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Renormalization Method and its Economic Applications

Abstract:

The purpose of this paper is to give new insights of the method of Helleman (1980) in the

context of macrodynamics. This method explains how a difference equation can be

locally studied from the Feigenbaum equation in the case of a constant Jacobian matrix.

First we introduce this technique. Second we apply it in two models: the model of

Matsuyama (1999) and the model of Kaldor (1957). Finally we present an extension of

the technique in the case of non constant (linear) Jacobian matrix and apply this extension

in the model of Médio (1992).
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Renormalization Method and its Economic Applications

1- Introduction

Non linear dynamics techniques are nowadays the commonly used techniques in

macrodynamics. It is traditional that the evolution of an economy is studied from the

qualitative analysis around the stationary equilibrium of this economy.  If it is quite easy

to proceed to the analysis of the local stability of this equilibrium, it is more difficult to

have results dealing with the global stability of this equilibrium. Nevertheless, the local

analysis can bring interesting results around the stationary equilibrium. For example if an

equilibrium can lose its stability and becomes unstable, then the emergence of a two-

period cycle can be possible. This particular phenomenon is called “bifurcation”. The

application of these techniques has given new insights to macrodynamics through the

analysis of endogenous fluctuations.

The emergence of endogenous fluctuations in pure-exchange overlapping generations

(OLG) models has been well established since the papers of Benhabib and Day (1982)

and of Grandmont (1985). The crucial assumption in their seminal papers is the presence

of nonlinearities in agents’ behaviour. Unfortunately, their economic interpretation is

hard to justify, as it requires a strong income effect. Economists have then tried to go

over that problem by expanding the original model in two ways: either by introducing

economic policies, or by developing the sector of production. In the latter case, the model

is more sophisticated. In the original work, the difference equation of the model is a
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‘simple’ logistic equation. When one introduces a specific sector of production, the

difference equation is second-order and one needs to show a Hopf bifurcation in the

model to find endogenous fluctuations. Reichlin (1986) was the first to show the

occurrence of the latter in an OLG model with production in the case of an elastic labour

supply and Leontief technology. This kind of economic model was later adopted by

Grandmont (1993), Médio (1992), Médio and Negroni (1996), Reichlin (1992). In

particular, Médio (1992) and Hommes et al. (1994) investigate the model through

numerical simulations in order to detect complex dynamics or to determine global

dynamic behaviour. In these papers, the period-doubling bifurcations are regarded as a

typical route to randomness. Indeed it is not easy to rigorously verify the occurrence of

period-doubling paths in a given economic model. De Vilder (1996) applies homoclinic

bifurcation theory in Reichlin’s model. He can then show the possibility of cascades of

infinitely many period-doubling bifurcations, leading to strange attractors. We propose

here a complementary and attractive technique because of its tractability. The idea of this

technique arises out of the reading of Médio’s (1992) book. The cascades of bifurcations

Médio finds remind us of those of the logistic function. We then wish to apply a rigorous

technique, the renormalization procedure, to show their emergence.

This technique is well-known in physics and was created by Helleman (1980). It allows

us to compare the dynamics of any difference equation with those of the Feigenbaum

equation under some assumptions. Helleman’s approach has lots of advantages. Among
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them, the critical values characterising the transitions of dynamics to complexity are

easily interpreted in economic terms.

Our paper provides interesting conclusions in methodological terms and in an economic

point of view. In methodological terms, our results are twofold. On the one hand, we

reveal a technique to obtain locally a relationship between a map and the Feigenbaum

equation, without having recourse to Helleman’s constant Jacobian assumption (cf.

Lichtenberg and Lieberman (1992)). On the other hand, we develop the idea of “critical

functions of bifurcations” implicitly created by Helleman via the Feigenbaum equation.

From an economic point of view, our conclusions are twofold. First we are able to apply

easily the method of Helleman in Matsuyama’s model (1999) and Kaldor’s model (1957).

Second we strengthen the results of Reichlin (1992) when we apply our generalised

method in his model. Indeed the productivity of factors, central part in our analysis,

allows us to show the possibility of endogenous fluctuations.

The paper is organised as follows. Section 2 deals with the Feigenbaum equation and its

renormalisation procedure. Section 3 presents the topic of critical functions of

bifurcations related to the Feigenbaum equation and we apply the technique in the model

of Matsuyama (1999) and the model of Kaldor (1957). Section 4 generalises the

technique in the case of a non constant Jacobian (and linear) at the stationary equilibrium.

We then apply this extension in the model of Médio (1992) in Section 5. We are then able

to expose the economic conclusions from our own numerical examples.
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2- Renormalization Procedure

We focus our attention on the Feigenbaum equation. In the first subsection we present the

renormalization procedure of the Feigenbaum equation. In the subsection thereafter we

illustrate this procedure via two examples: the logistic case and the Hamiltonian case.

Finally we summarise Helleman’s method.

2.1- The renormalization of the Feigenbaum equation

Definition 1 The second-order difference equation denoted as:

2
11 22 tttt B ∆+∆=∆+∆ −+ µ  for all Nt∈                                                            (1)

where µ  and B  are two real parameters, is known as the Feigenbaum equation.

Rewrite (1) by letting 1−∆= ttε . We then obtain the system (S1):
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The point ( )00,  is a stationary point of (S1). The theorem of Hartman (1964) allows us to

show that this equilibrium loses its stability when ( ) 21 B+−<µ . By mirror-symmetry,

we can find another critical value of bifurcation, ( ) 213 B+>µ (see Appendix A). From

these two values appear two symmetric Flip-cascades of bifurcations.

Recall that we consider the case where the system (S1) is dissipative, i.e. 1<B . Let

( ) Ntt ∈ξ  the path of a two-period cycle of (1) such that:
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Denote by ttt ξδ −∆= , the distance between the path considered and the two-period

cycle. By substituting tδ  into (1), we obtain:

( ) 2
11 242 ttttt B δδξµδδ ++=+ −+  for all Nt∈                                                  (2)

By using the renormalization procedure (the complete computation is available in

Appendix A), we are then able to obtain the Feigenbaum equation from (2):

2
11 22 kkkk

~~~B~ δδµδδ +′=′+ −+  for all Nk ∈                                                        (3)

where ( ) ( ) ( ) ( ) 232122 22 +++++−=′′ BBBBBB µµµ  and 2BB =′ .

Every k2 -period cycle of (3) is a 12 +k -period cycle of equation (1). We can then prove

the existence of two recurrent ascendant paths of µ :

( ) ( ) ( ) ( ) 232122 2
1

2
1

2 +++++−= ++ BBBBBB kkk µµµ  for all Nk ∈                (4a)

( ) ( ) ( ) ( ) 13122 2
1

2
1

2 −−−+−+= ++ BBBBBB kkk µµµ  for all Nk ∈                   (4b)

Each term of these paths corresponds to the loss of a stable k2 -period cycle and the

occurrence of a 12 +k -period cycle. We can then represent the ascendant paths of µ :

[Insert Figure 1]

The two paths ( )( ) Nkk B ∈µ  and ( )( ) Nkk B ∈µ  are called paths of critical values coming

from the renormalization process associated with the Feigenbaum equation.
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2.2- Illustration

We can illustrate our previous findings by taking the examples of the logistic and the

Hamiltonian.

2.2.1- The logistic case ( 0=B )

When 0=B , we have the logistic equation. The system is then locally dissipative. Its

accumulation point verifies 022 2 =−− µµ  and is equal to ( ) 4171−=∞µ  where

210 −=µ . Another accumulation point can be obtained from the mirror-symmetry,

( ) 41731 +=−= ∞∞ µµ  where 230 =µ . Two paths of critical values of bifurcation

have been found ( )( ) Nkk B ∈µ  and ( )( ) Nkk B ∈µ  with 210 −=µ  and 230 =µ .

2.2.2-The Hamiltonian case ( 1=B )

When 1=B , we have the Hamiltonian equation. The system is then locally conservative.

Its accumulation point verifies 0732 2 =−− µµ  and is equal to ( ) 4653−=∞µ  where

10 −=µ . Another accumulation point can be obtained from the mirror-symmetry,

( ) 46551 +=−+= ∞∞ µµ B  where 30 =µ . Two paths of critical values of bifurcation

have been found ( )( ) Nkk B ∈µ  and ( )( ) Nkk B ∈µ  with 10 −=µ  and 30 =µ .

2.3- Abstract of Helleman’s approach (1980)
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Helleman (1980) shows that a map can be locally equivalent to the Feigenbaum equation

thanks to appropriate variable changes under the assumption of a constant Jacobian at all

points of the two-dimensional space. This approach considers a dynamic system Φ

(continuously differentiable) which describes a forward dynamics:

22 RR → , ( ) 1+=Φ→ ttt XXX  for all Nt∈

Denote by *X , the stationary point of Φ . If the eigenvalues of the Jacobian matrix

associated with Φ  are real and different, then the Feigenbaum equation can be deduced

from Φ  thanks to appropriate variable transformations:

2
11 22 tttt B ∆+∆=∆+∆ −+ µ  for all Nt∈

where ( )[ ]*XΦJac  is the Jacobian matrix of the system at the stationary point,

( )( )[ ] 2*XJacTr Φ=µ  and ( )( )[ ]*XJacDet Φ=B . We assume that the system is

dissipative, i.e. 1<B .

Denote as X~ , the stationary point of 
k2Φ . We can then obtain

( ) kk
B~ 22 XJacDet =













 Φ  and the difference equation for all Nk ∈ :

( ) ( ) ( ) ( ) 232122 2
1

2
11 +++++−= +++ kkkkkkkkk BBBBBB µµµ                       (5)

where 2
1 kBBk =+ .

Since 1<B , then 0lim =
∞→

k
k

B  and the accumulation points of the path are given by the

expressions (4a) and (4b). These can be found by applying the method of mirror-

symmetry. In general, the Jacobian matrix varies a little around a periodic orbit. That is
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why, when the eigenvalues of the Jacobian matrix are real and different, we can consider

that the Feigenbaum equation approximates locally the dynamics of the original map.

3- Critical Functions, Intervals of Qualitative Forecasts and Their Economic Sense

We focus our attention on the critical functions. In the first subsection we present the

concept of such functions. In the subsections thereafter by applying this concept in well-

known economic models we emphasise the advantages of the renormalization procedure.

3.1- The idea of Critical Functions and the Intervals of Qualitative Forecasts

The renormalization procedure leads us to explain the relationship between successive

critical values of bifurcation. Each critical value characterises the loss of a stable k2 -

period cycle and the occurrence of a 12 +k -period cycle when the Jacobian matrix is

constant. In other words, the Helleman technique gives the variable ( )2Bkµ  in function

of ( )Bk 1+µ  for a given value of B. It is then possible to exhibit ( )( ) Nkk B ∈µ  and

( )( ) Nkk B ∈µ , the two paths associated with the cascades of bifurcation of (1) for a given

value of B. When we consider a dissipative system with real and different eigenvalues,

we are able to obtain a k2 -period cycle around the stationary point by taking into account

rough estimates. However the interpretation of the initial dynamics can be falsified

because the calculated values of bifurcation are not necessarily equal to exact values.

In order to refine the qualitative analysis, the determination of critical values of the

Jacobian matrix is now important. Consider first:
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( ) ( ) ( ) ( ) 232122 2
1

2
1

2 +++++−= ++ BBBBBB kkk ϕϕϕ  for all Nk ∈

( ) ( ) ( ) ( ) 13122 2
1

2
1

2 −−−+−+= ++ BBBBBB kkk ϕϕϕ  for all Nk ∈

Since these two paths of critical values are respectively decreasing and increasing, the

solving of second-order equations with which they are associated allows us to establish:

( ) ( ) ( )
 −++−+=+

22
1 25851

2
1 BBBBB kk ϕϕ

and ( ) ( ) ( )
 +++++=+

22
1 23831

2
1 BBBBB kk ϕϕ

The following lemma presents the different properties of such functions and shows that

these latter admit limit functions.

Lemma 1 Consider the Feigenbaum equation defined by 2
11 22 tttt B ∆+∆=∆+∆ −+ µ

for all Nt∈  where µ  and B  are two real parameters with 1<B  Feigenbaum. The paths

of critical functions of the Jacobian matrix ( ) Nkk ∈ϕ  and ( ) Nkk ∈ϕ  satisfy the following

properties:

1) For all 1≥k  and non zero B, we have ( ) ( )BBB kk ϕϕ 11 =  and

( ) ( )BBB kk ϕϕ 11 = .

2) kϕ  and kϕ  are defined and continuous on R for all 1≥k .

3) For all 1≥k , kϕ  and kϕ  have respectively the following asymptotes:

When B tends toward ∞− , ( ) ( )( )BB kk 0251
2
1 ϕϕ −+≈ , when B tends toward ∞+ ,

( ) ( )( )BB kk 0251
2
1 ϕϕ −−≈ .
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When B tends toward ∞− , ( ) ( )( )BB kk 0231
2
1 ϕϕ +−≈ , when B tends toward ∞+ ,

( ) ( )( )BB kk 0231
2
1 ϕϕ ++≈ .

4) In R, ( ) Nkk ∈ϕ  and ( ) Nkk ∈ϕ  converge to the continuous functions ∞ϕ  and ∞ϕ which

respectively satisfy:

( ) ( ) ( ) ( ) 232122 222 +++++−= ∞∞∞ BBBBBB ϕϕϕ  for all Nk ∈

and ( ) ( ) ( ) ( ) 13122 222 −−−+−+= ∞∞∞ BBBBBB ϕϕϕ  for all Nk ∈

Proof see Appendix B.

The critical function characterises the successive values and the limit-function of

accumulation. It is useful to present these results in diagrammatic form.

[Insert Figure 2]

The intersection between the critical functions and the axis 0=B  corresponds with the

critical values of the logistic equation. The intersection between the critical functions and

the axis 1−=B  or 1=B  corresponds with the critical values of the Hamiltonian case

(Figure 2 does not allow us to distinguish the different functions beyond 2ϕ , that

corresponds to the occurrence of an 8-cycle).

Figure 3 shows the mirror-critical functions obtained by mirror-symmetry. These

functions take positive values on the chosen interval and are subject to the same analysis

that we described above.

[Insert Figure 3]
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3.2- Application of the technique in the case of a uni-dimensional dynamics

The model of Matsuyama (1999) presents a simple growth model which captures at the

same time the main features of a Solow growth model and of a Romer growth model.

Matsuyama is able to explain the rise of growth in an economy thanks to two features:

innovation and investment.

In the case of a Romer regime, the dynamics of the model is:

( )( )11 11 −+= −− ttt kkGk θ  when 11 ≥−tk

where k measures the balance between the two engines of growth, i.e. capital

accumulation and innovation, G measures the level of growth in the economy and θ  is

related to the monopoly power of the innovator.

The stationary equilibrium is ( ) θ11 −+= G*k  and the Jacobian matrix at this stationary

equilibrium is: 
( )






 −
00
01 Gθ

The trace is given by ( ) Gθ−1  and the determinant is 0. We can then deduce the

coefficients of the related Feigenbaum equation: ( ) ( )G212Trace θµ −==  and 0=B .

Let us notice that we are in the case of the logistic equation since 0=B :

( ) 2
1 21 ttt G ∆+∆−=∆ + θ

By letting µttx ∆−= , we find the logistic equation: ( )ttt xxx −=+ 121 µ .

From paragraph 2.1 (and by considering the case 0=B  depicted in Figure 2), the first

bifurcation arises when 210 −=µ , i.e. 1−=θG . This is exactly the result found by
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Matsuyama. The second bifurcation arises when ( )( )121 1 −= θµG . According to the

assumption on G and θ , this is impossible to reach, therefore this bifurcation cannot

arise.

Thanks to this simple variable transformation, we are therefore able to show the

impossibility of 3-period cycle in the model in a quicker way.

3.3- Application of the technique in the case of a multi-dimensional dynamics

We are going to apply the method in the well-known Kaldor’s model1 (1957). As is

above pointed, we assume a constant Jacobian in order to keep a good approximation of

the bifurcation parameters. For that purpose, we are going to provide a sufficiently

generic investment function.

First, let us recall the basic framework of the Kaldor model. The macro-economic

variables and parameters are as follows : tY  is the production at the time period t, tK  the

capital stock, tI  the investment, tS  the supply of goods, α  the marginal propensity to

consume, µ  the marginal propensity to save and δ  the rate of depreciation of the capital

stock.

We look for an investment function compatible with the traditional assumptions of the

Kaldor model.

                                                          
1 Note that some works have been made dealing with the chaotic dynamic of this model (see Dana and
Malgrange (1984)) and Lorenz (1991)). However, their approaches are essentially based on numerical
simulations and are not concerned with such an analytical approach as we developed in the first part of the
paper.
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A1: The saving function linearly depends on the production Y and does not depend on the

capital stock, i.e. µ=YS  where 10 << µ .

A2: The investment function I is increasing in Y, i.e. 0>YI .

A3: The investment function I is decreasing in K, i.e. 0<KI .

A4: There exists a production equilibrium *Y  such that:

*YYifI
*YYifI

Y,Y

Y,Y

><
<>

0
0

The dynamics ( KS ) in the Kaldor model is defined as follows:

( ) ( )( ) ( ) ( )
( ) ( ) ( )




−+=−=−
−+=−=−

+

+

tttttttt

tttttttt
KK,YIKK,YIKK

YK,YIYSK,YIYY
δδ

αµαα
1

1

1

1

The Jacobian matrix J of KS  at the stationary point is

( )
( )





−+

−+
=

δ
ααµα

1
1

KY
KY

II
II

J

Its determinant is: ( ) ( ) ( ) ( )( )αµδδααµ −−+−+−= 1111Det YK IIJ .

By denoting ( )αµ−= 1a  and ( )δα −= 1b , we have the following result.

Proposition Let an investment function ( ) ( ) feKdYcbKaYFK,YI ++++−= , where

c 0≥ , 00 ≤≥ e,d  and F : RR →  is a continuous and differentiable function such that:

i) ( ) 00 =F

ii) ( ) 0>x'F  where cbKaYx +−=

iii) ( ) 00 ="F , ( ) 00 <> xifx"F , ( ) 00 >< xifx"F .
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1) The stationary equilibrium is ( ) ( ) ( )( )bac,bac*K*,Y µδµµδδ −−=

2) KS  (with the above investment function) satisfies A2-A4.

3) The determinant of the Jacobian matrix of KS  is constant, i.e.

( ) ( ) ( ) ( )( )αµδαµδα −−+−+−= 1111Det edJ .

As an example, we can specify an extension of the logistic function defined by:

( )1+xx ee . Then, the investment function takes the form:

( ) feKdY
e

eK,YI
cbKaY

cbKaY
+++

+
=

+−

+−

1

4- Generalisation of Helleman’s Method

In this section we are going to present a technique which allows to find the occurrence of

a cascade of bifurcation in the case of a non constant Jacobian matrix at the steady state.

Consider the following Feigenbaum equation:

2
11 2 tttt aBB ∆+∆=∆+∆ −+  for all Nt ∈

In this case we replace the trace of the Jacobian matrix issued from (1)  by a linear

function, i.e. Ba . We are then able to establish the following definition of the critical

value of the Jacobian matrix of the above Feigenbaum equation at the stationary point.
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Definition 2 Consider the Feigenbaum equation defined by 2
11 2 tttt aBB ∆+∆=∆+∆ −+

where a is a positive real parameter and B a real parameter such as 1<B , ( ) Nkk ∈ϕ  and

( ) Nkk ∈ϕ  the paths of critical functions of bifurcation.

The paths of critical values of the Jacobian matrix at the stationary point, ( ) NkkB ∈

and ( ) NkkB ∈  are defined by the relationships ( ) ( ) kkk BaB 2=ϕ  and ( ) ( ) kkk BaB 2=ϕ .

These critical values correspond to the transitions of the system and characterise the

qualitative transformation of the dynamics. The usual approach initiated by Helleman

assumes the fixity of the Jacobian matrix; in our case, it varies. By studying the

qualitative transformations of the dynamics in terms of successive values of the Jacobian

matrix, we can establish the following properties.

Lemma 2 Consider the Feigenbaum equation defined by 2
11 2 tttt aBB ∆+∆=∆+∆ −+  for

Nt ∈ , where a is a real parameter and B a real parameter such as 1<B , ( ) Nkk ∈ϕ  and

( ) Nkk ∈ϕ  the paths of critical functions of bifurcation.

1) For all integer k, if ( )( )0251
2
1

∞−+> ϕa , then ( ) NkkB ∈ exists and is composed of

negative terms.

2) For all integer k, if ( )( )0231
2
1

∞++> ϕa , then ( ) NkkB ∈  exists and is composed of

positive terms.
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3) If ( ) NkkB ∈  is defined, then it is decreasing.

4) If ( ) NkkB ∈  is defined, then it is increasing.

5) If ( ) 81652 +>a , then ( ) NkkB ∈  belongs to ( ]01,− .

6) If 4 651+>a , then ( ) NkkB ∈  belongs to [ )10, .

Proof See Appendix D.

[Insert Figure 4]

Figure 4 shows the asymptotic branches of each critical function when the modulus of B

tends towards infinity.

[Insert Figure 5]

Figure 5 gives a closer look at Figure 5. Here we are able to distinguish the behaviour of

critical functions on [ ]11,−  in terms of two values of a (one ‘high’ and greater than 2, one

‘low’, less than 1). The intersection between the line y and the critical functions shows

the emergence of cycles. In the case of a low value of a, the 8-cycle appears in a point

*B  less than –1.

Since the Jacobian matrix is locally constant or varies a little, its value at the equilibrium

of period 4 is close to 4*B  and all the following orbits which successively appear are

unstable. If a is quite ‘high’ (greater than 2), all cycles are stable with regard to the

previous argument.

Let us finally first make two remarks.
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First, for a given value of a, the range of possible dynamics is limited. Indeed, when the

parameter belongs to a given interval, we obtain some qualitative information on the

dynamics.

Second, not all variations of the Jacobian matrix does not necessarily imply that

dynamics go towards complexity.

5- Economic Application of the Generalised Method

Médio (1992) analyses numerically the backward dynamics of Reichlin’s model (1986)

in the case of constant absolute risk aversion. For this purpose, he postulates the

following utility: ( ) ( )c-exprCcu −= , where r is the risk aversion coefficient and C a

positive constant, and lets ( ) ( ) ( )ccrccucU −=′= exp . He specifies the following

disutility function ( ) ββ llv 1=  and obtains ( ) ( ) βllvllV =′= .

The following system of equations describes the backward dynamics of Reichlin’s

model:

( )
( ) ( )




−=
=

++

+

aalacgc
cgl

ttt

tt

0101

1  Nt∈∀

where ( ) ( )[ ] ( )( ) β11 exp ccrcUVcg −== −

Médio assumes 10 =a . Given the initial conditions for l  and c , this system describes the

dynamics “in the past”. Then let us quote Médio (1992, p. 223) “adopting (and keeping in

mind) the convention that successive (integer) values of the independent variable

!321 ,,t =  are now taken to correspond to points on the negative half of the real line”,

we can rewrite this system as the system (S2):
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( )
( )




−=
=

+

+

alacgc
cgl

ttt

tt

01

1  Nt∈∀                                                                            (S2)

which is well defined for [ )∞+∈ ,ct 0  and [ )∞+∈ ,lt 0 , *Nt∈∀ .

Let us study the dynamics of (S2) around the stationary point ( )*c*,l . (From now on we

are going to denote the stationary point ( ) ( )( )a*c,a*l  as ( )*c*,l  for ease of

presentation.) Denote tt *ll δ+=  and tt *cc ε+= , for all Nt ∈ . Rewrite (S2) around the

stationary point and call A, the Jacobian matrix of (S2) in this point:

( )
( )





′−
′

=
*cga
*cg

A
1
0

By following the steps described in section 2 (see Appendix E), we can rewrite (S2) as

the following Feigenbaum equation:

( ) ( ) 2
11 22 tttt

~~A~aB~ ∆+∆=∆+∆ −+ µ  for all Nt∈

where ( ) ( ) ( ) 1Det1 <′== *cgaAaB  and ( ) ( ) ( )( ) 2Det2Tr aAAA ==µ .

In the vicinity of the stationary point this Feigenbaum equation is equivalent to:

2
11 2 tttt BaB ∆+∆=∆+∆ −+

with the following relationship (see Médio, 1992: p.226):

( ) ( )( )ββ 1exp 1 −= − aa*c*cr ,

( )[ ][ ] ( )( )( )*caalc −−= 11*,JTr * βφ

and ( )[ ][ ] ( )( )( )*calc −−= 111*,JDet * βφ .

The numerical experiments of the backward dynamics made by Médio give similar

results to those obtained from the Feigenbaum equation. Indeed, from the latter
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equations, it is possible to find a path ( ) Nkkr ∈  of values of bifurcation. We can then

establish the following relationship:

( )( )[ ] ( )( ) ( )( )ββββ 11-11-1exp 1 −−−= − aaaBaBr kkk  for all Nk ∈

where ( ) NkkB ∈  is the path of critical values linked to the Feigenbaum equation. The

numerical evaluation of critical values is difficult to obtain because the equations we

have to solve are transcendent. Let us consider the following polynomial:

( ) ( ) 232122 22 +++++−= BBBPB µµµ

We can use the definition of critical values of bifurcation to show that the critical value

associated with the occurrence of a 12 +k period-cycle is one of the solutions of the

equation of k2 -degree: ( ) 212O 2
0 2 


 +−=

=

k
k BBaP

B

n

k

where O is the composition operator. Having a numerical analysis of the critical values

beyond the fifth is hard. We have therefore tried to evaluate the first six values.

[Insert Table 1]

All critical values of B belong to [ ]01,−  when 12864281652 .a ≈+> . When a is

close to 2.12864 by higher values, the path of critical values converges to a value close to

–1 (see Figure 6 and Table 1).

[Insert Figure 6]

Consider now the case of a “high” productivity (see Figure 7).

[Insert Figure 7]
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When 128642.a >  (or 5=a ), our numerical analysis looks like that of Médio. However

the values of r are relatively different from those of Feigenbaum equation. For example,

the simulations show that the entrance in the chaotic area appears when r is ‘above 105’.

In the case of the Feigenbaum equation, this value is close to 146.505. This rough

estimate could be attributed to the specification of the exponential function and/or the

negligence of the terms of three-degree. This can be seen as one of the disadvantages of

the method. Remember that the simplicity of this technique results from approximation

and the estimates we obtain give us an idea of what to expect. Indeed in order to obtain

the Feigenbaum equation, it is necessary to approximate the difference equation of the

original model by a Taylor series expansion of order two (the terms of order greater or

equal to three are eliminated). The difference between the critical values (these latter

being observed by numerical examples) corresponding with the dynamic transitions of

the original system and those obtained by the Feigenbaum equation can therefore be

significant, but we are still able to give a qualitative study around the stationary point.

6- Conclusion

The purpose of our paper was twofold. First we wanted to apply the renormalization

procedure in macrodynamics in order to show its tractability and its advantages. The

economic models we used dealt with constant Jacobian. Second since this assumption can

be considered too restrictive, we generalised this procedure to non constant cases and

applied it to a well-known economic model.
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Appendix

Appendix A- Feigenbaum Equation and Renormalization

Let us consider the Feigenbaum equation defined as follows:

2
11 22 tttt B ∆+∆=∆+∆ −+ µ  for all Nt∈                                                        (A.1)

and let us study its dynamics with respect to µ .

Stability of the dynamics

Let 1−∆= ttε  and rewrite (A.1) in the two-dimensional space, we then obtain for all

Nt∈







∆

−∆+∆
=




 ∆

+

+

t

ttt

t

t Bεµ
ε

22

1

1

The point ( )00,  is a stationary equilibrium. The Jacobian matrix at this point is






 −
01

2 Bµ
. Hartman’s theorem shows the equilibrium loses its stability when the

eigenvalues of the Jacobian matrix cross the unit circle. It is then trivial to prove that the

equilibrium becomes unstable when ( ) 21 B+−<µ .

Mirror-symmetry

Let us find another critical value by introducing the following linear transformation for

Nt∈ : ( ) 21 Btt ++−∆=∆ µ .

Substituting t∆  into (A.1) yields: 2
11 22 tttt B ∆+∆=∆+∆ −+ µ  where µµ −+= B1 .
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The point ( )00,  is also an equilibrium of the above equation. It becomes unstable when

( ) 21 B+−<µ . This condition can be rewritten as ( ) 213 B+>µ .

Two-period cycle

(A.1) has a two-period path defined by:

( )( ) ( ) ( )( ) ( )( )( )µµµ ++−++−+++−=∆ 21321212121 BBB t
t  for all Nt∈

When ( ) 21 B+−<µ  and ( ) 213 B+>µ , the equilibrium of (A.1) becomes unstable and

a 2-period cycle appears.

Renormalization

Since 1<B , the system associated with (A.1) is dissipative. Let ( ) Ntt ∈ξ  the 2-period

path obtained from (A.1), with 




=
=+

02

112

ξξ
ξξ

t

t  for all Nt∈ .

Let ttt ξδ +=∆ , where tδ  measures the distance between the path and the 2-period

cycle.

( ) 2
11 242 ttttt B δδξµδδ ++=+ −+  for all Nt∈                                              (A.2)

Write (A.2) at time 12 += τt , τ2=t  and 12 −= τt .

( ) 1212
2

1222 422 ++++ ++=+ τττττ δξµδδδ B                                                 (A.3)

( ) 1212
2

1222 422 −−−− ++=+ τττττ δξµδδδ B                                                 (A.4)

( ) τττττ δξµδδδ 212
2

1212 422 +−+ ++=+ B                                                    (A.5)
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Let τξµ 242 +=d  and 1242 −+= τξµe

Evaluating ( ) ( ) ( )5A4A3A .e.B. ++  yields:

( ) ( )deBeBB +−+++=+ −+−+ 222 2
2
2

2
12

2
1222

2
22 ττττττ δδδδδδ                      (A.6)

by letting 2BB =′  and Bed −=′ 2µ , (A.6) becomes:

( ) ( )2222 2
2
2

2
12

2
122222 edBeBB +−+++=′+ −+−+ ττττττ δδδδδδ                   (A.7)

Let us evaluate the terms between brackets in another way by letting ( ) 1212 −+= ττ δδδr

( ) ( )( )BrBB +=+=+ −−+−−+ δδδδδδδ ττττττ
22

12
2

12
2

12
2

12
2

12
2

12 22                         (A.8)

Substituting ( )δr  into (A.5) and neglecting the terms of degree 2 yields:

( )( ) ττ δδδ 212 drB =+−  ⇔  ( )( ) 122 −=+ ττ δδδ rBd

substituting this expression into (A.8) yields:

( ) ( )( ) ( )( )BrBrdB ++=+ −+ δδδδδ τττ
222

2
22

12
2

12 22

Since we are located around the 2-period cycle, 1=r  therefore:

( ) ( )BdB +=+ −+ 122 2
2

22
12

2
12 τττ δδδ

Substituting this expression into (A.7) yields:

( )( ) ( )2212 2
2
2

2
2222 edBeBdB +−+++=′+ −+ ττττ δδδδ

Let ( )Bde ++= 12α  and Bed −=′ 2µ  and multiply the previous expression by α , we

then obtain:

ττττ δαµδαδδα 2
2
2

2
2222 22 ′+=′+ −+ B

Let ττ δα 2=∆  then we obtain: 2
11 22 ttB ∆+∆′=∆′+∆ −+ µττ
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Since ( ) ( )( ) ( ) ( )( ) ( )( )( )µµµξ ++−++−+++−=−+= 21321212121121 BBBba tt,
t

We can then evaluate µ′  from µ

( ) Bt −+=′ +14221 ξµµ

( )( ) ( )( ) Bbaba −−+++=′ 424221 µµµ

( ) 232122 22 +++++−=′ BBBµµµ

Since ( ) ( )222 1 BBB µµ ′−+=′ , we have:

( ) ( ) ( ) ( ) 13122 222 −−−+−=′ BBBBBB µµµ                                                  (A.9)

It is usually said that (A.9) is obtained after a renormalization procedure.

Any k2 -period cycle of this equation is a k2 -period cycle for (A.9). We now need to

provide a recurrent path defined with respect to µ  for which the k2 -period cycle loses its

stability while a stable 12 +k -period cycle appears.

For any real value B, consider the equations obtained from the renormalization

procedure:

( ) ( ) ( ) ( ) ( )2

000

0

0

0000
1

20
1 22 ττττ µ ∆+∆=∆+∆ −+ B  for all N0

0 2∈τ                            (A.10.0)

(…)

( ) ( ) ( ) ( ) ( )2

111

1

1

1111
1

21
1 22 −−−−

−
−

+ −−−

−

−
∆+∆=∆+∆ kkkkk

kkk

k

k
B ττττ µ  for all Nk

k
1

1 2 −
− ∈τ   (A.10.k-1)

(A.10.0) is equal to (A.9) and each of the following equations is obtained from the

renormalization procedure. Any variable ( )j
jτ∆ , for 11 −= k,,j !  is obtained after j

renormalization procedures and the parameters ( )jµ , for 11 −= k,,j !  are defined by:
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( ) ( ) ( ) ( ) ( ) ( )
232122

11 241221 +++


 ++−=
−− −− jj

BBB
jjjj µµµ

Let 


 k
B2

0µ  be the critical value of the parameter ( )1−kµ  which corresponds to the loss

of stability of an equilibrium while a 2-period cycle appears. This critical value is

obtained from:

232122
22221 224

1
222

1
2

0 +++





 ++


−=


 −−−−− kkkkk
BBBBBB µµµ

where 


 −12
1

k
Bµ  is the value of the parameter ( )2−kµ  for which a 4-period cycle appears

in (A.10.k-2).

By applying this idea to (A.10.k-1) and by coming back step by step to the first equation

we obtain:

( ) ( ) ( ) ( ) 232122 2
1

2
1

2 +++++−= ++ BBBBBB kkk µµµ

Similarly the mirror-symmetry leads to:

( ) ( ) ( ) ( ) 13122 2
1

2
1

2 −−−+−+= ++ BBBBBB kkk µµµ

Therefore it is possible to provide a path of critical value of µ  which corresponds to a

critical transformation of the dynamics.

Appendix B: Proof of Lemma 1

1) Since ( ) ( ) 210 BB +−=ϕ  and ( ) ( ) 2130 BB +=ϕ  and by writing the recurrence

relationship which describes the critical functions, we deduce that 1ϕ  and 1ϕ  satisfy



31

this relationship. It is then trivial to prove that if the relationship holds for k, then it

holds for 1+k . It is therefore satisfied for all positive k.

2) Let us first show that kϕ  is defined on ( )11,− . Since we have ( ) ( ) 210 BB +−=ϕ , we

deduce ( ) 02
0 <Bϕ  for all B . Since 0585 2 ≥++ BB  for all RB∈  and ( ) 02

0 <Bϕ ,

ϕ is non positive, well defined on R and continuous. By recurrence we deduce that if

kϕ is defined and continuous over R, then ( )Bk 1+ϕ  is defined and continuous over R.

3) We know 1≥k , ( ) ( )BBB kk 1ϕϕ =  (see 1). Recall

( ) ( ) ( )
 −++−+=+

22
1 25851

2
1 BBBBB kk ϕϕ , when B tends toward ∞− ,  and

BB −= .

Hence, ( ) ( )












−++++=+

2

2

2
1 151851

2
1

B
B

BBB
B

B
B

B
B kk ϕϕ















−++++= 22

11518511
2
1

BBBB kϕ . By taking the limit yields

( ) ( )( )051
2
11

k
k

B
B ϕ

ϕ
−+≈+ . The others results can be obtained in a similar way.

4) For any real B, let us denote ( ) ( )BB k
k

ϕϕ
∞→

∞ = Lim  and ( ) ( )BB k
k

ϕϕ
∞→

∞ = Lim . The

first step is to prove that that ( ) Nkk ∈ϕ  is a Cauchy sequence on the interval  [ ]1,1− .

Consider:

( ) ( ) ( ) ( ) 232122 2
1

2
1

2 +++++−= ++ BBBBBB kkk ϕϕϕ  for all Nk ∈

By substituting into this equation the following variable transformation:
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( ) ( ) ( )BBB kk +−= 12ϕψ  for all Nk ∈  we obtain:

( ) ( ) ( )22
1

2 14 BBB kk ++−= +ψψ

Let us study now the uniform convergence of this sequence on [ ]11,− . For all n and p, we

have:

( ) ( ) ( ) ( )
( ) ( )BB

BB
BB

npn

npn
npn

11

2
1

2
1

−−+

−−+
+ +

−
=−

ψψ
ψψ

ψψ

However, from 2) we have:

[ ]
( ) ( )

[ ]
( ) 02InfInf 0

11
11

11
=>=+

−∈
−−+

−∈
BBB

,B
npn

,B
ψγψψ

Moreover from 2) we have:

( ) ( ) ( ) ( )
( ) ( )2

1
2

1

4
1

4
12

1
2

1 BB
BB

BB
npn

npn
npn

−−+

−−+
−−+ +

−
=−

ψψ
ψψ

ψψ

Furthermore for n , p  and 0>k , we obtain from 2):

[ ]
( ) ( )

[ ]
( ) 32InfInf 2

0
11

2
1

2
11

=>+
−∈

−−+
−∈

k
,B

k
n

k
kpn

,B
BBB ψψψ

We then deduce:

[ ]
( ) ( )

[ ]
( ) ( )nn

p
,B

n
npn

,B
BBBB 2

0
2

11

1

11
Sup

3
11Sup ψψ

γ
ψψ +





<−

−∈

−
+

−∈

Since for all Nk ∈ , kψ  is a continuous function. Then for all [ ]11,B −∈ :

( ) ( ) ( ) ( ) 217312002
Lim +=−=<= ∞∞

∞→
µψψψ p

n
p B

n

Recall: ( ) ( ) ( ) ( ) 865121211 +=−=−<− ∞∞ ϕψψ p
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and ( ) ( ) ( ) ( ) 265121211 +=−=< ∞∞ ϕψψ p

Thus 
[ ]

( ) ( )
[ ]

( ) ( )











+





<












−

−∈

−

∞→
+

−∈∞→
nn

p
,B

n

n
npn

,Bn
BBBB 2

0
2

11

1

11
Sup

3
11LimSupLim ψψ

γ
ψψ

[ ]
( ) ( )

[ ]
( ) ( )












+

















<












−

−∈∞→

−

∞→
+

−∈∞→
nn

p
,Bn

n

n
npn

,Bn
BBBB 2

0
2

11

1

11
SupLim

3
11LimSupLim ψψ

γ
ψψ






 +
















<

−

∞→ 2
657

3
11Lim

1n

n γ

Thus for all Np ∈ , 
[ ]

( ) ( ) 0SupLim
11

=











−+

−∈∞→
BB npn

,Bn
ψψ .

Since the set of the continuous functions on the compact set [ ]11,−  is a Banach set with

respect to the uniform, the sequence ( ) Nkk ∈ψ  converges uniformly towards some

continuous functions ∞ψ  on [ ]11,− . Moreover, when 1>B , ( ) ( )BBB kk 1ψψ =

implies that when B>1, ( ) ( )BBB kk 1ψψ = and the same result applies. Consequently,

applying the same method to the function ( )B
k

ϕ , we deduce that when 1−≥B , there exist

two continuous functions over [ ]∞+− ,1 denoted ∞ϕ and ∞ϕ  such that:

 ( ) ( ) ( ) ( ) 232122 222 +++++−= ∞∞∞ BBBBBB ϕϕϕ  for all Nk ∈

( ) ( ) ( ) ( ) 13122 222 −−−+−+= ∞∞∞ BBBBBB ϕϕϕ  for all Nk ∈

Now we need to extend this result to the case B<-1. By definition

( ) ( ) ( )
 −++−+=+

22
1 25851

2
1 BBBBB kk ϕϕ
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and ( ) ( ) ( )
 +++++=+

22
1 23831

2
1 BBBBB kk ϕϕ

Thus, when B<0 (a case including B<-1), then we obtain:

( ) ( ) ( )
 −++−+= ∞+

+∞→

22
1 25851

2
1Lim BBBBBk

k
ϕϕ

and ( ) ( ) ( )
 +++−+= ∞+

+∞→
22

1 23831
2
1Lim BBBBBk

k
ϕϕ

Thus the functions ( )BB k
k

1Lim: +
+∞→

∞ → ϕϕ  and  ( )BB k
k

1Lim: +
+∞→

∞ → ϕϕ  are

continuous over R for any 0>k .

Appendix C: Proof of the Proposition

1) At the stationary equilibrium, ( ) 0=*K*,YIYY . Thus, ( ) 0=+− c*bK*aY"F

0=+−⇒ c*bK*aY . Moreover, from the equilibrium conditions we have

*K*Y µδ= . Substituting these expressions in the equations of the model yields

( ) ( ) ( )( )bac,bac*K*,Y µδµµδδ −−= .

2) Since ( ) 0>x'F , ( ) 0>+−= cbKaY'aFFY . Since 0≥d ,

( ) 0>++−= dcbKaY'aFIY  and A2 holds.

Moreover ( ) 0<++−−= ecbKaY'bFFK  and since 0≤e , A3 follows.

Finally, ( )cbKaY"FaIYY +−= 2 .

3) At the equilibrium ( )c*bK*aY"FaIYY +−= 2 ( ) 002 == "Fa , and we deduce the

result. The determinant of the Jacobian is



35

( ) ( ) ( ) ( )( )αµδδααµ −−+−+−= 1111Det YK IIJ = ( )( )αµδ −−++ 11YK bIaI

= ( )( ) ( )( ) ( )( )αµδ −−+++−−+++− 11ecbKaY'bFadcbKaY'aFb

( )( )αµδ −−++= 11aebd

( ) ( ) ( )( )αµδαµδα −−+−+−= 1111 ed

Appendix D: Proof of Lemma 2

Results 1) and 2) are straightforward. Recall that ( )( ) Nkk B ∈ϕ  and ( )( ) Nkk B ∈ϕ  are

decreasing for any real B.

3) For all integer k, ( ) ( ) 1111 2 ++++ => kkkkk BaBB ϕϕ . Since ( ) 00 <kϕ  and by applying

the mean-value theorem, we deduce that there exists ( )01,BB kk +∈  such that

( ) kkk BaB 2=ϕ . Therefore, kk BB <+1  and 3) is shown.

4) By applying the method used to demonstrate 3), it is trivial to show 4).

5) It is trivial to show that ( ) ( ) 86511 +=−∞ϕ , then 7) follows.

6) It is trivial to show that ( ) 4 6511 +=∞ϕ , then 8) follows.

Appendix E: Feigenbaum equation in Médio’s model

By computing a Taylor expansion of degree two at the stationary point, (S2) becomes:

( ) 2
1

1

1

2
1

+
+

+ ′′+





=





t

t

t

t

t *cgA ε
ε
δ

ε
δ

The characteristic equation of A is equal to:

( ) ( ) 0DetTr2 =+− AA λλ
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⇔ ( ) ( ) 02 =′+′− a*cg*cg λλ

where ( )ATr  is the trace of matrix A and ( )ADet  its determinant.

The matrix A is diagonalizable if the eigenvalues of A are real and different, i.e. if the

discriminant associated to the characteristic equation of A is strictly positive. We

therefore have:

If ( ) ( )0<>′ *cg , then ( ) ( ) a*cg 4<>′ .

Assume one of these two inequalities is verified. Make a variable transformation on the

basis of eigenvectors. Denote ( )tt Y,X  the component of the system with respect to the

basis of eigenvectors and 1λ  and 2λ , the different eigenvalues of the matrix A. We then

obtain:

( )
( ) 











+
++











=






++

++

+

+
2

112

2
111

1

1

2

1

0
0

tt

tt

t

t

t

t

YXK
YXK

Y
X

Y
X

λ
λ

                                                 (D.1)

where 1K  and 2K  are the coefficients evaluated from the transition matrix on the basis of

eigenvectors. This former system a backward dynamics. We assume that 121 >λλ , i.e.

the system is dissipative.

Let us assume 1121 ++ +=+ tttt YXYX λλ  and denote as ttt YXW −=  and ttt YXZ += .

We can then deduce: ( ) ( ) ( ) ( ) 2222 121 +=−++ ttttt ZWZWZ λλ

⇔ ( ) ( ) 12121 21111 +=−++ ttt ZWZ λλλλ

⇔ ( ) ( )211211 11211 λλλλ +−=− −− ttt ZZW

⇔ ( ) ( )( )21112211 112 λλλλλλ +−−= −− ttt ZZW

The first co-ordinate of (D.1) is equal to ( )21111 ++ += ttt ZKXX λ
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⇔ ( )( )1212111 22 −+− −−=+ tttt ZZZW λλλλ

and ( ) ( ) ( )( )2
1211211121

2
11 12222 tttttt ZKZZZKZW −++−−=++ + λλλλλλλλλ

Equating these two results enables us to find:

( ) ( ) 1211
2

121211 1 +− +=−++ tttt ZZZKZ λλλλλλ                                             (D.2)

letting ( ) 1121 KK λλ−= , 21 λλ=J  and ( ) 221 λλη +=

(D.2) ⇔ 2
11 2 tttt ZKZZJZ +=+ +− η                                                                          (D.3)

by letting KZ tt ∆= 2 , we have:

(D.3) ⇔ 2
11 22 tttt J ∆+∆=∆+∆ +− η                                                                            (D.4)

Let tt
~J ∆=∆ , Jηµ =  and JB 1= , we then obtain:

(D.4) ⇔ 2
11 22 tttt

~~~B~ ∆+∆=∆+∆ −+ µ
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Table

Critical values 132.a = 5=a

0B -0.31949 -0.16667

1B -0.738161 -0.267708

2B -0.917673 -0.287363

3B -0.972434 -0.291228

4B -0.983001 -0.291986

5B -0.984362 -0.292134

Table 1


