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ABSTRACT
We study the clustering of galaxies, as a function of their colour, from Data Release Ten (DR10)
of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. DR10
contains 540 505 galaxies with 0.43 < z < 0.7; from these we select 122 967 for a ‘Blue’
sample and 131 969 for a ‘Red’ sample based on k + e corrected (to z = 0.55) r − i colours and
i-band magnitudes. The samples are chosen such that both contain more than 100 000 galaxies,
have similar redshift distributions and maximize the difference in clustering amplitude. The
Red sample has a 40 per cent larger bias than the Blue (bRed/bBlue = 1.39 ± 0.04), implying
that the Red galaxies occupy dark matter haloes with an average mass that is 0.5 log10 M�
greater. Spherically averaged measurements of the correlation function, ξ 0, and the power
spectrum are used to locate the position of the baryon acoustic oscillation (BAO) feature of
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both samples. Using ξ 0, we obtain distance scales, relative to the distance of our reference
� cold dark matter cosmology, of 1.010 ± 0.027 for the Red sample and 1.005 ± 0.031
for the Blue. After applying reconstruction, these measurements improve to 1.013 ± 0.020
for the Red sample and 1.008 ± 0.026 for the Blue. For each sample, measurements of
ξ 0 and the second multipole moment, ξ 2, of the anisotropic correlation function are used to
determine the rate of structure growth, parametrized by fσ 8. We find f σ8,Red = 0.511 ± 0.083,
fσ 8, Blue = 0.509 ± 0.085 and fσ 8, Cross = 0.423 ± 0.061 (from the cross-correlation between
the Red and Blue samples). We use the covariance between the bias and growth measurements
obtained from each sample and their cross-correlation to produce an optimally combined
measurement of fσ 8, comb = 0.443 ± 0.055. This result compares favourably to that of the full
0.43 < z < 0.7 sample (fσ 8, full = 0.422 ± 0.051) despite the fact that, in total, we use less
than half of the number of galaxies analysed in the full sample measurement. In no instance do
we detect significant differences in distance scale or structure growth measurements obtained
from the Blue and Red samples. Our results are consistent with theoretical predictions and our
tests on mock samples, which predict that any colour-dependent systematic uncertainty on the
measured BAO position is less than 0.5 per cent.

Key words: cosmology: observations – distance scale – large-scale structure of Universe.

1 IN T RO D U C T I O N

In the last decade, wide-field galaxy redshift surveys, such as the
Two Degree Field Galaxy Redshift Survey (Colless et al. 2003), the
Sloan Digital Sky Survey (SDSS; York et al. 2000) and the Wig-
gleZ Dark Energy Survey (Drinkwater et al. 2010), have provided a
wealth of information for cosmological analyses (e.g. Tegmark et al.
2004; Cole et al. 2005; Eisenstein et al. 2005; Percival et al. 2010;
Reid et al. 2010, 2012; Blake et al. 2011; Montesano, Sánchez &
Phleps 2012; Anderson et al. 2012; Sánchez et al. 2012). In partic-
ular, measurements of the baryon acoustic oscillation (BAO) scale
and of the redshift-space distortion (RSD) signal enable measure-
ments of Dark Energy (see, e.g. Weinberg et al. 2012 for a review)
and allow tests of General Relativity (see, e.g. Jain & Zhang 2008;
Song & Percival 2009).

All studies that wish to use the distribution of galaxies to measure
cosmological parameters must account for any uncertainty in the
manner with which galaxies trace the underlying matter distribution.
Galaxies are observed over many orders of magnitude in luminosity
and have a bimodal colour distribution (see, e.g. Blanton et al. 2003;
Baldry et al. 2004; Bell et al. 2004). The clustering of galaxies as
a function of luminosity and colour has been extensively studied
(see, e.g. Willmer, da Costa & Pellegrini 1998; Norberg et al. 2002;
Madgwick et al. 2003; Zehavi et al. 2005; Li et al. 2006; Croton
et al. 2007; Ross, Brunner & Myers 2007; McCracken et al. 2008;
Swanson et al. 2008; Cresswell & Percival (2009); Skibba & Sheth
2009; Ross & Brunner 2009; Tinker & Wetzel 2010; Zehavi et al.
2011; Christodoulou et al. 2012; Guo et al. 2013; Hartley et al.
2013, Skibba et al. 2013). Generally, it has been found that the clus-
tering strength, parametrized as the ‘bias’, increases in the direction
of greater luminosity and redder colour, and that colour is more
predictive of the large-scale environment than other characteristics,
such as morphology (Ball, Loveday & Brunner 2008; Skibba et al.
2009).

The observed colour and luminosity dependence of galaxy clus-
tering is consistent with a model in which the more luminous and
red galaxies occupy dark matter haloes of the greater mass. In the
widely accepted model of galaxy evolution, galaxies form within
the gravitational potential wells of host dark matter haloes (White

& Rees 1978). The large-scale clustering of the haloes, and thus
the galaxies that reside in them, is directly linked to the dark matter
halo mass (Bardeen et al. 1986; Cole & Kaiser 1989). This model,
that the clustering of galaxies is determined solely by the mass of
the haloes they occupy, has provided an excellent description of the
locally observed galaxy distribution (see, e.g. Norberg et al. 2002;
Zehavi et al. 2011), the distribution in the distant Universe (see, e.g.
Coil et al. 2006; McCracken et al. 2007) and indeed the distribution
of subsets of the galaxy sample we use in this study (White et al.
2011; Nuza et al. 2013). Further, it has been found that the observed
distribution of the total galaxy population and its subsets split by
colour can self-consistently be described by a model that depends
only on halo mass (see, e.g. Zehavi et al. 2005, 2011; Tinker et al.
2008; Ross & Brunner 2009; Skibba & Sheth 2009; Tinker & Wetzel
2010).

The results described above suggest that the large-scale cluster-
ing of galaxies depends only on the mass of the haloes they occupy.
Under this assumption, in order to test methods of measuring cos-
mological parameters from galaxy clustering, one only requires
simulations that are able produce clustering statistics as a function
of halo mass. Using a combination of results from perturbation the-
ory and simulation (Eisenstein, Seo & White 2007a; Angulo et al.
2008; Padmanabhan & White 2009; Mehta et al. 2011; Sherwin &
Zaldarriaga 2012; McCullagh et al. 2013) suggest a bias-dependent
shift in the BAO position that is less than 0.5 per cent. Reid & White
(2011) studied the RSD signal as a function of halo mass and pro-
duced a model accurate to within 2 per cent for tracers with bias ∼2
and scales greater than 40 h−1 Mpc.

In our study, we measure the clustering of galaxies from Data
Release Ten (DR10; Ahn et al. 2013) of the SDSS-III Baryon Os-
cillation Spectroscopic Survey (BOSS; Dawson et al. 2013) when
divided by colour. Dividing the sample by colour provides a straight-
forward way to separate the data into two samples with different
bias (and implied halo mass). We expect that any physical prop-
erties (e.g. collapse time, shape) of the halo other than its mass
that are required to understand the large-scale clustering of galax-
ies will correlate with the differences in the intra-galaxy physical
processes, clearly observed via the difference in the colour of the
galaxies’ stellar populations. We are therefore undertaking the most
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simple binary test that probes whether BAO and RSD measure-
ments are robust to the galaxy sample that is chosen to make the
measurement.

We use data from the DR10 BOSS ‘CMASS’ sample. Measure-
ments of the clustering of BOSS CMASS galaxies have been shown
to be robust to many potential systematic concerns (Ross et al. 2012)
and the measurements using data from the SDSS-III data release
nine (Ahn et al. 2012) have already been used in many cosmological
analyses (Anderson et al. 2012, 2013a; Reid et al. 2012; Sánchez
et al. 2012; Tojeiro et al. 2012b; Zhao et al. 2012; Ade et al. 2013;
Chuang et al. 2013; Kazin et al. 2013; Ross et al. 2013; Samushia
et al. 2013a; Sánchez et al. 2013; Scóccola et al. 2013).

We analyse the distributions of our galaxy samples in both con-
figuration space, via the multipoles of the redshift-space correla-
tion function ξ 0, 2(s) and Fourier space, via the spherically averaged
power spectrum, P(k). We describe the real and simulated data anal-
ysed in this investigation in Section 2. We describe the modelling
we use in Section 3. We display the clustering measurements and
the comparison between results obtained from the simulated and
real data sets in Section 4. We present our BAO measurements in
Section 5 and our RSD measurements in Section 6. We present our
concluding remarks in Section 7. We assume a flat � cold dark mat-
ter cosmology with �m = 0.274, �b h2 = 0.024, h = 0.7, σ 8 = 0.8
(same as used in, e.g. Anderson et al. 2012) unless otherwise noted.

2 DATA

The SDSS-III BOSS (Eisenstein et al. 2011; Dawson et al. 2013) ob-
tains targets using SDSS imaging data. In combination, the SDSS-I,
SDSS-II and SDSS-III surveys obtained wide-field CCD photome-
try (Gunn et al. 1998, 2006) in five passbands (u, g, r, i, z; Fukugita
et al. 1996), amassing a total footprint of 14 555 deg2, internally
calibrated using the ‘uber-calibration’ process described in Pad-
manabhan et al. (2008), and with a 50 per cent completeness limit
of point sources at r = 22.5 (Aihara et al. 2011). From this imag-
ing data, BOSS has targeted 1.5 million massive galaxies, 150 000
quasars, and over 75 000 ancillary targets for spectroscopic obser-
vation over an area of 10 000 deg2 (Dawson et al. 2013). BOSS
observations began in fall 2009, and the last spectra of targeted
galaxies will be acquired in mid-2014. The BOSS spectrographs
(R = 1300–3000) are fed by 1000 optical fibres in a single pointing,
each with a 2 arcsec aperture (Smee et al. 2013). Each observa-
tion is performed in a series of 15-min exposures and integrated
until a fiducial minimum signal-to-noise ratio, chosen to ensure a
high-redshift success rate, is reached. Redshifts are determined as
described in Bolton et al. (2012).

We use data from the SDSS-III DR10 BOSS ‘CMASS’ sample
of galaxies, as defined by Eisenstein et al. (2011). The CMASS
sample is designed to be approximately stellar mass limited above
z = 0.45. Such galaxies are selected from the SDSS DR8 (Aihara
et al. 2011) imaging via

17.5 < icmod < 19.9 (1)

rmod − imod < 2 (2)

d⊥ > 0.55 (3)

ifib2 < 21.5 (4)

icmod < 19.86 + 1.6(d⊥ − 0.8), (5)

where all magnitudes are corrected for Galactic extinction (via
the Schlegel, Finkbeiner & Davis 1998 dust maps), ifib2 is the i-

band magnitude within a 2 arcsec aperture, the subscriptmod denotes
‘model’ magnitudes (Stoughton et al. 2002), the subscriptcmod de-
notes ‘cmodel’ magnitudes (Abazajian et al. 2004) and

d⊥ = rmod − imod − (gmod − rmod)/8.0. (6)

This selection yields a sample with a median redshift z = 0.57
and a stellar mass that peaks at log10(M/M�) = 11.3 (Maraston
et al. 2013). As the sample contains galaxies with greatest stellar
mass, the majority of the sample consists of galaxies that form the
red sequence. However, roughly one quarter of the galaxies would
be considered ‘blue’ by traditional SDSS (rest-frame) colour cuts
(see, e.g. Strateva et al. 2001). Indeed, Masters et al. (2011) find
that 26 per cent of CMASS galaxies have a late-type (i.e. spiral
disc) morphology. Like all CMASS galaxies, these blue galaxies
are at the extreme end of the stellar mass function, and thus are
significantly more biased than the emission-line galaxies observed
by WiggleZ at similar redshifts (Blake et al. 2010). See Tojeiro
et al. (2012a) for a detailed description of the CMASS population
of galaxies.

We use the DR10 CMASS sample and, treat it in the same way as
in Anderson et al. (2012), with the exception that the treatment of
systematic weights has been improved, as described in Section 2.2.
The sample has 540 505 galaxies with 0.43 < z < 0.7 spread over
an effective area of 6516 deg2, 5105 deg2 of which is in the North
Galactic Cap. A detailed description can be found in Anderson et al.
(in preparation).1

2.1 Dividing the BOSS galaxies by colour

In order to compare CMASS galaxies at different redshifts, we
apply corrections to the measured magnitudes in order to account
for the redshifting of spectral energy distribution (k-corrections) and
the evolution of stellar populations within galaxies (e-corrections).
We use the k + e corrections of Tojeiro et al. (2012a) to obtain
z = 0.55 galaxy colours and magnitudes. These k + e corrections
were computed based on the average spectral evolution of SDSS-
I/II luminous red galaxies (LRGs, 〈z〉 = 0.35), and were shown to
describe the colours and evolution of LRGs and CMASS galaxies
on average. They are applied using a single template, as a function
of redshift. All corrections are computed to zc = 0.55 (close to the
median redshift of CMASS galaxies) and refer to filters shifted to
the same redshift. The rest-frame k + e correction in any given band
for a galaxy at zc = 0.55 is thus independent of the modelling and
equal to −2.5 log10[1/(1 + zc)]. The k + e corrections we use were
derived based on the stellar population synthesis models of Conroy,
Gunn & White (2009) and Conroy & Gunn (2010). Tojeiro et al.
(2012a) also derived k + e corrections based on the stellar population
models of Maraston & Strömbäck (2011). The smaller redshift span
of the galaxies in this paper combined with our choice of shifted
filters and zc reduces the dependence of the k + e corrections on
the underlying stellar population models when compared to Tojeiro
et al. (2012a), and we therefore expect our conclusions to be robust
to the choice of stellar population modelling. The k + e corrections
we employ have previously been applied to create the subsets of
the CMASS galaxy sample used for the clustering studies of both
Tojeiro et al. (2012b) and Guo et al. (2013).

Our aim is to balance the following three concerns when defining
our samples:

1 This is the DR11/DR10 BAO paper.
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Figure 1. The density of CMASS galaxies in i-band absolute magnitude,
r − i colour space, with both values k-corrected to z = 0.55. Dashed lines
display the cuts we apply to define our ‘Red’, containing 131 969 galaxies,
and ‘Blue’, containing 122 967 galaxies, samples. The 285 569 galaxies
occupying the lower-right box (labelled ‘Dropped’) are not included in our
analysis. The dotted diagonal line displays the cut applied by Guo et al.
(2013) to separate ‘blue’ and ‘green’ BOSS galaxies with 0.55 < z < 0.6
from the ‘red’ and ‘reddest’.

(i) split the CMASS sample by colour to produce a bluer sample
that includes the maximum number of galaxies (in order to minimize
shot-noise) that are not clearly members of the red sequence;

(ii) produce two samples with similar n(z), so that that the cosmic
variance of the underlying structure is the same;

(iii) maximize the difference in clustering amplitude between the
two samples.

Balancing these concerns leads us to define a ‘Blue’ sample as
CMASS galaxies with [r − i]0.55 < 0.95 and a ‘Red’ sample as
CMASS galaxies with [r − i]0.55 > 0.95 and Mi, 0.55 < −21.95.
The colour magnitude selection is displayed in Fig. 1. The absolute
magnitude cut removes lower luminosity galaxies that are predom-
inantly at lower redshift. This cut thus improves the match between
the n(z) of the two samples and increases the difference in clustering
amplitude.

Our Blue sample has 122 967 galaxies and the Red 131 969,
combining to make up 47 per cent of the total CMASS sample. The
Blue sample is similar to the one obtained by applying the Masters
et al. (2011) observed-frame g − i < 2.35 cut, but we find applying
the cut based on [r − i]0.55 colour yields a larger separation in
clustering amplitude and a better overlap in redshift. Our colour
cut is close to the one of Guo et al. (2013), who used [r − i]0.55

colour cuts (and the same k + e corrections), that separate ‘blue’
and ‘green’ galaxies from the ‘red’ and ‘reddest’ samples. The cut
applied in Guo et al. (2013) for galaxies with 0.55 < z < 0.6
is displayed with a dotted line in Fig. 1. We find applying such
cut yields similar clustering results to the one we have chosen,
but the n(z) disagree slightly more and the difference in clustering
amplitude is slightly smaller. This is due to the fact that we have not
created volume-limited samples and thus the main effect of such

Figure 2. The n(z) of our Red and Blue samples. The dashed black line
shows the n(z) of the full CMASS sample. The number of Red and Blue
galaxies is each approximately one quarter the number of the full sample,
but each make up half of the full sample for z > 0.65.

a cut on our samples is to shift high-luminosity galaxies from the
‘Red’ sample to the ‘Blue’ one.

The n(z) for each sample are shown in Fig. 2; they appear similar,
and we test this by quantifying the effective redshift, zeff, of each
sample and the overlap, oBlue, Red, of the n(z). We find the pair-
weighted zeff as a function of the separation s

zeff (s) = DDz(s)

DD(s)
, (7)

where the DD pair-counts are weighted in the same manner as for
calculating ξ (s), as described in Section 2.2. For DDz, each pair-
count is weighted by (z1 + z2)/2. In the range 20 < s < 200, we
find zeff is nearly constant for both samples and zeff

Blue = 0.585 and
zeff

Red = 0.570. We define the overlap as

o1,2 = 1 −
∫

dV (n1(z) − n2(z))2∫
dV n2

1(z) + ∫
dV n2

2(z)
(8)

and find oBlue, Red = 0.93. Compared to the full CMASS sample,
we find ofull, Red = 0.40 and ofull,Blue = 0.37. Large overlap is ideal
for testing differences between the samples, as the cosmic vari-
ance of the underlying structure should be same, i.e. the differences
in our measurements will be due mainly to shot-noise. In addi-
tion to improving our ability to test for systematic differences in
results obtained with each sample (as compared to samples occu-
pying independent volumes), this will also allow us to test if the
RSD measurements can be improved by having two tracers, using
methods similar to those described in McDonald & Seljak (2009).

2.2 Systematic weights

As in Anderson et al. (2012), we correct for systematic trends in
the observed number density of CMASS galaxies and our ability to
measure redshifts using a series of weights. As in Ross et al. (2011)
and Ross et al. (2012), we have performed tests against the potential
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systematics of stellar density, Galactic extinction, seeing, airmass
and sky background that may affect the DR8 (Aihara et al. 2011)
imaging data used to select the (full) DR10 CMASS sample. We
correct for the systematic relationship between the number density
of galaxies as a function ifib2 and stellar density using weights, wstar,
defined in the same manner as Anderson et al. (2012)

wstar(ns, ifib2) = A(ifib2) + B(ifib2)ns. (9)

The coefficients A(ifib2) and B(ifib2) are given in Anderson et al. (in
preparation) and are empirically determined using the full DR10
CMASS sample. We follow Anderson et al. (in preparation) and
include an additional weight, wsee, to correct a systematic relation-
ship observed between the number density of CMASS galaxies and
the seeing, S:

wsee(S) = A

[
1 − erf

(
S − B

σ

)]−1

, (10)

where the values A = 1.03, B = 2.09 and σ = 0.731 were empirically
determined using the full DR10 CMASS sample. Further details
can be found in (Anderson et al., in preparation). As in Anderson
et al. (2012), we correct for fibre-collided close pairs and redshift
failures by increasing the weight of the nearest CMASS target by
1, we denote these weights wcp and wzf, respectively.

For the Red and Blue samples, we have individually repeated
the tests against potential systematics. We find that the systematic
weights calibrated using the full sample, effectively remove the
relationships with stellar density and seeing in our Red and Blue
samples. However, the number density of the Blue sample has a
substantial correlation with the airmass at the time the imaging data
was observed; the effect is displayed in Fig. 3. One expects such
behaviour due to the fact that magnitude errors increase at higher
airmass, and thus there will be greater scatter (due to Eddington

Figure 3. The relationship between the observed number density and the
airmass of the imaging data used to select our Red and Blue samples. The
dashed blue line displays the best-fitting linear relationship for the Blue
sample. The inverse of this fit is used to apply a weight to correct for the
systematic effect this relationship has on the measured clustering of the Blue
sample.

Figure 4. The measured ξ0 for the Blue sample when applying weights that
correct for the relationship with airmass (blue) and when these weights are
not applied (green). Applying the weights changes the measured clustering
by more than 1σ for s > 120 h−1 Mpc, demonstrating their importance.

bias) across any colour cut at greater airmass. Further, we may
expect airmass to have a greater effect on bluer objects, as the
airmass is related to atmospheric extinction and thus greater at
shorter wavelengths.

Our tests suggest that the systematic relationship with airmass is
a consequence of the colour cut and therefore does not affect the
density field of the full CMASS sample. For example, we do not
find that the distribution of CMASS galaxies at the high-redshift
end of the sample has a systematic dependence with airmass, even
though the Blue galaxies make up approximately half of the full
sample for z > 0.65 (as can be seen by comparing the red and blue
curves in Fig. 2 to the dashed curve).

The best-fitting linear relationship between the number density
of the Blue sample and the airmass, am, is, displayed using a dashed
curve in Fig. 3. The inverse of this fit is used to define a weight,
wair, given by

wair = 1

0.687 + 0.273 am
. (11)

Fig. 4 displays the effect that applying wair has to the Blue cor-
relation function monopole. The relative effect increases towards
larger scales and is greater than 1σ for s > 120 h−1 Mpc. The total
systematic weight, wsys, we apply to each galaxy is

wsys = (wcp + wzf − 1)wstarwseewair, (12)

where wair = 1 for the Red sample.

2.3 Creating mock galaxy samples and covariance estimates

We use 600 mock galaxy catalogues created using the PThalos
methodology described in Manera et al. (2013) to simulate the
BOSS DR10 CMASS sample. Each mock catalogue is masked to
the same area and down-sampled to have the same mean n(z) as the
DR10 CMASS sample. In addition, each mask sector of each mock
realization is down-sampled based on the fraction of fibre collisions,
redshift failures and completeness of the observed CMASS sample.
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Figure 5. The normalized covariance of the spherically averaged power
spectrum, P, for the Red and Blue samples, determined using 600 mock
realizations of each sample. The covariance matrices are close to diagonal
and the covariance between the Red and Blue P(k) is significantly scale
dependent.

Further details can be found in Manera et al. (2013) and Anderson
et al. (in preparation).

Each mock catalogue simulates the full CMASS data set. Due to
the mass resolution of the matter fields, approximately 25 per cent
of the galaxies in each (full CMASS) mock catalogue are as-
signed to the positions of field matter particles (see Manera
et al. 2013). In what follows, we treat these galaxies as resid-
ing in haloes with Mhalo < 1012.3 h−1 M�. In order to divide
each catalogue into ‘Red’ and ‘Blue’ mock galaxy samples, we
first measure ξ 0(s) of 10 mock samples with mass thresholds in
the ranges Mhalo < 1012.3 h−1 M� to Mhalo < 1013 h−1 M� and
Mhalo > 1013.4 h−1 M� to Mhalo > 1014 h−1 M� using steps of
0.05 log10( M�) in halo mass. Using the variance of the ξ 0(s) mea-
surements as a diagonal covariance matrix, we then find the mass
thresholds that yield the best fit when comparing the mock ξ 0(s) to
the measured ξ 0(s) of the Red and Blue samples, fitting in the
range 30 < s < 100 h−1 Mpc. We find Mhalo < 1013.6 h−1 M�
for the Blue sample and Mhalo > 1012.7 h−1 M� for the Red
sample. This implies mock galaxies residing in haloes with
1012.7 < Mhalo < 1013.6 h−1 M� must be split between the Red
and Blue samples. We then subsample each mass-threshold sample
to match the observed n(z) of the Red and Blue samples in a manner
that ensures that each mock galaxy is only assigned to at most one
(i.e. not both) of the samples. This approach results in Blue samples
that have 30 per cent field matter particles and Red samples that are
only composed of mock galaxies within haloes. In Section 4.3, we
show that the mean clustering of the 600 mock samples remains
well matched to the data when the full covariance matrix is taken
into account.

For each of the 600 mock Red and Blue catalogues, we calculate
the auto- and cross- clustering statistics ξ 0.2 and P(k), as described
in Section 4. The estimated covariance C̃ between statistic X in
measurement bin i and statistic Y in measurement bin j is then

C̃(Xi, Yj ) = 1

599

600∑
m=1

(Xi,m − X̄i)(Yj,m − Ȳj ). (13)

Fig. 5 displays the normalized covariance of and between P(k)
for the Red and Blue samples; Fig. 6 shows the same information

Figure 6. The normalized covariance of the monopole of redshift-space
correlation function, ξ0, for the Red and Blue samples and their cross-
correlation, determined using 600 mock realizations of each sample. Signif-
icant covariance is present between off-diagonal elements, as expected for
ξ0.

for ξ (s), with the additional inclusion of information from the cross-
correlation between the Red and Blue samples. One sees that there is
significantly more off-diagonal covariance in the ξ (s) measurements
than for P(k), as expected. The covariance between the Red and Blue
measurements is more scale dependent for P(k) than for ξ (s) and
their cross-correlation, and we discuss this further in Section 5.

To obtain an unbiased estimate of the inverse covariance matrix
C−1, we rescale the inverse of our covariance matrix by a factor that
depends on the number of mocks and measurement bins (see e.g.
Hartlap, Simon & Schneider 2007)

C−1 = Nmocks − Nbins − 2

Nmocks − 1
C̃

−1
. (14)

Here, Nmock is 600 in all cases, but Nbins will change depending
on the specific test we perform. We determine χ2 statistics in the
standard manner, i.e.

χ2 = (X − Xmod)C−1
X (X − Xmod)T, (15)

where the data/model vector X can contain any combination of clus-
tering measurements. Likelihood distributions, L, are determined
by assuming L(X) ∝ e−χ2(X)/2.

Building from the results of Dodelson & Schneider (2013), Per-
cival et al. (in preparation) show that there are additional factors
one must apply to uncertainties determined using a covariance ma-
trix that is constructed from a finite number of realizations and to
standard deviations determined from those realizations. Defining

A = 1

(Nmocks − Nbins − 1)(Nmocks − Nbins − 4)
(16)

and

B = Nmocks − Nbins − 2

A
, (17)

the variance estimated from the likelihood distribution should be
multiplied by

mσ = 1 + B(Nbins − Np)

1 + 2A + B(Np + 1)
, (18)
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and the sample variance should be multiplied by

mv = mσ

Nmocks − 1

Nmocks − Nbin − 2
. (19)

We apply these factors, where appropriate, to all values we quote.

3 M O D E L L I N G A N D F I T T I N G

3.1 Spherically averaged BAO

The modelling we employ to extract the BAO position from ξ (s)
and P(k) measurements is based on the techniques applied by Xu
et al. (2012) and Anderson et al. (2012). We have made some
slight modifications that make the approach to each observable more
consistent. For each observable, we extract a dilation factor α from
a template that includes the BAO feature, relative to a smooth shape
that has considerable freedom. Assuming spherical symmetry, the
measurement of α can be related to physical distances via

α = (DV (z)/rs)/(DV (z)/rs)fid, (20)

where

DV (z) ≡
(

(1 + z)2D2
A(z)

cz

H (z)

)1/3

(21)

and rs is the sound horizon at the baryon drag epoch, which can be
accurately calculated using, e.g. the software package CAMB2 (see,
e.g. Ade et al. 2013 and references therein), and DA(z) is the angular
diameter distance.

We obtain the linear power spectrum, Plin(k), using CAMB. We
obtain the power spectrum with no BAO feature, Psmooth(k), using
the fitting formulas of Eisenstein & Hu (1998). As in, e.g. Xu et al.
(2012) and Anderson et al. (2012), we then define

PBAO(k) = [Plin(k) − Psmooth(k)] e−k2	2
nl/2, (22)

where 	nl accounts for the smearing of the BAO feature due to
non-linear effects. We transform Psmooth and PBAO to obtain ξ smooth

and ξBAO via

ξ (s) = 1

2π2

∫
dkk2 sin(ks)

ks
P (k)e−k2

, (23)

where the e−k2
damps the integrand at large k, improving conver-

gence of the integral without decreasing accuracy at scales relevant
to the BAO feature (Xu et al. 2012).

We model both ξ (s) and P(k) with the use of the smooth compo-
nent plus a three parameter polynomial. For P(k), we use

Pmod(k) = PNoBAO(k)
(1 + PBAO(k/α, 	nl))

Psmooth(k/α)
, (24)

where

PNoBAO(k) = B2
pPsmooth(k) + C0

k
+ C1

k2
+ C2

k3
. (25)

The Pmod is then convolved with the window function and compared
with the measured P(k). The three-term polynomial is the Fourier
equivalent of the three-term polynomial applied by Xu et al. (2012)
and Anderson et al. (2012) to fit ξ (s). We find no significant changes
when an extra constant term is included in the model. The P(k)
model is divergent at low k, but we find it provides a good description
of our measurements over the range in scales that we fit to obtain
the BAO scale (0.02 < k < 0.3 h Mpc−1).

2 camb.info

The model for the correlation function is expressed as

ξmod(s) = ξNoBAO(αs) + BBξBAO(αs), (26)

where

ξNoBAO(s) = B2
ξ ξsmooth(αs) + A0 + A1

αs
+ A2

(αs)2
, (27)

and we use BB to keep the relative height of the BAO peak constant
via

BB = ξNoBAO(sB )

ξsmooth(sB )
. (28)

We choose sB to be α50 h−1 Mpc.
For both ξ (s) and P(k), we consider intervals of 
α = 0.001 in the

range 0.8 < α < 1.2 and find the minimum χ2 value at each α when
varying the bias and shape parameters. For the correlation function,
we set 	nl = 8 h−1 Mpc for the standard case and 	nl = 4 h−1 Mpc
in the reconstructed case (as in Anderson et al. 2012; Xu et al.
2012). For P(k), 	nl is allowed to vary within a Gaussian prior
defined by 8±2 h−1 Mpc. Allowing some freedom in the damping
term is important for the P(k) fit, where the BAO signature in the
damped high-k tail is of direct importance. We then determine the
likelihood distribution of α assuming p(α) ∝ e−χ2(α)/2 and that the
total probability integrates to 1 (interpolating to find the likelihood
at any given α value).

3.2 Physical implications of anisotropic clustering

3.2.1 Structure growth

At large scales, the amplitude of the velocity field is given by the rate
of change of the linear growth rate, f ≡ d logD/d loga, where D is the
linear growth rate and a is the scalefactor of the Universe. Assuming
General Relativity, the value of f is a deterministic function of
�m(z), and thus measurements of the velocity field test the validity
of General Relativity on cosmological scales.

When clustering is measured in redshift space, peculiar velocities
cause distortions to the true separation between galaxies. For the
power spectrum, this results in an enhancement of the clustering
in the line-of-sight (LOS) direction and in linear theory can be
described as related to the power in the velocity field (Kaiser 1987):

P s
g (k, μk) = (b + f μ2

k)2P r
m(k), (29)

where b is the galaxy bias relating the amplitude of the galaxy field
to the matter field, μk is the cosine of the angle between k and the
LOS, and P r

m(k) is the real-space matter power spectrum. In the
configuration space, linear theory predicts

ξ0(b, f ) = ξM

(
b2 + 2/3bf + 1/5f 2

)
(30)

ξ2(b, f ) =
(

4

3
bf + 4

7
f 2

)
[ξM − ξ ′

M], (31)

where ξM is the real-space matter correlation function and

ξ ′ ≡ 3s−3
∫ s

0
ξ (r ′)r ′2dr ′ (32)

(Hamilton 1992). The quantity ξ� is the multipole moment of the
redshift-space correlation function given by

ξ�(s) = (2� + 1)

2

∫ 1

−1
dμL�(μ)ξ (s, μ), (33)
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where L� denotes the �th-order Legendre polynomial. Given ξM,
one can measure b and f from measurements of ξ 0, 2. However,
both measurements depend on the amplitude of ξM, parametrized
by σ 8(z); Percival & White (2009) and Song & Percival (2009)
have shown that measuring the amplitude of ξ 0, 2 in terms of fσ 8(z),
bσ 8(z) allows tests of Dark Energy and General Relativity.

A more accurate model (than the linear theory prediction de-
scribed above) of the anisotropic correlation function, ξ (rσ , rπ),
was developed in Reid & White (2011). Here rσ is the transverse
separation, and rπ is the LOS separation measured in redshift space.
This model has been used in Reid et al. (2012), Samushia et al.
(2013a), Samushia et al. (in preparation)3 to model the anisotropic
correlation function, ξ (rσ , rπ). Reid & White (2011) compared the
measurements from N-body simulations with the predictions of their
streaming model in which

1 + ξ (sσ , sπ) =
∫ [

1 + ξ r (r)
]

e

(
−[sπ−y−μv12(r)]2

2σ2
12(r,μ)

)
dy√

2πσ 2
12(r, μ)

,

(34)

where ξ r(r) is the real-space correlation function, y is the real-space
LOS separation, μ is y/r, v12 is the mean infall velocity of galaxies
with real-space separation r and σ 2

12(r, μ) is the rms dispersion of
the pairwise velocity. The terms ξ r(r), σ 2

12(r, μ) and v12(r) can all
be computed using perturbation theory frameworks, given the real-
space host halo bias. Reid et al. (2012) also added a nuisance term
σ 2

FoG, which adds an isotropic velocity dispersion that accounts for
the motion of galaxies within haloes. Equation (34) can be combined
with equation (33) to obtain theoretical predictions for ξ�(s). Reid
& White (2011) demonstrated that for the halo population with
b ∼ 2 (the DR10 CMASS full sample has b ∼ 2) the model matches
N-body simulation measurements of ξ 0 and ξ 2 to within 2 per cent.
We apply this model on our Red and Blue samples and their cross-
correlation in Section 6.

3.2.2 Distance scale information

Additional information is gained by considering the anisotropic ef-
fect on the measured clustering induced by the difference between
the true geometry and that assumed when the clustering is mea-
sured; this is known as the Alcock–Paczynski (AP) test (Alcock &
Paczynski 1979). Similar to the case of measuring the BAO scale,
we consider the effect as a scaling of the true separation, but we
now consider the scaling perpendicular, α⊥, and parallel, α||, to the
LOS, where

ξfid(rσ , rπ) = ξ true(α⊥rσ , α||rπ) (35)

and

α⊥ = Dtrue
A (z)

Dfid
A (z)

, α|| = H fid(z)

H true(z)
. (36)

These two quantities are related to the parameter α defined in Sec-
tion 3.1 by

α = (
α2

⊥α||
)1/3

. (37)

As explained in the previous section, measurement of ξ 0 constrains
the distance scale DV(z). Considering the AP effect, ξ 2 allows mea-
surement of

F (z) = (1 + z)DA(z)H (z)/c. (38)

3 DR10/DR11 RSD implications.

Thus, measurements of ξ 0, 2 allow one to break the degeneracy
between DA and H. In Section 6, we present measurements of α⊥,
α|| from our Red and Blue samples. Following Anderson et al.
(2013a), we define

ε =
(

α⊥
α||

− 1

)1/3

(39)

These measurements of α⊥ and α|| contain information from
the shape of the ξ 0, 2 and therefore will not be identical to the
similar measurements derived from the BAO fitting described in
Section 3.1.

When comparing equation (34) to the clustering we measure,
we assume that the clustering of our galaxy populations can be
modelled as having a single host halo bias. Strictly speaking, this
is an approximation, but we verify that this assumption does not
bias our results when applied to our mock catalogues in Section 6.
The effective bias of our Blue sample is b ∼ 1.6; Reid & White
(2011) show that the RSD model that we use is expected to be less
accurate in that bias range. This means that our estimates of fσ 8

are less robust than the ones derived from the full sample, if used
for the purposes of deriving cosmological constraints. However, for
the purpose of testing the possible systematic effects coming from
different galaxy populations, which is the main goal of our paper,
the accuracy of the model is acceptable.

We use the same fitting method as in Reid et al. (2012) and
Samushia et al. (in preparation). We marginalize over parameters
describing the shape of the linear power-spectrum and the FoG
velocity dispersion to obtain constraints on bσ 8(z), fσ 8(z), α⊥ and
α||. Compared to methods that fit for the BAO scale information
only, e.g. Anderson et al. (2013a), we use a considerable amount of
the information contained in the full shape of the ξ 0, 2 measurements.

McDonald & Seljak (2009) demonstrate that using two samples
with different bias that occupy the same volume may allow im-
proved measurements of fσ 8(z), due to the fact that each sample will
trace the same underlying density field and therefore have highly
correlated cosmic variance. This feature allows one to measure the
relative clustering amplitude with considerably lower cosmic vari-
ance uncertainty than if the sample occupied separate volumes, and
thus obtain lower uncertainty on fσ 8(z). We will investigate whether
one can improve BOSS fσ 8 measurements using this technique in
Section 6.2.

4 C LUSTERI NG MEASUREMENTS

4.1 Calculating clustering statistics

We calculate the correlation function as a function of the redshift-
space separation s and the cosine of the angle to the LOS, μ, using
the standard Landy & Szalay (1993) method

ξ (s, μ)= D1D2(s, μ) − D2R1(s, μ) − D1R2(s, μ) + R1R2(s, μ)

R1R2(s, μ)
,

(40)

where D represents the galaxy sample and R represents the uniform
random sample that simulates the selection function of the galax-
ies. DD(s, μ) thus represent the number of pairs of galaxies with
separation s and orientation μ. We use at least 50 times the number
of galaxies in each of our random samples.
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We calculate ξ (s, |μ|) in evenly spaced bins of width 4 h−1 Mpc
in s and 0.01 in |μ|. We then determine the first two even moments
of the redshift-space correlation function via

2ξ�(s)

2� + 1
=

100∑
i=1

0.01ξ (s, μi)L�(μi), (41)

where μi = 0.01i − 0.005.
As described in Section 2.2, we apply a weight to each galaxy,

wsys, that corrects for the systematic relationships we are able to
identify. In addition, we weight both galaxies and randoms based
on the number density as a function of redshift (Feldman, Kaiser &
Peacock 1994), via

wFKP(z) = 1

1 + PFKPn(z)
, (42)

where we set PFKP = 20000 h−3 Mpc3, the same as is used for the
full CMASS sample in Anderson et al. (2012). For our ξ (s) BAO
measurements, we find that applying the wFKP weights reduces the
mean recovered uncertainty by 3 per cent for the Red sample and
2 per cent for the Blue sample. Given the size of these improvements,
optimizing the weights by accounting for the difference in clustering
amplitude of the two samples is unlikely to significantly increase
the precision of our results.

The total weight applied to each galaxy is

wtot = wFKPwsys (43)

and for each random point wtot = wFKP. Following Ross et al.
(2012), we assign redshifts to our random samples by randomly
selecting them from the galaxy samples. These procedures, except
for the inclusion of weights for airmass, match the treatment applied
to the full CMASS sample in Anderson et al. (in preparation).

We measure the spherically averaged power spectrum, P(k), using
the standard Fourier technique of Feldman et al. (1994), as described
in Reid et al. (2010) and Anderson et al. (2012). We calculate the
spherically averaged power in k bands of width 
k = 0.008 h Mpc−1

using a 20483 grid. The weights are taken into account by using the
sum of wtot over the galaxies/randoms at each gridpoint.

4.2 Reconstruction

The information in the observed galaxy density field can be used to
estimate the matter density field and thus the displacement vector
(away from the primordial position) of each galaxy. Moving the
galaxies backwards along their estimated displacement vectors re-
sults in a ‘reconstructed’ galaxy field with a BAO feature that is
less degraded by non-linear structure formation (Eisenstein et al.
2007b; Padmanabhan, White & Cohn 2009). It has been demon-
strated that such a technique can significantly improve BAO mea-
surements when applied to observed galaxy samples (Padmanabhan
et al. 2012; Anderson et al., in preparation).

The reconstruction algorithm we apply is developed adopting the
methods outlined in Eisenstein et al. (2007b) and Padmanabhan
et al. (2012). We use the full CMASS galaxy sample (and mock
galaxy samples) to produce a smoothed galaxy overdensity field.
We apply a Gaussian smoothing with scale 15 h−1 Mpc (as used in
Anderson et al. 2012; Anderson et al., in preparation), appropriate
to ensure that only regions important for the BAO signal degra-
dation are included (Eisenstein et al. 2007b). Using this smoothed
galaxy overdensity field and assuming that the CMASS galaxy field
is biased with respect to the matter field with b = 1.85, the La-
grangian displacement field � is approximated to first order using

the Zel’dovich approximation (Zel’dovich 1970). We are using the
full CMASS sample to estimate the displacement field.

For both the Red and Blue samples, we move the galaxies and
random points back along the displacement vectors. For the galax-
ies, we included an additional −f (� · ŝ) ŝ shift to remove RSD,
where f = 0.744 is the amplitude of the velocity field (defined
in Section 3.2.1) in our assumed cosmology and ŝ points along
the radial direction. The reconstructed field is constructed from
the displaced galaxy field minus the shifted random field. For the
post-reconstruction field, the correlation function is given by (Pad-
manabhan et al. 2012)

ξ rec(s, μ) = DsDs(s, μ) − 2DsS(s, μ) + SS(s, μ)

RR(s, μ)
, (44)

where Ds is the shifted galaxy field, S is the shifted random field
and R is the original random field.

4.3 Comparison between real and mock clustering

Fig. 7 displays the measured ξ 0 for each sample; the Red sample
displayed in red in the top panel, the Blue sample displayed in blue
in the bottom panel and their cross-correlation displayed in purple
in the bottom panel. The smooth curves display the mean of the
ξ 0 calculated from 600 mock realizations of each sample and the
error bars are their standard deviation. The ξ 0 measured from the
CMASS data agree well with the mean mock ξ 0; we compare the
45 data points in the range 20 < s < 200 to the mean of the mock
ξ 0, and we find χ2 = 37.5, 44.7 and 30.9 for the Red, Blue and
cross-correlation monopoles, respectively, each therefore having a
χ2/dof < 1.

Fitting our fiducial ξBAO template in the range 20 < s < 200
and accounting for the growth factor and the value of f (both calcu-
lated using our fiducial assumed cosmology) at the zeff (defined by

Figure 7. The measured spherically averaged correlation function, ξ0, for
the Red (red points; top) and Blue (blue points; bottom) data samples, and
their cross-correlation (purple points; middle). The smooth curves in each
panel display the mean ξ0 of the 600 mock realizations of each respective
sample. Each mean is a good match to the ξ0 of the data, as χ2/dof < 1 for
each.
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Figure 8. Same as Fig. 7, but for the measured quadropole of the correlation
function, ξ2. Each mean is a good match to the ξ2 of the data, as χ2/dof < 1
for each.

equation 7) of each sample, we find a real-space bias of 2.30 ± 0.09
for the Red sample (χ2

min = 33.2 for 44 dof) and 1.65 ± 0.07 for
the Blue sample (χ2

min = 46.5). Fitting the cross-correlation yields
a bias of 1.96 ± 0.05 (χ2

min = 28.0), consistent with the geometric
mean of the measured bias of the two samples (1.95).

Fig. 8 displays the same information as Fig. 7, but for ξ 2. All of
the ξ 2 measurements are reasonably well fitted by the average of
the mocks between 21 < s < 199 (45 data points): the χ2 are 39.2,
44.4 and 28.4 for the Red, Blue and Red × Blue ξ 2 measurements,
once more, each has χ2/dof < 1.

Fig. 9 displays the measured spherically averaged P(k) for each
sample, with red representing the Red sample and blue representing
the Blue sample; the points display the measurements determined
using CMASS data, the smooth curves represent the mean mea-
surement from 600 mock realizations of each sample and the error
bars are the standard deviation of the mock P(k) measurements. The
amplitudes of the mean mock P(k) appear to be a good match to the
CMASS measurements. However, the shape is not a perfect match,
as in the range 0.02 < k < 0.3 h Mpc−1 (the same 35 data points as
are used for the BAO fits) we obtain χ2 = 65 for the Red sample and
χ2 = 49 for the Blue. The minimum χ2 values improve by 
χ2 < 2
when we allow the amplitude of the mean of the mock P(k) to be
re-scaled by a constant factor. Thus, it is the mismatch between the
respective shapes that causes the poor χ2. In the following section,
we will find reasonable χ2 values when fitting the BAO position
and allowing the smooth shape to be free. The agreement is better
for 0.02 < k < 0.1 h Mpc−1 (10 data points), in which case we find
χ2 = 14 for the Red sample and χ2 = 11 for the Blue. A mismatch
in the shapes of the mock and CMASS P(k) could be caused by,
e.g., the true cosmology differing from the assumed one.

In Fig. 10, we display the correlation between the Red and Blue
clustering measurements, as determined from the 600 mock real-
izations of the respective samples. The P(k) results, displayed in
the top panel, show a strong scale dependence. At large scales
(small k), cosmic variance the dominates the uncertainty. The Red
and Blue samples occupy the same volume and are thus strongly

Figure 9. The measured P(k) of the Red (red) and Blue (blue) data samples
(points with error bars) compared to the mean of the P(k) determined from
600 realizations of the respective mock samples (smooth curves). The χ2

are slightly high, as for the 35 data points with 0.02 < k < 0.3 h Mpc−1,
χ2

Red = 65 and χ2
Blue = 49.

Figure 10. The correlation between the clustering of 600 mock realizations
of the Red and Blue galaxy samples, measured in Fourier space [top P(k)]
and redshift space [bottom, ξ (s)]. The correlation changes less as a function
of scale for ξ (s) due to the fact that there is significant covariance across
measurements in bins of s.

correlated at large scales. At small scales (large k), the domi-
nant component of the uncertainty is the shot-noise and thus the
Red and Blue P(k) are less correlated. For ξ (s) (bottom panel),
the measurements in each s bin are strongly covariant. Thus,
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Figure 11. The measured spherically averaged correlation function, ξRec
0 ,

after reconstruction, for the Red (red points; top) and Blue (blue points;
bottom) samples. The solid curves in each panel are the mean ξRec

0 of the
600 mock realizations of each respective sample. The lighter dashed curves
display the mean ξ0 determined from the un-reconstructed mock realizations
of each respective sample, multiplied by a factor that removes the boost in
amplitude from RSD (see equation 30). By eye, the Blue data appear to be
a worse fit to the mean of the mocks, but in fact we find χ2

Blue = 38 and
χ2

Red = 61 for the 42 data points in the range 32 < s < 200 h−1 Mpc.

there is less scale dependence in the correlation between the Red
and Blue ξ (s).

Fig. 11 displays the measured ξRec
0 for the reconstructed CMASS

data samples (points with error bars) compared to the mean ξRec
0

calculated from 600 reconstructed mock realizations of each sam-
ple, with the Red sample results shown in the top panel and the
Blue sample results shown in the bottom panel. For the Blue
sample, χ2 = 38.0 when comparing the CMASS measurements
to the mean of the mocks for the 42 data points in the range
32 < s < 200 h−1 Mpc. In the same range, χ2 = 60.6 for the
Red sample. The poor fit for the Red sample is due mainly to the
measurements at the largest scales, as for 32 < s < 150 h−1 Mpc
(29 data points) χ2 = 35.9.

In Fig. 11, we also display the mean of the un-reconstructed mock
sample ξ 0 measurements with dashed curves. We have multiplied
these curves by a factor b2

b2+2/3bf +1/5f 2 . This factor accounts for the
boost in ξ 0 amplitude imparted by RSD, as given by equation (30).
The reconstruction algorithm removes this large-scale RSD effect,
and therefore, the amplitude of the pre- and post-reconstruction ξ 0

agree after applying this factor. This agreement occurs even though
the bias of the full sample (b = 1.85) is input into the reconstruction
algorithm in order to obtain the displacement field. This result im-
plies that, as expected in linear theory, the reconstruction algorithm
is correctly identifying the local bias of the Red and Blue fields
imbedded in the overall CMASS field.

5 BAO MEASUREMENTS

In order to measure the BAO position, as parametrized by the like-
lihood distribution of α, we apply the methodology outlined in Sec-
tion 3.1 to each of the Blue, Red and Red × Blue (which we will
denote with a subscript ×) ξ 0(s) and P(k) measurements determined
for the CMASS data samples and the 600 mock realizations of each
galaxy sample. We fit ξ 0(s) in the range 30 < s < 200 h−1 Mpc (42
data points) and P(k) in the range 0.02 < k < 0.3 h Mpc−1 (35 data
points).

For each data set we also find the best-fitting solution when PBAO

is set to zero. Cases where the χ2 is best when PBAO is set to
zero are defined as non-detections. Non-detections happen at worst
3.3 per cent of time (the ξ0,Blue(s) measurements prior to reconstruc-
tion) and at best 0.2 per cent of the time (for the post-reconstruction
Red ξ 0(s) measurements). We exclude non-detections when we de-
termine the mean and variance of the maximum likelihood of α

values recovered from the mock samples. The statistical properties
of these measurements are summarized in Table 1.

For each set of clustering measurements, we have compared the
distribution of (α − αKS)/σα to a unit normal distribution using
the Kolmogorov–Smirnov (KS) test. In order to find the Gaussian
distribution most consistent with the distribution of mock results,
we found the value of αKS that minimizes the Dn value for each
sample. Table 1 summarizes the results of the KS tests. The low Dn

and high PKS values suggest our use of the χ2 statistic to determine
the maximum likelihood and 1σ uncertainty values is appropriate.
As expected, the αKS values are close to the mean α values, but
the agreement between the results recovered from ξ 0(s) and P(k)
measurements is better for the αKS values than for the mean α

values. The difference in αKS values recovered from the P(k) and
ξ 0(s) measurements is 0.002 for both the Red and Blue samples,
suggesting a systematic uncertainty of this order.

Table 1. The statistics of BAO-scale measurements recovered from the mock and data Red and Blue galaxy samples. The
parameter 〈α〉 is the mean α value determined from 600 mock realizations of each sample, Sα =

√
〈(α − 〈α〉)2〉 is the standard

deviation of the best-fitting α values, 〈σ 〉 is the mean 1σ uncertainty on α recovered from the likelihood distribution of each
realization, αKS is the α value that minimizes the Dn value obtained when applying the Kolmogorov–Smirnov test to the
distribution of recovered α and σ values, 〈χ2〉 is the mean minimum χ2 value and ‘CMASS α’ is the measurement for the data
sample.

Case 〈α〉 Sα 〈σ 〉 αKS Dn, PKS 〈χ2〉/dof Non-detections CMASS α, χ2/dof

PRed(k) 1.0047 0.0287 0.0268 1.0042 0.022, 0.93 30/29 14 0.992 ± 0.025, 33/29
ξRed(s) 1.0019 0.0281 0.0266 1.0023 0.016, 0.999 37/37 19 1.010 ± 0.027, 28/37
Rec. ξRed(s) 0.9993 0.0198 0.0202 0.9985 0.027, 0.78 37/37 1 1.013 ± 0.020, 51/37
PBlue(k) 1.0016 0.0402 0.0380 1.0013 0.020, 0.98 30/29 15 0.999 ± 0.030, 34/29
ξBlue(s) 0.9980 0.0386 0.0372 0.9990 0.029, 0.72 37/37 20 1.005 ± 0.031, 37/37
Rec. ξBlue(s) 0.9994 0.0296 0.0300 0.9992 0.031, 0.63 37/37 6 1.008 ± 0.026, 35/37
ξ×(s) 1.0017 0.0310 0.0260 1.0028 0.030, 0.67 40/37 13 1.024 ± 0.024, 20/37

 by guest on D
ecem

ber 4, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1120 A. J. Ross et al.

Prior to reconstruction, a small shift, due to non-linear structure
growth, is expected in the BAO position (see, e.g. Eisenstein et al.
2007a; Angulo et al. 2008; Padmanabhan & White 2009; McCul-
lagh et al. 2013). In terms of α, Padmanabhan & White (2009)
predict a shifts of order 0.005D2(z) for samples with b = 2 and
0.002D2(z) for samples with b = 1. We find similar behaviour in
our mock samples, as the αKS values for the Blue sample are 0.003
smaller than those of the Red sample for both P(k) and ξ (s). The
significance of the difference is 2σ given the uncertainty on the
mean of the 600 realizations (as the uncertainty on the mean is the
standard deviation divided by

√
600, ∼0.001 for both). Applying

reconstruction moves the mean α values closer to 1 and brings the
Red and Blue samples into better agreement; both of these results
are as expected (Anderson et al. 2012; Padmanabhan et al. 2012).
The significance of the difference between the Red and Blue αKS

after applying reconstruction is reduced to less than 1σ . Expected
or not, all of the deviations from 1 we find in the mean α mea-
surements or αKS are negligible (<0.2σα) compared to the mean
recovered uncertainty, and we cannot expect any to be detectable in
our CMASS data samples.

The modelling we employ to fit the BAO scale was designed,
in part, to maximize the consistency between the measurements
obtained from ξ (s) and P(k). Our tests on the mocks confirm that
we have achieved a tight correlation. We show the α recovered
from ξ (s) versus that recovered for P(k), for both the Red and Blue
samples in Fig. 12. The correlation, CP, ξ , is given by

C1,2 = Cov1,2

σ1σ2
, (45)

where we use the standard deviation of mock values as σ . We find
CP, ξ = 0.89 for the Red sample and CP, ξ = 0.87 for the Blue

Figure 12. The 600 BAO-scale measurements, αξ , recovered from corre-
lation functions of each mock realization versus the BAO scale, αP, ***re-
covered from the power spectrum of the same mock realization, for the Red
(red points) and Blue (blue points) samples. The correlation between the two
estimates for both the Red and Blue samples is higher than 0.87, as quan-
tified using the C factor defined in equation (45), and the mean differences
(the labelled σP, ξ values) are both less than 0.35 of the values expected for
independent samples.

sample. Defining σP,ξ = √〈(αP − αξ )2〉, we find σ P, ξ = 0.013 for
the Red sample and σ P, ξ = 0.019 for the Blue. For both data sets,
this value is less than 0.35 the dispersion expected for independent
samples.

The correlation between the Red and Blue BAO measurements
recovered from the mock realizations is 0.15 for ξ (s) and 0.14 for
P(k). These values are close to the correlation between the Red and
Blue P(k) measurements at k = 0.15, as shown in Fig. 10. This scale
is close to the mid-point of the scales used to fit the P(k) BAO (see
Fig. 14). In Section 6, we find a larger correlation (0.37) between the
Red and Blue growth measurements, suggesting the effective k for
the growth measurements is smaller than for BAO measurements.

Fig. 13 displays the measured ξ 0(s), using CMASS data, and
the best-fitting model, both with ξNoBAO(s) subtracted, for each of
the Blue, Red and Red×Blue measurements. As implied by the
agreement displayed in Fig. 13, the χ2 values for the best-fitting
models are good, as all are smaller than 1 per degree of freedom
(dof). The best-fitting α values differ by at most 0.014 (between
Red×Blue and Red measurements). Quantifying the difference as

dα(1, 2) =
(

(α1 − α2)2

σ 2
1 + σ 2

2

)1/2

(46)

we find that 318 of the mock samples (more than 50 per cent)
have a larger dα(ξRed × Blue, ξRed) than we find for CMASS. The α

measurements are clearly consistent. Narrowing the fitting range to
50 < s < 160 h−1 Mpc (27 data points) has a negligible effect, as
each of the measured α values change by less than 0.1σ .

The uncertainties we recover from the CMASS data ξ 0(s) BAO
measurements are typical of those recovered from the mock re-
alizations. The uncertainty on the Blue data sample measurement
(0.031) is better than the mean uncertainty recovered from the Blue
mock realizations (0.037). However, we find that 147 of the mock

Figure 13. The measured ξ0 (points with error bars) and the best-fitting
BAO model (dashed curves) for the Red (red) and Blue (blue) data samples
and their cross-correlation (purple). Each has had the smooth component of
the best-fitting model subtracted. Clear agreement is observed in the location
of the BAO peak, and confirmed by the best-fitting α values that are labelled.
For clarity, we have omitted the error bars for the cross-correlation.
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Figure 14. The measured P(k) (points with error bars) and the best-fitting
BAO model (dashed curves), both divided by the smooth shape component of
the best-fitting model, for the Red (red) and Blue (blue) data samples. Clear
agreement is observed in the location of the BAO feature, and confirmed by
the best-fitting α values that are labelled.

Blue ξ 0(s) (24.5 per cent) yield lower uncertainty, suggesting the
Blue data value is not unusual. The uncertainty we recover from the
Red data ξ 0(s) BAO measurement (0.027) matches the mean uncer-
tainty we find for the mock samples. The uncertainty we find for
the BAO scale measured from the cross-correlation of the Red and
Blue data samples is typical, as we find 205 of the mock realizations
(34 per cent) yield an uncertainty lower than 0.024.

Fig. 14 displays the measured P(k) and the best-fitting BAO
model for the Blue and Red data samples, all divided by the PNoBAO

component of the best-fitting model. The best-fitting measurements
appear to agree well, and this is confirmed by χ2 values that are
less than 1.2/dof. The Red and Blue BAO measurements are clearly
consistent with each other, as they differ by only 0.007. Narrowing
the fitting range to 0.04 < k < 0.2 h Mpc−1 (20 data points) has a
negligible effect, as each of the α values change by less than 0.1σ .
Similar to the ξ 0(s) result, the uncertainty on the CMASS data
Blue BAO measurement (0.030) is better than the mean uncertainty
recovered from the mock realizations (0.038), but we find 126 mock
Blue P(k) measurements (21 per cent) that yield σα < 0.030.

The power spectrum and correlation function BAO measure-
ments are clearly consistent for the Blue data sample. We find
αP, Blue = 0.999 ± 0.030, αξ , Blue = 1.005 ± 0.031 and the mean
difference, 〈|αξ , Blue − αP, Blue|〉, recovered from Blue mock realiza-
tions is 0.019 and the majority of these realizations have a larger
dα value. We find a larger discrepancy for the Red data sample
(αP,Red = 0.992 ± 0.025, αξ,Red = 1.010 ± 0.027), and the differ-
ence is larger than the mean difference we find in the mock samples,
0.013. However, for 61 of the Red mock realizations we find a larger
dα(PRed, ξRed) than we find for our data sample, and thus the chance
of finding such a difference was greater than 10 per cent.

We apply reconstruction (see Section 4.2) to the Red and Blue
samples (for both the data and the 600 mock realizations) and re-
measure the BAO scale using ξRec

0 (s). Fig. 15 displays the 600 of
recovered uncertainties after applying reconstruction versus the un-

Figure 15. The uncertainty on the BAO position recovered from ξ0 mea-
surements after applying reconstruction (‘Rec’) versus those obtained before
(‘No Rec’). Points display the results from the 600 mock realizations of the
Red (red points) and Blue (blue points) galaxy samples. The large black
square and triangle represent the results for the Red and Blue CMASS data
samples. Each result recovered from the CMASS data is within the locus of
the uncertainties recovered from the mock realizations.

certainty recovered prior to reconstruction for both the Blue (blue
points) and Red (red points) mock samples. For both samples, the
vast majority of mock realizations show an improvement in pre-
cision of the BAO measurement. As can be seen in Table 1, the
improvement due to reconstruction larger for the Red samples, as
the mean uncertainty has decreased by 32 per cent for the Red sam-
ples and by 24 per cent for the Blue samples.

The measured ξRec
0 (s) of the Red and Blue data samples are com-

pared to the best-fitting models, both with the smooth component
of the best-fitting subtracted, in Fig. 16. The χ2 of the best fit for
the Red sample is unusually high (51 for 37 dof), but, as noted in
Section 4.3, this result is mainly due to the data at s > 150 h−1 Mpc.
Reconstruction reduces the uncertainties on the Red and Blue data
BAO measurements by 35 and 19 per cent, similar to the mean ef-
fect found from the mock realizations. In Fig. 15, the data results
are displayed using a black triangle for the Blue sample and a black
square for the Red sample. Each are within the locus of points
displaying the results recovered from the mock realizations.

After applying reconstruction, both measurements of α have
shifted only slightly from their pre-reconstruction values. The post-
reconstruction Red and Blue data BAO measurements are clearly
consistent, as they differ by only 0.005. We narrow the fitting range
to 50 < s < 160 h−1 Mpc and re-measure the BAO scale, denoting
it α′. We find α′

Red = 1.008 ± 0.021 and α′
Blue = 1.002 ± 0.025.

Each α′ measurement has shifted by 0.3σ compared to the fiducial
α measurement. While coherent, such a shift alters none of our
conclusions.

In summary, we find consistent BAO-scale measurements for the
clustering of the Red and Blue CMASS data samples and their
cross-correlation, determined from both P(k) and ξ (s). The pair of
measurements that disagree the most is αP,Red = 0.992 ± 0.025,

αξ,X = 1.024 ± 0.024 and we find that 118 of the mock pairs have
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Figure 16. The measured ξRec
0 (points with error bars) after applying recon-

struction and the best-fitting BAO model (dashed curves) for the Red (red)
and Blue (blue) CMASS data samples. Each has had the smooth component
of the best-fitting model subtracted. Reconstruction has sharpened the BAO
feature for both samples. The positions of the BAO feature found from the
Red and Blue samples agree.

Figure 17. Histograms of f values recovered from the ξ0, 2 of 600 mock
realizations of the Blue (blue) and Red (red) samples and the cross ξ0, 2

(purple), as well as for the full CMASS sample (black). One can see that
the Red and Blue distributions are slightly offset (by f = 0.018) from each
other.

a larger dα value. We find no observational evidence that measure-
ments of the BAO position systematically depend on the properties
of the galaxies one uses for the clustering measurement.

6 R S D M EASU R EMENTS

6.1 Consistency

We test our method for fitting fσ 8, as described in Section 3.2.1, by
applying it to individual mocks to determine the best-fitting values

of bias, b, and the growth rate, f. All of our measurements are based
on fits to the ξ 0, 2 measurements in the range 30 < s < 150 h−1 Mpc.
Since the modelling of AP distortions is more robust compared to
the RSD modelling, for simplicity we fix the fiducial cosmological
model to the input model of the mocks, and thus find f for fixed
σ 8. Fig. 17 displays histograms of the distribution of best-fitting
growth rate measurements recovered from 600 mock realizations
of the Blue and Red mock samples and their cross-correlation.
The distribution recovered from the Blue measurements is dis-
played in blue, that from the Red measurements in red and that
from the Red × Blue measurements in purple. We also display the
results using measurements recovered from realizations of the full
CMASS sample in black. Note that the full CMASS sample con-
tains more than twice as many galaxies as the sum of our Red and
Blue samples. For the mean and standard deviation of these distri-
butions, we find fBlue = 0.736 ± 0.065, fRed = 0.780 ± 0.073 and
fCross = 0.754 ± 0.058. These fits to ξ 0, 2 data are summarized in
Table 2.

When we fit to the mean ξ 0, 2 of all 600 mocks, we find the
best-fitting values of fBlue = 0.724 (χ2 = 47/59 dof), fRed = 0.776
(χ2 = 54/59 dof and fCross = 0.752 (χ2 = 69/59 dof). These values
are consistent with the mean of the fits to individual mock samples
and are biased by 2.7, 4.3 and 1.1 per cent with respect to the true
input value of the mocks. These results (at least qualitatively) appear
consistent with the findings of Reid & White (2011), where it was
found that the model (the same as we apply) overpredicts the value
of ξ 2 for their low-mass sample and underpredicts the value of ξ 2

for their high-mass sample, each by ∼4 per cent at s = 35 h−1 Mpc.
The difference in b values of the samples used by Reid & White
(2011) is more extreme (bhigh = 2.8, blow = 1.4 compared to our
bBlue = 1.65 ± 0.07, bRed = 2.3 ± 0.09).

Next we perform full fits to the Blue and Red data samples, now
with AP parameters kept free. We have derived quantities α, ε and
fσ 8 from full fits to the Red and Blue ξ 0, 2 measurements. Fig. 18
displays the 1 and 2σ contours for the allowed α and fσ 8 for the
Red, Blue and full samples and the cross-correlation between the
Red and Blue samples. The measurements αBlue = 1.011 ± 0.028,
αRed = 1.028 ± 0.024 and αCross = 1.022 ± 0.023 are consistent
with each other and those we find when fitting only the BAO feature
(see Table 1), but the full shape information has allowed a small
improvement in the uncertainty on the BAO-only fit.

Our fitting procedure yields f σ8,Blue = 0.509 ± 0.085, f σ8,Red =
0.511 ± 0.083 and f σ8,Cross = 0.423 ± 0.061 for the data samples.
We see no evidence of the 7 per cent difference in growth values
found in the mock samples; however, the difference could easily
be hidden in the noise, given we achieve 17 per cent precision.
The results obtained from the Blue and Red samples are some-
what higher than the results obtained from the fits to the full sample
(f σ8,Full = 0.422 ± 0.051). The Red and Blue samples are each less
than one quarter the size of the full sample. Thus, the differences
between the Red and Blue fσ 8 values and that obtained from the
full sample are of the order of 1σ and therefore not statistically sig-
nificant. The results obtained from the cross-correlation of the two
samples are in good agreement with the full sample. Factoring in the
covariance found between the cross-correlation measurements and
the Red/Blue measurements of our mock samples, the differences
between the Red and Blue fσ 8 and the cross-correlation result both
represent a 1.3σ discrepancy.

Fig. 19 displays the 1 and 2σ contours for the allowed ε and fσ 8

for the Red and Blue samples. We find εRed = −0.032 ± 0.024,
εBlue = −0.034 ± 0.031 and εCross = −0.023 ± 0.024, fully con-
sistent with each other. The value recovered from the full sample
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Table 2. The statistics of growth and distance parameters recovered from the mock and data Red and Blue
anisoptropic clustering measurements. The parameter 〈f〉 is the mean f value determined from 600 mock
realizations of each sample, Sf =

√
〈(f − 〈f 〉)2〉 is the standard deviation of the best-fitting f values,

〈χ2〉 is the mean minimum χ2 value and ‘CMASS fσ 8, α, ε’ is the full set of measurements for the data
samples. The ‘Combined’ data are recovered from the combination of all Red, Blue and cross-correlation
pair counts. The ‘Opt. Combined’ data are the optimally combination of f measurements, determined using
the covariance between the recovered f of each sample determined using the mock samples. The ‘Full’ data
are the full CMASS sample, which contains more than twice as many galaxies as the Red and Blue samples
combined.

Case 〈f〉 Sf 〈χ2〉/dof CMASS fσ 8, α, ε, χ2/dof

Red 0.780 0.073 61/61 0.509 ± 0.085, 1.028 ± 0.024, −0.032 ± 0.024, 48/54
Blue 0.736 0.065 61/61 0.511 ± 0.083, 1.011 ± 0.028, −0.034 ± 0.031, 70/54
Cross 0.754 0.058 62/61 0.423 ± 0.061, 1.022 ± 0.023, −0.023 ± 0.024, 37/54
Combined 0.751 0.056 63/61 0.464 ± 0.059,1.020 ± 0.022, −0.029 ± 0.023 50/54
Opt. Combined 0.755 0.053 – 0.443 ± 0.055, –, –,–
Full 0.743 0.0440 61/61 0.422 ± 0.052, 1.011 ± 0.015, 0.002 ± 0.018, 60/54

Figure 18. 1 and 2σ confidence level contours on α and fσ 8. The red and
blue contours correspond to the Red and Blue samples, the purple curves
are for their cross-correlation, and the black curves are for the full CMASS
sample. Broadly, all samples yield consistent results.

Figure 19. Same as Fig 18, but for ε (defined in equation 39) and fσ 8. The
Red and Blue samples yield consistent results. A slight tension (1.4σ ) is
observed between the ε value of the Red sample and that of the full sample.

(ε = 0.002 ± 0.018) is within 1.43σ of the Red sample and 1.16σ

of the Blue sample.
Overall, the triplet of measured values of fσ 8, α and ε is consistent

between Red and Blue samples and their cross-correlation and that
of the full sample. For each pair of triplets, there is a 3×3 covariance
matrix for the data vector d = [fσ 8, α, ε]1 − [fσ 8, α, ε]2. We find the
χ2 testing d for each pair of triplets against the model dm = [0, 0, 0].
For the Red and Blue samples, we find χ2 = 0.2, between Blue and
full samples we find χ2 = 1.1 and between Red and full samples
we find χ2 = 2.1. Given 3 dof, all are consistent within 1σ .

6.2 Combining tracers

McDonald & Seljak (2009) have demonstrated that if two or more
tracers with significantly different bias trace the same underlying
distribution of matter it is possible to significantly strengthen de-
rived measurements of cosmic growth rate by the virtue of the fact
that the samples share the cosmic variance contribution to the er-
rors. To study the applicability of this method to our CMASS sample
and the expected improvement in the measurements, we extract the
growth measurements from 600 mocks of Blue and Red samples
and examine the distribution of best-fitting values.

Fig. 20 displays the offset between the f values obtained from
the Blue and Red samples extracted from the same underlying dark
matter distribution and their cross-correlation. The values extracted
from the individual mocks can be offset by as much as 40 per cent,
but the measurements are strongly correlated on average. For the
Blue, Red samples and their cross-correlation, we obtain measure-
ments of b and f for each realization and construct their 6 × 6
covariance matrix. This (reduced) covariance matrix is shown in
Fig. 21. The correlation between the Red and Blue f measurements
is 0.37.

To take advantage of the fact that the estimates of growth are
correlated by the virtue of having almost identical cosmic variance
and the fact that the bias of the cross sample must satisfy bCross =√

bRedbBlue, we fit to these six measurements (fBlue, bBlue, fRed, bRed,
fCross, bCross) a three-parameter model p = (f, bBlue, bRed). Applied
to the distribution of mock b, f values, this fit produces the best-
fitting value and 1σ standard deviation of f = 0.755 ± 0.053. When
instead the constraints are derived from the ξ 0, 2 calculated from
the sum of Red, Blue and cross pair counts, we find a mean and
standard deviation of f = 0.751 ± 0.056. Thus, by splitting the data
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Figure 20. The offset between f values derived from 600 mock realizations
of Blue and Red samples and the cross-correlation of each realization. A
strong correlation between the recovered f values is observed.

Figure 21. The reduced covariance matrix of the bias, b, and growth pa-
rameter, f, for the Red and Blue samples and their cross-correlations, as
determined from fitting the 600 mock samples. We use this covariance ma-
trix to optimally combine our results from the Red and Blue samples and
their cross-correlation to produce an optimized fσ 8 measurement.

sample and re-weighting the results we obtain a modest 6 per cent
improvement in the recovered value of f.

In our particular case, the gain in the estimate of f is small mainly
because the errors of individual measurements are dominated by
the shot-noise at small scales. Given greater number densities (this
is not possible with the BOSS galaxy sample while maintaining the
same difference in bias) the correlation between the Red and Blue
samples would be larger and thus a greater gain in the precision
of f would be achievable. The value improved the most by the
combination of samples is the ratio of biases of two samples. Using
only the Blue and Red samples (but accounting for their covariance),
bRed/bBlue = 1.39 ± 0.05. Using the full optimized data set, we
recover bRed/bBlue = 1.39 ± 0.04, a 20 per cent improvement.

The most consistent approach to extracting the growth rate con-
straints from the data would be to fit to all three measured correlation
functions simultaneously. This, however, would require accurately
estimating covariance matrices of rank of the order of few hundred.

Even with 600 mocks this exercise would induce a large error on
our final results (see, e.g. Percival et al., in preparation). Instead, we
assume that the three individual measurements of b and fσ 8 from
the Blue and Red samples and their cross-correlation are not biased
and adopt the 6×6 reduced covariance matrix computed from the
mocks. This yields our optimized measurement, from the Red and
Blue data samples, of f σ8,comb = 0.443 ± 0.055.

Although our optimized results are not as good as what is obtained
for the full CMASS sample (f σ8,Full = 0.422 ± 0.051), one should
keep in mind that, combined, our Blue and Red samples contain less
than half of all the galaxies in the full sample, and the uncertainty on
our result is less than 10 per cent greater than what is achieved with
the full sample. This implies that one could obtain the best CMASS
fσ 8 measurements by using all of the CMASS data and finding
the optimal way in which to split into separate samples. To obtain
robust results to be used for a precise test of General Relativity a
more accurate modelling of RSD for low- and high-bias samples is
required, such as presented in the recent results of Wang, Reid &
White (2013).

7 C O N C L U S I O N S

We find no detectable difference in distance scale or growth mea-
surements obtained from DR10 BOSS CMASS galaxies when the
sample is split by colour. This result is in agreement with theoretical
predictions (e.g. Padmanabhan & White 2009; Reid & White 2011)
and the results we obtain from mock samples. These measurements
provide additional evidence that BAO and RSD measurements are
precise and robust probes of Dark Energy.

We have selected two subsets of BOSS CMASS galaxies based
on their k + e corrected i-band absolute magnitudes and [r − i]0.55

colours. Our selection yields a Blue sample with the 23 per cent
bluest galaxies and a Red sample containing the 32 per cent most
luminous of the galaxies not in the Blue sample. The samples have
similar n(z) (see Fig. 2) and have a factor of 2 difference in clustering
amplitude.

We have created 600 mock realizations of each of our samples
by subsampling each full CMASS mock realization based on halo
mass in order to reproduce the observed clustering. In Section 4.3,
we show that the clustering of the mock samples is a good match to
the observed clustering. Fixing the background cosmology to our
fiducial one and fitting for a constant, linear (real-space) bias in the
range 20 < s < 200, we find b = 2.30 ± 0.09 for the Red sample
and b = 1.65 ± 0.07 for the Blue. For the cross-correlation, we find
b = 1.96 ± 0.05, close to the geometric mean of the two best-fitting
values, as expected if a simple linear bias model is appropriate.

We have measured the BAO scale (parametrized by α) from
the clustering of each of the mock realizations. We find that the
mean α recovered from Red mock samples is 0.003 larger than that
of the Blue mock samples. This difference is consistent with the
bias-dependent shift found in Padmanabhan & White (2009). After
applying reconstruction to each sample, the difference is reduced to
less than a 1σ discrepancy.

We have measured the amplitude of the velocity field (f) from
ξ 0, 2 measurements of each mock realization. The f values recovered
from the Blue sample are biased to low f values by 2.7 per cent and
that the values of the Red sample are biased to high f values by
4.3 per cent. Our results are based on the model of Reid & White
(2011) and the bias is consistent with their findings.

The expected difference between the BAO scale measured from
the Blue sample and that measured from the Red sample is less than
10 per cent of the standard deviation of the difference between Red

 by guest on D
ecem

ber 4, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


BAO and RSD of Red/Blue BOSS 3D clustering 1125

and Blue BAO measurements, and we therefore do not expect to be
able to detect any difference in the CMASS data samples. Indeed,
the BAO measurements of the Red and Blue CMASS samples are
statistically indistinguishable (see Table 1).

The expected difference between the fσ 8 values recovered from
the Blue and Red samples is 33 per cent of the standard devia-
tion of the difference found from the mock realizations. While
larger than the discrepancy expected for the BAO measurements,
we still do not expect to find any statistically significant tension. In-
deed, the results are perfectly consistent (fσ 8, Blue = 0.509 ± 0.085;
fσ 8, Red = 0.511 ± 0.083; and they would remain consistent if a
correction factor for the bias was applied). For the final CMASS
data set (which will be roughly twice as large), the expected dis-
crepancy would increase to 50 per cent, but we expect that usage
of the refined model of Wang et al. (2013) will significantly reduce
the bias.

We have used the covariance between mock measurements
of f and b values obtained from the Red, Blue and their cross-
correlation ξ 0, 2 in order to obtain the optimal combination to pro-
duce a single fσ 8 measurement. Applying this to the data, we find
fσ 8 = 0.443 ± 0.055. This result compares well to what is achieved
from the full CMASS sample (fσ 8 = 0.422 ± 0.051) despite the
fact that we have used less than half of the total sample to obtain our
result. These results suggest that producing the optimal measure-
ment of fσ 8 using BOSS CMASS galaxies can be accomplished by
combining measurements of the Red and Blue samples used herein
as well as the remaining 53 per cent of CMASS galaxies we have
omitted from this analysis (and all of their cross-correlations).

The Red and Blue sample we have defined may be used for further
tests. Modelling the effect of massive neutrinos on the measured
power spectrum is somewhat degenerate with the non-linear bias
model one uses (see, e.g. Swanson et al. 2010; Zhao et al. 2012),
and the robustness of the modelling that is applied can be tested
by using different galaxy populations (as done in Swanson et al.
2010 for galaxies from the SDSS main sample). Similar tests can be
applied to the same BOSS galaxy samples used herein. The large-
scale P(k) measurements of our samples can also be combined
to produce more robust measurements of local non-Gaussianity,
given that the signal is expected to be proportional to the bias of the
sample. Further, given this measurement relies on the largest scales,
the covariance between the Red and Blue samples will be higher and
thus allow greater gain from two-tracer method. In future analyses,
splitting samples by colour may simultaneously test robustness and
increase precision.
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