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Abstract

This thesis covers a range of methodologies to provide an account of the current
state of the art and to develop new methods for solubility prediction. We focus
on predictions of intrinsic aqueous solubility, as this is a measure commonly
used in many important industries including the pharmaceutical and agrochemical
industries. These industries require fast and accurate methods, two objectives
which are rarely complementary. We apply machine learning in Chapters 4 and
5 suggesting methodologies to meet these objectives. In Chapter 4 we look
to combine machine learning, cheminformatics and chemical theory. Whilst in
Chapter 5 we look to predict related properties to solubility and apply them
to a previously derived empirical equation. We also look at ab initio (from �rst
principles) methods of solubility prediction. This is shown in Chapter 3. In this
chapter we present a proof of concept work that shows intrinsic aqueous solubility
predictions, of su�cient accuracy to be used in industry, are now possible from
theoretical chemistry using a small but diverse dataset. Chapter 6 provides a
summary of our most recent research. We have begun to investigate predictions
of sublimation thermodynamics. We apply quantum chemical, lattice minimisation
and machine learning techniques in this chapter.

Text which is bold represents internal hyperlinks; text which is bold and italic
represents external hyperlinks. Italic text signi�es important terminology.
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Chapter 1

Introduction

"The important thing is not to stop questioning. Curiosity has
its own reason for existing. One cannot help but be in awe
when he contemplates the mysteries of eternity, of life, of the
marvelous structure of reality. It is enough if one tries merely
to comprehend a little of this mystery every day."

Albert Einstein, 1955

1.1 Motivation

If solubility prediction is searched on Google Scholar, over 200 search results for
the last year (2013 - 2014) alone are returned.1 Solubility prediction is important
in numerous �elds in and outside of chemistry such as environmental predictions,2,3

biochemistry,4 pharmacy,5,6 drug-design,7 agrochemical design,8 and protein ligand
binding.9 Aqueous solubility is of fundamental interest owing to the vital biological
and transportation functions played by water. In this chapter a discussion of
solubility is presented, along with a general overview of the area of solvation
prediction and modelling.

Besides the clear scienti�c interest in water solubility and solvent e�ects, accurate
predictions of solubility can have implications of industrial importance. Such
predictions save time and money in many chemical product development processes.
In the pharmaceutical industry these predictions provide early stage viability
screening of drug candidates.10,11 Quantitative Structure-Activity relationships
(QSAR), Quantitative Structure-Property Relationships (QSPR) and data mining
have been successfully applied in this area for some time. These models
provide e�cient predictions of solubility and represent the current industry
standard. However, such models can lack physical insight. As such, a purely
theoretical method, capable of achieving similar levels of accuracy at an appropriate
computational cost, would be a powerful research and development tool.

Our motivation here is to investigate QSAR/QSPR models and attempt to combine
them with theoretical chemistry. We also wish to explore the possibility of a
�rst principles prediction of solubility. As such in this thesis we investigate the

1
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application of existing and novel prediction schemes to predict the intrinsic aqueous
solubility of organic drug-like molecules. Intrinsic aqueous solubility is de�ned as the
solubility of an unionised species in a saturated solution and is generally represented
by the symbol S0.12 The intrinsic solubility is a particularly important quantity as
it can be used to �nd the pH dependent pro�le and estimate the pKa. Throughout
this thesis we therefore work with neutral molecules and assume such molecules are
neutral at pH 7. From now on when solubility is quoted we will be referring to the
intrinsic aqueous solubility unless otherwise stated. Solubility measurements are
typically presented as the base 10 logarithm of solubility quoted in moles per litre
(Log10S referred to units mol/L).

1.2 Solubility and its Implications

Solubility is a property with implications in many situations, from simply will
compound x dissolve in solvent y, to our sensitivity to odour, which has been shown
to be lower as hydrophobicity increases.13

There are two clear concepts which are subtly distinct from one another occurring
during solvation: solubility and dissolution. A solution can be de�ned as a
thermodynamically stable state in which an equilibrium exists between the solute
and solvent. Solute molecules are transferred from the solute to the solvent and
dispersed, eventually reaching a constant state, equilibrium. The concentration
of a particular solute which can be dispersed within a solvent is known as the
solubility, which is a property of the thermodynamic equilibrium. The rate of
dissolving a solid is known as dissolution and is a kinetic property. These concepts
are important for drug molecules as drug delivery is a�ected by dissolution whereas
drug activity/availability is a�ected by solubility.14 The two concepts are related to
one another by the Noyes-Whitney equation.15

dW

dt
=
kA(Cs − C)

L
(1.1)

Equation 1.1: dW
dt is the rate of dissolution, A is the solute surface area which is in

contact with the solvent, C solute concentration in the bulk solvent at a given time, Cs is
the solute concentration in the di�usion layer (given from the solubility of the molecule

and under the assumption that the di�usion layer is saturated), k is the di�usion
coe�cient and L is the di�usion layer thickness.

Solubility is therefore in�uenced by interactions within the solute and interactions
between the solution's constituents. As a result there are a large number of
degrees of freedom within the system which impact solute solubility. A schematic
representation of the solvation process is presented below in Figure 1.1.14
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Figure 1.1: A pictorial representation of the solvation process.

In this section we present a brief overview of the factors a�ecting solubility and how
solubility is experimentally determined. No experimental solubility determination
has been attempted in this thesis. We will conclude this section with a brief
description of where solubility determination a�ects the drug discovery pipeline.
This is a pertinent industry for the application of the ideas presented through this
thesis.

1.2.1 Factors A�ecting Solubility

The vast majority of drug-like molecules are organic and hence here, we focus
speci�cally on the factors a�ecting organic molecules.

1.2.1.1 Organic Crystals - Solid State E�ects

As we stated above, solubility is a�ected by the strength of solute-solute interactions.
Solutes that are only weakly bound together will tend to have a higher solubility,
as the energy cost of breaking up the lattice is lower. Hence, amorphous structures
generally have a higher solubility than crystalline materials. This is complicated
by polymorphic e�ects. Polymorphs are alternative 3D crystalline arrangements
of identical molecular units. Polymorphs can have substantially di�erent physical
properties including solubility. The classical example of this is that of Ritonavir,16,17

in which a change in polymorph led to a drastic shift in solubility leaving the
drug poorly available. This occurs in many drug-like molecules but rarely with
the extreme results of Ritonavir.18�20

1.2.1.2 Temperature and Pressure E�ects

Temperature a�ects solubility di�erently depending on the phase of the system being
considered. Gases dissolve into solutions more readily at lower temperature; this is
due to the second law of thermodynamics ("In an isolated system, spontaneous
processes occur in the direction of increasing entropy",21). Gases will disperse,
hence become more disordered as temperature increases. For the same reason,
the solubility of a solid will increase as the temperature is raised. It has been
shown previously that changes in temperature of approximately ±10◦C from room
temperature have little e�ect on solubility.22 For gaseous solvation the partial
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pressure of the gas is also a factor. The solution is in equilibrium with the
surrounding gases as a result, should the composition of the surrounding gas change
so does the equilibrium. This is perhaps best displayed as the e�ect that occurs
when opening a can of carbonated soft drink.

1.2.1.3 Ionisation and Ion e�ects

Although in this thesis we will focus on intrinsic solubility it is important when
considering experimental data to be aware of the e�ects of ionisation. pH can
have a signi�cant e�ect on solubility. As many drug molecules are either weak
acids or weak bases (have ionisable basic/acidic functional groups) the pH at which
a solubility measurement is made is important. Weak acids and base have the
following dissociation paths:14

HA + H2O ↔ A− + H3O
+ ∴ pKa = −log10

(
[A−] · [H3O

+]

[HA]

)

B + H2O ↔ BH+ + HO− ∴ pKb = −log10
(

[BH+] · [HO−]

[B]

)
HA represents an acidic drug molecule whilst B represents a basic drug
molecule. The pKa is the acid dissociation constant (quanti�es the degree of
dissociation at a given pH) and the pKb, is the basic dissociation constant.
The Henderson�Hasselbalch equation (Equation 1.2) allows one to calculate the
solubility of weak acids and bases in solutions of di�ering pH values as a function
of pH and pka.14,23

logSAcidicTotal = logS0 + log(1 + 10pH−pKa)

(1.2)
logSBasicTotal = logS0 + log(1 + 10pKa−pH)

Equation 1.2: logSTotal is the total solubility, logS0 is the intrinsic solubility and the �nal
term on the right hand side is the solubility of the ionised form.14

The total solubility above is therefore given as the sum of the base 10 logarithms of the
concentration of both ionised and non-ionised forms at thermodynamic equilibrium.
As a result this value is heavily in�uenced by the potential ionisation of a molecule.
The intrinsic solubility may still be mildly a�ected. Experimentally, bu�ers are
often used to provide some control over ionisation when solubility determinations are
made. Often mixtures of bu�ers are used to control over a large pH range. The use
of such bu�ers can however a�ect the solubility measurements. As the solubility of
electrolytes is generally increased with increasing ionisation, with the opposite being
true of non-electrolytes, bu�er agents can interfere with this process potentially
increasing the ionic strength of the solution and thus reducing the solubility of non-
electrolytes.24
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1.2.1.4 Co-Solvents

An additional feature to be aware of when considering solubility values in the
literature is that of co-solvents. In the pharmaceutical industry these are often used
to allow the evaluation of a molecule's solubility quickly. By mixing co-solvents with
water the water hydrogen bond network is broken up, hence aiding the solvation of
an organic non-polar molecule.

1.3 Experimental Solubility Determination

There are many sources of experimentally determined solubility in the literature.25�29

However, large errors have been repeatedly found in the reporting of solubility values
which limits the use of these data in terms of modelling and model validation.24,30�33

It is necessary to have experimental conditions and purity information about the
precipitate reported along with the solubility measurement in order for one to
con�dently minimise the error in standard datasets. Error estimates in literature
suggest a minimum average error of approximately 0.6 logS units but commonly
errors of up to 1.5 logS units have been reported.32

As a result of this, when solubility datasets are derived often the most reliable
information comes from multiple solubility assays. Therefore, these datasets can
often contain high levels of random error or noise from the di�erent techniques which
have been employed. There are a number of such techniques which are commonly
applied; some common methods are brie�y discussed below.

1.3.1 Thermodynamic Solubility Determination

We initially introduce thermodynamic methods of solubility determination. These
methods focus of making solubility measurements at thermodynamic equilibrium.
As equilibrium needs to be achieved in these methods they are often slow but
generally provide very reliable and reproducible results.

1.3.1.1 Shake Flask Method

The shake �ask method is a commonly applied technique and generally accepted
as an accurate way to measure intrinsic solubility, especially of molecules which
are poorly soluble. This is a thermodynamic technique to measure solubility. A
sample of the solute is added to a bu�er solution until saturation. The �ask is
then shaken until thermodynamic equilibrium is achieved. The dissolution pro�le
should be investigated beforehand so that an optimal time for thermodynamic
equilibrium to be established can be located. The precipitate is then extracted
and the solution concentration measured commonly by High Pressure Liquid
Chromatography (HPLC ). The method su�ers from a lack of con�rmation that
thermodynamic equilibrium has been reached even if the dissolution pro�le has
been investigated and thus instead often relies upon long standing times (24 - 72
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hours). This also makes it unsuitable for High ThroughPut Screening (HTPS ).
Additionally, we must be aware of the bu�ers used and the protocols used to extract
the precipitate (is the solution temperature maintained and is there a chance for
cross contamination?).14

1.3.1.2 Synthetic Method

The synthetic method uses a laser beam to monitor when the solid form has
completely dissolved into the solvent. Known quantities of solute are added to
a solvent which is continuously stirred at a constant temperature. When all of
the solute has dissolved the laser's detector has its maximum value. The process
is repeated until the maximum value signi�cantly drops, hence the solution is
saturated. The solubility is then calculated based upon the amount added to
the solution.34 This method is useful particularly when viscous solvents need to
be used.14

1.3.1.3 CheqSol: Chasing Equilibrium

The CheqSol35 method is a chasing equilibrium method. It applies acid-base
titration to "chase" the equilibrium position. The method proceeds to use a small
aliquot of bu�ered solution before dissolving the solute. The experiment is carried
out under an inert atmosphere to exclude atmospheric gases. The solution is titrated
with acid or base until a precipitate is detected by light scattering. Once a precipitate
is detected, measured amounts of acid and base are added taking the solution from
supersaturated to undersaturated. At the point at which this happens the intrinsic
solubility can be determined. A single CheqSol run makes eight determinations, the
average of which is taken as the intrinsic solubility. This method hence checks that
the system has reached thermodynamic equilibrium and makes several solubility
determinations in a run time of a few hours.24,35 It has been reported that CheqSol
can reduce errors to as low as 0.05 logS units over multiple runs.36

1.3.2 Kinetic Solubility Determination

Kinetic solubility determination is generally employed in industry where fast
assessments are needed at the molecular development stage. Kinetic methods do
not rely on the system being at thermodynamic equilibrium and hence are much
faster but generally less reliable.

1.3.2.1 Turbidmetric Measurement

In the pharmaceutical industry measurements are required quickly and so
thermodynamic rigour is bypassed in favour of speed. Turbidmetric solubility
determination involves the addition of a DMSO solution containing the solute to
bu�ered water at pH 7. Bu�ers are carefully selected to avoid interference in the
measurements; where such interference is likely to occur counterions are added
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to minimise them. Once precipitation occurs, which is detected generally by UV
spectroscopy, the solubility is calculated using the known concentration of the solute
in DMSO. This method fails to establish a thermodynamic equilibrium therefore
making results di�cult to reproduce. Additionally, as DMSO is used solid state
characterisation is prevented as well as having the e�ect of generally increasing
solubility. The method is fast and can have useful input when quick estimates are
required, but it is not useful when accurate reproducible values are required.14

1.3.3 Solubility in the Drug-Development Process

We consider here the biological processes that occur to allow a drug molecule to
be absorbed and transported. We then move on to consider the processes of drug
discovery and why solubility is important.

1.3.3.1 Absorption and Distribution

Absorption of an orally administered drug occurs throughout the gastro-intestinal
tract, predominately in the intestines. The absorption process involves an orally
administered drug molecule having to pass through gastric �uids, cell membranes
and often blood. These are very di�erent environments including low pH (gastric
acid has a pH range of 1.5 - 3.5), lipophilic and hydrophilic environments. As many
drugs are weak acids and bases these environmental shifts can have a major impact
on the molecules. For example, if a weak acid of pKa = 4.4 is administered orally,
its predominant form in the stomach will be unionised, hence enabling absorption
in stomach mucus. However, for a weak base of pKb = 4.5 the predominant form
would be ionised therefore reducing the chance of mucus absorption. Due to the
larger surface area the majority of absorption occurs in the intestines.23

Molecules can be absorbed in several ways in the intestine: passive transport,
facilitated passive transport, active transport and pinocytosis. Passive transport
involves the di�usion of a molecule across a membrane due to di�usion across a
concentration gradient (high concentration GI tract to low concentration blood for
example). The size and ionisation of a molecule also a�ects this rate. Facilitated
passive transport involves the molecule reversibly binding to a transport molecule in
order to cross a membrane it would otherwise be unable to cross. Active transport
is a highly selective process which can allow movement against the concentration
gradient. This method is generally only applicable to molecules bearing a similarity
to native chemical structures and has an energy cost to the process. Pinocytosis
is the process by which cells acquire and ingest �uid. Substances adsorbed to the
cell membrane are engulfed by the cell in a vesicle formed from the cell membrane.
Pinocytosis is therefore a process allowing adsorbed liquid droplets to pass to the
cells interior in larger quantities than by passive or active transport. This process
again costs energy.23

The rate at which these processes occur is important in order to keep a molecule's
concentration high enough to be therapeutically active but not toxic. Administrative
timings and dosages are speci�cally designed to do this. It is rare to �nd a drug



8 CHAPTER 1. INTRODUCTION

molecule with a logS below -6. The majority (estimated at 85%)5,23 falling in to the
range of -5 to -1 logS. This is generally due to issues related to barrier crossing.5,23

1.3.3.2 Excretion and Toxicity

The body's main excretion process is via the kidneys: water soluble materials are
screened out of the body. Key materials such as salts, glucose and B vitamins
are usually actively or passively reabsorbed in the renal tubes. Drug molecules,
and metabolites of drug molecules, tend to be ionised and cannot di�use back into
circulation. As a result these products are excreted in the urine. The rate of urinal
tract di�usion excretion is a�ected by the pH of the urine. Secretions from the
kidneys aid in the di�usion of cationic and anionic metabolites to the urine.37 If
a drug or its metabolite is not excreted then this can cause a toxic build up in
the body. Additionally, if a metabolite or drug completes with other substances
for excretion, the use of one drug can lead to an increase in the retention time of
another drug. This also has potential to cause toxic accumulations to occur in the
body.37

1.3.3.3 The Drug-Development Process

The drug development and discovery process is a long multi-step process. Figure
1.2 below highlights the key steps:
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Figure 1.2: A summary diagram of the full drug discovery process.38,39

For orally administered drugs we are concerned with pharmacokinetics - how a
molecule is transported around the body and pharmacodynamics - a molecule's
pharmaceutical action. These two overarching terms are used to cover a multitude
of factors. Solubility has an impact in both areas; in pharmacokinetics, where we
are concerned with Absorption, Distribution, Metabolism, Excretion and Toxicity
(ADMET ) properties; solubility is a key parameter in determining the bio-
availability of a drug molecule and its absorption, as discussed above. If the solubility
is low then this means that the amount of the molecule that can be available in the
gut and bloodstream will also be low, making formulation very di�cult due to
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potentially large variations in the results between patients.40 In pharmacodynamics
the solubility of a molecule can impact upon how easily a molecule binds to a target,
hence how pharmaceutically active the molecule may be. For these reasons solubility
is considered to be a fundamental physicochemical property. The USA's Food and
Drug Administration (FDA) regulations require extra testing be carried out on any
low solubility drug molecule.41

Whilst solubility is important all of the way through the drug discovery process,
it is most extensively scrutinised at the early stages, the �rst two steps of Figure
1.2. These early stages encompass many steps requiring interdisciplinary groups
and large capital expenditure. Figure 1.3 below provides a general overview of the
steps often found in the early stages of pharmaceutical development.

Disease
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Targetb
Identificationb

Leadb
Identification

Leadb
Optimisation
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Trials
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identification

Mechanismbofb
action

Symptomsb
andbneed
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Computerb
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Medicinalb
Chemistry
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dynamics

Safetybandb
activitybdata

Figure 1.3: Common steps found in the early stages of drug discovery.

We can see in this diagram that computational methods are applied throughout:
Bioinformatics is applied in the early stages of target identi�cation, for proteomics
and structural and functional genomics. Cheminformatics and bioinformatics
are applied to library screening; this could be for processes such as matched
molecular pairs screening for how single structural substitutions can a�ect a
compound's activity. Computational chemistry and cheminformatics are then
applied to molecular design and property prediction. These methods form part
of a multicomponent optimisation to produce a single molecule which is capable
of reaching and acting pharmaceutically on the target, therefore bene�ting the
patient. Solubility is one component of this multi parameter optimisation. Given
the pharmaceutical industry's increasing expenditure and given the reducing number
of candidates making it past clinical trials, it is industrially important to make
optimal use of these techniques. Around 40%42 of new drug molecule candidates
are estimated to be e�ectively insoluble making them poor candidates. It is this
high attrition rate which makes solubility prediction such an important area of
research.5,23,42

1.4 Solubility Modelling

We have discussed above why solubility prediction is important and how it is
measured experimentally. Methods to predict aqueous solubility were fairly recently
tested in a blind challenge called the Solubility Challenge28 which was run in
2008. This challenge provided accurate solubilities for 132 molecules and challenged
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participants to predict a speci�c 32 of them blind, given the other 100. The dataset is
made freely available on-line from the following reference.43 The challenge had over
100 entries and concluded that no single method consistently produced the best
solubility prediction. Correct predictions are considered to be within ±0.5 logS unit
or 10% of the raw S value.44 The percentage of correct predictions from participants
ranged between molecules from 2% for Probenecid to 80.8% for Imipramine. In this
section we introduce some of the ideas behind solubility prediction and modelling.
Principally we introduce thermodynamic cycles for solubility modelling as well as
the conventions which accompany them.

1.4.1 Thermodynamic Cycles for Solubility Prediction

The ideal situation would be to be able to model the direct transfer of a crystal
structure to an aqueous solution. This would be replicating the physical, energetic
and entropic changes which occur upon solvation. Practically this is not possible.
This is due to the immense number of degrees of freedom open to the system. "Brute
force" calculations may eventually be able to probe solubility directly but for the
time being indirect calculations of solvation properties remain our best course. In
this thesis there are two alternative thermodynamic cycles used. The �rst models
solubility via the gaseous phase and the second via a hypothetical super cooled liquid
state. The relations are best demonstrated diagrammatically below in Figure 1.4.
In both methods, the cycles begin by breaking up the crystal before hydrating the
individual molecules.
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Figure 1.4: Thermodynamic cycles of solubility prediction

Both cycles have been applied successfully previously in di�erent research groups.6,45

In this work we focus on the former cycle which goes via the gaseous phase,
see Figure 1.4. We apply the other cycle when using the General Solubility
Equation (GSE )46,47 in Chapter 5. The discussion here focuses on the use of
the thermodynamic cycle via the gaseous state.

1.4.2 Standard States and Conventions

To avoid confusion, presented here is an overview of the standard state conventions
used in this thesis. Sublimation energies are generally calculated in the 1 atmosphere
(atm) standard state, as this is the state used by experimentalists. Solvation free
energies on the other hand are commonly given in the standard state de�ned by Ben-
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Naim of 1 mol/L with a �xed centre of mass.48�50 In this thesis ∆G◦ corresponds
to the 1 atm standard state, whereas ∆G∗ corresponds to the Ben-Naim 1 mol/L
standard state. The di�erence between the two standard states is a constant 1.89
kcal/mol (7.91 kJ/mol). All tabulated �nal solubility predictions presented in this
thesis will be in the 1 mol/L standard state.

1.4.3 Thermodynamics and Solubility

A general ideal relationship exists in order to calculate intrinsic aqueous solubility.
The thermodynamic relationship is below in Equation 1.3 and provides us with a
direct calculation of the Gibbs free energy of solution (∆Gsol ):

∆G∗solution = ∆G∗sublimation + ∆G∗hydration = −RTln(S0Vm) (1.3)

Equation 1.3: Equation to calculate the Gibbs energy of solution (∆Gsolution) in the 1
mol/L standard state (Ben-Naim terminology 1 mol/L with a �xed centre of mass)50

represented by *. S0 is the intrinsic solubility, Vm is the crystalline molar volume, R is
the gas constant (8.314 JK−1mol−1) and T is the temperature in Kelvin (K).

The Gibbs energy of sublimation (∆Gsub) accounts for the breakup of the lattice;
it corresponds to the energy required to take a single molecule from the crystal
to the gas phase. The �nal chapter of this thesis discusses several methods to
calculate ∆Gsub as well as the enthalpy and entropy of sublimation (∆Hsub and
∆Ssub respectively). An introduction to these calculations is provided in Section
3.1.2.

The Gibbs energy of hydration (∆Ghyd) provides the energy of transferring a
single molecule from the gaseous state to the solution. This term has been
extensively studied. Recent work involving the Reference Interaction Site Model
(RISM ) (Section 2.2.12.4) has focused on the accurate predictions of ∆Ghyd.51,52

Historically ∆Ghyd has also been a property of interest dating back to 1803 with
the generation of Henry's law. The law states a proportional relationship between
gaseous partial pressure and the solution concentration of a speci�c component, at
a constant temperature.

P = kHC (1.4)

Equation 1.4: Henry's Law. P is the partial pressure of the gas, kH is the Henry's law
constant in units of pressure over concentration, and C is the concentration in solution.21

Henry's law constants are experimentally determinable quantities which have been
used to predict solubility as the inverse of the Henry's law constant multiplied by the
partial pressure of the gas. Henry's law is somewhat idealistic breaking down away
from equilibrium and is not applicable if the solute is not volatile at a temperature
at which the solvent is a liquid, otherwise the solute will not enter a vapour phase
hence no equilibrium can be established.21
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In the second thermodynamic cycle the Gibbs energy of fusion (∆Gfus) is a metric
of the energy required to melt a substance at its melting point. This term is also
accounting for the loss of the crystal. In the hypothetical supercooled liquid state the
Gibbs energy of transfer (∆Gtrans) is the energy required to transfer one molecule
from a solution of itself to an aqueous solution. These quantities are approximated
later in the GSE using the melting point as a descriptor for ∆Gfus and the logarithm
to the base 10 of the partition coe�cient between n-octanol and water (log P) as a
descriptor for the ∆Gtrans.53 This equation's principles are derived upon several
assumptions:

� The solute's crystalline form is not a�ected by the presence of the solvent.

� Walden's rule (∆Smelting = 56.6 JK−1mol−1 Empirical rule derivied from
coal tar derivatives which can be considered as rigid organics.54) gives the
entropy of melting.

� The change in the heat capacity of the solid and the liquid are negligible.

� Log P is equal to the ratio of the solubilities of the solute in octanol and water.

� Solute molecules are completely miscible in n-octanol.

These assumptions are generally valid for organic drug-like molecules.47

1.5 Computational Property Predictions

Molecular property prediction is an expansive �eld incorporating complex
methodologies working from the top down, using bulk descriptors for predicting
material properties, or bottom up, using a quantum mechanical calculations in order
to predict bulk material properties from �rst principles.

Within this thesis we have applied these concepts to predict condensed phase
properties, either those of crystalline drug-like organic solids or aqueous solutions of
organic drug-like molecules. We have o�ered a �rst principles prediction of solubility
as a proof of concept with a small dataset and combined theoretical chemistry and
cheminformatics providing physically sound descriptors for empirical models. Here
we describe the current state of the art and where our work �ts into an overview of
the area.

Solid state modelling and crystal structure prediction are important topics within
computational chemistry, incorporating a wide variety of methodologies from
chemistry and physics. These methodologies have been well described in the
literature, and seen widespread development more recently.55�59 The progress in this
area is perhaps best displayed in the computationally predicted crystal structures
from the CCDC's blind tests.60�63 We can broadly separate solid state modelling
methods into one of two theoretical approaches: Firstly, the introduction of ab
initio quantum chemical modelling, directly applying quantum mechanics to solid
state modelling. Secondly, we can apply classical force �elds or �tted models
parametrised to experimental or quantum chemical data. Both methods have
seen advancement and widespread use.58,64�67 More recently, we have seen new
advancements in dispersion corrections for periodic DFT. These advances have
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provided evidence that a �rst principles method is able to correctly predict the
energetic ordering of some polymorphs.59 In our work we have begun to expand into
these �elds, hence, much of the future work emanating out of this project will be in
this direction. We have explored empirical melting point predictions and a variety
of methods to predict ∆Hsub, ∆Ssub and ∆Gsub. Our work provides the groundwork
for future exploration of the sublimation process by a variety of methods.

Solvent modelling and solubility prediction have also seen methodological
improvements in recent years. Large systems can now be modelled with some level of
quantum mechanical detail, using QM/MM or linear scaling DFT. These are useful
abilities for pharmaceutical development in protein modelling. Recent advances
have seen thermodynamic mapping of entropic and enthalpic terms within binding
pockets,68 which is a useful tool when analysing the binding action and method
for drug molecules. We have additionally seen improved models for the solvent
which o�er more physical descriptions of the solvent at reasonable costs.51,52,69 These
models have been tested and evaluated in the work presented in this thesis on a small
dataset. We present a proof of concept work of a computationally e�ective �rst
principles prediction of solubility.31 We go further combining some of these methods
with informatics methods.33



Chapter 2

Theory and Methods

"Most people wouldn't know a wave function if they tripped
over one, but almost everyone has heard of the uncertainty
principle."

Chad Orzel, 2010

2.1 Cheminformatics and Machine Learning

QSAR and QSPR are models developed from a priori information. The models
are essentially correlations between structural aspects of the molecule and physical
properties. The primary assumption of such models is that structurally similar
molecules have similar properties. As a result, we can train a model to de�ne a
relationship on a given training dataset and use it to predict properties of unseen
molecules which contain similar structural features. These methods are not generally
applicable, i.e. a reasonable prediction cannot be expected if the test molecules
di�er notably from the training molecules. Machine learning methods can be used
to identify and build models which correlate these structural properties with the
physical data. The machine learning methods available vary greatly in methodology
and relative complexity. Some are discussed below. Typically a molecule is
represented in a machine readable format, such as the Simpli�ed Molecular Input
Line Entry System (SMILES) 70�72 or the IUPAC International Chemical Identi�er
(InChI).73 These are input into a machine learning method which learns a model
that correlates the structural features with the physical properties. The model is
then used to make predictions of molecular properties based on a set of chemical
structure descriptors.74

2.1.1 Molecular Input

The input of molecular structures as machine readable formats presents its own
challenges. Numerous formats and representations have been developed for di�erent
applications from web based searching to chemical identi�cation. The initial
challenge is that ideally the format's input syntax should be canonical, i.e. have

16
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a single unique string to determine each molecule. Depending on the purpose
and complexity of the format, additional challenges arise such as, how to represent
3D structure in strings, present stereochemistry and determine equivalent chemical
structures.74�76

SMILES are a commonly used format because they are human readable, (Appendix
A) whilst also being machine readable. The problem is that the original SMILES
are not a canonical method. SMILES is a hydrogen suppressed notation that has
no strict de�nition of the point at which one should begin to read or write the
structure from. This can lead to problems when calculating molecular descriptors,
as often one SMILES string can be read with a di�erent protonation state in di�erent
programs. Extensions to the SMILES scheme exist and are now commonly used.
These extensions make SMILES a canonical format, and are generally based on the
Morgan algorithm.77 The Morgan algorithm de�nes the starting point as the point
possessing the highest connectivity value. The connectivity value is initially the
number of connected atoms but is iteratively increased by summing the connectivity
values of bonded partners until the maximum number of di�erent connectivity values
is reached.

InChI are promoted as a worldwide non-proprietary standard chemical identi�er.76

InChI are designed to be canonical and have been integrated into a number of larger
databases for use as search tools with the InChIkey system.76 Additionally, they are
a compact method of storing structural information and transferring it electronically.
InChI strings are technically human readable and writeable, although more di�cult
to understand than SMILES (Appendix A). Each is a string beginning with
�InChI=� and a version number, following from this is a string separated into
multiple layers by �/�. The string InChI always holds the molecular formula
and a connectivity layer, then additional �ags adding for example stereochemistry
information. InChI are a canonical representation however, there is a known problem
in version 1 of the InChI method that if a tautomer is represented in di�erent ways,
i.e. as a resonance structure or as a �xed charged structure, di�erent InChI are
sometimes produced. The developers hope to rectify this in version 2.76

A range of other formats exist, although many are now becoming obsolete. Other
formats still in common use are Chemical Abstract Services (CAS ),78,79 the Chemical
Mark-up Language (CML)80 and MOL�les. The CAS provides a unique database
of millions of publicly available chemical structure entries. CAS classi�es each with
a unique number which itself contains no chemical information.79 CML is designed
for the transfer of information over the internet. It is built on the eXtensible Mark-
up Language (XML) as an application and can deal with reaction mechanisms and
structures.80,81 MOL�les are simple �les containing just a header and a connection
table. MOL�les are now most widely used as a section of input for a larger �le such
as SD�les which are �les made up of a MOL�le and contain physical data related
to the molecule.75,76

2.1.2 Descriptors

Descriptors come in many di�erent forms and are used to represent physical features
of chemical structures. They are generally single numerical values which hold some
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information about a physical property of a speci�c molecule.74 Descriptors can be
simple properties such as the molecular weight or the number of a speci�c atom
type or they can be a prediction with corresponding experimental values, such as
the octanol-water partition coe�cient (P). They can also be derived from classical
or quantum chemistry. Clearly the cost to calculate di�erent descriptors can vary
dramatically. For example, the time needed to calculate the relative energy of a set
of molecules using quantum chemistry will be substantially greater than calculating
the number of H atoms in each molecule. It is generally true that descriptors
o�ering higher levels of re�nement incur a higher computational cost.74 There are
thousands of di�erent types of molecular descriptors and numerous pieces of software
to calculate them. Here, we discuss a few common descriptors from 2D and 3D
molecular inputs. Several were used in this work, calculated using the Chemistry
Development Kit (CDK )82 from SMILES representations of molecules. The CDK
is an open source cheminformatics Java library. Tools83,84 have been developed to
interface the CDK with common programs such as Microsoft Excel83,85 and R84,86.

The most basic descriptors are those concerned with straightforward counting.
These can be the count of a particular atom type, features like H bond acceptors and
donors or particular structural features (rotatable bond, aromatic rings, aliphatic
C's etc). Other common descriptors are molecular weight and sub-structure weight,
generally calculated using sub-structure searches. Rarely will simple counts be
su�cient to discriminate molecular properties; so models will usually combine these
descriptors with more complex ones.

Popular more complex descriptors include topological indices, �ngerprints and
predicted physicochemical properties. Topological indices describe branching, shape
or size of a molecule via a single value. Early versions from Wiener87 (Equation
2.1) involved calculating the distances between atom pairs and summing the number
of bonds between them. This gives a descriptor for molecular branching:

1

2

n∑
i=1

n∑
j>i

Dij (2.1)

Equation 2.1: Dij is the separating distance between i and j.

Also in common use today, are the chi molecular connectivity indices. These are
descriptors for molecular branching and size. The descriptors come from initial
work by Randic88 which was later generalised by Kier and Hall.89 The descriptors
account for valence electronic state and number of hydrogens bonded to an atom
(Randic's original formulation was H suppressed). Additionally, this measure is no
longer pairwise, as in Wiener's approach, instead a continuous sum runs over a
selected path length, measured in number of bonds.

Following from this work Kier and Hall90 also generated the kappa shape indices.
Shape indices compare the number of paths to alternative so called `extreme
structure', where all atoms are bonded to one another or form a linear chain.
Shape indices do not contain any information about the atom type. A ratio is
then calculated giving a measure of how close to one of these extremes the actual
molecules shape is. One other important topographical index is the electrotopological
index, from the work of Hall, Mohney and Kier.91 Such descriptors provide
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information on the electronic and topological character of atoms in a molecule,
de�ned as the electrotopological state (E-State) of an atom.

Combined together the above descriptors provide a molecular descriptor encoding
limited information on electronic structure and shape of a molecule. Other
descriptors have also been created to provide atomic level information, such as
BCUT, which provides information on polarizability and atomic charges.92

Molecular �ngerprints were originally designed to speed up sub-structure searching
but have since found use as molecular descriptors. A binary �ngerprint encodes
speci�c structural information. As the sub-structures often relate to the biological
activity of a molecule, it is likely that these descriptors provide information
con�rming the presence of sub-structures of interest in the main structure.74

Extensions to 3D �ngerprints have occurred in recent years.93 Alternatives or
additions to molecular �ngerprints are atom pair94 or topological torsions. Atom
pair descriptors are de�ned for all pairs of atoms in the molecule and encode the
shortest path between them. They hold information on the element type, number
of non-hydrogen atoms bonded directly to both atoms and the number of bonding
π electrons. As a result they provide �ner granularity than molecular �ngerprints.
Topological torsions follow similar conventions to atom pairs but over four centres.74

A �nal, commonly used, set of descriptors are those of predicted physicochemical
properties. Predicted properties provide inherent information to any model about
the likely activities of the overall molecule. They take the form of additive models
assigning a group or atom a particular value and summing them together. One,
common property that is used as a descriptor is logP. Experimentally, logP the
base 10 logarithm of the ratio of a molecule's solubility in water and octanol. It is
an important descriptor in de�ning drug lead compounds, o�ering information on
the bioavailability of a potential drug molecule in aqueous and organic solvents.95

There are a number of de�nitions of predicted logP. Rekker96,97 de�ned the following
equation (Equation 2.2) which has formed the basis of many group additivity
models:

logP = log

(
n∑
i=1

aifi +
m∑
j=1

bjFj

)
(2.2)

Equation 2.2: Rekker's logP equation, ai labels a fragment and fi is the contribution to
the sum of the fragment, bj labels the number of incidences of the correction factor Fj s

application.

ClogP95,98,99 is an example of a group additivity model. The model fragments a
molecule on the basis of establishing isolated carbons i.e. those possessing only single
bonds to heteroatoms. The model considers these atoms hydrophobic and those
groups containing heteroatoms to be polar fragments. The values assigned are based
on a relatively small library of fragments for which logP has been experimentally
measured. A number of atomic additivity methods have also been described in the
literature,74,100 two examples being AlogP101�103 and XlogP.104 These methods have



20 CHAPTER 2. THEORY AND METHODS

a similar form to the group method described above, with the notable di�erence of
sums running over atoms rather than fragments.

2.1.3 Machine Learning Models

Having produced a range of descriptors we now require that these can be correlated
with known results. Machine learning/data-mining can be very good tools for
correlating such multi-dimensional data to an activity. A few of the algorithms
that machine learning models can use are discussed here, although it should be
noted that many others are available.

2.1.3.1 Random Forest

Random Forest (RF ), is an ensemble learning method that generates a forest of
decision trees. The method follows a general work�ow of:

• Selecting at random a sample of the training molecules with replacement.

• Growing a tree to its maximum extent on the basis of the best split achievable
from a random subset Mtry of the given descriptors (generally taken to
be [No.ofdescriptors]

1
2 in classi�cation and 1/3 no. of descriptors for

regression).105

• Repeat the above two steps until a su�ciently large number of trees are
generated.

This leads to a forest of a number of trees (Mtree).105 Each tree has the structure
of a main initial input/root node (parent node) and two sub nodes (child nodes).
The splitting then continues giving the �rst two child nodes two child nodes each
until no further splitting can be made, at which point the child node is known as a
terminating node (leaf node) (Figure 2.1). This method of continually separating
the data is known as recursive partitioning.74,106 There are a number of ways to
de�ne a criterion at which to split the data. One of the most common is that of the
classi�cation and regression tree (CART) algorithm known as the Gini index (GI ).
The GI estimates the impurity in a child node if a split were to occur from the
parent node on the basis of a speci�c variable. The GI holds its maximum value
when the split would place equal amounts of data in both child nodes, hence, o�ering
no real di�erentiability in the data. The GI holds its minimum value when splitting
places all data in one of the child nodes. This means that the descriptor is highly
discriminatory and o�ers a favourable splitting. This process eventually leads to
those input data which share similar predictor values meeting in the same leaf node.
This method is applied to classi�cation. In regression the root mean square error is
minimised. The predicted value is assigned as an average prediction of all training
data occupying the same leaf node.
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Figure 2.1: Random Forest: Illustrative example. The purple box is the root node. Blue
boxes are parent and child nodes. Green boxes are leaf nodes.

2.1.3.2 Support Vector Machines

Support Vector Machines (SVM ) is another algorithm and it allows classi�cation and
regression by separation and projection to a higher-space. SVM locates a surface
which separates the data in the optimum manner, by mapping the data to a feature
space in which it is separable.74 The mapping to a higher order space allows the data
to be used to produce a predictive function utilising the support vectors, which are
the points closest to the separating surface. An illustrative example for classi�cation
is shown in Figure 2.2.

Figure 2.2: Support Vector Machine: an illustrative example of an SVM. Non-linear data
plotted on the left; while a SVM hyperplane de�ning a separating surface is shown on the

right in green.

SVM can also be used for regression. A parameter ε is de�ned as a margin
of acceptable error. The predictive function aims to predict the y responses to
the x input variables within this ε margin, whilst making the function as �at as
possible, therefore avoiding over �tting. Ideally all of the points will lie within
the ε boundary.33,107 This implies that a function exists which approximates the
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regression with the accuracy of ε. This is not always the case and hence slack
variables are introduced (ζ) to provide some �exibility to the model, see Figure 2.3
below.108 These slack variables control the "hardness" of the boundaries: If ζ ≤ 1 it
means the data point is inside the margin and on the correct side of the hyperplane,
however, when ζ > 1 then the point was erroneously predicted and a penalty is
incurred for a bad prediction. The optimisation becomes a case of minimising the
error penalty incurred by having ζ > 1 but also having large enough margins to
maximally accommodate the data.

Figure 2.3: Support vector machine regression: An illustrative example showing ε margins
and ζ error term. Dots with red outlines are the support vectors.

2.1.3.3 Partial Least Squares (Projection to Latent Structures)

Partial least squares (PLS ),109,110 can be considered as a classi�cation algorithm
which works by de�ation to latent variables (LV ). This method is also sometimes
known as projections to latent structure and was originally applied in the social
sciences, but has found widespread use in cheminformatics. The method attempts
to explain the co-variation in the independent variable (x) and dependent variable
(y). To achieve this, the dependent variable equation is cast in latent variables
(Equation 2.3 and Equation 2.4).

y′ = a1t1 + a2t2 . . . antn (2.3)

Equation 2.3: Partial least squares: dependent variable as a sum of the products of LV
(t1) and their coe�cients (a1).

74

Latent variables are linear combinations of the independent variables xi and a
suitable weight bij (Equation 2.4).
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ti =
∑
i

bi1x1 + bi2x2 . . . biNxN (2.4)

Equation 2.4: Latent Variables: linear combination of independent variables.74

The �rst LV (t1) is a linear combination of independent variables which jointly
provides a good explanation of the variance in the independent variable and, when
scaled by its coe�cient (a1), gives a suitable approximation to the dependent
variable. The independent variables within the �rst LV are then removed and
additional iterations of the above process generate more LV. As a result there are
always less LVs than there are independent variables helping to avoid over �tting.74

The overall process is cast into a matrix formulation.

Independent variables are stored in the matrix X and dependent variables are stored
in the matrix Y . The next step is to generate two sets of weights (w and c) which
maximise the covariance of X and Y when a linear combination of the columns of
X and Y are taken.

−→
t = Xw −→u = Y c (2.5)

Equation 2.5: Vectors maximising the covariance of X and Y. Constraints are placed on
the procedure; orthogonality, tT t = 1;uTu = 1 and ; tTu is maximal.111

When the constraints in the caption of Equation 2.5 are satis�ed, the �rst LV
is located. The descriptors comprising the LV's are subtracted from X and Y ;
the model of

−→
t vs −→u should now give a good approximation. A diagrammatic

interpretation of this process is shown in Figure 2.4. The process is repeated until
X becomes a null matrix.111

Figure 2.4: Partial Least Squares: An illustrative example, shows the original x and y
model converted to a model made of LVs.74
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2.2 Computational Theoretical Chemistry

Computational theoretical chemistry is the science concerned with the application
of in silico models, whether statistical, classical or quantum, to chemical systems of
interest. These methods contrast with those of informatics as they are physics
based. The results of these calculations are highly interpretable, within the
constraints of the physics they are based upon, and can aid in understanding
physical processes. The calculations discussed here, however, are notably more
computationally expensive than their informatics counterparts, as the real physical
equations (or approximations thereof) are solved by numerical computational
methods. In this section we outline the methods used in this thesis which range
from quantum mechanical, which are discussed �rst, to those which are classical or
statistical in nature.

2.2.1 Quantum Chemistry

Due to the size and mass of an electron we are unable to make electronic structure
calculations utilising classical mechanics. On such a scale quantum mechanics must
be employed. In this section we introduce theory and a discussion of methods which
aim deal with problems of this nature.

The time dependent, non-relativistic Schrödinger equation (Equation 2.6 and
Equation 2.7) is one of the foundations of quantum mechanics. It describes the
time evolution of a quantum system. A wavefunction (Ψ) is de�ned which contains
all information it is possible to know about a system; this is a fundamental postulate
of quantum mechanics. An operator is constructed, in this case the Hamiltonian
operator (Ĥ) (Equation 2.7) which acts upon the wave function to predict the
observable property of interest, here the energy of the system.

Ĥ(r, t)Ψ(r, t) = i~
∂

∂t
Ψ(r, t) (2.6)

Equation 2.6: The time dependent Schrödinger equation. i =
√
−1, H=Hamiltonian

operator, Ψ=wavefunction, ~ = h
2π , ∂/∂t is the partial derivative with respect to time.

Ĥ(r, t) = T̂ (r) + V̂ (r, t) (2.7)

Equation 2.7: Hamiltonian operator H is the sum of T(r), kinetic energy dependent on
position vector r and V(r,t), potential energy dependent on the position vector r and time

t.

For calculations where a time independent potential energy is de�ned (V(r,t)
= V(r)), it is possible to use the time independent, non-relativistic Schrödinger
equation, given in operator notation in Equation 2.8. This notation cleverly
disguises the complexity of the problem at hand. The equation takes the form
of an eigenvalue problem (Appendix F), where Ψ is the eigenfunction and E is the
eigenvalue.



2.2. COMPUTATIONAL THEORETICAL CHEMISTRY 25

ĤΨ = EΨ (2.8)

Equation 2.8: The time independent Schrödinger equation. H is the Hamiltonian
operator, Ψ is the Eigenfunction (wave function) and E is the Eigenvalue

2.2.2 The Hamiltonian

The Hamiltonian operator (Ĥ) is the di�erential quantum mechanical operator to
extract energies from a system appropriately described by a given wave function.
The operator takes the following form de�ned in international standard units (S.I.)
(Appendix B) :

Ĥ = −
∑
i

~2

2Me

∇2
i −

∑
k

~2

2Mk

∇2
k −

∑
i

∑
k

e2Zk
rik

+
∑
i<k

e2

rij
+
∑
k<l

e2ZkZl
rkl

(2.9)

Equation 2.9: i and j subscripts are for the electrons; k and l are for nuclei. Me and Mk

are electron and nuclear mass respectively. e and Z are electron and atomic number
respectively. ~ is the reduced Planck's constant ~ =

(
h
2π

)
. ∇2 is the Laplacian operator

(second derivative operator). Finally rzx is the separation of two particles

The �rst two terms in Equation 2.9 characterise the kinetic energy of the electrons
and nuclei respectively, the �nal three terms represent the potential energy of
the electron nuclear interaction, electron electron interactions and nuclear nuclear
interactions respectively. Currently any solutions to the equation would be functions
of both the nuclear and electronic coordinates. Given that protons and neutrons
are approximately 1800 times heavier compared to the mass of an electron,112 it is
routine to invoke the Born-Oppenheimer (BO) approximation. The approximation
suggests that in the time frame of electronic relaxation nuclear motion can be
considered as static.112,113 This decoupling results in the nuclear kinetic energy term
of the Hamiltonian being neglected and the nuclear repulsion becomes a constant.
This de�nes a new Hamiltonian of the form of Equation 2.10.

Ĥelectronic = −
∑
i

~2

2Me

∇2
i −

∑
i

∑
k

e2Zk
rik

+
∑
i<k

e2

rij
(2.10)

Equation 2.10: The electronic Hamiltonian

In turn, this de�nes the electronic Schrödinger equation (Equation 2.11), for
which solutions now use the nuclear coordinates as parameters and the electronic
coordinates are variables.113,114

(Ĥelectronic + VNN)ψelectronic = Eψelectronic (2.11)

Equation 2.11: Electronic Schrödinger equation under the Born-Oppenheimer
approximation. VNN is the constant nuclear nuclear repulsion
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From now on we will refer to only the electronic terms unless otherwise stated, hence
drop the sub-script electronic.

A wavefunction is required upon which the Hamiltonian will act, this function must
suitably describe the motion and whereabouts of the particles, in this case electrons.
The wavefunction (Ψ) is a function with no formal physical interpretation. It is down
to the operator to query the wave function and determine an observable property.
A recognised interpretation of quantum mechanics (Born Interpretation) is that
the modulus of the square of the wavefunction (|Ψ2|) is the probability density. In
the next section we discuss how suitable approximations of the wave function are
generated.

2.2.3 Basis Set Approximation

Before moving into the technical details of any given method it is important to
consider the basis set approximation. This approximation allows for the use of a
restricted number of functions to be considered when an approximate wave function
is being constructed. Following from this section, several methods which utilise
this approximation are discussed. These methods aim to approximately solve the
Schrödinger equation or a variant of it. The basis set approximation is born out
of practicality as calculation time scales polynomially with the number of basis
functions. The result is that sets of selected and optimised basis functions have
been produced to provide an incomplete, but still fairly accurate, approximate
wavefunction. A potentially in�nite number would be required to produce an
exact wave function. Broadly these basis sets are created and optimised on three
counts:112,113

1. Bearing computational e�ciency in mind the number of basis functions should
be small enough to be e�cient.

2. Larger basis sets should where possible be generated from functions which can
most easily be calculated by the computer.

3. Function must be of chemical relevance. The functions should map to the
probability density of the electrons, so have a greater amplitude where the
electron's probability density is highest.

2.2.3.1 Atom Centred Basis Sets

There have been several suggested functional forms for basis sets to take. The �rst
is that of the Slater-Type Orbital (STO). These functions were initially chosen for
the fact that they bear great similarity to that of the hydrogenic atomic orbitals.
However, these functions lack an analytical expression for many of the integrals that
are required, (Section 2.2.4.1) such as the two electron integrals (Equation 2.18).
As a result Boys proposed the use of Gaussian functions as atomic orbitals which
allowed for an analytical solution to these integrals. These orbitals are known as
Gaussian-type orbitals (GTO). The di�erence here is in the radial decay, in STO's
this is e−r where as in GTO's this is e−r

2
The usual form of these GTO's is as

follows:112
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ψ(x, y, z;α, i, j, k) =

(
2α

π

) 3
4
[

(8α)i+j+ki!j!k!

(2i)!(2j)!(2k)!

] 1
2

xiyjzke−α(x
2+y2+z2) (2.12)

Equation 2.12: A general form of some GTO in Cartesian coordinates. α is a parameter
that moderates the width of the function. i, j and k are positive integers which operate to
alter the form of the function in Cartesian coordinates, i.e. s-type p-type orbital etc.112

When the indices i, j and k all equal 0 the form of the function is spherically
symmetric, this is called an s-type function. If i, j or k equal one a single node along
one axis appears, this is known as a p-type orbital. The chemical relevance of this
is clear in that these functions naturally display a likeness to hydrogenic orbitals by
varying these coe�cients. Unfortunately GTO's also come with the disadvantage
that they display the incorrect radial form (they are exponential in r2). Additionally,
GTO's have a steeper gradient hence dropping o� quicker than the more natural
choice of STO's. To prevent and minimise this undesirable e�ect but keep the very
desirable computational e�ciency linear combinations of GTO's are taken to best
approximate an STO. This can be seen in Figure 2.5.112

ψ(x, y, z; {α}, i, j, k) =
Ngaussians∑

a=1

caφ(x, y, z;αa, i, j, k) (2.13)

Equation 2.13: Contracted Gaussian formulation. Ngaussians is the number of Gaussian
functions and c is a parameter optimising the shape and maintaining the normalisation of

the basis function.112
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Figure 2.5: Contracted GTO's approximating an STO for the 1s H orbital.The red line is
the STO and the blue is the GTO.115 α Values taken from reference.116

The STO-3G basis set is a so called single - ζ basis set. This implies that each
orbital is described by a single function which is a linear combination of GTO's,
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three in this case. This means there is a single function de�ned to represent 1s,
2s, 2p . . . and so on orbitals. We phrase this as minimal basis set; it contains the
minimum number of functions required, clearly not even close to the in�nite basis.
In order to recover some �exibility in the basis we look to multiple - ζ basis sets. A
double - ζ basis set would have two functions per orbital, i.e. two blue lines, one for
each of the functions and both fully optimisable in Figure 2.5. Thus this allows
extra �exibility to better optimise each orbital in di�erent environments. Example
of these kinds of basis sets are cc-pVnZ, where n = D double, T triple etc, which
are from the work of Dunning and co-workers.117 The acronym means correlation-
consistent polarised core and valence n-ζ.112

Given that the core orbitals play little role chemically and largely remain similar
in di�erent chemical environments relative to the valence orbitals, it was realised
that more �exible valence orbitals presented a greater gain than more �exible core
orbitals. This lead to the development of split-valence orbital basis sets. Some of
the most widely used basis sets of this form are those of Pople et al.118 These basis
sets are represented by an acronym of the form 6-31G. The values here refer to the
number of primitive Gaussians which go into producing that function. The �rst
number is the function representing the core orbitals, made up of in this case 6
primitive Gaussians. The numbers after the hyphen gives the number of functions
to describe the valence, in this case it is a double - ζ valence; the �rst function is
made up of 3 contracted Gaussians and the second is a single Gaussian function.112

Additional functions can be added to these basis sets in order to account for the
molecular environment more e�ectively. More �exibility is added to the basis set
by adding basis functions from higher orbitals. These are known as polarisation
functions. A schematic representation is provided below (Figure 2.6). These
functions allow for much greater �exibility in the wave function de�nition. Whilst
atoms can be well represented with simply the basis functions presented above, the
molecular system has a dependency on multiple atomic positions and hence requires
greater degrees of freedom.

O

H H
Mix O =

O

H H

Figure 2.6: Polarisation basis functions from mixing with an orbital of a higher angular
momentum

2.2.3.2 Plane Wave Basis sets

An alternative choice of basis functions is that of plane waves, regularly used in
periodic calculations. These basis sets are a sum of sine and cosine functions. As
periodic systems such as crystals or metals are vastly extended systems compared
to single molecules, the use of such sine and cosine functions becomes a clear choice,
owing to their in�nite range. The molecular orbitals in these systems tend to
group together becoming bands. These bands can be represented by sets of orbitals
expanded in the basis of plane wave functions:113
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ψ(x) = Acos(Kx) +Bsin(Kx) ≡ ψ(x) = AeiKx +Be−iKx

χK(r) = eiK·r (2.14)

Equation 2.14: Top: Plane wave function represented as the sum of sine and cosine
functions. Bottom: Molecular orbital expanded in the basis of plane wave functions113

K in the above equations is the wave vector which relates directly to the energy
(E = 1

2
K2). In this sense K determines the energy of the wave in terms of the

frequency of oscillation. K also relates to the unit cell via the translation vector (t)
de�ned as K · t = 2πm where m is a positive integer value. The size of the basis
set therefore, is de�ned by K. Generally speaking, plane wave basis sets contain
many more functions that STO and GTO basis sets. Plane waves can be applied to
single molecule systems in a suitably large cell to avoid interaction with its periodic
neighbour. However, due to the K's relationship with the unit cell translation vector
this means a large number of plane waves must be used, hence, GTO's in this case
are a more e�cient choice. Plane waves excellently model delocalised and slowly
varying electron densities. However, in the core of an atom electron density is �rmly
localised and occasional deep oscillations of valence orbitals means that K would
have to be extremely high to represent the core. It is therefore common to use
pseudo-potentials to describe the core region and hence reduce the maximum value
of K and the basis set size.

2.2.3.3 Pseudo-Potentials

Pseudo-potentials (PP), allow for the core orbitals to be neglected from explicit
calculation and instead to be represented by a single function which leaves the
valence orbitals una�ected. The generation of a PP initially requires calculating the
all-electron wavefunction of the atom. Replace the valence orbitals with a node-less
set of pseudo orbitals. Then replace the core orbitals with a �tted set of analytical
functions of the nuclear electron separation. The function is �tted such that it
does not change the valence orbitals and matches to the wavefunction at that point
(rc). Finally additional parameters are �t such that when a calculation is run the
pseudo-orbitals are equivalent to those in the all-electron calculation.113
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rc
rE

Figure 2.7: Pseudo-molecular orbital schematic, the all electron function is shown in
black and the pseudo-molecular orbital is shown in blue.113

There are several di�erent forms of PP. The norm-conserving PP requires that in
addition to the matching form at rc, the integral of the square of the PP and the
original wave are the same. These PPs tend to be rather restrictive covering only a
small core region hence still requiring relatively large values of K. Ultrasoft PP have
also been proposed which relax the additional constraint. These allow for a much
smaller value of K to be used.113

2.2.4 Wavefunction Methods

There are a couple of approaches to reaching approximate solutions to the
Schrödinger equation. Ab initio methods aim to solve the equation without
external parametrisation. Semi-empirical methods aim to solve the equations
after simplifying them by the introduction of some empirical data (calculated or
experimental). All of these methods use computationally intensive algorithms and
methods in order to solve the equations.

2.2.4.1 Hartree-Fock

The founding member of all of these methods is the Hartree-Fock method (HF),
which is itself an ab initio method. If we review the electronic Hamiltonian
(Equation 2.10), we note in the third term e2

rij
. This term implies a correlation

between the electrons, in that the interaction between electron i and electron j
depends on their joint positions. The correlated nature of electrons makes such a
many body problem intractable; as a result the HF method opts for a mean �eld
approximation (Figure 2.8). This approximation treats each electron individually;
each electron experiences an interaction with an averaged �eld representing the
electrons, including itself.112,113,119 Utilising this method each electron can be
described by a one electron wavefunction otherwise known as an orbital. Within
the HF theory, we can then construct a molecular wave function as a product of the
one electron functions. This is known as the Hartree product :112,113,120
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Ψ(r1, r2, r3 . . . rn) = φ1(r1)φ2(r2)φ3(r3) . . . φn(rn) (2.15)

Equation 2.15: The Hartree product.112

x

y

z

x

y

z

Mean field approximation

Figure 2.8: A diagrammatic representation of the mean �eld approximation and electron
correlation.

However, Equation 2.15 has a major problem. One of the fundamental principles of
quantum mechanics, the Pauli exclusion principle, set a requirement for all fermion
wave functions, of which electrons are one species of fermion, to be antisymmetric
with respect to interchange. Unfortunately the Hartree product does not satisfy
the antisymmetry requirement for the space and spin coordinates of the electrons.
Electrons have spin of ± half de�ned as α spin and β spin. If spin is included in the
orbital de�nition then the orbitals are de�ned as spin orbitals (χi). The molecular
wave function must be anti-symmetric with respect to interchange of an electron's
space and spin coordinates. Additionally, the Hartree product also requires that the
electrons are distinguishable; this is not allowed in quantum mechanics as electrons
are by de�nition indistinguishable particles.

These issues can be solved mathematically by representing the wave function in a
Slater determinant (Equation 2.16) (Appendix C). The HF method uses a single
Slater determinant to represent the molecular wave function. The columns of a single
Slater determinant represent the atomic orbitals and the rows represent the electron
coordinates. As a result each electron is at some point placed in each orbital, hence
making them indistinguishable. The pre-factor is a normalisation.112,113,119,121

Ψ(1, 2, 3 . . . n) =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) χ3(1) . . . χn(1)
χ1(2) χ2(2) χ3(2) . . . χn(2)
χ1(3) χ2(3) χ3(3) . . . χn(3)
...

...
...

. . .
...

χ1(n) χ2(n) χ3(n) . . . χn(n)

∣∣∣∣∣∣∣∣∣∣∣
(2.16)

Equation 2.16: n electron Slater determinate.112
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Having represented the wavefunction compactly, in terms of a Slater determinant,
we must now move to solve for the orbitals that minimise the energy. The solution
method utilises the variational principle (a prescription to reach the lowest energy
available based on a wavefunction constructed of the given functions Appendix E)
. This principle allows us to vary the parameters used to generate the orbitals in
order to minimise the electronic energy (Eelectronic) (Equation 2.15).

Eelectronic =

∫
Ψ∗ĤelectronicΨdr

Eelectronic = 〈Ψ|Ĥelectronic|Ψ〉 (2.17)

Equation 2.17: Top: Electronic energy evaluation. Bottom: Electronic energy evaluation
in Dirac bra-ket notation

The bottom Equation 2.17 uses the convenient Dirac bra-ket notation which
implies the integral explicitly stated in the top of Equation 2.17. The Hartree-Fock
energy equation can then be restated in terms of integrals over 1 or 2 electrons:

EHF =
∑
i

〈ψi|h|ψi〉+
1

2

∑
ij

|ii|jj| − |ij|ji| (2.18)

Equation 2.18: HF energy evaluation.112

The left hand term of Equation 2.18 gives the one electron integrals. This term
accounts for each electrons kinetic energy (motion of the electron) and potential
energy (attraction from nuclear charges). The right hand term of Equation 2.18
contains the two electron integrals and takes into account two distinct physical
contributions to the energy. The �rst, represented by |ii|jj|, is the Coulombic
interaction of the electron in the orbital χi with the mean �eld of all other electrons.
It can be de�ned as the Coulombic operator Jij. The second, |ij|ji|, represents the
purely quantum mechanical exchange energy shown by the exchange of spin orbital
subscripts i and j. In operator notation the exchange operator is Kij. This now
allows us to minimise the energy with respect to the orbitals. The Hartree-Fock
equations (Equation 2.19) are now de�nable and are once again recognisable as
eigenvalue problems:119,121

f(x1)χi(x1) = εiχi(x1) (2.19)

Equation 2.19: The Hartree-Fock equations: f here stands for the Fock operator

(Equation 2.20) and εi is the expectation value for the ith spin orbital.112



2.2. COMPUTATIONAL THEORETICAL CHEMISTRY 33

f(x1) = h(x1) +
∑
j

[Jj(x1)−Kj(x1)]

(2.20)

f(x1) = h(x1) + VHF

Equation 2.20: The Fock operator; VHF is the Hartree-Fock potential de�ned by the
Coulombic and exchange operators.112

As the HF equations contain a dependency on the orbitals in the Fock operator, they
hence require their own result to solve the equations, so must be solved iteratively.
This iterative solution process is known as the self consistent �eld. Following from
the previous section (Section 2.2.3) we need to cast the molecular orbitals making
up the wavefunction in terms of basis functions (φ).113

χi =

fbasis∑
α

cαiφα (2.21)

Equation 2.21: Molecular orbital represented in a basis set.113

Now applying Equation 2.21 to Equation 2.20 we can restate the HF equations
as follows:

Fi

fbasis∑
α

cαiχα = εi

fbasis∑
α

cαiχα (2.22)

Equation 2.22: HF equation using a atomic orbital basis.113

A matrix equation can be de�ned from this for closed shell systems. This matrix
equation is known as the Roothan-Hall equations, where the HF equations have
been set in an atomic orbital basis and grouped together in matrix notation:113

FC = SCε

Fαβ = 〈χα|F |χβ〉 (2.23)

Sαβ = 〈χα|χβ〉

Equation 2.23: Roothan-Hall equations.113 S is the overlap matrix between basis functions.
F is the Fock matrix containing the Fock operator results. C is a coe�cient matrix.

This de�nes the HF equations in an atomic orbital basis for a closed shell system.
The Fock matrix elements contain the integrals of the one electron operator and the
sum over the two electron integrals.
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2.2.4.2 Post-Hartree-Fock

A number of di�erent methodologies have been proposed as advances on HF theory.
As discussed previously, HF is limited in accuracy as it cannot account for the
electron correlation.

Eexact = EHF + Ecorrelation (2.24)

Equation 2.24: The Hartree-Fock limit

From here, advances on HF are generally attempts to capture at least some aspect of
this correlation energy. One such group of methods is based on perturbation theory.
These methods generically o�er a perturbation to the Hamiltonian, expressing the
eigenfunctions and eigenvalues as a Taylor expansion in terms of the perturbation.112

O = O(0) + λV

Equation 2.24: Operator simpli�cation in perturbation theory where O(0) is the simpli�ed
operator, V is is the perturbative operator, λ takes values between 0 and 1 mapping O(0)

to the original operator O and o(0) is the zeroth order eigenvalue.112

Here we will focus on a particular form of perturbation theory, that of Møller and
Plesset (MP),122 in which the methods are labelled as MPx, where x is equal to the
expansion order (MP2 = Møller-Plesset second order perturbation theory). Møller
- Plesset perturbation theory takes as its starting point the Schrödinger equation
and then applies the prescription of perturbation theory, as described above. In this
case the generic operator shown in Equation 2.24 is replaced with the Hamiltonian
O(0) → H(0). They proposed suitable forms for the H(0) and V operators, in which
H(0) is a sum of the single electron Fock operators. V is then the di�erence between
the full Hamiltonian operator Ĥ andH(0). By this prescription it is possible to de�ne
perturbative methods truncated at any arbitrary order. In practice, it appears that
the second order truncation is the �rst to o�er improvement over HF. This correction
to the energy is the leading term in the electron correlation. It is given as a sum
over doubly excited determinants which are generated by promoting two electrons,
which reside in occupied molecular orbitals in HF, to virtual orbitals. The sums are
limited to avoid double counting Equation 2.25.112,113,123

EMP2 =

occupied∑
i

occupied∑
j>i

virtual∑
a

virtual∑
b>a

[〈χiχj|χaχb〉 − 〈χiχa|χjχb〉]2

εi + εj − εa − εb
(2.25)

Equation 2.25: MP2 energy correction. χ represents the molecular orbitals. Occupied
orbitals are labelled by subscripts i and j virtual orbitals are labelled with subscripts a and

b. ε represents the eigenvalues of the orbital.112,113,123

Other post-HF methods have been developed generally taking account of additional
Slater determinants. All of these methods in essence provide a systematic way to
approach the solution of the Schrödinger equation. These generally involve the use
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of a number of Slater determinants. This is helpful as we know how to approach
a solution to the Schrödinger equation, however, for all practical purposes these
methods can quickly become too expensive to use on real systems of interest.

2.2.5 Density Functional Theory

Density functional theory (DFT) is now widely regarded as the work-horse of
quantum chemistry. Unlike wavefunction theory, DFT aims to use the physically
observable quantity of the electron density to de�ne a system. To achieve this,
functionals are employed; these are functions whose arguments are also functions,
also known as functions of functions.

The history of DFT can be traced back as far as 1927112 and the work of Thomas124

and Fermi,125 who derived a kinetic energy functional from a uniform electron gas
(Thomas-Fermi model). Following this, Slater126, Dirac127 and Bloch128 all generated
similar expressions for the exchange energy (Tomas-Fermi-Dirac model). These
expressions were combined with classically derived potential energy expressions
and QM corrections, taking the electron density as their argument. This was
the beginning of DFT. These initial models, however, su�ered from serious �aws
from a chemical stand point; chemical bonds were not predicted. This error is
associated with the kinetic and exchange energy functionals due to the uniform
electron gas assumption. Largely these models were used as empirical methods,
�nding application in periodic systems, before its modern formulation by Hohenberg,
Kohn and Sham.129,130

Hohenberg and Kohn129 provided two theorems. The �rst is the existence theorem,
which states: The external potential is uniquely de�ned by the total electron density
(Appendix G).129,131 This powerful statement provides a direct mapping of the
electron density to the energy of a system. Moreover, if the electron density uniquely
de�nes the external potential, it thus also determines the Hamiltonian and hence
wavefunction. A perceptive view of why the electron density uniquely de�nes the
system is attributed to E. B. Wilson:113,132

1. Integrating the total electron density de�nes the total number of electrons

2. The peaks in the density, known as cusps, are centred on the positions of the
nuclei

3. Cusp height provides information on the nuclear charge of the nucleus
responsible for it.

The second theorem, provides a variational theory, similar to that of the wave
function methods (Equation 2.26). This provides a means to optimise the system
for the best trial/candidate density. (Appendix G).

E0(ρ) ≤ E0(ρ
′) (2.26)

Equation 2.26: DFT variational theorem. ρ is the true ground state density and ρ′ is the
approximate density
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These two theorems provide the rigorous mathematical base upon which DFT is
built. DFT's main advantage over wavefunction methods is its implied simplicity.
Wave function methods utilise the complicated wavefunction which in principle
contains 4N variables (spin and position) per electron. DFT, being based on
the complete electron density, in principle depends on only 3 variables (position)
independent of system size. This is due to DFT being free of molecular orbitals,
as opposed to wave function methods. The bene�ts are immediately obvious in
terms of calculation time. However, although these theorems prove the existence
of a functional capable of assessing a systems energy exclusively from the electron
density, the functional remains unknown. Without a prescription to reach such a
functional, models have been developed to approximate it, hence linking the electron
density and energy.

DFT functionals, within computational chemistry, generally arise from the work of
Kohn and Sham (KS). 130 In this ground breaking piece of work, Kohn and Sham
elaborate on a self-consistent �eld method for DFT, analogous to that in HF theory.
The method recalls the use of orbitals and posits the system as a �ctitious, non-
interacting set of orbitals (i.e. a system in which the electrons are charge neutral
fermions lacking a Coulombic interaction) within an e�ective potential. This allows
the kinetic energy to be separated into two terms: Firstly the non-interacting kinetic
energy, which contains the vast majority of the kinetic energy, and secondly a small
correction factor for the quantum nature of electrons. The introduction of orbitals
is at the price of independence of system size. By including orbitals DFT increases
in complexity to 3N variables for each electron. This was the critical step in Kohn
and Sham's method. Assuming that electrons do not interact with one another it is
possible to recover the vast majority of the energy of the system exactly.112,113,133

We can imagine, from the existence theorem, that provided the external potential
remains consistent with the real system then density will also remain consistent
with the real system. Therefore, we can calculate the exact solution for a non-
interacting system by enforcing the potential has some dependence on the degree of
interaction. If there is no interaction, and the system is non-degenerate, the solution
is a single Slater determinant of the molecular orbitals (φ). Within this �ctitious
non-interacting system the kinetic energy can be exactly calculated as the �rst term
in (Equation 2.27).132

Enon int DFT [ρ] = Tnon−int[ρ] + VNe[ρ] + Jee[ρ] (2.27)

Equation 2.27: Kohn Sham DFT energy functional for a non-interacting system of
electrons. Tnon−int is the kinetic energy of the non-interacting system. VNe is the nuclear

electron potential energy (external potential). Jee is the electron electron classical
Coulomb interaction.112,113,132

Equation 2.27 contains terms, respectively, referring to the kinetic energy of
the non-interacting system (Tnon int), the nuclear electron interaction or external
potential (VNe) and the classical electron electron repulsion (Jee). From the classical
electron electron repulsion arises an un-physical self-interaction similar to HF in the
mean �eld approximation. In HF this exactly cancels with the exchange energy.
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To account for the interacting system, we need to add corrections to include the
quantum nature of the system. This is made up of a correction to the kinetic energy
and the potential energy of electron electron interactions. This is all included into a
term which can be added to the end of Equation 2.27; the exchange and correlation
functional (Exc). Altogether this gives a KS DFT energy functional:

EDFT [ρ] = Tnon int[ρ] + Vne[ρ] + Jee[ρ] + Exc[ρ] (2.28)

Equation 2.28: Kohn Sham DFT energy functional

The di�erence between EDFT and the exact energy (Eexact) de�nes the exchange
and correlation energy functional Exc.

Exc[ρ] = (T [ρ]− Tnon int[ρ]) + (Eee[ρ]− Jee[ρ]) (2.29)

Exc[ρ] = ∆T [ρ] + ∆Vee[ρ]

Equation 2.29: Kohn Sham DFT Exc functional de�nition.
113

The exchange and correlation functional therefore contains the corrections to the
kinetic energy, i.e. the kinetic energy contribution due to electron interactions, and
secondly, a correction to the potential energy for electron exchange and correlation.
In principle this contains all warranted corrections, hence removing undesirable
features such as self-interaction. It is important to note, that there is no reduction
in the generality or exactness of this formulation over the orbital free formulation of
Hohenberg and Kohn.129 Having created a functional we require a method to locate
the orbitals that minimise the energy. To do this a KS operator (hKS) is applied in
a pseudo-eigenvalue equation:

hKSi = −1

2
∇2
i −

nuclei∑
k

Zk
|ri − rk|

+

∫
ρ(r′)

|ri − r′|
dr′ +

δExc
δρ

(2.30)

Equation 2.30: Kohn Sham Hamiltonian112,132. The terms on the right hand side are the
kinetic energy of the non-interacting system, the nuclear electron interaction, the electron

electron interaction and �nally the exchange correlation potential (the functional
derivative of Exc) respectively.

hKSi ψi = εiψi (2.31)

Equation 2.31: Pseudo-eigenvalue equation from Kohn Sham DFT112

The molecular orbitals (ψ) are expressed within a basis set {φ} and the molecular
orbital coe�cients are determined by solution of a secular equation as in HF. The
density is needed for solution of the secular equation, but the density is based upon
the orbitals resulting from the secular equation. The solution is therefore found
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iteratively, as in HF. Some similarities exist between DFT and HF. A key di�erence
is that HF is approximate by construction, a �rst step to a full solution, but DFT
is a formally exact theory as described above. However, due to the form of the Exc
functional being unknown, the functionals we use are approximations of the exact
theory.112,132 As a result many DFT functionals su�er from incomplete treatment,
leading to errors such as self-interactions. Perdew provided a "Jacob's ladder" of
DFT, Figure 2.9.134 It represents the various approximations of DFT functionals
and a guide to their relative success.

LDA/ LSDA

GGA

Meta-GGA

Hybrids

?

Figure 2.9: Jacob's ladder of DFT approximations.134

There is no systematic approach to DFT functional improvements, due to a lack of
prescription to �nd the exact exchange and correlation functional. Approximate KS
DFT employs a range of functionals with di�ering levels of theoretical justi�cation
and complexity, often the most unlikely functionals have proven most successful.132

The �rst of these approximations is the local density approximation (LDA) . The
basis of the LDA is the uniform electron gas as mentioned earlier in relation to the
Thomas-Fermi DFT kinetic energy functional. LDA is the basis of most modern
approximate DFT exchange and correlation functionals. A uniform electron gas is
one in which there is no net electrical charge, i.e. the background is a positively
charged distribution of the same magnitude but opposite sign to that of the electrons.
The number of electrons (N) and the volume (V ) are assumed to approach in�nity
whilst the density is still a �nite quantity holding the same value everywhere within
the system(ρ = N

V
).132 This corresponds nicely to an ideal simple metal, indeed this

approximation has been applied successfully in solid state physics for many years.
Figure 2.10 below, shows a pictorial representation of the LDA approximation:
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ρ ρ 

r εxc 

Figure 2.10: A pictorial representation of the local density approximation. This diagram
represents the idea of the varying electron density on the left, being approximated by the
uniform electron gas by mapping the density to same level and taking the corresponding

εxc value. Inspired by the lectures and notes of N.M. Harrison.135

Unfortunately this functional provided few applications in computational chemistry.
This is due to molecules having rapidly changing density, as is shown in the diagram,
hence not close to the approximation of a uniform electron gas.132

The second level of approximation is the generalised gradient approximation (GGA).
This model builds on the LDA adding a variable, which is the �rst derivative of the
density, i.e. the gradient of the density. This was the method that introduced
DFT as a useful method in computational chemistry. Other attempts to add a
gradient correction had previously occurred but had poor results.113 Many popular
GGA functionals have been produced. An early, and still popular, exchange energy
functional is that from Becke. It is known as B or B88.136 This is a �tted functional
which has seen extensive use. Other �tted functionals were produced such as the
HCTH functionals which were �tted to large experimental datasets.137 Correlation
energy potentials, such as that from Lee, Yang and Parr (LYP), were developed at
the same time.138 This functional contained four �tted parameters. Other popular
developments from this time were those of Perdew and Wang (PW86, PW91),139�141

and Perdew-Burke-Ernzerhof (PBE).134 These are linked exchange and correlation
functionals based o� the same model. Each iteration from PW86 to PBE can be
treated as a re�nement to the previous functionals. PBE is still widely employed,
especially in solid state calculations. Further extensions to GGA models have been
suggested, including meta-GGA's which either contain a dependency on the orbital
kinetic energy or a Laplacian (second derivative ∇2(ρ)) of the electron density. It
is common that meta-GGA's use the orbital kinetic energy term as it is generally
more numerically stable than the ∇2(ρ).113

The �nal level is that of hybrid functionals. It is debatable whether these should
be placed at this point of the ladder, owing to their often heavily empirical nature.
Nevertheless, hybrids have been used successfully in many applications. These are
methods which are empirically �tted and contain some portion of exact exchange
i.e. HF exchange. The well known B3 functional from Becke is a three parameter
functional �tted to experimental values and containing 20% exact exchange.142. This
functional has been one the most extensively used combining several existing DFT
exchange and correlation functionals such as B3LYP, B3PW91 and O3LYP. B3LYP
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is the most extensively used DFT functional in computational chemistry and has
the functional form of Equation 2.32.

EB3LY P
xc = (1−a)ELSDA

x +a(Eexact(HF )
x )+b∆EB88

x +(1−c)ELSDA
c +c(ELY P

c ) (2.32)

Equation 2.32: B3LYP functional form. The usual values are a ' 0.2, b ' 0.7 and
c ' 0.8.113,142

Other hybrids have also been produced such as PBE0. This adds some portion of
HF exact exchange to the existing PBE GGA functional. Hybrids have recently
been extended to double hybrids including a portion of the MP2 correction to the
correlation energy.143

From the generation of GGA's and hybrids in the 1990's, DFT has become a vital
resource to computational chemistry. DFT usually provides a level of accuracy
above HF and approaching the MP2 level in terms of wavefunction methods, and
does so at a fraction of the CPU time cost. Due to the lack of an exact exchange and
correlation functional though the full use of DFT is limited and ad hoc corrections are
now routinely applied to correct it and provide better chemical accuracy. Dispersion
corrections are currently a major development �eld. These provide a correction to
the DFT correlation energy which generally does not predict the weak attraction
due to the van der Waals (VDW) forces. Several methods to incorporate some
correction to dispersion have been developed including semi-empirical corrections,
such as those from Grimme, Tkatchenko and Sche�er. These are �tted models which
generally provide a post-calculation correction to the energy.144�146 Hybrid-meta-
GGA functionals, which include parameters to natively account in an approximate
way for dispersion, the Minnesota M05 and M06 family of functionals fall into this
category.147 New functionals are still being developed, but at a slower pace than
previously.148

2.2.6 Crystallography

Periodic systems are systems that can be described continuously using a unit cell.
The systems can be 1D, a polymer, 2D, a surface, and 3D, such as a crystal. The
cell is characterised by three primitive cell vectors (~a1, ~a2, ~a3) and the three angles
separating the vectors (α, β, γ). Varying these gives seven unique combinations
shown in Table 2.1. These are combined with nets (Figure 2.11) de�ning unique
positions within the cell to place an atom or molecule. Together, the nets and cells
form the Bravais lattices. The Bravais lattices represent 14 unique 3D combinations
of cells and nets, which when translated by the lattice vector ~t (Equation 2.33)
cover the entire space hence reproducing the structure.

~t = n1~a1 + n2~a2 + n3~a3 (2.33)

Equation 2.33: Translational lattice vector
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Lattice System |a1|, |a2|, |a3| relation α, β, γ relationship Lattice Centring

Cubic |a1| = |a2| = |a3| α = β = γ P I F
Tetragonal |a1| = |a2| 6= |a3| α = β = γ P I

Orthorhombic |a1| 6= |a2| 6= |a3| α = β = γ P I F C
Hexagonal |a1| = |a2| 6= |a3| α = β = 90◦γ = 120◦ P
Trigonal |a1| = |a2| = |a3| α = β = γ 6= 90◦ P

Monoclinic |a1| 6= |a2| 6= |a3| α = β = 90◦γ 6= 90◦ P C
Triclinic |a1| 6= |a2| 6= |a3| α 6= β 6= γ 6= 90◦ P

Table 2.1: Bravais lattices

Primitive (P) Body centred (I) Face centred (F) Base centred (C) 

Figure 2.11: The possible lattice centrings in the Bravais lattice systems

The concept of reciprocal space is an important one for periodic systems as it can
provide a simpli�cation to the problem. The reciprocal of a cell is also de�ned by
three vectors (~b1, ~b2, ~b3) which are derived from the primitive lattice vectors of the
real space cell and following orthonormality (Appendix D).

~b1 = 2π
~a2 × ~a3

~a1(~a2 × ~a3)
~b2 = 2π

~a3 × ~a1
~a2(~a1 × ~a3)

~b3 = 2π
~a1 × ~a2

~a3(~a1 × ~a2)
~ai~bj = 2πδij (2.34)

Equation 2.34: Relation of reciprocal space lattice vectors and real space lattice vectors.

A cubic cell in real space remains a cubic cell in reciprocal space, but with its cell
lengths scaled as: L in real space 
 2π

L
in reciprocal space. We can analogously

de�ne a vector in the reciprocal space ( ~K) to that in real space(~r). This is known
as a wave vector as it has units of 1

Length
.

2.2.7 The Electronic Structure of Crystals

Bloch's theorem states that the electronic wave function in a periodic structure
can be written as a product of a plane wave and periodic function, with the same
periodicity as the unit cell. This is known as a Bloch state or Bloch orbital.
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ψn,k(r) = eiK.rυn(r) (2.35)

Equation 2.35: Bloch orbital. ψ(r) is a one-electron wavefunction. The �rst term on the
right hand side represents a plane wave with K being the wave vector, i =

√
−1 and r is

the position. The second term on the right hand side is the cell periodic function.

Figure 2.12: Schematic of the real portion of a Bloch wave: The dotted line represents the
plane wave. The red spheres are atoms and the oscillating waves are the cell periodic

functions.149

We can expand the cell periodic function (υ(r)) in a basis set. As this is a periodic
function the natural choice of basis set is that of plane waves, though it can also be
done using GTO basis functions. (Section2.2.3)113

υn(r) =

Nbasis∑
α

cnαχ
Planewave
α (r)

ψn,k(r) = eiK.r
Nbasis∑
α

cnαχ
Planewave
α (r) (2.36)

Equation 2.36: Bloch orbitals. Top: Cell periodic function expanded in a basis of plane
waves. Bottom: Bloch function having being expanded in a basis of plane waves.

Using Bloch's theorem we can employ periodic boundary conditions. These enforce
that at the point r if we travel through space by a translation of ~t, we will be
at an equivalent point within the overall structure, but simply one unit cell away
from where we started. In this case the periodic portion of the wavefunction at
the two points will be equivalent only changing in the plane wave component. This
immediately reduces a seemingly intractable problem of an in�nite system, hence,
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in�nite number of electrons, to a single unit cell as this cell can be used to recreate
the entire structure by translation.113

We can however simplify the problem further. If we take the reciprocal of the unit
cell and join the lattice points, then bisect the connecting lines, we can de�ne a
new cell. This is known as the �rst Brillouin zone (BZ ) of the real space lattice or
Wigner-Seitz cell of the reciprocal lattice. These are primitive cells as they contain
only a single lattice point. They also cover the entire structure making them ideal
choices for reciprocal space unit cells. Hence, by working in reciprocal space it is not
necessary to even fully calculate the unit cell; it is in fact enough to only calculate
the �rst BZ. This has greatly simpli�ed the calculation we require, by taking us
from a set of integrals over an in�nite system to a set of integrals over the �rst BZ.
We can �nally apply a grid of points to the �rst BZ called K points. K points are a
set of points within the �rst Brillouin zone positioned to represent the symmetry of
the system, an important K point is the gamma point, which is the centre point of
the 1st Brillouin zone. At each of these points the appropriate calculation is made
hence approximating the integral over the entire BZ.113

Figure 2.13: Schematic of a Wigner-Seitz cell. The red sphere represents the single lattice
point enclosed in the WS cell with the blue bisecting line representing the edges of the WS
cell. The black spheres are the next set of lattice points away from the red lattice point.

Inspired from the following reference.150

Figure 2.14: A 2D schematic of a K-point grid. Using the symmetry of the cell it is
su�cient to sample over only one section of the Brillouin zone. The K points, grey

circles, represent the points where the system is evaluated to approximate the integral over
the entire zone.

2.2.8 Crystal Lattice Simulation

We can model crystal lattice structures using model potentials and electrostatic
potentials. These models are cheaper than periodic DFT and can lead to good
results more e�ciently. The program DMACRYS65 is an example of such a scheme.
Here a �tted repulsion and dispersion potential is applied along with an electrostatic
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potential calculated by distributed multipole analysis (DMA), originally developed
by A. Stone.151 DMA calculates an multipole moments which allow the electrostatic
potential to be accurately calculated. The multipole moments are determined
directly from the density matrix and basis functions of a prior quantum chemical
calculation. The charge overlap between the basis functions can be expanded as a
multipole around the overlap. For example two s orbitals overlapping produces a
point charge, an s and p function overlap has components of a point charge and a
dipole.113

s orbital overlap - 
Point charge

s and p orbital overlap - 
Point charge

Dipole

 p orbital overlap - 
Point charge

Dipole 
Quadrupole

Figure 2.15: Depiction of charge overlap with di�erent basis functions.123

This expansion in principle is limited if all distributed multipoles are produced
for every pair of basis functions. However, pragmatically this involves too many
multipole centres and for general purposes multipole centres are restricted to the
atomic nuclei and some points along bonds. This relocating of multipole centres
prevents the convergence to a limited number of terms however, generally the terms
of higher order contribute little to the now in�nite sum so can be ignored. If Gaussian
basis functions are used the centring is given by Equation 2.37.

Rcent =
αR1 + βR2

α + β
(2.37)

Equation 2.37: Distrusted multipole analysis centring from Gaussian basis functions. Ri
are the coordinates of two nuclei upon which the basis functions are centred. α and β are

the exponents of the Gaussian functions.113

In addition to the multipoles representing the electrostatic interactions DMACRYS
employs an empirical repulsion and dispersion potential. This is �tted to
experimental data from crystal structures and given in the form of a Buckingham
potential.
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Umn =
∑

m∈i n∈j

Aije
−BijRij − Cij

R6
ij

(2.38)

Equation 2.38: Where i and j label the atoms in the molecule and m and n label a
molecule respectively. This Buckingham potential de�nes an intermolecular potential.

Equation 2.38 shows the functional form of the Buckingham potential. A, B
and C are empirical constants.152�158Here, C quanti�es the attractive portion of
the potential relating to dispersion forces. A and B model represent the repulsive
barrier due to steric interactions. The functional form of R−6 is theoretically
more justi�able in this function, as it is the leading term in the dispersion energy.
Exchange-repulsion is modelled by the exponential form. The exponential function
remains �nite even when r tends to 0, therefore this potential risks running into a
`Buckingham catastrophe'. This is a spurious artefact of the potential form in which
nuclear fusion erroneously occurs as a result of strong dispersive and electrostatic
forces capable of overcoming the repulsive barrier.65,123

Aij = (AiiAjj)
1
2 Bij =

1

2
(Bii +Bjj) Cij = (CiiCjj)

1
2 (2.39)

Equation 2.39: The combining rules of the Buckingham potential empirical parameters. A
and C geometric mean, B arithmetic mean.

The mixing rules shown in Equation 2.39 combine the empirical parameters
related to an atom interacting with some other atom of another molecule. The
parameters are derived from hetero-atomic interactions to reproduce the lattice
constants and experimental sublimation data. The parameters are de�ned for homo-
atomic interactions, for example if Z = A,B or C, then Zii is the parameter of
element i interacting with element i in another molecule and the same for Zjj. The
mixing rules are then used to locate Zij which is then the average of the interaction
of the elements i and j. An example Buckingham potential is plotted below.65
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Figure 2.16: Intermolecular Buckingham potential function for c-c, A,B and C values
taken from the FIT potential in DMACRYS.

2.2.9 Lattice Minimisation

Within DMACRYS, the electrostatic portion of the lattice energy is evaluated
using an Ewald summation up to rank two multipoles (charge-charge, charge-dipole
and dipole-dipole) and direct summation for higher order terms. The repulsion
and dispersion interactions are evaluated as described above in the Buckingham
potential. Additional terms such as induction can also be account for using a
similar scheme. The minimisation routine involves centralising the forces, torques
and second derivatives of each molecule to the centre of mass of each molecule.
Changes to the crystal structure can be expressed as a multi-component vector
δ. This vector contains components related to molecular translation and rotation
(three components each) and six components related to strain modelled as a bulk
deformation of the crystal structure. DMACRYS then minimises the intermolecular
energy as a function of a small change (r) in the crystal structure. This is
conveniently given as a power series:65

Uintermolecular(r
′) = Uintermolecular(r) + δT · g +

1

2
δT ·W · δ (2.40)

Equation 2.40: A power series for lattice energy minimisation in DMACRYS.65

2.2.10 Phonon Modes

Phonons are described as quanta of sound and regarded much the same as a photon
being a quanta of light. Phonons are vibrations of interacting elastic materials, in
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this case crystals. These vibration represent excited vibrational states within the
system.

a

Optical Phonons

Acounstic Phonons

Figure 2.17: Phonon modes: The top image shows evenly spaced spheres representing
atoms with a being repeat unit distance. The lower schemes show the two di�erent types

of phonon modes optical and acoustic in a simple two element model.159

Figure 2.17 shows the two di�erent phonon modes possible in a system composed
of two or more di�erent atoms. The middle scheme shows the out of phase vibrations
known as optical phonons, these vibrations show a non-zero frequency at the centre
of the Brillouin zone (gamma point)(Figure 2.18). The lower scheme represents
the vibrations of the acoustic phonons. These modes are more similar to waves in air
or water moving atoms in one region closer together and atoms other regions further
apart. These modes have a zero-frequency at the gamma point (Figure 2.18).
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Figure 2.18: Phonon modes:BZB is an abbreviation for Brillouin zone boundary. The
image s hows the frequency of both phonon modes related to the Brillouin zone centre.159

The phonon modes in this work are used to calculate the entropy of the crystal
and are related to the internal energy via the Helmholtz free energy (F) (Equation
2.41).

F = U − TS
(2.41)

F = U +
1

2

∑
i

hνi + kT
∑
i

ln
(

1− e−
hνi
kT

)
Equation 2.41: Helmholtz free energy. h is Planck's constant, k is the Boltzmann

constant, ν is the frequency of the vibration, T is the temperature in kelvin, U is the
internal energy, V is the volume and S is the entropy.160

DMACRYS calculates the optical phonons at the gamma point only. Contributions
from acoustic and optical phonons outside of the gamma point are approximated
using a hybrid Debye-Einstein approximation,65 where the Einstein approximation
assumes a single frequency of vibration for all atoms, hence each atom can be
represented by decoupled 3D quantum harmonic oscillators. Debye's approximation
calculates a theoretical maximum frequency of vibration based on the number
density of an atom and the speed of sound in the crystal.160 This enables the
calculation of the density of states of the phonons away form the gamma point. The
gamma point approximation becomes better for large unit cells as the calculation
takes place in reciprocal space, hence large objects become smaller. The entropy of
the crystal is then calculated as the partial derivative of the free energy with respect
to the temperature at a constant volume Equation 2.42.
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S = −
(
∂F

∂T

)
v

(2.42)

Equation 2.42: The entropy calculated as the partial derivative of the free energy with
respect to temperature at constant volume.160

2.2.11 Gas Phase Entropy Contributions

All gas phase entropy contributions were calculated by Gaussian 09 using statistical
thermodynamics. The partition function of a given component can be used to
determine the entropy contribution of the given component using the Equation
2.43, which is used to calculate molar quantities assuming ideal gas behaviour.161

S = R +Rln(Q) +RT

(
∂lnQ

∂T

)
v

= Rln(Q e) +RT

(
∂lnQ

∂T

)
v

= R

(
ln((qtqeqrqv)e) + T

(
∂lnq

∂T

)
v

)
(2.43)

Equation 2.43: The entropy calculation in Gaussian 09 (N=1). Q is the total partition
function and qi is a single component of the partition function (t = translation, e =

electronic, r = rotation and v = vibration). R is the gas constant and T is the
temperature in Kelvin. In the second equation e is substituted into the ln function as it

equals 1, hence maintaining the �rst term in the �rst equation.161

We are concerned with the translational and rotational degrees of freedom gained
in the gaseous state compared to the crystalline solid form. We therefore substitute
the partition functions for translation and rotation into Equation 2.43. The
translational partition function is as follows:161

qt =

(
2πmKT

h2

)3/2

V (2.44)

Equation 2.44: The translational partition function. h is Planck's constant, K is the
Boltzmann constant, m is the mass and T is the temperature in Kelvin.161

The partial derivative of the natural logarithm of qt with respect to temperature at
constant volume gives a value of 3

2T
leading to the entropy of translation being:
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St = R

(
ln(qt e) + T

(
3

2T

))
= R

(
ln(qt) + ln(e) +

3T

2T

)
(2.45)

= R

(
ln(qt) + 1 +

3

2

)
Equation 2.45: The translational entropy as calculated by Gaussian 09. e remains in this

partition function from Stirling's approximation of natural logarithms of factorial
quantities.21,161

The rotational partition function for a non-linear molecule is as follows:

qr =
π1/2

σr

(
T 3/2

(θr,x θr,y θr,z)1/2

)
(2.46)

Equation 2.46: The rotational partition function. Θ is the characteristic rotational
temperature (Θ = h2

8π2IK
where I is the moment of inertia. σ is the symmetry number of

indistinguishable orientations and T is the temperature in Kelvin.161

The partial derivative of the natural logarithm of qr with respect to temperature at
constant volume also gives a value of 3

2T
leading to the entropy of rotation being:

Sr = R

(
ln(qr) +

3

2

)
(2.47)

Equation 2.47: The rotational entropy as calculated by Gaussian 09.161

2.2.12 Solvation models

In this section, a discussion of the available solvation models including explicit,
continuum, and hybrid is presented.

2.2.12.1 Explicit Solvation Models

Explicit solvent models are models in which the solvent molecules are treated
explicitly i.e. the coordinates and usually at least some of the molecular degrees
of freedom are included. This is a physically realistic picture in which the
solvent interacts directly with the solute molecule (contrast to continuum models
Section 2.2.12.2). These models generally occur in the application of molecular
mechanics (MM) and dynamics (MD) or Monte Carlo (MC) simulations, although
some quantum chemical calculations do use small solvent clusters. Molecular
dynamics simulations allow one to study a system in discrete time intervals and
hence to follow a reaction coordinate or system evolution over time. These
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simulations employ molecular mechanics force�elds which are generally empirical,
parametrised functions designed to e�ciently calculate large system properties.
These are regularly parametrised to higher level quantum chemical calculation and
experimental data.113

Figure 2.19: Example molecular dynamics simulation box of Benzoic acid in water

In general such force�eld methods are based on an energy evaluation functional
containing terms related to bond stretching, angle bending, torsions and terms for
repulsion and dispersion, such as the Buckingham potential mentioned previously
(Section 2.2.8, Equation 2.38). Common solvents often have idealised models
generated, reducing the degrees of freedom to evaluate in the energy calculation
without great loss of accuracy. Models such as TIPXP (where X is an integer
suggesting the number of sites used)162 and the simple point charge model (SPC)163

of water have been used extensively. Models of this type typically use a �xed number
of sites (often three for water) and place a parametrised point charges and repulsion
and dispersion parameter on each. Often aspects of the geometry are �xed such as
the bond length or angles.

2.2.12.2 Continuum Solvation Models

Continuum solvation models are models in which no explicit solvent molecules are
present and hence their coordinates are not considered. These models usually use a
few empirical parameters and represent the solvent as a continuous isotropic �eld.
Continuum models work with a thermally averaged system, hence allowing the
solvent to be represented with only a few parameters. The primary parameter is the
dielectric constant (ε), although others are sometimes used such as surface tensions.
The dielectric constant governs to what extent such a medium can be polarised.
The solute is encased in a tessellated (tiled) cavity which is embedded in the solvent
�eld. The charge distribution of the solute polarises the dielectric medium which
hence polarises the solute. This de�nes a reaction potential, a response to the
change in polarisation. This reaction �eld is iterated to a self consistent solution.
The interaction of the solute and solvent is calculated at each of the tesserae (tiles)
of the solute's cavity. Continuum models have widespread use, including use in
force�eld methods. Here we restrict the discussion to continuum models in quantum
chemical situations, hence, refer to quantum chemical charge distributions from ab
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initio methods (HF, Post-HF and DFT). In general these approaches can be thought
of in the following way:

Ĥ total(rmolecule) = Ĥmolecule(rm) + V̂ molecule+solvent(rm) (2.48)

Equation 2.48: Separation of the Hamiltonian to include the solute molecule alone and a
separate term for the interaction of the solute with the solvent, a perturbation to the

gaseous molecules Hamiltonian.164

Note that the equation only depends on the solute molecule coordinates (rm).
V̂ molecules+solvent is a term made up of interaction operators, generally given the
symbol Q. These interaction operators measure the interaction and system changes
that occur on going from a gaseous in�nitely separated system to one in a continuum
solution. Each of these terms directly relates to the free energy of solution with the
addition of a �fth term related the thermal averaging.

Q(m) = Qcavity +Qelectrostatic +Qrepulsion +Qdispersion

G = Gcavity +Gelectrostatic +Grepulsion +Gdispersion +Gthermal motion (2.49)

Equation 2.49: Top: Four interaction operators generally considered in the continuum
solvation models. Bottom: Five contributing free energy terms from continuum solvation

models164

Each of the interaction operators has a physical meaning. The �rst is the cavity
creation term. This term accounts for the energy requirement to build a cavity of
approximately the shape and size of the solute in the solvent. This can be pictured
physically as the energy cost of compressing against the solvents structure. The
second term is the electrostatic energy term containing the information pertaining
to the solute-solvent polarisation process i.e. the reaction �eld. The third term is
an approximation for the quantum mechanical exchange repulsion. This cannot
be explicitly accounted for given the implicit nature of the solvent, but it is
approximated based on extensive high level calculations on dimers. The �nal term
is that of the quantum mechanical dispersion energy. This is again an averaging
procedure accounting for the solvent charge distribution.164,165

There are several �avours of continuum solvation model; generally these di�er in how
the cavity is constructed, how they account for dispersion/repulsion and cavitation
energy, how the charge distribution of the molecule is represented and �nally how the
solvent is presented. Here we will focus on the methods emanating from the popular
polarisble continuum model (PCM ). PCM is the original method but which has
been updated to the integral equation formalism PCM (IEFPCM) method in recent
years.166 These models describe the solvent by a single parameter, the dielectric
constant. The cavity is constructed by a series of interlocking spheres based on the
coordinates of the nuclei.. The spheres de�ne a solvent excluding surface i.e. based
on sterics no solvent molecules could reach closer than this point. A second solvent
accessible surface is de�ned by passing a solvent probe over the solvent excluding
surface. The former surface is used for calculation of the cavitation energy while
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the later is used in the calculation of the repulsion and dispersion, as there is a
dependence of solvent radius in the calculation of these terms. The calculation of
these non- electrostatic terms comes from scaled particle theory.167 The electrostatic
interactions, leading to the reaction �eld, are calculated using the Poisson equation
on an approximate solvent excluding surface (approximate as it is often scaled). The
Poisson equation allows the reaction �eld to be de�ned.113,164,168

∇ε(r)∇φ(r) = −4πρ(r) (2.50)

Equation 2.50: The Poisson equation. φ is the electrostatic potential, ε is the dielectric
constant ρ is the charge distribution and ∇ is the derivative operator.113

All methods based in PCM solve the electrostatics using the Poisson equation.
Variations on cavity creation have been attempted with SCIPCM, which builds the
cavity based on the electron density of the solute. A more recent and very promising
addition to this group of methods is the solvation model based on density (SMD),
which comes from the work of Marenich et al.69 This model solves for the electrostatic
interactions in the same way as the IEFPCM method. However, it contains a set a
speci�cally parametrised radii for use with the model. These radii should produce
accurate electrostatic results, at least for molecules similar to those in the training
set, by design. An additional term known as the solvent cavity dispersion solvent
structure term is then added to account for non-electrostatics. This empirically
parametrised term again is designed for use with the SMD radii. This allows
for a variation on the calculation of the repulsion dispersion and cavitation terms
compared to traditional PCM models.

Figure 2.20: The PCM model with solvent excluding surface (solid line) and solvent
accessible surface (dash line). The blue ball is a probe sphere of the radius of the average

solvent molecule size.
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Figure 2.21: The PCM cavity for the molecule allopurinol. Left: The PCM solvent
accessible surface. Middle: The central points of the tesserae where the reaction �eld is

evaluated. Right: The polarisation on the surface due to reaction �eld and solute molecule
interactions, Red is negative and blue is positive polarisation.

2.2.12.3 Hybrid Solvation Models

Hybrid models are somewhere in between the explicit and continuum models. These
models usually sit slightly closer to one or other of the previous models; for example
mixed quantum mechanics and molecular mechanics models, QM/MM schemes,
sit generally closer to explicit models, having usually a QM core treatment of the
solute and perhaps a few explicit water molecules. This is followed by a layer
of MM water molecules, generally fading to a continuum description in a third
layer. The reference interaction site model (RISM) sits on the other side using a
continuum representation of solvent density which �uctuates achieving a description
of the solvent shell behaviour. Both of these methods use statistical averaging over
ensembles.

Figure 2.22: A schematic representation of QM/MM. The core is QM, the second layer is
MM and the third is the continuum solvent
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Figure 2.23: A schematic representation of RISM showing solvation shell behaviour
around a benzoic acid molecule going to bulk at larger distances.

For the rest of this section we will focus the discussion on the RISM methodology,
whilst acknowledging that there are a range of mixed schemes which have been
attempted over the years.112,113,164,169,170

2.2.12.4 RISM - Background

RISM is a method from classical statistical mechanics based on the integral equation
theory of liquids (IET). RISM focuses on statistical modelling of the solvent, as
in reality a solvent body is a dynamic structure in which an integer number of
solvent molecules can only represent a snapshot in time. This is achieved using
Pair Correlation Functions/Radial Distribution Functions (PCF/RDF ). These are
probabilistic functions representing the chance of �nding a solvent atom or molecule
at a certain distance from a reference point, in this case often the solute molecule.
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Figure 2.24: A schematic pair correlation function of solvent water. Inspired by section
4.6 in the following reference.164
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The example pair correlation function above shows the value of such functions when
discussing solvent density and structure. We can represent the probability of �nding
a solvent atom at a certain distance from the reference point of another atom,
hence, solvent shell structure is derived naturally from this theory. The calculation
method begins with the Molecular Ornstein-Zernike equation (MOZ ).164 Within
this framework a system is de�ned in a 3D space hence can be de�ned by three
spatial coordinates (r) and three angles (Θ). The MOZ equations utilise relative
PCF/RDF's of molecules allowing the total correlation function to be de�ned as
below (Equation 2.51). As these equations are of high dimensionality a common
approximation is that of spherical symmetry, which removes the consideration
of orientational degrees of freedom. Equation 2.52 shows the MOZ assuming
spherical symmetry.164,165,171

h(r − r′ ; Θ−Θ
′
) = g(r − r′ ; Θ−Θ

′
)− 1 (2.51)

Equation 2.51: Top: h(r; Θ) is the total correlation function, g(r; Θ) is the radial
distribution function. This enumerates the e�ect of a molecule on a second molecule

separated by a distance r.164

h(r) = c(r1,2) +

∫
dr3c(r1,3)ρ(r3)h(r2,3) (2.52)

Equation 2.52: The Ornstien-Zernike equation assuming spherical symmetry. ρ is the
liquid density, r is the distance separating particles, h(r) is the total correlation function,

equivalent to a pair correlation function, c(r) is the direct correlation function.164

The MOZ equation splits the total correlation function into two sections: Firstly
a direct section, interested in the direct e�ect of one particle on one other particle
separated by a distance r. This is represented by the direct correlation function
c(r). The second part is the indirect e�ect of a third position in a system of three
particles. This is represented by the direct correlation function c(r1,3) which is the
correlation between the �rst particle and the third particle and the total correlation
function h(r2,3). This is shown diagrammatically in Figure 2.25.
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1
2

3

c(r1,2)

c(r1,3) ρ(r3)h(r2,3)

Figure 2.25: A diagram representing the contributions to the total correlation function.

The solutions to this equation are h(r) and c(r), in order to �nd these two variables
a second equation, a closure relation, must be introduced. The exact forms of all
terms in this closure relation are not known, hence approximations are made. The
most basic of these approximations is the HyperNetted Chain (HNC ) which assumes
that those terms whose form is unknown simply do not contribute to the solution
(are set to zero). This was initially reasonably successful, but often caused slow
convergence and in some cases a divergence.52 The HNC has been superseded by
the Partially Linearised HyperNetted Chain (PLHNC ) also known as the Kovalenko
Hirata closure.172 This closure linearises the exponential function if it exceeds a
threshold, in this case if the argument exceeds 0. This leads to a more reliable
convergence of the equations.

hα(r) =

{
e−βU(r)+T (r) − 1 (when− βυa(r) + ha(r)− ca(r) ≤ 0)
−βU(r) + T (r) (when− βυa(r) + ha(r)− ca(r) > 0)

(2.53)

Equation 2.53: Partially Linearised HyperNetted Chain closure172 β = 1
kBT

U(r) is the
interaction potential and T(r) is the indirect correlation function, the di�erence between

the total and the direct correlation function.

A typical interaction potential used in these calculations is a pairwise additive
Lennard-Jones Coulomb potential. An example is provided below in Equation
2.54.
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υ(r) = 4ε

[(
σ1
r12

)12

−
(
σ2
r12

)6
]

+
Q1Q2

r12
(2.54)

Equation 2.54: A general solute-solvent interaction potential in the form of a
Lennard-Jones potential plus a Colulombic interaction. σ is a parameter that determines

the point at which the potential switches and becomes positive, r12 is the distance
separating the particles, ε is the maximum well depth of the potential. Such a potential is
similar in form to the Buckingham potential, Figure 2.16. Q1 and Q2 are the charges

on particles one and two respectively.164

2.2.12.5 3D - RISM

The MOZ equation can be recast into an approximation utilising 3D solute-solvent
correlation functions. This approximation is achieved by a partial averaging over
the conformational degrees of freedom of the solvent molecules. This allows for the
break up of the direct correlation function into partial site contributions, hence the
total correlation function is given in Equation 2.55. The bulk solvent is modelled
by the solvent susceptibility function (χζ,α). This is composed of a term for the
intramolecular correlation and a radial intermolecular correlation functions shown
diagrammatically in Figure 2.26.

h(r) =

Nsolvent∑
ζ

∫
R3

cζ(|r − r1|)χζ,α(r1)dr1

χζ,α(r) = ωsolventγ,ζ + ραh
solvent
ζ,α (2.55)

Equation 2.55: Top: A re-statement of the Ornstien-Zernike equation; ζ, α label solvent
molecule sites. Bottom: The solvent susceptibility function, which de�nes the bulk solvent
response. ωsolventγ,α is the intramolecular correlation function, ρ is the number density and

hsolventζ,α is the radial total correlation function.

α
ζγ
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ω γζ
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Figure 2.26: A schematic representation of the components of the solvent susceptibility
function.31

From these equations it is possible to represent the solute-solvent interaction in a
way which naturally recovers some information on the solvent structure and hence,
provides a more physical picture of the system. 3D-RISM therefore accurately
accounts for the spatial correlations of the solvent density which surrounds the
solute molecule. Solvent molecules are modelled as a set of atomic sites, with 3D
structure described by intramolecular correlation functions. The solute can be of
any arbitrary shape and is taken as a single site, generally de�ned at the origin.
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Figure 2.27 shows a plot of an organic molecule surround by solvent, the gradient
of the solvent shading provides a diagrammatic interpretation of the solvation shells
calculated using 3D - RISM theory.

Figure 2.27: A RISM calculated solvent distribution. The gradient determines the density
of the solvent around the solute molecule.

2.3 Analysis Statistics

Through this work the following statistics, or some subset of them, are used to
analyse the results. There are four in total, the �rst is the coe�cient of determination
(R2), second the Root Mean Square Deviation (RMSD), third the standard deviation
(σ), and �nally the bias. The de�nitions of these four statistics are given as follows:

R2 = 1− SSres
SStot

= 1−
∑n

i=1(y
i
exp − yipred)∑n

i=1(y
i
pred − ȳ)

(2.56)

Equation 2.56: The coe�cient of determination. SSres is the residuals sum of squares
and SStot is the total sum of squares.

RMSE =

√∑n
i=1(y

i
exp − yipred)2

N
(2.57)

Equation 2.57: Root Mean Square Deviation.

σ =

√∑n
i=1(y

i
exp−pred − ȳ)2

N − 1
(2.58)

Equation 2.58: Standard deviation.
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Bias =

∑n
i=1(y

i
exp − yipred)
N

(2.59)

Equation 2.59: Bias.

Within these formulae ypred is the predicted value and yexp is the value from the
literature, found experimentally. ȳ is the mean of the experimental data. N is the
number of input values.

The R2 value provides a measurement of how well the data �ts the model. RMSD
provides a measurement of the di�erences between the predicted values and the
actual values. RMSD can be broken down further leading the bias and σ; the bias
covers the systematic error of the model and σ estimates the random error of the
given model.



Chapter 3

First Principles Predictions of

Solubility

"In almost all industries and all biological sciences, we
encounter liquid mixtures. There exists an urgent need to
understand these systems and to be able to predict their
behaviour from the molecular point of view."

Arieh Ben-Naim, 2006

3.1 Sublimation Free Energy Predictions

In this section we will explore the importance of solid state interactions in
determining solubility. We have focused our work on predicting the solubility
of organic molecules, hence, will focus on organic crystals. Initially data are
presented on predicting sublimation thermodynamics, before moving on to hydration
thermodynamics and �nally solubility. This work was carried out in collaboration
with Dr David Palmer.

Sublimation is an endothermic process, which involves taking a molecule from
the solid state directly to the gaseous state without a liquid intermediate.
Experimentally this occurs in conditions just below the triple point of the substance.
The thermodynamic cycle we have chosen to use for solubility prediction goes via
the vapour, hence, incorporates predictions of the thermodynamics of sublimation.

61
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Figure 3.1: Thermodynamic cycle via the gas phase

3.1.1 Testing the Predictability of Sublimation Free energy

We began with a project aiming to produce useful prediction of solubility from
`�rst principles' methods. The current state of the art in solubility predictions is in
the realm of QSPR/QSAR methods. A model free of training set restrictions and
physically decomposable into meaningful values and steps would be a valuable tool
to anyone interested in solubility prediction. This project is split into three sections
over this chapter allowing for a detailed inspection of each prediction step of the
thermodynamic cycle. In this section we will focus on the sublimation free energy
predictions. These prediction were made using DMACRYS, which is a periodic
lattice simulation program, capable of minimising the energy of a crystal unit cell.
DMACRYS works on the basis of the theory set out in Section 2.2.8, utilising DMA
to account for electrostatic interactions and a parametrised Buckingham potential
to account for non-electrostatic intermolecular interactions such as dispersion and
repulsion.

3.1.2 Calculating ∆Gsub

Gibbs free energy of sublimation (∆Gsub) is calculated in the one atmosphere
standard state (∆Go

sub), as is consistent with experimental practices. As solubility is
calculated in the one mole per litre standard state (Ben - Naim terminology, ∆G∗sub)
∆Go

sub is later adjusted to meet the Ben - Naim standard state. Within this chapter
we will consider all terms in the 1 mole per litre standard state unless explicitly
stated otherwise. We calculate ∆Gsub using the Gibbs free energy equation

∆Gsub = ∆Hsub − T∆Ssub (3.1)

Equation 3.1: Gibbs free energy equation
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3.1.2.1 Calculation of ∆Ho
sub

DMACRYS carries out a rigid body minimization of the crystal structure, hence
arriving at minimized lattice energies. This lattice energy can be approximately
converted into a ∆Hsub by the following formula:

∆Hsub = −Ulatt − 2RT (3.2)

Equation 3.2: A. Gavezzotti's approximation to ∆Hsub.
173

This equation is derived by consideration of the packing energy of a crystal, with
which it is stated that a half of the energy is approximately equivalent to the lattice
energy i.e. the energy di�erence between a molecule at rest in the solid state and
gaseous state. From this point it remains to account for motions of the molecule
in the two states and the thermodynamic environment, therefore accounting for
the temperature dependence of the ∆Hsub. As H is de�ned as H = U + (pV ) in
a one molar ideal gas pV = RT hence, the thermodynamic environment can be
approximated as an RT correction. From the equipartition theorem, the energy
associated with gaseous rotations and translations is 3RT and the energy associated
with crystal lattice both vibrational and rotational is equal to 2 × 6 × 1

2
RT . This

gives the following relationship leading to the -2RT term.

∆Hsub = −Ulatt+RT +∆Uvib = −Ulatt+RT +(3RT −6RT ) = −Ulatt−2RT (3.3)

Equation 3.3: A. Gavezzotti's approximation to ∆Hsub.
173

3.1.2.2 Calculation of ∆Sosub

The entropy contribution to ∆Gsub was calculated as follows:

∆Ssub = (Srotationsub + Stranslationsub )− Scryst,vibrationssub (3.4)

Equation 3.4: Approximate calculation ∆Ssub.

In this equation, we sum the contribution to the rotational and translational
entropy in the gas phase at 298K. We then subtract the intermolecular vibrational
contributions from the crystal, as these will disappear during the sublimation
process. We assume that the electronic entropy is consistent across the phase change
and that the intermolecular and intramolecular contributions in the crystal are
decoupled hence, there is a net zero change in intramolecular entropy over the phase
transition. Additional conformational entropy in �exible molecules was ignored,
although empirical correction were attempted applying corrections for the number
of rotatable bonds.

The calculation of the gaseous rotational and translational entropy was done
using statistical thermodynamics in Gaussian 09 assuming an ideal gas.161 Crystal
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contributions to the entropy were calculated by DMACRYS at 298K. From the
third law of thermodynamics we know that at 0K the entropy of a perfect crystal is
zero. As our system is considered at 298K we must compute the e�ects of thermal
motion. Within a crystalline structure rotational and translational entropies can
be assumed to be zero. We therefore require only to account for the vibrational
contributions emanating from the crystal lattice. We therefore consider the phonon
modes calculated by rigid body lattice dynamics. We calculate the phonon modes
at the gamma point (k=0). The free energy expression is given by Day et al.174

3.1.3 Dataset Generation - DLS-25

We generated a dataset upon which to test our predictive methods. This dataset
is called Drug-Like Solubility - 25 (DLS-25 ), and contains 25 drug-like organic
molecules with experimental data taken from the published literature. The diagram
below (Figure 3.2) shows the chemical structures, names and Cambridge Structural
Database (CSD) refcodes. The molecules were selected on the basis of:

� A known solubility value in the literature. Were possible Cheqsol solubilities
were used.

� A single crystal X-ray structure of the molecule existed in the CSD.

� Where possible experimentally determined sublimation and hydration free
energies were available in the literature.

The lattice energy calculations required a single-crystal structure as input for the
energy minimisation, hence the above criteria. As polymorphic characterisation
is seldom applied to the crystalline form observed at thermodynamic equilibrium
in the solubility experiments, the following algorithm was applied to decide which
polymorphic form to use:

� Download all appropriate crystal structures of a compound from the CSD.
Suitable here means 3D coordinates are available for a crystal structure which
contains one molecular species, hence avoiding salts, solvates and co-crystals.

� The lattice energy of each viable entry was calculated.

� The crystal structure with the lowest calculated lattice energy was selected.

Eight molecules in DLS-25 set had polymorphic information provided with their
solubility measurements. For these molecules the same form was used in the
calculations as observed in experiment. For 10 of the 25 molecules experimental
∆Gsub and Gibbs free energy of hydration (∆Ghyd) values were available in the open
literature. These molecules are displayed in Figure 3.3 and highlighted in Figure
3.2. We therefore evaluated the performance of our ∆Gsub and ∆Ghyd predictions
using these ten molecules. The ten molecule subset of the full DLS-25 dataset will
be collectively referred to as DLS-10 from this point on.

The di�culty in retrieving experimental values for properties such as ∆Gsub and
∆Ghyd is a great hindrance to the development of quantitative predictive models.
The scarcity of such data is likely due to the di�culties of generating such
values (due to low solubility and/or low volatility of some of the compounds in
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question), this makes model validation di�cult.51 Of the millions of compounds
known within organic chemistry only a few thousand have reported ∆Ghyd values in
the literature.51 Such data needs clearly documenting with procedural details and
conditions. ∆Gsub and ∆Ghyd are vital thermodynamic quantities, which are used
to calculate other properties of interest such as solubility,6,31 pKa175 and protein-
ligand binding a�nities.176 For these reasons accurate in silico predictions of ∆Gsub

and ∆Ghyd is very important; ideally such methods would allow accurate estimates
of ∆Gsub and ∆Ghyd to be obtained for compounds of low volatility and/or low
solubility. The lack of such data is a signi�cant challenge in the development of
novel computational models.31,51,177,178 The ten molecules in our dataset for which
experimental ∆Gsub and ∆Ghyd values were available are shown in the Tables 3.2
and 3.3 respectively. For future work in this area, it would be of great bene�t if
more well curated data was made available by experimental colleagues.
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Figure 3.2: The molecular structures, colloquial names and CSD refcodes for the DLS-25
dataset. The refcodes record the polymorph used in our calculations. Image inspired by

reference.31
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Figure 3.3: DLS-10 a subset of DLS-25 for which experimental values of ∆Gsub and
∆Ghyd were known.

3.1.4 Predictions From DMACRYS

DMACRYS' model potential encompasses two primary terms: the �rst, electrostatic
and secondly, repulsion - dispersion. The electrostatic contributions were calculated
by representing the charge distribution by multipoles upto hexadecapole (rank 4
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multipoles). These representations were calculated from three di�erent levels of
quantum mechanical theory; HF/6-31G**, MP2/6-31G** and B3LYP/6-31G**. We
will refer to each calculated ∆Gsub by the following: ∆Gsub(HF ), ∆Gsub(MP2) and
∆Gsub(B3LY P ) . ∆Gsub(exp) will refer to the experimental ∆Gsub values.

In the evaluation of the repulsion - dispersion term we selected to use the empirically
�tted parameters from the FIT potential. This potential unfortunately lacked
hetroatomic parameters for Cl, which was required when evaluating ∆Gsub for some
of the DLS-25 molecules. Homoatomic parameters where taken from the following
reference,155 we therefore generated the hetroatomic parameters using the mixing
rules presented in Section 2.2.8. The homoatomatic parameters used in the mixing
rules are as follows:

Atom Pair Description Aik Bik Cik

kJmol−1 Å−1 kJmol−1Å6

C-C Any C atom 369743 3.60 2439.8

H-H H bonded to C 11971 3.74 136.4

Hp-Hp H bonded to polar atom 5029.68 4.66 21.50

N-N Any N atom 254529 3.78 1378.4

O-O Any O atom 230064.1 3.96 1123.59

F-F Any F atom 363725 4.16 844

Cl-Cl Any Cl Atom 924675 3.51 7740.48

Table 3.1: Homoatomic FIT potential parameters for the Buckingham potential

3.1.5 Comparison of Multipoles From Di�erent Levels of

Theory

Presented below are the results of the ∆Gsub predictions using HF, MP2 and B3LYP.
In each case we present: The ∆Gsub predictions the DLS-10 molecules compared to
experiment and solubility predictions for the DLS-10 molecules, made using the
experimental hydration free energies. Table 3.2 shows the DLS-10 predictions.
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Molecule ∆Gexp
sub ∆GHF

sub ∆GMP2
sub ∆GB3LY P

sub

Refcode (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

BENZAC02 34.23179,180 48.91 35.08 34.59

BZAMID02 43.1429,179 48.76 36.41 36.98

COCAIN10 54.90179,180 61.07 56.23 56.55

COYRUD11 61.06181 77.84 65.62 64.84

HXACAN04 59.95181 69.13 54.91 53.93

IBPRAC01 42.06180,181 65.80 54.89 54.60

JODTUR01 59.4529,179 68.22 60.15 59.75

NAPHOL01 35.38179 39.73 35.82 33.23

PYRENE07 46.2529,179 43.81 41.88 41.77

SALIAC 40.31179 42.41 34.04 33.40

R2 0.67 0.76 0.76

RMSE 11.64 5.63 5.66

σ 10.34 7.00 5.63 5.62

bias -9.30 0.17 0.71

Table 3.2: ∆Gsub predictions using HF, MP2 and B3LYP multipoles with the FIT
repulsion and dispersion potential.

We can see from Table 3.2 that the MP2 and B3LYP models produce very similar
results, often di�ering by less than 1 kJ/mol. This is re�ected in the statistics,
which show a notable di�erence only in the bias and a small di�erence in the RMSE
as a result. When applying HF multipoles however, a much greater discrepancy
is found compared to the other methods. When compared to experiment, the
results clearly show a signi�cantly better correlation between ∆Gsub(exp) and either
∆Gsub(MP2) or ∆Gsub(B3LY P ). We can see from the statistics that over the ten
molecule dataset either of the models produced with MP2 or B3LYP multipoles
provide good predictions, explaining much of the variance in the data. Taking the
bias as a measure of the systematic error of the models, we can see that whilst
there is an increase in the bias for the use of B3LYP multipoles, in both cases this
systematic error remains below 1 kJ/mol over the dataset. For the model applying
HF multipoles we see a marginally worse correlation and notable increase in the
other statistics showing it to be a poorer model. In order for a models prediction to
be useful the RMSE should lye within the standard deviation of the experimental
data, otherwise a prediction of the mean of the experimental data will produce a
prediction closer to the actual value. Here, the HF model fails this test suggesting
it is not making a useful prediction of sublimation. Below Figures 3.4, 3.5 and
3.6 show plots of the three methods against the experimental sublimation values.
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R2 = 0.67
σ = 7.00
RMSE = 11.64
Bias = -9.3

Figure 3.4: Predicted ∆Gsub using HF multipoles against experimental ∆Gsub .
31

R2 = 0.76
σ = 5.63
RMSE = 5.63
Bias = 0.17

Figure 3.5: Predicted ∆Gsub using MP2 multipoles against experimental ∆Gsub .
31

R2 = 0.76
σ = 5.62
RMSE = 5.66
Bias = 0.71

Figure 3.6: Predicted ∆Gsub using MP2 multipoles against experimental ∆Gsub .
31
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In the following �gures we show predictions of solubility using the three sublimation
predictions and experimental ∆Ghyd. We see in the following results that, as may
be suspected from the previous discussion, the use of MP2 and B3LYP multipoles
provides a much better agreement with experiment in terms of solubility than the
use of HF multipoles. Using either MP2 or B3LYP multipoles provides a very strong
correlation coe�cient and a low RMSE (R2 = 0.81 and RMSE = 0.99 logS units).
Alternatively, using the HF multipoles we see a much poorer correlation coe�cient
and RMSE score (R2 = 0.61 and RMSE = 2.04 logS units).

Figure 3.7: Predicted solubility using HF multipoles and experimental hydration free
energy against experimental solubility.31

Figure 3.8: Predicted solubility using MP2 multipoles and experimental hydration free
energy against experimental solubility.31
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Figure 3.9: Predicted solubility using B3LYP multipoles and experimental hydration free
energy against experimental solubility.31

Concluding from these results, using either MP2 or B3LYP multipoles can provide
good agreement with experiment. In both cases these methods are designed to
capture at least some aspect of electron correlation which HF does not. As a
result the electrostatic description which is provided should be superior. MP2 is
the recommend level of theory, however in view of these results B3LYP o�ers a
comparable but computationally cheaper alternative for molecules such as those of
the DLS-10 dataset. We therefore chose to continue this work applying the B3LYP
multipoles.

3.2 Hydration Free Energy Predictions

In this section we focus on predicting ∆Ghyd by a variety of methods, we de�ne the
hydration free energy to be that associated with the direct transfer of a gaseous
molecule to the solution. This process involves several changes to the system
which are of interest. These can be collected into two physical changes, �rstly
the generation of a cavity in the solvent, and secondly the solvation of a molecule
within the cavity.

Eqilibrated solvent Cavity creation in the solvent Molecule solvated in the cavity 

Figure 3.10: A diagram pictorially representing the hydration
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There are numerous models in the literature for hydration free energy
predictions.51,52,69,182 For example, the continuum solvent model (Section 2.2.12.2)
SMD is parametrised against hydration free energy data and is the recommended
method to calculate such a quantity in Gaussian 09.183 This kind of parametrisation
is not unique to SMD; other models have been parametrised against similar data.52

Additionally, there are an increasing number of QSAR methodologies to predict such
quantities.52,184

The calculated ∆Ghyd must account for the factors of; cavitation, solvent ordering
and solvation of the solute in the cavity. As a result information is required on both
the isolated systems (solute and solvent) and the solution. A simple approximation
to ∆Ghyd is to calculate ∆Ghyd using the gas solution partition coe�cient equivalent
to the Henry's law constant(Equation 1.4), hence, allowing a direct computation
as follows:24

∆Ghyd = −RTlnKH (3.5)

Equation 3.5: A prediction of the hydration free energy from KH . R is the gas constant
and T is the temperature in Kelvin.

In the rest of this chapter, the focus will be on the prediction of ∆Ghyd from chemical
theory. Methodologically speci�c details will be introduced and discussed.

3.2.1 Methods and Dataset Selection

The general theory of the methods used in this section can be found in Section
2.2.12.2 and Section 2.2.12.3. Some additional speci�c details and options that
were used in our production calculations are elaborated upon here and the drug-
like-solubility-25 (DLS-25 ) dataset is applied. As with the sublimation free energy
predictions, we will here focus on the hydration free energy predictions for the DLS-
10 molecules, for which experimental data was available. These ten molecules are
shown in Figure 3.3. The experimental ∆Ghyd data is presented in Table 3.3:
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Molecule Name CSD refcode ∆Gexp
hyd(kJ/mol)

Benzoic Acid BENZAC02 -33.14 179

Benzamide BZAMID02 -45.64 179

Cocaine COCAIN10 -49.98 179

Naproxen COYRUD11 -43.30 181

Acetaminophen HXACAN04 -62.05 181

Ibuprofen IBPRAC01 -29.33 181

Isoproturon JODTUR01 -47.58 179

1-Naphthol NAPHOL01 -32.01 179

Pyrene PYRENE07 -18.91 179

Salicyclic Acid SALIAC -37.21 179

Table 3.3: The ten ∆Ghyd from literature of the DLS-25 dataset.

We applied several methods when predicting ∆Ghyd. These methods are: IEFPCM,
SMD and 3DRISM-KH/UC (3D RISM with a Kovalenko-Hirata closure and
universal correction). The ∆Ghyd values from continuum models were all calculated
as the di�erence between the gaseous isolated system energy and the energy in the
continuum �eld. This is an oversimpli�cation of the actual phenomena accounted
for, which includes changes in electrostatic interactions, cavitation, repulsion and
dispersion. Helpfully however, the calculation process automatically accounts for
this in the software.

∆Ghyd = Esolution − Egaseous (3.6)

Equation 3.6: Calculating ∆Ghyd from continuum models. This is an oversimpli�cation
of the actual phenomena accounted for, but is how the quantity is calculated in this work

thanks to the software automatically taking these additional factors into account

Optimised gas phase structures were calculated from crystal structures at the same
level of theory as was to be applied to the solvated phase. In calculating the solvated
phase there were two options.

� Calculate the ∆Ghyd by taking the energy di�erence between an optimised gas
phase molecule and same structure in an approximate aqueous environment.

� Calculate the ∆Ghyd by taking the energy di�erence between an optimised
gas phase molecule and the re-optimised structure in an approximate aqueous
environment.

Although the former may at �rst seem a crude approximation, it has been shown a
number of times to be a reasonable approximation for small molecules,169,185 this is
not always the case for larger multi-functional compounds.186 We carried out some
tests to check how large the di�erence was for our dataset, if this approximation
was applied. The SMD method was applied at the HF and M06-2X levels of theory
with a 6-31G* basis set. A summary of these results can be seen in Figure 3.11
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below. The results for SMD(M062X) are shown by triangular data points, results
for SMD(HF) are represented by diamond data points.
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Figure 3.11: Comparison of optimisation and single point hydration free energy
calculations.

The biggest energy di�erence was approximately 7 kJ/mol with the majority being
less than 4 kJ/mol. Generally speaking, those molecules which are poly-functional
and possess a functionality including nitrogen have the greatest reduction in energy
upon optimisation. As the results show only a modest change in energy upon
optimisation, and considering the large number of calculations needed to test the
variety of methods we were applying in this work, we chose to use the single point
approximation to reduce the computational time required. As a result of this, we
approximate ∆Ghyd to be the energy of step 1 in the following diagram and do not
consider step 2 any further.
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ΔGhydration

Solvating gas phase optimised 
structure
Step 1

Relaxing structure in the 
solvent
Step 2

Figure 3.12: Illustration of the steps involved in predicting ∆Ghyd .

3.2.1.1 IEFPCM Production Calculation Details

IEFPCM was used within Gaussian 03. We applied the united atom topological
model radii, optimised for use at the HF/6-31G* level of theory (abbreviated to
UAHF ), to the IEFPCM model. These radii represent H implicitly by including it
in the sphere of the heavy atoms it is covalently bonded to. These radii were selected
as they are the default radii in Gaussian 03 for making such a calculation using the
IEFPCM procedure. We applied this model at the HF/6-31G* level of theory.

3.2.1.2 SMD Production Calculation Details

The SMD model was used again in the Gaussian 09 package. This method, as
discussed previously (Section 2.2.12.2) solves the same electrostatic equations as
IEFPCM but uses its own optimised radii to create a cavity. The SMD model
contains several �tted parameters in addition to the radii, which are used to de�ne
a functional which calculates the contributions of cavity creation, dispersion and
solvent structure to the free energy of hydration. These parameters were optimised
on a dataset of ∼ 2000 molecules in various solvents and composed of the elements H,
C, N, O, F, Si, P, S, Br and Cl.69 The model is optimised for several levels of electronic
structure theory: M05-2X/MIDI!6D, M05-2X/6-31G*, M05-2X/6-31+G**, M05-
2X/cc-pVTZ, B3LYP/6-31G*, and HF/6-31G*. We applied the model at two levels
of theory; HF/6-31G* and M062X/6-31G* levels. As with IEFPCM, the radii have
been optimised for the HF/6-31G* level of theory. We chose the M06-2X functional
as it has been shown to perform well for molecules composed of main group elements.
Additionally, we were curious how the SMD solvent model would perform for levels
for which it was not optimised.

3.2.1.3 3DRISM-KH/UC Production Calculation Details

3DRISM-KH/UC was applied as outlined previously (Section 2.2.12.3). The
∆Ghyd was calculated by applying the Gaussian �uctuation (GF ) hydration free
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energy functional. This functional was originally developed for use with another
RISM approximation187 known as 1D RISM, which is a further approximation to
the OZ equation in terms of 1D integrals, but was adapted later for use with
the 3DRISM188 approximation. Unfortunately, the GF functional only provides
qualitative results and hence correction schemes have been devised.31,51 In this work
the Universal Correction (UC ) is called upon. Work by Palmer et al has shown a
strong correlation between the error in the prediction from the GF functional and the
partial molar volume calculated by 3D RISM.31,51 A 2 parameter linear correction
was devised by regression now known as the universal correction.

∆G
3DRISM−KH/UC
hyd = ∆GGF

hyd + a(ρV ) + b (3.7)

Equation 3.7: The universal correction. ∆GGFhyd is the raw Gaussian �uctuation free
energy. ρV is the dimensionless partial molar volume. The scalar a is a bias correction of
the value -3.312 kcal/mol. The intercept b is valued as 1.152 kcal/mol. Both a and b were

calculated from a linear regression of a training set of molecules.

This correction was applied in all of the 3DRISM calculation presented here.
Lennard-Jones parameters were taken from the Amber GAFF force�eld and charges
calculated using the semi-empirical Hamiltonian AM1. All RISM calculations were
performed using Ambertools with a minimum bu�er distance of 30Å.

3.2.2 Calculated Predictions of Hydration Free Energy

The predicted ∆Ghyd values of the molecules in the DLS-25 dataset are presented in
the rest of this chapter. All four of the analysis statistics described in Section 2.3
are used in this chapter. The free energies of hydration will be referred to as follows:
Those calculated using the 3DRISM-KH/UC method ∆G3DRISM−UC

hyd , those using

the SMD(M062X) method, ∆G
SMD(M062X)
hyd , predictions from the SMD(HF) method,

∆G
SMD(HF )
hyd and �nally values calculated by IEFPCM, ∆GPCM

hyd . The predicted
hydration free energy values for all 25 molecules are displayed in Table 3.4.
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Molecule ∆Gexp
hyd ρV3D−RISM ∆G3DRISM−UC

hyd ∆G
SMD(M06−2X)
hyd ∆G

SMD(HF )
hyd ∆GPCM

hyd

ALOPUR 4.36 -73.88 -63.96 -76.63 -68.32
AMBNAC04 5.21 -56.29 -46.01 -51.70 -44.18
AMXBPM10 11.21 -92.41 -69.63 -79.84 -53.47
BENZAC02 -33.14 4.80 -36.67 -25.10 -31.66 -27.95
BZAMID02 -45.64 5.15 -49.86 -37.66 -44.33 -35.73
COCAIN10 -49.98 11.83 -59.30 -40.59 -52.52 -27.87
COYRUD11 -43.30 9.23 -44.44 -36.04 -45.42 -36.61
DHANQU06 8.18 -39.47 -26.68 -38.26 -21.42
EPHPMO 8.40 -70.40 -63.67 -73.65 -64.39
ESTRON14 11.66 -42.51 -42.78 -52.89 -47.40
HXACAN04 -62.05 5.97 -60.31 -55.53 -63.63 -53.35
IBPRAC01 -29.33 9.83 -31.74 -23.02 -30.56 -18.24
IVUQOF 10.63 -70.75 -78.77 -93.96 -52.13

JODTUR01 -47.58 9.07 -48.01 -33.09 -40.51 -28.79
LABJON01 7.55 -92.77 -75.46 -100.63 -96.48
NAPHOL01 -32.01 5.81 -24.70 -28.15 -30.64 -28.24
NDNHCL01 12.21 -49.05 -53.04 -55.02 -36.99
NICOAC02 4.65 -43.74 -35.98 -44.28 -38.16
NIFLUM10 9.60 -65.73 -25.72 -34.33 -22.43
PINDOL 10.31 -67.78 -52.92 -57.67 -45.73
PTERID11 4.74 -52.06 -55.90 -64.98 -37.49
PYRENE07 -18.91 8.01 -26.18 -15.72 -19.15 -11.30
SALIAC -37.21 5.02 -36.13 -27.12 -33.49 -29.62
SIKLIH01 10.31 -41.77 -33.80 -42.77 -19.79
XYANAC 9.76 -35.80 -23.63 -26.65 -16.65

Table 3.4: Hydration free energy prediction for the full DLS-25 molecule set. All free energies are quoted in kJ/mol.
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The predicted ∆Ghyd results for the ten molecules for which we have experimental
data are presented in Table 3.5 and Figure 3.13.

Molecule ∆Gexp
hyd ∆G3DRISM−UC

hyd ∆G
SMD(M062X)
hyd ∆G

SMD(HF )
hyd ∆GPCM

hyd

Refcode

BENZAC02 -33.14 -36.67 -25.10 -31.66 -27.95

BZAMID02 -45.64 -49.86 -37.66 -44.33 -35.73

COCAIN10 -49.98 -59.30 -40.59 -52.52 -27.87

COYRUD11 -43.30 -44.44 -36.04 -45.42 -36.61

HXACAN04 -62.05 -60.31 -55.53 -63.63 -53.35

IBPRAC01 -29.33 -31.74 -23.02 -30.56 -18.24

JODTUR01 -47.58 -48.01 -33.09 -40.51 -28.79

NAPHOL01 -32.01 -24.70 -28.15 -30.64 -28.24

PYRENE07 -18.91 -26.18 -15.72 -19.15 -11.30

SALIAC -37.21 -36.13 -27.12 -33.49 -29.62

R 0.93 0.97 0.97 0.88

RMSD 4.85 8.3 2.91 11.58

σ 12.31 4.49 3.06 2.81 5.58

Bias 1.82 -7.71 -0.72 -10.15

Table 3.5: Hydration free energy prediction for the DLS-10 molecule set. All free energies
are quoted in kJ/mol.

It is immediately clear that one method outstrips the others in terms of predictive
accuracy, SMD(HF). As was mentioned previously, this method is parametrised for
use at this level of theory and for making predictions of ∆Ghyd, hence, it is not so
surprising that the result is good. We can de�ne a criterion for a useful prediction
to be one in which the RMSD of the prediction is within the experimental standard
deviation. If this is not the case, a null prediction of the mean of the experimental
data would be a more accurate prediction. In terms of the other three methods we
can rank them using this new criterion. 3DRISM-KH/UC is the only other method
that produces a low RMSD, bias and high R2 value. We therefore can interpret this
as a useful prediction. This is an interesting result as 3DRISM-KH/UC contains
no explicit parametrisation against hydration free energy data. The remaining two
methods, SMD(M06-2X) and IEFPCM, perform fairly poorly, with the next nearest
RMSD (SMD(M06-2X)) being nearly twice that of 3DRISM-KH/UC. Noting that
both of these two methods have a large bias, in fact a bias considerably larger than
the corresponding σ, it is a reasonable assertion that the methods contain large
systematic errors.

Another interesting point to note is the directionality of the bias. All continuum
models are biased in the direction of predicting molecules to be more hydrophilic
than experiments would suggest whereas 3DRISM's is biased to predict molecules to
be more hydrophobic. This suggests some underlying bias to the continuum models
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methods, given the similarities between them. It has been shown previously that
RISM methods tend to overestimate the hydrophobicity of molecules,51 stemming
from an overestimation of the energetic cost of cavity creation. This overestimation
of the energetic cost of cavity creation is the basis of the UC correction.51,189 In all
cases the methods produce a good correlation coe�cient, however given the small
size of this dataset this could be a false positive.

It is unreasonable to draw large or sweeping conclusions from such a small dataset.
A collection of ten molecules is certainly too small of a dataset to conclusively show
the superiority of one method in making these predictions. However, for a small
set of data such as this one may expect it to be reasonably easy for these methods
to achieve favourable statistical values. Indeed, this is the case for the SMD(HF)
method, which does perform better than has been previously reported by other
authors.69,190,191 If a method is performing badly on such a small dataset, it is likely
to be ampli�ed when the method is applied to a larger dataset. Presented below is
a graphical representation of the data from these methods.

R2 =0.77
σ = 5.58
RMSD = 11.58
Bias = -10.15

R2 =0.94
σ = 3.06
RMSD = 8.30
Bias = -7.71

R2 =0.94
σ = 2.81
RMSD = 2.91
Bias = -0.72

R2 =0.87
σ = 4.49
RMSD = 4.85
Bias = 1.82

Figure 3.13: Plot of the DLS-10 hydration free energy predictions.31

Based on these results, we suggest that continuum models such as SMD can provide
a good prediction of the ∆Ghyd provided one uses the methods for which the model
is optimised. RISM provides a good alternative to such continuum models. The
continued development of the RISM methods, including parametrisation, may o�er
a superior method in the future. For the time being, applications of correction terms



3.3. FIRST PRINCIPLES PREDICTION OF SOLUBILITY 81

such as the UC allow quantitative values to be computed using 3DRISM.

In summary, a lack of experimental data for drug-like organic molecules hampers
continued progress in predicting ∆Ghyd from theory. However, utilising the available
data (often for small simple or mono-functional organic molecules) several methods
have been produced and validated, which are available in the open literature and
well known computational chemistry programs. Here we have performed a small
scale test of the abilities of some of these methods. We can conclude from our own
results and those of others that predictions of ∆Ghyd energies are improving. A blind
test in 2009, to predict the ∆Ghyd of biologically active molecules, found the best
predictions had an RMSD ranging from 2.4 - 3.5 kcal/mol (10.46 - 14.64 kJ/mol).192

This test was based on 63 drug-like molecules. Recent work by others has shown
improvement for predicting ∆Ghyd of organic molecules.182 Our results suggest it is
now possible to improve upon these results for drug-like molecules.

3.3 First Principles Prediction of Solubility

A �rst principles prediction of solubility is widely sought as it would enable a
universal method to be applied to all systems, and provided such a method was
not overly computationally expensive, it would represent a cost saving in the drug
development pipeline. This is an industry which currently is su�ering from falling
numbers of drug candidates making it through clinical trials; current estimates
suggest only 5% of compounds in phase I clinical trials will make it to pharmacy
shelves.193 Approximately 40% of lead compounds are estimated to be essentially
insoluble in water and thus cannot be developed as a result, solubility is one of
the major causes of such attrition.42 This is whilst investment in drug development
continues to increase, hence a universal pre-screening methodology is commercially
attractive.193 The current state of the art predictions come from QSPR methods.
These are powerful correlative relationships which enable predictions to be made
e�ciently for some subspace of the full chemical space. This subspace is dependent
upon the training data available. A �rst principles method would remove this
dependence on training data. For clarity we de�ne a �rst principles method to
be one not directly parametrised upon experimental solubility data. The approach
we have followed in this chapter relies upon the following thermodynamic cycle
(Figure 3.14).
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Figure 3.14: Thermodynamic cycle via the vapour

Having made predictions of ∆Gsub and ∆Ghyd we now wish to predict ∆Gsolv which
can readily be converted in to a prediction of intrinsic solubility(S0), typically this is
quoted as the base 10 logarithm of the intrinsic solubility (logS). ∆Gsolv is predicted
as the sum of ∆Gsub and ∆Ghyd. This is then converted to logS by Equation 3.8.

∆Gsolv = ∆Gsub + ∆Ghyd (3.8)

Log10S = log10

(
P0

RT
exp

(
∆Go

sub + ∆G∗hyd
−RT

))
Equation 3.8: Top: The free energy of sublimation plus the free energy of hydration gives
a prediction of the free energy of solvation. Bottom: P0 is the atmospheric pressure, R is

the gas constant (8.314 Jmol−1K−1), T is the temperature in Kelvin. ∆Gosub is the
sublimation in free energy in the 1 atmosphere standard state. ∆G∗hyd is the hydration

free energy in the 1 molL−1 standard state.

3.3.1 A First Principles Prediction of Solubility: Results

This work follows directly from the previous two sections on predicting ∆Gsub and
∆Ghyd. For the rest of this chapter we will focus of solubility predictions for
the full DLS-25 dataset. In total 12 predictions were made utilising variations in
methodology (three ∆Gsub predictions and four ∆Ghyd predictions).
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Figure 3.15: Solubility predictions over 12 variations in methodology.

As the intrinsic aqueous solubility can be de�ned in terms of ∆Gsub and ∆Ghyd, one
could assume that the accuracy of the predicted solubilities would follow implicitly
the accuracy of the individual predictions of ∆Gsub and ∆Ghyd. However, caution
must be applied to such conjectures. We must be aware of additional limiting factors
in the predictions. Experimental errors in the measurements of ∆Gsub and ∆Ghyd

are substantially greater than those of intrinsic aqueous solubility. This is due to
larger errors in the measurement of partial vapour pressures of drug-like molecules,
compared to the errors in measurement of concentrations of the same molecules in
saturated solutions. This often means that ∆Gsub and ∆Ghyd data are only available
for low molecular weight, non drug-like, molecules as these can be more accurately
measured at room temperature. Finally, the ten molecules described previously in
Sections 3.1 are a subset of the full DLS-25 dataset and could be a biased sample,
i.e. composed of those molecules in the DLS-25 dataset for which ∆Gsub and ∆Ghyd

can be measured most easily. They could therefore be closer to the training datasets
used for the parameterisation of some of the continuum model's, hence giving such a
method an unfair advantage. In general here the data follows the trends previously
set in the predictions of ∆Gsub and ∆Ghyd. For example, the predictions of ∆Gsub

by HF were far worse than those by B3LYP and MP2. This trend holds with all
solubility predictions which follow the left hand side �ow chart A, with solubility
predictions originating from �ow chart A being noticeably poorer than for �ow chart
B or C.

Previously, several parameters have been suggested by Hop�nger et al as criteria for
the quality of a solubility prediction.194

� Accurate predictions are de�ned as having an absolute error of ≤ 0.5 Log10S
absolute error.

� Reasonable predictions are de�ned as having an absolute error of ≤ 1 Log10S
absolute error

� Outliers are de�ned as molecules with a calculated solubility that is more than
two standard deviations outside the experimental data.

We will use these criteria as a further test of our data. For the rest of this section
the focus will be upon the middle �ow chart B's predictions, as these were the most
accurate. A summary of the results for all methods is provided below.



84 CHAPTER 3. FIRST PRINCIPLES PREDICTIONS OF SOLUBILITY

∆Gmethodhyd ∆Gmethodsub R RMSE σ Bias |Error|≤0.5 |Error|≤1.0 Outliers

3DRISM/UC MP2 0.81 1.58 1.58 -0.05 5(20%) 10(40%) 0

B3LYP 0.85 1.45 1.43 -0.23 5(20%) 12(48%) 0

HF 0.75 2.51 1.64 1.90 1 (4%) 2(8%) 5

SMD(HF) MP2 0.81 2.14 2.13 0.14 8(32%) 12(48%) 4

B3LYP 0.84 2.03 2.03 -0.05 8(32%) 12(28%) 2

HF 0.75 3.02 2.19 2.08 2(8%) 5(20%) 6

SMD(M06-2X) MP2 0.84 2.49 1.87 1.65 6(24%) 8(32%) 3

B3LYP 0.86 2.33 1.82 1.46 6(24%) 10(40%) 2

HF 0.74 4.20 2.17 3.59 1(4%) 1(4%) 13

PCM(HF) MP2 0.71 3.57 2.65 2.40 3(12%) 9(36%) 9

B3LYP 0.74 3.37 2.54 2.21 5(20%) 11(44%) 9

HF 0.65 5.11 2.69 4.35 0(0%) 2(8%) 13

Table 3.6: Summary of solubility predictions for the DLS-25, using the dataset by 12
methods applied in this work. The �nal three columns show the quality of our predictions
analysed by Hop�nger et al's criteria error ≤ 0.5 logS, error ≤ 1 logS and outliers two σ

outside the experimental data respectively.

Below, we present the solubility prediction produced from B3LYP/6-31G*
multipoles and all four solvation models. Methods are labelled by the solvation
model used as all other aspects are identical. We apply the analysis statistics from
Section 2.3 in addition to Hop�nger et al 's criteria, providing a full assessment of
the quality of our predictions.

For the complete DLS-25 dataset, the most accurate solubility predictions come
from a combination of: ∆Ghyd predicted by 3DRISM-UC and ∆Gsub calculated
using B3LYP/6-31G* multipoles (Table 3.7 and Figure 3.16). This combination
results in an R2 = 0.72 and an RMSE = 1.45 logS (units referred to mol/L).
Hence, this method is the only one with an RMSE within the standard deviation of
the experimental data (1.79 logS units). Earlier, we stated that a prediction must
have an RMSE within the standard deviation of the experimental data, otherwise
the null prediction of the mean would be a more accurate prediction. The 3DRISM
method achieved a σ = 1.43 logS and Bias = −0.23 logS (units referred to mol/L).
The low bias suggests much of the error is attributable to a random error, not a
systematic deviation by the model. Five molecules out of the 25 were predicted
with absolute errors <0.5 logS units, whereas 12 more were predicted to within an
absolute error of <1 logS unit. The method made no outlying predictions.

A surprising turn of events was that after its promising prediction of ∆Ghyd, the
method using SMD(HF) did not supply the most accurate solubility prediction.
The accuracy of the solubility predictions a�orded by ∆Ghyd SMD(HF) with ∆Gsub

B3LYP/6-31G* multipoles was R2 = 0.71 and RMSE = 2.03 logS (referred to units
of mol/L). By comparison to 3DRISM-UC this is a fairly poor performance. This
performance is in part the result of two outliers: NIFLUM10 (∆logS = 4.58) and
PTERID11 (∆logS = −5.09). NIFLUM10 incorporates a tri-�uorinated methyl
moiety, which is an unusual group and may contribute to the prediction errors;



3.3. FIRST PRINCIPLES PREDICTION OF SOLUBILITY 85

IVUQOF is the only other molecule which contains �uorine, and is also poorly
predicted (∆logS = −1.82 logS) however, falling short of being classi�ed as an
outlier. None of NIFLUM10, PTERID11 or IVUQOF appear in the SMD training
set.

PCM(HF) SMD(M062X)

SMD(HF) 3DRISM/UC

R2-=-0.55
σ-=-2.54
RMSE-=-3.37
Bias-=-2.21

R2-=-0.74
σ-=-1.82
RMSE-=-2.33
Bias-=-1.46

R2-=-0.71
σ-=-2.03
RMSE-=-2.03
Bias-=--0.05

R2-=-0.72
σ-=-1.43
RMSE-=-1.45
Bias-=--0.23

Figure 3.16: Solubility predictions using B3LYP multipoles and a choice of four solvation
models PCM(HF), SMD(HF), SMD(M062X) and 3D-RISM.

The SMD training set for solvation free energies in water consist of 274 solutes.
18 of these solutes contain �uorine, 8 of which contain the CF3 group present in
NIFLUM10. One might expect from the occurrence of the CF3 in the training data
that the solubility of molecules with this group predicted using the SMD method
would not be outliers. However, in all the solute molecules containing the CF3

group in the SMD training set are simple organic molecules, often halogenated
alkanes, which may not provide a su�ciently robust parametrisation for this group
when it is bonded to more complex organic structures such as NIFLUM10. This
again is potentially due to the di�culties of making experimental measurements of
such systems and/or non-additive behaviour of the group contributions, hence such
information is either not available or di�cult to use when parameterising models.

The other two methods, using the PCM (HF/6-31G*) or SMD (M06-2X/6-31G*)
solvation models, the results are very poor. Both models produce notable bias and
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standard deviation values, culminating in large RMSE values (RMSE SMD(M06-
2X) = 2.33 logS and RMSE PCM(HF) = 3.37 logS). This level of accuracy is not
su�cient for a useful prediction of intrinsic aqueous solubility. Given that both of
these methods also provided the poorest prediction of hydration free energy, it is
perhaps not surprising that they also lead to the poorest predictions of solubility.
The SMD(M06-2X) prediction, like its related method SMD(HF), has two outliers.
The �rst is NIFLUM10 (∆logS = 6.09). The same molecule is an outlier in
the SMD(HF) prediction, adding weight to the argument that the solubility of
this molecule is di�cult to predict using the SMD method, potentially due to an
insu�cient training set. The second is AMXBPM10 (∆logS = 4.67). Neither of
these molecules (NIFLUM10 or AMXBPM10) appear in the SMD training set. The
PCM(HF) method has nine outliers, meaning it has the most outliers of any of the
four methods for which the results are plotted above (Figure 3.16 and Table 3.7).
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Molecule logS logS Error logS Error logS Error logS Error
Exp 3DRISM/UC SMD(M06-2X) SMD(HF) PCM(HF)

ALOPUR -2.26 180 -0.06 -2.20 -1.80 -0.46 0.42 -2.68 -1.04 -1.22
AMBNAC04 -1.37 29 -0.22 -1.15 -2.02 0.65 -1.03 -0.34 -2.34 0.97
AMXBPM10 -2.95 28 -3.63 0.68 -7.62 4.67 -5.83 2.88 -10.45 7.50
BENZAC02 -1.58 180 -1.02 -0.56 -3.05 1.47 -1.90 0.32 -2.55 0.97
BZAMID02 -0.95 29 0.87 -1.82 -1.27 0.32 -0.10 -0.85 -1.61 0.66
COCAIN10 -2.25 180 -0.91 -1.34 -4.19 1.94 -2.10 -0.15 -6.42 4.17
COYRUD11 -4.50 28 -4.96 0.46 -6.44 1.94 -4.79 0.29 -6.34 1.84
DHANQU06 -5.19 29 -5.40 0.21 -7.64 2.45 -5.61 0.42 -8.56 3.37
EPHPMO -2.64 29 -1.57 -1.07 -2.75 0.11 -1.00 -1.64 -2.63 -0.01
ESTRON14 -5.32 195 -6.94 1.62 -6.90 1.58 -5.13 -0.19 -6.09 0.77
HXACAN04 -1.02 28 -0.27 -0.75 -1.11 0.09 0.31 -1.33 -1.49 0.47
IBPRAC01 -3.62 180 -5.40 1.78 -6.92 3.30 -5.60 1.98 -7.76 4.14
IVUQOF -1.80 180 -4.05 2.25 -2.65 0.85 0.02 -1.82 -7.32 5.52

JODTUR01 -3.47 29 -3.45 -0.02 -6.06 2.59 -4.76 1.29 -6.82 3.35
LABJON01 -3.26 28 -1.07 -2.19 -4.11 0.85 0.31 -3.57 -0.42 -2.84
NAPHOL01 -1.98 28 -2.88 0.90 -2.28 0.30 -1.84 -0.14 -2.26 0.28
NDNHCL01 -3.24 194 -5.79 2.55 -5.09 1.85 -4.75 1.51 -7.91 4.67
NICOAC02 -0.85 29 -0.59 -0.26 -1.95 1.10 -0.50 -0.35 -1.57 0.72
NIFLUM10 -4.58 28 -3.66 -0.92 -10.67 6.09 -9.16 4.58 -11.25 6.67
PINDOL -3.79 28 -4.43 0.64 -7.04 3.25 -6.21 2.42 -8.30 4.51
PTERID11 0.02 28 2.85 -2.83 3.52 -3.50 5.11 -5.09 0.29 -0.27
PYRENE07 -6.18 29 -4.12 -2.06 -5.95 -0.23 -5.35 -0.83 -6.73 0.55
SALIAC -1.93 28 -0.91 -1.02 -2.49 0.56 -1.37 -0.56 -2.05 0.12

Continued on next page
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Table 3.7 � Continued from previous page

Molecule logS logS Error logS Error logS Error logS Error
Exp 3DRISM/UC SMD(M062X) SMD(HF) PCM(HF)

SIKLIH01 -5.46 28 -6.28 0.82 -7.67 2.21 -6.10 0.64 -10.13 4.67
XYANAC -6.74 28 -7.17 0.43 -9.31 2.57 -8.78 2.04 -10.53 3.79

R2 0.72 0.74 0.71 0.55
σ 1.79 1.43 1.82 2.03 2.54

Bias -0.23 1.46 -0.05 2.21
RMSE 1.45 2.33 2.03 3.37

Table 3.7: All data relating to predictions of logS using the DMACRYS predictions of ∆Gsub and ∆Ghyd predictions using IEFPCM, SMD and
3DRISM.
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3.4 Summary

The aim of this project has been to determine the accuracy of �rst principles
predictions of intrinsic aqueous solubility of crystalline drug-like molecules utilising
widely available computational methods and programs. As it is not currently
possible to directly compute ∆Gsolv, we decomposed ∆Gsolv into ∆Gsub and ∆Ghyd,
utilising a thermodynamic cycle via the vapour to calculate indirectly ∆Gsolv. The
best predictions of intrinsic aqueous solubility came from the 3D-RISM/UC method
(RMSE = 1.45 logS units) in this work. Despite this accuracy being worse than
many QSPR/QSAR models exempli�ed in the blind challenge,28,194 we believe it
does provide a proof of concept that can be expanded enabling more accurate
�rst principles predictions of solubility to be made in the future. In addition, this
method gives a full characterization of the thermodynamics involved in the transfer
of crystalline solute to a gaseous vapour to an aqueous solution. The solubility of
any crystalline solute is in part reliant on the properties of the crystalline precipitate
within the solution and not solely on the solution properties. The thermodynamic
information can aid in the understanding of why a selected molecule is more soluble
than any other selected molecules. This can be of great interest in terms of crystal
polymorphs. QSPR methods are unable to provide such data as descriptors focus
on describing molecular structures.



Chapter 4

Cheminformatics in Solubility

Prediction

"We hope that machines will eventually compete with men in
all purely intellectual �elds. But which are the best ones to
start with?"

Alan Turing, 1950

4.1 Solubility Predictions from combined models

Cheminformatics methods are applied to a wide range of property prediction tasks
especially in the pharmaceutical industry. Commonly, cheminformatics is applied to
predict aqueous solubility, melting point, boiling point, logP, binding a�nities, and
toxicology.196 Informatics methods are generally faster and more amenable to High
Throughput Virtual Screening (HTVS ) than methods aiming to solve real physical
equations from theoretical chemistry. This has led to the generation of a number
of tools as easy-to-use and accessible web-based packages.197�199 However, whilst
informatics methods can produce e�cient and generally fairly accurate predictions
in a reasonable region of chemical space, they lack the ability to decompose the
results into intuitive, physically meaningful quantities,which allow a more intuitive
understanding of the actual core physical process. In addition they are constrained
to apply to molecules related to their training datasets. To acquire this missing
understanding it is necessary to perform atomistic calculations based on real physical
equations and/or derive further understanding from experimental data, such as
in the use of matched molecular pairs.40 Generally, neither of these approaches
are as amenable to HTVS, although current e�orts are now allowing HTVS to
be become a reality using matched molecular pairs.200 It is reasonably common
for a combination of data sources to be used within industries to achieve a better
understanding. Simulation methods and quantum chemical data are sources of rich
deep understanding used to supplement informatics.

On the basis of this we wished to investigate the accuracy of informatics methods
presented with information from di�erent sources. We chose to focus on machine

90
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learning within cheminformatics to produce a QSPR approach. In the rest of this
section a discussion of the methods and results emanating from the above approach
is provided. The results have been published in the following publication.33

4.2 A New Dataset: Drug-Like-Solubility-100

Following on from the predictions using the DLS-25 dataset we generated a larger
dataset, named DLS-100. This dataset consists of 100 drug-like molecules, 25 of
which are the DLS-25 molecules. We generated this data set with the aim to
investigate a combined theoretical chemistry and cheminformatics method. The fact
that cheminformatics requires in general larger sets of data to acquire statistically
robust results meant that it was not appropriate to investigate such combined models
using the DLS-25 dataset. The structures and data associated with this dataset are
presented in Appendix H. The full dataset and all scripts for machine learning are
downloadable from the Mitchell group website , the use of which is exempli�ed
in the paper by McDonagh et al.33

This dataset was built with similar ideas and criteria as those used in the generation
of the DLS-25 dataset. The following are the applied criteria:

� Molecules must be organic and drug-like.

� A well documented solubility must be reported in the literature, ideally measured
by the CheqSol method.201

� A usable crystal structure must be available from the CSD.

We identi�ed 125 CheqSol solubilities from three publications; the solubility
challenge,28 Palmer et al6 and Narasimham et al.202 41 had usable crystal structures
available in the CSD. Where a choice of polymorphs with solubility data existed,
we selected the most thermodynamically stable polymorph, hence the one with the
lowest solubility. Where information on the solubility of speci�c polymorphs was
not available (which was most often the case), we selected the polymorph giving the
lowest lattice energy from our calculations.

4.3 Work�ow and Descriptor Generation

Our ultimate goal was to investigate the e�ect of combining descriptors generated
from di�erent sources (i.e. simple counts, graph theory, thermodynamics and
quantum chemistry). Our main focus was the relative complementarity, or lack
of, between the di�erent descriptors. In analysing these data we focus on the
RMSE, aiming to minimise the overall predictive inaccuracies rather than focusing
on individual cases.

http://chemistry.st-andrews.ac.uk/staff/jbom/group/Informatics_Solubility.html
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4.3.1 Chemical Theory Work�ow

The initial step involved generating a model based exclusively on theoretical
chemistry in an analogous way to that outlined for the �rst-principles prediction
of solubility. We applied DMACRYS to minimise the lattice energy by optimising
the unit cell. A single molecule was removed from the unit cell and optimised
in the gas phase. The optimised structure was then extracted and placed into a
solvation calculation using the SMD solvation model. This was carried out for all
100 molecules. In our previous publication,31 and presented above in Table 3.7, we
showed that DMACRYS coupled with 3DRISM could provide a better prediction of
solubility than DMACRYS coupled with SMD. We selected the SMD model here for
a couple of reasons: Firstly, the SMD model was shown to make good predictions of
∆Ghyd in the �rst-principles prediction of solubility.31 Despite DMACRYS-3DRISM
providing a more accurate absolute solubility prediction than DMACRYS-SMD,31

the SMD model provided a notably higher R2 against experimental data for ∆Ghyd

predictions. As the current model is parametrised in nature, the correlation
rather than absolute value was considered to be of higher importance. The two
methods produce a near equivalent correlation coe�cient R2 for solubility prediction.
Secondly, the SMD model is simpler procedurally to use making it more easily
applied by others wishing to follow our work. Finally, the SMD model is available
in the commonly used quantum chemistry package G09, hence, anyone wishing to
utilise our methodology further is more likely to have access to the SMD model than
to the RISM methodology. The overall work�ow for this procedure is provided here:
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ATsingleTmoleculeTgeometryTisTextractedTandTaT
gasTphaseToptimisationTisTperformedTwithTG09

ATsingleTpointTsolvationTcalculationTisTperformedT
onTTtheTgasTphaseToptimisedTstructureTinTTG09

CSDTcrystalTstructureTtakenTasTinput

ATsingleTmoleculesTgeometryTisTextracted.TAT
singleTpointTcalculationTisTperformedTwithTG09T

TheTdensityTmatrixTfromTG09TisTusedTtoTcalculate
TtheTdistributedTmultipolesTinTGDMA2

DMACRYSTnormalisesTtheTlengthTofT
covalentTbondsTtoTHTatoms

DMACRYSTcarriesToutTlatticeTenergyT
minimisationTandTaTphononTmodeTcalculation

OutputTtheT
latticeTenergyT
andTentropy

OutputT
gasTenergyT
andTentropy

OutputT
solution
TenergyT

Figure 4.1: Work�ow to calculate the thermodynamic parameters required for solubility
prediction.

This work�ow was run at two di�erent levels of theory: HF/6-31G* and M06-2X/6-
31G*. This gave us two benchmarks to which we could compare our cheminformatics
predictions of solubility. In total this scheme provides ten chemical parameters
usable as descriptors (Table H.3).

In addition to this we also calculated 123, two dimensional (calculated from 2D
chemical structures) descriptors from the open source java library and toolkit, the
Chemistry Development Kit (CDK ).82 These descriptors were all calculated from
SMILES203 strings. O'Boyle has pointed out the ambiguities within some SMILES
strings.204 In an attempt to minimise this we chose one main SMILES source,
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the well-annotated database ChemSpider.205�208 On a few occasions ambiguities in
protonation state were recorded and SMILES strings from another source were used.
The sources of the SMILES strings are stated in Table H.2. A list of the 2D
descriptors used in this work is also provided in Table H.4.

4.3.2 Cheminformatics Work�ow

Having generated these descriptors, we required a machine learning protocol with
which to generate a QSPR model. Here we will apply three machine learning models:
Random Forest (RF), Support Vector Machines (SVM) and Partial Least Squares
(PLS).As described in Section 2.1.3, these machine learning models have several
internal parameters which require optimisation. In addition we must produce an
unbiased training and test set separation and run this over three machine learning
models. To do this e�ciently, collaborating with Neetika Nath, a double 10 fold
cross validation (CV) approach was chosen. This provides an internal 10 fold CV,
in which the machine learning parameters are optimised and a second external 10
fold CV in which an unbiased split of the data is made into a test and training
group. A scheme representing the key steps is given below:

100 molecules

81 9

100 molecules

90 10

Internal 10 
fold 
CV

Internal 10 
fold 
CV

Internal 10 
fold 
CV

Figure 4.2: Schematic of the key steps involved in the machine learning protocol

Figure 4.2 shows an outline of the cross validation loops, exempli�ed for 100
molecules as used for the DLS-100 dataset. In the case of 100 molecules the training
and test set split is made in an unbiased way from a random selection of 10% of
the data reserved as the test set. This is repeated ten times, hence 10 fold cross
validation, so that every molecule is used in the test set once. The remaining 90%
is used as training data, hence each molecule is used as training data 9 times from
the external 10 fold cross validation. The remaining 90% of the original data is then
split again. This time 10% is taken randomly to test the parameters being trialled in
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the machine learning models. The remaining 90% (81% of the original data) is used
to train the machine learning models built using the test parameters. Optimised
parameters are considered to be those minimising the RMSE of the internal 10 fold
cross validation's test set. This approach is explained in detail in the following
complete schematic of the process:
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Input%%descriptors%and%/or%
theoretical%energies

Data%prebprocessing

Training%and%test%set%split

External%CV
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Averaged%RMSE%and%Model%R2

Stop

T'%=%90R%
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T%2%=%10R%
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and%T%2
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Repeat%for%new%range%of%parameter%values

10%
fold%CV
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Average%RMSE%select%parameters%on%
the%basis%of%lowest%RMSE

Figure 4.3: Machine learning work �ow: Internal 10 fold cross validation optimises the
machine learning parameters. External 10 fold cross validation produces an unbiased

training and test set predictions.

In addition to the double ten fold cross validation we also have three pre-processing
options represented in the overall diagram above in the data pre-processing box. It
is important that no single descriptor can overshadow the others. Descriptors which
hold the same value for every molecule in the dataset provide no di�erentiation and
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hence are useless to the model. Descriptors holding a wide spread of values can
overwhelm the model and hide other descriptors with only a small spread of values.
Scaling provides a means of placing descriptors on an equal playing �eld. The three
forms of scaling we use in this work are as follows:

� Scale by the standard deviation and the mean (auto - scaling)

� Scale by principal components analysis (PCA)

� Raw data - No scaling

The �rst scaling method centres each descriptor on a mean value and normalises
each descriptor's standard deviation to one. This is achieved by calculating the
mean value of the descriptor by averaging each individual value. The mean value
is then taken away from each individual value. The new value is divided by the
standard deviation of the descriptor. The new descriptor now has a unitary variance
and a centre mean.

x′i =
xi − 〈x〉

σ
(4.1)

Equation 4.1: Scaling descriptors by the standard deviation and the mean.74

The second scaling method is similar in concept to PLS, in that it reduces the number
of descriptors to a set of core components known as principal components. PCA is
useful as it allows for the descriptor dimensionality to be reduced hence reducing
the possibility of over �tting the model. PCA generates principal components as
a linear combination of the descriptors, where the principal components o�er a
maximal explanation of the variance between the descriptors.

xb 

xa

PCi = ∑ cij xj
j=1

n

Figure 4.4: A 2D example of principal components analysis.

The �nal option is to run without any scaling. This enables us to look at the data
in a pure form without any e�ects from scaling.

4.4 Predictions from Chemical Theory

If we apply the same criteria as applied in the �rst principles predictions of solubility,
i.e. useful predictions are those within the standard deviation of the experimental
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data (1.71 logS units), then the two benchmark calculations from theoretical
chemistry provided a poor prediction of solubility for the DLS-100 dataset.

Figure 4.5: A prediction of solubility for DLS-100 using HF

Figure 4.6: A prediction of solubility for DLS-100 using M06-2X

Clearly from the above data both methods fail to make a useful prediction of
solubility according to the pre-de�ned criteria. The predictions made using HF make
an improved prediction over predictions from the M06-2X method, although still
missing the required predictive accuracy. As the DLS-100 dataset is made up of the
DLS-25 dataset and 75 more molecules (DLS-75), it may be instructive to break the
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predictions down into these two separate groups. Noting there are slight variations
between the calculations in the �rst principles calculations and these calculations
(multipole calculations based on di�erent levels of electronic structure theory and
the application of di�erent Buckingham potential parameters), the following results
are found when the data are split.

Measure HF DLS-25 HF DLS-75 HF DLS-100

R2 0.62 0.25 0.33

σ 2.36 3.02 2.88

Bias -0.2 -0.73 -0.60

RMSE 2.37 3.11 2.95

Table 4.1: HF; DLS-25, DLS-75 and DLS-100 split

Measure M06-2X DLS-25 M06-2X DLS-75 M06-2X DLS-100

R2 0.53 0.19 0.25

σ 2.36 3.32 3.12

Bias -1.83 -2.78 -2.56

RMSE 2.90 4.33 4.03

Table 4.2: M06-2X; DLS-25, DLS-75 and DLS-100 split

Bearing in mind that the standard deviation of the DLS-25 experimental data is 1.79
logS units and the standard deviation of the DLS-75 and DLS-100 experimental data
is 1.71 logS units, we can see that in all cases the RMSE of the predictions exceeds
that of the standard deviation of the experimental data. We can also note, that the
predictions for the DLS-25 dataset are in both cases improved predictions over the
other two datasets. Interestingly, again in both cases, we note that the predictions
for the DLS-100 dataset are better, in terms of each statistical measure, than for
the DLS-75 dataset. This may suggest that the DLS-75 dataset represents a more
di�cult dataset than the DLS-25 dataset. Another possible interpretation is that,
as the data in the DLS-25 dataset all came from the same experiment(CheqSol)
this data is less noisy than the additional data making up the DLS-75 and DLS-100
datasets which comes from a variety of sources. This noise is therefore causing the
DLS-75 dataset and hence the DLS-100 dataset to appear as a harder dataset than
the DLS-25 dataset due to random errors. Testing these hypotheses is outside the
scope of the current work, although other authors have previously considered the
themes behind these hypotheses.36 It was recently suggested by Palmer et al that
although it is dogma that QSPR and QSAR methods are restricted in accuracy due
to the available experimental data, actually the primary reasons for poor predictions
from such models is due to failures in the algorithms themselves and incomplete sets
of descriptors.36

From these results, several conclusions are apparent. Firstly, the present
methodologies do not suitably quantify the physical processes occurring during the
solvation (transition from solid to solution) of a molecule. Secondly, assuming one
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can explain the structure of the underlying data with a general model, using logS
values predicted at the current levels of theory as its basis, then the model will be
non-linear given the failure of the above linear models to explain the data.

4.5 Predictions from Cheminformatics

4.5.1 Machine learning - Theoretical Chemistry Descriptors

Using energies calculated from theoretical chemistry as descriptors in our machine
learning models yields signi�cantly improved results, compared with the result from
theoretical chemistry alone. The results produced are useful predictions of solubility
with an RMSE within the standard deviation of the experimental data (1.71 logS
units). Both the RF and SVM models produce much improved results with PLS
producing a slightly poorer result. The charts below show the results overall (in all
diagrams the error bars show the standard deviation of the predicted values):
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Figure 4.7: A prediction of solubility for DLS-100 using HF energies as descriptors.
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Figure 4.8: A prediction of solubility for DLS-100 using M06-2X energies as descriptors

HF Scaled by Mean and σ Scaled by PCA No Scaling - Raw Data

Method RMSE R2 RMSE R2 RMSE R2

SVM 1.25±0.02 0.46±0.02 1.26±0.02 0.46±0.02 1.25±0.02 0.46±0.02
RF 1.24±0.03 0.47±0.03 1.21±0.02 0.5±0.02 1.24±0.03 0.47±0.03
PLS 1.37±0.02 0.36±0.01 1.36±0.02 0.36±0.02 1.45±0.03 0.29±0.03

Table 4.3: DLS-100 results using theoretical chemistry calculated data, at the HF level of
theory as descriptors. Results are presented ± the standard deviation in the predictions.

M06-2X Scaled by Mean and σ Scaled by PCA No Scaling - Raw Data

Method RMSE R2 RMSE R2 RMSE R2

SVM 1.26±0.03 0.45±0.02 1.25±0.03 0.46±0.02 1.26±0.03 0.45±0.02
RF 1.24±0.02 0.47±0.02 1.32±0.03 0.4±0.03 1.24±0.02 0.47±0.02
PLS 1.37±0.02 0.45±0.02 1.38±0.04 0.45±0.02 1.51±0.06 0.25±0.04

Table 4.4: DLS-100 results using theoretical chemistry calculated data, at the M06-2X
level of theory, as descriptors. Results are presented ± the standard deviation in the

predictions.

Figure 4.7 and Figure 4.8 represent the predictive accuracy of each method in
terms of the minimizing the RMSE. In this set the best method is RF with HF
calculated descriptors scaled with PCA, with the results 1.21 logS units RMSE and
R2=0.5 (Table 4.4). Given that these models are built on only 10 descriptors
this is a dramatic improvement and shows that the descriptors are providing useful
information to the model which correlates to the experimental data.
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4.5.2 Machine learning - CDK Descriptors

In addition to running machine learning using theoretical chemistry descriptors, we
ran the machine learning methods using 2D chemical descriptors. It is of interest
that when using the 2D chemical descriptors alone as input to the machine learning
algorithms a marginally improved prediction of logS is achieved, compared to the
equivalent machine learning methods using energies as descriptors. Of particular
note is the fact that the RF model can produce a statistically signi�cant improvement
on its previous predictions, when presented with data scaled by the mean and
standard deviation (Appendix I). In all other cases, the changes are not signi�cant.
Here, these results suggest that slightly more information, pertinent to the molecule's
logS values, is conveyed by cheminformatics descriptors than when the machine
learning models are presented with theoretical energies alone.
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Figure 4.9: A prediction of solubility for DLS-100 using 2D CDK descriptors.

CDK Scaled by Mean and σ Scaled by PCA No Scaling - Raw Data

Method RMSE R2 RMSE R2 RMSE R2

SVM 1.19±0.03 0.51±0.02 1.25±0.03 0.46±0.03 1.25±0.06 0.46±0.06
RF 1.17±0.03 0.53±0.02 1.24±0.02 0.48±0.02 1.17±0.03 0.53±0.02
PLS 1.22±0.1 0.52±0.05 1.19±0.02 0.53±0.01 1.39±0.1 0.242±0.06

Table 4.5: DLS-100 results using 2D CDK descriptors. Results are presented ± the
standard deviation in the predictions.

Figure 4.9 demonstrates the relative ability of each predictive method. It shows
the best method in this case to be a tie between RF either scaled by the standard
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deviation and the mean or using the raw data (1.17 logS units RMSE and a R2=0.53)
(Table 4.5). For both of the other machine learning methods scaling is required
to produce the best result. RF, however, automatically selects descriptors based on
importance, i.e. those providing maximal di�erentiation are selected before those
o�ering less di�erentiation between the values of the property of interest. For this
reason RF in this case is able to use the raw data as e�ectively as the scaled data.

4.5.3 Machine learning - Mixed Descriptor Sets

We continued this work by combining descriptors and energies, producing a new
input dataset containing 133 descriptors. This was input to the machine learning
algorithms as was done with the previous data sets. The results generated
were generally a moderate improvement over those generated by cheminformatics
descriptors alone. The best prediction was provided by PLS using the M06-2X
energies and CDK descriptors, scaled by the standard deviation and the mean (1.11
logS units RMSE and R2=0.59). This implies the theoretical energies provide only
a moderate amount of additional, useful, information to the models, above that
already present in the CDK descriptors. Some results see a statistically signi�cant
improvement on combining the descriptor sets (RF and PLS with descriptors
scaled by the mean/standard deviation) compared to using theoretical energies
alone. Given this, and the fact that using the descriptors alone provides a small
improvement to the results compared to theoretical chemistry descriptors alone, it is
a reasonable conclusion that the cheminformatics descriptors contain some modest
amount of extra information not present in the theoretical chemistry descriptors.
Thus, it is suggested that the cheminformatics descriptors and theoretical chemistry
descriptors supply analogous information, with a modest amount of additional
information conveyed by combining the descriptors. A reasonable assertion is that
the two sets of descriptors are largely non-complementary.
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Figure 4.10: A prediction of solubility for DLS-100 using HF energies and CDK
descriptors.
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Figure 4.11: A prediction of solubility for DLS-100 using M06-2X energies and CDK
descriptors
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HF + CDK Scaled by Mean and σ Scaled by PCA No Scaling - Raw Data

Method RMSE R2 RMSE R2 RMSE R2

SVM 1.16±0.03 0.54±0.03 1.25±0.03 0.47±0.03 1.28±0.05 0.44±0.04
RF 1.14±0.02 0.56±0.02 1.19±0.01 0.52±0.01 1.14±0.02 0.56±0.02
PLS 1.15±0.06 0.57±0.04 1.18±0.04 0.54±0.03 1.47±0.08 0.35±0.05

Table 4.6: DLS-100 results using theoretical chemistry calculated data, at the HF level of
theory as descriptors. Results are presented ± the standard deviation in the predictions.

M062X+CDK Scaled by Mean and σ Scaled by PCA No Scaling - Raw Data

Method RMSE R2 RMSE R2 RMSE R2

SVM 1.17±0.02 0.53±0.02 1.25±0.02 0.46±0.02 1.28±0.05 0.43±0.05
RF 1.13±0.02 0.57±0.02 1.17±0.01 0.54±0.01 1.13±0.02 0.57±0.02
PLS 1.11±0.04 0.59±0.02 1.14±0.03 0.56±0.02 1.47±0.12 0.35±0.07

Table 4.7: DLS-100 results using theoretical chemistry calculated data, at the M06-2X
level of theory, as descriptors. Results are presented ± the standard deviation in the

predictions.

One interesting point, is that the best result comes from the descriptor set combining
M06-2X energies with CDK descriptors. The M06-2X energies alone produced the
poorest results of the two purely theoretical chemistry predictions (Figure 4.5 and
Figure 4.6). This is an unexpected result unlikely to be chemically meaningful
but rather the result of a fortuitous correlation with the descriptors providing a
correction to the prediction.

4.6 Conclusions from Machine Learning

From these 45 di�erent prediction methods for the solubility of the DLS-100 dataset,
we �nd the RF model performs well with all of the descriptor sets, whether they are
scaled or not. The best prediction from the RF method resulted in an RMSE 1.13
logS units. It is generally considered that an accuracy of 1 logS unit constitutes a
good prediction. For a di�cult dataset such as DLS-100 it appears RF performs
well, only narrowly missing the 1 logS unit RMSE criterion in a number of cases.
After machine learning all of the methods presented above produce predictions
with an RMSE comfortably inside the standard deviation of the experimental data;
hence, each prediction is a useful prediction by the criteria previously de�ned. Note
that RF is the only model that makes moderately improved predictions, which are
statistically signi�cant in a number of cases, with or without any form of scaling.
This is therefore our recommended method for general applicability.33

One of the major weaknesses of machine learning models is lack of understanding
that can be derived from their results. Whereas theoretical chemistry calculations
can be decomposed to reveal further physical information about a system the same
is not true for cheminformatics and machine learning. We can, however, analyse
which of the descriptors are found to be the most important in certain cases. We
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have done this here (Appendix I). The XlogP209 descriptor was consistently found
to be the top rated descriptor in all of the data sets it was included in. XlogP
is a model which estimates the base ten logarithm of the octanol-water partition
coe�cient. This estimate is calculated as additive contributions from atoms within
the molecule. LogP descriptors have previously been seen as a vital descriptor
for QSPR models predicting solubility.53 It is not surprising that logP is rated as
an important descriptor, as it provides information about the solvated phase.32,196

Appendix I shows tables of the top ten important descriptors in the RF models.
The χ path and chain indices by Kier and Hall90,210 were commonly found in the top
ten; these descriptors quantify the bonding to heavy atoms over a speci�c path length
or equivalently over a chain length. The Moreau Broto autocorrelation211 descriptor
is also found in the top ten most important descriptors. This descriptor describes
how charge and mass are distributed across a particular path length. A �nal addition
to the top ten is Randic's weighted path descriptors,88,212 which informs the model of
the degree of molecular branching present. Adding the theoretical energies and the
CDK descriptor sets together �nds the following energy terms in the top ten most
important descriptors: the free energies of hydration, the free energy of solution
and the theoretically predicted logS. The descriptors used in this work are listed in
Appendix H.33

As previously stated we cannot decompose these results to yield deeper chemical
meaning as is sometimes possible with theoretical chemistry calculations. For this
reason we must be careful when assigning chemical meaning to the descriptor
importance information. However, we can see some chemical sense and logic in
the selection of most important descriptors. Molecular branching is ranked in
the top ten; one can see how information pertinent to the extent and �exibility
of the molecule would be important in determining the contribution of entropy,
for example. Linking such information with that emanating from the Kier Hall
descriptors, allows for the acquisition of knowledge about chain composition, in
terms of bonded heavy atoms. The autocorrelation descriptor, describing the
distribution of charge and mass, might be considered to impart knowledge of
the heavy atom distribution and some limited electronic information from the
charges. The degree to which charges are separated, i.e. localised or dispersed,
across a molecule is an important factor for determining the enthalpic and entropic
contributions. The theoretical energies in the top 10 are all closely related
quantities; it comes as no surprise to �nd the predicted logS value in the top
10, as it is the quantity which we are attempting to predict. One expects the
prediction from theoretical chemistry to supply su�cient information to the machine
learning methods to be ranked in the top ten most important descriptors. It is
again unsurprising that the free energies of solution and hydration are ranked in
the top ten most important descriptors, as they provide direct information from
quantum chemical calculations on intra- and intermolecular interactions, in a given
conformation, within the various physical and chemical environments. Additionally,
these predicted values provide information on the energetics of phase transitions.33

As a benchmark, we performed the same calculations on a standard dataset from the
`Solubility Challenge' (SC ).28,44,213 The predictions for the SC dataset are made using
the 2D cheminformatics descriptors from the CDK. As suitable crystal structures
were not available from the CSD for all of the molecules in the SC, it was not possible
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to calculate the theoretical energies.33
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Figure 4.12: A prediction of solubility for solubility challenge dataset using 2D CDK
descriptors in our 10 fold cross validation methodology.
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Figure 4.13: A prediction of solubility for solubility challenge dataset using 2D CDK
descriptors in the solubility challenge's original test and training data split.

CDK Scaled by Mean and σ Scaled by PCA No Scaling - Raw Data

Method RMSE R2 RMSE R2 RMSE R2

SVM 1.03±0.02 0.45±0.02 1.15±0.01 0.31±0.02 1.08±0.04 0.39±0.04
RF 0.93±0.01 0.56±0.01 1.12±0.01 0.36±0.02 0.93±0.01 0.56±0.01
PLS 0.93±0.02 0.55±0.02 0.95±0.02 0.53±0.02 1.17±0.04 0.33±0.03

Table 4.8: A prediction of solubility for solubility challenge dataset using 2D CDK
descriptors in our 10 fold cross validation methodology. Results are presented ± the

standard deviation in the predictions.

CDK Scaled by Mean and σ Scaled by PCA No Scaling - Raw Data

Method RMSE R2 RMSE R2 RMSE R2

SVM 1.07 0.41 1.08 0.39 1.08 0.41

RF 1.03 0.50 1.02 0.50 0.93 0.57

PLS 0.91 0.55 0.91 0.55 0.89 0.58

Table 4.9: A prediction of solubility for solubility challenge dataset using 2D CDK
descriptors in the solubility challenges original test and training data split.

Table 4.8 and Figure 4.12, validate that our method is performing well by
comparison to alternatives by making predictions of the SC dataset within 1 logS
unit RMSE. These are levels of predictive accuracy currently in line with those being
achieved by some commercial solubility prediction software (MLR-SC62 RMSE 0.95
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logS units) and advanced deep-learning methods (RMSE 0.90 logS units).32 These
results are not directly comparable with ours, due to methodological di�erences
and the fact that these results are contingent on correcting eight errors in the
original solubility challenge data. Whilst we corrected names and SMILES to ensure
consistent structures were used we did not correct the logS values from the original
SC. Using the SC data set as a benchmark provides further evidence of the di�cult
nature of our DLS-100 data set. It is therefore further suggested that DLS-100 should
be considered a �di�cult data set�, given the improvement in predictive accuracy on
the SC data set compared to the DLS-100.33



Chapter 5

Empirical Models of Solubility

Prediction

"At that stage I had barely heard of quantum mechanics, and
was only expressing a liking for theory as being able to quantify
relationships between measurable properties and make
predictions."

Sally Price, 2012

5.1 Empirical Predictions of Solubility

There have been a number of proposed solubility equations containing various
parameters and descriptors.5 These models were generated initially in the 60's,
for calculating the di�erences in logS.214. By the 80's expressions capable of
accurate predictions of logS had been derived.46 These relationships were based
on the input of a few experimental pieces of data, which could be used e�ectively
as descriptors of physical characteristics related to solubility. In this chapter
we describe the application of one of these equations, we attempt to predict
the empirical quantities required using cheminformatics and �nally apply these
quantities to a logS prediction.

5.1.1 The General Solubility Equation:

Predicting Melting Points

Predicting crystal structures and their physicochemical properties is an important
research area. Predicting melting points is one small region of this research area.
Melting points are an attractive property as the well established General Solubility
Equation (GSE, Equation 5.1)46,47,215 links the melting point to solubility with
reference to a thermodynamic cycle via a pure melt: this empirically derived
relationship has seen wide usage.54,215,216 The GSE has been proposed as a way to
accurately predict solubility using only two pieces of empirical data; the �rst is the
melting point, the second logP. Log P can be reasonably predicted by atom or group

110
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contribution models such as AlogP, XlogP and ClogP which have been discussed
previously. Melting points, however, still elude us as predictable quantities. For this
reason a good prediction of a crystal's melting point could in principle provide a
direct useful prediction of a molecule's solubility.

log10S = 0.08− log10P − 0.01× (MP − 25) (5.1)

log10S = 0.05− log10P − 0.01× (MP − 25)

Equation 5.1: The general solubility equation: Top original, bottom revised intercept
correction. Log P is the partition coe�cient between octanol and water. MP is the

melting point in ◦C.

5.1.2 Melting Point Data

A set of open source melting point data has been made available online.217 By far
the largest of these datasets is the Alfa Aesar dataset of over 8000 molecules and
their corresponding SMILES strings. A random subset containing 1100 molecules
was taken from this dataset to produce a manageable dataset for melting point
prediction. This dataset will be referred to as MP1100. The full dataset is presented
with molecular name, predicted logP by the AlogP method101�103 and the melting
point in Appendix J. AlogP and ClogP are two of the most popular algorithms to
predict the partition coe�cient. AlogP was used to predict the partition coe�cient
as it has been shown to be equivalent to the ClogP algorithm for molecules composed
of 21-45 atoms and superior to ClogP for molecules composed of >45 atoms. As 67
of the molecules in the dataset fall in the range of ge45 atoms, with many others
being between 21 and 45 atoms in size, this method was selected.218 This dataset
covers a diverse range of chemical space and molecules. All molecules are organic
and the dataset contains a number of structural isomers. All melting points and
SMILES are taken from the Alfa Aesar open source melting point dataset. The
dataset is approximately normally distributed as shown below.
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Figure 5.1: Melting point distributions. Each bin is 10◦C, with each subsequent bin being
cumulative over the previous bins.

5.1.3 Melting Point Predictions

By applying the same machine learning methods as were described in Section 4.1
the melting points of the MP1100 dataset were predicted. 2D descriptors were
again calculated using the CDK for all 1100 molecules; 101 descriptors in total were
found to provide information to the models. Given that the number of data points
overwhelms the number of descriptors in this dataset, there was little concern of
over �tting. A single method of scaling was selected, that of mean and standard
deviation scaling. This method was selected as the models created for solubility
using this scaling with the 2D CDK descriptors had performed well.

Given the apparent importance of logP, exempli�ed in the GSE, the melting point
predictions were run twice; once containing a logP descriptor and once not containing
a logP descriptor. This was done to assess the importance of the descriptor to the
�nal model. It was assumed that this would be negligible and was indeed shown to
be so. Given the large number of descriptors it is likely that su�cient information
will be provided by other descriptors for a prediction to be made of similar accuracy.
Chemically, the melting point will be determined by the solid and molten liquid state
properties, ergo, one may imagine a descriptor for the solvated phase having only a
minor impact. The results of predictions without the logP descriptor are marginally
worse and therefore we focus on the prediction made with the descriptor included.
The resultant predictions made without the logP descriptor are shown inAppendix
J.

The following three �gures represent the prediction of each molecule's melting point
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in the MP1100 dataset. Figures 5.2, 5.3 and 5.4 show the prediction by each
machine learning method.
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Figure 5.2: A support vector machine prediction of melting points (oC) for the MP1100
dataset using 2D CDK descriptors in our 10 fold cross validation methodology.
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Figure 5.3: A random forest prediction of melting points (oC) for the MP1100 dataset
using 2D CDK descriptors in our 10 fold cross validation methodology.
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Figure 5.4: A partial least squares prediction of melting points (oC) for the MP1100
dataset using 2D CDK descriptors in our 10 fold cross validation methodology.

We can see that each of the machine learning methods achieves a good correlation
coe�cient with a low bias, suggesting a low systematic error. The experimental
data has a standard deviation of 82.40 ◦C. All of the methods above show an
RMSE signi�cantly below this, suggesting the predictions are useful. The RMSE
however, in all cases, is above 40 ◦C meaning that the melting points are at best
imprecise predictions. The average absolute predictive errors are: 34.4◦C from
PLS, 30.7◦C from RF and 30.6◦C from SVM. Given that these predictions are
over a temperature range of 517◦C, on average the predictive accuracy is reasonably
promising. However, at the upper end of the predictive inaccuracy, errors occur
upto 220.8◦C for PLS, 207.5◦C for RF and 195.9◦C for SVM. This level of accuracy
is not suitable as a quantitative prediction of melting point, although it could be
argued that on average these predictions are qualitatively useful. These predictions
are in line with existing methodologies using a variety of QSPR/QSAR approaches
and datasets containing similar molecules.196,219�221

In terms of descriptor importance we �nd the that the most important descriptor is
the topological polar surface area. The next four descriptors making up the top �ve
most important descriptors are; the Zagreb index, weighted paths of length 3 and 4
and �nally the hydrogen bond donor count. These descriptors make physical sense as
they describe the polarity of a molecule's exposed surface, i.e. the area most available
for direct interaction. In addition, information on the molecule's extent in terms
of complexity and branching from the Zagreb index and weighted paths is provided
by these descriptors. The hydrogen bond donor descriptor is providing at least
some information to the model about signi�cant interactions within the solid state
not described by the other four descriptors. Interestingly, hydrogen bond acceptor
descriptors are found much lower down in the ranking outside of the top ten. The
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logP descriptor is also found outside of the top ten. As we stated above it is unlikely
that such a descriptor would provide signi�cant amounts of information when trying
to predict the solid state property of melting point. The descriptor importance is
based on RF's prediction of melting point. The top ten most important descriptors
are shown in Appendix J.

5.1.4 Solubility from Melting Points

Following from these predictions we studied the overlap between the MP1100 dataset
and the existing solubility datasets, DLS-25 and DLS-100. We found an overlap of 30
molecules, which we will refer to as DLS-30. For these 30 molecules we predicted the
logS value using the GSE. The GSE was reparametrised by Jain and Yalkowsky47

and so we present both the results from the original GSE, from Yalkowsky and
Valvani,46 and from the reparametrised version by Jain and Yalkowsky.47 The three
Figures 5.5, 5.6 and 5.7 show these results.
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Figure 5.5: A prediction of solubility for the DLS-30 molecules using the general solubility
equation with predicted melting points from PLS and predicted logP from AlogP.
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Figure 5.6: A prediction of solubility for the DLS-30 molecules using the general solubility
equation with predicted melting points from RF and predicted logP from AlogP.
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Figure 5.7: A prediction of solubility for the DLS-30 molecules using the general solubility
equation with predicted melting points from SVM and predicted logP from AlogP.

The standard deviation of the experimental data is 1.95 logS units. Table 5.1
summarises the predictive accuracy of each method. The reparametrisation has a
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notable e�ect on the bias where we see consistent reduction in the systematic error
compared to the original parametrisation. The predictions of solubility reach the
chemical accuracy level, of approximately 1 logS unit RMSE, which is a promising
result for a relatively simple model.

These results present the improvement between the two forms of the GSE. The
original parametrisation, whilst still performing well in all cases, embodies a much
larger systematic error. The reparametrised GSE has a much diminished systematic
error leading to an overall improvement in predictive performance. The model
utilising PLS predicted melting points performs very well here with low systematic
and random errors, leading to an RMSE meeting the chemical accuracy target even
with the original form of the GSE.
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Figure 5.8: A prediction of solubility for the DLS-30 molecules using the general solubility
equation with experimental melting points and predicted logP from AlogP.

Figure 5.8 shows the result when the experimental melting points are used in place
of the predicted melting points. As would be expected, we see a reduction in the
bias, systematic error, and an overall improvement in the RMSE scores. Using
either form of the GSE now easily meets the chemical accuracy criteria. This is
a good result, providing intuitive con�rmation that the method is functioning as
expected, showing improvements when presented with more accurate data. When
the reparametrised GSE is used we can see the bias reduced to almost zero. This
suggests there is little systematic error in the model, providing reassurance that the
logP predictions from the AlogP model are also fairly accurate.
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Molecule Exp MP Exp AlogP GSEExp
JY PLS MP GSEPLS

JY RF MP GSERF
JY SVM MP GSESVM

JY

(◦C) (logS) (logS) (◦C) (logS) (◦C) (logS) (◦C) (logS)

1,3,5-trichlorobenzene 63.50 -4.44 4.08 -3.97 28.30 -3.61 36.96 -3.70 42.39 -3.75
1-Naphthol 96.00 -1.98 2.79 -3.00 75.30 -2.79 38.66 -2.43 61.80 -2.66

4-Aminobenzoic acid 187.50 -1.37 0.78 -1.91 144.60 -1.48 147.66 -1.51 207.01 -2.10
5,5-

Diphenylhydantoin
295.50 -3.86 2.26 -4.47 223.95 -3.75 174.20 -3.25 191.13 -3.42

Acetanilide 114.50 -1.40 1.05 -1.45 75.31 -1.05 59.92 -0.90 63.45 -0.93
Adenosine 235.00 -1.73 -1.21 -0.39 240.39 -0.44 181.05 0.15 115.41 0.81
Antipyrine 112.50 0.48 1.01 -1.39 102.40 -1.28 79.32 -1.05 94.70 -1.21
Benzamide 127.00 -0.95 0.51 -1.03 93.34 -0.69 89.24 -0.65 82.50 -0.58
Benzoic acid 122.50 -1.58 1.72 -2.20 85.96 -1.83 112.06 -2.09 102.85 -2.00

Chloramphenicol 150.50 -2.11 1.15 -1.91 183.22 -2.23 178.91 -2.19 162.48 -2.02
Flufenamic acid 134.00 -5.35 4.60 -5.19 178.95 -5.64 165.02 -5.50 183.83 -5.69
Griseofulvin 219.00 -3.25 2.71 -4.15 139.13 -3.35 127.36 -3.23 115.41 -3.11

Hydrochlorothiazide 269.00 -2.69 -0.16 -1.78 317.53 -2.27 190.79 -1.00 186.21 -0.95
Nalidixic acid 229.00 -3.61 1.27 -2.81 203.54 -2.56 167.32 -2.19 198.89 -2.51
Nicotinic acid 237.50 -0.85 0.29 -1.92 110.59 -0.65 135.54 -0.90 167.72 -1.22
Papaverine 146.50 -3.87 4.19 -4.91 113.66 -4.58 138.88 -4.83 124.55 -4.69
Perylene 278.00 -8.80 6.34 -8.37 151.23 -7.10 166.00 -7.25 169.45 -7.28
Pyrene 150.00 -6.18 5.19 -5.94 108.61 -5.53 131.49 -5.75 102.86 -5.47

Quinidine 170.00 -2.81 2.82 -3.77 122.24 -3.29 158.15 -3.65 121.73 -3.29
Salicylamide 140.00 -1.84 0.74 -1.39 148.96 -1.48 161.31 -1.60 177.31 -1.76
Salicylic acid 159.00 -1.94 1.96 -2.80 126.83 -2.48 151.54 -2.73 151.97 -2.73
Sulfacetamide 183.00 -1.51 0.15 -1.23 188.22 -1.28 155.26 -0.95 223.86 -1.64
Sulfadiazine 254.50 -2.73 0.25 -2.05 209.12 -1.59 168.86 -1.19 206.35 -1.56

Sulfamethazine 199.50 -2.73 0.43 -1.68 206.56 -1.75 187.30 -1.55 210.09 -1.78
Continued on next page
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Table 5.1 � Continued from previous page

Molecule Exp MP Exp AlogP GSEExp
JY PLS MP GSEPLS

JY RF MP GSERF
JY SVM MP GSESVM

JY

(◦C) (logS) (logS) (◦C) (logS) (◦C) (logS) (◦C) (logS)

Sulfanilamide 165.50 -1.36 -0.16 -0.75 161.27 -0.70 153.04 -0.62 127.98 -0.37
Thymine 316.50 -1.50 -0.80 -1.62 154.44 0.01 188.64 -0.34 254.67 -1.00
Thymol 50.50 -2.19 3.16 -2.92 22.66 -2.64 44.09 -2.85 24.33 -2.65

Tolbutamide 129.00 -3.47 2.04 -2.58 140.45 -2.69 144.96 -2.74 161.97 -2.91
Triphenylene 196.50 -6.73 5.77 -6.99 127.13 -6.29 159.55 -6.62 182.53 -6.85

Uracil 330.00 -1.49 -1.28 -1.27 158.73 0.44 185.28 0.18 229.04 -0.26

RMSE 0.77 0.86 0.95 0.93
R2 0.84 0.83 0.80 0.80
σ 1.95 0.84 0.80 0.88 0.89

Bias -0.06 0.31 0.36 0.27

Table 5.1: All data relating to predictions of melting point, AlogP and logS using the reparameterised version of the GSE.
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Molecule name PLS (|exp-pred|) RF (|exp-pred|) SVM (|exp-pred|)

1,3,5-trichlorobenzene 35.2 26.54 21.11

1-Naphthol 20.7 57.34 34.2

4-Aminobenzoic acid 42.9 39.84 19.51

5,5-Diphenylhydantoin 71.55 121.3 104.37

Acetanilide 39.19 54.58 51.05

Adenosine 5.39 53.95 119.59

Antipyrine 10.1 33.18 17.8

Benzamide 33.66 37.76 44.5

Benzoic acid 36.54 10.44 19.65

Chloramphenicol 32.72 28.41 11.98

Flufenamic acid 44.95 31.02 49.83

Griseofulvin 79.87 91.64 103.59

Hydrochlorothiazide 48.53 78.21 82.79

Nalidixic acid 25.46 61.68 30.11

Nicotinic acid 126.91 101.96 69.78

Papaverine 32.84 7.62 21.95

Perylene 126.77 112 108.55

Pyrene 41.39 18.51 47.14

Quinidine 47.76 11.85 48.27

Salicylamide 8.96 21.31 37.31

Salicylic acid 32.17 7.46 7.03

Sulfacetamide 5.22 27.74 40.86

Sulfadiazine 45.38 85.64 48.15

Sulfamethazine 7.06 12.2 10.59

Sulfanilamide 4.23 12.46 37.52

Thymine 162.06 127.86 61.83

Thymol 27.84 6.41 26.17

Tolbutamide 11.45 15.96 32.97

Triphenylene 69.37 36.95 13.97

Uracil 171.27 144.72 100.96

Average 48.25 49.22 47.44

Table 5.2: The absolute di�erences between the experimental and predicted melting points
from PLS, RF and SVM.

From Tables 5.1, 5.2 and Figures 5.5 - 5.8, we can see that predictions of the
solubility of the DLS-30 dataset are good. Although this is once again a small
dataset, the results agree with previous work showing good solubility prediction
using the GSE.215,216,222 This work further shows that good predictions of solubility
are possible even having been given a melting point of fairly low quality. We show
above that our predictions of melting point are su�cient, at least on this small
dataset, to produce useful predictions of solubility. All of the methods here have
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an RMSE within the standard deviation of the experimental data (1.95 logS units),
hence, they ful�l our criteria as a useful model of solubility. Further, all models based
upon the reparametrised GSE meet the chemical accuracy target of approximately
1 logS unit. In this case the GSE model using the PLS predicted melting points
produced the best prediction (RMSE=0.86 R2=0.83).

It is interesting to note that in Table 5.2, the absolute errors in the melting point
predictions are in some cases in excess of 100◦C, and yet still the predictions of
solubility are reasonably accurate. This suggests the parametrisation of the GSE
to be robust against even very poor predictions of the melting point; a useful asset
given the di�culty often faced of obtaining reliable experimentally measured melting
points. This is likely to be down to the fact that the logP term will dominate many
of the logS predictions as only 1% of the predicted melting point value minus 25◦C
enters the GSE equation (Equation 5.1).

If we now test the e�ect and reliance of these models to a change in logP predictions,
by replacing the AlogP predictions with XlogP predictions, we obtain the results
shown in Figures 5.9 - 5.12.
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Figure 5.9: A prediction of solubility for the DLS-30 molecules using the general solubility
equation with melting points from PLS and predicted logP from XlogP.
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Figure 5.10: A prediction of solubility for the DLS-30 molecules using the general
solubility equation with melting points from RF and predicted logP from XlogP.
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Figure 5.11: A prediction of solubility for the DLS-30 molecules using the general
solubility equation with melting points from SVM and predicted logP from XlogP.



5.1. EMPIRICAL PREDICTIONS OF SOLUBILITY 123

R²)=)0.74
bias)=)0.42)
SD)=)1.51

RMSE)=)1.57

R²)=)0.74
bias)=)0.72)
SD)=)1.55

RMSE)=)1.68

-14

-12

-10

-8

-6

-4

-2

0

2

-10 -8 -6 -4 -2 0 2

P
re

d
ic

te
d

 lo
g 1

0
S

Experimental log10 S

GSE Solubility Prediction Using Experimental Melting Points and Xlog P

Exp)GSE)(original)

Exp)GSE)(JY)

Figure 5.12: A prediction of solubility for the DLS-30 molecules using the general
solubility equation with experimental melting points and predicted logP from XlogP.

These plots show a reversal in the optimum parametrisation, so favour the original
GSE. We see an increase in the systematic error on going from the original to the
reparametrisation and therefore a worsening RMSE score. The RMSE scores are in
all cases worse than the RMSE scores calculated when using logP values predicted
by the AlogP method, for otherwise equivalent models of solubility. In addition,
we �nd the non-intuitive result of a worse prediction, in terms of RMSE, when
the predicted melting points are substituted by the experimentally derived melting
points.

From these results we conclude that the model GSE's accuracy is very dependent
on the source of the empirical data. If experimental values are provided for both
empirical parameters, then previous work has shown that the resultant predictions
are generally good. We see here that there is some unpredictability in the use of
calculated data in the GSE. We �nd models that appear for a small test set to make
good predictions of solubility from qualitative predictions of melting point and the
well known and widely used logP prediction method AlogP. We also �nd that, as
often the logP term dominates the logS prediction, the GSE is sensitive to the choice
of logP prediction algorithm. The results of selecting a poor �tting logP model are
here shown to be non-intuitive with reasonably poor predictions of solubility for a
QSAR/QSPR model.
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5.2 Conclusions from the GSE

From this work we �nd that it is beyond the capabilities of simple machine
learning models, utilising a modest number of 2D chemical descriptors, to predict
chemically useful and accurate melting points. We can conclude that based on
this it would be di�cult to make a simple model of solubility, due to inconsistent
predictions of melting points. However, on a small dataset, with errors in the
melting point prediction on average of approximately 50◦C, we can still make a
good prediction of solubility although further testing would be required to check
its broader applicability. The GSE appears usefully well adapted and parametrised
to deal with poor quality melting points, therefore, allowing useful predictions of
solubility to be made despite sizeable errors in the predicted melting points.



Chapter 6

Sublimation Thermodynamics

"If someone points out to you that your pet theory of the
universe is in disagreement with Maxwell's equations � then so
much the worse for Maxwell's equations. If it is found to be
contradicted by observation � well, these experimentalists do
bungle things sometimes. But if your theory is found to be
against the second law of thermodynamics I can give you no
hope; there is nothing for it but to collapse in deepest
humiliation."

Sir Arthur Eddington, 1915

6.1 Predicting Sublimation Thermodynamics

In this chapter we introduce extended predictions of ∆Hsub, ∆Ssub and ∆Gsub by
DMACRYS and machine learning. To conclude the chapter we present predictions
of ∆Hsub from �rst principles calculation. These predictions were carried out using
a new dataset.

6.1.1 A New Sublimation Dataset

Following from the work presented in Chapter 3 we decided to investigate
predictions of sublimation thermodynamics, using a larger dataset. A dataset of
chemically diverse, organic crystals was curated by searching the literature for data
which met our criteria:

� Experimental values for ∆Hsub, ∆Ssub and ∆Gsub must be available or
calculable from a single literature source.

� Where possible a crystal structure must be available in the CSD.

� Where possible the literature should have a record of the polymorph used in
the experiment.

125
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Applying the �rst of these criteria provided 158 molecules after a search of
appropriate literature. Applying the second criteria removed 62 of these molecules,
leaving a dataset of 96 molecules. Applying the �nal criterion would have reduced
the dataset to 3. Therefore, we took the approach of minimising the energy of all
potential polymorphs of a given molecule, and taking the one with the lowest lattice
energy to be the most stable, hence major contributory form to the sublimation
thermodynamics. As this process was extremely time consuming we opted to reduce
the dataset size to a more manageable 60-molecule set. This set was selected on the
basis of the best available crystal structures. Upon minimisation we found repeated
convergence failures in several structures. A variety of parameter variations were
attempted but were ultimately unsuccessful. The dataset was therefore reduced to
48 molecules. Table 6.2 shows the reduced dataset, which will be denoted SUB-48.

6.1.2 Sublimation Thermodynamics:

Predictions by DMACRYS

Following from our previous work, in Chapter 3, we wished to investigate how
accurately we could predict sublimation thermodynamics over a larger dataset
using computationally e�cient methods. We proceeded using the methods found
in Chapter 3, this time making predictions over the SUB-48 dataset.

We consider here the ∆Hsub predictions. These predictions were made applying
distributed multipoles, calculated at the B3LYP/6-31G** level of theory, as a model
of the electrostatics, and the FIT potential parameters, in the form of a Buckingham
potential, to model the repulsion and dispersion.
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Figure 6.1: Predicted ∆Hsub from DMACRYS against experiment.
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We can see from Figure 6.1 that the prediction is fairly poor. The standard
deviation of the experimental data is 15.94 kJ/mol, just above the RMSE of the
the predicted values. We can therefore classify this as a useful prediction given our
previous criteria, however, for practical purposes the predictions are not su�ciently
accurate. A reasonable positive correlation exists. We note that the bias and σ
suggest that the vast majority of the error is due to random errors which we cannot
expect the model to reasonably resolve; only a small amount (approximately 11% of
the RMSE) is due to systematic errors. This suggests a large amount of seemingly
random variation, which cannot be explained by the model, is incorporated in the
data.

Secondly, we made predictions of ∆Ssub using the same model as used for ∆Hsub.
Figure 6.2 shows a comparison of the calculated and experimental T∆Ssub data.
These predictions are made using the rigid-body approximation, hence ignoring
intramolecular contributions.
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Figure 6.2: Predicted ∆Ssub from DMACRYS against experiment.

It is immediately clear that there is no correlation between the predicted and
experimental T∆Ssub; we additionally note the similarity with the comparison of
the computed and experimental enthalpy data, in that the RMSE is just inside the
experimental σ (9.35kJmol−1) and the majority of the RMSE can be attributed to
random errors. These results suggest that either some important contribution is
being neglected in our model or that there is a far larger error in the experimental
data than is quoted in the literature. In either scenario the current level of predictive
accuracy is often tens of kJmol−1 o�.

In an e�ort to elucidate the origin of the errors, we attempted to correlate the entropy
values with other physical properties that one may expect to be correlated with



128 CHAPTER 6. SUBLIMATION THERMODYNAMICS

entropy, including molecular weight and the number of rotatable bonds. Figures
6.3, 6.4 and Table 6.1 show the correlations between molecular weight and the
number of rotatable bonds with the individual entropy contributions, respectively.
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Figure 6.3: Molecular weight against entropy.

Entropy Contribution R2

Crystal Entropy 0.45
∆Ssub 0.42

Experimental Entropy 0.01
Rotational Entropy 0.95

Translational Entropy 0.99

Table 6.1: Correlation coe�cients for plots of molecular weight against entropy.
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Figure 6.4: Number of rotatable bonds against entropy.

From these plots we can see that the calculated entropy contributions correlate with
molecular weight and the number of rotatable bonds, as one would expect, however,
the experimental entropy does not. As entropy is a measure of system disorder, one
might expect that the molar mass and number of rotatable bonds to correlate with
entropy as heavier molecules and molecules with more rotatable bonds generally
have an increased number of degrees of freedom.

Finally, the predictions of ∆Gsub are presented. These are simply calculated as the
di�erence between ∆Hsub and T∆Ssub. Figure 6.5 below shows a weak correlation
and again an RMSE score dominated by random error. In this case though, the
RMSE of the prediction is well outside the σ of the experimental data, which is
15.61kJ/mol. We therefore �nd that the predictions of ∆Gsub fail our criteria
of a useful prediction. Additionally, these values are far too large for practical
quantitative use.
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Figure 6.5: Predicted ∆Gsub from DMACRYS against experiment.

From these results it is likely that important contributions to ∆Gsub are missing in
our model. It is also possible that the potential errors in the experimental results
are underestimated. Note that these experimental determinations are di�cult to
carry out. Table 6.2 shows the raw predicted and experimental data. Appendix
H, Table H.1 contains the full experimental data with the reported error margins
quoted.
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Chemical Crystal T(K) ∆Hexp
sub ∆HPred

sub T∆SExpsub T∆SPredsub ∆GExp
sub ∆GPred

sub

Name Structure (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

Acetanilide ACANIL01223 301.02 99.8 88.57 59.3 57.35 40.5 31.77
aspirin (acetylsalicylic

acid)
ACSALA15224 298.15 109.7 112.76 66.19 60.43 43.6 52.33

Benzoic acid BENZAC01225 298.15 89.2 90.85 55.31 56.54 33.9 34.30
isophthalic acid BENZDC01226 298.15 143.4 131.02 69.86 58.78 73.5 72.25

2,4-Dinitrobenzoic
acid

BIPJUF227 298.15 134 119.89 72.75 59.99 61.25 59.90

Benzophenone BPHENO03228 298 89.1 91.65 54.5 58.37 34.6 33.25
atenolol CEZVIN229 298 140 162.28 64.37 62.9 71.1 99.35

2-Chlorobenzoic acid CLBZAC01225 298.15 106.3 98.67 64.79 55.26 41.5 43.41
4-Chlorobenzoic acid CLBZAP03225 298.15 105.2 98.52 59.45 56.99 45.8 41.53

2,6-Dichloro-4-
nitroaniline

CLNOAN230 298.15 109.2 101.14 60.52 55.65 48.7 45.49

3-Fluorobenzoic acid COVJIG225 298.15 93.8 94.65 59.45 56.1 34.4 38.54
naproxen COYRUD116 298.15 128.3 126.79 69.83 62.02 58.5 64.77

2,4-dichlorophenoxy
acetic acid

CPXACA231 298 123 125 71.22 62.51 51.78 62.46

1,8-
diphenylnaphthalene

DPNAPH01232 298.15 132.5 125.37 70.78 60.72 61.72 64.65

2-Fluorobenzoic acid FBENZA02225 298.15 94.7 92.8 59.21 54.33 35.5 38.46
�urbiprofen FLUBIP233 298.15 110.2 149.21 56.92 63.95 53.3 85.25

Flufenamic acid FPAMCA17234 298.66 121.2 137.98 66.9 64.16 54.3 73.93
2,4,6-

trinitromesitylene
(TNM)

HEXTIN01235 298.15 103.6 111.52 34.97 61.62 68.6 49.90

Continued on next page
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Table 6.2 � Continued from previous page

Chemical Crystal T(K) ∆Hexp
sub ∆HPred

sub T∆SExpsub T∆SPredsub ∆GExp
sub ∆GPred

sub

Name Structure (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

4-amino-N-(4-
ethylphenyl)-

benzenesulfonamide

HUNXIY236 298 143.6 162.32 69.73 63.72 74.2 98.56

4-Amino-N-(4-
methoxyphenyl)-

benzenesulfonamide

HUNXOE236 298 125 164.16 51.85 63.57 72.4 100.56

4-Amino-N-(5-chloro-
2-methylphenyl)-

benzenesulfonamide

HUNXUK236 298 131 152.77 61.69 63.83 68.5 88.90

Paracetamol HXACAN27237 304.74 117.9 114.05 57.9 61.21 60 54.17
Ibuprofen IBPRAC01224 298.33 115.8 116.13 71.6 61.69 44.2 54.49

4-hydroxybenzoic acid JOZZIH238 298.15 121.1 116.34 65 60.05 56.1 56.28
Tolfenamic acid KAXXAI01239 298 128.4 131.35 64.67 61.16 53.9 70.16
Ketoprofen KEMRUP228 298 110.1 142.44 53.04 63.63 57 78.78

9-Methylanthracene MANTHR01240 298.15 101.8 97.71 59.54 57.76 42.2 39.96
2,4,6-N-tetranitro-N-

methylaniline
MTNANL235 298.15 133.8 126.38 46.45 61.22 87.3 65.16

1-naphthol NAPHOL016 298.15 91.2 90.47 55.93 57.3 35.3 33.17
4-nitrobenzoic acid NBZOAC01238 298.15 116.6 107.42 62.61 59.35 54 48.07

Ni�umic acid NIFLUM10234 298.27 130.2 157.87 68.9 62.35 61.3 95.55
nitroguanidine NTRGUA01235 298.15 142.7 116.43 34.82 56.87 107.9 59.56

2,2-Dimethylsuccinic
acid

OLENIC241 298.15 122.7 113.9 71.85 58.99 50.8 54.91

4-Methylbenzoic acid PTOLIC01242 298.15 98.6 92.76 58.47 58.22 40.1 34.54
Phenacetin PYRAZB21223 307.52 121.8 107.89 69.5 61.47 52.3 48.29

Continued on next page
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Table 6.2 � Continued from previous page

Chemical Crystal T(K) ∆Hexp
sub ∆HPred

sub T∆SExpsub T∆SPredsub ∆GExp
sub ∆GPred

sub

Name Structure (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

5-chloro-2-nitroaniline RAPKUP243 298.15 100.8 94.8 59.63 57.36 41.2 37.44
salicylic acid SALIAC15244 298.15 96.6 91.28 56.95 57.91 38.5 33.37
Diclofenac SIKLIH01245 298.65 115.6 132.19 66.3 62.71 49.3 69.59

4-cyanobenzoic acid TAGNAR238 298.15 111.2 79.06 60.49 54.54 50.7 24.52
o-Terphenyl TERPHO02225 298.15 103 107.36 62.79 59.14 40.2 48.22

2,4,6-trinitroaniline
(TNA)

TNIOAN235 298.15 125.3 109.74 41.95 59.82 83.3 49.91

1,3,5-
Triphenylbenzene

TPHBEN01246 298.15 147.8 147.68 75.73 64.1 72.1 83.58

N-(4-nitrophenyl)-
benzene-sulfonamide

UVEMOY247 298 132.5 138.63 64.67 62.58 67.7 76.02

4-Amino-N-(4-
nitrophenyl)benzenesulfonamide

UVEMUE247 298 131.4 161 53.34 62.9 78 98.07

4-Hydroxybenzamide VIDMAX248 298 117.8 117.1 59.3 59.5 58.9 57.57
2-Methylglutaric acid XIBVIO241 298.15 126.5 121.16 77.22 60.96 49.2 60.21

Mefenamic acid XYANAC239 298 136.2 132.07 63.77 63.36 59.2 68.68
4-Heptylbenzoic acid

(cr, II)
ZIKWOF242 298.15 130 136.82 76.12 62.84 53.9 73.98

R2 0.56 0.04 0.39
RMSE 15.20 9.12 16.62
σ 15.94 15.12 9.35 9.00 15.61 16.18

Bias 1.62 -1.47 3.78

Table 6.2: Experimental and predicted sublimation data.
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In an e�ort to improve these models we applied machine learning to ∆Gsub prediction
data. In a methodology analogous to that laid out previously (Section 4.3.2), we
supply the following descriptor sets independently, to train and test three machine
learning models, SVM, RF and PLS. The descriptor sets are: Thermodynamic
values, CDK 2D molecular descriptors calculated from SMILES strings or a
combination of the two. A single scaling method auto-scaling was applied. Tables
6.3, 6.4 and 6.5 summarise the results from these methods.

Thermodynamic values RF PLS SVM

R2 0.29±0.03 0.3±0.02 0.17±0.03
RMSE 13.22±0.32 13.24±0.31 14.48±0.52

Table 6.3: ∆Gsub predicted by machine learning using the theoretical chemistry
predictions of sublimation thermodynamics as descriptors, RMSE given in (kJ/mol).

CDK 2D Descriptors RF PLS SVM

R2 0.39±0.04 0.43±0.03 0.49±0.03
RMSE 12.12±0.38 11.65±0.3 11.05±0.31

Table 6.4: ∆Gsub predicted by machine learning using the CDK 2D molecular descriptors,
RMSE given in (kJ/mol).

Coupled Descriptors RF PLS SVM

R2 0.47±0.03 0.57±0.03 0.54±0.05
RMSE 11.29±0.25 10.18±0.31 10.58±0.65

Table 6.5: ∆Gsub predicted by machine learning applying a combined descriptor set as
descriptors, RMSE given in (kJ/mol).

The results show a clear improvement in all cases over the predictions made using
exclusively theoretical chemical methods. In all cases we now meet the criteria we
set out for a useful prediction; all methods have an RMSE within the standard
deviation of the experimental data (σexp = 15.61kJ/mol). As with solubility, the
131 molecular descriptors seem to convey more information to the model than the
9 theoretical chemistry thermodynamic values. However, contrary to the solubility
results it seems in this case that the two descriptor sets are complementary; much
of the variance is explained once the descriptor sets are combined. We see a sizeable
reduction in the RMSE and an improvement in R2 for these models. These are
encouraging results providing a signi�cant improvement in accuracy. However,
despite these improvements the predictive accuracy is still low, with sizeable RMSE
values still found after coupling the descriptors.

We have also applied analogous methods for ∆Ssub and ∆Hsub predictions, with
promising predictions for ∆Hsub and inconclusive results for ∆Ssub . These results
are presented in tables which can be found in Appendix K. These �ndings support
the predictability of ∆Hsub. We see better predictions of ∆Hsub when the theoretical
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energies are used in the descriptor set, with the 2D CDK descriptors o�ering little
information. In terms of ∆Ssub, the opposite trend is found. SVM fails to bring
the RMSE inside the experimental standard deviation in all cases. The 2D CDK
descriptors provide signi�cantly more useful information to the models and RF and
PLS produce useful prediction of ∆Ssub using these descriptors. None of the machine
learning models produce a useful prediction of ∆Ssub from the theoretical chemistry
values. This suggests our theoretical chemistry values are poorly correlated with
experimental values even when non-linear methods are applied. The descriptors
consistently rated as the most important in the combined models are those related
to molecular branching (weighted path), topological surfaces (TPSA), counts of
speci�c atoms, calculated ∆Gsub and Kier Hall smarts (group counting based on
molecular fragmentation). The number of rotatable bonds consistently features in
the top twenty important descriptors, molecular weight however does not. From the
data here it is not possible to �nd the exact origins of these errors. It is not clear
whether the errors are in the experimental or calculated data. It is likely to be a
combination of both approximate modelling and experimental errors.

6.1.3 ∆Hsub Predictions from First Principles

Having carried out predictions using parametrised minimisation methods and
machine learning in an e�ort to �nd computationally e�cient methods to predict
sublimation thermodynamics, we decided to investigate if improvements were
accessible by using higher levels of theory. Given the di�culties we found with
the entropy data and questions remaining over the quoted errors, we focused on
predicting the ∆Hsub. We applied the plane wave periodic DFT code CASTEP.249

Given the expense of these calculations a subset of 24 molecules from the SUB-48
dataset were used. The plane wave basis set requires a cuto� value in terms of
energy in order to limit its size. A suitable cuto� energy was found by converging
the system energy with increasing cuto� values to a tolerance of 0.01 eV. The plane
wave basis cuto� energies were converged with respect to the elements which made
up the molecular units, i.e. the data set was split into molecules composed of the
same atoms and the basis set was converged for one molecule from each set. This
value was used for all molecules composed of the same atoms. The values are shown
in Table 6.6. A K point grid spacing was used for all production calculations of
0.05 Å−1.

Atoms composing the molecules Cuto� Energy (eV)

CH 1100

CHO 1150

CHNO 1100

CHClO 1100

CHFO 1100

CHClNO 1200

Table 6.6: Plane wave cuto� convergence values

Each structure was then optimised with the PBE functional due to its previous
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successful use in similar applications.59,250 The Tkatchenko Sche�er (TS) dispersion
correction was also applied. In order to predict ∆Hsub the energy of a single
molecular unit of the crystal was required. Therefore, an optimised molecule from
the crystal was extracted and manipulated using shell scripts and gaussview. The
molecule was placed in a suitably large box, which was 10Å larger than the molecule
in all directions, hence minimising any interaction over the periodic boundary. This
gas phase molecule was then optimised in the supercell. The lattice energy (Elatt)
was then calculated as follows:

Elatt =

(
Ecrys

NMolecular Units

)
− Egas (6.1)

Equation 6.1: Calculation of Elatt from CASTEP crystal optimisation and gas
optimisations.

Table 6.7 presents results of predictions by CASTEP and DMACRYS along with
the experimental ∆Hsub values. Figures 6.6 and 6.7 summarise the results from
Table 6.7.
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Molecule Refcode ECASTEP
latt ∆HCASTEP

sub UDMACRY S
latt ∆HDMACRY S

sub ∆HExp

chemical name (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

aspirin ACSALA15 -147.22 142.26 -117.72 112.74 109.70
Benzoic acid BENZAC01 -115.05 110.09 -95.80 90.85 89.20

isophthalic acid BENZDC01 -188.40 183.44 -135.98 131.02 143.40
2,4-Dinitrobenzoic

acid
BIPJUF -141.17 136.21 -124.85 119.89 134.00

2,6-Dichloro-4-
nitroaniline

CLNOAN -120.25 115.29 -106.10 101.14 109.20

3-Fluorobenzoic acid COVJIG -117.95 112.99 -99.60 94.65 93.80
naproxen COYRUD11 -172.43 167.47 -131.74 126.79 128.30

2,4-dichlorophenoxy
acetic acid

CPXACA -144.20 139.24 -129.96 125.00 123.00

2-Fluorobenzoic acid FBENZA02 -122.40 117.44 -97.76 92.80 94.70
�urbiprofen FLUBIP -175.64 170.68 -154.16 149.21 110.20
4-amino-N-(4-
ethylphenyl)

benzenesulfonamide

HUNXIY -204.98 200.02 -167.28 162.32 143.60

4-Amino-N-(4-
methoxyphenyl)

benzenesulfonamide

HUNXOE -196.54 191.58 -169.12 164.16 125.00

9-Methylanthracene MANTHR01 -135.98 131.02 -102.67 97.71 101.80
2,4,6-N-tetranitro-N-

methylaniline
(Tetryl)

MTNANL -129.27 124.31 -131.34 126.38 133.80

1-naphthol NAPHOL01 -122.95 117.99 -95.43 90.47 91.20
4-Methylbenzoic acid PTOLIC01 -128.29 123.33 -97.72 92.76 98.60

Continued on next page
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Table 6.7 � Continued from previous page

Molecule Refcode ECASTEP
latt ∆HCASTEP

sub UDMACRY S
latt ∆HDMACRY S

sub ∆HExp

chemical name (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

5-chloro-2-nitroaniline RAPKUP -115.82 110.86 -99.76 94.80 100.80
salicylic acid SALIAC15 -117.68 112.72 -96.23 91.28 96.60

2,4,6-trinitroaniline
(TNA)

TNIOAN -125.25 120.29 -114.69 109.74 125.30

1,3,5-
Triphenylbenzene

TPHBEN01 -196.85 191.89 -152.64 147.68 147.80

4-Hydroxybenzamide VIDMAX -161.43 156.47 -122.06 117.10 117.80
2-Methylglutaric acid XIBVIO -158.33 153.37 -126.12 121.16 126.50

Mefenamic acid XYANAC -179.95 174.99 -137.03 132.07 136.20
4-Heptylbenzoic acid

(cr, II)
ZIKWOF -184.83 179.87 -141.78 136.82 130.00

RMSE 34.47 13.61
R2 0.84 0.60 0.84 0.64
σ 19.20 13.54 17.97

Bias 28.63 1.39

Table 6.7: Predictions of ∆Hsub for CASTEP and DMACRYS.
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R² = 0.60
RMSE = 31.47
σ = 19.20

Bias = 28.63
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Figure 6.6: Predicted ∆Hsub from CASTEP against experiment (kJ/mol).

R² = 0.64
RMSE = 13.61
σ = 13.54

Bias = 1.39
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Figure 6.7: Predicted ∆Hsub from DMACRYS against experiment (kJ/mol).

It is clear that the use of higher levels of theory does not improve the results, in
fact predictions from �rst principles methods are less accurate. It appears that
the �rst principles methods have a tendency to predict over-bound molecules. It
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has been shown previously, that the application of pairwise dispersion corrections
schemes, such as the TS dispersion correction scheme, can lead to to large errors
and that newer dispersion correction schemes going beyond pairwise additivity are
required.250 It may be that the speci�c parametrisation for crystal structures of
the FIT potential in DMACRYS means that this empirical potential accounts for
many body interactions due its derivation from experimental results. As the bias
(systematic error) is the predominate error term here, it would in principle be
possible to derive an a priori correction, however, this would defeat the idea of
a �rst principles prediction. If one correlates the predicted lattice energy from
DMACRYS and CASTEP a fairly tight correlation is found (Figure 6.8).
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Figure 6.8: Predicted ∆Hsub from DMACRYS against CASTEP.

Figure 6.8 shows the lattice energy predicted by CASTEP grows at approximately
twice the rate as that predicted by DMACRYS. This is likely due to the systematic
error represented by the high bias value. If indeed this is so then a simple correction
could be implemented.

6.2 Summary

In the above work we have focused on predictions of sublimation thermodynamics
using the periodic lattice simulation program DMACRYS. We have additionally
applied machine learning, to predict ∆Hsub, ∆Ssub and ∆Gsub and �nally we applied
periodic plane wave DFT (using CASTEP), to predict ∆Hsub. The results suggest
that DMACRYS can provide useful predictions of ∆Hsub. The CASTEP PBE-
TS methodology o�ers a qualitative answer, but tends to over-bind the molecules
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leading to a large systematic error. ∆Gsub is harder to predict. DMACRYS does not
make useful predictions of ∆Gsub. Machine learning can o�er a means by which to
achieve reasonable predictions of ∆Gsub. ∆Ssub remains a stumbling block. Simple
approximations do not provide su�cient numerical accuracy and it appears that
∆Ssub is quoted with a too small error margin in some experimental reports.

Further work is required for this project to reach a �rm conclusion. It is perhaps
surprising to �nd the periodic DFT method did not perform as well as lattice
minimisation software. It is possible that the 'o� the shelf' value of 0.05 Å−1 for the
K point spacing is not suitable for all cases. One possibility would be to converge
the calculated energy with respect to grid spacing. Additionally the application of
newer dispersion corrections could be attempted to test if the over binding we see
here is related to the dispersion interactions.



Chapter 7

Conclusion

"The task is, not so much to see what no one has yet seen; but
to think what nobody has yet thought, about that which
everybody sees."

Erwin Schrödinger, 1952

The primary purpose of this thesis is to investigate methods for predicting intrinsic
aqueous solubility, that is the solubility of a neutral molecule in water. In this
thesis we present methods ranging from cheminformatics and empirical equations
to quantum chemistry. We began with an overview of solubility predictions and
experimental considerations. We have discussed industrial uses for such research
in the context of the pharmaceutical industry. In Chapter 2 we discuss a
detailed account of the many theoretical methodologies applied in this thesis.
An introduction to cheminformatics is provided, followed by detailed discussion
of machine readable formats, cheminformatics descriptors and machine learning.
Critical aspects of quantum chemistry are discussed before moving on to more
detailed explanations of speci�c theoretical frameworks and methods employed in
this thesis.

Following this broad introduction, Chapter 3 is the �rst experimental results
chapter, covering a proof of concept work for a �rst principles prediction of
solubility.31 We cover predictions of ∆Gsub, ∆Ghyd and ∆Gsolv using a variety of
methods. A new dataset, DLS-25, is introduced comprised of 25 drug-like organic
molecules. Ten of these molecules are used to test the accuracy of our ∆Gsub and
∆Ghyd predictions; whilst the full 25 are used for solubility predictions. In total
we present 12 �rst principles predictions of solubility and conclude that only one
of these methods produces a useful prediction of solubility; the method coupling
DMACRYS with 3DRISM.

Chapter 4 introduces our experimental ideas involving cheminformatics.33 A larger
dataset was curated called DLS-100, which is a dataset comprising 100 drug-like
organic molecules. This work extends the previous work by taking a well correlated
method from Chapter 3 and applying it to all 100 molecules. This provided a
theoretical benchmark to compare our informatics models against. Three machine
learning models are used with three descriptor sets and three scaling methods. The
machine learning models were SVM, RF and PLS. The three descriptor sets were 2D

142
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CDK descriptors (123), energy terms from theoretical chemistry (10) and a union
of these two sets of descriptors (133). We conclude that these models are able
to provide good predictions of solubility with signi�cant improvements in accuracy
when 2D CDK descriptors are presented to machine learning models compared to
using theoretical chemistry alone. We found there to be little bene�t from descriptor
scaling, although for some methods auto-scaling shows an improved result. The two
sets of descriptors are not complementary therefore, similar information is provided
to the models by each set of descriptors.

We followed this work with some calculations using empirical predictions of solubility
in Chapter 5. Here we applied the GSE to solubility predictions over a small subset
of a large dataset from Alfa Aeser for melting point predictions. We applied the
machine learning methodology described in Chapter 4 to melting point prediction.
1100 melting points were predicted with RMSEs of approximately 40◦C. These
results were of a similar accuracy to those previously reported. We combined
these predicted melting points with two predictions of logP (AlogP and XlogP)
using the GSE to predict solubility. For a small dataset of 30 molecules we found
excellent agreement with experimentally determined solubility measurements when
our predicted melting points were used with AlogP. This was not the case when
XlogP was used suggesting the choice of logP calculation is important for solubility
predictions by the GSE.

Chapter 6 is the �nal experimental chapter. This chapter introduces work which
has been carried out to test how accurately sublimation thermodynamics can be
predicted. A range of methods including cheminformatics, simulation and quantum
chemistry are tested. A sublimation dataset is introduced which has been curated
from the literature and called SUB-48. We �nd that cheminformatics provides useful
predictions of ∆Hsub and ∆Gsub. ∆Hsub can also be usefully predicted by simulation
and qualitatively predicted using quantum chemistry. ∆Ssub is poorly predicted
and initial e�orts to identify the source of the errors have not been successful. The
current results suggest it is likely that considerable errors in both in silico calculation
and experiment exist.

This body of work has examined solubility prediction and its related quantities. We
�nd that, currently, QSPR/QSAR methods remain the current state of the art for
solubility prediction, although it is becoming possible for purely theoretical methods
to achieve useful predictions of solubility. Theoretical chemistry can o�er little
useful additional input to informatics models for solubility predictions. However,
theoretical chemistry will be crucial for enriching our understanding of the solvation
process, and can have a bene�cial impact when applied to informatics predictions
of properties related to solubility.

7.1 Future Work

Leading on from this project there is much scope for a more thorough investigation of
∆Hsub, ∆Ssub and ∆Gsub. These terms are important in many aspects of chemistry
but for solubility, an improved prediction of ∆Gsub could give a much improved
prediction of solubility. The trade o� for this may be computational cost, but a
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systematic improvement in the theory would be of bene�t as it would be applicable
to all systems, and could enable the parametrisation of cheaper more niche methods.
Such work may also impact on crystal structure prediction leading to methods
capable of property prediction for unknown crystal structures.

There is also further scope to test and extend the �rst principles method to much
larger datasets, although this is currently largely hampered by the accessibility
of su�cient, good quality experimental data. Development of RISM methods is
another expanding �eld with applications to solubility being one of the major aims.
Recent developments have seen attempts to produce theoretically justi�ed correction
schemes for RISM.251,252 The UC correction applied in this work is born from a
knowledge of RISM short falls and a pragmatic solution. Attempts are currently
in progress to apply RISM to understand/predict hydrated crystal structures and
expand this to solubility prediction.

In industry many advancements occur, and are being currently developed, that
take advantage of new computer architecture, database infrastructure and high
throughput screening data. Combinatorial libraries and data mining are leading
to new information being generated, often from old data. Large databases are being
used to apply techniques such as matched molecular pairs253,254 which allows new
empirical rule sets to be generated. This kind of development may lead to new
empirical models capable of fast, accurate predictions using existing applications.



Without deviation from the norm, progress is not possible.

Frank Zappa, 1971



Appendix A

Reading and Writing SMILES and

InChI Strings

SMILES is a H suppressed string representation. All other atom types are
represented by their element symbol. The simplest SMILES string we can write
therefore is C, which would represent methane, as H is suppressed these need not
be quoted.74 We can therefore represent butane as CCCC. SMILES are created so
as if one were to draw the molecule each atom would be visited only once. As a
result of this, rings must have one bond broken in them; this is de�ned by appending
an integer to each element symbol of the pair between which the bond is broken.
C1CCCCC1 is cyclohexane. Listed below are some simple rules which allow us to
extend this simple idea to represent more complex structures.

� Capital letters represent aliphatic atoms, whereas lower letters represent
aromatic atoms.

� Double bonds are represented as =.

� Triple bonds are represented as #.

� Rings are represented by element symbols as normal but an integer is appended
to the element symbols of the pair of atoms the bond is broken between.

� Branches are enclosed in brackets and can be nested as required. Once the
brackets are closed the structure returns to the branch point.

� A chiral centre can be represented by adding @ to the element symbol. In
some cases it is necessary to explicitly de�ne H atoms on chiral centres.

� Cis and trans isomers are represented as C/C=C\C and C/C=C/C
respectively.

A simple and instructive example is benzene whose SMILES string is as follows
c1ccccc1. We can now de�ne more complicated SMILES as below74
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HO

HO

OH

HN

Figure A.1: Salbutamol from the SMILEs string;
CC(C)(C)NCC(C1=CC(=C(C=C1)O)CO)O255

InChI is a more complex system of sections containing speci�c information. The
information is separated by �/� and the string always begins with �InChI=� this is
followed by the version number of the InChI software used and often followed by
an �S� to indicate that the standard InChI settings were used in the InChI software
when the string was created. The following rules are then applied.74,76,256

� The main layer beginning with �/� is a copy of the molecular formula.

� This is followed by a section beginning with �/c� de�ning the connectivity.

� The next section beginning with �/h� de�nes terminal H positions and H
attachment points.

� There are then a number of possible �ags; depending on the chemical structure
all relevant �ags are applied. Some of the common �ags are: �/q� (charge),
�/p� (proton balance) and �/t� (tetrahedral parity).

� The next section de�nes the stereochemistry �agged by �/s� and takes a value
1 (absolute), 2 (relative) and �nally 3 is (racemic).

� Following this section is the �ag �/f� for the �xed H structure.

� If it is necessary a connectivity �ag 2 �/h� can be invoked at this point to
de�ne the location of �xed and mobile H's.

The InChI string can be compressed to an InChIkey, which is a 27 character
string, whilst the InChIkey cannot be reconverted into the structure due to the
data compression, it will not be cut up by search engines, making it a useful tool
for database searching and digital curation. The InChI string for the salbutamol
(Figure A.1) molecule shown above is presented below along with its InChIkey.76,255

InChI=1S/C13H21NO3/c1-13(2,3)14-7-12(17)9-4-5-11(16)10(6-9)8-15/h4-6,12,14-
17H,7-8H2,1-3H3255

InChIkey NDAUXUAQIAJITI-UHFFFAOYSA-N255



Appendix B

Atomic Units

Atomic units allow a convenient set of units to be used in the quantum mechanical
calculations.

Symbol Meaning S.I. unit Atomic unit (A.U.)

me Electron mass 9.1094× 10−31Kg 1
a0 Bohr radius 0.52918× 10−10m 1
e Charge of an electron 1.6022× 10−19C 1

~ = h
2π

Reduced Planck's constant 1.0546× 10−34Js 1
4πε0 Vacuum permittivity 1.113× 10−10C2/Jm 1

EH = ~2
m0a20

Energy (Hartrees) 27.2114eV 1

Table B.1: Atomic units and SI units257

This allows the simpli�cation of the Hamiltonian by setting many of the physical
constants to unity (1). Take the Hamiltonian of the hydrogen atom for example:

Ĥ = − ~2

2me

∇2 − e2

4πε0r
(B.1)

Equation B.1: The Hamiltonian of the hydrogen atom in S.I. units

Ĥ = −1

2
∇2 − 1

r
(B.2)

Equation B.2: The Hamiltonian of the hydrogen atom in atomic units (A.U.) units
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Appendix C

The Slater Determinant

If we take a generalised 2 x 2 determinant of molecular orbitals we can solve it for
a generalised wave function;

Ψ(1, 2) =
1√
n!

∣∣∣∣ φ1(1) φ2(1)
φ1(2) φ2(2)

∣∣∣∣ (C.1)

Ψ(1, 2) = φ1(1)φ2(2)− φ2(1)φ1(2) (C.2)

If we now exchange the two electron's coordinates (i.e. change the orbital they are
in in the determinant) we get the result of the negative of the wavefunction above;

Ψ(1, 2) =
1√
n!

∣∣∣∣ φ2(1) φ1(1)
φ2(2) φ1(2)

∣∣∣∣ (C.3)

Ψ(1, 2) = φ2(1)φ1(2)− φ1(1)φ2(2) (C.4)

This generalisation holds for larger determinants, below an example calculation is
given for a 3x3 determinant.

Ψ(1, 2, 3) =
1√
n!

∣∣∣∣∣∣
φ1(1) φ2(1) φ3(1)
φ1(2) φ2(2) φ3(2)
φ1(3) φ2(3) φ3(3)

∣∣∣∣∣∣ (C.5)

149



150 APPENDIX C. THE SLATER DETERMINANT

One method to solve a determinant greater than 2x2 is to break it down into
smaller determinants. This sub-division has a accompanied sign convention. This
convention is shown below. We proceed to divide the 3x3 determinant into 2x2
determinants.

Ψ(1, 2, 3) =
1√
n!

∣∣∣∣∣∣∣∣
+ − +

+ φ1(1) φ2(1) φ3(1)
− φ1(2) φ2(2) φ3(2)
+ φ1(3) φ2(3) φ3(3)

∣∣∣∣∣∣∣∣ (C.6)

By selecting each of the values in the top row and eliminating that row and
corresponding column we can make three 2x2 matrices, these need to be multiplied
by the selected value in the top row.

To begin with if we select φ1(1) and eliminate the row 1 and column 1 we create the
following 2x2 matrix which is then multiplied by φ1(1);

+φ1(1)

∣∣∣∣ φ2(2) φ3(2)
φ2(3) φ3(3)

∣∣∣∣ (C.7)

Continuing this process we arrive at two further 2x2 matrices for the two remaining
values in the �rst row.

−φ2(1)

∣∣∣∣ φ1(2) φ3(2)
φ1(3) φ3(3)

∣∣∣∣ (C.8)

+φ3(1)

∣∣∣∣ φ1(2) φ2(2)
φ1(3) φ2(3)

∣∣∣∣ (C.9)

Moving to solve each of these matrices as we did as the �rst gives the �nal expression
as follows for a 3x3 matrix, with the appropriate sign applied to the separate
solutions.

Ψ(1, 2, 3) =
1√
n!

(φ1(1)[φ2(2)φ3(3)− φ3(2)φ2(3)]− φ2(1)[φ1(2)φ3(3)− φ3(2)φ1(3)]

+ φ3(1)[φ1(2)φ2(3)− φ2(2)φ1(3)]) (C.10)



Appendix D

Orthonormality

Orthonormality is an important concept in much of physics. It is a combination
of two important mathematical constructs; orthogonality and normality. If we take
a exemplary case of two vectors, we can de�ne then as orthogonal if the following
relationship holds:258,259

A ·B =
∑
i

aib
∗
i = 0 (D.1)

Equation D.1: Orthogonality de�nition. i is the component label of vectors A and B i.e. if
A and B are 3D vectors a1b

∗
1 + a2b

∗
2 + a3b

∗
3.

This follows from the de�nition of the dot product:

Re(A ·B) = ‖A‖‖B‖Cos(φ) (D.2)

Equation D.2: Re refers to the real portion of the vectors A and B. Where φ = 90◦ the
cos function is zero, hence the dot product is zero. φ represents the angle between the

vectors, so if this is equal to 90 degrees the vectors are by de�nition orthogonal.

We can also de�ne a vector as unit vector (normal) if the following is true:∑
i

aia
∗
i = 1 (D.3)

Equation D.3: Vector normality de�nition.

Vectors are considered orthonormal if Equation D.1 and Equation D.3 are
true. This is demonstrated here and is generalisable to in�nite dimensional vectors.
Functions can be thought of as in�nite dimensional vectors with x coordinate in
place of the i subscript (i.e. each function is one component) and the y coordinate is
the magnitude of function or output of the function.258 The orthogonality de�nition
then can be restated:
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∫
a(z)b∗(z)dz = 0 (D.4)

Equation D.4: Function version of the orthogonality de�nition. a(z) and b∗(z) are
functions.

The normality de�nition can then also be restated for a normalised function a(z):∫
a(z)a∗(z)dz = 1 (D.5)

Equation D.5: Function version of the normality de�nition.

The property of being orthonormal is generalised using the delta function, and
notationally simpli�ed using the Dirac Bra-Ket notation:∫

Ψ∗jΨidr = δij
〈Ψi|Ψj〉 = δij

(D.6)

Equation D.6: Function orthonormality de�nition. δ = 0 when i 6= j and δ = 1 when
i = j.



Appendix E

The Variational Principle

The variational principle is a cornerstone, a crucial component to quantum
chemistry. Assuming we know the exact solutions of the Schrödinger equation,
where i indexes the solution number. There are in�nitely many solutions with
in�nitely many energies, one corresponding to each solution, ε0 is the lowest ground
state energy. The Hamiltonian is a Hermitian operator or self-adjoint operator
(the adjoint is obtained by taking the complex conjugate and then transposing the
matrix), hence the solutions form a complete basis. We may also work with these
equations so that the solutions are orthonormal (Appendix D).113

ĤΨi = εiΨi (E.1)

Equation E.1: Schrödinger equation with in�nite solutions.

∫
Ψ∗trialHΨtrialdr∫

Ψ∗trialΨtrial

= Etrial ≥ E0 (E.2)

Equation E.2: The variational principle: A method to assess the quality of a trial
wavefunction. Ψ∗trial is the complex conjugate of Ψtrial.

We can expand an approximate wavefunction (θ) in the basis of the exact solutions
as they are a complete set. We can calculate the energy of the approximate wave
function by calculating its expectation value Equation E.2. These two equations
can be combined to calculate the expectation value of the approximate function.113
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θ =
∑
i

aiΨi

E =
〈θ|Ĥ|θ〉
〈θ|θ〉

(E.3)

E =

∑
i

∑
j aiaj〈Ψi|Ĥ|Ψj〉∑

i

∑
j aiaj〈Ψi|Ψj〉

Equation E.3: Top: Approximate wave function expanded in the basis of the exact
solution. Middle: Expectation value. Bottom: Expectation value of the constructed

wavefunction.

Applying the orthonormality relation (Appendix D) we can simplify the bottom
equation in E.3. We can then prove the variational principle by taking away E0 and
proving the result is always positive or zero.

E =

∑
i a

2
i εi∑

i a
2
i

(E.4)

E − E0 =

∑
i a

2
i (εi − E0)∑

i a
2
i

≥ 0

Equation E.4: As a2i is always positive and E0 is the lowest energy by de�nition the
answer is always ≥ 0

This �nally arrives at the stated variational principle.113

E0 ≤ Etrial =
〈Ψtrial|Ĥ|Ψtrial〉
〈Ψtrial|Ψtrial〉

(E.5)

Equation E.5: The variational principle



Appendix F

Eigenvalues and Eigenvectors

Taking an operator in matrix form known as Z we can state it in an eigenvalue
problem:260

ZΨ = zΨ (F.1)

In order to solve this equation we need to rewrite it in to the following:

ZΨ− zΨ = ZΨ− zΨ

ZΨ− zΨ = 0 (F.2)

(Z − zI)Ψ = 0

I here is the identity matrix. Solutions to this equation occur when the determinant
of the matrix (Z − zI) is equal to zero.

det(Z − zI) = 0 (F.3)

Calculating the eigenvalue (Z is de�ned from an example in the following
reference):260

Z =

(
−1 −1
2 −4

)
(F.4)

(Z − zI) =

(
−1 −1
2 −4

)
− z

(
1 0
0 1

)
(F.5)
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(Z − zI) =

(
−1 −1
2 −4

)
−
(
z 0
0 z

)
(F.6)

(Z − zI) =

(
−1− z −1− 0
2− 0 −4− z

)
(F.7)

(Z − zI) =

(
−1− z −1

2 −4− z

)
(F.8)

det(Z − zI) = (−1− z)(−4− z)− (−1)(2)

det(Z − zI) = (z2 + 5z + 4) + 2 (F.9)

det(Z − zI) = (z2 + 5z + 6)

factorise z2 + 5z + 6 = 0

(z + 2)(z + 3) (F.10)

z = −2,−3

Calculating the eigenvector:260 By placing the values for z in the following matrix
one at a time we can �nd the eigenvectors.

(Z − zI) =

(
−1− z −1

2 −4− z

)
(F.11)

Substitute in z=-2

(Z − zI) =

(
−1− (−2) −1

2 −4− (−2)

)
(F.12)

(Z − zI) =

(
1 −1
2 −2

)
(F.13)
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Given our original expression we can now solve for the eigenvector.

(Z − zI)(Ψn) = 0 (F.14)

(Z − zI)(Ψn) =

(
1 −1
2 −2

)(
Ψ1

Ψ2

)
=

(
0
0

)
(F.15)

We can use this to generate relations between Ψ1 and Ψ2. Initially following the
conventions of matrix multiplication we derive the following equations:

1Ψ1 − 1Ψ2 = 0

2Ψ1 − 2Ψ2 = 0 (F.16)

This leads to the following relations between Ψ1 and Ψ2 by rearrangement of the
equations above:

1Ψ1 = 1Ψ2

2Ψ1 = 2Ψ2

∴ (F.17)

Ψ1 = Ψ2

Therefore :

Ψi = 1and

(
Ψ1

Ψ2

)
= C

(
1
1

)
(F.18)

Equation F.18: C is a multiplicative constant.

The same procedure can be carried out for z=-3.



Appendix G

DFT Existence and Variational

Theorem

The proof for the existence theorem goes via reductio ad absurdum, meaning an
impossible result is returned from an assumption to the contrary. Assume that two
di�erent external potentials (νa, νb) produce the same non-degenerate, ground state,
electron density (ρ0) in a molecule. We can de�ne two Hamiltonians, one with νa
and the other νb (Ĥa, Ĥb). The ground state wave functions (Ψ0,a, Ψ0,b) for these
systems can then be de�ned and hence the eigenvalues (εa, εb). Wave function theory
tells us that if we apply Ĥa to Ψ0,b then the eigenvalue (εx) is greater than εa.

ε0,a ≤ 〈Ψ0,b|Ĥa|Ψ0,b〉 (G.1)

This can be rewritten. Substituting in the expression for εb and representing the
di�erence between ε0,a and εx as the di�erence in the two Hamiltonians Ĥa, Ĥb

applied to the ground state wave function of b.

ε0,a ≤ 〈Ψ0,b|Ĥa|Ψ0,b〉
ε0,a ≤ 〈Ψ0,b|Ĥa − Ĥb|Ψ0,b〉+ 〈Ψ0,b|Ĥb|Ψ0,b〉 (G.2)

ε0,a ≤ 〈Ψ0,b|νa − νb|Ψ0,b〉+ ε0,b

Equation G.2: expansion of the variational equation utilising di�erent external potentials

We can now explicitly write out the last integral of Equation G.2. In this step
we integrate the di�erence in the one-electron potential operators over the ground
state density.
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ε0,a ≤
∫

[νa(r)− νb(r)]ρ0(r)dr + ε0,b (G.3)

Equation G.3: Energy eigenvalue of the mixed external potentials. ρ0 is the ground state
density.

An alternative expression can be reached, which is equally valid, just by swapping
the a and b subscripts in Equation G.3. No di�erence between a and b has been
de�ned to stop us from being able to do this. If we sum the inequalities we reach
the following statements:

ε0,a + ε0,b ≤
∫

[νa(r)− νb(r)]ρ0(r)dr +

∫
[νb(r)− νa(r)]ρ0(r)dr + ε0,b + ε0,a

ε0,a + ε0,b ≤
∫

[νa(r)− νb(r) + νb(r)− νa(r)]ρ0(r)dr + ε0,b + ε0,a (G.4)

ε0,a + ε0,b ≤ ε0,a + ε0,b

Clearly this result is not possible and hence this is proof that the ground state
density uniquely de�nes the external potential.112

A second theorem then provides means to optimise the density. This is a variational
theorem analogous to the one used in the wave function methods (Appendix E).
Assuming we have a well behaved density that integrates to the correct number of
electrons, we can proceed as follows:112,113

ε0(ρ) ≤ ε0(ρ
′) (G.5)



Appendix H

DLS-100 and SUB-48

Shown below, the table provides the data for the SUB-48 dataset with all references
to the origin of the sublimation data.
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Molecule Refcode and ∆Hexp
sub ∆Sexpsub ∆Gexp

sub

name data reference (kJ/mol) (JK−1 mol−1) (kJ/mol)

Acetanilide ACANIL01223 99.8 197 40.5
aspirin (acetylsalicylic acid) ACSALA15224 109.7 222 43.6

Benzoic acid BENZAC01225 89.2±0.8 185.5±2.7 33.9±1.1
isophthalic acid BENZDC01226 143.4±1.7 234.3±4.5 73.5±2.2

2,4-Dinitrobenzoic acid BIPJUF227 134±3 244±8 61.2514
Benzophenone BPHENO03228 89.1±0.3 182.89 34.6

atenolol CEZVIN229 140.0±3.7 215±9 71.1
2-Chlorobenzoic acid CLBZAC01225 106.3±0.5 217.3±1.6 41.5±0.7
4-Chlorobenzoic acid CLBZAP03225 105.2±0.7 199.4±2.1 45.8±1.0

2,6-Dichloro-4-nitroaniline CLNOAN230 109.2±0.9 203.0±2.6 48.7±1.2
3-Fluorobenzoic acid COVJIG225 93.8±0.5 199.4±1.6 34.4±0.7

naproxen COYRUD116 128.3 234.2281879 58.5
2,4-dichlorophenoxy acetic acid CPXACA231 122± 5 239±4 51.778

1,8-diphenylnaphthalene DPNAPH01232 132.5±0.6 237.4±1.6 61.71919
2-Fluorobenzoic acid FBENZA02225 94.7±0.5 198.6±1.6 35.5±0.7

�urbiprofen FLUBIP233 110.2 190.94 53.3
Flufenamic acid FPAMCA17234 121.2 224 54.3

2,4,6-trinitromesitylene (TNM) HEXTIN01235 103.6±1.2 117.3±1.6 68.6±2.8
4-amino-N-(4-

ethylphenyl)benzenesulfonamide
HUNXIY236 143.6±0.9 233±2 74.2

4-Amino-N-(4-
methoxyphenyl)benzenesulfonamide

HUNXOE236 124±1 173±2 72.4

4-Amino-N-(5-chloro-2-
methylphenyl)benzenesulfonamide

HUNXUK236 130±1 206±3 68.5

Paracetamol HXACAN27237 117.9±0.7 190±2 60
Continued on next page
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Table H.1 � Continued from previous page

Molecule Refcode and ∆Hexp
sub ∆Sexpsub ∆Gexp

sub

name data reference (kJ/mol) (JK−1 mol−1) (kJ/mol)

Ibuprofen IBPRAC01224 115.8 240 44.2
4-hydroxybenzoic acid JOZZIH238 121.1±0.4 218.0±1.4 56.1±0.1

Tolfenamic acid KAXXAI01239 128.4±0.8 216±4 53.9±0.4
Ketoprofen KEMRUP228 110.1±0.5 178±1 57

9-Methylanthracene MANTHR01240 101.8±1.0 199.7±3.0 42.2±1.3
2,4,6-N-tetranitro-N-methylaniline

(Tetryl)
MTNANL235 133.8±1.6 155.8±2.0 87.3±3.2

1-naphthol NAPHOL016 91.2 187.58 35.3
4-nitrobenzoic acid NBZOAC01238 116.6±0.6 210.0±2.0 54.0±0.1

Ni�umic acid NIFLUM10234 130.2±0.8 231 ±2 61.3
nitroguanidine NTRGUA01235 142.7±2.0 116.8±3.4 107.9±4.6

2,2-Dimethylsuccinic acid OLENIC241 122.7±2.7 241±8 50.8±3.6
4-Methylbenzoic acid PTOLIC01242 98.6±0.7 196.1±1.8 40.1±0.8

Phenacetin PYRAZB21223 121.8±0.7 226±2 52.3
5-chloro-2-nitroaniline RAPKUP243 100.8±0.3 200.0±0.9 41.2±0.4

salicylic acid SALIAC15244 96.6 191 38.5
Diclofenac SIKLIH01245 115.6 222 49.3

4-cyanobenzoic acid TAGNAR238 111.2±0.4 202.9±1.4 50.7±0.1
o-Terphenyl TERPHO02225 103.0±0.4 210.6±1.3 40.2±0.6

2,4,6-trinitroaniline (TNA) TNIOAN235 125.3±0.8 140.7±0.3 83.3±1.2
1,3,5-Triphenylbenzene TPHBEN01246 147.8±0.7 254±2 72.1±0.9

N-(4-nitrophenyl)-benzene-
sulfonamide

UVEMOY247 132.5±1.6 217±7 67.7

4-Amino-N-(4-
nitrophenyl)benzenesulfonamide

UVEMUE247 131.4±2.6 179±7 78

Continued on next page
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Table H.1 � Continued from previous page

Molecule Refcode and ∆Hexp
sub ∆Sexpsub ∆Gexp

sub

name data reference (kJ/mol) (JK−1 mol−1) (kJ/mol)

4-Hydroxybenzamide VIDMAX248 117.8±0.6 198±2 58.9
2-Methylglutaric acid XIBVIO241 126.5±2.1 259±8 49.2±3.2

Mefenamic acid XYANAC239 136.2±0.8 213±3 59.2±0.1
4-Heptylbenzoic acid (cr, II) ZIKWOF242 130.0±0.9 255.3±2.6 53.9±1.2

Table H.1: Experimental sublimation data and references.
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Below is a table with the molecule name, CSD refcode, Log S and SMILES source
listed. Following from this are several images of the structures of the molecules
determined from their SMILES.
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Chemical name CSD refcode Log S exp (mol/L) Smiles Source

Acetanilide ACANIL01 -1.4 ChemSpider
Adenosine ADENOS10 -1.73 ChemSpider
Allopurinol ALOPUR -2.26 ChemSpider

4-Aminobenzoic acid AMBNAC04 -1.37 ChemSpider
4-Aminosalicylic acid AMSALA01 -1.96 ChemSpider

Trimethoprim AMXBPM10 -2.95 ChemSpider
Antipyrine ANTPYR10 0.48 ChemSpider

Acetazolamide ATDZSA -2.44 ChemSpider
Benzoic acid BENZAC02 -1.58 ChemSpider
Salbutamol BHHPHE -1.22 ChemSpider
Quinidine BOMDUC -2.81 ChemSpider
Benzamide BZAMID02 -0.95 ChemSpider

Thiamphenicol CABCIR01 -2.15 ChemSpider
(RS)-Atenolol CEZVIN -1.3 ChemSpider
Chloral Hydrate CHORLH01 1.7 ChemSpider

Cimetidine CIMETD -3.6 Solubility Challenge
Chloramphenicol CLMPCL02 -2.11 ChemSpider

Diuron CLPHUR02 -3.76 ChemSpider
Chlorprothixene CMAPTX -6.75 ChemSpider

Cocaine COCAIN10 -2.25 ChemSpider
Corticosterone CORTIC -3.24 ChemSpider
Naproxen COYRUD11 -4.5 ChemSpider
Sertraline CUTPEN -4.83 ChemSpider
Cytosine CYTSIN01 -1.16 ChemSpider
Dapsone DAPSUO03 -3.09 ChemSpider

1,8-Dihydroxyanthraquinone DHANQU06 -5.19 ChemSpider
Continued on next page
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Table H.2 � Continued from previous page

Chemical name CSD refcode Log S exp (mol/L) Smiles Source

Cortisone DHPRTO02 -3.27 ChemSpider
Diazepam DIZPAM10 -3.75 ChemSpider
Sulindac DOHREX -5 ChemSpider
Primidone EPHPMO -2.64 ChemSpider
Estrone ESTRON14 -3.95 ChemSpider

Hydro�umethiazide EWUHAF01 -2.97 ChemSpider
Alclofenac FICJAC -3.13 ChemSpider
Flurbiprofen FLUBIP -4.15 ChemSpider
Famotidine FOGVIG02 -2.65 ChemSpider

Flufenamic acid FPAMCA -5.35 ChemSpider
5-Fluorouracil FURACL02 -1.03 ChemSpider

Equilin GODTIC -5.28 ChemSpider
Griseofulvin GRISFL -3.25 Wikipedia

Hydrochlorothiazide HCSBTZ04 -2.69 ChemSpider
Fluometuron HODHIS -3.46 ChemSpider
Paracetamol HXACAN04 -1.02 ChemSpider
Ibuprofen IBPRAC01 -3.6 ChemSpider
Propranolol IMITON -3.49 ChemSpider
Thymol IPMEPL -2.19 ChemSpider

Fluconazole IVUQOF -1.8 ChemSpider
Pentoxifylline JAKGEH -0.56 ChemSpider
Isoproturon JODTUR01 -3.47 ChemSpider
Guanine KEMDOW -3.56 ChemSpider
Khellin KHELIN -3.02 ChemSpider

Nitrofurantoin LABJON01 -3.24 ChemSpider
L-DOPA (Levodopa) LDOPAS03 -1.12 ChemSpider

Continued on next page
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Table H.2 � Continued from previous page

Chemical name CSD refcode Log S exp (mol/L) Smiles Source

Indoprofen LEKMET -4.82 ChemSpider
Metoclopramide METPRA -3.57 ChemSpider
Metronidazole MNIMET -1.22 ChemSpider
Papaverine MVERIQ01 -3.87 ChemSpider

Nalidixic acid NALIDX01 -3.61 ChemSpider
1-Naphthol NAPHOL01 -1.98 ChemSpider
Clozapine NDNHCL01 -3.24 ChemSpider

Norethisterone NETIND01 -4.63 ChemSpider
Nicotinic acid NICOAC02 -0.85 ChemSpider
Ni�umic acid NIFLUM10 -4.59 ChemSpider
Oxytetracycline OXYTET -2.95 ChemSpider

Perylene PERLEN05 -8.8 ChemSpider
Perphenazine PERPAZ -4.16 ChemSpider
Phenobarbital PHBARB09 -2.29 Solubility Challenge
Phthalic acid PHTHAC01 -1.49 ChemSpider

5,5-Diphenylhydantoin PHYDAN01 -3.86 ChemSpider
Pindolol PINDOL -3.79 Solubility Challenge

Progesterone PROGST12 -4.42 ChemSpider
Pteridine PTERID11 0.02 ChemSpider
Phenacetin PYRAZB21 -2.37 ChemSpider
Pyrene PYRENE07 -6.18 ChemSpider

Pyrazinamide PYRZIN -0.91 ChemSpider
Salicylic acid SALIAC -1.94 ChemSpider
Salicylamide SALMID07 -1.84 ChemSpider
Glipizide SAXFED -5.46 Wikipedia
Diclofenac SIKLIH01 -5.49 ChemSpider

Continued on next page
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Table H.2 � Continued from previous page

Chemical name CSD refcode Log S exp (mol/L) Smiles Source

Sulfamethoxazole SLFNMB01 -2.7 ChemSpider
Sulfamethazine SLFNMD01 -2.73 ChemSpider
Sulfacetamide SLFNMG01 -1.51 ChemSpider
Sulfanilamide SULAMD01 -1.36 ChemSpider
Sulfadiazine SULDAZ01 -2.73 ChemSpider
Gliclazide SUVGUL -4.07 ChemSpider
Nadolol TAYGAC -1 ChemSpider

1,3,5-trichlorobenzene TCHLBZ -4.44 ChemSpider
Thalidomide THALID03 -3.7 ChemSpider

Trihexyphenidyl THEXPL -5.2 ChemSpider
Thymine THYMIN01 -1.5 ChemSpider
Thebaine TICTUU -2.66 ChemSpider

Triphenylene TRIPHE11 -6.73 ChemSpider
Uracil URACIL -1.49 ChemSpider

Uric acid URICAC -3.4 ChemSpider
Atropine WALPIJ -2 ChemSpider
Linuron WAMXUD -3.52 ChemSpider

Mefenamic acid XYANAC -6.74 ChemSpider
Mifepristone ZIDLED -5.75 ChemSpider
Tolbutamide ZZZPUS02 -3.47 ChemSpider
Codeine ZZZTSE03 -1.56 ChemSpider

Strychnine ZZZUEE04 -3.33 ChemSpider

Table H.2: DLS-100 dataset
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Figure H.1: DLS-100 dataset, structures converted from InChI strings to 2D structures
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Descriptor No. of descriptors Meaning

Ulatt 1 The lattice energy of the crystal as
calculated by DMACRYS.

Scrys 1 The entropy of the crystal calculated
by DMACRYS.

Srot 1 The rotational entropy of a single
molecule in the gas phase, as
calculated by Gaussian 09.

Strans 1 The translational entropy of a single
molecule in the gas phase, as
calculated by Gaussian 09.

∆Gsub 1 Sublimation free energy predicted by
thermochemical calculations.

Gaseous energy 1 The gaseous absolute energy as
calculated by Gaussian 09.

solution energy 1 The solution absolute energy as
calculated by Gaussian 09.

∆Ghyd 1 The free energy of hydration
calculated by thermochemical

calculations.

∆Gsolv 1 The solvation free energy calculated
by thermochemical calculations.

Table H.3: Calculated physical chemical values used as descriptors.

Descriptors Explanations

Descriptor No. of descriptors Meaning

ALOGP 3 Stands for additive logP. It is
calculated using molar refractivity

values de�ned by Ghose and Crippen.
BCUT 6 Used for de�ning chemical diversity by

encoding intermolecular interactions.
Fragment
complexity

1 Represents the complexity of a
fragment in terms of bond number
number of hydrogen atoms and

hetroatoms.
Aromatic atoms

count
1 Count of the number of atoms in an

aromatic system.
Aromatic bonds

count
1 Count of the number of aromatic

bonds.
Continued on next page
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Table H.4 � Continued from previous page

Descriptor No. of descriptors Meaning

Atom count 14 Count of the number of time a
particular element is present in a

molecule.
Autocorrelation

(charge)
5 Describes how charge varies along a

molecular structure.
Autocorrelation

(mass)
5 Describes how mass varies along a

molecular structure.
Autocorrelation
(polarizability)

5 Describes how polarizability varies
along a molecular structure.

Number of
bonds

1 Counts the number of binds.

BPol 1 The sum of squared di�erence between
atomic polarizabilities.

Carbon types 9 Topologically describes the
connectivity between Carbon atoms.

Chi chain 10 Descriptors providing information on
molecular branching and size.

Chi cluster 8 Descriptors providing information on
molecular branching and size.

Chi path cluster 6 Descriptors providing information on
molecular branching and size.

Chi path 16 Descriptors providing information on
molecular branching and size.

Eccentric
connectivity

index

1 Topological descriptor for distance
and information on which atoms are

adjacent to others.
Hbond donor

count
2 A count of the number H bond donors.

Kier Hall
Smarts

79 A count of E-state fragments.

Kappa shape
indices

3 Compares the extent of molecular
shape complexity against linear and

completely bonded.
Largest chain 1 The number of atoms in the longest

chain of atoms.
Largest Pi
system

1 The number of atoms in the largest pi
system.

Longest
aliphatic chain

1 The number of atoms in the longest
aliphatic group.

Petitjean
number

1 A measure of the maximum separating
distance between the two most distant

vertices.
Topological 4 Provides information on the

topological shape.
Continued on next page



177

Table H.4 � Continued from previous page

Descriptor No. of descriptors Meaning

Number of
rotatable bonds

1 Count the number of rotatable bonds.

TPSA 1 Estimate of the topological polar
surface area

Vertex
adjacency
information

1 Provides informations on the
adjacency of vertices.

Molecular
weight

1 Calculation of molecular weight.

Weighted path 5 Branching descriptor.
Wiener numbers 2 Information is encoded on the size of

paths and polarity.
X log P 1 Atom type calculation estimating Log

P.
Zagreb index 1 Complexity descriptor.

Table H.4: Descriptors used from the CDK two dimensional descriptors.



Appendix I

Statistical Signi�cance and

Descriptor Importance

This appendix presents the statistical signi�cance data from the cheminformatics
solubility prediction project in Chapter 5 Section 4.1. This Appendix also
contains tables showing the most important descriptors in the Random Forest models
scaled by: the mean and standard deviation, PCA and using the raw data.
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Scaledgbygthegmeangandgstandardgdeviation
Chemoinformaticsgdescriptors

PartialgLeastgSquare SVR RF PLS
mxd hfd dd hf mx SVR x

mxd x RF 0.13 x
hfd 0.14 x PLS 0.18 0.23 x
dd 0.19 0.06 x
hf 0.00 0.02 0.04 x
mx 0.00 0.02 0.09 0.20 x HFgIgChemoinformaticsgDescriptors

SVR RF PLS
SVR x

SupportgVectorgRegression RF 0.12 x
mxd hfd dd hf mx PLS 0.06 0.22 x

mxd x
hfd 0.29 x
dd 0.36 0.07 x MXG6A2XgIgChemoinformaticsgDescriptors
hf 0.03 0.04 0.13 x SVR RF PLS
mx 0.05 0.06 0.09 0.37 x SVR x

RF 0.03 x
PLS 0.16 0.28 x

RandomgForestgRegression
mxd hfd dd hf mx

mxd x HF
hfd 0.26 x SVR RF PLS
dd 0.02 0.11 x SVR x
hf 0.00 0.01 0.01 x RF 0.25 x
mx 0.02 0.02 0.07 0.25 x PLS 0.03 0.01 x

MXG6A2X
SVR RF PLS

SVR x
RF 0.20 x

mxdg=gMG6A2XgIgCHEMOINFORMATICSgDESCRIPTORS PLS 0.03 0.01 x
hfdg=gHFgIgCHEMOINFORMATICgDESCRIPTORS
ddg=gCHEMOINFORMATICSgDESCRIPTORS SVRg=gSUPPORTgVECTORgREGRESSION
hfg=gHF RFg=gRANDOMgFOREST
mxg=gMXG6A2X PLSg=gPARTIALgLEASTgSQUARE
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Principal0components
Chemoinformatics0descriptors

Partial0Least0Square SVR RF PLS
mxd hfd dd hf mx SVR x

mxd x RF 0.41 x
hfd 0.18 x PLS 0.20 0.23 x
dd 0.11 0.15 x
hf 0.00 0.01 0.01 x
mx 0.00 0.02 0.01 0.11 x HF0T0Chemoinformatics0Descriptors

SVR RF PLS
SVR x

Support0Vector0Regression RF 0.15 x
mxd hfd dd hf mx PLS 0.13 0.25 x

mxd x
hfd 0.31 x
dd 0.23 0.08 x MX06G2X0T0Chemoinformatics0Descriptors
hf 0.09 0.19 0.12 x SVR RF PLS
mx 0.05 0.16 0.19 0.23 x SVR x

RF 0.02 x
PLS 0.06 0.08 x

Random0Forest0Regression
mxd hfd dd hf mx

mxd x HF
hfd 0.10 x SVR RF PLS
dd 0.01 0.08 x SVR x
hf 0.19 0.20 0.38 x RF 0.11 x
mx 0.01 0.01 0.10 0.07 x PLS 0.01 0.00 x

MX60G2X
SVR RF PLS

SVR x
RF 0.15 x

mxd0=0M06G2X0T0CHEMOINFORMATICS0DESCRIPTORS PLS 0.04 0.26 x
hfd0=0HF0T0CHEMOINFORMATIC0DESCRIPTORS
dd0=0CHEMOINFORMATICS0DESCRIPTORS SVR0=0SUPPORT0VECTOR0REGRESSION
hf0=0HF RF0=0RANDOM0FOREST
mx0=0MX06G2X PLS0=0PARTIAL0LEAST0SQUARE
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RawXdataXset
ChemoinformaticsXdescriptors

PartialXLeastXSquare SVR RF PLS
mxd hfd dd hf mx SVR x

mxd x RF 0.10 x
hfd 0.03 x PLS 0.10 0.05 x
dd 0.19 0.17 x
hf 0.11 0.13 0.21 x
mx 0.17 0.24 0.23 0.27 x HFXAXChemoinformaticsXDescriptors

SVR RF PLS
SVR x

SupportXVectorXRegression RF 0.06 x
mxd hfd dd hf mx PLS 0.07 0.01 x

mxd x
hfd 0.28 x
dd 0.24 0.29 x MX06U2XXAXChemoinformaticsXDescriptors
hf 0.06 0.22 0.11 x SVR RF PLS
mx 0.09 0.14 0.20 0.37 x SVR x

RF 0.07 x
PLS 0.17 0.02 x

RandomXForestXRegression
mxd hfd dd hf mx

mxd x HF
hfd 0.23 x SVR RF PLS
dd 0.02 0.16 x SVR x
hf 0.01 0.01 0.01 x RF 0.25 x
mx 0.02 0.02 0.07 0.25 x PLS 0.01 0.00 x

MX60U2X
SVR RF PLS

SVR x
RF 0.20 x

mxdX=XM06U2XXAXCHEMOINFORMATICSXDESCRIPTORS PLS 0.01 0.01 x
hfdX=XHFXAXCHEMOINFORMATICXDESCRIPTORS
ddX=XCHEMOINFORMATICSXDESCRIPTORS SVRX=XSUPPORTXVECTORXREGRESSION
hfX=XHF RFX=XRANDOMXFOREST
mxX=XMX06U2X PLSX=XPARTIALXLEASTXSQUARE
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Descriptor Importance

Descriptor only Descriptor and HF Descriptor and M06-2X HF M06-2X

X log P X log P X log P ∆G solvation ∆G solvation

WTPT 3 WTPT 3 DFT log S HF log S ∆G solution

VCH 7 DFT log S ∆G solution ∆G solution DFT log S

ATSc2 ∆G solution WTPT 3 ∆G sublimation Srotations

SP 6 VCH 7 VCH 7 Ulatt Strans

ATSc1 ∆G solvation ∆G solvation Scrystal Solution energy

SP 5 ATSc1 ATSc1 Srotations Ulatt

SP 7 SP 6 ATSc2 Stranslation Scrystal

ATSm4 ATSc2 WTPT 2 Soln energy Gas energy

ATSm1 WTPT 2 SP 6 Gas energy ∆G sublimation

Table I.1: Top 10 variables ranking of variable importance in Random Forest scaled by
mean/σ.

Descriptor only Descriptor and HF Descriptor and M06-2X HF M06-2X

X log P X log P X log P ∆G solvation ∆G solvation

WTPT 3 WTPT 3 ∆G solution HF log S ∆G solution

VCH 7 DFT log S DFT log S ∆G solution DFT log S

ATSc2 ∆G solution WTPT 3 ∆G sublimation Srotations

ATSc1 VCH 7 ∆G solvation Ulatt Stranslation

SP 6 ∆G solvation VCH 7 Scrystal Solution energy

SP 5 ATSc1 ATSc1 Srotations Ulatt

ATSm5 ATSc2 ATSc2 Stranslations Scrystal

ATSm4 SP 6 WTPT 2 Solution energy Gas energy

SP 7 SP 5 SP 6 Gas energy ∆G sublimation

Table I.2: Top 10 variables ranking of variable importance in Random Forest raw data.

CDK Descriptors De�nitions

XLogP Predicted logP based on the atom-type.

WTPT.3 A set of weighted path descriptors from Randic. They describe the degree of molecular
branching.

VCH.7 Kier and Hall's χ indices (orders 3 -6).

ATSc2 The Moreau-Broto autocorrelation partial charge model.

SP.6 Kier and Hall's χ path indices (orders 0-7).

ATSc1 The Moreau-Broto autocorrelation partial charge model.

SP.5 Kier and Hall's χ path indices orders (0 - 7).

SP.7 Kier and Hall's χ path indices (orders 0 - 7).

ATSm4 The Moreau-Broto autocorrelation calculated by the application of partial charges.

WTPT.2 A set of weighted path descriptors from Randic. They describe the degree of molecular
branching.

ATSm5 The Moreau-Broto autocorrelation calculated by the application of partial charges.

Table I.3: Descriptor names and meaning.
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MP1100

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

(1,2-dibromoethyl)benzene 4.01 72
(1-bromoethyl)benzene 3.61 -65

(1R)-camphor 2.85 177.5
(1R)-camphor-10-sulfonic

acid
-0.53 200

(1R)-camphor-10-sulfonyl
chloride

2.06 66

(1R)-camphorquinone 2.57 199.5
(1R)-endo-fenchyl alcohol 2.3 40.5

(1R,2s)-10,2-
camphorsultam

1 180.5

(1R,3S)-camphoric acid 1.51 185.5
(1S)-camphanic acid 1.77 200

(1S)-camphanic chloride 2.15 66
(1S)-camphor 2.85 177.5

(1S)-camphor-10-sulfonyl
chloride

2.06 66

(1S)-camphorquinone 2.57 198.5
(1S)-camphorsulfonylimine 1.55 227

(1S,2R)-10,2-
camphorsultam

1 183

(1S,2R)-1-phenyl-2-(1-
pyrrolidinyl)-1-propanol

2.04 45

(1S,4S)-2-boc-2,5-
diazabicyclo(2.2.1)heptane

0.72 75

(2-aminoethoxy)acetic acid -3.18 178
(2-bromoethyl)benzene 3.28 -56

(2-
carboxyphenyl)iminodiacetic

acid

0.81 217

(2h)1,4-benzothiazin-3(4h)-
one

1.65 177
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Molecule Name Predicted log P (AlogP) Melting Point (◦C)

(2-hydroxyethyl)hydrazine -1.48 -70
(2S,5s)-2,5-hexanediol 0.31 53

(3,4-
dimethoxyphenylthio)acetic

acid

2 102

(3-bromo-2,4,6-
trimethylphenylcarbamoyl)methyliminodiacetic

acid

-0.39 194

(3-
chloropropyl)trimethoxysilane

1.98 -50

(3R-cis)-tetrahydro-3-
trichloromethyl-1h,3h-

pyrrolo(1,2-c)oxazol-1-one

2.06 110

(3S,4R)-4-(4-�uorophenyl)-
1-methyl-3-

piperidinemethanol

2.06 95.5

(4-bromobutoxy)benzene 3.73 41.5
(4-chlorophenoxy)acetyl

chloride
2.65 19

(4-
chlorophenylsulfonyl)acetonitrile

1 171

(4-chlorophenylthio)acetic
acid

2.71 105.5

(4-
chlorophenylthio)acetonitrile

2.91 80

(4-�uorophenylthio)acetic
acid

2.05 77.5

(4-
�uorophenylthio)acetonitrile

2.31 33.5

(4-imidazolyl)acetonitrile 0.43 137
(4-tert-

butylphenoxy)acetonitrile
3.37 68.5

(5-mercapto-1,3,4-
thiadiazol-2-ylthio)acetic

acid

0.31 167

(benzylthio)acetic acid 2.2 61.5
(chloromethyl)cyclopropane 2.12 -91
(e)-3-dimethylamino-1-(2-
pyridyl)-2-propen-1-one

0.49 131

(e)-alpha-(4-
chlorophenyl)cinnamonitrile

4.44 115.5

(e)-alpha-methylstilbene 4.84 80.5
(methoxymethyl)diphenylphosphine

oxide
1.63 117
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(methylamino)acetaldehyde
dimethyl acetal

-0.3 -73

(methylthio)acetic acid -0.15 13.5
(penta�uorophenyl)diphenylphosphine 5.02 71
(phenylsulfonyl)acetamide -0.36 156
(phenylsulfonyl)acetic acid 0.18 111.5
(phenylthio)acetic acid 2.28 63.5

(R)-1-boc-3-
hydroxypiperidine

1.51 46.5

(R)-3-(boc-amino)-3-(4-
bromophenyl)propionic

acid

3.01 144

(R)-3-boc-thiazolidine-2-
carboxylic

acid

1.15 91.5

(R)-limonene 4.5 -74
(S)-1-boc-3-

hydroxypiperidine
1.51 37

(S)-2-(6-methoxy-2-
naphthyl)propionic

acid

3.29 155

(S)-2-(boc-amino)-4-
phenylbutyric

acid

2.92 78

(S)-2-pyrrolidinone-5-
carboxylic

acid

-1.01 160

(S)-3-(boc-amino)-4-(4-
pyridyl)butyric

acid

1.43 141.5

(S)-3-(boc-amino)-4-
phenylbutyric

acid

2.82 104

(S)-3-(boc-amino)-5-
methylhexanoic

acid

2.23 54

(S)-3-(boc-
amino)piperidine

1.17 124.5

(S)-3-boc-thiazolidine-2-
carboxylic

acid

1.15 91.5

(S)-4-sec-butyloxazolidine-
2,5-dione

0.73 65.5
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Molecule Name Predicted log P (AlogP) Melting Point (◦C)

(S)-alpha-methoxy-alpha-
(tri�uoromethyl)phenylacetic

acid

2.01 44

(S)-nicotine 0.87 -79
(S,s)-hydrobenzoin 2.05 149

(trimethylsilyl)acetic acid 1.33 41
(2.2)paracyclophane 5.23 285.5

(4-
(tri�uoromethyl)phenylsulfonyl)acetonitrile

1.49 143.5

(4-
(tri�uoromethyl)phenylthio)acetic

acid

2.98 116

1-(1-methyl-4-
piperidinyl)piperazine

0.1 30.5

1-(1-propynyl)cyclohexanol 2.49 48
1-(2,4,6-

triisopropylphenylsulfonyl)-
1,2,4-triazole

3.03 111

1-(2,4-
di�uorophenyl)piperazine

1.43 75

1-(2,5-
dimethylphenyl)piperazine

2.18 44.5

1-(2-aminoethyl)piperazine -1.4 -19
1-(2-aminophenyl)pyrrole 2.06 93.5

1-(2-bromoethyl)-4-
nitrobenzene

3.12 69

1-(2-
�uorophenyl)piperazine

1.35 46

1-(2-furoyl)piperazine -0.13 68
1-(2-furyl)-2-nitroethylene 1.39 73.5
1-(2-hydroxyethyl)-2-

imidazolidinone
-1.57 48.5

1-(2-
hydroxyethyl)piperazine

-1.67 -39

1-(2-
hydroxyethyl)piperidine

0.56 16

1-(2-
methoxyethyl)homopiperazine

-0.26 66.5

1-(2-
methoxyphenyl)piperazine

1.42 37

1-(2-naphthoyl)-3,3,3-
tri�uoroacetone

3.29 74

1-(2-naphthyl)ethanol 2.77 73.5
1-(2-nitrophenyl)piperidine 3.29 77
1-(2-nitrophenyl)pyrrole 2.81 59
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1-(2-phenylethyl)-4-
(phenylethynyl)benzene

6.07 105

1-(2-phenylethyl)-4-
piperidone

1.81 58

1-(2-pyridylazo)-2-naphthol 3.87 139.5
1-(2-thenoyl)-3,3,3-
tri�uoroacetone

2.37 42.5

1-(2-thiazolylazo)-2-
naphthol

4.17 139

1-(2-
tri�uoromethylphenyl)imidazole

2.28 51.5

1-(3,4-
dichlorophenyl)piperazine

2.72 63

1-(3,4-
dimethylphenyl)piperazine

2.18 62.5

1-(3,5-dichlorophenyl)-2,5-
dimethyl-1h-pyrrole

4.83 79

1-(3-aminophenyl)ethanol 0.49 67.5
1-(3-aminopropyl)imidazole -0.71 -68
1-(3-chlorophenoxy)-3-

butyn-2-ol
2.04 38

1-(3-
hydroxypropyl)piperazine

-1.22 50

1-(3-methoxybenzoyl)-2-(1-
naphthoyl)hydrazine

2.83 190

1-(3-
tri�uoromethylphenoxy)-3-

butyn-2-ol

1.87 31.5

1-(4-aminophenyl)ethanol 0.5 69.5
1-(4-biphenylyl)ethanol 3.42 97

1-(4-bromophenyl)ethanol 2.45 37
1-(4-

chlorophenyl)cyclohexane-
1-carboxylic

acid

3.73 152

1-(4-
chlorophenyl)cyclopropanecarboxylic

acid

2.76 153.5

1-(4-chlorophenylsulfonyl)-
3,3-dimethyl-2-butanone

2.69 97

1-(4-ethoxyphenyl)ethanol 2.28 46.5
1-(4-ethoxyphenyl)ethynyl-

4-n-pentylbenzene
6.42 62

1-(4-
�uorophenyl)piperazine

1.49 31.5
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1-(4-�uorophenyl)pyrrole 2.77 51
1-(4-hydroxyphenyl)-5-
mercaptotetrazole

1.31 170

1-(4-iodophenyl)pyrrole 3.57 130.5
1-(4-methoxy-4-

biphenylylsulfonyl)proline
2.18 154

1-(4-methoxybenzoyl)-2-(1-
naphthoyl)hydrazine

2.86 188.5

1-(4-methoxyphenyl)-1-
cyclohexanecarbonitrile

3.81 43

1-(4-methoxyphenyl)-1h-
1,2,4-triazole

1.16 97

1-(4-
methoxyphenyl)ethynyl-4-

n-pentylbenzene

6.13 47

1-(4-
methoxyphenyl)ethynyl-4-

n-propylbenzene

5.3 61

1-(4-
methoxyphenyl)imidazole

1.62 66

1-(4-nitrophenyl)-3-(2-
thienyl)-2-propen-1-one

3.53 169

1-(4-nitrophenyl)-5-
(tri�uoromethyl)-1h-
pyrazole-4-carboxylic

acid

2.68 201

1-(4-nitrophenyl)glycerol 0.74 96
1-(4-nitrophenyl)piperazine 1.27 131
1-(4-nitrophenyl)piperidine 3.37 103.5
1-(4-nitrophenylazo)-2-

naphthol
5.04 250

1-(4-pyridyl)piperazine 0.56 138.5
1-(6-methoxy-2-
naphthyl)ethanol

2.9 111.5

1-(boc-
amino)cyclopentanecarboxylic

acid

2.12 132.5

1-
(chloromethyl)naphthalene

3.91 32

1-(cyanoacetyl)piperidine 0.49 87.5
1-(cyanoacetyl)pyrrolidine -0.14 72.5

1-
(hepta�uorobutyryl)imidazole

2.4 10.5

1-(methylsulfonyl)imidazole -1.01 88.5
1-(o-tolyl)piperazine 1.7 46.5
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1-
(penta�uorobenzoyl)imidazole

2.51 55.5

1-
(penta�uorophenyl)ethanol

1.94 33

1-
(phenylethynyl)cyclohexanol

3.34 61

1-(phenylsulfonyl)indole 2.56 78
1-(phenylsulfonyl)pyrrole 1.53 88.5
1-(p-toluenesulfonyl)indole 2.73 85
1-(p-toluenesulfonyl)pyrrole 1.66 101

1-(trans-
cinnamoyl)imidazole

2.14 130

1-
(tri�uoromethyl)cyclohexanecarboxylic

acid

1.71 69.5

1-
(tri�uoromethyl)cyclopentanecarboxylic

acid

1.39 37

1-(trimethylsilyl)imidazole 0.78 -42
1,1-

(azodicarbonyl)dipiperidine
2.09 134.5

1,1,1,2-tetra�uoro-2-iodo-2-
(tri�uoromethoxy)ethane

2.55 43.5

1,1,1,3,3,3-hexa�uoro-2-
propanol

2.58 -3

1,1,1-
tris(chloromethyl)ethane

2.86 18

1,1,1-
tris(hydroxymethyl)ethane

-1.34 190

1,1,2,2-tetrachloroethane 2.57 -43
1,1,2,2-tetra�uoroethyl

methyl ether
1.83 -107

1,1,2-trichloro-3,3,3-
tri�uoro-1-propene

3.19 -114

1,1,2-trimethyl-1h-
benzo(e)indole

4.38 116.5

1,1,3,3,5,5-
hexamethyltrisiloxane

2.71 -67

1,1,3,3-
tetramethyldisiloxane

1.66 -78

1,1,3-triphenylpropargyl
alcohol

4.6 81

1,1,4,4-tetraphenyl-1,3-
butadiene

7.24 197.5
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Molecule Name Predicted log P (AlogP) Melting Point (◦C)

1,1:3,1-terphenyl-5-boronic
acid

4.34 294

1,10-decanedicarbonitrile 2.86 17.5
1,10-decanediol 2.7 72.5

1,10-decanedithiol 4.77 17
1,10-dibromodecane 3.6 28
1,10-diiododecane 5.55 30

1,10-phenanthroline,
anhydrous

2.31 117.5

1,12-diaminododecane 3.47 70
1,12-dibromododecane 5.61 40
1,12-dodecanediol 3.74 82.5

1,18-
octadecanedicarboxylic

acid

6.79 127

1,1-bi(2-naphthol) 4.6 216.5
1,1-bis(methylthio)-2-

nitroethylene
0.87 125.5

1,1-carbonyldiimidazole -0.33 118
1,1-carbonyldipiperidine 1.61 44.5
1,1-cyclohexanediacetic

acid
1.31 180

1,1-
cyclopropanedicarboxylic

acid

-0.21 131.5

1,1-
cyclopropanedicarboxylic
acid monomethyl ester

0.28 49

1,1-dioxobenzo(b)thiophen-
2-ylmethyl

chloroformate

1.69 76.5

1,1-diphenyl-2-propyn-1-ol 3.04 46
1,1-diphenylacetone 3.57 61
1,1-diphenylethanol 3.3 80
1,1-diphenylethylene 4.53 6

1,1-thiocarbonyldi-2(1h)-
pyridone

1.59 164.5

1,2,3,4-tetra�uorobenzene 2.34 -42
1,2,3,4-tetrahydrocarbazole 3.77 119

1,2,3,4-
tetrahydroisoquinoline

1.31 -30

1,2,3,4-
tetrahydronaphthalene

3.79 -36

1,2,3,4-tetrahydroquinoline 2.27 14
1,2,3-benzotriazin-4(3h)one 0.25 223
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Molecule Name Predicted log P (AlogP) Melting Point (◦C)

1,2,3-hexanetriol -0.85 65.5
1,2,3-thiadiazole-4-
carboxaldehyde

0.25 85

1,2,3-thiadiazole-4-
carboxylic

acid

-0.66 227.5

1,2,3-triacetoxybenzene 1.58 166
1,2,3-tribromopropane 3.24 16.5

1,2,3-trichloro-4-
nitrobenzene

3.65 54.5

1,2,3-trichloro-5-
nitrobenzene

3.69 69.5

1,2,3-trichlorobenzene 4.07 54
1,2,3-trichloropropane 2.29 -14
1,2,3-trimethoxybenzene 2.02 44
1,2,4,5-tetrabromobenzene 5.03 177.5
1,2,4,5-tetrachlorobenzene 4.61 140
1,2,4,5-tetra�uorobenzene 2.43 4

1,2,4,5-
tetrakis(isopropylthio)benzene

7.01 77

1,2,4,5-tetramethylbenzene 4.05 78.5
1,2,4-benzenetricarboxylic

anhydride
0.98 167

1,2,4-butanetriol -1.59 -20
1,2,4-triacetoxybenzene 1.63 99

1,2,4-triazole -0.8 120
1,2,4-triazolo(4,3-a)pyridin-

3(2h)-one
0.19 234

1,2,4-triazolo(4,3-
a)pyridine-3-thiol

1.2 209.5

1,2,4-tribromobenzene 4.42 42
1,2,4-trichloro-5-
iodobenzene

4.48 103.5

1,2,4-trichlorobenzene 4.08 17
1,2,4-tri�uoro-5-
nitrobenzene

1.97 -11

1,2,4-trimethylbenzene 3.62 -44
1,2,4-triphenyl-1,4-

butanedione
4.81 128

1,2,5-trichloro-3-
iodobenzene

4.47 52

1,2,6-hexanetriol -0.8 -20
1,2-benzenedimethanol 0.33 61.5
1,2-benzenedithiol 1.8 23

1,2-benzisoxazol-3(2h)-one 0.79 138.5
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1,2-bis(1-naphthyl)ethane 6.63 161.5
1,2-bis(2-

chloroethoxy)ethane
1.26 -32

1,2-bis(2-
nitrophenoxy)ethane

3.29 168.5

1,2-
bis(carboxymethylthio)ethane

0.11 110

1,2-
bis(chlorodimethylsilyl)ethane

3.58 37

1,2-
bis(dimethoxyphosphoryl)benzene

0.78 81

1,2-
bis(dimethylphosphino)ethane

2.77 179.5

1,2-
bis(diphenylphosphino)benzene

7.92 187

1,2-
bis(diphenylphosphino)ethane

6.88 140.5

1,2-
bis(methanesulfonamido)benzene

0.14 212.5

1,2-
bis(phenylsulfonyl)ethane

1.6 179.5

1,2-bis(phenylthio)ethane 4.98 69
1,2-bis(2-

(tri�uoromethyl)phenyl)ethane
5.19 75

1,2-cyclohexanedione 0.77 36.5
1,2-di(3-indenyl)ethane 5.88 123
1,2-di(p-tolyl)ethane 5.79 81
1,2-diaminopropane -1.36 -37
1,2-dianilinoethane 3.34 66
1,2-dibenzoylbenzene 4.51 146.5
1,2-dibenzoylethane 3.2 146
1,2-dibromo-2,4-
dicyanobutane

2.14 50

1,2-dibromo-3,5-
di�uorobenzene

3.62 37

1,2-dibromo-4,5-
di�uorobenzene

3.67 33

1,2-dibromobenzene 3.77 5
1,2-dibromobutane 3.38 -65
1,2-dibromoethane 2.08 9.5
1,2-dibromopropane 2.65 -55

1,2-dichloro-3-iodobenzene 4.07 35
1,2-dichloro-3-nitrobenzene 3.05 62

1,2-dichloro-4-
�uorobenzene

3.46 -1
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1,2-dichloro-4-iodobenzene 4.07 30
1,2-dichloro-4-nitrobenzene 3.11 41

1,2-dichlorobenzene 3.45 -18
1,2-dichloroethane 1.48 -35
1,2-dichloropropane 2.13 -100
1,2-diethoxybenzene 3.09 44
1,2-diethoxyethane 0.78 -74
1,2-diethylbenzene 4.55 -31
1,2-di�uoro-4,5-

dimethoxybenzene
2.2 40

1,2-di�uorobenzene 2.24 -34
1,2-dihydronaphthalene 3.53 -8

1,2-diiodoethane 2.72 82
1,2-dimethoxy-4,5-
dinitrobenzene

1.58 132.5

1,2-dimethoxyethane 0.03 -69
1,2-dimethyl-5-
nitroimidazole

-0.01 137

1,2-dimethylimidazole 0.37 36.5
1,2-diphenoxyethane 3.42 95
1,2-diphenylethane 4.74 51.5
1,2-epoxyoctadecane 8.31 32.5
1,2-ethanedithiol 0.84 -41

1,2-ethylenediphosphonic
acid

-0.89 219

1,2-octanediol 1.66 31
1,2-o-isopropylidene-alpha-

D-glucofuranose
-0.94 159.5

1,2-phenylene
phosphorochloridite

2.53 30

1,2-phenylenediacetic acid 1.2 151
1,2-phenylenediacetonitrile 0.69 59

1,2-propanediol -1.1 -60
1,2-propanediol diacetate 0.77 -31

1,3,3-trimethyl-2-
methyleneindoline

3.38 -10

1,3,5,7-cyclooctatetraene 3.1 -5
1,3,5-benzenetricarbonyl

chloride
3.12 36

1,3,5-benzenetricarboxylic
acid

0.87 375

1,3,5-tribenzoylbenzene 5.45 117.5
1,3,5-tribenzylhexahydro-

1,3,5-triazine
3.42 50

1,3,5-tribromobenzene 4.42 122.5
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1,3,5-trichloro-2,4,6-
tri�uorobenzene

4.06 63

1,3,5-trichloro-2-
iodobenzene

4.48 54.5

1,3,5-trichloro-2-
nitrobenzene

3.6 70.5

1,3,5-trichlorobenzene 4.08 63.5
1,3,5-triethynylbenzene 2.03 106

1,3,5-tri�uoro-2-
nitrobenzene

1.89 3.5

1,3,5-tri�uorobenzene 2.36 -5.5
1,3,5-triisopropylbenzene 5.52 -7

1,3,5-trimethoxy-2-
nitrobenzene

1.65 151.5

1,3,5-trimethoxybenzene 1.96 52
1,3,5-trimethyl-1h-pyrazole 0.73 35.5

1,3,5-trimethyl-1h-
pyrazole-4-carboxaldehyde

0.58 81.5

1,3,5-trioxane -0.95 60.5
1,3,5-triphenylbenzene 7.3 173

1,3,5-tris(2-
hydroxyethyl)cyanuric

acid

-1.57 138

1,3,5-tri-tert-butylbenzene 7.17 71
1,3-benzenedimethanol 0.28 58
1,3-benzenedisulfonyl

chloride
1.66 59

1,3-benzodioxole 1.71 -18
1,3-bis(2-

hydroxyhexa�uoroisopropyl)benzene
3.66 9.5

1,3-bis(4-
piperidinyl)propane

2.73 65.5

1,3-
bis(diphenylphosphino)propane

7.23 60.5

1,3-bis(hydroxymethyl)urea -2.19 126
1,3-

bis(tri�uoromethyl)benzene
3.7 -35

1,3-
bis((trimethylsilyl)ethynyl)benzene

4.73 58

1,3-
bis(tris(hydroxymethyl)methylamino)propane

-2.14 169

1,3-cyclohexadiene 2.3 -89
1,3-cyclohexanediol, cis

trans
0.02 30

1,3-cyclohexanedione 0.34 103
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1,3-cyclooctadiene 3.56 -53
1,3-cyclopentanedione -0.14 152
1,3-di(4-pyridyl)propane 2.39 54.5

1,3-di-2-thienyl-2-propen-1-
one

3.6 99

1,3-diacetylbenzene 1.68 36
1,3-diacetylindole 2.29 145.5

1,3-diamino-2-propanol -1.99 42.5
1,3-diaminopropane -1.41 -12
1,3-dibenzoylbenzene 4.6 98.5

1,3-dibenzoyloxybenzene 4.42 117.5
1,3-dibenzyl-5-

cyanohexahydropyrimidine
2.62 79.5

1,3-dibromo-2,2-
diethylpropane

4.39 39.5

1,3-dibromo-2,2-
dimethoxypropane

1.88 65.5

1,3-dibromo-5-�uoro-2-
iodobenzene

4.08 134

1,3-dibromobenzene 3.73 -7
1,3-dibromopropane 2.55 -34

1,3-dichloro-2-
�uorobenzene

3.48 38

1,3-dichloro-2-
nitrosobenzene

3.07 171.5

1,3-dichloro-2-propanol 0.71 -4
1,3-dichloro-4-
�uorobenzene

3.45 -23

1,3-dichloro-5,5-
dimethylhydantoin

-1.48 132

1,3-dichloro-5-iodobenzene 4.07 57
1,3-dichloro-5-nitrobenzene 3.08 63.5

1,3-dichloroacetone 0.72 44
1,3-dichlorobenzene 3.45 -25

1,3-dichloropropene, cis
trans

2.07 -84

1,3-diethoxybenzene 2.78 11
1,3-di�uorobenzene 2.25 -59

1,3-dihydroxyacetone dimer -1.91 78.5
1,3-dihydroxynaphthalene 2.02 124.5

1,3-diiodobenzene 3.8 36
1,3-diiodopropane 3.21 -20

1,3-diisopropylbenzene 4.71 -63
1,3-dimethoxybenzene 2 -52
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1,3-dimethyl-2,4-dioxo-7-n-
propyl-2,3,4,7-

tetrahydropyrrolo(2,3-
d)pyrimidine-6-carboxylic

acid

0.7 139

1,3-dimethyl-2-
imidazolidinone

-0.53 8

1,3-dimethyl-3,4,5,6-
tetrahydro-2(1h)-
pyrimidinone

-0.29 -23

1,3-dimethyl-6-
methylamino-2,4-dioxo-

1,2,3,4-
tetrahydropyrimidine-5-

carboxaldehyde

-1.11 203

1,3-dimethylbarbituric acid -0.67 122
1,3-dimethyluracil -0.98 120.5
1,3-di-n-butyl-2-
thiobarbituric

acid

2.7 62

1,3-dinitrobenzene 1.7 89
1,3-di-o-tolylguanidine 2.9 177

1,3-dioxolane -0.61 -95
1,3-diphenoxy-2-propanol 2.7 82
1,3-diphenoxybenzene 4.96 60

1,3-diphenyl-1,3-
propanedione

3.14 78

1,3-diphenyl-1-butanone 4.04 70
1,3-diphenylacetone 3.24 34
1,3-diphenylguanidine 2.67 149

1,3-diphenylisobenzofuran 6.15 134.5
1,3-di-tert-butylbenzene 5.58 9.5

1,3-dithiane 1.58 53.5
1,3-indanedione 1.54 130

1,3-phenylene diisocyanate 1.21 48
1,3-phenylenediacetic acid 1.3 175
1,3-phenylenediacetonitrile 0.72 33.5

1,3-propanediol -1.18 -26
1,3-propanediol

di-p-toluenesulfonate
1.68 91

1,3-propanedithiol 1.13 -79
1,3-propanesultone -0.86 31.5

1,4,10,13-tetrathia-7,16-
diazacyclooctadecane

1.75 130
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1,4,5,6-tetrahydro-6-
oxopyridazine-3-carboxylic

acid

-1.49 197

1,4,6,7-
tetramethylnaphthalene

5.28 63.5

1,4,8,11-
tetraazacyclotetradecane

-0.66 186

1,4,8,11-
tetraazatricyclo(9.3.1.1(4,8))hexadecane

0.34 84

1,4,8,11-
tetrakis(ethoxycarbonylmethyl)-

1,4,8,11-
tetraazacyclotetradecane

1.49 88

1,4,8,11-tetramethyl-
1,4,8,11-

tetraazacyclotetradecane

1.25 35

1,4,8-tri-boc-1,4,8,11-
tetraazacyclotetradecane

2.57 51

1,4-benzenedimethanol 0.17 119
1,4-benzenedithiol 1.81 97

1,4-benzodioxan-6-amine 1.17 28
1,4-benzodioxane-2-

carboxylic
acid

0.99 124

1,4-benzodioxane-2-
thiocarboxamide

1.36 174

1,4-benzodioxane-6-
carboxaldehyde

1.12 50

1,4-benzodioxane-6-sulfonyl
chloride

1.76 66

1,4-bipiperidine 1.48 68
1,4-bis(1-

hydroxycyclohexyl)-1,3-
butadiyne

3.08 174.5

1,4-bis(2,2,2-
tri�uoroethoxy)benzene

3.49 76

1,4-bis(2-
hydroxyisopropyl)benzene

2.13 144

1,4-bis(2-
methylstyryl)benzene

6.9 181.5

1,4-bis(2-
phenylethyl)benzene

6.82 89

1,4-bis(3-
aminopropyl)piperazine

-0.67 14
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1,4-bis(4-methyl-5-
phenyloxazol-2-yl)benzene

6.45 234

1,4-bis(5-phenyloxazol-2-
yl)benzene

5.76 242

1,4-
bis(diphenylphosphino)butane

7.61 134

1,4-bis(glycidyloxy)benzene 1.28 111
1,4-

bis(phenylethynyl)benzene
5.98 177

1,4-
bis(tri�uoromethyl)benzene

3.66 -1

1,4-bis(trimethylsilyl)-1,3-
butadiyne

3.67 111.5

1,4-
bis((trimethylsilyl)ethynyl)benzene

4.73 120

1,4-butanediol -0.63 19.5
1,4-cyclohexadiene 2.31 -49
1,4-cyclohexanedione 0.1 77.5
1,4-diacetoxy-2-butyne 1.31 27.5
1,4-diacetoxybenzene 1.59 120.5
1,4-diacetoxybutane 1.06 12.5

1,4-diacryloylpiperazine -0.27 93
1,4-diaminoanthraquinone 3 262.5

1,4-diaminobutane -0.98 26.5
1,4-

diazabicyclo(2.2.2)octane
-0.53 157.5

1,4-dibenzoylbenzene 4.64 163
1,4-dibenzyloxybenzene 4.99 126.5

1,4-dibromo-2,3-
butanedione

0.78 117.5

1,4-dibromo-2,5-
di�uorobenzene

3.57 62

1,4-dibromo-2,5-
dimethoxybenzene

3.72 146

1,4-dibromo-2-
�uorobenzene

3.65 34

1,4-dibromo-2-nitrobenzene 3.31 83.5
1,4-dibromobenzene 3.71 88
1,4-dibromobutane 2.98 -20

1,4-dibromonaphthalene 4.84 81
1,4-dibromopentane 3.54 -34

1,4-dichloro-2-
�uorobenzene

3.44 4

1,4-dichloro-2-iodobenzene 4.07 20.5
1,4-dichloro-2-nitrobenzene 3.04 55
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1,4-dichloro-5,6,7,8-
tetrahydro-5,8-

ethanophthalazine

3.92 209.5

1,4-dichlorobenzene 3.46 54
1,4-dichlorobutane 2.51 -38

1,4-dicyclohexylbenzene 7.45 104
1,4-diethoxybenzene 2.8 70
1,4-diethylbenzene 4.36 -43
1,4-di�uoro-2,5-

dimethoxybenzene
2.16 120.5

1,4-di�uoro-2-nitrobenzene 1.9 -12
1,4-di�uorobenzene 2.26 -13

1,4-diformylpiperazine -1.48 127.5
1,4-

dihydroxyanthraquinone
2.98 196.5

1,4-diiodobenzene 3.8 130
1,4-diiodobutane 3.56 6

1,4-diisopropylbenzene 4.7 -17
1,4-dimethoxy-2-
�uorobenzene

2.21 24.5

1,4-dimethoxybenzene 2.05 56
1,4-dimethoxynaphthalene 3.2 84.5
1,4-dimethylpiperazine -0.01 -1
1,4-dinitrobenzene 1.7 174
1,4-di-o-tosyl-2,3-o-

isopropylidene-l-threitol
1.99 90

1,4-dioxane -0.23 11.8
1,4-dioxane-2,3-diol -1.47 101
1,4-dioxane-2,5-dione -0.67 82
1,4-diphenoxybenzene 4.97 72.5
1,4-diphenyl-1-butanone 3.85 55
1,4-diphenylbutadiyne 4.55 86.5

1,4-dipropionyloxybenzene 2.46 113
1,4-di-tert-butylbenzene 5.68 77
1,4-dithio-dl-threitol 0.18 41.5
1,4-dithioerythritol 0.18 83
1,4-naphthoquinone 1.61 122

1,4-oxathiane 4,4-dioxide -1.36 132
1,4-oxazepan-5-one -1.06 81

1,4-phenylene
diisothiocyanate

3.96 130.5

1,4-phenylenediacetic acid 1.34 254
1,4-phenylenediacetonitrile 0.75 96

1,4-
piperazinedipropionitrile

0.24 64.5
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1,5,5-trimethylhydantoin 0.03 162.5
1,5-

bis(diphenylphosphino)pentane
8.17 47

1,5-diaminonaphthalene 1.49 190.5
1,5-diaminopentane -0.27 9
1,5-dibromopentane 3.51 -34
1,5-dichloro-2,4-
dinitrobenzene

2.8 100.5

1,5-dichloroanthraquinone 4.14 247
1,5-dichloropentane 3.11 -72
1,5-di�uoro-2,4-
dinitrobenzene

1.56 74

1,5-dimethylnaphthalene 4.37 80
1,5-dinitronaphthalene 2.68 216

1,5-hexadiene 3.05 -141
1,5-pentamethylene-1h-

tetrazole
0.56 60

1,5-pentanediol -0.1 -16
1,5-pentanedithiol 2.01 -72
1,6-anhydro-beta-D-

glucopyranose
-2.18 182

1,6-diaminohexane 0.27 41
1,6-dibromo-2-

hydroxynaphthalene-3-
carboxylic

acid

4.42 251

1,6-dibromohexane 4.16 -2
1,6-dichlorohexane 3.6 -13
1,6-dicyanohexane 0.75 -3

1,6-dihydroxynaphthalene 1.99 138
1,6-diisocyanatohexane 1.88 -67

1,6-dimethoxynaphthalene 3.21 58.5
1,6-diphenoxy-2,4-

hexadiyne
4.46 81.5

1,6-hexanediol 0.59 41.5
1,6-hexanedithiol 2.53 -21
1,7-diaminoheptane 0.79 28

1,7-dihydroxynaphthalene 2 182
1,7-heptanediol 1.16 17.5

1,7-phenanthroline 2.04 79
1,8,9-trihydroxyanthracene 2.73 179

1,8-
bis(dimethylamino)naphthalene

3.85 49

1,8-cineole 3.36 1
1,8-diaminonaphthalene 1.22 63
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1,8-diaminooctane 1.29 52
1,8-

diazabicyclo(5.4.0)undec-7-
ene

1.6 -70

1,8-dibenzyl-1,4,8,11-
tetraazacyclotetradecane

2.28 67.5

1,8-dibromooctane 5.18 15.5
1,8-dichloroanthraquinone 4.14 202

1,8-dichlorooctane 4.63 -8
1,8-naphthalic anhydride 2.42 271

1,8-naphthalimide 2.06 301
1,8-nonadiyne 3.09 -21
1,8-octanediol 1.63 59.5

1,9-diaminononane 1.76 38
1,9-diphenyl-1,3,6,8-
nonatetraen-5-one

5.52 142

1,9-nonanediol 2.11 46.5
1-(3,5-

bis(tri�uoromethyl)phenyl)ethanol
3.1 72

1-(3,5-
bis(tri�uoromethyl)phenyl)pyrrole

4.1 42

10,11-
dihydrocarbamazepine

2.36 205

10,12-docosadiynedioic acid 5.37 111
10,12-pentacosadiynoic acid 8.19 63.5
10,12-tricosadiynoic acid 7.64 57

10-
hydroxybenzo(h)quinoline

3.16 104

10-methylphenothiazine 4.13 101.5
10-phenyl-1-decanol 5.82 36
10-undecen-1-ol 4.58 -3

10-undecenoic acid 3.84 23.5
10-undecynoic acid 3.13 41.5
11-heneicosanol 9.06 72

12-aminododecanoic acid 0.25 186
12-hydroxystearic acid 6.61 74.5

12-tricosanone 9.5 67
14-heptacosanone 10.22 77.5

15-hydroxypentadecanoic
acid

5.2 86

16-hydroxyhexadecanoic
acid

5.77 99

18-crown-6 -0.39 39
18-pentatriacontanone 10.95 86.5
1-acetamidoadamantane 2.61 147.5
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1-acetyl-2-naphthol 2.91 65
1-acetyl-3-

thiosemicarbazide
-1.22 166.5

1-acetyl-4-(4-
hydroxyphenyl)piperazine

1.17 182.5

1-acetyl-5-bromo-7-
nitroindoline

2.34 197

1-acetyl-5-bromoindoline 2.13 119.5
1-acetyl-5-nitroindoline 1.31 176.5

1-acetylimidazole -0.33 101
1-acetylisatin 0.72 142

1-acetylnaphthalene 2.97 10
1-acetylpiperazine -1.03 32
1-acetylpiperidine-4-

carbonyl
chloride

0.72 132

1-acetylpiperidine-4-
carboxylic

acid

-0.3 182

1-acetylpyrene 4.99 87.5
1-adamantaneacetic acid 2.77 137
1-adamantaneethanol 3.34 74
1-adamantanemethanol 2.7 116.5

1-amino-2,4-
dibromoanthraquinone

3.74 227

1-amino-4-
hydroxyanthraquinone

2.97 208

1-amino-5-
chloroanthraquinone

4 207

1-aminoanthraquinone 3.21 253.5
1-aminoindane 1.5 2
1-aminopyrene 4.26 117.5
1-aza-18-crown-6 -0.76 47.5

1-benzhydrylpiperazine 2.53 91.5
1-benzoyl-4-piperidone 1.03 54.5
1-benzoylnaphthalene 4.4 75.5
1-benzoylpiperidine 2.18 49

1-benzyl-1,2,3-triazole-4,5-
dicarboxylic

acid

0.16 180

1-benzyl-1,4,7,10-
tetraazacyclododecane

0.09 85

1-benzyl-3-hydroxy-1h-
indazole

3.35 165

1-benzyl-4-boc-piperazine 2.92 72
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1-benzyl-4-cyano-4-
hydroxypiperidine

1.18 97

1-benzyl-4-
hydroxypiperidine

1.45 62

1-benzyl-5-phenylbarbituric
acid

1.97 164

1-benzylimidazole 1.58 70.5
1-benzyloxy-3-iodobenzene 4.48 50.5

1-benzyloxy-4-
bromobenzene

4.53 62

1-benzyloxy-4-iodobenzene 4.49 62
1-benzyloxycarbonyl-4-

piperidone
1.12 39.5

1-boc-2-
(hydroxydimethylsilyl)pyrrole

2.7 55

1-boc-2-piperidone 1.79 35.5
1-boc-3-azetidinone 0.75 50.5

1-boc-3-cyanoazetidine 1.24 69.5
1-boc-3-hydroxyazetidine 0.69 40
1-boc-3-hydroxypiperidine 1.51 68
1-boc-3-oxopiperazine 0.48 158
1-boc-3-piperidone 1.19 38

1-boc-3-pyrrolidinone 0.83 36
1-boc-4-cyanopiperidine 1.94 46.5
1-boc-4-hydroxypiperidine 1.45 63
1-boc-4-piperidinemethanol 1.83 80

1-boc-4-piperidone 1.08 74
1-boc-6-amino-1h-indazole 2.33 171.5

1-boc-azetidine-3-
carboxylic

acid

1.11 101.5

1-boc-imidazole 1.58 46
1-boc-indoline 3.01 47

1-boc-isonipecotic acid 1.66 150
1-boc-nipecotic acid ethyl

ester
2.13 33

1-boc-piperazine 0.58 46
1-boc-pyrrole-2-
carboxaldehyde

2.23 50.5

1-bromo-2,3,5,6-
tetramethylbenzene

4.55 60

1-bromo-2,3,5-
trichlorobenzene

4.68 59

1-bromo-2,3-
dichlorobenzene

4.21 58
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1-bromo-2,4,5-
tri�uorobenzene

2.99 -19

1-bromo-2,4-
dichlorobenzene

4.2 26.5

1-bromo-2,4-
di�uorobenzene

2.98 -4

1-bromo-2,4-
dimethoxybenzene

2.94 25

1-bromo-2,4-dinitrobenzene 2.32 71.5
1-bromo-2,5-di�uoro-4-

nitrobenzene
2.51 56

1-bromo-2-chloro-4-
nitrobenzene

3.26 60.5

1-bromo-2-chlorobenzene 3.61 -13
1-bromo-2-chloroethane 1.65 -18
1-bromo-2-ethylbenzene 4.04 -68
1-bromo-2-�uoro-4-

iodobenzene
3.46 36

1-bromo-2-�uorobenzene 2.91 -8
1-bromo-2-hexadecanone 7.41 56
1-bromo-2-iodobenzene 3.7 9.5

1-bromo-2-
methoxynaphthalene

4.21 79.5

1-bromo-2-methylpropane 2.57 -118
1-bromo-2-naphthol 3.64 78.5

1-bromo-2-nitrobenzene 2.59 42
1-bromo-3,3-

diphenylpropane
5.32 40.5

1-bromo-3,5-
bis(tri�uoromethyl)benzene

4.18 -16

1-bromo-3,5-
dichlorobenzene

4.22 75

1-bromo-3,5-
di�uorobenzene

3 -27

1-bromo-3,5-di-tert-
butylbenzene

6.95 64

1-bromo-3-chlorobenzene 3.59 -22
1-bromo-3-chloropropane 2.12 -59
1-bromo-3-�uorobenzene 3.02 -8
1-bromo-3-iodobenzene 3.69 -9
1-bromo-3-methylbutane 3 -112

1-bromo-3-phenoxypropane 3.12 9.5
1-bromo-4-chloro-2-

nitrobenzene
3.2 70

1-bromo-4-chlorobenzene 3.63 65
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1-bromo-4-�uoro-2-
nitrobenzene

2.59 38

1-bromo-4-�uorobenzene 2.98 -16
1-bromo-4-

�uoronaphthalene
4.24 35

1-bromo-4-iodobenzene 3.69 91
1-bromo-4-

isopropylbenzene
4.24 -12

1-bromo-4-nitrobenzene 2.66 125.5
1-bromo-4-tert-
butylbenzene

4.94 15.5

1-bromoadamantane 4.7 119
1-bromobutane 2.73 -112
1-bromodecane 5.92 -30
1-bromododecane 6.8 -10
1-bromoheptane 4.4 -58

1-bromohexadecane 7.61 17
1-bromohexane 3.88 -85

1-bromonaphthalene 3.99 -1
1-bromooctadecane 8.22 27.5
1-bromooctane 4.91 -55

1-bromopentadecane 7.36 18.5
1-bromopentane 3.27 -95

1-bromoper�uorooctane 4.74 6
1-bromopropane 2.18 -110
1-bromopyrene 6.04 94.5

1-bromotetradecane 7.31 5
1-bromoundecane 6.45 -9

1-butanesulfonyl chloride 1.43 -29
1-butanethiol 2.51 -116
1-butanol 0.84 -89.5

1-chloro-2,4-
bis(tri�uoromethyl)benzene

4.31 -59

1-chloro-2,4-di�uoro-3-
nitrobenzene

2.44 47

1-chloro-2,4-
di�uorobenzene

2.93 -26

1-chloro-2,4-dinitrobenzene 2.29 50
1-chloro-2-�uorobenzene 2.81 -43
1-chloro-2-iodobenzene 3.63 1

1-chloro-2-methylpropane 2.29 -131
1-chloro-2-nitrobenzene 2.48 32.5

1-chloro-3,4-dinitrobenzene 2.24 22.5
1-chloro-3,5-

dibromobenzene
4.36 92.5
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1-chloro-3,5-
dimethoxybenzene

2.75 34

1-chloro-3-methylbutane 2.81 -104
1-chloro-3-nitrobenzene 2.49 45
1-chloro-4-�uoro-2-

nitrobenzene
2.52 38

1-chloro-4-�uorobenzene 2.85 -22
1-chloro-4-iodobenzene 3.66 54.5
1-chloro-4-nitrobenzene 2.56 84

1-chloroacetyl-3-
pyrazolidinone

-1.1 145.5

1-chloroadamantane 4.35 165
1-chloroanthraquinone 3.53 160

1-chlorobutane 2.37 -123
1-chloroethyl chloroformate 1.4 -65

1-chlorohexadecane 8.81 9
1-chlorohexane 3.63 -94

1-chloroisoquinoline 2.73 34
1-chloronaphthalene 3.95 -8

1-chlorooctane 4.82 -58
1-chloropentane 3.12 -99

1-chlorophthalazin-4-one 0.53 272
1-chlorophthalazine 1.65 110.5

1-cyano-1-
cyclopropanecarboxylic

acid

0.04 146

1-cyanoacetyl-3,5-dimethyl-
1h-pyrazole

1.01 120

1-cyanomethylpiperidine 1 25
1-cyclohexene-1-acetic acid 1.85 33
1-cyclohexene-1-carboxylic

acid
1.65 32

1-cyclohexyl-2-
pyrrolidinone

1.86 12.5

1-cyclopentene-1-carboxylic
acid

1.09 119

1-cyclopentyl-2,2-dimethyl-
1-propanol

3.15 49

1-decanesulfonyl chloride 4.45 32
1-decanethiol 6.24 -26
1-decanol 4.24 6
1-decene 5.63 -66
1-decyne 5 -44

1-di�uoromethoxy-4-
nitrobenzene

2.13 34
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1-dimethylamino-2-
nitroethylene

-0.48 103

1-dimethylamino-2-
propanol

-0.06 -85

1-dodecanesulfonyl chloride 5.4 40.5
1-dodecanethiol 7.13 -7
1-dodecanol 5.36 25.5
1-dodecene 6.53 -37
1-dodecyne 6.03 -19
1-eicosanol 8.9 64

1-ethoxy-2-propanol 0.14 -100
1-ethyl-2-phenylindole 5.28 85.5
1-ethyl-3-methyl-1h-
pyrazole-5-carboxylic

acid

0.66 138.5

1-ethyl-4-((4-
methoxyphenyl)ethynyl)benzene

4.99 35

1-ethyl-4-((4-n-
hexylphenyl)ethynyl)benzene

7.14 10

1-ethyl-4-((4-n-
propylphenyl)ethynyl)benzene

5.89 50

1-ethyl-4-((p-
tolyl)ethynyl)benzene

5.14 72.5

1-ethyl-4-iodobenzene 3.93 -17
1-ethylpiperazine-2,3-dione -0.87 110

1-ethylpiperidine 2.11 -20
1-ethynylcyclohexanol 1.09 31.5
1-ethynylcyclopentanol 1.05 25

1-ethynylpyrene 5.13 114
1-�uoro-2,4-dinitrobenzene 1.66 27
1-�uoro-2-iodobenzene 2.8 -41.5
1-�uoro-2-nitrobenzene 1.84 -8
1-�uoro-3,5-dimethyl-2-

nitrobenzene
2.51 55.5

1-�uoro-3-iodo-5-
nitrobenzene

2.71 77.75

1-�uoro-3-iodobenzene 2.88 -42
1-�uoro-3-nitrobenzene 1.88 2
1-�uoro-4-iodobenzene 2.93 -20
1-�uoro-4-nitrobenzene 1.97 23
1-�uoronaphthalene 3.37 -10
1-formylpiperidine 0.21 -31
1h-1,2,3-triazole -0.73 24

1h-1,2,4-triazole-1-acetic
acid

-1.25 203

Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

1h-benzotriazole 1.19 97.5
1-heptadecanol 7.82 53.5
1-heptanethiol 4.28 -43
1-heptanol 2.53 -34
1-heptene 4 -119

1-heptylamine 2.57 -23
1-heptyne 3.26 -81

1-hexadecanesulfonyl
chloride

7.18 57

1-hexadecanethiol 8.44 21
1-hexadecanol 7.17 49
1-hexadecene 8.11 4
1-hexadecyne 7.47 14.5
1-hexanethiol 3.65 -81
1-hexanol 2.03 -52
1-hexene 3.38 -140

1-hexylamine 1.98 -19
1-hexyne 2.63 -132
1h-indazole 1.61 147.5
1h-indene 3.04 -2
1h-pyrazole 0.03 68

1h-pyrazole-4-carboxylic
acid

-0.25 282

1-hydroxycyclohexyl phenyl
ketone

2.04 47.5

1-hydroxyisoquinoline 2.02 213.5
1-hydroxymethyl-5,5-
dimethylhydantoin

-0.53 105

1-indanol 1.59 52
1-indanone 1.77 40

1-iodo-2,3,4,5-
tetramethylbenzene

4.29 31

1-iodo-2,4-dinitrobenzene 2.43 88.5
1-iodo-2-methylpropane 3.3 -93
1-iodo-2-nitrobenzene 2.83 50

1-iodo-3,5-dinitrobenzene 2.46 101
1-iodo-3-nitrobenzene 2.82 36.5
1-iodo-4-nitrobenzene 2.92 174.5

1-iodobutane 3.11 -103
1-iododecane 6.03 -16
1-iodododecane 6.78 -3
1-iodoheptane 4.69 -48

1-iodohexadecane 8.25 22
1-iodohexane 4.19 -75

1-iodonaphthalene 4.06 4
Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

1-iodooctane 5.17 -46
1-iodopentane 3.64 -86
1-iodopropane 2.65 -101

1-methoxy-2-propanol -0.44 -100
1-methoxynaphthalene 3.34 5

1-methyl-1h-benzotriazole 0.99 64.5
1-methyl-1h-pyrazole-3-

carboxylic
acid

0.08 154

1-methyl-1h-pyrazole-5-
carboxylic

acid

-0.13 223.5

1-methyl-2-phenylindole 4.81 98.5
1-methyl-2-pyridone -0.06 31

1-methyl-2-pyrrolidinone -0.72 -24
1-methyl-2-quinolinone 1.27 75
1-methyl-3-n-propyl-2-

pyrazolin-5-one
0.27 115

1-methyl-3-
phenylpiperazine

0.94 58

1-methyl-3-tri�uoromethyl-
2-pyrazolin-5-one

0.7 179

1-methyl-4-(4-
piperidinyl)piperazine

0.08 54.5

1-methyl-5-nitro-1h-
indazole

1.68 160

1-methyl-6-nitro-1h-
indazole

1.41 125.5

1-methylbenzimidazole 1.55 60.5
1-methylbenzimidazole-2-

carboxaldehyde
1.4 119.5

1-
methylcyclohexanecarboxylic

acid

2.14 37.5

1-methylcyclohexanol 1.81 26
1-methylcyclopentanol 1.3 36.5
1-methylcyclopentene 2.89 -142
1-methyl�uorene 4.56 85
1-methylhydantoin -1.2 157.5
1-methylimidazole -0.18 -6

1-methylimidazole-4,5-
dicarbonitrile

-0.07 84.5

1-methylimidazole-4-
carboxylic

acid

-0.22 242

Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

1-methylimidazole-5-
carboxaldehyde

-0.68 54.5

1-methylindole-3-
carboxaldehyde

1.66 69

1-methylisatin 0.68 131
1-methylisoquinoline 2.55 10
1-methylnaphthalene 3.84 -22
1-methylpiperazine -0.92 -6
1-methylpiperidine 1.31 -50
1-methylpyrrole 1.31 -57

1-methylpyrrole-2-
carboxylic

acid

0.74 136.5

1-methylpyrrolidine 0.54 -90
1-methylsulfonyl-1h-

benzotriazole
0.48 110

1-methylsulfonyl-4-
nitrobenzene

0.62 137

1-methylthio-1-
methylamino-2-
nitroethylene

0 112.5

1-naphthaldehyde 2.96 1.5
1-

naphthaleneacethydrazide
1.71 168

1-naphthaleneboronic acid 1.88 207
1-naphthalenemethanol 2.17 60.5

1-naphthoic acid 2.79 161
1-naphthoic hydrazide 1.48 167

1-naphthol 2.79 96
1-naphthoyl chloride 3.35 17.5
1-naphthyl acetate 2.9 44.5

1-naphthyl isocyanate 2.42 4
1-naphthyl isothiocyanate 4.33 55.5
1-naphthylacetamide 2.07 177
1-naphthylacetic acid 2.97 129.5
1-naphthylacetonitrile 2.83 34

1-n-butyl-4-((4-
butylphenyl)ethynyl)benzene

7.04 41

1-n-butyl-4-((4-
ethoxyphenyl)ethynyl)benzene

5.96 54

1-n-butyl-4-((4-
methoxyphenyl)ethynyl)benzene

5.61 40

1-n-hexyl-4-((p-
tolyl)ethynyl)benzene

6.6 42

1-n-hexyltheobromine 1.8 80.5
Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

1-nitro-4-
(tri�uoromethoxy)benzene

2.76 15

1-nitro-4-n-propylbenzene 3.5 -14
1-nitronaphthalene 3.2 57
1-nitropropane 0.91 -108
1-nonanol 3.76 -7

1-nonylamine 3.69 -1
1-nonyne 4.45 -50

1-o-acetyl-2,3,5-tri-o-
benzoyl-beta-D-
ribofuranose

4.18 129

1-octadecanesulfonyl
chloride

8.31 58

1-octadecanethiol 8.98 31.5
1-octadecanol 8.27 58
1-octadecene 9.03 16

1-octanesulfonyl chloride 3.43 14
1-octanethiol 4.95 -49
1-octanol 3.21 -16
1-octen-3-ol 2.43 -49
1-octene 4.61 -102

1-octylamine 3.24 -1
1-octyne 3.86 -60

1-pentadecanol 6.6 45.5
1-pentadecene 7.7 -4
1-pentadecyne 7.16 10
1-pentanethiol 3.02 -76
1-pentanol 1.47 -79
1-pentene 2.84 -138

1-pentenylboronic acid 1.48 80
1-pentylamine 1.39 -55
1-pentyne 2.13 -106

1-phenyl-1,2,3-butanetrione
2-oxime

1.21 129

1-phenyl-1,2-ethanediol 0.46 67
1-phenyl-2-propyn-1-ol 1.25 28
1-phenyl-2-pyrrolidinone 1.05 65.5
1-phenyl-3-pyrazolidinone 0.46 121.5
1-phenyl-3-tri�uoromethyl-

2-pyrazolin-5-one
2 193

1-phenylcyclohexanol 2.97 60
1-phenylcyclohexene 4.53 -11

1-
phenylcyclopentanecarboxylic

acid

3.04 159.5

Continued on next page



212 APPENDIX J. MP1100

Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

1-
phenylcyclopropanecarboxylic

acid

2.08 87

1-phenylimidazole 1.65 13
1-phenylisatin 1.95 140.5

1-phenylpiperazine 1.54 18
1-phenylpyrrole 2.9 58.5

1-phenylsemicarbazide 0.12 172
1-piperonylpiperazine 0.42 42.5

1-propanethiol 1.72 -113
1-propanol 0.21 -127

1-propylamine 0.31 -83
1-pyrenebutyric acid 5.15 185

1-pyrenecarboxaldehyde 4.62 126.5
1-tert-butyl-2-
imidazolidinone

0.5 137

1-tetradecanethiol 7.81 6.5
1-tetradecanol 6.21 38.5
1-tetradecene 7.27 -12
1-tetralone 2.29 7

1-thio-beta-D-glucose
tetraacetate

1.67 116

1-tridecene 6.89 -23
1-

tri�uoromethylcyclopropane-
1-carboxylic

acid

1.09 88

1-trimethylsilyl-1-propyne 2.8 -69
1-tritylimidazole 4.72 222
1-undecanol 4.83 14
1-undecene 6.11 -49
1-undecyne 5.55 -25

2-(1,3-benzodioxol-5-
yl)piperazine

-0.26 122

2-(1-boc-4-piperidinyloxy)-
n,n-dimethylacetamide

1.31 58

2-(1-boc-4-piperidinyloxy)-
n-cyclopropylacetamide

1.66 86

2-(1-boc-4-piperidinyloxy)-
n-methylacetamide

1.05 95

2-(1-
cyclohexenyl)ethylamine

1.76 -55

2-(1-naphthyl)ethanol 2.66 62
2-(1-piperazinyl)aniline 0.84 115
2-(1-piperazinyl)phenol 0.78 124.5

Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

2-(1-piperazinyl)pyrimidine 0.32 33
2-(1-piperidinyl)aniline 2.76 45.5

2-(1-
piperidinyl)benzonitrile

3.06 43

2-(1-piperidinyl)phenol 3 74.5
2-(1-piperidinyl)thiazole-5-

carboxaldehyde
2.02 48.5

2-(1-pyrrolidinyl)phenol 2.23 110.5
2-(1-pyrrolyl)benzoic acid 1.86 104

2-(2,2,2-
trimethylacetamido)benzeneboronic

acid

1.59 269.5

2-(2,4,5-
trichlorophenoxy)propionic

acid

3.88 178

2-(2,4-
dichlorophenoxy)propionic

acid

3.13 114

2-(2,4-
dinitrobenzyl)pyridine

2.5 92

2-(2,6-dimethoxyphenyl)-
4,4-dimethyl-2-oxazoline

2.62 69

2-(2-aminoethoxy)ethanol -1.41 -11
2-(2-

aminophenyl)benzimidazole
2.72 214

2-(2-
carboxyvinyl)benzeneboronic

acid

1.06 171

2-(2-chloro-4-
methoxyphenyl)-3-
oxobutyronitrile

2.1 79

2-(2-
chlorophenoxy)ethylamine

1.46 39.5

2-(2-
chlorophenyl)benzimidazole

4.14 234

2-(2-ethoxyphenoxy)ethyl
bromide

3.26 42

2-(2-furyl)-1,3-
diphenylimidazolidine

4.2 130

2-(2-furyl)piperazine -0.21 86.5
2-(2-hydroxyethyl)pyridine 0.45 -8

2-(2-
hydroxyphenyl)benzothiazole

4.04 132

2-(2-methoxyphenyl)-5-
phenyl-1,3,4-oxadiazole

3.34 100

Continued on next page



214 APPENDIX J. MP1100

Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

2-(2-
methoxyphenyl)piperazine

0.35 79.5

2-(2-methyl-1,3-dioxolan-2-
yl)benzeneboronic

acid

0.82 110.5

2-(2-naphthoxy)ethanol 2.46 74
2-(2-naphthyl)piperazine 1.54 101.5
2-(2-n-butoxyethoxy)ethyl

acetate
1.42 -32

2-(2-pyridyl)benzimidazole 2.55 223
2-(2-thienyl)piperazine 0.24 83
2-(2-thienyl)pyridine 2.79 62.5

2-(3,4-
dimethoxyphenyl)ethanol

1.63 46

2-(3,4-
dimethoxyphenyl)ethylamine

0.9 11

2-(3-chloro-4-
�uorophenyl)indole

4.8 171.5

2-(3-
chlorophenoxy)propionic

acid

2.56 114.5

2-(3-pyridyl)benzimidazole 2.3 257
2-(3-thienyl)piperazine 0.24 97.5
2-(4-aminophenyl)-

1,1,1,3,3,3-hexa�uoro-2-
propanol

2.72 150

2-(4-aminophenyl)ethanol 0.32 109
2-(4-

aminophenyl)ethylamine
0.02 29.5

2-(4-
benzyloxyphenyl)ethanol

3.29 86

2-(4-biphenylyl)-2-propanol 3.89 91.5
2-(4-biphenylyl)-5-(4-tert-

butylphenyl)-1,3,4-
oxadiazole

6.16 137

2-(4-biphenylyl)ethylamine 3.23 52
2-(4-bromophenyl)-5-(1-
naphthyl)-1,3,4-oxadiazole

5.08 147.5

2-(4-bromophenyl)-5-
phenyl-1,3,4-oxadiazole

3.93 169.5

2-(4-chloro-2-
methylphenoxy)acetic acid

hydrazide

1.36 150

Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

2-(4-chloro-3-
nitrobenzoyl)benzoic

acid

3.19 199.5

2-(4-chlorobenzoyl)benzoic
acid

3.3 150

2-(4-chlorobenzyl)pyridine 3.56 8
2-(4-chlorophenoxy)ethanol 1.91 30

2-(4-
chlorophenoxy)isobutyric

acid

2.81 119.5

2-(4-
chlorophenoxy)nicotinic

acid

2.69 158

2-(4-chlorophenyl)indole 4.7 206
2-(4-chlorophenylthio)-6-

�uorobenzonitrile
4.8 69.5

2-(4-
chlorophenylthio)benzaldehyde

4.75 72.5

2-(4-
chlorophenylthio)nicotinic

acid

3.3 220

2-(4-cyanophenyl)-5-n-
pentyl-1,3-dioxane

3.89 57

2-(4-cyanophenyl)-5-n-
propyl-1,3-dioxane

3.25 57.5

2-(4-ethoxyphenyl)ethanol 2.16 42
2-(4-ethylphenyl)-5-n-
propylpyrimidine

3.98 42

2-(4-
�uorophenoxy)nicotinic

acid

2.32 183.5

2-(4-�uorophenyl)indole 4.14 188.5
2-(4-hydroxyphenyl)ethanol 0.85 90.5

2-(4-
hydroxyphenyl)propionic

acid

1.52 131

2-(4-
methoxybenzoyl)thiophene

3.3 73

2-(4-
methoxyphenyl)ethanol

1.61 28

2-(4-morpholinyl)-5-
(tri�uoromethyl)aniline

1.73 126.5

2-(4-morpholinyl)aniline 1.02 96.5
2-(4-n-hexyloxyphenyl)-5-

n-octylpyrimidine
7.35 59.5

Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

2-(4-pyridyl)benzimidazole 2.31 218.5
2-(4-tert-

butylphenyl)ethanol
3.72 33

2-(4-toluoyl)benzoic acid 2.95 138
2(5h)-furanone 0.12 3.5

2-(5-isoxazolyl)-4-
methylphenol

2.37 176

2-(5-isoxazolyl)phenol 2.07 184.5
2-(5-nitro-2-

pyridyloxy)ethanol
0.67 113

2-(8-chloro-1-
naphthylthio)acetic

acid

3.76 156

2-(allylthio)nicotinic acid 1.44 146.5
2-(aminomethyl)pyridine -0.19 -20

2-(boc-amino)-5-
cyanopyridine

2.05 172.5

2-(boc-
amino)benzeneboronic

acid

1.51 124

2-(boc-amino)pyridine 2.29 93
2-

(bromoacetyl)naphthalene
3.37 82.5

2-(bromoacetyl)thiophene 2.01 31
2-

(bromomethyl)benzonitrile
2.75 72

2-
(bromomethyl)benzothiazole

3.06 48

2-
(bromomethyl)naphthalene

4.01 53

2-(carboxymethoxy)benzoic
acid

1.03 189

2-
(carboxymethylthio)benzoic

acid

1.42 217.5

2-(diethylamino)ethanol 0.56 -70
2-(di�uoromethoxy)benzoic

acid
1.71 99

2-(dimethylamino)ethanol -0.46 -60
2-(dimethylamino)ethyl

acrylate
0.58 -60

2-(dimethylamino)ethyl
methacrylate

0.87 -30

Continued on next page
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Molecule Name Predicted log P (AlogP) Melting Point (◦C)

2-
(diphenylphosphino)benzoic

acid

4.94 177.5

2-(di-tert-butylphosphino)-
2-(n,n-

dimethylamino)biphenyl

7.4 115.5

2-(di-tert-butylphosphino)-
2-methylbiphenyl

7.76 91.5

2-
(ethoxycarbonyl)benzeneboronic

acid

0.81 131.5

2-(ethoxycarbonyl)phenyl
isocyanate

1.82 29

2-(ethylamino)ethanol -0.49 -9
2-(ethylsulfonyl)ethanol -0.64 38
2-(ethylthio)ethanol 0.61 -100

2-(ethylthio)nicotinic acid 1.51 185
2-(ethylthio)nicotinoyl

chloride
2.29 51

2-(methacryloyloxy)ethyl
3,5-diaminobenzoate

1.09 91

2-(methacryloyloxy)ethyl
3,5-dinitrobenzoate

2.3 71

2-
(methoxycarbonyl)benzeneboronic

acid

0.34 69

2-
(methoxycarbonyl)benzenesulfonamide

0.62 124

2-(methoxycarbonyl)phenyl
isocyanate

1.38 47

2-(methylamino)ethanol -1.05 -5
2-(methylamino)pyridine 1.13 14.5

2-
(methylsulfonyl)acetanilide

0.59 145

2-(methylsulfonyl)benzoic
acid

0.41 138.5

2-(methylsulfonyl)ethanol -1.65 28.5
2-

(methylsulfonyl)thiophene
0.74 47.5

2-
(methylthio)benzeneboronic

acid

1.25 160

2-
(methylthio)benzimidazole

2.47 204

2-(methylthio)benzoic acid 2.24 167
Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

2-(methylthio)benzonitrile 1.95 35.5
2-(methylthio)naphthalene 4.02 62.5
2-(methylthio)nicotinic

acid
0.83 216.5

2-(methylthio)nicotinoyl
chloride

1.66 94

2-(methylthio)oxazolo(5,4-
c)pyridine

1.33 80

2-(methylthio)pyrazine 0.99 44
2-(n-boc-methylamino)-5-
iodo-3-methylpyridine

3.21 98.5

2-(n-hexyloxy)ethanol 1.82 -42
2-

(nitromethylene)thiazolidine
-0.36 142

2-(n-
propylthio)nicotinamide

1.57 147

2-(n-propylthio)nicotinic
acid

1.96 161

2-
(phenylsulfonyl)thiophene

1.82 123

2-
(phthalimido)ethanesulfonyl

chloride

1.01 158

2-(p-
hydroxyphenylazo)benzoic

acid

3.67 206

2-(p-
toluenesulfonyl)ethanol

0.33 51.5

2-(p-tolyloxy)benzaldehyde 3.65 55
2-

(tri�uoromethoxy)benzamide
1.52 154

2-
(tri�uoromethoxy)benzeneboronic

acid

1.89 119

2-
(tri�uoromethoxy)benzenesulfonamide

2.42 188.5

2-
(tri�uoromethoxy)benzenesulfonyl

chloride

3.12 30.5

2-
(tri�uoromethoxy)benzoic

acid

2.95 79

2-
(tri�uoromethoxy)phenylacetic

acid

2.8 55

Continued on next page
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Molecule Name Predicted log P (AlogP) Melting Point (◦C)

2-
(tri�uoromethyl)acetanilide

2.26 95.5

2-
(tri�uoromethyl)acetophenone

2.55 16

2-(tri�uoromethyl)acrylic
acid

1.59 50

2-(tri�uoromethyl)aniline 2.24 -34
2-

(tri�uoromethyl)benzaldehyde
2.35 -40

2-
(tri�uoromethyl)benzamide

1.6 162.5

2-
(tri�uoromethyl)benzeneboronic

acid

1.73 109

2-
(tri�uoromethyl)benzenesulfonamide

1.94 182

2-
(tri�uoromethyl)benzenesulfonyl

chloride

2.92 23

2-(tri�uoromethyl)benzoic
acid

2.76 108.5

2-
(tri�uoromethyl)benzonitrile

2.47 17.5

2-
(tri�uoromethyl)benzophenone

3.76 59.5

2-(tri�uoromethyl)benzoyl
chloride

2.82 -22

2-(tri�uoromethyl)benzyl
alcohol

2.08 4

2-(tri�uoromethyl)benzyl
bromide

3.62 28.5

2-(tri�uoromethyl)cinnamic
acid

3.23 202

2-(tri�uoromethyl)nicotinic
acid

1.63 186

4-aminobenzoic acid 0.78 187.5
5,5-diphenylhydantoin 2.26 295.5

acetanilide 1.05 114.5
adenosine -1.21 235
antipyrine 1.01 112.5
benzamide 0.51 127
benzoic acid 1.72 122.5

chloramphenicol 1.15 150.5
�ufenamic acid 4.6 134
griseofulvin 2.71 219

Continued on next page
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Table J.1 � Continued from previous page

Molecule Name Predicted log P (AlogP) Melting Point (◦C)

hydrochlorothiazide -0.16 269
nalidixic acid 1.27 229
nicotinic acid 0.29 237.5
papaverine 4.19 146.5
perylene 6.34 278
pyrene 5.19 150

quinidine 2.82 170
salicylamide 0.74 140
salicylic acid 1.96 159
sulfacetamide 0.15 183
sulfadiazine 0.25 254.5

sulfamethazine 0.43 199.5
sulfanilamide -0.16 165.5
thymine -0.8 316.5
thymol 3.16 50.5

tolbutamide 2.04 129
triphenylene 5.77 196.5

uracil -1.28 330
Table J.1: MP-1100 dataset

Melting Point Predictions Without the log P

Descriptor

Figures J.1, J.2 and J.3 show predictions made with out the XlogP descriptor.
With the exception that the XlogP descriptors removal, the analysis is identical
to those presented in Section 5.1.3. This test does not prove or disprove the
importance of a log P descriptor in other applications, rather it assess the e�ect of
this one potentially important descriptor in this particular context. We must be
careful not to over interpret the results, and hence condemn or commend the log P
descriptors validity in other situations.
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R²c=c0.7471
Biasc=c-1.11
SDc=c41.53

RMSEc=c41.54
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Figure J.1: A prediction of melting points for the MP1100 dataset using 2D CDK
descriptors, not including log P descriptors, in our 10 fold cross validation methodology.

R²r=r0.7527
Biasr=r-0.48
SDr=r41.26

RMSEr=r41.26
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Figure J.2: A prediction of melting points for the MP1100 dataset using 2D CDK
descriptors, not including log P descriptors, in our 10 fold cross validation methodology.
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R²r=r0.695
Biasr=r-0.05
SDr=r45.64

RMSEr=r45.64
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Figure J.3: A prediction of melting points for the MP1100 dataset using 2D CDK
descriptors, not including log P descriptors, in our 10 fold cross validation methodology.

Melting Point Descriptor Importance

Descriptor only Rank

TPSA 1

Zagreb Index 2

WTPT.3 3

WTPT.4 4

Hydrogen bond donor count 5

MDEO.12 6

Wiener numbers 7

Molecular weight 8

MW (Group weights) 9

MDEN.11 10

Table J.2: Top 10 variables ranking in Random Forest scaled by mean/σ.
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Appendix K

Machine learning ∆Ssub and ∆Hsub

Here we present the inconclusive results of machine learning ∆Ssub and ∆Hsub. The
SVM, RF and PLS algorithms have been applied here over three datasets: using
theoretical chemistry, 2D CDK descriptors and a combination of the two.

∆Hsub Machine learning Predictions

CDK Descriptors SVM RF PLS

R2 0.5±0.03 0.37±0.03 0.35±0.05
RMSE 11.22±0.36 12.52±0.34 13.45±0.88

Table K.1: ∆Hsub predicted by machine learning applying CDK 2D descriptor set.

Theoretical Chemistry SVM RF PLS

R2 0.54±0.03 0.58±0.02 0.39±0.03
RMSE 10.7±0.35 10.33±0.31 12.43±0.36

Table K.2: ∆Hsub predicted by machine learning applying theoretical chemistry
descriptors set.

Combined descriptors SVM RF PLS

R2 0.56±0.03 0.59±0.02 0.35±0.07
RMSE 10.5±0.3 10.17±0.28 13.52±1.01

Table K.3: ∆Hsub predicted by machine learning applying the combination of descriptors.
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∆Ssub Machine learning Predictions

CDK Descriptors SVM RF PLS

R2 0.02±0.03 0.33±0.07 0.25±0.08
RMSE 9.39±0.29 7.7±0.32 8.07±0.47

Table K.4: ∆Ssub predicted by machine learning applying CDK 2D descriptor set.

Theoretical Chemistry SVM RF PLS

R2 0.04±0.04 0.01±0.01 0.01±0.02
RMSE 10.33±1.05 9.78±0.42 9.72±0.4

Table K.5: ∆Ssub predicted by machine learning applying theoretical chemistry descriptors
set.

Combined descriptors SVM RF PLS

R2 0.03±0.03 0.33±0.08 0.25±0.07
RMSE 9.34±0.31 7.66±0.35 8.07±0.43

Table K.6: ∆Ssub predicted by machine learning applying the combination of descriptors.



Appendix L

Scripts and Code

Listing L.1: A Bash script to automate DMACRYS

#!/bin/bash

#SBATCH -J NaMe_DMACRYS

#SBATCH -N 1

#SBATCH -n 12

#SBATCH -p exclusive

#SBATCH -t 24:00:00

source/opt/intel/composerxe/bin/compilervars.sh intel64

source /opt/intel/impi /4.0.1/ bin64/mpivars.sh

export I_MPI_FABRICS=shm:dapl

sleep 10

for writelogfile in 1;

do

###################################################################################

# Originally by David S. Palmer regenerated and adapted by James L. McDonagh

# Simple script to set up and run DMACRYS calculations

#

#

# Current working directory must contain:

# - ${mol}.fdat ... input file

# - cutoff ... dmacrys 'cutoff ' file

# - ${mol}.dsp

... file giving the numbers of three atoms defining line and plane , e.g. "C1 C2 C3"

# - fitcrys.pots ... potentials file for the Buckingham potential

# Notes - ${mol}.dsp must be created by the user

# run setup_for_dmacrys.sh

#

use the *.nnl and *.nem files created as a result to find the atoms define

# the axis

# write the atoms in the a fil $mol.dsp

#

#Leipzig ###########################################################################

# # >> cp ${mol}.fdat ${mol}.dat

#

# # >> rpluto ${mol}

#

# # >> (click "labl")

#

#

# >> write to ${mol}.dsp the atom labels of three atoms that define #

# a line and a plane. #

#

# ###################################################################################

# Usage:

# - qsub dmacrys_setup.sh | tee dmacrys_setup.jobid

#

###################################################################################
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#User -Defined Variables

dmacrysdir =/home/st-andrews/jm222/Scripts/DMACRYS_Scripts

#Directory containing scripts and templates/ directory

formchk =/opt/app/gaussian/g03/formchk

#formchk executable

neighcrys =/usr/local/bin/neighcrys.out

#neighcrys executable

dmacrys =/usr/local/bin/dmacrys.out

#dmacrys executable

gdma=/usr/local/bin/gdma

#gdma executable

fvibsetup =/home/st-andrews/jm222/Scripts/DMACRYS_Scripts/FvibSetup.pl

#Graeme Day 's perl script for setting up lattice entropy calculations

elastphon =/home/st-andrews/jm222/Scripts/DMACRYS_Scripts/elastphon.out

#Graeme Day 's perl script for calculating lattice entropies

ext=dat

#either "fdat" or "res".

g03method='METH/BAS '

#Level of QM theory for DMA. Must match names of variables in

gaussian_setup_dmacrys.py

cutoff=cutoff

#dmacrys cutoff file

mol=MOLE

#name or ID of molecule , e.g. $mol.fdat or $mol.res

#Other variables (do not edit)

home=`pwd `

##################################

#

# Step 1: Find the atom labels

#

##################################

echo "Step 1: Finding atom labels ..."

if [ ! -d neighcrys1 ]; then mkdir neighcrys1; fi

cp cutoff $mol.$ext ${mol}.dsp neighcrys1

cd neighcrys1

#########################################################################

#sed "s/DSPMOL/$mol/g" $dmacrysdir/templates/fort_template1 .22 > fort .22#

#########################################################################

sed "s/DSPMOL/$mol/g" $dmacrysdir/fort_template1 .22 > fort .22

sed -i "s/DSPEXT/$ext/g" fort .22

#Run neighcrys using non -interactive mode (commands are read from fort .22)

$neighcrys << EOF

n

EOF

# neighcrys (which prints either ${mol}.res.dmain or ${mol}.dmain , depending

on whether the input file is in .res or .fdat format)

for i in `ls *.$ext.*`; do j=`echo $i | sed 's/\.'$ext '//g'`; mv $i $j; done

#Run dmacrys

$dmacrys < $mol.dmain > $mol.dmaout

echo "Step 1: FINISHED!"

##################################

#

# Step 2: Set up axes file

#

##################################

echo "Step 2: Setting up axes file ..."

a1=`head -1 ${mol}.dsp | awk '{print $1}'`

a2=`head -1 ${mol}.dsp | awk '{print $2}'`

a3=`head -1 ${mol}.dsp | awk '{print $3}'`
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#HACK - the "-a" option causes grep to treat binary files as text. 'Tis a hack.

For some reason , bash sometimes thinks fort.XX files are binary.

l1=`grep -a -A 50 "Inequivalent" fort .21 | grep " $a1 " | head -1 | awk '{print $3}' |

sed 's/.\{10\}/&\n/g' | head -1`

l2=`grep -a -A 50 "Inequivalent" fort .21 | grep " $a2 " | head -1 | awk '{print $3}' |

sed 's/.\{10\}/&\n/g' | head -1`

l3=`grep -a -A 50 "Inequivalent" fort .21 | grep " $a3 " | head -1 | awk '{print $3}' |

sed 's/.\{10\}/&\n/g' | head -1`

echo "Input Atom Label | DMACRYS Atom Label"

echo "-------------------------------------"

echo "$a1 | $l1"

echo "$a2 | $l2"

echo "$a3 | $l3"

echo "MOLX 1" > axis

echo "X LINE $l1 $l2 1" >> axis

echo "Y PLANE $l1 $l2 1 $l3 2" >> axis

echo "ENDS" >> axis

cd $home

echo "Step 3: Finished!"

##################################

#

# Step 3: Get Coordinates

#

# ... by re -running neighcrys (with axes file) to generate .dmain file

#(which contains coordinates)

# (it is also possible to standardize the lengths of bonds to

# hydrogens in this step)

#

##################################

echo "Step 3: Getting coordinates ..."

if [ ! -d neighcrys2 ]; then mkdir neighcrys2; fi

cp neighcrys1/axis $mol.$ext cutoff neighcrys2

cd neighcrys2

sed "s/DSPMOL/$mol/g" $dmacrysdir/fort_template2 .22 > fort .22

sed -i "s/DSPEXT/$ext/g" fort .22

#Run neighcrys using non -interactive mode (commands are read from fort .22)

$neighcrys << EOF

n

EOF

#neighcrys (which prints either ${mol}.res.dmain or ${mol}.dmain , depending

on whether the input file is in .res or .fdat format !?)

for i in `ls *.$ext.*`; do j=`echo $i | sed 's/\.'$ext '//g'`; mv $i $j; done

cd $home

echo "Step 3: Finished!"

##################################

#

# Step 4: Set up Gaussian calculation

#

##################################

echo "Step 4: Setting up Gaussian calculation ..."

if [ ! -d gaussian ]; then mkdir gaussian; fi

cd gaussian

cp ../ neighcrys2/fort .21 ./
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#Extract coordinates to .geom and .xyz files

python $dmacrysdir/dmacrys_coord2gaussian.py fort .21 $mol

#Backup xyz file

mkdir XYZ

cp *.xyz XYZ/

#Create gaussian .com input file from .xyz file

#$dmacrysdir/xyz2com_jm.sh

for fname in `ls *.xyz `

do

echo %mem=4gb >> $fname.com

echo %NProcshared =12 >> $fname.com

echo "#" $g03method SP SCF='(tight)' nosymm Formcheck >> $fname.com

#Density=MP2 Formcheck=all

echo >> $fname.com

echo $fname >>$fname.com

echo >> $fname.com

echo 0 1 >> $fname.com

sed -n 3,500p $fname >> $fname.com

echo >> $fname.com

done

for i in `ls *xyz.com | sed 's/\.xyz\.com// g'`;

do

echo $i

mv $i.xyz.com $i.com

done

#Run Gaussian

#$dmacrysdir/write_jobfile.sh

echo waiting for Gaussian PID to end.

date

g03run ${mol}.com

cd $home

echo "Step 4: Finished!"

##################################

#

# Step 5: Do GDMA

#

##################################

echo "Step 5: Doing GDMA ..."

if [ ! -d gdma ]; then mkdir gdma; fi

cd gdma

sed "s/DSPMOL/$mol/g" $dmacrysdir/data_template > data

cp ../ gaussian/Test.FChk ./

echo waiting for GDMA PID to end.

gdma < data

cp $mol.old $mol.punch

python /home/st-andrews/jm222/Scripts/DMACRYS_Scripts/

dmacrys_punchlabels.py $mol.old ../ gaussian/$mol.geom

cp new.punch $mol.punch

cd $home

echo "Step 5: Finished!"

##################################

#

# Step 6: Do neighcrys

#

##################################

echo "Step 6: Doing neighcrys ..."
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if [ ! -d neighcrys3 ]; then mkdir neighcrys3; fi

cp cutoff $mol.$ext ./ neighcrys2/axis ./gdma/new.punch neighcrys3

cp ~/ Scripts/DMACRYS_Scripts/fitcrys.pots neighcrys3/

cd neighcrys3

sed "s/DSPMOL/$mol/g" $dmacrysdir/fort_template3 .22 > fort .22

sed -i "s/DSPEXT/$ext/g" fort .22

#Run neighcrys using non -interactive mode (commands are read from fort .22)

$neighcrys << EOF

n

EOF

# neighcrys (which prints either ${mol}.res.dmain or ${mol}.dmain , depending

on whether the input file is in .res or .fdat format)

for i in `ls *.$ext.*`; do j=`echo $i | sed 's/\.'$ext '//g'`; mv $i $j; done

cd $home

echo "Step 6: Finished!"

##################################

#

# Step 7: Calculate lattice energy

#

##################################

echo "Step 7: Calculating lattice energy ..."

if [ ! -d dmacrys ]; then mkdir dmacrys; fi

cd dmacrys

cp ../ neighcrys3/$mol.dmain ../ neighcrys3/fort .20 .

echo waiting for DMACRYS plut lattice minimisation PID.

#Run dmacrys

$dmacrys <$mol.dmain > $mol.dmaout

cd $home

echo "Step 7: Finished!"

##################################

#

# Step 8: Set up properties calculation

#

##################################

echo "Step 8: Setting up properties calculation ..."

if [ ! -d neighcrys_props ]; then mkdir neighcrys_props; fi

#cp ./ dmacrys /*. dmain neighcrys_props

#cp ./ dmacrys/fort .20 neighcrys_props

cd neighcrys_props

cp ../ dmacrys /*. dmain ./

cp ../ dmacrys/fort .20 ./

#Change options

$dmacrysdir/dmacrys_prop.sh

cp $mol.dmain ${mol}_min.dmain

cd $home

echo "Step 8: Finished!"

##################################

#

# Step 9: Calculate properties

#

##################################

echo "Step 9: Calculating properties ..."

if [ ! -d dmacrys_props ]; then mkdir dmacrys_props; fi

cd dmacrys_props

cp ../ neighcrys_props/${mol}_min.dmain ../ neighcrys_props/fort .20 .

sed -i 's/STAR PLUT/STAR PROP/g' ${mol}_min.dmain
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#Run dmacrys

echo waiting for DMACRYS prop lattice mimisation PID.

$dmacrys <${mol}_min.dmain > ${mol}_min.dmaout

calculate entropies from phonon modes

perl $fvibsetup < ${mol}_min.dmaout > fort .10

$elastphon

$dmacrysdir/done_dmacrys.sh

cp dmacrys.end ../

cd $home

echo "Step 9: Finished!"

##################################

#

# End

#

#################################

#Write log file

done 2>&1 | tee dmacrys_setup.log

Listing L.2: A Bash script to automate the addition of new potential parameters to the
Buckingham potential parameter �le

#!/bin/bash

# add a potential parameter one at a time. Created by James McDonagh 2011

home=`pwd `

echo enter filename to act on.

read file

echo enter the atom label of the atom type to be added.

read new_atom

v=1

while [ $v == "1" ]

do

if [ $v == "2" ]

then

echo Exiting loop

break

fi

echo do you want to add a new potential parameter to a file ? '(y/n)'

read ans

if [ $ans == "n" ]

then

v=2

echo Exiting

elif [ $ans == "y" ]

then

echo enter the atom label of the existing atom to be mixed with

read exist_atom

echo ' BUCK '$exist_atom ' '$new_atom '' >> $file

echo please enter the parameters

echo enter a

read a

echo enter b

read b

echo enter c

read c

echo ' ' $a' '$b ' '$c ' 0.00 70.00' >> $file

echo ' ENDS ' >> $file
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echo potential parameters entered for $exist_atom $new_atom

fi

done

echo all paramters added.

exit

Listing L.3: A Bash script to automatically set up CASTEP calculations from cif �les

#!/bin/bash

#################################################################################

# This Script reads in files names as csd refcodes from csd cif files and setup #

# CASTEP calculations making a directory for each csd refcode. #

# #

# Input should be a sub directory called cif containing the cif 's you wish to #

# act on. A template directory should also be set up containing a job submission #

# script and template parameter file for CASTEP (please edit the #

# Castep_templates line accordingly ). #

# #

# Output will be a directory for each cif file named castep_ <csd_refcode > #

# containing the cif file Castep cell file and Castep parameter file. #

# Script originally created in the University of St Andrews by James McDonagh #

# 2013 #

#################################################################################

for writelogfile in 1;

do

# Fixed variable

home=`pwd `

castpath =/usr/local/progs/CASTEP -5.5.2

#CASTEP installation location on the current machine

castscript =/usr/local/progs/CASTEP -5.5.2/ scripts

#CASTEP 's scripts directory in the installation

script =/home/st-andrews/jm222/Scripts

#My scripts directory

Castep_templates =/home/st -andrews/jm222/Scripts/CASTEP/templates

#My CASTEP templates directory

echo This script sets up CASTEP -5.5.2 calculations on Wardlaw. You must

have cif s of all of the molecules you wish to run , preferably in a

subdirectory of the the directory where this script is being run.

echo do you wish to continue to do this? '(y/n)'

read ans

if [ $ans == "y" ]

then

echo Continuing

else

echo Exiting

exit

fi

# Find the cif files

dir =./cif

if [ -d $dir ]

then

echo cif directory exists as a sub directory of $home

for i in `ls cif/*cif | awk 'BEGIN{FS="/"}{print $2}' | sed 's/\. cif//g'`

do

if [ -d castep_$i ]

then

cp cif/$i.cif castep_$i

cp $Castep_templates/job -castep castep_$i

sed -i 's/MOLECULE/'$i '/g' castep_$i/job -castep

else

mkdir castep_$i

cp cif/$i.cif castep_$i

cp $Castep_templates/job -castep castep_$i

sed -i 's/MOLECULE/'$i '/g' castep_$i/job -castep
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fi

done

else

echo cif directory does not exist as a sub directory of $home.

Please enter the directory location:

read cif_dir

echo $cif_dir >> file_path.tmp

sed 's(/(&\n(g' file_path.tmp

col_no=`grep -c '/' file_path.tmp `

for j in `ls $cif_dir /*cif | awk 'BEGIN{FS="/"}{print '$col_no '}' | sed 's/\.cif//g'`

do

if [ -d castep_$j ]

then

cp cif/$j.cif castep_$j

else

mkdir castep_$j

cp cif/$j.cif castep_$j

cp $Castep_templates/job -castep castep_$i

fi

done

rm file_path.tmp

fi

# Make Castep cell files

for cast_dirs in `ls -d castep_*`

do

echo $cast_dirs

cd $cast_dirs

cif2cell *.cif -p castep -o cell.cell

echo perl script returned $?

cp cell.cell cell_1

sed -i '/ENDBLOCK SPECIES_POT/ a\kpoints_mp_spacing 0.05' cell_1

sed -i '/kpoints_mp_spacing 0.05/{x;p;x;}' cell_1

sed -i '/kpoints_mp_spacing 0.05/ a\#symmetry_generate ' cell_1

sed -i '/symmetry_generate /{x;p;x;}' cell_1

######### From Previous pdb version #####################

#for line_no in `grep -n '%BLOCK kpoints_list ' cell_1 | #

sed 's/%//g;s/[a-z]//g;s/[A-Z]//g;s/://g;s/_//g'` #

#do

#

# x=$(( $line_no +2))

#

# y=$(( $line_no +1))

#

# sed -i ''$x'd;'$y'd;'$line_no 'd' cell_1 #

# done #

#########################################################

for nam in `ls *.cif | sed 's/'.'cif//g'`

do

mv cell_1 $nam.cell

echo $nam

done

cd $home

done

# Make Castep param file

echo A template parameter file '(<filename >.param)' is stored and will

be printed to the screen.

echo This should be adequate for most jobs , if you are are happy

with it allow it to be copied to all directories if not then make

the changes 1 at a time in this script by following the instructions.

echo Alternatively if you want to make a number of bigger changes
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exit the script '(ctrl c)' and change the template which can be found in

echo $Castep_templates.

echo

echo Do you wish to exit before this step? '(y/n)'

read exi

if [ $exi == "y" ]

then

echo Exiting script

exit

else

echo Continuing

fi

v=1

cp $Castep_templates/MOLECULE.param $Castep_templates/MOLECULE_1.param

while [ $v == "1" ]

do

if [ $v == "2" ]

then

echo Exiting loop

break

fi

echo the template is currently as follows in : '(program note v = '$v ')'

cat $Castep_templates/MOLECULE_1.param

echo Do you want to use the template as is '(y)' or make changes '(n)'

read aw

if [ $aw == "y" ]

then

v=2

echo Continuing and copying the template file to the respective directories:

'(program note v = '$v ')'

for castep_dir in `ls -d castep_*`

do

cd $castep_dir

cp $Castep_templates/MOLECULE_1.param ./

cp $Castep_templates/MOLECULE_phonon.param ./

for mol in `ls *.cif | sed 's/'.'cif//g'`

do

mv MOLECULE_1.param $mol.param

sed -i 's/MOLECULE/'$mol '/g' $mol.param

mv MOLECULE_phonon.param $mol '_phonon '.param

sed -i 's/MOLECULE/'$mol '/g' $mol '_phonon '.param

done

cd $home

done

else

echo Do you wish to substitute '(s)' or delete '(d)' lines in the template ?

'(lines that are hashed are comments and do not need deleting)'

read a

if [ $a == "s" ]

then

echo Enter the text you would like to be replaced

'(i.e. the text that is currently in the template you want to replace)'

read from

echo Enter the text you like to replace the old text

'(i.e. the text that want in the finalised Castep file)'

read too

sed -i "s/$from/$too/g" $Castep_templates/MOLECULE_1.param

cp $Castep_templates/MOLECULE_1.param $Castep_templates/

MOLECULE_altered.param

elif [ $a == "d" ]

then

echo Enter the text line you would like to be removed

read rem

sed -i "/$rem/d" $Castep_templates/MOLECULE_1.param

cp $Castep_templates/MOLECULE_1.param

$Castep_templates/MOLECULE_altered.param

fi

fi
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done

echo Done !

echo All cif files in the specified cif directory have a directory made

called Castep_CSD_code the cif files have been copied to the directory

and converted to cell file and a parameters file has been created

according to the specification entered. A job -castep file has also

been place in all directories and is ready to run each molecules

specified calculation.

done 2>&1 | tee Castep.log

exit

Listing L.4: An R script to run a neural network.

run_nn <- function(input , path){

###############################

##### Libraries

###############################

library(neuralnet)

library(caret)

library(dismo)

library(kernlab)

library(lattice)

library(plyr)

library(pROC)

library(randomForest)

library(raster)

library(reshape)

library(rJava)

library(sp)

Debug <- F

#######################################

##### Resolve the path

#######################################

setwd(path)

message("Working directory: ", path)

# INPUT DATA SHOULD BE A .csv FILE

#######################################

##### Scale Data - Auto Scale

#######################################

data <- input

columnWithRowNames <- row.names(data)# unique row names column (molecule -name column)

# Scale the data Note all data is scaled by the same values

message("Scaling the input data to have a standard mean

and standard deviation - Auto scaling ")

all_scaled_data <- scale(data[-c(15)])

# Define a training and test set from the scaled data 75 training 25 test

scaled_training_data <- all_scaled_data [1:75, ]

scaled_test_data <- all_scaled_data [76:100 , ]

# Prepare the training data

Train <- scaled_training_data[, -(ncol(data ))] # Removes the last column i.e.

# the experimental values

Test <- scaled_test_data

# If Debug is T (true) tyou can check the data

if(Debug == T) message("Raw Data: ", input_1)

if(Debug == T) message("scaled Data", x)

#######################################

##### Begin Neural Network Training

#######################################
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#Train the neural network

#Going to have 10 hidden layers

#Threshold is a numeric value specifying the threshold for the partial

#derivatives of the error function as stopping criteria.

nn <- neuralnet(logS~ALogP+ALogp2+AMR+XLogP

+WTPT_3+VCH_7+ATSc2+SP_6+ATSc1+SP_5+SP_7

+ATSm4+ATSm1 ,scaled_training_data ,

hidden =(20), threshold =0.01 , rep=10,

algorithm="rprop+")

print(nn)

#Plot the neural network

plot(nn)

######################################

##### Test the Neural Network

######################################

#Test the neural network on some training data

#testdata <- as.data.frame ((1:10)^2) #Generate some squared numbers

net.results <- compute(nn,scaled_test_data[, 2:14]) #Run them through the neural network

#Lets see what properties net.sqrt has

#ls(net.results)

#Lets see the results

print(net.results$net.result)

#Lets display a better version of the results

#cleanoutput <- cbind(testdata ,sqrt(testdata),

# as.data.frame(net.results$net.result ))

#colnames(cleanoutput) <- c("Input","Expected Output","Neural Net Output ")

#print(cleanoutput)

}
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