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In most long-distance migratory birds, juveniles migrate without their parents, and so are likely to lack 19 

detailed knowledge of where to go. This suggests the potential for stochasticity to affect their choice 20 

of wintering area at a large scale (>1000km). Adults, in contrast, may re-use non-breeding sites that 21 

promote their survival, so removing uncertainty from their subsequent migrations. I review the 22 

evidence for large scale stochastic juvenile site selection followed by adult site fidelity, and then 23 

develop a ‘serial-residency’ hypothesis based on these two traits as a framework to explain both the 24 

migratory connectivity and population dynamics of migrant birds and how these are affected by 25 

environmental change. Juvenile stochasticity is apparent in the age-dependent effects of weather or 26 

experimental displacement on the outcome of migration and in the very wide variation in the 27 

destinations of individuals originating from the same area. Adults have been shown to be very faithful 28 

to their wintering grounds and even to staging sites. The serial residency hypothesis predicts that 29 

migrants that show these two traits will rely on an individually unique but fixed series of temporally 30 

and spatially linked sites to complete their annual cycle.  As a consequence, migratory connectivity 31 

will be apparent at a very small scale for individuals, but only a large scale for a population, and 32 

juveniles are predicted to occur more often at less suitable sites than adults, so that survival will be 33 

lower for juveniles. Migratory connectivity will arise only through spatial and temporal autocorrelation 34 

with local environmental constraints, particularly on passage, and the distribution and age structure of 35 

the population may reflect past environmental constraints. At least some juveniles will discover 36 

suitable habitat that they may re-use as adults, thus promoting overall population level resilience to 37 

environmental change, and suggesting value in site-based conservation. However, because migratory 38 

connectivity only acts on a large scale, any population of a migrant will contain individuals that 39 

encounter a change in suitability somewhere in their non-breeding range, so affecting average 40 

survival. Differences in population trends will therefore reflect variation in local breeding output added 41 

to average survival from wintering and staging areas. The latter is likely to be declining given 42 

increasing levels of environmental degradation throughout Africa. Large scale migratory connectivity 43 

also has implications for the evolutionary ecology of migrants generally because this is likely to lead to 44 

selection for generalist traits. 45 

46 
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The causes of current population declines of many migrant species in the Palearctic are likely to be 47 

both species- and population-specific (Vickery et al. 2014), yet a general decline in most migrant 48 

species has been recorded over large areas of the Palearctic (European Bird Census Council  2012). 49 

If declines in migrants are species- and population-specific, then some characteristics such as their 50 

life history strategy or environmental conditions in Africa are likely to be causing the decline recorded 51 

across species (Sanderson et al. 2006). Here I propose two traits of migrants that may help to explain 52 

these population dynamics. First, in most long-distance migrant birds, juveniles migrate without their 53 

parents, and most likely lack detailed knowledge of where to go, suggesting the potential for 54 

stochasticity to affect their choice of wintering area on a large scale (>1000km). Second, adults then 55 

show very high fidelity to these sites, re-using sites that secured their survival as juveniles and so 56 

removing uncertainty from their subsequent migrations and location of wintering sites. Here I review 57 

the evidence for stochastic juvenile site selection at a large spatial scale, and adult site fidelity, and 58 

develop from this a ’serial-residency’ hypothesis based on these two traits that forms a framework to 59 

explain both the connectivity of migrant species to their wintering grounds and their population 60 

dynamics, and how both may vary with environmental change. 61 

STOCHASTIC LOCATION OF WINTERING SITES BY JUVENILES 62 

The demonstrated ability of migratory birds to return exactly ’home’, quickly and efficiently, after a 63 

considerable experimental spatial displacement (Mewaldt 1964, Akesson 2003) indicates that birds 64 

can be considered to have the equivalent of a GPS system (Thorup et al. 2007a, Thorup & Holland 65 

2009). Navigation can only take place, however, when the final destination is known but there is no 66 

evidence to date of genetic programs that provide naïve migrants with instructions on how to reach 67 

wintering sites at a specific location on a small (<100 km) or medium scale (100 – 1000 km). Genetic 68 

control of migratory direction in juveniles has been shown to operate only on a very large scale at the 69 

level of migratory divides, such as south-west through Iberia or south-east through the Middle East 70 

(Perez-Tris et al. 2004, Ilieva et al. 2012), or with respect to the approximate timing of encounter with 71 

barriers which require pauses for refuelling or very major shifts in direction (e.g. Chernetsov et al. 72 

2008). Migration departure directions are sufficiently variable within individuals to result in large 73 

differences in destinations over journeys of several thousand kilometres (Thorup et al. 2007b) and 74 

within populations (Karlsson et al. 2010), and juveniles do not usually use environmental cues to 75 
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contradict their basic ’compass and clock’ program (e.g. Deutschlander et al. 2012, Holland & Helm 76 

2013).  Even when they do (e.g. magnetic cues; Kullberg et al. 2003), this is again variable across 77 

individuals in timing and direction. 78 

Lacking innate small or medium-scale location information, a juvenile bird can only head in the 79 

direction of migration and encounter sites stochastically along its line of travel, although as sites are 80 

encountered, their location can be learned and so used or avoided in subsequent migrations. Some 81 

birds may use social learning to locate suitable passage and wintering sites. Long-lived migrants, for 82 

example, will have greater opportunities for removing stochasticity in site selection, leading to extreme 83 

cases where social learning may be involved to ensure the same, best sites are always used even by 84 

first-year birds (Mueller et al. 2013). Some shorter-lived passerine migrants that migrate diurnally in 85 

flocks, such as Barn Swallows Hirundo rustica, might also use social learning or public information to 86 

locate good passage sites and roosts. However, many species show no association between 87 

juveniles and adults in the migration period, and indeed many adults migrate before juveniles, so 88 

precluding any chance of social learning of destinations from parents. Such species, including almost 89 

all passerines where this is known, migrate at night, often singly or in associations formed by 90 

bottlenecks on the migration route, but without any coherent, coordinated group behaviour that might 91 

suggest some individuals are following others, or have the potential systematically to follow others 92 

(Berthold 2001). Although grouping, for whatever reason, must provide an opportunity for individuals 93 

to follow one another, we know of no mechanisms whereby such grouping leads to coordinated site 94 

selection at medium or small scales. Adults tend to have a different moult and migration phenology, 95 

with juveniles travelling more slowly (e.g. Strandberg et al. 2008, Hope et al. 2011), so making the 96 

option of following adults difficult. Nonetheless, studies on the use of cues such as flight calls and 97 

adult presence and density, during and at the end of migration, are needed to determine the degree to 98 

which any stochasticity might be offset by social information. 99 

Evidence for stochastic site selection by juveniles 100 

Juveniles, unlike adults, do not correct for experimental displacement during migration, thus ending 101 

up in atypical wintering areas, whereas adults are able to make corrections and so reach their usual 102 

winter quarters (Perdeck 1958, 1967, Wolff 1970). A recent meta-analysis of orientation in caged 103 

juvenile birds after displacement has confirmed that any corrections by juveniles in autumn are 104 
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approximate and even these are probably reliant on star positions in clear skies, whereas juveniles 105 

returning in the spring correct more coherently as if heading back to their known breeding grounds 106 

(Thorup & Rabol 2007). Experienced birds, in contrast, use ‘true navigation’ whereby celestial and 107 

magnetic cues along with site-specific experience allow for precise orientation and correction after 108 

displacement (Wiltschko & Wiltschko 1999). 109 

Many migrants may use favourable tailwinds during migration  (Erni et al. 2005). This implies that 110 

change in wind direction during a migration flight, or slight differences in starting wind directions, can 111 

influence destinations. Although compensation for this wind drift can occur, it is species- and context-112 

specific (Liechti 2006) and can result, after strong, sustained and unexpected winds, in very large 113 

numbers of birds, notably passerines, being displaced from their usual migration paths (Elkins 1983). 114 

Passerines, in particular, may also migrate without favourable tailwinds because they are time-115 

constrained and so are likely to be subject to small changes in direction as a result of wind drift 116 

throughout every night of their long-distance migrations (Karlsson et al. 2011). Consequently, even if 117 

genetic orientation mechanisms of juveniles were more precise, accumulated small deviations over a 118 

long migration will result in destinations that vary on a country-wide scale (Mouritsen 2003).  119 

Wintering locations of individuals are now becoming better known from light-based geolocators and 120 

satellite telemetry, and this evidence suggests that there is wide variation in the wintering destinations 121 

of individuals originating from the same population (Table 1). The wintering distributions of individuals 122 

from the same small breeding area in Europe may extend over thousands of kilometres in Africa. 123 

However, the measurement of migratory tracks of small passerine species from such tags is in its 124 

infancy, and hence biased against finding connectivity because of the stochasticity inherent in small 125 

sample sizes.  Many more data are needed and will emerge as tagging capability and programs 126 

expand. 127 

Further evidence that juveniles reach their wintering sites stochastically is that they occur commonly 128 

in any habitat that is minimally suitable (e.g. Nevoux et al. 2008), and not always in the best habitats. 129 

Evidence is limited, but one study of Eurasian Spoonbills Platalea leucorodia has been able to 130 

examine this over a convincing scale that accounted for dispersal as well as survival, finding that 131 

Spoonbills were highly faithful to winter sites despite others being available that would result in higher 132 

survival (Lok et al. 2011). There same has been found for Icelandic Black-tailed Godwits Limosa 133 

limosa islandica wintering in Western Europe (Gunnarsson et al. 2005). Similar evidence comes from 134 
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a lack of correlation between settlement patterns of migrants and the quality of sites (e.g. Johnson et 135 

al. 2009, 2011).  136 

Post-migration sampling of sites to compensate for stochasticity 137 

On arrival, subsequent movements may then occur so that the stochasticity of migration can be 138 

mitigated by finding better sites locally. Although little is known about the degree of local, post-139 

migratory sampling undertaken by juvenile birds (Mettke-Hofmann & Greenberg 2005), we may gain 140 

some insight by examining dispersal distances from the natal site on return at after the first complete 141 

migration. Although these distances are likely to be underestimated in many studies (e.g. c. 1-10 km, 142 

Sutherland et al. 2000), mean distances analysed from population demographic methods for 143 

passerines are of the order of 15-95 km (Tittler et al. 2009). This scale is compatible with the 144 

stochastic nature of juvenile migratory destinations at a medium to large scale. Any migrant, when 145 

necessary, may carry out site selection at larger scales to compensate for stochasticity (e.g. Honey 146 

Buzzards Pernis apivorus Strandberg et al. 2012). Nevertheless this does not mean that many do, 147 

because the advantages of locating the best site may not outweigh the costs of moving on a large 148 

scale or delaying site selection.  149 

Key to understanding the stochasticity involved in selection of a wintering site by juveniles are the 150 

relative costs and benefits of moving.  If these are high and low respectively, then juveniles should 151 

invest little time and energy in sampling sites and stay roughly where they initially settle in Africa 152 

(Switzer 1993). There is some evidence that costs of moving between sites are high. Migration itself 153 

incurs a survival cost (Strandberg et al. 2010), whereas juveniles that have become resident on a site 154 

for the winter have the same survival as adults (Sillett & Holmes 2002), suggesting that movement 155 

between sites results in lower survival than residency.  Mechanisms for increased cost are likely to 156 

include increased predation risk in unfamiliar surroundings (e.g. Clarke et al. 1993, Yoder et al. 2004) 157 

and increased encounter rates with new parasites (Møller & Szep 2011). 158 

There is also some evidence to suggest that the benefits of switching sites at a large scale may be 159 

low, at least for Palearctic passerine migrants wintering in Africa because suitable, unoccupied habitat 160 

is widespread. First, the absence of Palearctic migrants from certain wintering habitats is well 161 

predicted by habitat models but, within suitable habitat, presence is poorly predicted, suggesting that 162 

much suitable habitat is unoccupied (Wilson & Cresswell 2006, Cresswell et al. 2007, Hulme & 163 



7 

 

Cresswell 2012). Second, many Palearctic terrestrial migrant species occur in a wide range of 164 

habitats (Rabøl 1987, Leisler 1990, Morel & Morel 1992, Pearson & Lack 1992, Salewski & Jones 165 

2006). Some studies in the Neotropics suggest the opposite, with clear survival differences between 166 

habitats and evidence of exclusion of age and sex classes (Strong & Sherry 2000, Marra & Holmes 167 

2001). However, habitat limitation, and indeed many factors which affect migrants, may act differently 168 

in the Neotropics because many species winter in Central America and on Caribbean islands where 169 

the availability of land is limited (Jones & Cresswell 2010). 170 

A further key issue in understanding the net costs of sampling and moving between sites lies in the 171 

concept of predictability of foraging and management of hazard such as predation risk (Cuadrado 172 

1997), both of which rely on local information. The information needed to allow prediction of foraging 173 

gain and management of starvation and predation risks can only be gained through experience of a 174 

site. Therefore the value of a site increases with greater residence in it (Piper 2011). This concept 175 

perhaps explains why migration for first-year birds (and adults that have their migratory routes 176 

disrupted by weather) carries greater survival costs (see below). Each step means that a new site 177 

must be sampled and assessed, to gain knowledge of local food sources, competitor densities, 178 

predators and the location of refuges, which will interact to determine predation risks and foraging 179 

predictability (Lind & Cresswell 2006, Cresswell 2011).  The process of gaining experience of a site 180 

may itself increase energetic costs, reduce foraging time and increase predation risk for migrants (see 181 

Robinson & Merrill  2013 for a mammalian example of this). If much of the cost of shifts between sites 182 

in wintering areas is a consequence of imperfect information, then we would predict that birds select 183 

wintering sites according to a threshold of minimum acceptability to reduce the time to locate a site 184 

(see Oring 1982 for this argument applied to breeding territories). This is made more compelling by 185 

considering that the energy requirements of a passerine in the tropics are relatively low outside 186 

migration periods and foraging may only need to occur for a few hours every day (Brandt & Cresswell 187 

2009). A migrant in a poor site might choose simply to feed for longer during the day rather than risk 188 

seeking a better site. 189 

A further consideration in determining the scale at which winter site selection is stochastic is the 190 

degree to which juveniles use the presence of adults in an area to locate suitable habitats. Once a 191 

juvenile arrives in a potential wintering area it may then locate suitable wintering sites at a finer scale 192 

using local enhancement, whereby the presence of adult conspecifics indicates suitable and probably 193 
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high quality habitat. Conspecific attraction certainly occurs in choice of breeding site when the 194 

confounding effect of habitat quality itself is experimentally removed (e.g. Hahn & Silverman 2006, 195 

Betts et al. 2008, Theriault et al. 2012). We know nothing of whether birds use local enhancement to 196 

locate suitable wintering areas, but it seems reasonable that they would do so and consequently 197 

aggregate depending on a pre-existing distribution.      198 

 199 

NON-BREEDING SITE FIDELITY IN ADULTS 200 

There is much convincing evidence of site fidelity to the main non-breeding sites (wintering sites 201 

where individuals spend more than a few days) for many of the migrant species for which data are 202 

available (Table 2 and Newton 2008). Site fidelity in birds generally seems to vary along a continuum 203 

from highly site-faithful even at a small spatial scale, to virtually no fidelity at any scale, depending on 204 

year-to-year predictability in food-supplies (Newton 2008). Serial residency and its associated 205 

predictions will have much less relevance to any population that specialises on spatially unpredictable 206 

food supplies or ephemeral habitats (Newton 2012) such as White Storks Ciconia ciconia (Berthold et 207 

al. 2002). However, there is no evidence that any Palearctic-African passerine migrant is nomadic (i.e. 208 

sudden appearances in non-usual areas of large numbers of individuals), and in non-passerines such 209 

as raptors and storks nomadism is perhaps much more noticeable and easier to demonstrate than 210 

serial residency. This is distinct from the use made by individuals of several species of more than one 211 

wintering site (or prolonged staging sites) in Africa (Jones 1995). These typically reflect large-scale 212 

movements in response to worsening dry season conditions as a consequence of intra-annual rainfall 213 

and primary productivity patterns (Tottrup et al. 2012, Lemke et al. 2013). There is no logical reason 214 

to suppose that use of several wintering sites would affect fidelity to any one of these sites, but there 215 

are no data available to examine this. 216 

Fidelity to passage sites, where individuals may only spend a few days refuelling before continuing 217 

migration, has not been as well demonstrated for passerines. Fidelity to staging sites may be lower 218 

because it is harder for birds to assess the quality of a particular staging site given that they only 219 

sample it for a short period of time, and there may be greater short-term temporal variation in 220 

competitor numbers at staging sites than at over-wintering sites (G. Ruxton pers. comm.). 221 

Nevertheless, some geese, shorebirds and raptors have high site fidelity to passage sites (Table 2 222 
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and Newton 2008), even though apparent site fidelity may be inflated by limited availability of suitable 223 

staging sites. Most passerines probably do not have site fidelity for passage sites (Catry et al. 2004), 224 

but it does occur in some species (Table 2, Newton 2008).  225 

What is known about wintering site fidelity is entirely consistent with what we know about breeding 226 

site fidelity. Breeding and natal site fidelity at a very small scale (hundreds of metres) in most adult 227 

birds, and at a slightly larger scale (<10 km) in juveniles, has been long established (Greenwood & 228 

Harvey 1982). Although there are many exceptions, and the degree of site fidelity is dependent on 229 

many ecological factors, most birds tend breed close to their natal site. Much of the contention about 230 

whether or not species are site-faithful is actually about the scale of dispersal (Cilimburg et al. 2002, 231 

Hosner & Winkler 2007). Natal and breeding site fidelity of migrants in particular is well established 232 

and tends to be similar to that of non-migratory populations or species (Greenwood & Harvey 1982, 233 

Sandercock & Jaramillo 2002, Middleton et al. 2006, Foerschler et al. 2010) and between migrants 234 

occupying different habitats (Schlossberg 2009).  235 

What we know about wintering and breeding site fidelity predicts that an individual migrant is likely to 236 

occupy the same sites for breeding and wintering throughout its life, even over many years (hence 237 

’serial’ residency), and this may also extend to the passage stop-over sites between them. This does 238 

not, however, rule out an individual abandoning sites or adopting new sites, or using multiple 239 

wintering sites but, on average, if sites remain available and suitable, the prediction is that they will be 240 

used again. Site fidelity is expected to decrease with increase in variation at sites due to changes in 241 

weather, climate, habitat and competition, or the ability of a migrant species to find and move to better 242 

sites. As with juveniles, the key to understanding adult site fidelity is therefore the cost of changing 243 

habitat and the scale over which site changes occur (see Møller & Szep 2011 for an example 244 

involving the costs of parasitism leading to selection for winter site fidelity). However, there is little 245 

information available to examine how frequently and why adult birds change their wintering sites.  246 

We have much better information for change of breeding site, and it may be that similar rules apply for 247 

shifts to new wintering sites. Adult birds tend not to change breeding sites, particularly as they get 248 

older and more experienced (Middleton et al. 2006, Sergio et al. 2009, Bernard et al. 2011), and when 249 

they do so movements are generally <100km. Many studies show shifts in breeding sites over 250 

relatively small distances (of the order of <1-10km) and usually only females move in response to 251 

reduced reproductive success (Sedgwick 2004, Eeva et al. 2008, Schaub & von Hirschheydt 2009). 252 
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However, many studies that show such correlations between site shifts and reproductive success are 253 

confounded by increasing reproductive success with age. Thus, when experimental manipulations of 254 

reproductive success are carried out these tend not to lead to site shifts (e.g. Howlett & Stutchbury 255 

2003, Shutler & Clark 2003, but see Hoover 2003). Studies that experimentally manipulate habitat 256 

quality to induce movements to new areas have not been carried out for any migrant species on the 257 

wintering grounds in Africa, and there are real biases towards not identifying species that have low 258 

site fidelity because of the scale of study necessary. Nevertheless the expectation of high adult site 259 

fidelity on even a small scale seems the most parsimonious for wintering passerines.  260 

 THE SERIAL RESIDENCY HYPOTHESIS 261 

Traits whereby large (>1000 km) and probably medium (>100 km) scale location of passage and 262 

wintering sites is stochastic by juveniles on first migration, but then surviving adults have high site 263 

fidelity to the wintering and possibly also staging sites in subsequent migrations, form the basis of a 264 

novel ‘serial residency’ hypothesis. This hypothesis generates testable predictions in three areas: 265 

(i) Age-dependent site use and survival.  Juveniles are predicted to show greater 266 

variance of migration routes and number of stop-over sites in time and space, and greater 267 

occurrence than adults at less suitable sites, so that survival is higher for adults than 268 

juveniles.  269 

(ii) Migratory connectivity.  This will arise only through spatial and temporal autocorrelation 270 

of local environmental constraints, particularly on passage, and the distribution and age 271 

structure of the population may reflect past environmental constraints.  272 

(iii) Population resilience.  At least some juvenile birds will discover suitable habitat that can 273 

be re-used when the birds are adults, allowing overall population level resilience to 274 

environmental change and giving value to site-based conservation. 275 

The serial residency hypothesis is most likely to apply to species in those orders of birds (e.g. 276 

Passeriformes) of smaller body size, lower flight range and lower ability to maintain migration and 277 

orientation in adverse weather. Such birds are subject to events during migration that cannot be 278 

predicted or compensated for, and end up distributed over a wider area when they reach their 279 

wintering grounds.  The hypothesis will apply less to those orders with characteristics such as large 280 
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body size, high flight speeds and large flight ranges such as shorebirds, swifts and terns, or with 281 

social learning, such as wildfowl and cranes.  In these cases, most species may use initial large scale 282 

sampling of sites or public information to end up in targeted areas. 283 

Under the serial residency hypothesis, stochastic site selection, site fidelity and resultant migratory 284 

connectivity are all scale-dependent. At a small scale – within a few hundred metres to less than 10 285 

kilometres – any species may sample or use social information to choose sites in a non-random 286 

fashion and this may even extend to 10 – 100 km. However sampling of or ability to choose sites on a 287 

larger scale (greater than 100 km) is much less likely to occur, so at this scale, site choice may be 288 

stochastic. Similarly, at a very large scale (greater than 1000 km) there is always migratory 289 

connectivity (i.e. western Europe to west Africa).  290 

Age-dependent site use and survival  291 

Juveniles are predicted to show greater variance of migration routes and number of stop-over sites in 292 

time and space, and greater occurrence at lower quality sites, because they lack knowledge and 293 

migration arrival location is stochastic. The degree to which a migrant will show predictable site re-use 294 

in time and space across years within a species is also then modified by its age. As birds age we 295 

expect them to become more site faithful, both because of natural selection removing those that have 296 

not located suitable sites and because the value of a site probably increases with experience of it. 297 

Moreover, any necessary shifts in sites have already been made earlier in life. Survival is therefore 298 

predicted to be higher for adults than juveniles. Juvenile survival has been universally found to be 299 

lower than adult survival in migrants (e.g. Sæther 1989, Donovan et al. 1995, Sæther & Bakke 2000), 300 

but the underlying mechanisms predicted by the serial residency hypothesis remain to be tested.  301 

Migratory connectivity 302 

Migratory connectivity is predicted to arise through spatial autocorrelation because populations from 303 

the same area experience similar local constraints and so follow the same migration routes (Fig. 1). 304 

Although selection of wintering sites for juveniles is predicted to be stochastic, local environmental 305 

factors will constrain survivable routes and so influence and limit the potential outcomes. For example 306 

a terrestrial migrant cannot find a wintering site if it ends up migrating too far to the west into the 307 

Atlantic. Consequently we predict migratory connectivity as a consequence of these limitations (e.g. 308 

Cano & Telleria 2013). This is particularly relevant to any comparisons between the Nearctic and 309 
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Palearctic migration systems because of the much smaller land availability in the former system: 310 

migratory connectivity will be very much greater in the Nearctic even if the serial residency hypothesis 311 

applies equally.   312 

Distribution patterns in Africa (and so migratory connectivity) may also reflect past history, 313 

environmental and cohort events. Initially, stochasticity and the costs of finding the best sites may 314 

lead to selection of non-optimal sites by juveniles. Then inter-annual or decadal changes in local 315 

climatic conditions on the wintering grounds – well recorded in Africa (Nicholson 2001) - may lead to 316 

changes in the quality of these sites for the returning adults, which may return to the same site for 317 

several years (Fig. 1). Consequently bird-habitat associations on the wintering grounds may be weak 318 

(e.g. Wilson & Cresswell 2006, Cresswell et al. 2007, Hulme & Cresswell 2012). Furthermore, in years 319 

in which the best sites for winter survival change there will be a greater proportion of juveniles 320 

surviving to breed the following year, because adults become concentrated where conditions were 321 

suitable previously (due to differential survival) whereas juveniles always end up over a wider area 322 

(Fig. 1, panels iii & iv). For example, the serial residency hypothesis would predict that there would 323 

have been a greater proportion of juvenile Common Whitethroats Sylvia communis returning to 324 

western Europe in 1969, after the likely major change in typical habitat conditions in the Sahel during 325 

the previous winter caused a >50% reduction in the size of the returning population (Winstanley et al. 326 

1974).  327 

A further possible influence on connectivity may arise through the use of more than one main 328 

wintering site in Africa. Although stochasticity in initial site selection will apply independently of the 329 

number of wintering sites, we know little about whether shifts between wintering sites are a gradual 330 

drift south as conditions worsen (e.g. Cresswell et al. 2009), or represent a single-step flight (e.g. 331 

Lemke et al. 2013). Gradual shifts southward would be more likely lead to fine scale optimal habitat 332 

selection which would be perhaps more significant for the end of the winter when body condition 333 

needs to be prioritised for migration back to Europe.  Increased population level connectivity might 334 

then result as birds concentrate in the best areas later in the winter. In contrast, intra-African migration 335 

during the winter to a new site would be likely to lead to further stochasticity (again juveniles will not 336 

know where they are going) and so further reduce population level connectivity.  It is interesting to 337 

note that the one Palearctic passerine migrant species that has been shown to have an intra-African 338 

migration during the wintering period has also been shown to have the largest spread in wintering 339 



13 

 

destinations from a single breeding site and so the lowest migratory connectivity (Lemke et al. 2013, 340 

Table 1).  341 

Population resilience 342 

If a migrant bird shows serial residency, then it will rely on a series of individually unique, connected 343 

sites in both space and time. The dependence on a chain of sites makes an individual migrant 344 

relatively more vulnerable to change because the probability that any one site is affected by 345 

environmental change increases with the number of sites used - ‘multiple jeopardy’ (Newton 2004). 346 

Populations in which individuals have more stop-over sites will therefore be more likely to show 347 

declines than those with fewer. The average number of stop-over sites for most species is unknown 348 

and, although migration distance may be a proxy, inter-specific variation in migratory capability and 349 

the availability of stop-over sites due to variation in average routes will confound this. Both passerine 350 

and non-passerine species with longer migration distances to Africa have been shown to have 351 

suffered larger declines (Sanderson et al. 2006, Møller 2008, Jones & Cresswell 2010), but 352 

regardless of the number of sites used, loss of one may have the same effect, so that even shorter-353 

distance migrants will be affected by the loss of key sites. It is also important to note that there may 354 

be circumstances when use of multiple sites increases fitness in a migrant, because it might allow 355 

better adjustment of migratory timing (see below) or a bet-hedging strategy in the context of optimal 356 

migration (Alerstam et al. 1990, Alerstam 2011). 357 

The serial residency hypothesis, however, modifies the predictions of the ‘multiple jeopardy’ 358 

hypothesis because it predicts that there will be intraspecific spatial and temporal variation in which 359 

stop-over sites are used rather than simply just considering their number. Because initial discovery 360 

and use of each site by juveniles is largely stochastic and untargeted except at a broad spatial scale, 361 

each adult is likely to have a different series of linked sites. Therefore increased resilience at a 362 

population level emerges as a prediction, for any given average number of sites used by a migrant 363 

species. At least some first-year birds will discover functional links that can be re-used as adults, 364 

including protected areas. These links will be different even within populations so that environmental 365 

change will usually only affect some individuals of the population in any one year. Therefore, the 366 

serial residency hypothesis predicts that populations with greater first-year stochasticity in route 367 
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finding will be more resilient to larger scale change (i.e. there will always be some first-year 368 

individuals that find a functional linked chain of sites). These predictions have not been tested to date. 369 

The extent of population resilience engendered by serial residency is however dependent on whether 370 

environmental conditions limit availability of passage sites at any stage (i.e. migratory bottlenecks) 371 

and on the spatial scale of environmental change. Populations that are concentrated at sites because 372 

of bottlenecks will be more susceptible to anthropogenic change even if they otherwise follow the 373 

predictions of the serial residency hypothesis. Large population declines have been shown to be 374 

associated with bottlenecks (Baker et al. 2004, Verkuil et al. 2012), but in most cases we do not know 375 

the degree to which most populations are concentrated into bottlenecks. Habitat specialisation will be 376 

a proxy for this however, and species that are habitat specialists have been shown to have suffered 377 

larger declines (Siriwardena et al. 1998, Gregory et al. 2004, 2007, Hewson et al.  2007). Additionally, 378 

where change is operating over a large spatial scale, such as climate change, then most individuals in 379 

a population might be affected, despite a wide spatial separation in sites and routes.  380 

Understanding and managing Palearctic passerine migrant declines 381 

Testing the predictions of the serial residency hypothesis will allow us better to understand why many 382 

European passerine migrant bird species are declining, but in a very population-specific way. If there 383 

is initial stochasticity of juvenile site selection on the wintering grounds such that there is only 384 

migratory connectivity on a very large scale, then conditions throughout the wintering grounds affect 385 

all breeding populations of a species (Taylor & Norris 2010). Some juveniles from a population end up 386 

in good sites and others in poor sites, with average survival reflecting the relative availability of good 387 

and poor sites across the African wintering range. Average juvenile survival over a very large scale is 388 

then added to the breeding productivity of a population in an area of Europe being monitored on a 389 

much smaller scale to give overall population change. Thus whether a particular breeding population 390 

is declining, static or increasing may depend on the quality of the environment on the scale that the 391 

population is being monitored in Europe, but the proportion of local populations that are declining, 392 

static or increasing, may depend on the average quality of the environment over the whole wintering 393 

area (Fig. 2). So as average environmental quality throughout Africa decreases (e.g. Lutz & Samir 394 

2010), so the overall population trend for a migrant species is predicted to become more negative at 395 

larger (e.g. European) scales. Consequently we may have highly variable population dynamics for 396 
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migrant species within Europe depending on country or area in which they breed, but an overarching 397 

effect of quality of the wintering ground. Furthermore, because birds from specific wintering sites are 398 

spread over a wide range of breeding sites, local wintering populations have some resilience against 399 

destruction of specific breeding sites. Limiting factors which act locally (like piecemeal habitat 400 

destruction) may then have less immediate impact on overall populations than factors, such as 401 

climatic influences, that act simultaneously over wide areas.  402 

The lack of small- or medium-scale migratory connectivity then has profound implications for any 403 

hypotheses about where population limitation in Palearctic migrants occurs (e.g. Newton 2004, Taylor 404 

& Norris 2010). Without large-scale connectivity, factors that affect breeding populations for any 405 

relatively local scale breeding population monitored in Europe will always have a stronger effect than 406 

factors measured at a local scale on the wintering ground. This is because any local detrimental 407 

change in Africa will affect a population in Europe by reducing survival of only those individuals that 408 

winter in the affected area, so these decreases will be diluted by the many individuals wintering in 409 

other areas of Africa not affected by the local change. However, any detrimental change on the 410 

breeding grounds in Europe will affect all individuals being monitored, so giving a stronger average 411 

effect. The converse would apply if we monitored a wintering population. Any conclusion about the 412 

relative strength of population limitation on the breeding and wintering grounds will therefore be 413 

influenced by the location and the scale of the study from which it comes (Foppen et al. 1999, 414 

Morrison et al. 2013b). For example, Willow Warblers Phylloscopus trochilus in Britain have very 415 

different regional population trends (Morrison et al. 2010) but have the same wintering regions and 416 

habitat requirements (Morrison et al. 2013a). Only by comparison of populations, species or functional 417 

groups that differ fundamentally in their wintering habitats in Africa  (e.g. Sahel vs forest) or have 418 

different wintering areas on a very large geographical scale (e.g. east vs west Africa) will population 419 

trend differences emerge that can be related to their wintering grounds (e.g. Sanderson et al. 2006, 420 

Ockendon et al. 2012). 421 

We would therefore predict that local breeding parameters would correlate more often, or more 422 

strongly, with local breeding population trends than wintering parameters. Taking the ten most 423 

declining migrant species in Europe and searching the most recent 150 papers or papers published 424 

over a 10-year period on Web of Science using the keywords ‘species name’ and ‘breeding’ or 425 

‘wintering’, eight species were the subject of studies that examined the relative effect of drivers of 426 
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local breeding population change.  Almost all of these show local breeding parameters as a main 427 

driver of local population change, including European Turtle Dove Streptopelia turtur (Browne & 428 

Aebischer 2004), Wood Warbler Phylloscopus sibilatrix (Mallord et al. 2012), Willow Warbler (Hogstad 429 

2005), Whinchat Saxicola rubetra (Grubler et al. 2008), European Pied Flycatcher Ficedula hypoleuca 430 

(Both et al. 2006a), Eurasian Reed Warbler Acrocephalus scirpaceus (Harrison & Whitehouse 2012) 431 

and Garden Warbler Sylvia borin (Widmer 1996). In contrast, only one study showed the dominance 432 

of wintering conditions on local population dynamics, in Northern Wheatear (Arlt et al.  2008). But it is 433 

again important to note that the importance of scale in this argument. As the geographic size of the 434 

breeding population considered increases, so the importance of wintering conditions as drivers of 435 

breeding population dynamics increases (Baillie & Peach 1992, Thingstad et al. 2006). 436 

Stochastic site selection by juveniles at a large scale also has implications for the importance of 437 

phenological mismatch (Jones & Cresswell 2010) in driving population dynamics of passerine 438 

migrants. Critical to this hypothesis, whereby population declines are predicted because climate 439 

change occurs disproportionately in the wintering and the breeding areas such that migrants arrive to 440 

breed later than the local food peak, is that cues on the wintering ground may inform breeding arrival 441 

times (e.g. Both et al. 2006b). If there is little migratory connectivity then it is unlikely that selection 442 

can act for the use of winter climate cues to time migration. Only cues that correlate well with habitat 443 

suitability across the entire wintering range can have a selective effect (e.g. Saino et al. 2007, van 444 

Wijk et al. 2012). It seems likely therefore that selection will have acted on migrants to use timing 445 

mechanisms independent of local climate cues, long before anthropogenic climate change may have 446 

disrupted them. Only populations that have clear migratory bottlenecks, or that have greater migratory 447 

connectivity because of common wintering or passage sites relatively close to the breeding ground, 448 

might be expected to show migratory timing changes in response to breeding climate change (Both & 449 

te Marvelde 2007, Both 2010, Rubolini et al. 2010, Tottrup et al. 2010). 450 

The serial residency hypothesis has clear conservation implications. First, maintenance of a network 451 

of protected areas on the wintering grounds will always protect some individuals from all populations 452 

in Europe because juveniles redistribute annually, and so this will be the case even with climate 453 

change, as long as the network of protected areas overall still embraces suitable habitat (Fig. 2). 454 

Second, species with high stochasticity in initial site selection will also have diverse migration routes 455 

promoting resilience and the effectiveness of a large network of conserved sites, regardless of 456 
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location. Third, any actions which promote the carrying capacity of habitats for such migrants 457 

anywhere in Africa will benefit a large range of breeding populations in Europe, although these 458 

actions would have to be very widespread to have detectable effects.  In contrast, if a species has low 459 

stochasticity in site selection then specific local solutions on the wintering grounds will be needed to 460 

affect specific local European breeding populations, and identification, management and protection of 461 

key wintering sites is then of utmost importance. Such species are also likely to have specific 462 

migration routes with key bottleneck passage sites that require identification and conservation, with 463 

alternative sites also conserved to insure against future anthropogenic and climate change. These 464 

species will therefore be much more susceptible to anthropogenic climate and habitat change but will 465 

also respond quickly to targeted local conservation initiatives. 466 

Overall, the most important population implication of the serial residency hypothesis is perhaps that 467 

we should expect average changes in conditions across African wintering grounds at a large scale to 468 

more or less affect all European passerine migrant populations such that decadal changes in rainfall 469 

or habitat change will cause groups of species sharing the same wintering habitats to show consistent 470 

population changes. Some of these changes may reflect natural variation in rainfall patterns such as 471 

periods of wet and dry in the Sahel, whereas others may reflect long term anthropogenic degradation 472 

of wooded and savannah wintering habitats, or key passage sites. Any natural change or 473 

conservation action that increases carrying capacity for migrants in suitable habitat in Africa will 474 

positively affect Palearctic passerine migrant populations by increasing juvenile survival.  However, if 475 

the surrounding environment is degraded these local positive effects may be swamped by greater 476 

large scale effects on juvenile survival. Therefore we need sustainable development solutions that 477 

minimise the large scale average impact that the increasing human population in Africa has on its 478 

habitats for migrant birds.  479 

Conclusion: passerine migrants must be generalists 480 

Serial residency may well be the consequence of selection to provide passerine migrants with a 481 

mechanism to deal with the environmental change that we know occurs in Africa on a decadal, and 482 

indeed, often an inter-annual basis, due to major variation in rainfall patterns (Nicholson 2001). 483 

Therefore we should expect corresponding changes in juvenile survival to affect overall population 484 

trends in Europe as part of this ‘natural’ dynamic system. For example, coincident with reduced 485 
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rainfall in the Sahel we have observed declines in Sahelian wintering species and these have now 486 

reversed as Sahelian rainfall has increased through the last decade. In contrast, species wintering in 487 

the Guinea savanna are now considered to have greater declines, where widespread anthropogenic 488 

habitat modification is likely to be increasing (Thaxter et al. 2010, Ockendon et al. 2012). Much of the 489 

variation we see in European migrant populations may therefore reflect ‘normal’ readjustment of the 490 

distribution of migrants to climate variation in Africa. This does not mean that we should not be 491 

concerned about migrant declines, because any anthropogenic degradation of the environment will 492 

always affect European populations. But it does mean that we should always expect some migrant 493 

populations to be increasing and some to be decreasing with decadal and even longer term changes 494 

in climatic conditions (mainly rainfall variation) across Africa. We should also expect large decadal 495 

changes in the distribution of Palearctic migrants in Africa to reflect these decadal changes in climatic 496 

conditions. This may well be the case, as is hinted at by likely changes in distribution of the main 497 

wintering and staging areas of Common Whitethroats during the last 40 years (Winstanley et al. 1974, 498 

Vickery et al. 1999, Wilson & Cresswell 2006), although our information on distribution in west Africa 499 

is at such poor temporal and spatial resolution that we would be unlikely to detect even very large 500 

scale changes in distribution. 501 

The serial residency hypothesis has implications for the evolutionary ecology of passerine migrants 502 

generally, because if migratory connectivity only occurs at a large scale, then this is likely to lead to 503 

selection for generalist traits. Those individuals in a population that are able to exploit a wide range of 504 

habitats and conditions on the wintering grounds or during migration will be at a selective advantage 505 

because their initial post-migration sites are likely to be more suitable than those of specialists. As has 506 

been discussed above, there is evidence to suggest only weak co-variation of Palearctic migrant 507 

density with habitat quality in Africa, and studies that have explored foraging or inter-specific 508 

competition in Palearctic migrants in Africa have by and large described generalist traits (Salewski et 509 

al. 2003, Wilson & Cresswell 2007, Jones et al. 2010, Wilson & Cresswell 2010). There will also be 510 

selection with respect to ability to deal with the increased range of environmental conditions 511 

encountered (e.g. Møller & Szep  2011). Finally it has been suggested that higher within-clutch 512 

variation of migratory orientation compared to within-clutch homogeneity may yield higher geometric 513 

mean fitness in migratory populations (Reilly & Reilly  2009) suggesting that a generalist ‘bet-hedging’ 514 

strategy in migrants is fundamental.  515 



19 

 

The degree to which a migrant species has fidelity to a site initially located stochastically, and the 516 

scale at which the stochasticity operates, will determine whether the predictions outlined here apply. 517 

Therefore there is a clear priority for research to enable identification of those species to which the 518 

serial residency hypothesis applies. In general, we would expect it to apply wherever a species is 519 

generalist and associated with wintering habitats that shift in space and time over a period of 520 

decades. Then, the key research area is juvenile site selection and survival. Currently, these 521 

parameters are inadequately monitored because variable natal site fidelity confounds estimates of 522 

true survival of birds over the first winter. Nevertheless, losses between fledging and the following 523 

breeding season, when estimated, have been shown to be important in the population dynamics of 524 

many migrant species (Baillie & Peach 1992, Newton 1998). In particular, we need studies of how the 525 

initial degree of stochasticity in site selection by juveniles affects survival and how wintering habitat 526 

quality affects survival of migrants in their wintering area.  527 

In conclusion, the serial residency hypothesis provides a framework to explain many of the population 528 

dynamics of passerine migrant birds, and perhaps those of many non-passerines. Two simple rules 529 

that are reasonably supported by empirical evidence lead to a large number of predictions that are, 530 

when they have actually been tested, supported by further empirical evidence. But perhaps the most 531 

important implication is that serial residency is a migratory strategy that must have evolved to deal 532 

with environmental change: it allows some individuals from a brood to survive even in spatially 533 

unpredictable environments. Therefore we might always expect high levels of variation in migrant 534 

population trends and their distribution, particularly within the highly dynamic context of environmental 535 

change in Africa. 536 

 537 

I thank Ian Newton and Graeme Ruxton for very helpful comments on an earlier draft of this paper. I thank many 538 

delegates at the Pan-African Ornithological Congress 2012 who commented on an oral version of this review. I 539 

thank Jeremy Wilson, Silke Bauer, Christiaan Both and two anonymous referees for their very helpful comments, 540 

allowing better focus in this review. 541 

542 



20 

 

References 543 

Akesson, S. 2003. Avian long-distance navigation: experiments with migratory birds. In Berthold, P., Gwinner, E. 544 
& Sonneschein, E. (eds.) Avian Migration:  471-492. Berlin: Springer-Verlag. 545 

Alerstam, T. 2011. Optimal bird migration revisited. J. Ornith. 152: 5-23. 546 

Alerstam, T., Hake, M. & Kjellen, N. 2006. Temporal and spatial patterns of repeated migratory journeys by 547 
ospreys. Anim. Behav. 71: 555-566. 548 

Alerstam, T., Lindstrom, A. & Gwinner, E. 1990. Optimal bird migration: the relative importance of time, energy 549 
and safety. In Gwinner, E. (eds.) Bird Migration: physiology and ecophysiology:  331-351. Berlin: 550 
Springer-Verlag. 551 

Arlt, D., Forslund, P., Jeppsson, T. & Part, T. 2008. Habitat-Specific Population Growth of a Farmland Bird. 552 
PLoS ONE DOI: 10.1371/journal.pone.0003006. 553 

Bächler, E., Hahn, S., Schaub, M., Arlettaz, R., Jenni, L., Fox, J.W., Afanasyev, V. & Liechti, F. 2010. Year-554 
Round Tracking of Small Trans-Saharan Migrants Using Light-Level Geolocators. PLoS ONE DOI: 555 
10.1371/journal.pone.0009566: e9566. 556 

Baillie, S.R. & Peach, W.J. 1992. Population limitation in Palearctic-African passerine migrants. Ibis 134 (suppl. 557 
1): 120-132. 558 

Baker, A.J., Gonzalez, P.M., Piersma, T., Niles, L.J., do Nascimento, I.D.S., Atkinson, P.W., Clark, N.A., 559 
Minton, C.D.T., Peck, M.K. & Aarts, G. 2004. Rapid population decline in red knots: fitness 560 
consequences of decreased refuelling rates and late arrival in Delaware Bay. P. Roy. Soc. Lond. B Bio. 561 
271: 875-882. 562 

Beckett, S.R. & Proudfoot, G.A. 2011. Large-scale movement and migration of northern saw-whet owls Eastern 563 
North America. Wilson J. Ornithol. 123: 521-535. 564 

Benvenuti, S. & Ioalè, P. 1980. Homing experiments with birds displaced from their wintering ground. J. 565 
Ornithol. 121: 281-286. 566 

Bernard, M.J., Goodrich, L.J., Tzilkowski, W.M. & Brittingham, M.C. 2011. Site fidelity and lifetime territorial 567 
consistency of ovenbirds (Seiurus aurocapilla) in a contiguous forest. Auk 128: 633-642. 568 

Berthold, P. 2001. Bird Migration: A general survey. Oxford: Oxford University Press. 569 

Berthold, P., Bossche, W., Jakubiec, Z., Kaatz, C., Kaatz, M. & Querner, U. 2002. Long-term satellite tracking 570 
sheds light upon variable migration strategies of White Storks (Ciconia ciconia). J. Ornithol. 143: 489-571 
493. 572 

Betts, M.G., Hadley, A.S., Rodenhouse, N. & Nocera, J.J. 2008. Social information trumps vegetation structure 573 
in breeding-site selection by a migrant songbird. P. Roy. Soc. Lond. B Bio. 275: 2257-2263. 574 

Both, C. 2010. Flexibility of Timing of Avian Migration to Climate Change Masked by Environmental Constraints 575 
En Route. Curr. Biol. 20: 243-248. 576 

Both, C., Bouwhuis, S., Lessells, C.M. & Visser, M.E. 2006a. Climate change and population declines in a 577 
long-distance migratory bird. Nature 441: 81-83. 578 

Both, C., Sanz, J.J., Artemyev, A.V., Blaauw, B., Cowie, R.J., Dekhuizen, A.J., Enemar, A., Javinen, A., 579 
Nyholm, N.E.I., Potti, J., Ravussin, P.A., Silverin, B., Slater, F.M., Sokolov, L.V., Visser, M.E., 580 
Winkel, W., Wright, J. & Zang, H. 2006b. Pied Flycatchers Ficedula hypoleuca travelling from Africa to 581 
breed in Europe: differential effects of winter and migration conditions on breeding date. Ardea 94: 511-582 
525. 583 

Both, C. & te Marvelde, L. 2007. Climate change and timing of avian breeding and migration throughout Europe. 584 
Clim. Res. 35: 93-105. 585 



21 

 

Brandt, M.J. & Cresswell, W. 2009. Diurnal foraging routines in a tropical bird, the rock finch Lagonosticta 586 
sanguinodorsalis: how important is predation risk? J. Av. Biol. 40: 90-94. 587 

Browne, S.J. & Aebischer, N.J. 2004. Temporal changes in the breeding ecology of European Turtle Doves 588 
Streptopelia turtur in Britain, and implications for conservation. Ibis 146: 125-137. 589 

Buchanan, J.B., Salzer, L.J., Wiles, G.J., Brady, K., Desimone, S.M. & Michaelis, W. 2011. An investigation 590 
of Red Knot Calidris canutus spring migration at Grays Harbor and Willapa Bay, Washington. Wader 591 
Study Group Bull. 118: 97-104. 592 

Cano, L.S. & Telleria, J.L. 2013. Migration and winter distribution of Iberian and central European black storks 593 
Ciconia nigra moving to Africa across the Strait of Gibraltar: a comparative study. J. Av. Biol. 44: 189-594 
197. 595 

Catry, P., Encarnacao, V., Araujo, A., Fearon, P., Fearon, A., Armelin, M. & Delaloye, P. 2004. Are long-596 
distance migrant passerines faithful to their stopover sites? J. Av. Biol. 35: 170-181. 597 

Chernetsov, N., Kishkinev, D., Gashkov, S., Kosarev, V. & Bolshakov, C.V. 2008. Migratory programme of 598 
juvenile pied flycatchers, Ficedula hypoleuca, from Siberia implies a detour around Central Asia. Anim. 599 
Behav. 75: 539-545. 600 

Chevallier, D., Le Maho, Y., Brossault, P., Baillon, F. & Massemin, S. 2011. The use of stopover sites by 601 
Black Storks (Ciconia nigra) migrating between West Europe and West Africa as revealed by satellite 602 
telemetry. J. Ornith. 152: 1-13. 603 

Cilimburg, A.B., Lindberg, M.S., Tewksbury, J.J. & Hejl, S.J. 2002. Effects of dispersal on survival probability 604 
of adult yellow warblers (Dendroica petechia). Auk 119: 778-789. 605 

Clarke, M.F., Dasilva, K.B., Lair, H., Pocklington, R., Kramer, D.L. & McLaughlin, R.L. 1993. Site familiarity 606 
affects escape behavior of the eastern chipmunk, Tamias striatus. Oikos 66: 533-537. 607 

Conklin, J.R. & Battley, P.F. 2012. Carry-over effects and compensation: late arrival on non-breeding grounds 608 
affects wing moult but not plumage or schedules of departing bar-tailed godwits Limosa lapponica 609 
baueri. J. Av. Biol. 43: 252-263. 610 

Cresswell, B. & Edwards, D. 2012. Geolocators reveal wintering areas of European Nightjar (Caprimulgus 611 
europaeus). Bird Study 60: 77-86. 612 

Cresswell, W. 2011. Predation in bird populations. J. Ornith. 152: 251-263. 613 

Cresswell, W., Boyd, M. & Stevens, M. 2009. Movements of Palearctic and Afrotropical bird species during the 614 
dry season (November-February) within Nigeria. In Harebottle, D.M., Craig, A.J.F.K., Anderson, M.D., 615 
Rakotomanana, H. & Muchai (eds.) Proceedings of the 12th Pan African Ornithological Congress, 2008:  616 
18-28. Cape Town: Animal Demography Unit. 617 

Cresswell, W., Wilson, J.M., Vickery, J., Jones, P. & Holt, S. 2007. Changes in densities of Sahelian bird 618 
species in response to recent habitat degradation. Ostrich 78: 247-253. 619 

Cuadrado, M. 1997. Why are migrant robins ( Erithacus rubecula ) territorial in winter?: The importance of anti-620 
predatory behaviour. Ethol. Ecol. Evol. 9: 77-88. 621 

Deutschlander, M.E., Phillips, J.B. & Munro, U. 2012. Age-dependent orientation to magnetically-simulated 622 
geographic displacements in migratory Australian silvereyes (Zosterops l-lateralis). Wilson J. Ornithol. 623 
124: 467-477. 624 

Donovan, T.M., Thompson, F.R., III, Faaborg, J. & Probst, J.R. 1995. Reproductive Success of Migratory 625 
Birds in Habitat Sources and Sinks. Cons. Biol. 9: 1380-1395. 626 

Eeva, T., Ahola, M., Laaksonen, T. & Lehikoinen, E. 2008. The effects of sex, age and breeding success on 627 
breeding dispersal of pied flycatchers along a pollution gradient. Oecologia 157: 231-238. 628 

Elkins, N. 1983. Weather and Bird Behaviour. Calton, England: T & AD Poyser. 629 



22 

 

Erni, B., Liechti, F. & Bruderer, B. 2005. The role of wind in passerine autumn migration between Europe and 630 
Africa. Behav. Ecol. 16: 732-740. 631 

European Bird Census Council. 2012. Trends of common birds in Europe, 2012 update. 632 
http://www.ebcc.info/index.php?ID=485. 633 

Faaborg, J. & Arendt, W.J. 1984. Population Sizes and Philopatry of Winter Resident Warblers in Puerto Rico. 634 
J. Field Ornithol. 55: 376-378. 635 

Ferreira Rodrigues, A.A., Lyra Lopes, A.T., Goncalves, E.C., Silva, A. & Cruz Schneider, M.P. 2007. 636 
Philopatry of the Semipalmated Sandpiper (Calidris pusilla) on the Brazilian Amazonian coast. Ornitol. 637 
Neotrop. 18: 285-291. 638 

Foerschler, M.I., del Val, E. & Bairlein, F. 2010. Extraordinary high natal philopatry in a migratory passerine. J. 639 
Ornith. 151: 745-748. 640 

Foppen, R., ter Braak, C.J.F., Verboom, J. & Reijnen, R. 1999. Dutch sedge warblers Acrocephalus 641 
schoenobaenus and West-African rainfall: empirical data and simulation modelling show low population 642 
resilience in fragmented marshlands. Ardea 87: 113-127. 643 

Gavashelishvili, A., McGrady, M., Ghasabian, M. & Bildstein, K.L. 2012. Movements and habitat use by 644 
immature Cinereous Vultures (Aegypius monachus) from the Caucasus. Bird Study 59: 449-462. 645 

Greenwood, P.J. & Harvey, P.H. 1982. The natal and breeding dispersal of birds. Ann. Rev. Ecol. Syst. 13: 1-646 
21. 647 

Gregory, R.D., Noble, D.G. & Custance, J. 2004. The state of play of farmland birds: population trends and 648 
conservation status of lowland farmland birds in the United Kingdom. Ibis 146: 1-13. 649 

Gregory, R.D., Vorisek, P., Van Strien, A., Meyling, A.W.G., Jiguet, F., Fornasari, L., Reif, J., Chylarecki, P. 650 
& Burfield, I.J. 2007. Population trends of widespread woodland birds in Europe. Ibis 149: 78-97. 651 

Grubler, M.U., Schuler, H., Muller, M., Spaar, R., Horch, P. & Naef-Daenzer, B. 2008. Female biased mortality 652 
caused by anthropogenic nest loss contributes to population decline and adult sex ratio of a meadow 653 
bird. Biol. Cons. 141: 3040-3049. 654 

Gunnarsson, T.G., Gill, J.A., Newton, J., Potts, P.M. & Sutherland, W.J. 2005. Seasonal matching of habitat 655 
quality and fitness in a migratory bird. P. Roy. Soc. Lond. B Bio. 272: 2319-2323. 656 

Hahn, B.A. & Silverman, E.D. 2006. Social cues facilitate habitat selection: American redstarts establish 657 
breeding territories in response to song. Biol. Lett-UK 2: 337-340. 658 

Harrison, N. & Whitehouse, M. 2012. Drivers of songbird productivity at a restored gravel pit: Influence of 659 
seasonal flooding and rainfall patterns and implications for habitat management. Agric. Ecosyst. 660 
Environ. 162: 138-143. 661 

Heckscher, C.M., Taylor, S.M., Fox, J.W. & Afanasyev, V. 2011. Veery (Catharus fuscescens) wintering 662 
locations, migratory connectivity, and a revision of its winter range using geolocator technology. Auk 663 
128: 531-542. 664 

Hedenström, A., Bensch, S., Hasselquist, D., Lockwood, M. & Ottosson, U. 1993. Migration, stopover and 665 
moult of the great reed warbler Acrocephalus arundinaceus in Ghana, West Africa. Ibis 135: 177-180. 666 

Hewson, C.M., Amar, A., Lindsell, J.A., Thewlis, R.M., Butler, S., Smith, K. & Fuller, R.J. 2007. Recent 667 
changes in bird populations in British broadleaved woodland. Ibis 149: 14-28. 668 

Hinnebusch, D.M., Therrien, J.F., Valiquette, M.A., Robertson, B., Robertson, S. & Bildstein, K.L. 2010. 669 
Survival, site fidelity, and population trends of American kestrels wintering in southwestern Florida. 670 
Wilson J. Ornithol. 122: 475-483. 671 

Hogstad, O. 2005. Numerical and functional responses of breeding passerine species to mass occurrence of 672 
geometrid caterpillars in a subalpine birch forest: a 30-year study. Ibis 147: 77-91. 673 

http://www.ebcc.info/index.php?ID=485


23 

 

Holland, R.A. & Helm, B. 2013. A strong magnetic pulse affects the precision of departure direction of naturally 674 
migrating adult but not juvenile birds. J. Roy. Soc. Interface 10: 20121047. 675 

Hoover, J.P. 2003. Decision rules for site fidelity in a migratory bird, the prothonotary warbler. Ecology 84: 416-676 
430. 677 

Hope, D.D., Lank, D.B., Smith, B.D. & Ydenberg, R.C. 2011. Migration of two calidrid sandpiper species on the 678 
predator landscape: how stopover time and hence migration speed vary with geographical proximity to 679 
danger. J. Av. Biol. 42: 522-529. 680 

Hosner, P.A. & Winkler, D.W. 2007. Dispersal distances of Tree Swallows estimated from continent-wide and 681 
limited-area data. J. Field Ornithol. 78: 290-297. 682 

Howlett, J.S. & Stutchbury, B.J.M. 2003. Determinants of between-season site, territory, and mate fidelity in 683 
hooded warblers (Wilsonia citrina). Auk 120: 457-465. 684 

Hulme, M.F. & Cresswell, W. 2012. Density and behaviour of Whinchats Saxicola rubetra on African farmland 685 
suggest that winter habitat conditions do not limit European breeding populations. Ibis 154: 680-692. 686 

Ilieva, M., Toews, D.P.L., Bensch, S., Sjoholm, C. & Akesson, S. 2012. Autumn migratory orientation and 687 
displacement responses of two willow warbler subspecies (Phylloscopus trochilus trochilus and P. t. 688 
acredula) in South Sweden. Behav. Process. 91: 253-261. 689 

Iverson, S.A. & Esler, D. 2006. Site fidelity and the demographic implications of winter movements by a 690 
migratory bird, the harlequin duck Histrionicus histrionicus. J. Av. Biol. 37: 219-228. 691 

Iverson, S.A., Esler, D. & Rizzolo, D.J. 2004. Winter philopatry of Harlequin Ducks in Prince William Sound, 692 
Alaska. Condor 106: 711-715. 693 

Jahn, A.E., Cueto, V.R., Cecilia Sagario, M., Maria Mamani, A., Quillen Vidoz, J., Lopez de Casenave, J. & 694 
Di Giacomo, A.G. 2009. Breeding and winter site fidelity among eleven neotropical austral migrant bird 695 
species. Ornitol. Neotrop. 20: 275-283. 696 

Johnson, E.I., DiMicali, J.K., Stouffer, P.C. & Brooks, M.E. 2011. Habitat use does not reflect habitat quality 697 
for Henslow's sparrows (Ammodramus henslowii) wintering in fire-managed longleaf pine savannas. 698 
Auk 128: 564-576. 699 

Johnson, E.I., DiMiceli, J.K. & Stouffer, P.C. 2009. Timing of migration and patterns of winter settlement by 700 
Henslow's sparrows. Condor 111: 730-739. 701 

Jones, P., Salewski, V., Vickery, J. & Mapaure, I. 2010. Habitat use and densities of co-existing migrant Willow 702 
Warblers Phylloscopus trochilus and resident eremomelas Eremomela spp. in Zimbabwe. Bird Study 57: 703 
44-55. 704 

Jones, P.J. 1995. Migration strategies of Palearctic passerines in Africa. Israel J. Zool. 41: 393-406. 705 

Jones, T. & Cresswell, W. 2010. The phenology mismatch hypothesis: are declines of migrant birds linked to 706 
uneven global climate change? J. Anim. Ecol. 79: 98-108. 707 

Karlsson, H., Backman, J., Nilsson, C. & Alerstam, T. 2010. Exaggerated orientation scatter of nocturnal 708 
passerine migrants close to breeding grounds: comparisons between seasons and latitudes. Behav. 709 
Ecol. Sociobiol. 64: 2021-2031. 710 

Karlsson, H., Nilsson, C., Backman, J. & Alerstam, T. 2011. Nocturnal passerine migration without tailwind 711 
assistance. Ibis 153: 485-493. 712 

King, J.M.B. & Hutchinson, J.M.C. 2001. Site fidelity and recurrence of some migrant bird species in The 713 
Gambia. Ringing & Migration 20: 292-302. 714 

Kochert, M.N., Fuller, M.R., Schueck, L.S., Bond, L., Bechard, M.J., Woodbridge, B., Holroyd, G.L., Martell, 715 
M.S. & Banasch, U. 2011. Migration patterns, use of stopover areas, and austral summer movements 716 
of Swainson's Hawks. Condor 113: 89-106. 717 



24 

 

Kristensen, M.W., Tøttrup, A.P. & Thorup, K. 2013. Migration of the Common Redstart (Phoenicurus 718 
phoenicurus): A Eurasian Songbird Wintering in Highly Seasonal Conditions in the West African Sahel. 719 
Auk 130: 258-264. 720 

Kullberg, C., Lind, J., Fransson, T., Jakobsson, S. & Vallin, A. 2003. Magnetic cues and time of season affect 721 
fuel deposition in migratory thrush nightingales (Luscinia luscinia). P. Roy. Soc. Lond. B Bio. 270: 373-722 
378. 723 

Leisler, B. 1990. Selection and use of habitat of wintering migrants. In Gwinner, E. (eds.) Bird Migration: 724 
physiology and ecophysiology:  156-174. Berlin: Springer-Verlag. 725 

Lemke, H.W., Tarka, M., Klaassen, R.H.G., Åkesson, M., Bensch, S., Hasselquist, D. & Hansson, B. 2013. 726 
Annual Cycle and Migration Strategies of a Trans-Saharan Migratory Songbird: A Geolocator Study in 727 
the Great Reed Warbler. PLoS ONE DOI: 10.1371/journal.pone.0079209. 728 

Leyrer, J., Spaans, B., Camara, M. & Piersma, T. 2006. Small home ranges and high site fidelity in red knots 729 
(Calidris c. canutus) wintering on the Banc d'Arguin, Mauritania. J. Ornith. 147: 376-384. 730 

Liechti, F. 2006. Birds: blowin' by the wind? J. Ornith. 147: 202-211. 731 

Liminana, R., Soutullo, A., Urios, V. & Reig-Ferrer, A. 2012. Migration and wintering areas of adult Montagu's 732 
Harriers (Circus pygargus) breeding in Spain. J. Ornith. 153: 85-93. 733 

Lind, J. & Cresswell, W. 2006. Anti-predation behaviour during bird migration; the benefit of studying multiple 734 
behavioural dimensions. J. Ornith. 147: 310-316. 735 

Liu, Y., Keller, I. & Heckel, G. 2012. Breeding site fidelity and winter admixture in a long-distance migrant, the 736 
tufted duck (Aythya fuligula). Heredity 109: 108-116. 737 

Lok, T., Overdijk, O., Tinbergen, J.M. & Piersma, T. 2011. The paradox of spoonbill migration: most birds 738 
travel to where survival rates are lowest. Anim. Behav. 82: 837-844. 739 

Lutz, W. & Samir, K.C. 2010. Dimensions of global population projections: what do we know about future 740 
population trends and structures? Philos. T. Roy. Soc. B 365: 2779-2791. 741 

Mallord, J.W., Charman, E.C., Cristinacce, A. & Orsman, C.J. 2012. Habitat associations of Wood Warblers 742 
Phylloscopus sibilatrix breeding in Welsh oakwoods. Bird Study 59: 403-415. 743 

Marra, P.P. & Holmes, R.T. 2001. Consequence of dominance-mediated habitat segregation in American 744 
redstarts during the non-breeding season. The Auk 118: 92-104. 745 

McGrady, M.J., Ueta, M., Potapov, E.R., Utekhina, I., Masterov, V., Ladyguine, A., Zykov, V., Cibor, J., 746 
Fuller, M. & Seegar, W.S. 2003. Movements by juvenile and immature Steller's Sea Eagles Haliaeetus 747 
pelagicus tracked by satellite. Ibis 145: 318-328. 748 

Merom, K., Yom-Tov, Y. & McCleery, R. 2000. Philopatry to stopover site and body condition of transient Reed 749 
Warblers during autumn migration through Israel. Condor 102: 441-444. 750 

Mettke-Hofmann, C. & Greenberg, R. 2005. Behavioral and cognitive adaptations to long-distance migration. In 751 
Greenberg, R. & Marra, P.P. (eds.) Birds of two worlds: the ecology and evolution of migration:  114-752 
123. Baltimore, Maryland: John Hopkins University Press. 753 

Mewaldt, R. 1964. California sparrows return from displacement to Maryland. Science 146: 941-942. 754 

Middleton, H.A., Morrissey, C.A. & Green, D.J. 2006. Breeding territory fidelity in a partial migrant, the 755 
American dipper Cinclus mexicanus. J. Av. Biol. 37: 169-178. 756 

Møller, A.P. 2008. Flight distance and population trends in European breeding birds. Behav. Ecol. 19: 1095-757 
1102. 758 

Møller, A.P. & Szep, T. 2011. The role of parasites in ecology and evolution of migration and migratory 759 
connectivity. J. Ornith. 152: 141-150. 760 



25 

 

Moreau, R.E. 1969. The recurrence in winter quarters (Ortstreue) of trans-Saharan migrants. Bird Study 16: 108-761 
110. 762 

Morel, G.J. & Morel, M.Y. 1992. Habitat use by Palearctic migrant passerines in West Africa. Ibis 134 (Suppl. 763 
1): 83-88. 764 

Morrison, C.A., Robinson, R.A., Clark, J.A. & Gill, J.A. 2010. Spatial and temporal variation in population 765 
trends in a long-distance migratory bird. Divers. Distrib. 16: 620-627. 766 

Morrison, C.A., Robinson, R.A., Clark, J.A., Marca, A.D., Newton, J. & Gill, J.A. 2013a. Using stable isotopes 767 
to link breeding population trends to winter ecology in Willow Warblers, Phylloscopus trochilus. Bird 768 
Study: 1-10. 769 

Morrison, C.A., Robinson, R.A., Clark, J.A., Risely, K. & Gill, J.A. 2013b. Recent population declines in Afro-770 
Palaearctic migratory birds: the influence of breeding and non-breeding seasons. Divers. Distrib. 19: 771 
1051-1058. 772 

Mouritsen, H. 2003. Spatiotemporal Orientation Strategies of Long-Distance Migrants. In Berthold, P., Gwinner, 773 
E. & Sonnenschein, E. (eds.) Avian Migration:  493-513. Springer Berlin Heidelberg. 774 

Mueller, T., O’Hara, R.B., Converse, S.J., Urbanek, R.P. & Fagan, W.F. 2013. Social Learning of Migratory 775 
Performance. Science 341: 999-1002. 776 

Nevoux, M., Barbraud, J.-C. & Barbraud, C. 2008. Nonlinear impact of climate on survival in a migratory white 777 
stork population. J. Anim. Ecol. 77: 1143-1152. 778 

Newton, I. 1998. Population limitation in birds. London: Academic Press. 779 

Newton, I. 2004. Population limitation in migrants. Ibis 146: 197-226. 780 

Newton, I. 2008. The migration ecology of birds. Oxford: Academic Press. 781 

Newton, I. 2012. Obligate and facultative migration in birds: ecological aspects. J. Ornith. 153: S171-S180. 782 

Nicholson, S.E. 2001. Climatic and environmental change in Africa during the last two centuries. Clim. Res. 17: 783 
123-144. 784 

Ockendon, N., Hewson, C.M., Johnston, A. & Atkinson, P.W. 2012. Declines in British-breeding populations of 785 
Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints 786 
on arrival time advancement. Bird Study 59: 111-125. 787 

Oring, L.W. 1982. Avian Mating Systems. In Farner, D.S. & King, J.R. (eds.) Avian Biology:  1-92. New York: 788 
Academic. 789 

Pearson, D.J. & Lack, P.C. 1992. Migration patterns and habitat use by passerine and near-passerine migrant 790 
birds in eastern Africa. Ibis 134 S1: 89-98. 791 

Perdeck, A.C. 1958. Two types of orientation in migrating starlings, Sturnus vulgaris L., and Chaffinches, 792 
Fringilla coelebs L., as revealed by displacement experiments. Ardea 46: 1-37. 793 

Perdeck, A.C. 1967. Orientation of Starlings after displacement to Spain. Ardea 55: 93-104. 794 

Perez-Tris, J., Bensch, S., Carbonell, R., Helbig, A.J. & Telleria, J.L. 2004. Historical diversification of 795 
migration patterns in a passerine bird. Evolution 58: 1819-1832. 796 

Phillips, R.A., Silk, J.R.D., Croxall, J.P., Afanasyev, V. & Bennett, V.J. 2005. Summer distribution and 797 
migration of nonbreeding albatrosses: Individual consistencies and implications for conservation. 798 
Ecology 86: 2386-2396. 799 

Piper, W.H. 2011. Making habitat selection more "familiar": a review. Behav. Ecol. Sociobiol. 65: 1329-1351. 800 

Prochazka, P., Hobson, K.A., Karcza, Z. & Kralj, J. 2008. Birds of a feather winter together: migratory 801 
connectivity in the Reed Warbler Acrocephalus scirpaceus. J. Ornith. 149: 141-150. 802 



26 

 

Rabøl, F. 1987. Coexistence and competition between overwintering willow warblers  Phylloscopus trochilus  and 803 
local warblers at Lake Naivasha, Kenya. Ornis. Scand. 18: 101-121. 804 

Reilly, J.R. & Reilly, R.J. 2009. Bet-hedging and the orientation of juvenile passerines in fall migration. J. Anim. 805 
Ecol. 78: 990-1001. 806 

Robinson, B.G. & Merrill, E.H. 2013. Foraging–vigilance trade-offs in a partially migratory population: comparing 807 
migrants and residents on a sympatric range. Anim. Behav. 85: 849-856. 808 

Rubolini, D., Saino, N. & Møller, A.P. 2010. Migratory behaviour constrains the phenological response of birds 809 
to climate change. Clim. Res. 42: 45-55. 810 

Sæther, B.-E. 1989. Survival Rates in Relation to Body Weight in European Birds. Ornis. Scand. 20: 13-21. 811 

Sæther, B.-E. & Bakke, O. 2000. Avian Life History Variation and Contribution of Demographic Traits to the 812 
Population Growth Rate. Ecology 81: 642-653. 813 

Saino, N., Rubolini, D., Jonzen, N., Ergon, T., Montemaggiori, A., Stenseth, N.C. & Spina, F. 2007. 814 
Temperature and rainfall anomalies in Africa predict timing of spring migration in trans-Saharan 815 
migratory birds. Clim. Res. 35: 123-134. 816 

Salewski, V., Bairlein, F. & Leisler, B. 2003. Niche partitioning of two Palearctic passerine migrants with 817 
Afrotropical residents in their West African winter quarters. Behav. Ecol. 14: 493-502. 818 

Salewski, V. & Jones, P. 2006. Palearctic passerines in Afrotropical environments: a review. J. Ornith. 147: 192-819 
201. 820 

Sandercock, B.K. & Jaramillo, A. 2002. Annual survival rates of wintering sparrows: Assessing demographic 821 
consequences of migration. Auk 119: 149-165. 822 

Sanderson, F.J., Donald, P.F., Pain, D.J., Burfield, I.J. & van Bommel, F.P.J. 2006. Long-term population 823 
declines in Afro-Palearctic migrant birds. Biol. Cons. 131: 93-105. 824 

Schaub, M. & von Hirschheydt, J. 2009. Effect of current reproduction on apparent survival, breeding dispersal, 825 
and future reproduction in barn swallows assessed by multistate capture-recapture models. J. Anim. 826 
Ecol. 78: 625-635. 827 

Schlossberg, S. 2009. Site fidelity of shrubland and forest birds. Condor 111: 238-246. 828 

Seavy, N.E., Humple, D.L., Cormier, R.L. & Gardali, T. 2012. Establishing the breeding provenance of a 829 
temperate-wintering North American passerine, the Golden-Crowned Sparrow, using light-level 830 
geolocation. PLoS ONE DOI: 10.1371/journal.pone.0034886. 831 

Sedgwick, J.A. 2004. Site fidelity, territory fidelity, and natal philopatry in willow flycatchers (Empidonax traillii). 832 
Auk 121: 1103-1121. 833 

Sergio, F., Blas, J. & Hiraldo, F. 2009. Predictors of floater status in a long-lived bird: a cross-sectional and 834 
longitudinal test of hypotheses. J. Anim. Ecol. 78: 109-118. 835 

Shutler, D. & Clark, R.G. 2003. Causes and consequences of tree swallow (Tachycineta bicolor) dispersal in 836 
Saskatchewan. Auk 120: 619-631. 837 

Sillett, T.S. & Holmes, R.T. 2002. Variation in survivorship of a migratory songbird throughout its annual cycle. J. 838 
Anim. Ecol. 71: 296-308. 839 

Siriwardena, G.M., Baillie, S.R., Buckland, S.T., Fewster, R.M., Marchant, J.H. & Wilson, J.D. 1998. Trends 840 
in the abundance of farmland birds: a quantitative comparison of smoothed Common Birds Census 841 
indices. J. Appl. Ecol. 35: 24-43. 842 

Somershoe, S.G., Cohrs, D.G. & Cohrs, D.A. 2009. Stopover-site Fidelity at a Near-coastal Banding Site in 843 
Georgia. Southeast. Nat. 8: 537-546. 844 



27 

 

Stanley, C.Q., MacPherson, M., Fraser, K.C., McKinnon, E.A. & Stutchbury, B.J.M. 2012. Repeat tracking of 845 
individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE 846 
DOI:10.1371/journal.pone.0041818. 847 

Strandberg, R., Hake, M., Klaassen, R.H.G. & Alerstam, T. 2012. Movements of Immature European Honey 848 
Buzzards Pernis apivorus in Tropical Africa. Ardea 100: 157-162. 849 

Strandberg, R., Klaassen, R.H.G., Hake, M. & Alerstam, T. 2010. How hazardous is the Sahara Desert 850 
crossing for migratory birds? Indications from satellite tracking of raptors. Biol. Lett-UK 6: 297-300. 851 

Strandberg, R., Klaassen, R.H.G., Hake, M., Olofsson, P., Thorup, K. & Alerstam, T. 2008. Complex timing of 852 
Marsh Harrier Circus aeruginosus migration due to pre- and post-migratory movements. Ardea 96: 159-853 
171. 854 

Strandberg, R., Klaassen, R.H.G., Olofsson, P. & Alerstam, T. 2009. Daily travel schedules of adult Eurasian 855 
Hobbies Falco subbuteo - variability in flight hours and migration speed along the route. Ardea 97: 287-856 
295. 857 

Strong, A.M. & Sherry, T.W. 2000. Habitat-specific effects of food abundance on the condition of ovenbirds 858 
wintering in Jamaica. J. Anim. Ecol. 69: 883-895. 859 

Studds, C.E., Kyser, T.K. & Marra, P.P. 2008. Natal dispersal driven by environmental conditions interacting 860 
across the annual cycle of a migratory songbird. P. Natl. Acad. Sci. USA 105: 2929-2933. 861 

Sutherland, G.D., Harestad, A.S., Price, K. & Lertzman, K.P. 2000. Scaling of natal dispersal distances in 862 
terrestrial birds and mammals. Cons. Ecol. 4. 863 

Switzer, P.V. 1993. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7: 533-555. 864 

Taylor, A.R. & Bishop, M.A. 2008. Stopover site fidelity of a Western Sandpiper on the Copper River Delta, 865 
Alaska. Waterbirds 31: 294-297. 866 

Taylor, C.M. & Norris, D.R. 2010. Population dynamics in migratory networks. Theor. Ecol. 3: 65-73. 867 

Thaxter, C.B., Joys, A.C., Gregory, R.D., Baillie, S.R. & Noble, D.G. 2010. Hypotheses to explain patterns of 868 
population change among breeding bird species in England. Biol. Cons. 143: 2006-2019. 869 

Theriault, S., Villard, M.A. & Hache, S. 2012. Habitat selection in site-faithful ovenbirds and recruits in the 870 
absence of experimental attraction. Behav. Ecol. 23: 1289-1295. 871 

Thingstad, P.G., Nyhoim, N.E.I. & Fieldheim, B. 2006. Pied Flycatcher Ficedula hypoleuca population 872 
dynamics in peripheral habitats in Scandinavia. Ardea 94: 211-223. 873 

Thorup, K., Bisson, I.A., Bowlin, M.S., Holland, R.A., Wingfield, J.C., Ramenofsky, M. & Wikelski, M. 2007a. 874 
Evidence for a navigational map stretching across the continental US in a migratory songbird. P. Natl. 875 
Acad. Sci. USA 104: 18115-18119. 876 

Thorup, K. & Holland, R.A. 2009. The bird GPS - long-range navigation in migrants. J. Exp. Biol. 212: 3597-877 
3604. 878 

Thorup, K. & Rabol, J. 2007. Compensatory behaviour after displacement in migratory birds - A meta-analysis 879 
of cage experiments. Behav. Ecol. Sociobiol. 61: 825-841. 880 

Thorup, K., Rabol, J. & Erni, B. 2007b. Estimating variation among individuals in migration direction. J. Av. Biol. 881 
38: 182-189. 882 

Tittler, R., Villard, M.-A. & Fahrig, L. 2009. How far do songbirds disperse? Ecography 32: 1051-1061. 883 

Tottrup, A.P., Klaassen, R.H.G., Strandberg, R., Thorup, K., Kristensen, M.W., Jorgensen, P.S., Fox, J., 884 
Afanasyev, V., Rahbek, C. & Alerstam, T. 2012. The annual cycle of a trans-equatorial Eurasian-885 
African passerine migrant: different spatio-temporal strategies for autumn and spring migration. P. Roy. 886 
Soc. Lond. B Bio. 279: 1008-1016. 887 



28 

 

Tottrup, A.P., Rainio, K., Coppack, T., Lehikoinen, E., Rahbek, C. & Thorup, K. 2010. Local Temperature 888 
Fine-Tunes the Timing of Spring Migration in Birds. Integr. Comp. Biol. 50: 293-304. 889 

Trierweiler, C., Mullie, W.C., Drent, R.H., Exo, K.-M., Komdeur, J., Bairlein, F., Harouna, A., de Bakker, M. & 890 
Koks, B.J. 2013. A Palaearctic migratory raptor species tracks shifting prey availability within its 891 
wintering range in the Sahel. J. Anim. Ecol. 82: 107-120. 892 

van Wijk, R.E., Kölzsch, A., Kruckenberg, H., Ebbinge, B.S., Müskens, G.J.D.M. & Nolet, B.A. 2012. 893 
Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121: 894 
655-664. 895 

Verkuil, Y.I., Karlionova, N., Rakhimberdiev, E.N., Jukema, J., Wijmenga, J.J., Hooijmeijer, J., Pinchuk, P., 896 
Wymenga, E., Baker, A.J. & Piersma, T. 2012. Losing a staging area: Eastward redistribution of Afro-897 
Eurasian ruffs is associated with deteriorating fuelling conditions along the western flyway. Biol. Cons. 898 
149: 51-59. 899 

Vickery, J., Rowcliffe, M., Cresswell, W., Jones, P. & Holt, S. 1999. Habitat selection by Whitethroats Sylvia 900 
communis during spring passage in the Sahel zone of northern Nigeria. Bird Study 46: 348-355. 901 

Vickery, J.A., Ewing, S.R., Smith, K.W., Pain, D.J., Bairlein, F., Škorpilová, J. & Gregory, R.D. 2014. The 902 
decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156: 1-22. 903 

Vogt, D.F., Hopey, M.E., Mayfield, G.R., III, Soehren, E.C., Lewis, L.M., Trent, J.A. & Rush, S.A. 2012. 904 
Stopover Site Fidelity by Tennessee Warblers at a Southern Appalachian High-elevation Site. Wilson J. 905 
Ornithol. 124: 366-370. 906 

Warkentin, I.G. & Hernández, D. 1996. The conservation implications of site fidelity: A case study involving 907 
nearctic-neotropical migrant songbirds wintering in a Costa Rican mangrove. Biol. Cons. 77: 143-150. 908 

Widmer, M. 1996. Phenology, breeding density and population ecology of the garden warbler Sylvia borin in a 909 
subalpine habitat of the central Swiss Alps. J. Ornithol. 137: 479-501. 910 

Wilson, J.M. & Cresswell, W. 2006. How robust are Palearctic migrants to habitat loss and degradation in the 911 
Sahel? Ibis 148: 789-800. 912 

Wilson, J.M. & Cresswell, W. 2010. Densities of Palearctic warblers and Afrotropical species within the same 913 
guild in Sahelian West Africa. Ostrich 81: 225-232. 914 

Wilson, J.M. & Cresswell, W.R.L. 2007. Identification of potentially competing Afrotropical and Palaearctic bird 915 
species in the Sahel. Ostrich 78: 363-368. 916 

Wiltschko, R. & Wiltschko, W. 1999. The orientation system of birds - III. Migratory orientation. J. Ornithol. 140: 917 
273-308. 918 

Winstanley, D.R., Spencer, R. & Williamson, K. 1974. Where have all the whitethroats gone? Bird Study 21: 1-919 
14. 920 

Wolff, W.J. 1970. Goal orientation versus one-direction orientation in Teal, Anas c. crecca during autumn 921 
migration. Ardea 58: 131-141. 922 

Yoder, J.M., Marschall, E.A. & Swanson, D.A. 2004. The cost of dispersal: predation as a function of 923 
movement and site familiarity in ruffed grouse. Behav. Ecol. 15: 469-476. 924 

Yohannes, E., Bensch, S. & Lee, R. 2008. Philopatry of winter moult area in migratory Great Reed Warblers 925 
Acrocephalus arundinaceus demonstrated by stable isotope profiles. J. Ornith. 149: 261-265. 926 

Yohannes, E., Hobson, K.A. & Pearson, D.J. 2007. Feather stable-isotope profiles reveal stopover habitat 927 
selection and site fidelity in nine migratory species moving through sub-Saharan Africa. J. Av. Biol. 38: 928 
347-355. 929 

 930 
 931 

932 



29 

 

Table 1. Spread of tagged individuals on their wintering grounds.  933 

       Species 
 

Origin Winter Countries N Study 

   
range (km) (E to W) 

  Black Stork 
 

Central 3200 Senegal 6 (Cano & Telleria  2013) 

Ciconia nigra  
 

Iberia 
 

Chad 
  Cinerous Vulture 

 
Caucasus 1400 Saudi Arabia 6 (Gavashelishvili et al.  2012) 

Aegypius monachus  
   

Oman 
  Western Marsh Harrier 

 
Sweden 1100 Guinea Bissau 17 (Strandberg et al.  2008) 

Circus aeruginosus  
   

Mali 
  Eurasian Hobby 

 
Sweden 1400 DR Congo 3 (Strandberg et al.  2009) 

Falco subbuteo 
   

Angola 
  European Nightjar 

 
UK 900 Central Africa 3 (Cresswell & Edwards  2012) 

Caprimulgus europaeus 
      Eurasian Hoopoe 
 

Switzerland 1300 Mauritania 3 (Bächler et al.  2010) 

Upupa epops  
   

Mali 
  Red-backed Shrike 

 
Denmark 1400 Angola  9 (Tottrup et al.  2012) 

Lanius collurio  
   

South Africa 
  Common Redstart 

 
Denmark 1650 Senegal 6 (Kristensen et al.  2013) 

Phoenicurus phoenicurus  
   

Burkina Faso   
 Great Reed Warbler 

 
Sweden 3250 Guinea 8 (Lemke et al.  2013) 

Acrocephalus arundinaceus  

   
CAR 

  
 934 
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Table 2. Examples of studies showing evidence of winter and passage site fidelity for long distance 935 

migrant bird taxa. Evidence for wintering (W) site fidelity shown top (pale grey) arranged in order of 936 

strength of evidence, followed by passage (P) site fidelity shown below (darker grey) again arranged 937 

in order of strength of evidence. Te = Temperate and Tr = Tropical. Further studies of migrants that 938 

present evidence prior to 2002 are detailed in Table 17.6 in Newton (2008). 939 

Taxa Location Evidence Source 

Passerine
  

W, Te  Return after experimental 
displacement 

(Mewaldt  1964, Benvenuti & Ioalè  1980) 

Passerine
  

W, Tr & 
Te 

Very high fidelity (King & Hutchinson  2001, Marra & Holmes  
2001, Sillett & Holmes  2002, Seavy et al.  
2012) 

Waterfowl W, Te  Most species very high 
fidelity 

(Iverson et al.  2004, Iverson & Esler  2006, 
Liu et al.  2012) 

Spoonbill W, Tr Very high fidelity despite 
non-optimal sites 

(Lok et al.  2011) 

Raptor W, Tr Small, medium and large 
scale fidelity 

(McGrady et al.  2003, Hinnebusch et al.  
2010, Kochert et al.  2011, Gavashelishvili et 
al.  2012, Liminana et al.  2012, Trierweiler 
et al.  2013) 

Seabird  W, SO  Large and medium scale 
non-breeding fidelity  

(Phillips et al.  2005) 

Shorebird
  

W, Tr, Te
  

Very high small scale 
fidelity  

(Leyrer et al.  2006, Ferreira Rodrigues et al.  
2007, Conklin & Battley  2012) 

Passerine W, Tr Anecdotal fidelity, many 
species 

(Moreau  1969) 

Passerine, 
Raptor 

W (P), Tr Serial fidelity at more than 
one wintering site during a 
winter 

(Hedenström et al.  1993, Heckscher et al.  
2011, Liminana et al.  2012) 

Passerine
  

W, Tr  Several species, high but 
species-dependent variable 
fidelity 

(Faaborg & Arendt  1984, Warkentin & 
Hernández  1996, Jahn et al.  2009) 

Passerine W, P, Te, 
Tr 

Migratory connectivity 
through stable isotopes 

(Yohannes et al.  2007, Prochazka et al.  
2008, Studds et al.  2008, Yohannes et al.  
2008) 

Passerine, 
Shorebirds 

P, Te, Tr High site fidelity on 
passage sites established 

(Merom et al.  2000, Buchanan et al.  2011) 

Raptor, Owls P, Te, Tr Site fidelity on medium 
scale 

(Strandberg et al.  2008, Beckett & Proudfoot  
2011) 

Shorebird, 
Passerine 

P, Te,  Possibility of high fidelity 
demonstrated 

(Taylor & Bishop  2008, Somershoe et al.  
2009) 

Passerine
  

P, Te, Tr Several species, little 
fidelity 

(Catry et al.  2004, Stanley et al.  2012, Vogt 
et al.  2012) 

Stork, 
Raptor 

P, Te No site fidelity on medium 
scale 

(Alerstam et al.  2006, Chevallier et al.  
2011, Liminana et al.  2012) 
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Figure legends 942 

Figure 1. Population predictions from the serial residency hypothesis. Diagrams illustrate how 943 

migratory connectivity arises through spatial and temporal autocorrelation of local environmental 944 

constraints (i & ii), how age structure of the population can change with inter-annual shifts in wintering 945 

conditions (iii & iv) and how site-based conservation can function as a strategy despite stochasticity 946 

(iii & iv). A hypothetical breeding area (grey and B1-3) and a hypothetical wintering area (white and 947 

W1-3) are shown. Wintering migratory pathways are shown as arrows linking the breeding areas with 948 

the wintering areas. In (ii) migratory connectivity differences arise because of the presence of barriers 949 

constraining wintering migratory pathways. In (iii) adults survive preferentially because they always 950 

return to the best areas (W1), while many juveniles end up in poor areas. In (iv) the best areas have 951 

shifted between years so many adults return to the now poorer areas and have lower survival 952 

whereas juveniles arriving to the new best areas (W2) survive better: consequently the age ratio shifts 953 

on the breeding ground the following year. Regardless of the shifting location of ideal conditions (iii & 954 

iv), as long as some sites within suitable wintering areas are protected (dark circles) then some 955 

juveniles will find the sites and return there as adults. 956 

Figure 2.  A theoretical illustration of how variable conditions on the breeding ground (left hand, 957 

summer, graphs showing the effects on population trends through time) add to the uniform, average 958 

effects on the wintering ground (middle, winter graphs showing the effects population trends through 959 

time) to give the overall population trends over time (right hand graphs). All breeding populations 960 

winter right across the southerly wintering grounds and so all will have lower juvenile survival, leading 961 

to similarities in trends across these populations, unless these are offset by greater variation in 962 

breeding demographics, potentially leading to distinct differences in trends between breeding 963 

populations.  964 
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Fig. 2 971 
 972 
 973 
 974 

 975 

+

+

+

=

=

=

Summer   +    Winter  =  Overall


