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Abstract

In this thesis I provide a survey over different approaches to second-order logic

and its interpretation, and introduce a novel approach. Of special interest are the

questions whether (a particular form of) second-order logic can count as logic in some

(further to be specified) proper sense of logic, and what epistemic status it occupies.

More specifically, second-order logic is sometimes taken to be mathematical, a mere

notational variant of some fragment of set theory. If this is the case, it might be

argued that it does not have the “epistemic innocence” which would be needed

for, e.g., foundational programmes in (the philosophy of) mathematics for which

second-order logic is sometimes used. I suggest a Deductivist conception of logic,

that characterises logical consequence by means of inference rules, and argue that

on this conception second-order logic should count as logic in the proper sense.
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Notational Conventions

For the benefit of a consistent use of the logical symbols I have tacitly changed

the symbols other authors use into the ones preferred here. Boolos’ ‘→’ and ‘↔’,

for example, are replaced by ‘⊃’ and ‘≡’, respectively. Likewise, Quine’s ‘(x)’, for

example, is replaced by ‘∀x’, and his notation using ‘.’, ‘:’, ‘.:’, etc., as both symbols

for conjunction and for scope distinctions is abandoned in favour of the nowadays

more common use of ‘∧’ (for conjunction) and the use of parentheses (for scope

distincitons).

I use single quotations marks for mentioning an expression, and double quota-

tions marks where the quoted expression is used; the latter case almost exclusively

occurs for verbatim quotations from the literature and the use of a word in a non-

literal sense or in a sense that I explicitly do not agree with. It should in all cases be

clear from the context in which of these senses I uses the double quotation marks. I

tacitly changed the quotations marks in verbatim quotations from the literature to

accord to this rule where authors followed different conventions. (Quine and Boolos,

for example, sometimes use double quotation marks for mentioning expressions.)

Where longer passages are quoted verbatim from the literature, the quotation

is separated from the main text by an extra wide margin, and quotation marks are

omitted.

Corner quotes, ‘p’ and ‘q’, are used as devices for quasi-quotation, as introduced

in (Quine, 1955), §6.
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Chapter 1

Introduction

1.1 The Project

The argument of this thesis is for the claim that second-order logic is proper logic.

This is not merely a question of handing out honorifics, more or less arbitrarily,

but a substantial claim about the nature of second-order logic, properly construed.

Proper logic plays a crucial role in codifying correct inference. While there are, of

course, various species of correct inferences, including mathematical ways of reason-

ing, the epistemic advantage of a proper logic is that the conclusion of an argument,

that is valid in the proper logical way, is ideally justified on basis of its premises.

This concept was introduced by Stephen Wagner in his (Wagner, 1987). Ideal jus-

tification is Wagner’s way of spelling out a thought contained already in Gottlob

Frege’s writings that logic is not supposed to add anything to the inference. Ev-

erything that is needed to justify a claim is already contained in the premises; only

then is an inference properly logical.

Wagner argues, however, that second-order logic does not satisfy this constraint,
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and thus cannot count as a proper logic. I will argue against this claim, and also

against other allegations against second-order logic that have been put forward.

Most commonly it is believed that second-order logic is really a mathematical theory,

very much akin to set theory. This claim goes back to W.V. Quine’s quip that

second-order logic is “set theory in sheep’s clothing”.1 The problem with this is

not that set theory is false, but that it is a strong mathematical theory, and not

logic. Set theory makes enough substantial mathematical claims that virtually all

areas of mathematics can be represented in it. Ideal justification is not in general

possible with such a system, since these substantial mathematical claims go into the

argument from premises to conclusion, and we cannot in general be sure that the

conclusion is indeed solely justified in basis of the premises, or if it partly rests on

some of these substantial mathematical presupposition.

Since mathematical truths are, presumably, necessarily true, if true at all, why

would that matter? It does not always matter. Mathematics is applicable in the

sciences, for example, and presumably does not cause any problems there. Indeed,

many think it is indispensable. There are areas, on the other hand, where no

mathematics should be presupposed. The philosophy of mathematics is one such

area, at least as construed by some research projects in this area. Hartry Field’s

nominalist programme proposed in his Science Without Numbers2, for example,

argues against the claim that mathematics is indispensable to science. His case

study is Newtonian Mechanics, for which he produces a formal system that does

not contain any mathematics. Formal systems are built on a formal logic, however,

and if the alleged logic that is used would itself really be a mathematical theory, the

1(Quine, 1970), p. 66.
2(Field, 1980).
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argument would break down. Field indeed considers the advantages a second-order

formulation of his system would have, but opts for the first-order version – with the

Quinean quip in mind.

Another research programme that should not presuppose any mathematics is

logicism. In Frege’s flawed masterpiece, the Grundgesetze der Arithmetik 3 [Basic

Laws of Arithmetic], he uses the logic he developed earlier in his Begriffsschrift 4 to

derive the axioms of arithmetic. If the logic he uses for this is inclusive of mathemat-

ics, this logicist reduction of arithmetic to this logic would not be of the epistemic

merit that Frege envisioned for it. Logic is epistemically safe; to show that arith-

metic is so too, a reduction of the axioms of arithmetic to basic logical truths and

carried out by purely logical means would suffice. The system that Frege for the

first time in the history of logic introduces in the Begriffsschrift is polyadic predicate

logic, essentially the logic that we use today, modulo Frege’s unusual and perhaps

awkward seeming notation. It is also second-order.

Alas, Frege’s “logical system” of the Grundgesetze included one additional “log-

ical law” that is not present in the Begriffsschrift: the infamous Basic Law V.

Bertrand Russell showed just before the publication of Frege’s second volume of

the Grundgesetze, that Frege’s logic was not only inclusive of mathematics, but in

fact inclusive of everything. A contradication, known as Russell’s Paradox, is deriv-

able from Basic Law V. Frege briefly attempted to fix the problem, but gave up

quite quickly. The planned third volume of the Grundgesetze, for which the logicist

foundation for real, and perhaps complex analysis was planned, never appeared.

It has more recently been observed that Frege only uses Basic Law V to derive one

3(Frege, 1893) (Frege, 1903).
4(Frege, 1879).
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other principle, that already figures in his earlier philosophical outline of his logicist

reduction, the Grundlagen der Arithmetik 5 [The Foundations of Arithmetic]: so-

called “Hume’s Principle”. Crispin Wright shows in his (Wright, 1983) that Frege’s

project can indeed be carried out, if Hume’s Principle is assumed. The Peano-

Dedekind axioms of arithmetic are derivable from it. Thus a neo-logicist research

programme of Neo-Fregeanism took wing.6 The project is sometimes also called

‘Abstractionism’; Hume’s Principle, and other principles of the same form are called

abstraction princples. These are conceived as implicit definitions that introduce on

their left-hand side of a bi-conditional a mathematical concept, like ‘natural number’

in the case of Hume’s Principle, and express on their right hand side an equivalence

relation in purely logical terms, a bijection between the extension of two predicates

in the case of Hume’s Principle. The logic that Neo-Fregeanism uses is second-order

logic, as it was for Frege. If second-order logic is indeed set theory, the project loses

almost all its interest: a reduction of arithmetic and analysis to set theory is no

news. In particular, it would not show that arithmetic inherits its epistemic status

from Hume’s Principle (which is arguably analytic). The ideal justification sought

for the axioms of arithmetic, and with them all arithmetical truths, requires that

the logic used is proper logic, and not set theory in disguise.

There are more projects in the philsophy of mathematics that also use second-

order logic. Geoffrey Hellman’s modal structuralism,7 for example, is formulated in

second-order logic with modal operators. Given the nominalist character that Hell-

man wants his approach to have, second-order logic had better not be mathematics

5(Frege, 1884).
6See (Wright, 1983), (Hale, 1987), (Hale and Wright, 2001); see also (MacBride, 2003) for an

excellent survey and critical discussion of the Neo-Fregean project.
7(Hellman, 1989).
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if the project is to have any chance to succeed. Stewart Shapiro’s structuralism is

also dependent on second-order logic.8 As we will see, however, he does not believe

that a sharp line between mathematics and logic can be drawn, and that the case

of second-order logic especially shows this. My thesis, thus, not only has to argue

against the enemies of second-order logic, but against at least some of its proponents,

too.

1.2 Outline of the Thesis

After a short introduction to the formal system of second-order logic in chapter

2, my argument for the logicality of second-order logic begins, in chapter 3, with

investigating Quine’s reasons to claim that second-order logic is set theory. It will

turn out that Quine argues from ontology. The second-order quantifiers have to have

a range, and as they are quantifying into predicate position, they have to range over

some kind of universals. The best case for second-order logic, therefore, is according

to Quine that they range over sets, as these are the only universals (he sees sets as

such) that he can accept.

In chapter 4 I discuss George Boolos’ attempt to rebut the Quinean argument by

providing a plural interpretation of the second-order quantifiers. Monadic second-

order quantifiers can be interpreted as just ranging over the first-order domain, and

thus not introducing any new ontology, if they are construed as quantifying plurally.

Boolos provides a translation of the monadic second-order existential quantifier as

‘there are some things’, analogous to the first-order quantifier, ‘there is something’.

Boolos’ claim is that this way, no new ontological commitment arises.

8(Shapiro, 1997)
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Since according to my criticism of Boolos’ attempt to justify the second-order

quantifiers in this way – and of the attempt of his followers to patch up his account

where it is found wanting – leads me to reject this way of arguing against Quine,

I analyse in chapter 5 Quine’s criterion of ontological commitment in detail. The

criterion is found deficient, even for the paradigm cases of formalised first-order

theories that are the golden standard of all scientific and philosophical enterprise

for Quine. I suggest a natural modification and precisification of Quine’s criterion

to make it indeed applicable to all first-order theories. The resulting new criterion,

however, suggests that the introduction of second-order quantifiers does not bring

about any ontological commitment that was not already contained in the first-order

theory; in particular, no new commitment to sets arises.

The deductive system of second-order logic is incomplete with respect to its

standard semantics, in the sense that there are conclusions that are declared to

follow from some premises by the standard model-theoretic semantics, that are not

deducible from them in the deductive system, and indeed not in any sound deductive

system for this semantics. This is a corollary of Gödel’s incompleteness theorem

for arithmetic. On the grounds of the lack of a complete proof procedure for the

semantical consequence relation, second-order logic is often denied the rank of a

proper logic. Surely, so the claim goes, every proper logic must be complete. I argue

in chapter 6 that there is no good reason to think so.

Chapter 7 deals with one of the main proponents of second-order logic today,

Stewart Shapiro. In his (Shapiro, 1991) he makes a case for second-order logic on the

basis of the claim that accepting second-order logic is the only way to make sense

of mathematical practice. His argument is, roughly, that mathematical practice

requires the anyway plausible claim that mathematicians can speak about specific

6



infinite structures, like the structure of the natural numbers or the structure of the

real numbers, and discern them. To do justice to this fact, Shapiro claims, one

has to consider categorical axiom systems for the mathematical theories that are

about these structures. A categorical axiom system is defined as one that has, up to

isomorphism, only one interpretation: all its models are isomorphic to each other. It

can be shown that no first-order axiomatisation of a theory over an infinite domain

can be categorical. The resources of second-order logic with its standard (but not a

Henkin) semantics allow us, however, to give categorical axiom systems of arithmetic

and real analysis, for example.

Critics of Shapiro argue that the standard model theory of second-order logic

makes strong mathematical presuppositions. While this presumably shows that

second-order logic can be no proper logic, if the model-theoretic system is identified

with second-order logic, this does not constitute an argument against Shapiro. He

rejects, precisely on these grounds the sharp distinction between logic and math-

ematics. His critics further argue that the categoricity results do not show the

determinacy that Shapiro requires for his argument, and some also suggest that

a second-order standard model-theoretic treatment hampers mathematical practice

rather than doing justice to it.

In chapter 8, finally, I introduce what I call the Deductivist Conception of Logic.

The model-theoretic approach to account for logical consequence is rejected on the

grounds that model theory is mathematical. As already argued above, however, a

proper logic must not presuppose any substantial, mathematical content since it

otherwise cannot fulfill his purpose to facilitate ideal justification. The Deductivist

proposal is to characterise logical consequence by purely deductive means. I argue

that on such a construal none of the objections against second-order logic discussed

7



up until that point apply. Moreover, it appears that on a Deductivist conception

second-order quantification is sufficiently similar to and indeed of a piece, in a sense,

with first-order quantification that the former should count as properly logical if the

latter does.

My conclusion is, as already suggested in the first sentence of this introduction,

that second-order logic is proper logic, if it is construed in a Deductivist way. The

remainder of chapter 8 discusses further objections against second-order logic that

appear to be particularly pressing for the a Deductivist approach: an apparent

inherent incompleteness of second-order logic, that is not relative to some some

model-theoretic semantics, and the impredicativity of the second-order quantifiers.

An appendix discusses Etchemendy’s arguments concerning the concept of logical

consequence. Since the negative part of his project in which he criticises the Tarskian

reductive analysis of logical consequence is not unlike mine in spirit and character,

it seemed justified to include this appendix that discusses Etchemendy’s arguments

in some detail. Moreover, despite sharply critising the “interpretational” model-

theoretic semantics, Etchemendy come to a conclusion that is diametrically opposed

to the Deductivist account. He argues for what he calls “representational semantics”

which still uses (more or less) the standard model theory. A comparison of the two

approaches concludes the thesis.

8



Chapter 2

The Formal System of

Second-Order Logic

2.1 Preliminaries

This chapter introduces the formal system of classical second-order predicate logic.

Unless stated otherwise, the presentation follows chapters 3 and 4 of (Shapiro, 1991).

Standard systems of second-order logic can also be found in (Church, 1956) or

(Mendelson, 1997).1 A tree (or tableaux) system for second-order logic is introduced

in (Jeffrey, 1967); (Bell et al., 2001) also contains such a system.

2.2 Language

The language of a standard first-order logic is presupposed; see, for example, (Mendel-

son, 1997) or (Boolos and Jeffrey, 1985). Only the material conditional ‘⊃’, negation

1Note that only the 4th edition of Mendelson’s book contains a presentation of second-order
logic.
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‘¬’, and the universal quantifier ‘∀’ are taken as primitive, the other logical constants

are defined in the usual way. The first-order existential quantifier, e.g., is defined as

∃xΦ =df ¬∀x¬Φ

where ‘Φ’ is a schematic letter standing for an arbitrary formula of the system.

For the language of second-order logic we introduce second-order variables: n-

place predicate variables, ‘Xn’, ‘Xn
1 ’, ‘Xn

2 ’, ‘Y n’, ‘Y n
1 ’, ..., that can stand in place

of n-place predicate letters, and n-place function variables, ‘fn’, ‘fn1 ,’‘fn2 ’, ..., that

can stand in the place of n-place function letters. The superscript indicates the

number n of argument places. Thus, ‘X1
4 ’ is a one-place predicate variable, ‘f 3

1 ’

is a three-place function variable. In the following the superscripts indicating the

number of argument places will usually be omitted. Counting the terms that follow

the variable will disambiguate.

The language also contains second-order universal quantifiers that are formed

by attaching the ‘∀’ to second-order variables: ‘∀X’, ‘∀f ’, etc. The second-order

existential quantifiers are defined as:

∃XΦ =df ¬∀X¬Φ

∃fΦ =df ¬∀f¬Φ

‘=’ is not taken as primitive but defined:

x = y =df ∀X(Xx ≡ Xy)

We can also define:

x 6= y =df ¬x = y

∃!xΦ(x) =df ∃x∀y(Φ(y) ≡ x = y)
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The recursive formation rules that are added to those for the language of first-order

logic are:

If ‘f ’ is an n-place function variable and p〈x〉nq is a sequence of n terms, then

pf〈x〉nq is a term.

If ‘R’ is an n-place predicate variable and p〈x〉nq is a sequence of n terms,

then pR〈x〉nq is an atomic formula.

If ‘f ’ is a function variable and Φ is a formula, then p∀f(Φ)q is a formula.

If ‘R’ is a predicate variable and Φ is a formula, then p∀R(Φ)q is a formula.

Convention: The parenthesis that inclose the formula and indicate the scope

of the quantifier can be omitted in cases where there is no scope-ambiguity.

2.3 Deductive Systems

2.3.1 Axiomatic System

Let us define a standard axiomatic system for second-order logic first.

Let Γ be a set of sentences of the language and Φ a single sentence of the language.

Define a deduction of Φ from Γ to be a finite sequence Φ1, ...,Φn such that Φn is Φ

and, for each i 6 n, Φi is an axiom (see below), or Φi follows from previous sentences

in the sequence by one of the rules of inference (see below). We can symbolise that

there is a deduction of Φ from Γ as: Γ ` Φ.

Let a proof of Φ be a deduction of Φ from the empty set. Call Φ a theorem if

there is a proof for Φ; we can also write: ` Φ.
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The following are axiom schemata. Any formula obtained by substituting for-

mulas for the schematic letters ‘Φ’, ‘Ψ’, and ‘Ξ’, is an axiom of the system.

Φ ⊃ (Ψ ⊃ Φ)

(Φ ⊃ (Ψ ⊃ Ξ)) ⊃ ((Φ ⊃ Ψ) ⊃ (Φ ⊃ Ξ))

(¬Φ ⊃ ¬Ψ) ⊃ (Ψ ⊃ Φ)

∀xΦ(x) ⊃ Φ(t)

where ‘t’ is a term free for ‘x’ in Φ

∀XnΦ(Xn) ⊃ Φ(T )

where ‘T ’ is an n-place predicate letter free for ‘Xn’ in Φ

∀fnΦ(fn) ⊃ Φ(p)

where ‘p’ is an n-place function letter free for ‘fn’ in Φ

A term ‘t’ is free for ‘x’ in Φ if no variable has an occurrence that is both free in ‘t’

and bound in pΦ(t)q; analogously for predicate and function letters.

The rules of inference of the system are:

Modus ponens:

from Φ and pΦ ⊃ Ψq infer Ψ

Generalisation:

from pΦ ⊃ Ψ(t)q infer pΦ ⊃ ∀xΨ(x)q

provided ‘t’ does not occur free in Φ or in any of the premises of the
deduction

from pΦ ⊃ Ψ(T )q infer pΦ ⊃ ∀XΨ(X)q

provided ‘T ’ does not occur free in Φ or in any of the premises of the
deduction
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from pΦ ⊃ Ψ(p)q infer pΦ ⊃ ∀fΨ(f)q

provided ‘f ’ does not occur free in Φ or in any of the premises of the
deduction

The usual axioms and rules for the other sentential connectives and the existential

quantifier, which are defined here and not taken primitive, can be derived from the

rules and axioms given above.

We add to the system an axiom schema of comprehension:

∃Xn∀〈x〉n(Xn〈x〉n ≡ Φ〈x〉n)

provided ‘Xn’ does not occur free in Φ; p〈x〉nq is a sequence of n first-order variables;

p∀〈x〉nq abbreviates a sequence of n quantifiers p∀xiq, for 1 6 i 6 n.

The comprehension schema asserts that every open sentence of the language there

a (possibly many-place) predicate with the same extension. If Φ contains no bound

second-order variables, we call the corresponding instance of the comprehension

schema predicative, and impredicative otherwise.

We also add an axiom of comprehension for functions:

∃Xn+1(∀〈x〉n∃!yXn+1〈x〉ny ⊃ ∃fn∀〈x〉nXn+1〈x〉nf〈x〉n)

Shapiro suggests to add instead of the comprehension for functions a stronger prin-

ciple, an axiom of choice. He writes:

The axiom of choice has a long and troubled history [...], but it is now

essential to most branches of mathematics. In fact, a corresponding

meta-theoretic principle is necessary for many of the theorems reported

[in (Shapiro, 1991)]. Mathematical logic also thrives on the axiom of

choice.2

2(Shapiro, 1991), p. 67.
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The axiom of choice is:

∃Xn+1(∀〈x〉n∃yXn+1〈x〉ny ⊃ ∃fn∀〈x〉nXn+1〈x〉nf〈x〉n)

Note, that it does not have the uniqueness condition attached to the first existential

quantifier that the axiom of comprehension for functions has. The antecedent of

the axiom of choice asserts that for each sequence p〈x〉nq there is at least (exactly,

for the weaker comprehension for function above) one ‘y’ such that the sequence

p〈x〉nyq satisfies pXn+1q. The consequent asserts the existence of a function that

“picks out” one such ‘y’ for each p〈x〉nq.

The axiom of choice, which is often considered problematic, cannot be discussed

here.

2.3.2 Natural Deduction

Equivalently, we can give a natural deduction system for second-order logic. (Shapiro,

1991) does not contain such a system; for a system similar to the one introduced

here, see (Prawitz, 1965).

The classical introduction- and elimination-rules for the propositional fragment

are presupposed (see for example (Prawitz, 1965)).

Observe, that function letters are dispensable. This is also the case for the

axiomatic system, of course, but as I will, for simplicity’s sake, use quantification

into function-letter-position in some of the chapters below, it seemed advisable to

introduce them into the language and axiomatic system. (n + 1)-place predicate

variables can serve as surrogates for n-place function variables, however. The clause

p∀〈x〉n∃!yF n+1〈x〉nyq indicates that pF n+1q is in effect an n-place function.

For the natural deduction system we dispense with function letters, variables
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and quantifiers. The introduction (I) and elimination (E) rules for the first- (∀1)

and second-order (∀2) universal quantifiers are:

Φ(t)

∀xΦ(x)
∀1-I

Φ(T )

∀XnΦ(Xn)
∀2-I

∀xΦ(x)

Φ(t)
∀1-E

∀XnΦ(Xn)

Φ(Ξ)
∀2-E

Φ is an open sentence matching the number of argument places of the expression it

applies to, in the case of the second-order rules possibly just one term; ‘t’ is a term

of the language.

Restrictions:

∀1-I ‘t’ does not occur free in any of the assumptions that pΦ(t)q depends on.

∀1-E ‘t’ is free for ‘x’ in Φ.

∀2-I ‘T ’ is a n-place predicate letter and does not free in any of the assumptions

that pΦ(T )q depends on.

∀2-E Ξ is an open sentence with n argument places; no variable in Ξ is bound in

Φ(Ξ) that are not already bound in Ξ.
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2.4 Semantics

2.4.1 Semantics for First-Order Logic

The model-theoretic semantics for the first-order logic fragment of second-order logic

is presupposed, and merely sketched here.

A model is an order pair M = 〈d, I〉, in which d is the domain of the model,

a non-empty set, and I is an interpretation function that assigns objects in d and

sets that are constructed from objects in d to the non-logical vocabulary of the

language. If ‘a’ is a term of the language, for example, I(‘a’) is a member of d; if

‘R’ is a two-place predicate letter, I(‘R’) is a subset of d × d (‘×’ standing for the

Cartesian product). A variable assignment s is a function from the variables of the

language to d.

For each model and variable assignment there is a denotation function that as-

signs an object in d to every term of the language. Satisfaction is defined in the

usual way as a relation that holds between models, variable assignments, and formu-

lae. Let us write ‘M, s � Φ’ for ‘M and s satisfy Φ’. If M, s � Φ for every variable

assignment s, we say that M is a model of Φ. If s and s′ are two variable assignments

that agree on all free variables of Φ, then M, s � Φ if, and only if, M, s′ � Φ. Since

if Φ is a sentences, i.e. a formula with no free variables, the variable assignment

makes no difference, we can just write M � Φ.

A formula Φ is satisfiable if, and only if, there is a model M and a variable

assignment s on M such that M, s � Φ. A set of formulae Γ is satisfiable if, and

only if, there is a model M and a variable assignment s on M such that M, s � Φ

for every Φ ∈ Γ. A formula Φ is a semantic consequence of a set of formulae Γ, if the

set that contains p¬Φq and all the sentences contained in Γ is not satisfiable. We
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can also say that Φ is a semantic consequence of Γ if, and only if, for every model

M and any variable assignment s on M , if M, s � Ψ for any Ψ ∈ Γ, then M, s � Φ.

We can also write this as ‘Γ � Φ’.

A formula Φ is valid if, and only if, M, s � Φ for all M and all s on M . We can

also write this as ‘� Φ’.

2.4.2 Standard Semantics for Second-Order Logic

We can build a standard semantics for second-order logic on this basis. A standard

model is still an ordered pair 〈d, I〉, as in first-order logic. A variable assignment

is a function that assigns a member of d to each first-order variable, a subset of

dn to every n-place predicate variable, and a function from dn to d to each n-place

function variable. (dn is d for n = 1, d × d for n = 2, d × d × d for n = 3, etc.)

The range of the one-place predicate letters is thus the powerset of the domain d;

generally the powerset of dn is the range of the n-place predicate letters.

The new clause for the denotation function which is to be added to those for

first-order logic is:

Let M = 〈d, I〉 be a model and s be a variable assignment on M . The deno-

tation of fn〈t〉n in M, s is the value of the function s(fn) at the sequence of

members of d denoted by 〈t〉n.

The relation of satisfaction is also extended from first-order logic. The three new

clauses are:

If Xn is an n-place predicate variable and 〈t〉n is a sequence of n terms, then

M, s � Xn〈t〉n if, and only if, the sequence of members of d denoted by 〈t〉n is

a member of s(Xn).
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M, s � ∀XΦ if, and only if, M, s′ � ∀XΦ for every s′ on M that agrees with s

at every variable except maximally X.

M, s � ∀fΦ if, and only if, M, s′ � ∀XΦ for every s′ on M that agrees with s

at every variable except maximally f .

The definitions of satisfiability, semantic consequence and validity remain the way

they are introduced for first-order logic.

2.4.3 Henkin Semantics

In a Henkin semantics (introduced by Leon Henkin in (Henkin, 1950)) it is not

assumed that the n-place predicate variables range of the full powerset of dn, but

a separate domain is specified for them in each model, and also for the function

variables. A Henkin model is a quadruple MH = 〈d,D, F, I〉 in which d is the

domain and I an interpretation function as above. D is a sequence of non-empty

sets D(n) that contain subsets of dn for every n, to be assigned to the n-place

predicate variables as we will see below. Likewise, F is a sequence of non-empty

sets F (n) of functions from dn to d. Intuitively, the range of the one-place predicate

variables, for example, is a fixed subset of the powerset of d for each model.

A variable assignment is a function that assigns a member of d to each first-order

variable, a member of D(n) to each n-place predicate variable, and a member of F (n)

to each n-place function variable. The remaining features of a Henkin semantics are

analogous to those of the standard semantics.

The four new clauses, to be added to the semantics of first-order logic, are:

Let MH = 〈d,D, F, I〉 be a Henkin model and s a variable assignment on MH .

The denotation of fn〈t〉n in MH , s is the value of the function s(fn) at the
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sequence of members of d denoted by 〈t〉n.

If Xn is an n-place predicate variable and 〈t〉n is a sequence of n terms, then

MH , s � Xn〈t〉n if, and only if, the sequence of members of d denoted by 〈t〉n

is a member of s(Xn).

MH , s � ∀XΦ if, and only if, MH , s′ � ∀XΦ for every s′ on MH that agrees

with s at every variable except maximally X.

MH , s � ∀fΦ if, and only if, MH , s′ � ∀XΦ for every s′ on MH that agrees

with s at every variable except maximally f .

Again, the definitions of satisfiability, semantic consequence and validity are anal-

ogous to those introduced for first-order logic, only that they are with respect to

Henkin models.

2.5 Some Meta-Theoretic Results

In this section the meta-theoretic results concerning first- and second-order logic

that will be of interest for the philosophical discussion in the following chapters are

stated. The results are discussed where they are mentioned in the later chapters.

Their proofs are omitted. For first-order logic, they can be found, for example, in

(Mendelson, 1997) or (Boolos and Jeffrey, 1985); for second-order logic, the proofs

are sketched in (Shapiro, 1991).

Let us start with the relation between standard and Henkin semantics.
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2.5.1 Standard and Henkin Semantics

A Henkin model in which all the D(n) are the full powerset of dn, and all the F (n)

the sets of all n-place functions from dn to d is obviously equivalent to a standard

model. Thus, if we restrict the range of Henkin model to such models, this restricted

Henkin semantics will be equivalent to the standard semantics. It hence follows that:

If Φ is valid according to Henkin semantics, then Φ is valid according to the

standard semantics.

If Φ is a semantic consequence of Γ according to Henkin semantics, then Φ is

a semantic consequence of Γ according to the standard semantics.

If Φ is satisfiable according to the standard semantics, then Φ is satisfiable

according to Henkin semantics.

The converse does not hold in any of the cases.

2.5.2 First-Order Logic

The soundness and completeness theorems for first-order logic are well know. They

are:

Soundness: Let Γ be a set of formulae and Φ a formula of the first-order language.

If Φ ` Γ then Φ � Γ. A fortiori, if ` Γ then � Γ.

Completeness: Let Γ be a set of formulae and Φ a formula of the first-order

language. If Φ � Γ then Φ � Γ. A fortiori, if � Γ then ` Γ.

As Shapiro notes, the soundness proof
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is straightforward. One checks each axiom and rule of inference. Vir-

tually no substantial set-theoretical assumptions are needed. [...] [T]he

completeness of first-order logic depends on a principle of infinity (in the

metalanguage). If the model-theoretic semantics had no models with

infinite domains, the completeness theorem would be false.3

Another standard meta-theoretical results is compactness:

Compactness: Let Γ be a set of formulae of the first-order language. If every finite

subset of Γ is satisfiable, then Γ is satisfiable.

It follows that if an infinite set of first-order formulae is non satisfiable, it has a

finite subset that is not satisfiable. The compactness theorem is a direct corollary

of soundness and completeness. For the remaining two standard meta-theorems we

should introduce more technical terminology. Let M = 〈d, I〉 and M ′ = 〈d′, I ′〉

be two models. We define that M ′ to be a submodel of M if, and only if, d′ is a

subset of d, I and I ′ give the same denotation to each individual constant, and the

interpretation of each predicate and function letter under I ′ is the restriction to d′ of

the corresponding interpretation under I. If the theory contains function constants,

then d′ must be closed under these functions.

Löwenheim-Skolem theorem: If M is a model of a set Γ of first-order formulae,

then M has a submodel M ′ whose domain is at most countable infinite, such

that for each assignment s on M ′ and each formula Φ in Γ: M, s � Φ if, and

only if, M ′, s � Φ.

The axiom of choice is required in the meta-theory for the proof of the Löwenheim-

Skolem theorem.
3(Shapiro, 1991), p. 79.
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Löwenheim-Skolem-Tarski theorem: Let Γ be a set of first-order formulae. If,

for each n ∈ ω, there is a model of Γ whose domain has at least n members,

then for any infinite cardinal κ, there is a model of Γ whose domain has at

least cardinality κ.

This entails that every first-order theory with a countably infinite model, e.g. Peano

Arithmetic, has an uncountable model, too. By the Löwenheim-Skolem theorem,

real analysis which has as the intended uncountable domain the real numbers, has

a countable model.

2.5.3 Second-Order Logic with Standard Semantics

One, and only one, of these results for first-order logic carry over to second-order

logic with standard semantics:

Soundess: Let Γ be a set of formulae and Φ a formula of the second-order language.

If Φ ` Γ then Φ � Γ according to the standard semantics. A fortiori, if ` Γ

then � Γ according to the standard semantics.

The proof involves the assumption that every formula in the meta-theory determines

a set, and uses the principle of separation (Aussonderung). If we add the axiom of

choice to the deductive system (as Shapiro suggests), then we need the axiom of

choice in the meta-theory, too.

As mentioned above, first-order theories with countable models also have un-

countable models, and first-order theories with uncountable models also have count-

able models. A way to paraphrase this is that first-order theories cannot determine

that their domain has a certain infinite cardinality. Second-order theories, how-

ever, can have so-called categorical axiomatic systems for infinite structures. An
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axiomatic system is categorical if, and only if, all of its models are isomorphic. The

theory of second-order arithmetic, for example, is categorical given these axioms:

∀x(sx 6= 0) (zero)

∀x∀y(sx = sy ⊃ x = y) (successor)

∀X[(X0 ∧ ∀x(Xx ⊃ Xsx) ⊃ ∀xXx] (induction)

‘0’ and ‘s’ are non-logical constants for zero and the successor function, respectively.

Addition and multiplication do not have to be mentioned in the axioms, as they

can be defined in the second-order theory. Let AR be the conjunction of the three

axioms above.

Categoricity of second-order arithmetic: Let M1 = 〈d1, I1〉 and M2 = 〈d2, I2〉

be two models of second-order arithmetic (with the axioms mentioned above).

For 1 6 i 6 2 let 0i be the interpretation of zero in di, and let si be the

interpretation of successor. If M1 � AR and M2 � AR, then M1 and M2 are

isomorphic: there is a bijection f , a one-to-one function from d1 onto d2, such

that f(01) = 02, and for each a ∈ d1, f(s1(a)) = s2(f(a)). That is, f preserves

the structure of the models.

Since the intended interpretation, the natural numbers, is countably infinite and a

model of AR, it follows from categoricity that all models of second-order arithmetic

are countably infinite. The analogous result holds for real analysis in its second-

order axiomatisation. All of its model are of the cardinality of the continuum, i.e. of

the powerset of the natural numbers.

For second-order Zermelo-Fraenkel set theory a similar, but restricted result

holds, often called quasi-categoricity. Intuitively, the quasi-categoricity of this theory

says that if two model both satisfy the its axioms, then they are either isomorphic,
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or one is isomorphic to an “initial segment” of the other. All models of second-

order Zermelo-Fraenkel set theory are isomorphic up to an inaccessible rank (the

existence of inaccessible cardinals is independent of this theory). Thus, all models,

in a sense, “agree on” the structure below the least inaccessible rank, or, as it is

sometimes glossed, any two models are isomorphic up to the least inaccessible rank.

The theory that we get from adding the claim that there are no inaccessible cardinals

to second-order Zermelo-Fraenkel set theory is categorical.

It follows immediately from categoricity that both the Löwenheim-Skolem and

Löwenheim-Skolem-Tarski theorems fail for second-order logic with standard

semantics. Also Compactness fails as is shown to follow from the categoricity of

second-order arithmetic in my chapter 7 below.

Moreover, it follows from Gödels incompleteness theorem for arithmetic that

there is no sound deductive system that is complete with respect to the standard

semantics. Thus, second-order logic with standard semantics is inherently incom-

plete. This is easy to see: Take the Gödel sentence of the second-order axiom

system of arithmetic, call it G. By Gödel’s proof, G is true in the theory, but not

provable in the deductive system. pAR ⊃ Gq, then, is not provable either in the

deductive system, but it is a validity of the standard semantics of second-order logic

as follows from the categoricity result for arithmetic. This, however, holds for any

deductive system.

2.5.4 Second-Order Logic with Henkin Semantics

Second-order logic with Henkin semantics has the same meta-logical properties as

first-order logic, and thus cannot provide categorical axiomatic systems for any the-
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ory that has an infinite domain, because of the Löwenheim-Skolem, and Löwenheim-

Skolem-Tarski theorems.

The range of Henkin models has to be restricted (in a straightforward way) in

order to be able to prove that the meta-theorems hold. Define a Henkin model to be

faithful to the deductive system of second-order logic if, and only if, it satisfies every

instance of the comprehension schema (and the axiom of choice, if this is added).

Soundness: If Γ ` Φ, then Φ is satisfied by every faithful Henkin model that

satisfies every member of Γ. A fortiori, if ` Φ, then Φ is satisfied by every

faithful Henkin model.

Completeness: Let Γ be a set of formulae and Φ a formula. If M, s � Φ for every

faithful Henkin model M and variable assignment s on M that satisfies every

member of Γ, then Γ ` Φ.

Compactness: Let Γ be a set of formulae. If every finite subset of Γ is satisfiable

in a faithful Henkin model, then Γ is satisfiable in a faithful Henkin model.

For the Löwenheim-Skolem theorem the notion of a submodel has to be extended.

We also have to define a correspondence function between a submodel and a model.

Intuitively, this function maps the sets that are assigned to the predicates and

functions in the submodel to those in the model. Details are omitted here; they can

be found in (Shapiro, 1991), pp. 92–94. It suffices to say here that the analogues

for the Löwenheim-Skolem and Löwenheim-Skolem-Tarski theorems hold for

second-order logic with a Henkin semantics restricted to faithful models.
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Chapter 3

On Quine

3.1 Introduction

An intuitive way to think of second-order logic is to add upper case variables figuring

in predicate position to the standard first-order logic and allow for the binding of

these with the usual existential and universal quantifier. The inferential behaviour

of the second-order quantifiers might be taken to be sufficiently analogous to that

of the first-order quantifiers. Let us further take for granted that first-order logic

is logic proper. Thus, if first-order logic is proper logic, and if what is added to it

to get second-order logic is not fundamentally different from what we had before, it

appears that second-order logic is proper logic, too.

The most famous critic of the claim that second-order logic is proper logic is

probably W.V. Quine. He attacked second-order logic vigorously over decades on

various grounds. In his writings he ascribed to it an air of incoherence, found it

unintelligible, said it was dishonest, and famously claimed that it is “set theory in
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sheep’s clothing”.1 Obviously, Quine cannot hold all these claims together. I will in

this chapter reconstruct how rather one of these claims leads to the next, and present

Quinean reasons as to why. In presenting different conceptions of what is happening

when one quantifies into predicate position, I will argue, Quine ends up with stating

that the best case that can be made for second-order logic is taking it to be some

sort of class theory (or set theory: Quine uses ‘class’ and ‘set’ interchangeably2).

This, however, attracts a charge akin to intellectual dishonesty. Being a class theory,

second-order logic has an ontological commitment to classes, but this commitment

is masked in the form of second-order quantification; the ontological commitment is

not made explicit. Second-order logic, for Quine, is hence practically a Trojan Horse,

and a gigantic one: in the first edition of his Philosophy of Logic Quine ascribes to

second-order logic a commitment to the “staggering existential assumptions” of set

theory.3

These claims, how they work together, and how a Quinean argument can be

rationally reconstructed is the topic of this chapter. Quine’s criterion for ontological

commitment plays a major in various parts of the argument. For the purpose of this

chapter, this criterion is granted. Chapters 4 and 5, though, discuss this assumption

in detail, and the criterion is finally rejected in chapter 5.

Before going into the exposition and discussion of Quine’s quarrels, it might be

worth mentioning a possible psychological explanation as to why Quine believes that

second-order logic is set theory. Quine’s way to think about second-order logic is

1So the title of a section in (Quine, 1986a), pp. 64–66.
2Quine takes the use of the term ‘set’ rather than ‘class’ in mathematical circles to be almost

entirely a matter of mere fashion. This does not mean, however, that he neglects the distinction
between so-called proper classes (Quine prefers the term ‘ultimate class’) and such classes that can
themselves be members of other classes. See (Quine, 1969b), p. 3.

3(Quine, 1970), p. 68.
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to conceive of it as a variant of the Simple Theory of Types. A quote from his Set

Theory and its Logic makes this clear:

[An] assimilation of set theory to logic is seen also in the terminology

used by Hilbert and Ackermann and their followers for the fragmentary

theories in which the types leave off after finitely many. Such a theory

came to be called the predicate calculus (Church: functional calculus)

of nth order [...], where n is how high the types go. Thus the theory

of individuals and classes of individuals and relations of individuals was

called the second-order predicate calculus, and seen simply as quantifica-

tion theory with predicate letters admitted to quantifiers. Quantification

theory proper came to be called the first-order predicate calculus.

This is a regrettable trend. Along with obscuring the important cleav-

age between logic and “the theory of types” (meaning set theory with

types), it fostered an exaggerated if foggy notion of the difference be-

tween the theory of types and “set theory” (meaning set theory without

types) – as if the one did not involve outright assumptions of sets the

way the other does.4

Also, as further evidence for my suggestion, in Quine’s earlier papers where he

raises his complaints about higher-order quantification, he indeed explicitly mentions

Russell’s Simple Theory of Types, e.g. in (Quine, 1947), rather than second-order

predicate logic which is his target especially in his Philosophy of Logic (Quine, 1970).

The criticism concerning one or the other shows continuity; only the terminology

changes.

4(Quine, 1969b), p. 258.

28



While there are interesting structural similarities between the Simple Theory

of Types and higher-order logic, which can often usefully be exploited, it is still

important to keep them apart. The Theory of Types Quine is concerned with is

explicitly designed to be a theory of classes5, with typed class variables, while higher-

order logic allows quantification into predicate position. In particular, variables for

many-place predicates (or relation symbols) and their binding with quantifiers do

not figure in this type theoretical system. The latter are, however, an important

ingredient in higher-order logic. Neglecting this can lead into trouble: many-place

predicates will play an interesting and surprising role further down in this chapter,

and also in chapters 4 and 5.

Running a Quinean conception of the Theory of Types and higher-order logic

together would provide an excellent ground to claim that second-order logic is really

a theory of classes, were it not fallacious to do so. The philosophical arguments for

the claim that second-order logic is ontologically committed to sets are, of course,

independent of these anecdotical remarks about Quine. Bearing in mind that this

is Quine’s viewpoint, however, sometimes helps understanding why Quine expresses

things the way he does, especially in the earlier papers, which sometimes seems a bit

awkward to the reader today who is more familiar with a conception of second-order

logic that is quite independent of the Theory of Types.

3.2 Incompleteness and Branching Quantifiers

Before discussing the Quinean worries mentioned above, it is worth noting an ob-

jection that is almost unrelated to Quine’s other complaints against second-order

5See his (Quine, 1969b).
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logic: the common objection concerning its incompleteness. There are some places

in his Philosophy of Logic where Quine suggests that the lack of a completeness

proof indicates that the border to set theory, i.e. mathematics, has been crossed.

Most notably this comes up in his discussion of branching quantifiers.6 It appears,

however, that the only place in Quine’s writings where he mentions this worry in

connection with second-order logic is in one of his replies in his volume of Schilpp’s

Library of Living Philosophers7 – and even there the incompleteness of second-order

logic is only mentioned in one sentence, and not discussed further. (My chapter 6

below contains a detailed discussion of the incompleteness objection.)

It might be that Quine takes it that what he offers against second-order logic is

devastating enough so that there is no need for the additional objection. Another

explanation would be that he does not think that the argument from incomplete-

ness is a particularly strong one. Trying to reconstruct Quine’s view on this, one

notices that he is not particularly fond of the model theoretic approach to logic,

as becomes clear from his discussion of it in chapter 4 of his Philosophy of Logic.8

Quine’s preferred way to characterise logical truth is substitutional. He defines a

logical truth as a substitution instance of a valid logical schema, where a valid logi-

cal schema is one that has only true substitution instances.9 Logical schemata, for

Quine, are sentence-like well-formed formulae, constructed according to the syntac-

tical rules of first-order logic. His definition of logical truth obviously is hostage to

the identification of the logical vocabulary about which Quine says precious little.

Quine’s worry about the model-theoretic approach to logical truth is that it

6(Quine, 1986a), p. 90–91.
7(Quine, 1986b), p. 646.
8(Quine, 1986a), pp. 51–53.
9(Quine, 1986a), p. 50.
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requires a set-theoretical interpretation of the language,10 and thus affords an on-

tological commitment to sets that his substitutional account apparently avoids. On

grounds of ontological parsimony Quine’s substitutional account is preferable to the

model-theoretic one.11 Quine concedes, however, that he does not take his substitu-

tional account to be wholly independent of sets. It deals with sentences, and Quine

takes sentences to be sets of their tokens. He also claims that sets are necessary

for the construction of a syntax for a language, especially in order to be able to

talk about arbitrarily long sentences even if some will never be written down.12 Al-

though Quine is prepared to commit himself to sets in this way, he takes it that the

commitment is rather modest compared to the one that the model-theoretic account

brings with it. The substitutional account, Quine claims, merely requires finite set

theory:

The way to look upon the retreat [from model theory to the substitu-

tional account], then, is this: it renders the notions of validity and logical

truth independent of all but a modest bit of set theory; independent of

the higher flights.13

Quine does not say this explicitly, but one might take the underlying reasoning to

10(Quine, 1986a), p. 51. That I am sympathetic to Quine’s worries here, albeit for different
reasons, will become clear in chapters 7 and 8.

11(Quine, 1986a), pp. 55–56.
12For all of these concessions Quine makes concerning the commitment to sets, however, there

seems to be logical space for resistance. Syntax and proof theory are to some, perhaps sufficient,
extent available without recourse to sets, as Quine himself argued together with Nelson Goodman
in an early joint paper: (Goodman and Quine, 1947). Also other strategies have been proposed.

13(Quine, 1986a), p. 56. Quine’s exposition of this claim makes the detour via the possibility of
a Gödel coding and an arithmetisation of syntax. Quine does not give the details, and they need
not concern us here either. In any case, he takes number theory “in effect equivalent still to a
certain amount of set theory [...], [but] it is a modest part: the theory of finite sets.” Quine takes
set theory to be all one needs as a foundation of mathematics, as numbers, functions and relations
are definable as certain sets of sets. See, for example, (Quine, 1947), p. 79 (reappears as (Quine,
1953), p. 122), (Quine, 1960), §54, or (Quine, 1986a), p. 66.
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be that whatever formal language one uses, a certain modest amount of set theory

will be needed. Model-theoretic approaches, however, need in addition substantially

more set theory. Quine’s substitutional account does not need this additional bit

and is therefore to be preferred.

In section 3.4 below I will reconstruct and discuss Quine’s argument for the claim

that second-order logic is committed to the “staggering ontology” of set theory. If

the interpretation I give of Quine’s argument is right, set theory is not available in

bits as far as Quinean ontological commitment is concerned. If Quine, therefore,

wanted to uphold the claim that second-order logic is committed to the whole of

the set theoretical hierarchy, then he cannot uphold his claim that the substitu-

tional account fares better than the model-theoretic one on counts of parsimony:

commitment to some sets always means commitment to the entire hierarchy.

Be that as it may, the standard completeness proof shows that a given syntactic

system captures all the model-theoretic validities, and declares them to be theorems

of the system – the logical truths in the case of a system of logic.14 If, however, model

theory is not assigned a special role, the significance of such a proof is doubtful.15

Not only does Quine not assign any particularly special role to model theory, he is

also rather wary of it because of its use of set theory, as mentioned above. The lack

of a completeness proof for second-order logic is therefore something that Quine is

in no position to put forward as a strong argument.

Indeed, also in his discussion of branching quantifiers the incompleteness ob-

jection appears as a kind of add-on to his main criticism. Quine observes that a

14At least this is the part of it that Quine focuses on. The standard completeness proof shows not
only that the valid sentences are captured, but shows this generally for the consequences relation.
Logical truths are merely a special case of this: consequences of an empty set of premises.

15See my chapter 6.
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sentence like:

∀x∃y

∀z∃w
F (x, y, z, w)

is not equivalent to any of its first-order linear versions like:

∀x∃y∀z∃w F (x, y, z, w)

or:

∀z∃w∀x∃y F (x, y, z, w)

Rather, we need to quantify over functions, to get it “back into line”:16

∃f∃g∀x∀y F (x, f(x), y, g(y))

Since we are thus committed to functions (as we quantify over them), we have crossed

the border to mathematics, Quine claims: “We leave logic and ascend into math-

ematics of functions, which can be reduced to set theory but not to pure logic.”17

Quantification over functions, whoever, is second-order quantification. Quine uses

here second-order quantification to discredit (on ontological grounds) an alternative

logic, while his line on second-order logic is that it is dishonest at best, and otherwise

unintelligible, or even inconsistent.

This puts Quine into a strange position: of the two arguments he presents against

branching quantifiers, one relies on second-order logic which he emphatically rejects,

and the other one is from incompleteness which at least he cannot coherently consider

to be a very strong argument. To be charitable, Quine would probably retreat to a

rendering of the offendingly untidy branching formulae in linear first-order set theory.

16(Quine, 1986a), p. 90.
17(Quine, 1986a), p. 90.
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The fact remains, however, that he does not do it that way, but rather recasts the

branching quantifiers formulae in second-order logic to make his point. Presumably,

he does so for didactical reasons: the connection between the branching, and the

second-order sentence can readily be seen, while a rendering in set theoretical terms

would be much more cumbersome. (Functions are defined as special sets of ordered

pairs; and an ordered pair 〈x, y〉 is defined as a set {{x}, {x, y}}, following Wiener

and Kuratowski.18 If we have to use these sets and also spell out the conditions for

functionality the result will be much more difficult to parse,19 and its connection

to the branching sentence will not be as obvious.) This didactic strategy, however,

will not work if the utilised means is inconsistent or unintelligible. If Quine is right

about second-order logic, it seems as if he, hence, would have to accuse himself of

dishonesty. This certainly does not constitute a decisive counter-argument against

Quine’s position; the curious situation Quine got himself into nevertheless seems

noteworthy.

As already mentioned, the incompleteness allegation against second-order logic

is discussed in detail in chapter 6. In the rest of this chapter I attempt to unpack

Quine’s animadversions against second-order logic.

18Quine regards the Wiener-Kuratowski definition of an ordered pair as a paradigm case of a
successful explication: (Quine, 1960), §53; see also (Quine, 1947), p. 79.

19In a different context, the Wiener-Kuratowski definition of an ordered pair is spelled out in
detail and shown “in action” in section 3.4 below.
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3.3 Incoherence and Unintelligibility

3.3.1 Russell’s Paradox

In some of his earlier publications Quine alludes to Russell’s Paradox in his discussion

of higher-order quantification. Russell’s Paradox arises in näıve set theory in the

following way. Let us say that for any open sentence there is a set that contains all

and only the objects that satisfy this open sentence. Prima facie this sounds like a

reasonable suggestion, but this principle leads to Russell’s famous antinomy. Take

the predicate ‘being a set that does not contain itself’. Call the set that contains all

and only sets that do not contain themselves ‘r’ – the “Russell Set”. Does r contain

itself? It seems it cannot, since r contains only sets that do not contain themselves;

for if it contained itself, it could not be amongst those. So it does not contain

itself. In that case, however, it is one of those sets that do not contain themselves,

and hence it has to be in the respective set, i.e. in itself. So, if r contains itself,

it does not, and if it does not contain itself, it does; or formally, r ∈ r ≡ ¬r ∈ r:

contradiction.

In On Universals (Quine, 1947) Quine suggests that an antinomy similar to

Russell’s for näıve set theory might occur if one takes second-order quantification

seriously. If we allow binding predicate letters with quantifiers this means that they

“acquire the status of variables”, and that we are thus “granting [them] all privileges

of ‘x’, ‘y’, etc.”, i.e. of the first-order variables. This means allowing second-order

variables to occur in name position, and hence allowing formulae like ‘GH’ (just as

‘Gx’) “seems a very natural way of proclaiming a realm of universals” to Quine.20

He proceeds by giving a proof in this so characterised system of an analogue of

20(Quine, 1947), p. 78. See also (Quine, 1969b), p. 257, and (Quine, 1941), pp. 19-20.
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Russell’s Paradox:21

(1) GH ≡ GH logical truth

(2) ∀H(GH ≡ GH) (1), universal generalisation

(3) ∀F¬∀H(FH ≡ GH) ⊃ ¬∀H(GH ≡ GH) instance of the ‘∀’-axiom22

(4) ¬∀F¬∀H(FH ≡ GH) (2), (3), modus tollens

(5) ∃F∀H(FH ≡ GH) (4), quantifier conversion

(6) ∃F∀H(FH ≡ ¬HH) (5), subst. ‘¬HH’ for ‘GH’

(7) ∃F (FF ≡ ¬FF ) (6), “by a few easy steps”

Quine makes the detour through line (3) and (4) as the deductive system he proposes

in this paper does not have any inference rules for the existential quantifier; he treats

‘∃x’ as a mere abbreviation of ‘¬∀x¬’. Otherwise line (5) would follow immediately

from line (2) by existential generalisation – if we ignore for the moment that none of

the formulae is well-formed according to any standard higher-order logic or theory

of types. (I will come back to the question of peculiar syntax below).

This, however, is not the only oddity about this derivation. The substitution step

from line (5) to line (6) is invalid: it brings the first ‘H’ in the substituted expression

‘¬HH’ into the scope of the universal quantifier. Quine justifies this step by referring

to two of the rules of inference that he introduced earlier. These are the already

mentioned rule to allow the predicate letters all privileges of individual variables, and

the rule for substitution of formulae: “Substitute any formulae for ‘p’, ‘q’, ‘Fx’, ‘Fy’,

21Compare (Quine, 1947), p. 78. The notation is changed to match the symbolisation used
throughout this thesis. Moreover, Quine’s commentary column is omitted in favour of my own
annotations, as Quine’s abbreviated comments would require rather extensive introduction. Only
the annotation in line (7) is verbatim.

22The ‘∀’-axiom is ‘∀xFx ⊃ Fy’ in Quine’s formalisation.
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‘Gx’, ‘Fxy’, ‘Gzw’, etc. (subject to sundry provisos which need not be recounted

here)”.23 The provisos that Quine skips so elegantly include that the substitution has

to be uniform (so that the faulty inference from ‘∀x(Fx ⊃ Fx)’ to ‘∀x(Fx ⊃ Gx)’

is barred), and that variables must not come into the scope of a quantifier that

they were not in before (to avoid, e.g., the inference from ‘Gy ⊃ ∀x(Fx ⊃ Gy)’ to

‘¬Fx ⊃ ∀x(Fx ⊃ ¬Fx)’). The former restriction is obeyed in Quines “proof”; the

latter, alas, is not.

In a later paper, Logic and the Reification of Universals, which is partly based on

On Universals, Quine still alludes to the paradox, but ommits its “derivation”, and

indeed any mention of the peculiar syntax that allows for expression like ‘¬HH’.24

What drives Quine to suggest formulae like ‘¬HH’? It seems that his conviction

that if we allow quantification into predication position we ontologically commit

ourselves to things that predicates now are meant to refer to (while at first-order we

do not treat predicates as referring) is his reason to do so. It seems that for Quine

the existential quantifier (of whatever order) shows us what we are ontologically

committed to, and if we further assume that those entities that we are committed

to are referred to by expressions that occur in name position, it is only a small step

to put second-order variables into name position.

This way will indeed lead to inconsistency, whether Quine’s “proof” as such suc-

ceeds or not. Russell first25 formulated his Paradox in a letter that he wrote to Frege

in response to Frege’s Grundgesetze der Arithmetik 26 [Basic Laws of Arithmetic].27

23(Quine, 1947), p. 77.
24(Quine, 1953), p. 121.
25This was where Russell first formulated the paradox. Credit where credit is due, however: Ernst

Zermelo had discovered “Russell’s Paradox” a full year before Russell, see (Rang and Thomas,
1981).

26(Frege, 1893).
27(Russell, 1902).
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Frege’s system of the Grundgesetze famously contains Basic Law V which, roughly,

assigns an object to every extension of a predicate. While, strictly speaking, the

formulation Russell used was not well-formed in Frege’s system, Frege saw immedi-

ately how the antinomy could be formulated properly and derived from Basic Law

V.28 Quine mirrors this strategy for his criticism of second-order logic. Quantifying

into predicate position for him means treating predicates as referring to objects. In

one way or other, a paradox analogous to Russell’s should arise. We only have to

define a predicate such that the object it refers to can somehow be proven both to

fall and not to fall under this very predicate, i.e. something like a predicate that

expresses non-self-reference has to be found. If the formulation of the system is

careless enough, this should be possible.

Quine knows, of course, that there are consistent systems of second-order logic

in which no contradiction can be proven. In his Philosophy of Logic he concedes

that “there is no actual risk of paradox as long as the ranges of ‘x’ and ‘G’ are kept

apart”.29 In On Universals he claims, however, that these consistent systems are

arrived at by making “one or another aribtrary restriction [...]. The most familiar

restriction is the simple theory of types, due to Russell.”30 Quine considers the

restrictions that need to be made in order to avoid the paradox as wholly artificial.

It should be noted that Frege’s system of the Begriffsschrift 31 neither allows for a

derivation of Russell’s Paradox, nor does it contain restrictions that appear artificial

or arbitrary in any way. The distinction that blocks the derivation of an analogue to

Russell’s Paradox is that between name and predicate (that Quine wants to make,

28(Frege, 1902).
29(Quine, 1986a), p. 68.
30(Quine, 1947), p. 78.
31(Frege, 1879).
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too). In Frege’s Begriffsschrift corresponds to the distinction between object and

function, that seems well motivated in Frege.32

Quine, however, takes it that the objects referred to by the predicates in second-

order logic have to be classes, as in the theory of types which he explicitly mentions

and which, at least for him, is a class theory. They are thus objects and belong

in the (first-order) domain. A possible autobiographical reason for this was already

mentioned in the introduction to this chapter. There are, however, also philosophical

reasons for Quine.

3.3.2 No Entity Without Identity

Whilst Quine admits in a way that second-order quantification can, despite its air

of incoherence, be construed in a consistent way, by way of imposing “arbitrary

restrictions”, he still thinks that in doing so the border from pure logic to math-

ematics is crosses as we are now quantifying over classes. Even granting for the

moment (later chapters will discuss this assumption) that second-order quantifiers

range over new kinds of entities, and thus bring about new ontological commitment,

why should that be a commitment to classes? Quine reasons that as the new enti-

ties are referred to by predicates they have to be universals. The only universals he

find acceptable, however, are classes. In On the Individuation of Attributes (Quine,

1975) Quine writes:

Classes, down the years I have grudgingly admitted; attributes not. I

have felt that if I must come to terms with Platonism, the least I can do

is keep it extensional.33

32Compare also (Dummett, 1981), chapter 8, concerning this point.
33(Quine, 1975), p. 100.
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His worry concerning the issue of extensionality has got to do with his slogan: “There

is no entity without identity”.34 Classes are extensional: their identity is determined

by what members they have. There are no two different classes which have all and

only the same members. If the classes A and B both have as their only members

both Forth Rail Bridge and the Eiffel Tower, then ‘A’ and ‘B’ are really just two

names for the same class; A and B are identical.

Not so with attributes. Attributes which have the same extension still need not

be identical. Quine’s famous example are the attributes ‘creature with a heart’ and

‘creature with kidneys’.35 The class H that contains all and only creatures with a

heart is identical to the class K that contains all and only creatures with kidneys

since H and K have the same members (or so we may at least suppose the sake of

the argument). The attributes ‘creature with a heart’ and ‘creature with kidneys’,

however, are not identical. The predicates are co-extensional, but the corresponding

attributes are supposed to be distinct. Such intensional objects have, according

to Quine, no precise identity conditions, and thus need to be rejected. While he

“grudgingly admitted” abstract objects and universals36 in form of classes, he never

abandoned extensionality.

Intensional universals are obscure creatures for Quine. They have to be elimi-

nated from scientific and philosophical discourse in favour of extensional notions. In

particular, talk involving attributes is to be replaced by a language that makes use of

classes. Attributes cannot be allowed into any ontology acceptable to Quine. They

lack a good criterion of identity (if such a criterion can be specified at all), since it

34(Quine, 1975), p. 102; compare also (Quine, 1948), p. 4, (Quine, 1960), §43, (Quine, 1969a),
pp. 21–23, (Quine, 1992), p. 52, and other places.

35(Quine, 1969a), p. 23, (Quine, 1975), p. 101.
36Quine takes classes to be abstract universals.
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would have be intensional, and intensionality is mysterious.37 Quine sees the likely

best shot to give criteria of identity for attributes as being in terms of synonymy38,

maybe involving necessity claims, but certainly some sort of analyticity claim.39 He,

of course, rejects all these notions.40 If the best attempt available thus has to rely

on unacceptable notions or resources, it seems to Quine that any attempt is doomed

to fail.

It appears therefore, that Quine’s argument for his claim that second-order logic

is “set theory in sheep’s clothing” might run more or less as follows: (i) Quantifiers

show us our ontological commitments. (ii) Second-order quantifiers, hence, commit

us to some kind of universal. (iii) The only acceptable universals are classes – based

on the considerations above, the prima facie main candidates attributes should be

ruled out. (iv) Therefore, second-order logic commits us to sets. (In chapter 5 I

will present a slightly different reconstruction, based on a more thorough analysis

of Quine’s criterion for ontological commitment.)

All three of (i)-(iii) have been attacked. (i) is denied by, amongst others, Meinon-

gians who propose the being of non-existent objects. (iii) is denied by philosophers

who argue in favour of real properties (which is, presumably, what Quine calls “at-

tributes”). In chapter 5 I argue that “Quantifiers” in (i) should be read as “First-

order quantifiers”, and that (ii) does not follow for that reason. George Boolos

accepts (i), and also accepts it for second-order quantifiers, but still resists the step

to (ii), proposing a plural interpretation of the second-order quantifiers. Boolos pro-

poses that second-order quantification is not the old kind of quantification over new

37(Quine, 1975), pp. 101–105.
38(Quine, 1986a), p. 67.
39(Quine, 1975), p. 105.
40See (Quine, 1951b).
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entities (as (ii) claims) but rather a new kind of quantification, i.e. plural quantifi-

cation, over the same old entities, i.e. those that the first-order variables range over

singularly.41 My chapter 4 will discuss this proposal in detail.

3.4 Dishonesty: The Hidden Staggering Ontology

In the first edition of his Philosophy of Logic (Quine, 1970), Quine ascribes to second-

order logic an ontological commitment to the set-theoretic hierarchy:

Set theory’s staggering existential assumptions are cunningly hidden now

in the tacit shift from schematic predicate letter to quantifiable set vari-

able.42

Having admitted that second-order logic can be formulated in a coherent way, and

that a commitment to obscure entities like attributes can be avoided by construing

the second-order variables as ranging over sets, we are led in this way to the remain-

ing two Quinean objections against second-order logic: it is committed to the vast

set theoretical ontology, and, moreover, disguises this commitment by a “cunning”

deception. Both allegations will be discussed in chapter 5, and Boolos’ second re-

sponse to the first Quinean complaint, the suggestion of a plural interpretation of

second-order logic, is the topic of my chapter 4.

Before Boolos proposed his plural interpretation, however, he reacted to Quine’s

“tacit set theory” charge in On Second-Order Logic (Boolos, 1975). Boolos first

observes that it would be a mistake to just understand or translate second-order

sentences so that predicates and predicate variables are replaced by names for sets

41First in (Boolos, 1984b); see chapter 4 for more references.
42(Quine, 1970), p. 68.
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and set variables, as he understands Quine to be suggesting. Replacing expressions

like, e.g., ‘Ga’ uniformly with expressions like ‘a ∈ γ’ where ‘γ’ is now explicitly a

name of a set will lead to a loss of validity, Boolos contends.43 His main example

is the second-order validity ‘∃F∀x Fx’. Translated along the lines Boolos suggests

Quine demands, we end up with ‘∃α∀x x ∈ α’. This sentence, however, asserts the

existence of an all-inclusive set which is not only not valid, but also inconsistent

with Zermelo-Fraenkel set theory (ZF).44

In defense of Quine it has to be said, however, that Quine never proposed a

translation into ZF as Boolos suggests. If Boolos is right at all in interpreting Quine

as demanding a straightforward translation of second-order logic into set theory,

it seems to be a more charitable interpretation that Quine intended a translation

into one of his own set theories, the system of New Foundations (NF), for example.

Strikingly, NF asserts the existence of the universal set, and so ‘∃α∀xx ∈ α’ is valid

in it.45

Quine builds NF containing a rule for set comprehension ‘∃x∀y(y ∈ x ≡ ϕ)’ that

attempts46 to block Russell’s Paradox by requiring that ‘ϕ’ is “stratified” and does

not contain ‘x’; ‘stratified’ here means that the variables occurring in the two places

left and right of ‘∈’ must be consistently typed throughout the formula such that

if the type of the variable on the left is n, the type of the variable on the right is

n + 1, e.g. ‘x2 ∈ y3’. Expressions like ‘¬x ∈ x’, hence, are not stratified and thus

43(Boolos, 1975), p. 40.
44Boolos’ second example is a mystery: he states that ‘x = z’ is implied by ‘∀F (Fx ⊃ Fz)’, but

not by ‘∀α(x ∈ α ⊃ z ∈ α)’. If we can take ‘∀α’ to range of all sets (which seems reasonable),
and especially that the range includes the singleton of x, then the latter sentence certainly entails
‘x = z’, for z could not be in the singleton of x without being identical to x, on pain of contradiction.

45(Quine, 1937), p. 94.
46As of now there is no proof of consistency for NF.
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banned.47

Quine obviously models NF along the lines of the Simple Theory of Types. Sets

can contains sets that contain sets, but type bounderies cannot be jumped or re-

versed. ‘x ∈ y ∧ y ∈ z’ is fine, as it is stratified which is made explicit like this:

‘x1 ∈ y2 ∧ y2 ∈ z3’. ‘x ∈ y ∧ y ∈ z ∧x ∈ z’, however, is not. If we spell out the types

of the variables, ‘x1 ∈ y2 ∧ y2 ∈ z3 ∧ x1 ∈ z3’, we see that the last conjunct violates

the conditions for stratification: it jumps a type. Also, ‘x ∈ y ∧ y ∈ z ∧ z ∈ x’,

violates stratification: z would have to be both one type lower than x, and two types

higher.

It seems, therefore, that a translation from second-order logic into NF works

neatly: predicates are one type higher that names, and so the formulae coming out

of the translation should always be stratified. One might think that a problem lurks

when this procedure is applied to second-order set theory, rather than pure second-

order logic. An example that springs to mind is that of the axiom of separation

which is not valid in NF.48 One has to be careful, however, not to beg the question

against Quine: second-order ZF formulae, surely, cannot count as counterexamples:

the inconsistencies with NF would come from ZF, rather than from the translation

of the second-order variables. If we just take the second-order axiom of separation

‘∀F∀x∃y∀z(z ∈ y ≡ (z ∈ x ∧ Fz))’ as such, the resulting translation turns out to

be stratified: ‘∀α∀x∃y∀z(z1 ∈ y2 ≡ (z1 ∈ x2 ∧ z1 ∈ α2))’.

While Boolos’ example does not work if we grant Quine NF (which seems only

fair), and while the translation seems to work fine for monadic predicate variables, it

can nevertheless be shown, albeit in a less elegant way, that it breaks down as soon as

47(Quine, 1937), pp. 91–92.
48(Quine, 1937), pp. 96–97. Quine calls the axiom by its German name, “Aussonderung”, fol-

lowing Zermelo.
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we consider two- and three-place predicates. As mentioned above, Quine champions

the Wiener-Kuratowski definition of an ordered pair, and suggests treating many-

place predicates (or relation symbols) as monadic predicates that take ordered pairs,

triples, etc. as arguments.49 Quine takes it for granted that by following this strategy

everything will fall into place concerning many-place predicates. Concerning the

“translation” of second-order logic into NF, however, this is not the case.50

Following Wiener and Kuratowski, an ordered pair 〈a, b〉 is defined as a set of

sets, namely {{a}, {a, b}}. An order triple 〈a, b, c〉, is turn, is defined as an ordered

pair 〈a, 〈b, c〉〉, i.e. as the set {{a}, {a, {{b}, {b, c}}}}. The curly set parentheses

are mere notational abbreviations, of course, and need to be replaced by expression

involving only variables, quantifiers, brackets, symbols for truth-functions, and ‘∈’.

Once this unpacking is done, it can easily be checked whether a formula is stratified

or not. The second-order valid sentence

∃R Rab

for example, is translated and unpacked like this (done step by step):

∃R Rab

∃R R〈a, b〉

∃r 〈a, b〉 ∈ r

∃r {{a}, {a, b}} ∈ r

∃r∃x (x ∈ r ∧ {a} ∈ x ∧ {a, b} ∈ x)

∃r∃x∃y∃z (x ∈ r ∧ y ∈ x ∧ z ∈ x ∧ a ∈ y ∧ a ∈ z ∧ b ∈ z)

49For references see footnote 18 above.
50In chapter 5 we will see how Quine gets into trouble concerning many-place predicates again

in a different context.
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The resulting formula is thus stratified: ‘a’ and ‘b’ are of type 1, ‘y’ and ‘z’ are of

type 2, ‘x’ is of type 3, and ‘r’, finally, is of type 4:

∃r∃x∃y∃z (x3 ∈ r4 ∧ y2 ∈ x3 ∧ z2 ∈ x3 ∧ a1 ∈ y2 ∧ a1 ∈ z2 ∧ b1 ∈ z2)

Similarly, a second-order validity featuring a three-place predicate can be translated

and stratified:

∃S Sabc

∃S S〈a, b, c〉

∃s 〈a, b, c〉 ∈ s

∃s 〈a, 〈b, c〉〉 ∈ s

∃s {{a}, {a, 〈b, c〉}} ∈ s

∃s {{a}, {a, {{b}, {b, c}}}} ∈ s

∃s∃x (x ∈ s ∧ {a} ∈ x ∧ {a, {{b}, {b, c}}} ∈ x)

∃s∃x∃y∃z (x ∈ s ∧ y ∈ x ∧ z ∈ x ∧ a ∈ y ∧ a ∈ z ∧ {{b}, {b, c}} ∈ z)

∃s∃x∃y∃z∃v (x ∈ s ∧ y ∈ x ∧ z ∈ x ∧ a ∈ y ∧ a ∈ z ∧

v ∈ z ∧ {b} ∈ v ∧ {b, c} ∈ v)

∃s∃x∃y∃z∃v∃w∃u (x ∈ s ∧ y ∈ x ∧ z ∈ x ∧ a ∈ y ∧ a ∈ z ∧

v ∈ z ∧ w ∈ v ∧ u ∈ v ∧ b ∈ w ∧ b ∈ u ∧ c ∈ u)

∃s∃x∃y∃z∃v∃w∃u (x5 ∈ s6 ∧ y4 ∈ x5 ∧ z4 ∈ x5 ∧ a3 ∈ y4 ∧ a3 ∈ z4 ∧

v3 ∈ z4 ∧ w2 ∈ v3 ∧ u2 ∈ v3 ∧ b1 ∈ w2 ∧ b1 ∈ u2 ∧ c1 ∈ u2)

‘s’ is of type 6 while ‘r’ above was of type 4, but this does not pose any problems; it

just shows that three-place predicates are generally two types higher than two-place

predicates, due to the Wiener-Kuratowski construction. Also that ‘a’ turns out to

be of type 3 while ‘b’ and ‘c’ are of type 1, does not pose any problems as such.
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The only thing that matters is that the formula is stratified, and this is the case.

If we consider a second-order validity that contains both a three- and a two-place

predicate, however, we end up with a non-startified sentence after the translation.

Boolos’ claimed loss of validity finally takes place. If we break down

∃R∃S (Rab ∧ Sabc)

in the same way as we did above, it is easy to see that the first conjunct require ‘a’

and ‘b’ of the same type, while the second requires ‘a’ to be of type n + 2 where n

is the type of ‘b’. Hence, the resulting sentence is not a validity of NF, while the

original one is valid in second-order logic.

There is no need, however, to interpret Quine at all as proposing a straight trans-

lation like the one Boolos envisions between second-order logic and any set theory.

In the same book that Boolos’ criticism is directed againt, Philosophy of Logic,

Quine even states explicitly that assuming that all predicates (or open sentences)

correspond to sets and vice versa leads into contradiction.51 As Quine’s remarks are

interpreted here, what he presents is the best case for second-order logic as being

some kind of class theory (taking it for granted that the second-order quantifiers

commit us to new kinds of entities) – most likely something very similar to a theory

of types with which it indeed has a lot of features in common. If the counterexam-

ples to a translation are indeed counterexamples to this claim, so much the worse

for second-order logic. It is not a problem for Quine.

It will certainly be possible, however, to construct some kind of translation or

interpretation in set theory that assigns sets to the second-order variables and is

hence a witness to the spirit of Quine’s claim. One can be reasonably confident

51(Quine, 1986a), p. 53.
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that there could be such a translation or interpretation, since there actually is one:

the standard model theory provides exactly that. As I point out in chapter 7,

for proponent of the model-theoretic account to second-order like Shapiro, the set

theoretical nature of this conception of second-order logic is not a last resort to make

sense of the second-order quantifiers, as it is for Quine: it is a rather feature that is

embraced from the start.

Boolos next investigates what becomes of Quine’s claim concerning the stagger-

ing set-theoretical commitment of second-order logic if the standard model-theoretic

interpretation is taken into account. On this interpretation, the second-order vari-

ables take as values subsets of the domain, and so Boolos admits a commitment

to sets. He observes, however, the disanalogy between second-order logic and set

theory that all standard set theories agree that there is at least one two-membered

set, while the second-order sentence ‘∃X∃x∃y (Xx ∧ Xy ∧ x 6= y)’ is not valid: it

is false in a model with a one-membered domain.52 The only sentences valid in

second-order logic that commit us to particular sets, thus, seem to be ‘∃X∀x ¬Xx’

and ‘∃X∀xXx’ which appear to affirm the existence of the empty and the universal

set, respectively.

Boolos concludes, however, that in the case of second-order logic

the commitment is exceedingly modest; the null set is the only set to

whose existence second-order logic can be said to be committed.53

Why only the null (or empty) set and not the universal one? The reason is simple:

what set (on the set theoretical interpretation) ‘∃X∀x Xx’ picks out is relative to

52(Boolos, 1975), pp. 40 and 44; p. 44 contains a typo that turns the above sentence into the
stronger one: ‘∃X∀x∃y (Xx ∧ Xy ∧ x 6= y)’. This sentence entails the existence of the universal
set, and hence cannot be what Boolos intended.

53(Boolos, 1975), p. 48.
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the first-order domain. It picks out the set that contains all and only the objects

in the domain.54 It therefore does not commit us to any particular set. It seems,

however, that one should admit that some additional commitment occurs. Standard

first- and second-order logic alike assume a non-empty domain; therefore, there is

always at least one object and hence always at least one singleton set. What this

set is varies with the domain, but our ontology gets pumped up.

Generally, as the second-order variables are interpreted as ranging over the sub-

sets of the domain, we will end up with a “second-order ontology” of the size of

the powerset of the first-order domain. If there are n objects in the domain, the

second-order variables range over 2n sets. Only one application of the powerset

axiom is needed, though, which is not very much compared to the vastness of the

set-theoretical hierarchy.55 So, speaking in set theoretical terms, the commitments

of second-order logic are still fairly modest, although not quite as modest as Boolos

suggests.

Boolos does not seem to be willing to make that concession, as we cannot def-

initely say which sets those are; the model-theoretic interpretation of second-order

logic does not determine any particular set independent of the domain, except for

the empty one. For any given domain, however, it determines which sets the second-

order variables range over, viz. the subsets of the domain – barring the continuum

problem if the domain is infinite which is discussed in detail in chapter 7.

For second edition of his Philosophy of Logic (Quine, 1986a) Quine revised the

passage quoted in the beginning of this section. The remark about the “staggering

54(Boolos, 1975), p. 47. Obviously, this poses a problem in the case of second-order set theory
where the domain is intended to include all sets, and thus does not form a set itself. This will be
discussed in chapter 5.

55This point is made by (Shapiro, 1991), p. 21; but see also (Shapiro, 1999), p. 60.
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existential assumptions” of set theory, which second-order logic is allegedly com-

mitted to, disappears and is replaced by the complaint that “still a fair bit of set

theory has slipped in unheralded.”56 Since this second edition appeared after Boolos’

On Second-Order Logic was published – a publication that Quine was without any

doubt aware of – it does not seem too unlikely that Quine changed this passage in

response to Boolos’ arguments.

Whilst I argue in chapter 5 against Quine’s claim that second-order logic brings

about any special set-theoretical commitment, I still want to submit here that Quine

should not have given in to Boolos. We can distinguish between two notions of

ontological commitment: (i) a commitment to kinds of things, and (ii) a commitment

to a certain number of things. (The commitment to individual sets, which seems to

be the notion that Boolos is interested in, gets spelled out by way of a Russellian

analysis of definite descriptions, and is thus subsumed under case (i). See chapter

5 for details.) The latter kind of commitment is most usefully though of in this

context as determining the size of the first-order domain. If we, for example, have a

commitment of type (i) to the natural numbers (the natural-number kind of entity),

we will run into a commitment of type (ii) to an infinite domain, as there are

infinitely many natural numbers. Single natural numbers do not come on their own,

one has all of them or none. We could not just commit us to the existence of number

7, and deny that 6 and 8 existed, too. Or rather, if we were doing so, we would

speak of things that are not the natural numbers.

The same should be true for set theory. If we are committed to the kind “set”, we

commit to what our favourite theory of them (be it ZF, NF, or whatever) says about

them. If we favour ZF, for example, as the theory that tells us what sets are, and

56(Quine, 1986a), p. 68.
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what sets there are, we commit to the entire hierarchy of sets.57 If this interpretation

of Quine’s criterion for ontological commitment is right, Quine should have stuck

to his guns: If second-order quantification indeed commit us to the existence some

sets, we are committed to the “staggering existential assumptions” of set theory. (As

mentioned above, Quine’s assumptions that lead to this conclusion will be argued

against in the following two chapters of this thesis.)

If Quine wanted to follow this way, however, he might find himself in an un-

comfortable situation. As mentioned in section 3.2 above, Quine requires some set

theory for his substitutional account of validity for first-order logic. If so, Quine’s

account is also committed to the entire set theoretic hierarchy, just as the model

theoretic approaches for both first- and second-order logic. The difference between

first- and second-order logic concerning their set-theoretical commitment vanishes.

The ontological commitment to the “staggering” ontology of set theory cannot be

escaped at first-order either.

All this, however, depends on the Quinean claims about ontological commitment.

The following two chapters will discuss this question. Chapter 4 contains a discussion

of Boolos’ suggestion of a plural interpretation of second-order logic. He accepts

that second-order quantification expresses ontological commitment, but denies that

it is any extra commitment. In chapter 5 I analyse in detail Quine’s criterion of

ontological commitment.

57A point similar to this is made in response to (Shapiro, 1991), chapter 1.3, by (Jané, 1993),
pp. 75–76; compare also Shapiro’s response in (Shapiro, 1999), p. 59–61. The subtle issues raised
by Jané are discussed in detail in chapter 7.
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Chapter 4

Plurals

4.1 Some Critics

After his first defense of second-order logic in On Second-Order Logic (Boolos, 1975),

Boolos published a series of articles that propose and defend the now famous plural

interpretation of monadic second-order logic.1 Boolos’ main interest seems to lie in

an account of second-order quantification that does not construe variables in pred-

icate position as ranging over the subsets of the domain, although he still assumes

the latter in his (Boolos, 1975). For the case of second-order set theory, however,

that cannot be the right construal. There is no set of all sets, so the first-order

domain cannot be assumed to be a set, and the range of second-order variables

cannot be the powerset of the domain. ‘∃X∀yXy’ is a theorem of second-order

logic, and hence of second-order set theory. If the predicate variables are taken to

refer to sets, however, this sentence asserts that there is a set that contains all sets

which contradicts the standard Zermelo-Fraenkel set theory (ZF). Also the sentence

1See mainly (Boolos, 1984b), (Boolos, 1985a), (Boolos, 1985b), and (Boolos, 1994).
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‘∃X∀y(Xy ≡ ¬y ∈ y)’ is a valid second-order sentence (it is an instance of the com-

prehension schema), but if we are interpreting the second-order variables to range

over sets, this sentence asserts that there is a set that contains all and only the

sets that do not contain themselves. This, however, is known to lead into Russell’s

Paradox (see chapter 3).2

It is worth noting that, in a way, this problem arises in first-order set theory

already. We are still in need of specifying a domain, which usually is taken to be a

set. This cannot be the case for set theory, though, on pain of contradiction. This

problem is usually ignored, or if acknowledged, a flight to proper classes3 is taken:

the domain of a first-order set theory is the proper class that contains all the sets

that the theory is about. Proper classes could also serve as the range of second-order

variables where the (first-order) domain is too large to form a set, but this seems

also unsatisfactory, at least to Boolos: “Set theory is supposed to be a theory about

all set-like objects.”4 Boolos declares that he is a “settist” by which he means that

he accepts no classes, collections, etc., that are not sets of ZF.5 As a solution for

this problem Boolos proposes to interpret second-order variables plurally. Before he

unveils this, though, Boolos spends more than the first half of his (Boolos, 1984b)

easing the reader into plural talk. He presents natural language examples of plural

sentences that “look as if they ought to be symbolizable in first-order logic”6 but

2See (Boolos, 1984b), p. 64. The Boolos of (Boolos, 1975) takes second-order quantification
for this reason to be illegitimate when the first-order variables range over sets. Boolos rejects his
earlier view as he proposes the plural interpretation that is the topic of this chapter; see (Boolos,
1984b), p. 65.

3Proper classes in this sense are classes that can contain, but cannot themselves be contained
in classes. No set in the usual (i.e., ZF) sense is a proper class.

4(Boolos, 1984b), p. 66. Boolos expresses the same thought more emphatically in (Boolos,
1974), p. 35: “Wait a minute! I thought that set theory was supposed to be a theory about all,
‘absolutely’ all, the collections that there were and that ‘set’ was synonymous with ‘collection’.”

5(Boolos, 1974), p. 36; see also (Boolos, 1994), pp. 239–241.
6(Boolos, 1984b), p. 57.
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turn out not to be.

His first, and most famous, example is the so-called Geach-Kaplan Sentence:

(1) Some critics admire only one another.

Boolos specifies as the intended meaning of the sentence

that there is a collection of critics, each of whose members admires no

one not in the collection, and none of whose members admires himself.7

Taking the domain of discourse to be critics, and symbolising ‘x admires y’ by ‘Axy’,

(1) can be formalised as the second-order sentence

(2) ∃X(∃xXx ∧ ∀x∀y[(Xx ∧ Axy) ⊃ (x 6= y ∧Xy)])

Boolos poaches this sentence from Quine who mentioned it in both his Roots of Ref-

erence and Methods of Logic.8 Quine in turn credits Peter Geach with the discovery

of this sentence, and David Kaplan with the proof that (1) cannot be adequately ex-

pressed in first-order logic, as (2) is not equivalent to any sentence of pure first-order

logic.

To see that (2) has no first-order equivalent, substitute ‘(x = 0 ∨ x = y + 1)’ for

‘Axy’ in (2). The resulting sentence:

(3) ∃X(∃xXx ∧ ∀x∀y[(Xx ∧ (x = 0 ∨ x = y + 1)) ⊃ (x 6= y ∧Xy)])

can be shown to be true in all non-standard models of first-order arithmetic, but

7(Boolos, 1984b), p. 56.
8(Quine, 1974), p. 111, and (Quine, 1982), p. 293, respectively.
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false in the standard one.9 There is a non-standard model, however, that satisfies

any sentence of first-order arithmetic if, and only if, it is satisfied in the standard

model.10 Hence, there can be no first-order sentence that is equivalent to (2).

Boolos is a bit uneasy with the Geach-Kaplan sentence, however. He is not en-

tirely content that (1) in fact is an “acceptable” sentence of English. He explains:

“The ‘only’ seems to want to precede the ‘admires’ but the intended meaning forces

it to stay put.” He suggests that inessential changes in (1), i.e. exchanging the pred-

icate without changing the logical form, improves the situation. “Some computers

communicate only with one another” or “Some Bostonians speak only to one an-

other” sound more natural, and are still formalised as in (2). Boolos states:

I don’t have any idea why replacing the transitive verb ‘admire’ by a

verb or verb phrase taking an accompanying prepositional phrase helps

matters, but it does seem to me to do so.11

He therefore presents another pair of sentences to provide better examples. The first

of the two is readily formalisable in a first-order way:

(4) There is a horse that is faster than Zev and also faster than the sire of any

horse that is slower than it.

9(3) is true in any non-standard model: Let X be the set of all non-standard elements of an
arbitrary model. X does not contain zero, but is non-empty, hence it contains only successors and
immediate predecessors of any of its members. (3) is false in the standard model: X is a (non-
empty) set of natural numbers. If the least member of X, x, is 0, then let y = 0; and x = y + 1
for some y otherwise. Since x is the least member of X, y is not in X. Compare (Boolos, 1984b),
p. 57, fn. 7.

10See (Shapiro, 1991), p. 123, for details; compare also p. 259, n. 4.
11(Boolos, 1984b), p. 57. Peter Simons exchanges ‘admire’ for ‘praise’ in the Geach-Kaplan

sentence and thereby produces the perhaps aesthetically more pleasing ‘Some critics praise only
one another’, (Simons, 1997), p. 260.
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Boolos assumes a domain of horses, and symbolises ‘Zev’, ‘the sire of’, ‘is faster

than’, and ‘is slower than’, by ‘0’, ‘s’, ‘>’, and ‘<’, respectively. (4) can then be

symbolised in first-order logic as

(5) ∃x(x > 0 ∧ ∀y[y < x ⊃ x > s(y)])

If we, however, consider the very similar, but plural sentence:

(6) There are some horses that are faster than Zev and also faster than the sire

of any horse that is slower than (all of) them.

we will find that a first-order formalisation cannot be achieved. Rather, the second-

order sentence representing (6) is:

(7) ∃X(∃xXx ∧ ∀x(Xx ⊃ x > 0) ∧ ∀y[∀x(Xx ⊃ y < x) ⊃ ∀x(Xx ⊃ x > s(y))])

If (7) is given the obvious arithmetical interpretation it can again be shown by an

argument analogous to the one used above, that (7) has no first-order equivalent.12

What does Boolos aim to show with these examples, though? It is of course not

true, strictly speaking, that (1), for example cannot be formalised in first-order logic.

Bluntly, choosing ‘Cx’ for ‘x is one of the critics who admire only one another’, we

get

(8) ∃xCx
12(Boolos, 1984b), p. 58; see also (Boolos, 1984a) – where it occurs first – for details. Boolos

mentions this example again in (Boolos, 1985a), pp. 73–74.
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as a first-order formalisation of (1). (8), of course, is not equivalent to (2) in any

normal sense, just like the formalisation of (1) in propositional logic, ‘p’, is neither

equivalent with (2), nor with (8). Boolos’ claim, therefore, is best understood as

stating that sentences like (1) and (6) cannot be formalised displaying their full

logical structure with the resources of first-order logic alone.

This is crucial, and also revealing. For, can a case be made that (1)’s structure

as exhibited by (2) is indeed logical structure? For Quine, for example, the “non-

firstorderizability” of (1) shows that, despite all appearance13, (1) is a mathematical

statement, as we need to quantify over sets in order analyse its structure properly:

(9) ∃s(∃x x ∈ s ∧ ∀x∀y[(x ∈ s ∧ Axy) ⊃ (x 6= y ∧ y ∈ s)])

In addition to the logical structure displayed by the first-order variables and quan-

tifiers and the truth-functional connectives, the sentence exhibits also, in Quine’s

sense, some set-theoretical content, indicated by the use of ‘∈’. (Consequently, Quine

only mentions (1), the Geach-Kaplan sentence, in the chapter entitled Glimpses Be-

yond of his Methods of Logic (Quine, 1982).)

Boolos’ aim here is to show that second-order resources, plurally interpreted in

the way introduced in section 4.2 below, are not only a natural extension of the first-

order resources, but were indeed part of the package all along. Before this reasoning

is presented, it is worth remarking that Boolos follows this strategy already in his

earlier On Second-Order Logic. Boolos not only points out the continuity of first- and

second-order logic as far as the definitions of validity and (semantic) consequence

13(Resnik, 1988), p. 84, points out that the Geach-Kaplan sentence really shows how natural lan-
guage sometimes masks ontological commitment, and that “Boolos has turned the Geach-Kaplan
[sentence] on it head.” I will come back to this problem in section 4.4 of this chapter, and also, in
more detail, in chapter 5.
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go,14 but also argues that some sets of sentences are “apparently inconsistent” that

cannot be shown to be so in first-order logic. In second-order logic, however, the

inconsistency of the following finite sets can be exhibited: {‘Smith is an ancestor15

of Jones’, ‘Smith is not a parent of Jones’, ‘Smith is not a grandparent of Jones’,

‘Smith is not a grand-grandparent of Jones’, ...}; {‘It is not the case that there are

infinitely many stars’, ‘There are at least two stars’, ‘There are at least three stars’,

...}; or {‘x is a natural number’, ‘x 6= 0’, ‘x 6= 1’, ‘x 6= 2’, ...}.

The reason why these sets cannot be shown to be inconsistent is easily seen in the

compactness theorem for first-order logic: if an infinite set of first-order sentences is

inconsistent, then a finite subset of it is inconsistent. All finite subsets of the sets

given as examples above, however, are consistent.

Boolos then compares the situation to that of, e.g., the set {‘It is not the case

that there are at least three stars’, ‘It is not the case that there are no stars’, ‘It is

not the case that there is exactly one star’, ‘It is not the case that there are exactly

two stars’}. This set can be shown to be inconsistent in pure first-order logic. The

argument that Boolos might allude to is that the cases are sufficiently similar to

suggest that the logic that shows the infinite sets to be inconsistent is logic in the

same right as the logic that show the finite sets to be inconsistent.16 This of course

does not follow on its own: one could also use set theory or arithmetic to show that

these sets are inconsistent, and presumably that does not show that set theory or

arithmetic are proper logic. What Boolos does instead is to heap up evidence that

first- and second-order logic share their most important features in common, while

14(Boolos, 1975), p. 48.
15Frege’s second-order definition of the so-called ancestral is require for this. It will be explained

a little further below.
16(Boolos, 1975), p. 49.
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arguing that their differences – like the completeness of first- and the incompleteness

of second-order logic17 – are less important.

To come back to the sets above, an opponent of Boolos’ could further argue

that the inconsistency of the infinite sets is not logical, but rather mathematical or

conceptual. How convincing one finds it that the infinite sets above are, in spite of

Boolos’ insistence, logically consistent, will presumable depend on what one thinks

about the status of second-order logic. The sets can still be “inconsistent” in another

sense, if they are not logically inconsistent, like the set {‘a is red’, ‘It is not the case

that a is coloured’}, for example (this is then, of course, not the technical, logical

notion of inconsistency anymore).

As mentioned above, the strategy of pointing out similarities and continuities

between first- and second-order logic is followed by Boolos in his case for the plural

interpretation, too.18 On the first page of his (Boolos, 1984b), he identifies as “the

devices of standard logic” the usual propositional connectives, quantification, cross-

reference, and identity. The devices of cross-reference in English are words like ‘it’,

17(Boolos, 1975), pp. 49–53; I will come back to this in my chapter 6 where I discuss the
incompleteness of second-order logic in detail.

18In (Boolos, 1994) a very similar general strategy is used again. Boolos discusses here Putnam’s
remarks on second-order logic in his Philosophy of Logic (Putnam, 1971), pp. 30-32, and his Peirce
the Logician, in (Putnam, 1990), esp. p. 259. Boolos seems to agree with Putnam that statements
of the validity of logical truths and logical inferences have to be logical truths themselves, but
argues against him that we thereby have to accept more second-order logic than Putnam wants to
admit. Putnam claims that if we accept the validity of a syllogism like Barbara, we implicitly
accept the second-order statement ‘∀F∀G∀H([∀x(Fx ⊃ Gx) ∧ ∀x(Gx ⊃ Hx)] ⊃ ∀x(Fx ⊃ Hx))’.
For Putnam, the properly logical fragment of second-order logic stops at Π1 sentences, however
(i.e. second-order sentences with only one uninterrupted sequence of prenex universal second-
order quantifiers in front of an otherwise second-order quantifier free formula). The “existentially
committing” Σ1 sentences (the analogue for second-order existential quantifiers) are out of the
scope of logic proper for him. Boolos observes that statements of validity of some Π1 sentences, in
turn, are themselves Π2 (one uninterrupted sequence of second-order universal quantifiers, followed
by a such a sequence of existentials, followed again by a such sequences of universals). Thus, if
statements of the validity of logical truths have to be logical truths themselves, there is no stopping
at Π1, as Putnam wishes; we soon have to go beyond the Σ1 sentences that Putnam wants to rule
out. For details see (Boolos, 1994), pp. 238–242.
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‘that’, and ‘who’, which correspond to variables in formal languages.

What the example sentences (1) and (6) share in common is that they make

use of plural devices of cross-reference, like ‘them’ instead of ‘it’. That this is the

case is, according to Boolos, hidden in (1), and only shows up when one tries to

formalise the sentence. It becomes perfectly clear, however, in the step from (4)

to (6); in (6) merely the singular word forms that occur in (4) are replaced by

their plural versions. If (2) and (7) indeed display the genuinely logical form of (1)

and (6), respectively, this should show up somehow in the logical inferences that

these sentences are involved in. It should be the case, for example, that some of

the logical consequences that can drawn from (1) cannot be captured and shown to

follow using a formalisation that is not broken down far enough in logical structure,

like the caricaturesque (8) as a formalisation for (1). Boolos presents a further

example to make this point:

(a) If there are some persons of whom each parent of any one of them is also one,

then if each parent of Yolanda is one of them, Xavier is one of them; and

someone is a parent of Yolanda.

(b) Every parent of someone red is blue.

(c) Every parent of someone blue is red.

(d) Yolanda is blue.

(e) Therefore, Xavier is either red or blue.

After a minute of thought19 the argument strikes one as logically valid. After a fur-

ther minute the reader familiar with Gottlob Frege’s work recognises that premise

19(Boolos, 1984b), p. 60, guides his readers through the argument.
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(a) defines ‘ancestor’. One of Frege’s the major achievements of part 3 of his Begriff-

sschrift, (Frege, 1879). is the definition of the ancestral of a relation. The definition

of the ancestral is usually taken to be in terms of classes. As Boolos puts it for

‘parent’ and its ancestral ‘ancestor’:

Frege’s definition of ‘x is an ancestor of y’ is: x is in every class that

contains y’s parents and also contains the parents of every member.20

There is no need, however, to mention classes in the definition of the ancestral of

a relation. The definition of the (weak) ancestral R∗ of a relation R is achieved in

second-order logic like this:

(Def-R∗) R∗(x, y) =df ∀F ([Fy ∧ ∀w∀z((Fz ∧Rwz) ⊃ Fw)] ⊃ Fx)

Boolos aims at making plausible that the second-order quantifier in the Fregean

definition of the ancestral corresponds to the use of plural pronouns and quantifier

phrases in English, and hence no commitment to classes arises at all, despite Quine’s

attempts to argue so.21 Using Frege’s definition of ‘ancestor’ (as the ancestral of

‘parent’) we can identify premise (a) in the argument above with the statement

‘Xavier is an ancestor of Yolanda’.22 Then, the argument can be formalised like

this:

(a′) P∗(x, y)

(b′) ∀w∀z((Pzw ∧Rw) ⊃ Bz)

20(Boolos, 1985a), p. 73.
21See (Quine, 1986a), pp. 64–66, and my chapter 3.
22(Boolos, 1994), p. 241.
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(c′) ∀w∀z((Pzw ∧Bw) ⊃ Rz)

(d′) By

(e′) ∴ Rx ∨Bx

where ‘P∗(x, y)’ in premise (a′) abbreviates its second-order definition. The unpacked

sentence is a direct formalisation of (a) in second-order logic. (As Boolos remarks,

the ‘there are’ in the antecedent of (a) expresses universal quantification, “as does

the ‘there is’ in ‘If there is a logician present, he should leave.’”23) The inference is

inherently second-order. It cannot be recast in pure first-order logic; but perhaps

even more then (1) and (6), (a) does not give the appearance that we are secretly

quantifying over sets.

4.2 The Plural Interpretation

Let us come back to second-order set theory. The view that second-order quantifiers

range over sets, viz. subsets of the (first-order) domain, leads into problems when

the domain contains all sets and hence does not form a set itself. Second-order

quantification would thus not be available in the case of set theory.

The principle drawback [...] is that there are certain assertions about

sets that we wish to make, which certainly cannot be made by means of

a first-order formula [...] but which, it appears, could be expressed by

means of a second-order formula if only it were permissible so to express

them. To declare it illegitimate to use second-order formulas in discourse

23(Boolos, 1984b), p. 60.
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about all sets deprives second-order logic of its utility in an area in which

it might have been expected to be of considerable value.24

Boolos has statements in mind like the separation axiom. In first-order set theory,

separation can only be used as an axiom schema. Boolos considers this as unsat-

isfactory. The reason, according to Boolos, why we accept the first-order schema

of separation, is because we accept (implicitly?) its second-order universal closure

‘∀X∀z∃y∀x(x ∈ y ≡ [x ∈ z ∧Xx])’.25 The flight to proper classes is unacceptable

to Boolos, as mentioned in the beginning of this chapter. Thus, he proposes a plu-

ral interpretation of the second-order quantifiers that makes use of the devices of

cross-reference available in English – e.g., plural pronouns – and avoids the use of

classes.26

In order to do so unambiguously, English has to be augmented with additional

devices for cross-reference in the form of indices for expressions like ‘it’, ‘that’,

and ‘them’. Boolos uses letters as subscripts, as in ‘itx’, ‘thaty’, ‘themX ’, ‘thatX ’,

‘themY ’, etc. He submits that this “extension” of the fragment of English that is

required for the plural interpretation is innocuous:

I want to emphasize that the addition to English of operators ‘it()’,

‘that()’, ‘them()’, etc. or variables ‘x’, ‘X’, ‘y’, etc. is not contemplated

here. The ‘x’ of ‘itx’ is not a variable but an index, analogous to ‘latter’

24(Boolos, 1984b), p. 60.
25This thought can also be found in (Kreisel, 1967), p. 147.
26The interaction between plural quantification and set theory is investigated in detail by

(Uzquiano, 2003), (Burgess, 2004), and (Lewis, 1991); in the case of Lewis, also mereology is
used. (For a discussion of Lewis’ construction see my section 9.3 in the forthcoming (Cohnitz and
Rossberg, 2006).) A discussion of these is omitted here as the philosophical question at hand is
whether a plural interpretation of the second-order quantifiers can serve to legitimise second-order
logic and rid it of (additional) ontological commitment to sets. The technical question of what can
be achieved using plural quantification in set theory is outside the scope of this thesis.
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in ‘the latter’, or ‘seventeen’ in ‘party of the seventeenth part’; ‘X’ and

‘x’ in ‘themX ’ and ‘itx’ no more have ranges or domains than does ‘17’

in ‘x17’. We could just as well have translated the language of second-

order set theory into English augmented with pronouns such as ‘it17’,

‘them1879’, etc. or an elaboration of the ‘former’ / ‘latter’ usage. Note

also that such augmentation will be needed for the translation into En-

glish of the language of first-order set theory as well.27

The “translation manual” for the translation from second-order set theory into aug-

mented English, then, looks as follows. Where ‘V ’ and ‘v’ are dummies for second-

and first-order variables, respectively, that for determinacy lend their typographical

shape to the indices of augmented English, translate:28

• pV vq as pitv is one of themV q;

• pv ∈ v′q as pitv is a member of itv′q;

• pv = v′q as pitv is identical with itv′q;

• ‘¬’ as ‘it is not the case that’;

• ‘∧’ as ‘and’ (use similarly obvious translations for the other truth-functional

connectives, or reduce those in the common fashion to ‘¬’ and ‘∧’);

• where ϕ∗ is the translation of ϕ, translate p∃vϕvq as pthere is a set thatv is

such that ϕ∗q

27(Boolos, 1984b), p. 68; all emphases are Boolos’.
28See (Boolos, 1984b), pp. 67–68, or (Boolos, 1985b), pp. 165–166.
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If such a translation is wanted for a second-order language that does not include

set theory, the latter clause can be straightforwardly mended: the translation, then,

reads more generally: pthere is something thatv is such that ϕ∗q.

The translation of sentences of the form p∃V ϕ(V )q is not quite as straightfor-

ward. The problem that arises is that in the standard semantics one can assign

the empty extension (or the empty set) to predicates, hence second-order variables

need to have it in their range (speaking from the standpoint of standard semantics,

again). The sentence ‘∃X¬∃xXx’, for instance, is valid in second-order logic and

hence second-order set theory. This has to be respected by Boolos “translation man-

ual”, too. ‘There are some sets such that no set is one of them’, however, turns the

valid ‘∃X¬∃xXx’ into a falsehood. Thus, Boolos inserts an “escape clause” into the

translation that accounts for the empty extension of standard semantics. (Note also,

that Boolos’ plurals have to be understood as “logicians’ plural”, in the sense that

‘there are some F s’ is taken to be true if there is only one F , despite the inclination

to think that there should be at least two.) The final clause of the translation reads

thus:

• Let ϕ∗ be the translation of ϕ, and let ϕ∗∗ be the translation of the result

of substituting an occurrence of p¬v = vq for each occurrence of pV vq in ϕ.

Then translate p∃V ϕq as peither there are some sets thatV are such that ϕ∗

or ϕ∗∗q.

In the context of non-set-theoretical discourse, this clause can be mended again

analogous to the way described above for the first-order existential quantifier.

Given this disjunctive translation of the second-order quantifier, the second-order

validity ‘∃X¬∃xXx’ comes out as the true sentence ‘either there are some sets thatX
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are such that it is not the case that there is a set thatx is such that itx is one of

themX or it is not the case that there is a set thatx is such that it is not that case

that itx is identical to itx’. Put in a more colloquial way this says, ‘either there are

some sets such that no set is one of them or no set is not self-identical’. The second

disjunct is true, and hence the disjunction is.

Let us take a second-order set theoretical statement, ‘∃X∀x(Xx ≡ ¬x ∈ x)’,

as a further example to see how Boolos’ translation works. The translation reads:

‘either there are some sets thatX are such that every set is such that itx is one of

themX if, and only if, it is not the case that itx is a member of itx or every set is

such that it is not the case that itx is identical to itx if, and only if, it is not the case

that itx is a member of itx’. If we paraphrase this sentence into the slightly more

elegant English sentence, ‘either there are some sets such that every set is one of

them if, and only if, it is not a member of itself, or every set is a member of itself’, it

is easy to see that the first disjunct is true (it plurally refers to all sets), and hence

the disjunction is true, too.

It should be noted that I sneakingly inserted a translation for the universal quan-

tifier for the examples just mentioned. Boolos’ translation manual has no clause for

universal quantifiers, though, not for first-, and especially not for second-order ones.

(Boolos, incidentally, smuggles a translation for the first-order universal quantifier

in, too.) When he first proposed the translation, Boolos believed that there was no

non-artificial way to translate the second-order universal quantifiers, and so resorted

to the instruction to exchange all occurrences of p∀V q for p¬∃V ¬q.29 David Lewis

later suggested that ‘No matter what some things may be theyX are such that’ is

29(Boolos, 1984b), p. 68. Michael Resnik complains about this lack of translation instruction for
second-order universal quantifiers in (Resnik, 1988), pp. 86–87.
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a perfectly acceptable rendering of ‘∀X’.30 For simplicity’s sake we can stick to the

universal-quantifier-avoiding version, though.

Boolos claim is that this translation shows that sentences like the Geach-Kaplan

sentence (1), ‘Some critics admire only one another’, do not bring about any onto-

logical commitment to sets when formalised in second-order logic, as in (2), contrary

to how Quine would have it:

[D]oes asserting [(1)] commit one to the existence of a non-empty class

of critics? The difficulty with the question is that the ground rules for

answering it appear to have been laid down, by Professor Quine.31

[W]hat makes first-order logic the touchstone by which the ontological

or existential commitment of [such] statements are to be assessed? The

statements do not appear to commit us to classes; why believe that it

is their translation into the notation of first-order logic augmented with

variables ranging over classes that determines what they are actually

committed to?32

Boolos takes the plural interpretation of the second-order variables to show that no

additional ontological commitment is brought about by second-order logic. Onto-

logical commitment occurs at first order; second-order variables do not range over

a new kind of objects – e.g., classes – but rather refer to the same old objects in a

new way, viz. plurally.33

30See e.g. (Lewis, 1991), p. 74; compare also (Boolos, 1994), pp. 242-243.
31(Boolos, 1985a), p. 76; compare chapters 3 and 5 of this thesis for Quine’s criterion of onto-

logical commitment.
32(Boolos, 1985a), p. 78. A point similar to this is made and discussed in detail in the following

chapter, chapter 5, of this thesis.
33(Boolos, 1984b), p. 72.
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The plural expressions that are used to interpret the second-order quantifiers

are just the plurals of ordinary English which every competent speaker of English

understands. Thus, Boolos claims, he provides a

coherent and intelligible way of interpreting such second-order formulas

[...] even when the first-order variables in these formulas are construed

as ranging over all sets or set-like objects there are. The interpretation

is given by translating them into the language we speak [...]. It cannot

seriously be maintained that we do not understand these statements

[...].34

Section 4.4 below will discuss how this last one of Boolos’ statements concerning the

plural interpretation of the second-order quantifiers has been challenged. Before I

turn to that, however, a fairly important omission in the “translation manual” has

to be noted.

4.3 Polyadic Predicates

In his 1879? (Boolos, 1994) Boolos credits Hartry Field with being the first to notice

that the plural translation of the second-order quantifiers only works for monadic

second-order logic, i.e. where the quantified second-order variable takes the place

of a one-place predicate.35 As early as his Nominalist Platonism (Boolos, 1985a),

however, he suggested that in “many of the most important applications of second-

order logic, a pairing function will be available and monadic variables can then

be made to do the work of all second-order variables.”36 So, if one-place predicate

34(Boolos, 1984b), p. 69.
35(Boolos, 1994), p. 243.
36(Boolos, 1985a), pp. 75–76, fn. 3.
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variables refer plurally to objects, two-place predicate variables refer plurally to

ordered pairs of such objects for Boolos, three-place predicate variables to ordered

triples, and so on. The “many of the most important applications” that Boolos has in

mind are mathematical theories such as set theory or arithmetic. The mathematical

resources available there are sufficient to define a pairing function, and the technical

difficulty is elegantly circumvented, as long as enough mathematics is available.37

John Burgess, Allen Hazen and David Lewis showed in an “Appendix on Pairing”

to Lewis’ Parts of Classes38 how such a pairing function can be constructed without

using mathematics – or at least without overtly using mathematics. In Parts of

Classes (Lewis, 1991), Lewis reconstructs Zermelo-Fraenkel set theory in a system

he calls Megethology. Megethology is basically a mereology that is strengthened by

monadic second-order quantification – plurally construed, following Boolos – and

some choice principles. Since Lewis wants to reconstruct set theory (and with it the

whole of mathematics in what he claims to be a nominalistically acceptable way,

or at least as close as one can sensibly get to it), he cannot use the set-theoretical

definition of an ordered pair (or any other mathematical definition) to simulate

polyadic second-order quantification. Burgess, Hazen and Lewis use clever coding

tricks that only require what is anyway available in Megethology to construct a

pairing function.39 They have to assume, however, that there are infinitely many

objects for this coding to work. In the context of Lewis construction this is not

problematic – in a sense – as Lewis has to assume the universe to be inaccessibly

37A pairing function in set theory is given by the well-known ‘f(x, y) = {{x}, {x, y}}’; in arith-
metic, a pairing function can be defined as ‘g(x, y) = 2x · 3y’, for example.

38(Burgess et al., 1991).
39The details are omitted here. We will see a little further below why this way out is unattractive

anyway.
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large anyway for other reasons.40

That Burgess, Hazen and Lewis have to assume the infinity of the domain is

hardly surprising: any domain that is closed under pairing is infinite.41 To rely on

this assumption, however, sits uneasily with Boolos’ claim that second-order quan-

tification does not involve any ontological commitment that is not already present

in the first-order case. Resnik notes in this context that while defining a pairing

function might come free in cases where enough mathematics is available anyway,

in theories where devices for forming pairs (or, more generally, tuples of arbitrarily

large degree) are not available, the ontological commitment is pumped up in a signif-

icant way.42 A general, ontologically neutral, solution for this problem is necessary

for Boolos’ plural interpretation to be successful.

Agust́ın Rayo and Stephen Yablo attempt such a solution.43 They utilise an idea

taken from Arthur Prior.44 Prior contends that

we form colloquial quantifiers [...] ‘however’, ‘somehow’, ‘wherever’ [...]

[and] no grammarian would count ‘somehow’ as anything but an adverb,

40Lewis defines sets (except for the empty set) as mereological sums (or fusions) of singletons.
He hence only has to show that everything has a singleton, and mereological fusion will take
care of all other sets. Lewis takes it to be sufficient for his project to show that some singleton
function exists, and it can be shown that such a function is guaranteed to exist if the universe is of
inaccessible cardinality. For a discussion of Lewis’ project and especially a criticism of the Burgess-
Hazen-Lewis pairing construction see my forthcoming (Cohnitz and Rossberg, 2006), section 9.3.
– (Hazen, 1997b), shows how polyadic second-order quantification can be simulated in monadic
third-order logic. This will not help here, however, even if we ignore for the moment that Boolos’
plural translation gives us no handle whatsoever on quantification that is higher than second-order
(see (Boolos, 1994), p. 244). A further problem is, as also shown by Hazen in his paper, that
the Axiom of Choice is needed for this simulation. Since the Axiom of Choice, presumably, is
existentially committing, the result is of little use for an ontologically neutral construal of polyadic
second-order quantification, despite its being of interest for other contexts. See also the discussion
of this in (Hazen, 1997a).

41(Shapiro, 1991), p. 63.
42(Resnik, 1988), p. 86.
43(Rayo and Yablo, 2001).
44(Prior, 1971), chapter 2, esp. p. 35–38.
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functioning in ‘I hurt him somehow’ exactly as the adverbial phrase

‘by treading on his toe’ does in ‘I hurt him by treading on his toe’ [...].

[This] is simply to extend the use of the “thing” quantifiers in a perfectly

well-understood way, as in ‘He is something that I am not – kind’ [...]

‘something’ here is quite clearly adjectival rather than nominal in force.45

Rayo and Yablo claim that “non-nominal quantifiers – quantifiers like ‘somehow’

and adjectival ‘something’ – carry no commitments.”46 (It was, incidentally, already

noted by Peter Simons that Prior’s arguments might be of interest in the debate

about ontologically noncommittal interpretations of higher-order quantification.47)

Rayo and Yablo present four arguments (of allegedly increasing “weight”) for this

claim:48

• Argument from Instances: Use of a quantifier commits one at most to entities

of the kind referred to by the phrases its bound variables stand in for. The

phrases a non-nominal variable stands in for – phrases like ‘by treading on

him’, and ‘kind’ – do not refer at all. So non-nominal quantifiers carry no

commitment.

• Argument from Entailment: Suppose that ‘I hurt him somehow’ were commit-

ted to entities beyond those presupposed by ‘I hurt him by treading on him’,

that is, me and him, and (maybe) my foot. Then ‘I hurt him somehow’ would

not be trivially entailed by ‘I hurt him by treading on him’ – because it is no

trivial matter whether these additional entities exist. ‘I hurt him somehow’ is

45(Prior, 1971), p. 37.
46(Rayo and Yablo, 2001), p. 81.
47(Simons, 1993), p. 261, and (Simons, 1997), p. 264.
48Quoted verbatim from (Rayo and Yablo, 2001), pp. 81–82.
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however trivially entailed by ‘I hurt him by treading on him’. So there is no

additional commitment. [...]

• Argument from Consistency: Suppose that ‘something’ in ‘a is something that

b is too’ carried commitment to BLAHs [sic] – properties, say, or sets. Then to

say ‘a is something that b is too, but there are no properties or sets to witness

the fact’ would be self-undermining. And in general it isn’t. Sometimes indeed

the claim is importantly true: ‘a is something that b is too, viz. not a member

of itself, but as we know from Russell’s paradox there is no witnessing set’.

[...]

• Argument from Cardinality: By Cantor’s theorem, every domain contains ob-

jects x, y, z, ... such that no domain element contains all and only those objects.

Another way to put it is that the following is mathematically impossible:

(i) take any objects you like, there’s an object containing them and nothing

else.

But it is not at all impossible – it is on one reading quite true

(ii) take any objects you like, they are something that the rest of the objects

are not.

The die-hard objectualist might try to construe the ‘something’ in (ii) in terms

of container-objects somehow eluding the grasp of the initial ‘any objects you

like’. But this escape hatch can be closed by stipulating that the initial quan-

tifier is absolutely universal. Not only does this stipulation fail to make (ii)

look any less consistent, (ii) continues to look true. It could not be true on

the stipulated reading if ‘something’ had ontological import.
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Rayo and Yablo continue to give examples how, using this idea, inferences that

look like they should be formalised using polyadic second-order quantifiers, can be

captured using these adverbial expressions, much in the fashion of Boolos’ plural

interpretation. For instance, from the sentence

(10) Connecticut is related to Delaware in that the former is larger than the latter;

Texas is so (thus, likewise) related to Nebraska.

it follows

(11) Connecticut is related to Delaware somehow such that Texas is so related to

Nebraska.

(10) and (11) are straightforwardly formalised, using ‘L’ to stand for ‘... is larger

than ...’ and the name letters in the obvious way, as

(10′) Lcd ∧ Ltn

(11′) ∃R(Rcd ∧Rtn)

It would be tempting now to suggest a translation or p∃R...Rxy...q as psomethingx

is related to somethingy somehow such that ... x is so related to y ...q. This however

runs into the problem that the second-order logical truth

(12) ∃R∀x∀y ¬Rxy

comes out as something like ‘something is related to something somehow such that

no objects are so related’, which is false.49 Rayo and Yablo therefore insert an escape

49(Rayo and Yablo, 2001), p. 83.
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clause that is taking care of the “empty relation” in a way analogous to Boolos’ for

the plural interpretation on the monadic second-order quantifiers. p∃R...Rxy...q will

be interpreted as psomething is-or-isn’t related to something somehow such that ...

x is so related to y ...q.

(12) thus is interpreted as saying that something “is-or-isn’t related to something

somehow such that no objects are so related”.50 Rayo and Yablo take this to be the

solution. Presumably they are able to understand this sentence, that some people

who are not used to such formulation might struggle to make sense of. The authors

admit the difficulties in parsing this translation and suggest an “abbreviation” of

the garbled translation to ‘somehow things relate such that...’.51 Taking for granted

that this expresses the same thought for the sake of the exposition, a Rayo-Yablo

translation function ‘Tr’ for dyadic second-order logic is defined recursively like this

(the symbolisation conventions are slightly adjusted in order to fit those used for

Boolos’ translation manual; ‘_’ denotes concatenation):

• Tr(p¬ϕq) = ‘it is not the case that’_Tr(pϕq)

• Tr(pϕ ∧ ψq) = Tr(pϕq)_‘and’_Tr(pψq)

• Tr(p∃vϕq) = psomethingv is such thatq_Tr(pϕq)

• Tr(p∃Rϕq) = psomehowR things relate such thatq_Tr(pϕq)

• Tr(pRvv′q) = pitv is soR related to itv′q

Rayo and Yablo express faith in the unproblematic extendibility of this translation

to the case of predicate variables with degree greater than 2, i.e. for n-adic predicate

50(Rayo and Yablo, 2001), p. 84.
51(Rayo and Yablo, 2001), p. 84.
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variables for n > 2. They also discuss the interaction of their translation with Boolos’

plural interpretation of the monadic second-order quantifiers, and some strategies

for incorporating a translation of monadic predicate variables into their translation.

The details need not concern us here. The basic idea behind their approach should

be clear.

In the next section, where further criticisms of Boolos’ plural interpretation are

discussed, we will also see that the problems the Boolos strategy runs into arise

if anything to an even graver extent for the Rayo-Yablo translation for dyadic (or

polyadic) second-order logic.

4.4 Still Wild

It first has to be noted that Boolos’ argument for not only the legitimacy, but also

the (near) indispensability of second-order quantification, plurally construed, for the

domain of set theory, rests on his rejection of proper classes and his insistence on

absolutely unrestricted (first-order) quantification. In both cases there is room to

demur.

Boolos insists that set theory is supposed to be a theory of all collections, and

that there are therefore no collections or set-like entities that are not sets.52 If we

want to speak about all of them, as we often do, the device to do so must be plural,

as there is no set of all sets.

Other possible responses, of course, are to admit a hierarchy of classes,

superclasses, superduperclasses, etc., to claim that, actually, we can’t

talk about everything at once, to invoke some doctrine of typical or

52See (Boolos, 1974), p. 36; (Boolos, 1994), pp. 239–240.
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systematic ambiguity, or to mutter something about a ladder.53

Michael Resnik, for example, points out that all the sentences of second-order set

theory that Boolos argues turn out contradictory if the second-order quantifiers are

interpreted as ranging over sets although second-order logic declares them to be

valid, can just as well be formulated using proper classes (or “ultimate classes”, as

Resnik calls them following Quine54). So interpreted, the sentences come out correct.

Concerning this argument, we have therefore to attest a “clash of intuitions”, a

stand-off of opinions. If proper classes etc. are rejected, plurals might be the only

way out. One man’s modus ponens is the other man’s modus tollens, however. If

someone just will not admit second-order quantifiers that do not range over higher-

order entities like classes, and finds plural quantification unacceptable, then she

can just as well draw the conclusion that, no: set theory is not a theory about all

collections, and there are collections that are not sets, or that we just cannot speak

absolutely unrestrictedly for this reason.

Let us now consider Boolos’ arguments that sentences like the Geach-Kaplan

sentence (1) (far above) cannot be formalised in pure first-order logic, but can be for-

malised in second-order logic. Since (1) is obviously not committed to sets, however,

it cannot be right that second-order quantifiers have to be interpreted as ranging

over sets. Resnik remarks that in opposition to Boolos’ claims, (1) is usually taken

to be an example for the fact that natural language sometimes masks ontological

commitment, and that thus “Boolos has turned the Geach-Kaplan [sentence] on it

head.”55

While (1) does not mention classes on the surface, Resnik nevertheless holds that

53(Boolos, 1994), p. 241.
54(Resnik, 1988), pp. 78–80; for the term ‘ultimate class’ see (Quine, 1969b), p. 3.
55(Resnik, 1988), p. 84.
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he is “inclined to understand it as saying:

(1′) There is a non-empty collection of critics each member of which admires no

one but another member.”56

A Boolosian interpretation of (1), or its formalisation (2) (see far above), on the

other hand, looks like this:

(1′′) “There are some critics such that any one of them admires another critic only

if the latter is one of them distinct from the former.”57

Far from conceding, in light of this translation into English plural talk, Resnik

rejoins:

[T]his sentence seems to me to refer to collections quite explicitly. How

else are we to understand the phrase ‘one of them’ other than referring

to some collection and as saying that the referent of ‘one’ belongs to it?

Of course, if we render [(2)] and [(1′′)] as [(1)], we can avoid the problem-

atic phrase ‘one of them’, and see that [(1′′)] is just an awkward way of

putting [(1)]. But I have two worries with this way out. First, we have

no assurance that we can always smooth out Boolos’s translations in this

way. Second, I started out by worrying about the ontic commitment of

[(1)]. The bucket was passed to [(2)] and thence to [(1′′)]. If [(1′′)] is just

an awkward way of saying [(1)], we have come full circle.58

56(Resnik, 1988), p. 77.
57(Resnik, 1988), p. 77; Resnik’s emphases.
58(Resnik, 1988), p. 77–78.
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Again, we are faced with a stand-off between Boolos and Resnik – and a stand-off

at best, for Boolos’ critics can strengthen their position. To see how, let us first

consider the support that Stewart Shapiro offers for Resnik’s claims:

whatever understanding we do have of plural quantifiers is mediated by

our understanding of sets and classes.59

This is at least the case, as Shapiro qualifies later, if the plural quantifications

are meant to be rigorous enough, and “sufficiently determinate”, for their use in

mathematics:

Consider a statement of second-order real analysis of the form

∀X∃Y Φ(X, Y )

The opening second-order quantifier can be given both a plural and an

ordinary, standard reading. It had better be the case that if we read

the quantifiers as plurals, we will get exactly the same truth-value, in

general, as we would if we understand the quantifiers as ranging over sets

of real numbers. If effect, there needs to be a “plurality” (so to speak)

for each set of real numbers. Does the English plural construction have

that determinate meaning?60

The same sentiment is expressed by Allen Hazen61 and Ignazio Jané.62 It is tempting,

however, to think that Resnik, Shapiro, Hazen and Jané here put the cart before

horse. The understanding of ‘set’ that is relevant here is presumably the one that

is conveyed by the iterative conception of set or the axioms of ZF. In either case,

59(Shapiro, 1993), p. 472.
60(Shapiro, 2005a), p. 764.
61(Hazen, 1993), pp. 138-139.
62(Jané, 2005), pp. 805–807.
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it is a highly technical understanding. Is the understanding of plural constructions

in English not prior to that? Presumably, a child asking her parents for some of

the sweets in the bowl does not need a grasp of the iterative hierarchy or ZF to

competently use the required plural phrase to express her desire.63 As Boolos put

it: “The interpretation is given by translating them into the language we speak [...].

It cannot seriously be maintained that we do not understand these statements”.64

The concern expressed by Boolos’ critics mentioned above, however, is with the

determinacy of plural constructions. The formal system of second-order logic with

its standard formal semantics (or a Henkin semantics, for that matter) guarantees a

rigour that ordinary language lacks – this is the whole point about formal languages

if we follow Frege. The determinacy of the second-order quantifiers is meant to be

guaranteed by the formal semantics, too.65 Relying on an ordinary language notion

in the interpretation (or understanding) of this formal system appears to be a step

in the wrong direction.

If anything, the Rayo-Yablo translation fares even worse on this count. The

sentences that come out of the translation function are difficult enough to understand

as they are. How can we decide whether constructions involving ‘somehow things

relate such that’ is not committed to any additional entities? Rayo and Yablo

make a decent case that the ‘somehow’ is referentially innocuous, but what about

‘things’ – do we need another plural construction to cash that out? – or what about

the mention that things relate? Can this really be understood independently of a

63Pieces of rhetoric found in Boolos like “It is haywire to think that when you have some Cheerios,
you are eating a set – what you’re doing is: eating the cheerios”, (Boolos, 1984b), p. 72, suggest
that something along these lines might not be too far off his argument advanced in favour of plurals.

64(Boolos, 1984b), p. 69.
65For a critical discussion of the claim that formal semantics guarantee determinacy see my

chapter 7.
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developed theory of relations (which pumps up our ontological commitments)? If

we can have some grasp just from the use of ‘relate’ in ordinary English, will it be

precise and determinate enough for the purposes of higher mathematical theories?

It does not even seem to be clear beyond doubt that the order of arguments is

preserved in the natural language rendering. It seems clear, in any case, that if the

case against Boolos’ plural interpretation can be made, Rayo and Yablo’s translation

falls with it.

Rayo’s precisification of a logic of plurals in (Rayo, 2002) and his associated

interpretation of the second-order quantifiers might come as a rescue, at least for the

monadic case. Rayo formulates a plural first-order language (PFO) that in addition

to the usual first-order terminology has plural variables, written as ‘xx’, ‘xx1’, ‘yy’,

etc., and plural quantifiers ‘∃xx’, ‘∃xx1’, etc. (in order not to confuse these plural

variables with the pair of singular variables that take the argument places in a

dyadic predicate, I will in this section always use brackets and commas for the case

of (monadic as well as polyadic) predication as in ‘F (x)’ or ‘R(x, y)’; ‘xxi’ is just

one variable that refers plurally to objects in the first-order domain – it cannot be

split up). The language also contains a binary constant ‘≺’ which takes an ordinary

singular variable as first, and a plural variable as second argument. The intended

interpretation of pxi ≺ xxjq is piti is one of themjq (note, to avoid confusion,

that the conventions for indexing here vary from Boolos’, albeit in an unsubstantial

way).66 The Geach-Kaplan sentence (1) – see section 4.1 of this chapter – is thus

formalised in PFO as

(13) ∃xx∀y∀z[(y ≺ xx ∧ A(y, z)) ⊃ (y 6= z ∧ z ≺ xx)]

66(Rayo, 2002), p. 442.
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Note that Rayo’s plurals, just like Boolos’ plurals, admit of just one object counting

as some things.

Next, Rayo enriches PFO by plural predicates like pScattered(xxi)q (for ptheyi

are scatteredq; a one-place prediacte that takes a plural variable), or pSurrounded(xi, xxj)q

(for piti is surrounded by themjq; a two-place predicate that take a singular variable

as first, and a plural variable as second argument). Such plural predicates appear

desirable in light of examples like

(14) The boys carried a piano.

which is intended to say that the boys did the carrying together, and not that each

of the boys carried a piano on his own. Other examples are easy to find: think of

seashells that are scattered on the beach, musicians performing a symphony, Russell

and Whitehead writing the Principia Mathematica, the Peano Axioms implying

Goldbach’s Conjecture, Bob Dylan being surrounded by fans, etc. Call the thus

enriched language ‘PFO+’.

The one-predicates of PFO+ are divided into plural and singular predicates,

and something analogous is true of the polyadic predicates. (For simplicity’s sake

I will stick to one-place predicates in the following. The generalisation to many-

place predicates is straightforward.) This means that PFO+ has two predicates for

carrying a piano, for example, ‘CarryAPiano’ and ‘CarriesAPiano’,67 if you will,

for singular and plural predicates, respectively. Intuitively, so Rayo allows,68 the

sentences (14) and

67I use italics for singular predicates (following the standard of ordinary predicate logic) and
small capitals for plural predicates; (Rayo, 2002) uses small capitals for singular predicates
and boldface for plural predicates.

68(Rayo, 2002), p. 451.
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(15) Samson carried a piano.

should, nevertheless, employ the same predicate ‘carried a piano’. The formalisations

of (14) and (15) show that PFO+ does not respect this intuition:

(14′) ∃xx(∀y[y ≺ xx ≡ Boy(y)] ∧ CarriedAPiano(xx))

(15′) CarriedAPiano(s)

To rectify this, Rayo defines plural counterparts of singular predicates. For a singular

predicate ‘F (x)’ define its plural counterpart, ‘F†(xx)’, to be:69

(Def-F†) ∀x∀yy[∀z(z ≺ yy ≡ z = x) ⊃ (F†(yy) ≡ F (x))]

Rayo then introduces a further binary constant symbol ‘-’ that takes two plural

arguments, such that pxxi - xxjq has the intended interpretation ptheyi are some

of themjq, and defines the plural predicate ‘1(xx)’ as

(Def-1) 1(xx) =df ∀yy(yy - xx ⊃ xx - yy)

i.e. ‘1’ is true of some objects if, and only if, there is exactly one of them. This

provides enough resources to formulate PFO+ using only plural predicates (and no

singular ones) and ‘-’ (instead of ‘≺’) without loss of expressive power. Indeed,

Rayo shows the two formulations to be equivalent.70

69(Rayo, 2002), p. 452. Rayo uses ‘F∗’ for plural counterparts, rather than ‘F†’; in order to rule
out any possible confusion with the ancestral, as in ‘R∗’, I avoid his notation here.

70(Rayo, 2002), pp. 452–453; the details are omitted here.
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Rayo uses PFO+ to give a formal theory of truth for second-order logic.71 The

Boolos-inspired translation of monadic second-order logic into plural logic, however,

makes use only of PFO. It uses the “definitional equivalencies”

• Xi(xj) ≡df xj ≺ xxi

• ∃Xi(ϕ) ≡df ∃xxi(ϕ) ∨ ϕ∗

where ϕ∗ is the result of substituting pxj 6= xjq everywhere in ϕ for pXi(xj)q72

It is clear how this interpretation of monadic second-order logic in PFO is the exact

analogue of Boolos’ natural language plural interpretation. Rayo spells out the

latter formally, and thus – to come back to the original question – might be taken

to provide a rigorisation of Boolos’ interpretation that was found lacking by Resnik,

Shapiro, Hazen, and Jané, as noted above.

What has happened, however, and how does it help? The original question was

how to understand formal second-order languages (without interpreting them as

some form of class theory). Boolos provided an informal translation using plural

constructions of English. This was found wanting in rigour and structure, and

subject to the vagaries of natural language. Now Rayo has introduced a new formal

language to make the translation more rigorous. So, the obvious next question is:

how do we understand that formal language. It is not even as well-studied as second-

order logic in its proof-theoretic properties. It seems that we have traded in a fairly

well understood logic for a brand-new one that is not yet sufficiently explored and

understood.

71(Rayo, 2002), appendix 4; the details are omitted here.
72(Rayo, 2002), p. 455.
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Two ways seem to be open. Both, however, appear undesirable. Firstly, one

could take the intended interpretation of PFO (and PFO+) to be a natural language

semantics. On this horn of the dilemma, however, no progress is made compared

to Boolos’ original interpretation. We have merely added a further, unnecessary

level of languages. The second option is to give a formal semantics or interpretation

to PFO. There will certainly be a set-theoretic semantics for PFO, but nothing is

gained if it is done like this. Rayo toys with the idea of a atomistic mereological se-

mantics for PFO+.73 “Pluralities” might become reified in the guise of mereological

sums on this approach. But since by Cantor’s Theorem there are more “pluralities”

then objects for any given domain, the claim that no additional ontology is implicit

in second-order quantification, again, could not be upheld. Analogously, for n atoms

there are 2n− 1 entities formed by mereological summation – basically the powerset

of the domain, but barring the empty set, as classical mereologies dispense with a

“null sum”. Going down this route, it appears more and more likely that our un-

derstanding of plurals is indeed mediated by our understanding of classes as Boolos’

critics submit.74

Also, we are thrown back into the circle sketched above: how is the mereological

interpretation (or any other formal semantics, for that matter) going to be given? If

one would proceed informally, the imprecision worry would rise its head again. Using

an interpretation given by means of a formal system on the other hand – indeed,

Rayo suggests ‘C’ for a notion of belonging to a plurality, mereologically construed,

73(Rayo, 2002), p. 453–455.
74A similar strategy, using Leśniewski’s Ontology – his term logic that he builds his Mereology

on – was already gestured at by Peter Simons (see (Simons, 1997), pp. 268–270; compare also
(Simons, 1985)). Simons is interested in a nominalistically acceptable construal of higher-order
quantification. As mereology is traditionally seen as a nominalistically acceptable system par
excellens, the worries raised above presumably do not apply to him. Space constraints make it
impossible investigate Simons’ approach in due detail in this thesis.
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and suggests interpreting ‘-’ as ‘C’ ! – raises the question for an interpretation of

that symbolism.

Whatever the prospects for a formal semantics that satisfies all demands might

be, though, again it seems that the step via PFO is an unnecessary detour: whatever

interpretation can be given to PFO (which then interprets monadic second-order

logic) can presumably be given to monadic second-order logic directly. This is, of

course, not to say that PFO and PFO+ are not interesting and worth exploring –

it merely says that they offer no prospect as a tool to dispel doubts about monadic

second-order logic.

Øystein Linnebo oberves that the translation from monadic second-order logic

into PFO in fact shows just how strong the assumptions on the allegedly innocuous

plural constructions have to be. In order for the interpretation to work, an analogue

of the second-order comprehension schema (or the corresponding rules) is needed.

Linnebo calls this the “plural comprehension schema”, (Comp-P):75

(Comp-P) ∃xϕ ⊃ ∃xx∀x(x ≺ xx ≡ ϕ)

where ϕ is in the language PFO and does not contain ‘xx’ free. It is possible

(and maybe necessary) to distinguish between predicative and impredicative plural

comprehension in the usual fashion (see chapter 2, section 3.1, above). The former

is sufficient if a predicative second-order theory is meant to be interpreted, while

the latter is needed if the second-order theory is impredicative. Since the latter case

is presumably the one that is wanted,

what we need to justify is that there are pluralities corresponding to all

75(Linnebo, 2003), p. 74.

85



expressions of the form ‘the ϕs’, even where ‘ϕ’ contains bound plural

variables. But in order to do this, we must understand what these bound

plural variables range over. This means that we must understand the

notion of a determinate range of arbitrary sub-pluralities of the logical

domain.76

The problem becomes particularly pressing if we want to use the plural quantifiers

in the domain of set theory. The notion of an arbitrary sub-plurality becomes highly

complicated. One may doubt whether our natural language plural expressions give

us a range for the plural quantifiers that is sufficiently determined in this area –

which, recall, according to Boolos is “an area in which [second-order logic] might have

been expected to be of considerable value.”77 How many “pluralities” of members of

an infinite set there are seems to be in a straightforward way related the continuum

problem (see chapter 7 below), and it is rather unlikely that the understanding we

have of plurals from our ordinary language use will decide that.

4.5 Summary

In this chapter, I presented Boolos’ response to the Quinean charge that second-

order logic is committed to sets. Boolos proposes a plural interpretation of the

monadic second-order quantifiers and argues that second-order quantification thus

construed is not ontologically committing over and above the commitments of the

first-order fragment of a theory. The plurally interpreted second-order variables,

Boolos contends, do not refer to new objects, but rather refer in a new way to the

76(Linnebo, 2003), p. 85.
77(Boolos, 1984b), p. 65.
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old objects: they refer plurally.

The principal problem we met was that Boolos translation only captures monadic

second-order logic. While Boolos is content that in all the interesting cases there

will be enough mathematics available to define a pairing function, this provides no

general solution. There is no guarantee that there will always be a pairing function

available – indeed, in finite domains there can be none. It was suggested that the

Rayo-Yablo translation of polyadic second-order logic was less comprehensible than

Boolos’ plural translation, and that the problems that the latter faces, are even more

pressing for the former.

Boolos’ critics have claimed that his promotion of plural quantification over a

construction that uses classes comes to a stand-off and a clash of intuitions con-

cerning the respective merits and preferences involved on each side. It was further

argued by Resnik, Shapiro and others that our understanding of the plural con-

structions Boolos uses is either too imprecise to be useful, or else is mediated by our

(highly theoretical) understanding of set theory. Attempting to rigorise the plural

interpretation as a remedy did not lead to a cure, but merely prolonged the suffering.

It seems quite interesting in this context that Boolos suggests, concerning the

problem of polyadic quantification, that the mere fact that English lacks the re-

sources to translate many-place predicate variables along the line of his plural in-

terpretation need not be an objection. He states that

the provision of a translation scheme into an antecedently understood

language need not be the only way to confer sense upon statements in

some notation; we didn’t learn out mother tongue that way, for sure.

And after all, we understand the basic formal machinery of second-order
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logic rather well; the syntax (including the devices for quantification and

predication, as well as elementary proof theory) of polyadic second-order

notation can be understood by one who understands that of polyadic

first-order logic and monadic second-order logic.78

It will become clear in chapter 8 just how sympathetic I am to the view that we

can understand a great deal about logic by grasping the formal language and rules

of inference. But then, accordingly, in the case of Boolos’ plural interpretation one

might start to wonder what all the laborious effort was for.

Overall, Boolos’ project does not seem come to a satisfactory end. It is wanting in

the various respects mentioned above, with no solution appearing to be forthcoming.

In the next chapter, chapter 5 of this thesis, I tackle the Quinean claims about the

set-theoretical commitments of second-order logic from a different angle. I argue that

a revision of Quine’s criterion of ontological commitment is needed to make it work

for even minimally interesting cases, and that the most straightforward revision will

render second-order logic ontologically innocuous, provided it can be argued that

second-order logic is legitimate, independently of a set-theoretical construal of it.

Such an approach will be developed in chapter 8.

78(Boolos, 1994), p. 243.
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Chapter 5

Ontological Commitment

5.1 Quine’s Criterion

Statements for Quine’s criterion for ontological commitment can be found in many

of his papers. Here are some examples:

[E]ntities of a given sort are assumed by a theory if and only if some of

them must be counted among the values of the variables in order that

the statements affirmed in the theory be true.1

To be assumed as an entity is, purely and simply, to be reckoned as the

value of a variable. [...] The variables of quantification, ‘something’,

‘nothing’, ‘everything’, range over our whole ontology, whatever it may

be; and we are convicted of a particular ontological presupposition if, and

only if, the alleged presuppositum has to be reckoned among the entities

over which our variables range in order to render one of our affirmations

1(Quine, 1953), p. 103.
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true.2

Another way of saying what objects a theory requires is to say that they

are the objects that some of the predicates of the theory have to be true

of, in order for the theory to be true. But this is the same as saying that

they are the objects that have to be values of the variables in order for

the theory to be true. [...] Our question was: what objects does a theory

require? Our answer is: those objects that have to be values of variables

for the theory to be true.3

And of course the most famous one:

The universe of entities is the range of values of variables. To be is to

be the value of a variable.4

Quine considers formalised theories, and asks for the ontological commitment of

these theories, i.e. what things have to exist in order for the theory to be true.

Ultimately, and quite intuitively, the ontological commitment of a theory can be

read off from the existentially quantified sentences of the theory. If, for example,

the theory includes the statement ‘∃x(x is red)’ the theory is committed to red

things. There have to be red things in order for this sentence, and hence the theory,

to be true. Or, put in Quinese, it has to be assumed that there are red things in

the range of our variables in order for the affirmed statement ‘∃x(x is red)’ in the

theory to be true.

It might seem now, that Quine misses something. What if the theory says that

Socrates is a philosopher? Is it not intuitively the case that this theory is committed

2(Quine, 1948), p. 13.
3(Quine, 1968), pp. 95–96.
4(Quine, 1939), p. 708.
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to philosophers in general, and Socrates is particular? ‘Socrates is a philosopher’,

however, surely is formalised as something like ‘s is a philosopher’, or shorter ‘Ps’

which contains neither a variable, nor an existential quantifier.

To see that there is, for Quine, no problem in this, first we have to observe, that

we are primarily concerned with the ontological commitment of theories. Theories

are standardly taken to be closed under logical consequence, i.e. a theory is a bunch

of statements that are taken to be true, the axioms, plus every statement that follows

logically from them. Now, to see that a theory that has ‘Ps’ as an axiom is indeed,

according to Quine’s criterion ontologically committed to philosophers and Socrates,

observe that the statements ‘∃xPx’ and ‘∃x(x = s)’ both follow from ‘Ps’ and hence

belong to the theory. The range of the existentially quantified variables includes –

for the sentences to be true – philosophers and Socrates, respectively, and so the

theory is committed to these entities.

Quine has something more up his sleeve, however. Even from the sentence

‘Socrates is a philosopher’ itself we can read off the ontological commitments, if

we just look close enough. For Quine, proper names like ‘Socrates’ are just definite

descriptions in disguise. Socrates is just the unique object that “socratises”, and so

‘Socrates is a philosopher’ is really properly formalised as ‘∃x(Sx ∧ ∀y(Sy ⊃ y =

x)∧Px)’. So, here we have our existential statement, and philosophers and socratis-

ers are amongst the values of the variables, or at least “have to be reckoned among

the entities over which our variables range in order to render our affirmation true”.

En passant, Quine brings proper names properly into line with ontological com-

mitment being to a kind of thing – it is only that proper names commit to very

unique kinds of things, viz. kinds that are uniquely instantiated – while his original

motive for this move was to solve the problem of empty names. Famously, Russell
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solved the problem of the present king of France with his theory of descriptions.5

‘The present king of France is bald’ seems to be false, since presently there is no

king of France. But then, ‘The present king of France is not bald’ should also be

false, for the same reason. How can that be, if the two sentences are negations

of each other? Russell’s solution, standard today, is that they are not negations

of each other, it is just the surface grammar of the sentences that makes us be-

lieve that. In fact, the sentences say ‘∃x(Kx ∧ ∀y(Ky ⊃ x = y) ∧ Bx)’ and

‘∃x(Kx ∧ ∀y(Ky ⊃ x = y) ∧ ¬Bx)’, where ‘K’ stands for ‘is presently king of

France’, and ‘B’ for ‘is bald’. So they are not negations of each other at all, both

can be false, and are.

Quine takes this a step further and applies Russell’s insight to empty names, like

‘Pegasus’ as well. Were ‘Pegasus is a winged horse’ formalised as ‘Wp’, then on the

standard treatment of names as always referring, it would follow that ‘∃x(x = p)’ is

true, no matter whether we claim that ‘Wp’ is true or not. The existential statement

would follow from the logical truth ‘∀x(x = x)’ if we can instantiate it to Pegasus,

and hence has to be taken as true as well. On Quine’s treatment, ‘Pegasus is a winged

horse’ comes out as ‘∃x(xpegasises∧∀y(ypegasises ⊃ y = x)∧ x is a winged horse)’

which, alas, is false due to the lack of winged horses and unique pegasisers. Since

no proper names are involved, however, the existence of Pegasus does not have to

be asserted by saying so.

As said above, Quine’s criterion seems very intuitive indeed. After all, is it not

straightforward, if anything ever was, that a theory that says that there are red

things is committed to the existence of red things? And is that not exactly what

Quine’s criterion says? Is surely seems so. It is, however, not exactly what Quine’s

5(Russell, 1905).
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criterion says, but it is exactly where Quine’s criterion gains its credence from.

Consider the following theory. Take as sole axiom the sentence formalised as ‘p’,

and close the theory under logical consequence. Here we have a theory formalised

in propositional logic. Variables and quantifiers do not even belong to the language.

We are forced to say that either Quine’s criterion does not apply, or that this theory

does not have any ontological commitment; neither seems satisfactory. Say, ‘p’ stood

for ‘Unicorns exist’, surely we would want to say that the theory is committed to the

existence of unicorns. To fix this, one might point out that formalising ‘Unicorns

exist’ as ‘p’ is not sufficient, since it does not exhibit the full logical form of the

sentence. We should, therefore, formalise ‘Unicorns exist’ as ‘∃x Ux’ which makes

the ontological commitment that arises from this sentence explicit. This move shows

a parallel to Quine’s treatments of names: Names, too, are not broken down far

enough in the logical analysis, according to Quine, if just symbolised by a constant

letter. Clearly to display the ontological commitments of sentences in which names

figures means replacing them by definite descriptions.

What this shows us, is that Quine’s criterion for ontological commitment does

not stand on its own, at least not if we think that it is purely descriptive. The

normative aspect of it – or the normative aspect by which it has to be supplemented

in order for it to be generally applicable – is that the theories have to be formalised

in a certain way. It looks as though this way can be characterised in the following

way: The logical structure of the sentences of the theory has to be analysed as

deeply as possible to exhibit the ontological commitments. Restricting ourselves

to propositional logic in the formalisation of theories will not do generally, and

equally might the use of names instead of definite description mask our ontological

commitments.
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5.2 Universals

Quine has provoked no little amount of criticism concerning the demand to formu-

late theories in a certain way.6 In order to bring the sentences of a theory into

the Quinean standard form, the ordinary language sentences often have to be para-

phrased or regimented. We have already seen how sentences which on the face of it

do not seem to contain variables or quantifiers are regimented and formalised into

sentences that contain existential quantifiers. On the flip side, not every English

sentence that starts with ‘There is’ will end up being an existentially quantified

statement in the formalised theory. It is difficult, if not impossible, to come up

with standards for such a paraphrase or regimentation. This is particularly pressing

concerning the problem of universals that Quine dealt with extensively. A famous

passage from his On What There Is reads:

Now let us turn to the ontological problem of universals: the question

whether there are such entities as attributes, relations, classes, numbers,

functions. McX, characteristically enough, thinks there are. Speaking

of attributes, he says: “There are red houses, red roses, red sunsets;

this much is prephilosophical common sense in which we must all agree.

These houses, roses, and sunsets, then, have something in common; and

this which they have in common is all I mean by the attribute of redness.”

Quine, however, denies this:

The words ‘houses’, ‘roses’, and ‘sunsets’ are true of sundry individual

entities which are houses, roses, and sunsets, and the word ‘red’ or ‘red

6See for example (Alston, 1958).
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objects’ is true of each of sundry individual entities which are red houses,

red roses, and red sunsets; but there is not, in addition, any entity

whatever, individual or otherwise, which is named by the word ‘redness’,

nor, for that matter, by the word ‘househood’, ‘rosehood’, ‘sunsethood’.7

Quine does not want to allow abstract objects into his ontology – except for classes

which he “grudgingly admitted”8 – so he paraphrases the apparent commitment to

“things” like redness away. A problem arises, however, since paraphrase seems to by

symmetrical: If a sentence like e.g. ‘Some man has a high age’ can be paraphrased

into ‘Some man is old’, why is it that this shows that neither of the sentences,

deep down, carry any ontological commitment to abstract objects ages. Could it

not be the case, that the former displays the ontological commitments, rather than

the latter? It might just be that ‘∃x∃y(x is a man ∧ y is an age ∧ x has y)’ brings

out the hidden ontological commitment of ‘Some man is old’, just like the Quinean

treatment of proper names did, or the proper formalisation of ‘Unicorns exists’ as

‘∃x Ux’ rather than ‘p’.

5.3 Second-Order Quantification

Rather than going deeper into the problem of paraphrase and regimentation, let

me raise some more issues. If the task should be to exhibit the logical form of the

sentences of the theory in as detailed a manner as possible, Quine needs to tell a

story about sentences that are not expressible in pure first-order logic alone if one

wants to exhibit their logical structure in as detailed a manner as possible. One

7(Quine, 1948), pp. 9–10.
8(Quine, 1975), p. 100.
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of the most famous example is the so-called Geach-Kaplan sentence: ‘Some critics

admire only one another’. What the sentence is meant to express is that a group

of critics, not necessarily all critics there are, are such that each of them admires

everyone else in this group, but nobody else.9 George Boolos picks up on this.10 He

gives a formalisation in second-order logic:

(1) ∃X[∃xXx ∧ ∀y∀z((Xy ∧ Ayz) ⊃ (y 6= z ∧Xz))]

Quine himself prefers the first-order formalisation using set theory:

(2) ∃x[∃y(y ∈ x) ∧ ∀y∀z((y ∈ x ∧ Ayz) ⊃ (y 6= z ∧ z ∈ x))]

Note that Boolos assumes a domain of critics. In the context of the discussion of

ontological commitment it might be preferable to mention critics explicitly as in:

(1′) ∃X[∀x(Xx ⊃ Cx) ∧ ∃xXx ∧ ∀y∀z((Xy ∧ Ayz) ⊃ (y 6= z ∧Xz))]

In any case: why does Quine bring sets into play? (2) gives rise to an ontologi-

cal commitment to sets of which there was no talk in the Geach-Kaplan sentence.

Why is the paraphrase a good one, if ‘Some critics admire only one another’ only

seems to speak about flesh and blood critics, and not about sets? Quine’s reason is

that he believes second-order logic to be set theory anyway, except that it hides its

9Quine credits Peter Geach with the discovery of the sentence, and David Kaplan with the
proof that it cannot be expressed satisfactorily in first-order logic. See (Quine, 1974), p. 111, and
(Quine, 1982), p. 293.

10(Boolos, 1984b). Boolos also gives Kaplan’s proof of the “non-firstorderisability” of the Geach-
Kaplan sentence.
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ontological commitments.11 Since a formalised theory is meant to make its ontolog-

ical commitments explicit such hidden ontology cannot be accepted. This, however,

raises the question: Why should second-order logic be set theory in disguise?

It seems that Quine has merely taken his criterion for ontological commitment

at face value. If the ontological commitment is exhibited by the values that the

variables must take to make the sentences true, a theory that has higher-order

variables, must be committed to whatever higher-order entities these range over. As

we have seen above, Quine does not want to admit properties or attributes into his

ontology. Yet, the expressive limitations of pure first-order logic forces him to admit

something. The only acceptable “higher-order objects” for Quine are also the only

abstract objects acceptable to him: classes, or sets, which, while being indispensable

as Quine contends12, at least have the advantage of being extensional.13 For Quine,

(2) merely makes explicit the commitments to sets that also arises from (1), albeit

in a hidden way.

Quine has been criticised by Crispin Wright14, and more recently again by

Agust́ın Rayo and Stephen Yablo15, on the ground that this view together with

Quine’s views about predication does not appear to create a stable position. Quine

insists that predicates do not refer, and that their use in first-order theories does

not commit us to universals or abstract entities. If Quine, however, believes that

quantifying into predicate position exhibits a commitment to sets (at best), should

this ontological commitment not already arise for the unquantified use of predicate

letters? For the case of names, at least, Quine argued that this is the case, and even

11(Quine, 1986a), pp. 64–66.
12See (Quine, 1950).
13(Quine, 1975), p. 100
14(Wright, 1983), pp. 132–133
15(Rayo and Yablo, 2001), pp. 79–80
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gave, as we have seen, a paraphrase of names that makes this explicit.

Quine would probably formalise ‘Tomatoes and sunsets are red’ as

(3) ∀x(Tx ⊃ Rx) ∧ ∀x(Sx ⊃ Rx)

If this statement is not committing to anything beyond tomatoes, sunsets and things

that are red, why should the paraphrase of it, ‘Tomatoes and sunsets share something

in common, namely that they are red’, do so? This paraphrase is straightforwardly

formalised as:

(4) ∃X(∀x(Tx ⊃ Xx) ∧ ∀x(Sx ⊃ Xx) ∧ ∀x(Xx ≡ Rx))

If (4) is committed to something else but tomatoes, sunset, and red things, it seems

that (3) is, too. If (3) isn’t, then neither is (4).

Let us for the while just note that we are dealing with difficult issues here,

and then move on to what hopefully brings the solution. It appears that Quine’s

insistence on first-order formalisation is problematic. We have seen that his criterion

of ontological commitment has a normative side (or has to be supplemented by more

Quinean philosophy to make it work). When formalising a theory one ought to do

it in the right way, and this right way is doing it in standard first-order logic.

The reason for this is, that in doing so we make the ontological commitments of

a theory explicit. Quine takes this to be a trivial point which is only concerned

with explicitness about the assumed ontology.16 To claim, however, that other

formalisations, like second-order ones, are committed to sets, since first-order set

16(Quine, 1981), p. 175.
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theory is the straightforward way – if not the only way – to re-capture in a first-order

theory what is expressed in the second-order theory seems to beg the question. What

Quine basically says is that, when put into the standard first-order paraphrase, the

range of the variables show us the ontological commitments of a theory. Someone

who does not believe in the first place that first-order formalisation is the only

legitimate way to go will not be convinced of this special status of first-order (plus

set theory) versions of a theory.17 The circle basically looks like this:

Quine: [start] Second-order logic is not suitable to exhibit the ontological com-

mitments of a theory.

Opponent: Why?

Quine: Because second-order theories hide their ontological commitment to sets.

Opponent: Why do you think they are committed to set?

Quine: Because you need set-theory to paraphrase it into first-order, and set

theory is committed to sets.

Opponent: Why do I have to paraphrase it into a first-order theory?

Quine: Because you need a canonical formulation in first-order logic, in order to

see the ontological commitments of a theory.

Opponent: Why?

Quine: Because my criterion for ontological commitment requires a formalisation

as a first-order theory in a canonical form.

Opponent: Why do you require that?

17As we have seen in the last chapter, (Boolos, 1985a), pp. 76–77, puts forward a similar criticism.
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Quine: Go back to [start].

It might of course be possible to break this circle, but as I said above, this is just

meant to flag the problem: It seems primarily to be the Quinean preference for

first-order logic that motivates his criterion for ontological commitment, which, in

turn, seems to be his main reason for his preference.

5.4 Polyadic Predicates Again

Now, however, let’s take Quine head on, and grant him a first-order regimentation.

What ontological commitments does a sentence like ‘Everybody loves somebody’

carry? It is tempting to say that it is committed to lovers, but is it admissible to

ignore the fact that the sentence really contains a relation, and not the predicate ‘is

a lover’? It also leaves out the beloved.18

One might also consider a theory whose sole axiom says: ‘There is something

that is taller than something’, or formalised: ‘∃x∃y Txy’. What is this theory

committed to? What kinds of things is it committed to? The criterion is convincing

enough when it comes to one-place predicates. ‘Something is red’ carries ontological

commitment to red things, but it does not seem at all straightforward what happens

when we are dealing with relations. Maybe we have to say that we are committed

to that kind of things that are taller than some other thing, and things that have

something taller than them?

To generalise the point, let us consider the following theories. T1, to start with,

has the following three axioms:

18(Resnik, 1988) makes this latter point, and also comes up with further complications. See also
(Simons, 1997) on this issue.
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A1.1 ∀xRxx

A1.2 ∀x∀y(Rxy ⊃ Ryx)

A1.3 ∀x∀y∀z((Rxy ∧Ryz) ⊃ Rxz)

What are the ontological commitments of T1? We would commonly say that T1

characterises ‘R’ as an equivalence relation. To say that the theory is committed to

things that stand in an equivalence relation to each other, however, quantifies over

relations: There is an equivalence relation in which these things stand to each other.

This should not be acceptable for Quine. It is hard to see how the quantification

over relations in this statement about the ontological commitment of T1 could be

paraphrased away, short of repeating the axioms. If just repeating the axioms is

fine, though, why not do so generally, and hence also in the case of higher-order

sentences? It would then be difficult to see why we had to reformulate second-order

theories in the language of set theory to expose the ontological commitment.

In order to emphasises the point, consider T2:

A2.1 ∀x∀y∀z((Rxy ∧Ryz) ⊃ Rxz)

A2.2 ∀x∃yRxy

A2.3 ∀x∀y∀z((Rxy ∧Rxz) ⊃ Ryz)

It is very difficult to formulate the ontological commitment of this theory and avoid

both of the following two “traps”: Giving an explication of the ontological commit-

ment in terms of the relation that is characterised (“a relation that is transitive,

serial, and euclidian”) – Quine would not want to say that this first-order theory is

committed to the existence of relations19 – and not merely saying something like:

19See e.g. (Quine, 1951a), p. 204.
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“The theory is committed to things such that ϕ”, where ϕ is (more or less) a repe-

tition of the axioms.

Might it be that the ontological commitment of polyadic theories is to kinds of

tuples of things, rather than just kind of things as in the monadic case? A dyadic

relation might just be construed as a predicate applying to an ordered pair, a triadic

one as a predicate applying to triples, and so on. For Quine, this must be unac-

ceptable as well. His paradigm for philosophical explication, we read in Word and

Object, is the Wiener-Kuratowski definition of an ordered pair.20 ‘〈x, y〉’ is defined

as ‘{ {x}, {x, y} }’, a set of sets. It should not turn out to be the case, though, that

not just higher-order logic, but polyadic first-order logic already commits a theory

to sets. Quine’s conception of relation-symbols is that of many-place predicates.

They are as neutral as the common, one-place predicates. These do not refer to

properties or attributes, and those do not refer to relations. Both properties and

relations are abstract universals that Quine rejects. This means, however, that it

cannot be in a Quinean spirit to adjust the criterion such that the commitment is

to, e.g., kinds of pairs. Two-place predicates are merely true or false of things they

apply to, just like one-place predicates. No further ontological commitment arises

than to the kind of things that are in the range of the quantifiers, those that have to

exist in order to make such a sentence true. This, however, is precisely the problem:

What kinds of things, exactly, have to exist, in order to make a sentence containing

a two-place predicate true, turns out be difficult to figure out.

Note, that the difficulty does not arise, as it might seem at first glance, from

the fact that no intuitive interpretation for ‘R’ is given in the two sample theories

above. First of all, such an interpretation is not needed for monadic theories. A

20(Quine, 1960), §53.
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theory containing ‘∃xFx’ as a theorem is committed to F s – whatever they might

be. It would be strange indeed if such an intuitive interpretation is required for the

polyadic, but not the monadic case. Also, consider T3, with ‘M ’ standing for the

dyadic relation ‘is married to’:

A3.1 ∀x∀y(Mxy ⊃Myx)

A3.2 ∀x¬Mxx

A3.3 ∃x∃y∃z(Mxy ∧Mxz ∧ y 6= z)

A3.4 ∀x∀y∀z((Mxy ∧Mxz ∧ y 6= z) ⊃ ¬∃v(Mzv ∧ v 6= x))

To say that the ontological commitment is to married people does not do justice

to the case. People are not always married in the way described by the axioms. It

seems, however, that something ontologically interesting is said, and that is that

this kind of people are married in a certain way, the way that is specified by [A3.1]–

[A3.4]. This might pre-systematically be better expressed by saying that marriage

is organised in a certain way, the T3-way: symmetric, irreflexive, polygamic, hare-

matic.21 It is hard to see a way to couch any of this in terms of Quine’s criterion

of ontological commitment that would be acceptable to Quine, and still allow for a

discrimination against higher-order languages.

T3, of course, is false of now-a-days western countries (at least if we take marriage

to be the legal institution), but might well be true of societies in other times and

places. It does not matter, though, if it is not: The ontological commitment of it

must not depend on the way the world is. Rather, it tells us what the world has to

be like, or more specifically, what kinds of things have to exist in order for it to be

21Not necessarily sexist, though. T3 leaves open that members of any gender can be married to
more than one person.
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true. This last specification, however, is the one that creates the problems. Quine’s

criterion for ontological commitment works best when we are dealing with one-place

predicates only. This is hardly surprising, since the criterion is meant to tell us

what kinds of things there have to be in order for the theory to be true. One-place

predicates are the lexical items we use when we talk about kinds of things.

Could this not be just shrugged off? Why not bite the bullet and say that T3

has no ontological commitment? The axioms of the theory still say something that

we can talk about. Such a strategy would render the best part of the project of a

criterion of ontological commitment pointless. In order for the statements of T3 to

be true certain things have to exist; this much is clear. If a criterion of ontological

commitment cannot deliver the answer what those things are, with what right is it

called a criterion of ontological commitment? It becomes clearer how pressing the

problem is when we consider T4 as an example:

Suc1 ∃!x∀y¬Sxy (zero)

0 =df ıx(∀y¬Sxy) (definition)

Suc2 ∀x∃!ySyx (functionality)

Suc3 ∀xyz((Szx ∧ Szy) ⊃ x = y) (uniqueness)

Sum1 ∀xy∃!zAxyz (functionality)

Sum2 ∀xAx0x (zero)

Sum3 ∀xyzv[(Szy ∧ Axzv) ⊃ ∀w(Axyw ⊃ Svw)] (successor)

Prod1 ∀xy∃!zPxyz (functionality)

Prod2 ∀xPx00 (zero)

Prod3 ∀xyzv[(Szy ∧ Pxyv) ⊃ ∃!w∃!u(Pxyw ∧ Awxu)] (successor)

Ind [Φ0 ∧ ∀x(Φx ⊃ ∃y(Sxy ∧ Φy))] ⊃ ∀xΦx (induction)
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T4 can obviously be recognised as a formulation of Peano Arithmetic without func-

tion symbols or one-place predicates. Note that the definition of zero is for the

convenience of easier legibility only, and can of course be eliminated. In order to do

without it, replace Sum2, Prod2, and Ind by the following:

Sum2′ ∀xyz(¬Syz ⊃ Axyx)

Prod2′ ∀xyz(¬Syz ⊃ Pxyy)

Ind′ [(∀xy(¬Sxy ⊃ Φ(x)) ∧ ∀x(Φ(x) ⊃ ∃y(Sxy ∧ Φ(y)))] ⊃ ∀xΦ(x)

If one wanted to take the bullet-biting way out, and accept that theories that do

not figure one-place predicated do not have ontological commitment, T4 would also

have to be considered void of ontological commitment. This should be a highly

unwelcome result. It would mean that with T4 we could have arithmetic as an

ontological free lunch.

5.5 A New Criterion

The basic idea behind the “new criterion” is to accept the intuitively correct part

of Quine’s criterion: a theory that includes ‘∃xFx’ is committed to F s; but to

accept only this part and mend the shortcomings. The following proposed solution

to the problem of relations will also without further adjustments be applicable to

higher-order languages. No re-phrasing, translating, or re-formalising in a different

language, like set-theoretical language in Quine’s case, is necessary. The criterion

will deliver the intuitively correct result for higher-order theories, and do so in a

purely formal way. Contra Quine, no commitment to sets will result, unless a set-

theoretical language is indeed used.
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Quine’s criterion works so well in the case of one-place predicates, because it

is about commitment to kinds of entities, and one-place predicates are the lexical

items that we use to indicate the kinds that the discourse is about. I avoid writing

‘predicates refer to kinds’ partly because I, like Quine, do not believe that predicates

refer – nor that “kinds” exist in any metaphysically robust sense, for that matter.

More importantly, though, and independently of any “taste for desert landscapes”22,

it should be possible to find a neutral way of stating the “special” status of one-place

predicates without settling this metaphysical question first.

In the case of a two-place predicate, like ‘... loves ...’, it seems intuitive that the

commitment should be to those kind of things that occupy either of the argument

places. This much was mentioned above already. We met the problem that, in the

case of ‘... loves ...’, the kinds ‘lover’ and ‘lovee’ can be extracted fairly easy, since

there are English predicates for just those kinds that are required in this case. This

is not always the case, however, as was shown at the example of the theories T1–

T3. The idea to handle ontological commitment of polyadic theories in roughly this

way, is nevertheless the right one. There are well-known formal methods to form

one-place predicates on basis of many-place predicates, and so it is not necessary to

rely on natural language paraphrase of anything like it. One way is to use explicit

definition:

(5) Lover(x) =df ∃y Loves(x, y)

(6) Lovee(x) =df ∃y Loves(y, x)

22(Quine, 1948), p. 4.
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Alternatively, one can stay in the object language and use the λ-operation:

(7) ∀x(Lover(x) ≡ λz[∃y Loves(z, y)]x)

(8) ∀x(Lover(x) ≡ λz[∃y Loves(y, z)]x)

I consider these ways as interchangeable. Using the λ-operator is merely an alter-

native way of stating what otherwise could be said through metalinguistical explicit

definitions. The notational advantage is that the defined predicates can be men-

tioned a little less cumbersomely using the λ-operator.

The new criterion operates by forming one-place predicates out of the primitive

many-place predicates of the theory in this way, that occur in the right way in the

axioms of the theory. The theory will have commitment to those kinds of entities

that the new one-place predicates distilled from the old primitive predicates apply

to.

We cannot simply take all primitive predicates, however, and form the kind

terms from them with this method. A theory containing ‘∃x¬Fx’ as its only axiom

surely is not committed to F s (or, more pedantically, the λx[Fx]’s). The kinds

that the theory is committed to rather have to be extracted by deleting the initial

quantifier in such axioms, one at a time, enclosing the resulting expression with

square parenthesis, and prefixing a λ-operator that is binding the variables in the

places of those that the deleted quantifier was binding. The resulting expression

then designates the kinds of things that the theory commits us to. ‘∃x¬Fx’ will

give us ‘λx[¬Fx]’ as a commitment, or, equivalently, the non-F s, which is the right

result.
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A theory with the axiom ‘∃x∀y Loves(x, y)’ will have amongst its ontological

commitments the λx[∀y Loves(x, y)], i.e. the kind of things that love everything.

It is not sufficient, however, to just extract kinds from the axioms of a theory.

Any given theory commits us to those kinds of things that have to be assumed to

exist in order for the axioms, but also everything that follows from them, to be true.

A theory with the two axioms ‘∀x(Fx ⊃ Gx)’ and ‘∃xFx’, does not only commit

us to F s, but also to G’s: ‘∃xGx’ is amongst the theorems of the theory. More

strikingly, a theory that contains the two axioms ‘∀x Round(x)’ and ‘∀x Square(x)’ is

not only committed to round things and squares, but also to round squares (assuming

we are not formulating a theory in free logic). Given Quine’s elaboration about the

impossibility of a “round square cupola on Berkeley College”23 one can only assume

that this would have been also amongst Quine’s desiderata for a precisely formulated

criterion of ontological commitment.

The new criterion, thus, suggests itself as follows:

(NC) A theory T is ontologically committed to entities of kind K if, and

only if, K is pλξ[S∗]q, where S∗ is an open sentence that is the result

of deleting an initial first-order existential quantifier Q in a sentence

S that holds according to T, and replacing in it the variable formerly

bound by Q with a variable ξ that does not occur in S.

The ‘holds’ can be understood as ‘is a theorem’ or as ‘is true’, depending on whether

the relevant (or preferred) conception of theories is proof-theoretic or semantic, re-

spectively. The replacement of the variable is a precaution against conflicts concern-

23Quine also discusses examples like this one in (Quine, 1948), pp. 4–9.
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ing the binding of variables.

A welcome feature of (NC) is that we need not quantify over relations to state

the ontological commitments of a theory (e.g., T1 committing us to the existence of

an equivalence relation). All our ontological commitment is to things in the (first-

order) domain, as it should be, also following Quine’s demands. Also, the sample

sentences already used above:

(3) ∀x(Tx ⊃ Rx) ∧ ∀x(Sx ⊃ Rx)

(4) ∃X(∀x(Tx ⊃ Xx) ∧ ∀x(Sx ⊃ Xx) ∧ ∀x(Xx ≡ Rx))

((3) standing for ‘Tomatoes and sunsets are red’ and (4) standing for ‘Tomatoes and

sunsets share something in common, namely that they are red’) bring with them

provably coextensional commitment (according to the new criterion), as it should

be. Also in the case T4 we get the correct result: a commitment to successors,

successees, a uniquely instantiated successee-less kind of thing, etc.

Moreover, the Geach-Kaplan sentence:

(1′) ∃X[∀x(Xx ⊃ Cx) ∧ ∃xXx ∧ ∀y∀z((Xy ∧ Ayz) ⊃ (y 6= z ∧Xz))]

brings a commitment to critics, to admirers, to admirees, etc. – but not to sets.

It is worth noticing that the formulation of (NC) is based on considerations

concerning the modification of the basic idea behind Quine’s criterion for ontological

commitment to make it applicable to theories containing many-place predicates. The

“spirit” of the Quinean criterion is preserved, and the found solution can with some
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right be called “Quinean”, too. The range of first-order variables still determines the

ontological commitment, and now, with (NC), there is a formal way of stating what

kinds of entities a theory commits us to – in the monadic, as well as the polyadic case.

Quine’s criterion was not modified in order to render second-order quantification

ontologically innocuous. Rather, the modifications made to accommodate many-

place predicates led to a formal criterion that happens to be applicable to higher-

order languages, too.

Quine insists that his criterion of ontological commitment is not about what

there is, but rather about what a certain discourse has to assume there to be.24 In

his reformulations of statements apparently referring to universals, he shows, or at

least claims to show, that one does not have to assume that universals exist. One

also does not have to assume that Pegasus exists in order to deny its existence. With

(NC) it makes sense to say that a discourse representing the Geach-Kaplan sentence

as (2) (Quine’s set-theoretical rendering) is committed to sets, while discourses that

do not mention sets also do not have to assume sets. The new criterion points

out generally, and not just for monadic first-order theories, what kinds of entities a

theory is committed to, but it stays neutral on the question what the ontological

status of kinds as such is. Whether they are sets, attributes, or not to be taken with

ontological seriousness: the outcome of this question should be the same for first-

and second-order theories.

(NC), of course, is only applicable to languages that are legitimate in some sense.

If modal languages, for example, were illegitimate in some way, it would not make

much sense to claim on basis of (NC) that the sentence ‘∃x2Fx’ carries commit-

ment to things that are necessarily F : λv[2Fv]. The same holds for higher-order

24(Quine, 1948), pp. 15–16.
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languages as well. If it can be established on some grounds that higher-order quan-

tification is illegitimate in some way, (NC) does not apply to such languages. (NC)

then cannot be used with these languages, simply because the languages cannot

be used at all. The purpose of the chapter was not to establish that higher-order

languages are legitimate – rather, the whole rest of this thesis argues for this. What

was shown here was merely that, assuming that second-order logic cannot be dis-

qualified on other grounds, Quine’s claim that the use of second-order quantifiers

commits one to sets cannot be upheld. Our ontology is what is in our first-order

domain; first-order variable range over the things that exist (also this is strikingly

Quinean). Quantifying into predicate position does not bring about additional on-

tological commitment.
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Chapter 6

Semantic Incompleteness∗

6.1 Introduction

As mentioned in chapters 1 and 3, the incompleteness of second-order logic with

respect to standard semantics (see chapter 2 for the formal details) is often cited

as a reason why second-order logic is not proper logic. The worries here seem to

be epistemological in nature.1 One important worry is that the second-order con-

sequence relation as characterised by the standard model theory is intractable in

some sense: there can be no deductive system that is both sound and complete

with respect to it, as follows from Gödel’s incompleteness theorem (see chapter 2).

I make no attempt to dispel worries concerning this intractability of the standard

model-theoretic consequence relation in this chapter. These problems are analysed

in detail in chapter 7. In chapter 8, however, I present a conception of logic that pro-

ceeds via deductive systems, and argue that second-order logic, so construed, should

indeed be counted as logic in a proper sense (‘proper logic’ is also explicated there).

∗This chapter is in parts based on my (Rossberg, 2004).
1(Cutler, 1997), for example, is explicit about this.
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It will also be discussed there how the deductive system on its own (i.e. not with

respect to a given model-theoretic semantics) is effected by Gödel’s incompleteness

theorem.

In section 6.4 where I discuss a few arguments from the ongoing discussion about

the status of second-order logic, I touch upon issues related to this intractability,

while the focus, however, remains on the question whether the incompleteness result

can be turned into an argument against the logicality of second-order logic.

A second worry that is attached to incompleteness presumably draws on the

fairly negative connotation of the term. ‘Incompleteness’ suggests that something

is missing. This, in turn, suggests that we have not succeeded in characterising all

of the logical consequences. What sense of “all” is that here, though? Is proposi-

tional logic not a proper logic because it does not (and cannot) capture theorems

of predicate logic? The obvious answer to this question will be given below. So, if

this is not what is meant, what other sense of capturing all logical consequences is

relevant here? Also, should it worry us so much that not all logical consequences

are captured? Is that not even too much to ask for? Is it not more important,

anyway, that nothing which is not a logical consequence is falsely declared as such?

And what exactly, then, is the deficiency that is witnessed by the incompleteness of

second-order logic?

This chapter provides answers to these questions (although in some cases the

answers are preliminary and a more comprehensive answer is not available before

“the deductivist account of logic” is properly introduced in chapter 8). In this

chapter I argue that the mere lack of a completeness theorem, despite being an

interesting result, cannot be held against the status of second-order logic as a proper

logic. Neither does the impossibility of a sound and complete deductive system
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for the standard model show this. It turns out that, crucially, the question of

completeness comes into play only after it has been settled whether a given system

is a proper logic, or a given consequence relation coincides with logical consequence.

6.2 Logical Consequence

The unqualified claim that second-order logic is incomplete cannot stand in any

case; it needs to be made more precise. The deductive system is not semantically

incomplete in and of itself; rather, it is incomplete with respect to some specified

formal semantics. The deductive system of second-order logic, for example, is in-

complete with respect to the standard model-theoretic semantics. As laid out in

chapter 2, a model in the standard model theory consists of a domain of objects and

an interpretation function. This function assigns objects in the domain to names in

the languages, subsets of the domain to one-place predicates, subsets of the Carte-

sian product of the domain with itself to two-place predicates (sometimes also called

binary relation symbols), and so on. The first-order quantifiers range over the do-

main, while the second-order quantifiers range over the subsets of the domain in case

the quantifier binds a one-place predicate variable, over the subsets of the Cartesian

product of the domain with itself in case the quantifier binds a two-place predicate

variable, and so on.

It is well known that standard semantics is not the only semantics available.

Henkin semantics, for example, specifies a second domain or the upper case constants

and variables. The second-order quantifiers binding predicate variables, e.g., can be

thought of as ranging over a subset of the full powerset of the first-order domain.

What is relevant to the present discussion is that the deductive system of second-
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order logic is sound and complete with respect to a Henkin semantics.2 (For details

see chapter 2.) To pick up on a thought of Shapiro’s, one might think that standard

(as opposed to Henkin) semantics does not provide enough models to invalidate

all sentences of the language of second-order logic that are not theorems. Shapiro

dismisses this view.3 He rather thinks that Henkin models are insufficient, in a

sense, since the second-order variables are not guaranteed to range over the full

powerset of the domain in a Henkin semantics. Shapiro argues in various places4

that second-order logic with standard model-theoretic semantics is the right logic,

at least for mathematical practice. (The discussion of this view is the topic of my

chapter 7.)

I will not take sides here in the debate regarding whether standard or Henkin

semantics is the “right” semantics. Note, however, that with respect to a Henkin se-

mantics we have a completeness theorem for second-order logic. It would be bizarre,

though, to claim that the incompleteness complaint is thereby refuted: it cannot be

enough to just provide some semantics for which a completeness proof is possible.

Note that Henkin and standard semantics are not the only available options. As

we have already seen in chapter 4, there is, for example, the plural interpretation

of second-order logic that was suggested by George Boolos.5 Other options include

(presumably) game-theoretical semantics, and (definitely) category-theoretical or

topological semantics.6 Peter Simons suggested a Leśniewskian semantics.7 Surely,

those do not exhaust the alternatives. It seems not unlikely that the important

2(Henkin, 1950).
3(Shapiro, 1998), p. 141; but see also his fn. 10 on the same page.
4See e.g. (Shapiro, 1985), (Shapiro, 1991), (Shapiro, 1997), (Shapiro, 1998), (Shapiro, 1999).
5See (Boolos, 1984b), (Boolos, 1985a), (Boolos, 1994).
6(Awodey and Butz, 2000); see also (Awodey and Reck, 2002b), §3.
7See (Simons, 1985) and (Simons, 1993), and also (Simons, 1997).
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philosophical issues concerning completeness and logical consequence will be ob-

scured rather than elucidated by bringing up too many different approaches to for-

mal semantics and a discussing which one “gets it right”.

I will therefore in this chapter talk about formal or model-theoretic semantics

in general, in the same way that I do not single out one specific deductive system.

I will consider model-theoretic approaches to characterise logical consequence in

general, irrespective of which model theory (if any) might be the right one to codify

logical consequence, on the one hand. On the other hand, I will consider deductive

systems in the abstract, again irrespective of which specific deductive system (if

any) might properly capture logical consequence. Further, the discussion will turn

out to be easier if a term is available that applies to both deductive systems and

model-theoretic semantics. I will use ‘formal system’ to cover both.

So, we are looking for formal systems which capture, codify, axiomatise, charac-

terise and/or formalise in some way the notion of logical consequence. One might

hope that the meta-theoretic results of soundness and completeness deliver some-

thing informative concerning the question whether we succeeded or failed in our en-

deavour. One might, for example, be tempted to read the soundness result as: “We

will not deduce a sentence from a class of premises that is not a logical consequence

of them” (we will come back to this), and the completeness result accordingly as:

“We can deduce every sentence from a class of premises that is a logical consequence

of them”. This should give us pause, however.

Logical truths are (by definition) logical consequences of the empty class of

premises and hence, by monotonicity, logical consequences of every class of premises.

Certainly a logical truth of first-order logic cannot be deduced in the deductive sys-

tem of propositional logic. Propositional logic is complete, and is a proper logic
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if anything is. Yet a logical truth like ‘(∀x(Fx ⊃ Gx) ∧ Fa) ⊃ Ga’ escapes its

consequence relation. The solution to this “puzzle” is of course simple. Propo-

sitional logic lacks the expressive power that first-order sentences require. It can

therefore not be accused of not capturing logical truths of predicate logic. Some-

thing similar seems to hold for the relation between first- and second-order logic.

Also note that, as stated above, completeness is a meta-theoretic relation that holds

(or fails to hold) between a deductive system and a formal semantics. The two

consequence relations we are dealing with are thus a deductive consequence relation

and the model-theoretic consequence relation of a formal semantics. Completeness

shows that every model-theoretic consequence of a set of sentences is also a deduc-

tive consequence of those sentences. But how does logical consequence get into the

picture?

We are dealing with two formal systems here, the deductive system and the

formal semantics, each of them equipped with their own consequence relation. If

there is a soundness and a completeness proof we know that this duplication does

not matter: their respective consequence relations are co-extensive. If we now know

for some independent reason that we can infer nothing but logical consequences of

given premises according to one system, then this will be the case for the other

system, too. If completeness fails, however, this guarantee is not available.

If in such a case one decides that it is the deductive system that faithfully cap-

tures the pre-theoretic notion of logical consequence, one will presumably hold that

the model theory is defective in the sense that it produces a surfeit of consequences

of a set of sentences which are not actually logical consequences of it. One might

then say that the model theory does not provide an appropriate model of the logical

consequence relation that is specified by the deductive system, and consequently
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reject the semantics. John Etchemendy seems to hold such a view with respect to

second-order logic.8 (I discuss Etchmendy’s views on logical consequence in chapter

9.) The failure of completeness does not disqualify the deductive system from cap-

turing logical consequence and therefore from being a proper logic (other features

might still have this effect, of course). If, on the other hand, one has convinced

oneself that model theory is the system that properly codifies logical consequence,

one will presumably think that the right thing to do, when one wants to do logic,

is just that, viz. model theory. It is at least prima facie hard to see why the lack of

a complete deductive system should cast doubt on the model-theoretic system as a

logic if one has independent reasons to believe the model theory to properly capture

logical consequence.

Part of the importance of soundness and completeness results is thus that they

inform us about important features of the two systems. For example, they show

that results from the one system can be carried over to the other.9 If I prove a

theorem of first-order logic then I know, by soundness, that this sentence is valid,

i.e. it is true in all models. If I provide a model that makes a sentence false, again by

soundness I know that I will not be able to prove it. Completeness allows us to make

these transitions in the reverse direction. A model-theoretic argument can establish

that a sentence is a consequence of some other sentences. If completeness holds one

knows that there is also a derivation in the deductive system that establishes this

result. The reason to prefer a proof to be carried out in one or the other system

might have to do with the time it takes to carry out the proof, lemmata that are

available that will aid one in the proof, or other matters of convenience. Essentially,

8(Etchemendy, 1990), esp. pp. 158–159.
9See e.g. (Cutler, 1997), p. 80.

118



however, we have two formal systems that in a sense do the same job, and deliver

the same results, which cannot be a disadvantage.

Now consider the case of a second-order inference and imagine a logician who is

convinced that the standard model theory properly captures the logical consequence

relation. A derivation in the deductive system is, by soundness, as good as a model-

theoretic argument as a means of showing that the conclusion of the derivation

is a logical consequence of its premises. The mere fact that there are semantic

consequences for which there is no derivation in the deductive system does not throw

any doubt on it tracking the logical consequence relation (again, other considerations

might well do so).

I said above that one might be tempted to think that a soundness proof shows

us that one can only derive logical consequences in a deductive system. It seems

quite obvious now that this can only be the case if one already has established

independently that the model-theoretic consequence relation embraces only logical

consequences.

Soundness proofs can, however, establish something like relative consistency. If

we know, for whatever reason, that the model theory is consistent, then a sound-

ness proof assures us that the deductive (or axiomatic) system that is sound with

respect to this (consistent) model-theoretic semantics, is consistent, too. This latter

point makes it clear that we need a proviso concerning all the mentioned benefits

of the meta-theoretic proofs of soundness and completeness: the benefits are only

available to the extent that the meta-theory can be trusted. For the extreme case,

assume the meta-theory used to carry out the soundness and completeness proofs is

inconsistent. This means that everything can be proven in it.10 On this assumption,

10Assuming the logic of the meta-theory is classical, and not, e.g. a relevant logic in which ex
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the soundness and completeness proofs carried out in this inconsistent meta-theory

do not show anything, of course. There are also less dramatic ways in which the

meta-theory might not be beyond doubt. It might, for example, make some substan-

tial assumptions that should not be taken for granted in a given context. For the

purpose here, I will assume that everything is in good order with the meta-thoery.

6.3 Refining the Picture

The rather loosely presented considerations above require refinements or explanation

in three respects.

(I) I have been speaking of the logical consequence relation that is captured by

a formal system. It seems better to speak of a part of logical consequence here, or

of a sub-relation of the (pre-systematic) logical consequence relation, or something

alike. Propositional logic, for example, is a proper subsystem of first-order logic, yet

even if we had reason to believe that first-order logic captured logical consequence

exhaustively and in its entirety we would not want to deny the status of a proper

logic to propositional logic just because it fails to capture all of logical consequence.

Further, it is difficult to imagine how we should ever find out that we have

indeed exhausted logical consequence. It seems that there is always the epistemic

possibility that some modes of inference that are properly regarded as genuinely

logical have been overlooked so far. Rayme Engel, for example, specialises in the

construction of formal systems that capture hitherto unrecognised (allegedly) logical

inferences.11 Whether the systems presented by Engel are indeed genuinely logical

falso quodlibet does not hold, i.e. in which a contradiction does not entail every sentence.
11(Engel, 1976) presents a logic that contains as only primitive quantifier the binary ‘more ...

than’ (as in ‘more F s than Gs are ϕ’) on basis of which he can define other quantifiers, including
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systems would have to be investigated in detail, but is of no concern here. Also

without a contemporary witness, however, the point should be clear enough.

If, as I argue in chapter 8, logical consequence is indeed best captured with a

deductive system, there might be reasons to believe (deriving from Gödel’s incom-

pleteness theorems) that in principle no one system can capture the whole logical

consequence relation. Shapiro and others are, amongst other reasons, led to re-

ject the attempt to characterise logical consequence by these Gödel-type reasons.

These matters are discussed in more detail in chapter 7 and 8. It seems convinc-

ing, however, that even if Gödel-type reasons can indeed be avoided, Engel-type

examples would still put us into a position where we could not be sure whether we

have captured every logical consequence there is. What we can maybe hope for,

though, is a characterisation of a well-defined fragment of the (pre-systematic) logi-

cal consequence relation. Propositional logic,12 for example, seems to be a very good

candidate for capturing properly the logical consequence relation of sentential con-

nectives. I argue in chapter 8 that second-order logic is an adequate characterisation

of generality in the common name-predicate analysis of sentences (see there).

(II) This also leads to the second point. I have been mentioning a pre-systematic

(or, how some prefer, pre-theoretic) notion of logical consequence, and that the

goal of construction of formal logics is to capture it. A couple of things need to

be remarked concerning this. Firstly, if it was possible to give a real definition,

and – best – a purely formal one, then it seems that despite my suggestion in

the preceding two paragraphs, this would mean that a once-and-for-all codification

the usual first-order existential and universal quantifiers (but see on such quantifier also the first
section of (Boolos, 1984b)). Other examples include (Engel, 1989) and (Engel and Yoes, Jr., 1996).

12There is of course a debate about which proposition logic is the right one: classical propositional
logic, or one of the competitors? I cannot discuss this question here.
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of logical consequence is achievable. Not only can this be turned on its head –

the remarks above suggest that such a once-and-for-all, all-comprising definition is

impossible – but I will give additional grounds in chapter 8 why such a definition is

not to be hoped for.

Furthermore, I want to suggest neither that there has to be a determinate pre-

systematic notion that we are out to formalise, nor that there is or can be none. I take

it that, for the discussion here, my arguments are sufficiently general to ensure that

it should play no role whether there is an objective logical consequence relation, or

whether it is purely conventional, whether “logical consequence” is a rather vague

ordinary language concept and thus subject to an explication in Carnap’s sense,

whether logical consequence is eventually characterised when the pre-systematic

notion is brought into a reflective equilibrium with some useful formal notion, as

Nelson Goodman13 and, following him, Michael Resnik14 would have it, or whatever.

(Again, for more on these matters see my chapter 8.)

(III) The third point, finally, requires the most space for its refinement, and will

take up rest of this section. In section 6.2 above I assumed in my discussion of what

the presence or lack of a soundness or completeness can show, a picture that is too

simple. The combinations of which consequence relation could match which one,

and in which way, provide many more possible outcomes. In the following I attempt

to give a more detailed picture of the landscape in the hope that in doing so it will

also become even clearer what role the meta-theoretical results play.

Let us start with the example where an attempt to provide a formal system as

an alternative to one that is in use already leads to the discovery of a surprising

13(Goodman, 1983), pp. 63–64.
14(Resnik, 1985).
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mismatch between the original system and the new one. Let us say we have two

deductive systems, X and Y . X is traditionally thought to capture a certain class of

logical inferences. The new system Y is suggested because it contains some features

which are thought to be advantageous in application; it might be that it allows for

shorter proofs, for example. When the logician constructs Y she wants to come up

with a system that is equivalent to X in the sense that any sentence is amongst the

theorems of X if, and only if, it is amongst those of Y .15 Now let us imagine it turns

out that the two formal systems do not match in that sense. I will consider three

ways in which this could be the case:16 (1) Y is a proper extension of X, i.e. all

theorems of X are theorems of Y , but not the other way around, (2) X is a proper

extension of Y , or (3) the systems contradict each other, i.e. the union of the class

of theorems of X and the class of theorems of Y is inconsistent.17 The reaction to

this as described above is to decide on one of the systems, the one that properly

captures the pre-theoretic notion (if either of the two does). Let us say that in cases

(1) and (2) one would convince oneself that the respective stronger systems do not

generate theorems that lie outside the pre-theoretic notion. Now, in the first case

it seems that the natural response would be henceforth to stick to the new system

Y . It formalises a part of the pre-theoretic consequence relation that was hitherto

unaccounted for. Since X is a subsystem of Y we know that all the sentences we

have proved in the past in X also will be theorems of Y . In the second case one

15I restrict myself here and in the following to the theorems of the systems for the sake of the
simplicity of the exposition. The picture extends straightforwardly to the consequence relations.

16One can in fact distinguish at least six relations in which two such systems can stand to each
other: The three I discuss in the following, the case where the systems are disjoint, and two cases
of overlap: in one the union of the systems is consistent, in the other one it is not. In any case,
the resulting situations would be similar enough in the relevant respects to the ones I describe.

17We might differentiate between considering the union and the closure of the union. This would
give us even more cases than mentioned in the previous footnote.
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would probably try to fix Y , if possible, such that it captures the missing part of

the consequence relation as well.

If we, on the other hand, come to believe that the “extra theorems” of the

respective stronger deductive systems are illegitimate in the sense that they lie

outside of what is warranted by the pre-theoretic notion, in case (1) we might try

to weaken Y until it matches X and so does not generate these “extra theorems”

anymore. (2) will now be the more interesting case, however. We are in the position

of having discovered that the old system X allowed us to prove sentences which

on reflection upon the pre-theoretic notion should not be provable at all. A likely

response is to stick to the new system, Y , in the future and weaken the old one, X,

to see which axioms or rules are responsible for the “false” theorems. Depending on

how well entrenched X was, some revision of previous results derived in X might

be necessary.

Case (3) is equally interesting. As before, one first has to find out in this case

which of the two systems really does capture the pre-theoretic notion. And it might

turn out that it is neither (as it might turn out in all cases). It seems that a case of

type (3) is most likely to occur when the logician develops the new system because

she is unsatisfied with the old one. She is then most likely to design a formal system

directly according to reflection on the pre-theoretic notions and to be only little, if

at all, guided by the old system. In any of these cases, though, the mere mismatch

of the systems is not going to provide one with an answer to the question: Which

of the systems is to be modified or rejected? But it is a valuable indicator that one

has to look out for arguments and that some adjustments are needed in at least one

of the systems.

It is worth emphasising that fit between two systems does not guarantee that
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the intended notion is properly captured. The original system might fail to provide

theorems it should have, or have too many. If the new system is then designed to

match the old one, this failure will carry over. The mere proof that two systems

agree on their theorems cannot show that the pre-theoretic notion is captured unless

one antecedently has independent reasons to believe that one does. Equally, in the

case of a mismatch there is certainly no guarantee that one of the systems is the

correct one. Both might be wrong.

I doubt that anyone would have deep objections to my case descriptions. If I

am right about the relation between formal semantics and deductive systems with

respect to pre-theoretic notions then the same picture must hold true in this case too.

Let X and Y above be a deductive system and a formal semantics, respectively. (1)

then corresponds to a situation in which we have soundness and incompleteness, as is

the case for second-order logic with standard semantics, (2) would be completeness,

but failure of soundness, (3) the failure of both. For what follows I will draw a

distinction between a deductivist and a semanticist account of logic. A proponent

of the deductivist account holds that the best way to characterise the pre-theoretic

notion of logical consequence is by means of a deductive system, while the semanticist

prefers model theory.

Let us consider (1), and the case of second-order logic with standard semantics

on a semanticist account. In light of Gödel’s incompleteness theorem there is no

hope of coming up with some additional axioms or inference rules that will provide

us with a deductive system that will allow us to deduce everything that is given by

the standard model-theoretic consequence relation. Where there is a proof in the

deductive system, however, we can rely on it, since the soundness theorem holds. For

the rest we have to do model theory which, after all, on the semanticist assumption
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is the right place to look for logical consequence anyway. On the deductivist concep-

tion, however, the system that properly captures logical consequence is a deductive

one, but for some purposes we might require a complete model theory. Rather

than rejecting model-theory as a whole, we would employ a Henkin semantics.18 (2)

corresponds to second-order logic with entirely unrestricted Henkin models: com-

pleteness holds, but soundness fails.19 If we decide to favour the deductive system

we will restrict the class of Henkin models in a way that puts us into the position to

prove soundness. Should we decide that the Henkin semantics captures what we are

after we have to weaken our deductive system (however hard it might be to imagine

cogent reasons for adopting this last option). Concerning (3) we again find ourselves

in the position where both systems are most clearly up for discussion; although, it

has to be stressed again, this is the case for all three scenarios.

Failures of match between formal systems which are meant to capture the same

pre-theoretic notion show us that some reconsideration needs to be undertaken.

The failure of soundness or completeness is a special and important case of this, and

there are some well-known examples of such investigations which have given rise to

fruitful developments in formal logic. Tarski’s original model-theoretic account, for

example, arose from his dissatisfaction with the previous characterisations of the

concept of logical consequence.20 This first account operated with a domain that

does not change in cardinality.21 Hence for an infinite domain, for any n ∈ N any

sentence of the language that expresses pthere exist at least n objectsq comes out

as a logical truth – a feature usually deemed undesirable. Perhaps even worse, for

18(Shapiro, 1999), p. 51, suggests that Henkin semantics is the right tool to study the deductive
system of second-order logic, for example.

19See (Shapiro, 1991), p. 88.
20See (Tarski, 1936b).
21See (McGee, 1992).
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any finite domain it depends on its respective size which sentences of this form are

logical truths. Up to the n that is the cardinality of the domain the sentences come

out as logical truths, for greater n they come out as logical falsehoods. (A more

detailed discussion of this can be found in chapter 9 of this thesis.) This is repaired

in the model theory that we use today, and model theory has grown to be a very

powerful and fruitful area of mathematical logic.

Should meta-theoretical studies show a mismatch between two systems – and

one of those possible mismatches is what we commonly call semantic incomplete-

ness – independent arguments have to be provided concerning which of the two

systems (if any) is the one that properly captures the pre-theoretic notion. When

the pre-theoretical notion that is to be formalised is that of logical consequence, in-

completeness alone cannot serve as an argument to disqualify a system as a proper

logic, since it does not provide us with a criterion as to whether we should side

with the deductivist or the semanticist, i.e. whether to reject the deductive system

or the model theory. Much less is it acceptable to dismiss both of a pair of formal

systems, say the deductive system of second-order logic together with its standard

model theory, on the grounds that they do not match.

6.4 Some Arguments for Completeness

Having the above framework in place makes it easier to assess arguments to the

effect that completeness is required for a proper logic. It is only rarely the case,

however, that the attempt is made. Usually it is assumed without argument that a

proper logic has to be complete.

This tendency is witnessed, for example, by the otherwise conscientiously argued
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paper by Leslie Tharp (Tharp, 1975). To be fair, Tharp does not attempt to establish

that completeness is necessary for the status proper logic, but rather assumes it for

the purpose of his discussion. His paper is concerned with extensions of first-order

logic that have the completeness property, especially the extension of first-order

logic with the quantifier ‘there are uncountably many’. While adding the quantifier

‘there are countably many’ to standard first-order logic leads to a system that is

not complete with respect to the standard semantics, adding ‘there are uncountably

many’ results in a system for which completeness can be proved. Tharp provides

subtle arguments why, despite completeness, this extension of first-order logic should

still be ruled out as proper logic. His discussion of these cardinality quantifiers is

of no concern for the discussion of completeness here. Note, however, that both

quantifiers are definable in second-order logic (see chapter 7); so if the case that

is made for second-order logic in this thesis is successful, these quantifiers become

available with it.

What is of interest, however, is that Tharp presupposes for his discussion that a

proper logic should be complete. (Tharp, 1975) bears the title Which Logic is the

Right Logic?, and Tharp is aware of the fact that making this presupposition in this

context might seem a bit strong. He comments that

one should not claim to see a priori that a logic must be complete in

order to be a theory of deduction. The point is rather that when it

is discovered that the best known candidate satisfies such a condition,

that tends to establish a sense of logic and a standard to be applied to

competitors.22

22(Tharp, 1975), p. 6.
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As already mentioned, it would not be charitable to interpret Tharp as intending

to put this forward as an argument for completeness. As such it would, if valid,

also license the easy rejection of second-order quantifiers, since the “best known

candidate” (which presumable means the generally accepted one), i.e. first-order

logic, satisfies the condition of not having them. Tharp, incidentally, acknowledges

second-order logic as the most promising contender for the title, but remarks that

“in fact it is not accepted”.23 Again, had Tharp intended the above quote as an

argument, maybe one would have to resent what a close call it was: had second-order

logic become (historically) the accepted logic, presumably, a proper logic would then

have had to be incomplete, since the then generally accepted one (which would have

been second-order logic) is. Surely, no such argument can be in good standing.

One way in which the existence of a completeness proof can indeed be interesting

is pointed out by Georg Kreisel.24 We are in the business of capturing the (pre-

theoretic) notion of logical consequence. Now we convince ourselves that (i) any

derivation in our deductive system is licensed by our pre-theoretical notion. Further,

we convince ourselves that (ii) any pre-theoretically valid inference is also valid in

the model-theory. A completeness proof then ties all three notions together and

shows that they are all equivalent. This is easiest to see if we restrict the argument

for the sake of simplicity to logical truths; it generalises straightforwardly to logical

consequence. If a sentence is a theorem of the deductive system, then, by (i), it

is also a logical truth. By (ii), any logical truth is a validity of the model theory.

By completeness, then, any logical truth is a theorem, and so all three notions are

co-extensive. (This is also assuming transitivity, which should be safe, however.)

23(Tharp, 1975), pp. 6–7.
24(Kreisel, 1967), pp. 152–157.
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This does not show, however, that the considerations presented above in favour

for rejecting completeness as a criterion for being a proper logic, are flawed in any

way. As (i) and (ii) state, it first needs to be shown that the pre-theoretic notion is

indeed sandwiched in this way between the deductive system and model theory. It

does not follow from the impossibility of applying Kreisel’s strategy that either the

deductive system or the model theory fails to capture logical consequence. In the

case of second-order logic, (i) and (ii), presumably still hold. Assuming standard

semantics, completeness fails, and so the three notions cannot be tied together. This

might show that the standard semantics declares sentences to be valid that are not

logical truths25, but it might just as well be the case that the deductive system

misses some out. The third option is, of course, that both are the case.

One more thing needs to be remarked on Kreisel’s sandwich technique. If indeed

it is true, that step (i) – every theorem is a logical truth – holds for second-order

logic too, how can it be that the technique works, and the completeness proof for

first-order logic ties all three notions together?26 The second-order theorems can-

not be captured by this. This point is analogous to the one made in section 6.2 of

this chapter. The Kreisel strategy can only work for first-order logic, if we restrict

ourselves to a proper sub-relation of logical consequence, i.e. on whatever the de-

ductive system and model theory of first-order logic applies to. We therefore have

to concentrate on a specific deductive system and a model theory proposed for it,

and then see if the relevant fragment of the pre-theoretic notion of logical conse-

quence is couched between it. The success of this for some deductive systems and

their respective model-theories, however cannot be turned into an argument against

25Indeed, this is what I will argue in chapter 7.
26This point does not rely on second-order logic being part of the example. The same can be

observed for propositional logic in comparison to first-order predicate logic.
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systems or semantics where this technique fails.

Sure enough, if we employ Kreisel’s technique, and (i) and (ii) hold, but com-

pleteness fails, it cannot be the case that both systems capture the fragment of logical

consequence in its entirety. It could, however, still be the case that the deductive

system captures only, and even all, of the appropriate sub-relation of logical conse-

quence. The model theory, then, would declare too many sentences to be validities.

On the other hand, it could be the model theory that captures all and only the

logical truths of the appropriate fragment of the pre-theoretic notion. Steps (i) and

(ii), then, would provide us with a kind of soundness proof for the deductive sys-

tem. Than means that any theorem we prove in the deductive system would still

be a a logical truth, while on the other hand not all logical truths can be proven as

theorems.27

Let me repeat the point made in the sections above: without anything like

Kreisel’s steps (i) and (ii) in the background, soundness and completeness proofs

show no such thing as that a characterised consequence relation is logical. The

only thing they show is that the consequence relation of the given deductive system

is co-extensive with the one of the chosen model theory. The pre-theoretic notion

of logical consequence might not come into play at all. John Etchemendy puts

this point something like this:28 image a co-extensiveness proof for two deductive

systems, S and T . What they show is that

Γ `S ϕ

27There is as a third option the possibility of error: There could be an overlooked ambiguity
involved in that (i) established that every theorem is a logical truth of one fragment of logical
consequence, while (ii) established that every logical truth within another fragment of logical
consequence is also a model-theoretic validity. This possibility is of no systematic interest in the
discussion here.

28(Etchemendy, 1990), pp. 3–4, see also pp. 144–148.
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holds if, and only if,

Γ `T ϕ

Would this provide an argument that both ‘`S’ and ‘`T ’ characterise logical con-

sequence? Surely not; both deductive systems might even be inconsistent, and the

equivalence would still hold. This insight, however, does not depend on whether

we write ‘`’ or ‘�’. In the end, both merely designate the consequence relations

in formal systems – that of a deductive system and that of a formal semantics,

respectively. A guarantee that one or the other characterises the properly logical

consequence relation is not to be gained from this, but rather has to be provided

additionally.

A different strategy to deny second-order logic the status of a proper logic due

to its incompleteness is put forward by Stephen Wagner in his The Rationalist

Conception of Logic (Wagner, 1987). Wagner provides two arguments as to why a

proper logic has to be complete, both of which draw on epistemic considerations.

Wagner employs a notion of ideal justification which will also play a crucial role

in my argumentation of chapter 8. Starting from a set of premises, a proper logic

should provide a way to arrive at a consequence which is ideally justified by these

premises. Wager spells this out like this:

Any deductive consequence C of a set Σ of statements can [...] be me-

chanically calculated: a finite series of steps leads from premises in Σ

to C, with each step governed by a rule the applicability of which can

be recursively determined. [...] But if it is mechanically determinable

whether a given argument is in fact a proof of logic, there must also be a

recursive characterization of the entire set of logical rules. This suffices

132



for the recursive enumerability of the consequence relation, that is, for

completeness. Thus it is natural to identify logic with FOL [first-order

logic], since completeness is typically lost when we go beyond it.29

The notion of completeness that Wagner operates with here is not that of semantic

completeness that was discussed so far, i.e. that every deductive consequence is also

a semantic one. The feature of a consequence relation that Wagners draws on is

called effectiveness by Shapiro:30

Effectiveness: A consequence relation is effective if, and only if, the class of con-

sequences it determines is recursively enumerable.

A logic is complete in this sense if, and only if, its consequence relation is effective.

The first argument that Wagner puts forward can hence be reconstructed like this:

(i) In a proper logic, any sentence which is a deductive consequence of a set of

premises can be mechanically calculated.

(ii) If a consequence can be mechanically calculated, the consequence relation is

recursively enumerable.

(iii) If a logic has a recursively enumerable consequence relation, then it is complete

in the sense that it has an effective consequence relation.

(iv) Therefore, completeness is a necessary condition for a proper logic.

(i) through (iii) are not very informative, and hence it is surprising that the strong

conclusion (iv) should follow from it. (i) says that a deductive consequence has to be

29(Wagner, 1987), p. 8.
30(Shapiro, 1991), p. 5.
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mechanically calculable, but this is trivial: what is a deductive consequence of some

premises is determined by a purely syntactical derivation in the deductive system

of a logic. Natural deduction systems might appear to require a certain amount of

“creativity” to find the way from the premises to the conclusion, but it is usually

agreed that tree (or tableaux) systems are sufficiently mechanical to qualify. A tree

system for second-order logic that is equivalent to its standard deductive system was

introduced by Richard Jeffrey.31

(iii) is just the definition of the notion of completeness as given above. This

leaves us with (ii), which is, assuming the correctness of the Church-Turing thesis,

more or less a definition of ‘mechanically calculable’.32 As Wagner puts it, “calcu-

lability is properly understood as nothing less than recursiveness”.33 The problem

of decidability might lurk here which I will put to the side for a while, as this is

important for Wagner’s second argument and will be discussed in this context.

We have to ask, however, what the consequence relation is, that is talked about

in each of the statements. (i) talks explicitly about deductive consequence. If

completeness (as defined above from effectiveness) is to hold as a criterion to rule

out second-order logic, however, the consequence relation relevant there has to be

semantic. Otherwise, the condition Wagner cites merely demands that the the class

of deductive consequences is recursively enumerable. This demand is met, however,

not only by first-, but also by second-order logic.34

The semantic completeness of first-order logic shows that in its case the seman-

tic consequence relation is also recursively enumerable. It follows from the semantic

31(Jeffrey, 1967), chapter 9; compare also (Bell et al., 2001), chapter 3.3.
32Compare (Shapiro, 1991), p. 50.
33(Wagner, 1987), p. 8.
34See (Shapiro, 1991), p. 161.
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completeness of second-order logic with respect to a Henkin semantics show, that

also this semantic consequence relation is recursively enumerable. As second-order

logic is incomplete with respect to the standard semantics, we cannot have a guar-

antee in this way that the standard semantic consequence relation is recursively

enumerable – and in fact we cannot have any such guarantee, since it is not recur-

sively enumerable.35

Wagner, hence, is faced with a dilemma: either his first argument here is equiv-

ocating on ‘consequence’, or he presupposes that deductive and semantic conse-

quences coincide. The latter, however, means presupposing semantic completeness.

At best, the argument, hence, does not go through in light of the considerations con-

cerning semantic completeness presented above: if semantic completeness is lacking,

one has to decide whether one wants to claim that the deductive system or the

model-theoretic semantics correctly characterises logical consequence. Given the

conception of logic that Wagner advances it seems that he should side with the

deductive system – compare (i). Then it is not clear, however, why he should de-

mand that the deductive consequence relation must be complete with respect to

the model-theoretic semantic. That in the case of second-order logic the standard

semantic consequence relation is not recursively enumerable should not matter: it

does not represent logical consequence anyway. In the worst case, the argument

might be construed as begging the question.

That Wagner’s Rationalist Conception of Logic is best thought of as deductive

in nature is also witnessed by his description of how one has to proceed according to

it. Proofs have to be broken down into “immediate steps” that are “self-evident”.

35Compare (Shapiro, 1991), p. 162; see also (Boolos and Jeffrey, 1985), pp. 203–204.
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Wagner bases his account on “Fregean rationalism”.36 It is indeed very much in the

spirit of at least some of Frege’s remarks about logic. Wagner does not quote Frege,37

but Frege’s remarks are quoted and discussed in my chapter 8. (The quotations are

of no immediate concern here, however.)

It is slightly surprising that Wagner writes: “I think that for Frege, logic must

turn out to be FOL [first-order logic].”38 It was Frege, after all, who not only was the

first to present a rigorous formulation of a conprehensive formal system of predicate

logic in his Begriffsschrift,39 – inclusive of second-order quantification – but also

put it to such an elaborate use in his Grundgesetze der Arithmetik40 [Basic Laws

of Arithmetic]. Wagner, however, claims on basis of his second argument that the

Fregean position, properly understood, would limit this conception of logic to first-

order. Completeness, again, plays an important role in this.

Wagner characterises the advantage of the position he derives from Frege like

this:

[I]mmediate steps [...] have the epistemic property of being self evidently,

transparently correct, as directly obvious as anything can be. A logic

with a consequence relation based on immediate steps then offers an

epistemic gain. Once we have a proof of Q from P in such a logic,

we know that the argument for Q need not and cannot be made more

persuasive or clear.41

Wagner identifies these “immediate steps” with single applications of basic rules

36(Wagner, 1987), p. 4.
37See, however, his characterisation of the Fregean position (Wagner, 1987), pp. 3–9.
38(Wagner, 1987), p. 7.
39(Frege, 1879).
40(Frege, 1893) and (Frege, 1903).
41(Wagner, 1987), p. 13.
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of inference, like modus ponens, conjunction elimination, or the introduction of the

existential quantifier, for example. He explains that on the Rationalist Conception

of Logic it would be desirable to be able to check every sequence of sentences me-

chanically to determine whether it is a proof of the last sentence of the sequence or

not. Decidability would thus be called for:

Decidability: The consequence relation of a system S is decidable if, and only if,

there is an effective method for telling of each sentence in the language of S

whether or not it is a theorem of S.

Full first-order logic, alas, is not deciable.42 Wagner contends, however, that in fact

something weaker already suffices:

Church’s theorem rules out a decision procedure for logical implication

in FOL.43 But we can have something weaker that is still of interest and

has traditionally been taken for granted: an effective way to tell whether

Q follows from P by an immediate step. Views connecting logic to in-

ference and argument give the consequence relation more structure than

we have so far allowed. They recognize a decidable collection of immedi-

ate inferences (e.g., universal instantiation, modus ponens, conjunction

introduction) such that whenever R(Q,P ) [i.e. P follows from Q accord-

ing to the consequence relation R] there is a chain Q,Q1, Q2, ..., Qn, P

in which each link follows immediately from its predecessor. This condi-

tion, together with the decidability of immediate consequence, restricts

us to complete logics [...].44

42This is entailed by Church’s negative answer to the Entscheidungsproblem; see (Church, 1936).
43See footnote 42 above.
44(Wagner, 1987), p. 13.
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We can note that a similar situation as with the first argument arises again. If

the consequence relation is meant to ultimately proceed by “immediate steps”, and

these steps are single applications of basic rules of inference, then the consequence

relation must be characterised deductively. If the remark about the decidability of

immediate consequence, however, is mean to be the reason why we are restricted

to complete logics, it must be understood as referring to semantic consequence.

This argument, too, is thus either equivocating on ‘consequence’ or presupposing

semantic completeness, in the same way the first one above does.

The situation can be described more intuitively like this: the method Wagner

describes for characterising logical consequence as based on basic rules of inference

(incidentally, this is roughly the method I suggest in chapter 8) demands that it

must be possible to break down every proof into single applications of the basic

rules of inference. Only in this way can we be sure that each consequence we

derive is ideally justified by way of self-evident steps on the basis of the premises

that it is derived from. This means that we must be able to decide effectively

whether something is an application of a basic inference step. Since there are only

finitely many basic rules of inference, we can do this (vagueness and the like are

presumably idealised away). It makes no difference for this, however, whether we are

confronted with a deductive system of first-, or of second-order logic. Second-order

deductions also can be broken down into steps of single applications of basic inference

rules, and second-order logic also has only finitely many basic rules of inference. To

demand additionally, that in this way we must be able to get a step-by-step proof

for every semantic, and not just every deductive consequence of a set of premises,

means additionally demanding semantic completeness. This, however, is precisely

what is under discussion, and what Wagner argues follows from his considerations
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(maybe with a detour via effectiveness, but in this case the arguments I gave above

apply again). It does not follow from them, however; or rather the demand for

completeness follows only if completeness is antecedently demanded.

A few more words about decidability should be useful. As mentioned above,

full first-order logic is not decidable. Monadic first-order logic, however, is. Boolos

asked already in his On Second-Order Logic why the emphasis is always made on

completeness, when decidability seems to be as desirable a feature.45 Presumably,

restricting ourselves to monadic first-order logic would leave us with too weak a

logic to be useful for any interesting purpose. It might also seem that the system

we are left with seems to be incomplete, in want for a better word, meaning that

some integral seeming parts, i.e. many-place predicates, have been left out. Monadic

first-order logic might not give the impression of an organic whole. The same can

easily be claimed on basis of the lack of second-order quantifiers, however. Allowing

to have devices that generalise over the positions of some expressions of the language

(names), but not others (predicates), also might appear unsatisfactory.

Additionally, and with respect to decidability, it should be noted that monadic

second-order logic is decidable, too. Already Leopold Löwenheim’s celebrated orig-

inal decidability proof for monadic predicate logic included monadic second-order

quantification.46 More recently, Michael Rabin has presented a proof for decidability

of monadic second-order theory with two successor functions.47

That decidability is not available if we go beyond monadic logics is insurmount-

able. It is tempting, however, to side with Wagner in the following:

Perhaps we can grant that we should at least have the positive half of a

45(Boolos, 1975), pp. 50–51.
46(Löwenheim, 1915), p. 462, Satz 5; compare also the respective remark in (Gandy, 1988), p. 61.
47(Rabin, 1969).
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decision procedure for the class of proofs: a way to establish mechanically

that something is a proof, if it is.48

This means that it should be possible to verify that something is a proof, if it is one.

If we settle for a characterisation of logical consequence with a deductive system,

this is available by the “method of single steps” described above, both for polyadic

first- and for polyadic second-order logic.

Darcy Cutler, in his review of (Shapiro, 1991), makes it clear that all these

demands on the meta-theoretical properties of the consequence relation are epis-

temic in nature.49 He follows Shapiro in distinguishing between a “foundational”

and a “semantic” approach to logic.50 The foundational approach seems to coin-

cide with what I called ‘the deductivist approach’ above. Shapiro coins the term

because he diagnoses foundationalism in the philosophy of mathematics as a reason

for the preference for the deductive system. Foundationalism is roughly the view

that mathematics can be derived from first principles or a secure “bedrock” of non-

mathematical truths.51 Logicism, for example, was a foundationalist project. The

basic principles from which, e.g., Frege and Russell wanted to derive mathematical

knowledge were principles of logic, or at least what they took to be principles of logic.

Frege’s system turned out to be inconsistent due to his Basic Law V, and Russell’s

Theory of Types is today widely regarded as containing too much mathematics still

to count as logic.

There are certainly other reasons to prefer the deductive approach to the model-

theoretic (or semantic) one than foundationalism. Moreover, giving one of the two

48(Wagner, 1987), p. 12.
49(Cutler, 1997), pp. 79–81, 84–85.
50(Shapiro, 1991), p. 35–40; (Cutler, 1997), p. 79.
51(Shapiro, 1991), p. 26.
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competitors a name that alludes to a position in the philosophy of mathematics

whose historically most prominent form – logicism – is commonly regarded as having

failed today appears slightly tendentious – it hardly comes as a surprise that Shapiro

himself argues that “the semantic [conception of logic] is more plausible.”52 Another

reason to prefer the deductivist approach is epistemic. The epistemic advantage of

the deductive account is what Cutler argues for, and also the background for the

position I develop in chapter 8. Since this has little to do with foundationalism as

a motivation to prefer a deductive over a model-theoretic system, I will stick to the

label ‘deductivist’, rather than adopt Shapiro’s label ‘foundational’.

Cutler submits that “logical consequence is an epistemic relation” for the deduc-

tivist:

‘c is a logical consequence of P ’ means that given knowledge of the

certain truth of P , the truth of c can also be known with certainty. On

[this] approach, knowledge of logical consequence arises ultimately from

deduction. We show that c is a logical consequence of P by deducing c

from P .53

Cutler further remarks that for deductivists “who accept semantics, completeness

is a desirable property of a logical system.”54 Deductivists believe that logical con-

sequence is best characterised using a deductive system. If a semantics is provided

that is both sound and complete with respect to the deductive system that one

believes to correctly codify (part of) logical consequence, then one can rest assure –

doubts about the meta-theoretical proofs aside – that “semantic consequence does

52(Shapiro, 1991), p. 35.
53(Cutler, 1997), p. 79.
54(Cutler, 1997), p. 80.
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not outstrip deductive consequence”.55 Thus even from a deductivist perspective,

model-theoretic arguments can be trusted in this case. Completeness guarantees

that the conclusion can also be deduced from the premises in the relevant deductive

system. This was stressed in the previous section already.

Cutler then, however, concludes that such a deductivist must reject second-

order logic as it is incomplete.56 As stressed above, this does not follow: what the

deductivist has to reject is (merely) the standard semantics for second-order logic,

or rather what must be rejected is that its consequence relation is logical. There

is no need, though, to abandon on these grounds the deductive system of second-

order logic. Rejecting the claim that a certain model-theoretic semantics produces

only logical consequences should not in general be a big problem for a deductivist,

however.

There might be interesting psychological mechanisms at work that make some-

one who is overtly a deductivist (like Wagner, if my interpretation of his arguments

is correct) subconsciously believe that the semantic characterisation of logical con-

sequence is nonetheless the standard which the deductive system must live up to.

A similar situation might arise for a semanticist who does not want to let go of the

epistemic advantages of the deductive system but refrains from taking a deductivist

position. I will not speculate about the psychological reasons for believing either. I

have argued that both positions are untenable.

55(Cutler, 1997), p. 80.
56(Cutler, 1997), p. 81.
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6.5 Conclusion

I argued above that a completeness proof can provide valuable insights into the

properties of formal systems. This is because soundness and completeness really

constitute equivalence proofs. The failure of equivalence of two systems which are

meant to formalise the same pre-theoretic notion – in the case at hand the notion of

logical consequence – suggests that these systems have to be investigated again to see

what is wrong with at least one of them. One will always have to provide independent

arguments, however, why a formal system under discussion does not properly capture

(part of) logical consequence. The mere perfect match of a model theory to a sound

deductive system, i.e. completeness, cannot provide such an argument unless one

has already established on independent grounds that one of the systems does in fact

properly capture this part of logical consequence.

Suppose, for example, that the standard model theory properly captures logical

consequence. It should therefore be the case that the best possible outcome for a

deductive system would be that it is sound and complete with respect to standard

model theory. If soundness fails, the deductive system must be dismissed, since,

say, it allows to derive theorems that are not validities, i.e. – in this case – logical

truths.57 If completeness fails, however, this surely does not show that the model

theory did not properly capture logical consequence. The deductive system on this

view is a potentially useful addition to the model theory. The latter cannot to be

judged with reference to the former, as it is supposed that the model theoretic way

57In principle soundness could fail without this being the case. All theorems could be logical
truths, but some deductive consequences would not be semantic consequences. In this case, the
deduction theorem has to fail, which states that ‘q’ is derivable from ‘p’ in the deductive system S
if, and only if, ‘p ⊃ q’ is a theorem of S. This can be generalised to sets of premises: just take ‘p’
to be the conjunction of all premises in the set.
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is the correct one.

The same holds mutatis mutandis if the deductive system is given precedence.

All that should be required to get a semantics relative to which any given deductive

system is complete is a sufficiently cunning model-theorist. Whether this semantics

answers to the pre-theoretic notion that was meant to be captured is an entirely

different issue and must be argued for independently. Of course, should it turn

out that it does not capture that notion, and the deductive system is sound and

complete with respect to this semantics, so much the worse for the deductive system.

But note that in such a case a completeness theorem, rather than an incompleteness

result, seals the fate of this system. If the logic starts out as a model-theoretic

one, it is much less clear whether we can find a complete deductive system for

it or a complete axiomatisation of it. Because of Gödel’s incompleteness results,

a complete deductive system cannot generally be expected to be available. But

the mere lack of such a system cannot count as showing that the model-theoretic

logic is not a proper logic, especially not if we independently decide that the model

theory properly captures the part of the logical consequence relation we set out to

characterise.

The considerations of this chapter certainly do not yet establish that second-order

logic is proper logic. What I have argued for is merely that the incompleteness of

deductive systems of second-order logic with respect to standard semantics alone

does not show that either of the systems is not a proper logic. Chapters 7 and 8

will investigate how second-order logic fares on the semantic and on the deductivist

account.
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Chapter 7

The Semantic Conception

7.1 Introduction

Taking up the thread from last chapter, this chapter too will be concerned with

how to characterise logical consequence properly. Stewart Shapiro’s suggestion is

that employing the model theory of the standard semantics of second-order logic

provides the correct way to do so. His argument is from the role he assigns to

second-order logic in codifying mathematical practice. All his arguments that will be

discussed below and that suggest that first-order logic is insufficient for this purpose,

straightforwardly apply to second-order logic interpreted with a Henkin semantics,

too.1 Usually, I will therefore not mention this separately in the following. Shapiro’s

claim that first-order logic is not suitable for mathematical practice2 is investigated

in detail in sections 7.2 and 7.3 below. Section 7.4 will deal with various objections

to the acclaimed advantages of second-order logic (with standard semantics).

The main proponents of the usefulness of second-order logic on this concep-

1(Shapiro, 2005a), p. 771.
2(Shapiro, 1985); see also (Shapiro, 1991), esp. chapter 5.
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tions are, next to Shapiro, Georg Kreisel3 and John Corcoran.4 The argument from

mathematical practice runs like this: important branches of classical mathemat-

ics obviously have intended interpretations (pace Hilbert); these branches include

theories like arithmetic, real and complex analysis, and prehaps set theory. Their

first-order axiomatisations are found unsatisfactory by Shapiro, since they allow for

non-standard interpretations.5 First-order analysis, which is intended to be about

the real numbers, for instance, has a model in which the domain is countable, al-

though Cantor’s famous diagonalisation shows that the set of reals is uncountable.

Shapiro thus submits that second-order axiomatisations are to be preferred. The

second-order versions of arithmetic and analysis are categorical, as introduced in

chapter 2 above, and explained in detail in section 7.2.1 of this chapter below.

Categorical axiomatisations have a unique model, up to isomorphism – all models

are isomorphic to each other, and thus to the intended one. All “non-standard”

models of the wrong cardinality are ruled out. Shapiro concludes that if logic is

supposed to codify correct inference, then for the realm of mathematics it has to

be second-order logic, as first-order logic cannot codify the correct inferences in a

second-order language.6

We will see below that some substantial mathematical content comes with the

model-theoretic consequence relation. In particular, a fair bit of set theory is, in a

sense that is spelled out in detail below, included in the model-theoretic consequence

relation. This might seem not too surprising since the standard model theory is

formulated in set theory. This is also the case, however, for Henkin semantics

3See (Kreisel, 1967).
4See e.g. (Corcoran, 1973), (Corcoran, 1980) and (Corcoran, 1987).
5(Shapiro, 1985), pp. 714–715.
6(Shapiro, 1985), p. 716.
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and also for first-order logic. The standard model theory of second-order logic is

more intimately entwined with set theory, though, as will be discussed in detail in

section 7.4 below. So, it seems, that for the semantic conception of logic at least,

Quine’s claims that if one uses second-order logic, a fair bit of set theory slips in

unheralded7 is true after all.

Shapiro is the first to accept that. He claims that given the need for second-order

resources to do justice to mathematical practice, this has to be accepted. So, while

for Quine set theory is the last resort to make sense of higher-order quantification,

as explained in chapter 3 of this thesis, Shapiro embraces the set theoretical presup-

positions of the model-theoretic consequence relation from the start. He also draws

a further conclusion:

Quinean holism is extended to logic itself. There is no sharp border

between mathematics and logic, especially the logic of mathematics. One

cannot expect to do logic without incorporating some mathematics and

accepting at least some of its ontology.8

Shapiro quotes Jon Barwise for support:

As logicians, we do our subject a disservice by convincing others that

logic is first-order and then convincing them that almost none of the

concepts of modern mathematics can really be captured in first-order

logic.9

This, however, does not show that second-order logic on the semantic conception is

7(Quine, 1986a), p. 68.
8(Shapiro, 1991), p. vi; Shapiro’s emphasis. See also (Shapiro, 1985), p. 716; (Shapiro, 1991),

p. 48; (Shapiro, 1999), p. 51; (Shapiro, 2005a), p. 772.
9(Barwise, 1985), p. 5.
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indeed logic10 – proper or not. It also does not show that the use of it is legitimate

at all (prescinding from the issue of logicality altogether). One might want, or even

need, second-order logic for certain purposes one has in mind, but that does not

show that one can also have it. Let us, however, review in detail the advantages that

Shapiro claims for the standard model theory of second-order logic before discussing

the problems that come along with it.

7.2 Mathematical Theories and their Intended In-

terpretations

The goal of this section is to explain in detail why Shapiro contends that first-order

axiomatisations are unsatisfactory for classical mathematical theories with intended

interpretations.11 The first of the two subsections will examine the advantages

of categorical axiomatisations and explain why these cannot be had in first-order

languages. The second subsection is about the mathematical practice of embedding

a weaker theory into a stronger one in order to facilitate proofs about the weaker

theory. The claim here is that no first-order axiomatisation can make sense of this

practice due to the lack of categoricity. To explain why this should be so is the aim

of the two subsections below.

Shapiro’s conclusion is that the correct logic for mathematics has to be (at

least)12 second-order:

10This is also remarked by (Jané, 2005), p. 789.
11(Shapiro, 1985), pp. 714–715.
12The presence of the ‘at least’ here and in the quotation below pays tribute to the fact that it

is not established by any of Shapiro’s arguments that second-order logic will suffice. It might be
that it will turn out that a higher-order logic is needed that goes beyond second-order. Compare
concerning this the partial reduction result for higher-order logic to second-order by (Hintikka,
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One of the purposes of logic is to codify correct inference. Thus, if my

major conclusions are correct, the underlying logic of many branches

of mathematics is (at least) second-order: one cannot codify the cor-

rect inferences of a second-order language with a first-order logic. It

follows that the inconvenient technical properties and presuppositions of

second-order logic must be accepted. The correct conclusion, I believe,

is that there is no sharp boundary between logic and mathematics. The

study of correct inference, like almost any other science, involves some

mathematics and some mathematical presupposition.13

7.2.1 Categoricity

The categoricity result was already stated in chapter 2 above. To recapitulate,

(Corcoran, 1980) defines the notion like this:

Categoricity: A set of sentences S is categorical if, and only if, every two models

(or interpretations) which satisfy S are isomorphic.14

A mathematical theory is standardly defined as a set of sentences that contains the

axioms in question and is closed under logical consequence. A fortiori an axiomatised

mathematical theory T is categorical if, and only if, every two models which satify

T are isomorphic.

1955); see also (Shapiro, 1991), section 6.2. Note that the proof as given depends on the first-order
domain being set-sized, and thus does not hold for second-order set theory which would presumably
be the most interesting case. Note also, that the result only applies to the class of second-order
validities, and not to the consequence relation in general. This could be taken to limit its interest
significantly.

13(Shapiro, 1985), p. 716.
14(Corcoran, 1980), pp. 190-191; see also (Shapiro, 1991), pp. 12, 82.
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Shapiro glosses this as that a categorical axiom system has “essentially only

one model” which is its intended interpretation.15 All other models of the theory

are isomorphic to this standard interpretation and thus display the same structural

features. Shapiro contends that it is essential to the practice of mathematics that

mathematicians pick out the structures they want to talk about; presumably they

are able to do so. It seems right to say that a mathematician asserting that there

are infinitely many prime numbers makes this assertion about the natural numbers

which are the domain of the intended model of the Peano-Dedekind axioms for

arithmetic.

Shapiro argues that classical mathematical theories, like arithmetic and analysis,

have intended interpretations:16 for arithmetic it is the natural numbers, for real

analysis the real numbers, for complex analysis the complex plane, and (perhaps)17

for set theory the iterative hierarchy. Categorical characterisations of these classical

mathematical theories,18 however, must be second-order. “Many writers,” as Cor-

coran writes, ”have noted that the many known categorical characterizations of the

familiar classical systems all involve languages of second order, at least.”19 These

authors prominently include Georg Kreisel20 and Richard Montague.21

In first-order languages the theorems of Löwenheim-Skolem and Löwenheim-

Skolem-Tarski hold (see chapter 2), and they obviously directly contradict cat-

15(Shapiro, 1991), p. 82.
16(Shapiro, 1985), p. 715; (Shapiro, 1991), p. 117.
17The qualification is due to the existence of “alternative” set theories, like Peter Aczel’s An-

tifoundational Set Theory. This set theory asserts that some sets contain themselves, contradicting
Zermelo-Fraenkel set theory (ZF) and not being in accordance with the iterative hierarchy (al-
though the axioms can be modeled on it, see (Aczel, 1988)). Quine’s system of New Foundations,
(Quine, 1937), that was already mentioned in chapter 3, is another example, and there are others.

18Quasi-categorical, in the case of ZF – see chapter 2 above.
19(Corcoran, 1980), p. 192.
20(Kreisel, 1967).
21(Montague, 1965).
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egoricity. (I will for the sake of simplicity henceforth refer to the Löwenheim-

Skolem and Löwenheim-Skolem-Tarski theorems together as ‘Löwenheim-Skolem

theorems’.) The Löwenheim-Skolem Theorem states, that if a set of first-order

sentences has an uncountable model, then is also has a countable model. The in-

tended model of the first-order theory of real analysis is uncountable – there are

uncountably many reals – but by Löwenheim-Skolem it also has a countable model.

The categoricity of real analysis claims that all its models are isomorphic; thus a

categorical axiomatisation cannot be first-order. Analogously, the intended model of

Peano Arithmetic is countable; by Löwenheim-Skolem-Tarski (sometimes call “Up-

wards Löwenheim-Skolem Theorem”) it has uncountable models, too, and hence a

categorical characterisation of arithmetic cannot be first-order. These considerations

also show that second-order logic with Henkin semantics has the same shortcom-

ing as first-order logic in this respect: the Löwenheim-Skolem theorems hold here,

too, so no categoricity results for infinite structures can be available. Kreisel ob-

serves that all finite structures are categorically characterisable in first-order, but

no infinite stuctures are. He thus concludes that ‘being first-order categorically

characterisable’ is co-extensive with ‘being finite’.22

It can further be observed that, in general, the logic that is used to give cat-

egorical axiomatisations with an infinite intended domain cannot be semantically

complete, at least not if the deductive system is sound. To see this it suffices to

show that categoricity contradicts compactness, since, as mentioned in chapter 2,

compactness is a simple corollary of soundness and completeness (see there). It is

easy to see that that categoricity contradicts compactness, however.

Theorem: No logic in which a categorical axiomatisation of arithmetic can be given

22(Kreisel, 1967), p. 148.
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has the compactness property.

Proof: Assume compactness for reductio. Consider the set of sentence Γ that is the

union of the set of the second-order axioms of arithmetic with the (infinite) set

∆ that contains every sentence of the form pn 6= si0q, where ‘s’ stands for the

successor function, ‘n’ is an individual constant, and psiq denotes a sequence

of ‘s’ of length i, for i ∈ ω (including 0). (That means that the sentences in

∆ say that ‘n’ neither denotes 0 nor any of its successors, i.e. that it does not

denote a natural number.) Every finite subset of Γ is obviously satisfiable.

Hence, by compactness, Γ is satisfiable. It is not satisfied by the intended

model, however. By hypothesis the axioms are categorical, however, and thus

all its models are isomorphic to the intended one. Contradiction. 2

This result generalises in the expected way.23 No sound and complete logic thus can

give categorical characterisations of infinite structures.24

It is in this sense that Shapiro claims that “completeness is most emphatically

not desired”.25 It is crucial for Shapiro’s project that one can provide categorical ax-

iomatisations for the classical mathematical theories. This cannot be done with any

complete (and sound) logic. The “inconvenient technical properties” of second-order

logic with standard semantics, like incompleteness and non-compactness, therefore,

“must be accepted.”26

Most prominently, Thoralf Skolem challenged the claim that infinite mathemat-

ical structures can be characterised up to ismorphism. From his (Skolem, 1922) on,

Skolem argues on basis of the theorems that bear his and Löwenheim’s names that

23(Shapiro, 1991), pp. 112-113.
24(Shapiro, 1985), p. 718; (Shapiro, 1991), p. 111–113; see also (Read, 1997).
25(Shapiro, 1999), p. 56; see also (Shapiro, 1985), p. 715.
26(Shapiro, 1985), p. 716.
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there is an unavoidable relativism concerning the interpretation of mathematical

theories, which is often referred to as ‘Skolem’s Paradox’.27 Skolem discusses the

foundation of mathematical theories on first-order set theory and observed that,

like any first-order theory, first-order set theory has a countable model. Shapiro

explains:

For example, one cannot claim that a given domain D is uncountable

simpliciter, but only uncountable relative to a given model (containing

D) of set theory. For any such D, one cannot rule out the possibility

that D may be countable relative to a richer model, one that contains

a function from the natural numbers onto D. Skolem held that this

relativity also applies to the Dedekind notions of ‘finite’ and ‘simply

infinite system’.28 Given the modern trend of regarding virtually all

mathematical notions as set-theoretic, Skolem’s conclusion would entail

the relativity of just about everything.29

Shapiro’s reply is essentially that it should be assumed that mathematicians know

what they talk about.30 Mathematicians should be taken to successfully refer to the

(preformal) mathematical structure that they seem and believe themselves to be

talking about. First-order languages, thus, do no justice to mathematical practice.

The categorical second-order axiomatisations on the other hand, characterise the

subject matter of mathematics up to isomorphism, and thus describe the mathe-

matical structures in a way that is necessary, but also sufficient for mathematical

27See (Shapiro, 1991), chapter 7, and (Shapiro, 2001) for a detailed discussion of Skolem’s
Paradox.

28For the notion of Dedekind infinity see section 7.3.1 below.
29(Shapiro, 1991), p. 183.
30(Shapiro, 1985), p. 716; compare also (Shapiro, 1991), p. 119.
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practice.31 Shapiro concludes the description of this project in his first article on

the topic like this:

One of the purposes of logic is correct inference. Thus, if my major

conclusions are correct, the underlying logic of many branches of mathe-

matics is (at least) second-order: one cannot codify the correct inferences

of a second-order language with a first-order logic.32

It is not required of mathematicians that they explicitly use second-order systems

for their proofs. Shapiro insists that mathematical practice is largely informal. It

is the logician of philosopher of mathematics who uses the second-order systems in

order to make sense of the mathematicians’ practice.

7.2.2 Embedding

The more general idea that mathematicians refer to the intended structures of clas-

sical mathematical theories like arithmetic, real and complex analysis, and perhaps

set theory, gains significance for mathematical practice if one considers what Shapiro

calls ‘embedding’.33

It is common mathematical practice not to restrict oneself to the resources avail-

able in the mathematical theory one of whose theorems is meant to be proven. This

is especially true if theorems about the natural numbers are to be found. Peano

Arithmetic is a fairly weak system, as mathematical theories go, and proofs some-

times can be found more elegantly and more quickly if stronger theories, like set

theory for example, are used.

31(Shapiro, 1999), p. 56.
32(Shapiro, 1985), p. 716.
33(Shapiro, 1985), pp. 728–729; (Shapiro, 1991), pp. 123–124; see also (Kreisel, 1967), p. 148.
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Also, as Kreisel illustrates,

very often the mathematical properties of a domain D become only gras-

pable when one embeds D in a larger domain D′. Examples: (1) D in-

tegers, D′ complex plane; use of analytic number theory. (2) D integers,

D′ p-adic numbers; use of p-adic analysis. (3) D surface of a sphere, D′

3-dimensional space; use of 3-dimensional geometry.34

Such proofs “from the outside”35 are common in mathematics. We typically allow

that a proof carried out in, say, real analysis, that is purportedly about the natural

numbers, is true of them. This requires, however, that the mathematician can pick

out a substructure in the structure of the reals, that corresponds to the natural

numbers.

The practice of embedding structures indicates a further area in which

categoricity is important. The point is that in order to embed a struc-

ture D into a structure E, one must have a means of recognizing that

a substructure of E is isomorphic to D. Otherwise, one cannot be cer-

tain that D really is a substructure of E. The formal analogue of this

requirement is a categorical characterization of D.36

Without this guarantee, the claim goes, we could hardly make sense of mathematical

practice. If the mathematician would not be certain to have proven her theorem

about a structure that is isomorphic to the natural numbers, how could she be sure

that what she proved is true of them? Only a categorical axiomatisation can make

sense of this practice. For all we would know in the absence of categoricity, the

34(Kreisel, 1967), p. 166.
35(Shapiro, 1999), p. 47.
36(Shapiro, 1985), p. 728.
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mathematician could have proven something about a non-standard model of arith-

metic. Again, no proof explicitly formalised in a second-order theory is demanded of

the mathematician; it is the philosopher of mathematics who observes, according to

Shapiro, that one cannot do justice to the mathematician’s practice if a first-order

formalisation is presupposed.

The second-order axiomatisation of arithmetic is categorical, and so all its models

are isomorphic, and hence in all relevant respects similar to the natural numbers.

Whatever can be shown to be true in any of these models, hence, must be true of

the natural numbers. Thus, categorical axiomatisations do justice to such proofs

“from the outside”.

Gödel’s incompleteness theorem shows that for any consistent axiom system of

a mathematical theory at least as strong as arithmetic there are true sentences

that are not provable in that system. If we embed a mathematical structure in

a richer one and prove propositions about it in the stronger theory that is about

this richer structure, because of the incompleteness result we cannot be sure that

the truth proven about the embedded structure is also provable from the axioms

characterising it.

There is in general no telling to what extent the truths of a theory outstrip

the theorems, in the sense that, as Shapiro stresses,37 it is usually not clear in

advance how much mathematical resources are needed for a proof of a statement.

This question is usually non-trivial even after the proof is carried out. A given proof

shows what resources were in fact used, but it is not in general clear whether another

proof could not establish the same result more economically.

To mention a now famous example, Andrew Wiles’ celebrated proof of Fermat’s

37(Shapiro, 1985), p. 728; (Shapiro, 1991), p. 124; (Shapiro, 2005a), p. 777.
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Last Theorem does not proceed by deriving the statement from the Peano-Dedekind

axioms of arithmetic. Rather, Wiles proved another conjecture, concerning complex

analysis, which entails Fermat’s Last Theorem. So, Wiles’ proof requires at least

complex analysis, while Fermat’s Last Theorem – that there are no natural numbers

x, y, z (other than 0) such that xn+yn = zn for any natural number n greater than 2

– is about the natural numbers. It is still an open question whether the theorem can

be derived from the Peano-Dedekind axioms. Nevertheless, Wiles’ proof is taken to

show something about the natural numbers, and presumably rightly so.

7.3 Expressive Power

As mentioned above, many important mathematical concepts are not expressible

in pure first-order logic. Second-order logic, interpreted with standard semantics,

however, has the required expressive resources, and so statements about infinite

cardinalities, well-orderings, choice functions and other mathematical concepts can

be expressed in purely second-order logical terminology. In this section I will con-

centrate on the expressibility of infinite cardinalities, as the philosophical discus-

sion usually concerns examples that involve these. Both the claimed advantages of

second-order logic with standard semantics, and the reasons for the dissatisfaction

of its opponents with it, become particularly apparent here.

To be sure, the opponent of second-order axiomatisations can point out that

while these concepts might not be expressible in pure first-order logic, they are so

in first-order set theory, for example in Zermelo-Fraenkel set theory (ZF), or ZFC

where the Axiom of Choice is required. Shapiro holds against this, however, that

in this case Skolem strikes back: first-order ZF itself, like any first-order theory, is
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subject to the Löwenheim-Skolem theorems. That means that despite the fact that

the vast iterative hierarchy is the intended model of ZF, ZF has a countable model.

A first-order ZF sentence that asserts truly of a set R that it is uncountable, say,

a set isomorphic to the reals, in an important sense only does so on the standard

interpretation. A countable model of ZF will still make that sentence true, but it,

of course, cannot assign an uncountable set as an interpretation to R. We end up

with a (countable) non-standard model of the real numbers, and a sentence that is

intended to express the uncountability of the reals that is made true by a countable

model.38

The connections to the importance of categoricity, as described above, should

be apparent. Models of the “wrong” cardinality are ruled out by categoricity. So,

cardinality statements can be made determinately, if indeed the categoricity results

can keep this promise. Before going into the criticisms, however, it seems advisable

to have a look at the second-order formalisations that are the subject of the debate.

7.3.1 Cardinalities

To express in second-order logic that a mathematical concept, e.g. natural number,

has an infinite extension the notion of Dedekind infinity can be used.39 In the more

common, set-theoretical formulation, it can be defined that a set α is Dedekind

infinite if, and only if, there is an injection (one-to-one function) from α to a proper

subset of it. To express in second-order logic with standard semantics a sentence

‘INF(F )’, stating that the extension of a predicate ‘F ’ is infinite, all we have to do

38(Shapiro, 1985), pp. 734–739; (Shapiro, 1991), pp. 110–116.
39To show that a Dedekind infinity is indeed infinite the Axiom of Choice is needed. As this is

usually assumed in the model theory this does not pose a technical problem here; see (Shapiro,
1991), p. 130, n. 7. A philosophical discussion of the Axiom of Choice cannot be delivered here.
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is find an open sentence that expresses the condition for Dedekind infinity. It can

be done like this:40

INF(X):

∃f [∀x∀y(fx = fy ⊃ x = y) ∧ ∀x(Xx ⊃ Xfx) ∧ ∃x(Xx ∧ ∀y(Xy ⊃ fy 6= x))]

‘INF(X)’ is satisfied by a model if, and only if, the class assigned to ‘X’ by the

standard model theory is infinite. Now it is easy, of course, to characterise finitude

using this:

FIN(X): ¬INF(X)

Note that neither of the formulae contains any non-logical vocabulary. The in-

fluence of the assumption of the standard semantics is also particularly apparent

here. ‘FIN(X)’ states that there is no such function. The second-order quantifiers

have to be assumed to have all functions in their range. The standard semantics is

considered guaranteeing this.

Using an individual constant for zero, ‘0’, and a constant function letter for

successor, ‘s’, one can construct first-order formulae that are satisfiable only on

infinite domains. The following is such a formula:

∀x∀y(sx 6= 0 ∧ (sx = sy ⊃ x = y))

So we can, in a sense, also express that a predicate ϕ has an infinite extension:

∀x∀y(sx 6= 0 ∧ (sx = sy ⊃ x = y)) ∧ ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(sx))

40The exposition below largely follows (Shapiro, 1991), pp. 100-105; see also (Garland, 1974).
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These can thus be taken to express the infinity of the domain or of the extension of

a predicate in a first-order language (with non-logical constants). This characterisa-

tion has the flaw, however, that the negations of the above formulae do not express

finitude, as will be shown below.

It is well know that first-order logic with identity can express any specific fi-

nite cardinality. ‘There are at most three things that are F ’, for instance, can be

expressed as:

∃x∃y∃z∀w(Fw ≡ (w = x ∨ w = y ∨ w = z))

It cannot, however, be expressed in any first-order language that a predicate has

a finite extension without specifying a finite upper bound on its size. This is a

corollary of the compactness theorem:

Theorem: Let S be a set of sentences formalised in a first-order language. Let

pϕ(x)q be an arbitrary open sentence of that language, containing ‘x’ free. If,

for each natural number n, there is a model of S in which the extension of ϕ

has at least n members, then there is a model of S in which the extension of

ϕ is infinite.

Proof: Let ‘c0’, ‘c1’, ‘c2’, ... be individual constants that do not occur in ϕ or in any

of the sentences that are member of S. Let S ′ be the set such that

S ′ =df S ∪ {ci 6= cj | i < j} ∪ {ϕ(ci) | i ∈ ω}

If a subset T of S ′ has n members then T is satisfiable in any model of S in

which the extension of ϕ has at least 2n elements – simply assign different
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elements of the extension of ϕ to the new constants that occur in T . T was

chosen arbitrarily, so every subset of S ′ is satisfiable, and, by compactness, S ′

is satisfiable. But any model of S ′ is a model of S in which the extension of ϕ

is infinite.41 2

As already mentioned, the second-order expressions of finitude and infinity are by far

not the only mathematical concepts that can be defined in pure second-order logic.

George Boolos, for example, has shown that even comparatively simple notions

like ‘is equinumerous with’ or ‘has an extension that is at least as large as the

extension of’ cannot be expressed in a first-order language, but require second-order

resources.42

It is possible to express the equinumerousity of two predicates in second-order

logic, because a bijection (a function that is one-to-one and onto) between the ex-

tensions of two predicates can be expressed:

EQUIN(X, Y ):

∃f(∀x∀y((Xx ∧Xy ∧ fx = fy) ⊃ x = y) ∧ ∀x(Xx ⊃ Y fx) ∧

∀x(Y x ⊃ ∃y(Xy ∧ x = fy)))

With the help of this we can also easily express being countable (that is, being

either countably infinite, i.e. equinumerous with the natural numbers, or finite) in

second-order logic. If ‘X’ has a countable extension, then every predicate ‘Y ’, such

that everything that is ‘Y ’ is also ‘X’, has an extension that is either finite, or

equinumerous with ‘X’. Thus:

41Compare (Shapiro, 1991), pp. 101–102.
42(Boolos, 1981).
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COUNT(X): ∀Y (∀x(Y x ⊃ Xx) ⊃ (FIN(Y ) ∨ EQUIN(X, Y ))

To see that this expresses countability, suppose that ‘X’ was uncountable, say, ‘is a

real number’. There would be a predicate ‘Y ’ that applied to countably many real

numbers, say, ‘is a real number expressible as a whole number’. Clearly, everything

in the extension of ‘Y ’ is also in the extension of ‘X’, but ‘Y ’ is neither finite nor

equinumerous with ‘X’.

Is countably infinite, or is of cardinality ℵ0, i.e. the cardinality of the natural

numbers, is thus easily expressed as:

ALEPH-0(X): COUNT(X) ∧ INF(X)

Having thus characterised the smallest infinite cardinality, it is straightforward to

express the next smallest, ℵ1, and the next smallest after that, ℵ2, and so on, using

the same idea:

ALEPH-1(X): INF(X) ∧ ¬ALEPH-0(X) ∧ ∀Y (∀x[Y x ⊃ Xx)

⊃ (FIN(Y ) ∨ ALEPH-0(Y ) ∨ EQUIN(X, Y )]

ALEPH-2(X): INF(X) ∧ ¬ALEPH-0(X) ∧ ¬ALEPH-1(X)

∧ ∀Y (∀x[Y x ⊃ Xx) ⊃ (FIN(Y ) ∨ ALEPH-0(Y )

∨ ALEPH-1(X) ∨ EQUIN(X, Y )]

This process can obviously be continued, to characterise any cardinality ℵn, for all

finite n. Indeed, it does not stop there: being of cardinality ℵω (and beyond) can be

expressed, too,43 but I will not go into the details here. Instead of chasing higher

up in the hierarchy of cardinalities, let us turn to the most prominent example in

43Compare (Shapiro, 1991), pp. 104-105.
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the more recent discussion of second-order logic: the continuum problem.

7.3.2 The Continuum Hypothesis

One of the most notorious problems in set theory is that of the continuum hypothesis.

It is known that the continuum, i.e. the cardinality of the real numbers, is the

cardinality of the powerset of the natural numbers, i.e. of a countable infinite set.

Recall that the powerset of a set α is the set that contains all and only the subsets

of α. Generally, if a set has the cardinality κ, its powerset has the cardinality 2κ.

We say that countable infinite sets are of cardinality ℵ0, and so the continuum has

the cardinality 2ℵ0 . The question thus arises: is the continuum the smallest infinite

cardinality that is larger than ℵ0, or are there uncountable sets that are smaller than

the continuum? This question is known as the continuum problem. Georg Cantor

conjectured that the size of the continuum was indeed the next cardinality after ℵ0:

this is his continuum hypothesis.

Formally, it can be expressed as:

ℵ1 = 2ℵ0

Cantor’s formulation of the continuum hypothesis is that every subset of the set of

the real numbers is either countable or can be bijected with the reals. Kurt Gödel

showed in 1938 that the continuum hypothesis is consistent with first-order ZFC.44

Paul Cohen managed to prove in 1963 that its negation is consistent with first-order

ZFC too.45 It was thus established that the continuum hypothesis is independent of

44(Gödel, 1938)
45(Cohen, 1963); (Cohen, 1964).
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first-order ZFC. Indeed, Chuaqui has shown that it is also independent of second-

order ZFC.46

The continuum hypothesis can be generalised to the thesis that for every cardi-

nality the smallest larger one is reached by applying the powerset operation to it.

Formally:

ℵα+1 = 2ℵα , for any ordinal α

This is the generalised continuum hypothesis. Note that this conjecture is not re-

stricted to finite ordinals. It is meant to apply all the way up. The generalised

continuum hypothesis is independent of ZFC, too, as is also shown by Gödel and

Cohen.

We have seen above that the different cardinalities ℵn, for n ∈ ω can be expressed

in pure second-order logic; and it was said that indeed all cardinalities ℵα, for any

ordinal α, can so be expressed. We can, indeed, also express being of the size of the

continuum.47 In order to do so, notice that for a continuum-sized set X there is a

countably infinite set S and a binary relation R with X as its domain and S as its

range, such that (i) for each Y that is a subset of S there is an x in X such that Y

is {y |Rxy}, and (ii) for every x and y in X, if {z |Rxz} = {z |Ryz} then x = y. R

is hence a bijection between X and the powerset of S. The following second-order

formula expresses being continuum-sized in accordance with these considerations:

CONTINUUM(X):

∃S∃R[ALEPH-0(S) ∧ ∀x∀y(Rxy ⊃ (Xx ∧ Sy))

∧ ∀Y (∀y(Y y ⊃ Sy) ⊃ ∃x∀y(Rxy ≡ Y y))

46(Chuaqui, 1972); see also (Weston, 1977).
47For the following formalisation see (Shapiro, 1991), pp. 105–106.
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∧ ∀x∀y([Xx ∧Xy ∧ ∀z(Rxz ≡ Ryz)] ⊃ x = y)]

This definition in effect says that being continuum-sized is being bijectable with

the powerset of a countably infinite set. So now we can express the continuum

hypothesis in pure second-order logic. Call this second-order sentence ‘C’.

(C) ∀X[ALEPH-1(X) ≡ CONTINUUM(X)]

C not only expresses the continuum hypothesis, but is also linked with it in a much

stronger way. In the standard model theory, the range of the second-order variables

is the powerset of the domain. If the domain is countably infinite, the range of the

second-order variables is continuum-sized. What the cardinality of this is, depends,

thus, on what way the continuum hypothesis is decided. Moreover, whenever the

domain is infinite (countably infinite or larger), it will depend on the continuum

hypothesis whether any given predicate whose extension is continuum-sized has the

cardinality ℵ1 or not. Should the continuum hypothesis turn out to be true, however,

any extension of a predicate that is continuum-sized is of size ℵ1 in every model –

there just cannot be any model in which a predicate is assigned a continuum-sized

set that is not ℵ1, as no such sets exist if the continuum hypothesis is true. Hence,

C will be true in all models, i.e. a validity of the standard semantics of second-order

logic. To put it in a different way: the standard semantics of second-order logic

declares C to be a logical truth if, and only if, the continuum hypothesis is true.

This seems hard to swallow to many.

Before we turn to the criticism connected to the case of the continuum problem,

however, it is worth adding some more details surrounding the issue. One point is

that it is not the case that ‘¬C’ is a true in all models if the continuum hypothesis
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is false. ‘¬C’ is trivially true in every countable model, i.e. it is true irrespective of

the truth or falsity of the continuum hypothesis. There is another sentence, call it

‘D’, however, that is a validity of the standard semantics of second-order logic if,

and only if, the continuum hypothesis is false:

(D) ∀X[ALEPH-1(X) ⊃ ¬CONTINUUM(X)]

Neither C, nor D, nor their negations, are theorems of the deductive system of

second-order logic.48 Thus, we have here an example for the incompleteness of

second-order logic with respect to the standard semantics: one of C and D is a

logical truth according to the standard semantics that cannot be proven in any

standard deductive system of second-order logic.

It does not stop there. There is a similar pair of sentences, one of which is

declared a logical truth if, and only if, the generalised continuum hypothesis is true.

Another second-order sentence – and this also is a sentence that contains only logical

vocabulary – asserts the existence of inaccessible cardinals, and is declared a logical

truth by the standard semantics, if, and only if, there are inaccessible cardinals.

The examples mentioned so far all use the expressive resources of second-order

logic to express these statements directly. There is a trick, however, whereby in

general all truths of set theory49 can be turned into second-order sentences that in a

way correspond to them. The recipe is the following: take the second-order axioms

of ZF (or ZFC, if you will) in their canonical formulation with ‘∈’ as only non-logical

constant; take their conjunction – let us call it Z. Let P be the true ZF sentence

in question; form the conditional ‘Z ⊃ P ’. Replace every occurrence of ‘∈’ by a

48(Shapiro, 1991), p. 105.
49At least those not depending on inaccessible cardinals; see footnote 50 below.
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two-place predicate variable in this conditional and bind that variable with a prenex

universal quantifer. The resulting generalised sentence will in all cases be true in all

models, as follows from the quasi-categoricity50 of second-order ZF.

This method works for second-order arithmetic and second-order real analysis

just as well as for set theory. All of the truths will, when conditionalised to the

conjunction of their axioms and generalised, turn into validities of the standard se-

mantics of second-order logic. To borrow Ignacio Jané’s metaphorical description of

the situation, second-order logic, in a sense, “has all the solutions to the problems

of ordinary mathematics, but it keeps them to itself”.51 None of the mathemati-

cal truths that are unprovable in their respective theories will be provable in their

conditionalised and universally generalised form in second-order logic, on pain of

contradiction (provided only that the deductive system of second-order logic is con-

sistent). If there were a sentence amongst them that is a theorem of second-order

logic, one could within the second-order theory instantiate this theorem, and dis-

charge the antecedent with the axioms. This would prove the respective statement

in the second-order theory, contradicting the assumption that this is not possible.

For the case of arithmetic the mentioned technique will play an interesting role later

on, in chapter 8. Let us now turn to a critical discussion of the mentioned results.

7.4 Substantial Content

The interesting question for the status of second-order logic as proper logic must be

its delineation with respect to mathematics. Shapiro, as mentioned in the beginning

50Quasi-categoricity means intuitively that all models are isomorphic up to the lowest inaccessible
rank, see chapter 2, section 5.3, above.

51(Jané, 1993), p. 80.
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of this chapter, rejects this question. He holds in an extreme Quinean52 fashion that

there is no sharp boundary between logic and mathematics, and that in the case of

the logic of mathematics, it is particularly unsurprising that we find it difficult to

tell which side of the divide we are on.

Not everyone agrees with Shapiro on this, however. As is discussed below, some

of Shapiro’s critics find it especially in the realm of mathematics crucial to draw

this distinction. In the next chapter, chapter 8, I will make a case that there is

an interesting and important line to be drawn, and that this line can be drawn

according to fairly well-respected criteria. Much of the criticism that is discussed

in the following will provide material for the next chapter in which the model-

theoretic approach to logical consequence is rejected in favour of an account that

characterises logical consequence with the aid of inference rules – what I call the

Deductivist Conception.

Much of the criticism, however, has force even if one is not interested in some no-

tion of proper logic. One line of criticism challenges the alleged advantages of second-

over first-order logic, especially the categoricity results. A good bit of the criticism

turns on the substantial mathematical content that second-order logic carries. The

basic idea would be that, contrary to Shapiro’s insistence, the mathematical presup-

positions of the standard model theory are problematic and that this mathematical

content gets in the way of the envisioned benefits in the use of second-order logic.

That this should be so might be more obvious if one is interested in the notion of a

proper logic. Shapiro evades this criticism by rejecting a sharp distinction between

logic and mathematics. Some of Shapiro’s critics, however, argue that in axioma-

52Quine himself sometimes, especially in his discussion of second-order logic, seems to consider
the border between proper logic and mathematics sacrosanct, while the entire rest of the “web of
believe” is seemless according to him.
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tising mathematical theories second-order logic fares no better than first-order set

theory – or even worse. An argument to that effect, as discussed a little farther

below, does not depend on a distinction between logic proper and mathematics.

Let us start out with an objection to second-order logic that does depend on a

notion of proper logic. In an extreme form, aversions against mathematical content

in a logic might even take its ability to express certain mathematical concepts as

disqualifying a system from the status of proper logic. Jan Woleński puts this idea

forward in various of his papers in which he discusses first-order logic. Surprisingly,

he claims that “any theory, which distinguishes cardinalities is not a logic.”53 This

statement, if true, would rule out first-order logic with identity which is exactly the

logic that Woleński favours as “the one true” logic.54 Any finite cardinality can of

course be expressed in first-order logic, as already mentioned. There are at least

three cats, for example, can be expressed as

∃x∃y∃z(Cx ∧ Cy ∧ Cz ∧ x 6= y ∧ y 6= z ∧ x 6= z)

with ‘C’ standing for ‘is a cat’. There are exactly two cats can be formalised in

53(Woleński, 2004), p. 388.
54See, for example, his (Woleński, 1999) and (Woleński, 2004). Woleński’s main argument for

first-order logic seems to be intended to go along the lines of the arguments from completeness that
were discussed, and found flawed, in chapter 6. Woleński presents a meta-theoretical axiomatisation
of what he takes to be logical consequence. Interestingly, it only accounts for truth-functions and
first-order quantifiers. He then shows that the standard semantics of first-order logic is adequate
for his axioms, and observes that the deductive system of first-order logic is complete with respect
its standard semantics and, by transitivity, to his axiomatisation. He does not present an argument
that his axioms exhaust logical consequence (the presystematic notion) – and vis-à-vis the question
whether they at least track logical consequence he essentially restricts his remarks to the claim
that his axioms are obvious. One wonders what he takes his equivalence proofs to show about
logical consequence, and how it follow from them that the “only true logic” is standard classical
first-order logic.
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first-order logic as:

∃x∃y(Cx ∧ Cy ∧ x 6= y ∧ ∀y[Cz ≡ (x = z ∨ y = z)])

To interpret Woleński charitably, his concern might be about infinite cardinalities

– that a logic should not be able to distinguish between them. One still wonders

why, however. The reason cannot be that infinite cardinalities belong in the domain

of mathematics and not of logic, for the same could be said to be true of finite

cardinalities. While each finite cardinality can be expressed in first-order logic,

being finite is not expressible with the resources of first-order logic. As shown in

section 7.3.1 above this follows from the compactness theorem.

Moreover, claims about the cardinality of the domain can be expressed in first-

order logic for the finite case. That the domain has a cardinality no larger than 3,

for example, is expressed as:

∃x∃y∃z∀w(x = w ∨ y = w ∨ z = w)

This sentence is, of course, not provable,55 but neither are the cardinality statements

that can be made in second-order logic. As Fraser MacBride puts it,

it is one thing to be able to express a mathematical claim employing

these notions in a second-order language. It is quite another thing to be

logically obliged to endorse such claims. Until it is shown that second-

order expressible mathematical claims fall amongst the class of second-

order logical truths, it remains to be established that the employment of

55One cardinality statement, however, is provable in standard first-order logic, viz. that the
domain in non-empty: ‘∃x(x = x)’.
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second-order inference patterns draws upon distinctively mathematical

expertise.56

The last sentence, of course, alludes to the case of the continuum problem that will

occupy us again a little further down.

One might also put forward an argument against Woleński’s claim along the lines

of some of Boolos’ arguments. As already mentioned in chapter 4, Boolos advances

– especially in (Boolos, 1975) – some arguments to the effect that second-order logic

is a natural extension of first-order logic, in the sense that some of the jobs we want

logic to do, can only in some special cases be fulfilled by first-order logic. In order

to be able to do these things57 generally, we need second-order logic. Providing the

expressive resources for making cardinality statements might be one such feature:

first-order logic with identity can only express finite cardinalities, while second-order

logic (with standard semantics) can express infinite cardinalities (and ‘being finite’),

too.

As stressed above, Shapiro argues in a more general way that first-order logic just

is too weak to express many of the concepts that are important for mathematics;

cardinality concepts are a prominent case. A logic that cannot distinguish infinite

cardinalities, is of little use in an area where one wants to reason about these:

mathematics. This point was already elaborated above.

Even Shapiro admits, however, that the case of the second-order sentence C

(see section 7.3.2) that is a validity of the standard semantics if, and only if, the

continuum hypothesis is true might be seen as problematic. While the question

to him is of little importance as he rejects the sharp distinction between logic and

56(MacBride, 2003), p. 139.
57One of Boolos’ examples was showing that a set of sentences is inconsistent; see (Boolos, 1975),

p. 49, and also my chapter 4, section 1.
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mathematics, he agrees in his most recent paper on higher-order logic that “[i]t is

perhaps counterintuitive to hold that such principles are “logical”.”58 It seems to

many, that the continuum hypothesis is a mathematical statement if anything is.59

Additionally, we have seen in section 7.3.2 how, in a sense, all set theoretical truths

(barring inaccessibles) have their corresponding sentences amongst the second-order

validities.

While Shapiro takes this to provide evidence for his claim that there is no sharp

boundary between logic and mathematics,60 Ignacio Jané suggested – first in (Jané,

1993) – that, however this may be, there is still trouble on the horizon if we proceed

as Shapiro suggests. To repeat the quotation already given above, Jané is on the

one hand concerned that

[i]n a certain, perhaps metaphorical sense, [second-order logic] has all the

solutions to the problems of ordinary mathematics, but it keeps them to

58(Shapiro, 2005a), p. 772.
59A logician who is well acquainted with second-order logic once mentioned to me that it is not

so far-fetched to consider C a logical truth if one looks at the actual, written out, second-order
formula and clears ones mind of the set theoretical terminology that it is usually employed to talk
about it. I have to confess that my intuitions about logical truths run out long before complicated
cases like this. For the sake of the reader who wants to try her or his luck, here is C written out
in fully explicit second-order form:
∀X[(∃f [∀x∀y(fx = fy ⊃ x = y) ∧ ∀x(Xx ⊃ Xfx) ∧ ∃x(Xx ∧ ∀y(Xy ⊃ fy 6= x))] ∧

¬(∀Y (∀x(Y x ⊃ Xx) ⊃ (¬∃f [∀x∀y(fx = fy ⊃ x = y) ∧ ∀x(Y x ⊃ Y fx) ∧ ∃x(Y x ∧ ∀y(Y y ⊃
fy 6= x))] ∨ ∃f [∀x∀y((Xx ∧ Xy ∧ fx = fy) ⊃ x = y) ∧ ∀x(Xx ⊃ Y fx) ∧ ∀x(Y x ⊃
∃y(Xy ∧ x = fy))]) ∧ ∃f [∀x∀y(fx = fy ⊃ x = y) ∧ ∀x(Xx ⊃ Xfx) ∧ ∃x(Xx ∧ ∀y(Xy ⊃ fy 6=
x))])∧∀Y (∀x[Y x ⊃ Xx) ⊃ (¬∃f [∀x∀y(fx = fy ⊃ x = y)∧∀x(Y x ⊃ Y fx)∧∃x(Y x∧∀y(Y y ⊃ fy 6=
x))] ∨ (∀Y (∀x(Y x ⊃ Y x) ⊃ (¬∃f [∀x∀y(fx = fy ⊃ x = y) ∧ ∀x(Y x ⊃ Y fx) ∧ ∃x(Y x ∧ ∀y(Y y ⊃
fy 6= x))] ∨ ∃f [∀x∀y((Y x ∧ Y y ∧ fx = fy) ⊃ x = y) ∧ ∀x(Y x ⊃ Y fx) ∧ ∀x(Y x ⊃
∃y(Y y ∧ x = fy))]) ∧ ∃f [∀x∀y(fx = fy ⊃ x = y) ∧ ∀x(Y x ⊃ Y fx) ∧ ∃x(Y x ∧ ∀y(Y y ⊃ fy 6=
x))])∨∃f [∀x∀y((Xx∧Xy∧fx = fy) ⊃ x = y)∧∀x(Xx ⊃ Y fx) ∧∀x(Y x ⊃ ∃y(Xy∧x = fy))]]) ≡
∃S∃R[(∀Y (∀x(Y x ⊃ Sx) ⊃ (¬∃f [∀x∀y(fx = fy ⊃ x = y) ∧ ∀x(Y x ⊃ Y fx) ∧ ∃x(Y x ∧ ∀y(Y y ⊃
fy 6= x))] ∨ ∃f [∀x∀y((Sx ∧ Sy ∧ fx = fy) ⊃ x = y) ∧ ∀x(Sx ⊃ Y fx) ∧ ∀x(Y x ⊃ ∃y(Sy ∧ x =
fy))])∧ ∃f [∀x∀y(fx = fy ⊃ x = y)∧ ∀x((x ⊃ (fx)∧ ∃x((x∧ ∀y((y ⊃ fy 6= x))]S))∧ ∀x∀y(Rxy ⊃
(Xx∧Sy))∧∀Y (∀y(Y y ⊃ Sy) ⊃ ∃x∀y(Rxy ≡ Y y))∧∀x∀y([Xx∧Xy∧∀z(Rxz ≡ Ryz)] ⊃ x = y)]]

60(Shapiro, 1985), p. 716; (Shapiro, 1991), p. 48.

172



itself [...].61

His complaint does not stop with the observation that we are put into an awkward

epistemic situation, however. He also emphasises that in the case of axiomatised

theories it is important that any assumption made about the objects that the theory

is intended to be about has to be explicit in the axioms. The logic that the axioma-

tisation is carried out in must not “add any mathematical presuppositions through

the back door”.62 In order to be absolutely explicit about the subject matter that an

axiomatic theory is about, nothing substantial should be hidden in the consequence

relation.

The point is not that these presuppositions may be false, but that they

are substantial. (Should we need them, we could postulate them besides

the proper axioms of the theory.)63

Both Jané and Shapiro agree that in order to find out something about a given

subject matter, the axioms are investigated. While Shapiro contends that these

axioms must be categorical, however, Jané is concerned that, if the standard model

theory of second-order logic is used, the possibility for such investigations is blocked

for the realm of set theory.

The case of the continuum hypothesis serves as an example. If we add the

continuum hypothesis (or its negation) as an assumption to the first-order axioms

of ZF, we can investigate how the set theoretical universe behaves by studying

the axioms. In the case of second-order ZF, however, and if the semantic account is

assumed, the addition of the continuum hypothesis will be superfluous if it is true, as

61(Jané, 1993), p. 80
62(Jané, 1993), p. 67; compare also (Jané, 2005), p. 787.
63(Jané, 1993), p. 67.
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then the corresponding sentence of second-order logic is a validity. If the continuum

hypothesis is false, however, we end up in inconsistency. We will not be able to

tell either way, however. No sound deductive system of second-order logic can be

complete with respect to the standard semantics, and the continuum hypothesis (or

its negation) is one of the truths that the consequence relation keeps to itself.64

The truth of the continuum hypothesis depends on how many subsets of an

infinite set there are, or, in other words, on the behaviour of the powerset operation.

Jané argues that second-order logic

makes use of the power set operation, and an essential use at that, since

on it rests the determinacy of the consequence relation. [...] [A]ny diver-

gence in accounting for the content of the powerset is bound to disturb

[...] the consequence relation [of the standard semantics]; in other words,

different accounts of their content will give rise to different consequence

relations.65

It is in this way that the consequence relation of the standard semantics of second-

order logic carries set-theoretical content. The determinacy of the powerset op-

eration has to be assumed in order for the result mentioned in section 2 above –

categoricity and expressive strength – to deliver the benefits that Shapiro claims.

The continuum hypothesis, for example, depends precisely on the behaviour of the

powerset operation. It is exactly the question what subsets of a given set (or do-

main) there are. The determinate outcome of this in the consequence relation in the

standard semantics is a result of the assumption that the powerset is determinate.

The subsets of the domain are the range of the second-order variables, and impor-

64(Jané, 2005), pp. 791–792.
65(Jané, 2005), p. 800.
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tantly, it has to be all subsets. What all the subsets of an infinite domain amount

to, however, is the continuum problem.

We are thus thrown back to Skolem’s Paradox. Just like the case described above

for “categorical” characterisations given in first-order set theory, we can still hold in

a sense that an infinite structure characterised in a second-order axiomatisation has

essentially only one model in that all of its models are isomorphic. This, however, is

relative to how the second-order quantifiers are determined, i.e. what all the subsets

are that the second-order variables range over. All models are isomorphic to each

other on each of the ways to determine the subsets, but they all vary together with

the different determinations.66

Arguments very similar to Jané’s criticism have been put forward by other au-

thors, too; (Weston, 1976), for example, makes essentially the same point. Jody

Azzouni has a related complaint. He argues that second-order axiomatisations rule

out non-standard models merely by fiat. It has to be assumed that one can refer to

the standard model in meta-theory of second-order logic, in order to be able to ex-

plain the successful communication between mathematicians, and how they manage

to refer to the intended structure. Azzouni concludes that

second-order logic is treacherous: its sirenlike notation can lull philoso-

phers into an inadequate appreciation of how it gains its expressive

power.67

Jouko Väänänen makes a similar point, and in addition remarks that there is no

telling by just looking at the second-order language whether a standard, or a Henkin

66(Jané, 2005), pp. 803–804.
67(Azzouni, 1994), p. 18.
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semantics is assumed.68

At least Väänänen’s observation misses the point. That the syntax of a second-

order language, not even together with the deductive system, does not determine the

semantics is hardly surprising – recall the range of options for different semantics for

the same deductive system mentioned in section 2 of chapter 6 of this thesis. The

all-important feature of Shapiro’s conception is that logic is conceived of model-

theoretically. We decide in advance that the tool we want to use in our endeavours

is the standard semantics. The mathematical notions that we are interested in are

then captured using this tool.

Moreover, Väänänen’s second complaint, that model theory could not be for-

mulated before the development of set theory,69 does not hit Shapiro. Firstly, the

Henkin semantics that Väänänen favours is not available without set theory either,

and the same goes, incidentally, for the model theory of first-order logic. Secondly,

Shapiro has no qualms admitting the mathematical character of the standard seman-

tics of second-order logic. Shapiro’s claim is not that it is mathematically innocent;

quite to the contrary. His claim is that the standard semantics is the only way to

make sense of mathematical practice, as this practice presupposes that mathemati-

cians refer to intended interpretations and are able to pick out infinite structures

up to isomorphism. Categoricity guarantees, or, rather, is meant to guarantee,

determinacy.

This is the crucial point, however. Consider, for example, Shapiro’s rebuttal of

Azzouni’s claims:

I do not think that I (or Boolos, Corcoran, Hellman, etc.) are lulled in

68(Väänänen, 2001), pp. 505, 506.
69(Väänänen, 2001), p. 505.
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this way. [(Shapiro, 1991)] should not be read as providing a solution to

the problem of reference. [...]

The substantial claim of [(Shapiro, 1991)] [...] is that a logic with sub-

stantial presuppositions has an important role in foundational studies,

but this role is not that of justifying mathematical practice or of explain-

ing how successful reference and communication works. [...]

Azzouni agrees that I [...] “want to show that mathematical practice

is best understood in second-order terms...”. I do not see how I was

concerned with the “problem of referential access” at all.70

This much can probably be granted. The driving idea, however, that I take to be

behind Azzouni’s attack and that is spelled out properly by Jané and Weston – the

question of the determinacy of the interpretation of second-order quantifiers in the

standard semantics – is still to be answered. Otherwise the claim that second-order

axiomatisations do justice to the mathematical practice as described by Shapiro

(which is the main motivation for his approach) cannot be upheld.

Hartry Field argues that the indeterminacy worries that arise concerning the

powerset operation arise in the the same way concerning the second-order quantifiers:

The basic point is one that was well made many years ago in (Weston,

1976): any argument that claims about the size of the continuum don’t

have determinate truth value will carry over to an argument that ‘all sub-

sets’ is indeterminate, and hence that it is indeterminate what counts

as a ‘full’ interpretation. [...] So even though relative to any specific

conception of ‘fullness’ the full interpretation of second-order set theory

70(Shapiro, 1999), p. 58; compare also (Shapiro, 2005a), p. 775.
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is quasi-unique, that doesn’t do anything to alleviate the basic indeter-

minacy.71

Field contends that categoricity proofs no more shows that the structures in question

are characterised determinately, than the proof in classical first-order logic that ‘Fx’

is equivalent to ‘¬¬Fx’ shows that the predicate ‘F ’ has a determinate extension.72

At best, it shows that the two share their indeterminacy. The extension of ‘¬¬F ’ co-

varies with that of ‘F ’; they are equivalent, but also equally (if at all) indeterminate.

The most we can hope for is that categoricity shows that any two models of

a theory are “co-indeterminate” in the sense described above. This seems to be

determinacy enough for Shapiro. He submits that scepticism or relativism about

second-order quantification amounts to scepticism or relativism about the deter-

minacy of the (pre-formal) mathematical notions.73 While Field holds that second-

order quantification is indeterminate because the set-theoretical notions are, Shapiro

assumes that the second-order quantifiers are determinate, because he accepts that

the classical mathematical discourse is in good standing.

It also seems that it does not disturb him that he has to presuppose the de-

terminacy of the second-order quantifiers in order to uphold the claim that these

categorical axiomatisations of mathematical theories make sense of the mathemati-

cal practice (as described by him). He cites Alonzo Church as an ally:

It is true that the non-effective notion of [second-order] consequence, as

we have introduced it [...] presupposes a certain absolute notion of all

propositional functions of individuals. But this is presupposed also in

71(Field, 2001), p. 352; Field’s emphasis.
72(Field, 2001), p. 357.
73(Shapiro, 1991), p. 207.
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classical mathematics, especially classical analysis.74

Shapiro stresses that the important word is “presupposes”. He holds that

[t]he thesis that we understand second-order languages with standard se-

mantics is of-a-piece with the claim that we understand ordinary math-

ematical discourse. It is no less – and no more – problematic.75

Shapiro contends that asking for the determinacy of second-order quantification

beyond what is given in the model theory leads into the following infinite regress.

If the challenge, that the informal presupposition of the determinacy of the second-

order quantifiers on the standard model-theoretic interpretation, has to be rigorously

formalised, is allowed, the formal characterisation of the second-order quantifiers has

to be given in a meta-theory. If the meta-theory is first-order set theory, Skolem’s

Paradox applies straight away. If the meta-theory is given in second-order set theory,

the challenger can ask for the meaning of the second-order quantifiers in the meta-

theory. If the informal presupposition of determinacy is not enough here either,

a formal characterisation of the meta-theoretical quantifiers had to be given in a

meta-meta-theory. And so on.76

Since such a regress must be stopped, Shapiro rejects the question. The infor-

mal characterisation of the second-order quantifiers as determinate is on a par with

the assumption that the informal mathematical discourse is determinate. All three,

Kreisel,77 Corcoran,78 and Shapiro,79 state that the standard of mathematical dis-

course is some kind of “informal rigour” (this term is coined by (Kreisel, 1967)).

74(Church, 1956), footnote on p. 326; Church’s emphasis.
75(Shapiro, 2005a), p. 775.
76(Shapiro, 1991), section 8.1.
77(Kreisel, 1967).
78(Corcoran, 1973).
79(Shapiro, 1985), (Shapiro, 1991), esp. chapter 5.
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Shapiro is explicit that the formalisation in a second-order language is not meant to

serve as a justification or explanation of this.80

If the above mentioned regress is to stop at an informal level, however, one won-

ders what was achieved. The informal mathematical practice is presupposed to be in

good standing and in particular determinate, and the second-order axiomatisations

of mathematical theories is not meant to add anything to this. To the contrary, it

is presupposed that the second-order quantifiers are determinate, because otherwise

they would not do justice to the mathematical discourse. Shapiro’s argument in the

beginning, however, was that second-order axiomatisations do justice to the mathe-

matical practice because they deliver categorical axiomatisations. It seems we have

come full circle. If the belief that categoricity shows determinacy ultimately pre-

supposes the determinacy of both informal mathematical practice and the informal

characterisation of the second-order quantifiers, why not leave matters at the level

of informal mathematical practice in the first place?

7.5 Conclusion

The expressive power and possibility of categorical axiomatisations of infinte struc-

tures might be a motivation to use second-order logic with standard semantics, but,

as Jané observes, it does not show that it is logic.81 Indeed, as was shown above,

heavy mathematical content is carried by the consequence relation of the standard

semantics. This leads Shapiro to reject the sharp distinction between logic and

mathematics; he submits that the “study of correct inference, like almost any other

80(Shapiro, 1999), p. 58.
81(Jané, 2005), p. 789.
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science, involves some mathematics and some mathematical presupposition.”82

The arguments presented towards the end of the last section suggest that the

claimed importance of standard semantics of second-order logic for doing justice to

mathematical practice can only made if the categoricity proofs indeed prove the

determinacy – as opposed merely to co-indeterminacy – that is really presupposed

for (informal) mathematical discourse. As turns out, this claim to prove determinacy

hangs on the determinacy of the second-order quantifiers on the standard model-

theoretic interpretation. So it appears that this determinacy also has to be merely

presupposed.

I therefore submit that the reasons that Shapiro offers to adopt the model-

theoretic interpretation of second-order logic evaporate, and with them his reason

to accept mathematical content in the logical consequence relation and his reason

to reject the sharp distinction between logic and mathematics.

In the next chapter, chapter 8, I argue for a notion of logic, characterised deduc-

tively, that licences second-order quantification as properly logical. With it will go a

rejection of the standard model theory for second-order logic for almost all purposes

that concern logic proper.

82(Shapiro, 1985), p. 716.
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Chapter 8

The Deductivist Conception

Semantical passages will be distinguished
from others by being printed in smaller type,
the small type serving as a warning that the
material is not part of the formal logistic
development and must not be used as such.

(Church, 1956, p. 68)

8.1 Introduction

The aim of this chapter is to introduce the Deductivist Conception of Logic, and

argue that according to it, second-order logic should indeed be counted as logic

in a proper sense. The aim of the Deductivist approach is to characterise the pre-

systematic notion of logical consequence by the means of deductive rules of inference.

There are a number of objections in the literature against syntactic characterisations

of logical consequence, some of which, as I show in section 8.3, do not apply to

the Deductivist approach. Two major objections, however, apply in a particularly
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pressing way, and these will be discussed at the end of the chapter. These objections

will not be resolved, but a range of options for their resolution is outlined and

discussed.

8.2 Themes from Frege

Gottlob Frege is in many respects the father of modern logic. To borrow Michael

Dummett’s words:

The publication of the Begriffsschrift marked, as Quine says,1 the be-

ginning of modern logic. [...] It is the first formulation of the functional

calculus of second order. [...] In it the modern notation of quantifiers and

variables appears for the first time, as also for the first time a modern

treatment of sentential operators (quite different from Boole’s). Nega-

tion, implication, the universal quantifier and the sign of identity are

taken as primitive: in virtue of the device of quantification, Frege is able

for the first time in the history of logic to give an adequate account of

the logic of statements involving multiple generality, and to introduce

variables for relations and functions. [...]2

And the catalogue of achievements goes on. The Begriffsschrift (Frege, 1879) also

contains a definition of the ancestral,3 as already mentioned in my chapter 4 above,

an extremely powerful notion with the help of which Frege was able to define the

predecessor relation (his version of the successor function that is common today) for

1Dummett alludes to (Quine, 1960), p. 163.
2(Dummett, 1981), pp. xxxv-xxxvi.
3(Frege, 1879), §26.

183



arithmetic in his Grundgesetze der Arithmetik [Basic Laws of Arithmetic] (Frege,

1893) – a crucial step in his foundation of number theory.

Reason enough to conjecture what Frege might have thought proper logic was,

and thereby to find an inspiration to develop a Deductivist account, that has already

been mentioned in the preceding chapters. It would have been tempting to call the

Deducticist approach Fregean, except that Frege held many views about logic, not

all of which are compatible with the account I develop below. In a posthumously

published fragment that was probably meant to be part of an introductory logic

textbook4, he spends over 20 pages developing his ontology of thoughts and arguing

that it is part of logic.5 As already apparent from chapter 5 above, the Deductivist

account is designed to be neutral on ontological questions. A second reason not to

call the account Fregean is that nothing really hangs on the question whether I get

Frege’s intentions right (although I think I do, at least partially). The Deductivist

account is not intended as a faithful version of Frege’s view of logic. Frege’s insight

will merely be used as a starting point.

The Begriffsschrift is not only the name of Frege’s book, but also the name of

the logic that Frege develops in this book. In the preface, he writes that the purpose

of this logic is6

to test in the most reliable way the proper connection of a chain of infer-

ence and to reveal every presupposition that wants to slip in unnoticed,

so that the latter can be examined for its origin.7

4(Kambartel, 1982), p. XX.
5(Frege, 1897).
6In this section I use my own translations of the quotations from Frege I give. The bibliography

at the end of this thesis contains references to the published standard translations of all of Frege’s
writing that I use.

7“[...] die Bündigkeit einer Schlusskette auf die sicherste Weise zu prüfen und jede Vorraus-

184



In a later publication, On the Scientific Justification of the Begriffsschrift, Frege af-

firms that the reliablity he demands, cannot achieved when arguments are presented

in ordinary language:

The forms in which inference is expressed are so varied, so loose and

flexible, that presuppositions can easily sneak through unnoticed which

then are overlooked when the necessary conditions for the conclusion are

listed.8

While ordinary language, Frege states, is a good starting point to develop an under-

standing of logical consequence,9 it is insufficient for serious justificatory enterprises.

[Ordinary] language in this respect can be compared to the hand, which

despite its adaptability to the most diverse tasks, is still inadequate. We

build for ourselves artificial hands, tools for particular purposes, which

work with more precision than the hand can provide. [...] Ordinary

language too is inadequate in this way. We require a totality of symbols

from which every ambiguity is banned, which has a strict logical form

from which the content cannot slip away.10

setzung, die sich unbemerkt einschleichen will, anzuzeigen, damit letztere auf ihren Ursprung
untersucht werden könne.” (Frege, 1879), p. IV; see footnote 6.

8“Die Formen, in denen das Folgern ausgedrückt wird, sind so vielfältige, so lose und dehn-
bare, daßsich leicht Voraussetzungen unbemerkt durchschleichen, die dann bei der Aufzählung der
nothwendingen Bedingungen für die Giltigkeit [sic] des Schlußsatzes übergangen werden.” (Frege,
1882b), p. 50; see footnote 6 above.

9Frege is particulatly clear about this in (Frege, 1891).
10“Die Sprache kann in dieser Hinsicht mit der Hand verglichen werde, die uns trotz ihrer

Fähigkeit, sich den verschiedensten Aufgaben anzupassen, nicht genügt. Wir schaffen uns
künstliche Hände, Werkzeuge für besondere Zwecke, die so genau arbeiten, wie die Hand es nicht
vermöchte. [...] So genügt auch die Wortsprache nicht. Wir bedürfen eines Ganzen von Zeichen, aus
dem jede Vieldeutigkeit verbannt ist, dessen strenger logischer Form der Inhalt nicht entschlüpfen
kann.” (Frege, 1882b), p. 52; see footnote 6 above.
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In the same spirit, but with a different metaphor, Frege had already written in the

Begriffsschrift that

I believe I can make the relationship of my Begriffsschrift to the language

of everyday life clearest if I compare it to that of the microscope to the

eye. [...] [A]s soon as scientific purposes place great demands on the

acuteness of differentiation, the eye turns out to be inadequate.11

So, Frege demands a rigorous and precise formal system, that can be used as a

tool for justifying judgements on basis of other judgements. In his Grundlagen

der Arithmetik [Foundations of Arithmetik] he writing becomes more explicit with

respect to why he is interested in this:

Now these distinctions between a priori and a posteriori, synthetic and

analytic, concern, as I see it, not the content of the judgement, but the

justification for making the judgement. [...] When a sentence is called

a posteriori or analytic in my sense one judges [...] about the ultimate

ground upon which rests the justification for holding it to be true. If the

truth concerned is a mathematical one [the question for this justification]

is moved [...] to the sphere of mathematics. The problem now becomes

that of finding the proof of the sentence, and of following it up right back

to the primitive truths. If in carrying out this process, one comes only

to general logical laws and definitions, then the truth is an analytic one

[...]. [If] the proof can be derived exclusively from general laws, which

11“Das Verhältnis meiner Begriffsschrift zu der Sprache des Lebens glaube ich am deutlichsten
machen zu können, wenn ich es mit dem des Mikroskops zum Auge vergleiche. [...] Sobald [...]
wissenschaftliche Zwecke grosse Anforderungen an die Schärfe der Unterscheidung stellen, zeigt
sich das Auge als ungenügend.” (Frege, 1879), p. V; see footnote 6 above.

186



themselves neither need nor admit proof, then the truth is a priori.12

What Frege is aiming at is the logicist foundation of mathematics that he attempted

to carry out formally in his Grundgesetze der Arithmetik [Basic Laws of Arithmetic].

In the preface to the first volume he writes:

The ideal of a rigorous scientific method for mathematics, that I have

strived to realise here [...] I want to characterise as follows. One can-

not insist on proving everything, as this is impossible; but, it can be

demanded, that all propositions that are used without being proved, are

explicitly declared as such, so that one can see conspicuously, what the

whole edifice rests upon. [...]

In virtue of the gaplessness of the chains of inferences it is achieved that

each axiom, each presupposition, hypotheses, or however else one might

want to call that which a proof rests upon, is brought to light; and thus

one gains a foundation for the assessment of the epistemological nature of

the proven law. Though it has already been proclaimed many times that

arithmetic is just enhanced logic; yet this remains disputable as long as

transitions occur in the proofs, that do not conform to recognised logical

laws [...]. Not until, these transitions are analysed into simple logical

steps can one be convinced that nothing but logic forms the basis. [...]

12“Jene Unterscheidungen von a priori und a posteriori, synthetisch und analytisch, betreffen nun
nach meiner Auffassung nicht den Inhalt der Urtheils, sondern die Berechtigung zur Urteilsfällung.
[...] Wenn man einen Satz in meinem Sinne aposteriorisch oder analytisch nennt, so urteilt man [...]
darüber worauf im tiefsten Grunde die Berechtigung des Fürwahrhaltens beruht. Dadurch wird die
Frage [nach der Berechtigung] dem Gebiete [...] der Mathematik zugewiesen, wenn es sich um eine
mathematische Wahrheit handelt. Es kommt nun darauf an, einen Beweis zu finden und ihn bis
auf die Urwahrheiten zurückzuverfolgen. Stösst man auf diesem Wege nur auf allgemeine logische
Gesetze und auf Definitionen, so hat man einen analytische Wahrheit [...]. Ist es [...] möglich, den
Beweis ganz aus allgemeinen Sätzen zu führen, die selber des Beweises weder fähig noch bedürftig
sind, so ist die Wahrheit a priori.” (Frege, 1884), §3, pp. 3–4; my emphasis; see footnote 6 above.
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If one considers everything to be in good order, one thus knows exactly

the foundations on which every single theorem rests.13.

To borrow Stephen Wagner’s phrase, that was “too good to be true”.14 Frege’s

project came tumbling down when Bertrand Russell discovered his famous paradox.

(Russell’s paradox is briefly discussed in chapter 3 above.) Frege tried an ad hoc fix

for the paradox which does not work, and abandoned his project shortly after for

good. The planned third volume of the Grundgesetze never appeared.

Frege continued to insist, however, on the importance of the epistemic role of

logic, and on gapless, absolutely explicit and rigorous justification that he also had

already put emphasis on in his Grundlagen.15 In one of his papers, that belong to

the so-called “Frege-Hilbert-Debate”, he demands that everything that is needed to

justify a certain thought, must be stated explicitly in the premises of an argument

that leads to that thought and that no other inferences then logical ones are to be

employed in the demonstation of that justification. He sums this with the quip:

About what is foreign to logic, logic knows only what occurs in the

13“Das Ideal einer streng wissenschaftlichen Methode in der Mathematik, das ich hier zu ver-
wirklichen gestrebt habe, [...] möchte ich so schildern. Dass Alles bewiesen werde, kann zwar nicht
verlangt werden, weil es unmöglich ist; aber man kann fordern, dass alle Sätze, die man braucht,
ohne sie zu beweisen, ausdrücklich als solche ausgesprochen werden, damit man deutlich erkenne,
worauf der ganze Bau beruht. [...] Durch die Lückenlosigkeit der Schlussketten wird erreicht, dass
jedes Axiom, jede Voraussetzung, Hypothese, oder wie man es sonst nennen will, auf denen ein
Beweis ruht, ans Licht gezogen wird; und so gewinnt man einen Grundlage für die Beurtheilung der
erkenntnistheoretischen Natur des bewiesenen Gesetzes. Es ist zwar schon vielfach ausgesprochen
worden, dass die Arithmetik nur weiter entwickelte Logik sei; aber das bleibt solange bestreit-
bar, als in den Beweisen Uebergänge vorkommen, die nicht nach anerkannten logischen Gesetzen
geschehn [sic] [...]. Erst wenn diese Uebergänge in einfache logische Schritte zerlegt sind, kann man
sich überzeugen, dass nichts als Logik zu Grund liegt. [...] Wenn man Alles in Ordnung findet, so
kennt man die Grundlagen genau, auf denen jeder Lehrsatz beruht. ” (Frege, 1893), pp. VI–VII;
see footnote 6 above.

14(Wagner, 1987), p. 3.
15(Frege, 1884), §90.
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premises; about what is proper to it, it knows all.16

Frege’s demands are that a proper logic should be a rigorous tool for justification.

The Begriffsschrift, his logic, introduced to this end, is a formalised language that

contains what we now call logical constants and symbols for individual constants,

predicates, and variables. One assumption that I will make is that the predicates

have a precise extension. Vagueness and ambiguity is to be banned, in order to

achieve the rigour that Frege demands.

Frege lets us know that an argument that is given to support a certain conclusion

must be such that everything that is required to justify this conclusion is contained

in the premises. The inferences that are drawn to get from the premises to the

conclusion must be none other than logical; otherwise it cannot be guaranteed that

really everything that the justification rests on in indeed contained in the premises.

Steven Wagner introduces for this the term “ideal justification” in his (Wagner,

1987) (see also chapter 6 above). He explains that an argument ideally justifies a

conclusion on basis of the premisses if, and only if, we can reach the conclusion by

a chain of self-evident inferences from the premises. This chain of self-evident steps

corresponds to the “gaplessness” that Frege requires.

What are we to make of the notion of self-evidence here? It is clearly a pre-

systematic notion. Wagner tries to use it to spell out the pre-systematic notion of

logical consequence that was already appealed to in chapters 6 and 7. There are some

preformal notions in the vicinity of that of a self-evident step from one sentence

to another: “intuitively correct inference” is often used, for example. ‘Intuition’,

however, is used to mean many different things, and the danger of confusing it with

16“[V]on dem ihr Fremden weiß die Logik nur, was in den Prämissen vorkommt, von ihrem
Eigenen weiß sie alles.” (Frege, 1906), p. 428; see footnote 6 above.
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the notion that Kant (or Brouwer or Gödel) used to appeal to some special mental,

perception-like faculty is high. The Deductivist account will not depend on any such

notion, and thus I will largely avoid the use of the word ‘intuitive’.

One constraint on properly logical consequence must be that it is distinct from

mathematical consequence, in particular as exemplified by set theory. It must be

possible to use ideal justifications in the area of mathematics. As Frege demands,

everything that an (now using the new terminology) ideally justified consequence

needs for its justification has to be contained in the premises, and in the case of

mathematics, in the axioms. Should the pre-systematic consequence relation already

involve mathematics, this constraint is violated.

We have seen in chapter 7 that the standard model theory makes rich mathemat-

ical assumptions. For our purpose here it is therefore of no use. This does not only

go for the standard model theory, but presumably for most model theories. What

they have in common is that they are mathematical theories, typically formulated

in terms of set theory. Trying to characterise a notion of ideal justification with a

mathematical tool is risky, however. It is difficult to guarantee that the mathemat-

ical content is not slipping into the argument, and providing something extra that

is not contained in the premises.

The example earlier discussed in detail was the continuum hypothesis. A certain

sentence C that contains only logical vocabulary will come out true in all models –

on the standard model-theoretic interpretation – if, and only if, the continuum hy-

pothesis is true. It seems clear that no properly logical consequence relation should

declare sentences to be logical truths that correspond in such a way to mathematical

statements. This holds, on particular, for a sentence corresponding to the continuum

hypothesis. The continuum hypothesis is independent of Zermelo-Fraenkel set the-
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ory (ZF), which, in turn, is one of the strongest mathematical theories we presently

have.

It is a pure artefact17 of the model theory that C is declared a logical truth.

It only turns out to be that way, because the standard semantics insists on the

determinacy of the powerset of an infinite domain. Because of this there are just

not enough models provided by the model theory to give a counter-model for C.

Shapiro raises and rejects this point,18 but I submit that it is essentially correct: C

should not come out as a logical truth, and it does not on a Henkin semantics which

provides more models, as it does not presuppose that the second-order quantifiers

range over the full classical powerset. C is a validity for the standard semantics if

the continuum hypothesis is true, because, and only because, of the set-theoretical

structure that the models will have if the continuum hypothesis is true. This is

mathematics creeping into the consequence relation if anything is, and this needs to

be banned if we want to characterise a notion of genuine logical consequence.

As already mentioned, however, Henkin semantics is also set-theoretical, and

indeed formal semantic theories in general are usually mathematical theories. There

does not seem to be in general any way of being sure that these mathematical theories

keep their mathematical content to themselves. If mathematics is used, there will

always be some mathematical assumptions in the background. In order to make

sure that these do not distort the ideal justification we are aiming to characterise,

model-theoretic techniques are best dispensed with altogether.

It might be tempting to think that a completeness proof guarantees that the

mathematical content in the model-theoretic consequence relation remains harmless,

17This notion is used by (Shapiro, 1998) for features of a model that are not intended.
18(Shapiro, 1998), p. 141; but see also fn. 10 on the same page
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but this depends on whether the meta-theory in which the completeness proof is

carried out can be “trusted”. An mentioned in chapter 6 above, in the extreme

case, when the meta-theory is inconsistent, this is blatantly clear.

The suggestion is therefore to characterise logical consequence using a deductive

system. This also does justice to Wagner’s observation that we should have a gap-

less chain of self-evident steps from the premises to the conclusion. Wagner suggests

that these can be identified with single applications of basic inference rules, like con-

junction eleminition, modus ponens, or universal instantiation. If all of these basic

steps are indeed self-evident, then every deductive consequence is ideally justified

on basis of its premises, since a deductively valid argument can always be broken

down into single applications of basic inference rules. This should satisfy Frege’s

demands.

This procedure should also be sufficient to guarantee what Patricia Blanchette

demands for a proper logic, likewise with recourse to Frege, and what she calls

“epistemic inertia”.19 Our epistemic situation must not get worse from premises to

conclusion. If the premises are analytic or a priori, then so is the conclusion. This

“quality-control check”20 that a proper logic is meant to provide, should indeed be

guaranteed if nothing is added by way of a hidden assumption in a logical inference

step.

It may be observed, however, that there are many inferences that appear self-

evident, that we would not want to call logical. The inference from ‘a is red’ to ‘a is

coloured’, for example, appears to be beyond any doubt. We would not want to call

this inference logical, however. It is rather analytical entailment, i.e. it depends only

19(Blanchette, 2001), p. 124.
20(Blanchette, 2001), p. 117.
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on the meaning of the predicates in the sentences. Genuinely logical inferences are

traditionally considered to be also analytic, however. The special kind of analytic

inferences that are also logical inference have sometimes been characterised as those

that are formal in a special way, or purely syntactical. In the following section I

discuss, assess, and reject this kind of characterisation.

8.3 Purely Syntactic Approaches

It has to be asked first what ‘purely syntactic’ or ‘purely formal’ is supposed to mean.

Nelson Goodman points out that if we are presented with a purely formal system

and told nothing about what any of the symbols mean, we would not even be able to

identify which of the symbols belong to which category or what sort of system it is.21

We need to be given at least some content, some interpretation or guidelines to be

able see what is characterised. Without any instructions whatsoever, the following

diagram could mean anything whatsoever:

p ∧ q

q

To push it to the extreme, it could be just one primitive sign, maybe a proper name.

We need to be given some restriction on how to interpret the symbols in front of us.

Once we have established that we are dealing with inference rules of a given sys-

tem, John Etchemendy observes that a purely syntactic approach is tied to a specific

language; it does not seem to be general enough to just characterise the inferences in

one language. Moreover, will any inference do? Certainly not. Etchemendy observes

21(Goodman, 1956), pp. 202–203.
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that claiming that we have to restrict ourselves to sound deductive systems brings

us back to where we started. In order to characterise what the sound systems are,

we have to appeal to a notion of logical consequence so that we can say that the

sound systems are those that allow us to derive only logical consequences. Which

the logical consequences are, was our original question, however.22

The next idea for a syntactic characterisation is that the introduction- and

elimination-rules for the logical constants determine what inferences can be drawn.

What are the logical constants, however? Again, not any selection will do. Arthur

Prior’s famous example of the “logical constant” ‘tonk’ clearly points out the prob-

lem.23 ‘tonk’ is characterised by the following inference rules:

p

p tonk q

p tonk q

q

If this rule is added to any standard propositional logic, everything will be derivable

from an arbitrary premise.24 A restriction on the admissibility for introduction- and

elimination-rules might be that they have to have certain features. Conservativeness

and harmony are prominent candidates. The introduction- and elimination-rules for

a new constant are conservative over a system if, and only if, after adding these rules

to the system, no sentences that do not contain the new constant are provable which

were not provable before.25 It can depend on what logical constants are already

in the system, however, whether the new constant introduced is conservative over

the system or not. Introducing classical negation into a logic that has no logical

22(Etchemendy, 1990), pp. 2–3.
23(Prior, 1961).
24For a discussion concerning in how far the rules for ‘tonk’ give the connective a meaning (or

rather fail to do so) see (Ebert, 2005), chapter 3.3.
25(Hacking, 1979), for example, insists on conservativeness.
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constants so far will be conservative. If the logic already has a conditional, however,

Peirce’s Law, ‘((p ⊃ q) ⊃ p) ⊃ p’, which is not provable from the rules for the

conditional alone (at least not in the most common system, see below), becomes a

theorem. So, classical negation is not conservative over this system.

Harmony, as championed by Dummett26, is less sharply defined, but the basic

idea is that the elimination rule should be in keeping with the introduction rule.

The elimination should be exactly as strong as is justified by the introduction rule.

The rules are meant to be symmetric in this way. It seems that this rules out ‘tonk’.

It also seems to give intuitionists an argument to rule against classical negation.

Not so. Stephen Read shows that in an intuitionistic sequent calculus, in which the

introduction- and elimination rules for negation are in harmony, as demanded, a

modification of the structural rules turns the system into one that is equivalent to

classical proppsitional logic. The modification is that multiple consequences are to

be allowed. Read also shows that Peirce’s Law is provable without negation in such

a system.27

Generally, as Graham Priest points out,

introduction and elimination rules are superimposed on structural infer-

ential rules [...]. Such structural rules are not inevitable, and the question

therefore arises, how these rules are to be justified.28

There is range of examples of systems with structural rules that are very different

from the “ordinary one”. So-called sub-structural logics, for example, have been

studied extensively recently.29 Sub-structural logics weaken the structural rules for

26See in particular chapters 9 and 11 of (Dummett, 1991b).
27(Read, 2000), §3.2.
28(Priest, 1999), §3.
29See, for example, (Restall, 2000); for a concise introduction see (Restall, 2002).
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classical logic in various ways, and can thus create a background against which the

connectives of various relevant logics behave “nicely”, like the classical connectives

against the background of the classical structural rules. The intuitionistic relevant

logic introduced by Neil Tennant30 has harmonious introduction and elimination

rules for the logical constants, but does not have transitivity as a structural rule.

This means that it is not in general the case that if ‘p ` q’ and ‘q ` r’, then

‘p ` r’. Even ‘tonk’ received a kind of renaissance recently. Roy Cook presents a

logic that like Tennant’s does not have transitivity as structural rule in which ‘tonk’

does not produce triviality (triviality in the sense that every sentence is deducible

from arbitrary premises).31

These last examples probably seem strange to most, and appear to have “intu-

itively” little to do with logical consequence, while the more common systems seem

to capture the pre-systematic notion of logical consequence much better. This, how-

ever, is the whole point of the exercise. Nothing that makes the more common

system “good” and the less common systems “strange” depends on purely formal

features of the systems. It is rather our examining of the systems and comparing

them to what we think about logical consequence that makes us balk at some of the

systems.

No “purely formal” criterion, for example, says that the structural rule of con-

traction should be included in a system. Contraction is the rule that if ‘p, p ` q’

then ‘p ` q’. We understand that this says if ‘q’ is derivable from ‘p’ and ‘p’ (yes:

‘p’ twice), then ‘q’ is also derivable from ‘p’ alone. Rejecting this obvious triviality

seems absurd. It is just one of the structural rules, however, that is up for grabs.

30See (Tennant, 1986a) and (Tennant, 1987).
31(Cook, 2005).
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Rejecting contracting as a structural rule provides a fruitful background for rele-

vant and paraconsistent logic, however, as ex falso quodlibet is not in general valid

anymore.32

8.4 The Deductivist Approach

The moral to be drawn from the considerations of the last section is not that logical

consequence cannot be characterised by inference rules. Rather these examples sug-

gest that the attempt to find formal criteria for a purely syntactical characterisation

of proper logic that do not involve checking the rules against a pre-systematic notion

does not seem possible.

My suggestion is therefore to characterise the logical consequence relation by a

system whose basic rules of inference fit our pre-systematic notion of logical conse-

quence. Such a characterisation will be fallible, we might make mistakes, but those

can be corrected by changing the rules. Before I spell out the proposal in more

detail, it should be remarked that so far I have been describing the situation from

a very realist point of view, as if there was an independently existing consequence

relation. The Deductivist account is independent of such an assumption. Whether

there is a logical consequence relation that is entirely independent of human beings,

or whether it is some relation that is in some way dependent on us or our language

use, plays no role in determining the shape of the Deductivist proposal.

It might be instructive to think of the axiomatisation of some scientific concepts

as a parallel. Whether the concepts are understood in a realist or, say, conven-

tionalist way does not matter in the process of providing the axioms – the way the

32See e.g. (Schroeder-Heister, 2003).
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axiomatic system is arrived at is the same in either case. Experiences are tested

against the axiomatic system, and in the case of a mismatch adjustments are made:

either the axioms are changed, or the experiences are re-investigated and maybe

re-interpreted. The usual criteria for the evaluation of scientific theories will play

a role: simplicity, fruitfulness, exactness, etc. I come back to this strategy a little

farther below.

Characterising logical consequence, I suggest, should proceed in a similar way.

Axiomatisation is not the ideal way, however, to come up with a logical theory. If

axioms for logical consequence are provided, a complete theory is gained from those,

by closing under logical consequence – this is, however, what we are after. At least,

some rules of inference are needed to operate the axioms. Typically these are a rule

of substitution and modus ponens. A more direct approach seems to be to dispense

with the use of axioms, and rely only on inference rules.33 Basic rules of inference

have been said above to fit the demand for ideal justification. While this might be

possible with suitable axioms, introduction- and elimination-rules are more directly

linked to our justificatory practice, and thus seem better suited to codify logical

consequence. We will also see below how the meaning of the logical constants can

be linked straightforwardly to their operational rules.

Coming back to the question of realism or conventionalism concerning logical

consequence: in either case, the data we take in to create the system of logic that is

meant to capture the logical consequence relation concerns our inferential practice.

Of course the logical system is not to describe how we actually reason in all respects.

We need to idealise mistakes away and find a way to make the system safe in the

33Axioms can be viewed as inference rules of the form: “at any line of the proof Φ can be
inserted” (where Φ is the axiom in question). This does not change the general point, however.

198



sense that if the rules are applied correctly, then whatever is deduced is ideally

justified, in the sense described in section 8.2 above, viz. that the conclusion is

deduced from the premises by a gapless series of self-evident steps. The self-evident

steps were identified as the single applications of introduction- or elimination-rules

for one of the logical constants.

We have seen above that the logical constants can be characterised by their intro-

duction- and elimination rules, but there is no general formal criterion forthcoming

to determine with ones the correct logical constants are. Here we have to check

against the pre-theoretic notion of logical consequence. As Goodman describes it

The point is that the rules and particular inferences [the pre-systematic

practice] alike are justified by being brought into agreement with each

other. A rule is amended if it yields an inference we are unwilling to

accept; an inference is rejected if it violates a rule we are unwilling to

amend. The process of justification is the delicate one of making mutual

adjustments between rules and accepted inferences; and in the agreement

achieved lies the only justification needed for either.34

What Goodman introduces here (in the end to find his solution to the problem of

induction) is what John Rawls later called “reflective equilibrium”. We do not need

to follow Goodman in his constructionalist interpretation of that technique, how-

ever. Goodman sees the consequence relation as changing with the social practice.

It might, however, also be the case that we are approximating our practice by trial

and error to the true, independently existing consequence relation. The method-

ology must be the same. We adopt inference rules in attempts to codify logical

34(Goodman, 1983), p. 64; Goodman’s emphasis.
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consequence. If a rule, when applied correctly, reliably only allows us to infer true

sentences from true sentences, and moreover, if by our best considered judgement,

the consequences are justified solely on basis of the premises and nothing else is

needed, then we will stick to the rule as codifying the logical consequence relation.

If a rule fails to do so, at least if it does in a significant way, and if that failure

cannot be explained, by our best judgement, by a mistake the reasoner made in

applying it, then we will change the rule, as we convinced ourselves that it does not

characterise an inference steps that accords to the logical consequence relation.

To this end we design logical systems with formal languages. In these systems

the logical constants have a precise behaviour. They are characterised by their

inference rules, and these rules determine which sentences can be inferred from

which sentences. The job of the logical constants is to indicate the inferential role

that the sentences stand in with respect to each other. Depending on what the

logical constants in sentences are, we can apply the basic rules of inference to it. If

we assume the sentences ‘p’ and ‘q’ for example, we know that we can infer ‘p ∧ q’

from them, because this is how ‘∧’ is characterised. We can say that the meaning of

the logical constants (in a system) is thus given by its introduction- and elimination-

rules (in that system).

We should strive to design a system that contains only such rules as allow us to

draw ideally justied conclusions from premises. Applying such a system is, of course,

difficult. We have to match ordinary language sentences to the formal language, and

this is another source of possible mistakes. Usually we know more-or-less exactly,

however, how to represent an ordinary language sentence in a formal language, when

we are sufficiently familiar with the system. The logical constants are certainly

inspired in some way by the natural language locutions, but as Frege warned us,
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ordinary language lacks the precision that is required for ideal justification.

The logical constant ‘∧’, for example, is thus rigorised from the ordinary language

word ‘and’ (or its equivalents in other languages). It is rigorised in the sense that

it obeys completely its introduction- and elimination rules. We, therefore, have

to be careful not to translate any sentence that contains an occurrence of ‘and’

as a conjunction. The sentence ‘You come one step closer and I call the police’,

for example, should, on the most straightforward understanding, not be formalised

as a conjunction. We know that, because we would not want to apply conjunction

elimination to it. Note, that ‘and’ is one of the easier cases, if not the easiest case. A

formalisation of an English sentence needs care, and often we have to check whether

what we mean by that sentence is indeed done justice to by using a logical constant

that was inspired by an ordinary language word, that might figure in the sentence

in question.

Once this “translation” is done, the inference rules can be applied in an almost

mechanical fashion. If the system is indeed codifying logical consequence, all sen-

tences that are inferred from given premises are ideally justified on their basis. As

soon as the sentences are formalised so that the inference rules are applicable to

them, we do not need to know anymore, what any of non-logical vocabulary means

to draw the inferences, we only have to apply the rules. The demand for rigour,

once the formalisation is done, is met. Note, that the problems and vagaries that

arise before we managed to get the sentence into the formal language, are by no

means specific in any way to the Deductivist conception of logic. Any logic that

uses a formal language will have this translation problem.

All this is pretty much commonplace. We do not have to start from scratch

and try to come up with a system of logic. Logic has been studied for a long time,
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and many well-established systems of logic exist. My discussion is concerned with

the specific question whether second-order inference is indeed logical, i.e. whether

inferences drawn in accordance with the rule for the second-order quantifiers are part

of the logical consequence relation. To get clear on this question it seems advisable

stay away from the discussion whether classical logic or one of its competitors are

to be preferred. I will, for simplicity’s sake, assume classical logic. The arguments I

present should be general enough, however, to carry over to intuitionistic or relevant

logic, mutatis mutandis. If the following argumentation establishes that second-

order quantification is properly logical, then should the correct logic turn out to be

intuitionistic, my argument should carry over with minimal adjustments.

Let us then assume that the inferences we draw in accordance with classical

first-order logic count as cases of logical consequence. The typical objection that

are put forward against the second-order quantifiers were investigated in some of

the previous chapters. Quine’s claim that second-order logic is really set theory

in disguise depended on his criterion for ontological commitment which was found

deficient above. According to the new criterion no such commitment arises with

second-order quantification, or, at least, no additional commitment arises. If the

quantifiers now turn out to be logical, they do not range over sets unless predicates

refer to sets already. The alleged mathematical content of second-order logic was

attributed to the standard model theory. Within this framework of a Deductivist

position, this problem should not arise at all. If the quantifiers turn out to be logical

on the account here, they will figure in ideally justifying inferences and thus be

incapable of bringing any content into an inference that would prevent a conclusion

being ideally justified on the basis of its premises.

As mentioned above, the role of the logical constants is to indicate what inferen-
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tial relations the sentences of the language stand in to each other. These inferential

relations are determined by the introduction- and elimination rules for the logical

constants. Let us thus have a look at the introduction- and elimination-rules for the

first- and second-order universal quantifiers, as introduced in chapter 2:

Φ(t)

∀xΦ(x)
∀1-I

Φ(T )

∀XnΦ(Xn)
∀2-I

∀xΦ(x)

Φ(t)
∀1-E

∀XnΦ(Xn)

Φ(Ξ)
∀2-E

Φ is an open sentence matching the number of argument places of the expression it

applies to, in the case of the second-order rules possibly just one term; ‘t’ is a term

of the language.

Restrictions:

∀1-I ‘t’ does not occur free in any of the assumptions that Φ(t) depends on.

∀1-E ‘t’ is free for ‘x’ in Φ.

∀2-I ‘T ’ is a n-place predicate letter and does not free in any of the assumptions

that Φ(T ) depends on.

∀2-E Ξ is an open sentence with n argument places; no variable in Ξ is bound in

Φ(Ξ) that are not already bound in Ξ.

Note that neither the schematic letter are part of the language, nor the ‘n’. They

are merely placeholders for object-linguistic expressions of the appropriate syntactic

category.
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The rules for the second-order quantifiers are analogous to the ones for the first-

order quantifiers, except for differences required by the different syntactic role that

predicate have from names. First-order logic has logical constants for generalisation

over the name position – the first-order quantifier – but the predicate letters do not

play any role in inference. Given the similarity of the rules, and the curious lack of

inferential function of the predicate letters, should second-order quantification not

be allowed as logical? First-order quantifiers are well entrenched in our inferential

practices and generalisation over name position is considered properly logical. What

would keep us from applying a very similar device for generality to predicate position,

too?

The obvious worry is that the first-order quantifiers range over the objects of the

domain. We do not want to commit us to predicates having a referent, however,

so we should not quantify into predicate position. The reply here is, that on the

Deductivist approach the quantifiers (both first- and second-order) should not be

thought of as objectual. Rather, the quantifier rules are quasi-substitutional. ‘Quasi-

substitutional’ here mean that the schematic introduction- and elimination-rules

specify what inferential role the sentences containing the respective quantifiers stand

in with respect to other sentences. A range of entities is neither mentioned, nor

specified – and to that extend the account of the quantifiers is a form of substitutional

quantification.

Ordinary substitutional quantifiers, however, require a specified substitution

class of expression that can be substituted. The Deductivist approach dispenses

with this, too, in favour of a fully schematic approach, in a sense analogous to what

Shaughan Lavine describes for axiom schemata.35 The fully schematic rules for the

35(Lavine, 1994), pp. 230–240.
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quantifiers (and also the sentential connectives, incidentally) allow any expression

whatsoever, as long as it is of the right syntactic type, into the scope of the first-

and second-order quantifier rules. The idea of full schemata allows for arbitrary ex-

tensions of the language. Acceptance of such a schema entails accepting it for every

(possible) extension of the language, not just for the expressions contained in it.

This is not only unproblematic for logical rules, but, as Harris argues, characteristic

of them.36 The fully schematic logical rules are applicable to any language (that

has the corresponding syntactic categories) and allow for arbitrary extensions of the

language. Thus Etchemendy’s complaint mentioned in section 8.3 above, concerning

how purely syntactic approaches are deficient because they are tied to a language,

does not apply to the Deductivist account. So, it seems, the last remaining objec-

tion against syntactic approaches is shown not to apply to the Deductivist position

either. The generality of the quasi-substitutional account is secured, because it is

fully schematic.

This almost characterises the Deductivist approach to logic. One remark about

the second-order quantifiers has to be still made, however (before we conclude that

they belong into the realm of logic). The ∀2-E rule allow to instantiate with open

sentences and not just predicate letters; this has to be explained. Consider the case

of explicit definition. Say, a predicate ‘R’ is defined to hold of any object if, and

only if, both ‘K’ and ‘B’ hold of it. We introduced, by way of definition a new

predicate into our language. The quantifier rules are fully schematic, so they apply

to the new predicate. Assume we instantiate a universally quantified sentence with

it. Directly after this step, we infer from ‘Rv’, ‘Kv ∧ Bv’. As this is how ‘R’ is

explicitly defined, this is admissible. It seems now, that the quantifier rule applied

36(Harris, 1982).
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to a logically complex predicate, or an open sentence. Every open sentence can by

explicit definition be turned into a single predicate and can be eliminated in favour

of the more complex expression again.

In general it seems that open sentences have the same syntactic type as pred-

icates. Consider the open sentence: ‘∀x((Rx ∧ Cx) ≡ H . . . )’. As in the case of

any predicate, inserting a name, say ‘e’, into the space results in a sentence. More-

over, filling the free space with a variable and binding it with a prenex quantifier

also results in a sentence. A fully general account, that declares the second-order

quantifier to be a means of generality concerning the entire syntactic type should

thus not only allow predicate letters as instances of the ∀2-E rule, but all predicate

expressions, inclusive of open sentences.37

Thus, I propose, the second-order quantifiers are part of logic proper. I take the

objections to them that were raised so far to be answered:

they do not bear extra ontological commitment (indeed, they need not be

considered to have a “range” at all);

the consequence relation is deductive, and hence very straightforward to handle

and not intractable at all;

the rules for the quantifiers allow for gapless ideal justification as required by

Frege in order to secure the epistemic impact of logic;

the alleged mathematical content of the quantifiers is an artefact of the model

theory: on the Deductivist conception the quantifiers merely indicate inferen-

tial role.

37Worries about impredicativity will be addressed in section 8.5.2.
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Generality – what is commonly called ‘quantification’ – is a properly logical device.

The restriction of the application of generality to name position appears arbitrary,

since on the Deductivist conception the objections to it can be refuted. Thus, the

second-order quantifiers and their operational rules “complete”, in a way, first-order

logic which has a device for generality but only applies it to one of its two (or three

if function letters are counted extra) syntactical positions.

How close, now, is this conception – one that involves characterising a pre-

systematic notion of logical consequence with inference rules that have no further

justification other than to be in accordance with what we are pre-systematically

willing to infer (in some idealised way) – to Frege? As mentioned above, it is not

central to the Deductivist account to capture Frege’s intentions. My main motivation

in the earlier quotation was to pay proper respect to the thinker who influenced me

to advance along the Deductivist line. For what it is worth, however, here is what

Warren Goldfarb reckons Frege’s position to be:

Now, I believe Frege would reject the idea that inference rules rest on

or presuppose the principles expressing their soundness. Rather, our

appreciation of the validity of the rules is not the recognition of the truth

of any judgment at all; it is manifest in our use of the rule, in our making

one assertion on the basis of another in accordance with the inference

rule. There is nothing more to be made explicit, although of course

individual instances of the inference rule can always be conditionalized

and asserted as logical truths.38

38(Goldfarb, 2001), p. 38; a similar interpretation of Frege’s conception of logic is proposed by
Thomas Rickett, (Rickett, 1985), p. 7.
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8.5 Two Problems for the Deductivist Approach

In this section I present two difficulties that the Deductivist approach faces: a kind

of inherent incompleteness of second-order logic, and concerns about the impred-

icativity of the introduction- and elimination rules. The first worry seems to be

specific to the Deductivist approach, and not a general problem that any account

faces (although the Deductivist approach might not be the only one to which this

worry applies). The impredicativity worry seems to be pressing for the Deductivist

account, too, although all syntactic approaches will have to find an answer to it.

In neither case do I offer a definitive answer to the problems. Concerning both

objections I outline a range of options how one could understand and accordingly

reply to the challenges from a Deductivist point of view. I indicate in each case

where my sympathies lie, and why – despite the lack of a conclusive argument.

8.5.1 Inherent Incompleteness

In chapter 6 I rejected semantic incompleteness as a viable criterion to judge whether

a deductive system can count as a proper logic. One cannot escape Gödel’s incom-

pleteness results, however, and for the Deductivist conception of logic no less than

for others a possible problem lurks here.

Consider the following case, using the conditionalisation techique described in

chapter 7 above. Let ‘PA2’ be the conjunction of the second-order axioms of Peano

Arithmetic. By Gödel’s incompleteness proof, there is a sentence of second-order

Peano Arithmetic that is true according to the axioms, but not provable from it. Call

this sentence ‘G’. The conditional ‘PA2 ⊃ G’ should thus also be true. It cannot

be provable, however, on pain of contradiction (if second-order Peano Arithmetic
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is consistent). If it was provable, then the antecedent could be discharged and we

would have a proof for ‘G’, contradicting Gödel’s proof.

Consider now the universal generalisation of the conditional. The universal gen-

eralisation is achieved by replacing all arithmetical constants in the conditional by

appropriate variables, and binding them by prenex universal quantifiers: ‘0’ is re-

placed by a first-order variable and the symbol for the successor function is replaced

by a one-place function variable (and analogously for ‘+’, ‘·’, etc., should such con-

stants be present in the axioms – as mentioned in chapter 2, section 5.3, these

functions are definable in second-order Peano Arithmetic). The resulting sentence

contains only second-order logical vocabulary. This sentence cannot be a theorem of

second-order logic. If it was, a fortiori it would be a theorem of second-order Peano

Arithmetic. It could then be instantiated with the standard arithmetical constants,

and would result in ‘PA2 ⊃ G’ which, as noted, cannot be provable.

The generalised conditional should be considered true, however. ‘G’ is true of

the natural numbers, so ‘PA2 ⊃ G’ is true, as mentioned above. The universal

generalisation of that conditional asserts that whichever of its instances makes the

antecedent of the conditional true, also makes the consequent true. The antecedent

is the conjunction of the second-order Peano-Dedekind axioms, however, and those

describe the natural numbers. If the generalised conditional is instantiated in any

way such that they are true, ‘G’, thus, will also be true. So it seems that we

have a sentence of pure second-order logic (it contains no non-logical vocabulary)

that is true but not provable. Does that show that second-order logic is inherently

incomplete? Perhaps not quite yet.

In order to show that ‘PA2 ⊃ G’, and with it its generalisation, are true it seems

that we have to appeal to extra-logical resources. A case could perhaps be made
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that a theory of truth or a semantical theory will be needed, and that such a theory

will have to incorporate at least some mathematics. From the Deductivist point

of view, a truth predicate will have to be introduced into the language, together

with suitable rules or axioms that describe its behaviour. In a theory that contains

second-order Peano Arithmetic and a truth-predicate for it, the Gödel sentence ‘G’

of second-order Peano Arithmetic (n.b. the theory without the truth predicate) is

provable, and hence also the conditional. As ‘G’ can be proven in this theory, but

cannot be proven in second-order Peano Arithmetic, the former is strictly stronger

than the latter. Indeed, we know by Tarski’s Theorem that no (classical) theory

can consistently contain its own truth-predicate. This shows that extra resources

are needed. If these extra resources are mathematical, and not logical, one could

perhaps argue that the generalised conditional is not a logical truth, despite its being

true and containing only logical vocabulary. It would be, in a sense, on a par with

the second-order sentence expressing the continuum hypothesis that was discussed

in chapter 7.

This strategy does not seem to be open, however, for Daniel Leivant shows that a

truth predicate for second-order arithmetic is definable with the help of the resources

of third-order logic.39 Third-order logic is the next step up in an infinite hierarchy

of nth-order logics, that is in many ways similar to the hierarchy of types of simple

type theory. Second-level predicates are introduced that apply to the “ordinary”

predicates of first- and second-order logic which are now called first-level predicates.

Third-order variable stand in the place of second-level predicates in the same way

that second-order variables stand in the place of first-level, i.e. ordinary predicates.

Third-order quantifiers bind these.

39In (Leivant, 1994), §3.7.
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With the help of this third-order defined truth-predicate for second-order Peano

Arithmetic, we can derive ‘G’ in third-order logic from ‘PA2’, since these are the

axioms of second-order Peano Arithmetic. As mentioned above, in the presence of a

truth predicate this is possible. We can then conditionalise ‘G’ to ‘PA2’. Since our

conditional ‘PA2 ⊃ G’ is now a theorem of third-order logic, we can infer by first-

and second-order ∀-introduction the universally generalised sentences. We have thus

proven that the second-order sentence is a theorem of third-order logic, but it is not

a theorem of second-order logic. Call this the non-conservativeness of third- over

second-order logic. Since the sentence contains only second-order terminology this

non-conservativeness demonstrates – with purely (third-order) logical means – an

inherent incompleteness of second-order logic.

According to (Leivant, 1994) the result for the truth predicate for arithmetic

generalises for higher orders. Call a system that combines nth-order logic (for any

n ∈ ω) with the second-order axioms of Peano Arithmetic nth-order arithmetic. For

any such system of nth-order arithmetic, a truth predicate is definable in (n+ 1)th-

order arithmetic. An argument that is a generalised version of the one just sketched

establishes, using the result stated by Leivant, that in general (n+ 1)th-order logic

is non-conservative over nth-order logic. Symbolised, the situation looks as given

below, with ‘Gn’ now standing for the Gödel sentence of nth-order arithmetic:

02OL PA2 ⊃ G2

`3OL PA2 ⊃ G2

03OL PA2 ⊃ G3

`4OL PA2 ⊃ G3

211



04OL PA2 ⊃ G4

...

The ‘2OL’, ‘3OL’, and ‘4OL’ indices specify that the stated provability or non-

provability result holds for the deductive system of second-, third-, and fourth-order

logic, respectively. Where the respective conditional is provable, it universal closure

is provable, too, by first- and second-order ∀-introduction.

Note, by the way, that a non-conservativeness result for second- over first-order

logic cannot be shown with this template. For first-order arithmetic is not finitely

axiomatised – the induction axiom is a schema, and cannot figure as such in a

conjunction in the way that ‘PA2’ is the conjunction of the second-order axioms,

where the second-order induction axiom is a sentence of the language.

The problem for Deductivism that arises from this inherent incompleteness is not

that some logical truth cannot be proven. As indicated above, Deductivism does

not claim that there is one system in which the entire pre-systematic consequence

relation can be captured. It rather sets constraints on which systems are acceptable

as proper logics. The non-conservativeness of (n+1)th- over nth-order logics thus at

most40 shows that for any proper logic there will always be a stronger one, i.e. one

that proves more logical truths than the one before.

The non-conservativeness problem concerns rather the role of the quantifiers in

the Deductivist approach. The meaning of a quantifier was said to be characterised

by its inferential role. The virtue of this approach is that no model theory or any

other external resources are needed. Whether a sentence is declared a logical conse-

40Whether it shows even this depends on the outcome of some of the considerations that are
discussed below.
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quence of some premises depends only on whether it can be proven in the deductive

system. What can be proven, in turn, depends only on what logical constants are

contained in the sentences, since those determine the inferential relations that sen-

tences stand in with respect to each other. This, however, now seems to be a claim

that cannot be upheld – given the non-conservativeness result. For the universal

generalisation of ‘PA2 ⊃ G’ contains only second-order logical constants, but it can-

not be proven in second-order logic. Second-order logical truth seems not to be,

contrary to Deductivism, determined by the inference rules of second-order logic.

As far as I can see there are four options how to react to this inherent incom-

pleteness of second-order logic from a Deductivist perspective.

(I) Denying the Data

That indeed a problem is created by the non-conservativeness of third- over second-

order logic depends on third-order logic being proper logic in the Deductivist sense.

If it is not – if, for example, third-order logic is a mathematical theory as opposed

to second-order logic which is a proper logic – then the proof relies on non-logical

resources and the sentence in question is not a logical truth after all. It would

be “merely” a mathematical truth expressible with purely second-order resources.

Option (I) would thus say that second-order logic is not inherently incomplete at

all: all its logical truths are provable, or it least the contrary has not been shown

by the argument above.

In a similar fashion the second-order sentence expressing the infinity of the uni-

verse (see chapter 7, section 3.1) is a mathematical truth (‘universe’ here does not

refer to the physical universe, but is inclusive of abstract, mathematical objects). If

arithmetic is correct, there are infinitely many natural numbers, and this suffices for
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the universe being infinite; we do not even have to venture into set theory for that.

The second-order sentence expressing infinity, however, is not a logical truth – not

even on the standard semantical conception.

What would the reasons be to reject third-order logic as logic, however? The

introduction- and elimination rules for the third-order quantifiers (they are given

under option (III) below – see there) are surely sufficiently similar to the rules for

the second-order quantifiers. They are, at any rate, if the rules for the second-order

quantifiers are sufficiently similar to the rules for the first-order quantifiers which

was one of the reasons to accept the second-order quantifiers in the first place. Also

that there are standardly no second-level predicates in the formal language is not

a good argument. There are standardly (if the standard is first-order logic) no

second-order quantifiers in the formal language.

A tempting line of argument might be that by admitting first-level predicates

as argument places of second-level predicates, we implicitly require that first-level

predicates refer to objects – as (so the argument says) predication can only be of ob-

jects. From the Deductivist standpoint, however, logic should be neutral concerning

ontology. A system that commits us to some second-order ontology, then, would

have to be disqualified.

As Michael Dummett points out, however, first-order quantifiers themselves can

be thought of as second-level predicates:

Of, for instance, an atomic sentence, formed by putting a proper name in

the argument-place of a simple (first-level) predicate, Frege says that it is

used to make a statement about an object (the referent of a name), saying

of it that it falls under a certain concept (the referent of a predicate).
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If, however, we consider a sentence formed by attaching a [first-order]

quantifier to a first-level predicate, Frege considers the quantifier as a

predicate of second level, having a second-level concept as its referent:

and he accordingly says that such a sentence is used to make a statement

about a first-level concept (the referent of a first-level predicate), saying

of it that if falls under the second-level concept for which the quantifier

stands.41

It is a mistake, therefore, to think that we commit ourselves to extra ontology by

taking the step to third-order logic. If indeed the consideration that second-level

predicates are so committing were correct, then first-order quantifiers might already

be suspect in this way. If Dummett’s observation is right, however, then it is a

mistake to think that predicates always require expression that refer to objects to

fill their argument places. In any case, it does not appear to be the case that we are

forced to take a view of predication that is committing in such a manner; but then

third-order logic cannot be disqualified in this way.

We can restate the point using the formal language of third-order logic. The “of-

ficial” Deductivist version of third-order logic uses introduction- and elimintation-

rules, of course. For the purpose here, however, it is easiest to state the point using

the third-order comprehension schema of an axiomatised version. This comprehen-

sion schema, simplified for the monadic case, with ‘X ’ being a third-order variable

looks like this:

∃X∀F [X (F ) ≡ Φ(F )]

The usual provisos apply. As in the case of the second-order comprehension schema,

41(Dummett, 1981), p. 174.
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any open sentence can take the place of Φ – including p∃x(... x)q. We thus get as

an instance of the third-order comprehension schema:

∃X∀F [X (F ) ≡ ∃x(Fx)]

If one wanted to pursue option (I) in order to react the problem of inherent in-

completeness it would have to be shown that the Frege-Dummett view is in some

relevant way mistaken. As, presumably, the construal of first-order quantifiers as

second-level predicates is not dependent on a Fregean ontology of concepts, no ad-

ditional commitment appears to occur by going third-order.

Overall, this option does not appear to be too attractive.

(II) Re-Interpreting the Result

Another option would be to observe that the language in which the proof is carried

out has changed – not only so far as third-order vocabulary is now present, but

concerning the second-order quantifiers themselves. As stated above, the second-

order inference rules are construed as fully schematic, in Lavine’s sense. That means

that we allow the rules to operate on any extension of the language. So now third-

order formulae are allowed as instances of the second-order rules. It will, again, be

easier to see what is happening if we consider a axiomatic system. Consider the

second-order comprehension schema for the monadic quantifier:

∃X∀y[Xy ≡ Φ(y)]

‘Φ’ can now contain third-order vocabulary. We get instances like this one, for
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example:

∃X∀y[Xy ≡ ∀X (¬Fy ∨ X (F ))]

Since there is, in particular, a truth predicate for the second-order fragment of the

third-order language, the expressive resources have changed. As far as the second-

order fragment is concerned, these expressive resources might as well be non-logical;

their logical structure cannot be analysed by the resources of second-order logic.

It is only in the third-order language that the logicality of the new expressions is

revealed.

It seems, however, in order to make this option work, more needs to be said

about the connection between third- and second-order logic. Merely pointing out

that there are more expressions in the language now which the second-order fragment

of third-order logic cannot discern, might not appear to be enough.

(III) Modifying the Approach

Maybe the approach to specify the introduction- and elimination-rules for the quan-

tifiers as specific to the different levels was mistaken. The fact that the quantifiers

rules look so similar can perhaps be treated as evidence that there is really just one

pair of rules for the universal quantifier (and one pair for the existential quantifier)

that schematically applies across the board, so to speak, at every level.42 Thus we

could replace these specific rules for (monadic) universal quantifier elimination

∀xΦ(x)

Φ(ξ)
∀1-E

∀XΦ(X)

Φ(Ξ)
∀2-E

∀XΦ(X )

Φ(X)
∀3-E . . .

(where ‘X’ in the ∀3-elimination rule reserves a place for an arbitrary second level

42Crispin Wright suggested this option in an Arché research seminar in September 2004.
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open sentence) with one general rule:

∀XnΦ(Xn)

Φ(Ξn)
∀(n+1)-E

and analogously for the introduction rule for the universal quantifier (and the rules

for the existential quantifier). The ‘n’ does not belong to the language (just as the

Greek letters do not), but merely indicates the level of the variable. Next to the

usual restriction that apply (as introduced in section 8.4 above), we will have to

specify that only open sentences of the right level n are used in place of ‘Φ’, that

the argument places match, and also introduce a special requirement for the case

where we are dealing with first-order variable – names will be the very special case

of zero-level open sentences.

We would thus characterise the quantifiers of all levels at once, so one could

argue that the inherent incompleteness does not really arise. The quantifiers do not

get their meanings separately at each level. Rather, universal quantification is a rule

that operates at all levels.

This proposal is hard to assess. A technical worry would be whether the levels of

the quantifiers go into the transfinite, or whether the hierarchy of nth-order logics

is restricted to finite n. There is, after all, transfinite type theory,43 and there are

strong structural similarities between the theory of types and higher-order logic.

Depending on how the result of Leivant and the non-conservativeness argument

generalise into the transfinite, the inherent incompleteness objection might come

back: ω-order logic (if indeed there is such a system) might turn out to be non-

conservative over the system specified with the general rules for quantifiers at all

43See (Andrews, 1965).
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levels. Or is the general rule not restricted to the finite levels?

A bit closer to earth is the worry that, given the general rule, the meaning of

the second-order quantifier has, in some sense to do with, for example, 1879th-order

quantification. On the other hand, one might just take this to be just the lesson of

the non-conservative result: quantification at any level cannot be seen in isolation.

The mere fact that it is an unusual way to think about quantification might be

outweighed by the apparent similarity of the rules at the different levels. They

clearly follow a common pattern in some sense. What needs to be argued if this

option is chosen is that (i) the sense in which these rules follow the same pattern is

indeed relevant for this discussion, and that (ii) this in fact dissolves the objection.

Should it turn out that the only way to make sense of these general rules that apply

to all levels is to instantiate them (in some sense) to each level, then the question

arises in what sense it is really the general rule that gives meaning to the quantifiers

at each level, rather than the respective instances of it.

(IV) Stop Worrying and Learn to Love the Result

Shapiro writes in his discussion of logical consequence that

there is no reason to expect that the pretheoretical, modal notion of

logical consequence is effective, and that there is a complete deductive

system for it.44

His aim is, of course, to dispel worries about the intractability of the standard

model-theoretic consequence relation of second-order logic – especially with respect

to the impossibility of a complete deductive system for this consequence relation.

As I argued in chapter 6 above, I agree with him that semantic incompleteness does

44(Shapiro, 2005a), p. 772.
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not provide an argument that a given system is not a proper logic. I also argued

in section 8.4 above that the lack of an all comprising system that characterises the

pre-systematic consequence relation is not a refutation of the Deductivist project.

The important feature is that only genuinely logical consequences are declared as

such by a system, not that all are.

Above, I mainly took that to apply to different kinds of inference pattern. First-

order logic is proper logic although it does not present the whole story of logical

consequence, and not even, in some sense the whole of the language that it is about:

it contains predicates, but no inference rules for generality that applies to them.

Adding such rules together with the range of vocabulary required to use them results

in second-order logic.

Maybe the best way to answer to the inherent incompleteness challenge is to

take a more radical stance along these lines. Maybe we can just accept the fact that

there are there are logical truths (and logical consequences) of second-order logic

that cannot be captured with the inference rules of second-order logic. To resolve

the worry will require, however, that the Deductivist account of the logical constants

is understood in a different way. The account of the logical constants was that these

indicate what inferential relations the sentences of the language stand in to other

sentences. So far, this was naturally understood as saying that these inferential

relations are determined by the logical vocabulary contained in the sentence. I

submit that there is room to reject this condition.

The view behind the requirement that only the logical vocabulary that figures

in the sentences that the inference is concerned with contributes towards determin-

ing whether or not an inference is valid, is the molecular view of meaning, most
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prominently defended by Dummett.45 Someone who favours classical logic, how-

ever, probably has to be reject this view in any case. The example is once again

Peirce’s Law: ‘((p ⊃ q) ⊃ p) ⊃ p’. Peirce’s Law is a classical tautology, but not

provable intuitionistically. What is required in a natural deduction system is a proof

by reductio that involves at one step a double-negation elimation which us not in

general available intuitionistically. Peirce’s Law does not contain a negation sign

at all, however. If the meaning of the conditional is given by its introduction- and

elimination-rules and the validity of the sentence is supposed to flow, as it were, from

nothing but the vocabulary contained in it, then the presence or absence of rules

for negation in the logic should play no role whatsoever: a proof by reductio should

not be needed for a sentence that expresses a logical truth if that sentence does not

contain a negation – let alone a proof that involves double negation elimination. So,

whoever wants to hold on to classical propositional logic has to reject the molecular

view in favour of a more holistic approach.

It can be observed that the molecular view need not be taken on board: the

Deductivist approach does not require it. I have run the two views together so far,

and maybe that appears to be the natural thing to do, but they can be divided.

Deductivism can be spelled out in a way that is compatible with a holistic approach

if the requirement that the inference rules determine the entailment relations that

sentences stand in with respect to each other is relaxed to encompass the rules for

all the logical vocabulary that figures in the deductive system. All the sentential

operators of (classical) propositional logic combine to determine that Peirce’s Law

can be proven, not just the rules for the conditional. Something similar could

be defended for second-order logic: the inference rules for the logical constants of

45See (Dummett, 1991b), esp. chapters 9–11.
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second-order logic do not determine all the logical truths and consequences of second-

order logic; the inference rules of other logical constants – in the example above,

those for the third-order quantifiers – are needed in order to establish that some

second-order sentences express logical truths, or that some second-order sentences

are logical consequences of other second-order sentences. The description of the

situation seems to be correct. Is it acceptable as a Deductivist approach, however?

I suggest that it is. Logical systems codify parts of the logical consequence

relation. Stronger logical systems codify a larger part of it than weaker systems.

This is no problem from the Deductivist point of view, as stressed before in this

chapter. That a system codifies all logical consequences of the language that it is

formulated in need not be part of a properly Deductivist view. To repeat a point that

was made several times already: the crucial feature is that only logical consequence

can be derived from given sentences, not that all are captured. Covering more

logical consequences with a system is better than covering less, of course. If need

be, however, the Deductivist can always resort to a stronger system. What matters

is that the inferences are logical. This feature is preserved.46

8.5.2 Impredicativity

The inference rules for the second-order quantifiers, as introduced above are impred-

icative in the sense that they allow us to infer sentences from a quantified sentence

that contain subformulae in the relevant place that themselves contain second-order

46It should be noted that the standard semantic approach is not affected by this problem, albeit
only in the remarkable way that it does not have an effective system at all. All logics up the
hierarchy are sound with respect to the standard semantics. Thus, our example sentence is a
second-order validity of the standard semantics already. This is easy to see: the Gödel sentence of
second-order arithmetic has to be true in all standard models that make the axioms true. Nothing
changes by going up higher in the hierarchy.
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quantifiers. An example for this is the inference:

∀X(Xa ∨ Fa)

(∃Y ∃x(Y x ⊃ x = a)) ∨ Fa
∀2-E

The open sentence inserted for ‘X’ is p∃Y ∃x(Y x ⊃ x = ...)q. It contains the

second-order quantifier ‘∃Y ’. For fully impredicative inference rules there is no limit

to the complexity of the open sentences. Second-order quantifier rules that allow

only the substitution of open sentences that do not contain second-order quantifiers

themselves are called predicative.

There seem to be two worries concerning this impredicativity of the second-

order quantifiers, both to be found in the writings of Dummett. The first is that

the impredicative rules are not comprehensible, presumably because they do not

establish a determinate meaning. In Frege: Philosophy of Language Dummett writes:

To grasp what concept a given predicate stands for is to be aware of

the conditions under which the predicate is true of an arbitrary object.

These we evidently cannot know, in the case of a predicate which in-

volves quantification over concepts, until we know what is the totality

of concepts which constitutes the domain of such quantification: and so

the vicious circle is as overt as it could be.47

Dummett considers second-order quantification unproblematic as long as it is pred-

icative (read ‘second-order’ for Dummett’s ‘second-level’ here):

Expressions for second-level generality are deeply embedded in natural

language, but are there always interpretable as ranging over a predicative

47(Dummett, 1981), p. 540.

223



totality; assertions of the existence of a property is taken as needing

justification by production of an instance. Second-level quantification is

immune to question so long as it remains predicative [...].48

However later, in his Frege: Philosophy of Mathematics, Dummett’s concerns are not

only whether it is possible to understand impredicative second-order quantifiers. He

considers impredicative second-order quantification to be inconsistent, and blames it

“with a little help of Basic Law V”49 for the inconsistency for Frege’s system of the

Grundgesetze in which Russell’s Paradox can be derived (see chapter 3 above for a

brief treatment of Russell’s Paradox). George Boolos50 and Crispin Wright51 argue

against this latter view of Dummett’s. Boolos remarks that, against Dummett’s

contentions, a different source for the inconsistency of Frege’s system should be

identified: “the culprit is the obvious one, Basic Law V.”52

This is not the place to rehearse this debate.53 I take it that there are generally

no real doubts about the consistency of even impredicative second-order logic. From

the Deductivist point of a view the soundness proof with respect to the standard

semantics can, of course, not be appealed to, while typically it is taken to show that

second-order logic is consistent if the fragment of first-order ZFC that is needed for

the semantics is consistent. There are other semantics with respect to which the de-

ductive system of second-order logic is sound, like Henkin or topological semantics.54

All of these are mathematical interpretations, however. Maybe more acceptable to

48(Dummett, 1981), p. 541.
49(Dummett, 1991a), p. 219.
50(Boolos, 1993).
51(Wright, 1998).
52(Boolos, 1993), p. 221.
53An illuminating formal discussion of Dummett’s view on impredicativity in a more general

setting can be found (Weir, 1998).
54See (Awodey and Butz, 2000).

224



the Deductivist for this purposes a cut-elimination theorem for second-order logic,

like the theorem proven by Dag Prawitz.55

It is anyway clear that the consistency of a system can only ever be proved in

another system that is stronger. This is indicated by Gödel’s incompleteness proof.

According to Gödel’s incompleteness theorems, no consistent system that includes

arithmetic can prove its own consistency. This does not mean that consistency

proofs are uninformative in general. Doubts about higher-order quantification, as

already mentioned in the paragraph above, might be soothed by an interpretation

in first-order set theory. Another example which is commonly cited as particularly

illuminating in this context is Gentzen’s consistency proof for arithmetic.56 A con-

sistency proof that is given in a familiar, trusted system for a new and unfamiliar

one, certainly can count as an interesting and reassuring result.

Generally, however, the Deductivist account does not seem to have room, or

need, for consistency proofs, in a way. The point here is that the Deductivist

conception of logic sets in at the very lowest level. There can be no more secure a

55(Prawitz, 1964); see also (Prawitz, 1968). Cut-elemination typically entails consistency, and
is accepted by constructivists as showing that a proof-theoretic system is in good standing. Such
a proof should thus also be “safer” than, say, a model-theoretic interpretation. Cut-elimination is
roughly the idea that proofs can be “normalised” in the sense that applications of an introduction-
rule for a logical constant that are followed by the corresponding elimination-rule can be eliminated
from the proof. A proof can be shown to “make no detours” in this way. The cut-elimination theo-
rem for a system says that every proof that is carried out in it can be normalised in this way. (Also
(Hacking, 1979) insists on the importance of cut-elimination proofs.) Cut-elimination proofs for
impredicative second-order logic are usually believed to be unavailable by constructively acceptable
means; indeed, Prawitz’ proof is not constructive insofar as it makes use of impredicativity in the
meta-theory (classical negation is not used, however). (Zucker, 1980), p. 637, points out that it
is a common mistake to assume that cut-elimination cannot be proven constructively. This error,
Zucker suggest, is a result of confusing pure higher-order logic with higher-order number theory; a
constructive cut-elimination proof for the latter is indeed not known. He refers to a comparatively
“trivial” constructive proof for impredicative second-order logic that is given by Feferman in his re-
view article (Feferman, 1977) of (Takeuti, 1975); Takeuti makes a potentially misleading statement
to this effect. I am indebted to William Stirton for pointing me to Zucker’s review article.

56(Gentzen, 1936a).
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system than proper logic. The demand for a formal proof of the consistency of a

system of logic cannot be met: Any system that could deliver such a proof would

have to use a formal logic, too. Logical consequence is characterised in deductive

systems. I argued above that these systems are in one way or other constructed to

codify logical inference, and that beyond our considered judgement, guided by the

criteria for genuinely logical inferences as described above, no guarantee of safety is

available. The basic inferences are, to our best judgement, properly logical. Recall

in this context also Warren Goldfarb’s interpretation of Frege’s conception of logic:

I believe Frege would reject the idea that inference rules rest on [...]

principles expressing their soundness. Rather, our appreciation of the

validity of the rules is [...] manifest in our use of [them], [...] in our

making one assertion on the basis of another in accordance with the

inference rule. There is nothing more to be made explicit [...].57

Even the father of model theory, Alfred Tarski, expresses the idea that logic is the

basic discipline:

[L]ogic itself does not presuppose any preceding discipline [...].58

Presumably it will suffice to dispel worries about the consistency of the impredicative

second-order quantifiers to give a satisfactory answer to the first of Dummett’s

worries, the one concerning whether they have a determined meaning. If it can

be argued that the impredicative second-order quantifiers have a determinate (non-

trivial) meaning and that they are properly logical, this entails that second-order

logic is consistent. As it seems indeed important for the Deductivist (as for any)

57(Goldfarb, 2001), p. 38.
58(Tarski, 1946), p. 119.
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account that the quantifiers can be understood, Dummett’s first worry has to be

addressed in any case.

A philosophically satisfactory account of impredicativity would require an entire

research project on its own – at least. I cannot do justice to the question here. A

few more or less general remarks will have to suffice for the present purpose.

Retracting

One possibility would be, of course, to take Dummett’s complaints (once they are

sufficiently clarified) to be evidence that our judgements about the introduction- and

elimination rules of the second-order quantifiers being impredicative were wrong,

and that indeed only predicative rules can be allowed. This would leave us with

predicative second-order logic, which is rather weak compared to fully impredicative

second-order logic.59 This alone would be no objection to such a step. Should it

turn out that only the predicative rules for the second-order quantifiers reliably

produce properly logical consequences, this would not be cancelled out in some way

by considerations about the usefulness of the impredicative rules.

A further restriction that would presumably avoid the charge would be to restrict

the rules to ramified instances. Bertrand Russell introduced the Ramified Theory of

Types after his discovery of the contradiction in Frege’s system of the Grundgesetze.

Russell, like Dummett, considered the impredicativity involved to be the source of

the paradox, and strived to ban all impredicativity from his system.60 Not only did

he introduce the type structure, but he also introduced what he called ‘ramification’.

In each type, the quantifiers of the first level (‘level’ here is not to be confused with

59Such a system is proposed, for example, in (Cocchiarella, 1974); see also (Church, 1956), §58.
60(Russell, 1908), (Whitehead and Russell, 1913); see also (Goldfarb, 1989).
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the level of predicates as it was used before – those would be types for Russell)

have to be predicative. These level-one sentences then can be subject to level-two

quantification, and so on. This ramification hampers the applicability of the system

significantly, so that Russell notoriously had to introduce an Axiom of Reducibility

that in effect cancels out the restriction of the ramification.

If we think as the variables of Type Theory as ranging over classes, the ramifi-

cations would demand that for the definition of a class at a type, only classes that

were already defined at a lower ramification level of that type can be used. On such

an interpretation the Axiom of Reducibility asserts that, in fact, all classes that are

defined along the ramification levels already exist at level 0. Adopting a ramified

second-order logic,61 again, would give us a rather weak system. As for predicative

second-order logic, that is not in itself a reason to reject the proposal, however.62

Generality

One presupposition of quantification was that it is a device of generality for the

predicate position. I argued that open sentences fulfill the same syntactic role as

predicates that enter the formal language as predicate constants. It does not seem to

matter whether predicates have logical structure themselves or not. Restricting this

generality seems to contradict one of the basic building blocks of the Deductivist

approach: the understanding of the inference rules as fully schematic.

To achieve a sufficiently general notion and avoid the problems of the standard

substitutional account, it had to be insisted that the rules hold for any extension

61See (Church, 1956), §58, for a formal system of ramified second-order logic; such a system is
also sketched in (Shapiro, 1991), pp. 64, 69–70.

62As Prawitz, for example, remarks, “[f]rom a strictly intuitionistic view-point, probably only
ramified predicate logic is meaningful.” (Prawitz, 1965), p. 66, fn. 1.
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of the language. If this does not hold, then the inferences according to the rules in

question do not count as cases of logical consequence. I cited the case of an explicit

definition. A new predicate defined on the basis of some predicates that are already

in the language must not be barred from getting into the inference rules.

This seems to be the key thought that needs to be developed to find an answer

to the impredicativity challenge. If Dummett is right, then the very introduction of

the impredicative second-order quantifiers extends the language with expression for

which the rules do not hold anymore. Can it be argued against Dummett that our

acceptance of the rules covers the case, so to speak, when we realise that there are

open sentences that contain the second-order quantifiers to which the second-order

quantifiers apply?

Consider the case of the rules for conjunction. We will find that we apply conjunc-

tion introduction to sentences that themselves are conjunctions of further sentences.

This is certainly innocuous. So, what is the relevant difference? Dummett mentions

the range of the quantifiers. On a Dummettian understanding of quantification, it

makes only determinate sense to quantify, if the range of the quantifiers is fixed.

For the realist, impredicativity thus poses no problem. The functions or concepts

that the quantifiers range over in the realist picture exist independently of human

activity. For an anti-realist like Dummett, functions have to be constructed in some

way. Putting these two Dummettian views together, we do not have a fixed range

for the quantifiers if that range has to contain expressions that are only defined with

the use of the quantifiers that are supposed to range over them.

The Deductivist approach was designed to be neutral on metaphysical ques-

tions. It construes quantification as quasi-substitutional, thus the quantifiers do

not, strictly speaking, have a range. The new criterion of ontological commitment
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that the approach uses, for example, describes the kinds of entities that a theory is

committed two, but stays neutral on the question whether kinds as such are entities

(universals, sets, ...), or whether maybe the talk of kinds is just a sloppy way of

saying that the theory proves that this-and-that predicate (the “kind”) is true of

something. Interpreted in a Quinean fashion, this would not commit us to anything

beyond the objects. This kind of neutrality should be preserved in the response to

Dummett, too, but of course without begging the question against him, by simply

stating that the quantifiers do not have a range.

Two Possible Ways Out

Maybe a heuristic will help. Our understanding of impredicative second-order quan-

tifiers might come in stages. We recognise the rule as codifying logical consequence

as long as we only have predicative instances. Once these are thus secured it would

also be “safe” to have open sentences containing predicative quantifiers as instances

of second-order quantifiers.63 It is clear where this is going: it reconstructs (on a

heuristic level) Russell’s ramifications. Ridding ourselves of the heuristic eventually,

would be parallel to Russell’s adopting of the Axiom of Reducibility. All the impred-

icativity banning measures are abandoned and we convince ourselves that, really,

we have been quantifying unrestrictedly across all ramification levels all along. Also

the second-order quantifiers we started out with, and that were thought of as pred-

icative, are fully impredicative quantifiers. Trying to argue that way would invite

criticisms similar to those that were raised by Frank Ramsey against Russell for

adopting the Axiom of Reducibility.64 It might seem like a cheat. This impression

63This was suggested by Crispin Wright in discussion during an Arché research seminar in April
2004.

64Compare (Ramsey, 1925).

230



would have to be explained away.

A more direct strategy might be better. It could be argued that the schematic

rules are in fact accepted. As they are fully schematic, the extensions of the language

that the impredicative quantifiers themselves bring are also accepted as admissible

instances. This is what we committed ourselves to when we accepted the quantifiers

in the first place. This approach is probably best dubbed “digging in the heels”.

Without further arguments it is little more than mere insistence that the idea of a

fully schematic rule brings with it that instances can be impredicative.

It can be noted, however, that something analogous happens if we instantiate

first-order quantifiers with definite descriptions, or form conjunctions from conjunc-

tions. A line of argument might start from the observation that the intuitionist

explanation – provided by Heyting – of the conditional involves the notion of a

proof: ‘p ⊃ q’ is explained as saying that a proof of ‘p’ can be extended to a proof

of ‘q’. The proof for ‘p’, however, might in turn itself involve conditionals. We en-

counter also here a certain impredicativity.65 A normalisation (or cut-elimination)

proof is sometimes taken to guarantee that this his harmless. Such a proof exists

also for impredicative second-order logic, however, as mentioned above.

Maybe, however, the case should be made that the onus is on Dummett to

convince the Deductivist that quantification only makes sense if there is a definite

range for the quantifier. Ranges of quantifiers, after all, are not part of the core

Deductivist agenda. The challenge to the challenger is to provide an example of a

sentence that is declared a logical truth by the deductive system of impredicative

second-order logic (i.e., that is a theorem of it) that does not accord to the pre-

systematic notion of logical consequence.

65Compare (Dummett, 1977), §7.2.
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Chapter 9

Appendix:

Etchemendy on Logical

Consequence

9.1 Introduction

In his The Concept of Logical Consequence (Etchemendy, 1990) John Etchemendy

attacks the Tarskian model-theoretic approach to logical consequence on various

levels.1 His complaint is that the standard model-theoretic definition of logical

consequence is neither useful as a conceptual analysis, nor is it even extensionally

adequate. With respect to second-order logic he specifically argues that the stan-

dard model-theoretic semantics “overgenerates” in the sense that it provides too

many allegedly logical consequences and validities.2 I will present his criticisms in

1Indeed, his attack had started already in a couple of earlier papers, compare (Etchemendy,
1988a) and (Etchemendy, 1988b).

2(Etchemendy, 1990), pp. 123–124.
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sections 9.3 and 9.4 below. These broadly fit with the observations that were made

in chapter 6 of this thesis.

It is often believed that Etchemendy rejects model-theoretic techniques alto-

gether. The reason for this belief presumably is, as Etchemendy states in his as yet

unpublished (but freely available on his internet website) (Etchemendy, 1999)3, that

the positive part of his programme is largely missing from his book. Indeed, what

Etchemendy claims here, is that his criticism of the Tarskian approach

is not aimed at model-theoretic techniques, properly understood, nor

at the view that logical consequence is a fundamentally semantic, not

syntactic notion.4

Even without recourse to Etchemendy’s unpublished paper it is obvious from his

other publications that he favours a semantic approach,5 and it is also not too dif-

ficult to get that idea from (Etchemendy, 1990). It is clear from Etchemendy’s

distinction between representational and interpretation semantics, and his descrip-

tions and evaluations of the two conceptions, that he takes the representational

account to be the correct one. This will be discussed in section 9.5.

I argued in chapter 8 that the Deductivist approach is better suited to char-

acterise logical consequence than the model theoretic account. Etchemendy, while

rejecting the Tarskian approach to logical consequence, is still opposed to a “purely

syntactic approach”.6 His rejection of such an approach is even more acerb than his

rejection of Tarski – and this too could be taken as a hint that his own sympathies lie

3I am indebted to Professor Etchemendy for granting me permission to quote his unpublished
paper.

4(Etchemendy, 1999), p. 2.
5See for example (Barwise and Etchemendy, 1995).
6(Etchemendy, 1990), p. 2.
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with a semantic approach. His rejection of syntactic approaches is also rather swift

and sketchy, as he only uses this rejection as a platform for his thorough discussion

of the Tarskian approach. As indicated in chapter 8, I agree with his criticism of

such positions. Moreover, the Deductivist approach as characterised above does not

qualify as purely syntactical, and thus, as argued in chapter 8, the criticism does

not apply. In section 9.6 I compare Etchemendy’s representational semantics with

the Deductivist account on the one hand, and the standard semantical approach, as

described in chapter 7 above, on the other.

Note that Etchemendy prefers to talk about logical truth instead of logical con-

sequence throughout the book. He takes the concept of logical consequence to be

the important one, however:

Logic is not the study of a body of trivial truths; it is the study of the

relation that makes deductive reasoning possible.7

At least we agree about that much. The issue will come up again in section 9.6.

9.2 Etchemendy’s Strategy

Etchemendy offers arguments that are supposed to illuminate why two allegedly

compelling reasons to adopt Tarski’s account do not work, and do not motivate the

Tarskian account at all. Etchemendy then proceeds in the second half of his book

by arguing that the account should be rejected altogether. He claims that the two

reasons that make the Tarskian analysis appear attractive are:8

7(Etchemendy, 1990), p. 11.
8See (Etchemendy, 1990), p. 95.
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• Appearance of having the virtues of representational semantics

• “Tarski’s Fallacy”

“Tarski’s Fallacy” has been widely discussed.9 The idea here is the following:

The appeal of Tarski’s account is that it gives the prospect of capturing the pre-

systematic intuition that the truth of the premises of an argument, in some sense,

guarantees the truth of the conclusion. It is not the case that the conclusion just

happens to be true; the premises, if they are true, in some sense force the conclusion

to also be true.10 According to Etchemendy, Tarski promises this with the following

sentence:

[I]t can be proved, on the basis of this [Tarski’s] definition, that every

consequence of true sentences must be true.11

Etchemendy argues that this sentences is ambiguous between a wide-scope and a

narrow-scope reading of the necessity-operator “must”:

(W) Necessarily, if C is a Tarski-consequence of Γ, then: If every sentence in Γ is

true, then C is true.

(S) If C is a Tarski-consequence of Γ, then: Necessarily, if every sentence in Γ is

true, then C is true.

Etchemendy argues that the stronger claim (S) is the appealing one, but the only

one that can really be argued for is the weaker (W). (W) has the logical form

9See, for example, (Ray, 1996), (Shapiro, 1998), and (Sher, 1996). Etchemendy’s point of view
is defended, especially against (Ray, 1996), by (Hanson, 1999).

10See (Etchemendy, 1990), ch. 6, esp. pp. 82–83.
11(Tarski, 1983), p. 417; see (Etchemendy, 1990), p. 91. The new translation (Tarski, 2003),

p. 186–187, does not disagree in the relevant aspect.
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p2(p ⊃ (q ⊃ r))q, while (S) is of the form p(p ⊃ 2(q ⊃ r))q. Obviously, (W) does

not imply (S) – and it is a fallacy to conflate these two. The promise is therefore

empty and cannot serve as a good reason to accept Tarski’s account.

Much of the discussion was generated by Etchemendy’s remarks in the con-

cluding section of his chapter on “Tarski’s Fallacy”.12 Here, Etchemendy gives the

impression that Tarski must have either committed an elementary and rather blunt

modal fallacy, or (maybe even consciously) deceived his readers. I take the discus-

sion, whether “Tarski’s Fallacy” is indeed a fallacy that does not allow for a more

charitable reading, and if so, whether it was deception or a mistake, to be rather

exegetical and tangential to my project.

For what it is worth, let us take a look at the German passage:

So kann man insbesondere auf Grund dieser Definition beweisen, daß

jede Folgerung aus lauter wahren Aussagen wahr sein muß.13

There is a more charitable interpretation of this passage. The ‘muß’ [‘must’] might

well have been added merely for emphasis, and not intended by Tarski to indicate a

claim of a necessary connection. It is probably ever more common in German than

it is an English to add ‘muß’ as an auxiliary verb to a sentence merely to emphasis

the strength of ones own belief in the statement. This would entail that Tarski was

writing sloppily, which does not seem too likely – but maybe more likely than him

committing a modal fallacy or (perhaps active) deception.

12(Etchemendy, 1990), pp. 90–94. Interesting here, as both Stephen Read (Read, 1994) and Peter
Simons (Simons, 1987) point out, is that Etchemendy calling this fallacy “Bolzano’s Fallacy” in his
earlier publication (Etchemendy, 1983), p. 330, did not create an uproar like the one that followed
Etchemendy’s announcing it as “Tarski’s Fallacy”.

13(Tarski, 1936b), p. 9.
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The historical and exegetical questions concerning Tarski are of no real interest

here, however, and I will not go deeper into the details. Thorough historical and

exegetical analyses can be found in (Gómez-Torrente, 1996) and the extensive trans-

lators’ introduction by Madga Stroińska and David Hitchcock to (Tarski, 2003). For

the purpose of this discussion I agree with Etchemendy that

the important issue is not what Tarski was thinking when he wrote the

paper, but whether the account he proposed is correct.14

The reasons that Etchemendy gives for rejecting Tarski’s account are its alleged con-

ceptual and extensional inadequacy. I will discuss these two inadequacy allegations

in the following two sections.

9.3 Conceptual Inadequacy

Tarski’s account of logical consequence is in all respects relevant for the discussion

here sufficiently similar to the standard model-theoretic semantics introduced in

chapter 2. A sentence is a logical truth, according to this account, if it is satisfied by

all models. What Etchemendy calls the conceptual inadequacy of Tarski’s reductive

account has to do with the reduction of the modal concept of logical truth – logical

truths are necessary – to “ordinary” truth, statements about how the world actually

is.15 To see what Etchemendy is intending, consider the following sentences:

(1) Lincoln was president.

(2) ∀x∀P [x P ]

14(Etchemendy, 1999), pp. 1–2.
15See (Etchemendy, 1990), pp. 95–100.
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To figure out whether (1) is a logical truth, we can just consider its universal closure

(2). In (2) all expressions of (1) that are not in a class of fixed terms F have been

replaced by variables of the right type and these are bound by prenex universal

quantifiers. The fixed terms F have to be determined in some way in advance, and

Etchemendy takes issue with this, too, but for now we can just take for granted

that they are the usual logical constants: truth-functional connectives, universal

and existential quantifiers, and the identity sign.

Now Etchemendy states that according to Tarski’s account sentences like (1) are

logical truths if their universal closure is true – this is what according to Etchemendy

satisfaction by all models (in modern model-theoretic semantics; for Tarski it was

satisfaction by all sequences) comes down to.16 To elucidate what he diagnoses as

the mistake in the analysis, Etchemendy presents three principles:

(i) If a universally quantified sentence is true, then all of its instances are true as

well.

(ii) If a universally quantified sentence is logically true, then all of its instances are

logically true as well.

(iii) If a universally quantified sentence is true, then all of its instances are logically

true.

(i) and (ii) are uncontroversial, they are simply statements of the rule of universal

instantiation and of the closure principle, respectively. (iii) is the reduction principle

that Etchemendy attributes to Tarski. In this principle he sees both the attraction

and the failure of Tarski’s account:

16(Etchemendy, 1990), p. 97.
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This is an important selling point for Tarski’s account. Our ordinary

concepts of logical truth and logical consequence involve various notions

that are notoriously difficult to pin down, notions like necessity, a pri-

ori, analyticity, and so forth. But if [Tarski’s] account is correct, what it

achieves is a truly remarkable reduction of obscure notions to mathemat-

ically tractable ones. If it is right, the analysis shows that we can in fact

sidestep all of these difficult concepts, that we can give a mathematically

precise definition of the logical truths of a language if we can just define

the notion of truth for a slightly expanded language – or, what comes

to the same thing, if we can define the notion of truth relative to an

arbitrary interpretation [...].17

The mention of a slightly expanded language, of course, refers to the fact that the

quantifiers and variables we need to form the universal closures, like (2), might not

have been in the original language.

The remarkable advantage of the reductive account is unfortunately unavailable,

since (iii) “is simply false”:18 the mere truth of a universally quantified sentence

cannot guarantee the logical truth of its instances. The universal sentence might

just be accidentally, or historically, true, or a truth of physics or mathematics. In

those cases its instances would not be logically true, but, presumably, historically, or

physically, or mathematically. Etchemendy does not go into more detail concerning

the general acceptability of the principle, since it seems so obviously false. He

considers two ways, however, in which the analysis might be rescued by modifying

principle (iii) to make more moderate claims. He argues that these cannot be

17(Etchemendy, 1990), p. 99.
18(Etchemendy, 1990), p. 100.
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defended either.

The first modification is to construe the account as giving an analysis of an

irreducibly relational notion, viz. logical truth with respect to an arbitrarily specified

class F of fixed terms. Principle (iii) modified in such a way to accommodate this

reads:

(iii′) If a universally quantified sentence is true, then all of its instances are logi-

cally true with respect to those expressions not bound by the initial universal

quantifiers.19

It seems quite unintuitive to speak of logical truth in such a case. Does it even

make sense to speak of logical truth with respect to some expressions? Etchemendy

suggests that the most natural way to think of the notion analysed in (iii′) as that

of analytic truth:20 sentences that come out as “logically true” according to it, seem

to be true solely in virtue of the meanings of the terms that do not get bound by

initial quantifiers in the closure of the sentence, i.e. those terms that are in F. Think

of F as containing the truth-functional connectives and ‘is a man’ as well as ‘is a

bachelor’. The sentence

(3) John is a man or John is not a bachelor.

comes out as “logically” (= analytically) true according to (iii′) because its closure

(4) ∀x[x is a man or x is not a bachelor]

is true. If this was a successful analysis, and we were, additionally, in position to

specify a class F of genuinely logical expressions, one might argue that this taken

19(Etchemendy, 1990), p. 101.
20(Etchemendy, 1990), p. 103.
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together would indeed give a successful analysis of the concept of logical truth.

Fixing F to contain all and only logical expressions would yield that the sentences

declared logically true by (iii′) are true solely in virtue of meaning of the logical

vocabulary they contain. This is, of course, a traditionally accepted definition of

‘logical truth’.

Etchemendy argues, however, that (iii′) does not give a satisfactory account of

analytical truth. Analytical truth, as stated above, requires that the sentences are

true solely in virtue of meaning of the terms involved, but (iii′) requires the world,

as it actually is, to cooperate. To see this, consider the sentence

(5) Leslie was a man or Leslie was not a US president.

If we keep the predicates and the truth-functional connectives fixed, the closure of

the sentence comes out true, despite it not being true in virtue of the meanings of the

fixed terms. It is an historical accident that the USA (as of now) has had no female

president; it is not true solely in virtue of the meaning of ‘was a US president’. The

world might have been different in such a way that a woman was elected into the

office, and then (5) would not come out analytically true according to (iii′). Such a

dependence on how the world happens to be, however, must not influence whether

a sentence is analytically true or not.

Etchemendy concludes that (iii′) is conceptually inadequate, in that “it does not

capture, or even come close to capturing, the ordinary concept of logical truth.”21

Whether the analysis delivers the right result depends on how the world actually is,

and therefore can deliver neither the analyticity that is usually demanded for logical

truth, nor, for that matter, its necessity or aprioricity.

21(Etchemendy, 1990), p. 108.
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The second modification of (iii) that Etchemendy considers, therefore, builds on

the idea that certainly seemed to be the obvious fix all along: the restriction of F

to distinctively logical terms. Taking it for granted – for the moment – that we can

determine what “distinctively logical” terms are, the second modification of (iii) is:

(iii′′) If a universally quantified sentence is true, and the constant expressions ap-

pearing in its matrix 22 are of a distinctively logical sort, then all of its instances

are logically true.23

But despite its prima facie intuitively correct appearance, Etchemendy argues, “the

account remains dependent on completely nonlogical facts [...] no matter how nar-

rowly we construe the notion of a “logical” expression”.24 The most obvious exam-

ple, according to Etchemendy, has to do with the size of the universe. Consider the

following sequence of sentences:

σ2: ∃x∃y(x 6= y)

σ3: ∃x∃y∃z(x 6= y ∧ y 6= z ∧ x 6= z)

...

Each sentence σn expresses that at least n things exist. None of these should come

out as logical truths, but, according to (iii′′) some of them will, since, assuming that

the existential quantifier, the truth-functional connectives and the identity sign are

distinctively logical terms, some of their (trivial) closures:

22The matrix of a universal closure p∀x1 ...∀xn[S′]q is the sentential function pS′q; see
(Etchemendy, 1990), p. 168, n. 8.1.

23(Etchemendy, 1990), p. 110.
24(Etchemendy, 1990), p. 110.

242



[σ2]: [∃x∃y(x 6= y)]

[σ3]: [∃x∃y∃z(x 6= y ∧ y 6= z ∧ x 6= z)]

...

clearly, are in fact true. (Since the original sentences do not contain any non-logical

vocabulary, no terms need to be replaced by variables and bound by prenex universal

quantifiers in order to construct their “universal” closures.) Should the universe be

infinite, all of them come out true. As is well known, this defect is easily fixed in

modern model theory by varying the size of the domain25, which corresponds to

varying the interpretation of ‘∃’ in Etchemendy’s presentation of Tarski’s account.

But, straightforwardly, such variations can only restrict the range of the quantifier.

If the universe were finite,26 still some of the negations of the sentences σ2, σ3, ...

would come out as logically true, again depending on the actual size of the universe.

To overcome this problem, too, standard model theory assumes the axiom of infinity

in the semantics.

And thus, Etchemendy concludes, it becomes clear how we simply used a series

of “tricks” to achieve the extensional adequacy of the account.27 Nothing inside the

account guarantees that the “right” sentences, i.e. those which are logical truths,

are declared as such. On the standard semantics, the guarantee comes from the

set-theoretical axiom of infinity in the typically used Zermelo-Fraenkel set theory –

should we use instead a set theory that does not have that axiom, this guarantee

25For this this and other “fixes” of Tarski’s account see (McGee, 1992). (Priest, 1995) and
(Shapiro, 1998) suggest ways to amend the Tarskian account that, they argue, are not as unnatural
and arbitrary as Etchemendy claims any mending must be. See also (Shapiro, 2005b), (Priest,
1999), and chapter 11 of (Priest, 2006).

26The point here is of course not, that finitism is true, but rather that it is not logically false.
The size of the universe is not a matter of pure logic, but a substantive fact.

27See (Etchemendy, 1990), pp. 114–116.
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would vanish. It is therefore a mathematical principle, or a fact about the how the

world actually is (it would have to be infinite), that makes the account extensionally

correct; it is not delivered by the analysis.

Again, Etchemendy concludes, we can see that Tarski’s account fails to be con-

ceptually adequate. Either the world as it actually is has to cooperate to make

the account deliver the right results, or else it depends on mathematical principles.

Neither speaks for the conceptual adequacy of the reductive analysis; logical truth

is not supposed to depend on mathematical truth or the size of the universe – or

more generally, the way the world is.

To insist that the mere possibility of an infinite universe is sufficient to deliver

the right result,28 does not come as a rescue, as Etchemendy points out.

Indeed, this is simply another way of saying that the [universal closures],

though perhaps actually true, could have been false. [...] In other words,

we are simply observing that [they], even if true, [are] not necessarily

true.29

This, however, is the whole point. To argue in that way is to say that neither

the reduction principle (iii), nor any of its modifications, give the right analysis. To

insist on the necessity of the universal closure, means to fall back on principle (ii), as

given above.30 This principle certainly holds, but does not offer a reductive analysis:

The status of a sentence as a logical truth, cannot be reduced in an interesting way

to its universal closure being a logical truth. If we had figured out how to determine

the latter, this would presumably also yield the result for the former.

28(Priest, 1995), (Schurz, 1994), and (Sher, 1996), e.g., argue in that way.
29(Etchemendy, 1990), p. 120.
30See also (Etchemendy, 1990), p. 143.
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9.4 Extensional Inadequacy

It might still seem that with some help from the outside, the standard model theory

can deliver the right result extensionally.31 Etchemendy, however, poses problems for

this, too. On the one hand, he argues that extensional adequacy can only be achieved

for rather weak languages. For stronger languages, e.g. second-order languages, this

does not appear to be possible, since the validities outrun what can reasonably be

called logical truths. Etchemendy calls this the problem of overgeneration which I

will deal with first. The other problem is dubbed undergeneration, and is mainly

concerned with the lack of any guarantee that we have actually captured all of the

logical truths of a language.

As the prime case of overgeneration, Etchemendy cites the notorious case of

second-order logic and the continuum hypothesis.32 (The continuum hypothesis is

discussed in detail in my chapter 6 above.) The language of pure second-order logic

with the standard semantics has enough expressive resources to express statements

about transfinite cardinalities. Amongst others the continuum hypothesis can be

expressed. The continuum hypothesis states that the cardinality of the continuum,

which is the cardinality of the set of the real numbers, is the least cardinality greater

than that of the set of the natural numbers.

Both the continuum hypothesis and its negation are consistent with the axioms

of Zermelo-Fraenkel set theory (ZF). That means that the continuum hypothesis

is independent of ZF, an open problem of set theory. Hence, it seems, that the

continuum hypothesis is a substantial mathematical truth (or falsehood as it might

31(Shapiro, 1998) argues in response to Etchemendy that this can be done, and shows in detail
how he takes it to be achievable.

32Etchemendy refers to this in several passages, e.g. pp. 127, 132, 154, 158; the main exposition
is on pp. 123-124.
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be) if there are any, and not a logical one.33 Yet, the pure second-order sentence

that corresponds to its truth is a validity of the standard model theory if, and only

if, the continuum hypothesis is true; it would be true in all models. It being true all

models, however, means that it comes out as a logical truth, while it clearly should

not.

Etchemendy contends that the frequent claim that this shows that second-order

logic just is set theory in disguise, is a misdiagnosis of the situation. It merely

shows that the standard model theory overgenerates. It declares some sentences to

be logical truths that are not and this is due to the “faulty account of the logical

properties”. The continuum hypothesis is just another example of a sentence that

is declared logically true by the reductive account because its (trivial)34 closure

happens to be true – true in the set-theoretic universe whose principles are used to

formulate the model theory. A similar result, spelled out in more detail, was reached

in chapter 6 above.

The second problem of the extensional adequacy that Etchemendy outlines fo-

cuses on the lack of any guarantee that we have indeed captured all of the logical

truths of a given language.

If our aim is to characterize the set of logical truths (or the logical con-

sequence relation) for an antecedently given first-order language, then

there is no general way, short of fixing all of the expressions in the lan-

guage, to guarantee that the model theory captures them all. Indeed,

once we focus on any interesting first-order language, such as the lan-

guage of elementary arithmetic, it seems clear that the standard model

33See also (Etchemendy, 1990), p. 82.
34There is no non-logical terminology involved in its formulation, and hence no terms have to

be replaced by variables and bound by prenex quantifiers.
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theory does undergenerate. It is only our uncritical adoption of the

model-theoretic analysis that has obscured this simple point.35

Etchemendy explains the undergeneration of the model theory for elementary arith-

metic:

When we apply the standard, interpretational semantics to this lan-

guage, our specification of the logical properties falls short of their gen-

uine extension – as Tarski himself, indirectly, pointed out. For example,

instances of the ω-rule [...] are wrongly judged invalid. Of course, it is

easy to see why these instances are not declared valid – their validity

depends on the meanings of various expressions not held fixed – but this

does not give us a solution to our problem, namely, specifying the gen-

uine extent of the consequence relation for the given language. If this is

our goal, Tarski’s account does not, in general, allow us to steer a course

between the complementary hazards of over- and undergeneration.36

The point that Etchemendy is concerned about is not only that there is no general

way to make sure that the account does not undergenerate. The deeper concern is

that there is nothing internal to the account from which we can decide whether our

result is the right one. Since there is no general way to prevent undergeneration, we

have, in order to get the “help” from, e.g. the set theoretic principles in the model

theory, to know in advance what the logical truths are, so that we can tinker with

the model theory in the right way, in order to get the extension right.37 For this,

we then need an external justification that we got the extension right, for there is

35(Etchemendy, 1990), p. 151.
36(Etchemendy, 1990), pp. 132–133.
37See e.g. (Etchemendy, 1990), p. 93.
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nothing within the account that allows one to decide whether the goal is met.38

The conclusion that Etchemendy draws is that while we already had to give up

the hope of the conceptual adequacy of the Tarskian account (see the previous sec-

tion), it is only in some weak languages that we can gain even extensional adequacy.

Not even here, however, do we have a general method to achieve that, let alone to do

so with the resources provided by the account itself – external resources are needed

to achieve this minimal success.39

9.5 Representational Semantics

As already mentioned, Etchemendy claims that one of the features that makes

Tarski’s reductive analysis and other interpretational accounts like the standard

model theory seem so attractive, is that it appears to have the virtues of a repre-

sentational semantics.40 In his later paper Etchemendy emphasises:

It is important to understand that my rejection of the reductive anal-

ysis of logical consequence is not an attack on model theory or model-

theoretic semantics per se, but rather on a particular view of these tech-

niques.41

The reader, unfortunately, does not get much of an idea of the details of such

semantics from (Etchemendy, 1990). Etchemendy is more explicit his the later

paper, however.

38See e.g. (Etchemendy, 1990), pp. 131, 133, 141–142.
39(Etchemendy, 1990), pp. 157–158.
40See (Etchemendy, 1990), p. 95.
41(Etchemendy, 1999), p. 24.
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The guiding idea of the representational view of model theory is sim-

ple, and in fact widely held, though not widely articulated. [...] The

set-theoretic structures that we construct in giving a model-theoretic se-

mantics are meant to be mathematical models of logically possible ways

the world, or relevant portions of the world, might be or might have been.

They are mathematical models in a sense quite similar to the mathemat-

ical models used study, say, the possible effects of carbon dioxide in the

atmosphere, only they are used to study semantic phenomena, not atmo-

spheric [...]. I call this view of model theory “representational” because

the set-theoretic structures are seen as full-fledged representations: mod-

els of the world.42

From the technical point of view, a representational semantics does not seem to

differ much from the standard model theory.43 The difference seems to be largely

in the use of the standard model theory. The idea can be spelled out roughly as

follows.44 If we want to figure out the truth-value of a sentence, say, ‘Snow is white’

we have to pay attention to two things, the world and the language. That ‘Snow is

white’ is true is due to the world being such that it is true, and due to the sentence

meaning what it does. Had the world been different, say, in that snow had been

blue, the sentence would have been false. In the world as it actually is, had ‘Snow

is white’ meant that grass is purple, the sentence also would have been false.

42(Etchemendy, 1999), pp. 25-26.
43Although it has to be qualified that this is only part of the picture: Etchemendy also wants to

include, e.g., reasoning with diagrams into his account; see (Etchemendy, 1999), pp. 22–23, 35–36;
see also (Barwise and Etchemendy, 1995). I will in the following for simplicity’s sake restrict my
considerations to the linguistic fragment of Etchemendy’s account.

44The exposition, unless stated otherwise, follows (Etchemendy, 1990), pp. 18–23 and 55–64.
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Etchemendy considers ordinary truth tables, like the one following, as a simple

example of his point:

p q p ∧ q

true true true

true false false

false true false

false false false

If we move from row to row in a truth-table, and so go through the different possible

distributions of truth values of the atomic sentences, and the resulting truth values

of the complex sentences they figure in, we have exactly those two ways of under-

standing what we are doing. We can either take ourselves to consider the sentences

as having different meanings in different rows, such that they come out true or false

according to how the world is; or we can interpret what we are doing as considering

different ways the world might have been, holding the meaning of the sentences

fixed. The former account is the interpretational one; the atomic sentences are re-

interpreted from line to line. The Tarskian account and standard model theory are

interpretational in this way. The sentences are re-interpreted in the models. The

latter account on the other hand is representational; single rows in the truth-tables

represent the world in different ways. The correct representation of the actual world

is the one that declares those sentences true which say what actually is the case,

and those false that do not.

It might seem that the difference between representational and interpretational

semantics comes down merely to what we take ourselves to be doing when we are

doing semantics, and that the result effectively comes out the same in both cases.
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Etchemendy explains that it would be a mistake to think that the difference between

the approaches is merely one of perspective, and that the re-interpretations of the

language match the possible configurations of the world. Were it the case, the

difference would indeed come down a mere question of perspective concerning what

we think we are doing, when we are moving from one row in a truth table to another

one. Etchemendy provides two examples where the approaches come apart.

First, he considers a Tarskian semantics where ‘or’ is not counted amongst the

constants, and hence gets re-interpreted in the models as different truth functions.

This is possible on the interpretational account, Etchemendy states, since certainly

‘or’ could have meant something different,

[b]ut there is no plausible way of understanding, representationally, mod-

els in which ‘or’ is assigned, say, the truth function ordinarily expressed

by ‘and’. This is not to say that such models depict extremely bizarre

“possible worlds”, worlds we have difficulty conceiving. There is just no

representational counterpart to such a Tarskian semantics.45

Etchemendy’s second example exposes some of the philosophical background by

which the representational account is driven. Consider the sentence ‘2 + 2 = 4’.

Typically, on the standard account ‘2’, ‘4’, and ‘+’ are not held fixed and so the

sentence does not come out as a logical truth. (In arithmetic ‘2’, ‘4’, and ‘+’ are

constants, of course, not in pure logic, however.) The same reasoning as in the

example before applies here again: Certainly, ‘2’, ‘4’, and ‘+’ could have meant

something different from what they usually mean. They could refer to the empty

set, the singleton of the empty set and union, respectively, for example. Under such

45(Etchemendy, 1990), p. 62.
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an interpretation ‘2 + 2 = 4’ comes out false.

There is no way to construe the model described as somehow representing

a “possible world” in which two plus two does not equal four. That way

madness lies: ‘2 + 2 = 4’ might well have said something else [...]. What

it says – that is, what it actually says – is, however, necessarily true.46

It becomes apparent that Etchemendy draws the line like this: Each expression

of a language could have meant absolutely anything else (presumably, as long as

it falls into the same semantic category). That means, interpretational semantics

in principle can have a wide range of models that allow one to re-interpret every

expression of the language. A model cannot be a representation of the world if it

declares something false that just cannot be false, i.e. something that is necessarily

true. The standard model theory, of course, distinguishes between logical constants

and terms which are re-interpreted. We have already seen in the previous sections,

however, that Etchemendy considers it arbitrary what is included in the class F of

“logical” constants.

The representational account obviously presupposes an account of necessity in

order for it to work. And, indeed, Etchemendy does not see representational seman-

tics as in any way illuminating logical or necessary truth.

When we are doing representational semantics, we appeal to modal no-

tions from the very outset, in assessing the adequacy of our class of

models and our definition of truth in a model.47

Indeed, the representational semantics Etchemendy envisions does not seem to be

able to distinguish between the two. It is important that in a representational

46(Etchemendy, 1990), p. 62.
47(Etchemendy, 1990), p. 99.
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semantics the models

represent all and only genuinly possible configurations of the world. [...]

Certainly, all necessary truths of a language – of whatever ilk – should

come out true in every model of a representational semantics. If they

do not, this just shows that our semantics for the language is somehow

defective [...]. But this is only a test of adequacy of the semantics, not a

sign that we also have an analysis of necessary truth.48

This is, however, not considered to be a failure of representational semantics, but

rather an intended feature. Etchemendy views representational semantics as a tool

to study analytical and other necessary entailments and truth of a language – “of

whatever ilk”. The specifically logical truths and entailments play no special role,

and

it would clearly be wrong to view representational semantics as giving

us an adequate analysis of the notion of logical truth. For one thing, if

there are necessary truths that are not logically true, say, mathematical

claims, then these will also come out true in all models of a representa-

tional semantics. More importantly, even if we are prepared to identify

necessary truth with logical truth – an identification most people would

balk at – it is still clear that representational semantics affords no net

increase in the precision or mathematical tractability of this notion. Any

obscurity attaching to the bare concept of necessary truth will reemerge

when we try to decide whether our semantics really satisfies the repre-

sentational guidelines – in particular, when we ask whether our models

48(Etchemendy, 1990), pp. 25–26.
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represent all and only genuinly possible configurations of the world.

The value of representational semantics does not lie in an analysis of

the notions of logical truth and logical consequence, or in the analysis

of necessity or analytic truth. Rather, what this approach gives us is a

perspicuous framework for characterizing the semantic rules that govern

our use of the language under investigation.49

Etchemendy reckons not only that the Tarskian reductive account failed, but also

that reductive accounts generally have no chance of succeeding, if they purport to

reduce the modal concept of logical truth in some way to “ordinary” truth. His

own proposal to proceed by using representational semantics for logical studies –

rather broadly construed50 – is not a reductive account. Rather, the presupposed

pre-systematic notions are to be represented in the models of the semantics (hence,

representational semantics) and can then be studied with the usual51 model-theoretic

techniques. Etchmendy has also given up on a distinction between genuinely logical

consequence and other forms of necessary entailment, including analyticity, math-

ematical entailment, geometric inference,52 and others. So, while he considers it

“perfectly obvious why an adequate representational semantics can yield necessary

truths, and hence logical or analytical truths, insofar as these are species of those”53,

a distinction between the different species does not appear to be on the agenda.

The similarities between Shapiro’s approach, as outlined in chapter 7 above, and

Etchmendy’s are apparent. Shapiro also presupposes a pre-systematic notion of

49(Etchemendy, 1990), p. 25.
50See also my discussion of this broad construal in section 9.6 below.
51See footnote 43 above.
52See (Etchemendy, 1999), pp. 16–17, 35.
53(Etchemendy, 1990), p. 95.
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consequence and argues (from mathematical practice) that this notion is captured

by the standard semantics of second-order logic. He rejects the (sharp) distinction

between logic and mathematics. It appears as if Etchemendy just takes matters one

step further. Section 9.6 below investigates in how far this is indeed the case.

9.5.1 Historical Intermission

A historical remark might be of interest, although it is almost irrelevant for the

systematic discussion. Throughout his The Concept of Logical Consequence (Tarski,

1936b), Tarski remarks that the notion of logical consequence, as he found it charac-

terised at the time, is not in good standing. It seems plausible to suggest, therefore,

that Tarski’s aim was rather akin to an explication in Carnap’s sense than to a reduc-

tion. Concepts that are found too imprecise for scientific purposes can, according to

Carnap, be explicated, i.e. replaced by new, precise concepts, that can fulfill the job.

The heart of an explication is mere stipulation, but good explications have to accord

(at least) to four conditions Carnap sets up: (i) similarity, the explicatum applies

to most cases to which the explicandum applied so far; (ii) exactness, the rules of

use exactly determine the explicatum and introduce it into a well-connected system

of scientific concepts, (iii) fruitfulness, that scientific progress is better facilitated by

adopting this explication, rather than sticking to the imprecise concept or adopting

another explication, and (iv) simplicity (I will refrain from attempting to elucidate

what this amounts to).

It is clear that Tarski considered the concept of logical consequence in need for

revision, so the preliminaries for an explication are satisfied. Tarski argued for the

fruitfulness of his notion, and, incidentally, it appears that he was right about that.
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Tarski also points out a few times, that it should be clear how well his definition fits

the notion that most people operate with.54 This is Carnap’s criterion of similarity.

Is it reasonable to suppose, however, that Tarski had an explication in mind? After

all, the locus classicus for the introduction of the notion of an explication is Carnap’s

Logical Foundations of Probablity55 which was not published before 1950.

Tarski met Carnap in Vienna in 1930,56 and there was a strong interaction be-

tween the two. It does not appear too unlikely that discussion between them and in

meetings of the Vienna Circle already surrounded the idea of an explication, even

if not under that name. In several passages of Carnap’s The Logical Syntax of Lan-

guage which appears only a year after Tarski’s The Concept of Logical Consequence

the basic idea seems to be present.57 This might count as evidence for the conjec-

ture that something like the notion of an explication was probably already around

at a time before Tarski published his paper.58 Ironically, Etchemendy’s project is

parallel to Tarski’s, if Tarski’s project was even close to being an explication. His

complaint against the Tarskian account is that the notion that it characterises is

not in good shape, and that the interpretational approach to model theory should

therefore be abandoned in favour of a representation conception. Etchemendy ac-

knowledges the importance of Tarski for the development of the model theory which

is necessary also for his own account. He claims, presumably correctly, that “there

is little question that model theory in its present form owes more to Tarski’s work

54See e.g. (Tarski, 1936b), p. 9; (Tarski, 1983), p. 417; (Tarski, 2003), p. 186.
55(Carnap, 1950).
56See (Coffa, 1991), p. 280.
57(Carnap, 1937), see e.g. pp. 41–45, 100.
58For what it is worth: Carl Gustav Hempel describes Tarski’s definition of truth as an explica-

tion, see (Hempel, 1970), p. 663, while Karl Popper thought that it was not, see (Popper, 1982),
p. 273ff, however relevant that might be in this context. Alberto Coffa calls Tarski’s definition of
logical consequence an explication, see (Coffa, 1991), p. 286–287.
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than to the work of any other single individual.”59 He seems to fail to appreciate,

however, how similar (at least structurally) Tarski’s project was to his own.

9.6 Comparisons

First, it is worth noting that it is far from clear that a wider account of valid inference

must bring with it a rejection of the distinction between difference species of valid

inference. Graham Priest, for example suggests an approach to characterise (at least)

two kinds of “validity” in a system that is based on model-theoretical consequence:

“deductive validity” and “inductive validity”. Deductive validity should here not be

understood as alluding to a deductive system; it is merely the way to contrast some

notion of logical consequence (which in Priest is also wider than what I introduced

in chapter 8 above) with inference by induction.60

Priest’s approach would probably count as representational: the way he describes

how the models of the systems must correspond to possible situations sounds pretty

much like Etchemendy’s characterisation of representational semantics, with ‘situa-

tions’ instead of ‘ways the world may be’. Etchemendy’s case for representational

semantics thus should be independent of his rejection of the concept of (properly)

logical consequence.

One could even argue ad hominem against Etchemendy that his rejection of a

delineation of logical truth as a proper subconcept of necessary truth puts him into

an unstable position. Etchemendy uses a distinction between logical and other nec-

59(Etchemendy, 1999), p. 24.
60(Priest, 1999); see also chapter 11 of (Priest, 2006). Priest “doctors” (his expression) for this

the Tarskian approach to account for the consequence relation for deductive validity in his system
(as opposed to the inductive consequence relation). Priest first suggested mending the Tarskian
account like this in (Priest, 1995). See also footnote 25 above.
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essary truths throughout his book.61 In fact, Etchemendy’s arguments concerning

the conceptual and extensional inadequacy of Tarski’s reduction seems to depend in

many places on the possibility of a distinction between, especially, logical truths on

the one, and mathematical truths or analytic truths on the other hand.

Etchemendy seems to be specially opposed to the idea that the continuum hy-

pothesis might be a logical truth: “clearly, neither it nor its negation is a logical

truth.”62 Presumably the continuum hypothesis is, if true, a necessary truth, how-

ever, as it is a mathematical statement. As such, it would have to be captured in one

way or other by the representational semantics.63 Etchemendy insists that second-

order logic is legitimate, and that second-order languages certainly have consequence

relations, just like first-order languages.64 The question is now, does Etchemendy

envision a representational semantics that uses the standard model theory for the

second-order quantifiers, or rather a Henkin interpretation? In the first case, as was

shown in chapter 7 above, there is a second-order sentence corresponding to the

truth of the continuum hypothesis in the sense that will come out as a validity if,

and only if, the continuum hypothesis is true.

It seems that if Etchemendy settles on the standard semantics, his approach is,

in a sense, an extension of Shapiro’s. Shapiro rejects any sharp distinction between

logic and mathematics. Etchemendy argues for an approach to consequence that

includes logical, mathematical, and all other necessary truths. Both want to capture

pre-systematic notions in this area with the aid of formal semantics. Let me also

bring the Deductivist conception into the picture. This account too aims to chara-

61See (Etchemendy, 1990), e.g. pp. 82, 100, 103, 104, 122–123, 132, 139, 147, 148, 154, and many
other places.

62(Etchemendy, 1990), p. 123.
63Compare (Etchemendy, 1990), p. 25, 62.
64(Etchemendy, 1990), p. 124, 158.
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terise a pre-systematic a notion. It restricts itself to genuinely logical consequences,

however, and uses inference rules, rather than model-theoretic constructions. It

appears that the relation between the three can be represented as in the diagram

below, where D stands for a system of the Deductivist approach, S for one on the

standard semantic account, as exemplified by Shapiro, and R for an Etchemendian

representational semantics.

D −→ S −→ R

The arrow indicates that the consequence relation characterised by the system on

the left-hand-side is included in the system on the right-hand-side. Thus, for the

example of second-order logic, all theorems of the deductive system are validities of

the standard semantics, and they are also valid on the representational account. A

representational semantics might contain validities like ‘All bachelors are unmarried’,

or ‘All red things are coloured’, on the other hand, which are not declared valid by

the standard semantics. For the case of second-order logic, though, it does not seem

to make a difference at all whether we adopt S or R. This means, in turn, that

for the case of second-order set theory, Etchemendy runs into the same problems as

Shapiro, that were outlined in chapter 7 above: the truth or falsity of the continuum

hypothesis is included in the semantics, in some sense, but our studies of it are

blocked in the way Jané pointed out. Thus, the representational account too has all

the answers to the open problems of set theory, but keeps them to itself.65

If Etchemendy envisions the use of a Henkin style semantics, the picture looks

more like this:

65Paraphrasing Jané’s remarks about the standard semantics, (Jané, 1993), p. 80. See my chapter
7.
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S
↗

D
↘
R

The problems of the standard semantics are thus avoided, but the question is now

to what extent the models of the representational semantics are indeed a faithful

representation of the subject matter, if we turn to second-order set theory. The

Löwenheim-Skolem Theorems hold for Henkin semantics, and so there are models of

varying cardinality. In particular, there is a countable model of set theory. One can

argue, with Shapiro, that this just cannot represent the universe of sets faithfully.

If all necessary truths of a given topic are to be captured by the representational

semantics, then a Henkin semantics does not appear to be suited to do the job for

any area in mathematics that is about infinite domains, and so especially not for

set theory.

So, I conjecture, Etchemendy will have to adopt the standard semantical treat-

ment of the second-order quantifiers for mathematical theories. A categorical ax-

iomatisation of infinite structures seems crucial to a faithful representation of it

– this is the case that Shapiro makes. Then, however, Etchemendy’s approach is

(at least formally) indistinguishable from Shapiro’s for the case of second-order set

theory, and thus has the same problems.

The conclusion to be drawn is, I believe, that it is important to make a strict

distinction between logic and mathematics; mathematics here is represented by set

theory. Using model-theoretic techniques is an enterprise in applied set theory,

modeling is a mathematical practice. This much is agreed by most proponents of

model-theoretic techniques, including Etchemendy and Shapiro.
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I intend this conclusion to be a statement about proper logic, and not about

other projects that are carried out using formal semantics. As outlined in chapter 8

above, this is not a mere quarrel about names, but has epistemic significance. The

fruitfulness of model-theoretic studies is not to be underestimated, and the tech-

niques involved are powerful. They are also mathematical. In most areas, this will

not matter; if the use of mathematics is not problematic for most purposes, then

neither is the use of a mathematical model theory. This includes most purposes

that Etchemendy has in mind. There is a need for a notion of proper logic, however,

especially for foundational purposes. Where epistemological status matters, proper

logic has a clear advantage, as argued in chapter 8. In particular, foundational stud-

ies in (the philosophy of) mathematics should not presuppose set theory. Otherwise

the approach will not be able to account for all areas of mathematics: set theory

itself cannot get a satisfactory treatment.
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