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The mobility is an important parameter for organic solar cell materials as it influences the charge extrac-
tion and recombination dynamics. In this study, the time of flight technique is used to investigate the
charge mobility of the important organic photovoltaic materials PC7;BM, PTB7 and their blend. The elec-
tron mobility of PC7BM is in the region of 1 x 103 cm?/Vs for the neat fullerene film, and has a positive
electric field dependence. At room temperature the hole mobility of PTB7 is 1 x 10~ cm?/Vs for the neat
film and 2 x 10~* cm?/Vs for their blend. The hole mobility of the blend reduces by a factor of a thousand

K.ey WordS:. when the sample is cooled from room temperature to 77 K. This finding is compared with the device per-
Time of flight . . .

Temperature formance of efficient PTB7:PC7;BM solar cells for varying temperature. At 77 K the solar cell efficiency
Efficiency halved, due to losses in fill factor and short circuit current. Bimolecular and trap-assisted recombination

increase at low mobility (low temperature) conditions, whereas at high mobility conditions the open

circuit voltage reduces. The power conversion efficiency as a function of temperature has a maximum

between 260 K and 295 K, revealing an optimized mobility at room temperature.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

Bimolecular recombination
Trap-assisted recombination

1. Introduction

The polymeric donor material PTB7 (poly[[4,8-bis[(2-ethyl-
hexyl)oxy|benzo[1,2-b:4,5-b'|dithiophene-2,6-diyl][3-fluoro-2-(2-
ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl]]) has attracted
great interest in recent years due to its high performance in bulk
heterojunction solar cells. Devices of PTB7 blended with PC;;BM
([6,6]phenyl C71 butyric acid methyl ester) exhibit a high fill factor
(FF) of up to 72% and external quantum efficiency (EQE) of 80% [1].
Both of these parameters are strongly influenced by the charge
transport properties of the active layer. Accordingly this paper
has two aims. The first is to report mobility measurements of these
important and widely used solar cell materials. The second is to
explore the influence of the mobility on device operation and
charge recombination.

The main steps of operation in an organic solar cell are: light
absorption, charge separation and charge transport to the elec-
trodes. During charge transport of electrons in the acceptor phase
and holes in the donor phase two types of recombination can occur
which reduce the power conversion efficiency. Bimolecular
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recombination happens after an encounter between an electron
and a hole in the material. This process is generally described by
Langevin theory where the recombination rate Rz depends on the
mobility and density of electrons and holes [2,3],

Ry = ¢ (b + ) (np — ) (1)

where € is the dielectric constant (€€, ), e the elemental charge, L.
and py, are the electron and hole mobility, n the electron density, p
the hole density and n; the density of intrinsic charge carriers. Since
electrons and holes are created in pairs, Rg depends quadratically on
the density of electrons stored in the device, n?, which is generally
much larger than the density of intrinsic charge carriers.
Monomolecular recombination occurs when one charge carrier
encounters an occupied trap state of immobile charge with the
opposite sign. It is often described by a Shockley-Read-Hall (SRH)
mechanism and depends on the density of trap states and is propor-
tional to the density of mobile charge carriers, n [4,5]. The SRH
recombination is given by the density of electron and hole trap
states (Mraps, Prraps) and the lifetime of the trap state (7., ) and
the rate constant is given by [6]

np —n?
Te(N + Neraps) + T (D + Pyraps)

(2)

Rsry =
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The mobility in disordered organic semiconductors is also influ-
enced by trap states and the temperature, it decreases with
decreasing temperature and increasing trap density [7].

To achieve a high external quantum efficiency of the solar cell,
charges must be extracted faster than they recombine. The maxi-
mum extraction time is the device thickness divided by the drift
velocity i.e. d/.E where p is the lowest mobility of electrons or
holes, which should be similar, and E is the electric field.

d n
ﬁ < Rg + Rspn 3

The above formalism shows the strong influence of the charge
carrier mobility on the operation of photovoltaic devices. It is a
crucial parameter for optimized device efficiencies and the time
of flight (TOF) technique is the most accurate way to determine
it. This paper reports the charge mobility for the important materi-
als PC;;BM, PTB7 and their blend, measured by TOF with its
electric field and temperature dependence. Although the influence
of mobility on device operation has been explored theoretically
[8-11], an experimental relation to the solar cell performance
has not been deeply studied. Only recently a direct relation of
mobility to device performance has been drawn in small molecule
based solar cells for a variety of donor and acceptor blends and an
increase of fill factor with increasing hole mobility was observed
[12]. To further optimize devices it is important to know what role
the mobility of the materials plays. For that, device characteristics
were studied at low temperature (low mobility) and high tempera-
ture (high mobility) conditions and the associated recombination
processes identified.

2. Materials and methods

PTB7 was purchased from 1-Material and PC;;BM from Solenne.
Neat films of PC;,BM for TOF measurements were prepared from a
solution of 49 mg/ml of PC7;BM in tetrachloroethane. Films of neat
PTB7 and blends of PTB7:PC;;BM (1:1.5) were prepared from solu-
tions of in total 40 mg/ml in 1,2-dichlorobenzene. For the blend 3
vol% diiodooctane was added to the solution. Glass substrates with
a 4 mm stripe of ITO were cleaned with acetone, propan-2-ol and
plasma ashing. For samples of PC;;BM, MoOs of about 8 nm thick-
ness was thermally evaporated onto the ITO substrates, whereas
for PTB7 and PTB7:PC;:BM samples, PEDOT:PSS was spin coated
instead and dried at 120 °C for 10 min. The active layer was then
solution cast and dried overnight in a nitrogen glove box. The
cathode of 15 nm calcium and 15 nm aluminum was thermally
evaporated to create a semi-transparent contact. Three pixels with
an area of 8 mm? were defined by the overlap of the anode and
cathode. The film thickness was determined individually for each
pixel by a surface profilometer after electrical characterization of
the device.

Solar cells were fabricated in a similar way on PEDOT:PSS, using
solutions of PTB7:PC7;BM of 25 mg/ml concentration, spin coated
at 1000 rpm to give films of 80 nm thickness. The aluminum
thickness was 100-150 nm. Solar cells were encapsulated with a
UV-curing epoxy and a glass slide.

TOF measurements were performed in a vacuum cryostat at less
than 10~ mbar pressure. The sample was excited by a tuneable
nitrogen pumped dye laser using a wavelength of 640 nm for
PTB7 or 337 nm for PC;;BM and PTB7:PC;;BM with a pulse-
duration of 500 ps. The film thickness of the solution cast samples
was much higher than the absorption depth, calculated from the
absorption coefficient. Thus the condition that charges are gener-
ated in a thin sheet compared to the total layer thickness was
clearly fulfilled. The laser power was attenuated so that the
amount of extracted charge was small enough to avoid space

charge effects but large enough to provide good signal to noise.
For electron mobility measurements, the sample was excited from
the ITO electrode and for hole mobility measurements through the
calcium/aluminum electrode. In both cases positive bias was
applied to the calcium/aluminum electrode, operating the device
in reverse direction, to avoid charge injection. The photocurrent
was measured with a digital storage oscilloscope. The temperature
was regulated by the evaporation rate of liquid nitrogen and a heat
source.

Solar cells were first measured under a class A, Sciencetech
solar simulator and the intensity calibrated with an ORIEL refer-
ence cell with KG5 filter. The spectral mismatch factor was close
to unity (0.995) for PTB7:PC;;BM and not corrected for. An aper-
ture of the same size as the pixel was used to avoid contribution
from stray light outside the device area. The solar cell was then
transferred into the cryostat and illuminated in a range of intensi-
ties from a collimated white-light LED. We took one sun illumina-
tion to be the LED intensity which gave the same current as
measured under the simulator. The relative intensity of the LED
was calibrated for linearity using a photodiode.

To obtain the EQE spectrum, the short circuit current of the
solar cells was measured under monochromatic illumination and
compared with a calibrated photodiode. Due to reflections on the
cryostat window and the beam being larger than the device size
an absolute value of EQE was not determined. Absorption of a
PTB7:PC;;BM film, spin coated onto a quartz substrate, was
measured with the cryostat placed in the beam path of a Cary
300 spectrometer.

3. Results and discussion
3.1. Hole mobility of PTB7

The time of flight measurement technique is a widely used
method for determining mobility and has several advantages over
other methods. It measures the mobility perpendicular to the sub-
strate, at low charge density, has simple data analysis protocols
and has the advantage that electron and hole mobility can be
distinguished in the same device configuration, and their depen-
dence on the applied electric field determined. In neat PTB7,
photocurrents with a pronounced kink were observed, which is
in contrast to a recent publication by Philippa et al. who found very
dispersive and featureless TOF transients [13]. An example of a
photocurrent transient is shown in Fig. 1(a). The transit time was
obtained on logarithmic plots by the intersection of a linear fit to
the plateau and tail of the curve [14].

The hole mobility of PTB7 is approximately 1 x 1072 cm?/Vs at
an applied electric field of 1.1 x 10° V/cm (E®® =335 (V/cm)®?)
and a film thickness of 8.3 pm. The effect of electric field on the
mobility was measured and the results are shown as a Poole-
Frenkel plot [15] in Fig. 1(b) and reveal only very weak field
dependence. Our value of the hole mobility in PTB7 is slightly
higher compared to results found by space charge limited current
(SCLC) measurements, which were reported in the range
2-5.8 x 10~* cm?/Vs [16-19]. The TOF mobility of PTB7 is almost
one order of magnitude higher than that of P3HT for which
reported values are about 2 x 107 cm?/Vs [20].

3.2. Electron mobility of PC7;BM

Next we performed studies of the electron mobility of PC;;BM
by TOF. Mobility measurements of fullerenes by TOF so far were
mainly done indirectly, either in blends with other conjugated
polymers or an insulating matrix, because of the rather poor film
quality of neat fullerene films [21]. The blend morphology and
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Fig. 1. (a) PTB7 photocurrent transient of conventional TOF at applied bias of 100 V, E = 1.2 x 10° V/cm, on log-log scale and linear scale (inset). The sample is 8.3 um thick.
The carrier transit time is obtained from the characteristic kink in the log-log plot. (b) The hole mobility vs. electric field.

the fact that charges drift only in a part of the sample, can influence
the mobility. For a fair comparison, mobility measurements of neat
films are preferable. The solution cast films of PC;;BM from tetra-
chloroethane with a finely tuned concentration of 39 mg/ml had a
remarkably low surface roughness of 0.77 nm (root mean square)
over the area of 20 x 20 um and the film thickness of 2.8 um of a
typical pixel (2 mm x 4 mm) had a standard deviation of 3%.
Besides the difficulty to fabricate thick fullerene layers, their deep
lying HOMO level is another challenge. For the TOF technique
charge carriers must be effectively extracted at the electrodes to
avoid charge building up in the active layer, which would distort
the electric field and impact the transit time. Molybdenum oxide
(Mo0s) has a high work function of 6.8 eV [22], deeper than the
HOMO level of PC;;BM, thus for holes the formation of an Ohmic
contact, which provides efficient hole extraction, is expected.

Fig. 2 shows the results of TOF electron mobility measurements
of PC71BM. The electron transient is found to be rather dispersive
as seen by the small angle between the plateau and tail in
Fig. 2(a). With the MoOs electrode, no charging of the film was
observed. The transit time reduces strongly with increasing electric
field, indicating a positive electric field dependence of the mobility.
At a field strength of 9 x 10* V/cm the mobility is 1 x 10> cm?/Vs
with an error range of 2 x 10~% cm?/Vs obtained from two differ-
ent samples and two different pixels each. Our measurements
show that the hole and electron mobilities of PTB7 and PC;;BM
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respectively are very similar, suggesting that these materials could
provide nicely balanced electron and hole transport in the blend.

3.3. Hole mobility of PTB7:PC,;BM and temperature dependence

In photovoltaic devices, blends of PTB7 with PC;;BM are used
and the blend morphology can additionally impact the mobility
for electrons and holes. In Fig. 3(a) the hole photocurrent transient
of PTB7:PC;;BM is shown for varying temperature, revealing a
clear transit kink. Electron transients however were found to be
very dispersive and an electron mobility could not be obtained.
For higher temperatures, in the hole transients a slight first kink
arises, similar to that observed in P3HT:PCg:BM blends and attrib-
uted to a high degree of phase separation [20]. The hole mobility,
taken from the second kink and the film thickness of
7.35+0.3 um, had a negative field dependence. This is typical for
such blends [20,23] and is attributed to high spatial disorder
[24]. The average mobility at a field strength of 2.2 x 10* V/cm is
about 2 x 10 cm?/Vs (see Fig. 3(b)). The hole mobility in the
blend is hence a factor of five lower than that of neat PTB7 due
to the enhanced disorder and agrees well with values reported
by SCLC measurements, which are between 5.4 x 107> cm?/Vs
and 3.2 x 1074 cm?/Vs [25-27].

As we are interested in how the mobility influences the device
performance, we varied the temperature for TOF mobility

4x10°

2x10° —

1031
8x10
6x10™

4x10™

2x10™ s

10

250 360
Electric field E"* (V/icm)™

200 350

Fig. 2. (a) A typical electron photocurrent transient of PC;4BM at an applied bias of 20 V and a film thickness of 2.8 um. The inset shows an AFM image with 20 um field of
view, revealing low surface roughness. (b) The electron mobility of 2 different samples and 2 pixels each, as represented by different symbols. The red line shows a linear
trend of the mobility, depending exponentially on the square root of the electric field. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)



B. Ebenhoch et al./Organic Electronics 22 (2015) 62-68 65

O

Photo current (A)

Time (s)

10° 10" 10° 107 10"

(b)
10°
300 K —~ 810"
9 6x10
>
— 10_4< % 4x10*] o .
(7] < . .
< 2 2x10* .
NE § *
-5 | s .
S 10 T e 20 2k
2 Electric field E"* (V cm™)"?
= Y
S 10°4 o
= —___GDM e 115K
———EMA g
-7 N
10 y J y
0 20 40 60 80

Inverse Temperature (1000 / T)2

Fig. 3. (a) Temperature dependence of PTB7:PC;;BM hole transients at an applied field of 9.5 x 10* V/cm and a film thickness of 7.35 um. Arrows indicate kinks. (b) With
reducing temperature the mobility drops by three orders of magnitude. At higher temperatures an exponential decrease is found for the mobility vs. 1/T? according to the
Gaussian disorder model (GDM) [28]. The dashed lines are fits of an effective medium approach (EMA) including traps [7]. The inset shows the electric field dependence at

room temperature.

measurements of PTB7:PC;1BM blends. The mobility is strongly
dependent on temperature, increasing exponentially by three
orders of magnitude from 115 K to 300 K, see Fig. 3(b).

From the temperature dependence of the mobility, the charge
transport parameters of the Gaussian disorder model can be deter-
mined [28]. Plotting the hole mobility of PTB7:PC;;BM blends
against the inverse square of the temperature, T-2, on a semilog
scale gives a linear relationship in the high temperature regime,
according to Eq. (4), with the slope related to the width of the den-
sity of states ¢, the mobility at infinite temperature Lo, the charac-
teristic temperature Tp and the Boltzmann constant k.

e _3
L=pee T (4.1), o= jkTO (4.2) (4)

Hole transport of PTB7:PC;;BM has a pg of 2.0 x 10> cm?/Vs
and ¢ of 70 meV. The temperature dependence was also analyzed
with an effective medium approach (EMA) including trap states
according to Fishchuk et al. [7]. Although the condition of high
energetic disorder (o/kT > 1) is not clearly fulfilled, fits according
to Egs. (5.2) and (5.3) were applied. Where E; is the trap energy,
c is the concentration of trap states compared to conduction states,
T¢r is the critical temperature at which charge transport via trap
states becomes dominant, oo and o¢; are the width of the
Gaussian energy distribution of conduction and trap states respec-
tively (taken as equal) and |, is the trap-free mobility.

— Et
T”*_Zkln(c) -1
0 E; /01\?
T>Ta: “:%ﬁe"p(‘ﬁ(ﬁ)) (5.2) (5)

. . Oo 01 2
T<Ta: W= HoCpp exp (4.5(,{7) ) (5.3)

The fits are shown as dashed lines in Fig. 3(b) and show good
agreement with the experimental data. Parameters of the trap
energy of 0.1 eV and the trap concentration of 8% are obtained.
The trap energy is hence comparable to the width of the density
of states which implies that trapping originates from the tail states,
as has been observed in P3HT [29].

3.4. Temperature dependence of PTB7:PC,;BM devices

An interesting and yet not clearly understood question is how
the charge carrier mobility relates to the photovoltaic operation
of the device. As detailed in the introduction section,

recombination and extraction dynamics strongly influence the
solar cell performance and depend on the mobility. Drift-diffusion
modeling has revealed optimum electron and hole mobilities of
about 1072-103 cm?/Vs with a relatively flat maximum [8-10].
The temperature dependence offers a simple and effective way to
tune the mobility and allows its effect on solar cell characteristics
to be observed.

At room temperature the PTB7:PC;;BM devices had a power
conversion efficiency of 6.9% (JV-curves are shown in Fig. 4). This
fell to 2.5% when the solar cells were cooled to 77 K. The device
parameters versus temperature and hole mobility are shown in
Fig. 7. The loss is due to a reduced short circuit current density
(Jsc) of 8.1 mA/cm? at 77 K compared to 12.9 mA/cm? at 295K
and the FF reduced to 33% compared to 65%. The open circuit volt-
age (Voc) decreases linearly with temperature. Various models
exist for the origin of the Voc and could be applied to explain the
increase with reducing temperature, such as a shift of the quasi
Fermi-levels [30], reduced dark injection [31], reduced recombina-
tion [32] and an increased charge density in the active layer [11].
The concept of the quasi-Fermi level shift as a function of tempera-
ture leads to

E kT . (N?
Voc==2C _ 2" In|— 6
oc="p "% np (6)
25 .
) 295 K before
O — 77k
e 45] — 110K
§ 140 K T
£ 100 — 170K
> 1 —— 200K
B 9] 230 K
o 260 K
° 0+
= | —— 295k /
e 554 —325K /
8 4
-10 4
15

-04 02 00 02 04 06 08 10 12 14

Voltage (V)
Fig. 4. Temperature dependence of the JV-characteristics of PTB7:PC7;BM with an

active layer thickness of 80 nm. The efficiency drops to about half of its room
temperature value.
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where N is the density of conduction states and Eg,;, is the effective
band gap, and provided the best agreement with our experimental
data. The charge carrier densities np increase by about a factor of
two when the sample is cooled to 77 K (as shown in the SI) but
have, due to the logarithm in Eq. (6), minor influence on the Vo
[33]. The Voc is thus mainly influenced by the temperature [9].
Extrapolation of the Voc to 0 K gives the effective band gap of the
blend [34] which resulted in 1.0 eV, in good agreement with the
value derived from the energy levels [35,1]. Rauh et al. found a
deviation of the linear dependence of the V¢ for PTB7:PC;;BM sam-
ples at low temperature and attributed this to inefficient charge
extraction due to a contact barrier [36]. This could not be confirmed
by the devices shown here. Upon warming up to room temperature
the device performance fully recovered and the characteristics were
identical to before the cooling cycle. If we consider that at a
temperature of 77 K the hole mobility is reduced by factor of a
thousand, it is remarkable that the solar cells still perform
reasonably well.

Besides the mobility a few material parameters are influenced
by the temperature. One is that the absorption spectrum and hence
the EQE might change. In Fig. 5(a) the absorption spectrum of a
PTB7:PC;:BM blend is shown at room temperature and liquid
nitrogen temperature. The spectrum shows only minor changes
as in the region of 650 nm with a more pronounced valley between
the peaks. The EQE, however decreases when the sample is cooled
as shown in Fig. 5(b). The integrals of the EQE spectra resemble the
trend of Jsc with a reduction of 35% when cooled to 77 K, but the
shape of the spectra remained unchanged. Hence the number of

(@) os
= 295 K before
775K
051 — 205K after
o 044
(]
C
8 0.3
—_
[e]
8 02
S o
0.14
0.0

300 400 500 600 700 800
Wavelength (nm)

absorbed photons remains constant when cooling to liquid nitro-
gen but the current decreases due to increased recombination.

In order to get further insight into the recombination kinetics
we also varied the light intensity during the measurement of JV-
characteristics and the results are shown in Fig. 6. The plot of Jsc
versus intensity I on a log-log scale provides a good estimate of
bimolecular recombination losses at 0V [37,38]. The traces in
Fig. 6(a) have been fitted with a power law, Jsc = al’, as a linear
fit on logarithmic scales. The exponent b reduces with decreasing
temperature from 0.968 to 0.917 denoting an increase of bimolecu-
lar recombination losses. This can be explained by a slower charge
extraction at a reduced mobility and thereby a higher amount of
charge carriers stored in the device. This results in the increase
of bimolecular recombination as it depends on the square of the
charge carrier density. At low temperature the FF is reduced
because of the higher series resistance and increased bimolecular
recombination. With reduced light intensity the charge density in
the active layer reduces and the FF improves, as at 77 K it increases
from 33% at 1 sun intensity to 66% at 0.01 sun (see Fig. S4).

From plots of the open circuit voltage against the natural loga-
rithm of light intensity, the amount of monomolecular recombina-
tion can be judged [30,36]. If the slope equals kT/e, no trap assisted
recombination appears. As shown in Fig. 6(b), the slopes of
PTB7:PC;1BM increase from 1.07 kT/e to 1.93 kT/e, when the tem-
perature decreases from 300K to 77 K, which corresponds to a
drastic increase in SRH recombination. Stronger occupation of
traps at low temperature is expected as charge carriers are no
longer provided with thermal energy to escape from the tail states.

—a&— 775K

500 600 700 800 900
Wavelength (nm)

300 400

Fig. 5. (a) The absorption spectrum of PTB7:PC;;BM at room temperature (red dots and line) before and after cooling to 77.4 K (blue line). (b) Temperature dependence of the
EQE spectrum of PTB7:PC7:BM normalized to maximum at 295 K. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 6. Device parameters of PTB7:PC7;BM as a function of intensity and temperature. (a) Jsc vs. light intensity on log-log plots. (b) Voc vs. light intensity on semi-log scale.

Straight lines are linear fits.
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Fig. 7. Device parameters vs. temperature and mobility. The power conversion
efficiency (PCE) of PTB7:PC;;BM reaches a maximum performance at room
temperature due to a trade-off between Jsc, FF and Voc.

As shown in Fig. 7 the device parameters vs. temperature
give a clear maximum for the power conversion efficiency of
PTB7:PC;:BM solar cells between 260K and 295K. At higher
temperature (325 K) the Jsc and FF have flattened but as the Vpc
decreases linearly, the efficiency begins to drop. The parameters
of Jsc and FF are directly influenced by the mobility, whereas the
Voc is additionally influenced by the temperature due to a shift
of the quasi-Fermi levels. For temperature increases above room
temperature, the effects of increased mobility on Jsc and FF are
outweighed by the decrease of Voc. For the system studied of
PTB7:PC;:BM, with a film thickness of 80 nm, the efficiency
decreases from 6.9% at room temperature by only 0.3% when
the hole mobility is reduced (by lowering the temperature) by an
order of magnitude from 7 x 107> cm?/Vs to 7 x 10°% cm?/Vs.
This shows the rather weak influence of the mobility near the
optimum and is qualitatively in agreement with theory [8-11].

4. Conclusion

In conclusion, we investigated the charge carrier mobility
of the important solar materials PTB7, PC;4BM and the blend
PTB7:PC;:BM by the time of flight technique. High hole mobility
of about 1 x 10 cm?/Vs was observed in neat PTB7 and the same
value was observed for the electron mobility of PC;{BM. The hole
mobility of PTB7 is almost an order of magnitude higher than that
of P3HT and well balanced with the electron mobility of PC;;BM,
providing a reason for the higher EQE and fill factors generally
observed. The temperature dependence of PTB7:PC;;BM revealed
a fast drop of the hole mobility in PTB7:PC;1BM by three orders
of magnitude when cooled from room temperature to 77 K. With
reducing the mobility in PTB7:PC71BM solar cells we found that
bimolecular and Shockley-Read-Hall recombination increased,
because of the longer sweep-out time and thereby higher charge
density in the active layer. SRH recombination was identified as
the dominant recombination mechanism at low temperature. The
optimum of the device performance occurred at room tempera-
ture. Our results suggest that tuning the mobility by variation of
the temperature is an effective way to determine the losses and
the potential for optimization of a materials system.
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