Handling the Differential Evolution of Software
Artefacts: a Framework for Consistency Management

Ildiko Pete
School of Computer Science
University of St Andrews
St Andrews, UK
Email: ip24 @st-andrews.ac.uk

Abstract—Modern software systems are subject to frequent
changes. Different artefacts of a system, such as requirements
specifications, design documents and source code, often evolve
at different times and become inconsistent with one another.
This differential evolution poses problems to effective software
maintenance and erodes trust in artefacts as accurate repre-
sentations of the system. In this paper, we propose a holistic
framework for managing the consistent co-evolution of software
artefacts, incorporating: traceability creation and maintenance,
change detection, impact analysis, consistency checking and
change propagation. The design of a prototype framework aimed
at demonstrating the feasibility of the approach and its imple-
mentation are discussed with particular focus on representing
artefacts and their relationships. The challenges of developing
such a framework and plans for future work are also outlined.

I. INTRODUCTION

A software system can be represented by different artefacts,
such as requirement specifications, design diagrams, source
code and test cases, which are products of various activities
involved in the software development process [1].

In practice, these artefacts go through stages of refinement
at different times and paces. Therefore changes to one artefact
may not necessarily be reflected immediately in all other rep-
resentations that might be affected by the same modification.
This differential evolution may result in inconsistency among
artefacts. Artefacts that do not accurately represent the system
may lead to stakeholders losing trust in them and also hinder
effective system maintenance. Since maintenance is the most
expensive phase in the software lifecycle [2], the consequences
of inconsistently evolving artefacts are not negligible.

For the purpose of this work, artefact consistency man-
agement is defined as the process that aims to keep software
artefacts synchronised in the face of changes. Artefacts evolve
consistently if changes applied to one artefact at any point of
the development lifecycle are reflected in all the artefacts that
are affected by the modification before they are further used.

A key aspect of managing change in the software lifecycle
is traceability, which deals with the identification, specification
and maintenance of relationships among artefacts [3]. Closely
related to traceability is change impact analysis, which aims to
identify the potential consequences of a change on other parts
of the system [4]. Impact analysis is supported by traceability
as the existence of links among artefacts aids the identification
of parts affected by modifications.

Research in these areas [1] has attempted to address the
problem of independently evolving and disconnected artefacts.
However currently no solution is capable of fully supporting
the management of artefacts regardless of their type, spanning

Dharini Balasubramaniam
School of Computer Science
University of St Andrews
St Andrews, UK
Email: dharini @st-andrews.ac.uk

the entire development process and without imposing the use
of specific tools and notations on the user. The focus of the
work presented in this paper is to overcome these challenges,
while minimising impact on the working practices of users.

We outline a holistic approach for managing artefact con-
sistency, combining traceability among heterogeneous arte-
facts, change detection, change impact analysis, consistency
checking and change propagation. The challenges associated
with this approach are briefly presented. To demonstrate the
feasibility of the concept, the design and implementation of
a prototype framework capturing fine-grained artefact and
relationship data are also introduced. Finally, conclusions and
avenues for further work are discussed.

II. RELATED WORK

A number of solutions from different areas, such as
software configuration management, traceability and change
impact analysis, have contributed to managing artefact consis-
tency. Winkler et al. [5] provide a survey of solutions aimed
at the specification or maintenance of traceability links and
discuss a number of solutions for coordinating collaboration
between distributed teams. Change impact analysis solutions
have been surveyed in [6].

A review of these approaches and others with broader aims
leads to the conclusion that they provide partial solutions to
the problem for the following reasons:

1) Support for limited artefacts: typically only a selected
set of artefacts is supported by any given solution.

2) Support for limited aspects of consistency manage-
ment: most solutions concentrate on either (semi-)
automatically creating traceability links or maintain-
ing existing links [7].

3) Level of automation: existing approaches automate
certain but not all aspects of artefact consistency
management.

4) Imposing specific tools and practices on the user:
some solutions require that the user works with tools
or follows practices other than those they might
normally choose.

The proposed work aims to address these issues.

III. PROPOSED SOLUTION
A. Holistic Framework

Based on an analysis of the problem area and survey
of existing solutions, the following key aspects have been

identified for a framework that supports artefact consistency
management in a holistic manner:

e Traceability creation and maintenance,
e Change detection,

e Impact analysis,

e Consistency checking, and

e Change propagation

Traceability links allow dependencies and relationships
among artefacts to be modelled. In the event of changes to
one artefact, they enable other possibly affected artefacts to
be identified by traversing the links between them. Effective
change detection mechanisms and impact analysis techniques
are required to accurately determine the consequences of a
change. The set of potentially affected artefact elements serve
as the basis for determining inconsistencies and propagating
changes to resolve them.

B. Challenges of a Holistic Framework

The challenges associated with a holistic framework mainly
stem from the abundance of tools, artefacts, methodologies,
processes and team structures in software development. The
following is a summary of the key challenges in developing
such a framework.

Diversity of Artefacts: An ideal solution should handle a
broad range of artefacts and be extensible when new ones are
introduced. The extensibility of the framework depends on its
ability to handle artefacts regardless of their type.

Diversity of Tools: The ideal solution should also take
into account the fact that software artefacts are created and
managed using a wide variety of tools. For the framework to
be a viable solution in practice, its impact on a user’s day-
to-day work, their chosen tools, methodologies and processes
should be minimised.

Distributed Software Development: The existence of global
development teams, with the resultant multiplicity of reposi-
tories, time zones, tools and development practices as well
as potential duplication of data and difficulties in access to
up to date information can pose a considerable challenge to
consistency management solutions.

Automation: An ideal framework should provide automated
support for artefact consistency management as far as possible.
Given traceability links within and among artefacts, it may
be relatively straightforward to automate certain tasks such as
determining the maximum extent of the impact of a change.
However establishing traceability links between artefacts in the
first instance and propagating changes as they occur present
considerable challenges and the extent to which these activities
can be automated is yet to be determined.

Granularity of data and changes: There is a tradeoff be-
tween the accuracy of the framework in terms of the granularity
of details captured and its performance.

Usability: Different artefacts are managed by different
stakeholders who possess different skills. An ideal solution
should cater for this variation in competencies and experience.
The framework should also allow users to customise aspects
such as automatic invocation on change.

We hypothesise that a holistic framework that is able to
address these challenges is likely to require:

1) A common representation of all artefact data in the

framework to promote extensibility and automation,
2) Mappings from native representations to common
representation, and
3) Rules defining consistency among different artefacts.

C. Prototype Framework Design

A prototype system, intended to be a proof of concept tool
that demonstrates the feasibility of the proposed approach,
is under development. This section focuses on parts of the
framework that deal with modelling, extraction and storage of
artefact and relationship data to provide artefact-independence.

Artefact elements and their relationships naturally lend
themselves to a graph structure, hence a graph-based approach
is used for representing them. Artefact elements can be thought
of as vertices of the graph, while relationships between them
constitute the edges. Various examples of modelling artefact
elements and dependences between them using graphs can
be found in literature: Abstract System Dependence Graphs
(ASDQG) are used to represent dependencies among software
components [8], and [9] present a change propagation model
based on a Bayesian network incorporating static source code
dependencies.

Artefact element data is stored in a graph database. Graph
databases allow the effective processing of interrelated datasets
and most of them provide a property graph data model [10]
which is particularly suitable for storing fine-grained artefact
and relationship data. Relationships are first-class citizens in
graph databases unlike in most other database management
systems, where connections need to be inferred. Various char-
acteristics of graph databases have been taken into account
when selecting this approach, including scalability, graph
traversal for easy updates, and the ability to store semantic
information using properties [11]. Following a performance
comparison, the Neo4j graph database [11] has been chosen for
use with the prototype. Neo4j is equipped with various APIs
for traversing graphs, querying data, and saving data to and
exporting data from the database, which facilitate automating
the consistency management tasks.

Figure 1 is a high level view of the design of the artefact
representation and change detection aspects of the prototype.
Tools used to produce the original artefacts generate a transient
XML representation of artefact elements, which is then trans-
formed to a GraphML representation. Links between artefact
elements are captured in XML format. Data contained within
these XML files is imported to the Neo4j database and is
represented by nodes, node properties and edges. It is assumed
that the original artefacts are stored in version control, which
allows change detection to take place. Change information is
supplied both by the user manually in the form of commit
messages, and by the version control system automatically.
This change information constitutes the input for updating both
the XML-based representations and data stored in Neo4;.

D. Implementation Status

The prototype is implemented in Java and supports spe-
cific aspects of artefact consistency: traceability creation and
maintenance, change detection, change impact analysis and
consistency checking. For this proof of concept implemen-
tation, three types of artefacts are supported and stored in a
version control system: requirements documents in .odt format
produced by OpenOffice, UML class diagrams capturing sys-
tem design created with Dia, and source code written in Java
using Eclipse. The implementation is guided by the principles

Version control
-
UML v2 Source /
vl #

GraphML

Artefact
elements

Graph DB %

Artefact element and link representation in the framework

& (o Jf—f==]

Fig. 1.

of modularity and extensibility, so that it can cater for new
artefacts and remaining aspects of artefact consistency man-
agement in future. The following areas have been addressed
by the prototype:

1) Extraction of information from the original artefacts
and automatic mapping to a common representation
using XSLT transformations to produce a GraphML
output. The GraphML representation allows fine-
grained artefact data to be captured. Each artefact
element is given a unique identifier, and can be
described by a number of properties.

2) Manual specification of artefact links with a view
to incorporating traceability techniques in future to
make the process (semi-) automatic. Links are also
stored in XML format and are also given unique
identifiers.

3) Artefact data storage and retrieval in graph database
using the Neo4j embedded Java API [11]. Each node
in the database represents an artefact element the
properties which can be easily queried. Relationships
can be annotated with descriptive information, such
as the source and target artefact element.

4) Automatic detection of changes by storing the origi-
nal artefacts in the Mercurial distributed source con-
trol management system [12] and utilising the hg4j
Java API [13] to extract commit event and change set
data.

5) Semi-automatic identification of changes. Currently
user input is required to provide change information
as part of commit messages, which is then used in
the process of updating artefact and relationship data
stored in the database.

E. Conclusions and Future Work

We have introduced a holistic artefact consistency man-
agement framework and outlined a prototype that attempts to
show the feasibility of this approach.

The XML transformation library provided by the proto-
type allows selected artefacts (currently UML class diagram,
requirements specification and Java source code) to work with
the framework, and contributes to meeting the challenges of
tool and artefact independence. Data extraction, transformation

and storage are carried out automatically, and the ability to
effectively store and retrieve elements and relationships proves
the feasibility of the graph-based approach for representing
fine-grained artefact data.

The next steps of the implementation will investigate
impact analysis techniques with particular focus on their
suitability for being extended to work with different types
of artefacts. These techniques include source code analysis
approaches (such as call graphs, dependency analysis, program
slicing and probabilistic models) [6], and techniques aimed at
a combination of artefacts, such as rule-based approaches [14].
As part of consistency checking, the tool will provide func-
tionality to pinpoint inconsistencies and to suggest solutions
to resolve them.

A small project consisting of three types of artefacts
with 144 artefact elements and 150 relationships has been
specifically designed to evaluate correctness of the prototype
framework. Artefacts from open source software repositories
will be used during development for more extensive evaluation.

An interesting avenue for further work is the extension of
the framework to distributed development environments.

REFERENCES

[1] B. N. A. Finkelstein and J. Kramer, Software process modelling and
technology. Somerset: Research Studies Press, 1994.

[2] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, no. 8, pp. 613-646, 2013. [Online]. Available:
http://dx.doi.org/10.1002/stvr. 1475

[3] O.C.Z. Gotel and A. C. W. Finkelstein, “An analysis of the require-
ments traceability problem,” 1994, pp. 94-101.

[4] R. Arnold and S. Bohner, “Impact analysis-towards a framework for
comparison,” in Software Maintenance ,1993. CSM-93, Proceedings.,
Conference on, Sep 1993, pp. 292-301.

[S] S. Winkler and J. Pilgrim, “A survey of traceability in requirements
engineering and model-driven development,” Softw. Syst. Model.,
vol. 9, no. 4, pp. 529-565, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10270-009-0145-0

[6] S. Lehnert, A Review of Software Change Im-
pact Analysis, Technical Paper, 2011, http://www.db-
thueringen.de/servlets/DerivateServlet/Derivate-24546/ilm1-
2011200618.pdf.

[71 H. U. Asuncion and R. N. Taylor, Software and Systems Traceabil-
ity. Oxford: Springer, 2012, ch. Automated Techniques for Capturing
Custom Traceability Links Across Heterogeneous Artifacts.

[8] K. Chen and V. Rajlich, “Ripples: Tool for change in legacy
software,” in Proceedings of the IEEE International Conference on
Software Maintenance (ICSM’01), ser. ICSM °01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 230—. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2001.972736

[9] Y. Zhou, M. Wiirsch, E. Giger, H. C. Gall, and J. Lii, “A bayesian
network based approach for change coupling prediction,” in Proceedings
of the 2008 15th Working Conference on Reverse Engineering, ser.
WCRE ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp.
27-36. [Online]. Available: http://dx.doi.org/10.1109/WCRE.2008.39

[10] M. A. Rodriguez and P. Neubauer, “Constructions from dots
and lines,” CoRR, vol. abs/1006.2361, 2010. [Online]. Available:
http://arxiv.org/abs/1006.2361

[11] Neo4j Graph Database, (accessed NOvember 25, 2014),
http://www.neo4j.org/.
[12] Mercurial SCM, (accessed November 25, 2014),

http://mercurial.selenic.com/.
[13] Hg4J, (accessed November 25, 2014), http://hg4j.com/.

[14] S. Lehnert, Q.-u.-a. Farooq, and M. Riebisch, “Rule-based impact
analysis for heterogeneous software artifacts,” in Proceedings of
the 2013 17th European Conference on Software Maintenance
and Reengineering, ser. CSMR ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 209-218. [Online]. Available:
http://dx.doi.org/10.1109/CSMR.2013.30

