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Abstract  Rats, birds or fish trained to find a reward in one corner of a small enclosure, tend to 20 

learn the location of the reward using both nearby visual features and the geometric relationships 21 

of corners and walls.  Because these studies are conducted under laboratory and thereby 22 

unnatural conditions, we sought to determine whether wild, free-living rufous hummingbirds 23 

(Selasphorus rufus) learning a single reward location within a rectangular array of flowers would 24 

similarly employ both nearby visual landmarks and the geometric relationships of the array.  25 

Once subjects had learned the location of the reward we used test probes in which one or two 26 

experimental landmarks were moved or removed in order to reveal how the birds remembered 27 

the reward location.  The hummingbirds showed no evidence that they used the geometry of the 28 

rectangular array of flowers to remember the reward.  Rather, they used our experimental 29 

landmarks, and possibly nearby, natural landmarks, to orient and navigate to the reward.  We 30 

believe this to be the first test of the use of rectangular geometry by wild animals and we 31 

recommend further studies be conducted in ecologically relevant conditions in order to help 32 

determine how and when animals form complex geometric representations of their local 33 

environments. 34 
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Introduction 40 

Orientation and navigation by vertebrates are often considered in the context of long distance 41 

migrations (Guilford et al. 2011, Fuxjager et al. 2011). However, orientation and navigation are 42 

common phenomena in animals’  everyday  lives  as  they defend territories, forage in their home 43 

ranges, return to nests or burrows, etc.  In many ways this latter expression of orientation and 44 

navigation is more tractable and amenable to experimental manipulation than is the former and 45 

numerous studies employing rats or pigeons have revealed the use of cues such as global 46 

landmarks, local features and geometry of an enclosure for orientation.  For example, Cheng 47 

(1986) demonstrated that rats learned the food-rewarded corner of a small arena by encoding 48 

both local visual features and the geometry of the arena. 49 

 Geometry  in  this  context  has  a  specific  meaning.    In  Cheng’s  (1986)  study,  the  rats  50 

remembered not just the location of food relative to one or more features of the arena.  51 

Significantly, they encoded and recalled aspexts of the arena relative to each other; this is 52 

considered a geometric representation of their environment.  Specifically, the rewarded corner in 53 

the arena had a short wall on one side and a longer wall on the other.  When tested, the rats 54 

demonstrated memory for this configuration by selecting the rotationally similar (diagonally 55 

opposite) corner as often as they selected the correct corner. 56 

 Subsequent  to  Cheng’s  (1986)  first  reporting  the  use  of  arena  geometry  by  rats, there 57 

have been numerous studies investigating the extent to which animals use geometry vs. visual 58 

cues when they learn and remember a reward location (recent reviews: Tommasi et al 2012, 59 

Cheng et al. 2013).  For example, Kelly and Spetch (2001) tested pigeons (Columba liva) in a 60 

small rectangular room with identical visual features in each corner.  With only the geometric 61 

relationships between long and short walls available to indicate the rewarded corner, pigeons did 62 
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indeed use the relative lengths of walls to find the reward.  When mountain chickadees (Poecile 63 

gambeli) were tested in a similar rectangular arena with one wall painted blue (visual cue), birds 64 

trained with the reward close to the cue learned the cue and birds trained with the reward far 65 

from the visual cue learned arena geometry (Gray et al. 2005).  In a follow-up experiment, wild-66 

caught and hand-reared black-capped chickadees (Poecile atricapillus) tended to use geometry 67 

whereas wild-caught mountain chickadees tended to use the blue-wall cue (Batty et al. 2009).  68 

Kelly (2010), recognizing that geometry may be particularly salient when available only as the 69 

walls of a room, presented a rectangular array of four objects  to  Clark’s  nutcrackers (Nucifraga 70 

columbiana) in an arena with no reliable global landmarks.  The birds learned the geometric 71 

relationships of the rectangular array only when a distinctive visual feature marked each object.  72 

Although these laboratory studies are carefully controlled and provide valuable insights 73 

into the orientation capabilities of animals, they are also highly artificial and lack ecological 74 

relevance.  One solution to this concern has been to use more naturalistic tasks such as caching 75 

and recovery of food items by birds flying freely in an aviary (corvids: Kamil et al. 1999, parids: 76 

Krebs et al. 1990), or foraging by bees in large enclosures (Ohashi et al. 2007).  Increasing 77 

ecological relevance involves animals in the wild, such as ants (Collett 2012) or ground squirrels 78 

(Vlasak 2006).  One particularly tractable system is that of free-living territorial rufous 79 

hummingbirds (Selasphorus rufus), which forage at both natural and experimental flowers 80 

(Healy and Hurly 2013; Waser and McRobert 1992).  Experimental incorporation of foraging 81 

behaviours, interspersed with activities such as territorial defense, courtship and predator 82 

avoidance, provides a realistic and ecologically relevant context for studies of orientation and 83 

navigation. 84 
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 Several studies of hummingbirds, rufous hummingbirds in particular, have demonstrated 85 

that they distinguish a rewarded flower from other nearby flowers primarily in terms of spatial 86 

location rather than the visual features of each flower (Hurly and Healy 2002, Miller et al. 1985).  87 

Spatial locations seem to be remembered relative to nearby objects (Healy and Hurly 1998, 88 

Hurly et al. 2010), a process that must, by definition, employ aspects of geometric 89 

representation. However, the identity and use of such natural landmarks remains elusive.  One 90 

solution to this problem is to provide artificial flowers and conspicuous landmarks that can be 91 

systematically manipulated in order to assess how objects are combined and encoded to represent 92 

relevant information about the environment. 93 

 Here we ask how wild, free-living hummingbirds presented with a four-flower 94 

rectangular array employ nearby visual cues and array geometry, and whether their use of these 95 

cues parallels the results from laboratory experiments conducted on a similar spatial scale.  After 96 

the birds learned the location of the rewarded flower, we manipulated conspicuous nearby 97 

landmarks to determine whether the birds had incorporated these landmarks into their memory 98 

for the reward and whether they had also learned the geometry of the array.  The strongest 99 

evidence for geometry would be if, in a test, the birds were to choose frequently the flower 100 

diagonally opposite to the rewarded flower. 101 

 102 

Materials and Methods 103 

The study was performed during June and July, 2007 – 2009 at the University of Lethbridge 104 

Westcastle Research Station (49o20.9’N,  114o24.6’W,  1400m  elevation)  in  the  front  ranges  of  105 

the Rocky Mountains in southwestern Alberta, Canada.  The subjects were male rufous 106 

hummingbirds, each defending a territory surrounding a commercial hummingbird feeder 107 
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containing 14% sucrose solution.  Individual birds were with non-toxic ink on the breast feathers.  108 

Six subjects were studied in 2007, eight in 2008 and ten in 2009. 109 

 Study sites were openings in the forest at least 200 m2 in size and vegetated with green 110 

grass, forbs and shrubs less than 40 cm in height.  Within the study sites were naturally occurring 111 

objects such as logs, rocks and soil disturbances, as well as clumps of vegetation of different 112 

shades of green.  At medium distances were trees and forest edges, with ridges, mountains and 113 

sky visible at greater distances (Fig. 1).  Experimental control of visual features on any of these 114 

scales was not possible. 115 

 116 

Experiment 1 117 

Initial Training 118 

A  subject’s  feeder  was  removed  during  training  and  testing  but  was  available  at  all  other  times.    119 

First, a subject was trained to feed on 25% sucrose from an artificial flower consisting of a vial 120 

that was taped to the top of a 62cm wooden dowel that projected visibly above the surrounding 121 

vegetation.  The flower was then moved a few metres at a time away from the original feeder 122 

location until the bird flew directly to the flower each time it came to feed. 123 

 124 

Experimental Training 125 

We presented an array of four identical flowers in a rectangular pattern.  One flower was 126 

randomly selected as the reward and this was cued by a conspicuous artificial landmark 127 

consisting of a red cube, constructed of cardboard and duct tape, atop a 62cm dowel.  The cube 128 

was positioned outside of the array at an angle of 45o to the corner of the rectangle and at a 129 

distance of 5cm from the reward flower.  Each of the remaining flowers was filled with water, 130 
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which the hummingbirds find distasteful.  A subject approached the array to feed and probed 131 

flowers until he found the reward, fed to satiation and then left.  The flowers were then 132 

exchanged with each other to ensure that the bird could not learn the reward flower based upon 133 

its subtle visual features.  The flower at the reward location was filled with sucrose and the 134 

others with water.  Training occurred until the subject flew directly to the reward flower for 8 135 

consecutive feeding visits and at this point we conducted a Test Probe to assess what information 136 

the subject was employing to return to the reward flower.  In all cases a choice was defined as 137 

the bird inserting its bill into a flower.  Following the Test Probe the array was moved to a new 138 

orientation and location that did not overlap spatially with the previous array and a new series of 139 

training trials began. 140 

 141 

Test Probes 142 

During a Test Probe the array remained in the same location but the flowers were exchanged, 143 

each was filled with water and no flower was rewarded.  A probe involved manipulation of the 144 

landmark in one of three ways (Fig. 2a):  145 

1) Diagonal – The landmark was moved to the diagonally opposite corner.  A bird could use both 146 

landmark and geometric information to visit the flower now cued by the landmark. 147 

2) Removal – The landmark was removed.  A bird could use only geometric information about 148 

the long and short spacing of the flowers in the array and was expected to visit either the original 149 

location or the location diagonally opposite.  It was also possible for the bird to use natural visual 150 

cues that were not under experimental control. 151 
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3) Conflict – the landmark was shifted along the adjacent short side of the array to create a 152 

conflict between geometric information and the landmark.  The bird was expected either to 153 

follow the landmark or to go to one of the two geometrically-correct flowers. 154 

 As they were free-living, the hummingbirds were not under our direct control, hence they 155 

determined the time interval between feeding visits (presumably based on hunger).  Further, we 156 

could not physically disorient the birds as is done in laboratory tests by using a rotating turntable 157 

(e.g. Kelly 2010).  However, during the ca. 10 minutes between visits to the array birds engaged 158 

in multiple activities: vigilance, preening, territorial chases, courtship displays (see Hurly et al. 159 

2001), hawking insects. Moreover, these multiple activities caused the birds to approach the 160 

array  from  different  directions.    Thus,  the  birds’  natural  behaviours  in  the  wild  considerably  161 

reduce the possibility that they found the reward through stereotypical approach paths, thus 162 

acting in a similar fashion to experimental disorientation used in the lab (e.g. by rotation, 163 

entering arena through different doors). Further, altering the experimental landmark by changing 164 

its normal relationship with other cues in the environment may also have acted as a surrogate for 165 

disorientation  by  creating  conflicting  information.    A  subject’s  choice  during  a  Test  Probe  should  166 

reveal whether it was relying most on the experimental landmark, the geometry of the array, or 167 

other cues in the environment that were not under experimental control. 168 

 169 

Experimental Training Treatments 170 

In 2007, six subjects were trained with both Small Arrays (10x20cm) and Large Arrays 171 

(60x120cm) using a large landmark (see below) and for each array size they were tested with 172 

each Test Probe: Diagonal, Removal and Conflict.  The order of Test Probes was selected 173 

randomly from an unbiased schedule.  In 2008, eight subjects were trained under four conditions 174 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  9 

in which array size (Small vs. Large as above) was crossed with landmark size (Small: 5cm per 175 

side vs. Large: 10cm per side).  The order of Test Probes was randomized as above. 176 

 177 

Experiment 2 178 

In 2009, we studied 10 territorial male rufous hummingbirds from the same population as 179 

Experiment 1.   All training methods were the same, including the learning criterion of 8 first 180 

visits to the reward flower prior to Tests.  The rectangular array was 50x100cm and the single 181 

reward flower was cued by two red cubes (10cm per side), one at 5cm (Near) and one at 100cm 182 

(Far) (Fig. 3a).   183 

 184 

Test Probes 185 

The Test Probes were: Remove Near, Remove Far, Remove Both, Conflict Near and Conflict Far 186 

(Fig. 3b).  As with Experiment 1, each subject received each Test Probe only once, with the 187 

order of presentations selected randomly from an unbiased schedule. 188 

 189 

Analyses 190 

We analysed the choices birds made during Test Probes using G-tests  (with  William’s  correction  191 

Gadj), either comparing observed choices with the expectation of chance performance across the 192 

four flowers, or comparing choices between training treatments or Test Probes.  When the 193 

sample size was smaller than 20 the expectation for any cell is less than the critical value of 5.  In 194 

these cases we also employed randomization tests (Rp with 10,000 permutations) to determine 195 

the probability of occurrence of the observed and more extreme results, as recommended by 196 

Sokal and Rohlf (1995).  We report the results of both Gadj and Rp.  In every case the two tests 197 
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were in agreement relative to the assessment of statistical significance (alpha = 0.05).  We report 198 

data as mean ± SE. 199 

 200 

Results  201 

Experiment 1 202 

Training 203 

The birds achieved the criterion of eight consecutive visits to the rewarded flower within 10.8 ± 204 

0.4 trials.  Learning rate did not differ between years (2007, 11.2 ± 0.5 trials; 2008, 10.4 ± 0.5 205 

trials; t = 1.405, df = 12, p = 0.185), nor was it affected by Array Size or Landmark Size (Array: 206 

F1,5  = 1.874, p = 0.229; Landmark: F1,5 = 0.241, p = 0.883, Interaction: F1,5 = 0.678, p = 0.448).  207 

The mean inter-trial interval (9.8 ± 0.3 min) did not vary by year (F1,12 = 1.278, p = 0.280).  208 

Inter-trial intervals were not influenced by trial type (Training vs. Test), nor by Array Size or 209 

Landmark Size (all F1,7 < 0.247, all p > 0.163).  Given that we found no differences between 210 

years in task acquisition or inter-trial intervals, we felt confident in combining data from 2007 211 

and 2008 in Experiment 1. 212 

 213 

Test Probes 214 

When we combined data across the different array and landmark sizes it was evident that the 215 

three different Test Probes elicited significantly different patterns of choices (G-test of 216 

independence, Gadj = 82.48, N = 129, p < 0.001, Fig. 2b).  Furthermore, choices within each Test 217 

Probe were significantly different from chance.  In the Diagonal tests the  birds’ choices were 218 

concentrated on the flower diagonally opposite the reward and thus were consistent with the use 219 

of the landmark or geometry (Gadj = 26.40, N = 43, p < 0.001).  In the Removal tests the  birds’ 220 
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choices were mostly to the rewarded location (Gadj = 22.99, N = 43, p < 0.001), with no evidence 221 

that they used geometry.  If birds had relied upon geometry then choices should have been 222 

divided equally between the reward location and the flower diagonally opposite; instead they 223 

were biased to the reward location (Binomial test, p<0.001, N = 29, Rp = 0.003).  Even 224 

examination of choices to the three less-preferred flowers showed no preference for the flower 225 

diagonally opposite the reward (Gadj = 1.29, N = 17, p = 0.26, Rp = 0.27).  During the Conflict 226 

tests birds most frequently followed the landmark (Gadj = 54.17, N = 43, p < 0.001).  Other 227 

choices were significantly in favour of the reward location with no evidence for geometry (Gadj = 228 

9.40, N = 13, p = 0.002, Rp = 0.001).  229 

The sample sizes were insufficient to consider the effects of array size and landmark size 230 

simultaneously so we examined each separately (Fig. 2c, d).  Birds exhibited significant non-231 

random choices in 11 of the 12 Test Probe conditions. In the Diagonal and Removal tests, birds 232 

chose the original reward location most often when the array was large (Diagonal: Gadj = 12.53, 233 

N = 43, p < 0.001; Removal: Gadj = 8.31, N = 43, p < 0.001) but they did not do this in the 234 

Conflict tests (Gadj = 6.57E-02, N = 43, p = 0.80).  Landmark size had a significant effect on 235 

choices in Removal tests (Gadj = 4.52, N = 31, p = 0.033); birds returned to the reward location 236 

most often when the landmark was small.  There was no effect of landmark size in the Diagonal 237 

(Gadj = 2.52, N = 31, p = 0.11) or Conflict (Gadj = 1.48, N = 31, p = 0.22) tests. 238 

 239 

Experiment 2 240 

Results from Experiment 1 indicated that birds followed the experimental landmark but that they 241 

also used other cues to return to the reward location when the experimental landmark had been 242 

removed.  We introduced a second conspicuous experimental landmark in Experiment 2 as an 243 
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attempt to increase their attention to the experimental landmarks and to decrease their attention 244 

to other, natural landmarks in the environment. 245 

 246 

Training 247 

The number of trials required to reach criterion in Experiment 2 (11.8 ± 0.4) did not differ from 248 

Experiment 1 (10.8±0.4, t = 1.570, df = 22, p = 0.131).   The mean inter-trial interval was 9.8 ± 249 

1.8 minutes. 250 

  251 

Test Probes 252 

When we removed only one landmark, the birds primarily chose the reward location in both 253 

Remove Near (Gadj = 3.95, N = 10, p = 0.047, Rp = 0.019) and Remove Far (Gadj = 10.78, N = 254 

10, p < 0.001, Rp < 0.001) tests and these results did not differ from each other (Gadj = 2.83, N = 255 

20, p = 0.092; Fig. 3b).  However, removal of both landmarks seemed to disrupt orientation and 256 

choices did not differ from chance (Gadj = 2.08, N = 10, p = 0.149, Rp = 0.236).  Choices differed 257 

significantly across the three types of removal tests (Gadj = 6.73, N = 30, p = 0.009) and in no test 258 

did birds prefer to use geometry. 259 

In Near Conflict tests most of the birds followed the landmark (Gadj = 9.39, N = 10, p = 260 

0.002, Rp < 0.001).  In contrast, in the Far Conflict tests most of the birds chose the near 261 

landmark at the reward location (Gadj = 9.39, N = 10, p = 0.002, Rp < 0.001).  These choice 262 

distributions differed significantly from each other (Gadj = 7.23, N = 20, p = 0.007; Fig. 3c).  263 

Birds never chose the flower diagonally opposite the reward location and thus we found no 264 

evidence for the use of geometry. 265 

 266 
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Discussion 267 

In these experiments, wild, free-living male rufous hummingbirds learned the location of a single 268 

rewarded flower in a rectangular array of four flowers when one or two conspicuous 269 

experimental landmarks cued the reward.  To determine what information the birds used to 270 

remember the location of the reward, we manipulated the landmarks in occasional Test Probes.  271 

In  18  of  20  comparisons  the  birds’  first flower choices indicated significant patterns about where 272 

they expected the reward to be.  It is clear that the birds attended to the experimental landmarks 273 

because they often followed the landmarks when they were moved to a different location in the 274 

array (Diagonal or Conflict).  When we removed the landmarks the birds most often returned to 275 

the rewarded flower, which indicates that they also used cues from the environment over which 276 

we had no control.  There was no evidence that the hummingbirds recognized or used the 277 

geometry of the rectangular array to remember the location of the rewarded flower.  To our 278 

knowledge, this is the first test of the use of rectangular geometry by wild animals in the field 279 

and the results do not parallel those from numerous lab studies.  280 

 The Diagonal  test aligned geometric and landmark information and thus acted as a 281 

positive control demonstrating that the birds both responded to Test Probes and paid attention to 282 

the experimental landmarks.  This test cannot however, distinguish between the use of landmarks 283 

vs. geometry.  The Removal test was the condition in which we could best detect the use of 284 

geometry with the expectation of equal choices to the reward and the flower diagonally opposite 285 

the reward.  Surprisingly, the birds chose the diagonally opposite flower least frequently, soundly 286 

rejecting the exclusive use of array geometry in this task.  Finally, in the traditional test that is 287 

used to determine whether the landmark or geometry has the greater influence on learning the 288 

reward location, the Conflict test, the birds also failed to choose the flower specified by 289 
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geometric cues.  Additional cues that may have been used in conjunction with the geometry of 290 

the array are discussed below. 291 

 Given the ubiquity of positive geometry results in the laboratory for various species, it is 292 

surprising and intriguing that we found no evidence that hummingbirds recognized the geometry 293 

of the rectangular array.  To make sense of these results we must distinguish between two related 294 

but different questions, the first being whether hummingbirds can form geometric representations 295 

of our experimental flowers.  The answer to this is yes: hummingbirds most certainly can learn 296 

and recognize the geometry of an array of artificial flowers.  Healy and Hurly (1998) presented 297 

wild male rufous hummingbirds in this same population with an array of five artificial flowers 298 

arranged in a cross pattern and in which only the centre flower was rewarded.  Once a bird 299 

learned which flower contained the reward, the array was translocated one flower-spacing unit 300 

such that upon return the bird’s  flower  choice  would indicate that it thought the reward should be 301 

in the flower currently in the actual spatial location previously occupied by the reward or that the 302 

reward should be in the centre of the array (relative position).  When the arrays were composed 303 

of flowers with relatively wide spacing (80, 160, 320cm) the birds selected the flower in the 304 

absolute spatial location.  In contrast, when flower spacing was relatively small (5, 10, 20 , 305 

40cm) the birds selected the centre flower, indicating that they recognized geometric 306 

relationships between the flowers within the array.  This effect of flower spacing on the use of 307 

geometric relationships between flowers was also obtained in more complex arrays of 16 flowers 308 

(Healy and Hurly 1998).   309 

 Because wild hummingbirds can indeed recognize and use at least some aspects of the 310 

geometry of an array of flowers, a second question attains relevance: under what circumstances 311 

do wild foraging hummingbirds employ geometry?  Healy and Hurly (1998) speculated that 312 
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when presented with compact arrays, hummingbirds use non-rewarded flowers as landmarks to 313 

remember the rewarded flowers but when presented with dispersed arrays they use natural, 314 

nearby landmarks.  From the previous data it seems reasonable to infer that these natural 315 

landmarks were generally less than 80 cm from the reward.  The results of the current 316 

experiment are consistent with this inference.  First, during the Diagonal tests in Experiment 1 317 

(Fig. 2c), the hummingbirds almost ignored the reward location when the array was small 318 

(10x20cm), but not when it was large (60x120cm), differences that are consistent with the 40 vs. 319 

80 cm spacing threshold reported by Healy and Hurly (1998).  Second, when landmark size was 320 

manipulated (Fig. 2d) and birds experienced Removal tests, they returned less often to the reward 321 

location when the landmark had been large than when it had been small, suggesting differential 322 

attention between the experimental and natural landmarks.  Third, in Experiment 2 the birds were 323 

influenced more strongly by the near (5cm) than by the far (100cm) landmark (Fig. 3c).  Thus it 324 

seems reasonable to hypothesize that wild hummingbirds remember the locations of one or more 325 

rewarded flowers in relation to the locations of nearby objects (landmarks) and that these 326 

landmarks can be other nearby flowers. It is notable that removal of both landmarks in 327 

Experiment 2 seriously disrupted choices, suggesting that the two experimental landmarks 328 

together played a significant role in memory for the reward location.   329 

 Such reliance upon landmarks (natural or experimental) is consistent with the results of 330 

past studies.  Hummingbirds seem to remember rewards in terms of spatial locations (absolute or 331 

relative) rather than distinctive visual features of rewarded flowers but they will employ such 332 

visual features when spatial cues are made ineffective (Hurly and Healy 2002).  Moreover, when 333 

Hurly et al. (2010) trained hummingbirds to feed from a single conspicuous rewarded flower and 334 

after several flights to the rewarded flower it was either removed or moved approximately 1.5m, 335 
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birds returned to the original reward location.  This demonstrated that they had not used the 336 

visual features of the flower as a distant beacon but rather as a visual cue only when they were 337 

very close to its location.  It seems likely that the birds recognized the rewarded location using 338 

natural, nearby landmarks and recent evidence indicates that such learning of rewarded locations 339 

occurs with a single experience (Flores-Abreau et al. 2012). 340 

 The methods and scale of our field study paralleled the methods and scale of a host of 341 

laboratory studies testing whether animals encode the geometric properties of rectangular 342 

enclosures or arrays of objects and then later use this information to reorient and return to a goal.  343 

The hummingbirds may have encoded geometry but they showed no evidence of using it to find 344 

the goal, even when the conspicuous landmarks were removed.  Aside from following the 345 

experimental  landmark,  the  birds’  most  common  choice  was  the  flower  location  that  had  been  346 

rewarded in training, for which they must have used other spatial cues.  One possibility is that 347 

they navigated to the absolute spatial location of the goal flower by using visual landmarks in the 348 

environment that were not under experimental control.  Objects conspicuous to the human eye, 349 

such as logs, rocks, soil disturbances and shrubs are obvious candidates.  Consistent with this 350 

idea, rats tested in small rectangular enclosures generally avoided diagonal errors when they 351 

were permitted views of the surrounding environment (Margules and Gallistel 1988).  The other 352 

possibility was that the birds encoded the flowers in the array as a group and then used some sort 353 

of directional cues to represent which one of the flowers was the reward (e.g. the flower closest 354 

to a landmark, the flower farthest north).  Candidate directional cues include magnetic (Freire et 355 

al. 2005) or sun compass (Wiltschko et al. 1999), asymmetry in the panoramic view of the 356 

landscape such as a distant mountain (Wystrach et al. 2011), or even the slope of the ground 357 

(Nardi et al. 2010).  Using natural visual landmarks, in addition to our experimental landmarks, 358 
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requires the encoding of geometric properties such as sense, direction and distance.  Similarly, 359 

using directional cues requires the encoding of, at the very least, distance relationships between 360 

the array elements and a compass direction.  Thus, we can conclude only that our tests did not 361 

show that the hummingbirds placed high priority on using the geometry of the rectangular array 362 

to orient to the reward and that they used other cues instead.  We consider the use of idiothetic 363 

mechanisms in this case to be unlikely because the minimum flight distance to the array was 364 

more than 10 times the maximum length of the array (1.2m).  One final consideration is that it 365 

may require severe disorientation of the subjects to get them to reveal their use of geometry and 366 

such disorientation was not possible in this field study with free-living birds.  However, unlike 367 

laboratory experiments in which the subjects sit in a holding cage during intervals between trials 368 

and tests, the wild hummingbirds spent the 10-minute intervals engaged in vigilance, territorial 369 

chases, courtship flights, capturing insects, etc.  Thus, birds frequently approached the array from 370 

different directions between trials.  These activities are very likely to have provided some degree 371 

of disorientation or interference with learned information. 372 

Cheng’s  (1986)  original  study  demonstrating  that  rats  encoded the geometry of a small 373 

room even when a distinctive visual feature, which could act as a beacon, cued the location of 374 

the reward, has spawned a substantial assortment of laboratory studies with other species that 375 

demonstrate similar results (e.g. fish: Brown et al. 2007, Sovrano et al. 2005; chicks: Chiandetti 376 

and Vallortigara 2008; pigeons: Kelly and Spetch 2001).  These studies consistently show that 377 

the subjects can encode rectangular geometry but, unlike Cheng (1986), most indicate that when 378 

geometry and visual features are placed in conflict, features frequently play a greater role.  Here 379 

we again face the issue of what specific question we are addressing; whether we wish to know 380 
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that animals are capable of learning the geometry of small enclosures or whether we wish to 381 

know under what circumstances animals encode and rely upon geometry. 382 

 Some evidence suggests that use of visual features vs. geometry is related to proximity.  383 

In both mountain chickadees (Gray et al. 2005) and goldfish (Carassius auratus) (Vargas et al. 384 

2011), visual features dominated geometry when subjects were trained with the feature proximal 385 

to the reward but no clear dominance of either cue occurred when subjects were trained with the 386 

feature distant from the reward.  Thus, it is difficult to draw general conclusions about the overall 387 

influence of overshadowing or salience on the relative weighting of visual features and geometry 388 

because results seem specific to training conditions (Kelly et al. 1998, Brown et al. 2007). 389 

 Although most laboratory studies have examined whether animals learn the geometry of 390 

enclosures, several have examined whether they learn the geometry of a rectangular array of 391 

discrete objects.  Gibson et al. (2007) tested rats and Kelly (2010) tested Clark’s  nutcrackers.    In  392 

both studies subjects did learn about the geometry of the array, but the array was moved between 393 

each training trial to make global cues in the room ineffective.  Rats’ learning was dominated by 394 

the unique features of the objects and they learned geometry best when the objects were made 395 

identical.  In contrast, nutcrackers did not learn the location of the reward unless features were 396 

individually distinctive, and in learning the task they also acquired the geometry of the array.  As 397 

with this hummingbird study, when the reward feature was placed in conflict with the geometry 398 

of the array the nutcrackers followed the feature.  A series of experiments with chicks (ca. 3-14 399 

days of age) indicate that the geometry of enclosures is encoded much more readily than is the 400 

geometry of an array of objects (e.g. Pecchia and Vallortigara 2010).  Conversely, chicks could 401 

encode the geometry of a rectangular array of objects but only when their view of the array was 402 

carefully controlled (Pecchia and Vallortigara 2012).  This finding suggests that view-matching 403 
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is very important for young chicks and it would be interesting to determine whether it is 404 

necessary for older birds that have greater experience navigating in a complex environment. The 405 

issue is further complicated by evidence that view-matching is acquired during training whereas 406 

spontaneous reorientation in chicks employs geometric 3-dimensional properties of the enclosure 407 

(Lee et al. 2012a).  Similarly, fish may spontaneously reorient by the geometry of walls but 408 

favour landmarks following training (Lee et al. 2012b), and they did not encode the geometry of 409 

the corners of an enclosure that were emphasized as objects rather than as the intersections of 410 

walls (Lee et al. 2013). 411 

 As Kelly (2010) suggests, animals may regard the rectangular geometry of enclosures or 412 

edges differently than they regard the rectangular geometry of discrete objects (points).  413 

Certainly, animals in the laboratory frequently encode reward locations in terms of distance from 414 

a straight edge (Cheng and Sherry 1992, Gray et al. 2004).  Alternatively, there may be 415 

something special about an animal being contained within an enclosure that makes the walls and 416 

corners particularly salient and which are then incorporated into a geometrical representation of 417 

the environment. Perhaps some of the objects within a rectangular array of discrete objects can 418 

be ignored or weighted less heavily than others, whereas the restrictive nature of a small 419 

enclosure forces animals to regard walls as extremely salient (Sutton 2009). 420 

 Finally, the degree to which animals attend to rectangular geometry may relate to the 421 

degree to which the learning task is ecologically relevant or natural.  In the least natural 422 

situations, small laboratory enclosures, animals readily learn rectangular geometry but in the 423 

most natural situation, four artificial flowers in a rectangular array in the field, our hummingbirds 424 

showed no evidence of having done so.  It is interesting to note that in an intermediate situation, 425 

four  objects  in  a  large  arena,  Clark’s  nutcrackers  did  learn  about  geometry  of  an  array  but  only  426 
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when the objects were visually distinctive (Kelly 2010). Using fish, Sovrano et al. (2005) 427 

showed that subjects trained in a small tank were slightly better at geometry and tended to make 428 

errors about visual cues, whereas fish trained a large tank were more likely to make errors about 429 

geometry, supporting the idea that some aspects of containment might influence which objects 430 

are included in a cognitive spatial representation of the environment. Although containing 431 

animals in small rooms is highly artificial, the spatial scale is ecologically realistic.  Although the 432 

territories of rufous hummingbirds are on the order of 1 ha and they must orient and navigate on 433 

that spatial scale, they also experience flowers separated by only a few centimetres and 434 

experiments with artificial flowers indicate that they discriminate between flowers separated by 5 435 

cm or less (Healy and Hurly 1998; Hurly and Healy 1996).   Future research should focus on 436 

how and when animals form these complex spatial representations during their natural activities 437 

in the wild and what ontological and evolutionary conditions influence this process. 438 
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Figure Captions 550 

Fig. 1 An example of one of the study sites.  Visual cues outside of experimental control were 551 

available in the immediate area of the experimental array (see foreground), in the intermediate 552 

distance (trees and forest edge), and in the far distance (ridges and mountains). 553 

 554 

Fig. 2  Experiment 1.  a) Positions of flowers and the landmark during training. Note that the 555 

relative position of the rewarded flower was assigned randomly.  For convenience, the results are 556 

presented as if the rewarded flower was always flower number 1.  b) Choices to flowers during 557 

the Test Probes for all data combined.  c) Choices to flowers during Test Probes separated by 558 

array size.  d) Choices to flowers during Test Probes separated by landmark size.  Asterisks 559 

within an array identify significance levels for choices between flowers.  Asterisks between 560 

arrays indicate significance levels for comparisons between arrays.  ns not significant;  *  p < 561 

0.05;  ** p < 0.01;  *** p < 0.001 562 

 563 

Fig. 3  Experiment 2.  a) Positions of flowers and the two landmarks during training.  b) Choices 564 

to flowers during Test Probes in which landmarks were removed.  c) Choices to flowers during 565 

Test Probes in which landmarks were moved into conflict positions.  Asterisks within an array 566 

identify significance levels for choices between flowers. ns not significant;  *  p < 0.05;  ** p < 567 

0.01;  *** p < 0.001 568 
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