Mapping Parallel Programs to Heterogeneous CPU/GPU Architectures using a Monte Carlo Tree Search

Mehdi Goli
and John McCall
School of Computing
Robert Gordon University
Scotland, UK
Email: {m.goli, j.mccall}@rgu.ac.uk

Christopher Brown,
Vladimir Janjic
and Kevin Hammond
St Andrews University,
Scotland, UK
Email: {cmb21, vj32, kh}@st-andrews.ac.uk

Keywords—Monte Carlo Tree Search; Heuristic Algorithm; Static Mapping; Parallel Programming; Heterogeneous Architecture;

Abstract—The single core processor, which has dominated for over 30 years, is now obsolete with recent trends increasing towards parallelism, demanding a huge shift in programming techniques and practices. Moreover, we are rapidly moving towards an age where almost all programming will be targeting parallel systems. Parallel hardware is rapidly evolving, with large heterogeneous systems, typically comprising a mixture of CPUs and GPUs, becoming the mainstream. Additionally, with this increasing heterogeneity comes increasing complexity: not only does the programmer have to worry about where and how to express the parallelism, they must also express an efficient mapping of resources to the available system. This generally requires in-depth expert knowledge that most application programmers do not have. In this paper we describe a new technique that derives, automatically, optimal mappings for an application onto a heterogeneous architecture, using a Monte Carlo Tree Search algorithm. Our technique exploits high-level design patterns, targeting a set of well-specified parallel skeletons. We demonstrate that our MCTS on a convolution example obtained on average 95% of the speed up achieved by the hand tune optimisation developed by expert user.

I. INTRODUCTION

Ongoing rapid progress in technologies such as GPGPU and CPU/GPU clusters and emerging platforms such as CUDA and OpenCL are widening applicability of high performance computing. Data and stream-based parallelism in particular can now be brought to bear on programming tasks in many engineering and manufacturing operations. However, the process of synchronisation and communication among components in a given parallel architecture, essentially to obtain maximal performance gains, is still a challenging issue and requires expert parallel programmers. In this paper we take an approach that exploits high-level parallel patterns, known as Algorithmic Skeletons, which are a high-level abstraction for parallelising applications [1]. They have long been considered as a viable approach to encapsulating coordination, communication and synchronisation among components. [2]

Stream-based parallelism can be regarded as a generic form of pipeline in which the parallel program operates repeatedly on a stream of data items, e.g. an audio or video stream. Typically a parallel task performs in a way that on each execution step it reads one or more data items from one or more input streams, processes the input data and passes the processed data to one or more output streams. [3]

The problem of mapping a stream-based parallel program to a given parallel processing architecture can generally be divided into two stages:

- partitioning the program into different tightly encapsulated computational components and allocating each to a thread. This is a design problem for the programmer, possibly assisted by the software designer.
- scheduling the program to run on a specific architecture in terms of allocating an optimum number of processors per component and dedicating appropriate flows of input data to each component.

Separating these two tasks from each other to some extent provides a level of abstraction from underlying resource which increases the portability of parallel programs, because there is no need for reshaping the whole written program for each targeted platform. Once the skeletal structure has been generated, the mapping can be retuned for different specific targets. The main focus of this paper is to develop an intelligent algorithm to automatically map a given program structure to a given heterogeneous architecture to optimise performance.

In a homogeneous architecture, for each processing node in the partition graph there is one type of component. Multiple instances of that component can be run as a thread over multicore systems in which each core has the same power. However, this is not the case for heterogeneous (CPU/GPU) architecture. There it is desirable to take advantage of GPU processing for suitable components when possible. Thus some components can be written to run on either GPU or CPU or a combinations of both. In this case, finding the optimal mapping choice becomes more complex. The throughput of each processing node depends on selecting either one version of the component or using both of them, depending on the limitations of the underlying architecture and the computational costs of the components. Also, where there is a choice of running a component on CPU or GPU, the proportion of flow of the
input stream sent to each of them will affect the overall throughput of the system. Moreover, there is a constraint on the number of tasks that can be run simultaneously on a single GPU. Therefore, deciding which nodes to assign to a GPU is combinatorially complex when there are multiple nodes that can be mapped as such. Taking all of these factors into account, the problem of mapping a parallel program to a heterogeneous architecture becomes considerably more complex than that of mapping to a homogeneous architecture.

Static mapping involves calculating the proportion of work and resources needed to be allocated for each component of the parallel program. The problem associated with static mapping is then finding the optimal mappings from the set of all possible static mappings. Due to the combinatorial nature of the mapping problem, the solution space grows quickly, indicating suitability of a heuristic approach.

In this paper, we investigate the applicability of Monte Carlo Tree Search (MCTS) for the mapping problem in the heterogeneous (CPU/GPU) architectures. Monte Carlo Tree Search (MCTS) is an approach originating from AI Games to efficiently select moves in large game trees where full evaluation of the tree is computationally intractable. MCTS uses Monte Carlo random walks to evaluate states only at the endpoints of each walk [4]. Here we create mappings by random-walks where at each step a decision is made to allocate a particular package of processing to a particular processor. The walk is biased by the parameters of the static mapping. We use a simulation of the computation to evaluate each mapping at the end of the walk. Objectives such as throughput can be calculated through sampling and summing the simulated function performance distributions on the assigned processors.

The remainder of this paper is structured as follows. In section III we explain the preliminary definitions and concepts. In section IV our proposed MCTS algorithm for mapping problem is explained in detail. We demonstrate the applicability of our proposed algorithm for a real world application as a case study in section V. In section VI we analyse the suitability of MCTS for the static mapping problem. Section VII summarises the current research in this area and finally, section VII provides some concluding remarks and future work.

II. RELATED WORK

A. Mapping process

The static mapping problem is by no means a new challenge and there is an extensive body of work on mapping task, data and pipeline parallelism to parallel architectures providing static partitioning [5], [6], [7], using runtime scheduling [8], heuristic based mappings [9], analytical models [10], [11], or ILP solvers [12]. Each of these can improve the performance of the system. There are some heuristic based approaches which automate the process of mapping to multi-core architectures for specific frameworks, such as the learning approach used for partitioning streaming in the StreamIt framework [13] or the runtime adaptation approach used in FlexStream [14] framework. Also, a series of research works have been produced aiming at optimising the use of resources on multi-core embedded platforms linking both design-time optimisation and simulation with run-time optimisation using lightweight heuristics [15], [16], [17]. In [18], the use of platform simulators has been considered to identify Pareto-optimal design configurations of parallel applications (incorporating code versions, resource mappings, constraints and costs).

Despite the amount of work done in the homogeneous environment, to our best knowledge there is little work done for mapping to heterogeneous (CPU/GPU) architectures. Most of the work on GPUs are primarily focused on application performance tuning [19] rather than orchestration.

However, in [20] a method is provided to orchestrate the execution of heterogeneous StreamIt program presented on a multi core platform equipped with an accelerator. They use integer linear programming (ILP) formulations to perform partitioning over the combination of CPU/GPU. Formulating ILP models, however, requires expert knowledge of the underlying architecture. Finding a solution under certain constraints for the ILP formula can be time-consuming as well.

Our aim in this paper is automatic orchestration of CPU/GPU component for FastFlow applications by using MCTS which usually requires less knowledge about the system. Therefore, minimum information is needed to run the result on the system. Moreover, applying it in a static manner has a much lower overhead for deployment.

B. Monte Carlo Tree Search

Monte Carlo Tree Search have classically been applied to challenging game playing, for example the GO and Bandit problem [21], [22], [23], [24].

Recently MCTS has been applied to planning and scheduling problems. In [25] a MonteCarlo search algorithm has been applied to produce management problems which can be dened as single-agents selecting a sequence of actions with side effects, leading to high quantities of one or more goal products. The result shows that they achieve a successful solution in less time than already existing learning method. In [26] a Monte Carlo Random Walk (MRW) planning algorithm is used in deterministic classical planning achieving results comparable with the other state of the art algorithms. In [27] an extended version of UCT approach has been successfully applied in continuous stochastic problems with continuous action space.

In this paper we establish the applicability of MCTS to the seamless orchestration of heterogeneous components over a hybrid(CPU, GPU) platform. Although we work on the FastFlow framework, the technique can easily be applied to a different framework by changing the evaluation method used here, which makes the algorithm framework independent.

III. BACKGROUND

A. FastFlow

Fastflow [28] is a skeleton-based parallel programming framework for multi-core platforms, implemented in C++. Fastflow’s streaming patterns are coordinating mechanisms that control the flow of work between multiple concurrent threads. This allows programmers to focus on application-specific computational components by abstracting over complex coordination and communication layers. Fastflow supports
both CPUs and GPUs as part of a heterogeneous parallel system [29].

B. Skeletons

An algorithmic skeleton is an abstract computational entity that models some common pattern of parallelism (such as the parallel execution of the sequence of computations over the set of inputs, where the output of one computation is the input to the next one). A skeleton is typically implemented as a high-level function that takes care of the parallel aspects of a computation (e.g., the creation of parallel threads, communication and synchronisation between these threads, load balancing etc.), and where the user provides a sequential code specific to his concrete problem.

In this paper, we restrict ourselves to two fundamental, heterogeneous skeletons, that we consider to be the most popular and most useful:

- The Pipeline skeleton models the application of a composition of functions f_1, f_2, \ldots, f_n to a sequence of independent inputs x_1, x_2, \ldots, x_m, where the output of f_i is the input to f_{i+1}. The parallelism arises from the fact that, for example, $f_1(x_n)$ can be executed in parallel with $f_2(f_1(x_{n-1}))$. We will denote the pipeline skeleton by $Pipe(f_1, f_2, \ldots, f_n, x)$, where f_1, f_2, \ldots, f_n are the functions of a pipeline and x is the array of inputs.

- A Farm skeleton models the application of a function, f, to a sequence of independent inputs, $x_1, x_2, x_3, \ldots, x_n$. We will denote the farm skeleton by $Farm(nx, f, x)$, where nx is the number of worker threads, f is a function that is to be applied to the inputs, and x is the array of inputs.

C. Monte Carlo Tree Search

MCTS uses four main steps. (i) in the selection step the tree is traversed from the root node to the leaves; (ii) next, in the expansion step, a new node is added to the tree; (iii) subsequently, during the sampling step, moves are selected at random until a leaf is reached and evaluated; and (iv) finally, in the back-propagation step, the result of an evaluation is propagated backwards, through the previously traversed nodes. [30]

IV. THE PROPOSED APPROACH

We assume that we are given a parallel program, together with its associated skeleton tree structure. A skeleton tree structure provides the high-level view of the skeletons used in a program, together with the information about their nesting and the sequential components used in these skeletons. We also assume that we are given, for each component, the information about whether it is a CPU or GPU component, and the estimated runtime of that component for one input on a given hardware. Figure 1 shows an example skeleton tree structure, with three components (A, B, G, D). The components A, B and C are CPU components, whereas the component G is a GPU component. The components B and G belong to the same farm (i.e. they correspond to two implementations of the same function, one for CPUs and one for GPUs).

We define a static mapping of a parallel program to a given hardware as an assignment of the amount of appropriate resources (CPUs or GPUs) to each component in the program skeleton tree structure. The static mapping problem is the problem of finding, from the set of all static mappings, the static mapping which will be optimal with respect to some metric. In order to find the optimal static mapping, we use the MCTS algorithm to calculate the distribution of computational resources to the components.

The problem of finding an optimal static mapping for the given program is then divided into two phases:

- Converting the program’s skeleton tree structure to its associated process graph
- A Monte Carlo Tree Search for selecting an optimal mapping of the process graph to the target architecture

A. Converting the Skeleton Tree Structure to the Process Graph

The skeleton tree is a nested combination of farms and pipelines which is created in an IDE interactively by the user. Figure 1 shows the skeleton tree structure of a 3-stage pipeline. Each stage is a farm and the second stage contains a combination of CPU and GPU components.

The skeleton tree structure is converted into a first order logic formula from which a process graph can be created. In case the computational resources available for a particular factorisation are not sufficient, the process graph is reshaped by removing the leaves for which the formula remains correct after their removal. Any skeleton tree can be converted to a first order logic formula, using the following scheme:

\[
Farm(A_1, \ldots, A_n) := \forall_{i=1}^n A_i \\
Pipe(A_1, \ldots, A_m) := \land_{i=1}^m A_i \\
A_i := Pipe(A'_1, \ldots, A'_m) | Farm(A'_1, \ldots, A'_n) | f \\
\]

where $f \in \{\text{set of components}\}$.

As an example, for the skeleton tree structure presented in figure 1, the first order logic formula is as follows. $FOL(TS) = (A \land (B \lor G) \land C)$.

To create a process graph from the formula, each preposition represents a component, each operator \land represents a queue connecting the components of the systems together and the operator \lor is used to represent different components of the system streaming data from the same queue. Figure 2 shows the process graph generated from $FOL(TS)$. The process graph has three task queues for the top-level pipeline. Queues Q_0 and Q_1 connect the subsequent pipeline stages, and the queue Q_2 accumulates the output of the whole pipeline. The task queues are the main factor for finding the optimal solution. For each task queue a queue level has been considered, where the queue level is the number of tasks waiting to be processed by the next stage. In an ideal case the queue level for all task queues is equal to zero, because as soon as a tasks enter in the task queue, it will be processed by the next stage. However, this does not occur in reality specially when we have heterogeneous components running on heterogeneous resources. In this case the number of resources allocated to each component are the key factor to create that queue level balance.
of a single farm. We can represent the set of possible decisions as:

\[\{ A(w_i, k) \mid w_i \in M, k \in \{0, 1, \ldots, L \} \}, \]

where \(A \in \{ \text{ADD}, \text{REMOVE} \} \); \(M \) is the set of components in the farm (containing one element if there is only a CPU or a GPU component, or two if there are both a CPU and a GPU component); \(k \) is the amount of resources to be allocated or deallocated to a component, \(w_i \); and, \(L \) is the maximum amount of resources that can be allocated to the component, \(w_i \).

D. Selection Strategy

The selection strategy that we use is the Upper Confidence bounds applied to Trees (UCT) [31], [22]. The formula for UCT is:

\[UCT = \bar{X}_j + 2CP \sqrt{\frac{2 \ln n}{n_j}} \]

where \(n \) is the number of times the current node has been visited; \(n_j \) is the number of times the child, \(j \), has been visited; \(CP > 0 \) is a constant value; and, \(\bar{X}_j \) is the average reward value given to child node, \(j \).

E. Simulation of Static Mapping

There are two ways to evaluate the performance of a selected path in the decision tree (which correspond to one static mapping): mathematical abstraction of the system (such as a cost model) and simulation. Here we use simulation because the accuracy of a cost model depends on large number of parameters that may be difficult to obtain for certain skeletons and hardware systems. Here we chose an approach that is intended to be generic, rather than completely precise. However, the precision gained using simulations is good enough for comparing different static mappings allowing us to demonstrate the principles of our technique.

We have developed a simulator for FastFlow that mimics the behaviour of a given FastFlow application running on the target architecture. The simulator outputs the metrics (queue Level, component utilisation, throughput) that we use to evaluate the static mappings.

F. Reward Function

Once a static mapping has been simulated, a reward for the mapping is calculated. The reward function is based on the throughput of the system, denoted by \(T \). There are two balancing factors related to the overall utilisation of the system:

1) We define utilisation of a component, \(w \), to be denoted by \(U(w) \), as the utilisation of the resources allocated to the component, \(w \). We denote by \(SD_U \) the standard deviation of the component utilisation from the mean utilisation of all components in the system:

\[SD_U = \sqrt{\frac{\sum_{w_i} (U(w_i) - U_m)^2}{N}}, \]

where \(N \) is the total number of components in the system; \(U(w_i) \) is the utilisation of the component, \(w_i \); and, \(U_m \) is the average utilisation of all components in the system. Using \(SD_U \) as a reward function discourages the allocation of additional resources to a component in the case where this results in only a minor gain in the overall program speedup (and in reduced utilisation).

2) We define throughput of a queue as

\(SD_Q \) is the standard deviation of all queues in the system, defined as follows.
In order to evaluate our approach, we have used an image convolution function to a single image. Applying the convolution function to an input image consists of calculating, for each pixel of the input image, a scalar product of the “window” surrounding that pixel with the filter weights, and storing the result in the output image at the same position:

\[\text{out}(i, j) = \sum_m \sum_n \text{in}(i - n, j - m) \times \text{filter}(n, m), \]

where \(\text{out}(i, j) \) is the pixel of the output image at position \((i, j)\), \(\text{in}(i, j)\) is the pixel of the input image at position \((i, j)\), and \(\text{filter}(i, j)\) is the pixel of the filter at position \((i, j)\).

We emphasise that our intention here is to demonstrate the applicability of our MCTS approach to deriving optimal static mapping for computationally-demanding real-world FastFlow applications, not to develop a new version of the CPU/GPU convolution algorithm. The application that we use is implemented in the CPU-extended version of FastFlow [29], where it is shown that the hand-tuned version of the application achieves a 45 speedup compared to the sequential version for large-scale inputs. Here, as a proof of concept, we demonstrate that our MCTS approach can derive the static mapping that delivers a comparable speedup, therefore opening up the prospect for automating tuning for non-experts.

We consider two different skeleton tree structures, or factorisations, for the image convolution application [29]. In both factorisations there are two kinds of components: \(r\), which reads a single image into memory, and \(p\) which applies the convolution function to a single image. \(r\) only has a CPU version, whereas \(p\) has both CPU and GPU versions. Therefore, there are two different \(p\) components, which we will denote by \(P_{CPU}\) and \(P_{GPU}\). The two factorisations that we consider are:

1) \(P_{CPU}\) and \(P_{GPU}\) are the two penalty factors:

\[P_{GPU} = \sqrt{\frac{N_{UG}}{N_{TG}}}, \quad P_{CPU} = \sqrt{\frac{N_{UC}}{N_{TC}}}, \]

where \(N_{UG}\) is the number of GPUs in the system that have not been used by the static mapping, and \(N_{TG}\) is the total number of available GPUs in the system.

\[P_{CPU} = \sqrt{\frac{N_{UC}}{N_{TC}}}, \quad P_{GPU} = \sqrt{\frac{N_{UG}}{N_{TG}}}, \]

where \(N_{UC}\) is the number of CPU cores in the system that have not been used by the static mapping, and \(N_{TC}\) is the total number of available CPU cores in the system.

The main effect of \(P_{GPU}\) and \(P_{CPU}\) is to force the system to use all of the available resources, by introducing a penalty for unused resources. If we add these two factors to the definition of the reward function, then in the case where more than one mapping achieves the same throughput and utilisation, the one that uses the smallest amount of resources is chosen. Conversely, if we omit these two factors, the mapping that uses the largest amount of resources is chosen.

Since our assumption is that the system on which programs are executed is dedicated private machine, we do not use \(P_{GPU}\) and \(P_{CPU}\) in the reward function, which is therefore

\[Q(v) = T - (SD_U + SD_Q), \]

for a selected path, \(v\), of the decision tree. If we were to use the two penalty factors, the reward function would become

\[Q(v) = T - (SD_U + SD_Q + P_{CPU} + P_{GPU}). \]

G. Back-propagation, Termination Condition and Final Move Selection

We have considered two back-propagation policies [30]: the Max policy, where the maximal reward of all the children is propagated to their parent, and the Average policy, where the average reward of all the children is propagated to their parent.

The MCTS algorithm finishes if no new moves have been made for \(K\) iterations. The final move selection is based on the robust-max child. The robust-max child is the child with both the highest visit count and the highest value. If there is no robust-max child at the moment, more simulations are run until a robust-max child is obtained [30].

V. CASE STUDY: IMAGE CONVOLUTION IN FASTFLOW

In order to evaluate our approach, we have used an image convolution [32] as our example parallel program. Image convolution is widely used in image processing applications, e.g. for blurring, smoothing and edge detection. Our version of image convolution consists of reading a stream of images into the memory and applying the convolution function (with a given filter) to each of these images. Applying the convolution function to an input image consists of calculating, for each pixel of the input image, a scalar product of the “window” surrounding that pixel with the filter weights, and storing the result in the output image at the same position:

\[SD_Q = \sqrt{\frac{\Sigma_i(T_Q_i - T_{Q_0})^2}{L}}, \]

Here, \(L\) is the total number of queues in the system, \(T_Q_i\) is the throughput of the \(Q_i\), and \(T_{Q_0}\) is the average value of the throughput of all queues in the system. Adjusting the reward for this factor discourages the allocation of additional resource to the components of a queue when they are no longer bottlenecks on that queue.
TABLE I. HARDWARE SPECIFICATION FOR RUNNING ACTUAL CONVOLUTION PROBLEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of CPUs</td>
<td>2</td>
</tr>
<tr>
<td>Cores per CPU</td>
<td>6</td>
</tr>
<tr>
<td>CPU Clock</td>
<td>3.07 GHz</td>
</tr>
<tr>
<td>Physical Memory</td>
<td>50 GB</td>
</tr>
<tr>
<td>No. of GPUs</td>
<td>1</td>
</tr>
<tr>
<td>GPU Model</td>
<td>NVIDIA Tesla M2090</td>
</tr>
<tr>
<td>GPU Memory</td>
<td>6 GB</td>
</tr>
<tr>
<td>GPU Cores</td>
<td>512</td>
</tr>
<tr>
<td>CUDA Version</td>
<td>4.0 V0.2.1221</td>
</tr>
<tr>
<td>GPU Driver Version</td>
<td>290.10</td>
</tr>
</tbody>
</table>

TABLE II. PROBLEM CATEGORIES

<table>
<thead>
<tr>
<th>Category</th>
<th>Input Image Size</th>
<th>Filter Size</th>
<th>No. Input Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Scale</td>
<td>2048×2048</td>
<td>15×15</td>
<td>1000</td>
</tr>
<tr>
<td>Large Scale</td>
<td>8192×8192</td>
<td>48×48</td>
<td>1000</td>
</tr>
</tbody>
</table>

VI. ANALYSIS OF MCTS ON STATIC MAPPING PROBLEM

In this section we discuss in more detail the choice of MCTS for the static mapping problem.

The proposed approach aims to target FastFlow applications which are computationally heavy and contain a nested combination of farms and pipelines. Such applications usually take hours or even days to run [29], [33]. For example, running the application presented in Section IV for an input stream of 8000 images on a machine with 2 GPUs and 24 CPUs takes around 4 hours. Therefore, the effort required to run the MCTS algorithm to obtain an optimal mapping, even for a relatively simple problem like convolution, is amply justified in terms of the savings in time and energy realised by achieving speedups over such long run times.

The solution space is also sufficiently complex and expensive to justify an advanced search approach. The size of the solution space size depends on the number of components of the application and the amount of resources available in the target architecture. For example, consider the skeleton tree structure in Figure 1, presented in Section IV, which can be categorised as a small problem. For an architecture with 16 CPUs and 1 GPU the solution space size is 1240; for an architecture with 24 CPUs and 2 GPUs problem size would be 6624 and for a 64 cores machine with 2 GPU the problem size would have 129204 combinations. The costly operation here is the performance evaluation of each possible solution in terms of throughput and resource utilisation. For this example, using the provided service time for each function, the evaluation of each solution can vary from 12 seconds to 107 seconds. So running all the possible solutions for even 1240 possible solutions for the 16 cores machine with 1 GPU can take more than a day to analyse. The simulation of this application for 24 cores CPU and 2 GPUS depends on the quality of the selected path but can vary from 14 to 200 seconds. Exhaustive search of this solution space will take almost a week. Finally, in the case of a system with 64 CPU and 2 GPU, the solution space will contain 129204 solutions, which is impractical for exhaustive investigation. We emphasise again that this is a small problem on a small target architecture. Large machines in operation today can have thousands of processors, so for large scale problem with large resources there is a need to search intelligently for high quality mappings.
In order to analyse the solution space we study the fitness-distance correlation (FDC) and landscape correlation (AC1) for the above example over a platform with 16 cores CPU and 1 GPU. Exhaustive evaluation of the example indicates that the best solution is "a:5","b:8", "g:1" and "c:3". As stated in figure 6, we run 50-step random walks from the global optimum, 100 times, to calculate the FDC and AC for the solution space.

Table IV, displays the FDC obtained for this problem. This indicates a clear gradient in solution quality as distance increased, showing that it is reasonable to apply heuristic search. [34]. However, AC1 value is comparable with the reported AC1 on the NK landscape problem [35] with k=50 and N=100 which is quite rugged. This counter-indicates the use of simple heuristics such as hill-climbing which is likely to become trapped in local optima.

In the UCT approach applied here, the factor C_P can be considered as a greediness factor of the algorithm. Therefore, considering the ruggedness of the solution space, selecting too small a value for C_P can result in searching smaller regions of the solution space, with a higher risk of becoming trapped in local optima. However, choosing too large a value for C_P slows or even prevents convergence. In our experience values of C_P around $\frac{1}{5}$ of the average throughput gives good convergence to the optimal solution.

As shown in table III all of the optimum results were found by exploring $9 - 32\%$ of the solution space. We expect that, on larger problems with deeper trees, these percentages will drop dramatically as the number of unevaluated paths will increase exponentially. Thus the justification for MCTS grows with search space size.

We also observe that, since the MCTS-AVG is a less greedy approach than the MCTS-MAX, MCTS-AVG is a better algorithm for this problem. As stated in figures 7 and 8, the run length distribution, shows that MCTS-AVG is more accurate than MCTS-MAX for larger problems. Figure 8 shows that the MCTS-MAX converges on local optima on 20% of runs. However, when the solution space is small, the probability of MCTS-MAX converging on a local optimum is reduced (figure 7).

Moreover, the convergence of MCTS-AVG is more predictable than that of MCTS-MAX, as we can see in figures 7 and 8, for both cases 80% of the convergence are in certain iteration, while in MCTS-MAX this is less predictable. However, the number of population visited by MCTS-Max is less than that in MCTS-AVG. Since the simulation is a costly function here, this means that the cost of MCTS-MAX is less than the cost of MCTS-AVG.

Moreover, Due to the large differences between the speed of CPU and GPU, a set of solutions with almost the same throughput as the global optimum exist. Since the static mapping is based on estimation over the simulated value, it is reasonable to accept all of these as best solutions. During runtime of the parallel program, dynamic factors come into play which affect the performance of the system and a lightweight dynamic remapping technique would be employed to further tune the solution at runtime if needed. However, the process of dynamic remapping is expensive. Hence, the selected static mapping solution should be robust enough to require the least possible effort at runtime. MCTS-AVG tends
to select solutions with robust sub-trees. By this we mean that, at each decision step, the number of good solutions found in the selected sub-tree (child) of a parent is more than other sub-trees (children) of that parent. This is useful because it increases the chances of needing less effort for further tuning of selected path at runtime, since it increases the chance of reaching another good solution by making small changes to the current selected solution. MCTS-MAX is less likely than MCTS-AVG to produce robust subtrees, since its evaluation is based solely on the best result of its children.

Finally, comparing the run length distributions of the MCTS algorithms with those of a simple random search demonstrates the considerable extent to which learning assists in finding a high quality solution with non-exhaustive effort.

VII. CONCLUSION

This paper has presented an intelligent approach to automating the mapping of a FastFlow program over a heterogeneous multicore architecture accelerated with GPU. The approach uses Monte Carlo Tree Search and provides solutions competitive with hand tuned expert solutions (up to 95% speed up over hand tuned approach) without requiring specialist knowledge.

We also analysed the applicability of MCTS to the mapping problem in terms of its suitability, scalability and solution quality. Versions of MCTS with different back-propagation policies were analysed. We have shown that MCTS with average back-propagation provides robust solutions, most suitable as a basis for dynamic remapping at runtime.

In the future, we are planning to integrate the idea of streaming parallelism with data parallelism and to extend the applicability of our algorithm to other algorithmic skeletons, especially the Map skeleton for FastFlow. We also intend to implement the dynamic remapping of the FastFlow program as an extension over the generated result of the static mapping approach.

A remaining issue for further investigation is the applicability of this approach over a distributed heterogeneous architecture, where the cost of transferring both components and data over a network is accounted for in the simulation, as it affects the system performance and utilisation of components.

REFERENCES

