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We investigate how to model Markovian evolution of coupled harmonic oscillators, each of them interacting
with a local environment. When the coupling between the oscillators is weak, dissipation may be modeled using
local Lindblad terms for each of the oscillators in the master equation, as is commonly done. When the coupling
between oscillators is strong, this model may become invalid. We derive a master equation for two coupled
harmonic oscillators that are subject to individual heat baths modeled by a collection of harmonic oscillators
and show that this master equation in general contains nonlocal Lindblad terms. We compare the resulting time
evolution with that obtained for dissipation through local Lindblad terms for each individual oscillator and show
that the evolution is different in the two cases. In particular, the two descriptions give different predictions for
the steady state and for the entanglement between strongly coupled oscillators. This shows that when describing
strongly coupled harmonic oscillators, one must take great care in how dissipation is modeled and that a
description using local Lindblad terms may fail. This may be particularly relevant when attempting to generate
entangled states of strongly coupled quantum systems.
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I. INTRODUCTION

Physical systems will always, to a varying degree, interact
with their external environments. This is commonly described
using some kind of master equation. Very often approxima-
tions are made, resulting in a master equation of so-called
Lindblad form. When modeling quantum systems coupled to
each other and to their environments, it might therefore be
tempting to phenomenologically add decay terms of Lindblad
form to account for interaction with an environment, without
going via a rigorous derivation of the master equation from
first principles. As first noted by Walls, however, one has to
be careful when doing this, as naively adding Lindblad terms
may give the wrong steady state for strongly coupled quantum
systems [1].

In this paper we further explore how to describe the system-
environment interaction for coupled harmonic oscillators.
In particular, we will be especially interested in strongly
coupled oscillators and will consider not just the steady
state, but also predictions regarding quantum entanglement.
Many different physical systems can be described as coupled
harmonic oscillators, including coupled vibrational degrees
of freedom of ions in an ion trap [2], quantum fluctua-
tions of mechanical and optical modes around the classical
steady-state value in an optomechanical cavity [3–6], or
coupled nanosized electromechanical devices arranged in an
array [7]. Entanglement properties of such systems are of
great current interest in the context of quantum information
science and quantum technology. This is one motivation for our
work.

The paper is organized as follows. In Sec. II we briefly
review the derivation of master equations. In Sec. III a master
equation describing the evolution of two coupled oscillators
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is examined, for the case when each oscillator undergoes
damping through a local Lindblad term, which could arise as
a phenomenologically motivated master equation. Following
this, a Markovian master equation describing the evolution
of two strongly coupled oscillators is derived in Sec. IV,
assuming that each oscillator interacts with a local bath of
harmonic oscillators. In Sec. V we compare the evolution
of the two coupled oscillators when dissipation is modeled
using the above two approaches. We compare oscillator
excitations, fidelity between the two mode states for the
different damping models, and the quantum correlations
between the two coupled oscillators, as measured by the
logarithmic negativity, and show these to be different, in
general, in the two cases. The observation made by Walls
for the steady state is also confirmed for zero-temperature
reservoirs. Finally, we conclude the paper with discussion in
Sec. VI.

II. DERIVING MASTER EQUATIONS

To illustrate how master equations are in general derived, we
will be considering two bilinearly coupled harmonic oscillators
with equal frequency ω and unit mass, labeled by a and b,
described by a Hamiltonian (with � = 1)

Hsys = 1
2

(
p̂2

a + ω2x̂2
a

) + 1
2

(
p̂2

b + ω2x̂2
b

) + 1
2�2(x̂ax̂b). (1)

Expressing the position and momentum quadratures in terms
of annihilation and creation operators and setting κ = �2/4ω,
we can write the Hamiltonian as

Hsys = Ha + Hb + Hcoupling

= ω(â†â + b̂†b̂) + κ(â + â†)(b̂ + b̂†), (2)

where â and b̂ are destruction operators for the individual
modes of the two coupled oscillators.
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The joint state of the two oscillators and their outside
environment evolve under the Hamiltonian

H = Hsys + Henv + Hint. (3)

The environment is often modeled as a collection of har-
monic oscillators linearly coupled to the system oscillators
through

Hint = R̂a(â + â†) + R̂b(b̂ + b̂†), (4)

where the reservoir operators R̂a,b take the generic form

R̂ =
∑
�

f (�)(ĉ†� + ĉ�), (5)

and ĉ� refer to the modes of the environment that interact
with the quantum system with interaction strength f (�). It is
sometimes possible to derive an exact master equation, such
as the Hu-Paz-Zhang master equation for the Caldeira-Leggett
model, when the system is a single harmonic oscillator [8].
The case of coupled harmonic oscillators interacting with
an arbitrary number of reservoirs has been dealt with by
influence functional methods in [9]. The results are exact, but
forbiddingly complex in the general case. We are working
in the limit in which the Born-Markov approximation is
appropriate and a limiting case could in principle be arrived at
from the exact results of [9] by appropriate choice of spectral
density and time scales. For our investigations, however, we
have chosen more usual methods, which are sufficient to
illustrate the point we wish to make.

First, the rotating-wave approximation (RWA) can be made
on the coupling between the oscillators. Second, approxima-
tions including the RWA can be made for the interaction be-
tween the oscillators and the environment. The RWA involves
dropping quickly oscillating terms from the Hamiltonian. In
commonly encountered physical situations, the oscillators are
weakly coupled to each other so that κ � ω. If this condition is
met, then the coupling between the oscillators can be simplified
under the RWA [10,11]. The two-mode squeezing terms âb̂ and
b̂†â† oscillate, in the interaction picture, on a time scale ∼ω−1

(where ω denotes the system transition frequency), which, if
the RWA can be made, is much faster than the time scale κ−1 of
the coupling between the oscillators. The two-mode squeezing
terms can then be dropped from the Hamiltonian. The RWA
Hamiltonian then conserves the number of excitations and
can be straightforwardly solved using a simple rotational
transformation to the center of mass and the relative modes
of the two oscillators.

Similar reasonings hold when applying the RWA on the
interaction between a system and its environment. The system
could also consist of several subsystems, each one in their
independent environments or in a common environment. In
any case, properly applying the RWA should again involve
dropping quickly oscillating terms.

For the interaction of the system with the environment,
the theory of open quantum systems provides a suite of
approximations, including the Born-Markov and secular
approximations, that have been found to be widely valid.
The secular approximation amounts to excluding rapidly
oscillating terms arising in the master equation. Alternatively,
the usual RWA can be introduced directly at the level of the

Hamiltonian. Either way, this approximation is essential—the
Born-Markov approximations are not enough—in yielding a
master equation for the system density operator ρ that is of
Lindblad form (ignoring energy shifts)

ρ̇ = −i[Hsys,ρ] +
∑

s

γsLs[ρ], (6)

where Lsρ = ŝρŝ† − 1
2 {ŝ†ŝ,ρ} and ŝ and ŝ† are harmonic-

oscillator annihilation and creation operators, respectively,
whose detailed form depends not just on the form of the
system-reservoir interaction, but also on the coupling between
the systems, in our case the two oscillators.

For a system of coupled oscillators, each independently
interacting with separate heat baths, one might expect that the
form of the damping for each coupled oscillator is independent
of the strength of the coupling between them. Therefore, a
naive approach, which can also be referred to as a local
damping model, is simply to add local Lindblad terms for
each oscillator [3,5,6,12,13]. That is, the Lindblad operators
ŝ,ŝ† would be given by â,â†,b̂,b̂† to yield

ρ̇ = −i[Hsys,ρ] +
∑
s=a,b

{�s(n̄s + 1)Ls[ρ] + �sn̄sLs† [ρ]}, (7)

where �s is the decay rate of oscillator s, which is coupled to
a heat bath with average thermal occupancy n̄s . This approach
is certainly valid if the coupling between the oscillators is
weak. As was first noted by Walls [1], however, it may also
fail. Walls investigated the case of two coupled bosonic modes
with intermode coupling Hcoupling = κ(â†b̂ + b̂†â). He pointed
out that for intermode coupling κ ∼ ω, modeling dissipation
through local damping of each individual mode may become
questionable. The steady-state density operator for the system
ought to be the canonical density operator

ρ(∞) ∼ exp(−Hsys/kBT ) (8)

in the limit of weak coupling of the system(s) to the reservoir(s)
at a temperature T . This is, of course, the expected steady-state
density operator for the system in thermal equilibrium with the
reservoir at temperature T .

If instead the damping of Lindblad form is added naively,
with ŝ equal to the individual system mode operators â and
b̂, then Ĥa + Ĥb appears in the exponent. While this might be
an acceptable approximation for weak intersystem coupling
(κ � ω), in the limit of strongly coupled oscillators it is not a
valid result.

When the coupling between oscillators is strong, it is
necessary to derive the master equation in a way that
fully accounts for the coupling between the oscillators. The
Lindblad operators ŝ,ŝ† are then the energy eigenoperators [14]
for the composite system, or equivalently the normal modes
of the coupled harmonic oscillators, instead of the operators
â,â†,b̂,b̂†. Working with the eigenoperators is of course a
general principle when it comes to dealing with damping of
any composite quantum system: It is not confined to coupled
harmonic oscillators. For instance, the correct damping of the
Jaynes-Cummings model resulting in an equilibrium steady
state entails an eigenoperator approach [15]. However, in doing
so, perhaps somewhat counterintuitively, the Lindblad terms
in the resulting master equations are then in a sense nonlocal.

063815-2



MARKOVIAN EVOLUTION OF STRONGLY COUPLED . . . PHYSICAL REVIEW A 90, 063815 (2014)

The resulting time evolution then differs from the one obtained
using a master equation with local Lindblad terms. In other
words, when the oscillators are strongly coupled to each other,
a description using local Lindblad terms may fail and it is
this regime we are interested in. In particular, in this regime
of strong coupling we find, for example, that we would not
expect to be able to make the RWA in the oscillator-oscillator
coupling in the Hamiltonian (2). In order to study in greater
detail the contributions of the non-RWA terms, we will work,
instead of with the Hamiltonian (2), rather with a generalized
Hamiltonian for the two oscillators

Hsys = ω(â†â + b̂†b̂) + κ(â†b̂ + b̂†â) + λ(âb̂ + b̂†â†). (9)

From this Hamiltonian, (2) can be regained in the case of
λ = κ and the RWA form for λ = 0. The Hamiltonian (9),
however, also includes, e.g., the case of a squeezing inter-
action, which is obtained for κ = 0. Furthermore, we are
here interested in the evolution of coupled harmonic oscil-
lators initially prepared in Gaussian states. The generalized
Hamiltonian (9) is still quadratic in position and momentum
coordinates and hence the initial Gaussian nature of the state is
preserved.

III. LOCAL LINDBLAD-TYPE DISSIPATION

As stated in the Introduction, there is inevitable coupling
between the system of interest and the environment. In this
section we consider the case where the dissipative dynamics
is modeled by adding local Lindblad operators for each indi-
vidual oscillator. As we will show, adding such local Lindblad
terms to the master equation must be carefully justified and
may in fact lead to incorrect dynamics if the oscillators are
strongly coupled to each other. For now, we nevertheless
assume that the time evolution of the system of two coupled
harmonic oscillators in the Born-Markov approximation is
described by the Lindblad-type master equation (7), repeated
here,

∂ρ

∂t
= −i[Hsys,ρ] +

∑
s=a,b

{[�s(n̄s + 1)Ls(ρ) + �sn̄sLs† (ρ)]}.

If the two coupled oscillators interact with an environment
which itself can be described by a Gaussian state, with an
interaction Hamiltonian that contains terms at most quadratic
in annihilation and creation operators, then the two coupled
oscillators maintain their initial Gaussian character during
the resulting dissipative evolution. One way to solve the
master equation (7) is to exploit this Gaussian character,
by rewriting the master equation in terms of a partial
differential equation for the two-mode quantum characteristic
function. We define a normal-ordered characteristic func-
tion as χ (κa,κ

∗
a ,ηb,η

∗
b,t) = 〈eκaâ

†
e−κ∗

a âeηbb̂
†
e−η∗

b b̂〉 and make
a Gaussian ansatz for the time-evolved characteristic function
χ (κa,κ

∗
a ,ηb,η

∗
b,t) = exp[−zTL(t)z + izTh(t)]. Here L(t) is a

time-dependent 4×4 symmetric matrix, h(t) is a 4×1 time-
dependent vector, and zT = (κa,κ

∗
a ,ηb,η

∗
b). The correspond-

ing partial differential equation for χ (κa,κ
∗
a ,ηb,κ

∗
b ,t) then

becomes [10]

∂

∂t
χ = zTMzχ + zTN∇χ, (10)

where ∇ = ( ∂
∂κa

, ∂
∂κ∗

a
, ∂
∂κb

, ∂
∂κ∗

b

)T and

N =

⎛
⎜⎝

iω − �a 0 iκ −iλ

0 −iω − �a iλ −iκ

iκ −iλ iω − �b 0
iλ −iκ 0 −iω − �b

⎞
⎟⎠ ,

(11)

M =

⎛
⎜⎜⎜⎝

0 −�an̄a iλ/2 0

−�an̄a 0 0 −iλ/2

iλ/2 0 0 −�bn̄b

0 −iλ/2 −�bn̄b 0

⎞
⎟⎟⎟⎠ . (12)

Using the Gaussian ansatz for the quantum characteristic
function χ (κa,κ

∗
a ,ηb,η

∗
b,t), it easily follows that

∂χ

∂t
= −zT dL

dt
zχ + izT dh

dt
χ, (13)

∇χ = −2Lzχ + ihχ. (14)

Using (13) and (14), the partial differential equation (10) for
χ becomes

− zT dL
dt

z + izT dh

dt
χ = zTMzχ − 2zTNLzχ + izTNhχ.

(15)

Recalling that L(t) is symmetric, we can write

L(t) =
(

P(t) Q(t)
Q(t)T R(t)

)
, (16)

where P(t) and R(t) are 2×2 symmetric matrices. Taking
the symmetric part of (15) results in two matrix differential
equations

dL(t)

dt
+ M = NL + LNT, (17)

dh

dt
= Nh. (18)

Thus solving the master equation (7) reduces to solving
two coupled matrix differential equations. From the quantum
characteristic function the complete statistical description of
the corresponding state can be obtained. With the quan-
tum characteristic function one can therefore also obtain
the expectation values of quantum mechanical observables,
e.g.,

〈â†m(t)b̂†n(t)〉 =
(

∂

∂κa

)m (
∂

∂κb

)n

×χ (κa,κ
∗
a ,ηb,η

∗
b,t)|κa,κ∗

a ,ηb,η
∗
b=0.

In the next section we derive a master equation describing the
dynamics of two strongly coupled harmonic oscillators where
their individual environments are modeled as collections of
harmonic oscillators. By numerically solving both the master
equation in (7), describing local Lindblad-type dissipation,
and the master equation derived in the next section, we then,
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in Sec. V, compare the dissipative evolution of the two strongly
coupled harmonic oscillators in these two cases.

IV. BATH-INDUCED DISSIPATION

A master equation of standard Lindblad form guarantees
the positivity of the time-evolved density matrix. It may
seem justified to simply add local Lindblad terms acting
on the individual coupled oscillators a and b, also when
they are strongly coupled to each other, as was done in
the previous section. As we will show next, however, this
is fraught with pitfalls. In what follows we shall derive a
Markovian master equation for two strongly coupled harmonic
oscillators that are harmonically coupled to their local heat
baths. The result is a master equation of Lindblad form, but the
Lindblad superoperatorsL do not act locally on each individual
oscillator.

The oscillators are as before labeled a and b and their
coupled dynamics is governed by the Hamiltonian (9). We
consider a scenario where the two oscillators are irreversibly
coupled to local heat baths, each of which is modeled as
a collection of many harmonic oscillators. The Hamiltonian
corresponding to the two independent local heat baths is given
by

Henv =
∑
�

�ĉ
†
�ĉ� +

∑
�′

�′d̂†
�′ d̂�′ , (19)

where ĉ� and d̂�′ represent the destruction operators for the
bosonic modes of the local heat baths for oscillators a and
b, respectively. Assuming a bilinear coupling between the
position quadratures of each oscillator and the modes of their
local heat baths, the system-environment interaction takes the
form

Hint=
∑
�

ζ�(ĉ†� + ĉ�)(â + â†)+
∑
�′

η�′(d̂†
�′ + d̂�′ )(b̂ + b̂†),

(20)

where ζ� and η�′ are the coupling strengths between each
individual oscillator and modes of the corresponding environ-
ment. The two coupled oscillators undergo unitary evolution
described by the Hamiltonian

Ĥ = Ĥsys + Ĥenv + Ĥint. (21)

Using the Hamiltonian (21), a master equation describing the
dissipative evolution of the two coupled oscillators will now
be derived.

A. Derivation of the coupled oscillator master equation

In order to derive a master equation for the two coupled
harmonic oscillators we first diagonalize the Hamiltonian (9)
by defining the center of mass and relative modes

ê = â + b̂√
2

, (22)

f̂ = â − b̂√
2

. (23)

The Hamiltonian (9) now becomes

Hsys = ω(ê†ê + f̂ †f̂ ) + λ

2
(ê2 + ê†2 − f̂ 2 − f̂ †2)

+ κ

2
(êê† + ê†ê − f̂ f̂ † − f̂ †f̂ ), (24)

which can be diagonalized using a Bogoliubov transformation(
ê

ê†

)
=

(
α1 −β1

−β1 α1

) (
l̂

l̂†

)
, (25)

(
f̂

f̂ †

)
=

(
α2 −β2

−β2 α2

)(
m̂

m̂†

)
. (26)

The Hamiltonian (24) then takes the simplified form

Hsys = (α11 + α22)l̂† l̂ + (β11 + β22)m̂†m̂, (27)

with

α11 = (2ω + κ)α2
1 − 2λα1β1 + κβ2

1

2
, (28)

α22 = (2ω + κ)β2
1 − 2λα1β1 + κα2

1

2
, (29)

β11 = (2ω − κ)α2
2 + 2λα2β2 − κβ2

2

2
, (30)

β22 = (2ω − κ)β2
2 + 2λα2β2 − κα2

2

2
, (31)

where αi and βi are of the form

α2
1 = 1

2
+ 1

2

κ + ω√
(κ + ω)2 − λ2

, (32)

β2
1 = −1

2
+ 1

2

κ + ω√
(κ + ω)2 − λ2

, (33)

α2
2 = 1

2
+ 1

2

−κ + ω√
(−κ + ω)2 − λ2

, (34)

β2
2 = −1

2
+ 1

2

−κ + ω√
(−κ + ω)2 − λ2

. (35)

For the coupled oscillators to maintain their oscillatory behav-
ior, λ < |ω − κ| is required. Thus the free evolution of the two
coupled oscillators and their local environment is given by

Hsys + Henv = (α11 + α22)l̂† l̂ + (β11 + β22)m̂†m̂

+
∑
�

�ĉ
†
�ĉ� +

∑
�′

�′d̂†
�′ d̂�′ .

Reexpressing the bare modes a and b in terms of l̂ and
m̂, the Hamiltonian (21) in the interaction picture with
H0 = Hsys + Henv becomes

HI (t) =
∑
�,�′

[ζ�(ĉI + ĉ
†
I )(α1 l̂I − β1 l̂

†
I + α1 l̂

†
I − β1 l̂I

+α2m̂I − β2m̂
†
I + α2m̂

†
I − β2m̂I )

+ η�′(d̂I + d̂
†
I )(α1 l̂I − β1 l̂

†
I + α1 l̂

†
I − β1 l̂I

−α2m̂I + β2m̂
†
I − α2m̂

†
I + β2m̂I )], (36)
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where HI (t) = e−iH0tHinte
iH0t , l̂I = l̂e−i(α11+α22)t , m̂I =

m̂e−i(β11+β22)t , ĉI = ĉ�e−i�t , d̂I = d̂�′e−i�′t , and a factor of
1/

√
2 has been absorbed into the definition of ζ� and η�′ .

If the system-reservoir coupling is weak we can simplify
the interaction Hamiltonian (36) using the RWA. Invoking
the RWA essentially amounts to dropping the fast oscil-
lating terms proportional to ĉI l̂I ,ĉI m̂I ,d̂I l̂I ,d̂I m̂I and their
Hermitian conjugates from the Hamiltonian (36), which results
in

HI (t) = l̂I F̂
†(t) + m̂I Q̂

†(t) + H.c., (37)

where the noise operators are given by

F̂ †(t) =
∑
�,�′

(α1 − β1)(ζ�ĉ
†
�ei�t + η�′ d̂

†
�′e

i�′t ), (38)

Q̂†(t) =
∑
�,�′

(α2 − β2)(ζ�ĉ
†
�ei�t − η�′ d̂

†
�′e

i�′t ). (39)

Using the RWA and in the interaction picture with H0 =
Hsys + Henv, the joint state of the oscillators and their local
environments, represented by the total density matrix ρI ,
evolves according to

ρ̇I (t) = −i[HI (t),ρI (t)], (40)

where HI (t) is given by Eq. (37). We assume that at t = 0
the joint state of the system and environments is factorizable
so that ρI (t = 0) = ρe(0) ⊗ ρsys(0), where ρe(0) is the joint
initial state of the two local baths and ρsys(0) is the density
matrix of the two coupled harmonic oscillators.

The evolution of the density matrix ρsys representing the
state of the two oscillators is given by

ρ̇sys(t) = Treρ̇I (t) = −iTre[HI (t),ρI (t)], (41)

where Tre denotes the trace over the environmental degrees of
freedom. If we also assume that the state of the environment for
each oscillator remains unaffected as a result of the coupling,
then the joint state of the system evolves as ρI (t) = ρe(0) ⊗
ρsys(t). Formally integrating (40) gives

ρI (t) = ρI (0) − i

∫ t

0
[HI (t ′),ρI (t ′)]dt ′, (42)

which when substituted in (41) gives an integro-differential
equation for the state of the oscillators

ρ̇sys(t) = −i Tre[HI (t),ρI (0)]

−
∫ t

0
Tre[HI (t),[HI (t ′),ρI (t ′)]]dt ′. (43)

For an environment in thermal equilibrium the first term in (43)
is identically zero. Using (37), the above integro-differential
equation takes the form

ρ̇sys(t) = −
∫ t

0
Tre[l̂I F̂ †(t) + m̂I Q̂

†(t) + H.c.,[l̂I F̂
†(t ′)

+ m̂I Q̂
†(t ′) + H.c.,ρe(0) ⊗ ρsys(t

′)]]dt ′. (44)

Equation (44) can be rearranged as

ρ̇sys(t) = −
∫ t

0
Tre[HI (t)HI (t ′)ρe(0) ⊗ ρsys(t

′)

−HI (t)ρe(0) ⊗ ρsys(t
′)HI (t ′)

−HI (t ′)ρe(0) ⊗ ρsys(t
′)HI (t)

+ ρe(0) ⊗ ρsys(t
′)HI (t ′)HI (t)]dt ′. (45)

For environments in thermal equilibrium with flat spectral
densities such that ζ� = ζ and η�′ = η, together with the
Markov approximation, one obtains

∑
�

ζ 2
�ei�(t ′−t) = ζ 22πδ(t ′ − t), (46)

∑
�′

η2
�′e

i�′(t ′−t) = η22πδ(t ′ − t). (47)

One can easily verify that in the case of symmetric coupling
of each oscillator to its own environment at zero temperature
such that πζ 2 = πη2 = �, one obtains the following master
equation in the Schrödinger picture:

ρ̇(t) = −i[(α11 + α22)l̂† l̂ + (β11 + β22)m̂†m̂,ρ(t)]

+〈F̂ F̂ †〉[2l̂ρ(t)l̂† − l̂† l̂ρ(t) − ρ(t)l̂† l̂]

+〈Q̂Q̂†〉[2m̂ρ(t)m̂† − m̂†m̂ρ(t) − ρ(t)m̂†m̂], (48)

where ρ(t) = e−iHsyst ρsys(t)eiHsyst is the density matrix rep-
resenting the state of the two coupled oscillators in the
Schrödinger picture and the only nonzero two-time noise
correlation functions are of the form

〈F̂ F̂ †〉 = 2�(α1 − β1)2, (49)

〈Q̂Q̂†〉 = 2�(α2 − β2)2. (50)

Reverting to the bare modes a and b, the master equation (48)
takes the form

ρ̇(t) = −i[Hsys,ρ(t)] + �1[2âρ(t)â† − â†âρ(t) − ρ(t)â†â] + �1[2b̂ρ(t)b̂† − b̂†b̂ρ(t) − ρ(t)b̂†b̂]

+�2[2â†ρ(t)â − ââ†ρ(t) − ρ(t)ââ†] + �2[2b̂†ρ(t)b̂ − b̂b̂†ρ(t) − ρ(t)b̂b̂†] + �3[2âρ(t)â − ââρ(t) − ρ(t)ââ]

+�3[2â†ρ(t)â† − â†â†ρ(t) − ρ(t)â†â†] + �3[2b̂ρ(t)b̂ − b̂b̂ρ(t) − ρ(t)b̂b̂] + �3[2b̂†ρ(t)b̂† − b̂†b̂†ρ(t) − ρ(t)b̂†b̂†]

+�4[2âρ(t)b̂† − b̂†âρ(t) − ρ(t)b̂†â] + �4[2b̂ρ(t)â† − â†b̂ρ(t) − ρ(t)â†b̂] + �5[2b̂†ρ(t)â − âb̂†ρ(t) − ρ(t)âb̂†]

+�5[2â†ρ(t)b̂ − b̂â†ρ(t) − ρ(t)b̂â†] + �6[2b̂ρ(t)â − âb̂ρ(t) − ρ(t)âb̂] + �6[2âρ(t)b̂ − âb̂ρ(t) − ρ(t)âb̂]

+�6[2b̂†ρ(t)â† − â†b̂†ρ(t) − ρ(t)â†b̂†] + �6[2â†ρ(t)b̂† − b̂†â†ρ(t) − ρ(t)â†b̂†], (51)
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where the �i are given by

�1 = (〈F̂ F̂ †〉α2
1 + 〈Q̂Q̂†〉α2

2

)/
2, (52)

�2 = (〈F̂ F̂ †〉β2
1 + 〈Q̂Q̂†〉β2

2

)/
2, (53)

�3 = (〈F̂ F̂ †〉α1β1 + 〈Q̂Q̂†〉α2β2)
/

2, (54)

�4 = (〈F̂ F̂ †〉α2
1 − 〈Q̂Q̂†〉α2

2

)/
2, (55)

�5 = (〈F̂ F̂ †〉β2
1 − 〈Q̂Q̂†〉β2

2

)/
2, (56)

�6 = (〈F̂ F̂ †〉α1β1 − 〈Q̂Q̂†〉α2β2)/2. (57)

Equation (51) is the final form of the master equation
describing the dynamics of two coupled harmonic oscillators
interacting with independent zero-temperature baths with flat
spectral densities.

It is worth comparing the form of the master equation (51),
obtained in the RWA limit when λ = 0, with the master
equation (7) in the corresponding case. It is easy to check

that when λ = 0, α1 = α2 = 1, and β1 = β2 = 0, the master
equation (51) reduces to the form

ρ̇(t) = −i[Hsys,ρ(t)] + �1[2âρ(t)â† − â†âρ(t) − ρ(t)â†â]

+�1[2b̂ρ(t)b̂† − b̂†b̂ρ(t) − ρ(t)b̂†b̂], (58)

which is identical to the local master equation (7) obtained
in the limit n̄a = n̄b = 0. Thus, for both reservoirs at zero
temperature and under the RWA on the coupled oscillator
Hamiltonian, the local and nonlocal descriptions coincide.
This is a result that will be commented on further when we
discuss in Sec. V D the steady-state solutions to the local and
nonlocal master equations.

B. Characteristic function

From the master equation (51) we obtain a partial dif-
ferential equation for the two-mode quantum characteristic
function

∂

∂t
χ = zTM1zχ + zTN1∇χ, (59)

where ∇ = ( ∂
∂κa

, ∂
∂κ∗

a
, ∂
∂κb

, ∂
∂κ∗

b

)T and

N1 =

⎛
⎜⎝

iω + �2 − �1 0 �5 − �4 + iκ −iλ

0 −iω + �2 − �1 iλ −iκ + �5 − �4

iκ + �5 − �4 −iλ iω + �2 − �1 0
iλ −iκ + �5 − �4 0 −iω + �2 − �1

⎞
⎟⎠ , (60)

M1 =

⎛
⎜⎝

−�3 −�2 iλ/2 − �6 −�5

−�2 −�3 −�5 −iλ/2 − �6

iλ/2 − �6 −�5 −�3 −�2

−�5 −iλ/2 − �6 −�2 −�3

⎞
⎟⎠ . (61)

Using the numerical solution of Eqs. (10) and (59), or
equivalently Eqs. (7) and (51), we can compare the time
evolution of the state of the two coupled oscillators initially
prepared in Gaussian states when it evolves according to the
master equation (7) and when it evolves according to (51).
This is the subject of the next section.

V. TIME EVOLUTION

By numerically solving the master equations obtained in
Secs. III and IV, we can now easily compare the results of
the two approaches. We are interested in studying the time
evolution of coupled harmonic oscillators initially prepared in
Gaussian states. The state of the coupled oscillators can there-
fore be fully characterized in terms of the covariance matrix.

A. Oscillator excitation

Figures 1(a) and 1(b) show the average number of excita-
tions for each coupled oscillator evolving according to the local
master equation (7) and the nonlocal master equation (51).
One can clearly see that the dissipative dynamics is different
depending on which master equation and model for dissipation
are used. As will be discussed later, the difference between the
two approaches will become even stronger when one looks at

the steady-state solutions of the two master equations obtained
through the above two approaches.

B. Oscillator correlation

To quantify the quantum correlations between the two
coupled oscillators, we investigate the entanglement between
the oscillators initially prepared in Gaussian separable states.
For the case of two-mode Gaussian states, the covariance
matrix V is a 4×4 symmetric matrix with Vij = (〈RiRj +
RjRi〉)/2, where i,j ∈ {a,b} and RT = (q̂a,p̂a,q̂b,p̂b). Here
q̂i and p̂i are the position and momentum quadratures of
the ith oscillator. To characterize the entanglement dynamics
we use the logarithmic negativity, which is an entanglement
monotone and relatively easy to compute. For a two-mode
Gaussian continuous-variable state with covariance matrix
V, the logarithmic negativity is obtained as N = max[0,

− ln(2ν−)] [16], where ν− is the smallest of the symplectic
eigenvalues of the covariance matrix, given by ν− = [σ/2 −√

(σ 2 − 4 DetV)/2]1/2. Here

σ = DetA1 + DetB1 − 2 DetC1, (62)

V =
(

A1 C1

CT
1 B1

)
, (63)
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t

n

(a)

t

n

(b)

FIG. 1. (Color online) Average number of excitation quanta
n = 〈â†(t)â(t)〉 = 〈b̂†(t)b̂(t)〉 for each oscillator, each of them inter-
acting with an environment in an identical way, calculated using the
master equations (7) (red solid line) and (51) (green thick solid line),
plotted as a function of time. Each oscillator is initially in a vacuum
state and �a = �b = ω/100. (a) κ = λ = ω/20 and (b) λ = ω/3 and
κ = 0. Time is in units of 1/ω.

where A1 (B1) accounts for the local variances of mode
a (b) and C1 for the intermode correlations. Using the
numerical solutions of the partial differential equations (10)
and (59), we compute the logarithmic negativity, shown in
Figs. 2(a) and 2(b). As can be seen from these figures, the
two different approaches for modeling the system-reservoir
interactions, discussed in Secs. III and IV, yield quantitatively
very different results as far as quantum correlations between
the two oscillators are concerned.

C. Fidelity

The difference in the dynamics for the two approaches
can be further illustrated by computing the quantum fidelity
between the time-evolved states of the two oscillators. In
general, finding the fidelity between two quantum states is
difficult, but for Gaussian states it is possible to arrive at a
closed-form expression for the quantum fidelity in terms of
the covariance matrix. We trace over the state of one of the
oscillators and compute the fidelity between the two different
single-oscillator states resulting from the numerical solutions
of Eqs. (10) and (59).

The one-mode quantum characteristic function χ (κa) can be
deduced from the two-mode quantum characteristic function
χ (κa,κb) through the identity χ (κa,t) = χ (κa,κb = 0,t). In this

t

N

(a)

t

N

(b)

FIG. 2. (Color online) Logarithmic negativity plotted as a func-
tion of time, calculated using numerical solutions of the master
equations (7) (red solid line) and (51) (green thick solid line). Each
oscillator is initially in a vacuum state and �a = �b = ω/100. (a)
κ = λ = ω/20 and (b) λ = ω/3 and κ = 0. Time is in units of 1/ω.

way a one-mode Gaussian state of the pair of oscillators can
be defined, which is used for calculating the corresponding
fidelity.

The quantum fidelity between two one-mode Gaussian
states can be computed from

F = 2√
Det[A1 + A2] + P − √

P
, (64)

where

P = (Det[A1] − 1)(Det[A2] − 1) (65)

and Ai is the 2×2 covariance matrix corresponding to the ith
mode [17,18]. The time evolution of the fidelity between the
solutions of Secs. III and IV is shown in Figs. 3(a) and 3(b),
where the initial state was chosen to be the ground state of
each oscillator. As can be seen from these figures, when the
intermode coupling strength between the oscillators increases,
the fidelity between the time-evolved one-mode Gaussian
states of each oscillator obtained through the solution of master
equations (7) and (51) decreases. Thus it is evident that if
the oscillators are strongly coupled then the solution of the
master equation (7) starts to disagree with the solution of the
master equation (51). Nonetheless, the fidelity between the two
solutions stays much above 99% for a wide range of coupling
strengths κ,λ. It should be noted from Figs. 3(a) and 3(b) that
the mismatch between the solutions of the master equations (7)
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F (%)

t

λ = ω
λ = ω
λ = ω

λ = ω

(a)

F (%)

t

κ = ω
κ = ω

κ = ω
κ = ω

(b)

FIG. 3. (Color online) Time dependence of the quantum fidelity
between the two one-mode states of each oscillator computed from
the numerical solutions of Eqs. (7) and (51) for �a = �b = ω/100,
when (a) κ = ω/20 and (b) λ = ω/20. Each oscillator is initially in
the vacuum state and time is in units of 1/ω.

and (51) becomes more prominent if the two-mode squeezing
interaction strength λ increases. The above observations from
Fig. 3 remain qualitatively unchanged even when the two
oscillators are initialized in a separable squeezed state.

D. Steady state

Recall the original observation by Walls [1] that the validity
of the local Lindblad master equation is open to question on
the basis that it fails to derive the expected thermal equilibrium
density operator for the system. We can investigate the issue
here by first returning to the local master equation (7) for both
reservoirs at zero temperature, where n̄a = n̄b = 0,

ρ̇ = −i[Hsys,ρ] + �aLaρ + �bLbρ, (66)

and Llρ = l̂ρl̂† − 1
2 {l̂† l̂,ρ}. Now it is a simple matter to verify

that the steady state of the nonlocal master equation (48) is
ρss=|0〉ll〈0| ⊗ |0〉mm〈0|, while the steady state of the local
master equation (66) is ρss = |0〉aa〈0| ⊗ |0〉bb〈0|. The point to
note is that the vacuum states of the nonlocal l̂,m̂ oscillators
are not the same as those of the local â,b̂ oscillators, as can be
easily demonstrated by using the relation between â and l̂,m̂

and their Hermitean conjugates, readily obtainable from (22)
and (25), to show that

â|0〉l|0〉m = − 1√
2

(β1|1〉l|0〉m + β2|0〉l|1〉m) (67)

(and similarly for b̂|0〉l|0〉m), which only vanishes if β1 =
β2 = 0, which implies λ = 0, i.e., the full RWA Hamiltonian,
a not unexpected result since for κ �= 0 and λ = 0, and in the
zero-temperature limit of n̄a = n̄b = 0, the nonlocal master
equation (48) is identical to the master equation (66), as already
indicated in (58). The steady state is then the separable trivial
ground state of each operator.

In general, it is the nonlocal steady state that is the limit
for zero temperature of the canonical density operator (8):
the ground state of the generalized Hamiltonian (9). This
result extends Walls’s early result to the case of two coupled
bosonic modes interacting under this generalized Hamiltonian,
at least for a zero-temperature reservoir. We have further shown
that this result may be of great significance in understanding
the entanglement properties of the ground state of coupled
harmonic oscillators.

Before concluding this section we will briefly consider a
physical scenario where each coupled oscillator is in contact
with an identical heat bath with nonzero average thermal
occupancy (n̄a = n̄b = n̄ �= 0). It is a straightforward exercise
to extend the master equation (48) to include the thermal
fluctuations of the heat bath for each oscillator. We, however,
do not explicitly detail this calculation and only report the
results here. Figure 4 shows the steady-state value of the
logarithmic negativity and the quantum fidelity between the
two one-mode states of each oscillator obtained using the
approaches of Secs. III and IV, plotted as a function of n̄.

N

n̄
(a)

n̄

F (%)

(b)

FIG. 4. (Color online) Steady-state value of (a) the logarithmic
negativity calculated using the local Lindblad-type dissipation ap-
proach (red solid line) and the bath-induced dissipation approach
(green thick solid line) and (b) the quantum fidelity between the two
one-mode states of each oscillator obtained using the approaches of
Secs. III and IV, plotted as a function of n̄. Other physical parameters
are chosen such that �a = �b = ω/100, λ = ω/3, and κ = 0.
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As can be seen from Fig. 4(a), a critical value of thermal noise
destroys the pairwise entanglement between the oscillators.
Also evident is the feature that the phenomenological modeling
of dissipation, as compared to the bath-induced dissipation
approach of Sec. IV, overestimates the magnitude of steady-
state logarithmic negativity. A noteworthy feature of Fig. 4(b)
is that with increasing n̄, the quantum fidelity between the
two one-mode states of each oscillator, obtained using the
approaches of Secs. III and IV, improves further. However, it
is worth mentioning that even in a regime when the coupled
oscillators are in a separable state (n̄ ∼ 0.12), the quantum
fidelity between the two one-mode states of each oscillator,
obtained using the approaches of Secs. III and IV, does not
reach unity.

VI. DISCUSSION AND SUMMARY

To summarize, we have investigated Markovian master
equations for two harmonic oscillators, coupled through a
general Hamiltonian (9). We especially considered the regime
where the oscillators are strongly coupled to each other, in
which case the RWA cannot be applied to an oscillator-
oscillator coupling of the form in Eq. (2). We compared two
situations. First, a case where the dissipation of each oscillator
was modeled with local Lindblad terms, added phenomeno-
logically for each individual oscillator. This situation was then
compared to the case where each oscillator is coupled to a bath
of harmonic oscillators, resulting in a master equation (51) of
Lindblad form, but where the Lindblad terms are not local in
terms of the individual oscillator modes. Specifically, in our
derivation of Eq. (51), the RWA for the system-environment
interaction is made at the level of mode operators for the
eigenmodes l̂, m̂ of the total oscillator-oscillator Hamiltonian
including the coupling between the oscillators. The master
equation with local Lindblad operators in Eq. (7) would result
if one instead drops terms involving the individual oscillator

modes â and b̂, of the form âĉ, â†ĉ†, b̂d̂, and b̂†d̂†. However,
this is not a correct application of the RWA, as it does not cor-
rectly identify, and then remove, the rapidly oscillating terms.

As we have shown, the difference between the two
approaches will in fact result in different steady-state solutions,
which may give rise to nontrivial differences in ground-state
properties, especially with regard to nonclassical correlations
such as entanglement. Modeling the system-environment
interaction through local Lindblad operators may be valid
if the intermode couplings are weak. However, in a system
of strongly coupled bosonic modes, modeling dissipation
through local damping of each individual mode may become
questionable and may give rise to dubious results.

We like to briefly comment that there are equivalent ways
to exactly solve the open dynamics of two coupled harmonic
oscillators. This includes the Heisenberg-Langevin equation
approach and the Feynman-Vernon path-integral approach for
open quantum systems [19]. In this direction, previous works
have addressed coupled harmonic oscillators interacting with
common or independent baths with arbitrary spectra [20]. In
this work, however, we have worked in the Schrödinger picture
and have derived a master equation for a pair of harmonic
oscillators coupled under the generalized Hamiltonian (9).
Provided the Born-Markov and secular approximations hold
and the two oscillators interact with their independent heat
baths (with flat spectra), the master equation (51) is exact
in modeling the dissipative dynamics of the two oscillators.
We have subsequently converted the master equation (51)
into a Fokker-Planck equation and have solved it numerically.
Therefore, all our results are exact within the ambit of above
approximations.
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