Isothiourea-Mediated Asymmetric Functionalization of 3-Alkenoic Acids

Louis C. Morrill, Samuel M. Smith, Alexandra M. Z. Slawin and Andrew D. Smith*

EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K.

e-mail: ads10@st-andrews.ac.uk

Abstract:
Isothiourea HBTM-2.1 promotes the catalytic asymmetric α-functionalization of 3-alkenoic acids through formal [2+2] cycloadditions with N-tosyl aldimines and formal [4+2] cycloadditions with either 4-aryltrifluoromethyl enones or N-aryl-N-aryloyl diazenes, providing useful synthetic building blocks in good yield and with excellent enantiocontrol (up to >99% ee). Stereodefined products are amenable to further synthetic elaboration through manipulation of the olefinic functionality.
Introduction

The organocatalytic generation of dienolates or their dienamine equivalents is an increasingly popular area of research.¹ These intermediates have powerful synthetic potential due to their ability to react regio- and enantioselectively through either α- or γ-positions, allowing rapid access to diverse molecular scaffolds. In particular, recent research has demonstrated the ability of ammonium and azolium dienolates to participate in asymmetric transformations.²⁻¹¹ For example, Peters² and Ye³ have accessed cinchona alkaloid and norephedrine derived C1-ammonium dienolates from α,β-unsaturated acid chloride starting materials and applied these towards the synthesis of a range of stereodefined products (Scheme 1). C1-ammonium dienolate 1 may form either via initial dehydrohalogenation to form vinyl ketene 2 which is intercepted by the Lewis base, or from initial attack of the Lewis base to form α,β-acyl ammonium 3 followed by γ-deprotonation. To the best of our knowledge, all catalytically generated β,β-disubstituted C1-ammonium dienolates documented in the literature react to give γ-functionalized products.

Scheme 1: Generation and utility of C1-ammonium dienolates.

C1-azolium dienolates have also received considerable attention within the past two years. For example, Ye demonstrated that α,β-unsaturated acid chlorides 4, in the presence of an N-heterocyclic carbene (NHC) and base, afford C1-azolium dienolates 5 that react via the γ-centre in asymmetric formal [4+2]
cycloadditions with 2π electrophiles (Scheme 2a).4 Chi subsequently disclosed the ability to access the same dienolate \textit{via} both enals 6 (in presence of a stoichiometric oxidant)5,6 and α,β-unsaturated esters 7 (Scheme 2b,c).7 Alternatively, enals bearing an α-bromo leaving group such as 8 have also been demonstrated as suitable azolium dienolate precursors (Scheme 2d).8 In examples a-d, each process is postulated to involve γ-deprotonation of the corresponding β,β-disubstituted-α,β-acyl azolium intermediate to generate the corresponding dienolate, often depicted in both (E)- and (Z)-configurations, followed by γ-functionalization of the resulting azolium dienolate.9 Alternatively, aldehydes that contain a γ-leaving group such as 9 have been used to access C1-azolium dienolates 10 (Scheme 2e). Interestingly, these dienolates give α-functionalization \textit{via} fluorination with NFSI, and γ-functionalization in the formal [4+2] cycloaddition with diazodicarboxylates 11, affording esters 1210 and lactams 1311 respectively.

\textbf{Scheme 2:} Generation and utility of C1-azolium dienolates.
Building upon the elegant nucleophile catalysed aldol-lactonisation (NCAL) reaction developed by Romo,12 we have recently shown that isothioureas13,14 can generate ammonium enolates15 \textit{in situ} from carboxylic acids that subsequently undergo a range of intra- and intermolecular Michael addition-lactonization/lactamization reactions to generate stereodefined products.16 Although powerful, the success of the intermolecular processes often relies upon using arylacetic acids as starting materials,17,18 which constitutes a limitation of this organocatalytic strategy. To broaden the substrate scope of such processes, the use of 3-alkenoic acids would allow access to extended ammonium dienolates that could give rise to either α- or γ-functionalized products in a stereodefined manner (Scheme 3). In this manuscript, a range of 3-alkenoic acids are shown to act as suitable precursors to isothiourea derived ammonium dienolates that react in a variety of formal [2+2] and [4+2] cycloadditions. In contrast to previously accessed C1-ammonium dienolates formed \textit{via} γ-deprotonation, these ammonium dienolates are formed \textit{via} α-deprotonation and provide exclusively α-functionalized products. This strategy introduces an additional exocyclic olefin functional handle, allowing for further product functionalization into useful synthetic building blocks.

\begin{center}
\textbf{Scheme 3:} Proposed asymmetric transformations of 3-alkenoic acids \textit{via} either α- or γ-functionalization.
\end{center}

\textbf{Results and Discussion}
Generation of isothiourea derived ammonium dienolates and reaction with 2π electrophiles

Initial studies probed the ability of isothioureas to generate an ammonium dienolate from a 3-alkenoic acid, with subsequent reaction with a reactive 2π component used to test if α- or γ-selectivity is observed. Encouraged by Ye’s report demonstrating diazadicarboxylates as suitable reaction partners with C1-ammonium dienolates,3a along with both Ye and Chi who showed that trifluoromethyl ketones are suitable partners in [4+2] cycloadditions with C1-azolium dienolates,4,5 these 2π components were evaluated. Following our report in the previous manuscript we also evaluated N-tosyl aldimines 2π electrophiles.19

Using 3-methylbut-3-enolic acid 14 or 2-(cyclopent-1-en-1-yl)acetic acid 15 with pivaloyl chloride as activating agent, achiral DHPB 17 (3,4-dihydro-2H-pyrimido[2,1-b]benzothiazole) as catalyst and trifluoromethyl ketone 18 as the 2π electrophile,20 no distinguishable cycloaddition products were observed (Table 1). Under the same reaction conditions, (E)-4-phenylbut-3-enolic acid 16 reacted with trifluoromethyl ketone 18, giving solely the [2+2] cycloaddition product β-lactone 21 (60:40 dr anti:syn) derived from α-functionalization21 in 71% combined yield whilst reaction with N-tosyl aldimine 19 gave β-lactam 22 (83:17 dr anti:syn) in 68% yield (anti diastereoisomer).22-24 Unfortunately, diazodicarboxylate 20 proved incompatible with this system giving no distinguishable product despite full consumption of 20.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Carboxylic Acid</th>
<th>Electrophile</th>
<th>Product (major)</th>
<th>dr<sup>a</sup> (anti:syn)</th>
<th>Yield<sup>b</sup> (% anti,syn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me<sup>-</sup>O<sub>2</sub>CH=CH<sub>2</sub>OH</td>
<td>Ph<sup>-</sup>O<sub>2</sub>CF<sub>3</sub></td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>C<sub>5</sub>H<sub>9</sub>O<sub>2</sub>CH=CH<sub>2</sub>OH</td>
<td>Ph<sup>-</sup>O<sub>2</sub>CF<sub>3</sub></td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 1: Initial studies: \(^a\) Determined by \(^1\)H NMR spectroscopic analysis of the crude reaction mixture; \(^b\) Isolated yield (≥95:5 dr).

Encouraged by the promising diastereoselectivities observed in the reaction with \(N\)-tosyl aldimine 19, further optimization studies focused upon finding a suitable asymmetric variant. Screening of a range of isothiourea catalysts and \(C(4)\)-substituted alkenoic acids revealed that chiral isothiourea HBTM-2.1 23 efficiently promotes the formal [2+2] cycloaddition of \((E)\)-pent-3-enoic acid 24 and imine 25 at rt, affording \(\beta\)-lactam 26 in moderate diastereoselectivity (68:32 dr \(\text{anti: syn}\)), with each separable diastereoisomer isolated in good yield (53% \(\text{anti}\), 27% \(\text{syn}\)) and enantioselectivity (\(\text{anti} 79\% \text{ ee}, \text{syn} 72\% \text{ ee}\)) (Table 2). Lowering the temperature to \(-78^\circ\text{C}\) resulted in similar diastereoselectivity (71:29 dr \(\text{anti: syn}\)), but with each separable diastereoisomer formed in excellent enantioselectivity (\(\text{anti} 97\% \text{ ee}, \text{syn} >99\% \text{ ee}\)).\(^{25}\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>(T (^\circ\text{C}))</th>
<th>(\text{dr}^a(\text{anti: syn}))</th>
<th>(\text{Yield}^b(% \text{ anti, syn}))</th>
<th>(\text{ee}^c(% \text{ anti, syn}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>60:40</td>
<td>43,29</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>83:17</td>
<td>68, -</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

\(^a\) Determined by \(^1\)H NMR spectroscopic analysis of the crude reaction mixture; \(^b\) Isolated yield (≥95:5 dr).
Table 2: Formal [2+2] cycloaddition using N-tosyl aldimine 25: \(^a\) Determined by \(^1\)H NMR spectroscopic analysis of the crude reaction mixture; \(^b\) Isolated yield (≥95:5 dr); \(^c\) Determined by chiral HPLC analysis.

The absolute configuration of syn-β-lactam 27 was confirmed unambiguously by X-ray crystallography as (3S,4S),\(^{26}\) while that of the anti-β-lactam 26 was confirmed by an epimerization experiment (Scheme 4). Treatment of syn-β-lactam (3S,4S)-27 (>99:1 dr, >99% ee) using iPr\(_2\)NEt at rt for 16 h gave a (58:42 syn:anti) mixture comprising of syn-β-lactam (3S,4S)-27 (96% ee) and anti-β-lactam (3R,4S)-26 (96% ee) as determined by Chiral HPLC. The absolute configuration of the anti-β-lactam formed by epimerization is opposite to that observed experimentally in the catalytic process. Assuming epimerization occurs solely at C(3), this allows the absolute configuration of the anti-β-lactam formed in Table 2 to be assigned (3S,4R).\(^{27}\)

![Scheme 4: Epimerization experiment; \(^a\) Determined by \(^1\)H NMR spectroscopic analysis of the crude reaction mixture; \(^b\) Determined by HPLC analysis.](image-url)

The generality of this protocol was next investigated by variation of both the acid and aldimine components (Table 3). Within the aldimine, electron-donating and withdrawing groups can be incorporated provided the reactions are carried out at rt.\(^{28}\) 4-OMe Substituted β-lactam 28 is formed in good diastereo- and enantioselectivity, whilst incorporation of the 4-CF\(_3\) group results in a significant reduction in enantioselectivity (44% ee). Heteroaryl substituents (2-furyl) and extended aromatics (2-naphthyl) are tolerated within the aldimine, giving β-lactams 30 and 31 in modest diastereoselectivity with
the major \((anti)\) diastereoisomer formed in excellent ee (95% and 97% respectively). In cases where the minor \((syn)\) diastereoisomer can be isolated, it is always formed in excellent enantioselectivity (>96% ee).

Both the 4-position substituent and the configuration within the acid component can also be varied; for example \((E)-4\)-ethyl, \((E)-4\)-isopropyl and \((E)-4\)-benzyl alkenoic acids give the corresponding \(\beta\)-lactams 32-34 in high yields and good diastereo- and enantioselectivities. Finally, \((Z)\)-pent-3-enoic acid was used as a starting material, giving the usual \(\alpha\)-functionalization under the reaction conditions, but generating \(\beta\)-lactam 35 with negligible diastereoselectivity at \(-78^\circ C\) (43:57 dr, \(anti:syn\)), despite both diastereoisomers being formed in exquisite enantioselectivity (>99% ee). 29

![Reaction Scheme](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reaction Conditions</th>
<th>Diastereoselectivity</th>
<th>Enantiomeric Excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>At (-78^\circ C)</td>
<td>71:29 dr(^a) ((anti:syn))</td>
<td>ant: 51% yield,(^b) 97% ee; syn: 11% yield,(^b) >99% ee</td>
</tr>
<tr>
<td>28</td>
<td>At rt</td>
<td>80:20 dr(^a) ((anti:syn))</td>
<td>ant: 74% yield,(^b) 86% ee</td>
</tr>
<tr>
<td>29</td>
<td>At rt</td>
<td>87:13 dr(^a) ((anti:syn))</td>
<td>ant: 46% yield,(^b) 44% ee</td>
</tr>
<tr>
<td>30</td>
<td>At (-78^\circ C)</td>
<td>63:37 dr(^a) ((anti:syn))</td>
<td>ant: 48% yield,(^b) 95% ee</td>
</tr>
<tr>
<td>31</td>
<td>At (-78^\circ C)</td>
<td>76:24 dr(^a) ((anti:syn))</td>
<td>ant: 64% yield,(^b) 97% ee; syn: 22% yield,(^b) 99% ee</td>
</tr>
<tr>
<td>32</td>
<td>At (-78^\circ C)</td>
<td>82:18 dr(^a) ((anti:syn))</td>
<td>ant: 67% yield,(^b) 98% ee; syn: 16% yield,(^b) >99% ee</td>
</tr>
<tr>
<td>33</td>
<td>At (-78^\circ C)</td>
<td>79:21 dr(^a) ((anti:syn))</td>
<td>ant: 63% yield,(^b) 97% ee</td>
</tr>
<tr>
<td>34</td>
<td>At (-78^\circ C)</td>
<td>72:28 dr(^a) ((anti:syn))</td>
<td>ant: 57% yield,(^b) 95% ee; syn: 16% yield,(^b) 97% ee</td>
</tr>
<tr>
<td>35</td>
<td>At (-78^\circ C)</td>
<td>43:57 dr(^a) ((anti:syn))</td>
<td>ant: 21% yield,(^b) 99% ee; syn: 36% yield,(^b) >99% ee</td>
</tr>
</tbody>
</table>
Table 3: Formal [2+2] cycloaddition scope. a Determined by 1H NMR spectroscopic analysis of the crude reaction mixture; b Isolated yield (≥95:5 dr); c Determined by chiral HPLC analysis; d Isolated yield (92:8 dr); e Isolated yield (88:12 dr);

[4+2] cycloadditions of isothiourea derived ammonium dienolates with 4π electrophiles

Having established the propensity of these ammonium dienolates to react at the α-position with 2π electrophiles, their ability to partake in formal [4+2] cycloadditions with electron deficient 4π Michael acceptors was investigated. HBTM-2.1 23 efficiently catalyzes the reaction between (E)-pent-3-enoic and (E)-1,1,1-trifluoro-4-phenyl-3-buten-2-one in only 5 minutes at rt, giving δ-lactone 36 in 80% yield with good diastereoselectivity (88:12 dr) and excellent enantioselectivity (96% ee).30-32 The reaction proceeds efficiently using (E)-3-hexenoic acid, giving δ-lactone 37, although when using (E)-styrylacetic acid the reaction has to be carried out at −78 °C to prevent product decomposition and gives the major diastereoisomer of δ-lactone 38 in reduced enantioselectivity (60% ee). Heteroaryl and 4-bromophenyl substituted trifluoromethyl enones are also tolerated giving δ-lactones 39 and 40 in good yields and high diastereo- and enantioselectivity (Table 4).
Table 4: Formal [4+2] cycloadditions with 4-aryltrifluoromethyl enones; \(^a\) Determined by \(^1\)H NMR spectroscopic analysis of the crude reaction mixture; \(^b\) Isolated yield (88:12 dr); \(^c\) Determined by HPLC analysis; \(^d\) Isolated yield (93:7 dr); \(^e\) Isolated yield (≥95:5 dr); \(^f\) Isolated yield (84:16 dr).

The generality of this asymmetric Michael addition-lactonization process was next investigated using \(N\)-aryl-\(N\)-aryldiazenes as Michael acceptors, followed by \textit{in situ} ring opening of the intermediate 1,3,4-oxadiazin-6-one formal [4+2] cycloaddition adduct with MeOH. Examples including the use of 3-alkenoic acids bearing 4-alkyl (Me, Et, \(i\)Pr), 4-benzyl and 4-phenyl substituents, in addition to (\(E\))- and (\(Z\))-alkene configurations are all readily incorporated giving, after \textit{in situ} ring-opening with methanol, \(^33\) a range of hydrazides 41-46 in high yields (71-85 %) and excellent enantioselectivity (91-99 % ee) (Table 5).\(^{34,35}\) Diazenes bearing electron deficient (4-FC\(_6\)H\(_4\)) and heteroaryl (2-furyl) \(N\)-aryloyl substituents are also tolerated giving products 47 and 48 in excellent ee.

Table 5: Formal [4+2] cycloaddition/ring opening with \(N\)-aryl-\(N\)-aryldiazenes; \(^a\) Isolated yield. \(^b\) Determined by HPLC analysis.
Having developed a highly enantioselective route to hydrazides 41-48, their potential for further elaboration through functionalization of the olefin was probed. Treatment of hydrazide 41 under Upjohn dihydroxylation conditions, followed by acid catalysed cyclisation, gave a 70:30 mixture of separable diastereomeric 5-membered lactones 49 and 50 in 85% combined yield, both in 99% ee (Scheme 5). These interesting aza-sugar derivatives structurally resemble the cyclized form of (+)-polyoxamic acid, indicating their potential biological significance.

![Scheme 5: Conversion of hydrazide 41 to lactones 49 and 50; a Determined by 1H NMR spectroscopic analysis of the crude reaction mixture; b Isolated yield (>98:2 dr); c Determined by HPLC analysis.](image)

We propose that the catalytic cycle for these transformations proceeds via initial N-acylation of HBTM-2.1 23 with the pre-formed mixed anhydride to form the corresponding acyl ammonium ion. α-Deprotonation generates the (Z,E)-enolate (from the (E)-alkenoic acid), which undergoes stereoselective Michael addition via α-functionalization with electron deficient 4π Michael acceptors, followed by intramolecular
cyclisation, to generate the corresponding heterocyclic species (Figure 1). The sense of stereoinduction in these transformations is consistent with our previous rationale.16a,c We tentatively assign the origin of the observed α-functionalization in these processes to preferential reaction \textit{via} the assumed \textit{s-trans} (\textit{Z,E})-dienolate conformation 51, in preference to the \textit{s-cis} (\textit{Z,E})-dienolate conformation 52 that is presumably necessary to participate in γ-functionalization.

![Diagram](image)

\textit{Figure 1:} Proposed mechanism of asymmetric heterocycle formation.

Conclusion: Isothiourea-mediated functionalization of 3-alkenoic acids occurs regioselectively, giving products derived from α-functionalization of an intermediate ammonium enolate in a range of formal [2+2] and [4+2] cycloadditions. Formal [2+2] cycloadditions with \textit{N}-tosyl aldimines proceed readily using HBTM-2.1 (10 mol%) with moderate diastereocontrol (up to 87:13 dr) and excellent enantiocontrol (up to >99\% ee). Formal [4+2] cycloadditions with either 4-aryl-trifluoromethyleneones or \textit{N}-aryl-N-aroyldiazenes are also catalyzed by HBTM-2.1 (1-5 mol%), with products obtained in high diastereo- and enantiocontrol (up to 95:5 dr, up to 99\% ee). The simple, two-step elaboration of stereodefined hydrazides into aza-sugar analogues without erosion of enantiopurity has also been demonstrated. Current research
from this laboratory is directed toward developing alternative applications of isothioureas in asymmetric catalysis.

Experimental:

General Information

Reactions involving moisture sensitive reagents were carried out under an argon atmosphere using standard vacuum line techniques in addition to dry solvents. In these cases, all glassware used was flame dried and cooled under vacuum.

For moisture sensitive reactions, solvents (THF, CH$_2$Cl$_2$, toluene, hexane and Et$_2$O) were obtained anhydrous and purified by an alumina column. Petrol is defined as petroleum ether 40-60 °C. All other solvents and commercial reagents were used as supplied without further purification unless stated otherwise. Room temperature (rt) refers to 20–25 °C, with temperatures of 0 and −78 °C obtained using ice/water and CO$_2$(s)/acetone baths, respectively. 1H NMR spectra were acquired at 300, 400, or 500 MHz, 13C{1H} NMR spectra were acquired at 75, 100, or 125 MHz, and 19F{1H} NMR spectra were acquired at 282, 376, or 471 MHz. Chemical shifts are quoted in parts per million (ppm) relative to the residual solvent peak. Coupling constants, J, are quoted in Hertz (Hz). NMR peak assignments were confirmed using 2D 1H correlated spectroscopy (COSY), 2D 1H nuclear Overhauser effect spectroscopy (NOESY), 2D 1H–13C heteronuclear multiple-bond correlation spectroscopy (HMBC), and 2D 1H–13C heteronuclear single quantum coherence (HSQC) where necessary. Infrared spectra were recorded as thin films using an attenuated total reflectance (ATR) accessory. Mass spectrometry (m/z) data was acquired using electrospray ionization (ESI), electron impact (EI), chemical ionization (CI), atmospheric solids analysis probe (ASAP), atmospheric pressure chemical ionization (APCI), or nanospray ionization (NSI) using a time of flight (TOF) mass analyzer. Optical rotations were recorded with a path length of 1 dm and concentrations, c, are quoted in g/100 mL. All chiral high-performance liquid chromatography (HPLC) traces were compared with an authentic racemic trace. Racemic compounds were prepared using general procedure A, employing either DHPB 17 or (±)-HBTM-2.1 23 as catalyst.
Isothiourea catalysts used

DHPB 17, HBTM-2.1 (±)-23 and HBTM-2.1 (2S,3R)-23 were made to literature procedures.16d

\textbf{N-tosyl aldimines used}

4-methyl-N-[(1E)-phenylmethylidene]benzene-1-sulfonamide 19, 4-methyl-N-[(1E)-4-(bromophenyl)methylidene]benzene-1-sulfonamide 25, 4-methyl-N-[(1E)-4-(methoxyphenyl)methylidene]benzene-1-sulfonamide 53, 4-methyl-N-[(1E)-4-(trifluoromethylphenyl)methylidene]benzene-1-sulfonamide 54, N-[(1E)-furan-2-ylmethylidene]-4-methylbenzene-1-sulfonamide 55 and 4-methyl-N-[(1E)-naphthalen-2-ylmethylidene]benzene-1-sulfonamide 56 were made according to literature procedures.37

\textbf{Trifluoromethyl enones used}

(\(E\))-1,1,1-trifluoro-4-phenyl-3-buten-2-one 57, (\(E\))-1,1,1-trifluoro-4-(4-bromophenyl)-3-buten-2-one 58 and (\(E\))-1,1,1-trifluoro-4-(2-thienyl)-3-buten-2-one 59 were made according to literature procedures.16d

\textbf{N-aryl-N-aryldiazenes used}

(NE)-N-(phenylimino)benzamide 60, (NE)-4-fluoro-N-(phenylimino)benzamide 61 and (NE)-N-(phenylimino)furan-2-carboxamide 62 were made according to literature procedures.16c

\textbf{Carboxylic acids used}

(\(E\))-4-phenylbut-3-enoic acid 16, (\(E\))-pent-3-enoic acid 24 and (\(E\))-hex-3-enoic acid 81 were used as purchased.

\textbf{3-methylbut-3-enoic acid 14}

Following a literature procedure,38 to a solution of 3-methylbut-3-en-1-ol (2.00 mL, 19.8 mmol) in acetone (100 mL) at 0 °C was added 2.68 M Jones’ reagent (10.4 mL, 27.7 mmol) and the reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was washed with 2M NaOH and then the aqueous layer acidified with conc HCl and extracted with Et\(_2\)O (x 3). The combined organic extracts were dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo}. The residual oil was purified by distillation to give acid 3-
methylbut-3-enoic acid 14 as a colourless oil (1.50 g, 76%); bp 88-90 °C (20 mmHg); \{lit.38 bp 67-70 °C (10 mmHg)\}; \(\delta_H\) (500 MHz, CDCl\(_3\)) 1.87 (3H, s, \(CH_3\)), 3.11 (2H, s, \(CH_2\)), 4.92 (1H, s, \(=CHH\)), 4.99 (1H, s, \(=CHH\)). Data are in accordance with the literature.38

ethyl 2-cyclopentylideneacetate 63

Following a literature procedure,39 to a suspension of 60% NaH in mineral oil (1.23 g, 51.4 mmol) in Et\(_2\)O (120 mL) at 0 °C was added ethyl 2-(diethoxyphosphoryl)acetate (10.2 mL, 51.4 mmol) and the reaction mixture was stirred for 5 minutes at 0 °C. A solution of cyclopentanone (4.42 mL, 50.0 mmol) in Et\(_2\)O (10 mL) was added and the reaction mixture was allowed to stir at rt for 4 h. The reaction mixture was diluted with water and extracted with Et\(_2\)O (x 3). The combined organic extracts were dried (MgSO\(_4\)), filtered and concentrated \emph{in vacuo}. Chromatographic purification (eluent Et\(_2\)O:petrol 10:90) gave ethyl 2-cyclopentylideneacetate 63 as a colourless oil (7.00 g, 91%); \(\delta_H\) (500 MHz, CDCl\(_3\)) 1.30 (3H, t, \(J\ 7.1, CH_3\)), 1.68 (2H, quintet, \(J\ 6.8, CH_2\)), 1.77 (2H, quintet, \(J\ 7.0, CH_2\)), 2.44-2.47 (2H, m, \(CH_2C\)=), 2.78-2.81 (2H, m, \(CH_2C\)=), 4.17 (2H, q, \(J\ 7.1, CH_2CH_3\)), 5.82 (1H, quintet, \(J\ 2.2, =CH\)). Data are in accordance with the literature.39

ethyl 2-(cyclopent-1-en-1-yl)acetate 64

Following a literature procedure,40 to a solution of DIPA (5.82 mL, 41.2 mmol) in THF (80 mL) at 0 °C was added 2.5 M \(n\)-BuLi (16.5 mL, 41.2 mmol) and the reaction mixture was stirred at that temperature for 30 minutes. The reaction mixture was cooled to −78 °C and a solution of ethyl 2-(cyclopent-1-en-1-yl)acetate 63 (5.88 g, 38.2 mmol) in THF (25 mL) was added dropwise over 15 minutes before stirring for a further 20 minutes. The reaction mixture was quenched by addition of sat. aq. NH\(_4\)Cl and the reaction mixture was warmed to rt before being poured into water and extracted with Et\(_2\)O (x 3). The combined organic extracts were dried (MgSO\(_4\)), filtered and concentrated \emph{in vacuo} to give ethyl 2-(cyclopent-1-en-1-yl)acetate 64 as a light yellow oil (5.68 g, 97%); \(\delta_H\) (500 MHz, CDCl\(_3\)) 1.29 (3H, t, \(J\ 7.1, CH_3\)), 1.93 (2H,
quintet, J 7.5, CH₂), 2.33-2.38 (4H, m, CH₂ and CH₂), 3.14 (2H, s, CH₂CO₂Et), 4.17 (2H, q, J 7.1, CH₂CH₃), 5.55-5.57 (1H, m, =CH). Data are in accordance with the literature.⁴⁰

2-(cyclopent-1-en-1-yl)acetic acid 15

Following a literature procedure,⁴¹ a solution of ethyl 2-(cyclopent-1-en-1-yl)acetate 64 (4.15 g, 27.0 mmol) in 0.5 M KOH (80.8 mL, 40.4 mmol) was heated at reflux for 16 h. Once cooled to rt the reaction mixture was extracted with Et₂O (x 3). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuo. Recrystallisation from petrol gave 2-(cyclopent-1-en-1-yl)acetic acid 15 as a white solid (2.74 g, 59%); mp 44-46 °C; {lit.⁴¹ mp 48-51 °C}; δH (300 MHz, CDCl₃) 1.90-2.00 (2H, m, CH₂), 2.37-2.42 (4H, m, CH₂ and CH₂), 3.21 (2H, s, CH₂CO₂H), 5.63 (1H, m, =CH). Data are in accordance with the literature.⁴¹

(E)-5-methylhex-3-enoic acid 65

Following a literature procedure,⁴² a solution of piperidine (39.5 µL, 0.40 mmol) and acetic acid (22.9 µL, 0.40 mmol) in DMSO (1 mL) was stirred at rt for 5 minutes after which time a solution of malonic acid (4.16 g, 40.0 mmol) and isovaleraldehyde (4.29 mL, 40.0 mmol) in DMSO (20 mL) was added. The reaction mixture was stirred at rt for 20 minutes and then at 100 °C for 16 h. Once cooled to rt, the reaction mixture was diluted with H₂O and extracted with Et₂O (x 3). The combined organic fractions were washed with H₂O, dried (MgSO₄), filtered and concentrated in vacuo. Chromatographic purification (eluent Et₂O:petrol 30:70) gave (E)-5-methylhex-3-enoic acid 65 as a colourless oil (2.93 g, 57%); δH (400 MHz, CDCl₃) 0.99 (6H, d, J 6.8, CH(CH₃)₂), 2.26-2.34 (1H, m, C(5)H), 3.07 (2H, dt, J 6.6, 0.9, C(2)H₂), 5.47 (1H, dtd, J 15.4, 6.7, 1.1, C(3)H), 5.54-5.60 (1H, m, C(4)H). Data are in accordance with the literature.⁴²

(E)-5-phenylpent-3-enoic acid 66

Following a literature procedure,⁴² a solution of piperidine (39.5 µL, 0.40 mmol) and acetic acid (22.9 µL, 0.40 mmol) in DMSO (1 mL) was stirred at rt for 5 minutes after which time a solution of malonic acid
(4.16 g, 40.0 mmol) and 3-phenylpropionaldehyde (5.28 mL, 40.0 mmol) in DMSO (20 mL) was added. The reaction mixture was stirred at rt for 20 minutes and then at 100 °C for 16 h. Once cooled to rt, the reaction mixture was diluted with H2O and extracted with Et2O (x 3). The combined organic fractions were washed with H2O, dried (MgSO4), filtered and concentrated in vacuo. Chromatographic purification (eluent Et2O:petrol 25:75) gave (E)-5-phenylpent-3-enoic acid 66 as a colourless oil (4.15 g, 59%); δH (400 MHz, CDCl3) 3.13 (2H, dq, J 6.8, 1.1, C(5)H2), 3.40 (2H, d, J 6.7, C(2)H2), 5.63 (1H, dtt, J 15.3, 6.9, 1.4, C(3)H), 5.77 (1H, dtt, J 15.3, 6.7, 1.3, C(4)H), 7.18-7.23 (3H, m, Ar(2,6)H and Ar(4)H), 7.28-7.32 (2H, m, Ar(3,5)H). Data are in accordance with the literature.

(Z)-pent-3-en-1-ol 67

Following a literature procedure,44 lindlar’s catalyst (5% on CaCO3, Pb poisoned, 900 mg (45 mg Pd), 0.43 mmol) was degassed in a RB flask. Quinoline (0.72 mL, 6.04 mmol), Et2O (150 mL) and pent-3-yn-1-ol (2.74 mL, 29.7 mmol) were added and a balloon of H2 gas was appended to the reaction flask. H2 gas was bubbled through the reaction mixture at rt for 20 h. The reaction mixture was filtered through Celite concentrated in vacuo and the residual oil was purified by distillation to give alcohol (Z)-pent-3-en-1-ol 67 (94:6 (Z):(E)) as a colourless oil (1.64 g, 64%); bp 140-141 °C (760 mmHg); {lit.44 bp 140 °C (760 mmHg)}; Data for (Z)-isomer: δH (500 MHz, CDCl3) 1.65-1.68 (3H, m, CH3), 2.32-2.37 (2H, m, C(2)H2), 3.66 (2H, q, J 6.2, C(1)H2), 5.37-5.43 (1H, m, C(4)H), 5.62-5.68 (1H, m, C(3)H); Selected data for (E)-isomer: δH (500 MHz, CDCl3) 1.68-1.70 (3H, m, CH3), 2.23-2.28 (2H, m, C(2)H2). Data are in accordance with the literature.44

(Z)-pent-3-enoic acid 68

Following a literature procedure,44 to K2Cr2O7 (56.1 mg, 0.19 mmol), HNO3 (343 mg, 3.81 mmol) and NaIO4 (8.97 g, 42.0 mmol) in H2O (25 mL) was added a solution of (Z)-pent-3-en-1-ol 67 (1.64 g, 19.1 mmol) in MeCN (50 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 8 h followed by rt for 16 h. The inorganic salts were filtered and washed with Et2O. H2O was added and the reaction mixture was
extracted with Et$_2$O (x 3). The combined organic fractions were dried (MgSO$_4$), filtered and concentrated \textit{in vacuo}. The residual oil was purified by distillation to give (Z)-pent-3-enoic acid 68 (94:6 (Z):(E)) as a colourless oil (0.69 g, 36%); bp 100-102 °C (22 mmHg); \{lit.44 bp 100 °C (20 mmHg)}; Data for (Z)-isomer: δ_H (500 MHz, CDCl$_3$) 1.64 (3H, dt, J 6.8, 0.8, CH$_3$), 3.14 (2H, dd, J 7.2, 0.4, C(2)H$_2$), 3.66 (2H, q, J 6.2, C(1)H$_2$), 5.56 (1H, dtq, J 10.7, 7.1, 1.8, C(3)H), 5.66-5.73 (1H, m, C(4)H); Selected data for (E)-isomer: δ_H (500 MHz, CDCl$_3$) 1.70 (3H, dt, J 6.3, 1.3, CH$_3$), 3.06 (2H, dt, J 6.7, 1.2, C(2)H$_2$). Data are in accordance with the literature.44

\textit{(E)-ethyl 3-phenylbut-2-enoate 69}

Following a literature procedure,45 to a suspension of 60% NaH in mineral oil (1.00 g, 41.6 mmol) in THF (35 mL) at 0 °C was added ethyl 2-(diethoxyphosphoryl)acetate (8.26 mL, 41.6 mmol) dropwise over 30 minutes and the reaction mixture was stirred for 30 minutes at rt. A solution of acetophenone (4.85 mL, 41.6 mmol) in THF (15 mL) was added dropwise and the reaction mixture was allowed to stir at rt for 4 h. The reaction mixture was diluted with water and extracted with Et$_2$O (x 3). The combined organic extracts were dried (MgSO$_4$), filtered and concentrated \textit{in vacuo}. Chromatographic purification (eluent Et$_2$O:petrol 5:95) gave (E)-ethyl 3-phenylbut-2-enoate 69 as a colourless oil (2.35 g, 30%); δ_H (500 MHz, CDCl$_3$) 1.35 (3H, t, J 7.1, CH$_2$CH$_3$), 2.61 (3H, d, J 1.3, CH$_3$), 4.25 (2H, q, J 7.1, CH$_2$CH$_3$), 6.16 (1H, q, J 1.2, =CH), 7.38-7.42 (3H, m, ArH), 7.50-7.52 (2H, m, ArH). Data are in accordance with the literature.45

\textit{(E)-3-phenylbut-2-enoic acid 70}

Following a literature procedure,41 a solution of (E)-ethyl 3-phenylbut-2-enoate 69 (2.35 g, 12.4 mmol) in 0.5 M KOH (37.1 mL, 18.6 mmol) was heated at reflux for 16 h. Once cooled to rt the reaction mixture was extracted with Et$_2$O (x 3). The reaction mixture was treated with 1M H$_2$SO$_4$ until acidic and extracted with Et$_2$O (x 3). The combined organic extracts were dried (MgSO$_4$), filtered and concentrated \textit{in vacuo}. Recrystallisation from Et$_2$O gave (E)-3-phenylbut-2-enoic acid 70 as a white solid (1.39 g, 70%); mp 94-
96 °C; {lit.46 mp 95-97 °C}; δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 2.64 (3H, d, J 1.2, CH\textsubscript{3}), 6.21 (1H, q, J 1.2, =CH), 7.41-7.44 (3H, m, ArH), 7.51-7.54 (2H, m, ArH). Data are in accordance with the literature.47

\textit{(E)-ethyl 3,4-diphenylbut-2-enoate 71}

Following a literature procedure,45 to a suspension of 60% NaH in mineral oil (2.04 g, 51.0 mmol) in THF (50 mL) at 0 °C was added ethyl 2-(diethoxyphosphoryl)acetate (10.1 mL, 51.0 mmol) dropwise over 30 minutes and the reaction mixture was stirred for 30 minutes at rt. A solution of 1,2-diphenylethanone (10 g, 51.0 mmol) in THF (20 mL) was added dropwise and the reaction mixture was allowed to stir at rt for 4 h. The reaction mixture was diluted with water and extracted with Et\textsubscript{2}O (x 3). The combined organic extracts were dried (MgSO\textsubscript{4}), filtered and concentrated \textit{in vacuo}. Chromatographic purification (eluent Et\textsubscript{2}O:petrol 5:95) gave \textit{(E)-ethyl 3,4-diphenylbut-2-enoate 71} as a colourless oil (2.35 g, 17%); δ\textsubscript{H} (300 MHz, CDCl\textsubscript{3}) 1.35 (3H, t, J 7.1, CH\textsubscript{2}CH\textsubscript{3}), 4.27 (2H, q, J 7.1, CH\textsubscript{2}CH\textsubscript{3}), 4.55 (2H, s, CH\textsubscript{2}Ph), 6.29 (1H, d, =CH), 7.14-7.27 (5H, m, ArH), 7.33-7.36 (3H, m, ArH), 7.42-7.48 (2H, m, ArH). Data are in accordance with the literature.48

\textit{(E)-3,4-diphenylbut-2-enoic acid 72}

Following a literature procedure,41 a solution of \textit{(E)-ethyl 3,4-diphenylbut-2-enoate 71} (2.35 g, 8.84 mmol) in 0.5 M KOH (26.8 mL, 13.3 mmol) was heated at reflux for 16 h. Once cooled to rt the reaction mixture was extracted with Et\textsubscript{2}O (x 3). The reaction mixture was treated with 1M H\textsubscript{2}SO\textsubscript{4} until acidic and extracted with Et\textsubscript{2}O (x 3). The combined organic extracts were dried (MgSO\textsubscript{4}), filtered and concentrated \textit{in vacuo}. Chromatographic purification (eluent Et\textsubscript{2}O:petrol 25:75) gave \textit{(E)-3,4-diphenylbut-2-enoic acid 72} as a white solid (210 mg, 10%); mp 122-124 °C; {lit.49 mp 138-139 °C}; δ\textsubscript{H} (300 MHz, CDCl\textsubscript{3}) 4.59 (2H, s, CH\textsubscript{2}Ph), 6.34 (1H, s, =CH), 7.18-7.29 (5H, m, ArH), 7.34-7.39 (3H, m, ArH), 7.46-7.49 (2H, m, ArH). Data are in accordance with the literature.49

\textbf{General procedure A: Isothiourea catalysed intermolecular reactions.}
To a solution of acid (1-2 equiv.) in \(\text{CH}_2\text{Cl}_2 \) (~1 mL per 0.2 mmol of acid) were added \(\text{iPr}_2\text{NEt} \) (1.5 equiv. based upon acid) and activating agent (1.5 equiv. based upon acid) at rt. The reaction mixture was allowed to stir at rt for 10 minutes. The requisite isothiourea (1-10 mol%), Michael acceptor/ketone/imine (1 equiv.) and \(\text{iPr}_2\text{NEt} \) (2.5 equiv.) were then added at the required temperature. The reaction mixture was stirred at the required temperature until complete by TLC. The reaction mixture was subsequently quenched by addition of HCl (1 M in \(\text{H}_2\text{O} \)). The reaction mixture was poured into \(\text{H}_2\text{O} \) and extracted with \(\text{CH}_2\text{Cl}_2 \) (x 3). The combined organics were dried (MgSO\(_4\)), filtered and concentrated \textit{in vacuo} to give the crude reaction mixture.

\((3\text{S},4\text{S})\)-4-phenyl-3-\([(E)]-2\text{-phenylethynyl}\)-4-(trifluoromethyl)oxetan-2-one 21 and \((3\text{S},4\text{R})\)-4-phenyl-3-\([(E)]-2\text{-phenylethynyl}\)-4-(trifluoromethyl)oxetan-2-one 73

Following general procedure A, \((E)\)-4-phenylbut-3-enoic acid 16 (259 mg, 1.60 mmol), \(\text{iPr}_2\text{NEt} \) (0.42 mL, 2.40 mmol) and pivaloyl chloride (296 \(\mu \text{L} \), 2.40 mmol) in \(\text{CH}_2\text{Cl}_2 \) (10 mL), DHPB 17 (15.2 mg, 0.08 mmol, 10 mol%), 2,2,2-trifluoro-1-phenylethan-1-one 18 (109 \(\mu \text{L} \), 0.80 mmol) and \(\text{iPr}_2\text{NEt} \) (0.35 ml, 2.00 mmol) for 1.5 h at rt gave crude lactones 21 and 73 (60:40 dr). Chromatographic purification (eluent Et\(_2\text{O}:\text{petrol} 2.5:97.5\)) gave lactone 21 (>98:2 dr) as a white solid (110 mg, 43%) and lactone 73 (>98:2 dr) as a white solid (73.4 mg, 29%).

Following general procedure A, \((E)\)-4-phenylbut-3-enoic acid 16 (259 mg, 1.60 mmol), \(\text{iPr}_2\text{NEt} \) (0.42 mL, 2.40 mmol) and pivaloyl chloride (296 \(\mu \text{L} \), 2.40 mmol) in \(\text{CH}_2\text{Cl}_2 \) (10 mL), HBTM-2.1 (2\(S,3\text{R})\)-23 (24.6 mg, 0.08 mmol, 10 mol%), 2,2,2-trifluoro-1-phenylethan-1-one 18 (109 \(\mu \text{L} \), 0.80 mmol) and \(\text{iPr}_2\text{NEt} \) (0.35 ml, 2.00 mmol) for 1.5 h at \(-78\ °\text{C}\) gave crude lactones (3\(S,4\text{S})\)-21 and (3\(R,4\text{R})\)-73 (65:35 dr). Chromatographic purification (eluent Et\(_2\text{O}:\text{petrol} 2.5:97.5\)) gave lactone (3\(S,4\text{S})\)-21 (>98:2 dr) as a white solid (98.3 mg, 39%) and lactone (3\(R,4\text{R})\)-73 (>98:2 dr) as a white solid (52.6 mg, 21%).

Data for lactone (3\(S,4\text{S})\)-21: mp 66-67 °C; \([\alpha]_{D}^{20}\) -14.8 (c 0.5, CH\(_2\text{Cl}_2\)); Chiral HPLC Chiralcel OD-H (0.5% IPA:hexane, flow rate 1 mL min\(^{-1}\), 211 nm, 30 °C) \(t_R \) (3\(R,4\text{R})\): 9.6 min, \(t_R \) (3\(S,4\text{S})\): 12.6 min, 79% \textit{ee};
ν_{max} (ATR)/cm$^{-1}$ 3080, 3030 (C-H), 1847 (C=O), 1698; δ_H (400 MHz, CDCl$_3$) 4.95-4.98 (1H, m, C(3)H), 5.64 (1H, dd, J 15.7, 9.4, PhCH=CH), 6.71 (1H, d, J 15.7, PhCH=CH), 7.20-7.23 (2H, m, ArH), 7.27-7.31 (3H, m, ArH), 7.46-7.49 (5H, m, ArH); δ_C (100 MHz, CDCl$_3$) 60.9 (C(3)), 79.5 (q, J 32.8, C(4)), 116.1 (PhCH=CH), 123.6 (q, J 280, CF$_3$), 126.9 (ArC), 127.3 (ArC), 128.8 (ArC), 128.8 (ArC), 128.9 (4ry ArC), 129.0 (ArC), 130.1 (ArC), 135.3 (C(4)ArC(1)), 138.4 (PhCH=CH), 165.9 (C(2)=O); δ_F (376 MHz, CDCl$_3$) -78.7 (CF$_3$); m/z (APCI$^+$) 319 ([M+H$^+$], 100%); HRMS (APCI$^+$) C$_{18}$H$_{14}$F$_2$O$_2^+$ ([M+H$^+$]) requires 319.0940; found 319.0940 (-0.1 ppm).

Data for lactone (3S,4R)-73: mp 110-112 °C; $[\alpha]_D^{20}$-93.0 (c 0.5, CH$_2$Cl$_2$); Chiral HPLC Chiralcel OD-H (2% IPA:hexane, flow rate 1 mL min$^{-1}$, 211 nm, 30 °C) t_R(3R,4S): 13.1 min, t_R(3S,4R): 14.9 min, 77% ee; ν_{max} (ATR)/cm$^{-1}$ 3080, 2944 (C-H), 1834 (C=O), 1692; δ_H (400 MHz, CDCl$_3$) 4.77 (1H, d, J 8.7, C(3)H), 6.38-6.47 (1H, m, PhCH=CH), 6.83-6.88 (1H, m, PhCH=CH), 7.34-7.50 (9H, m, ArH); δ_C (100 MHz, CDCl$_3$) 64.9 (C(3)), 79.6 (q, J 30.1, C(4)), 115.1 (PhCH=CH), 123.3 (q, J 281, CF$_3$), 126.3 (ArC), 127.1 (ArC), 128.9 (ArC), 128.9 (ArC), 129.1 (ArC), 130.2 (ArC), 132.9 (4ry ArC), 135.4 (C(4)ArC(1)), 139.0 (PhCH=CH), 165.9 (C(2)=O); δ_F (376 MHz, CDCl$_3$) -74.2 (CF$_3$); m/z (APCI$^+$) 319 ([M+H$^+$], 100%); HRMS (APCI$^+$) C$_{18}$H$_{14}$F$_2$O$_2^+$ ([M+H$^+$]) requires 319.0940; found 319.0941 (+0.2 ppm).

(3S,4R)-1-[(4-methylbenzene)sulfonyl]-4-phenyl-3-[(E)-2-phenylethenyl]azetidin-2-one 22

Following general procedure A, (E)-4-phenylbut-3-enolic acid 16 (259 mg, 1.60 mmol), iPr$_2$NEt (0.42 mL, 2.40 mmol) and pivaloyl chloride (296 µL, 2.40 mmol) in CH$_2$Cl$_2$ (10 mL), DHPB 17 (15.2 mg, 0.08 mmol, 10 mol%), imine 19 (207 mg, 0.80 mmol) (109 µL, 0.80 mmol) and iPr$_2$NEt (0.35 ml, 2.00 mmol) for 1.5 h at rt gave crude lactam 22 (83:17 dr). Chromatographic purification (eluent Et$_2$O:petrol 20:80) gave lactam 22 (>98:2 dr) as a white solid (219 mg, 68%).

Following general procedure A, (E)-4-phenylbut-3-enolic acid 16 (260 mg, 1.60 mmol), iPr$_2$NEt (420 µL, 2.40 mmol) and pivaloyl chloride (296 µL, 2.40 mmol) in CH$_2$Cl$_2$ (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 19 (207 mg, 0.80 mmol) and iPr$_2$NEt (348 µL, 2.00 mmol) for 1.5 h at rt
gave crude lactam (3S,4R)-22 (85:15 dr). Chromatographic purification (eluent Et2O:petrol 20:80) gave lactam (3S,4R)-22 (>98:2 dr) as a white solid (125 mg, 39%); mp 137-139 °C; \[\alpha\]_D^20 +9.8 (c 0.5, CH2Cl2); Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min\(^{-1}\), 211 nm, 30 °C) \(t_R(3S,4R): 24.4\) min, \(t_R(3R,4S): 40.9\) min, 72% ee; \(\nu_{\text{max}}\) (ATR)/cm\(^{-1}\) 3024, 2924 (C-H), 1790 (C=O), 1450, 1359 (S=O), 1165 (S=O); Data for major diastereoisomer: \(\delta_H\) (300 MHz, CDCl3) 2.44 (3H, s, CH3), 3.91 (1H, ddd, \(J\) 8.0, 3.3, 1.1 Hz, C(3)H), 4.90 (1H, d, \(J\) 3.3 Hz, C(4)H), 6.16 (1H, dd, \(J\) 15.9, 8.0 Hz, PhCH=CH), 6.53 (1H, dd, \(J\) 15.9, 1.1 Hz, PhCH=CH), 7.24-7.36 (12H, m, ArH), 7.65-7.69 (2H, m, SO2Ar(2,6)H); \(\delta_C\) (100 MHz, CDCl3) 21.8 (CH3), 62.9 (C(3)), 64.3 (C(4)), 119.3 (HC=CHPh), 126.6 (ArC), 126.8 (ArC), 127.7 (ArC), 128.4 (ArC), 128.8 (ArC), 129.1 (ArC), 129.1 (ArC), 130.0 (ArC), 135.8 (HC=CHPh), 135.8 (4ry ArC), 135.8 (4ry ArC), 135.8 (4ry ArC), 145.4 (C(4)ArC(1)), 165.2 (C(2)=O); m/z (NSI) 404 ([M+H]^+), 65%); HRMS (NSI) C_{24}H_{22}NO_3S^+ ([M+H]^+) requires 404.1315; found 404.1313 (-0.5 ppm).

\((3S,4S)-1-[(4-methylbenzene)sulfonyl]-4-phenyl-3-[(E)-2-phenylethenyl]azetidin-2-one 74\)

Following general procedure A, (E)-4-phenylbut-3-enoic acid 16 (260 mg, 1.60 mmol), iPr2NEt (420 µL, 2.40 mmol) and pivaloyl chloride (296 µL, 2.40 mmol) in CH2Cl2 (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 19 (207 mg, 0.80 mmol) and iPr2NEt (348 µL, 2.00 mmol) for 2.5 h at –78 °C gave crude lactam (3S,4S)-74 (83:17 dr). Chromatographic purification (eluent Et2O:petrol 20:80) gave lactam (3S,4S)-74 (>98:2 dr) as a white solid (136 mg, 42%); mp 127-129 °C; \[\alpha\]_D^20 -6.4 (c 0.5, CH2Cl2); Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min\(^{-1}\), 211 nm, 30 °C) \(t_R(3S,4S): 23.0\) min, \(t_R(3R,4R): 46.8\) min, 16% ee; \(\nu_{\text{max}}\) (ATR)/cm\(^{-1}\) 3024, 2924 (C-H), 1790 (C=O), 1450, 1359 (S=O), 1165 (S=O); Data for major diastereoisomer: \(\delta_H\) (500 MHz, CDCl3) 2.48 (3H, s, CH3), 4.40-4.42 (1H, m, C(3)H), 5.38 (1H, d, \(J\) 6.7 Hz, C(4)H), 5.49 (1H, dd, \(J\) 15.9, 7.3 Hz, PhCH=CH), 6.61 (1H, d, \(J\) 15.8 Hz, PhCH=CH), 7.06-7.07 (2H, m, ArH), 7.16-7.24 (5H, m, ArH), 7.28-7.34 (5H, m, Ar-H), 7.80 (2H, d, \(J\) 8.4 Hz, SO2Ar(2,6)H); \(\delta_C\) (100 MHz, CDCl3) 21.9 (CH3), 58.1 (C(4)), 61.8 (C(3)), 118.4 (HC=CHPh), 126.5 (C(4)ArC(2,6)), 127.5 (ArC), 127.8 (ArC), 128.2 (ArC), 128.6 (ArC), 128.6 (ArC),...
128.9 (ArC), 130.0 (ArC), 133.7 (4ry ArC), 135.8 (4ry ArC), 135.9 (HC=CHPh), 136.1 (4ry ArC), 145.5 (C(4)ArC(1)), 165.0 (C(2)=O); m/z (NSI) 404 ([M+H]+, 70%); HRMS (NSI) C_{24}H_{22}NO_{3}S^+ ([M+H]^+) requires 404.1314; found 404.1313 (+0.2 ppm).

(3S,4R)-4-(4-bromophenyl)-1-[(4-methylbenzene)sulfonyl]-3-[(1E)-prop-1-en-1-yl]azetidin-2-one 26 and (3S,4S)-4-(4-bromophenyl)-1-[(4-methylbenzene)sulfonyl]-3-[(1E)-prop-1-en-1-yl]azetidin-2-one 27

Following general procedure A, (E)-pent-3-enoic acid 24 (162 µL, 1.60 mmol), iPr_{2}NEt (420 µL, 2.40 mmol) and pivaloyl chloride (296 µL, 2.40 mmol) in CH_{2}Cl_{2} (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 25 (270 mg, 0.80 mmol) and iPr_{2}NEt (348 µL, 2.00 mmol) for 1.5 h at rt gave crude lactams (3S,4R)-26 and (3S,4S)-27 (68:32 dr). Chromatographic purification (eluent Et_{2}O:petrol 20:80) gave lactam (3S,4R)-26 (>98:2 dr) as a colourless oil (177 mg, 53%) and lactam (3S,4S)-27 (>98:2 dr) as a white solid (91 mg, 27%):

Data for lactam (3S,4R)-26: Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min^{-1}, 220 nm, 30 °C) t_R(3S,4R): 18.6 min, t_R(3R,4S): 47.0 min, 79% ee; ν_{max} (ATR)/cm^{-1} 3032, 2965 (C-H), 1794 (C=O), 1595, 1366 (S=O), 1169 (S=O); δ_{H} (400 MHz, CDCl_{3}) 1.68 (3H, ddd, J 6.5, 1.6, 0.8 Hz, CH_{3}CH=CH), 2.44 (3H, s, ArCH_{3}), 3.64 (1H, ddt, J 8.0, 3.3, 0.9 Hz, C(3)H), 4.70 (1H, d, J 3.3 Hz, C(4)H), 5.38-5.45 (1H, m, CH_{3}CH=CH), 5.62-5.69 (1H, m, CH_{3}CH=CH), 7.07-7.11 (2H, m, ArH), 7.26-7.29 (2H, m, SO_{2}Ar(3,5)H), 7.40-7.43 (2H, m, ArH), 7.64-7.67 (2H, m, SO_{2}Ar(2,6)H); δ_{C} (125 MHz, CDCl_{3}) 18.2 (CH_{3}CH=CH), 21.8 (ArCH_{3}), 62.8 (C(3)), 63.4 (C(4)), 121.0 (CH_{3}CH=CH), 123.0 (C(4)ArC(4)), 127.6 (ArC), 128.2 (ArC), 130.0 (ArC), 132.1 (ArC), 133.1 (CH_{3}CH=CH), 135.1 (4ry ArC), 135.5 (4ry ArC), 145.5 (C(4)ArC(1)), 165.4 (C(2)=O); m/z (APCI) 420 ([M+H]^+, 98%); HRMS (APCI) C_{19}H_{18}BrNO_{3}S^+ ([M+H]^+) requires 420.0264; found 420.0266 (+0.6 ppm).

Data for lactam (3S,4S)-27: mp 92-94 °C; Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min^{-1}, 211 nm, 30 °C) t_R(3S,4S): 20.9 min, t_R(3R,4R): 23.0 min, 72% ee; ν_{max} (ATR)/cm^{-1} 2941, 2926,
(C-H), 1786 (C=O), 1487, 1368 (S=O), 1125 (S=O); \(\delta_H \) (400 MHz, CDCl\(_3\)) 1.51 (3H, ddd, \(J = 6.6, 1.7, 1.0 \) Hz, CH\(_3\)CH=CH), 2.46 (3H, s, ArCH\(_3\)), 4.16 (1H, ddt, \(J = 7.8, 6.7, 1.1 \), C(3)H), 4.78 (1H, ddq, \(J = 15.3, 7.7, 1.7 \) Hz, CH\(_3\)CH=CH), 5.17 (1H, d, \(J = 6.7 \) Hz, C(4)H), 5.69 (1H, dqd, \(J = 15.3, 6.6, 1.3 \) Hz, CH\(_3\)CH=CH), 6.97-7.00 (2H, m, ArH), 7.31-7.33 (2H, m, SO\(_2\)Ar(3,5)H), 7.40-7.42 (2H, m, ArH), 7.75-7.77 (2H, m, SO\(_2\)Ar(2,6)H); \(\delta_C \) (125 MHz, CDCl\(_3\)) 18.2 (CH\(_3\)CH=CH), 21.9 (ArCH\(_3\)), 58.3 (C(3)), 61.1 (C(4)), 119.4 (CH\(_3\)CH=CH), 122.7 (C(4)ArC(4)), 127.7 (ArC), 129.1 (ArC), 130.1 (ArC), 131.7 (ArC), 133.2 (4ry ArC), 133.9 (CH\(_3\)CH=CH)), 135.6 (4ry ArC), 145.7 (C(4)ArC(1)), 165.4 (C(2)=O); m/z (NSI) 420 ([M+H]\(^{+}\), 100%); HRMS (NSI) C\(_{19}\)H\(_{18}\)BrNO\(_3\)S\(^{+}\) requires 420.0264; found 420.0263 (-0.1 ppm).

Reaction carried out for 1.5 h at \(-78 \) °C gave crude lactams (3S,4R)-26:(3S,4S)-27 (71:29 dr). Chromatographic purification (eluent Et\(_2\)O:petrol 20:80) gave lactam (3S,4R)-26 (>98:2 dr) as a colourless oil (179 mg, 53%) with identical spectroscopic properties as before in 97% ee; \([\alpha]_D^{20}\) 0.6 (c 0.5, CH\(_2\)Cl\(_2\)) and lactam (3S,4S)-27 (>98:2 dr) as a white solid (35.6 mg, 11%) with identical spectroscopic properties as before in >99% ee; \([\alpha]_D^{20}\) -14.6 (c 0.5, CH\(_2\)Cl\(_2\)).

(3S,4R)-4-(4-methoxyphenyl)-1-[(4-methylbenzene)sulfonyl]-3-[(1E)-prop-1-en-1-yl]azetidin-2-one 28

Following general procedure A, (E)-pent-3-enoic acid 24 (162 \(\mu \)L, 1.60 mmol), iPr\(_2\)NEt (420 \(\mu \)L, 2.40 mmol) and pivaloyl chloride (296 \(\mu \)L, 2.40 mmol) in CH\(_2\)Cl\(_2\) (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 53 (231 mg, 0.80 mmol) and iPr\(_2\)NEt (348 \(\mu \)L, 2.00 mmol) for 1.5 h at rt gave crude lactam (3S,4R)-28 (80:20 dr). Chromatographic purification (eluent Et\(_2\)O:petrol 30:70) gave lactam (3S,4R)-28 (96:4 dr) as a yellow oil (220 mg, 74%); \([\alpha]_D^{20}\) -11.2 (c 0.5, CH\(_2\)Cl\(_2\)); Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min\(^{-1}\), 211 nm, 30 °C) \(t_R(3S,4R)\) 17.6 min, \(t_R(3R,4S)\) 53.0 min, 86% ee; \(\nu_{\text{max}} \) (ATR)/cm\(^{-1}\) 2966 (C-H), 1790 (C=O), 1612, 1516, 1364 (S=O), 1167 (S=O); Data for major diastereomer: \(\delta_H \) (500 MHz, CDCl\(_3\)) 1.68 (3H, ddd, \(J = 6.5, 1.6, 0.8 \) Hz, CH\(_3\)CH=CH), 2.42 (3H, s, ArCH\(_3\)), 3.67 (1H, ddt, \(J = 8.0, 3.3, 0.9 \) Hz, C(3)H), 3.80 (3H, s, OCH\(_3\)), 4.73 (1H, d, \(J = 3.3 \) Hz, C(4)H), 5.43
(1H, ddq, J 15.3, 8.0, 1.6 Hz, CH₃CH=CH), 5.63-5.70 (1H, m, CH₂CH=CH), 6.80-6.81 (2H, m, C(4)Ar(3,5)H), 7.12-7.14 (2H, m, C(4)Ar(2,6)H), 7.24 (2H, d, J 8.6 Hz, SO₂Ar(3,5)H), 7.60-7.61 (2H, m, SO₂Ar(2,6)H); δ C (125 MHz, CDCl₃) 18.2 (CH₃CH=CH), 21.8 (ArCH₃), 55.5 (OCH₃), 62.6 (C(3)), 64.0 (C(4)), 114.3 (C(4)Ar(3,5)), 121.4 (CH₂CH=CH), 127.6 (SO₂Ar(2,6)), 127.8 (C(4)ArC(1)), 128.2 (C(4)ArC(2,6)), 129.8 (SO₂ArC(3,5)), 132.6 (CH₂CH=CH), 135.9 (SO₂ArC(1)), 145.1 (SO₂ArC(4)), 160.2 (C(4)ArC(4)), 165.9 (C(2)=O); m/z (ESI) 394 ([M+Na]⁺, 80%); HRMS (ESI) C₂₀H₁₁NSO₄⁺ ([M+Na]⁺) requires 394.1089; found 394.1075 (-2.2 ppm).

(3S,4R)-1-[(4-methylbenzene)sulfonyl]-3-[(1E)-prop-1-en-1-yl]-4-[4-(trifluoromethyl)phenyl]azetidin-2-one 29

Following general procedure A, (E)-pent-3-enoic acid 24 (162 μL, 1.60 mmol), iPr₂NEt (420 μL, 2.40 mmol) and pivaloyl chloride (296 μL, 2.40 mmol) in CH₂Cl₂ (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 54 (262 mg, 0.80 mmol) and iPr₂NEt (348 μL, 2.00 mmol) for 1.5 h at rt gave crude lactam (3S,4R)-29 (87:13 dr). Chromatographic purification (eluent Et₂O:petrol 20:80) gave lactam (3S,4R)-29 (>98:2 dr) as a colourless oil (151 mg, 46%); [α]D²⁰+1.0 (c 0.5, CH₂Cl₂); Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tR(3S,4R): 20.3 min, tR(3R,4S): 48.4 min, 44% ee; ν max (ATR)/cm⁻¹ 2970 (C-H), 1796 (C=O), 1597, 1323 (S=O), 1165 (S=O); Data for major diastereomer: δH (400 MHz, CDCl₃) 1.69 (3H, ddd, J 6.5, 1.6, 0.8 Hz, CH₃CH=CH), 2.44 (3H, s, ArCH₃), 3.67 (1H, ddt, J 8.0, 3.3, 0.9 Hz, C(3)H), 4.79 (1H, d, J 3.3 Hz, C(4)H), 5.39-5.46 (1H, m, CH₂CH=CH), 5.64-5.73 (1H, m, CH₂CH=CH), 7.25-7.28 (2H, m, SO₂Ar(3,5)H), 7.35 (2H, d, J 8.3 Hz, C(4)Ar(3,5)H), 7.55 (2H, d, J 8.1 Hz, C(4)Ar(2,6)H), 7.65-7.68 (2H, m, SO₂Ar(2,6)H); δ C (125 MHz, CDCl₃) 18.2 (CH₃CH=CH), 21.8 (ArCH₃), 63.0 (C(3) or C(4)), 63.2 (C(3) or C(4)), 120.8 (CH₂CH=CH), 123.9 (q, J 271 Hz, CF₃), 125.9 (q, J 3.5 Hz, C(4)ArC(3,5)), 126.9 (C(4)ArC(2,6)), 127.6 (SO₂ArC(2,6)), 130.0 (SO₂ArC(3,5)), 131.2 (q, J 32.5 Hz, C(4)ArC(4)), 133.4 (CH₃CH=CH), 135.4 (SO₂ArC(1)), 140.2 (C(4)ArC(1)), 145.7 (SO₂ArC(4)), 165.2 (C(2)=O); δ F (376 MHz, CDCl₃) -63.3 (CF₃); m/z (NSI) 410 ([M+H]⁺, 15%); HRMS (NSI) C₂₀H₁₉F₃NO₃S⁺ ([M+H]⁺) requires 410.1032; found 410.1030 (-0.5 ppm)
Following general procedure A, (E)-pent-3-enoic acid 24 (162 μL, 1.60 mmol), iPr₂NEt (420 μL, 2.40 mmol) and pivaloyl chloride (296 μL, 2.40 mmol) in CH₂Cl₂ (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 55 (199 mg, 0.80 mmol) and iPr₂NEt (348 μL, 2.00 mmol) for 1.5 h at rt gave crude lactam (3S,4R)-30 (73:27 dr). Chromatographic purification (eluent Et₂O:petrol 20:80) gave lactam (3S,4R)-30 (95:5 dr) as a white solid (171 mg, 65%); mp 137-139 °C; Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tᵣ(3S,4R): 11.6 min, tᵣ(3R,4S): 13.4 min, 45% ee; 𝜈max (ATR)/cm⁻¹ 2976 (C-H), 1788 (C=O), 1595, 1362 (S=O), 1165 (S=O); Data for major diastereoisomer: δH (400 MHz, CDCl₃) 1.71 (3H, ddd, J 6.5, 1.6, 0.9 Hz, CH₃CH=CH), 2.42 (3H, s, ArCH₃), 4.00-4.03 (1H, m), 4.86-4.87 (1H, m, C(3)H), 5.45-5.52 (1H, m, CH₃C=CH), 5.71-5.80 (1H, m, CH₂CH=CH), 6.35 (1H, dd, J 3.3, 1.9 Hz, C(4)ArC(4)H), 6.50 (1H, dd, J 3.3, 0.7 Hz, C(4)ArC(3)H), 7.20 (1H, dt, J 1.0, 0.5 Hz, C(4)ArC(5)H), 7.22-7.24 (2H, m, SO₂Ar(3,5)H), 7.52-7.55 (2H, m, SO₂Ar(2,6)H); δC (125 MHz, CDCl₃) 18.2 (C₃H₃CH=CH), 21.8 (ArCH₃), 56.7 (C(3)), 58.7 (C(4)), 110.9 (C(4)ArC), 112.0 (C(4)ArC), 121.1 (CH₃CH=CH), 127.4 (SO₂ArC(2,6)), 129.8 (SO₂ArC(3,5)), 133.0 (CH₃CH=CH), 135.7 (C(4)ArC(1)), 143.5 (C(4)ArC(5)), 145.0 (SO₂ArC(1)), 147.6 (SO₂ArC(4)), 164.9 (C(2)=O); m/z (APCI) 332 ([M+H]⁺, 100%); HRMS (APCI) C₁₇H₁₈NO₄S⁺ ([M+H]⁺) requires 332.0951; found 332.0954 (+0.9 ppm).

Reaction carried out for 1.5 h at −78 °C gave crude lactam (3S,4R)-30 (63:37 dr). Chromatographic purification (eluent Et₂O:petrol 20:80) gave lactam (3S,4R)-30 (95:5 dr) as a white solid (126 mg, 48%) with identical spectroscopic properties as before in 95% ee; [α]D₂⁰-6.4 (c 0.5, CH₂Cl₂).

(3S,4R)-1-[(4-methylbenzene)sulfonyl]-4-(naphthalen-2-yl)-3-[(1E)-prop-1-en-1-yl]azetidin-2-one 31 and (3S,4S)-1-[(4-methylbenzene)sulfonyl]-4-(naphthalen-2-yl)-3-[(1E)-prop-1-en-1-yl]azetidin-2-one 35
Following general procedure A, (E)-pent-3-enoic acid 24 (162 μL, 1.60 mmol), iPr₂NEt (420 μL, 2.40 mmol) and pivaloyl chloride (296 μL, 2.40 mmol) in CH₂Cl₂ (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 56 (247 mg, 0.80 mmol) and iPr₂NEt (348 μL, 2.00 mmol) for 1.5 h at rt gave crude lactams (3S,4R)-31 and (3S,4S)-75 (67:33 dr). Chromatographic purification (eluent Et₂O:petrol 20:80) gave lactam (3S,4R)-31 (>98:2 dr) as a colourless oil (188 mg, 60%) and lactam (3S,4S)-75 (94:6 dr) as a colourless oil (96 mg, 31%):

Data for lactam (3S,4R)-31: Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tᵣ(3S,4R): 17.1 min, tᵣ(3R,4S): 37.0 min, 81% ee; νₘₐₓ (ATR)/cm⁻¹ 2972 (C-H), 1792 (C=O), 1699, 1364 (S=O), 1167 (S=O); δ_H (500 MHz, CDCl₃) 1.71 (3H, ddd, J 6.5, 1.5, 0.7 Hz, CH₃CH=CH), 2.38 (3H, s, ArCH₃), 3.77 (1H, ddd, J 7.9, 2.4, 0.8 Hz, C(3)H), 4.95 (1H, d, J 3.3 Hz, C(4)H), 5.48-5.53 (1H, m, CH₃CH=CH), 5.68-5.72 (1H, m, CH₃CH=CH), 7.14-7.16 (2H, m, SO₂Ar(3,5)H), 7.23 (1H, dd, J 8.5, 1.8 Hz, C(4)ArH), 7.49-7.53 (2H, m, ArH), 7.60-7.63 (2H, m, SO₂Ar(2,6)H), 7.70-7.72 (1H, m, C(4)Ar(1)H), 7.74 (1H, d, J 8.5, C(4)ArH), 7.81-7.84 (1H, m, C(4)ArH); δ_C (125 MHz, CDCl₃) 18.2 (CH₃CH=CH), 21.7 (ArCH₃), 62.9 (C(3)), 64.4 (C(4)), 121.3 (CH₃CH=CH), 123.3 (ArC), 126.6 (ArC), 126.7 (ArC), 126.8 (ArC), 127.6 (SO₂ArC(2,6)), 127.8 (ArC), 128.1 (ArC), 129.0 (ArC), 129.8 (SO₂ArC(3,5)), 132.9 (CH₃CH=CH)), 133.0 (4ry ArC), 133.1 (4ry ArC), 133.5 (4ry ArC), 135.7 (4ry ArC), 145.4 (C(4)ArC(1)), 165.7 (C(2)=O); m/z (APCI) 392 ([M+H]⁺, 26%); HRMS (APCI) C₂₃H₂₂NO₃S⁺ ([M+H]⁺) requires 392.1315; found 392.1318 (+0.8 ppm).

Data for lactam (3S,4S)-75: Chiral HPLC Chiralcel OD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tᵣ(3S,4S): 19.2 min, tᵣ(3R,4R): 25.0 min, 81% ee; νₘₐₓ (ATR)/cm⁻¹ 2972 (C-H), 1790 (C=O), 1597, 1364 (S=O), 1169 (S=O); δ_H (400 MHz, CDCl₃) 1.43 (3H, ddd, J 6.6, 1.7, 1.0 Hz, CH₃CH=CH), 2.43 (3H, s, ArCH₃), 4.26 (1H, ddq, J 7.8, 6.8, 1.0, C(3)H), 4.84 (1H, ddq, J 15.3, 7.8, 1.7 Hz, CH₃CH=CH), 5.42 (1H, d, J 6.7 Hz, C(4)H), 5.66-5.75 (1H, m, CH₃CH=CH), 7.13 (1H, dd, J 8.5, 1.9 Hz, C(4)ArH), 7.24-7.27 (2H, m, SO₂Ar(3,5)H), 7.48-7.52 (2H, m, ArH), 7.55 (1H, dd, J 1.2, 0.5, C(4)Ar(1)H), 7.66-7.68 (1H, m, C(4)ArH), 7.72-7.77 (3H, m, ArH), 7.81-7.84 (1H, m, C(4)ArH); δ_C (100
MHZ, CDCl$_3$) 18.1 (CH$_3$CH=CH), 21.8 (ArCH$_3$), 58.6 (C(3)), 62.0 (C(4)), 119.7 (CH$_3$CH=CH), 124.8 (ArC), 126.6 (ArC), 126.6 (ArC), 127.1 (ArC), 127.8 (ArC), 127.8 (SO$_2$ArC(2,6)), 128.1 (ArC), 128.3 (ArC), 130.0 (SO$_2$ArC(3,5)), 131.5 (4ry ArC), 133.0 (4ry ArC), 133.4 (4ry ArC), 133.6 (CH$_3$CH=CH), 135.9 (4ry ArC), 145.4 (C(4)ArC(1)), 165.7 (C(2)=O); m/z (APCI) 392 ([M+H]$^+$, 83%); HRMS (APCI) C$_{23}$H$_{22}$NO$_3$S$^+$ ([M+H]$^+$) requires 392.1315; found 392.1316 (+0.3 ppm).

Reaction carried out for 1.5 h at −78 °C gave crude lactams (3S,4R)-31:(3S,4S)-75 (76:24 dr). Chromatographic purification (eluent Et$_2$O:petrol 20:80) gave lactam (3S,4R)-31 (>98:2 dr) as a colourless oil (201 mg, 64%) with identical spectroscopic properties as before in 97% ee; $[\alpha]_D^{20}$-10.6 (c 0.5, CH$_2$Cl$_2$) and lactam (3S,4S)-75 (95:5 dr) as a colourless oil (69.0 mg, 22%) with identical spectroscopic properties as before in 99% ee; $[\alpha]_D^{20}$+0.6 (c 0.5, CH$_2$Cl$_2$).

(3S,4R)-3-[(1E)-but-1-en-1-yl]-1-[(4-methylbenzene)sulfonyl]-4-phenylazetidin-2-one 32 and (3S,4S)-3-[(1E)-but-1-en-1-yl]-1-[(4-methylbenzene)sulfonyl]-4-phenylazetidin-2-one 76

Following general procedure A, (E)-hex-3-enoic acid 81 (190 µL, 1.60 mmol), iPr$_2$NEt (420 µL, 2.40 mmol) and pivaloyl chloride (296 µL, 2.40 mmol) in CH$_2$Cl$_2$ (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 19 (207 mg, 0.80 mmol) and iPr$_2$NEt (348 µL, 2.00 mmol) for 1.5 h at rt gave crude lactams (3S,4R)-32 and (3S,4S)-76 (84:16 dr). Chromatographic purification (eluent Et$_2$O:petrol 20:80) gave lactam (3S,4R)-32 (>98:2 dr) as a colourless oil (158 mg, 55%) and lactam (3S,4S)-76 (98:2 dr) as a white solid (22 mg, 8%).

Data for lactam (3S,4R)-32: Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min$^{-1}$, 211 nm, 30 °C) t$_R$(3S,4R): 11.5 min, t$_R$(3R,4S): 17.8 min, 81% ee; ν_{max} (ATR)/cm$^{-1}$ 2967 (C=H), 1794 (C=O), 1699, 1366 (S=O), 1169 (S=O); Data for major diastereomer: δ_H (500 MHz, CDCl$_3$) 0.95 (3H, t, J 7.5 Hz, CH$_2$CH$_3$), 2.00-2.07 (2H, m, CH$_2$CH$_3$), 2.42 (3H, s, ArCH$_3$), 3.70 (1H, ddt, J 7.8, 2.4, 0.9 Hz, C(3)H), 4.77 (1H, d, J 3.3 Hz, C(4)H), 5.42 (1H, ddt, J 15.4, 7.8, 1.6 Hz, EtCH=CH), 5.70 (1H, dt, J 15.4, 6.3, 1.1 Hz, EtCH=CH), 7.21-7.25 (4H, m, ArH), 7.27-7.34 (3H, m, ArH), 7.62-7.64 (2H, m, SO$_2$Ar(2,6)H); 28
δ_C (125 MHz, CDCl₃) 13.1 (CH₂CH₃), 21.8 (ArCH₃), 25.6 (CH₂CH₃), 62.6 (C(3) or C(4)), 64.2 (C(3) or C(4)), 119.1 (EtCH=CH), 126.7 (C(4)ArC(2,6)), 127.6 (SO₂ArC(2,6)), 128.9 (C(4)ArC(3,5)), 129.0 (C(4)ArC(4)), 129.9 (SO₂ArC(3,5)), 135.7 (4ry ArC), 136.0 (4ry ArC), 139.3 (EtCH=CH), 145.2 (C(4)ArC(1)), 165.8 (C(2)=O); m/z (NSI) 356 ([M+H]⁺, 37%); HRMS (NSI) C₂₀H₂₂NO₃S⁺ ([M+H]⁺) requires 356.1315; found 356.1316 (+0.3 ppm).

Data for lactam (3S,4S)-76: mp 85-87 °C; Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tᵣ(3S,4S): 14.9 min, tᵣ(3R,4R): 27.9 min, 74% ee; υ_max (ATR)/cm⁻¹ 2967 (C-H), 1788 (C=O), 1456, 1368 (S=O), 1171 (S=O); Data for major diastereomer: δ_H (500 MHz, CDCl₃) 0.72 (3H, t, J 7.4 Hz, CH₃CH₂), 1.78-1.84 (2H, m, CH₃CH₂), 2.45 (3H, s, ArCH₃), 4.16 (1H, ddd, J 7.6, 6.7, 1.0, C(3)H), 4.76 (1H, ddt, J 15.5, 7.6, 1.6 Hz, EtCH=CH), 5.24 (1H, d, J 6.7 Hz, C(4)H), 5.69 (1H, dtd, J 15.5, 6.4, 1.2 Hz, EtCH=CH), 7.08-7.11 (2H, m, ArH), 7.25-7.31 (5H, m, ArH), 7.76-7.78 (2H, m, SO₂Ar(2,6)H); δ_C (100 MHz, CDCl₃) 13.1 (CH₃CH₂), 21.8 (ArCH₃), 25.6 (CH₃CH₂), 58.2 (C(3), 61.8 (C(4)), 117.7 (EtCH=CH), 127.5 (C(4)ArC(2,6)), 127.8 (SO₂ArC(2,6)), 128.4 (C(4)ArC(3,5)), 128.6 (C(4)ArC(4)), 130.0 (SO₂ArC(3,5)), 134.0 (4ry ArC), 135.8 (4ry ArC), 140.0 (EtCH=CH), 145.4 (C(4)ArC(1)), 165.7 (C(2)=O); m/z (NSI) 356 ([M+H]⁺, 39%); HRMS (NSI) C₂₀H₂₂NO₃S⁺ ([M+H]⁺) requires 356.1315; found 356.1316 (+0.3 ppm)

Reaction carried out for 1.5 h at −78 °C gave crude lactams (3S,4R)-32:(3S,4S)-76 (82:18 dr). Chromatographic purification (eluent Et₂O:petrol 20:80) gave lactam (3S,4R)-32 (>98:2 dr) as a colourless oil (189 mg, 67%) with identical spectroscopic properties as before in 98% ee; [α]_D^{20}+2.4 (c 0.5, CH₂Cl₂) and lactam (3S,4S)-76 (98:2 dr) as a white solid (47.0 mg, 16%) with identical spectroscopic properties as before in >99% ee; [α]_D^{20}-9.3 (c 0.5, CH₂Cl₂).

(3S,4R)-1-[(4-methylbenzene)sulfonyl]-3-[(1E)-3-methylbut-1-en-1-yl]-4-phenylazetidin-2-one 33

Following general procedure A, (E)-5-methylhex-3-enoic acid 65 (205 mg, 1.60 mmol), iPr₂NEt (420 µL, 2.40 mmol) and pivaloyl chloride (296 µL, 2.40 mmol) in CH₂Cl₂ (10 mL), HBTM-2.1 (2S,3R)-23 (24.6
mg, 0.08 mmol, 10 mol%), imine 19 (207 mg, 0.80 mmol) and iPr2NEt (348 µL, 2.00 mmol) for 1.5 h at rt gave crude lactam (3S,4R)-33 (73:27 dr). Chromatographic purification (eluent Et2O:petrol 15:85) gave lactam (3S,4R)-33 (>98:2 dr) as a colourless solid (155 mg, 53%); Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 220 nm, 30 °C) tR(3S,4R): 9.9 min, tR(3R,4S): 14.4 min, 82% ee; νmax (ATR)/cm⁻¹ 2961 (C-H), 1794 (C=O), 1597, 1435, 1366 (S=O), 1169 (S=O); Data for major diastereomer: δH (500 MHz, CDCl3) 0.95 (6H, d, J 6.8 Hz, CH(C3H3)2), 2.23-2.30 (1H, m, CH(CH3)2), 2.42 (3H, s, ArCH3), 3.68-3.70 (1H, m, C(3)H), 4.77 (1H, d, J 3.3 Hz, C(4)H), 5.38 (1H, ddd, J 15.5, 7.7, 1.4 Hz, iPrCH=CH), 5.62 (1H, ddd, J 15.5, 6.5, 1.1 Hz, iPrCH=CH), 7.21-7.25 (4H, m, ArH), 7.27-7.34 (3H, m, ArH), 7.62-7.64 (2H, m, SO2Ar(2,6)H); δC (125 MHz, CDCl3) 21.8 (ArCH3), 22.0 (CH(CH3)2), 31.2 (CH(CH3)2), 62.5 (C(3)), 64.3 (C(4)), 117.3 (iPrCH=CH), 126.7 (C(4)ArC(2,6)), 127.6 (SO2ArC(2,6)), 128.9 (C(4)ArC(3,5)), 129.0 (C(4)ArC(4)), 129.8 (SO2ArC(3,5)), 135.7 (4ry ArC), 136.0 (4ry ArC), 144.4 (iPrCH=CH), 145.2 (C(4)ArC(1)), 165.8 (C(2)=O); m/z (NSI) 370 ([M+H]+, 32%); HRMS (NSI) C21H24NO3S+ ([M+H]+) requires 370.1471; found 370.1472 (+0.2 ppm).

Reaction carried out for 1.5 h at -78 °C gave crude lactam (3S,4R)-33 (79:21 dr). Chromatographic purification (eluent Et2O:petrol 15:85) gave lactam (3S,4R)-33 (>98:2 dr) as a colourless oil (185 mg, 63%) with identical spectroscopic properties as before in 97% ee; [α]D20+1.6 (c 0.5, CH2Cl2).

(3S,4R)-1-[(4-methylbenzene)sulfonyl]-4-phenyl-3-[(1E)-3-phenylprop-1-en-1-yl]azetidin-2-one 34 and (3S,4S)-1-[(4-methylbenzene)sulfonyl]-4-phenyl-3-[(1E)-3-phenylprop-1-en-1-yl]azetidin-2-one 77

Following general procedure A, (E)-5-phenylpent-3-enoic acid 66 (282 mg, 1.60 mmol), iPr2NEt (420 µL, 2.40 mmol) and pivaloyl chloride (296 µL, 2.40 mmol) in CH2Cl2 (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 19 (207 mg, 0.80 mmol) and iPr2NEt (348 µL, 2.00 mmol) for 1.5 h at rt gave crude lactams (3S,4R)-34 and (3S,4S)-77 (72:28 dr). Chromatographic purification (eluent
Et₂O:petrol 25:75) gave lactam (3S,4R)-**34** (>98:2 dr) as a colourless oil (197 mg, 59%) and lactam (3S,4S)-**77** (95:5 dr) as a colourless oil (61 mg, 18%):

Data for lactam (3S,4R)-**34**: Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tᵣ(3S,4R): 18.4 min, tᵣ(3R,4S): 25.3 min, 62% ee; νₘₐₓ (ATR)/cm⁻¹ 3028 (C-H), 1792 (C=O), 1597, 1364 (S=O), 1169 (S=O); Data for major diastereoisomer: δ_H (500 MHz, CDCl₃) 2.42 (3H, s, ArCH₃), 3.37 (2H, d. J 6.7 Hz, PhCH₂), 3.76 (1H, ddd, J 7.7, 3.3, 0.9 Hz, C(3)H), 4.81 (1H, d, J 3.3 Hz, C(4)H), 5.51 (1H, ddt, J 15.4, 7.7, 1.5 Hz, BnCH=CH), 7.12-7.14 (2H, m, ArH), 7.20-7.23 (5H, m, ArH), 7.28-7.35 (5H, m, ArH), 7.62-7.64 (2H, m, SO₂(2,6)H); δ_C (125 MHz, CDCl₃) 21.8 (ArCH₃), 38.9 (PhCH₂CH=CH), 62.3 (C(3)), 64.1 (C(4)), 121.4 (BnCH=CH), 126.4 (ArC), 126.7 (ArC), 127.5 (ArC), 128.6 (ArC), 128.9 (ArC), 129.1 (C(4)ArC(4)), 129.8 (SO₂ArC(3,5)), 135.7 (4ry ArC), 135.8 (4ry ArC), 136.1 (BnCH=CH), 139.0 (SO₂ArC(1)), 145.2 (C(4)ArC(1)), 165.4 (C(2)=O); m/z (NSI) 418 ([M+H]⁺, 20%); HRMS (NSI) C₂₅H₂₄NO₃S⁺ ([M+H]⁺) requires 418.1471; found 418.1467 (-1.1 ppm).

Data for lactam (3S,4S)-**77**: Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tᵣ(3S,4S): 14.4 min, tᵣ(3R,4R): 26.7 min, 39% ee; νₘₐₓ (ATR)/cm⁻¹ 3028, 2924 (C-H), 1788 (C=O), 1595, 1359 (S=O), 1167 (S=O); Data for minor diastereoisomer: δ_H (500 MHz, CDCl₃) 2.45 (3H, s, ArCH₃), 3.12 (2H, d. J 6.7 Hz, PhCH₂), 4.18-4.21 (1H, m, C(3)H), 4.85 (1H, ddt, J 15.4, 7.7, 1.5 Hz, BnCH=CH), 5.26 (1H, d, J 6.7 Hz, C(4)H), 5.78 (1H, ddt, J 15.4, 6.8, 1.2, BnCH=CH), 6.76-6.79 (2H, m, ArH), 7.08-7.23 (5H, m, ArH), 7.27-7.35 (5H, m, ArH), 7.77-7.79 (2H, m, SO₂(2,6)H); δ_C (125 MHz, CDCl₃) 21.9 (ArCH₃), 38.9 (PhCH₂), 58.1 (C(3)), 61.8 (C(4)), 120.4 (BnCH=CH), 126.2 (ArC), 127.4 (ArC), 127.8 (ArC), 128.4 (ArC), 128.6 (ArC), 128.7 (ArC), 128.7 (ArC), 130.0 (SO₂ArC(3,5)), 134.0 (4ry ArC), 135.7 (4ry ArC), 136.8 (BnCH=CH), 138.9 (SO₂ArC(1)), 145.5 (C(4)ArC(1)), 165.4 (C(2)=O); m/z (NSI) 418 ([M+H]⁺, 28%); HRMS (NSI) C₂₅H₂₄NO₃S⁺ ([M+H]⁺) requires 418.1471; found 418.1459 (-3.0 ppm)
Reaction carried out for 1.5 h at −78 °C gave crude lactams (3S,4R)-34:(3S,4S)-77 (72:28 dr). Chromatographic purification (eluent Et₂O:petrol 25:75) gave lactam (3S,4R)-34 (>98:2 dr) as a colourless oil (189 mg, 57%) with identical spectroscopic properties as before in 95% ee; [α]_D^{20} +0.8 (c 0.5, CH₂Cl₂) and lactam (3S,4S)-77 (95:5 dr) as a colourless oil (53.0 mg, 16%) with identical spectroscopic properties as before in 97% ee; [α]_D^{20} -6.8 (c 0.5, CH₂Cl₂).

(3S,4R)-1-[(4-methylbenzene)sulfonyl]-4-phenyl-3-[(1Z)-prop-1-en-1-yl]azetidin-2-one 35 and (3S,4S)-1-[(4-methylbenzene)sulfonyl]-4-phenyl-3-[(1Z)-prop-1-en-1-yl]azetidin-2-one 78

Following general procedure A, (Z)-pent-3-enoic acid 68 (160 mg, 1.60 mmol), iPr₂NEt (420 µL, 2.40 mmol) and pivaloyl chloride (296 µL, 2.40 mmol) in CH₂Cl₂ (10 mL), HBTM-2.1 (2S,3R)-23 (24.6 mg, 0.08 mmol, 10 mol%), imine 19 (207 mg, 0.80 mmol) and iPr₂NEt (348 µL, 2.00 mmol) for 1.5 h at rt gave crude lactams (3S,4R)-35 and (3S,4S)-78 (48:52 dr). Chromatographic purification (eluent Et₂O:petrol 20:80) gave lactam (3S,4R)-35 (92:8 dr) as a colourless oil (89 mg, 33%) and lactam (3S,4S)-78 (88:12 dr) as a white solid (97 mg, 36%):

Data for lactam (3S,4R)-35: Chiral HPLC Chiralpak AD-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) t_R(3R,4S): 14.5 min, t_R(3S,4R): 16.0 min, 92% ee; ν_max (ATR)/cm⁻¹ 3030, 2967 (C-H), 1788 (C=O), 1456, 1362 (S=O), 1167 (S=O); Data for major diastereoisomer: δ_H (500 MHz, CDCl₃) 1.51 (3H, dd, J 6.9, 1.8 Hz, CH₃CH=CH₂), 2.43 (3H, s, ArCH₃), 4.00-4.02 (1H, m, C(3)H), 4.75 (1H, d, J 3.2 Hz, C(4)H), 5.44 (1H, ddq, J 10.6, 8.8, 1.8 Hz, CH₂CH=CH₂), 5.78 (1H, dqd, J 10.7, 6.9, 1.4 Hz, CH₂CH=CH₂), 7.23-7.25 (4H, m, ArH), 7.28-7.35 (3H, m, ArH), 7.62-7.65 (2H, m, SO₂Ar(2,6)H); δ_C (125 MHz, CDCl₃) 14.0 (CH₃CH=CH₂), 21.8 (ArCH₃), 58.2 (C(3)), 64.4 (C(4)), 120.5 (CH₃CH=CH₂), 126.7 (C(4)ArC(3,5)), 127.6 (SO₂ArC(3,5)), 128.9 (SO₂ArC(2,6)), 129.1 (C(4)ArC(4)), 129.9 (C(4)ArC(2,6)), 132.1 (CH₃CH=CH₂), 135.7 (4ry ArC), 136.0 (4ry ArC), 145.3 (C(4)ArC(1)), 165.9 (C(2)=O); m/z (NSI) 342 ([M+H]⁺, 42%); HRMS (NSI) C₁₉H₂₀NO₃S⁺ ([M+H]⁺) requires 342.1158; found 342.1159 (+0.2 ppm)
Data for lactam (3S,4S)-78: mp 83-85 °C: Chiral HPLC Chiralcel OD-H (10% IPA:hexane, flow rate 1 mL min\(^{-1}\), 211 nm, 30 °C) \(t_R(3S,4S): 12.0 \text{ min}, t_R(3R,4R): 15.8 \text{ min}, 98\% \text{ ee}; \nu_{\text{max}} (\text{ATR})/\text{cm}^{-1} 3032, 2922 (\text{C-H}), 1788 (\text{C=O}), 1458, 1354 (\text{S=O}), 1165 (\text{S}=\text{O}); \text{ Data for minor diastereoisomer: } \delta_H (500 \text{ MHz, CDCl}_3) 1.55-1.57 (3H, m, \text{CH}_3\text{CH}=\text{CH}), 2.46 (3H, s, \text{ArCH}_3), 4.47-4.50 (1H, m, C(3)\text{H}), 4.89-4.94 (1H, m, \text{CH}_3\text{CH}=\text{CH}), 5.31 (1H, d, \text{J} 6.8 \text{ Hz, C(4)H}), 5.54 (1H, dqd, \text{J} 10.8, 6.9, 1.5 \text{ Hz, CH}_3\text{CH}=\text{CH}), 7.09-7.11 (2H, m, ArH), 7.23-7.34 (5H, m, ArH), 7.76-7.78 (2H, m, \text{SO}_2\text{Ar}(2,6)\text{H}); \delta_C (125 \text{ MHz, CDCl}_3) 13.9 (\text{CH}_3\text{CH}=\text{CH}), 21.9 (\text{ArCH}_3), 53.7 (C(3)), 61.8 (C(4)), 118.6 (\text{CH}_3\text{CH}=\text{CH}), 127.4 (\text{C}(4)\text{ArC}(3,5)), 127.8 (\text{SO}_2\text{ArC}(3,5)), 128.5 (\text{SO}_2\text{ArC}(2,6)), 128.7 (\text{C}(4)\text{ArC}(4)), 130.0 (\text{C}(4)\text{ArC}(2,6)), 132.1 (\text{CH}_3\text{CH}=\text{CH}), 134.0 (4\text{ry ArC}), 135.7 (4\text{ry ArC}), 145.4 (\text{C}(4)\text{ArC}(1)), 165.9 (C(2)=\text{O}); m/z (\text{NSI}) 342 ([M+H]^+), 30%; \text{ HRMS (NSI)} \text{ C}_{19}\text{H}_{20}\text{NO}_3\text{S}^- ([M+H]^+) \text{ requires 342.1158; found 342.1160 (+0.5 ppm)}

\text{Reaction carried out for 1.5 h at } -78 \text{ °C gave crude lactams (3S,4R)-35:(3S,4S)-78 (43:57 dr). } \text{Chromatographic purification (eluent Et}_2\text{O:petrol 20:80) gave lactam (3S,4R)-35 (92:8 dr) as a colourless oil (58 mg, 21\%) with identical spectroscopic properties as before in 99\% \text{ ee}; } \left[\alpha\right]_D^{20}+4.2 (c 0.5, \text{CH}_2\text{Cl}_2) \text{ and lactam (3S,4S)-78 (88:12 dr) as a white solid (99.0 mg, 36\%) with identical spectroscopic properties as before in 99\% \text{ ee}; } \left[\alpha\right]_D^{20}-14.2 (c 0.5, \text{CH}_2\text{Cl}_2).

\textbf{(3S,4R)-4-phenyl-3-((E)-prop-1-en-1-yl)-6-(trifluoromethyl)-3,4-dihydro-2H-pyran-2-one 36}

\text{Following general procedure A, (E)-pent-3-enoic acid 24 (40.6 \mu\text{L}, 0.40 mmol), } \text{iPr}_2\text{NEt (104 \mu\text{L}, 0.60 mmol) and pivaloyl chloride (74.0 \mu\text{L}, 0.60 mmol) in CH}_2\text{Cl}_2 (2 \text{ mL}), \text{HBTM-2.1 (2S,3R)-23 (6.16 mg, 0.02 mmol, 5 mol\%)}, \text{(E)-1,1,1-trifluoro-4-phenyl-3-buten-2-one 57 (80.0 mg, 0.40 mmol) and } \text{iPr}_2\text{NEt (174 \mu\text{L}, 1.0 mmol) for 5 minutes at rt gave crude lactone (3S,4R)-36 (88:12 dr). } \text{Chromatographic purification (eluent Et}_2\text{O:petrol 4:96) gave lactone (3S,4R)-36 (88:12 dr) as a colourless oil (89.8 mg, 80\%); } \left[\alpha\right]_D^{20}-212.4 (c 0.5, \text{CH}_2\text{Cl}_2); \text{ Chiral HPLC Chiralcel OD-H (1\% IPA:hexane, flow rate 1 mL min}^{-1}, 211 \text{ nm, 30 °C) major diastereoisomer: } t_R(3S,4R): 9.7 \text{ min}, t_R(3R,4S): 13.2 \text{ min, 96\% \text{ ee}; minor diastereoisomer } t_R: 10.7 \text{ min, } t_R: 14.8 \text{ min, 15\% \text{ ee}; } \nu_{\text{max}} (\text{ATR})/\text{cm}^{-1} 3060, 3027 (\text{C-H}), 1784 (\text{C=O}), 33
Data for major diastereoisomer: δH (500 MHz, CDCl3) 1.68 (3H, t, J = 5.9, CH3), 3.43 (1H, t, J = 6.9, C(3)H), 3.70-3.75 (1H, m, C(4)H), 5.44-5.56 (2H, m, C(3)CH=CHCH3 and C(3)CH=CHCH3), 6.09 (1H, d, J = 4.5, C(5)H), 7.11 (2H, d, J = 7.8, C(4)Ar(2,6)H), 7.31-7.40 (3H, m, C(4)Ar(3,5)H and C(4)Ar(4)H); δC (75 MHz, CDCl3) 18.1 (CH3), 43.2 (C(4)), 49.9 (C(3)), 109.7 (q, J = 3.5, C(5)), 118.5 (q, J = 270, CF3), 123.8 (C(3)CH=CHCH3), 127.4 (ArC), 128.1 (ArC), 129.2 (ArC), 132.1 (C(3)CH=CHCH3), 138.7 (4ry C(4)ArC(1)), 140.8 (q, J = 37.9, C(6)), 166.1 (C(2)); δF (376 MHz, CDCl3) -72.6 (CF3); Selected data or minor diastereoisomer: δH (500 MHz, CDCl3) 3.63 (1H, t, J = 7.8, C(3)H), 3.86-3.88 (1H, m, C(4)H), 5.13 (1H, d, J = 15.4, C(3)CH=CHCH3), 5.69 (1H, d, J = 14.7, C(3)CH=CHCH3), 6.23 (1H, d, J = 5.7, C(5)H), 7.11 (2H, d, J = 7.7, Ar(2,6)H); δC (75 MHz, CDCl3) 18.0 (CH3), 43.0 (C(4)), 47.7 (C(3)), 110.8 (q, J = 3.5, C(5)), 122.6 (C(3)CH=CHCH3), 128.2 (ArC), 128.3 (ArC), 129.1 (ArC), 132.2 (C(3)CH=CHCH3), 166.6 (C(2)); δF (376 MHz, CDCl3) -72.7 (CF3); m/z (NSI+) 300 ([M+NH4]+, 100%); HRMS (NSI+) C13H17F3NO2+ ([M+NH4]+) requires 300.1206; found 300.1206 (+0.0 ppm).

(3S,4R)-4-phenyl-3-((E)-but-1-en-1-yl)-6-(trifluoromethyl)-3,4-dihydro-2H-pyran-2-one 37

Following general procedure A, (E)-hex-3-enoic acid 81 (47.4 µL, 0.40 mmol), iPr2NEt (104 µL, 0.60 mmol) and pivaloyl chloride (74.0 µL, 0.60 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-23 (6.16 mg, 0.02 mmol, 5 mol%), (E)-1,1,1-trifluoro-4-phenyl-3-buten-2-one 57 (80.0 mg, 0.40 mmol) and iPr2NEt (174 µL, 1.0 mmol) for 5 minutes at rt gave crude lactone (3S,4R)-37 (90:10 dr). Chromatographic purification (eluent Et2O:petrol 3:97) gave lactone (3S,4R)-37 (93:7 dr) as a colourless oil (98.7 mg, 83%); [α]D20 -191.0 (c 0.5, CH2Cl2); Chiral HPLC Chiralcel OD-H (1% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) major diastereoisomer: tR(3S,4R): 8.9 min, tR(3R,4S): 12.4 min, 96% ee; minor diastereoisomer tR: 9.9 min, tR: 14.4 min, 12% ee; νmax (ATR)/cm⁻¹ 3065, 2968 (C-H), 1786 (C=O), 1699 (C=O), 1699 nm, 30 °C) major diastereoisomer: tR(3S,4R): 8.9 min, tR(3R,4S): 12.4 min, 96% ee; minor diastereoisomer tR: 9.9 min, tR: 14.4 min, 12% ee; νmax (ATR)/cm⁻¹ 3065, 2968 (C-H), 1786 (C=O), 1699; Data for major diastereoisomer: δH (500 MHz, CDCl3) 0.92 (3H, t, J = 7.5, CH3), 2.00-2.06 (2H, m, CH2CH3), 3.42 (1H, t, J = 7.1, C(3)H), 3.71-3.74 (1H, m, C(4)H), 5.41-5.45 (1H, m, C(3)CH=CHCH2CH3 or C(3)CH=CHCH2CH3), 5.49-5.54 (1H, m, C(3)CH=CHCH2CH3 or C(3)CH=CHCH2CH3), 6.10 (1H, d, J = 4.6, C(5)H), 7.14-7.16 (2H, m, C(4)Ar(2,6)H), 7.31-7.40 (3H, m, C(4)Ar(3,5)H and C(4)Ar(4)H); δC
(125 MHz, CDCl₃) 13.2 (CH₃), 25.6 (CH₂CH₃), 43.3 (C(4)), 49.9 (C(3)), 109.7 (q, J 3.5, C(5)), 118.5 (q, J 270, CF₃), 121.6 (C(3)CH=CHCH₂CH₃), 127.5 (ArC), 128.1 (ArC), 129.2 (ArC), 138.7 (4ry C(4)ArC(1)), 138.8 (C(3)CH=CHCH₂CH₃), 140.8 (q, J 37.9, C(6)), 166.2 (C(2)); δ₁H (376 MHz, CDCl₃) -72.6 (CF₃);
Selected data or minor diastereoisomer: δ₁H (500 MHz, CDCl₃) 3.63 (1H, t, J 7.7, C(3)H), 3.87-3.90 (1H, m, C(4)H), 5.10 (1H, ddt, J 15.5, 8.5, 1.6, C(3)CH=CHCH₂CH₃), 5.70 (1H, dt, J 15.4, 6.4, C(3)CH=CHCH₂CH₃), 6.23 (1H, d, J 5.7, C(5)H), 7.11 (2H, d, J 8.0, Ar(2,6)H); δ₁C (125 MHz, CDCl₃) 43.0 (C(4)), 47.6 (C(3)), 110.7 (q, J 3.5, C(5)), 120.5 (C(3)CH=CHCH₂CH₃), 128.2 (ArC), 128.2 (ArC), 129.0 (ArC), 138.9 (C(3)CH=CHCH₂CH₃), 166.6 (C(2)); δ₁F (376 MHz, CDCl₃) -72.6 (CF₃); m/z (NSI⁺) 297 ([M+H]⁺, 20%); HRMS (NSI⁺) C₁₆H₁₆F₃O₂⁺ ([M+H]⁺) requires 297.1097; found 297.1101 (+1.4 ppm).

(3S,4R)-4-phenyl-3-((E)-styryl)-6-(trifluoromethyl)-3,4-dihydro-2H-pyran-2-one 38

Following general procedure A, (E)-4-phenylbut-3-enoic acid 16 (64.9 mg, 0.40 mmol), iPr₂NEt (104 μL, 0.60 mmol) and pivaloyl chloride (74.0 μL, 0.60 mmol) in CH₂Cl₂ (2 mL), HBTM-2.1 (2S,3R)-23 (6.16 mg, 0.02 mmol, 5 mol%), (E)-1,1,1-trifluoro-4-phenyl-3-buten-2-one 57 (80.0 mg, 0.40 mmol) and iPr₂NEt (174 μL, 1.0 mmol) for 5 minutes at −78 °C gave crude lactone (3S,4R)-38 (95:5 dr). Chromatographic purification (eluent Et₂O:petrol 7.5:92.5) gave lactone (3S,4R)-38 (95:5 dr) as a colourless oil (113 mg, 82%); [α]D²⁰-159.6 (c 0.5, CH₂Cl₂); Chiral HPLC Chiralpak IB (5% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) major diastereoisomer: tᵣ(R(3R,4S)) 12.3 min, tᵣ(R(3S,4R)) 13.9 min, 60% ee; minor diastereoisomer tᵣ: 8.00 min, tᵣ: 10.6 min, 52% ee; νmax (ATR)/cm⁻¹ 3063, 3030 (C-H), 1782 (C=O), 1699, 1601; Data for major diastereoisomer: δ₁H (500 MHz, CDCl₃) 3.65 (1H, t, J 7.6, C(3)H), 3.85-3.90 (1H, m, C(4)H), 6.15-6.20 (2H, m, C(5)H and C(3)CH=CHPh), 6.36 (1H, d, J 15.9, C(3)CH=CHPh), 7.21 (2H, d, J 7.5, ArH), 7.28-7.42 (8H, m, ArH); δ₁C (125 MHz, CDCl₃) 43.3 (C(4)), 50.0 (C(3)), 109.9 (q, J 3.3, C(5)), 118.5 (q, J 270, CF₃), 122.0 (C(3)CH=CHPh), 126.6 (ArC), 127.5 (ArC), 128.3 (ArC), 128.4 (ArC), 128.7 (ArC), 129.4 (ArC), 135.7 (C(3)CH=CHPh), 135.8 (4ry ArC), 138.9 (ArC), 138.9 (C(3)CH=CHCH₂CH₃), 166.6 (C(2)); δ₁F (376 MHz, CDCl₃) -72.6 (CF₃); m/z (NSI⁺) 297 ([M+H]⁺, 20%); HRMS (NSI⁺) C₁₆H₁₆F₃O₂⁺ ([M+H]⁺) requires 297.1097; found 297.1101 (+1.4 ppm).
138.5 (4ry ArC), 141.0 (q, J 38.0, C(6)), 165.6 (C(2)); δF (376 MHz, CDCl3) -72.6 (CF3); Selected data or minor diastereoisomer: δH (500 MHz, CDCl3) 3.99 (1H, t, J 6.2, C(4)H), 5.84 (1H, dd, J 16.0, 8.6, C(3)CH=CHPh), 6.30 (1H, d, J 5.9, C(5)H), 6.59 (1H, d, J 16.0, C(3)CH=CHPh), 7.16 (2H, d, J 7.6, ArH); δC (125 MHz, CDCl3) 47.9 (C(3)), 110.7 (q, J 3.4, C(5)), 121.4 (C(3)CH=CHPh), 128.2 (ArC), 128.5 (ArC), 129.3 (ArC), 135.4 (C(3)CH=CHPh), 166.2 (C(2)); δF (376 MHz, CDCl3) -72.7 (CF3); m/z (NSI+) 345 ([M+H]+, 15%); HRMS (NSI+) C20H16F2O2+ ([M+H]+) requires 345.1097; found 345.1098 (+0.3 ppm).

(3S,4R)-4-(4-bromophenyl)-3-((E)-prop-1-en-1-yl)-6-(trifluoromethyl)-3,4-dihydro-2H-pyran-2-one 39

Following general procedure A, (E)-pent-3-enoic acid 24 (40.6 µL, 0.40 mmol), iPr2NEt (104 µL, 0.60 mmol) and pivaloyl chloride (74.0 µL, 0.60 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-23 (6.16 mg, 0.02 mmol, 5 mol%), (E)-1,1,1-trifluoro-4-(4-bromophenyl)-3-buten-2-one 58 (112 mg, 0.40 mmol) and iPr2NEt (174 µL, 1.0 mmol) for 5 minutes at rt gave crude lactone (3S,4R)-39 (80:20 dr). Chromatographic purification (eluent Et2O:petrol 3:97) gave lactone (3S,4R)-39 (95:5 dr) as a colourless oil (105 mg, 73%); [α]D20-201.0 (c 0.5, CH2Cl2); Chiral HPLC Chiralcel OD-H (1% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) major diastereoisomer: tR(3R,4S): 10.1 min, tR(3S,4R): 11.8 min, 92% ee; minor diastereoisomer tR: 9.3 min, tR: 12.8 min, 90% ee; νmax (ATR)/cm⁻¹ 2987 (C-H), 1786 (C=O), 1753, 1660; Data for major diastereoisomer: δH (500 MHz, CDCl3) 1.69 (3H, t, J 6.4, CH3), 3.37 (1H, t, J 7.4, C(3)H), 3.68-3.71 (1H, m, C(4)H), 5.43 (1H, ddd, J 15.3, 7.5, 1.3, C(3)CH=CHCH3), 5.52 (1H, dq, J 15.4, 6.3, C(3)CH=CHCH3), 6.03 (1H, d, J 4.4, C(5)H), 7.02-7.04 (2H, m, C(4)Ar(3,5)H), 7.50-7.52 (2H, m, C(4)Ar(2,6)H); δC (125 MHz, CDCl3) 18.1 (CH3), 42.7 (C(4)), 49.7 (C(3)), 109.2 (q, J 3.5, C(5)), 118.4 (q, J 270, CF3), 122.1 (C(4)ArC(4)), 123.4 (C(3)CH=CHCH3), 129.1 (C(4)ArC(3,5)), 132.3 (C(4)ArC(2,6)), 132.6 (C(3)CH=CHCH3), 137.7 (4ry C(4)ArC(1)), 141.1 (q, J 38, C(6)), 165.8 (C(2)); δF (376 MHz, CDCl3) -72.7 (CF3); Selected data or minor diastereoisomer: δH (500 MHz, CDCl3) 3.62 (1H,
t, J 7.8, C(3)H), 3.82-3.85 (1H, m, C(4)H), 5.09-5.14 (1H, m, C(3)CH=CHCH₃), 5.65-5.72 (1H, m, C(3)CH=CHCH₃), 6.18 (1H, d, J 5.7, C(5)H); δC (75 MHz, CDCl₃) 18.0 (CH₃), 44.4 (C(4)), 47.4 (C(3)); δF (376 MHz, CDCl₃) -72.8 (CF₃); m/z (NSI⁺) 378 ([M+NH₄]⁺, 56%); HRMS (NSI⁺) C₁5H₁₆²⁸BrF₃NO₂⁺ ([M+ NH₄]⁺) requires 378.0311; found 378.0311 (+0.0 ppm).

(3S,4R)-4-(thiophen-2-yl)-3-((E)-prop-1-en-1-yl)-6-(trifluoromethyl)-3,4-dihydro-2H-pyran-2-one 40

Following general procedure A, (E)-pent-3-enoic acid 24 (40.6 µL, 0.40 mmol), iPr₂NEt (104 µL, 0.60 mmol) and pivaloyl chloride (74.0 µL, 0.60 mmol) in CH₂Cl₂ (2 mL), HBTM-2.1 (2S,3R)-23 (6.16 mg, 0.02 mmol, 5 mol%), (E)-1,1,1-trifluoro-4-(2-thienyl)-3-buten-2-one 59 (82.4 mg, 0.40 mmol) and iPr₂NEt (174 µL, 1.0 mmol) for 5 minutes at rt gave crude lactone (3S,4R)-40 (84:16 dr). Chromatographic purification (eluent Et₂O:petrol 4:96) gave lactone (3S,4R)-40 (84:16 dr) as a colourless oil (95.8 mg, 83%); [α]D²₀-187.0 (c 0.5, CH₂Cl₂); Chiral HPLC Chiralpak AS-H (0.5% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) major diastereoisomer: tR(3S,4R): 14.1 min, tR(3R,4S): 16.1 min, 93% ee; νmax (ATR)/cm⁻¹ 2998 (C-H), 1784 (C=O), 1699, 1674; Data for major diastereoisomer: δH (300 MHz, CDCl₃) 1.72-1.74 (3H, m, CH₃), 3.55 (1H, td, J 6.7, 0.7, C(3)H), 4.00-4.04 (1H, m, C(4)H), 5.47 (1H, ddq, J 15.4, 8.4, 1.7, C(3)CH=CHCH₃), 5.63-5.75 (1H, m, C(3)CH=CHCH₃), 6.16 (1H, d, J 5.0, C(5)H), 6.89-6.90 (1H, m, ArH), 6.98-7.03 (1H, m, ArH), 7.27-7.30 (1H, m, ArH); δC (125 MHz, CDCl₃) 18.1 (CH₃), 38.2 (C(4)), 50.6 (C(3)), 109.2 (q, J 3.5, C(5)), 118.4 (q, J 270, CF₃), 123.2 (C(3)CH=CHCH₃), 125.4 (ArC), 125.4 (ArC), 127.4 (ArC), 132.4 (C(3)CH=CHCH₃), 140.7 (q, J 37.9, C(6)), 141.2 (C(4)ArC(1)), 165.5 (C(2)); δF (376 MHz, CDCl₃) -72.4 (CF₃); Selected data or minor diastereoisomer: δH (500 MHz, CDCl₃) 3.64 (1H, t, J 7.5, C(3)H), 4.13-4.18 (1H, m, C(4)H), 5.35 (1H, ddq, J 15.4, 8.4, 1.7, C(3)CH=CHCH₃), 6.28 (1H, d, J 5.8, C(5)H); δC (75 MHz, CDCl₃) 18.1 (CH₃), 38.0 (C(4)), 48.0 (C(3)), 110.7 (q, J 3.5, C(5)), 122.5 (C(3)CH=CHCH₃), 125.7 (ArC), 126.3 (ArC), 127.4 (ArC), 132.7 (C(3)CH=CHCH₃), 166.2 (C(2)); δF (376 MHz, CDCl₃) -72.6 (CF₃); m/z (APCI⁺) 289 ([M+H]⁺, 100%); HRMS (APCI⁺) C₁₃H₁₂F₃O₂S⁺ ([M+H]⁺) requires 289.0505; found 289.0507 (+0.8 ppm).
(2R)-(E)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)pent-3-enoate 41

Following general procedure A, (E)-pent-3-enoic acid 24 (40.6 μL, 0.40 mmol), iPr₂NEt (104 μL, 0.60 mmol) and pivaloyl chloride (74.0 μL, 0.60 mmol) in CH₂Cl₂ (2 mL), HBTM-2.1 (2S,3R)-23 (1.23 mg, 0.004 mmol, 1 mol%), (NE)-N-(phenylimino)benzamide 60 (84.0 mg, 0.40 mmol) and iPr₂NEt (174 μL, 1.00 mmol) for 15 min at rt, followed by addition of MeOH (2 mL) and stirring for 1 h at rt gave, after chromatographic purification (eluent Et₂O:petrol 40:60) a rotameric mixture (ratio 95:5) of (2R)-41 as a white solid (105 mg, 80%); mp 108-110 °C; [α]D20 -67.0 (c 0.5, CH₂Cl₂); Chiral HPLC Chiralpak IB (5% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tR(2S): 13.2 min, tR(2R): 17.3 min, 96% ee; νmax (ATR)/cm⁻¹ 3350 (N-H), 2949 (C-H), 1721 (C=O), 1698 (C=O), 1597; Data for major rotamer: δH (500 MHz, CDCl₃) 1.72 (3H, d, J 4.7, CH₃CH=), 3.78 (3H, s, OC₃H₃), 5.25-5.26 (1H, m, C(2)H), 5.79-5.89 (2H, m, CH=CHCH₃ and CH=CHCH₃), 6.94-6.97 (3H, m, NAr(2,6)H and NAr(4)H), 7.27-7.30 (2H, m, NAr(3,5)H), 7.50 (2H, t, J 7.6, C(O)Ar(3,5)H), 7.58 (1H, t, J 7.4, C(O)Ar(4)H), 7.86-7.88 (2H, m, C(O)Ar(2,6)H), 8.64 (1H, s, NH); δC (125 MHz, CDCl₃) 18.2 (CH₃CH=), 52.4 (OCH₃), 64.6 (C(2)), 114.7 (NArC(2,6)), 121.5 (NArC(4)), 123.6 (CH=CHCH₃), 127.2 (C(O)ArC(2,6)), 128.8 (C(O)ArC(3,5)), 129.4 (NArC(3,5)), 132.0 (C(O)ArC(4) or CH=CHCH₃), 132.3 (C(O)ArC(4)) or CH=CHCH₃, 133.0 (4ry C(O)ArC(1)), 148.1 (NArC(1)), 167.4 (NHC=O), 173.3 (MeOC=O); Selected data for minor rotamer: δH (500 MHz, CDCl₃) 1.65 (3H, d, J 5.9, CH₃CH=), 3.67 (3H, s, OCH₃), 4.97 (1H, d, J 7.1, C(2)H); δC (125 MHz, CDCl₃) 18.1 (CH₃CH=), 52.3 (OCH₃), 65.8 (C(2)), 115.0 (NArC(2,6)); m/z (NSI⁺) 325 ([M+H]+, 100%); HRMS (NSI⁺) C₁₉H₂₁N₂O₃⁺ ([M+H]+) requires 325.1547; found 325.1548 (+0.4 ppm).

(2R)-(E)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)hex-3-enoate 42

Following general procedure A, (E)-hex-3-enoic acid 81 (47.4 μL, 0.40 mmol), iPr₂NEt (104 μL, 0.60 mmol) and pivaloyl chloride (74.0 μL, 0.60 mmol) in CH₂Cl₂ (2 mL), HBTM-2.1 (2S,3R)-23 (1.23 mg, 0.004 mmol, 1 mol%), (NE)-N-(phenylimino)benzamide 60 (84.0 mg, 0.40 mmol) and iPr₂NEt (174 μL, 1.00 mmol) for 15 min at rt, followed by addition of MeOH (2 mL) and stirring for 1 h at rt gave, after
chromatographic purification (eluent Et₂O:petrol 40:60) a rotameric mixture (ratio 95:5) of (2R)-42 as a white solid (115 mg, 85%); mp 98-100 °C; \([\alpha]_{D}^{20} -54.8 (c 0.5, \text{CH}_2\text{Cl}_2)\); Chiral HPLC Chiralpak IB (5% IPA:hexane, flow rate 1 mL min\(^{-1}\), 211 nm, 30 °C) \(t_R(2S): 11.3\) min, \(t_R(2R): 15.6\) min, 99% ee; \(\nu_{\text{max}}\) (ATR)/cm\(^{-1}\) 3352 (N-H), 2990 (C-H), 1721 (C=O), 1688 (C=O), 1597, 1508; Data for major rotamer: \(\delta_H\) (500 MHz, CDCl\(_3\)) 0.90 (3H, t, \(J 7.4\), CH\(_3\)CH\(_2\)), 2.03-2.09 (2H, m, CH\(_3\)CH\(_2\)) 3.78 (3H, s, OCH\(_3\)), 5.26-5.27 (1H, m, C(2)H), 5.77-5.88 (2H, m, CH=CHCH\(_2\)CH\(_3\) and CH=CHCH\(_3\)), 6.93-6.97 (3H, m, NAr(2,6)H and NAr(4)H), 7.26-7.29 (2H, m, NAr(3,5)H), 7.47-7.50 (2H, m, C(O)Ar(3,5)H), 7.55-7.58 (1H, m, C(O)Ar(4)H), 7.85-7.87 (2H, m, C(O)Ar(2,6)H); \(\delta_C\) (125 MHz, CDCl\(_3\)) 13.1 (CH\(_3\)CH\(_2\)), 25.6 (CH\(_3\)CH\(_2\)), 52.4 (OCH\(_3\)), 64.5 (C(2)), 114.7 (NArC(2,6)), 121.6 (NArC(4) or CH=CHCH\(_2\)CH\(_3\)), 121.7 (NArC(4) or CH=CHCH\(_2\)CH\(_3\)), 127.3 (C(O)ArC(2,6)), 128.9 (C(O)ArC(3,5)), 129.4 (NArC(3,5)), 132.1 (C(O)ArC(4)), 133.1 (C(O)ArC(1)), 138.8 (CH=CHCH\(_2\)CH\(_3\)), 148.2 (NArC(1)), 167.4 (NHC=O), 173.4 (MeOC=O); Selected data for minor rotamer: \(\delta_H\) (500 MHz, CDCl\(_3\)) 3.67 (3H, s, OCH\(_3\)), 4.99-5.00 (1H, m, C(2)H); \(\delta_C\) (125 MHz, CDCl\(_3\)) 12.5 (CH\(_3\)CH\(_2\)), 52.3 (OCH\(_3\)), 66.1 (C(2)), 115.1 (NArC(2,6)), 141.1 (CH=CHCH\(_2\)CH\(_3\)), 148.7 (NArC(1)), 167.4 (NHC=O), 173.4 (MeOC=O); \(m/z\) (NSI\(^{+}\)) 339 ([M+H]\(^{+}\), 100%); HRMS (NSI\(^{+}\)) \(\text{C}_{20}\text{H}_{23}\text{N}_{2}\text{O}_{3}\)\(^{+}\) ([M+H]\(^{+}\)) requires 339.1703; found 339.1708 (+1.4 ppm).

(2R)-(E)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)-5-methylhex-3-enoate 43

Following general procedure A, (E)-5-methylhex-3-enoic acid 65 (51.2 mg, 0.40 mmol), iPr\(_2\)NEt (104 \(\mu\)L, 0.60 mmol) and pivaloyl chloride (74.0 \(\mu\)L, 0.60 mmol) in CH\(_2\)Cl\(_2\) (2 mL), HBTM-2.1 (2S,3R)-23 (1.23 mg, 0.004 mmol, 1 mol%), (NE)-N-(phenylimino)benzamide 60 (84.0 mg, 0.40 mmol) and iPr\(_2\)NEt (174 \(\mu\)L, 1.00 mmol) for 15 min at rt, followed by addition of MeOH (2 mL) and stirring for 1 h at rt gave, after chromatographic purification (eluent Et\(_2\)O:petrol 40:60) a rotameric mixture (ratio 95:5) of (2R)-43 as a white solid (104 mg, 74%); mp 128-130 °C; \([\alpha]_{D}^{20} -66.6 (c 0.5, \text{CH}_2\text{Cl}_2)\); Chiral HPLC Chiralpak IB (5% IPA:hexane, flow rate 1 mL min\(^{-1}\), 211 nm, 30 °C) \(t_R(2S): 14.5\) min, \(t_R(2R): 19.0\) min, 99% ee; \(\nu_{\text{max}}\)
(ATR)/cm$^{-1}$ 3326 (N-H), 2988 (C-H), 1719 (C=O Ester), 1678 (C=O Amide), 1597, 1506; Data for major rotamer: δ_H (500 MHz, CDCl$_3$) 0.89 (3H, t, J 6.8, CH(CH$_3$)CH$_3$), 0.92 (3H, t, J 6.8, CH(CH$_3$)CH$_3$), 2.27-2.34 (1H, m, CH(CH$_3$)CH$_3$), 3.78 (3H, s, OCH$_3$), 5.27-5.28 (1H, m, C(2)H), 5.72-5.80 (2H, m, $CH=CHCH(\text{CH}_3)\text{CH}_3$ and $CH=CHCH(\text{CH}_3)\text{CH}_3$), 6.93-6.97 (3H, m, NAr(2,6)H and NAr(4)H), 7.26-7.30 (2H, m, NAr(3,5)H), 7.46-7.49 (2H, m, C(O)Ar(3,5)H), 7.54-7.58 (1H, m, C(O)Ar(4)H), 7.85-7.88 (2H, m, C(O)Ar(2,6)H), 8.64 (1H, s, NH); δ_C (100 MHz, CDCl$_3$) 21.8 (CH(CH$_3$)CH$_3$), 22.0 (CH(CH$_3$)CH$_3$), 31.1 (CH$\text{CH}_3)\text{CH}_3$), 52.3 (OCH$_3$), 64.4 (C(2)), 114.8 (NArC(2,6)), 120.0 (CH$=CHCH(\text{CH}_3)\text{CH}_3$), 121.5 (NArC(4)), 127.3 (C(O)ArC(2,6)), 128.8 (C(O)ArC(3,5)), 129.4 (NArC(3,5)), 132.1 (C(O)ArC(4)), 133.0 (C(O)ArC(1)), 143.9 (CH$=CHCH(\text{CH}_3)\text{CH}_3$), 148.2 (NArC(1)), 167.3 (NHC=O), 173.4 (MeO=C=O); Selected data for minor rotamer: δ_H (500 MHz, CDCl$_3$) 3.66 (3H, s, OCH$_3$), 5.01 (1H, d, J 7.0, C(2)H); δ_C (100 MHz, CDCl$_3$) 21.4 (CH(CH$_3$)CH$_3$), 21.5 (CH(CH$_3$)CH$_3$), 31.1 (CH$\text{CH}_3)\text{CH}_3$), 52.2 (OCH$_3$), 66.3 (C(2)), 115.2 (NArC(2,6)), 146.1 (CH$=CH\text{CH}_2\text{CH}_3$), 148.8 (NArC(1)), 172.0 (MeOC=O); m/z (NSI$^+$) 353 ([M+H]$^+$, 100%); HRMS (NSI$^+$) C$_{21}$H$_{25}$N$_2$O$_3$$^+$ ([M+H]$^+$) requires 353.1860; found 353.1862 (+0.7 ppm).

(2R)-(E)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)-5-phenylpent-3-enoate 44

Following general procedure A, (E)-5-phenylpent-3-enoic acid 66 (70.4 mg, 0.40 mmol), iPr$_2$NEt (104 μL, 0.60 mmol) and pivaloyl chloride (74.0 μL, 0.60 mmol) in CH$_2$Cl$_2$ (2 mL), HBTM-2.1 (2S,3R)-23 (1.23 mg, 0.004 mmol, 1 mol%), (NE)-N-(phenylimino)benzamide 60 (84.0 mg, 0.40 mmol) and iPr$_2$NEt (174 μL, 1.00 mmol) for 15 min at rt, followed by addition of MeOH (2 mL) and stirring for 1 h at rt gave, after chromatographic purification (eluent Et$_2$O:petrol 50:50) a rotameric mixture (ratio 96:4) of (2R)-44 as a white solid (123 mg, 77%); mp 136-138 °C; [α]2$_0$ 70.8 (c 0.5, CH$_2$Cl$_2$); Chiral HPLC Chiralpak IB (5% IPA:hexane, flow rate 1 mL min$^{-1}$, 220 nm, 30 °C) t_R(2S): 28.5 min, t_R(2R): 41.2 min, 99% ee; ν_{\max}(ATR)/cm$^{-1}$ 3323 (N-H), 2890 (C-H), 1730 (C=O Ester), 1686 (C=O Amide), 1599, 1514; Data for major rotamer: δ_H (500 MHz, CDCl$_3$) 3.41 (2H, d, J 6.1, CHHPh and CHHPh), 3.78 (3H, s, OCH$_3$), 5.34-5.35 (1H, m, C(2)H), 5.89-6.00 (2H, m, CH=CHBn and CH=CHBn), 6.96-6.99 (3H, m, NAr(2,6)H and NAr(4)H), 7.05-7.03 (CH$_2$Ar(2,6)H), 7.12-7.15 (CH$_2$Ar(3,5)H and CH$_2$Ar(4)H), 7.28-7.32 (2H, m,
(2R)-(E)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)-4-phenylbut-3-enoate 45

Following general procedure A, (E)-4-phenylbut-3-enoic acid 16 (64.9 mg, 0.40 mmol), iPr$_2$NEt (104 µL, 0.60 mmol) and pivaloyl chloride (74.0 µL, 0.60 mmol) in CH$_2$Cl$_2$ (2 mL), HBTM-2.1 (2S,3R)-23 (1.23 mg, 0.004 mmol, 1 mol%), (NE)-N-(phenylimino)benzamide 60 (84.0 mg, 0.40 mmol) and iPr$_2$NEt (174 µL, 1.00 mmol) for 15 min at rt, followed by addition of MeOH (2 mL) and stirring for 1 h at rt gave, after chromatographic purification (eluent Et$_2$O:petrol 40:60) a rotameric mixture (ratio 95:5) of (2R)-45 as an off-white solid (109 mg, 71%); mp 116-118 °C; α [D]$_{20}$ -19.6 (c 0.25, CH$_2$Cl$_2$); Chiral HPLC Chiralpak IB (5% IPA:hexane, flow rate 1 mL min$^{-1}$, 211 nm, 30 °C) t_R (2S): 22.0 min, t_R (2R): 27.9 min, 91% ee; ν_{max} (ATR)/cm$^{-1}$ 3325 (N-H), 3057, 2959 (C-H), 1728 (C=O), 1693 (C=O), 1599; Data for major rotamer: δ_H (500 MHz, CDCl$_3$) 3.84 (3H, s, CH$_3$), 5.50 (1H, d, J 5.1, C(2)H), 6.54 (1H, dd, J 16.3, 5.7, CH=CHPh), 6.76 (1H, d, J 16.3, CH=CHPh), 6.99-7.04 (3H, m, ArH), 7.24-7.41 (7H, m, ArH), 7.44 (2H, t, J 8.7, C(O)Ar(3,5)H), 7.54 (1H, t, J 7.4, C(O)Ar(4)H), 7.83 (2H, d, J 7.4, C(O)Ar(2,6)H), 8.72 (1H, s, NH); δ_C (125 MHz, CDCl$_3$) 52.6 (CH$_3$), 64.9 (C(2)), 114.8 (NArC(2,6)), 121.7 (NArC(4)), 122.1 (CH=CHPh), 126.8 (=C=CHAr(4)), 127.2 (C(O)Ar(2,6)), 128.3 (ArC), 128.7 (ArC), 128.8 (C(O)Ar(3,5)), 129.5 NArC(3,5)), 132.1 (C(O)Ar(4)), 133.0 (C(O)Ar(1)), 135.0 (CH=CHPh), 135.9 (=CHAr(1)), 148.0 (NArC(1)), 167.6 (NHC=O), 172.8 (MeOC=O); Selected data for minor rotamer: δ_H (500 MHz, CDCl$_3$)
3.73 (3H, s, CH$_3$), 5.21 (1H, d, J 7.2, C(2)H), 6.02 (1H, dd, J 16.1, 7.2, CH=CHPh), 7.98 (1H, s, NH); δC (125 MHz, CDCl$_3$) 52.5 (CH$_3$), 66.1 (C(2)), 115.1 (NArC(2,6)), 137.5 (CH=CHPh); m/z (NSI$^+$) 387 ([M+H$^+$], 100%); HRMS (NSI$^+$) C$_{24}$H$_{23}$N$_2$O$_3$$^+$ ([M+H$^+$]) requires 387.1703; found 387.1704 (-0.2 ppm).

(2R)-(Z)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)pent-3-enoate 46

Following general procedure A, (Z)-pent-3-enoic acid 68 (40.0 mg, 0.40 mmol), iPr$_2$NEt (104 µL, 0.60 mmol) and pivaloyl chloride (74.0 µL, 0.60 mmol) in CH$_2$Cl$_2$ (2 mL), HBTM-2.1 (2S,3R)-23 (1.23 mg, 0.004 mmol, 1 mol%), (NE)-N-(phenylimino)benzamide 60 (84.0 mg, 0.40 mmol) and iPr$_2$NEt (174 µL, 1.00 mmol) for 15 min at rt, followed by addition of MeOH (2 mL) and stirring for 1 h at rt gave, after chromatographic purification (eluent EtO:petrol 50:50) a rotameric mixture (ratio 95:5) of (2R)-46 (94:6 (Z):(E)) as a colourless oil (93.7 mg, 72%); [α]$_D^{20}$ -76.8 (c 0.5, CH$_2$Cl$_2$); Chiral HPLC Chiralpak AD-H (20% IPA:hexane, flow rate 1 mL min$^{-1}$, 220 nm, 30 °C) t$_R$(2S): 19.1 min, t$_R$(2R): 23.6 min, 99% ee; ν$_{max}$ (ATR)/cm$^{-1}$ 3291 (N-H), 2953 (C-H), 1732 (C=O Ester), 1674 (C=O Amide), 1599; Data for major isomer (Z) and major rotamer: δH (400 MHz, CDCl$_3$) 1.88 (3H, dd, J 7.0, 1.8, CH_3CH=), 3.75 (3H, s, OCH_3), 5.48 (1H, d, J 8.2, C(2)H), 5.61-5.67 (1H, m, CH=CHCH$_3$), 5.91 (1H, dqq, J 10.7, 7.0, 1.0, CH=CHCH$_3$), 6.93-6.99 (3H, m, NAr(2,6)H and NAr(4)H), 7.26-7.30 (2H, m, NAr(3,5)H), 7.46-7.51 (2H, m, C(O)Ar(3,5)H), 7.54-7.59 (1H, m, C(O)Ar(4)H), 7.88-7.91 (2H, m, C(O)Ar(2,6)H), 8.67 (1H, s, NH); δC (100 MHz, CDCl$_3$) 14.1 (CH$_3$CH=), 52.6 (OCH$_3$), 59.8 (C(2)), 114.7 (NArC(2,6)), 121.6 (NArC(4)), 121.7 (CH=CHCH$_3$), 127.4 (C(O)ArC(2,6)), 128.9 (C(O)ArC(3,5)), 129.5 (NArC(3,5)), 132.2 (C(O)ArC(4)), 132.7 (CH=CHCH$_3$), 132.8 (C(O)ArC(1)), 148.3 (NArC(1)), 167.0 (NHC=O), 173.6 (MeOC=O); m/z (NSI$^+$) 325 ([M+H$^+$], 100%); HRMS (NSI$^+$) C$_{19}$H$_{21}$N$_2$O$_3$$^+$ ([M+H$^+$]) requires 325.1547; found 325.1548 (+0.4 ppm).

(2R)-(E)-methyl 2-(2-(4-fluorobenzoyl)-1-phenylhydrazinyl)pent-3-enoate 47

Following general procedure A, (E)-pent-3-enoic acid 24 (40.6 µL, 0.40 mmol), iPr$_2$NEt (104 µL, 0.60 mmol) and pivaloyl chloride (74.0 µL, 0.60 mmol) in CH$_2$Cl$_2$ (2 mL), HBTM-2.1 (2S,3R)-23 (1.23 mg,
0.004 mmol, 1 mol%), (NE)-4-fluoro-N-(phenylimino)benzamide 61 (91.2 mg, 0.40 mmol) and iPr₂NEt (174 μL, 1.00 mmol) for 15 min at rt, followed by addition of MeOH (2 mL) and stirring for 1 h at rt gave, after chromatographic purification (eluent Et₂O:petrol 40:60) a rotameric mixture (ratio 92:8) of (2R)-47 as a white solid (109 mg, 79%); mp 102-104 °C; [α]²⁰D -57.8 (c 0.5, CH₂Cl₂); Chiral HPLC Chiralpak IB (5% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tᵣ(2S): 13.2 min, tᵣ(2R): 17.1 min, 99% ee; νmax (ATR)/cm⁻¹ 3522 (N-H), 2951 (C-H), 1751 (C=O), 1661 (C=O), 1599; Data for major rotamer: δH (500 MHz, CDCl₃) 1.68-1.69 (3H, m, CH₃CH=), 3.76 (3H, s, OCH₃), 5.21-5.22 (1H, m, C(2)H), 5.74-5.84 (2H, m, CH=CHCH₃ and CH=CHCH₃), 6.91-6.95 (3H, m, NAr(2,6)H and NAr(4)H), 7.13-7.17 (2H, t, J 8.4, NAr(3,5)H), 7.24-7.27 (2H, m, C(O)Ar(3,5)H), 7.84-7.87 (2H, m, C(O)Ar(2,6)H), 8.60 (1H, s, NH); δC (125 MHz, CDCl₃) 18.2 (CH₃CH=), 52.4 (OCH₃), 64.6 (C(2)), 114.8 (NArC(2,6)), 116.0 (d, J 21.8, C(O)ArC(3,5)), 121.7 (NArC(4)), 123.7 (CH=CHCH₃), 129.2 (d, J 3.5, C(O)ArC(1)), 129.5 (NArC(3,5)), 129.7 (d, J 8.7, C(O)ArC(2,6)), 132.4 (CH=CHCH₃), 148.1 (NArC(1)), 165.2 (d, J 252, C(O)ArC(4)), 166.4 (NH-C=O), 173.4 (MeOC=O); δF (376 MHz, CDCl₃) -107.6 (ArF); Selected data for minor rotamer: δH (500 MHz, CDCl₃) 1.61-1.62 (3H, m, CH₃CH=), 3.65 (3H, s, OCH₃), 4.95 (1H, d, J 7.3, C(2)H), 7.36 (2H, dd, J 8.8, 7.4, C(O)ArC(3,5)H), 7.58-7.61 (2H, C(O)ArC(2,6)H); δC (125 MHz, CDCl₃) 18.2 (CH₃CH=), 52.4 (OCH₃), 66.0 (C(2)), 114.8 (NArC(2,6)); δF (376 MHz, CDCl₃) -108.8 (ArF); m/z (NSI⁺) 343 ([M+H]⁺, 100%); HRMS (NSI⁺) C₁₉H₂₀FN₂O₃⁺ ([M+H]⁺) requires 343.1452; found 343.1458 (+1.6 ppm).

(2R)-(E)-methyl 2-(2-(furan-2-yl)-1-phenylhydrazinyl)pent-3-enooate 48

Following general procedure A, (E)-pent-3-enooic acid 24 (40.6 μL, 0.40 mmol), iPr₂NEt (104 μL, 0.60 mmol) and pivaloyl chloride (74.0 μL, 0.60 mmol) in CH₂Cl₂ (2 mL), HBTM-2.1 (2S,3R)-23 (1.23 mg, 0.004 mmol, 1 mol%), (NE)-N-(phenylimino)furan-2-carboxamide 62 (80.0 mg, 0.40 mmol) and iPr₂NEt (174 μL, 1.00 mmol) for 15 min at rt, followed by addition of MeOH (2 mL) and stirring for 1 h at rt gave, after chromatographic purification (eluent Et₂O:petrol 50:50) a rotameric mixture (ratio 94:6) of (2R)-48 as a colourless oil (109 mg, 87%); [α]²⁰D 82.4 (c 0.5, CH₂Cl₂); Chiral HPLC Chiralpak IB (5%
IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C
$t_\text{R}(2S)$: 16.0 min, $t_\text{R}(2R)$: 22.2 min, 99% ee;
ν_{max} (ATR)/cm⁻¹ 3335 (N-H), 2953 (C-H), 1730 (C=O), 1688 (C=O), 1589;
Data for major rotamer:
δ_H (500 MHz, CDCl₃) 1.70 (3H, dt, J 6.4, 1.3, $CH_3CH=)$, 3.76 (3H, s, OCH₃), 5.20-5.21 (1H, m, C(2)H), 5.75 (1H, ddq, J 15.6, 6.0, 1.5, CH=CHCH₃), 5.74 (1H, dqd, J 15.6, 6.4, 1.2, CH=CHCH₃), 6.56 (1H, dd, J 3.5, 1.8, C(O)Ar(4)H), 6.92-6.95 (3H, m, NAr(2,6)H and NAr(4)H), 7.24-7.27 (3H, m, NAr(3,5)H and C(O)Ar(3)H), 7.52 (1H, dd, J 1.7, 0.8, C(O)Ar(5)H), 8.75 (1H, s, NH);
δ_C (125 MHz, CDCl₃) 18.2 (CH₃CH=), 52.4 (OCH₃), 64.7 (C(2)), 112.2 (C(O)ArC(4)), 114.8 (NArC(2,6)), 115.9 (C(O)ArC(3)), 121.6 (NArC(4)), 123.3 (CH=CHCH₃), 129.4 (NArC(3,5)), 132.8 (CH=CHCH₃), 144.7 (C(O)ArC(5)), 146.6 (C(O)ArC(2)), 148.1 (NArC(1)), 158.2 (NHC=O), 173.0 (MeOC=O);
Selected data for minor rotamer:
δ_H (500 MHz, CDCl₃) 3.69 (3H, s, OCH₃), 5.10 (1H, d, J 7.1, C(2)H), 6.38 (1H, dd, J 3.5, 1.7, C(O)Ar(3)H);
δ_C (125 MHz, CDCl₃) 18.1 (CH₃CH=), 52.4 (OCH₃), 65.5 (C(2)), 111.6 (C(O)ArC(4)), 115.0 (NArC(2,6)), 129.8 (NArC(3,5)), 145.6 (C(O)ArC(5));
m/z (NSI⁺) 315 ([M+H]⁺, 100%); HRMS (NSI⁺) C₁₇H₁₉N₂O₄⁺ ([M+H]⁺) requires 315.1339; found 315.1335 (-1.4 ppm).

(3R,4R,5R)-N’-(4-hydroxy-5-methyl-2-oxooxolan-3-yl)-N’-phenylbenzohydrazide amine 49 and (3R,4S,5S)-N’-(4-hydroxy-5-methyl-2-oxooxolan-3-yl)-N’-phenylbenzohydrazide amine 50

To a solution of hydrazide (2R)-41 (1.12 g, 3.44 mmol) in acetone:water (9:1, 40 mL) was added 2,6-lutidine (0.80 mL, 6.88 mmol), N-methylmorpholine-N-oxide (0.60 g, 5.16 mmol) and OsO₄ (4% wt in H₂O, 0.44 mL, 0.07 mmol) and the reaction mixture was stirred at rt for 5 h after which time if was quenched by addition of sat. aq. Na₂S₂O₃. The reaction mixture was extracted with EtOAc (x 3) and the combined organic fractions were washed with HCl (2M in H₂O), dried (MgSO₄), filtered and concentrated in vacuo to give a mixture of crude diols (2R,3R,4R)-49 and (2R,3S,4S)-50 which were used directly in the next reaction without purification. The crude reaction mixture was dissolved in CH₂Cl₂ (50 mL) and treated with p-toluenesulfonic acid (0.65 g, 3.44 mmol). The reaction mixture was stirred at rt for 2 h before being quenched by addition of H₂O. The reaction mixture was extracted with CH₂Cl₂ (x 3) and the
combined organic fractions were dried (MgSO₄), filtered and concentrated in vacuo to give crude lactones (3R,4R,5R)-**49** and (3R,4S,5S)-**50** (70:30 dr).

Major diastereoisomer: Chromatographic purification (elucent Et₂O:petrol 60:40 to 100% Et₂O) gave lactone (3R,4R,5R)-**49** (>99:1 dr) as a white solid (0.59 g, 53%); mp 58-60 °C; [α]D²⁰+37.0 (c 0.5, CH₂Cl₂); Chiral HPLC Chiralcel OJ-H (10% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tR(3S,4S,5S): 13.5 min, tR(3R,4R,5R): 19.3 min, 99% ee; νmax (ATR)/cm⁻¹ 3306 (N-H and O-H), 2980 (C-H), 1767 (lactone C=O), 1597; δH (500 MHz, CDCl₃) 1.44 (3H, d, J 6.3, CΗ₃), 4.73-4.79 (3H, m, C(3)H, C(4)H and C(5)H), 5.02 (1H, br s, OH), 6.93-6.96 (3H, m, NAr(2,6)H and NAr(4)H), 7.24 (2H, td, J 9.1, 1.7, NAr(3,5)H), 7.43-7.46 (2H, m, C(O)Ar(3,5)H), 7.58 (1H, tt, J 7.5, 1.4, C(O)Ar(4)H), 7.79-7.81 (2H, m, C(O)Ar(2,6)H), 8.58 (1H, br s, NH); δC (125 MHz, CDCl₃) 14.9 (CΗ₃), 66.8 (C(3)), 77.3 (C(5)), 114.7 (NArC(2,6)), 121.7 (NArC(4)), 127.6 (ArC), 129.0 (ArC), 129.5 (ArC), 131.4 (C=OArC(1)), 133.0 (C=OArC(4)), 148.0 (NArC(1)), 168.8 (NHC=O), 172.0 (MeOC=O); m/z (NSI⁺) 327 ([M+H]⁺, 86%); HRMS (NSI⁺) C₁₈H₁₉N₂O₄⁺ ([M+H]⁺) requires 327.1339; found 327.1345 (+1.7 ppm).

Minor diastereoisomer: Chromatographic purification (elucent Et₂O:petrol 60:40 to 100% Et₂O) gave lactone (3R,4S,5S)-**50** (>99:1 dr) as a white solid (0.28 g, 25%); mp 110-112 °C; [α]D²⁰-266.4 (c 0.5, CH₂Cl₂); Chiral HPLC Chiralpak IA (40% IPA:hexane, flow rate 1 mL min⁻¹, 211 nm, 30 °C) tR(3S,4R,5R): 8.9 min, tR(3R,4S,5S): 14.8 min, 99% ee; νmax (ATR)/cm⁻¹ 3238 (N-H and O-H), 2938 (C-H), 1776 (lactone C=O), 1597, 1510; δH (500 MHz, CDCl₃) 1.51 (3H, d, J 6.3, CΗ₃), 4.61-4.65 (2H, m, C(4)H and C(5)H), 4.76 (1H, d, J 4.3, C(3)H), 4.95 (1H, s, OH), 6.88 (2H, d, J 8.0, NAr(2,6)H), 6.97 (1H, t, J 7.4, NAr(4)H), 7.30 (2H, tt, J 7.2, 1.8, NAr(3,5)H), 7.48-7.51 (2H, m, C(O)Ar(3,5)H), 7.58-7.62 (1H, m, C(O)Ar(4)H), 7.89-7.91 (2H, m, C(O)Ar(2,6)H), 8.92 (1H, s, NH); δC (125 MHz, CDCl₃) 13.9 (CH₃), 67.7 (C(3)), 70.3 (C(4)), 79.4 (C(5)), 113.0 (NArC(2,6)), 121.5 (NArC(4)), 127.6 (ArC), 129.1 (ArC), 129.8 (ArC), 131.4 (C=OArC(1)), 133.1 (C=OArC(4)), 147.3 (NArC(1)), 168.9
(NH=O), 172.0 (MeOC=O); m/z (NSI⁺) 327 ([M+H]⁺, 100%); HRMS (NSI⁺) C₁₈H₁₉N₂O₄⁺ ([M+H]⁺) requires 327.1339; found 327.1346 (+2.0 ppm).

3R,4R,5R-4-hydroxy-5-methyl-2-(phenylamino)dihydrofuran-2(3H)-one 79

To a solution of lactone (3R,4R,5R)-49 (65.2 g, 0.20 mmol) in MeOH (2 mL) at −78 °C was added SmI₂ (0.1 M in THF, 6.00 mL, 0.60 mmol) and the reaction mixture was stirred at −78 °C for 10 minutes after which time it was quenched by addition of sat. aq. NaHCO₃. The reaction mixture was extracted with EtOAc (x 3) and the combined organic fractions were dried (MgSO₄), filtered and concentrated in vacuo. Chromatographic purification (eluent Et₂O:petrol 60:40) gave lactone (3R,4R,5R)-79 as a colourless oil (29.0 mg, 70%); [α]D²₀+18.0 (c 0.1, CH₂Cl₂); νmax (ATR)/cm⁻¹ 3381 (N-H or O-H), 2986 (C-H), 1761 (C=O), 172.0 (MeO-C=O); m/z (NSI⁺) 327 ([M+H]⁺, 100%); HRMS (NSI⁺) C₁₈H₁₉N₂O₄⁺ ([M+H]⁺) requires 327.1339; found 327.1346 (+2.0 ppm).

3R,4S,5S-4-hydroxy-5-methyl-2-(phenylamino)dihydrofuran-2(3H)-one 80

To a solution of lactone (3R,4S,5S)-50 (65.2 g, 0.20 mmol) in MeOH (2 mL) at −78 °C was added SmI₂ (0.1 M in THF, 6.00 mL, 0.60 mmol) and the reaction mixture was stirred at −78 °C for 10 minutes after which time it was quenched by addition of sat. aq. NaHCO₃. The reaction mixture was extracted with EtOAc (x 3) and the combined organic fractions were dried (MgSO₄), filtered and concentrated in vacuo. Chromatographic purification (eluent Et₂O:petrol 60:40) gave lactone (3R,4S,5S)-80 as a colourless oil (31.4 mg, 76%); [α]D²₀−98.0 (c 0.1, CH₂Cl₂); νmax (ATR)/cm⁻¹ 3389 (N-H or O-H), 2986 (C-H), 1761 (C=O), 1603, 1506; δH (400 MHz, CDCl₃) 1.47 (3H, d, J 6.5, C(3)H), 4.08 (1H, d, J 4.4, C(3)H), 4.40 (1H, dd, J 4.4, 2.9, C(4)H), 4.58 (1H, qd, J 6.5, 2.9, C(5)H), 6.67-6.70 (2H, m,
NAr(2,6)H), 6.84 (1H, tt, J 7.4, 1.0, NAr(4)H), 7.16-7.21 (2H, m, NAr(3,5)H); δC (100 MHz, CDCl₃) 13.8 (CH₃), 60.4 (C(3)), 69.8 (C(4)), 78.6 (C(5)), 114.2 (NArC(2,6)), 120.5 (NArC(4)), 129.6 (NArC(3,5)), 146.0 (NArC(1)), 174.6 (C=O); m/z (NSI⁺) 208 ([M+H]⁺, 100%); HRMS (NSI⁺) C₁₁H₁₄NO₃⁺ ([M+H]⁺) requires 208.0968; found 208.0968 (-0.1 ppm).

Acknowledgements: We thank the Royal Society for a University Research Fellowships (A.D.S) and The Carnegie Trust for the Universities of Scotland (L.C.M) for funding. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 279850. We also thank the EPSRC National Mass Spectrometry Service Centre (Swansea). SMS Funding?

Supporting Information Available: β-lactam epimerization studies, Assignments of aza sugar relative configurations, X-ray structural data, spectral and HPLC data for all new compounds are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

(9) C1-azolium dienolates accessed from α,β-unsaturated acid chlorides 4 may also be formed via a mechanism involving dehydrohalogenation to form a vinyl ketene intermediate which is subsequently intercepted by the NHC.

(14) For pioneering work demonstrating the utility of isothioureas as efficient O-acyl transfer agents see:

(17) In Ref 16(c), using specific reaction conditions, selected non-arylacetic acids could be used - namely (thiophenyl)acetic acid, methoxyacetic acid and 3-phenylpropionic acid - when a highly reactive N-aryl-N-aryldiazene Michael acceptor was used.

(20) All experiments were carried out under air using bench grade solvents as standard.
(21) Other carboxylic acid starting materials, namely \((E\)-\(3\)-phenylbut-2-enoic acid \(70\) and \((E\)-\(3,4\)-diphenylbut-2-enoic acid \(72\) were tested to attempt to access ammonium dienolates which react at the \(\gamma\)-position but none were successful.

(22) The relative configurations of \(\beta\)-lactones \((anti \ 21, \ syn \ 73)\) and \(\beta\)-lactams \((anti \ 22, \ syn \ 74)\) in table 1 were confirmed unambiguously by X-ray crystallography. Crystallographic data for all diastereoisomers \(21, \ 22, \ 73\) and \(74\) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 968689, 968690, 968692 and 968693.

(25) Racemic samples of all β-lactams in tables 2 and 3 were prepared using achiral catalyst DHPB 17.

(26) The absolute configuration of syn-β-lactam 27 was confirmed unambiguously by X-ray crystallography as (3S,4S). Crystallographic data for 27 has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 968691.

(27) See SI for full details of the epimerization experiment.

(28) Poor conversion to β-lactams 28 and 29 is observed when the reactions are carried out at −78 °C.

(29) All reactions quoted at −78 °C were also carried out at rt, typically giving lower enantioselectivities for β-lactam products. See SI for these results.

(30) Racemic (±)-36 was prepared using (±)-HBTM-2.1 23. Racemic samples of all products in Table 4 were made using (±)-HBTM-2.1 23 as a catalyst.

(31) The minor diastereoisomer was formed in 15% ee. The enantioselectivities of all minor diastereoisomers in Table 4 can be found in the SI.

(32) The relative and absolute configuration of δ-lactone 36 was assigned by comparison with the literature Ref 16(d). All other products in Table 4 were assigned by analogy.

(33) The initial heterocyclic products were immediately ring-opened with methanol due to their instability towards chromatographic purification on silica.

(34) The absolute configuration of hydrazide 41 was assigned by comparison with the literature Ref 16(c). All other products in Table 5 were assigned by analogy.
(35) Racemic (±)-41 was prepared using the achiral isothiourea DHPB 17. Racemic samples of all products in Table 5 were made using DHPB 17 as a catalyst.

(36) The N-N bond in lactones 49 and 50 were cleaved using SmI$_2$ in 70% and 76% yield respectively. Coupling constant analysis in addition to NOE studies of these products allowed the relative configurations of lactones 49 and 50 to be assigned. See SI for details.

