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ABSTRACT
We present VelociTap: a state-of-the-art touchscreen key-
board decoder that supports a sentence-based text entry ap-
proach. VelociTap enables users to seamlessly choose from
three word-delimiter actions: pushing a space key, swiping
to the right, or simply omitting the space key and letting the
decoder infer spaces automatically. We demonstrate that Ve-
lociTap has a significantly lower error rate than Google’s key-
board while retaining the same entry rate. We show that in-
termediate visual feedback does not significantly affect en-
try or error rates and we find that using the space key results
in the most accurate results. We also demonstrate that en-
abling flexible word-delimiter options does not incur an error
rate penalty. Finally, we investigate how small we can make
the keyboard when using VelociTap. We show that novice
users can reach a mean entry rate of 41 wpm on a 40 mm wide
smartwatch-sized keyboard at a 3% character error rate.

Author Keywords
Mobile text entry; touchscreen keyboard; sentence decoding

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User
Interfaces—Input devices and strategies

INTRODUCTION
A common text entry method on touchscreen mobile devices
is an on-screen keyboard. Several solutions have been pro-
posed to improve mobile touchscreen typing. One approach
is to partially or completely redesign the standard QWERTY
touchscreen typing experience. Examples include gesture
keyboards [13], optimized keyboards such as ATOMIK [23],
interlaced QWERTY [22], the quasi-Qwerty optimized key-
board [2], multidimensional Pareto keyboard optimization
[5], multilingual keyboard optimization [3], KALQ [17], and
systems that adapt to user input or sensor data (e.g. [4, 6]).

Another approach is to keep the QWERTY touchscreen key-
board but assist users by offering predictions and automatic
typing correction. Goodman et al. [9] were the first to pro-
pose correcting touchscreen typing errors by combining a
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probabilistic touch model and a character language model.
Their system corrects errors on a character-by-character ba-
sis. Kristensson and Zhai [14] propose a dictionary-based
word-level correction system based on geometric pattern
matching. Recently, several touchscreen typing systems have
leveraged additional information, such as activity (walking
versus standing) [7], or hand posture [8]. Other recent im-
provements include using pressure information and Gaussian
Process regression within a probabilistic decoder [21], and
the development of an algorithm that simultaneously accom-
modates both completions and corrections [1].

Commercial systems, such as SwiftKey, Fleksy, and the built-
in Android and iOS keyboards, perform automatic error cor-
rection on a letter-by-letter and word-basis. Some, such as
the built-in Android keyboard, support sentence-based entry
by allowing the entry of words without spaces and then per-
forming separation and autocorrection when the user hits the
space key. To our knowledge, no work has explored the per-
formance and design aspects of such sentence-based entry.

In this work, we explore the performance potential of
sentence-based decoding: delaying automatic typing correc-
tion until after an entire sentence has been entered. We have
developed a state-of-the-art touchscreen keyboard decoder
called VelociTap that supports sentence-based decoding. Ve-
lociTap enables users to seamlessly choose from three word-
delimiter actions: pushing a space key, swiping to the right,
or simply omitting the space key and letting the decoder in-
fer spaces automatically. VelociTap was iteratively designed
based on two pilot studies. The pilots established users could
actuate taps quickly even without recognition feedback after
each word. Further, despite the noisy input resulting from
users aiming for speed instead of accuracy, we could still ac-
curately recognize the input.

Given the promising performance seen in the pilots, we in-
vestigated three design aspects we suspected could further
increase the speed and utility of the approach: intermedi-
ate visual feedback, word-delimiter action, and effective key-
board size. We show that intermediate visual feedback does
not significantly affect entry or error rate. We find that us-
ing the space key to delimit words provides the best accuracy.
We also show we can offer users flexibility in word-delimiter
actions without impacting accuracy. Finally, we investigate
how small we can make the keyboard. VelociTap enables
novice users to reach a mean entry rate of 41 wpm on a 40 mm
smartwatch-sized keyboard at a 3% character error rate.



VELOCITAP DECODER
Our decoder takes a sequence of noisy touch events and
searches for the most probable sentence given that sequence
of touches. The decoder uses a probabilistic keyboard model,
a character language model, and a word language model.

We assume the user is entering the letters A–Z plus space
and only consider lowercase text. For each touchscreen tap,
the keyboard model produces a likelihood for each of the 27
characters. Similar to previous work [9], the likelihood of
each key is given by a two-dimensional Gaussian distribution
centered at each key. The x- and y-variance of a key’s Gaus-
sian distribution is computed by multiplying the x- and y-size
of each key in pixels by an x- and y-scale factor. We use the
same two scale factors for every key. We use the first (x, y)
coordinate in a touch event to calculate the key likelihoods.

We combine the keyboard likelihood with a prior probability
from the language model. This is done by adding the key-
board model log probability to the language model log prob-
ability multiplied by a scaling factor. The scaling factor con-
trols the relative contribution of the keyboard model and the
language model. Log probabilities are used to prevent under-
flow. During the decoder’s initial search, we use a 12-gram
language model that bases the probability of the next charac-
ter on the previous 11 characters (including space).

Our initial search finds a list of up to the 50-best sentence
hypotheses. After the search completes, we add to each hy-
pothesis the log probability of the sentence under a word lan-
guage model. We used a 4-gram language model that bases
the probability of the next word on the three previous words.

We trained our language models on billions of words from
blog, social media, and Usenet data. We optimized our mod-
els for mobile text using cross-entropy difference selection
[15]. In this method, only sentences well-matched to an in-
domain language model are used in training. We created the
in-domain model from email sentences with 1–12 words from
the W3C email corpus and the non-spam messages in the
TREC 2005 corpus. We trained a separate language model
on each corpus and then created a mixture model using linear
interpolation with weights optimized on held-out text.

Our 12-gram character language model had 103 M N -grams
and a compressed size of 1.1 GB. Our 4-gram word model
was trained with an unknown word and had 194 M N -grams
and a compressed size of 2.0 GB. The word model’s vocabu-
lary consisted of the most frequent 64 K words in our training
data that were also in a list of 330 K words compiled from
human-edited dictionaries1. We used BerkeleyLM [18] for
language model probability lookups.

A very common type of touchscreen typing error is substitut-
ing one letter for another. This is due to the difficulty of pre-
cisely tapping small buttons with a large finger. But users may
also occasionally tap an extra key or skip a key altogether. To
handle this, at each position in the tap sequence, our decoder
adds a deletion hypothesis and a set of insertion hypotheses.

1Compiled from Wiktionary, Project Gutenberg Webster’s dictio-
nary, CMU pronouncing dictionary, and GNU aspell.

Figure 1. Interfaces in the first pilot (left) and second pilot (right).

The deletion hypothesis drops the current tap without gen-
erating any text. The insertion hypotheses add all possible
characters (including space) before the next observed tap.

Our decoder searches the hypothesis space of all possible
character sequences given a sequence of taps. In order to keep
the search tractable, we employ beam pruning. We prune any
hypothesis that becomes too improbable compared to the best
previous hypothesis at a given position in the tap sequence.
By varying the beam width, we can control the tradeoff be-
tween speed and accuracy. In our first two pilot studies, we
will use a decoder that searches via a recursive depth-first al-
gorithm. The algorithm operates on a single thread, exploring
hypotheses in probability-ranked order during its descent.

The decoder’s free parameters consist of the x- and y-
keyboard variance factors, character and word language
model scale factors, and penalties for insertions and deletions.
As we will describe later in this paper, we optimized these pa-
rameters on development data.

VelociTap can operate either offline on recorded traces or on-
line performing real-time recognition. Real-time recognition
can be performed either on the mobile device or proxied to
a remote server. In this work we are interested in the perfor-
mance potential independent of device resource constraints.
As such, we used a remote server for all recognition.

PERFORMANCE PILOT 1
The goals of this pilot study were to explore the performance
potential of VelociTap and to investigate if users could effec-
tively tap out sentences without feedback from the interface.

We developed a data collection app for 4th generation
iPhones. Our app displayed an image of the standard iPhone
QWERTY keyboard in portrait configuration (Figure 1, left).
Our app displayed stimuli sentences at the top and recorded
touch events. No actual recognition took place on the device.
While typing, participants received no audio, visual, or tactile
feedback. After completing a sentence, the app displayed the
entry rate in words-per-minute. Since no recognition result
was available during the pilot, this entry rate was based on
the number of characters in the corresponding stimulus.

We recruited 45 participants who were aged 18–57 (mean =
24). 26% were female, and 73% were university students.
Participants were not paid, rather we offered a prize of a
Nexus 7 tablet to whoever had the highest entry rate subject
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Figure 2. The error and entry rate of each participant in the first pilot.
Vertical whiskers show one standard deviation.

to a maximum recognition character error rate of 10% (deter-
mined later in offline recognition experiments).

Participants were allowed to practice on three sentences. Par-
ticipants in this pilot, as well as all other studies in this paper,
were instructed to hold the device in their non-dominant hand
and use a single finger of their dominant hand to type. Par-
ticipants then entered 20 short sentences (3–8 words) taken
at random from memorable sentences written by Enron em-
ployees on their Blackberry mobile devices [19]. Afterwards,
participants completed a short questionnaire.

We conducted offline experiments on the logged data. Our
decoder’s parameters were optimized with respect to 400 sen-
tences typed by two of the authors. We measured the entry
rate in words-per-minute (wpm), with a word defined as five
characters including spaces. The number of characters was
based on the recognition result. We timed entries from a sen-
tence’s first tap until the user moved to the next sentence by
tapping with two fingers. Participants’ average entry rate was
46.8 wpm (sd = 4.7, min = 28.7, max = 64.3).

We measured error rate using character error rate (CER). CER
is the number of insertion, substitution and deletions required
to turn the recognized text into the reference text, divided by
the number of characters in the reference text. Despite receiv-
ing no feedback during typing, participants’ error rates were
low with an average CER of 4.7% (sd = 4.6, min = 0.0, max
= 17.7). We found that nearly two-thirds of sentences were
decoded with no recognition errors. A good language model
was critical for decoding. Simply using the key closest to
each tap resulted in a high average CER of 20.2%.

As shown in Figure 2, each participant operated at different
points in the error and entry rate envelope. Notably, 31 of the
45 participants had error rates of less than 5% CER. They did
so while entering text at 30–64 wpm. This shows that novice
users can quickly adapt to writing entire sentences without
intermediate feedback. While the participants in the first pilot
did not see any recognition results, they still provided tap data
that could be decoded with a high degree of accuracy.

A sentence-based decoder may have an advantage in that it
can search for the best text given all the data. Touchscreen
keyboards typically perform auto-correction only on the pre-
vious word. To investigate the impact of sentence-based de-
coding, we modified our decoder to limit its search to a win-
dow of the last N characters. So for example, at a window

Decoding window

C
ha

ra
ct

er
 e

rr
or

 r
at

e 
(%

)

1 2 3 4 5 6 7 full

4
5

6
7

8 ●

●

●

● ●
●

● ●

Figure 3. Error rate in the first pilot, varying how many previous char-
acters the decoder was allowed to change. The label “full” indicates
decoding over the entire sentence.

size of 1, the decoder found the next best character given the
current observation but with all prior characters fixed.

As shown in Figure 3, increasing the freedom of the recog-
nizer to change past characters improved accuracy. Gains
were small beyond a window size of five. Assuming a word
length of five, this suggests existing interfaces based on auto-
correction of only the last word are providing accuracy sim-
ilar to full-sentence decoding. However, as previously men-
tioned, sentence-based decoding may still have an advantage
in that it avoids distracting users while they enter text.

PERFORMANCE PILOT 2
For our second pilot, we designed an app to provide real-time
sentence-based decoding of taps entered on a mobile device.
The goals of this pilot were to investigate how practice and
real-time feedback of recognition results affects performance.

We used a client/server setup in which the user interacted
with the mobile device and recognition was performed on a
3.6 GHz 8-core server. We used an Android Nexus 4 mo-
bile device which has a screen measuring 101 mm× 60 mm.
Our interface used an image of the Google keyboard in por-
trait orientation (Figure 1, right). Taps played a click sound
and vibrated the device. Our decoder’s parameters were op-
timized with respect to 251 sentences typed by two of the
authors plus four users who had taken part in the first pilot.
These four users did not take part in this pilot.

We called back six participants who had taken part in the first
pilot. The six participants were the first to respond to our re-
quest for participation in the follow-up pilot. They were aged
21–29 (mean = 24), one was female, and five were university
students. They were paid $20 and told the fastest participant
with a CER below 5% would receive a $20 bonus.

In this study, participants received real-time feedback of the
recognized sentence along with the entry and error rate based
on the recognition. Participants entered 12 blocks of 20 sen-
tences in a 2-hour session. The 240 sentences were taken
from the Enron mobile test set [19]. We chose sentences with
5–10 words that had been memorized correctly by at least 6
out of 10 workers in [19]. Sentence order was randomized.

Before the first block, participants were allowed to practice
on a set of three sentences. After each block, the app showed
the average entry and error rate for that block. Participants
took a short break between blocks. After the sixth block, par-
ticipants took a longer break of about 10 minutes.
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Figure 4. Entry rate on each block of 20 sentences in the second pilot.
Each line is a single participant.

The entry rate was measured from a sentence’s first tap un-
til the recognition result was displayed. Recognition was
performed after the user typed an entire sentence and then
touched a large orange area with two fingers. The delay be-
tween a user’s double-touch and the display of the recognition
result averaged 0.17 s per sentence. This delay included both
network latency and decoding time.

As shown in Figure 4, participants’ entry rates were fast with
an average per-participant entry rate of 50.5 wpm. The entry
rate increased from 43.1 wpm in the first block to 53.8 wpm
in the final block. Repeated measures analysis of vari-
ance showed a statistically significant main effect for block
(F1,5 = 13.894, η2p = 0.735, p < 0.001). Our fastest partici-
pant had an entry rate of 62.6 wpm with a CER of 2.5%.

Error rates were low with an average CER of 4.5%. Repeated
measures analysis of variance showed that error rates did not
significantly vary across the blocks (F1,5 = 1.872, η2p =
0.272, p = 0.064).

IMPROVED DECODER
Based on the decoder’s performance in our pilot studies, and
in order to support our planned experiments, we made a vari-
ety of improvements to VelociTap. We enhanced our ability
to automatically insert spaces. This was done by first intro-
ducing a space insertion penalty separate from the general
insertion penalty (which inserts all possible characters). By
setting a smaller penalty for space insertions, the decoder can
more readily infer spaces when users omit spaces altogether.

Our single-threaded recursive depth-first algorithm was too
slow when numerous space insertions were needed. We re-
placed our search algorithm with a multi-threaded algorithm.
In the new algorithm, threads first choose a random partial
hypothesis, each consisting of its position within the observa-
tion sequence, its previously generated text, and its accumu-
lated log probability. A thread extends a partial hypothesis
by one observation, creating a set of new partial hypotheses.
By proceeding in this way, the search is able to quickly find
hypotheses requiring the insertion of many spaces.

Previously, we applied a word language model only after
completing a sentence hypothesis. We modified the decoder
to assess word language model probabilities during its search.
Additionally, we added an out-of-vocabulary (OOV) penalty
based on whether a word was in a list of 64 K frequent words.
This allows explicit adjustment of the penalty incurred by
OOV words independent of what would result by just using
the character and word language models.

Figure 5. Google (left) and VelociTap interfaces (right) in Experiment 1.
The user is tapping “m” and this key’s popup is being shown.

We added support for a backspace key that deletes the pre-
vious tap event. Currently we treat the backspace key deter-
ministically: a tap is considered a backspace if its location is
closer to the backspace key than any other key. We also added
support for right and left swipe gestures. A swipe is detected
based on a gesture’s distance and angle. Such gestures will
be used to enter spaces or to delete a previous tap.

EXPERIMENT 1: VISUAL FEEDBACK
Our pilot studies explored the performance potential of
sentence-based entry. We conjectured the lack of visual feed-
back in the pilot studies contributed to the fast entry rates.
The goal of Experiment 1 was to determine whether this was
in fact the case. Since a user can enter text arbitrarily fast by
ignoring accuracy, we also compare our accuracy against that
of a commercial state-of-the-art error-correcting keyboard.

Study Design, Apparatus, and Procedure
We used a within-subject design with three conditions:

• GOOGLEFEEDBACK – Participants entered text using the
Google keyboard (Figure 5, left). Google’s keyboard per-
forms sentence decoding if a user enters a sequence of
words without spaces (e.g. “thecatsat”). For each tap, the
nearest character was added to a text area below the stim-
ulus sentence. Tapping the backspace key deleted the last
character. Upon hitting the space key, the entry was de-
coded and the recognition result replaced the nearest char-
acter text. Swiping up moved to the next sentence and dis-
played the error and entry rate for the previous sentence.
We configured the Google keyboard to vibrate for 8 ms,
to make the standard keyboard click sound, and to show
popups on each key press. We set the auto-correction level
to “very aggressive”. We disabled correction suggestions,
gesture typing, and auto-capitalization.
• VTFEEDBACK – Participants entered text using Veloci-

Tap (Figure 5, right). Taps caused an 8 ms vibration, made
a click sound, and displayed a key popup. For each tap, the
nearest character to the tap was added to a text area below
the stimulus sentence. Tapping the backspace key deleted
the last character. Participants swiped up to perform recog-
nition. The recognition result replaced the nearest charac-
ter text and displayed the error and entry for that sentence.
Swiping up again moved to the next sentence.



Entry rate (wpm) Error rate (CER %) Backspaces per sentence
GOOGLEFEEDBACK 43.4 ± 8.7 [28.9, 59.7] 5.2 ± 5.8 [0.8, 28.8] 0.23 ± 0.30 [0.00, 1.30]
VTFEEDBACK 41.9 ± 8.9 [26.8, 65.3] 1.8 ± 2.3 [0.0, 11.3] 0.18 ± 0.28 [0.00, 1.20]
VTNOFEEDBACK 43.5 ± 8.0 [29.5, 62.2] 2.7 ± 3.5 [0.0, 15.9] 0.09 ± 0.17 [0.00, 0.80]
Omnibus test F2,46 = 2.256, η2p = 0.089, p = 0.116 F2,46 = 16.169, η2p = 0.413, p < 0.0001 F2,46 = 3.313, η2p = 0.126, p < 0.05
Significant pairs n/a GOOGLEFEED > VTFEED, p < 0.01 None significant, p > 0.09

GOOGLEFEED > VTNOFEED, p < 0.01
GOOGLEFEED ≈ VTNOFEED, p = 0.074

Table 1. Statistics from Experiment 1. Results are formatted as: mean ± sd [min, max].
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Figure 6. Entry rate (left) and error rate (right) in Experiment 1.

• VTNOFEEDBACK – This was similar to the previous con-
dition but without visual feedback during entry. There
were no key popups and no text was displayed until after
recognition was performed. Participants could still type a
backspace, but there was no indication of its effect.

The decoder’s parameters were optimized on development
data recorded by three of the authors. This data consisted
of each author tapping 100 sentences without spaces.

We used a Nexus 4 mobile device in portrait orientation. In
all conditions, the keyboard appeared on the bottom section
of the screen. The keyboard measured 60 mm × 35 mm with
each letter key measuring 5 mm × 6 mm.

We recruited 24 participants via convenience sampling. Par-
ticipants were paid £5 for taking part in a one-hour session.
None of the participants had participated in previous experi-
ments. Participants were aged 18–32 (mean = 25), 75% were
male, 88% were computer science majors, and 67% were na-
tive English speakers. On a 7-point Likert scale where 7 =
strongly agree, participants rated the statement “I consider
myself a fluent speaker of English” from 5–7 (mean = 6.4).

For each participant, we drew a random subset of 60 sen-
tences from the set of 240 sentences used in the second pilot.
Participants typed 20 sentences in each condition. The order
of conditions was balanced. After completing all conditions,
participants filled out a paper questionnaire.

The study was conducted in the UK. In the GOOGLEFEED-
BACK condition, recognition was performed on the Nexus
4. In the VTFEEDBACK and VTNOFEEDBACK conditions,
recognition took place on a 3.2 GHz 6-core US-based server.

Results
Unless otherwise noted, we tested for significance using a re-
peated measures analysis of variance. For significant main
effects, we used Bonferroni corrected post-hoc tests.

Entry rate was measured from a user’s first tap until the recog-
nition was displayed. VelociTap took 0.92 s to return a result

“I consider visual feedback an important factor in improving accuracy”
“nice to have a bit of feedback with each keypress”
“more comfortable for a first time user”
“if I lose my focus while typing I can find my place again”
“in the real world I would prefer visual feedback to avoid too much stress”
“seeing what I type gives a better idea of what I am writing”
“I preferred having feedback to keep track of my progress”

Table 2. Comments supporting feedback in Experiment 1.

(80% due to network latency). The Google keyboard returned
results nearly instantly. As shown in Figure 6 (left), aver-
age entry rates were similar: GOOGLEFEEDBACK 43.4 wpm,
VTFEEDBACK 41.9 wpm, and VTNOFEEDBACK 43.5 wpm.
These differences were not significant (Table 1, left).

Error rate was measured by computing the CER of the recog-
nition against the stimulus. As shown in Figure 6 (right),
participants’ average error rate was higher in GOOGLEFEED-
BACK 5.2%, compared to VTFEEDBACK 1.8%, and VT-
NOFEEDBACK 2.7%. The higher error rate in GOOGLE-
FEEDBACK was statistically significant (Table 1, center).

In 10 sentences out of 480 in GOOGLEFEEDBACK partici-
pants hit the space key more than once. This triggers mul-
tiple decodes, potentially making accurate recognition more
difficult. Additionally, we observed the Google keyboard
failed to perform any decoding on 29 sentences. Google’s
keyboard strictly speaking has a harder job as it does not
know whether sentence-based decoding is desired or not. Re-
moving these 39 sentences from the data, the error rate in
GOOGLEFEEDBACK was still 2.8%. Thus even under these
generous assumptions, VelociTap compares favorably in ac-
curacy. We are however using substantially more computa-
tional resources than Google’s on-device decoder. But from
a research standpoint, this frees us to explore future-looking
designs that might not be currently possible on-device.

Users could hit the backspace key to erase the last tap. The
average backspaces per sentence were: GOOGLEFEEDBACK
0.23, VTFEEDBACK 0.18, and VTNOFEEDBACK 0.09. No
pairwise differences were significant (Table 1, right).

We asked participants which of the three interfaces they
would choose if they could have only one on their mobile
device. 11 participants preferred VTFEEDBACK, 8 preferred
VTNOFEEDBACK, and 5 preferred GOOGLEFEEDBACK. As
shown in Table 2 and 3, participants’ open comments also
reflect this mixed preference about visual feedback.

EXPERIMENT 2: WORD-DELIMITER ACTIONS
Our previous experiment showed that while omitting inter-
mediate visual feedback during entry might have slightly in-
creased entry rate, it might have also slightly increased error



Entry rate (wpm) Error rate (CER %) Backspaces per sentence
NOSPACE 31.6 ± 8.6 [21.1, 52.8] 6.6 ± 6.3 [0.0, 18.1] 0.46 ± 0.44 [0.05, 1.55]
SPACE 30.2 ± 7.2 [19.2, 46.5] 1.1 ± 1.0 [0.0, 4.0] 0.89 ± 0.92 [0.00, 3.65]
SWIPE 26.8 ± 5.8 [20.1, 41.3] 1.8 ± 2.1 [0.0, 7.1] 0.79 ± 0.83 [0.05, 3.10]
Omnibus test F2,46 = 15.342, η2p = 0.400, p < 0.0001 F2,46 = 14.949, η2p = 0.394, p < 0.0001 F2,46 = 4.957, η2p = 0.177, p < 0.05
Significant pairs SWIPE < SPACE, NOSPACE, p < 0.01 NOSPACE > SPACE, SWIPE, p < 0.01 NOSPACE < SPACE, SWIPE, p < 0.05

NOSPACE ≈ SPACE, p = 0.524 SPACE ≈ SWIPE, p = 0.399 SPACE ≈ SWIPE, p = 1.0

Table 4. Statistics from Experiment 2. Results are formatted as: mean ± sd [min, max].

“allowed me to concentrate on typing and not what I had already typed”
“a hindrance, when walking and texting I am unlikely to check”
“without it I felt more free to go for speed and trust the autocorrection”
“having feedback slowed me down”
“trusting the algorithm I typed faster and focused more on the keyboard”
“noticing a mistake while typing delays typing”
“visual feedback was more distracting even though I didn’t look at it”
“focus more on placing taps faster and more accurately”

Table 3. Comments supporting no feedback in Experiment 1.

rate. Given that users have come to expect visual feedback as
they type, we opted to use visual feedback in Experiment 2.

The Google keyboard uses spaceless entry in its sentence-
based decoding approach. This design choice allows users
to switch between more typical word-at-a-time entry and
sentence-based entry. However, such spaceless entry is only
one possible design choice. The goal of Experiment 2 was to
investigate the impact of different actions users could take to
delimit words. Our hypothesis was that providing no spaces
during entry would be faster but cause more recognition er-
rors than explicitly tapping a space key. Further, we conjec-
tured that using a swiping gesture in lieu of tapping a space
key [13] would provide a further reduction in errors.

Study Design, Apparatus, and Procedure
We used a within-subject design with three conditions:

• NOSPACE – Participants typed all the letters of a sentence
with no explicit separator between words. This is simi-
lar to how current commercial keyboards such as Google
and SwiftKey support sentence-based entry. In this condi-
tion, the decoder investigated space insertions between all
taps. The tap observations themselves were not allowed
to generate a space (i.e. even a tap on the space key was
considered to be a nearby letter and not a space).
• SPACE – Participants tapped the space key between words.

In this condition, the decoder’s keyboard model treated
spaces probabilistically just like any other character on the
keyboard (i.e. the probability of a character was determined
by the distance to the center of the key).
• SWIPE – Participants made a right swipe gesture anywhere

on the screen between words. A swipe was considered any
touch trace with a horizontal width above a configurable
threshold. Upon detecting a swipe, the interface played a
“whooshing” sound. Swipes were treated deterministically
during the decoder search (i.e. a swipe had to be a space
and taps were never considered to be spaces).

The decoder’s parameters for each condition were optimized
with respect to development data recorded by three of the au-
thors. This data consisted of 100 sentences entered by each of
the authors using the three different word-delimiter actions.
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Figure 7. Entry rate (left) and error rate (right) in Experiment 2.

We used a Nexus 4 mobile device with recognition taking
place on a 3.6 GHz 8-core server. The Nexus 4 and server
were connected to the same Wi-Fi access point. Users could
tap the backspace key to delete the previous character. The
displayed keyboard was identical between conditions. In
the NOSPACE and SWIPE conditions, participants were in-
structed not to tap the space key even though it was visible.

We recruited 24 participants via convenience sampling. Par-
ticipants were paid $10 for taking part in a one-hour session.
None of the participants had participated in previous experi-
ments. Participants were aged from 18–46 (mean = 26), 83%
were male, 29% were computer science majors, and 64%
were native English speakers. On a 7-point Likert scale where
7 = strongly agree, participants rated the statement “I consider
myself a fluent speaker of English” from 5–7 (mean = 6.6).

For each participant, we drew a random subset of 60 sen-
tences from the set of 240 sentences used in the second pilot.
Participants typed 20 sentences in each condition. The order
of conditions was balanced. After completing all conditions,
participants filled out a paper questionnaire.

Results
Entry rate was measured from a user’s first tap until the recog-
nition was displayed. VelociTap took about 0.26 s to return
a result. As shown in Figure 7 (left), NOSPACE had the
fastest average entry rate of 31.6 wpm, followed by SPACE at
30.2 wpm, and SWIPE at 26.8 wpm. SWIPE was significantly
slower (Table 4, left).

Error rate was measured by computing the CER of the recog-
nition against the stimulus. As shown in Figure 7 (right), par-
ticipants’ average error rate was highest in NOSPACE at 6.6%,
followed by SWIPE at 1.8%, and SPACE at 1.1%. NOSPACE
had a significantly higher error rate (Table 4, center).

Error rates in NOSPACE were highly variable (Figure 8). For
some users, the decoder frequently failed to insert spaces be-
tween words (a failure we also saw with the Google keyboard
in Experiment 1). As we will discuss, tuning on more space-
less data and a wider beam width eliminated this problem.
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Figure 8. Error and entry rate of participants in NOSPACE condition of
Experiment 2. Vertical whiskers show one standard deviation.

Users could hit the backspace key to erase the last tap. Par-
ticipants’ average backspaces per sentence were: NOSPACE
0.46, SPACE 0.89, and SWIPE 0.79. NOSPACE resulted in
significantly fewer backspaces (Table 4, right).

At the end of the experiment, participants were asked which
of the three spacing strategies they preferred. 13 partici-
pants preferred SPACE, 7 preferred SWIPE, and 3 preferred
NOSPACE (one participant failed to complete the question).

Comments from those preferring SPACE focused on its famil-
iarity: “aversion to change”, “more intuitive”, “I am used to
this”, “well adjusted to the spacebar...I don’t have to make
any extra movement”, “more familiar with it”, “more natural,
programmed into muscle memory”, “the only method I have
used all my life”, “the default in my brain will always be to hit
the spacebar”, “like computer typing”, and “more normal”.

Those preferring SWIPE commented on the accuracy and feel:
“Because I hit other letters when I press the spacebar”, “it
was new and easy to pick up”, “intuitive and functional”, and
“allowed for more accuracy...I liked the feel...allowed me to
look at key display”.

Those preferring NOSPACE commented mostly on the speed
advantage: “typed faster...was very accurate”, “faster to
type out sentences”, and “I type the fastest with this inter-
face...very easy, natural adjustment to omit spaces”.

Offline Experiments and Combining Actions
Prior to Experiment 2, we had limited data to tune for each
word-delimiter action. We used the data from the first 12
participants in Experiment 2 to tune a set of parameters for
each action (skipping spaces, hitting the space key, or swip-
ing right). We also combined data from all actions, creating
a setup supporting any of the three actions. We tested each
of the four setups against subsets of the unseen data from
the second 12 participants in Experiment 2. Additionally, we
widened the beam width in hopes of reducing errors.

Table 5 shows that using a setup matched to the test set pro-
vided low error rates in all cases. More importantly, a setup
combining all actions performed well regardless of the test
set. Even with a wider beam width, the combined setup rec-
ognized traces in the combined test set in about 0.04 s (sd =
0.025, min = 0.01, max = 0.44). Thus it appears possible to
support all actions within the same setup, allowing users the
flexibility to delimit words however they like.

Decoder setup Test set
NOSPACE SPACE SWIPE COMBO

NOSPACE 1.4 2.1 10.8 4.8
SPACE 4.3 1.3 13.7 6.5
SWIPE 27.3 26.2 2.4 18.6
COMBO 2.1 1.2 2.0 1.8

Table 5. Error rates on different test sets using different decoder setups.

Figure 9. The three keyboard layouts used in Experiment 3 running on
Nexus 4 devices. A penny and Timex Expedition watch added for scale.

EXPERIMENT 3: KEYBOARD SIZE
Experiments 1 and 2 showed that sentence-based decoding
was fast and accurate on a full-sized portrait keyboard. Based
on these experiments, we arrived at a very accurate decoder
setup (1.8% CER) allowing flexible word-delimiter actions.
The purpose of Experiment 3 was to investigate if this setup
could enable users to type on smaller keyboards while retain-
ing their existing typing behavior (i.e. tapping on an unmodi-
fied QWERTY keyboard). Smaller keyboards may be useful
on normal-sized devices in order to reduce occlusion, reduce
motor demands, or to allow one-handed entry. They may also
be useful on wearable devices such as smartwatches.

Study Design, Apparatus, and Procedure
We used a within-subject design with three conditions:

• NORMAL – Participants used a full-sized portrait key-
board measuring 60 mm× 40 mm with letters measuring
5.2 mm× 7.0 mm.

• SMALL – Participants used a keyboard measuring
40 mm× 26 mm with letters measuring 3.4 mm× 4.5 mm.
This keyboard’s width is slightly smaller than the screen of
a Sony SmartWatch 2 (42 mm).

• TINY – Participants used a keyboard measuring
25 mm× 16 mm with letters measuring 2.0 mm× 2.8 mm.
This keyboard’s width is slightly smaller than the screen
of a Samsung Gear 2 watch (30 mm).

The decoder’s free parameters were optimized with respect to
2412 traces recorded in previous experiments (an equal num-
ber in each of the three spacing strategies). However, as this
data was exclusively from a full-sized portrait keyboard lay-
out, we increased the keyboard model’s x- and y-variance pa-
rameters for the SMALL and TINY keyboards. These variance
parameters were tuned with respect to 80 traces recorded in
each of the two layouts by three of the authors.



Entry rate (wpm) Error rate (CER %) Left swipes per sentence
NORMAL 40.6 ± 8.4 [23.8, 57.5] 3.0 ± 1.7 [0.6, 6.1] 0.25 ± 0.50 [0.0, 1.7]
SMALL 38.2 ± 7.8 [22.1, 50.0] 4.0 ± 1.9 [1.7, 7.6] 0.31 ± 0.65 [0.0, 2.1]
TINY 34.9 ± 12.2 [13.4, 54.2] 10.7 ± 6.9 [5.4, 30.0] 0.29 ± 0.66 [0.0, 2.2]
Omnibus test F2,22 = 4.343, η2p = 0.283, p < 0.05 F2,22 = 13.494, η2p = 0.551, p < 0.0001 F2,22 = 0.179, η2p = 0.016, p = 0.837
Significant pairs None significant, p > 0.05 TINY > SMALL, NORMAL, p < 0.05 n/a

SMALL ≈ NORMAL, p = 0.470

Table 6. Statistics from Experiment 3. Results are formatted as: mean ± sd [min, max].

We used a Nexus 4 mobile device with recognition taking
place on a 3.6 GHz 8-core server. The Nexus 4 and server
were connected to the same Wi-Fi access point. Users could
swipe left to delete the previous entered character. We used
left swipe for deletion instead of a backspace key due to the
difficulty in accurately tapping such a key on a small key-
board. The keyboard only displayed the keys A–Z plus a
spacebar (Figure 9). Taps outside the rectangular keyboard
were ignored (i.e. they did not provide audio or vibration
feedback and they were not used in the recognition process).

We recruited 12 participants via convenience sampling. Par-
ticipants were paid $20 for taking part in a two-hour session.
None of the participants had taken part in previous studies.
Participants were aged from 18–35 (mean = 21.8), 67% were
male, 58% were computer science majors, and 75% were na-
tive English speakers. On a 7-point Likert scale where 7 =
strongly agree, participants rated the statement “I consider
myself a fluent speaker of English” from 5–7 (mean = 6.8).

Each participant wrote a total of 240 sentences taken from
the Enron Mobile data set [19]. We chose sentences with four
or more words that also had a length of 40 characters or less
(so as to fit on a single line on the device). These sentences
had not been used in any previous user trials or development
data collections. Throughout entry, the stimulus sentence was
shown directly above the keyboard (Figure 9). As a partici-
pant typed, the nearest key to each tap was displayed directly
below the stimulus sentence. After swiping up, the interme-
diate feedback text was replaced with the recognition result.

In each condition, participants wrote six practice sentences.
In order to remind participants of the spacing options, we
asked participants to write two sentences using the space key,
two without any spaces, and two with a swipe for space. Par-
ticipants then wrote four blocks of 20 sentences with a short
break between blocks. Each participant received sentences in
a randomized order. The order of conditions was balanced.

After each condition, participants completed a questionnaire
asking how they performed spacing in that condition. Open
comments were also solicited. Participants then completed a
raw NASA-TLX task load survey [10].

Results
Entry rate was measured from a user’s first tap until the recog-
nition was displayed. VelociTap took about 0.26 s to return a
result. As shown in Figure 10 (left), participants’ average
entry rate decreased as keyboard size decreased: NORMAL
40.6 wpm, SMALL 38.2 wpm, and TINY 34.9 wpm. None of
the pairwise differences were significant (Table 6, left).

Error rate was measured by computing the CER of the recog-
nition against the stimulus. As shown in Figure 10 (right),
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Figure 10. Entry rate (left) and error rate (right) in Experiment 3.
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Figure 11. Entry rate (top) and error rate (bottom) in the four blocks of
sentences in each keyboard size in Experiment 3.

participants’ average error rate increased as keyboard size de-
creased: NORMAL 3.0%, SMALL 4.0%, and TINY 10.7%.
TINY had a significantly higher error rate (Table 6, center).

Users could swipe to the left to delete the last character. Par-
ticipants’ average left swipes per sentence were: NORMAL
0.25, SMALL 0.31, and TINY 0.29. These differences were
not significant (Table 6, right).

We were curious if participants’ performance improved with
practice. Figure 11 shows entry and error rates in each block
of each condition. In the NORMAL keyboard, participants’
average entry rate increased from 39.4 wpm in block 1 to
41.4 wpm in block 4. Average error rates were similar, 2.9%
in block 1 and 3.0% in block 4. In the SMALL keyboard, entry
rate increased from 35.2 wpm in block 1 to 40.5 wpm in block
4. Error rate decreased from 4.5% in block 1 to 3.1% in block
4. In the TINY keyboard, entry rate increased from 33.5 wpm
in block 1 to 35.6 wpm in block 4. Error rate decreased from
12.3% in block 1 to 11.3% in block 4.

Subjective task load was measured by a raw NASA-TLX
which is on a scale from 0–100. Participants’ overall task load



Mental Physical Temporal Performance Effort Frustration Overall
NORMAL 37.5 ± 23.2 40.8 ± 27.0 37.1 ± 24.8 25.0 ± 20.2 34.6 ± 21.6 20.0 ± 19.1 32.6 ± 17.0
SMALL 42.9 ± 26.8 39.6 ± 30.9 49.6 ± 27.1 28.3 ± 23.3 49.6 ± 25.4 33.8 ± 22.2 40.6 ± 19.7
TINY 72.5 ± 23.9 68.8 ± 28.5 66.3 ± 30.1 47.9 ± 35.6 66.3 ± 28.9 56.3 ± 34.1 63.0 ± 24.2
Significant pairs TINY > SMALL n/a TINY > SMALL n/a TINY > NORMAL TINY > SMALL TINY > SMALL

TINY > NORMAL TINY > NORMAL TINY > NORMAL

Table 7. Results from the NASA-TLX task load survey in Experiment 3. Significant omnibus χ2 tests at p < 0.05 were checked for significant pairs via
Bonferroni corrected Wilcoxon signed-rank tests. Statistical test details have been omitted for clarity. Significant pairs all had p < 0.01.

Participant(s) Keyboard size
NORMAL SMALL TINY

1, 3 NOSPACE NOSPACE NOSPACE
2, 4, 6, 8 SPACE SPACE SPACE
11 SWIPE SWIPE SWIPE
5 NOSPACE NOSPACE SWIPE
7 SPACE SPACE NOSPACE
9 SPACE SPACE NOSPACE
10 MIX† MIX† MIX†

12 SPACE NOSPACE SPACE

Table 8. The space strategy adopted by participants in each condition in
Experiment 5. †Mixture of SWIPE and SPACE.

index increased as keyboard size decreased: NORMAL 32.6,
SMALL 40.6, and TINY 63.0. As shown in Table 7, TINY had
significantly higher overall task load as well as higher mental,
temporal, effort, and frustration scores.

We measured how many right swipe gestures each participant
did per sentence. We also measured how often the space key
was judged the most probable key for the taps comprising a
sentence. We used these two measures to classify a partic-
ipant’s strategy using the following rules: SWIPE if a user
averaged more than two right swipes per sentence, SPACE if
a user averaged more than two space taps per sentence, and
NOSPACE if both measures were less than 0.5. Table 8 shows
the strategy adopted by participants. For all keyboard sizes,
the conventional SPACE strategy was the most popular.

At the end of the experiment, we asked participants to rank
the keyboard sizes in terms of speed and accuracy. NORMAL
and SMALL tied as the fastest, with 4.5 participants ranking
it as the fastest (one participant ranked NORMAL and SMALL
equally). NORMAL was ranked as the most accurate by eight
participants, with SMALL coming in second with three votes.

Participants’ comments were critical of the TINY keyboard:
“very difficult and inaccurate”, “incredibly difficult to use ac-
curately”, “hard to feel like you hit the right key”, “awful and
very difficult to use”, “a nightmare”, and “not something I
would tolerate”. Participants were more enthusiastic about
the SMALL keyboard: “high accuracy with great speed”, and
“felt very good, allowed for near normal texting”.

Small Keyboard Potential
The TINY keyboard had a high error rate of 10.7%. Since we
had little data from the small keyboard prior to Experiment
3, we first explored whether better decoder parameters would
improve accuracy. We split the data from Experiment 3 into
two halves, optimizing parameters on users 1–6 and testing
on the data from users 7–12. We also widened the search
width, increasing recognition time from 0.11 s to 0.31 s. The
improved setup had a CER of 6.4% on the test data.

To further demonstrate the potential of the smallest keyboard,
the first author practiced with the TINY keyboard for an hour.
After the hour, the author wrote all 240 sentences from Ex-
periment 3 using a right swipe for spaces. His entry rate was
37.5 wpm (sd = 4.6) with a CER of 3.6% (sd = 7.8).

DISCUSSION
Despite receiving no feedback during sentence entry, novices
in our first pilot were able to achieve very fast entry rates of
47 wpm. After two hours of practice, experts in our second
pilot were able to write at 54 wpm. Both novices and ex-
perts had error rates below 5%. In Experiment 1 we showed
that the high text entry performance in the pilots generalize in
a controlled experiment with participants reaching between
41.9 and 43.5 wpm on average. Further, the VelociTap de-
coder resulted in a significantly lower error rate compared to
the Google keyboard while retaining a similar entry rate.

Our three experiments provide design implications for text
entry methods that use sentence-based decoding. Experiment
1 showed that intermediate visual feedback does not signif-
icantly affect entry or error rates. Experiment 2 revealed
that pushing the space key is the most reliable word-delimiter
strategy. Offline experiments using data from Experiment 2
showed that it is possible to provide a flexible choice of word-
delimiter actions without sacrificing accuracy. Experiment 3
showed that sentence-based decoding enables users to reach
a mean entry rate of 41 wpm on a 40 mm wide smartwatch-
sized keyboard at a 3% character error rate. Sentence-based
decoding allowed users to reach about the same text entry per-
formance using a 60 mm and a 40 mm wide keyboard. How-
ever, the 25 mm wide keyboard was difficult for novice users,
which suggests that while sentence-based decoding allows a
relatively small keyboard, it is likely more useful on larger
smartwatches, such as the 42 mm wide Sony SmartWatch 2.

We see several avenues for future work. First, not tapping
space between words should result in faster text entry, as-
suming accurate decoding. However, not pushing space also
makes it hard for users to track where they are in their entry.
Further, we observed many users habitually tapped spaces.
Thus some user training might make the no space word delim-
itation policy more effective. Another interesting comparison
would be to compare sentence-based entry against a word-at-
a-time approach and to investigate two-thumb typing.

In Experiment 3, all keyboard sizes were evaluated on a
Nexus 4 phone. This was done to ensure we could reliably
control the keyboard-size independent variable. A natural
follow-up is to test VelociTap on an actual watch-sized de-
vice, investigating the influence of factors such as mobility
and encumbrance. Further, participants were using keyboards
down to 25 mm in width. We suspect performance on such



small keyboards is related to the size of a user’s hands. While
our recognition-based approach may work at such sizes for
some users, it may be difficult for all users to obtain satis-
factory performance. Such users may need a letter-by-letter
approach using multi-step selection (e.g. Zoomboard [16]) or
larger ambiguous keys (e.g. [11]). An interesting challenge
is whether a hybrid system could allow seamlessly switching
between sentence-based decoding and other approaches.

Finally, all studies in this paper used a text transcription task.
It is also possible to use composition in text entry studies
[20]. It would be interesting to see how sentence-based de-
coding, and other methods that rely heavily on language mod-
els, tackle users composing their own text, which may involve
rare or novel words. User performance and preference with
regards to visual feedback may also differ when composing
novel text rather than transcribing provided text.

CONCLUSIONS
Touchscreen keyboards typically encourage users to enter text
one letter or one word at a time. In this paper, we have pre-
sented the VelociTap decoder that enables a sentence-at-a-
time approach. We have evaluated this approach in two pilot
studies and three experiments and presented design implica-
tions for text entry using sentence-based decoding.

It was recently argued that mobile text entry needs to focus on
surpassing the inviscid entry rate: the point at which a user’s
creativity is the bottleneck rather than the text entry method
[12]. This point is currently estimated at 67 wpm and most
entry methods are below 35 wpm [12]. Our work highlights
the high entry rates and low error rates achievable by sim-
ply throwing noisy touchscreen typing data at a probabilistic
decoder with a well-trained language model. Therefore, we
believe sentence-based decoding may serve as a foundation
to help achieve a viably inviscid mobile text entry method.
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