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PACS 71.36.+c – Polaritons (including photon-phonon and photon-magnon interactions)
PACS 03.75.Kk – Dynamic properties of condensates; collective and hydrodynamic excitations,

superfluid flow
PACS 78.66.Qn – Polymers; organic compounds

Abstract – Polaritons, mixed light-matter quasiparticles, undergo a transition to a condensed,
macroscopically coherent state at low temperatures or high densities. Recent experiments show
that coupling light to organic molecules inside a microcavity allows condensation at room temper-
ature. The molecules act as saturable absorbers with transitions dressed by molecular vibrational
modes. Motivated by this, we calculate the phase diagram and spectrum of a modified Tavis-
Cummings model, describing vibrationally dressed two-level systems, coupled to a cavity mode.
Coupling to vibrational modes can induce re-entrance, i.e. a normal-condensed-normal sequence
with decreasing temperature and can drive the transition first-order.

Copyright c© EPLA, 2014

Introduction. – Microcavity polaritons (superposi-
tions of photons and excitons) are bosonic quasiparticles
which can form a Bose-Einstein condensate (BEC) [1,2].
Experimentally, above a critical density or below a critical
temperature polaritons accumulate in low-energy modes,
accompanied by enhanced spatial and temporal coherence.
Such coherence naturally relates to lasing, but differs in
that the occupied states are polaritons, not cavity pho-
tons, and the coherence results from stimulated scattering,
not stimulated emission [3,4]. At low densities the critical
temperature for condensation goes as kBTc ∼ h̄2ρ/m with
ρ and m the density and the mass of polaritons, respec-
tively. At higher densities, when kBTc reaches the scale
of the light-matter coupling, there is a crossover to an al-
most density-independent form [5]. Consequently, in order
to reach temperatures higher than the 20–100K attained
in CdTe [1] and GaAs [2], one requires materials with
larger light-matter coupling, such as GaN and ZnO [6–8].
Alternatively, one may replace the Wannier excitons in
inorganic semiconductors with electronic excitations in or-
ganic molecules, which may have large oscillator strengths,
allowing room temperature condensation.

Recent experiments on organic-based microcavity po-
laritons have explored a wide variety of organic materi-
als. These include molecular crystals of anthracene [9,10],
molecular aggregates coupled by Förster transfer, e.g.
J-aggregates of cyanine dyes [11,12] and amorphous molec-
ular structures of conjugated polymers [13]. Several of
these systems have shown condensation or lasing of po-
laritons at room temperature: Polariton lasing has been
reported with molecular crystals of anthracene [10], and
polariton lasing using J-aggregates, where a separate or-
ganic dye acts as a gain medium has been seen [14]. Very
recently, experiments on amorphous materials have shown
interacting polariton condensates [15], and the formation
of a thermalised and an interacting polariton BEC [13].

The materials used in these experiments differ in their
structure, and especially in the mechanisms for electronic
excitation transfer between and within molecules. How-
ever, as discussed below, these differences have a reduced
significance in the presence of strong light-matter cou-
pling. As well as the obvious significance of room temper-
ature BEC, understanding polariton condensation in these
organic materials may facilitate lower lasing thresholds
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enabling electrically pumped organic lasers [16]. The the-
ory of excitons and polaritons in molecular crystals has a
long history [17–19]. Recent theoretical work on polari-
ton condensation has generally modelled the system as a
weakly interacting gas of polaritons derived from a model
of saturable absorbers [20]. Rate equations based on such
models have been used to calculate the luminescence spec-
trum [21,22] and relaxation processes [23,24]. The effects
of disorder on the spectrum [25,26] have also been con-
sidered. Such theories well describe the very low density
regime. The approach we will describe below, starting
from two-level systems, encompasses also higher densities.

We focus on molecular crystals, consisting of many sep-
arate saturable optical absorbers. In the absence of an
optical cavity, hopping of excitations between molecules
is crucial in determining the band structure and polarisa-
tion properties of Frenkel excitons [17–19]. However, when
strongly coupled to an optical cavity, the rate of hopping
between molecules is dwarfed by cavity-photon–mediated
transport. The effective exciton mass due to the exciton
hopping is four orders of magnitude larger than the pho-
ton mass, and the polariton splitting is at least an order of
magnitude larger than exciton bandwidth. Consequently,
exciton hopping can generally be neglected when consid-
ering the thermodynamics of polaritons.

Following these considerations, we study a model of two-
level systems, describing localised electronic excitations of
the molecules, coupled to a common photon mode. This is
a variant of the Dicke [27] or Tavis-Cummings [28] model.
Hepp and Lieb [29] showed that in the canonical ensemble
above a critical light-matter coupling strength, the system
undergoes a continuous phase transition from a normal to
superradiant state. The critical temperature of this tran-
sition can be suppressed to T = 0, producing the quan-
tum phase transition much discussed for cavity and circuit
QED [30–32]. It has, though, long been thought that the
phase transition of this model in the canonical ensemble
is forbidden [33]. Recently, however, this debate has been
re-opened [32,34,35] suggesting that the transition in the
canonical ensemble may in fact be possible [36]. In this
paper we focus on the grand canonical ensemble where
this issue does not arise [37]. In this ensemble the phase
transition is identical to the BEC transition [5,37,38],
with the superradiant state corresponding to the
condensate.

Work on kinetics of polariton relaxation [23,24] has
shown the crucial role of the local vibrational modes in
energy relaxation: Polariton relaxation is most efficient
when the polariton splitting is resonant with the vibra-
tional frequency. The importance of strong coupling to vi-
brational modes has also been recognised in contexts such
as energy transfer in light harvesting complexes [39,40]. In
particular, these works show that such vibrational modes
cannot simply be regarded as Markovian baths leading to
dephasing or dissipation. In order to consider such effects
within the context of saturable optical absorbers, we need
to augment the Tavis-Cummings model by introducing

an additional feature: Coupling between electronic exci-
tations and local vibrational modes of the molecules.

In this letter, we consider the effects of coupling be-
tween the two-level systems and local vibrational modes
on collective behaviour within the Tavis-Cummings model.
Current experiments are far from equilibrium due to
the combination of loss of photons, external incoherent
pumping and the dephasing of vibrational modes caused
by coupling to other molecules. Coupling between elec-
tronic excitations and vibrational modes can act as a
route to relaxation and thermalisation, but as we will
show, this is not its only rôle. The driven-dissipative
Tavis-Cummings model has been used to explore the
crossover between polariton condensation and “textbook”
lasing [41,42], and so the model we present provides a basis
to address similar questions in the presence of vibrational
modes. However, in this letter we focus on first providing
a firm foundation in thermal equilibrium, as a reference
to which the out-of-equilibrium physics can be compared.
We show how coupling to vibrational modes modifies the
phase diagram; such modifications are greatest when there
is strong coupling to soft vibrational modes, so we focus
on such a regime. To explain this behaviour we consider
the excitation spectrum and discuss how the typical BEC
scenario of condensation when the chemical potential hits
the polariton spectrum is modified by the presence of mul-
tiple vibrational sidebands. Finally, we consider the limit
of very large coupling to vibrational modes, and explain
how this can drive the phase transition first order.

Model. – The model we study generalises the
Tavis-Cummings model [28], which describes N two-level
systems (electronic states of molecules) coupled to a single-
photon mode in the microcavity. To this we add a cou-
pling between two-level systems and vibrational modes of
the molecules. We thus have (setting h̄ = 1 throughout)

Ĥ − μL̂ = ω̃cψ̂
†ψ̂ +

N∑
n=1

[
ε̃

2
σz

n + g
(
σ+

n ψ̂ + ψ̂†σ−
n

)

+ Ωâ†
nân +

Ω
√

S

2
σz

n

(
ân + â†

n

)]
. (1)

Here L̂ = ψ̂†ψ̂+
∑

n σz
n/2 is the total number operator, ψ̂†

is the creation operator for a cavity photon, ω̃c = ωc − μ,
where ωc is the photon frequency. Two-level systems are
described by the Pauli matrices σi

n, ε̃ = ε − μ, where ε is
the bare optical transition frequency of the molecules, and
the bare molecule-photon coupling strength is denoted g.
Vibrational excitations of a molecule, with frequency Ω,
are created by the operators â†

n. The coupling of these
excitations to the electronic state of the molecule is Ω

√
S,

where the Huang-Rhys parameter S quantifies the average
number of vibrational excitations emitted or absorbed in
an electronic transition. The characteristic polariton split-
ting is determined by g

√
N . (NB, as discussed later, g

√
N

is only equal to the polariton splitting in the absence of
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coupling to vibrational modes.) The chemical potential
μ controls the total excitation density, 〈L〉. Equation (1)
describes a cavity single mode, while a planar microcav-
ity supports multiple transverse cavity modes with dif-
ferent in-plane momenta. Neglecting these other modes
is equivalent to neglecting the depletion of the conden-
sate by long wavelength fluctuations, i.e. considering the
mean-field (MF) theory. In [5] it was shown that these
fluctuations are only relevant at extremely low densities
and that MF theory, as we consider in this manuscript, is
otherwise accurate.

We next discuss the parameters we use when presenting
numerical results. In the following we measure energies
in units of a characteristic scale g0

√
N , corresponding to

a typical polariton splitting. In some cases it is useful
to show evolution of phase boundaries with g, in which
case we plot as a function of g/g0. For the energies ωc, ε,
the physically important quantity is the photon-exciton
detuning, Δ = ωc − ε. We consider a case where the cav-
ity frequency is detuned above the molecular transition
and we choose Δ = 2g0

√
N . We choose this detuning

for two reasons. Firstly, a thermal equilibrium BEC of
polaritons in inorganic materials [1] required Δ > 0, as
this increases the excitonic fraction, and hence the scat-
tering and thermalisation rate of the polaritons [43,44].
Secondly, the Tavis-Cummings model can show multiple
normal-superradiant phase transitions [38] when Δ > 0.
This is linked [45] to the “Mott lobes” in the Jaynes-
Cummings-Hubbard model [46]. We explore whether such
Mott lobes survive coupling to vibrational modes.

The parameters S and Ω/g0

√
N control the effects of

the vibrational modes. To clearly observe the effects of
vibrational dressing it is necessary to consider relatively
large Huang-Rhys factors, corresponding to “ultrastrong”
coupling to vibrational modes. We present results for
both S = 2 and S = 6. While these values are quite
large for organic emitters (for anthracene [47] S = 0.182),
values such as S = 3.3 have been seen for LO phonons
in carbon nanotubes [48]. Some features of vibrational
dressing do survive for small S, though in a subdued man-
ner, particularly the behaviour of the excitation spectrum.
Regarding Ω, distinct behaviour occurs for soft modes,
Ω � g0

√
N , vs. stiff modes, Ω ∼ g0

√
N . We show that

a soft mode is required for a re-entrant phase boundary,
while the first-order transition requires a stiffer vibrational
mode. We thus present results for Ω/g0

√
N = 0.05, 0.5.

The latter value is comparable to that for anthracene [47]
Ω = 42meV measured in units of the polariton splitting of
ref. [9]. Such stiff modes arise due to the π-bonded carbon
rings.

Phase diagrams and re-entrance. – The Hamilto-
nian (1), supports two distinct phases: normal and con-
densed. The order parameter distinguishing these phases
is the expectation of the photon field 〈ψ̂〉. In the following,
we shall define a rescaled order parameter λ = 〈ψ̂〉/

√
N .

In the normal phase λ = 0, whereas in the condensed

(a) g=g0 S=0
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Fig. 1: (Colour on-line) (a) Grayscale map of order parame-
ter vs. temperature and μ, both measured in units of g0

√
N .

The solid line shows the phase boundary with S = 0 for com-
parison. (b) A close-up of the re-entrance, shown for clarity.
Parameters: Δ = ωc − ε = 2g0

√
N , S = 2, Ω = 0.05g0

√
N .

phase there is a macroscopic expectation of the photon
field so λ �= 0. In the various phase diagrams, we plot a
colour map of the rescaled order parameter, λ.

The equilibrium phase diagram can be calculated within
a MF treatment of the photon field, known to be ex-
act [38] in the thermodynamic limit N → ∞, g

√
N →

const. The MF theory yields the self-consistency condi-
tion ω̃cλ = −g

√
N〈σ−〉, where the polarisation 〈σ−〉 is

found by exactly diagonalising the on-site problem

h =
[
ε̃ + Ω

√
S

(
â + â†)] σz

2
+ g

√
N

(
λσ+ + H.c.

)
+ Ωâ†â

(2)
numerically, whilst truncating the maximum number of vi-
brational excitations, nmax, at nmax 
 S, and thermally
populating the resulting eigenstates. Anticipating possi-
ble first-order transitions, one must also compare the free
energies of the normal (λ = 0) and condensed (λ �= 0)
solutions to determine the global minimum free energy.

Figure 1 shows a phase diagram: Critical temperature
as a function of chemical potential. The gross structure of
the phase diagram seen in fig. 1(a) (grayscale) is similar to
that seen for S = 0 (solid blue line) [38,45], having two sep-
arate condensed regions. Coupling to vibrational modes
changes some features. Firstly, the condensed region
shrinks. This is because the effective coupling strength
to light is suppressed by the dressing of vibrations. Sec-
ondly, re-entrant behaviour as a function of temperature is
introduced, fig. 1(b), i.e. on decreasing temperature near
the edge of the lobe, there is a sequence of transitions from
normal to condensed and back to normal. The re-entrance
can be explained by the effect of vibrational sidebands.
Generally, condensation occurs when the chemical poten-
tial reaches a polariton mode, leading to a macroscopic
occupation of that mode. If there is a sideband below the
bare polariton, then condensation will occur at a smaller
chemical potential. Such sidebands are associated with
transitions from a vibrationally excited electronic ground
state to an electronic excited state with fewer vibrational
excitations, and as such they only occur when vibrational
modes are thermally occupied, i.e. for, kBT > Ω. Since
the characteristic temperature required for the condensed
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phase (except at μ → ωc) is kBT ∼ g
√

N , re-entrance is
only visible if Ω � g

√
N .

Photoluminescence spectrum. – Further under-
standing of the origin of the re-entrance can be found
by looking at the nature of the mode which condenses.
For a second-order phase transition, the mechanism is as
described earlier: When the chemical potential reaches a
bosonic mode, which cannot be saturated, it will become
macroscopically occupied. However, this presents an ap-
parent paradox for a system with vibrational sidebands.
The luminescence spectrum formally has an infinite num-
ber of sidebands both above the bare polariton mode, as-
sociated with creating additional vibrational excitations
upon a transition and, at T > 0, below the bare polariton,
associated with destroying existing thermally populated
vibrational excitations. Thus, at any non-zero tempera-
ture, there are an infinite number of modes below the bare
polariton, which one would expect to become macroscop-
ically occupied, and so condensation would appear to be
possible at arbitrarily negative chemical potentials. This
is not observed, as shown in fig. 1(a).

The resolution of this apparent paradox lies in the
changing nature of the normal modes as one varies
the chemical potential. The normal modes arises from
the hybridisation of the photon with the various vibra-
tional sidebands of the molecular transition. The photon,
being bosonic in nature, has an unbounded occupation.
The molecular excitation, on the other hand, is a hard-
core boson with occupation zero or one, and so cannot
be macroscopically occupied. In general, polariton modes
are superpositions of the bosonic cavity field and the hard-
core bosonic molecular excitations. As such, because the
nature of the mixture varies, there are points where the
mode can be purely excitonic, i.e. has a vanishing photon
component. Condensation can only occur if the chemi-
cal potential hits a mode which has some photon com-
ponent (measured by the spectral weight). The crossing
of a purely excitonic point would lead to the inversion of
two-level systems, but no condensation.

Figure 2(a) shows the photon spectral weight of the
normal modes along with the chemical potential. The
spectral weight of the sidebands is increasingly small as
one goes to transitions involving larger differences of num-
bers of vibrational excitations, but as long as the spectral
weight is not exactly zero, these modes appear susceptible
to becoming macroscopically occupied. There are many
places where the chemical potential appears to cross the
vibrational sidebands, but crucially, all these crossings are
avoided because the photon spectral weight of the side-
band vanishes at these specific points, i.e. the mode be-
comes purely excitonic. After such an avoided crossing,
the spectral weight of the mode becomes negative. The
Bose occupation function, nB(ω) =

[
eβ(ω−μ) − 1

]−1
, is

negative for energies below the chemical potential. When
a negative spectral weight is combined with a negative
occupation, they give a meaningful positive luminescence
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Fig. 2: (Colour on-line) (a) Spectral weight of normal modes
vs. density of excitations ρ (number of excitons per molecule).
Lines are coloured according to their spectral weight (white
corresponding to zero weight). The solid (red) line shows
the chemical potential. (b) Spectral composition of the mode
which acquires a macroscopic occupation for various temper-
atures. Each line shows the discrete probability distribution
for the number of phonons absorbed in the associated mode.
Parameters: S = 2, kBT = 0.2g0

√
N, Δ = 2g0

√
N, Ω =

0.05g0

√
N .

spectrum [49] P (ω) = −nB(ω)� [πD(iωn = ω − μ + i0)].
Technical details of the calculation of the Green’s func-
tion, D, are given in [50].

Figure 2(b) shows the composition of the mode which
acquires a macroscopic occupation, exactly at the critical
point, for various temperatures (see [50] for how this is cal-
culated). At low temperature the number of vibrational
quanta can only increase; there are no vibrational excita-
tions in the ground state. At high enough temperature,
kBT > Ω, the vibrational mode of the electronic ground
state is thermally populated. As a consequence, the re-
entrant behaviour as a function of T appears in fig. 1(a).
This corresponds to the emission of vibrational quanta in
the electronic transition at the critical point, i.e. side-
band spectral weight occurs at negative q − p, as clearly
illustrated in fig. 2(b).

First-order transition in large-S limit and varia-
tional polaron transform. – We now turn to consider
the behaviour when S 
 1. Such values, which corre-
spond to ultrastrong coupling to vibrational modes, are
interesting because, as seen in fig. 3 for S = 6, they can
lead to first-order transitions into the superradiant state.
At small T the strength of the first-order jump is largest
at points near to, but not exactly at, μ = ε. For yet larger
S (not shown) a first-order jump can also occur within
the condensed phase. If viewed as a dynamical system,
the first-order jump in the field could be potentially re-
garded as an optical switch. The size of jump of λ can be
controlled by varying the ratio Ω/g

√
N . First-order tran-

sitions have also recently been noted within other variants
of the Tavis-Cummings model [51].

The existence of a first-order phase transition can be
understood by considering the extent of polaron forma-
tion at large S, i.e. the extent of entanglement of the vi-
brational and electronic states of the molecule. Since we
always consider MF theory for the photon mode, there is
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Fig. 3: (Colour on-line) Critical g/g0 vs. chemical potential
and temperature for S = 6 . Calculated by exact diagonali-
sation of eq. (2) (a), vibrational MF ansatz (b). The colour
scale shows λ = 〈ψ〉/

√
N at the phase boundary: Light (yel-

low) colours imply a 2nd-order transition, whereas dark (black)
ones indicate a strongly 1st-order transition. Around reso-
nance the transition is always (weakly) 1st order. Parameters:
Ω = 0.5g0

√
N, Δ = 2g0

√
N .

never entanglement between the photon mode and other
modes. The entanglement we consider corresponds to con-
ditional displacement of the vibrational mode, dependent
on the state of the two-level system. Such entanglement
reduces the overlap between the electronic ground and ex-
cited states, and so reduces the coupling to light. Such
entanglement also lowers the vibrational energy. This is
favoured in the normal state. In the condensed state,
it is instead favourable to increase the optical polarisa-
tion by suppressing the entanglement, and having similar
vibrational configurations for both electronic states. As
a result, at a given value of g it is possible to sustain
a self-consistent solution both for the normal state and
the condensed state. A first-order transition arises due to
switching between these states.

To further elucidate this first-order transition, we intro-
duce a variational ansatz which captures the behaviour at
large S. This ansatz can be framed as an additional MF
approximation for the vibrational modes. However, to al-
low for the entanglement between vibrational modes and
the electronic states discussed above, we first make a vari-
ational polaron transform [52,53] Ĥ → Ĥ ′ = eK̂Ĥe−K̂ ,
where K̂ = η

2

√
Sσz(â† − â). This transform conditionally

displaces the vibrational mode dependent on the state of
the two-level system. This will therefore transform a prod-
uct state to an entangled state. By using such a displace-
ment followed by a MF theory, i.e. a product state, we
obtain a state which is effectively entangled in the origi-
nal basis, with the entanglement depending on η. Thus,
this transform followed by the MF approximation â → α,
corresponds to a variational approach with η, α, and λ
as variational parameters. This ansatz is valid if the vi-
brational states are approximately coherent states, which
requires S 
 1. The free energy of this vibrational MF
theory can be written as

F

N
= ω̃cλ

2 + Ωα2 − ΩS

4
η (2 − η)− 1

β
ln (2 cosh(βζ)) , (3)

where ζ =
√

δ2 + (g̃λ)2 is written in terms of the effective

molecular transition frequency δ and vibrationally dressed
optical coupling g̃, given by

δ =
ε̃ + 2Ω

√
S(1 − η)α
2

, g̃ = g
√

Ne−Sη2/2. (4)

Minimising this free energy with respect to the varia-
tional parameters λ, α and η we obtain the gap equation
ω̃cλ = g̃2λtanh(βζ)/2ζ. Defining κ = g̃2λ2 tanh(βζ)/[ζ2−
(δ tanh(βζ))2] we may write the equations for α, η as

α =
δ
√

Sκ tanh(βζ)
2ζκ + Ω

, η =
Ω

2ζκ + Ω
. (5)

The equation for η, describing the extent of polaron forma-
tion, is instructive. At small λ or large Ω, η → 1, and one
has fully developed polarons (fully entangled vibrational
and electronic states). If, on the other hand, λ is large, i.e.
the drive is strong, then η → 0 and the polaron formation
is suppressed [52,53]. In addition to this behaviour, typical
of a variational polaron transform, there is an extra level
of self-consistency here: The photon field λ depends on
the polarisation of the molecules, and hence the effective
coupling strength g̃. When the bare coupling g is small,
the photon field is small, and polarons are well developed,
further suppressing the effective coupling g̃. At larger g,
polaron formation is suppressed, producing a stronger ef-
fective coupling g̃. At zero temperature, this leads to a
jump within the condensed phase, between a weakly and
strongly polarised phase. Within the variational approach,
such a jump occurs near ε = μ if S > 27/8. At non-zero
temperature the same effect leads to a first-order normal
to condensed phase transition.

Figure 3 shows the close match between the variational
polaron transform and the exact diagonalisation of eq. (2)
in the large-S limit. In this limit, one expects that the
vibrational state can be approximately described as a
coherent state. For smaller S, the vibrational MF the-
ory predicts more strongly first-order transitions than the
exact diagonalisation. Exact diagonalisation shows that
the first-order jump reduces and the transition becomes
second-order as S → 0 for all values of μ. Note that in
the limit S → 0, the vibrational modes are irrelevant, and
both the vibrational MF theory and the numerical diago-
nalisation reduce to the Tavis-Cummings model.

Conclusion. – In conclusion, we have studied the
Tavis-Cummings model dressed by local vibrational
modes. Coupling to vibrational modes suppresses the
critical temperature for the superradiant phase and can
induce re-entrance, i.e. a sequence of normal-condensed-
normal transitions as a temperature decreases. For suffi-
ciently strong coupling to vibrational modes, the phase
transition can become first-order, which can be under-
stood within a variational polaron ansatz. We also re-
solved an apparent paradox raised by the existence of
vibrational sidebands in the luminescence spectrum: Al-
though vibrational sidebands exist below the bare polari-
ton frequency, condensation at most of these sidebands is
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avoided as the photon spectral weight vanishes when the
chemical potential crosses such modes. Nonetheless, at
large coupling to vibrational modes, the polariton mode
which does condense contains a strong admixture of dif-
ferent vibrational sidebands. These results illustrate the
rich possibilities arising from collective effects when cou-
pling electronic systems to both radiation and vibrational
modes.
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