidden quantum features within the

system in relation to the possible recovery of entanglement in a separable discordant state

using classical communication based on initial state preparation.

5.1 Quantumness of Gaussian Discord Under Loss

5.1.1 State Preparation and Scheme Outline

The main aim of the scheme outlined below is gain insight into the characteristics of quantum

discord under the influence of a noisy channel. What is the limiting case where robustness

of discord is witnessed? What properties of the system are responsible for this robust nature

and what are its advantages? To begin our analysis of Gaussian quantum discord we must

first construct a bipartite mixed state, possessing the property of being both separable

and discordant. This is achieved in two separate scenarios, both of which involve a single

interaction with a vacuum state on a beamsplitter.

The first scenario involves the preparation of a squeezed coherent state denoted as ρ0,sq
A

and constructed as a polarisation squeezed beam2 generated by exploiting the non-linear

Kerr effect of a polarisation maintaining fibre3 [181–184]. To this state, we add a Gaussian

distributed modulation, which can be seen as random displacements of the original state

along either the x– or p–axis of phase-space with an overall Gaussian distribution. This

state is considered as a classical state, and so represented by a convex mixture of coherent

states. The first consideration of this scheme requires that the Gaussian modulation be

primarily applied to the x–quadrature of the input state. This generation of discord is in

contrast to all previous discord experiments such as [185–187]. This modulation is applied

by an electro-optical modulator (EOM)4 and adjusted via the half-wave plate such that the

modulation occurs along the Ŝθ-axis5, i.e., the x–axis. A quarter-waveplate after the EOM

is necessary to compensate for the residual birefringence of the EOM without an applied

voltage. The second scenario is essentially the same but with the vital difference that the

initial prepared state is a pure coherent state denoted as ρ0,coh
A which stems directly from

the pump source, which is a soliton laser.

Note that in this scheme, the modulation of the input modes in the (x – p) plane

2The concept of squeezing can be translated to other variables such as the polarisation of light, such that
the intuitive idea of squeezing implies that polarisation fluctuations are reduced below some prescribed level.

3The Kerr effect is the case where the electric field is a result of the light itself. This causes a variation
in refractive index, proportional to the local irradiance of the light.

4An EOMs creates sidebands in a monochromatic laser beam. Imagine that a laser beam with frequency
ω with the strength entering the EOM given by Aeiωt to which a sinusoidally varying potential voltage is
applied with frequency Ω and small amplitude β. This will add a time-dependent phase to this expression
such that Aeiωt+iβ sin(Ωt).

5Stokes showed in Ref’s. [188,189] that a beam of light can be described completely by four parameters.
Light is in general partially elliptically polarised, and the four parameters can be, for example, the size (I)
and shape (M) of the ellipse, its orientation with respect to some fixed spatial axes (C), and the direction
of rotation of the ellipse (S).
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Figure 5.1: Mixed Gaussian state ρA prepared by Gaussian distributed modulation of pure coherent
or squeezed state ρ0

A, then mixed on a beamsplitter with a vacuum state ρB . Gaussian quantum
discord between resulting bipartite state ρA′B′ is evaluated before and after the mode ρB′ undergoes
the action of variable local loss Λ̂ modelled by variable attenuation. Gaussian discord can grow under
this local operation.

requires not only EOM, but involves also a down-mixing procedure and a post-processing

of the measured data. By applying a sinusoidal voltage the birefringence of the EOM

changes. With the help of a phase-matched electronic local oscillator, the modulation of the

individual states is transformed into a displacement. In combining the measured data for

differently displaced states appropriately, we prepare a Gaussian mixed state. The performed

Stokes measurements allow the determination of its complete covariance, where the Stokes

observable Ŝθ is identified with x̂ and Ŝθ+π/2 with p̂.

The modulated state ρA, whether it be originally squeezed or coherent, is then superim-

posed on a beamsplitter with a vacuum state, labelled as state ρB . The input mixed state

ρA and vacuum state ρB read in covariance matrix form as,

γA =

(
Vx 0

0 Vp

)
and γB = 1l, (5.1)

where the quadrature variances are defined as Vx = 2〈(∆xA)
2〉 and Vp = 2〈(∆pA)

2〉 with

VxVp ≥ 1, encompassing both the original variances and the addition due to modulation. The

composite system is constructed as the direct sum of subsystems, i.e. γAB = γA⊕γB , which

is a solely classically correlated bipartite mixed state (since all non-product Gaussian states

were proved to possess non-zero Gaussian discord [133, 190]). The beamsplitter interaction

is described by the symplectic transformation, Eq. (2.58), as

ÛAB =

(
T1l R1l

R1l −T1l

)
, with T 2 +R2 = 1, (5.2)

with T and R are the transmittivity and reflectivity, respectively. As a direct result of

the specifically chosen modulation, in the case of ρsqA the initial squeezing is destroyed

and any opportunity of entanglement creation between a modulated squeezed state and

vacuum following a beamsplitter interaction is prevented. Alternatively, an interaction of
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a coherent state (ρ0,coh
A ) and vacuum state should yield a bipartite classical state, however,

modulation leads to the emergence of a separable non-classical state. Gaussian quantum

discord is thus present between output modes for both cases of input state, ρA. Note also

that following [137], for this bipartite state, Gaussian quantum discord corresponds to true

quantum discord (see Appendix A). It can be interpreted that the quantumness of the post-

interaction bipartite state originating from ρ0,coh
A can be seen as enhanced by modulation

and the quantumness of the state originating from ρ0,sq
A seen to be dampened.

From a quantum optical perspective this is not as intuitive since the modulated state

and vacuum state are seen as being purely classical objects, defined as such by a positive

P-function for mixed states and a positive delta P-function for a vacuum state. Thus a

unitary operation should not yield a non-classical object. Formally, this result is rather

anticipated since in the language of covariance matrices any introduction of modulation (or

squeezing) on ρA will result in non-zero x and/or p covariance terms between systems, and

hence non-zero Gaussian quantum discord. The discussion of differing classicality definitions

has been covered in Chapter 4.

The covariance matrix of the output state of the beamsplitter interaction, denoted as

γA′B′ , is thus given by γA′B′ = ÛABγABÛ
>
AB ,

γA′B′ =

(
α σ

σ> β

)
=

(
T 2γA +R21l TR(γA − 1l)

TR(γA − 1l) R2γA + T 21l

)
. (5.3)

In order to study the effect of loss on separable non-classical states, subsystem ρB′ will

undergo the action of a controlled local loss modelled by variable attenuation (beamsplitter

interaction with a variable ratio, superimposing ρB′ and a vacuum state). The covariance

matrix, γA′′B′′ , representing the final state is then measured and is of the form,

γA′′B′′ =

(
T 2γA +R21l τTR(γA − 1l)

τTR(γA − 1l) τ2(R2γA + T 21l) + ρ21l

)
. (5.4)

where τ and ρ are the transmittivity and reflectivity of the second beamsplitter modelling

local loss Λ̂ as shown in Fig. 5.1. This is the final measured covariance matrix, noting that

the attenuation on subsystem B′ can be modelled by adjusting τ such that when τ = 1,

γA′′B′′ corresponds to γA′B′ since the beamsplitter is essentially removed. Next let us draw

attention to a number of imperfections within the experimental setup that were explored

and modelled.

5.1.2 Dissipation and Imperfections

Noise and losses are introduced into the system by a number of possible sources. The scheme

is designed with two intentional and controlled sources, these are:

• The modulation of the initial state modelled as an increase of the input quadrature

variances, Vx, in subsystem A before the first beamsplitter.

• The local loss applied to subsystem ρB′ denoted as Λ̂ in Fig. 5.1, and modelled as a
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beamsplitter interaction with a vacuum state with a variable attentuation defined as

Att = ρ2 = 1− τ2.

There are however some unintentional experimental losses which result in rather signifi-

cant impacts. These are present due to:

• An apparent additional noise due to propagation of the light mode through the squeez-

ing fibre added to the non-squeezed quadrature of the initial state. This is modelled

as an increase of the concerned quadrature variance i.e., Vp, such that the exponential

relationship in Eq. (2.57) no longer exists.

• Imperfect common mode rejection (CMR). Common mode rejection refers to the re-

jection of unwanted input signals common to both input modes. Imperfections in this

process will lead to residual noise present in both output modes of the beamsplitter

involved in homodyne detection (see Section 2.3.1).

In mode A, measuring the photo-current difference should cancel out any noise.

However, if this is not done perfectly, there will be some residual excess noise intro-

duced. Therefore the measured quadrature is, x̂A = x̂A,p + x̂A,N , where x̂A,p is the

quadrature that would be measured with perfect CMR and xA,N is the excess noise.

The imperfect CMR will be the same in both modes, so 2〈(∆x̂A,N )2〉 = 2〈(∆x̂B,N )2〉 =

a. Also, there is no feasible explanation for the imperfectly cancelled noise in mode A

to be correlated to that in mode B, therefore 2〈∆x̂A,N ∆x̂B,N 〉 = 0.

Common mode rejection is modelled as linearly decreasing with attenuation and

therefore is introduced as,

γA′′B′′ → γA′′B′′ + γNA′′B′′ , where γNA′′B′′ =

(
a1l 02

02 τ2a1l

)
, (5.5)

where γA′′B′′ is given by Eq. (5.4) and 02 is the 2 × 2 null matrix. Imperfect CMR

will linearly decrease with attenuation since attenuation is carried out on mode B,

and so the excess noise is also attenuated. Therefore the measured quadrature is,

x̂B = x̂B,p + τ x̂B,N . Combining all this gives an addition to the elements of the

theoretical covariance matrix as γN1,1 = a, γN3,3 = τ2a, and γN1,3 = 0.

• In addition to imperfect shot noise calibration, there is a statistical error in the mea-

surement of the Stokes observables performed for the determination of the covariance

matrices and Duan’s separability criterion [80] made use of later. To analyse these

errors the results of the measurements performed on pure coherent states are com-

pared to the theoretical expectations. With the use of Monte-Carlo simulations the

discrepancies are used to estimate the errors in the further determined quantities, for

example the Gaussian quantum discord. The possible errors are shown as error bars in

Fig.’s 5.2, and reflect both the error in the calibration as well as the statistical error.

We must assume that any additional systematic error must be present due to

further imperfections in the measurement system, as well as due to the modulation

performed by the EOM and drifts in the setup over the long measurement times. As a
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result, the elements of the covariance matrix deviate from what we would expect theo-

retically. This also applies to the eigenvalues of the covariance matrices. Both for the

states ρ0,coh
A and ρ0,sq

A we found the lowest eigenvalue after PPT give ñu− < 1, indicat-

ing weak global squeezing in the bipartite state ρA′B′ , which indicates an inseparable

state. This appears surprising since the state prepared by displacing coherent states

is separable and classical by construction. Moreover, the squeezing in the mixed state

prepared from a squeezed state is reliably destroyed due to the amount of imprinted

modulation. Thus, the eigenvalue lower than 1 is clearly an artefact of a systematic

error present in the setup.

An attempt was held in order to justify and correct natural imperfections inherent in

determining an experimental covariance matrix which caused theoretically null elements

to be measured as non-zero. Two linked imperfections where considered to explain these

entries, but were found to not play a significant role, and were subsequently excluded. The

considered imperfections were:

• Measurement of slightly rotated quadratures when constructing the covariance matrix

γA′B′ . The measurement can be modelled by phase shifts as in Eq. (2.56),

Ûj(θj) =

(
cos θj sin θj
− sin θj cos θj

)
, (5.6)

performed on modes A′ and B′ followed by measurement of the correct quadratures.

The phase shifts give

γA′B′ =

(
ÛAαÛ

>
A ÛAσÛ

>
B

ÛBσ
>Û>A ÛBβÛ

>
B

)
. (5.7)

If the phase shifts Û>A,B are chosen such that they diagonalise all of the sub-blocks

of the covariance matrix, then it is clear that the appearance of non-zero elements

γ1,2, γ1,4, γ2,3 and γ3,4 arise from the measurement of rotated quadratures.

• Phase fluctuations are present meaning that instead of mixing a state ρA with covari-

ance matrix (5.1) on a beam splitter, we mix a state,

ρϕA =

∫
P (ϕ)Û(ϕ)ρAÛ

†(ϕ)dϕ, (5.8)

where P (ϕ) is the distribution of the random phase and Û(ϕ) is the operator of the

phase shift. Typically, P is Gaussian with the mean 〈ϕ〉, the variance 〈(∆ϕ)2〉, and the

integration is performed over the entire real axis. The elements of the corresponding
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covariance matrix can be expressed as

γϕij = Tr[(ξiξj + ξjξi)ρ
ϕ
A]

=

∫
P (ϕ)Tr[(ξiξj + ξjξi)ρA(ϕ)]dϕ

=

∫
P (ϕ)(γA(ϕ))ijdϕ,

(5.9)

where γA(ϕ) = Û(ϕ)γAÛ
>(ϕ) is the rotated covariance matrix (5.1). The modulation

causes tilting in the squeezed ellipsis. The larger the modulation the more prominent

the tilt. Since the modulated state is a mixture of states with the positive displace-

ments of the position quadrature we mix states with a different non-zero tilt and hence

our phase distribution has a non-zero mean 〈ϕ〉 6= 0. Assuming only a small tilt we

can expand the trigonometric functions in γA(ϕ) as cos(ϕ) = 1−ϕ2/2 and sin(ϕ) = ϕ.

Excluding terms greater than second order we get:

γϕA =

(
Vx(1− 〈ϕ2〉) + Vp〈ϕ2〉 (Vp − Vx)〈ϕ〉

(Vp − Vx)〈ϕ〉 Vp(1− 〈ϕ2〉) + Vx〈ϕ2〉

)
. (5.10)

If we require σ12 = σ21, where σij are the matrix elements of the sub-block σ of γA′B′ ,

we can compensate the unwanted angles of rotation of measured quadratures, this

requirement is satisfied if:

tan (θA − θB) =
σ12 − σ21

σ11 + σ22
, (5.11)

which of course should be zero in an ideal case.

In fully describing the preparation of the state and the possible imperfections included

in the scheme, it is now appropriate to begin our analysis of the effect of discord increase

under the action of local loss, and a number of ways in which the effect may be amplified.

5.1.3 Scheme Analysis and Optimisation

After allowing the systems ρA and ρB to interact, the resultant bipartite state, ρA′B′ , was

found to exhibit a counter-intuitive increase of Gaussian discord as the local loss was applied

and increased on one subsystem. This implies that if the noisy channel is intensified, the

quantumness of the system is not only hugely robust, but actually appears to strengthen,

contrary to expectations. The local loss is realised by a variable attenuation on ρB′ denoted

as Λ̂ in Fig. 5.1, where maximum attenuation would correspond to ρB′ being fully absorbed.

Gaussian discord was calculated using the formulation introduced in Section 4.1.1 and in

Ref. [133]. Results of this for both squeezed and coherent states are presented in Fig. 5.2

(left) and Fig. 5.2 (right), respectively. Focusing on the scenario with an initial state ρsqA
with quadrature variances Vx = 9.84 and Vp = 38.4, depicted by a blue solid line, with corre-

sponding experimental results and associated statistical errors. Note that although discord
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Figure 5.2: (left) Gaussian quantum discord versus attenuation in mode ρB′ for modulated squeezed
state. Theory curve (blue solid) and experiment (blue dots) for modulation in x̂-quadrature, Vx =
9.84, Vp = 38.4 and T 2 = 0.4982. Theory curves: for the same input and T 2 = 0.14 (red dot-
dashed); for Vx = Vp = 38.4 and T 2 = 0.081( green dashed); for Vx = Vp = 9.84 and T 2 = 0.085
(purple dotted).
(right) Gaussian quantum discord versus attenuation in mode ρB′ for modulated coherent state.
Theory curve (solid blue) and experiment (blue dots) for modulation in x̂-quadrature, Vx = 7.1,
Vp = 1 and T 2 = 0.5006. Theory curves for the same input state and T 2 = 0.16 (red dot-dashed)
and for modulation in both quadratures, Vx = Vp = 7.1, and T 2 = 0.08 (green dashed).

increase is seen for both ρsqA and ρcohA , the achievable discord when implementing a coherent

state is significantly lower than the squeezed state scenario. This can be attributed to the

quantumness of the state being introduced by the squeezing and the imprinted modulation

preventing the creation of a quantum state (containing quantum entanglement) rather than

creating quantumness from a classical state, as in the coherent state scenario.

Let us first attempt a better understanding of the optimal conditions under which the

effect is most pronounced. This can be done by generalising the scheme and considering two

hypothetical cases;

i The asymmetric case where ρA is modulated in one quadrature only.

ii The symmetric case where ρA is modulated equally in both quadratures.

Note that whether ρ0
A is prepared as a squeezed or coherent state is irrelevant as both of

the above cases can be constructed from either. Fig.’s 5.2 show the discord in the theoret-

ical model with corresponding experimental results (blue), with the most influential of the

aforementioned imperfections implemented (i.e., CMR)6, for a squeezed (left) and coherent

(right) input states. Although the Gaussian discord value and relative increase can be en-

hanced by increasing the modulation in the x-quadrature, this however will only improve the

effect to a small degree. At further inspection it appears that having a symmetric input state

will lead to a more pronounced Gaussian discord increase (see green dashed curves in Fig.’s

5.2). This appears to only be true provided that the quadrature variances in the symmetric

input state do not fall below that of the smallest quadrature variance of the asymmetric

input state, e.g., if the asymmetric state has variances Vx = 10 and Vp = 40 then the use of

6Not all of the imperfections could be included into the model as this proved to be computationally
exhaustive.
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Figure 5.3: (left): (Solid lines) Gaussian quantum discord versus attenuation in mode ρB′ for
symmetric input state ρA with Vx = Vp = 10, for different beamsplitter ratios; (black) T =

√
0.5,

(red) T =
√

0.3, (green) T =
√

0.1 and (blue) T =
√

0.05. Dashed lines indicate the corresponding
attenuation at which maximum discord is achieved for each case.
(right): Gaussian quantum discord versus attenuation in mode ρB′ for symmetric input state ρA
with T =

√
0.05, for different variances; (solid) Vx = Vp = 10, (dashed) Vx = Vp = 30 and (dotted)

Vx = Vp = 50.

a symmetric state is only advantageous provided that it has variances Vx = Vp > 10. As the

symmetric modulation is increased, the overall Gaussian discord value and growth due to

increased attenuation will increase and converge to an optimal value. This is rather intuitive

as Gaussian discord is fundamentally connected to the non-compatibility of observables, so

modulation in both quadratures should be preferable to achieve greater Gaussian discord.

It is interesting to note that the Gaussian discord increase can be further improved

by preparing the output state of the beamsplitter, γA′B′ , such that the subsystems are

maximally indistinguishable. The obvious method of doing so is to instead implement an

asymmetric beamsplitter i.e., T < 1/
√

2. In fact we can conclude that a highly asymmetric

beamsplitter proves to provide the best case of Gaussian discord increase7 (see Fig. 5.3

(left)). However, note that as the beamsplitter becomes more asymmetric, the overall level

of Gaussian discord lowers. An increase in the overall level is only achievable at stronger

levels of modulation, and hence larger variances (see Fig. 5.3 (right)). Also, the degree of

attenuation where the maximum discord value is achieved is in general inversely proportional

to the beamsplitter ratio, i.e., as the transmittivity is lowered, the point where maximum

discord is present, appears at stronger attenuations, as seen by the dashed lines in Fig. 5.3

(left).

Since the local loss is applied to subsystem ρB′ only, the total variance (Vx and Vp) of

the mode will always decrease with increasing local loss. When an optimised asymmetric

beamsplitter is implemented, the total variance of mode ρB′ will decrease more dramatically

as Att→ 1. The higher the rate of decrease of the total variance of ρB′ with respect to the

level of local loss, the more pronounced the increase of the Gaussian discord. The maximum

value of Gaussian discord in each case is obtained as the total variances of ρA′ and ρB′

become less distinguishable. In the optimised asymmetric beamsplitter case the variances

7Optimisation of the beamsplitter ratio is done on the basis of maximising the possible increase of
Gaussian quantum discord.
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of ρA′ and ρB′ are converging, as opposed to the case of a balanced beamsplitter, where the

variances of states diverge from one another. This is seen for all possible input states.

In summary, since Gaussian states such as ρA′B′ are convex mixtures of non-orthogonal

over complete coherent basis states, the impossibility to deterministically discriminate be-

tween them is a seminal example of quantumness in separable bipartite states. Thus, in-

tuitively the discord growth under the action of local loss can be attributed to these non-

orthogonal basis states becoming less distinguishable with attenuation, modelled by a large

symmetric initial variance in ρA and a highly asymmetric beamsplitter such that most of the

input mode A is reflected into the attenuated mode B′. Although it is difficult to reduce the

mechanism behind this effect to a simple single phenomenon since in Ref.’s [131, 159, 191]

it has been explained without the use of orthogonality arguments. This is remarkable since

asymmetrising the beamsplitter will clearly significantly reduce the level of discord, but an

increase of local loss can counteract this negative impact and restore the discord to levels

seen for a symmetric beamsplitter.

An increase of Gaussian quantum discord D←(ρA′B′) with growing loss on one subsystem

ρB′ was only recently first demonstrated by Madsen et al. [185]. In this the authors only

considered a symmetrically modulated coherent state. However, the discord increase was

remarkably pronounced and unlike anything achievable with the basic theoretical model

implied in the article. A probable explanation is that a highly asymmetric beamsplitter was

modelled, and then attributed to a limited balancing of the homodyne detectors — although

no indication of the type or degree of noise was discussed. Fig. 5.4 illustrates how similar

results are achievable when implementing an asymmetric beamsplitter for variances provided

(Vx = Vp = 〈n〉). Note that slight differences will be largely attributed to the estimation of

the discord value at zero attenuation. The inset shows for comparison the noiseless model

with a balanced beamsplitter for the same variances. Thus an asymmetric beamsplitter (or

noise simulating the same effect) has an essential role in amplifying the feature of discord

increase under local loss which cannot be attributed to varying modulation alone. This acts

to reinforce our analysis that a decreased discord caused by imperfections can be regained

by introducing controlled local loss.

Recently, Marian et al. examined the decay of quantum correlations in a two-mode

squeezed thermal state in contact with a local thermal reservoir. Two measures of quantum

correlations were compared, namely the entanglement of formation and the quantum discord.

One of the cases considered was when a single reservoir acts on one mode only. From this

it was shown that in the evolution of the Gaussian quantum discord, when it is defined by

local measurements on the attenuated mode and the input state is mixed, the discord can

increase in time above its initial value. This enhancement of discord was seen to be stronger

for zero-temperature reservoirs and increases with the degree of input mixing [192].

In the following Section the bipartite mixed state ρA′B′ will be expanded to its globally

pure system. This will allow further insight into how classical and non-classical correlations

flow throughout the system in order to seek an explanation of the unexpected effect of

discord increase under the action of local loss.
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Figure 5.4: (left) Discord increase for varying levels of symmetrically modulated input state as
presented in [185]. (right) Comparison using theoretical model presented above for matching levels
average photon number 〈n〉 and fitted using zero attenuation point (left). The curves are achieved
when beamsplitter is highly asymmetric, 〈n〉 = 35.5, T 2 = 0.05, 〈n〉 = 17.8, T 2 = 0.09, 〈n〉 =
8.9, T 2 = 0.16 and 〈n〉 = 4.6, T 2 = 0.29. Inset: symmetric beamsplitter case for same average
photon numbers.

5.2 Flow of correlations in Global System

The previous Section sought to explain the factors which appear to most significantly affect

the gain of Gaussian discord from local loss, and how is it possible to optimise this gain. In

contrast, this Section will aim to provide insight to the source of these additional correlations

as a flow of hidden correlations within a larger global system.

It is clear from the construction of the state that γA′B′ must possess two symplectic

eigenvalues of the form νA′ =
√

detγA′ =
√
VxVp and νB′ = 1. Alternatively, the eigenvalues

can be calculated from Eq. (2.72). The purification process can be thought of as the search

for the necessary additional quantum system required to expand a mixed state to a larger

pure state system. Due to this, and since system ρB is already pure, the purification of the

state involves the addition of one extra system in order to purify ρA, i.e., the purification of

ρA′B′ is tripartite. The third purifying subsystem ρE′ is then interpreted as the environment

and the purification is obtained by characterising the input state, ρA, as a subsystem of a

two-mode squeezed thermal state |ψTMSTS〉AE (Eq. 2.60) with the covariance matrix

γ
(TMSTS)
AE =

(
a1l cσz
cσz a1l

)
, (5.12)

where

a = cosh(2r) = νA′ =
√
VxVp,

c = sinh(2r) =
√
ν2
A′ − 1 =

√
VxVp − 1,

(5.13)

r is the squeezing parameter and σz is the Pauli diagonal matrix. Thus the state ρABE is

pure.
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Figure 5.5: Subsystem ρA taken as subsystem of a TMSTS ρAE , then prepared by Gaussian
distributed modulation and is split up on a beamsplitter. The Gaussian quantum discord between
resulting modes ρA′ and ρB′ is evaluated before and after the mode ρB′ undergoes the action of
variable local loss modelled by variable attenuation. Gaussian discord can grow under this LO. Two
purifications must be performed before and after local noise, denoted γπ and γ̃π, these involve two
different “environmental” modes, E′ and E′′, respectively.

Following the purification process outlined in Section 2.3.2 we apply now a symplectic

transformation S−1 to modes A′ and B′, such that S symplectically diagonalises γA′B′ , i.e.,

SγA′B′S
> = (νA′1l)⊕ 1l and satisfies the symplectic condition SΩS> = Ω. The transforma-

tion S will read as

S = (SA ⊕ 1l)Û>AB , SA =


4

√
Vp
Vx

0

0 4

√
Vx
Vp

 , (5.14)

where ÛAB a beamsplitter transformation given by Eq. (5.2). Therefore the covariance

matrix of the purification then reads:

γπ =

(
γA′B′ D

D> νA′1l

)
, where D =

√
ν2
A′ − 1

(
TS−1

A σz
RS−1

A σz

)
. (5.15)

This purification then satisfies the cyclic purity condition Det(γij) = ∆ij − 1 given in Eq.

(2.75).

In the next step of the scheme, mode B′ of the state ρA′B′ is subjected to a local variable

attenuation, modelled by superimposing ρB′ with a vacuum mode on a beamsplitter. We

require the global system to consistently comprise of three systems, as we wish to ultimately

use the Koashi-Winter equality (see Section 4.4) valid for tripartite pure systems. Since the

attenuation is modelled with the addition of another vacuum mode, a second purification

is required modelling the global state again as tripartite. This proved to be slightly more

complex, but essentially required following the same process as above. The final bipartite
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mixed composite state possesses a covariance matrix of the form:

γA′′B′′ =

(
α′ σ′

σ′> β′

)
, (5.16)

with α′ = α, β′ = τ2β + ρ21l, and σ′ = τσ, as presented in Eq. (5.4). Consequently, Eq.’s

(2.72) reveals that νB′′ = 1 and

νA′′ =
√

(T 2 + τ2R2)2vxvp + (T 2 + τ2R2)(vx + vp) + 1, (5.17)

where vx,p = Vx,p − 1. Thus, the state γA′′B′′ has again only a tripartite purification. The

purification can be constructed exactly as in the case of the covariance matrix (5.12).

First, a matrix S̃ must be found that symplectically diagonalises γA′′B′′ . The matrix

attains the form S̃ = H̃(S̃A⊕ S̃B), where S̃A = diag(λ, 1/λ) and S̃B = diag(µ, 1/µ). Here λ

and µ are defined as,

λ = 4

√
T 2vp + 1

T 2vx + 1
and µ = 4

√
τ2R2vp + 1

τ2R2vx + 1
, (5.18)

acting as local squeezing transformations bringing the covariance matrix (5.16) into the

standard form as seen in Eq. (2.70), with

ã =
√

(T 2vx + 1)(T 2vp + 1),

b̃ =
√

(τ2R2vx + 1)(τ2R2vp + 1),

c̃1 = τTRλµvx, c̃2 =
τTRvp
λµ

. (5.19)

From this, the symplectic matrix H̃ symplectically diagonalises the standard form (5.19).

By introducing the auxiliary parameters M ≡ ãc̃1 + b̃c̃2 6= 0, LA ≡ −(ã2 + c̃1c̃2 − 1), and

LB ≡ b̃2 + c̃1c̃2 − 1, the matrix can be expressed in the form [193]

H̃ =
√

2


x1 0 x2 0

0 x3 0 x4

x5 0 x6 0

0 x7 0 x8

 , (5.20)



CHAPTER 5. GAUSSIAN DISCORD IN A DISSIPATIVE QUANTUM SYSTEM 65

where the elements xn are defined using the auxiliary parameters as,

x1 = − (ãLA − c̃2M)x4

MνA′′
, x5 =− (ãLA − c̃2M)x8

MνB′′
,

x2 =
(b̃M − c̃2LB)x4

MνA′′
x6 =

(b̃M − c̃2LB)x8

MνB′′
,

x3 = −LAx4

M
, x7 =− LBx8

M
,

x4 =

√
− M2νA′′

−ãL2
A−b̃M2+2c̃2LAM

√
2

, x8 =

√
− M2νB′′

−ãL2
B−b̃M2+c̃2LBM

√
2

.

Hence, the purification of the state γA′′B′′ after the attenuating beamsplitter is of the

form:

γ̃π =

(
γA′′B′′ D̃

D̃> νA′′1l

)
, where D̃ =

√
ν2
A′′ − 1S̃−1

(
σz
02

)
. (5.22)

From the latter purification constructed here, it is possible to analyse the system as

a whole as opposed to a mixed subsystem. Note that the second purification γ̃π when

τ = 1 is equivalent to the first purification γπ since it is models the situation where the

second beamsplitter is essentially removed. It is now possible to investigate the change of

several fundamental quantities under local attenuation, and connect these quantities using

the Koashi-Winter inequality defined in Section 4.4. However, before doing so, we must

discuss the significance of entropy usage.

Entropic Measure Selection

In Fig. 5.6 the Gaussian entanglement of formation (defined in Section 3.3.3) is shown for

squeezed and coherent states, calculated using both the Rényi-2 and von Neumann entropies,

using the variance values used in Fig. 5.2. The entanglement between system ρA′ and the

environment will always increase with local loss. It is interesting also to note that any

quantity utilising the von Neumann entropy will act as an upper bound for Rényi-2 entropy

case i.e., S1(ρ) ≥ S2(ρ) ≥ . . . ≥ S∞(ρ) since

S2(ρ) = − ln Tr[ρ2] ≤ −Tr[ρ ln ρ] = S1(ρ) (5.23)

for any physical state represented by the density matrix ρ.

As discussed in Section 4.3, non-classicality criteria can vary for Gaussian states in

respect to which entropy is used in defining Gaussian quantum discord, since classicality is

defined by zero discord. When using von Neumann entropy, a completely classical state in

an information theoretic context, with zero Gaussian discord, is seen to possess a covariance

matrix in product form i.e., having no x or p correlations between subsystems (c+, c− = 0

of the standard form). Now, when using the Rényi-2 entropy, the same bipartite state will

be seen to be completely classical when there exists either no position or no momentum

correlations between subsystems, i.e., c+ = 0 or c− = 0). Thus the classicality criteria
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Figure 5.6: (left) Gaussian entanglement of formation EF (ρAE) with growing attenuation for
squeezed (red) and coherent (blue) Gaussian modulated input state for Rényi (solid) and von
Neumann (dashed) entropies. Squeezed state: Vx = 9.84, Vp = 38.4 and T 2 = 0.4982. Coherent:
Vx = 7.1, Vp = 1 and T 2 = 0.5006.
(right) Gaussian discord D←(ρAB) with growing attenuation for squeezed (red) and coherent (blue)
Gaussian modulated input state for Rényi (solid) and von Neumann (dashed) entropies. Squeezed
state: Vx = 9.84, Vp = 38.4 and T 2 = 0.4982. Coherent: Vx = 7.1, Vp = 1 and T 2 = 0.5006.

according to Gaussian quantum discord as defined by Rényi-2 entropy is less sensitive than

that of von Neumann entropy. Within the context of the scheme being discussed, if we

consider the case where ρA is a Gaussian modulated coherent state, the output state of

the beamsplitter γA′B′ will, according to the von Neumann definition of Gaussian discord,

possess non-classical correlations. However, according to Rényi-2 entropy, the state will in

fact be classical and thus possess zero Gaussian discord as seen in Fig. 5.6.

Due to this discrepancy, as well as discussions reflecting the optimality of Gaussian

discord for von Neumann entropy in Ref. [137], for the remainder of this analysis, we shall

solely focus on von Neumann definitions of fundamental constituents of the Koashi-Winter

relation in Eq. (4.27). Although we have proven the equality to hold for either entropic

measure for any arbitrary Gaussian state.

As previously mentioned, we make use of the Koashi-Winter inequality, which becomes an

equality when dealing with globally pure tripartite systems. If we consider the permutation

given in Eq. (4.27),

S(ρA) = EF (ρAE) + J←(ρAB), (5.24)

we know that the marginal entropy of subsystem ρA′ will remain constant with growing

attenuation since no interaction is being performed here. We also know that because we

are introducing local loss on subsystem ρB′ , and hence losing information about the system,

the classical correlations within system ρA′B′ will decrease. Relying on conservation of

correlations in a pure state we know then that the entanglement existing between ρA′E′

must increase in order for the equality to hold.

From Adesso et al. [93], the Gaussian entanglement of formation can be explicitly cal-
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Figure 5.7: Components of Koashi-Winter equality against attenuation for squeezed initial state
Vx = 9.84, Vp = 38.4 and T 2 = 0.4982: (black dot-dashed) marginal entropy of subsystem ρA′ ,
(blue dashed) classical correlation in system ρA′B′ , (red solid) Gaussian entanglement of formation
between subsystem ρA′ and the environment ρE′ . The perforated curves show system-environment
EoF for same input state and T 2 = 0.118 (green dashed) and a symmetric input state with V x =
V p = 38.4 and T 2 = 0.086 (orange dot-dashed).

culated as given by Eq. (3.19). Fig. 5.7 displays the constituents of the Koashi-Winter

equality for a modulated squeezed input state (solid). From this it is clear that the quan-

tum correlations between subsystem ρA′ and the environment increase monotonically as

local loss is introduced to subsystem ρB′ . This can be seen as intuitive since the quantum

correlations will decrease between ρB′E′ as local loss is introduced, for both squeezed and

coherent states, since local loss is applied to ρB′
8. It then appears feasible that the addi-

tional non-classical correlation gained by ρA′B′ , have been induced by the strengthening of

entanglement between subsystem ρA′ and the environment, and that in performing a local

operation on ρB′ , a transfer of correlations occurs. The flow of correlations from the envi-

ronment into a connected system has been discussed for qubits in [179] and Gaussian states

in [177].

Comparing quantum discord and entanglement of formation one can clearly see that

discord appears not to be a monotonically increasing function with respect to attenuation.

The explanation behind this is that as the attenuation increases above approximately 60-

90%9 the system B′ will become absorbed so that at maximum attenuation, the discord

measured is between A′ and the additional vacuum state, which will clearly be zero. The

entanglement of formation will not be affected by this since it exists between system A′ and

the environment E′.

8Monotonically increasing system-environment entanglement is witnessed for squeezed and coherent state
with both von Neumann and Rényi-2 entropies as seen in Fig. 5.6.

9The level of attenuation at which non-monotonic behaviour begins is dependent on the state as discussed
earlier in reference to Fig. 5.3
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5.3 Entanglement Recovery

We recall that if an unmodulated squeezed state is superimposed on a beamsplitter with a

vacuum state, the resulting bipartite state will possess entanglement. In the scenario above,

the creation of entanglement is prevented by the Gaussian distributed modulation. In this

remaining Section a specialised scenario, depicted in Fig. 5.8, will be considered, in which

an interaction of the system ρA′B′ with a separable environmental mode ρẼ causes a partial

elimination of the displacement noise and recovers entanglement between systems ρA and

ρB
10. The experimentally measured covariance matrix for the state ρA′′B′′ reads as

γsq
A′′B′′ =


5.42± 0.05 0.23± 0.02 4.06± 0.03 0.04± 0.01

0.23± 0.02 19.28± 0.17 0.45± 0.01 17.29± 0.15

4.06± 0.03 0.45± 0.01 4.73± 0.04 0.55± 0.02

0.04± 0.01 17.29± 0.15 0.55± 0.02 17.70± 0.16

 . (5.25)

Despite the absence of local squeezing, the covariance matrix appears to exhibit a weak

global squeezing. The squeezing occurs in the diagonal direction with respect to x and p

quadratures and thus cannot originate from the input squeezing. We measure the covariance

matrix of a state, which was created by mixing with vacuum state and therefore lies on the

boundary of the set of squeezed states. Hence the effect of global squeezing can be attributed

to the systematic error caused by drifts during the long measurement times of the covari-

ance matrix. As a result of the lack of squeezing in the local covariance matrices we verify

that the displacements in the direction of squeezing destroyed the squeezing. The non-zero

off-diagonal entries of sub-block C may be attributed to the inconsistency of CMR in the

different modes. The state of modes A and B is then inevitably separable [194] as witnessed

by the non-negativity of the minimal eigenvalue, min{eig[(γsq
A′B′)

(>A) + iΩ]} = 0.84± 0.02.

However the state contains quantum correlations as evidenced by Gaussian quantum dis-

cord D←(A′B′) = 0.49 ± 0.01. The correlations originate from two sources, each have the

capability to generate correlations independent of the other. First source is the random

displacement x̄ of the x-quadrature of the input mode ρ0
A that yields quantum correlations

between separable modes A′ and B′ exactly as in the case of coherent initial state. Secondly,

the initial squeezing of mode ρ0
A alone has the capacity to create entanglement between A′

and B′.

As above, preparation of the state with covariance matrix (5.3) is achieved by splitting

a randomly displaced squeezed input mode ρA on a beamsplitter. Imagine that encoded in

the x̂-quadrature of a separable system, ρẼ , is the random displacement x̄ as

xẼ → xẼ − x̄. (5.26)

In contrast to the previously considered purifying mode E, mode Ẽ has been created by

local operations and classical communication (LOCC) and hence it is separable from the

subsystem. It is important to note that the exact level of displacement does not need to be

known, the only essential constraint is that the displacements in ρA and ρẼ are classically

10Note, that in this case, the system ρẼ does not possess purifying qualities
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Figure 5.8: Entanglement recovery by interference. Subsystem ρA taken as Gaussian distributed
modulated pure squeezed state is split on a beamsplitter. Gaussian quantum discord is present in
output bipartite state. Due to the tailored modulation, entanglement creation is prevented. ρB′

interacts with non-purifying system ρẼ created by LOCC. Displacements encoded in x̂-quadrature
of ρẼ which will partially cancel out initial modulation, leading to recover the entanglement within
system ρ ˜A′′B′′ .

correlated. Next, similar to above, mode ρB′ is superimposed on a beamsplitter with ρẼ .

As a consequence, the noise caused by the random displacements is partially cancelled and

the potential entanglement between modes ρA′′ and ρB′′ is recovered. To verify this, instead

of physically imprinting a displacement on the third quantum mode ρẼ and interfering the

mode with mode ρB′ on a beamsplitter, we have superimposed ρB′ with vacuum state ρẼ
on a beamsplitter and implemented equivalent displacement electronically on the measured

data. This gives us a violation of Duan’s separability criterion (Section 3.2.2) 0.91±0.01 < 1,

which certifies entanglement between ρA′′ and ρB′′ .

Now, consider the instance where we have access to the displacement x̄ encoded on mode

Ẽ, entanglement between modes ρA′′ and ρB′′ can be recovered by directly performing the

reverse displacement on mode ρB′ to cancel the modulation. Entanglement can again be

recovered. Initially we have pure squeezed state ρ0
A with quadratures x̂A = e−rx̂

(0)
A , p̂A =

erp̂
(0)
A , and state ρB in a vacuum state with quadratures x̂B = x̂

(0)
B , p̂B = p̂

(0)
B , with r being

the squeezing parameter. Displacements are applied to the x̂-quadrature of ρ0
A such that

x̂A → x̂A + x̄ (5.27)

After undergoing a beamsplitter transformation the resulting output quadratures are

x̂′A = T x̂A +Rx̂B + T x̄, p̂′A = T p̂A +Rp̂B ,

x̂′B = Rx̂A − T x̂B +Rx̄, p̂′B = Rp̂A − T p̂B .
(5.28)

The “demodulation” required for entanglement recovery can be found using Duan’s separa-
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bility criterion (Section 3.2.2), also known as the product inseparability criterion [80]:

〈(gx̂′A + x̂′B)2〉〈(gp̂′A − p̂′B)2〉 < 1

4
(g2 + 1)2. (5.29)

where g is the variable gain. The operators on the left-hand side read as

gx̂′A + x̂′B = x̂A(gT +R) + x̂B(gR− T ) + x̄(gT +R)

gp̂′A − p̂′B = p̂A(gT −R) + p̂B(gR+ T ).
(5.30)

Hence the general “demodulation” to be applied to mode ρB′ is of the form

x̂′′B → x̂′B − (gT +R)x̄, (5.31)

which gives,

gx̂′A + x̂′B = x̂A(gT +R) + x̂B(gR− T ). (5.32)

Rearranging Eq. (5.29) and using Eq. (5.30) we have a recast criterion as

[e2r(gT −R)2 + (gR+ T )2][e−2r(gT +R)2 + (gR− T )2]

(g2 + 1)2
< 1. (5.33)

In the ideal case of a balanced beamsplitter, i.e., T = R = 1√
2
, the left-hand side of the

inequality (5.33) is minimised with a gain of g = 1. Therefore

e−2r < 1, ∀ r > 0, (5.34)

and thus entanglement is recovered for any r > 0. In this ideal case the demodulation to be

applied to mode ρB is given by

x̂′′B → x̂′B − (gT +R)x̄

= x̂′B −
√

2x̄.
(5.35)

Hence the prefactor in the ideal case is −
√

2.

This entanglement recovery reveals two important facts about quantum correlations in

the global system (ABẼ). First, it demonstrates that there must exist entanglement across

the A′ − (B′Ẽ) splitting before the beamsplitter, as otherwise it would not create entangle-

ment between systems ρA′ and ρB′ . Second, it is a proof that system ρB′ shared quantum

correlations with the subsystem (ρA′Ẽ) and therefore realised a true quantum communica-

tion between locations of systems ρA′ and ρẼ , which cannot be replaced by LOCC. Indeed,

if system ρB′ was only classically correlated with subsystem (A′Ẽ), it would be possible to

replace its transmission by a measurement of its state (which does not disturb the global

state), followed by a recreation of the state in the location of subsystem ρẼ . This is, however,

a LOCC operation which cannot establish entanglement across the A′′ − (B′′Ẽ) splitting.

To place these results in context, consider some counter-intuitive protocols recently sug-

gested and experimentally demonstrated using separable discordant states, e.g., distribu-
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tion of entanglement by separable states [195–198] and entanglement activation from dis-

cord [199]. These protocols typically begin with multipartite discordant but otherwise fully

separable states. Entanglement is then shown to emerge after some local operations on parts

of the state. Our description of entanglement recovery by direct displacement of system ρB′

using classical information traveling from parties A to B crystallises the core mechanism

behind such protocols; the emergence of more powerful correlations is inherently linked to

the presence of entanglement along a single bi-partition including a separable system.

Implausible effects in separable discordant states often have their roots in the preparation

of the initial discordant state. More precisely, the preparation always contains communica-

tion of classical information between parties A and B which they use for imposing correlated

noise onto their quantum systems (equivalent with discord in the case outlined in this Chap-

ter). In the subsequent stages of the protocol, the noise is removed by interference of the

correlated subsystems and hence entanglement is recovered. The essence of this effect is

demonstrated in this Chapter by entanglement recovery using interference with the “envi-

ronmental mode” Ẽ. Further, we have obtained a better entanglement recovery compared

to the quantum interference scenario by imprinting the classical information directly on a

relevant quantum system, which can be done by anybody having access to the classical com-

munication because it can be read without disturbance. This features even more clearly the

important role of exchange of classical information. It is our belief that the same mechanism

is behind the performance of the qubit versions of the discussed protocols but the structure

of the communicated classical information can be much more involved in comparison with

communication of just a single real number x̄ in our case.

It is interesting to note that the emergence of entanglement from discord was reviewed

and developed for the tripartite qubit case by Tatham and Korolkova in [179]. This work was

inspired by that of Campbell et al. [159], Ciccarello and Giovannetti [191], and Streltsov et

al. [131]. In the latter it was discussed that if two states (A and C) initially have no

quantum correlations, it is possible to perform a local operation on one subsystem (C) to

create non-classical correlations between the two subsystems (A and C). That is, the state

goes from having zero discord to non-zero discord. The focus of [179] was on the flow of

quantum correlations in the purified tripartite state, which emerged to be a three-qubit GHZ

state11 [200]

|GHZ〉 =
1√
2

(|000〉+ |111〉). (5.36)

In this pure system, initially no two subsystems are entangled, but all systems possess strong

classical correlations. The entanglement existing across any bi-partition i.e., A−BC, B−AC
and C −AB, of the pure state is maximum. Through implementation of the Koashi-Winter

relation a direct relationship was found between the discord and the entropy of the system

on which an operation is performed,

D←(AC) = 2S(C)− 1 where S(C) =
ln[8]−

√
2 coth−1[

√
2]

ln[4]
. (5.37)

11One of the most remarkable properties of the GHZ states is that by tracing out only one subsystem
entanglement will be completely destroyed in the state and the result is a fully mixed separable state.
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After the local operation on C its entropy must decrease but no entanglement can form be-

tween A(B) and C as there was none initially present. As a result only classical correlations

can be present which prove to be weaker than previously. However, the capacity of A(B)

to be correlated is not consumed by this so entanglement must emerge between A and B.

Alternatively, the local measurement on C can be seen as a non-local measurement on A

and B from the condition of purity S(ρij) = S(ρk) for a tripartite state ρijk.

Thus far in this Chapter a counter-intuitive effect of Gaussian discord increase under the

action of local loss was presented. Experimental evidence correlating with a simple theoret-

ical model validated this observation in a bipartite system. It was uniquely found, contrary

to previous expectations, that this enhancement of discord can be generated without having

to distort each quadrature variance in a similar manner, it is sufficient to affect only one.

For the first time, action was then taken to explain the increase of non-classical correlations

in this environment leading to an optimisation through the introduction of noisy channels.

Two main conclusions of this are that, Gaussian discord proves to show great robustness as

local loss in intensified. Moreover, in a more imperfect setting Gaussian discord between two

systems can – when depleted by imperfections – be regained by introduction of controlled

losses. This leads to the new insight that Gaussian discord proves to be a hugely robust

quantum resource compared to entanglement, and can be of huge benefit in the context of

an imperfect setup.

Next a discussion was held on the restoration of entanglement, lost due to the Gaussian

distributed displacements imposed on the input squeezed state. This can be viewed in a

number of ways, all of which lead to the conclusion that there must exist hidden quantum

correlations between system and environment in order to restore entanglement from discord.

We prove that continuous variables are unique in unveiling the simple mechanism behind

some puzzling effects and lead to a clear intuition of how to exploit quantum correlations in

separable states.

The remainder of this Chapter will focus within the well-established protocol of Entangle-

ment Distribution by Separable States. This investigation will use the concepts introduced

previously to study the flow of correlations within the global system. The aim of this is to

gain insight into the origin of the emerging entanglement and to link the mechanism to the

flow of discord within the system, thus establishing its fundamental role.

5.4 Entanglement Distribution by Separable States

Quantum entanglement, although complex in nature, requires only a surprising simple inter-

action to establish. To explore entanglement further, protocols were developed to investigate

possible formation techniques. In the continuous variable setting one can create entangle-

ment by superimposing a vacuum state with a squeezed state on a beamsplitter, for any

small amount of squeezing. A more sophisticated protocol is entanglement distribution by

separable states first proposed by Cubitt et al. [196] for discrete variable systems12. The

most defining feature of this protocol is that no entanglement is necessary to distribute

12In addition Cubitt et al. [196] similarly demonstrated that two systems can also become entangled by
continuous interaction with a highly mixed mediating particle that never becomes entangled itself.
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entanglement i.e., two distant systems can be entangled by sending a third ancillary system

that is consistently separable from the other two. The procedure is schematically illustrated

in Fig. 5.9 and is as follows; view a bipartite separable state in a finite-dimensional Hilbert

space composed of two distant subsystems A and B, the sender’s system (A) locally in-

teracts with a separable ancillary system (C), where this interaction allows the ancilla to

remain unentangled13. Next this separable ancillary system is sent to the distant receiver’s

subsystem (B), where it again undergoes a local non-entangling interaction. The result

of this transfer is that the separable bipartite state is now entangled, whilst the ancillary

system remains completely separable.

In the following work we aim to explain the mechanism behind entanglement distribution

by separable state in terms of quantum discord. We hypothesise that it is not only the initial

presence of discord between A and B, but also the flow of non-classical correlations between

system and environment that is essential for the distribution of entanglement, and thus

discord plays a key role similar to what has been proven in the discrete variable case.

5.4.1 Continuous Variable Entanglement Distribution

The phenomenon of entanglement distribution is actually not bounded to finite-dimensional

Hilbert space. The infinite-dimensional Gaussian version of the entanglement distribution by

separable states was first presented by Mǐsta and Korolkova in [201,202] and is schematically

depicted in Fig. 5.10. It was shown that there exist tripartite mixed Gaussian fully sepa-

rable state (ρABC) allowing to entangle two subsystems A and B by mixing them stepwise

with a third consistently separable mode C on two beamsplitters. This continuous variable

implementation of the protocol proved to give a clearer insight into the actual mechanism

of the phenomenon as described already for qubits. The initial Gaussian states A0, B0 and

C0 are prepared as a momentum squeezed, position squeezed and vacuum state respectively,

shown by the green elliptical/circular contours in Fig. 5.10. The essential component of the

Gaussian version is embedded in the classically correlated noise implemented to these initial

states (Stage 1). This is encoded such that neither system has knowledge of the noise on

the other, which creates an extra interesting point that A and B need not communicate on

any level, even to form classical correlations. In actual fact the correlated noise is designed

such that the tripartite state possesses a set of desirable properties after the first interaction

(Stage 2). At this stage it is required that the state exhibits the following properties across

bi-partitions,

EB−AC(ρ2) = 0, EC−AB(ρ2) = 0, (5.38a)

and EA−(BC)(ρ2) 6= 0. (5.38b)

13The type of interaction performed is a controlled NOT (CNOT) operation. The CNOT operation flips
the configuration of a second qubit (known as the target qubit) if and only if the first qubit (known as the
control qubit) is in a predefined configuration. Typically an entangling operation but the states were chosen
such that this would not be the case.
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Figure 5.9: Schematic depiction of the qubit entanglement distribution by separable states protocol
[196]. Qubits A and C interact while allowing C remaining separable. System C then interacts
with B which establishes entanglement between A and B (yellow dashed lemniscata). C will finally
remain separable from AB and may be traced out.

The correlated noise is modelled as displacements to the position and momentum quadra-

tures of the form

x̂B → x̂′B = x̂B + v, (5.39a)

x̂C → x̂′C = x̂C + v
√

2, (5.39b)

p̂A → p̂′A = p̂A − u
√

2, (5.39c)

p̂B → p̂′B = p̂B + u, (5.39d)

where u and v are classical displacements which obey the Gaussian distribution P(u, v) =

exp[−(u2 + v2)/4x]/(4πx).

It was found that the possibility of distribution of entanglement originates from the

structure of the initial mixed state. The sender’s system A0 carries originally a potential to

be entangled with the separable auxiliary mode C0 that is used to distribute entanglement.

The entanglement is however prevented by the aforementioned local correlated displacements

that make the auxiliary system separable from the sender’s system. The resultant state is

then a tripartite mixed Gaussian fully separable state (ρABC), as mentioned above. The

separable ancilla is then sent to the receiver who partially restores the entanglement by

mixing it with their suitably classically correlated system. The separability at Stage 2 is

verified by the minimum symplectic eigenvalue in the PPT criterion (see Section 3.2.1) such

that the separability of the necessary bi-partitions in 5.38a hold if the displacement satisfies

x̄sep =
e2r−1

2
(5.40)

The desired tripartite state γ2 satisfying Eq.’s (5.38a, 5.38b) is of the form

γ2 =

 cosh(2r)1l 0 sinh(2r)σz
0 1l 0

sinh(2r)σz 0 cosh(2r)1l


︸ ︷︷ ︸

γABC

+x̄K =

 a1l 2xσz bσz
2xσz (1 + 4x)1l −2x1l

bσz −2x1l a1l

 (5.41)

where γABC is therefore the tripartite state of non-displaced states after the beamsplitter
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Figure 5.10: Schematic of the Gaussian entanglement distribution via separable ancilla protocol.
Initial states prepared as a momentum squeezed vacuum mode A0, a position squeezed vacuum
mode C0, and a vacuum mode B0. Random displacements then applied (green box) to the x̂
quadrature (horizontal arrow) and the p̂ quadrature (vertical arrow), which are correlated via a
classical communication channel. Modes A1 and C1 superimposed on a balanced beam splitter
BSAC with output mode C2 remaining separable. Mode C2 then superimposed with mode B2 on
another balanced beam splitter BSBC , which establishes entanglement between the output modes
A3 and B3 (black dotted lemniscata). Note the position of the displacement on mode B. In the
original protocol, the displacement is performed before BSBC . Equivalently, this displacement
on mode B can be performed after the second beamsplitter (the dashed green line indicates the
respective relocation of the displacement) on mode B3, and even a posteriori after the measurement
of mode B3 [195].

BSAC and the correlated noise matrix K is of the form

K = κ1κ
>
1 + κ2κ

>
2 and

κ1 = (0,−1, 0, 2, 0,−1)>

κ2 = (1, 0, 2, 0,−1, 0)>
. (5.42)

The initial state γ1 and the final state γ3 can be extrapolated from the appropriate reverse

and forward beamsplitter transformations such that

γ1 = γA ⊕ γA ⊕ γA︸ ︷︷ ︸
γ0

+M̃ (5.43a)

and γ3 = ÛBCγ2Û
>
BC =

 a1l 2x+b√
2
σz

2x−b√
2
σz

2x+b√
2
σz

1+a
2 1l 1+4x−a

2 1l
2x−b√

2
σz

1+4x−a
2 1l 1+8x+a

2 1l

 (5.43b)

where M̃ = x̄Û>ACKÛAC and Ûij denotes a three mode symplectic beamsplitter interacting

systems i and j.

The theoretical results in [202] were experimentally verified later by Peuntinger et al.

[195], in which it was discussed the possibility of the equivalence of the displacements on

mode B0 to be performed after BSBC on mode B3, and even a posteriori after the mea-

surement of mode B3 (depicted by the green dotted line in Fig. 5.10), thus verifying that
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Figure 5.11: Maximum Gaussian quantum discord between systems A and B at three stages in
the scheme shown in Fig. 5.10. Level of discord present will always increase, with respect initial
noise x̄, as system AB propagates through protocol. The instance shown coincides with the use of a
balanced beamsplitter and squeezing of magnitude r = 0.5. According to Eq. (5.40) the separability
limit for C to be separable will be at x̄ = 0.859 (grey vertical line).

entanglement distribution is truly performed via a dual classical and quantum channel, by

a classical information exchange alongside the transmission of separable quantum states.

5.4.2 Role of Gaussian Quantum Discord in Entanglement Distri-

bution

Along with such an interpretation of the scheme, the mechanism can be also described by

using the notion of quantum discord. Initially, we have three Gaussian pure independent

systems A0, B0 and C0 with zero discord in AB0 since it is a product state. To this tripartite

state correlated noise is added causing non-zero discord in (AB)1, which was proved to be

an essential component in this mechanism by Chuan et al. in [203]. The decisive juncture

is the Stage 2 of the protocol, after the interaction of the ancilla mode C1 with the sender’s

mode A1 on the first beamsplitter (see Fig. 5.10). As already mentioned in [202], the

tripartite state in Stage 2 is a Gaussian bi-separable state, separable across C2 − (A2B2)

and B2 − (A2C2) bi-partitions and entangled across A2 − (B2C2), that is, it is a bound

entangled state [204]. Naturally, this state should also exhibit non-zero discord between A

and B. It is this quantumness which is then, in a way, activated into entanglement by the

interaction on the second beamsplitter, coupling the ancilla C2 with the receiver’s system

B2 (Stage 3 of the protocol).

To analyse the continuous variable version of entanglement distribution we first directly

calculated the Gaussian quantum discord between A and B at all stages of the protocol. Fig.

5.11 illustrates how the maximum Gaussian discord Dmax(ρAB) (see Eq. 4.4) is affected by

varying levels of initial noise. These results clearly confirm not only the presence of Gaussian

quantum discord within ρAB at all stages of the protocol, but also that the level of discord
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will increase significantly as the protocol is carried out. However, this is only explicitly the

case when the separability limit, which indicates separability of C, given in Eq. (5.40) is

satisfied (shown by the grey vertical line). The scenario considered here (and throughout

this investigation) is the case of r = 0.5 and so x̄sep = 0.5. A remarkable point is the

emergence of non-zero discord from a product state after admixing of the correlated noise

in Stage 1; although surprising at first glance, this phenomenon becomes plausible if the

arguments similar to those in [179] are used. Coupling to the correlated noise plays the

role of the global unitary operation on modes of interest and it has the same effect a local

non-unitary operation in [179].

It is interesting to note that the distribution of entanglement was also linked to quantum

discord by Chuan et al. in [203]. Similar to the continuous variable case, the progression

from Stage 2 to Stage 3 in the distribution was identified as the pivotal step, the transfer

of the ancilla corresponds to difference in the entanglement across the bi-partitions A−BC
and B − AC, which was found to be upper bounded by the discord across the C − AB

splitting for any pure tripartite state ρABC , i.e.,

|EA−BC(ρ)− EB−AC(ρ)|≤ DC−AB(ρ). (5.44)

where entanglement is quantified by the relative entropy of entanglement reviewed in Section

3.3.5. This relation is based on the fact that a local operation on AC cannot increase the

entanglement across the B −AC partition led to the adapted

EA−BC(ρ2) ≤ EB−AC(ρ1) +DC−AB(ρ2). (5.45)

Directly resulting from this is the implication that the quantum discord DC−AB(ρ2) must be

non-zero. To see this, consider the instance where DC−AB(ρ2) = 0, of course this implies that

the transfer of the separable ancillary system C equates to classical communication and that

entanglement cannot increase under LOCC. Hence the case where DC−AB(ρ2) 6= 0 reveals

the intrinsic role of discord in general quantum communication. Another key property for the

possibility of entanglement distribution is the initial existence of quantum discord between

systems A and B. This coincides with our results in Fig. 5.11 where it can be seen that

above the limit of separability of the ancilla, there exists an almost constant level of non-zero

discord.

Unlike the argument given in the qubit case [179], obtaining a simple yet explicit analytic

expression for a continuous variable Gaussian discord is far more challenging. Therefore

we restrict ourselves to the use of Koashi and Winter inequality and argue that although

quantum discord does play a role in entanglement distribution, in a similar way to [179],

its role is not fundamental. Discord merely emerges as a side product of the correlation

flow originating in local entropy changes due to coupling to some dissipative reservoir, be

it correlated noise designed through correlated displacements in phase-space or just the

environment in general. To see this in the continuous variable system we must consider a

tripartite globally pure system, thus we are first required to construct the purification to

the tripartite Gaussian mixed state. This is discussed further in the next Section.
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5.4.3 Flow of Correlations in Global System

The particular flow of correlations in a dissipative bipartite system leading to a beneficial

quantum outcome discussed previously in this Chapter motivated us to consider the use

of a similar approach to unveil the nature of the counter-intuitive phenomenon of entan-

glement distribution by separable states. This protocol involves the interaction of similar

Gaussian states after having undergone Gaussian distributed modulation and are subject to

the same set of Gaussian maps. Leading from this, the distribution protocol can be seen

as an extension of the discord increase scheme14. So, can the flow of system-environment

correlations in the globally pure system provide insight to the workings of the mechanism

behind entanglement distribution?

In order to analyse the flow of correlations within the system we began by taking a

step back in order to have a more general overview of the correlation properties of the

initial state. Similar to the beginning of this Chapter, this can be done by enacting a

purification. According to [204] this involves the addition of two modes E1 and E2 encoding

the information from the environment. The consequential pure five-mode (or ‘quint-partite’)

state is given by

|ψ〉 =

∫ √
P(u, v)

∣∣∣−iu
2

; +r
〉
A

∣∣∣∣v + iu√
2

; 0

〉
B

∣∣∣v
2

;−r
〉
C
|v〉(x)

E1
|u〉(p)E2

dudv (5.46)

where |α,±r〉 is the displaced squeezed state and |u〉(x) and |v〉(p) are the eigenvectors of the

position and momentum quadratures, respectively. This state satisfies the relation ρABC =

TrE1E2(|ψ〉〈ψ|). This purification can be fully characterised by its covariance matrix, which

is of the form Γ1 = X1 ⊕ (X1)−1 where15

X1 =


e2r 0 0 0 e2r√

2

0 1 + 4x̄ 2
√

2x̄ 4x̄ −1− 2x̄

0 2
√

2x̄ e−2r + 2x̄ 2
√

2x −
√

2x̄

0 4x̄ 2
√

2x̄ 4x̄ −2x̄
e2r√

2
−1− 2x̄ −

√
2x̄ −2x̄ y

 (5.47)

with y = 1 + x̄+ 1
4x̄ + e2r

2 and Det(X1) = 1.

It is now possible to define a single system Z that shall embody the three consolidated

systems C, E1 and E2, that is ancilla and environment, such that ρAB = TrZ [Γ1]. Imple-

menting this composite system Z into the above protocol would now imply that the first

interaction can be seen as the interaction of A with Z and the second interaction with B and

Z. Such a global operation between A and Z can be modelled as a single local operation on

the remaining subsystem B since purity implies the cyclic property S(ρAZ) = S(ρB) from

Eq. (2.75).

14This of course is not chronologically correct since the entanglement distribution protocol was developed
first.

15Note this covariance matrix will have a basis of the form {x1 . . . , xN , p1, . . . , pN}, where N is the
dimension of the system, thus requiring a simple symplectic transformation to transform it into the desired
form.
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Figure 5.12: Gaussian entanglement of formation between A and B upon measurement following
Stage 3 as function of the degree of squeezing.

The protocol is designed such that it possesses the following initial properties:

EF (ρAB1) = EF (ρAZ1) = EF (ρBZ1) = 0. (5.48)

In the case of a complicated five-mode scheme, it is difficult to verify analytically and exactly

that the Koashi-Winter relation holds. Therefore a pivotal assumption must now be made

regarding the relative similarity of the pure tripartite system ABZ with that discussed in at

the beginning of this Chapter. On the grounds of the success of the Koashi-Winter Relation

in analysis of the previous scheme, we will assume that it must also hold for the system

ABZ as there is no legitimate justification for it failing.

Using the lack of entanglement across all permutations from the Koashi-Winter Relation

Eq. (4.27) we have that

S(ρA1
) = J←(ρAZ1

)⇒ S(ρA1
|ρZ1

) = 0, (5.49a)

S(ρB1
) = J←(ρBZ1

)⇒ S(ρB1
|ρZ1

) = 0, (5.49b)

S(ρZ1
) = J←(ρZB1

)⇒ S(ρZ1
|ρB1

) = 0. (5.49c)

These relations imply that at this initial stage a measurement of one subsystem will not

affect the other. This is intuitive since the system is purely classically correlated across

these bi-partitions. Of course when we perform a measurement on a system its capacity to

preserve the purity of the total state, and hence entropy, decreases

S(ρA1
) < S(ρA2

) = S(ρA3
), (5.50a)

S(ρB1
) = S(ρB2

) < S(ρB3
). (5.50b)

Substituting Eq. (5.50a) into the Koashi-Winter Relation for the final stages of the
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protocol, we arrive at

J←(ρAZ2
) = EF (ρAB3

) + J←(ρAZ3
)

⇒ J←(ρAZ2) > J←(ρAZ3),
(5.51)

where the case of equality is not considered since we know that EF (ρAB3
) > 0. The classi-

cal correlation of A with the “environment” Z is decreasing. It can be interpreted that the

quantum correlations gained within the system AB are due to an exchange of classical corre-

lations in return for quantumness. Tying into the specific case considered in the construction

of Fig. 5.11, the achievable entanglement according to Gaussian entanglement of formation

is EF (ρAB3
) ≈ 0.33 for squeezing r = 0.5 and x̄ > 0.5 in accordance with Eq. (5.40). The

effect of squeezing on the achievable entanglement is much more pronounced compared to

initial noise, as seen in Fig. 5.12 where it can be seen that the level of squeezing, up to a

limit, can dramatically increase the level of Gaussian entanglement of formation that can be

obtained. Rather intuitive as it is well known that squeezing provides the potential for the

creation of quantum correlations. The gradual discord increase seen in Fig. 5.11 — since

we are not assuming discord to be initially present between A and B — appears to not be a

fundamental phenomenon but a side effect of all the changes in local entropy as predicted,

and the mechanism of entanglement distribution by separable states is not a direct result of

the flow of quantum discord as originally anticipated.

In this part of the Chapter we are reintroduced to the counter-intuitive protocol of en-

tanglement distribution by separable states. A discussion was held regarding the essential

construction of the states and the non-classical correlations required for its success. In an

attempt to explore the necessity of quantum discord within the continuous variable setting

we sought insight from the Koashi-Winter relation. It was thought that, much like the qubit

case, the presence of discord in the initial separable state AB, would prove to be an essen-

tial criteria for the success of the protocol. The new insight provided here is that, although

discord is present and increases as the protocol progresses, the mechanism witnessed here

seems to be explainable by the exchange of classical correlation in lieu of quantum entan-

glement, without any explicit requirement of discord. Quantum information is passed into

the environment via coupling to the common noise reservoir and then retrieved back via

a non-local operation on the subsystems which can be replaced by passing classical infor-

mation on to the noise structure. We can conclude that in the continuous variable setting,

the distribution of entanglement appears to not be a direct result of quantum discord. Any

presence or flow of non-classical correlations captured by discord seem to be coincidental,

and in this particular scenario the flow of quantum discord — although abundantly present

— is not as essential as a communication resource compared to the qubit case.

The work presented here serves as a critical analysis of quantum discord in the continu-

ous variable setting. Discordant states have been proved to be commonplace in quantum

systems, including those in popular protocols such as entanglement distribution by separa-

ble states. However, it is crucial to not immediately associate the presence of discord as
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playing a fundamental role in a quantum communication mechanism. We uniquely propose

a simple explanation of this protocol by a free flow of both classical and quantum corre-

lations between system and environment. It appears that a systems interaction with its

environment plays a more crucial role compared to discord. This is not to say quantum

discord has no utilisable properties. The main focus of the work presented here was the

study of quantum discord under the conditions of local loss and noisy channels. First, it

was remarkably shown that contrary to expectations, the increase of discord under local loss

can be witnessed for input states with an asymmetric degree of mixing in its quadratures.

Next, it was shown that although particular apparatus imperfections can deplete the level

of discord present, attenuation of one system can counteract this loss of quantumness and

restore discord to levels close to that of a perfect scenario. Extension of this scheme came in

the form of a study of entanglement recovery. Indeed entanglement can be restored from a

discordant state by means of a remarkably simple classical-quantum channel. Hence it can

be interpreted that converting an entangled state to one which is separable discordant can

shield the system against noisy channels that would otherwise destroy entanglement. Once

the state has been protected, entanglement can be restored and the system then used for

any number of quantum communication protocols.



Chapter 6

Concluding Remarks

“Discord could be like sunlight, which is plentiful but has to be harnessed in a

certain way to be useful. We need to identify what that way is.” – Kavan Modi

The core focus of this Thesis was the usefulness of non-classical correlations within imper-

fect decoherent quantum systems. The study of separable non-classical states has become

increasingly popular over the past decade, but as yet a consistent and practical usefulness

is largely unknown. I saw it important to study their characteristics in more realistic dissi-

pative systems, to gain a fresh insight into possible advantageous behaviour.

The first system involved a bipartite separable discordant state under the action of

controlled loss on one subsystem. Under these conditions the Gaussian quantum discord

not only proved robust against loss, but actually improves as loss is intensified. Also,

although imperfections reduce the achievable level of discord, local loss was remarkably

found to vastly improve the level of discord, almost to the degree of fully counteracting

the influence of imperfections. Surprising, as decoherence is typically associated with the

loss of information, as with the case of quantum entanglement. Through a purification

I sought to explain this effect by considering system-environment correlations. I found

that classical correlations within the discordant state are exchanged for a strengthening of

system-environment entanglement, which in turn increases the quantumness of the state. A

discussion was also held in respect to the entanglement recovery possibilities which revealed

the importance of hidden quantum correlations along bi-partitions across the bipartite state

and a classically prepared “demodulating” third system, acting in such a way as to partially

cancel the entanglement preventing noise.

The second protocol assessed was entanglement distribution by separable states. The

interpretation of this protocol in discrete and continuous variables was revisited with partic-

ular focus on the latter. By a similar framework, we endeavoured to explain the emergence

on quantum entanglement by a specific flow of correlations in the globally pure system.

Although this presented difficulty in respect to explicit calculations, a more qualitative ap-

proach proved sufficient to show that through a loss of classical correlations between the

system and environment, non-classical correlations were able to grow resulting in entangle-

ment from previously existing discord. Discord appeared to play a less fundamental role

82
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compared to the qubit version of the protocol. The strengthening of non-classical correla-

tions can be attributed to a flow of classical and quantum correlations between system and

environment.

The latter result leads to the warning that one must be cautious when placing impor-

tance on quantum discord. The mere presence for flow of discord does not equate to use-

fulness, particularly since states without discord (CC-classical states) are a rare occurrence.

However, the former results reinforce the prospect that non-classical correlations beyond

entanglement are more robust than entanglement. Moreover, this work proved that discord

can act in such a way as to counteract harmful imperfections in the apparatus, and as a

result may ultimately prove to be more applicable in real world applications which are by

definition decoherent.



Appendix A

Optimal Gaussian Discord

The question exists whether non-Gaussian measurements can lead to optimal quantum dis-

cord. It has been proven that for a particular class of Gaussian states, Gaussian mea-

surements lead to the optimal Gaussian discord. The following will follow the procedure

introduced in Ref. [137] and be applied to the first scheme discussed in Chapter 5. Consider

the bipartite state created by mixing a vacuum state and a state with covariance matrix γA
of the form

γA′B′ =
1

2

(
γA + 1l γA − 1l

γA − 1l γA + 1l

)
, with γA = diag {Vx, Vp} . (A.1)

Assuming γA has been prepared by Gaussian distributed random displacement of the x-

quadrature of a squeezed state with squeezing in the x-quadrature and large anti-squeezing

in the p-quadrature, and hence Vp > Vx > 1. Since discord is an entropic quantity, it is

invariant under local unitaries. Meaning that displacements may be applied to reduce a

covariance matrix into normal form. Thus, without loss of generality, discord can be studied

for zero-mean Gaussian states. By local squeezing γA′B′ can be transformed into standard

form with elements

a = b =

√
(Vx + 1)(Vp + 1)

2
, c+ =

√
Vp + 1

Vx + 1

(
Vx − 1

2

)
, c− =

√
Vx + 1

Vp + 1

(
Vp − 1

2

)
.

(A.2)

In Ref. [137] the optimality of Gaussian measurement was proven for all two-mode Gaussian

states, which can be decomposed as

γoptAB = S(ζ)
[
KS(r)γTMSV S(r)>K> +N

]
S(ζ)>. (A.3)

Here γTMSV is the two-mode squeezed vacuum state with covariance matrix

γTMSV =

(
m1l

√
m2 − 1σz√

m2 − 1σz m1l

)
, (A.4)
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Figure A.1: Region of values of Vx and Vp where the Gaussian discord is optimal for Gaussian
measurements. (Red cross) variance values corresponding to coherent state. (Green cross) variance
values corresponding to squeezed state.

S(ζ) and S(r) are single mode local squeezing operators such that S(x) = diag
{
x

1
2 , x−

1
2 , 1, 1

}
and

K = diag {
√
τ , sgn(τ)

√
τ , 1, 1} (A.5)

N = diag {η, η, 1, 1} . (A.6)

The parameters of which are related as

ζ = r
θ(r−1

θ(r)
, θ(r) =

√
ηr + |τ |m, (A.7)

chosen such that the optimised state with covariance matrix γoptAB is in standard form with

elements

a = θ(r)θ(r−1), c+ =

√
|τ |(m2 − 1)

θ(r−1)

θ(r)
, c− = −sgn(τ)

√
|τ |(m2 − 1)

θ(r)

θ(r−1)
. (A.8)

These parameters must satisfy the conditions

τ ∈ R, η ≥ |1− τ |, r ∈ [m−1, m]. (A.9)

where τ represents the transmittivity of the lossy single-mode channel with thermal noise

η, such that for an “amplifier channel” τ > 1 and η ≥ τ − 1.

Let us now show that under a certain condition of Vx one can express these parameters

in terms of Vx and Vp which fulfil the conditions above, and m = a, reading as

τ = − (Vx − 1)(Vp − 1)

(Vx + 1)(Vp + 1)− 4
, η =

2(VxVp − 1)

(Vx + 1)(Vp + 1)− 4
, r =

√
Vx + 1

Vp + 1

(
Vp − 1

Vx − 1

)
.

(A.10)
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First, τ is real and therefore the first of conditions Eq.’s (A.9) is satisfied. Second, because

η = 1− τ the second condition in Eq.’s (A.9) is fulfilled and the single-mode channel is the

phase-conjugating channel which can be realised by the two-mode squeezer where the idler

mode is taken as an output. Third, it can be written that r = m−1(Vx+1)(Vp−1)/[2(Vx−1)],

one gets immediately using inequalities Vx > 1 and Vp > Vx that r > m−1. Finally, we also

have r = 2m(Vp − 1)/[(Vx − 1)(Vp + 1)] which gives r ≤ m provided that

3− 4

Vp + 1
≤ Vx. (A.11)

Hence this acts as the main condition on the states of which we are concerned. The left-hand

side of the inequality A.11 is a monotonically increasing function of Vp which approaches

the maximum value of 3 in the limit of infinitely large Vp (see Fig. A.1). Therefore, for

states with a sufficiently large modulation in the x-quadrature such that Vx ≥ 3 also the

third condition in Eq.’s (A.9) is fulfilled. Hence the quantum discord of all of the states

considered in Chapter 5 are optimised by Gaussian measurements, and thus the Gaussian

discord corresponds to the true quantum discord.
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[79] O. Gühne and G. Tóth, Physics Reports, 474:1-6, pp. 1-75, (2009).

[80] L.-M. Duan, G. Giedke, J. I. Cirac and P. Zoller, Phys. Rev. Lett., 84:2722, (2000).
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[173] L. Mǐsta, Jr., R. Tatham, D. Girolami, N. Korolkova and G. Adesso, Phys. Rev. A,
83:042325, (2011).

[174] A. Ferraro and M. G. A. Paris, Phys. Rev. Lett., 108:260403, (2012).

[175] M. Brunelli, C. Benedetti, S. Olivares, A. Ferraro, M. G. A. Paris, arXiv:1502.04996,
(2015).

[176] M. Koashi and A. Winter, Phys. Rev. A, 9:022309, (2004).

[177] S. Olivares and M. G. A. Paris, Int. J. Mod. Phys. B, 27:1245024, (2012).

[178] V. Chille, N. Quinn, C. Peuntinger, C. Croal, L. Mǐsta, Jr., C. Marquardt, G. Leuchs
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[183] T. Eberle, V. Händchen and R. Schnabel, Optics Express 21:11546 (2013).

[184] R. Dong, J. Heersink, J.-I. Yoshikawa, O. Glöckl, U. L. Andersen and G. Leuchs, New
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