
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

A Survey of Self-Healing Systems Frameworks

Chris Schneider, Adam Barker, Simon Dobson
{chris.schneider, adam.barker, simon.dobson}@st-andrews.ac.uk

SUMMARY

Rising complexity within muti-tier computing architectures remains an open problem. As complexity
increases so do the costs associated with operating and maintaining systems within these environments.
One approach for addressing these problems is to build self-healing systems (i.e., frameworks)
that can autonomously detect and recover from faulty states. Self-healing systems often combine
machine learning techniques with closed control loops to reduce the number of situations requiring
human intervention. This is particularly useful in situations where human involvement is both costly
to develop, and a source of potential faults. Therefore, a survey of self-healing frameworks and
methodologies in multi-tier architectures is provided to the reader. Uniquely, this study combines
an overview of the state of the art with a comparative analysis of the computing environment, degree
of behavioural autonomy, and organisational requirements of these approaches. Highlighting these
aspects provides for an understanding of the different situational benefits of these self-healing systems.
We conclude with a discussion of potential and current research directions within this field.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

The increasing complexity of modern computing environments is continuing to produce
challenges in reliable and efficient systems management. As infrastructures share multifaceted
physical and virtual requirements, the static capabilities of human administration are showing
decreases in their relative effectiveness. This is increasing the costs of systems management,
whilst simultaneously introducing potential problems–such as issues with change management,
and simple human error. This problem is particularly evident in multi-tier architectures where
services are comprised of several sets of systems with differing responsibilities.

Self-healing systems frameworks are emerging as a useful approach in addressing the rising
complexity requirements of systems management. These frameworks attempt to classify and
analyse sensory data to autonomously detect and mitigate faults. This in turn reduces the need
for systems to interface with human administrators, lowering operational costs and, ideally,
improving upon existing mitigation techniques. Self-healing methodologies are often realised
through the use of machine learning techniques or other aspects in artificial intelligence. They
have have been described via architectural differences [1], network behaviours [2], research
areas [3], and even biological likenesses [4]. These surveys have produced a broad spectrum
of knowledge and highlighted notable advances and exigencies within the field. However, the
effectiveness of these solutions, and the commonalities shared between implementations, has
yet to be fully explored.

Uniquely, this survey contrasts the type of environment or infrastructure in which self-
healing frameworks operate, the learning methodologies these self-healing frameworks are
expected to exhibit, and their manageability requirements or hierarchical needs. These

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2

criteria were chosen as they are expected to be ubiquitous within any given self-healing
systems implementation, and thus make for good markers of comparison. By providing
an understanding of where specific methodologies are being leveraged and under what
circumstances, this survey provides a groundwork for comparing the relative effectiveness of
self-healing frameworks. Furthermore, analysing self-healing frameworks based on commonly
shared properties allows for a comparative understanding of each methodology, their
respective benefits, and their relative human costs. It explores the type of self-healing
methodologies as related to their expected environment, and provides groundwork for exploring
correlations between these factors. By contrasting behavioural properties with their expected
implementation and level of autonomy, this paper provides a greater understanding of which
techniques are being leveraged, and under what circumstances.

The remainder of this paper is structured as follows: The rest of section 1 briefly covers
the vision and foundational research of self-healing systems. Section 2, provides an overview
of existing self-healing systems methodologies – including frameworks, operating systems,
and services. Section 3 outlines the results each of these systems have had, and novel
approaches that have been produced. It is here that different approaches are contrasted,
including management styles, architectures, and learning mechanisms. Section 4 concludes
with a summary of findings and a brief discussion on future research.

1.1. Background

Many of the methodologies discussed in this paper refer to existing works in Autonomic
Computing. Autonomic Computing covers a wide range of topics in self-managing systems–
including self-healing, self-optimisation, self-protection, and self-configuration properties.
Although a familiarity with this area of research is assumed, a summary of foundational
literature is provided here for ease of reference.

This section discusses in brief the Autonomic Computing Initiative [5], and the goals and
criteria of self-healing systems, as initially described by IBM and subsequent publications [6,7].
The illustration of these goals provides a way to narrow the problem space into addressable
components and brings context to the methodologies presented in this survey.

1.1.1. Autonomic Computing The Autonomic Computing Initiative was proposed in 2001 to
address growing complexity in systems management [5]. IBM proposed building software that
could autonomously manage systems using a series of closed control loops and ‘environmental
knowledge’. These recursive software elements utilise a series of inferential steps to make real-
time decisions that mitigate problems and automate palliative maintenance tasks. Over the
last 10 years several advances have been made in realising these goals.

In 2003, IBM published two articles that built upon their initial proposal outlining the
aforementioned four primary topics (or ‘tenets’) in Autonomic Computing, a general process for
autonomic systems management [7], and a set of criteria that described behavioural ‘levels’ and
generic goals of self-managing systems [6]. The process for automating systems management
tasks, often referred to as MAPE+K, outlined a recursive approach for continuously
understanding and making changes to a system’s state. By utilising ‘knowledge’ (K) about
a system’s environment, a designated software agent would: Monitor, Analyse, Plan, and
Execute (MAPE) instructions to meet user-specified policies. Since its introduction MAPE+K
has proven to be a central component in many self-managing systems implementations.

In order to understand the effectiveness of a given MAPE+K based process, behavioural
levels were used to evaluate the implementations maturity. These levels ranged from basic
to fully autonomic and were evaluated based on whether they could consolidate information,
recommend an action, autonomously take an action, and finally interpret a user-specified
policy to do all of the aforementioned behaviours. Importantly, this article recommended an
evolutionary approach in reaching each of these stages [6]. Building self-managing systems that
operate at different levels permits heterogeneous infrastructures, and allows for the gradual

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

3

adoption of Autonomic Computing technology. This includes environments where existing
systems may not be compatible with all of the autonomic computing levels.

To address the challenges proposed in these two articles, agent-based approaches for
managing systems were introduced [8]. Utilising aspects in artificial intelligence, this work
was based on an earlier text discussing reflex, goal, and utility agents [9]. Simply stated, reflex
agents use if-then rules to map actions to a specified state. In practice, this approach is used
once some criteria is met to execute a pre-specified set of instructions. Goal and utility-based
agents attempt to exhibit rational decision making by autonomously determining what actions
to take based on expected results. The primary difference between goal and utility based agents
is that the former selects behaviours to attain a given objective, whilst the latter attempts to
reach and optimise behaviours such that multiple objectives can be achieved at once. This was
particularly useful if two goal policies contradict each other.

Using this approach as a foundation, IBM proposed that self-managing solutions leverage
Action, Goal, and Utility ‘policies’. These policies incorporated high-level objectives with
systems tasks whilst allowing for resolution conflicts between enacted behaviours. However, the
implementation of broad level policies have produced challenges in evaluating the effectiveness
of self-managing systems. In the following year, a framework was introduced for evaluating the
performance of a self-healing system called DTAC [10].

This framework unified the MAPE+K control loop with industry requirements, and provided
metrics for evaluating self-managing systems. It described and quantified properties such as
stability, accuracy, settling times, and efficiency. By using these properties it became possible to
conduct behavioural evaluations based on a system’s environmental knowledge, and historical
performance data. The evaluation of this information led to a more expansive approach that
discussed general research challenges in self-managing systems, and a variety of scientific
advances in self-managing systems [11].

Specifically, self-managing systems solutions were divided into elements, systems, and
interfaces, and standards definitions and requirements for each of these components was
proposed. This helped to unify the mission of Autonomic Computing with practical
implementations by illustrating examples of where action, goal, and utility policy approaches
had been implemented [12–17].

Notably, Kephart argued that the division of self-managing systems into autonomic elements
would allow for easier adoption of legacy systems. By incorporating existing services with an
autonomic interface, legacy architectures could be made to adopt self-managing strategies.
Once a legacy system had an access point for autonomic communications, self-managing
systems could exert some influence over the existing infrastructure. Indeed the notion of
inter-element communication was arguably the central thesis of this paper: “The main new
research challenge introduced by the autonomic computing initiative is to achieve effective
inter-operation among autonomic elements” [11]. This challenge continues to be an open
problem in self-managing systems.

The establishment of core tenets, the MAPE+K process, evaluation methodologies, the
autonomic maturity model, and action, goal, and utility policies, created a foundation for
stand-alone contributions in self-managing systems [18]. The ideas have also migrated into
the domain of communications [2], and have found extensive use in networks and embedded
systems.

1.1.2. Self-Healing Systems The definition of a self-healing system has evolved over the past
10 years. Initially, self-healing systems were described as being able to detect and recover
from faults, without the need for human interaction [7]. Although no system has been
able to operate with complete autonomy, several advances have been made towards the
realisation of self-managing computing environments. This has come as evolutionary processes
are being routinely involved with the development and maintenance of autonomic computing
frameworks; a prediction made by IBM in 2001 [6].

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4

As large-scale computing infrastructures have become more complex, existing methods for
operating and maintaining systems have become less effective. The use of skilled engineers
to apply monitoring techniques that search for faults, engage in root-cause analysis, and
execute appropriate recovery strategies remains the de facto standard of most professional
organisations. Most of these monitoring techniques utilise some form of behavioural test to
indicate when a fault is present. Self-healing systems seek to automate these processes. If
a service fails, rather than requiring an engineer to intervene, a self-healing system would
autonomously diagnose the fault and then execute a recovery strategy.

The potential exists for systems to diagnose issues more quickly than their human
counterparts. If realised, the result would mean less time spent administering systems,
reductions in operational costs, and decreases in lost revenue. Consequently, the definition
of self-healing systems has been expanded to include behavioural aspects that are commonly
evaluated in modern computing infrastructures. It is no longer acceptable for a system to
simply detect and recover from faults – it must do so transparently, and within certain criteria.

The definition of criteria can vary as infrastructures have different requirements, however
they often include aspects such as availability, reliability, and stability. Availability is defined
as whether or not a system is accessible, whilst reliability is a percentage of time that a system
operates as expected. Stability is defined as how fast a system can mitigate faults and return
to its original state.

The integration of behavioural aspects has helped to unify business needs with IBM’s original
vision of self-healing systems. By adopting partially self-healing systems into traditional
infrastructures, an evolution of techniques and new self-healing systems methodologies
have emerged. However, not all self-healing methodologies are compatible with existing
infrastructures and the maturity of many of these techniques has not been fully realised.
As self-healing systems methodologies become more mature, less human supervision should be
required.

One approach to understanding maturity in a self-healing environment is by evaluating
systems state via behavioural properties [8, 19, 20]. By understanding when and how long
a systems executes self-healing behaviours, it becomes possible to evaluate self-healing
methodologies against existing implementations. Understanding the effectiveness of self-
healing systems methodologies against current approaches provides a practical baseline for
understanding the advancement of self-healing systems outside of the Autonomic Maturity
Model. However, to achieve this goal a set of criteria must first be defined that is present
in a majority of self-healing systems methodologies that are to be evaluated both now and
in the future. It is for this reason that computing environment, learning methodology, and
management style were selected for comparison.

1.1.3. Assumptions and Definitions Research in self-managing systems contains a wide variety
of terminology and definitions. Although some definitions are considered to be standardised
[19], many publications utilise terms in a modified fashion to meet the stricter requirements
of their purposes. As vocabulary usage diverges, multiple connotative and denotative
understandings are formed by readers. The following paragraph describes comparative terms
utilised within this survey. This is done with the intent of helping the reader to establish
a referential understanding. Likewise, many of the terms and purposes of the Autonomic
Computing Initiative share properties and, to a lesser extent, charters. For example, in order
for a system to self-heal, often it must elect to change its configuration in some way. This
is sometimes confused with the concept of self-configuration, which deals primarily with self-
provisioning–the ability for a system to continuously evaluate and integrate itself without
human interaction within a given computing environment. Security aspects share similar traits
under the self-protection tenet. This is a topic that is later addressed in sections 3 and 4.

For the purposes of this survey, self-healing systems are assumed to be real or virtualised
servers that exist within a grid, cloud, or standard large-scale computing infrastructure.
Although there are numerous physical components that make up large-scale computing

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

5

environments, the scope of this survey primarily emphasises servers as central points of focus.
It is important to note that exigencies can exist outside of this scope, which the server is still
responsible for identifying. Examples of this include network connectivity diagnosis, and being
able to determine resource availability, such as a remote API.

Although there are numerous interpretations as to what constitutes a computing
environment the majority of terms applied within this survey are taken from a single source [21].
Specifically, grids are defined as voluntary collections of physical systems that share resources,
and typically consist of multiple, heterogenous configurations . In these environments churn
– the rate at which membership changes – is expected to be high, and systems are expected
to be managed in an ad hoc fashion. This can translate to computing environments that do
not require professional services to operate, such as those housed in a data-centre. Conversely,
clouds are collections of either real or virtualised computing devices that are centrally managed,
and controlled by a single entity. Devices that exist as part of a cloud are more likely to
be configured identically, housed in a data-centre, and operated by a large professional or
academic staff. Membership of devices in these environments are expected to have high-
availably constraints, and be relatively static in terms of their rate of churn. A third category
of standard (i.e., “traditional”) is reserved for established environments. Typically, these
environments utilise multi-tiered architectures divided into front-end, middleware, and back-
end sub-divisions that exist absent of virtualised components. This category is intended to
represent the most common configurations for small, mid, sometimes large-size network-aware
service applications.

It is assumed that computing environments may never be fully autonomous and that some
problems will indefinitely require human interaction. Although this is not in keeping with the
initial proposal, at some point it is perhaps unavoidable. For example, there are no known
software solutions to mitigate non-redundant hardware failures. However, diagnosing and
escalating such a situation to an administrator is still a desirable ‘self-healing’ behaviour.
As such, systems that can operate to the edge of their limitations are still considered to be
successfully self-healing.

Lastly, recovery is assumed to be a more difficult problem than detection. “The final
stage, automated re-mediation of a problem once it has been localized, is perhaps the most
difficult.” [11] – however, the detection of faulty states is necessary before executing recovery
strategies, a fortiori. This logic is the foundation upon which some aspects of framework
maturity are gauged.

2. METHODOLOGIES

Self-healing frameworks leverage a diverse set of methodologies to autonomously detect and
recover from faults. This section discusses and compares self-healing frameworks based on three
primary aspects: Management style, computing environment, and learning methodologies.
These properties are often interrelated and exist within each self-healing systems framework.
As such, they provide a way to compare the relative utility of each approach and establish a
consensus for comparison.

The remaining subsections are organised as follows: Section 2.1 contrasts top-down and
bottom-up management styles that utilise self-healing frameworks. Section 2.2 discusses
computing environments, and contrasts different self-healing behaviours commonly found
within grids, clouds, and standard infrastructures. Lastly, section 2.3 provides an overview
of learning methodologies used to autonomously detect and recover from faults. A distinction
is made between supervised, semi-supervised, and unsupervised methodologies, and in what
environments they are most commonly implemented.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6

2.1. Management Styles

Managing complexity in computing environments has led to an abundance of architectural and
systems management techniques. This survey focuses on two specific styles: Top-down, and
bottom-up. Top-down approaches organise systems into hierarchies by leveraging authoritative
nodes. These nodes control, propagate, and validate the behaviours of subordinate child-nodes
within the computing environment. Conversely, bottom-up methodologies operate in an ad hoc
fashion, leveraging neighbouring devices to make or suggest changes to configuration state.

Each approach divides computing environments into smaller, more management sub-
components. The division of systems into sub-components helps to address the natural
complexity that arises when managing multiple nodes. This includes aspects from change
management, divisions in workflows, and enacting policies to automate systems tasks.
Depending on the management style, however, the nature of the sub-components also changes
to provide different advantages and disadvantages. It is often the case that management styles
are selected based on computing environment specific needs – a subject discussed further in
sub-section 2.2, “Computing Environments”.

2.1.1. Top-Down Management Styles Top-down management styles are based on a hierarchical
infrastructure for accepting and enacting policies on child systems [22]. This is often realised
through the use of databases on parent-nodes to which subordinate nodes are instructed to
periodically communicate with. By changing information within these databases, the collective
behaviour of systems communicating with the parent can be altered. Thus, rather than
requiring an administrator to access each system individually, top-down methodologies can
execute instructions autonomously. Localising configuration changes to a single point has
the benefit of reducing human error during implementation, and retaining a homogeneous
configuration baseline within a computing environment. Top-down management styles are
useful in ensuring predictable recovery behaviour, and are widely utilised [23–26]. Conversely,
centralised infrastructures often require extensive pre-configuration and training before they
can exhibit self-healing behaviour.

Rainbow [23, 27] is a self-healing framework that leverages a centralised, top-down
management style. Utilising a set of ‘system concerns’, child-nodes are divided into clusters
based on a similar set of expected behaviours. These properties are collectively described
as system ‘roles’, and are maintained by a single Rainbow instance. An administrator
then provides a set of constraints and recovery plans, which the service uses to evaluate
systems behaviour. Evaluations occurred using a three-tiered, abstract architectural model that
autonomously categorises systems behaviours. If a fault is detected, the server’s configuration is
then altered using recovery plans associated with the system’s synthesised role, and respective
constraint model.

Rainbow’s approach to dynamic systems evaluation, and its centralised methodologies, are
arguably foundational by many subsequent approaches. This in includes the ability to utilise
centrally located recovery plans that are associated with the identification of specific faults [26],
and the use of recovery plans that have been created by systems administrators at run-time.
Once enacted these result are stored for later use within a centralised database - a technique
sometimes referred to as case-based reasoning (CBR).

MARKS+ [24] leverages a comparable approach to Rainbow by using what it refers to
as healing manager nodes to select and implement pre-defined recovery plans. The recovery
plans are again evaluated based on a constraint model, but also include a service availability
mapping. This mapping, combined with a collection of behavioural unit tests, provides context
to the evaluation of the constraint model. Systems determined to be in a faulty state are
removed from service until a ‘good’ behavioural context can be re-established via the the
return of the system to a previously known working configuration or ‘state’. For MARKS+,
Healing managers facilitate these behaviours by acting as a centralised orchestration service.
This is similar to Rainbow in that both approaches use an architectural perspective to facilitate
resource discovery and recovery behaviours.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

7

The use of ‘behavioural skeletons’ is another perspective on understanding systems activities
in top-down infrastructures [25]. Behavioural skeletons are similar to models and consist of an
abstract collection of patterns that can be used to evaluate a system’s behavioural properties.
When combined with a set of constraints, or ‘contract’ [25], top-down methodologies can
attribute context to systems behaviours without depending on pre-defined roles. This has
the advantage of not requiring developers to commit to pre-approved configuration states.
Similarly, skeletons and contracts can be used to provision a specific subset of information to
child-nodes–such as configuration data or faults. Whilst the child-nodes retain this information
locally, a reduction in the need for ‘call-backs’ to management services remains present. This
allows the systems to work more independently and utilise external resources only when
required.

The use of locally provisioned self-healing logic is similar to the two previous approaches
in that it leverages rule-based action policies to decide on recovery strategies. However, it
differs in how systems are allowed to interact, and provides an approach for leveraging more
autonomous behaviours. The latter is an artefact that has been extended in subsequent
publications [28]. Rather than using a series of contracts, SASSY handles infrastructure
management through the use of dynamic model generation called Service Activity Schemas
(SAS’s). By aggregating these SAS’s, an architecture can be dynamically mapped into
subgraphs. This allows not only the systems to be modeled individually, but the service
architecture itself to be evaluated in a dynamic fashion. Consequently, using this approach
affords greater flexibility in compartmentalising faults within the environment than other top-
down frameworks, and provides more distributed management of resources than stand-alone
top-down service discovery methodologies.

MOSES [29] takes a similar approach to SASSY in that management of the service
architecture itself is leveraged in detecting and recovering faulty systems components. Like
SASSY, MOSES dynamically models the architecture in which it is operating. By using a
position manager this framework determines if the service’s detected resources can be combined
until a usable model. Once completed, an adaptation manager addresses any faults or quality
of service issues encountered by using a series of vectors abstracted from the services model.
This information is then abstracted into an ordered list of service priorities that can then be
used to direct or redirect service flows–even in the presence of conflicts.

The sampled centralised management styles exhibit similar self-healing logic when recovering
from faults. In most instances, the use of behavioural testing is implemented with a contextual
reference – such as a constraint or systems model. This is further expanded upon by
user validation (in the case of supervised methodologies), or by using predictive measures
to discretely synthesise recovery solutions. Furthermore, the use of these techniques in a
centralised orchestration service affords many benefits–including the ability to retain control
of the infrastructure from singular management points, and being able to leverage re-use of
recovery strategies [23–28]. This is in contrast to systems that inherent or infer self-healing
behaviours; discussed further in the following section 2.1.2. The learning methodologies for
each management style is discussed further in section 2.3.

2.1.2. Bottom-up Management Styles Bottom-up management styles emphasise ad hoc
interaction between systems. Systems within these environments typically infer self-healing
behaviours based on independent sampling, either of the service infrastructure at large or
neighbouring systems, and exhibit a greater degree of administrative autonomy. They represent
a direct alternative to approaches that leverage centralised management, and typically
demonstrate more exploratory behaviours. This type of systems management can require less
initial configuration than centrally managed approaches, but at the cost of predictability, and
individualised control.

Although ad hoc systems management comes in a variety of forms, this survey focuses
on three distinct approaches: System-to-system [30–32], localised healing [33–38], and those
that utilise atomic interfaces to synthesise virtual resources [39]. System-to-system frameworks

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8

are capable of making changes by sampling from or delegating to neighbouring nodes. This
is contrasted by localised healing frameworks which avoid administering other devices, and
use information obtained from neighbouring systems to self-elect behavioural modifications.
Atomic frameworks exist as a hybrid of these two approaches by exposing their resources in
an non-holistic, read-only fashion. They can either self-elect or suggest changes to external
devices, or directly access external resources as if they were locally present.

In a system-to-system infrastructure authoritative actions are delegated dynamically
through the analysis of environmental knowledge. Examples include frameworks that observe
both the performance and service availability of neighbouring devices [31, 33, 34]. In the case
of Embryo-ware, a set of administrator supplied configurations provides each system with the
ability to autonomously adapt from a ‘totipotent’ state into one of several pre-specified roles.
This behaviour is initiated based on each systems local perception of the over-all performance
and relative needs of the service infrastructure. If a service has reached a capacity threshold
for its front-end web-services, for example, and the system has a totipotent configuration, it
can dynamically adopt a web-role and join the front-end pool to increase capacity. Once the
service has been evaluated as no longer needing additional front-end resources it then reverts
back to its neutral state.

By treating systems as modular components, Embryo-ware addresses a key problem present
in ad hoc infrastructures–drift in baseline systems configuration. As systems continue to
operate they naturally encounter events that create unique systems configurations and states.
This can create scenarios where systems are difficult to predict and can reduce the effectiveness
of existing self-healing behaviours. By resetting the local system’s state to pre-defined known-
working configurations, divergence in systems operations is dramatically reduced. This allows
for techniques that depend on assumptions related to the systems behaviour to continue to
be effective well after initial deployment. It also allows for servers to be treated as dynamic
resources within the service architecture and to transparently address the workloads associated
with predefined groups of individual service components.

Transparently updating service components is an approach also used by OSIRIS-SR –
an extension of OSIRIS [30] and Chord [40]. However, unlike Embryo-ware, OSIRIS-SR
uses a transitive management service to create ‘supervisor nodes’ that facilitate self-healing
behaviours. These nodes leverage a distributed hash-table to establish service parity, and to
facilitate work delegation of a given resource. This allows service availability to be preserved
even in infrastructures with high rates of churn, and for systems to orchestrate service flows
whilst addressing faults–all without a centralised infrastructure.

Rather than shifting a system’s role or instantiating a supervisory service, systems within
the computing environment may also have the ability to assign work directly to each other [32].
VieCure utilises an activity management service to understand local and remote service state.
Like Embryo-ware, this framework is installed locally on each system, and configured by a set
of policies that guide self-healing behaviours. The policies combine ‘interaction patterns’ and
constraints into a ‘behaviour registry’ – a dictionary of recognisable systems states that are
used to indicate when self-healing behaviours are required. If a constraint violation occurs, the
system can either choose to heal or delegate work to a neighbouring node. VieCure, OSIRIS-
SR, and Embryo-ware operate holistically. The expression of their self-healing logic is based
on the evaluation of their respective computing environments as a whole. However, not all ad
hoc frameworks operate in this fashion.

Atomistic perspectives, such as the General Purpose Autonomic Computing framework
(GPAC) [39], view and evaluate systems resources as individual components based on ‘resource
definition policies’ that are supplied by an administrator. The benefit of atomistic components
is that they are usable remotely by other systems. To accomplish this, GPAC first builds a
model of local systems operations by utilising a four stage control loop similar to MAPE+K.
The model is populated by querying either a remote or locally running service that discovers
resources. Discovered resources are then integrated with the model information by a policy

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

9

engine to create the aforementioned ‘resource definition policy’. This allows resources to be
directly accessed, regardless of physical location.

Atomising computing environments represents a unique approach to the delegation of work.
GPAC coordinates resources in a transparent fashion to mitigate faults rather than assigning
tasks directly. Sharing resources leads to a natural integration between systems, and illustrates
a unique approach for mitigating faults remotely. This comes with the caveat that systems must
be able to accept changes to their configurations from neighbouring nodes. In some computing
environments this property is undesirable. For these cases, localised healing strategies are
preferred over other approaches.

Localised healing frameworks avoid directly administering other devices. Instead, each
framework instance is exclusively responsible for its local system’s health, resources, and
configuration state. This includes determining when issues are caused by local or external
factors. Localised faults are mitigated in a similar fashion as other frameworks. A set of
constraints and policies are provided by administrators which the systems use to detect and
recovery from faults. However, faults determined to be external to the system are addressed
much differently. External faults are either ignored, referred to another system, or, if possible,
mitigated locally. These approaches are not designed to address the source of the error, but
to maximise the availability and performance constraints of the computing environment–often
within predefined guidelines.

For example, lowering the fidelity of content being served by front-end web-servers is one
way to meet to performance constraints [41]. If a server cannot deliver content at the rate
expected – e.g., due to too many concurrent connections – it can elect to reduce the volume of
data sent for subsequent data requests. This approach does not directly address the state of
other systems, but instead focuses those issues that can be resolved locally. Frameworks that
focus on localised self-healing techniques often use ‘roles’ to facilitate the re-use of self-healing
logic and to meet constraints [36, 41]. This is particularly useful in self-healing systems that
operate within a single tier of a computing environment.

WS-DIAMOND [36] is a localised healing framework specifically developed for front-end
web-services. It uses two concurrent control loops to diagnose and recover from faults. The
‘inner’ control loop focuses on the mitigation of faults that prohibit basic systems operations.
This can include resources that are critical to the system’s role, and the state of services. The
outer control loop addresses issues related to quality of service (QoS). If a system is not capable
of performing within a set of constraints, an error is raised that the outer control loop attempts
to mitigate. Other frameworks have mimicked the QoS approach, but sans use of multi-tiered
control loops [42]. However, the basic approach used in these systems are essentially identical.
Each failure instance is treated as a separate case from which to analyse the results of systems
configuration tests. This allows faults to be categorised based on the systems role, and located
using differential analysis of the systems configuration data.

Determining the source of an error is a non-trivial process. Systems configurations are
complex sets of information, and often contain relationships between features and properties
that are not easily classifiable. Dynamic systems modelling represents one approach for
understanding correlations between faults and configuration state. In localised healing
frameworks, such as Plato [37], UBL [35], and Shadows [38], these approaches have been used
to categorise and compare the state of a system with historical information, such as systems
configuration or performance data. This follows in the footsteps of other frameworks, such as
Rainbow, that utilise architectural modeling techniques at system run-time.

Rainbow, Shadows, UBL and Plato all leverage a set of operating constraints and policies
that are used to periodically evaluate service health. While the systems operate in a state
that meets both their constraints and policy guidelines, they are considered to be in a ‘known-
good’ state. In the case of Shadows, UBL and Plato, these states can be leveraged to build
models of typical systems operations. If the system is not operating as expected, a comparison
between previous and current behavioural models is executed. This allows for differentials to be

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10

discovered between systems behaviours, and recovery methodologies to be synthesised, rather
than requiring them to be proscribed by administrators.

Recovery strategies for these frameworks operate with substantial difference. Plato
utilises genetic algorithms to search for optimal systems configurations and enacts recovery
methodology via reconfiguration. This is done by pre-computing configurations in a simulator
and evaluating the results against a set of fitness criteria. The results of each configuration
undergo a differential analysis that examines the health and performance of various systems
models.

Shadows uses a model repository to determine a recovery strategy. The repository is
populated via two mechanisms - a code extraction methodology, and a CBR-based approach
similar to those described by Carzaniga [43], Shang [23], and Hassan [44]. However, rather than
requiring administrators to update the repository manually, Shadows automatically builds
role-based recovery solutions without human intervention. This is accomplished by using a
combination of statistical and predictive modelling to synthesise configurations and evaluate
potential solutions to detected faults. Once a solution has been found it can be validated
and shared throughout the environment where behaviours are determined to be similar. This
unique use of case-based reasoning allows the framework to leverage the advantages of ad hoc
systems management without depending on centralised infrastructure or human administrator
to approve new recovery methodologies. By removing the supervision requirement of this CBR
approach anomalies can be detected that were not previously known.

UBL uses a different approach by leveraging a self-organising map (SOM) to train the system
to understand failure, pre-failure, and working states. This technique allows systems to build
their own recovery solutions at run-time by leveraging a vector based approach for aggregating
systems configuration and performance data. Once the information has been obtained it is
then classified and subsequently analysed (i.e., ‘mapped’). Faults are then inferred through
a differential analysis of changes in both behaviour and configuration state of the system in
question.

The management style of a self-healing framework is often related to its environment.
In the case of ad hoc systems administration, the behaviours exhibited are inherently less
predictable than those that leverage centralised methodologies. This comes as a caveat of
allowing systems the ability to independently explore solutions outwith those having been
directly supplied. Specifically, systems that leverage a bottom-up management style appear
to be more prone to use semi-supervised and unsupervised learning techniques to achieve
dynamic recovery solutions. While this approach is by definition more autonomous, it does
not necessarily mean that it is more usable. Some environments may be required to use only
proscribed recovery solutions to address specific service aspects–such as risk management or
high availability requirements. In such cases solutions such as Embryo-ware may be better
suited than UBL, Plato, or Shadows.

Choosing a management style for a self-healing framework is multi-faceted problem and
can depend on a number of extraneous factors–such as the environment in which the system
is intended to operate, acceptable levels of downtime, or expected resource utilisation. The
following diagrams illustrate the frequency in which a specific management styles are applied
based on computing environment, and a trend in the usage of top–down management styles.
At present, these centralised approaches appear to be more commonly leveraged within
environments where systems membership is stable–a topic further discussed in section 2.3, (see
Figure 5). Likewise, the number of self-healing frameworks utilising this approach is continuing
to increase (see Figure 3). Further to these topics, the attributes between environments and
learning methodologies, and associated self-healing behaviours, are discussed further in sections
2.2, and 2.3, respectively.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

11

Figure 1. Management Styles versus Computing Environments

Top-down management styles are the primary choice when a computing environment is owned by a
single entity. However, when membership is shared by multiple third parties, a shift can be seen in
how the environment is managed. In the latter case, systems are more likely to be managed in an

ad–hoc fashion.

Figure 2. Management Styles in Self-Healing Frameworks by Year of Introduction

The number of self-healing frameworks that leverage top-down methodologies is continuing to increase.
This comes despite the emergence of hybrid computing environments, and advances in predicting

systems membership.

2.2. Computing Environments

Computing environments are a collection of resources used to manage and facilitate a given
set of systems. Depending on the needs of the systems, computing environments can have
different infrastructures and assets. This survey focuses on three types of infrastructures:
Standard, virtualised, and ad hoc. Each infrastructure type represents differences in how
self-healing frameworks access, categorise, and utilise resources. These differences can have
profound impacts on the approaches used by self-healing frameworks and their respective
goals.

Standard infrastructures are typically comprised of three categories (i.e., ‘roles’) when
discussing systems responsibilities: Front-end, middleware, and back-end. Front-end systems
are responsible for establishing and maintaining connections to clients, middleware provides
facilitating services such as encapsulation, transport, or orchestration, and back-end systems

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12

are responsible for the provisioning, storage, and parsing of information. This division of
responsibility is the basis for establishing reusable code in many self-healing frameworks
– regardless of computing environment – and promotes scalability by organising systems
into reusable, interchangeable components. This allows for extensibility in behaviours and
interchangeability of failed devices.

Virtualised infrastructures emulate physical assets by using multi-system resource
management techniques. Instead of building a physical machine with a specific role, resources
are dynamically allocated from a collection of physical machines to build virtualised ‘instances’.
These instances operate in the same fashion as physical systems. However, as the hardware
itself is a software manifestation, ‘physical’ changes can occur more rapidly and in a more
autonomous fashion than standard infrastructures. In addition to rapid reconfiguration,
virtualised infrastructures handle change control exceptionally well. This is primarily due to
the use of systems clones (i.e., images) when instantiating new instances. Images allow for
quick replacement, re-provisioning of faulty systems, and fast comparisons between systems’
configurations. These properties make virtualised infrastructures heavily leveraged in cloud
computing environments.

Standard and virtualised infrastructures share several key properties. They are often owned
or operated by a single entity, have low rates of churn, and typically leverage centralised
management styles (see section 2.1.1.). These aspects are vital in meeting established minimum
operational requirements such as availability, reliability, and performance expectations –
sometimes referred to as service-level agreements (SLAs). However, there are computing
environments that do not share or require these properties. In these cases self-healing
frameworks leverage ad hoc infrastructures.

Ad hoc infrastructures are unique from other approaches in that systems membership is
voluntary. This property is related to ad hoc management styles, which enable systems to
self-elect behaviours (see section 2.1.2), but is different in that it refers to the association a
system has to a specific environment. The ability for systems to join and leave an infrastructure
has advantages in that they are better suited for some distributed computing uses, and can
potentially operate at lower costs. The transient nature of ad hoc infrastructures pose unique
challenges for self-healing frameworks. Notable examples include higher rates of churn [21],
issues with reputation [45], security [46, 47], multi-party administration [48, 49], and a lack
of baseline configurations between systems [50], amongst others. In general, each framework
instance must act as an authoritative point and evaluate its infrastructure independently. This
is sometimes referred to as self-elected behaviour.

Computing environments are sometimes comprised of multiple infrastructure types. Some
environments, for example, may have systems that are capable of interacting with each other
in an ad hoc fashion, but may also depend on a centralised service model [33, 38]. In most
cases self-healing frameworks have been developed to meet specific needs within a single tier
of an infrastructure – such as a front-end web-service [26, 36, 41, 42]. Nearly all self-healing
frameworks that are designed to operate within a single tier are capable of being implemented
in a virtual infrastructure. However, not all self-healing frameworks are restricted to one area
of responsibility [23,33]. The most common tier-specific self-healing frameworks are those that
focus on front-end systems [26,36,41,43].

Systems that approach front-end web-services utilise a variety of approaches, including
multi-tiered control loops [36], fidelity reduction [41], and behavioural modeling [26], amongst
others. These self-healing frameworks are easier to develop, and can promote an intermediate
stage for adapting existing infrastructures towards stronger administrative automation. Each
system in a standard infrastructure must be maintained individually. This has several notable
consequences including increased provisioning times, the potential for inconsistencies in
configuration and implementation, and a natural deviation in configuration baselines overtime.
These problems have been partially addressed by self-healing frameworks through the use
of CBR and centralised management styles [24–26, 32, 38]. Centralised approaches leverage
an often human supplied correlation between root causes of faults and their respective

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

13

recovery strategies. As the expected outcome is based upon assumptions of previous state,
these approaches can become less effective as configurations diverge. As changes occur within
separate infrastructures outside of the control of the framework, this problem becomes more
complex.

Virtual infrastructures help to address baseline configuration deviations, dynamically
provision new resources, minimise the impact of external infrastructure changes, and improve
deployment and recovery times. The majority of these advantages stem from the use of
images which, as previously mentioned, help to maintain standard configurations between
systems. Virtual infrastructures also come with several major disadvantages, the largest being
cost to operate, proprietary standards for larger implementations, and challenges for physical
expansion. However, virtual infrastructures provide useful properties to frameworks that use
tier-based and search-space approaches to resolving faults [37,38].

Frameworks that leverage search space methodologies require one of two conditions to occur
before executing self-healing behaviours: Either an acceptable solution must be converged
upon, or all available resources are exhausted. In the latter case, the framework picks the
best solution found [35, 37, 51]. Standard environments limit the availability of resources to
the physical capabilities of the system upon which the framework is instantiated. Virtual
environments provide an advantage by allocating resources beyond the immediate instance.
This promotes the self-healing behaviours from break-fix objectives to optimisation strategies
(e.g. [29, 37,52]).

In addition to optimisation, the dynamic allocation of resources is useful for promoting
stabilisation in computing environments. There are several self-healing approaches that explore
stabilisation in standard environments including dynamic role-adoption [31, 33], resource
discovery [23, 27], resource policies, atomisation [39], and reduction in content fidelity [41]. In
some cases, virtual infrastructures demonstrate comparable advantages by using instancing.
Embryo-ware’s ability to use ‘totipotent’ systems to shift to and from needed roles is
comparable to virtual infrastructures ability to dynamically spawn new server instances–
assuming an image exists for the needed role and a feedback mechanism is actively monitoring
service state. Both approaches represent a way to preserve QoS in an environment, and
minimise the need to reduce content fidelity.

Virtualisation universally addresses a major advantage of Embryo-ware: The ability to
use a single subset of resources to address multiple roles within a service or computing
environment. This concept is difficult to implement in standard, multi-tier infrastructures.
Systems that are organised into tiers have external considerations when communicating with
other devices. This includes networking configurations, security measures, and other exigencies
of a practical nature that are outwith the control of the framework. With standard and
virtualised infrastructures, the barriers between tiers are often preserved. One approach for
avoiding these issues is to treat the computing environment as a ring [30, 31, 40]. However, it
is worth noting this effectively converts the standard tier-based environment into an ad hoc
infrastructure.

Ad hoc infrastructures avoid many of the organisational requirements of standard and virtual
infrastructures. In ring-based approaches, systems are often required to accept a centralised
point of management, and be operated within a confined set of conditions, such as a specific
configuration or role. In ad hoc infrastructures systems are defined by their ability to carry
divergent configurations and self-elect behavioural changes and states. These properties help
to mitigate security issues, high rates of churn, diversity in systems configuration, and multi-
party administration. Although this survey contains no frameworks that have been explicitly
designed for entirely ad hoc infrastructures, several approaches expect and utilise ad hoc self-
healing behaviours [31,33,35,37].

These behaviours range from self-electing systems roles [31, 33], to aggregating resources
between systems [39]. In the former case, each system evaluates the state of the service
independently by querying neighbouring devices. If a system chooses to adopt a new role
or configuration, it is ultimately centrally managed as the pre-specified roles must be provided

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14

to each individual system before they can operate. However, the collective behaviour of each
individual system evaluating the service demonstrates an emergent approach to managing the
infrastructure health. Experiments with biologically-inspired paradigms [53] further suggests
that gradients, fields and other “spatial” structures [54] can offer robust adaptation to local
challenges and failures, and can act as a programming platform on which to construct complex
applications.

Plato [37] and UBL [35] demonstrate this perspective by leveraging systems that can
holistically self-evaluate service state using biologically inspired computational approaches.
These approaches have distinct advantages in that systems need not be provided with pre-
specified recovery strategies, and are specifically designed to exhibit self-adaptive processes
through environmental analysis. This affords systems using these frameworks a better
suitability towards environments where ad hoc management styles and infrastructures are in
place–such as the ability for systems to integrate their own self-healing logic by using search-
space methodologies. These approaches include, chiefly, genetic algorithms and artificial neural
networks. However, search and probabilistic methodologies lack the stable, predictable nature
of approaches that leverage periodic human intervention.

Computing environments and the services they are house are interrelated. Systems that
have the ability to operate holistically require different supporting resources than those that
operate in an atomistic fashion, or centralised fashion [20]. The self-adaptive behaviours of
systems leveraging ad hoc methodologies appear to be more advanced with respect to self-
autonomy than other approaches. This is evident in how systems are being implemented, and
their ability to learn new solutions to recover from problems without human intervention. This
claim is further supported by the abilities systems have in their learning capabilities as the
holistic logic of evolutionary approaches show further advancement and costs compared to the
dictionary style approaches of CBR and other centralised learning methodologies.

The following diagrams illustrate the relationship between computing environment and
learning methodology. Although supervised approaches are still the most common of those
surveyed, there is a higher propensity of unsupervised learning in ad hoc computing
environments (see Figures 1 and 5). Additionally, self-healing systems research appears to
be shifting towards cloud and virtualised technologies.

Figure 3. Computing Environments versus Learning Methodologies

The use of supervised learning remains the most common approach to self-healing systems frameworks
for labelling training data. This is ubiquitous regardless the computing environment the framework is
expected to operate in. However, these approaches seem to exhibit less autonomy in both detecting

and recovering from faults (Section 2.3).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

15

Figure 4. Computing Environments with Self-Healing Frameworks by Year of Introduction

Self–healing frameworks are being developed primarily for use in traditional, n–tier, or cloud
computing environments. However, some hybrid solutions are also emerging that combine aspects

that account for dynamic computing environments. This may represent a new research direction.

2.3. Learning Methodologies

Self-healing systems frameworks rely on heuristic algorithms to correct or change behaviour
without human intervention. In order to maximise their effectiveness, learning methodologies
have been developed that optimise when and how instructions are executed. These
methodologies often utilise recursive, evolutionary, or close-control loop programming
techniques to improve and evaluate behaviours. In each of these cases a feedback mechanism is
used to determine both the validity and efficiency of a specific solution. The degree of required
human interaction within a feedback mechanism is referred to as supervision.

Self-healing frameworks can be categorised as being fully supervised, semi-supervised,
or unsupervised. Traditional definitions of these terms usually emphasise when or how a
system classifies its learned behaviour – either manually, or dynamically–and whether or
not data utilised by a specific algorithm has been labelled. As self-healing frameworks can
contain multiple learning methodologies–each with varying degrees of supervision–cataloguing
a framework’s learning taxonomy into a single category is challenging. The primary intent of
IBM’s Autonomic Computing Initiative is to reduce the amount of required human interaction
for a set of systems [7, 11, 18, 55]. Therefore, this survey focuses the most evident factors in
evaluating and simplifying their classification: The frequency of required human interaction,
and whether or not the framework can autonomously extend its self-healing behaviours. The
latter component is to address changes in the state of a system, and its ability to respond
dynamically to its environment. It is accepted that computing environments, in general, are
not static entities. As needs and circumstances change so must systems be ready and able to
adapt.

The most common approach to self-healing systems is to use a fully supervised methodology
[23–26,28–31,42]. Supervised methodologies can require frequent interaction, and extend their
self-healing behaviours only upon human intervention. This allows for validated, controlled
configuration updates and provides the least amount of uncertainty in systems behaviours
[56–58].

The most frequent implementations of supervised learning are case-based reasoning (CBR)
methodologies. CBR typically utilises a database of prescribed recovery plans that are
correlated to specific faults or events. When a system encounters an error it queries the
database for recovery instructions. In those circumstances where recovery instructions have
not been previously included, the framework will ask an administrator for a solution, or refer

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16

to a default set of actions. CBR approaches extend their behaviour by storing these additional
solutions in their databases. Typically, the requirement of human supervision as a required
part of the self-healing logic produces the natural caveat of only partial automation.

Rainbow takes supervised methodologies a step further by leveraging dynamic resource
discovery with prescribed, role-based recovery logic. Using this approach computing
environments are divided into recognisable components that can be used to dynamically
build an architectural model of the service infrastructure. Using this model systems and
services are categorised within a specified role or type, whilst the architectural model continues
to choreograph service interaction and defines expected behaviours. These components are
provided by developers before deployment. Once errors are detected, they can be mitigated
using the architectural model to restore the service to a known working state or, if unsuccessful,
an administrator can update the model at run-time.

WS-DIAMOND and GPAC take similar approaches to Rainbow in that a model is specified
to which a system’s performance is evaluated. However, rather than monitoring an entire
service, each system is managed independently. As previously mentioned, WS-DIAMOND does
this by instantiating two concurrent control loops to monitor and correct systems behaviours.
Dividing the recovery logic into separate components allows the framework to prioritise and
isolate recovery strategies. This is naturally conducive to goal and utility policy implementation
within the specified model. A number of extensions to this framework have seen improvements
to its detection and recovery logic∗ including the ability to monitor workflows, orchestrations,
and choreographies.

GPAC contrasts this approach by utilising ‘resource-definition policies’ to autonomously
discover and atomise systems components into network accessible objects. This non-holistic
approach allows the framework to access resources on remote systems as if they were locally
present. When combined with a model of the service, systems can act transparently to heal,
and optimise the service architecture in a semi-supervised or potentially unsupervised fashion.
These policies can also be used to tier service performance based on priority of behaviours or
resources.

Performance tiering is a self-healing methodology used to divide systems and service health
into levels [38, 41]. These levels in turn are used to understand QoS changes and instantiate
behaviours that maximise the usage available resources. Arguably, the most direct approach to
defining service levels is to use statically assigned resource constraints. Each level corresponds
to a set of QoS metrics or fitness criteria that tells the system when to dynamically reduce
content fidelity [41]. Primary developed for front-end web-services, static service tiering
requires a human-supplied policy to determine when content fidelity can either be reduced
or increased. In contrast, allowing policies to dynamically set thresholds for self-healing
behaviours can have more autonomous results [29, 38, 42, 50, 59]. The Shadows framework,
for example, uses a set of SLA’s and utility policies to automatically generate behavioural
expectations of a system. This allows the system to perform more in line with human-readable
goals, such as cost, average service time, and other criteria instead of discrete metrics. It then
combines this information with historical performance data to provide internal revalidation of
recovery solutions. By using a time windowed mean expectations in behaviour can allow for
elasticity versus pre-defined QoS metrics.

In a supervised framework the revalidation of a new set of expectations are normally
completed by a member of technical staff. This occurs in a similar fashion as that being
leveraged by Shadows: SLA’s are compared against a system’s overall performance and
combined with historical data–such as application logs, configuration files, etc. The addition
of correlating events with systems faults provides an advantage in contextually evaluating
anomalies [32, 38]. By sampling the system at key intervals, faults can be associated with

∗http://wsdiamond.di.unito.it/status.html

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

17

specific changes and, ideally, their respective sources. This is useful for establishing a root-
cause analysis and to map similar events with recovery solutions–sometimes referred t as
Event driven monitoring. [35].

Event driven monitoring combines a complex set of sensor classification algorithms with
run-time analysis techniques for isolating anomalies from normal or established patterns of
behaviour. These approaches can range from the reactive use of simple exponential smoothing
algorithms in a time series prediction [52], to pro-active prediction of states [60]. VieCure [32] is
a CBR-style framework that leverages event detection in addition to direct analysis of metrics.
Instead of directly mapping faults to recovery plans, VieCure looks for deviations in expected
systems behaviours that can indicate when self-healing is needed. Events can constitute a
series of incidents within a log, or a set of incidents that exhibit either a certain order or
rate of occurrence. If an event is determined to coincide with a fault, then a recovery strategy
is selected from a known set of working solutions. As expected, unknown events and faults
require supervision in the same manner as other CBR frameworks.

Periodic interaction by administrators remains a caveat of supervised and semi-supervised
self-healing frameworks. However, some frameworks have demonstrated an ability to
dynamically elect self-healing behaviours without this requirement [33–35, 37, 59, 61]. Chiefly,
these methodologies leverage biologically inspired approaches including genetic algorithms
[37,61], artificial neural networks [35], and totipotent behaviours [33,34,62,63]. Each of these
techniques have different properties that related to their suitability at solving particular tasks
– from producing candidate solutions within a given search space [51] to the autonomous
classification of sensory information [64]. These approaches range in degree of suitability based
and how much risk and resource commitment a specific computing environment or service
infrastructure is willing to accept.

Using a genetic algorithm, Plato can search for and mitigate faults based on correlations
between behavioural properties and configuration data. This is a a framework that dynamically
produces self-healing solutions based on a stochastic search methodology that comprises of
multiple candidate solutions [37,51,61]. By comparing the operational SLAs and policies with
the performance of the candidates individually, a degree of fitness can be ascertained from the
candidate. Once the candidates have been evaluated, their individual features are analysed and
correlated to produce new candidates. This occurs until either preset resource constraints are
met, or an optimal solution is found per the associated fitness functions. In this instance, the
utility functions in previous frameworks are analogous to the properties that are emphasised
by the fitness functions in genetic algorithms. Each respective function provides the same base
purpose: To translate and enact human-readable goals into systems behaviours. Examples of
these goals include cost minimisation, application priorities, or performance traits.

This approach allows Plato to stochastically search for and build recovery strategies
providing a critical advantage over other methodologies. Rather than requiring prescribed
recovery solutions, either during development or run-time, Plato can autonomously produce
viable self-healing solutions. However, there is no assurance that an acceptable systems
configuration will always be found using this methodology, nor that it will be optimal. This is
as expected [37], and inherent to the nature of existing search-space methodologies [51]. It is
also computationally costly, and can produce behaviours that would not be anticipated. Thus,
a high degree of risk can be associated with this approach.

Complimentary to using genetic algorithms, UBL operates by using historical configuration
data to autonomously train a specific type of unsupervised artificial neural network called a self-
organising map (SOM) [64]. Features in the historical configuration are converted into vectors
which are then used as input for predicting behaviour, and feature state. This information helps
to analyse the validity and impact on a system’s behaviours when configuration changes occur.
Once the SOM is trained, the system can then synthesise new, valid systems configurations
by predicting which features are causal to specific faults. This approach leverages a smaller
search space than the genetic algorithms used in Plato, and consequently presents less risk
and potentially divergent systems behaviours. However, UBL displays some limitations in

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

18

exploring new configurations and seems to produce a stronger likelihood of local minima in
configuration synthesis. This is represented in the purposes of these two approaches being
somewhat divergent: The ability to synthesise new systems configurations upon fault, and
the prediction of failures within distributed infrastructures. As yet there exists no research
comparing the effectiveness of combining these two approaches, however ‘feature locality’
continues to display positive results [50,65] – a topic discussed further in section 3.

Separate from either of these approaches is the transparent management of resources within
a service infrastructure via dynamic role or service adoption [31,33]. In each of these approaches
systems use information about the general state of the service infrastructure to dynamically
elect a localised reconfiguration. However, these approaches differ by allowing systems to
dynamically adopt roles through self reconfiguration, in the case of Embryo-ware [33], and
the self-instantiation of localised management services [31].

As previously mentioned, these systems are initially instantiated with a representation of
the service, a set of roles, and an ability to query service state on remote systems. Using
these three components the framework is then able to dynamically adopt new configurations
or return to an original, neutral configuration based on service performance. Any device found
to be without a base set of configuration data is automatically provisioned with the latest
‘genome’ via a replication agent. This provides a measure of self-configuration and provisioning;
a process typically referred to as a separate challenge in Autonomic Computing [7, 11]. The
adoption of new roles is facilitated via a differentiation agent that tracks and contextualises
roles and expected functions. The differentiation agent must then self-elect a role-based on its
independent understanding of the state of service.

This approach is contrasted by OSIRIS-SR, a framework that leverages Chord [40] to produce
a Safety Ring to manage service infrastructures [31]. OSIRIS-SR operates by using supervisory
systems roles to monitor and recover from failures in resource availability. These systems
leverage meta-data to build an understanding of neighbouring systems behaviours, and then
aggregate that information across multiple supervisory nodes. This is similar to Embryo-ware
where only neighbouring nodes are monitored and influence the ability of those systems to
adopt roles. What makes this approach unique is that any system can elect to become a
supervisory node. This is useful for ensuring availability and reliable service management in
infrastructures where systems membership can change without notice [66].

Both Embryo-ware and OSIRIS-SR can autonomously change the behaviours of its
component systems at run-time, but only using information supplied at design time. There is no
logic within either approach that will autonomously generate new recovery strategies or roles.
However, this affords both frameworks the benefit of minimising risk for unexpected systems
behaviours, and maximising available resource utilisation. In the case of OSIRIS-SR, this can
be particularly useful if implementation occurs in mobile networks or other environments where
systems membership is expected to be transient.

The following diagrams illustrate trends in the management styles associated with self-
healing frameworks and their respective learning methodologies are outlined along with a
diagram of their introduction by year. There are two key properties immediately evident
within these figures: 1.) Self-healing frameworks research is driving towards solutions that
utilise supervision, and 2.) The learning methodology leveraged by the self-healing framework
appears to be linked to its management style. Additionally, if we extrapolate this information
with that contained in Figure 1, it seems evident that the progression towards less supervision
is being driven chiefly in ad hoc computing environments. However, due to the sample size
of grid and P2P approaches being relatively low, this may not be immediately evident (see
Figure 3). Instead developments in this area appear to be occurring in cloud computing and
other environments that leverage virtualisation.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

19

Figure 5. Learning Methodologies versus Management Styles

The learning methodologies leveraged in self–healing systems appear to be strongly correlated with
their respective management styles. In the case of top-down, (i.e., centrally managed) styles, self–
healing frameworks overwhelmingly support the use of supervised learning. Conversely, systems that
operate in an ad–hoc fashion (i.e., ‘bottom-up’) fashion are substantially more likely to leverage

semi–supervised or unsupervised approaches.

Figure 6. Learning Methodologies in Self-Healing Frameworks by Year of Introduction

Self-healing systems frameworks are showing greater autonomy in their learning behaviours. In the
last 10 years we’ve seen the number of self-healing frameworks that leverage supervised approaches

decline, whilst those with either semi–supervised or unsupervised techniques are increasing.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

20

Figure 7. Summary of Findings: Self-Healing Systems Frameworks

Self-healing systems frameworks as categorised by supervisory requirement, computing environment,
and expected management style. In some cases frameworks exhibit abilities to operate under multiple

assumptions–these incidents are represented by concurrent bullets within the graph.

3. DISCUSSION

Self-healing systems methodologies are becoming more autonomous, but remain dependent
upon either required periodic human interaction or the acceptance of uncertainty in systems
behaviours. This finding comes as self-healing methodologies being to specialise based on
external factors such as their intended computing environment and respective management
styles. Notably, a framework’s specialisation has been shown to provide distinct advantages
in autonomously identifying and resolving faults. These advantages play pivotal roles in
understand how self-healing frameworks are evolving. Furthermore, many approaches display
behaviours that are not universally desirable-self-healing approaches are diverging based on
their specialisations. This is a concept that until now has not been explicitly addressed
within the field. By contrasting where self-healing frameworks are being implemented, an
understanding is gained of where self-healing systems are making progress and towards which
specific problems.

The intended computing environment of a given framework is a foundational factor in
evaluating the success of its self-healing behaviours and has produced a divergence in
the types of self-healing systems that are being developed. Environments that require a
greater degree of control of its systems often exhibit centralised management techniques
[23, 24, 26, 28–30, 32, 42, 59]. These approaches are evaluated based on how predictable their
behaviours are, and often intentionally build in a requirement for human intervention.
Conversely, frameworks that operate in ad hoc infrastructures [31, 33, 35–37, 39] are often

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

21

expected to exhibit behaviours that do not require human intervention, and in some cases to
synthesise new self-healing strategies. This result is an artefact of computing environments
having inherently different properties, exigencies, and requirements. The result has been that
self-healing frameworks have begun to develop specialised strategies that address each of these
factors explicitly.

Evidence of specialisation in self-healing strategies is becoming increasingly more common as
frameworks exhibit hybrid approaches for mobile [31] and centralised computing environments
[33]. These approaches place a specific emphasis on leveraging different self-healing strategies
based on the environmental suitability of the approach at run-time, and by anticipating
resource availability. Notably, resource prediction is being leveraged more often where
assumptions cannot consistently be made about the state of computing environment–
particularly where resources are transient [31, 39, 40, 66], or virtualised [35, 67]. In these
situations self-healing frameworks leverage multiple concurrent strategies to address greater
degrees of systems volatility. Likewise, frameworks have leveraged various approaches for
identifying and mitigating faults based on local and remote observations within their respective
environments [26,38,68].

Although the approaches used by self-healing systems are varied, there are trends as to
which methodologies are being leveraged and under what circumstances. Systems within
environments that exhibit a high degree of churn are more likely to leverage ad hoc management
styles [30, 31, 40, 66], and learning methodologies that require less supervision [33, 35, 37, 59].
Conversely, frameworks that do not have stable systems membership are more likely to utilise
a centralised form of systems management [23, 25, 26, 29, 42, 59], and exhibit supervised or
semi-supervised learning methodologies [26–29,31,32,36,38,41,42]. The predictability of a self-
healing framework’s actions are crucial in identifying operational requirements (i.e., SLAs), and
are a defining factor in what behaviours are allowed or desirable in its respective computing
environment. As behaviours are nearly solely defined by learning methodologies, is it clear
that the relationship between management style and environment is linked with the degree of
supervision required for its continual operation.

Using an ad hoc management style allows self-healing frameworks to leverage more
autonomous strategies and learning methodologies. However, systems that engage in self-
elected behaviours–particularly those that have not been previously vetted–have been shown
to be inherently more risky when attempting to meet operational goals and less likely to
produce reusable solutions [56–58]. It is for this reason that the use of centralised management
techniques remain the preferred approach when environments are expected to exhibit a low
rate of churn – the most notable examples being CBR and CBR-like learning methodologies
[23–26,36,42].

The advantages of self-healing approaches are directly related to their supervisory
requirements. Although supervised learning methodologies have shown advances towards
reducing human overhead, when compared to unsupervised methodologies, they have
ultimately produced palliative results–particularly when executing recovery strategies. This
is primarily due to the fact that supervised techniques can only reactively detect faults [35],
and that the solutions they generate often must be vetted via human intervention before
being implemented. These solutions can become increasingly more complex to manage as the
interdependency of features must be accounted for in subsequent self-healing strategies [50].
Such solutions are difficult to vet as often relationships between features are not immediately
accessible either algorithmically or intuitively.

Semi-supervised and unsupervised approaches have shown stronger capabilities in
ascertaining the root cause of a given fault, and producing non-palliative recovery solutions.
In particular, the use of evolutionary programming techniques have demonstrated the unique
ability to autonomously generate new systems configurations at run-time to mitigate faults
[37], and the use of artificial neural networks have been show to correlate specific systems
configurations with operational fitness levels to produce predictive fault detection [35].
These approaches show greater capabilities for autonomously self-healing of faults, but,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22

like supervised methodologies, also come with certain restrictions. Notably, the resources
needed by unsupervised approaches can be much greater than supervised approaches, and
frameworks leveraging these methods are not assured of finding a solution [35, 37]. These are
properties inherent to the nature of search-space methodologies–either a predefined constraint
is exhausted (e.g., time), or an acceptable solution is converged upon [51]. Exploration into
these issues remain a separate field of study and outwith the scope of this survey–however it
is clear they are deeply related to the viability of self-healing solutions.

The future of self-healing systems research is multi-faceted, and remains open to further
exploration. Recent advances in self-healing systems have seen a wider range of issues
being addressed and in more complex environments. However, as environments continue to
develop, and the relationships between self-healing solutions continues to co-evolve with their
implementation requirements, still greater questions are being asked.

Self-healing systems frameworks are continuing to explore new methodologies for
detecting and mitigating faults. However, which approach is most efficient–and under what
circumstances–is an area of research that needs further exploration. At present, very little
information is available on this topic–and, there are no publicly verifiably results [10, 69].
This may be in part due to the diverse set of situations in which self-healing systems have
been implemented–making direct comparisons difficult–or due to restrictions on releasing this
information publicly. A comparison of self-healing systems frameworks using non-simulated
data would be greatly beneficial to the field.

The nomenclature used to describe certain aspects of self-healing systems research
is becoming increasingly vague. At present, most recovery strategies utilise subsets of
other self–*, self-adaptation, or self-management properties. These properties often include
aspects in optimisation and configuration–sometimes concurrently. This has led to a diverse
understanding of what criteria are acceptable for evaluating the success of a self-healing
framework [19, 58, 69, 70]. This multiplicity of terms can be confusing–particularly between
systems that autonomously provision themselves within an environment, versus those that
can elect new subsets of features or configurations to correct faults. Although some research
has been produced in this area, it could do with a more explicit set of definitions.

Self-healing methodologies are continuing to specialise based on their computing
environment(s), and showing strides towards greater autonomy. However, these approaches
can be more resource intensive and less predictable when leveraging unsupervised learning
methodologies. In order to adopt unsupervised learning methodologies into production
computing environments, these issues will need to be addressed. It may be possible to reduce
resource requirements– and narrow the expected set of behaviours of existing approaches–
by guiding the evolutionary programming techniques that are currently being leveraged. The
advent of the self-organising map has shown that vector analysis can help pinpoint the location
of faults by examining feature data from an historical perspective. If this information were to
be leveraged via a genetic algorithm, it could substantially reduce the search-space needed for
generating a new, working systems configuration.

Lastly, there are still further methods to explore in building self-healing frameworks. The
use a hidden markov-model may be able to provide similar results to that of the self-organising
map, but with potentially less required training time. To date, there are no known self-healing
frameworks that utilise this particular methodology. The latter two areas of research are topics
of research we intend to explore.

4. CONCLUSION

IBM originally predicted that building an autonomic system would be an evolutionary process.
As self-healing frameworks exhibit greater autonomy this prediction is being realised in a more
literal than figurative manner. The use of machine learning and evolutionary programming
techniques have shown how systems can predictively mitigate faults without human interaction,
and can complement the use of policies and other human-driven approaches. Ideas from

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

23

biological and physical systems offer further inspiration and another axis in which to evaluate
the construction of decentralised adaptive systems. The ability to correlate stochastic, search-
based techniques with performance metrics and configuration data shows a promising venue
for autonomously contextualising systems behaviours.

However, much work remains to be done in building predictive methodologies if the original
self-healing tenet is to be fully realised. Understanding the relative effectiveness of self-healing
frameworks with respect to their preferred methodologies, and realising self-adaptive systems
that can autonomously detect and recover from faults without human intervention remain core
challenges. As of yet there are few if any resources that discuss direct comparisons between
the effectiveness of self-healing systems frameworks. One of the largest problems appears to
be access to live information and resources that can accommodate realistic testing of such
services. A single study in this area would likely prove to be immensely beneficial to the field.

Furthermore, as self-healing approaches continue to advance the division between self-
configuration, protection, and optimisation is being blurred. As discussed in section 1.1.3, the
definitions of self-configuration, protection, and optimisation share properties and technological
boundaries with self-healing. As such, self-healing strategies often leverage techniques that
fall into these previously separately defined boundaries. Stronger definitions or revisiting
the terminology used in the field may produce beneficial results in the form of more direct
contributions–particularly to studies in autonomous provisioning and security. The systematic
integration of these properties, in a way that allows them to be evaluated and traded-off to
maximise a system’s pursuit of its self-healing mission, remains a core challenge, as much now
as it did a decade ago.

REFERENCES

1. Kramer J, Magee J. Self-managed systems: an architectural challenge. Future of Software Engineering
(FOSE ’07), 2007.

2. Dobson S, Denazis S, Fernández A, Gäıti D, Gelenbe E, Massacci F, Nixon P, Saffre F, Schmidt N,
Zambonelli F. A survey of autonomic communications. ACM Transactions on Autonomous and Adaptive
Systems 2006; 1:223–259, doi:10.1145/1186778.1186782.

3. Psaier H, Dustdar S. A survey on self-healing systems: approaches and systems. Computing 2010; 91,
Issue: 1:43–73.

4. Ghosh D, Sharman R, Raghav Rao H, Upadhyaya S. Self-healing systems - survey and synthesis. Decision
Support Systems January 2007; 42(4):2164–2185.

5. Horn P. Autonomic computing: IBM’s perspective on the state of information technology. 2001; .
6. Ganek AG, Corbi TA. The dawning of the autonomic computing era. IBM Systems Journal 2003; 42 ,

Issue: 1:5–18.
7. Kephart JO, Chess DM. The vision of autonomic computing. Computer 2003; 36, Issue: 1:41–50.
8. Kephart JO, Walsh WE. An artificial intelligence perspective on autonomic computing policies. Fifth

IEEE International Workshop on Policies for Distributed Systems and Networks June 2004; :3–12.
9. Russell S, Norvig P. Artificial Intelligence: A Modern Approach. 2nd Edition. Prentice Hall, 2003.

10. Diao Y, Hellerstein JL, Parekh S, Griffith R, Kaiser G, Phung D. Self-managing systems: A control theory
foundation. Engineering of Computer-Based Systems 2005; .

11. Kephart JO. Research challenges of autonomic computing. Proceedings of the 27th international conference
on software engineering 2005; :15–22.

12. Brodie M, Ma S, Lohman G, Syeda T, Mahmood L, Mignet N, Modani, Wilding M, Champlin J, Sohn P.
Quickly finding known software problems via automated symptom matching. Proceedings of the Second
International Conference on Autonomic Computing. 2005; .

13. Candea G, Kawamoto S, Fujiki Y, Friedman G, Fox A. Microreboot-a technique for cheap recovery. In
Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI) 2004; .

14. Boutilier C, Das R, Kephart JO, Tesauro G, Walsh WE. Cooperative negotiation in autonomic systems
using incremental utility elicitation. Nineteenth Conference on Uncertainty in Artificial Intelligence 2003;
:89–97.

15. Braynard R, Kostic D, Rodriguez A, Chase J, Vahdat A. Opus: an overlay peer utility service. Proceedings
of the 5th International Conference on Open Architectures and Network Programming (OPENARCH)
2002; .

16. Irwin DE, Grit LE, Chase J. Balancing risk and reward in market-based task scheduling. Proceedings of
the Thirteenth International Symposium on High Performance Distributed Computing (HPDC-13) 2004;
.

17. Walsh WE, Tesauro G, Kephart JO, Das R. Utility functions in autonomic systems. Proceedings of the
First International Conference on Autonomic Computing, 2004; 70–77.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

24

18. Kephart JO. Autonomic computing: The first decade. International Conference on Autonomic Computing
2011; .

19. Rodosek GD, Geihs K, Schmeck H, Burkhard S. Self-healing systems: Foundations and challenges. Self-
Healing and Self-Adaptive Systems, Dagstuhl Seminar Proceedings Series, Schloß Dagstuhl, 2009.

20. Salehie M, Tahvildari L. Self-adaptive software: Landscape and research challenges. ACM Trans. Auton.
Adapt. Syst. May 2009; 4(2):14:1–14:42.

21. Kirby G, Dearle A, Macdonald A, Fernandes A. An approach to ad hoc cloud computing. ArXiv.org 2010;
Http://arxiv.org/pdf/1002.4738.pdf.

22. Sloman M. Policy driven management for distributed systems. Journal of Network and Systems
Management 1994; 2:333–360.

23. Cheng SW, Huang AC, Garlan D, Schmerl BR, Steenkiste P. Rainbow: Architecture-based self-adaptation
with reusable. ICAC, 2004; 276–277.

24. Ahmed S, Ahamed SI, Sharmin M, Hasan CS. Self-healing for autonomic pervasive computing. Autonomic
Communication. Springer US, 2009; 285–307.

25. Aldinucci M, Danelutto M, Zoppi G, Kilpatrick P. Advances in autonomic components and services. From
Grids to Service and Pervasive Computing, Priol T, Vanneschi M (eds.). Springer US, 2008; 3–17.

26. Simmonds J, Ben-David S, Chechik M. Monitoring and recovery of web service applications. The Smart
Internet, Lecture Notes in Computer Science, vol. 6400. Springer-Verlag, 2010; 250–288.

27. Cheng SW, Garlan D, Schmerl B. Architecture-based self-adaptation in the presence of multiple objectives.
ICSE 2006 Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS) , 2006.

28. Menasce D, Gomaa H, Malek S, Sousa J. Sassy: A framework for self-architecting service-oriented systems.
Software, IEEE 2011; 28(6):78–85, doi:10.1109/MS.2011.22.

29. Cardellini V, Casalicchio E, Grassi V, Iannucci S, Lo Presti F, Mirandola R. Moses: A framework for qos
driven runtime adaptation of service-oriented systems. IEEE Transactions on Software Engineering 2011;
PP(99):1–23. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5963694.

30. Schuler C, Weber R, Schuldt H, j Schek H. Scalable peer-to-peer process management - the osiris approach.
In: Proceedings of the 2 nd International Conference on Web Services (ICWS’2004) , IEEE Computer
Society, 2004; 26–34.

31. Stojnic N, Schuldt H. Osiris-sr: A safety ring for self-healing distributed composite service execution.
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on , 2012;
21–26, doi:10.1109/SEAMS.2012.6224387.

32. Psaier H, Skopik F, Schall D, Dustdar S. Behavior monitoring in self-healing service-oriented systems.
Socially Enhanced Services Computing. Springer Vienna, 2011; 95–116.

33. Miorandi D, Lowe D, Yamamoto L. Embryonic models for self–healing distributed services. Bioinspired
Models of Network, Information, and Computing Systems, Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, vol. 39. Springer Berlin Heidelberg,
2010; 152–166.

34. Miorandi D, Carreras I, Altman E, Yamamoto L, Chlamtac I. Bio-inspired approaches for autonomic
pervasive computing systems. Bio-Inspired Computing and Communication, vol. 5151. Springer Berlin,
2008; 217–228.

35. Dean DJ, Nguyen H, Gu X. Ubl: Unsupervised behavior learning for predicting performance
anomalies in virtualized cloud systems. Proceedings of the 9th international conference on Autonomic
computing, ICAC ’12, ACM: New York, NY, USA, 2012; 181–190, doi:10.1145/2371536.2371571. URL
http://doi.acm.org/10.1145/2371536.2371571.

36. Pernici B. Self-healing systems and web services: The ws-diamond approach. Business Process
Management Workshops, Lecture Notes in Business Information Processing, vol. 17. Springer Berlin
Heidelberg, 2009; 440–442.

37. Ramirez AJ, Knoester DB, Cheng BH, Mckinley PK. Plato: a genetic algorithm approach to run-time
reconfiguration in autonomic computing systems. Cluster Computing Sep 2011; 14(3):229–244.

38. Shehory O. A Self-healing Approach to Designing and Deploying Complex, Distributed and Concurrent
Software Systems, Lecture Notes in Computer Science, vol. 4411. Springer-Verlag, 2007; 3–13.

39. Calinescu R. General-purpose autonomic computing. Autonomic Computing and Networking. Springer
US, 2009; 3–30.

40. Stoica I, Morris R, Karger D, Kaashoek MF. Chord: A scalable peer-to-peer lookup service for internet.
Proceedings of the ACM SIGCOMM ’01 Conference, 2001.

41. Naccache H, Gannod G, Gary K. A self-healing web server using differentiated services. Service-Oriented
Computing – ICSOC 2006, Lecture Notes in Computer Science, vol. 4294. Springer Berlin / Heidelberg,
2006; 203–214.

42. Li G, Liao L, Song D, Wang J, Sun F, Liang G. A self-healing framework for qos-aware web service
composition via case-based reasoning. Web Technologies and Applications, Lecture Notes in Computer
Science, vol. 7808. Springer Berlin Heidelberg, 2013; 654–661.

43. Carzaniga A, Gorla A, Pezzè M. Healing web applications through automatic workarounds.
International Journal on Software Tools for Technology Transfer (STTT) 2008; 10:493–502. URL
http://dx.doi.org/10.1007/s10009-008-0088-8, 10.1007/s10009-008-0088-8.

44. Hassan S, McSherry D, Bustard D. Autonomic self healing and recovery informed by environment
knowledge. Artificial Intelligence Review 2006; 26:89–101. 10.1007/s10462-007-9033-6.

45. Kamvar S, Schlosser M, Garcia-Molina H. The eigentrust algorithm for reputation management in p2p
networks. Proceedings of the 12th international conference on World Wide Web , WWW ‘03, ACM: New
York, NY, USA, 2003; 640–651.

46. Chess DM. Security in autonomic computing 2005; 33, doi:10.1145/1055626.1055628.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

25

47. Gustavsson R, St̊ahl B. Self-healing and resilient critical infrastructures. Critical Information
Infrastructure Security, Lecture Notes in Computer Science, vol. 5508. Springer Berlin / Heidelberg, 2009;
84–94.

48. Rilling L. Vigne: Towards a self-healing grid operating system. Euro-Par 2006 Parallel Processing, Lecture
Notes in Computer Science, vol. 4128. Springer Berlin / Heidelberg, 2006; 437–447.

49. Baduel L, Matsuoka S. A decentralized, scalable, and autonomous grid monitoring system. Principles of
Distributed Systems, Lecture Notes in Computer Science, vol. 4878. Springer Berlin / Heidelberg, 2007;
1–15.

50. Garvin B, Cohen M, Dwyer M. Failure avoidance in configurable systems through feature locality 2013;
7740:266–296. URL http://dx.doi.org/10.1007/978-3-642-36249-1 10.

51. Holland JH. Adaptation in natural and artificial systems. MIT Press, Cambridge, MA. US. 1992; .
52. Metzger A, Sammodi O, Pohl K. Accurate proactive adaptation of service-oriented systems. Assurances

for Self-Adaptive Systems, Lecture Notes in Computer Science, vol. 7740, Cmara J, Lemos R, Ghezzi C,
Lopes A (eds.). Springer Berlin Heidelberg, 2013; 240–265, doi:10.1007/978-3-642-36249-1 9.

53. Fernandez-Marquez J, Di Marzo Serugendo G, Montagna S. Bio-core: Bio-inspired self-organising
mechanisms core. Bio-Inspired Models, vol. 103. Social informatics and telecommunications engineering
edn., Lecture Notes of the, 2012; 59–72.

54. Montagna S, Pianini D, Virolio M. Gradient-based self-organisation. 6th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO 2012), 2012; 10–14.

55. Chess DM, Kumar V, Segal A, Whalley I. Work in progress: Availability-aware self-configuration in
autonomic systems. Utility Computing, Lecture Notes in Computer Science, vol. 3278. Springer Berlin
/ Heidelberg, 2004; 257–258.

56. de Lemos R. The conflict between self-* capabilities and predictability. Self-star Properties in Complex
Information Systems: Conceptual and Practical Foundations. Springer, 2005; 219–229.

57. McCann J, de Lemos R, Heubscher M, Rana FO, Wombacher A. Can self-managed systems be trusted?
some views and trends. Knowledge Engineering Review September 2006; 21(3):239–248.

58. McCann J, Huebscher M. Evaluation issues in autonomic computing. Grid and Cooperatve Computing -
GCC 2004 Workshops, vol. 3252. Springer Berlin, 2004; 597–608.

59. Gomaa H, Hashimoto K. Dynamic self-adaptation for distributed service-oriented transactions. Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on , 2012; 11–20,
doi:10.1109/SEAMS.2012.6224386.

60. Engel Y, Etzion O. Towards proactive event-driven computing. Proceedings of the 5th ACM international
conference on Distributed event-based system, DEBS ’11, ACM: New York, NY, USA, 2011; 125–136.

61. Ramirez AJ, Knoester DB, Cheng BH, McKinley PK. Applying genetic algorithms to decision making in
autonomic computing systems. Proceedings of the 6th international conference on Autonomic computing ,
ICAC ’09, ACM: New York, NY, USA, 2009; 97–106.

62. Ortega-Sanchez C, Mange M, Smith S, Tyrrell A. Embryonics: a bio-inspired cellular architecture with
fault-tolerant properties. Genetic Programming and Evolvable Machines. 2000; 187–215.

63. Prodan L, Tempesti G, Mange D, Stauffer A. Embryonics: artificial stem cells. In: Proc. of ALife VIII.
2002; 101–105.

64. Kohonen T. The self-organizing map. Proceedings of the IEEE 1990; 78(9):1464–1480.
65. Zheng Z, Yu L, Lan Z, Jones T. 3-dimensional root cause diagnosis via co-analysis. Proceedings of the 9th

international conference on Autonomic computing, ICAC ’12, ACM: New York, NY, USA, 2012; 181–190,
doi:10.1145/2371536.2371571. URL http://doi.acm.org/10.1145/2371536.2371571.

66. Tauber M, Kirby G, Dearle A. Autonomic management of maintenance scheduling in chord. CoRR 2010;
abs/1006.1578.

67. Dai Y, Xiang Y, Zhang G. Self-healing and hybrid diagnosis in cloud computing. Cloud Computing, Lecture
Notes in Computer Science, vol. 5931. Springer Berlin / Heidelberg, 2009; 45–56.

68. Snyder P, Valetto G, Fernandez-Marquez J, di Marzo Serugendo G. Augmenting the repertoire of design
patterns for self-organized software by reverse engineering a bio-inspired p2p system. Proceedings of the
6th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2012) , 2012.

69. Brown A, Redline C. Measuring the effectiveness of self-healing autonomic systems. Proceedings of the
Second International Conference on Autonomic Computing 2005 2005; .

70. Funika W, Pȩgiel P. A role-based approach to self-healing in autonomous monitoring systems. Parallel
Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 6068. Springer Berlin /
Heidelberg, 2010; 125–134.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

