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MAXIMAL SUBSEMIGROUPS OF THE SEMIGROUP

OF ALL MAPPINGS ON AN INFINITE SET

J. EAST, J. D. MITCHELL, AND Y. PÉRESSE

Abstract. In this paper we classify the maximal subsemigroups of the full
transformation semigroup ΩΩ, which consists of all mappings on the infinite set
Ω, containing certain subgroups of the symmetric group Sym(Ω) on Ω. In 1965
Gavrilov showed that there are five maximal subsemigroups of ΩΩ containing
Sym(Ω) when Ω is countable, and in 2005 Pinsker extended Gavrilov’s result
to sets of arbitrary cardinality.

We classify the maximal subsemigroups of ΩΩ on a set Ω of arbitrary infinite
cardinality containing one of the following subgroups of Sym(Ω): the pointwise
stabiliser of a non-empty finite subset of Ω, the stabiliser of an ultrafilter on
Ω, or the stabiliser of a partition of Ω into finitely many subsets of equal
cardinality. If G is any of these subgroups, then we deduce a characterisation
of the mappings f, g ∈ ΩΩ such that the semigroup generated by G ∪ {f, g}
equals ΩΩ.

1. Introduction

A subgroup H of a group G is a maximal subgroup if H �= G and the subgroup
generated by H and g equals G for all g ∈ G \ H. The definition of a maximal
subsemigroup of a semigroup is analogous: a subsemigroup T of a semigroup (or
group) S is amaximal subsemigroup if T �= S and the subsemigroup 〈T, s〉 generated
by T and s equals S for all s ∈ S \ T .

Let Ω denote an arbitrary (finite or infinite) set, let ΩΩ denote the semigroup of
mappings from Ω to itself, and let Sym(Ω) denote the symmetric group on Ω. In
this paper we are interested in those maximal subsemigroups of ΩΩ that contain
certain subgroups of Sym(Ω). The maximal subgroups of finite symmetric groups,
having been investigated by O’Nan and Scott [28], Aschbacher and Scott [1], and
Liebeck, Praeger and Saxl [18], are, in some sense, known. When Ω is finite, it is
easy to see that a maximal subsemigroup of ΩΩ is either the union of a maximal
subgroup of the symmetric group and ΩΩ \Sym(Ω) or it is the union of Sym(Ω) and
the mappings with at most |Ω| − 2 points in their images. In general, the maximal
subsemigroups of an arbitrary finite semigroup are determined, roughly speaking,
by their maximal subgroups; see Graham, Graham, and Rhodes [12].

Maximal subgroups of Sym(Ω) have also been extensively studied when Ω is
infinite; see [2–4, 6–8, 19, 20, 22, 27] and the references therein. It seems extremely
unlikely that a complete description, in any sense, of maximal subgroups of Sym(Ω)
exists for infinite Ω. Maximal subsemigroups of ΩΩ when Ω is infinite have been
considered to a lesser degree. The maximal subsemigroups of ΩΩ containing the
symmetric group were classified by Gavrilov in [11] for countable Ω and by Pinsker
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2 J. EAST, J. D. MITCHELL, AND Y. PÉRESSE

[24, Theorem 1.4] for arbitrary infinite Ω; these are the only results regarding
maximal subsemigroups of ΩΩ when Ω is infinite of which we are aware. We state
and prove Gavrilov and Pinsker’s theorem (Theorem A) since elements of the proof
are required later on, for the sake of completeness, and for the convenience of
the reader. Maximal subsemigroups of other infinite semigroups of mappings have
been considered. For example, Levi and Wood [17] and Hotzel [13] considered
maximal subsemigroups of Baer-Levi semigroups, and Shneperman [29] considered
the maximal subsemigroups of the endomorphism monoid of a finite dimensional
complex vector space that are maximal with respect to being compact.

The subsemigroups of ΩΩ form an algebraic lattice with 2|Ω| compact elements
under inclusion. The study of maximal subsemigroups of ΩΩ belongs to the wider
study of this lattice. Pinsker and Shelah [26] prove that every algebraic lattice
with at most 2|Ω| compact elements can be embedded into the subsemigroup lattice

of ΩΩ. There are 22
|Ω|

distinct subsemigroups of ΩΩ. There are even 22
κ

sub-
semigroups between Sym(Ω) and any maximal subsemigroup of ΩΩ that contains
Sym(Ω) where |Ω| = ℵα and κ = max{α,ℵ0}; for further details see Pinsker [25].

We show, as a consequence of Theorem C, that there are also 22
|Ω|

maximal subsemi-
groups of ΩΩ. The maximal subsemigroups of the maximal subsemigroups described
by Gavrilov [11] are classified in [10]; perhaps surprisingly there are only countably
many such semigroups. In further contrast to Pinsker and Shelah’s result [26], there
are only 38 subsemigroups between the intersection S1 ∩ S2 ∩ S3(ℵ0)∩ S4(ℵ0) ∩ S5

of the maximal subsemigroups described by Gavrilov [11] and ΩΩ; see Mitchell and
Jonušas [16].

Another natural question to ask about the subsemigroup lattice of ΩΩ is whether
or not every subsemigroup is contained in a maximal one. In [4] it is shown that
under certain set theoretic assumptions there exists a subgroup of Sym(Ω) that is
not contained in a maximal subgroup; it seems likely that the analogous result holds
for ΩΩ. There are several results in the literature concerning sufficient conditions
for a subgroup of Sym(Ω) to lie in a maximal subgroup; see [20] and [21]. In
Section 3 we explore the analogous problem for subsemigroups of ΩΩ.

In this paper we classify the maximal subsemigroups of ΩΩ, where Ω is any
infinite set, containing certain subgroups of Sym(Ω), which we define in the next
section. In particular, we classify the maximal subsemigroups of ΩΩ containing one
of the following groups: the symmetric group Sym(Ω) (Theorem A), the pointwise
stabiliser of a non-empty finite subset of Ω (Theorem B), the stabiliser of an ultra-
filter on Ω (Theorem C), or the stabiliser of a finite partition of Ω (Theorem D).
For each of these subgroups, we obtain a characterisation of those pairs of elements
that, together with the subgroup, generate ΩΩ; see Corollaries 4.2, 4.3, 4.4 and 4.5.
Such a classification in the case that G = Sym(Ω) and |Ω| is a regular cardinal was
originally given in [14, Theorem 3.3]. As previously mentioned, the classification of
maximal subsemigroup of ΩΩ containing Sym(Ω) is originally due to Gavrilov [11]
and Pinsker [24].

The paper is organised as follows: in Section 2, we state the main theorems of
the paper. In Section 3, we give several sufficient conditions for a subsemigroup of
ΩΩ to be contained in a maximal subsemigroup, and also give a new proof of the
result of Macpherson and Praeger [21] which states that every subgroup of Sym(Ω)
that is not highly transitive is contained in a maximal subgroup. In Section 4,
we state and prove Corollaries 4.2, 4.3, 4.4 and 4.5. In Section 5, we give several

Licensed to University of St Andrews. Prepared on Wed Nov 19 04:16:16 EST 2014 for download from IP 138.251.14.57/138.251.162.161.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MAXIMAL SUBSEMIGROUPS OF ΩΩ 3

technical results which underpin the proofs of the main results in the paper. In
Sections 6, 7, 8, and 9, we give the respective proofs of the four main theorems
from Section 2. In Section 10, we show that the setwise stabiliser of a non-empty
finite set, the almost stabiliser of a finite partition, and the stabiliser of an ultrafilter
are maximal subsemigroups (and not just maximal subgroups as is already well-
known) of the symmetric group.

We end this section by asking the three most interesting questions, in our eyes
at least, arising from our consideration of maximal subsemigroups of ΩΩ.

Question 1.1. Let G be a maximal subsemigroup of Sym(Ω). Then does there
exist a maximal subsemigroup M of ΩΩ such that M ∩ Sym(Ω) = G?

The intersection of every known example of a maximal subsemigroup of ΩΩ

with Sym(Ω) is either a maximal subsemigroup of Sym(Ω) or Sym(Ω) itself, which
prompts the following question.

Question 1.2. Does there exist a maximal subsemigroup of ΩΩ that does not
contain a maximal subsemigroup of Sym(Ω)?

We suspect that the answer to Question 1.2 is yes. A step in the other direction
would, perhaps, be a positive answer to the following question.

Question 1.3. Does every maximal subsemigroup of ΩΩ have non-trivial intersec-
tion with Sym(Ω)?

2. Statements of the main theorems

Throughout the paper we write functions to the right of their argument and
compose from left to right. If α ∈ Ω, f ∈ ΩΩ and Σ ⊆ Ω, then αf−1 = {β ∈ Ω :
βf = α}, Σf = {αf : α ∈ Σ}, and f |Σ denotes the restriction of f to Σ. We denote
{f ∈ ΩΩ : |Ωf | < |Ω|} by F. Since F is an ideal of ΩΩ, if S is any subsemigroup of
ΩΩ, then so is S∪F. Hence if S is maximal, then either F ⊆ S or S∪F = ΩΩ. In the
latter case, ΩΩ \ F is a subset of S. But ΩΩ \ F is also a generating set for ΩΩ and
so S = ΩΩ, which contradicts the assumption that S is a maximal subsemigroup.
Hence F is contained in every maximal subsemigroup of ΩΩ.

Let Σ be any subset of Ω and let f : Σ → Ω be arbitrary. If Γ ⊆ Σ such that f |Γ
is injective and Γf = Σf , then we will refer to Γ as a transversal of f . We require
the following parameters of f to state our main theorems:

d(f) = |Ω \ Σf |
c(f) = |Σ \ Γ|, where Γ is any transversal of f

k(f, μ) = |{α ∈ Ω : |αf−1| ≥ μ}|, where μ ≤ |Ω|.

The parameters d(f), c(f), and k(f, |Ω|) were termed the defect, collapse, and infi-
nite contraction index, respectively, of f in [14].

As usual, we will think of a cardinal κ as the set of all ordinals strictly less than
κ. Recall that a cardinal κ is singular if there exists a cardinal λ < κ and a family
of sets Σμ (μ ∈ λ) such that |Σμ| < κ for each μ < λ, yet

∣∣ ⋃
μ<λ Σμ

∣∣ = κ; otherwise,

κ is regular. We denote the successor to any cardinal κ by κ+.
A subset Σ of an infinite set Γ is a moiety of Γ if |Σ| = |Γ \ Σ| = |Γ|.
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4 J. EAST, J. D. MITCHELL, AND Y. PÉRESSE

2.1. The symmetric group.

Theorem A (Gavrilov [11], Pinsker [24]). Let Ω be any infinite set. If |Ω| is a
regular cardinal, then the maximal subsemigroups of ΩΩ containing Sym(Ω) are:

S1 = {f ∈ ΩΩ : c(f) = 0 or d(f) > 0},
S2 = {f ∈ ΩΩ : c(f) > 0 or d(f) = 0},

S3(μ) = {f ∈ ΩΩ : c(f) < μ or d(f) ≥ μ},
S4(μ) = {f ∈ ΩΩ : c(f) ≥ μ or d(f) < μ},

S5 = {f ∈ ΩΩ : k(f, |Ω|) < |Ω|},

where μ is any infinite cardinal not greater than |Ω|.
If |Ω| is a singular cardinal, then the maximal subsemigroups of ΩΩ containing

Sym(Ω) are S1, S2, S3(μ), S4(μ), where μ is any infinite cardinal not greater than
|Ω|, and

S′
5 = {f ∈ ΩΩ : (∃ν < |Ω|) (k(f, ν) < |Ω|)}.

The countable case of Theorem A was first proved by Gavrilov [11]. The full
version of Theorem A given above was first proved by Pinsker [24, Theorem 1.4].
We independently proved Theorem A whilst unaware of the work of Gavrilov and
Pinsker. We thank Martin Goldstern and Lutz Heindorf for bringing these refer-
ences to our attention. A full proof of Theorem A is included in Section 6 for the
convenience of the reader and for the sake of completeness.

2.2. The pointwise stabiliser of a finite set. If G is a group acting on a set
Ω and Σ is any subset of Ω, then we denote the pointwise stabiliser of Σ under G
by G(Σ) and the setwise stabiliser of Σ under G by G{Σ}. In [2], it is shown that
if Σ is a non-empty finite subset of Ω, then Sym(Ω){Σ} is a maximal subgroup of
Sym(Ω).

Theorem B. Let Ω be any infinite set and let Σ be a non-empty finite subset
of Ω. Then the maximal subsemigroups of ΩΩ containing the pointwise stabiliser
Sym(Ω)(Σ) but not Sym(Ω) are:

F1(Γ, μ) = {f ∈ ΩΩ : d(f) ≥ μ or Γ �⊆ Ωf or (Γf−1 ⊆ Γ and c(f) < μ)} ∪ F,

F2(Γ, ν) = {f ∈ ΩΩ : c(f) ≥ ν or |Γf | < |Γ| or (Γf = Γ and d(f) < ν)} ∪ F,

where Γ is a non-empty subset of Σ and μ and ν are infinite cardinals with μ ≤ |Ω|+
and either |Γ| = 1 and ν = |Ω|+ or |Γ| ≥ 2 and ν ≤ |Ω|+.

If μ ≤ |Ω| and f ∈ F, then d(f) = |Ω| = c(f), and so “ ∪ F” could be omitted
from the definition of F1(Γ, μ) and F2(Γ, μ) in these cases.

If |Γ| = 1, then F2(Γ, ν) is properly contained in S4(ν) for all ν ≤ |Ω|. In
particular, F2(Γ, ν) is not maximal in this case. When μ or ν equals |Ω|+, we
obtain the following simpler definitions of the semigroups in Theorem B:

F1(Γ, |Ω|+) = {f ∈ ΩΩ : Γ �⊆ Ωf or Γf−1 ⊆ Γ} ∪ F,

F2(Γ, |Ω|+) = {f ∈ ΩΩ : |Γf | < |Γ| or Γf = Γ} ∪ F.
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MAXIMAL SUBSEMIGROUPS OF ΩΩ 5

In particular, if Γ = {γ}, then

F1(Γ, |Ω|+) = {f ∈ ΩΩ : γ �∈ Ωf or γf−1 = {γ}} ∪ F,

F2(Γ, |Ω|+) = {f ∈ ΩΩ : γf = γ} ∪ F.

If Γ is any finite subset of Ω, then the intersection of F1(Γ, μ) or F2(Γ, μ) with
Sym(Ω) is the setwise stabiliser Sym(Ω){Γ}. Thus every maximal subsemigroup of

ΩΩ containing the pointwise stabiliser of a finite subset Σ of Ω also contains the
setwise stabiliser of some subset Γ of Σ. Since Sym(Ω){Σ} is a maximal subgroup of

Sym(Ω), it follows that the maximal subsemigroups of ΩΩ containing Sym(Ω){Σ}
but not Sym(Ω) are those listed in Theorem B where Γ = Σ.

2.3. The stabiliser of an ultrafilter. A set of subsets F of Ω is called a filter if:

(i) ∅ �∈ F ;
(ii) if Σ ∈ F and Σ ⊆ Γ ⊆ Ω, then Γ ∈ F ;
(iii) if Σ,Γ ∈ F , then Σ ∩ Γ ∈ F .

A filter is called an ultrafilter if it is maximal with respect to containment among
filters on Ω. Equivalently, a filter F is an ultrafilter if, for every Σ ⊆ Ω, either
Σ ∈ F or Ω \ Σ ∈ F . An ultrafilter F on Ω is principal if there exists α ∈ Ω such
that F = {Σ ⊆ Ω : α ∈ Σ}. An ultrafilter F is uniform if |Σ| = |Ω| for all Σ ∈ F .
The stabiliser of a filter F in Sym(Ω) is defined to be

{f ∈ Sym(Ω) : (∀Σ ⊆ Ω)(Σ ∈ F ↔ Σf ∈ F)}

and is denoted by Sym(Ω){F}. The stabiliser of an ultrafilter is the union of the
pointwise stabilisers of the sets in the filter, i.e.

Sym(Ω){F} =
⋃

Σ∈F
Sym(Ω)(Σ);

see [20, Theorem 6.4]. It is shown in [20, Theorem 6.4] and [27] that the stabiliser
Sym(Ω){F} of any ultrafilter is a maximal subgroup of the symmetric group.

Let F be any filter on Ω and let μ be an infinite cardinal. Then we define the
following subsemigroups of ΩΩ:

U1(F , μ) = {f ∈ ΩΩ : (d(f) ≥ μ) or (Ωf �∈ F)

or (c(f) < μ and (∀Σ �∈ F)(Σf �∈ F))} ∪ F;

U2(F , μ) = {f ∈ ΩΩ : (c(f) ≥ μ) or (∀Σ ∈ F)(c(f |Σ) > 0)

or (d(f) < μ and (∀Σ ∈ F)(Σf ∈ F))} ∪ F.

If μ ≤ |Ω| and f ∈ F, then d(f) = |Ω| = c(f), and so “ ∪ F” could be omitted from
the definition of U1(F , μ) and U2(F , μ) in these cases.

If Γ is any subset of Ω, then the collection F of subsets of Ω containing Γ is a
filter. In this case, the stabiliser of F in Sym(Ω) and the setwise stabiliser of Γ in
Sym(Ω) coincide. In the following lemma, we show that U1(F , μ) and U2(F , μ) are
the generalisations of the semigroups in Theorem B to arbitrary filters.

Lemma 2.1. Let Γ be a non-empty finite subset of Ω and let F be the filter con-
sisting of subsets of Ω containing Γ. Then F1(Γ, μ) = U1(F , μ) and F2(Γ, μ) =
U2(F , μ) for all infinite cardinals μ.
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6 J. EAST, J. D. MITCHELL, AND Y. PÉRESSE

Proof. Suppose that f ∈ ΩΩ. Clearly, Ωf �∈ F if and only if Γ �⊆ Ωf . Also Σf �∈ F
for all Σ �∈ F if and only if Γ �⊆ Σf for all Σ ⊆ Ω such that Γ �⊆ Σ if and only if
Γf−1 ⊆ Γ. Therefore F1(Γ, μ) = U1(F , μ).

It is straightforward to show that c(f |Σ) > 0 for all Σ ∈ F if and only if no
transversal of f belongs to F if and only if Γ is not a subset of any transversal of
f if and only if |Γf | < |Γ|. Suppose that |Γf | = |Γ|. Then Σf ∈ F for all Σ ∈ F if
and only if Γ ⊆ Σf for all Σ ⊆ Ω such that Γ ⊆ Σ if and only if Γf ⊆ Γ if and only
if Γf = Γ. Thus F2(Γ, ν) = U2(F , ν), as required. �

The semigroups in Theorem B contain not only the pointwise stabiliser, but the
setwise stabiliser of a finite set. It follows that the maximal subsemigroups of ΩΩ

containing the stabiliser of a filter generated by a finite set, in particular principal
ultrafilters, have already been classified in Theorem B. For the sake of convenience,
we state the analogue of Theorem B in terms of filters.

Corollary 2.2. Let Ω be any infinite set, let Γ be a non-empty finite subset of
Ω, and let F be the filter consisting of subsets of Ω containing Γ. Then the max-
imal subsemigroups of ΩΩ containing Sym(Ω){F} but not Sym(Ω) are F1(Γ, μ) =
U1(F , μ) and F2(Γ, ν) = U2(F , ν), where μ and ν are infinite cardinals with μ ≤
|Ω|+ and either |Γ| = 1 and ν = |Ω|+ or |Γ| ≥ 2 and ν ≤ |Ω|+.

If |Γ| = 1, then F in Corollary 2.2 is a principal ultrafilter. Replacing this
principal ultrafilter by a non-principal ultrafilter yields the following theorem, which
is similar to Corollary 2.2, the main difference being the possible values that the
cardinals μ and ν can have.

Theorem C. Let Ω be any infinite set, let F be a non-principal ultrafilter on Ω,
and let κ(≥ ℵ0) be the least cardinality of a subset of Ω in F . Then the maxi-
mal subsemigroups of ΩΩ containing Sym(Ω){F} but not Sym(Ω) are U1(F , μ) and

U2(F , μ) where μ is an infinite cardinal such that κ < μ ≤ |Ω|+.

Suppose that F is a non-principal ultrafilter. If f ∈ ΩΩ such that Ωf �∈ F , then
Ω \ Ωf ∈ F and so d(f) = |Ω \ Ωf | ≥ κ. Hence if μ ≤ κ, then

U1(F , μ) = {f ∈ ΩΩ : (d(f) ≥ μ) or (c(f) < μ and (∀Σ �∈ F)(Σf �∈ F))} � S3(μ),

and U1(F , μ) is not maximal in this case. If f ∈ ΩΩ is such that c(f |Σ) > 0 for
all Σ ∈ F , then no transversal of f belongs to F . Hence the complement of any
transversal of f belongs to F , and so c(f) ≥ κ. In particular, if μ ≤ κ, then

U2(F , μ) = {f ∈ ΩΩ : (c(f) ≥ μ) or (d(f) < μ and (∀Σ ∈ F)(Σf ∈ F)))} � S4(μ),

and so U2(F , μ) is also not maximal in this case.
If F in Theorem C is a uniform ultrafilter, then κ = |Ω| and so there is only

one possible value for μ, namely |Ω|+, and the conditions on U1(F , |Ω|+) and
U2(F , |Ω|+) become much simpler:

U1(F , |Ω|+) = {f ∈ ΩΩ : (∀Σ �∈ F)(Σf �∈ F)} ∪ F,

U2(F , |Ω|+) = {f ∈ ΩΩ : (∀Σ ∈ F)(c(f |Σ) > 0) or (∀Σ ∈ F)(Σf ∈ F)} ∪ F.

There are 2|Ω| elements in Sym(Ω), and by Posṕı̆sil’s Theorem [15, Theorem 7.6]

there are 22
|Ω|

ultrafilters on Ω. Hence there are 22
|Ω|

non-conjugate maximal
subsemigroups of ΩΩ.
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MAXIMAL SUBSEMIGROUPS OF ΩΩ 7

While the semigroups in Corollary 2.2 and Theorem C have the same definitions
in terms of their respective filters, neither result appears to be a corollary of the
other. We were unable to formulate a more general theorem having Corollary 2.2
and Theorem C, let alone Theorem B, as special cases.

2.4. The stabiliser of a finite partition. Let n ≥ 2 and let P = {Σ0,Σ1, . . . ,
Σn−1} be a partition of Ω such that |Σ0| = · · · = |Σn−1| = |Ω|. We will refer to
such a partition P as a finite partition of Ω. The stabiliser of a finite partition
P = {Σ0,Σ1, . . . ,Σn−1} is defined by

Stab(P) = {f ∈ Sym(Ω) : (∀ i)(∃ j)(Σif = Σj)},
and the almost stabiliser of P is defined by

AStab(P) = {f ∈ Sym(Ω) : (∀ i)(∃ j)(|Σif \ Σj |+ |Σj \ Σif | < |Ω|)}.
Of course, Stab(P) is a subgroup of AStab(P) and so Stab(P) is not a maximal sub-
group of Sym(Ω). On the other hand, it was shown in [27] (and [20] independently)
that AStab(P) is a maximal subgroup of Sym(Ω).

Let f ∈ ΩΩ. Then define the binary relation ρf on {0, 1, . . . , n− 1} by

(1) ρf = {(i, j) : |Σif ∩ Σj | = |Ω|}.
If σ is a binary relation on a set Ω, then σ−1 = {(i, j) : (j, i) ∈ σ} and σ is total if
for all α ∈ Ω there exists β ∈ Ω such that (α, β) ∈ σ. We will write Sym(n) for the
symmetric group on the set n = {0, 1, . . . , n− 1}.

Theorem D. Let Ω be any infinite set and let P = {Σ0,Σ1, . . . ,Σn−1}, n ≥ 2, be
a finite partition of Ω. Then the maximal subsemigroups of ΩΩ containing Stab(P)
but not Sym(Ω) are:

A1(P) = {f ∈ ΩΩ : ρf ∈ Sym(n) or ρf is not total},
A2(P) = {f ∈ ΩΩ : ρf ∈ Sym(n) or ρ−1

f is not total}.

If P is any finite partition of Ω, then the intersection of A1(P) and A2(P) with
Sym(Ω) is the almost stabiliser AStab(P) of P. Thus every maximal subsemigroup
of ΩΩ containing the stabiliser of P also contains the almost stabiliser of P.

3. Containment

In this section we consider the question of when a subsemigroup of ΩΩ is con-
tained in a maximal subsemigroup. The analogous question has been considered
for subgroups of the symmetric group; see, for example, [4,20,21]. The proposition
below is of particular interest here. In [4] it is shown that under certain set theoretic
assumptions there exists a subgroup of Sym(Ω) that is not contained in a maximal
subgroup. However, such examples are difficult to find, and, roughly speaking, if
a subgroup of Sym(Ω) is large or small enough, then it is contained in a maximal
subgroup.

It will be convenient to use the following notion: if S is a semigroup and T is a
subset of S, then the relative rank of T in S is the least cardinality of a subset U
of S such that 〈T, U〉 = S.

Part (i) of the following proposition is a special case of Lemma 6.9 in Macpherson
and Neumann [20], and parts (ii) and (iii) are Theorems 1.5 and 1.6 in Macpherson
and Praeger [21].
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8 J. EAST, J. D. MITCHELL, AND Y. PÉRESSE

Proposition 3.1. Let G be a subgroup of Sym(Ω) satisfying any of the following:

(i) G has finite relative rank in Sym(Ω);
(ii) |G| ≤ |Ω|;
(iii) |Ω| is countable and there exists t ∈ N such that G has infinitely many

orbits on Ωt.

Then G is contained in a maximal subgroup of Sym(Ω).

Proposition 3.2 (Bergman-Shelah, Section 5 in [5]). Let Ω be countably infinite
and let G be a subgroup of Sym(Ω) such that G(Σ) has an infinite orbit for all finite
Σ ⊆ Ω. Then G has finite relative rank in Sym(Ω) and hence is contained in a
maximal subgroup.

We give an analogue of Proposition 3.1(i) and (ii) for subsemigroups of ΩΩ.

Proposition 3.3. Let S be a subsemigroup of ΩΩ satisfying either of the following:

(i) S has finite relative rank in ΩΩ;
(ii) |S| ≤ |Ω|.

Then S is contained in a maximal subsemigroup of ΩΩ.

Proof. (i) This is a straightforward consequence of Zorn’s Lemma, analogous to
the proof of Proposition 3.1(i).

(ii) Let ι be the cardinality of the set of injective elements of S and let {fα : α <
ι} be those injective elements. Using transfinite induction for all ordinals α < ι we
may define

xα, yα ∈ Ωfα \ {xβ , yβ : β < α}
such that xα �= yα. Let T = {f ∈ ΩΩ : xαf = yαf (∀α < ι)}. Then 〈S, T 〉 is
a proper subsemigroup of ΩΩ, since every injective function in 〈S, T 〉 belongs to
S and |S| ≤ |Ω|. Also if Σ is a transversal of any f ∈ T such that |Ωf | = |Ω|,
then {g|Σ : g ∈ T} = ΩΣ. Hence if h is any injective function in ΩΩ such that
Ωh = Σ, then 〈S, T, h〉 = ΩΩ. Hence 〈S, T 〉, and so S, are contained in a maximal
subsemigroup of ΩΩ by part (i). �

A subgroupG of Sym(Ω) is highly transitive if for all n ∈ N and for all (α1, α2, . . . ,
αn), (β1, β2, . . . , βn) ∈ Ωn, there exists g ∈ G such that

(α1g, α2g, . . . , αng) = (β1, β2, . . . , βn).

We give a new proof of the next theorem using Propositions 3.1 and 3.2.

Theorem 3.4 (Macpherson & Praeger [21]). Let Ω be countably infinite and let
G be a subgroup of Sym(Ω) that is not highly transitive. Then G is contained in a
maximal subgroup of Sym(Ω).

Proof. If G is any subgroup of Sym(Ω), then G satisfies one of the following condi-
tions:

(a) G(Σ) has an infinite orbit for all finite Σ ⊆ Ω;
(b) there exists finite Σ ⊆ Ω such that every orbit of G(Σ) is finite.

Suppose that G is a subgroup of Sym(Ω) that is not highly transitive. If G
satisfies (a), then, by Proposition 3.2, G is contained in a maximal subgroup.

If G satisfies (b), then we may assume without loss of generality that Σ =
{0, 1, . . . ,m − 1}. Since every orbit of G(Σ) is finite, every orbit of G on Ωm+1

contains only finitely many tuples of the form (0, 1, . . . ,m − 1, n) where n ∈ N.
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MAXIMAL SUBSEMIGROUPS OF ΩΩ 9

But there are infinitely many such tuples and so G has infinitely many orbits on
Ωm+1. Thus Proposition 3.1(iii) implies that G is contained in a maximal subgroup
of Sym(Ω). �

4. Generating pairs

In [14, Theorem 3.3] it is shown that Sym(Ω) has relative rank 2 in ΩΩ; that
is, there exist f, g ∈ ΩΩ such that 〈Sym(Ω), f, g〉 = ΩΩ. Those pairs f, g ∈ ΩΩ

satisfying this property are completely classified in the case that |Ω| is a regular
cardinal; see [14, Theorem 4.1]. In this section, we recover this classification as a
corollary to Theorem A and extend it to sets of arbitrary cardinality. Furthermore,
we obtain analogous results where Sym(Ω) is replaced by the stabiliser of a finite
set, an ultrafilter, or a finite partition. We require the following straightforward
lemma to obtain the corollaries in this section.

Lemma 4.1. Let G be a subgroup of Sym(Ω) containing Sym(Ω)(Σ) for some Σ ⊆ Ω

such that |Ω \ Σ| = |Ω| and let H be any subset of ΩΩ. Then 〈G,H〉 = ΩΩ if and
only if H is not contained in any maximal subsemigroup of ΩΩ that contains G.

Proof. If H is a subset of a maximal subsemigroup of ΩΩ containing G, then 〈G,H〉
is contained in that semigroup, and so 〈G,H〉 �= ΩΩ. For the converse, [20, Lemma
2.4] states that if U is any subgroup of Sym(Ω) containing Sym(Ω)(Γ) for some

moiety Γ of Ω, then there exists x ∈ Sym(Ω) such that 〈U, x, x−1〉 = Sym(Ω). It
follows that G has finite relative rank in Sym(Ω). Hence, since Sym(Ω) has finite
relative rank in ΩΩ (by [14, Theorem 3.3] as stated above), any subsemigroup of ΩΩ

containing G has finite relative rank in ΩΩ. It follows by Proposition 3.3(i) that any
proper subsemigroup of ΩΩ containing G is contained in a maximal subsemigroup
of ΩΩ. Therefore if H is not contained in any maximal subsemigroup containing
G, then 〈G,H〉 = ΩΩ. �

The following corollary of Theorem A and Lemma 4.1 extends [14, Theorem 4.1].

Corollary 4.2. Let Ω be any infinite set and let f, g ∈ ΩΩ. Then 〈Sym(Ω), f, g〉 =
ΩΩ if and only if (up to renaming f and g) f is injective, d(f) = |Ω|, g is surjective,
and either:

(i) |Ω| is regular and k(g, |Ω|) = |Ω|; or
(ii) |Ω| is singular and k(g, ν) = |Ω| for all ν < |Ω|.

Proof. By Lemma 4.1, it suffices to show that none of the maximal subsemigroups
in Theorem A contains both f and g if and only if (up to renaming f and g) f is
injective, d(f) = |Ω|, g is surjective, and either:

(i) |Ω| is regular and k(g, |Ω|) = |Ω|; or
(ii) |Ω| is singular and k(g, ν) = |Ω| for all ν < |Ω|.
For the direct implication, if {f, g} is not contained in S1 ∪ S2, then (up to

renaming f and g) f is injective and g is surjective. Hence g ∈ S4(μ) and so
f �∈ S4(μ) for all μ. It follows that d(f) = |Ω|. Regardless of the cardinality of
Ω, f belongs to S′

5 ⊆ S5. So, if |Ω| is regular, then S5 is maximal, g �∈ S5, and
k(g, |Ω|) = |Ω|. Similarly, if |Ω| is singular, then k(g, ν) = |Ω| for all ν < |Ω|.

For the converse implication, it is easy to verify that f �∈ S2 ∪ S4(μ) and g �∈
S1 ∪ S3(μ) for all infinite cardinals μ not greater than |Ω|. If |Ω| is regular, then
g �∈ S5, and if |Ω| is singular, then g �∈ S′

5. �
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Analogous to Corollary 4.2, we can deduce from Theorem B a characterisation
of those f, g ∈ ΩΩ that together with the pointwise stabiliser of a finite set generate
ΩΩ.

Corollary 4.3. Let Ω be any infinite set, let Σ be a non-empty finite subset of Ω,
and let f, g ∈ ΩΩ. Then the following are equivalent:

(I) 〈Sym(Ω)(Σ), f, g〉 = ΩΩ;

(II) 〈Sym(Ω){Γ}, f, g〉 = ΩΩ for all Γ ⊆ Σ;
(III) f and g satisfy the conditions of Corollary 4.2 and for all non-empty Γ ⊆ Σ

one of the following holds:
(i) Γf �⊆ Γ and Γg−1 �⊆ Γ;
(ii) Γg �⊆ Γ, Γg−1 �⊆ Γ, and |Γg| = |Γ|;
(iii) Γf �⊆ Γ, Γf−1 �⊆ Γ, and Γ ⊆ Ωf .

Proof. (I)⇒(II) This implication follows immediately since Sym(Ω)(Σ)⊆Sym(Ω){Γ}
for all Γ ⊆ Σ.

(II) ⇒ (III) Let Γ be any non-empty subset of Σ. Since 〈Sym(Ω), f, g〉 ⊇
〈Sym(Ω){Γ}, f, g〉 = ΩΩ, clearly f and g satisfy the conditions of Corollary 4.2, and

{f, g} is not contained in any proper subsemigroup of ΩΩ containing Sym(Ω){Γ}.
In particular, {f, g} is not a subset of F1(Γ, |Ω|+) or F2(Γ, |Ω|+). If f �∈ F2(Γ, |Ω|+)
and g �∈ F1(Γ, |Ω|+), then Γf �⊆ Γ and Γg−1 �⊆ Γ and so (i) holds. If g �∈ F2(Γ, |Ω|+),
then |Γg| = |Γ| and Γg �⊆ Γ. But g is surjective and so Γg−1 �⊆ Γ, and so (ii) holds.
If f �∈ F1(Γ, |Ω|+), then Γ ⊆ Ωf and Γf−1 �⊆ Γ. Hence, since f is injective, Γf �⊆ Γ
and (iii) holds.

(III) ⇒ (I) Again by Lemma 4.1 it suffices to show that none of the maximal
subsemigroups in Theorems A and B contain both f and g.

Since f and g satisfy the conditions of Corollary 4.2, it follows that they are
not contained in any of the semigroups from Theorem A. Moreover, the same
conditions imply that f �∈ F2(Γ, μ) and g �∈ F1(Γ, μ) for all μ ≤ |Ω|. If (i) holds, then
f �∈ F2(Γ, |Ω|+) and g �∈ F1(Γ, |Ω|+). If (ii) holds, then g �∈ F1(Γ, |Ω|+)∪F2(Γ, |Ω|+),
and if (iii) holds, then f �∈ F1(Γ, |Ω|+) ∪ F2(Γ, |Ω|+). �

In the next corollary we characterise the pairs of functions that together with
the stabiliser of an ultrafilter generate ΩΩ. The statement of this result is similar
to that of Corollary 4.3.

Corollary 4.4. Let Ω be any infinite set, let F be an ultrafilter on Ω, and let
f, g ∈ ΩΩ. Then 〈Sym(Ω){F}, f, g〉 = ΩΩ if and only if f and g satisfy the conditions
of Corollary 4.2 and there exist Σ ∈ F and Γ �∈ F such that one of the following
holds:

(i) Σf �∈ F and Γg ∈ F ;
(ii) Σg �∈ F , c(g|Σ) = 0, and Γg ∈ F ;
(iii) Σf �∈ F and Γf ∈ F .

Proof. If F is a principal ultrafilter, say generated by {α}, then Sym(Ω){F} =
Sym(Ω)({α}) and the result follows by Corollary 4.3.

Suppose that F is a non-principal ultrafilter. Recall that Sym(Ω){F} contains
the pointwise stabiliser of any Σ ∈ F . Let κ denote the least cardinality of a set
in F . If κ < |Ω|, then there exists Σ ∈ F such that |Σ| = κ and so |Ω \ Σ| = |Ω|.
Suppose that κ = |Ω|. Then if Σ ∈ F is such that |Ω\Σ| < |Ω| and Γ is a moiety of
Σ (and hence in Ω), then either Γ ∈ F or Σ \Γ ∈ F (since otherwise Ω\Σ ∈ F and
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|Ω \ Σ| < κ, which is a contradiction). In either case, it follows that Sym(Ω){F}
contains the pointwise stabiliser of some Σ ∈ F such that |Ω \ Σ| = |Ω|.

Therefore by Lemma 4.1 and Theorem C, it follows that 〈Sym(Ω){F}, f, g〉 = ΩΩ

if and only if {f, g} is not a subset of U1(F , μ) ∪ U2(F , μ) for any cardinal μ such
that κ < μ ≤ |Ω|+.

(⇒) Since 〈Sym(Ω), f, g〉 ⊇ 〈Sym(Ω){F}, f, g〉 = ΩΩ, clearly f and g satisfy the
conditions of Corollary 4.2. From the discussion above, it follows that, in particular,
{f, g} �⊆ U1(F , |Ω|+) ∪ U2(F , |Ω|+). If g �∈ U1(F , |Ω|+) and f �∈ U2(F , |Ω|+), then
there exists Σ ∈ F and Γ �∈ F such that Σf �∈ F and Γg ∈ F , in which case (i)
holds. If f �∈ U1(F , |Ω|+), then there exists Γ �∈ F such that Γf ∈ F . It follows
that Ω \ Γ ∈ F and (Ω \ Γ)f ⊆ (Ω \ Γf) �∈ F , and so (Ω \ Γ)f �∈ F , which implies
(iii) holds. If g �∈ U2(F , |Ω|+), then there exists Σ ∈ F such that Σg �∈ F and
c(g|Σ) = 0. But g is surjective and so (Ω \ Σ)g ⊇ Ω \ (Σg) ∈ F . Thus Ω \ Σ �∈ F
but (Ω \ Σ)g ∈ F and so (ii) holds.

(⇐) If μ ≤ |Ω|, then, since f and g satisfy the conditions of Corollary 4.2,
it follows that f �∈ U2(F , μ) and g �∈ U1(F , μ). Hence it suffices to show that
{f, g} �⊆ U1(F , |Ω|+) ∪ U2(F , |Ω|+) if one of (i), (ii), or (iii) holds. It is easy to
verify that if (i) holds, then f �∈ U2(F , |Ω|+) and g �∈ U1(F , |Ω|+); and if (ii) or
(iii) holds, then g �∈ U1(F , |Ω|+) ∪ U2(F , |Ω|+) or f �∈ U1(F , |Ω|+) ∪ U2(F , |Ω|+),
respectively. �

As above, Theorem D can be used to characterise those f, g ∈ ΩΩ that together
with either Stab(P) or AStab(P) generate ΩΩ.

Corollary 4.5. Let Ω be any infinite set, let P = {Σ0,Σ1, . . . ,Σn−1}, n ≥ 2, be a
finite partition of Ω, and let f, g ∈ ΩΩ. Then the following are equivalent:

(I) 〈Stab(P), f, g〉 = ΩΩ;
(II) 〈AStab(P), f, g〉 = ΩΩ;
(III) f and g satisfy the conditions of Corollary 4.2 and one of the following

holds:
(i) ρf , ρg �∈ Sym(n);

(ii) ρf �∈ Sym(n) and ρ−1
f is total;

(iii) ρg �∈ Sym(n) and ρg is total.

Proof. (I) ⇒ (II) This implication follows immediately since Stab(P) is a subgroup
of AStab(P).

(II) ⇒ (III) If Σ = Σ1∪· · ·∪Σn−1, then Stab(P), and hence AStab(P), contains
the pointwise stabiliser of Σ in Sym(Ω). Hence by Lemma 4.1, 〈AStab(P), f, g〉 =
ΩΩ implies that {f, g} is not a subset of A1(P) or A2(P). If f �∈ A1(P) and
g �∈ A2(P), then ρf , ρg �∈ Sym(n) and (i) holds. If f �∈ A2(P), then ρf �∈ Sym(n)

and ρ−1
f is total and (ii) holds. If g �∈ A1(P), then ρg �∈ Sym(n) and ρg is total and

we are in case (iii).
(III) ⇒ (I) Again by Lemma 4.1, to prove that 〈Stab(P), f, g〉 = ΩΩ, it suffices

to show that none of the maximal subsemigroups in Theorems A and D contain
both f and g.

Since f and g satisfy the conditions of Corollary 4.2, it follows that they are
not contained in any of the semigroups from Theorem A. If (i) holds, then f �∈
A1(P) and g �∈ A2(P); if (ii) holds, then, since f is injective, ρf is total and so
f �∈ A1(P) ∪ A2(P); and if (iii) holds, then, since g is surjective, ρ−1

g is total and
so g �∈ A1(P) ∪ A2(P). �
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5. Inverses and parameters of mappings

In this section we present several technical results which we will use repeatedly
throughout the paper.

We begin by considering the semigroup theoretic inverses of mappings in ΩΩ.
Roughly speaking, the proofs of the main theorems are in two parts and Corol-
lary 5.3 will imply that one part is a corollary of the other. More precisely, the
majority of the proof of, say, Theorem B consists of showing the following. If U
is a subsemigroup of ΩΩ that is not contained in any of the semigroups listed in
Theorems A or B but that does contain the stabiliser of a non-empty finite subset
of Ω, then U = ΩΩ. The stabiliser contains the symmetric group on an infinite
subset Σ of Ω. The two parts of the proof, referred to above, are to construct an
injective mapping in U with image contained in Σ and a surjective mapping in U
mapping Σ onto Ω. Using Corollary 5.3, the existence of the surjective mapping is
a consequence of the existence of the injective mapping. The proofs of Theorems A,
C, and D follow a similar strategy.

If S is a semigroup and s ∈ S, then t ∈ S is an inverse of s if sts = s and tst = t.
Clearly, t is an inverse for s if and only if s is an inverse for t. If f, f ′ ∈ ΩΩ, then
f ′ is an inverse for f if and only if Ωf ′ is a transversal of f and ff ′ is the identity
on Ωf ′. Note that if f, f ′ ∈ ΩΩ are inverses, then c(f) = d(f ′).

In general, the composition g′f ′ of inverses of g and f is not an inverse of the
composite fg. However, for certain composites g′f ′ is an inverse of fg.

Lemma 5.1. Let u0, u1, . . . , un ∈ ΩΩ be arbitrary and let u′
i be an inverse of ui for

all i ∈ {0, 1, . . . , n}. If Ωu′
0u

′
1 · · ·u′

i−1 ⊆ Ωui for all i ∈ {1, . . . , n}, then u′
0u

′
1 · · ·u′

n

and un · · ·u1u0 are inverses.

Proof. We show that un · · ·u1u0 is an inverse of u′
0u

′
1 · · ·u′

n by showing that
Ωun · · ·u1u0 is a transversal of u′

0u
′
1 · · ·u′

n and u′
0u

′
1 · · ·u′

nun · · ·u1u0 is the identity
on Ωun · · ·u1u0.

Since Ωu′
0u

′
1 · · ·u′

i−1 is contained in the transversal Ωui of u
′
i for all i ∈ {1, . . . , n},

it follows that u′
1 · · ·u′

n is injective on Ωu′
0. Hence the transversal Ωu0 of u′

0 is also
a transversal of u′

0u
′
1 · · ·u′

n.
If x ∈ Ω, then xu′

0u
′
1 · · ·u′

i−1 ∈ Ωui for all i ∈ {1, . . . , n}. Since u′
iui is the

identity on Ωui, it follows that xu
′
0u

′
1 · · ·u′

i−1u
′
iui = xu′

0u
′
1 · · ·u′

i−1 for all x ∈ Ω.
Applying this n times we obtain

xu′
0u

′
1 · · ·u′

nun · · ·u1u0 = xu′
0u0

for all x ∈ Ω. In particular, if x ∈ Ωu0, then xu′
0u

′
1 · · ·u′

nun · · ·u1u0 = x.
Certainly, Ωun · · ·u0 ⊆ Ωu0 and since u′

0u
′
1 · · ·u′

nun · · ·u1u0 is the identity on
Ωu0, it follows that Ωun · · ·u0 ⊇ Ωu′

0u
′
1 · · ·u′

nun · · ·u1u0 ⊇ Ωu0. �

Definition 5.2. Let V ⊆ ΩΩ and let Λ : V → P(Ω) be such that Λ(v) is a transver-
sal of v for all v ∈ V . We refer to such a Λ as an assignment of transversals for V .
Then the set of products v0v1 · · · vn ∈ 〈V 〉 such that vi ∈ V and Ωv0 · · · vi−1 ⊆ Λ(vi)
for all i ∈ {1, . . . , n} is denoted by C(V,Λ).

Corollary 5.3. Let U ⊆ ΩΩ, let u′ ∈ ΩΩ be an inverse of u for every u ∈ U , let
U ′ = {u′ : u ∈ U}, and let Λ : U ′ → P(Ω) be defined by Λ(u′) = Ωu. Then every
element of C(U ′,Λ) has an inverse in 〈U〉.
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Proof. Let u′
0u

′
1 · · · , u′

n ∈ C(U ′,Λ). Then Ωu′
0u

′
1 · · ·u′

i−1 ⊆ Λ(u′
i) = Ωui for all

i ∈ {1, . . . , n}. Thus, by Lemma 5.1, un · · ·u0 ∈ 〈U〉 is an inverse of u′
0 · · ·u′

n. �

We will make repeated use of the following lemma, which is similar to Lemma 2.1
in [14].

Lemma 5.4. Let Ω be any infinite set, let μ be an infinite cardinal such that
μ ≤ |Ω|, and let f, g ∈ ΩΩ. Then the following hold:

(i) if μ is a regular cardinal, then k(fg, μ) ≤ k(f, μ) + k(g, μ);
(ii) d(g) ≤ d(fg) ≤ d(f) + d(g);
(iii) if g is injective (i.e. c(g) = 0), then d(fg) = d(f) + d(g);
(iv) c(f) ≤ c(fg) ≤ c(f) + c(g);
(v) if f is surjective (i.e. d(f) = 0), then c(fg) = c(f) + c(g);
(vi) if c(g) < μ ≤ d(f), then d(fg) ≥ μ;
(vii) if d(f) < μ ≤ c(g), then c(fg) ≥ μ.

Proof. (i) Let α ∈ Ω. Then

α(fg)−1 =
⋃

β∈αg−1

βf−1.

If |αg−1|<μ and |βf−1|<μ for all β∈αg−1, then, since μ is regular, |α(fg)−1|<μ.
Hence

k(fg, μ) = |{α ∈ Ω : |α(fg)−1| ≥ μ}|
≤ |{α ∈ Ω : (∃β ∈ αg−1) (|βf−1| ≥ μ)}|+ |{α ∈ Ω : |αg−1| ≥ μ}|
≤ k(f, μ) + k(g, μ),

as required.
(ii) It is straightforward to see that

Ω \ Ωg ⊆ Ω \ Ωfg ⊆ (Ω \ Ωf)g ∪ (Ω \ Ωg),
and so d(g) ≤ d(fg) ≤ |(Ω \ Ωf)g|+ d(g) ≤ d(f) + d(g).

(iii) If c(g) = 0, then

Ω \ Ωfg = (Ω \ Ωg) ∪ (Ωg \ Ωfg) = (Ω \ Ωf)g ∪ (Ω \ Ωg)
and |(Ω \ Ωf)g| = |Ω \ Ωf | = d(f). Hence d(fg) = d(f) + d(g), as required.

(iv) Let Σ ⊆ Ω be a transversal of f . Then there exists Σ′ ⊆ Σ such that Σ′ is a
transversal of fg. Hence c(f) ≤ c(fg). Also c(fg) = |Ω \Σ′| = |Ω \Σ|+ |Σ \Σ′| =
c(f) + |Σ \ Σ′|, and so it suffices to show that |Σ \ Σ′| ≤ c(g). Let Γ be any
transversal of g such that Σ′f ⊆ Γ. If α ∈ Σ \ Σ′, then there exists β ∈ Σ′ such
that (α)fg = (β)fg. Since f is injective on Σ, αf �= βf . But βf ∈ Σ′f ⊆ Γ and so
αf �∈ Γ. Thus (Σ \ Σ′)f ⊆ Ω \ Γ and so |Σ \ Σ′| = |(Σ \ Σ′)f | ≤ |Ω \ Γ| = c(g), as
required.

(v) Let Σ,Σ′, and Γ be as in part (iv). If d(f) = 0, then Σf = Ω. But we saw in
part (iv) that (Σ\Σ′)f ⊆ Ω\Γ and Σ′f ⊆ Γ, and so in this case (Σ\Σ′)f = Ω\Γ and
Σ′f = Γ. Therefore c(fg) = |Ω\Σ′| = |Ω\Σ|+|Σ\Σ′| = |Ω\Σ|+|Ω\Γ| = c(f)+c(g).

(vi) If Σ is any transversal of g, then, by assumption, |Ω \ Σ| = c(g) < μ and
|Ω \ Ωf | = d(f) ≥ μ. Hence |Σ ∩ (Ω \ Ωf)| ≥ μ. If α ∈ Σ ∩ (Ω \ Ωf) is such that
αg ∈ Ωfg, then there exists β ∈ Ωf such that αg = βg. So, since c(g) < μ,

|{α ∈ Σ ∩ (Ω \ Ωf) : αg ∈ Ωfg}| < μ.
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14 J. EAST, J. D. MITCHELL, AND Y. PÉRESSE

Therefore |{α ∈ Σ ∩ (Ω \ Ωf) : αg �∈ Ωfg}| ≥ μ, and so

|Ω\Ωfg| ≥ |{α ∈ Σ∩(Ω\Ωf) : αg �∈ Ωfg}g| = |{α ∈ Σ∩(Ω\Ωf) : αg �∈ Ωfg}| ≥ μ,

as required.
(vii) As in the proof of (iv), let Σ be a transversal of f , let Σ′ ⊆ Σ be a

transversal of fg, and let Γ be a transversal of g such that Σ′f ⊆ Γ. By assumption,
|Ω \ Σf | = |Ω \ Ωf | = d(f) < μ and |Ω \ Γ| = c(g) ≥ μ. Hence |Σf ∩ (Ω \ Γ)| ≥ μ.
Since Σ′f ⊆ Γ and, again as in the proof of (iv), (Σ \ Σ′)f ⊆ Ω \ Γ, it follows that
Σf ∩ (Ω \ Γ) = (Σ \ Σ′)f . Thus

μ ≤ |Σf ∩ (Ω \ Γ)| = |(Σ \ Σ′)f | = |Σ \ Σ′| ≤ |Ω \ Σ′| = c(fg),

as required. �

6. The symmetric group – The proof of Theorem A

In this section, we give the proof of Theorem A. We require the following result
from [14, Theorem 3.3].

Theorem 6.1. Let Ω be an infinite set and let f, g ∈ ΩΩ be such that f is injective,
g is surjective, and d(f) = k(g, |Ω|) = |Ω|. Then 〈Sym(Ω), f, g〉 = ΩΩ.

Recall that a subset Σ of an infinite set Γ is a moiety of Γ if |Σ| = |Γ \Σ| = |Γ|.
Lemma 6.2. Let Ω be any set of singular cardinality and let g ∈ ΩΩ be such that
k(g, μ) = |Ω| for all μ < |Ω|. Then there exists a ∈ Sym(Ω) such that k(gag, |Ω|) =
|Ω|.
Proof. Since |Ω| is singular, there exist κ < |Ω| and Ωμ ⊆ Ω such that |Ωμ| < |Ω|
for all μ < κ and Ω =

⋃
μ<κ Ωμ. Let Σ be a moiety of {α ∈ Ω : |αg−1| ≥ κ}, let

{β(α, μ) ∈ Ω : μ < κ} ⊆ αg−1 for all α ∈ Σ, where β(α, μ) �= β(α, ν) if μ �= ν, and
let Σ′ =

⋃
α∈Σ{β(α, μ) ∈ Ω : μ < κ}.

We next show that there exists a moiety Γ of Ω such that |{α ∈ Γ : |αg−1| ≥
μ}| = |Ω| for all μ < |Ω|. In fact, if Ω is arbitrarily partitioned into moieties Γ1

and Γ2, then one or the other of these sets has the required property. To see this,
suppose that there exists ν < |Ω| such that |{α ∈ Γ1 : |αg−1| ≥ ν}| < |Ω|. If μ is a
cardinal such that ν ≤ μ < |Ω|, then k(g, μ) = |{α ∈ Ω : |αg−1| ≥ μ}| = |Ω|. But

{α ∈ Ω : |αg−1| ≥ μ} = {α ∈ Γ1 : |αg−1| ≥ μ} ∪ {α ∈ Γ2 : |αg−1| ≥ μ}
and so |{α ∈ Γ2 : |αg−1| ≥ μ}| = |Ω|. So we now fix Γ with the above property.

Assume that Σ× κ is well-ordered. We define, by transfinite recursion, distinct
γ(α, μ) ∈ Γ such that |γ(α, μ)g−1| ≥ |Ωμ| for all (α, μ) ∈ Σ × κ as follows. Let
(α, μ) ∈ Σ× κ and let

Γ′ = {γ(β, ν) : (β, ν) < (α, μ)}.
Then |{γ ∈ Γ : |γg−1| ≥ |Ωμ|}| = |Ω| and |Γ′| < |Σ × κ| = |Ω|. So, we may
choose γ(α, μ) to be any element in the set {γ ∈ Γ \ Γ′ : |γg−1| ≥ |Ωμ|} which is of
cardinality |Ω|.

Since Γ and Σ′ are moieties, there exists a ∈ Sym(Ω) such that

(γ(α, μ))a = β(α, μ)

for all (α, μ) ∈ Σ× κ. Therefore, for any α ∈ Σ,

α(gag)−1 ⊇
⋃

μ<κ

β(α, μ)a−1g−1 =
⋃

μ<κ

γ(α, μ)g−1

Licensed to University of St Andrews. Prepared on Wed Nov 19 04:16:16 EST 2014 for download from IP 138.251.14.57/138.251.162.161.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MAXIMAL SUBSEMIGROUPS OF ΩΩ 15

Ω

≥|Ωμ| Γ

Σg−1

Σ

g

g

a

a

g

g

γ(α, μ)

β(α, μ)

α

Figure 1. The composite gag in the proof of Lemma 6.2.

and so |α(gag)−1| ≥ |
⋃

μ<κ Ωμ| = |Ω|; see Figure 1. Since |Σ| = |Ω|, it follows that
k(gag, |Ω|) = |Ω|, as required. �

Theorem A (Gavrilov [11], Pinsker [24]). Let Ω be any infinite set. If |Ω| is a
regular cardinal, then the maximal subsemigroups of ΩΩ containing Sym(Ω) are:

S1 = {f ∈ ΩΩ : c(f) = 0 or d(f) > 0},
S2 = {f ∈ ΩΩ : c(f) > 0 or d(f) = 0},

S3(μ) = {f ∈ ΩΩ : c(f) < μ or d(f) ≥ μ},
S4(μ) = {f ∈ ΩΩ : c(f) ≥ μ or d(f) < μ},

S5 = {f ∈ ΩΩ : k(f, |Ω|) < |Ω|},
where μ is any infinite cardinal not greater than |Ω|.

If |Ω| is a singular cardinal, then the maximal subsemigroups of ΩΩ containing
Sym(Ω) are S1, S2, S3(μ), S4(μ) where μ is any infinite cardinal not greater than
|Ω|, and

S′
5 = {f ∈ ΩΩ : (∃ν < |Ω|) (k(f, ν) < |Ω|)}.

If Ω is any infinite set, then Lemma 5.4 can be used to show that S1, S2, S3(μ),
and S4(μ) are semigroups for all infinite μ ≤ |Ω|. In particular, parts (ii), (iii), and
(iv) show this for S1; (ii), (iv), (v) show this for S2; (ii), (iv), (vi) show this for
S3(μ); and (ii), (iv), (vii) show this for S4(μ). It is also straightforward to verify
that none of S1, S2, S3(μ), S4(ν), with μ, ν ≤ |Ω| infinite cardinals, are contained
in any of the others.

If |Ω| is regular, then Lemma 5.4(i) shows that S5 is a semigroup. If |Ω| is
singular, then S5 is a generating set for ΩΩ and, in particular, not a semigroup.
Regardless of the nature of |Ω|, S′

5 is contained in S5. However, S5 and S′
5 are not

contained in, and do not contain, any of S1, S2, S3(μ), and S4(μ) for any μ.
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16 J. EAST, J. D. MITCHELL, AND Y. PÉRESSE

To show that S′
5 is a semigroup in the case that |Ω| is a singular cardinal, let

f, g ∈ S′
5. Then there exists μ, ν < |Ω| such that k(f, μ) < |Ω| and k(g, ν) < |Ω|. Let

κ = max{μ, ν}. If κ+ denotes the successor of κ, then κ+ < |Ω| since |Ω| is singular.
Since k(f, κ+), k(g, κ+) < |Ω| and κ+ is regular, it follows, by Lemma 5.4(i), that
k(fg, κ+) ≤ k(f, κ+) + k(g, κ+) < |Ω|. Hence fg ∈ S′

5 and S′
5 is a semigroup.

We require Lemmas 6.3 and 6.4 below to complete the proof of Theorem A.
They are stated in far greater generality than required in this section because we
will use them again in later sections.

If a ∈ Sym(Ω), then we denote the set {α ∈ Ω : αa �= α} by supp(a) and refer
to this set as the support of a.

Lemma 6.3. Let U be a subset of ΩΩ, which is not contained in S2 or S4(μ) for
any infinite μ ≤ |Ω|, let Λ be any assignment of transversals for U (as defined in
Definition 5.2), and let κ be any cardinal such that ℵ0 ≤ κ ≤ |Ω|. If U contains
an injective f and every a ∈ Sym(Ω) with supp(a) ⊆ Ωf and | supp(a)| < κ, then
there exists an injective f∗ ∈ C(U,Λ) such that d(f∗) ≥ κ and Ωf∗ ⊆ Ωf .

Proof. We prove by transfinite induction that for each cardinal μ ≤ κ,
(2)

there exists fμ ∈ C(U,Λ) such that fμ is injective, d(fμ) ≥ μ, and Ωfμ ⊆ Ωf.

If there exists fμ ∈ C(U,Λ) such that fμ is injective and d(fμ) ≥ μ, then, since fμ
and f are injective, fμf ∈ C(U,Λ), fμf is injective, d(fμf) = d(fμ) + d(f) ≥ μ
and Ωfμ ⊆ Ωf ; i.e. (2) holds for fμf . Hence it suffices to show that there exists
fμ ∈ C(U,Λ) such that fμ is injective and d(fμ) ≥ μ.

Since U �⊆ S2, there exists an injective h0 ∈ U ⊆ C(U,Λ) such that d(h0) > 0.
Since h0 is injective, hn

0 belongs to C(U,Λ) and, by Lemma 5.4(iii), d(hn
0 ) ≥ n for

all n ∈ N . Thus (2) holds for all finite μ.
Let μ be any cardinal such that ℵ0 ≤ μ ≤ κ and assume that (2) holds for

every cardinal strictly less than μ. Since U �⊆ S4(μ), there exists h1 ∈ U such
that c(h1) < μ ≤ d(h1). By our inductive hypothesis, there exists an injective
fc(h1) ∈ C(U,Λ) such that d(fc(h1)) ≥ c(h1) and Ωfc(h1) ⊆ Ωf . Since fc(h1) is
injective, |(Ω \ Ωfc(h1))fc(h1)| = |Ω \ Ωfc(h1)| and so

|Ω \ Ωfc(h1)| = |(Ω \ Ωfc(h1))fc(h1)| = |Ωfc(h1) \ Ωf2
c(h1)

| ≤ |Ωf \ Ωf2
c(h1)

|.

It follows that

|Ωf2
c(h1)

\ Λ(h1)| ≤ |Ω \ Λ(h1)| = c(h1) ≤ d(fc(h1)) = |Ω \ Ωfc(h1)| ≤ |Ωf \ Ωf2
c(h1)

|.

Thus there is a ∈ Sym(Ω) such that
(
Ωf2

c(h1)
\ Λ(h1)

)
a ⊆ Ωf \ Ωf2

c(h1)

and supp(a) ⊆
(
Ωf2

c(h1)
\ Λ(h1)

)
∪

(
Ωf2

c(h1)
\ Λ(h1)

)
a; see Figure 2. Hence, since

Ωfc(h1) ⊆ Ωf , it follows that supp(a) ⊆ Ωf and

| supp(a)| ≤ 2|Ωf2
c(h1)

\ Λ(h1)| ≤ 2|Ω \ Λ(h1)| < μ ≤ κ.

In particular, a, a−1 ∈ U .
From the definition of a, it follows that

Ωf2
c(h1)

\ Λ(h1) ⊆
(
Ωf \ Ωf2

c(h1)

)
a−1
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c(h1)
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c(h1)
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c(h1)

a−1

a−1

h1

h1

Figure 2. The composition f2
c(h1)

a−1h1 from the proof of Lemma 6.3.

and so Ωf2
c(h1)

a−1 ⊆ Λ(h1); see Figure 2. This shows that f2
c(h1)

a−1h1 ∈ C(U,Λ)
is injective, and d(f2

c(h1)
a−1h1) ≥ d(h1) ≥ μ by Lemma 5.4(ii). It follows that

fμ := f2
c(h1)

a−1h1 ∈ C(U,Λ), and so (2) holds for μ. �

Lemma 6.4. Let U be a subset of ΩΩ which is not contained in S1 or S3(μ) for
any infinite μ ≤ |Ω|, and let κ be any cardinal such that ℵ0 ≤ κ ≤ |Ω|. If there exist
a surjective g ∈ U and a transversal Γ of g such that U contains every a ∈ Sym(Ω)
with supp(a) ⊆ Γ and | supp(a)| < κ, then there exists g∗ ∈ 〈U〉 such that c(g∗) ≥ κ
and Γg∗ = Ω.

Proof. Let g′ ∈ ΩΩ be any inverse for g such that Ωg′ = Γ and let u′ ∈ ΩΩ be an
arbitrary inverse for u for all u ∈ U \ {g}. We denote {u′ ∈ ΩΩ : u ∈ U} by U ′

and we set Λ : U ′ → P(Ω) to be the assignment of transversals for U ′ defined by
Λ(u′) = Ωu. Recall that c(u) = d(u′) and d(u) = c(u′) for all u ∈ U .

We prove that U ′, g′, and Λ satisfy the conditions of Lemma 6.3. Since U �⊆
S1, U �⊆ S3(μ), it follows that U ′ �⊆ S2 and U ′ �⊆ S4(μ) for all infinite μ ≤ κ.
Since g is surjective, g′ is injective and by assumption Ωg′ = Γ. In particular,
U ′ contains every a′ = a−1 ∈ Sym(Ω) where supp(a) ⊆ Ωg′ and | supp(a)| ≤ κ.
Thus by Lemma 6.3 there exists an injective f∗ ∈ C(U ′,Λ) such that d(f∗) ≥ κ
and Ωf∗ ⊆ Ωg′. By Corollary 5.3, 〈U〉 contains an inverse g∗ of f∗. Therefore
c(g∗) = d(f∗) ≥ κ and Ωf∗ ⊆ Γ is a transversal of g∗, and in particular Γg∗ = Ω. �

Proof of Theorem A. Let M be a subsemigroup of ΩΩ containing Sym(Ω). We first
prove that if M is not contained in any of S1, S2, S3(μ), S4(μ), or S5 where μ is any
infinite cardinal not greater than |Ω|, then M = ΩΩ. By Lemmas 6.3 and 6.4, there
exist f, g ∈ M such that f is injective, d(f) = |Ω|, g is surjective, and c(g) = |Ω|.
By Theorem 6.1, it suffices to show that there exists a surjective h ∈ M such that
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|Ω|

|Ω|

|Ω|

Γ

Γa Σ

h0

h0

a

a

g

g

...

Figure 3. The composite h0ag in the proof of Theorem A.

k(h, |Ω|) = |Ω|. Since M �⊆ S5, there exists h0 ∈ M such that k(h0, |Ω|) = |Ω|. Let
Γ = {α ∈ Ω : |αh−1

0 | = |Ω|}. Then |Γ| = |Ω|. Let a ∈ Sym(Ω) be any element such
that Γa contains a transversal Σ of g. So, if α ∈ Ω, then there exists β ∈ Σ such
that βg = α and so α(h0ag)

−1 = αg−1a−1h−1
0 ⊇ βa−1h−1

0 . But βa−1 ∈ Γ and so
|βa−1h−1

0 | = |Ω|. Thus |α(h0ag)
−1| = |Ω| and, since α ∈ Ω was arbitrary, it follows

that h0ag is surjective and k(h0ag, |Ω|) = |Ω|. So the proof is concluded by setting
h = h0ag; see Figure 3.

If |Ω| is regular, then from the above eitherM is contained in one of S1, S2, S3(μ),
S4(μ), or S5 or M = ΩΩ. It then follows that if M is a maximal subsemigroup of
ΩΩ containing Sym(Ω), then M equals one of S1, S2, S3(μ), S4(μ), or S5. On the
other hand, if M is one of the semigroups S1, S2, S3(μ), S4(μ), or S5, then, since
none of these semigroups are contained in any other, it follows that M is a maximal
subsemigroup of ΩΩ.

Suppose that |Ω| is singular. If M is not contained in any of the semigroups S1,
S2, S3(μ), S4(μ), or S

′
5, then, by Lemma 6.2, M is also not contained in S5 and so,

from the above, M = ΩΩ. Hence as in the case that |Ω| is regular, it follows that
M is a maximal subsemigroup of ΩΩ if and only if M equals one of S1, S2, S3(μ),
S4(μ), or S

′
5. �

7. Pointwise stabilisers of finite sets – The proof of Theorem B

In this section we prove Theorem B.

Theorem B. Let Ω be any infinite set and let Σ be a non-empty finite subset
of Ω. Then the maximal subsemigroups of ΩΩ containing the pointwise stabiliser
Sym(Ω)(Σ) but not Sym(Ω) are:

F1(Γ, μ) = {f ∈ ΩΩ : d(f) ≥ μ or Γ �⊆ Ωf or (Γf−1 ⊆ Γ and c(f) < μ)} ∪ F,

F2(Γ, ν) = {f ∈ ΩΩ : c(f) ≥ ν or |Γf | < |Γ| or (Γf = Γ and d(f) < ν)} ∪ F,
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where Γ is a non-empty subset of Σ and μ and ν are infinite cardinals with μ ≤ |Ω|+
and either |Γ| = 1 and ν = |Ω|+ or |Γ| ≥ 2 and ν ≤ |Ω|+.

Throughout this section we let Σ be a non-empty finite subset of Ω. We start
by showing that the sets given in the theorem are actually semigroups.

Proposition 7.1. Let μ be any infinite cardinal such that μ ≤ |Ω|+ and let Γ be
any non-empty subset of Ω. Then F1(Γ, μ) and F2(Γ, μ) as defined in Theorem B
are subsemigroups of ΩΩ.

Proof. Let f, g ∈ F1(Γ, μ). If f ∈ F or g ∈ F, then fg ∈ F. If d(g) ≥ μ, then
Lemma 5.4(ii) implies that d(fg) ≥ d(g) ≥ μ and so fg ∈ F1(Γ, μ). If Γ �⊆ Ωg, then
Γ �⊆ Ωfg and so fg ∈ F1(Γ, μ). Assume that Γg−1 ⊆ Γ and c(g) < μ. If d(f) ≥ μ,
then, by Lemma 5.4(vi), d(fg) ≥ μ. If Γ �⊆ Ωf , then either Γ �⊆ Ωg or Γ ⊆ Ωg.
In the former case, Γ �⊆ Ωfg, and in the latter, Γg−1 = Γ �⊆ Ωf and so Γ �⊆ Ωfg.
In either case, fg ∈ F1(Γ, μ). If Γf−1 ⊆ Γ and c(f) < μ, then Γ(fg)−1 ⊆ Γ and
c(fg) ≤ c(f) + c(g) < μ by Lemma 5.4(iv). Hence F1(Γ, μ) is a semigroup.

Let f, g ∈ F2(Γ, μ). If f ∈ F or g ∈ F, then fg ∈ F. If c(f) ≥ μ, then c(fg) ≥
c(f) ≥ μ by Lemma 5.4(iv) and so fg ∈ F2(Γ, μ). If |Γf | < |Γ|, then |Γfg| < |Γ| and
so fg ∈ F2(Γ, μ). Hence we may assume that Γf = Γ and d(f) < μ. If c(g) ≥ μ,
then, by Lemma 5.4(vii), c(fg) ≥ μ and so fg ∈ F2(Γ, μ). If |Γg| < |Γ|, then
|Γfg| = |Γg| < |Γ| and fg ∈ F2(Γ, μ). If Γg = Γ and d(g) < μ, then Γfg = Γg = Γ
and d(fg) ≤ d(f) + d(g) < μ, by Lemma 5.4(ii), and so fg ∈ F2(Γ, μ). �

We require the following two lemmas to prove Theorem B.

Lemma 7.2. Let Σ be a finite subset of Ω and let U be a subset of ΩΩ containing
Sym(Ω)(Σ) but which is not contained in S2 or in F2(Γ, μ) for any non-empty subset

Γ of Σ and any infinite cardinal μ ≤ |Ω|+. If Λ is an assignment of transversals
(as defined in Definition 5.2) for U such that Γ ⊆ Λ(u) for all u ∈ U \ F2(Γ, μ),
then there exists an injective f ∈ C(U,Λ) such that Ωf ∩ Σ = ∅.

Proof. Since Σ is finite (and 1Ω ∈ U), it suffices to show that for every injective
f0 ∈ C(U,Λ) with Ωf0∩Σ �= ∅ there exists an injective f1 ∈ C(U,Λ) with Ωf1∩Σ �

Ωf0 ∩ Σ. We will denote Ωf0 ∩ Σ by Γ. We start by showing that there exists an
injective f2 ∈ C(U,Λ) such that Ωf2 ∩ Σ ⊆ Γ and Γf2 �= Γ.

If Γf0 �= Γ, then let f2 = f0. Hence we may assume that Γf0 = Γ. Since U is not
contained in S2, there exists an injective s ∈ U \ S2 such that d(s) > 0. If Γs �= Γ,
then we set f2 = sf0. Thus the final case to consider is when Γs = Γ.

For every infinite cardinal μ with μ ≤ |Ω|+, let hμ be an element of U \F2(Γ, μ).
Then the following hold:

c(hμ) < μ, Γ ⊆ Λ(hμ),

and either

Γhμ �= Γ or d(hμ) ≥ μ.

Note that d(h|Ω|+) ≤ |Ω| < |Ω|+ and so Γh|Ω|+ �= Γ. Thus we may let λ be the
least infinite cardinal such that Γhλ �= Γ. We will show by transfinite induction
that for every cardinal μ strictly less than λ
(3)
there exists an injective gμ ∈ C(U,Λ) with Ωgμ ∩ Σ = Γ, Γgμ = Γ and d(gμ) ≥ μ.
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Figure 4. The composite gc(hμ)ahμf0 from the proof of Lemma 7.2.

For any finite μ, we may let gμ := sμf0. So let μ < λ be an infinite cardinal and
assume (3) holds for all cardinals strictly less than μ. By the inductive assump-
tion there exists an injective gc(hμ) ∈ C(U,Λ) with Ωgc(hμ) ∩ Σ = Γ, Γgc(hμ) = Γ,
and d(gc(hμ)) ≥ c(hμ). Hence there exists a bijection a ∈ Sym(Ω)(Σ) such that
(Ωgc(hμ))a ⊆ Λ(hμ). We define gμ := gc(hμ)ahμf0; see Figure 4. Then by con-
struction gμ ∈ C(U,Λ), gμ is injective, and since f0 is injective d(gμ) ≥ d(hμ) ≥ μ.
Also Γhμ = Γ, since μ < λ, and gc(hμ), f, a stabilise Γ setwise, and hence Γgμ = Γ.
Finally,

Γ = Γgμ = Γgμ ∩ Σ ⊆ Ωgμ ∩ Σ ⊆ Ωf0 ∩ Σ = Γ.

Hence (3) holds for all μ < λ.
Since c(hλ) < λ, there exists an injective gc(hλ) ∈ C(U,Λ) with Ωgc(hλ) ∩ Σ = Γ,

Γgc(hλ) = Γ and d(gc(hλ)) ≥ c(hλ). Let b ∈ Sym(Ω)(Σ) be such that (Ωgc(hλ))b ⊆
Λ(hλ); see Figure 5. Then gc(hλ)bhλ is injective, and since gc(hλ) and b stabilise
Γ setwise but hλ does not, Γgc(hλ)bhλ �= Γ. Thus we let f2 = gc(hλ)ahλ, which
completes this part of the proof.

We will use the function f2 to prove that there exists an injective f1 ∈ C(U,Λ)
with Ωf1 ∩ Σ � Γ. If Ωf2 ∩ Σ �= Γ, then setting f1 = f2 concludes the proof.
Hence we only have to consider the case when Ωf2 ∩ Σ = Γ. Since Γf2 �= Γ, it
follows, in this case, that Γf−1

2 �⊆ Γ = Ωf2 ∩ Σ. Thus there are two cases to
consider: Γf−1

2 �⊆ Ωf2 or Γf−1
2 �⊆ Σ. If Γf−1

2 �⊆ Ωf2, then Ωf2
2 ∩Σ � Γ, and we set

f1 = f2
2 . If Γf−1

2 �⊆ Σ, then there exists i ∈ Γf−1
2 \ Σ. Since U is not contained

in S2, there exists s ∈ U \ S2 such that s is injective and d(s) > 0. It follows from
Lemma 5.4(iii) that d(sn) > |Σ| for some n ∈ N. Hence there exists j ∈ Ω \Σ such
that j �∈ Ωsn and there is p ∈ Sym(Ω)(Σ) such that (j)p = i. In this case, we set
f1 := snpf2; see Figure 6. Then since j �∈ Ωsn and pf2 is injective, it follows that
if2 = (j)pf2 �∈ Ωsnpf2 = Ωf1. But if2 ∈ Γ, and so Ωf1 ∩ Σ ⊆ Γ \ {if2} � Γ, as
required. �
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Ω

Γ

Σ

≥c(hλ)

Ωgc(hλ) \ Σ

Λ(hλ) \ Σ

c(hλ)
Γhλ

Σ

(Ω \ Σ)hλ
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Figure 5. The composite gc(hλ)bhλ in the proof of Lemma 7.2.
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f2

f2

Σ fixed

pointwise

Figure 6. The composite snpf2 in the proof of Lemma 7.2.

Lemma 7.3. Let Σ be a finite subset of Ω and let U be a subset of ΩΩ containing
Sym(Ω)(Σ) but which is not contained in S1 or in F1(Γ, μ) for any non-empty subset

Γ of Σ and any infinite cardinal μ ≤ |Ω|+. Then there exists a surjective g ∈ 〈U〉
such that (Ω \ Σ)g = Ω.

Proof. If u ∈ U is arbitrary, then we denote an arbitrary inverse for u by u′. We
denote {u′ ∈ ΩΩ : u ∈ U} by U ′ and we set Λ : U ′ → P(Ω) to be the assignment of
transversals for U ′ defined by Λ(u′) = Ωu.
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Since Sym(Ω)(Σ) ⊆ U �⊆ S1 ∪ F1(Γ, μ), it follows that Sym(Ω)(Σ) ⊆ U ′ �⊆ S2 ∪
F2(Γ, μ) for all non-empty subsets Γ of Σ and for all infinite μ ≤ |Ω|+. If u′ �∈
F2(Γ, μ) for some u ∈ U , then u �∈ F1(Γ, μ) and so Γ ⊆ Ωu = Λ(u′). Thus by
Lemma 7.2 there exists an injective f ∈ C(U ′,Λ) such that Ωf ∩ Σ = ∅. Then, by
Corollary 5.3, f has an inverse g ∈ 〈U〉. Then g is surjective and Ωf is a transversal
of g. In particular, (Ω \ Σ)g = Ωg = Ω, as required. �
Proof of Theorem B. It is straightforward to verify that none of the semigroups
listed in the statement of Theorem B are contained in any of the others from that
list. Moreover, none of these semigroups are contained in any of the semigroups
from Theorem A.

Let M be a subsemigroup of ΩΩ containing Sym(Ω)(Σ) that is not contained
in any of the semigroups in Theorems A or B. We will prove that Sym(Ω) is a
subsemigroup of M and so Theorem A implies that M = ΩΩ.

Let Γ be a finite subset of Ω and let μ be an infinite cardinal such that μ ≤ |Ω|+.
If u ∈ ΩΩ but u �∈ F2(Γ, μ), then, in particular, u is injective on Γ and so there exists
a transversal of u containing Γ. In particular, there is an assignment of transversals
Λ for M such that Γ ⊆ Λ(u) for all u ∈ M \ F2(Γ, μ). Hence by Lemma 7.2, there
exists an injective f ∈ M such that Ωf ∩Σ = ∅. Since M contains all permutations
with support contained in Ω\Σ, it contains all permutations with support contained
in Ωf . Thus by Lemma 6.3 there exists an injective f∗ ∈ M with d(f∗) = |Ω| and
Ωf∗ ⊆ Ωf ⊆ Ω \ Σ.

By Lemma 7.3, there exists a surjective g ∈ M with a transversal Γ ⊆ Ω \ Σ.
Clearly M contains every permutation with support contained in Γ. Hence by
Lemma 6.4 there exists g∗ ∈ M such that c(g∗) = |Ω| and Γg∗ = Ω.

Since Ωf∗ and Γ are moieties of Ω \ Σ, every bijection from Ωf∗ to Γ is a
restriction of some element of Sym(Ω)(Σ). So, if a ∈ Sym(Ω) is arbitrary, then,
since f∗ and g∗|Γ are injective, there exists b ∈ Sym(Ω)(Σ) such that a = f∗bg∗.

Therefore Sym(Ω) is a subsemigroup of M and so, by Theorem A, M = ΩΩ.
We have shown that if M is a subsemigroup of ΩΩ that contains Sym(Ω)(Σ),

then either M is contained in one of the semigroups from Theorem A, one of the
semigroups F1(Γ, μ) or F2(Γ, ν) from the statement of the theorem, or M = ΩΩ.
It follows that if M is maximal, then M is one of these semigroups. On the other
hand, if M is one of F1(Γ, μ) or F2(Γ, ν), then, since none of these semigroups are
contained in any of the others or any of the semigroups in Theorem A, it follows
that M is a maximal subsemigroup of ΩΩ. �

8. The stabiliser of an ultrafilter – The proof of Theorem C

In this section we give the proof of Theorem C.

Theorem C. Let Ω be any infinite set, let F be a non-principal ultrafilter on Ω,
and let κ(≥ ℵ0) be the least cardinality of an element of F . Then the maximal
subsemigroups of ΩΩ containing Sym(Ω){F} but not Sym(Ω) are:

U1(F , μ) = {f ∈ ΩΩ : (d(f) ≥ μ) or (Ωf �∈ F)

or (c(f) < μ and (∀Σ �∈ F)(Σf �∈ F))} ∪ F,

U2(F , μ) = {f ∈ ΩΩ : (c(f) ≥ μ) or (∀Σ ∈ F)(c(f |Σ) > 0)

or (d(f) < μ and (∀Σ ∈ F)(Σf ∈ F))} ∪ F

for cardinals μ such that κ < μ ≤ |Ω|+.
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Throughout this section we let F be an arbitrary non-principal ultrafilter on Ω
and let κ be the least cardinality of a set belonging to F . Since F is non-principal,
it follows that κ ≥ ℵ0. A subset S of Sym(Ω) is transitive on moieties of Ω if for
all moieties Σ,Γ of Ω there exists f ∈ S such that Σf = Γ. Recall that Sym(Ω){F}
is transitive on moieties in F and hence also on moieties not in F . Moreover, if
Γ,Σ ∈ F such that |Ω \ Γ| ≥ |Ω \ Σ|, then there exists a ∈ Sym(Ω){F} such that
Γa ⊆ Σ.

The following lemma and its proof are similar to Lemma 7.2. We use the following
observation in the statement and proof of the next lemma. If f ∈ ΩΩ but f �∈
U2(F , μ), then there exists Σ ∈ F such that c(f |Σ) = 0; in other words f is
injective on Σ. It follows that Σ is contained in a transversal Λ(f) for f and so
Λ(f) ∈ F . We have shown that every element of ΩΩ which does not belong to
U2(F , μ) has a transversal in F .

Lemma 8.1. Let U be a subset of ΩΩ containing the stabiliser Sym(Ω){F} of F
but which is not contained in U2(F , μ), S2, or S4(ν) for any cardinals μ, ν such
that ℵ0 ≤ ν ≤ κ < μ ≤ |Ω|+, and let Λ be an assignment of transversals (as defined
in Definition 5.2) for U such that Λ(u) ∈ F for all u ∈ U \ U2(F , μ). Then there
exists an injective f ∈ C(U,Λ) such that Ωf �∈ F .

Proof. If Σ ⊆ Ω such that |Σ| < κ, then Σ �∈ F and so every a ∈ Sym(Ω) such that
| supp(a)| < κ belongs to Sym(Ω){F} and hence to U . Thus by Lemma 6.3 there
exists an injective f0 ∈ C(U,Λ) such that d(f0) ≥ κ. We start by showing that
there exists an injective f1 ∈ C(U,Λ) and Σ ∈ F such that Σf1 �∈ F .

If there exists Σ ∈ F such that Σf0 �∈ F , then f1 := f0 is the required function.
Hence we may assume that Σf0 ∈ F for all Σ ∈ F . For every cardinal μ such
that κ < μ ≤ |Ω|+, let hμ be an element of U \ U2(F , μ). Then the following hold:
c(hμ) < μ, Λ(hμ) ∈ F , and either d(hμ) ≥ μ or Σhμ �∈ F for some Σ ∈ F . Note
that d(h|Ω|+) ≤ |Ω| < |Ω|+ and so there exists Σ ∈ F such that Σh|Ω|+ �∈ F . Thus
we may define

λ = min{μ : κ < μ ≤ |Ω|+ and (∃Σ ∈ F)(Σhμ �∈ F)}.
We will show, by transfinite induction, that for every cardinal μ strictly less than

λ:

there exists an injective gμ ∈ C(U,Λ)(4)

such that d(gμ) ≥ μ and Σgμ ∈ F for all Σ ∈ F .

By assumption, f0 satisfies (4) for all μ ≤ κ. So let μ be any cardinal such that
κ < μ < λ and assume that (4) holds for all cardinals strictly less than μ.

By the inductive assumption there exists an injective gc(hμ) ∈ C(U,Λ) such that
d(gc(hμ)) ≥ c(hμ) and Σgc(hμ) ∈ F for all Σ ∈ F . In particular, Ωgc(hμ) ∈ F , and
so by the comments preceding the lemma there exists a ∈ Sym(Ω){F} such that
Ωgc(hμ)a ⊆ Λ(hμ); see Figure 7. We define gμ := gc(hμ)ahμ. Then by construction
gμ ∈ C(U,Λ), gμ is injective, and d(gμ) ≥ d(hμ) ≥ μ. Also Σgμ ∈ F for all Σ ∈ F
since this property holds for gc(hμ), a, and hμ (since μ < λ). Hence (4) holds for
all μ < λ.

Since c(hλ) < λ, there exists an injective gc(hλ) ∈ C(U,Λ) such that d(gc(hλ)) ≥
c(hλ) and Σgc(hλ) ∈ F for all Σ ∈ F . Then as above there exists b ∈ Sym(Ω){F}
such that (Ωgc(hλ))b ⊆ Λ(hλ); see Figure 8. Then gc(hλ)bhλ ∈ C(U,Λ) is injective.

By the definition of λ there exists Σ ∈ F such that Σhλ �∈ F . Hence Σa−1 ∈ F
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Figure 7. The composite gc(hμ)ahμ in the proof of Lemma 8.1.
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a

a

hλ

hλ

Figure 8. The composite gc(hλ)ahλ in the proof of Lemma 8.1.

and so Ω \ Σa−1 �∈ F . It follows that (Ω \ Σa−1)g−1 �∈ F , and, since g is injective,
we have that Σa−1g−1 ∈ F . Thus if we let f1 = gc(hλ)ahλ and Σ′ = Σa−1g−1 ∈ F ,
then Σ′f1 = Σhλ �∈ F , which completes this part of the proof.

If Ωf1 �∈ F , then f1 satisfies the conclusion of the lemma. If Ωf1 ∈ F , then
there exists Γ ⊆ Ωf1 \ Σ′f1 such that Γ ∈ F and |Γ| = κ (the least cardinality of a
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Figure 9. The composite f0cf1 in the proof of Lemma 8.1.

set in F). Hence Γf−1
1 ∩ Σ′ = ∅ and |Γf−1

1 | = κ, since f1 is injective. Thus there
exists c ∈ Sym(Ω)(Σ) ≤ Sym(Ω){F} such that Γf−1

1 ⊆ Ω \ Ωf0c; see Figure 9. The
required function is then f = f0cf1 since Ωf ⊆ Ω \ Γ �∈ F and so Ωf �∈ F . Finally,
f ∈ C(U,Λ) since f0, a, f1 ∈ C(U,Λ). �
Lemma 8.2. Let U be a subset of ΩΩ containing the stabiliser Sym(Ω){F} of F but
which is not contained in U1(F , μ), S1, or S3(ν) for any cardinals μ, ν such that
ℵ0 ≤ ν ≤ κ < μ ≤ |Ω|+. Then there exists a surjective g ∈ 〈U〉 with a transversal
Λ(g) which does not belong to F .

Proof. If u ∈ U is arbitrary, then we denote an arbitrary inverse for u by u′. We
denote {u′ ∈ ΩΩ : u ∈ U} by U ′ and we set Λ : U ′ → P(Ω) to be the assignment of
transversals for U ′ defined by Λ(u′) = Ωu.

Since Sym(Ω){F} ⊆ U �⊆ U2(F , μ) ∪ S1 ∪ S3(ν), it follows that Sym(Ω){F} ⊆
U ′ �⊆ U2(F , μ)∪S2∪S4(ν) for any cardinals μ, ν such that ℵ0 ≤ ν ≤ κ < μ ≤ |Ω|+.
If u′ �∈ U2(F , μ) for some u ∈ U , then u �∈ U1(F , μ) and so Λ(u′) = Ωu ∈ F . Thus
by Lemma 8.1 there exists an injective f ∈ C(U ′,Λ) such that Ωf �∈ F . Then, by
Corollary 5.3, f has an inverse g ∈ 〈U〉. Then g is surjective and Ωf �∈ F is a
transversal of g, as required. �
Proof of Theorem C. It is easy to check that U1(F , μ) and U2(F , μ) are semigroups
and that neither is contained in the other nor in any of the semigroups listed in
Theorem A. Let M be any subsemigroup of ΩΩ containing Sym(Ω){F}. As in the
proof of Theorem B, it suffices to prove that if M is not contained in any of the
semigroups from Theorems A or C, then M = ΩΩ.

By Lemmas 8.1 and 8.2, there exist f, g ∈ M such that f is injective, Ωf �∈ F ,
g is surjective and g has a transversal Λ(g) �∈ F . Since Sym(Ω){F} contains the
pointwise stabilisers in Sym(Ω) of the complements of Ωf and Λ(g), it follows from
Lemmas 6.3 and 6.4 that there exist f∗, g∗ ∈ M with f∗ injective, g∗ surjective,
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d(f∗) = c(g∗) = |Ω|, Ωf∗ ⊆ Ωf and a transversal Λ(g∗) ⊆ Λ(g) for g∗. Also since
Ωf,Λ(g) �∈ F it follows that Ωf∗,Λ(g∗) �∈ F . Since Sym(Ω){F} is contained in M
and it is transitive on moieties not belonging to F , it follows that every element of
Sym(Ω) can be given in the form f∗ag∗ for some a ∈ Sym(Ω){F}. In particular,

Sym(Ω) ⊆ M , and so, by Theorem A, M = ΩΩ. �

9. The almost stabiliser of a finite partition –

The proof of Theorem D

Recall that a finite partition of Ω is a partition of Ω into finitely many moieties.
Throughout this section we denote the finite partition {Σ0,Σ1, . . . ,Σn−1} of Ω with
n ≥ 2 by P, and we write

Stab(P) = {g ∈ Sym(Ω) : (∀i)(∃j)Σig = Σj}
for the stabiliser of P.

A binary relation on an arbitrary set Λ is just a subset of Λ× Λ. If ρ and σ are
binary relations on Λ, then the composition ρσ of ρ and σ is defined to be

ρσ = {(α, β) ∈ Λ× Λ : (∃γ)(α, γ) ∈ ρ and (γ, β) ∈ σ}.
Composition of binary relations is associative, and so we may refer to the semigroup
generated by a set of binary relations. A relation ρ on Λ is total if αρ = {β ∈ Λ :
(α, β) ∈ ρ} �= ∅ for all α ∈ Λ.

Recall that if f ∈ ΩΩ, then ρf is the binary relation on n = {0, 1, . . . , n − 1}
defined in (1) as

ρf = {(i, j) : |Σif ∩ Σj | = |Ω|}.
The purpose of this section is to prove the following theorem.

Theorem D. Let Ω be any infinite set and let P = {Σ0,Σ1, . . . ,Σn−1}, n ≥ 2, be
a finite partition of Ω. Then the maximal subsemigroups of ΩΩ containing Stab(P)
but not Sym(Ω) are:

A1(P) = {f ∈ ΩΩ : ρf ∈ Sym(n) or ρf is not total},
A2(P) = {f ∈ ΩΩ : ρf ∈ Sym(n) or ρ−1

f is not total}.

We start by showing that A1(P) and A2(P) in Theorem D are semigroups.

Proposition 9.1. The sets A1(P) and A2(P) as defined in Theorem D are sub-
semigroups of ΩΩ, and neither is a subset of the other nor of any of the semigroups
in Theorem A.

Proof. It is easy to verify that neither A1(P) nor A2(P) is contained in the other
nor in any of the semigroups listed in Theorem A. We only prove that A1(P) is
a subsemigroup of ΩΩ; the proof that A2(P) is a subsemigroup follows by a dual
argument.

Let f, g ∈ A1(P). Then, certainly, ρfg ⊆ ρfρg. Hence, if ρf is not total, then
ρfρg is not total, and so ρfg is not either, whence fg ∈ A1(P). Assume that
ρf ∈ Sym(n). Then either ρfρg ∈ Sym(n) or ρfρg is not total, depending on
whether ρg ∈ Sym(n) or ρg is not total. Hence ρfg ∈ Sym(n) or ρfg is not total
and in either case fg ∈ A1(P). �

We prove Theorem D in a sequence of lemmas. If Σ ⊆ Ω, then we denote by
Sym(Σ) the pointwise stabiliser of Ω \ Σ in Sym(Ω).
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Lemma 9.2. Let f, g ∈ ΩΩ. Then there exists a ∈ Stab(P) such that ρfag = ρfρg.

Proof. Let i ∈ {0, 1, . . . , n − 1} be arbitrary. If j ∈ iρ−1
f , then |Σjf ∩ Σi| = |Ω|,

and so Σjf ∩Σi can be partitioned into |iρg|+ 1 moieties. If k ∈ iρg, then g has a
transversal that intersects Σkg

−1∩Σi in a set Γk where |Γk| = |Ω|. Hence Γk can be
partitioned into |iρ−1

f |+1 moieties. Let ai ∈ Sym(Σi) be any element mapping one
of the moieties partitioning Σjf ∩ Σi to one of the moieties partitioning Γk for all

j ∈ iρ−1
f and for all k ∈ iρg. The required a ∈ Stab(P) is then just a0 · · · an−1. �

Lemma 9.3. Let ρ and σ be (not necessarily distinct) binary relations on {0, 1, . . . ,
n − 1} such that ρ and σ−1 are total but ρ, σ �∈ Sym(n). Then the semigroup
〈Sym(n), ρ, σ〉 contains the total relation n× n.

Proof. We prove that there exists τ0 ∈ 〈Sym(n), ρ, σ〉 such that 0τ0 = {0, 1, . . . ,
n−1}. If this is the case, then by replacing ρ by σ−1 and σ by ρ−1, there exists τ1 ∈
〈Sym(n), σ−1, ρ−1〉 such that 0τ1 = {0, 1, . . . , n − 1}. Hence τ−1

1 ∈ 〈Sym(n), ρ, σ〉
and τ−1

1 τ0 = n× n, as required.
We may assume without loss of generality that 0ρ = {i : (0, i) ∈ ρ} �= {0, 1, . . . ,

n− 1}. Let A be a subset of {0, 1, . . . , n− 1} with least cardinality such that

Aσ = {j : (∃i ∈ A)(i, j) ∈ σ} = {0, 1, . . . , n− 1}.
Since σ �∈ Sym(n), it follows that |A| < n and without loss of generality that 0 ∈ A
and |0σ| > 1. Also by the minimality of A, for all i ∈ A there exists j ∈ iσ such
that j �∈ (A \ {i})σ.

If |0ρ| ≥ |A|, then let a0 ∈ Sym(n) be any permutation such that A ⊆ 0ρa0. In
this case, 0ρa0σ = {0, 1, . . . , n−1}, as required. If |0ρ| < |A|, then let a0 ∈ Sym(n)
be any permutation such that 0 ∈ 0ρa0 and 0ρa0 � A. In this case, |0ρa0σ| ≥
|0ρ| + 1 > |0ρ|. By repeating this argument we find a1, a2, . . . , am ∈ Sym(n) such
that 0ρa0σa1σ · · · amσ = {0, 1, . . . , n− 1}, as required. �

Lemma 9.4. Let f ∈ ΩΩ be injective such that d(f) > 0. Then there exists an
injective f∗ ∈ 〈Stab(P), f〉 such that |Σi \Ωf∗| ≥ d(f) for all i with 0 ≤ i ≤ n− 1.
If d(f) is infinite, then |Σi \ Ωf∗| = d(f) for all i.

Proof. Let μ = d(f) and let g = f2n. By Lemma 5.4(iii) and (iv), g is injective
and d(g) = 2nμ. In particular, there exists 0 ≤ i ≤ n− 1 such that |Σi \Ωg| ≥ 2μ.
If |Σj \ Ωg| ≥ μ for all 0 ≤ j ≤ n − 1, then the proof is completed by setting
f∗ = g. Suppose that there exists j such that 0 ≤ j ≤ n− 1 and |Σj \ Ωg| < μ. It
follows that jρ−1

g �= ∅, and so there exists a ∈ Stab(P) such that iρa ⊆ jρ−1
g and

|(Σi \ Ωg)a ∩ Σjg
−1| ≥ μ. Hence

(Σi \ Ωg)ag ∩ Σj ⊆ (Ω \ Ωg)ag ∩ Σj ⊆ (Ω \ Ωgag) ∩ Σj = Σj \ Ωgag
and so

|Σj \Ωgag| ≥ |(Σi\Ωg)ag∩Σj | ≥ |(Σi\Ωg)ag∩Σjg
−1g| = |(Σi\Ωg)a∩Σjg

−1| ≥ μ;

see Figure 10. Also, for all 0 ≤ k ≤ n − 1 such that |Σk \ Ωg| ≥ μ, we have
|Σk \ Ωgag| ≥ μ. Thus, by repeating this process at most n − 1 times, we obtain
the required f∗.

If d(f) is infinite and h ∈ 〈Stab(P), f〉, then either d(h) = 0 or d(h) = d(f) by
Lemma 5.4(ii) and (iii). The final statement follows immediately. �
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Σi

Σi \ Ωg

Σjg
−1

Σj

≥μ

≥μ

Ωg

g

g

a

a

g

g

Figure 10. The composite gag in the proof of Lemma 9.4.

Lemma 9.5. Let g ∈ ΩΩ be surjective such that c(g) > 0. Then there exists
g∗ ∈ 〈Stab(P), g〉 and a transversal Γ of g∗ such that |Σi \ Γ| ≥ c(g) for all i with
0 ≤ i ≤ n− 1. If c(g) is infinite, then |Σi \ Γ| = c(g) for all i.

Proof. If f is any inverse of g, then f is injective and d(f) = c(g) > 0, and so
by Lemma 9.4 there exists f∗ ∈ 〈Stab(P), f〉 such that |Σi \ Ωf∗| ≥ d(f) for all i
with 0 ≤ i ≤ n− 1. But every element of 〈Stab(P), f〉 is injective, and so Ω is the
unique transversal of every element in 〈Stab(P), f〉. In particular, if Λ is the unique
assignment of transversals for 〈Stab(P), f〉, then 〈Stab(P), f〉 = C(〈Stab(P), f〉,Λ)
and so f∗ ∈ C(〈Stab(P), f〉,Λ). Thus, by Corollary 5.3, f∗ has an inverse g∗ in
〈Stab(P), g〉. Moreover, if Γ = Ωf∗, then Γ is a transversal of g∗ and

|Σi \ Γ| = |Σi \ Ωf∗| ≥ d(f) = c(g),

for all i. �
Lemma 9.6. Let U be a subsemigroup of ΩΩ containing Stab(P) such that there
exist f, g, t ∈ U and the following hold:

(i) f is injective, g is surjective, and d(f) = c(g) = |Ω|;
(ii) ρt = n× n.

Then Sym(Ω) is contained in U .

Proof. We start by showing that there are f0, g0 ∈ U such that f0 is injective, Ωf0
is a moiety of Σ0, and Ωf0g0 = Ω. By Lemma 9.4 there exists f∗ ∈ 〈Stab(P), f〉
such that |Σi \ Ωf∗| = |Ω| for all i such that 0 ≤ i ≤ n − 1. Since f is injective,
every element of 〈Stab(P), f〉 is injective, and so, in particular, f∗ is injective. Let
0 ≤ i ≤ n−1 be arbitrary. By assumption, Ωf∗∩Σi is contained in a moiety of Σi.
Also since ρt = n × n, it follows that Σ0t

−1 ∩ Σi is a moiety of Σi. In particular,
there exists a transversal Γi of t|Σ0t−1∩Σi

such that Γi is a moiety of Σi. Hence
there exists a0 ∈ Stab(P) such that (Ωf∗ ∩Σi)a0 ⊆ Γi for all i. Then Ωf∗a0t ⊆ Σ0

and so Ω(f∗a0t)
2 is a moiety of Σ0. Thus f0 = (f∗a0t)

2 is the required mapping.
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For each i, let Δi be a transversal of t|Σit−1∩Σ0
: Σ0 → Σi. So each Δi is a

moiety of Σ0. Let a1 ∈ Stab(P) be any permutation such that Ωf0a1 ∩ Δi is a
moiety of Δi for all i. Then |Ωf0a1t ∩ Σi| = |Ω| for all i. By Lemma 9.5, there
exist g∗ ∈ 〈Stab(P), g〉 and a transversal Λ of g∗ such that |Σi \ Λ| = |Ω| for all
i such that 0 ≤ i ≤ n − 1. In other words, Λ ∩ Σi is contained in a moiety of Σi

for all i. Since g is surjective, every element of 〈Stab(P), g〉 is surjective, and so g∗

is surjective. Therefore there exists a2 ∈ Stab(P) such that Ωf0a1ta2 contains Λ.
Hence Ωf0a1ta2g

∗ = Ωg∗ = Ω and g0 = a1ta2g
∗ is the required function.

To conclude, let b ∈ Sym(Ω) be arbitrary. Then if Γ is a transversal of g0
contained in Ωf0, there exists a3 ∈ Stab(P) such that αf0a3 ∈ αbg−1

0 ∩ Γ for all
α ∈ Ω. But then b = f0a3g0, and so Sym(Ω) is contained in U , as required. �

At this stage it is straightforward to classify the maximal subsemigroups of ΩΩ

containing the almost stabiliser of a finite partition using the results proved so
far. Since the stabiliser is a subgroup of the almost stabiliser, this classification
is actually a corollary of Theorem D. To prove the more general Theorem D we
require two further lemmas which are similar to Lemmas 6.3 and 6.4.

Corollary 9.7. Let Ω be any infinite set and let P = {Σ0,Σ1, . . . ,Σn−1}, n ≥ 2, be
a finite partition of Ω. Then the maximal subsemigroups of ΩΩ containing AStab(P)
but not Sym(Ω) are:

A1(P) = {f ∈ ΩΩ : ρf ∈ Sym(n) or ρf is not total},
A2(P) = {f ∈ ΩΩ : ρf ∈ Sym(n) or ρ−1

f is not total}.

Proof. Let M be a subsemigroup of ΩΩ containing AStab(P) but which is not
contained in any of the semigroups listed in Theorems A or D. As in the proof of
Theorem B, it suffices to show that M = ΩΩ.

Since M �⊆ A1(P), A2(P), there exist f, g ∈ M such that ρf and ρ−1
g are total

but ρf , ρg �∈ Sym(n). Hence, by Lemmas 9.2 and 9.3, there exists t ∈ M such that
ρt = n × n. Since AStab(P) contains {a ∈ Sym(Ω) : | supp(a)| < |Ω|}, it follows
by Lemmas 6.3 and 6.4 that there exist f∗, g∗ ∈ M such that f∗ is injective, g∗ is
surjective, and d(f∗) = c(g∗) = |Ω|. Thus, by Lemma 9.6, Sym(Ω) is contained in
M , and so, by Theorem A, M = ΩΩ, as required. �

We return to the proof of Theorem D.

Lemma 9.8. Let U be a subset of ΩΩ which contains Stab(P) but which is not
contained in S2 or S4(μ) for any infinite μ ≤ |Ω|, and let Λ be any assignment
of transversals for U (as defined in Definition 5.2). Then there exists an injective
f ∈ C(U,Λ) such that d(f) = |Ω|.

Proof. We prove by transfinite induction that for all cardinals μ ≤ |Ω|,
(5) there exists an injective fμ ∈ C(U,Λ) with d(fμ) ≥ μ.

Since U is not contained in S2, there exists an injective h0 ∈ U ⊆ C(U,Λ) such that
d(h0) > 0. By taking powers of h0 (which also belong to C(U,Λ)) and applying
Lemma 5.4(iii) and (iv), it follows that (5) holds for all finite μ.

Let μ be any cardinal such that ℵ0 ≤ μ ≤ |Ω| and assume that (5) holds for every
cardinal ν < μ. Since U �⊆ S4(μ), there exists h1 ∈ U such that c(h1) < μ ≤ d(h1).
By our inductive hypothesis, there exists an injective fc(h1) ∈ C(U,Λ) such that
d(fc(h1)) ≥ c(h1).
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Σ0

Σ1

Σ2

≥c(h1)

≥c(h1)

≥c(h1)

≤c(h1)

≤c(h1)

≤c(h1)

Λ(h1)

Λ(h1)

≥μ

f∗

f∗

a

a

h1

h1

Figure 11. The composite f∗ah1 in the proof of Lemma 9.8.

By Lemma 9.4, there exists an injective f∗ ∈ 〈Stab(P), fc(h1)〉 such that
|Σi \ Ωf∗|≥ d(fc(h1)) for all 0≤ i≤n − 1. Since every element of 〈Stab(P), fc(h1)〉
is injective, it follows that 〈Stab(P), fc(h1)〉 ⊆ C(U,Λ) and so f∗ ∈ C(U,Λ). Then,
since

|Σi \ Λ(h1)| ≤ |Ω \ Λ(h1)| = c(h1) ≤ d(fc(h1)) ≤ |Σi \ Ωf∗|
for all 0 ≤ i ≤ n− 1, there exists a ∈ Stab(P) such that (Ωf∗ ∩ Σi)a ⊆ Λ(h1) ∩ Σi

for all i; see Figure 11. Hence, if we set fμ = f∗ah1, then, since fμ, a ∈ C(U,Λ)
and by the definition of a, it follows that fμ ∈ C(U,Λ), fμ is injective, and d(fμ) ≥
d(h1) ≥ μ by Lemma 5.4(ii), as required. �

Lemma 9.9. Let U be a subset of ΩΩ which contains Stab(P) but which is not
contained in S1 or S3(μ) for any infinite μ ≤ |Ω|. Then there exists a surjective
g ∈ U such that c(g) = |Ω|.

Proof. Let u′ ∈ ΩΩ be an arbitrary inverse for u for all u ∈ U . We denote {u′ ∈
ΩΩ : u ∈ U} by U ′ and we set Λ : U ′ → P(Ω) to be the assignment of transversals
for U ′ defined by Λ(u′) = Ωu. Recall that c(u) = d(u′) and d(u) = c(u′) for all
u ∈ U .

We prove that U ′ satisfies the conditions of Lemma 9.4. Since U �⊆ S1, U �⊆
S3(μ), it follows that U ′ �⊆ S2 and U ′ �⊆ S4(μ) for all infinite μ ≤ |Ω|. Thus
by Lemma 9.4 there exists an injective f∗ ∈ C(U ′,Λ) such that d(f∗) = |Ω|. By
Corollary 5.3, 〈U〉 contains an inverse g∗ of f∗. Therefore c(g∗) = d(f∗) = |Ω|. �

Proof of Theorem D. Let M be a subsemigroup of ΩΩ containing Stab(P) but
not contained in any of the semigroups listed in Theorems A or D. Since M �⊆
A1(P), A2(P), there exists f, g ∈ M such that ρf and ρ−1

g are total but ρf , ρg �∈
Sym(n). Hence, by Lemmas 9.2 and 9.3, there exists t ∈ M such that ρt = n × n.
Also by Lemmas 9.8 and 9.9 there exist f∗, g∗ ∈ M such that f∗ is injective, g∗ is
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surjective, and d(f∗) = c(g∗) = |Ω|. Thus, by Lemma 9.6, Sym(Ω) is contained in
M , and so, by Theorem A, M = ΩΩ, as required. �

10. Maximal subsemigroups of the symmetric group

In this section we prove that the stabiliser of a non-empty finite set, the al-
most stabiliser of a finite partition, and the stabiliser of an ultrafilter are maximal
subsemigroups of the symmetric group and not just maximal subgroups.

Let T be a subsemigroup of Sym(Ω), and let G denote the group generated by
T . If G �= Sym(Ω) and T �= G, then, for any f ∈ G\T , the semigroup generated by
T and f is a subsemigroup of G. In particular, 〈T, f〉 �= Sym(Ω) and hence T is not
maximal. (We remind the reader that 〈U〉 always denotes the semigroup generated
by U .) Hence the group generated by any maximal subsemigroup of Sym(Ω) that
is not a subgroup is Sym(Ω).

Theorem 10.1. Let Ω be any infinite set and let Σ be a non-empty finite sub-
set of Ω. Then the setwise stabiliser Sym(Ω){Σ} of Σ in Sym(Ω) is a maximal
subsemigroup of Sym(Ω).

Proof. Let f ∈ Sym(Ω) \ Sym(Ω){Σ}. We must show that 〈Sym(Ω){Σ}, f〉 =
Sym(Ω), i.e. that the semigroup generated by Sym(Ω){Σ} and f is Sym(Ω). Since
Sym(Ω){Σ} is a maximal subgroup of Sym(Ω), it suffices to find g ∈ 〈Sym(Ω){Σ}, f〉
such that g has finite order and g �∈ Sym(Ω){Σ}. By postmultiplying by an element
of Sym(Ω){Σ} if necessary, we may assume without loss of generality that every
nontrivial cycle of f contains an element of Σ. Since Σ is finite, if every cycle of f
is finite, then f itself has finite order, and setting g = f concludes the proof in this
case. So suppose f has at least one infinite cycle. There exists m ∈ N such that fm

has only infinite cycles, each of which contains at most one element of Σ. Again
we may assume without loss of generality that every nontrivial cycle of fm con-
tains precisely one element of Σ. Then fm = c1 · · · cr, where c1, . . . , cr are disjoint
infinite cycles. We may write ci = (. . . , αi,−1, αi,0, αi,1, αi,2, . . .) where αi,0 ∈ Σ.
We let di = (. . . , αi,2, αi,1, αi,−1, αi,−2, . . .) and h = d1 · · · dr. Then h ∈ Sym(Ω){Σ}
and

g = hfm = (α1,0, α1,1) · · · (αr,0, αr,1) ∈ 〈Sym(Ω){Σ}, f〉 \ Sym(Ω){Σ}

has order 2, which completes the proof. �

If H and K are subgroups of a group G, then the subsemigroup generated by H
and K equals the group generated by H and K. Thus the following two lemmas
are immediate consequences of the corresponding results about subgroups given in
[9] and [23, Note 3(iii) of §4], respectively.

Lemma 10.2. If Γ1,Γ2 ⊆ Ω and |Γ1 ∩ Γ2| = min{|Γ1|, |Γ2|}, then Sym(Γ1 ∪ Γ2)
equals the subsemigroup 〈Sym(Γ1), Sym(Γ2)〉 generated by the subgroups Sym(Γ1)
and Sym(Γ2).

Lemma 10.3. Let S be a subsemigroup of Sym(Ω). If S contains Sym(Σ) for all
moieties Σ of Ω, then S = Sym(Ω).

Lemma 10.4. Let S be a subsemigroup of Sym(Ω). If S contains Sym(Σ) for some
moiety Σ of Ω and S is transitive on moieties of Ω, then S = Sym(Ω).
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Proof. It suffices by Lemma 10.3 to show that S contains Sym(Γ) for every moiety
Γ of Ω. Let Γ be any moiety of Ω and let f ∈ Sym(Γ) be arbitrary. There exist
g, h, k ∈ S such that

Γg = Σ, Σh = Ω \ Σ, (Ω \ Σ)k = Γ.

Since (Σ)g−1fk−1h−1 = Σ, it follows that there exists a ∈ Sym(Σ) ⊆ S such that
a|Σ = g−1fk−1h−1|Σ. Also Σh−1g−1k−1 = Σ, there exists b ∈ Sym(Σ) ⊆ S such
that b|Σ = h−1g−1k−1|Σ.

We will show that f = gahbk ∈ S. If α ∈ Ω \Γ is arbitrary, then αg ∈ Ω \Σ and
so αga = αg, and αgh ∈ Σ and so αghb = αk−1. Therefore

(α)gahbk = (α)ghbk = (α)k−1k = α.

If β ∈ Γ, then βg ∈ Σ and so βga = βfk−1h−1. Thus

(β)gahbk = (β)fk−1bk,

and since βfk−1 ∈ Ω \ Σ and b fixes Ω \ Σ pointwise, it follows that

(β)gahbk = (β)f,

as required. �
Let Ω be an infinite set, let P = {Σ0,Σ1, . . . ,Σn−1}, n ≥ 2, be a finite partition

of Ω, and let f ∈ ΩΩ. Recall that the binary relation ρf on {0, 1, . . . , n − 1} is
defined in Equation (1) in Section 2.4 as

ρf = {(i, j) : |Σif ∩ Σj | = |Ω|}.
Theorem 10.5. Let Ω be any infinite set and let P = {Σ0,Σ1, . . . ,Σn−1}, n ≥ 2,
be a finite partition of Ω. Then AStab(P) is a maximal subsemigroup of Sym(Ω).

Proof. Let f ∈ Sym(Ω) \ AStab(P) be arbitrary. Then by Lemmas 9.2 and 9.3
there exists g ∈ 〈AStab(P), f〉 such that ρg = n× n.

Let h ∈ Sym(Σ0g
−1). We will show that h = gbga for some a, b ∈ AStab(P).

(In fact, a, b will belong to Stab(P).)
Since ρg = n × n, both Σig

−1 ∩ Σj and Σig ∩ Σj are moieties in Σj for all
i, j ∈ {0, 1, . . . , n− 1}. It follows that there exists a ∈ AStab(P) such that

(Σig)a = Σig
−1

for all i. Define b ∈ Sym(Ω) by αb = αg−1ha−1g−1 if α ∈ Σ0 and αb = αg−1a−1g−1

if α �∈ Σ0. Since h ∈ Sym(Σ0g
−1), it follows that (Σ0g

−1)h = Σ0g
−1 and so

Σ0b = Σ0g
−1ha−1g−1 = Σ0g

−1a−1g−1 = Σ0gg
−1 = Σ0,

and if i �= 0, then
Σib = Σig

−1a−1g−1 = Σigg
−1 = Σi.

Hence b ∈ AStab(P). Let α ∈ Ω be arbitrary. If α ∈ Σ0g
−1, then αg ∈ Σ0, and so

αgbga = αgg−1ha−1g−1ga = αh.

If α �∈ Σ0g
−1, then

αgbga = αgg−1a−1g−1ga = α = αh,

and so h = gbga, as required. It follows that Sym(Σ0g
−1) ≤ 〈AStab(P), f〉. There-

fore, since Σ0g
−1 ∩Σ0 and Σ0g

−1 ∩Σ1 are moieties in Σ0 and Σ1, respectively, and
by Lemma 10.2,

Sym(Σ0 ∪ Σ1) ≤ 〈Sym(Σ0), Sym(Σ1), Sym(Σ0g
−1)〉 ≤ 〈AStab(P), f〉.
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Since AStab(P) is 2-transitive on Σ0, . . . ,Σn−1, we conclude that 〈AStab(P), f〉 =
Sym(Ω), and so AStab(P) is a maximal subsemigroup of Sym(Ω). �

Theorem 10.6. Let F be an ultrafilter on Ω. Then the stabiliser Sym(Ω){F} of F
is a maximal subsemigroup of Sym(Ω).

Proof. Let f ∈ Sym(Ω) \ Sym(Ω){F}. Then either:

(i) there is a subset Σ of Ω such that Σ ∈ F and Σf �∈ F , or
(ii) there is a subset Γ of Ω such that Γ �∈ F and Γf ∈ F .

It is straightforward to verify that Σ and Γ can be chosen to be moieties of Ω. If (i)
holds, then (ii) holds with Γ = Ω \ Σ. If (ii) holds, then (i) holds with Σ = Ω \ Γ.
So we may assume that both (i) and (ii) hold. Let Λ and Δ be moieties of Ω. If Λ
and Δ both belong to F or neither belongs to F , then there exists a0 ∈ Sym(Ω){F}
such that Λa0 = Δ. If Λ ∈ F and Δ �∈ F , then we choose a1, a2 ∈ Sym(Ω){F} such
that Λa1 = Σ and (Σf)a2 = Δ, and note that Λa1fa2 = Δ. Similarly, if Λ �∈ F
and Δ ∈ F , then there exists a3, a4 ∈ Sym(Ω){F} such that Λa3fa4 = Δ. We have
shown that 〈Sym(Ω){F}, f〉 is transitive on moieties. Since Sym(Ω){F} is full on
every moiety Ξ �∈ F , the result follows from Lemma 10.4. �
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[16] Julius Jonušas and J. D. Mitchell, A finite interval in the subsemigroup lattice of the full
transformation monoid, Semigroup Forum 89 (2014), no. 1, 183–198. MR3249877

[17] Inessa Levi and G. R. Wood, On maximal subsemigroups of Baer-Levi semigroups, Semigroup
Forum 30 (1984), no. 1, 99–102, DOI 10.1007/BF02573440. MR759699 (86d:20067)

[18] Martin W. Liebeck, Cheryl E. Praeger, and Jan Saxl, On the O’Nan-Scott theorem for fi-
nite primitive permutation groups, J. Austral. Math. Soc. Ser. A 44 (1988), no. 3, 389–396.
MR929529 (89a:20002)

[19] Dugald Macpherson, Large subgroups of infinite symmetric groups, Finite and infinite com-
binatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, pp. 249–278. MR1261210 (94m:20012)

[20] H. D. Macpherson and Peter M. Neumann, Subgroups of infinite symmetric groups, J. London
Math. Soc. (2) 42 (1990), no. 1, 64–84, DOI 10.1112/jlms/s2-42.1.64. MR1078175 (92d:20006)

[21] H. D. Macpherson and Cheryl E. Praeger, Maximal subgroups of infinite symmetric groups,
J. London Math. Soc. (2) 42 (1990), no. 1, 85–92, DOI 10.1112/jlms/s2-42.1.85. MR1078176
(92d:20007)

[22] V. Mishkin, Symmetry groups of ideals on ω, Second International Conference on Algebra
(Barnaul, 1991), Contemp. Math., vol. 184, Amer. Math. Soc., Providence, RI, 1995, pp. 305–
316, DOI 10.1090/conm/184/02127. MR1332298 (96c:20006)

[23] Peter M. Neumann, Homogeneity of infinite permutation groups, Bull. London Math. Soc.
20 (1988), no. 4, 305–312, DOI 10.1112/blms/20.4.305. MR940282 (89c:20009)

[24] Michael Pinsker, Maximal clones on uncountable sets that include all permutations, Alge-
bra Universalis 54 (2005), no. 2, 129–148, DOI 10.1007/s00012-005-1929-x. MR2217632
(2006m:08010)

[25] Michael Pinsker, The number of unary clones containing the permutations on an infinite set,
Acta Sci. Math. (Szeged) 71 (2005), no. 3-4, 461–467. MR2206591 (2006j:08005)

[26] Michael Pinsker and Saharon Shelah, Universality of the lattice of transformation monoids,
Proc. Amer. Math. Soc. 141 (2013), no. 9, 3005–3011. MR3068953

[27] Fred Richman, Maximal subgroups of infinite symmetric groups, Canad. Math. Bull. 10
(1967), 375–381. MR0214652 (35 #5501)

[28] Leonard L. Scott, Representations in characteristic p, The Santa Cruz Conference on Finite
Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer.
Math. Soc., Providence, R.I., 1980, pp. 319–331. MR604599 (82e:20052)

[29] L. B. Shneperman, On maximal compact subsemigroups of the endomorphism semigroup of
an n-dimensional complex vector space, Semigroup Forum 47 (1993), no. 2, 196–208, DOI
10.1007/BF02573756. MR1230143 (94g:22002)

Centre for Research in Mathematics, School of Computing, Engineering and Math-

ematics, University of Western Sydney, Penrith, New South Wales 2751, Australia

Mathematics Institute, University of Saint Andrews, St. Andrews, KY16 9SS, United

Kingdom

Mathematics Institute, University of Saint Andrews, St. Andrews, KY16 9SS, United

Kingdom

Current address: School of Physics, Astronomy and Mathematics, University of Hertfordshire,
Hatfield AL10 9AB, United Kingdom

E-mail address: y.peresse@herts.ac.uk

Licensed to University of St Andrews. Prepared on Wed Nov 19 04:16:16 EST 2014 for download from IP 138.251.14.57/138.251.162.161.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1606221
http://www.ams.org/mathscinet-getitem?mr=1606221
http://www.ams.org/mathscinet-getitem?mr=1940513
http://www.ams.org/mathscinet-getitem?mr=1940513
http://www.ams.org/mathscinet-getitem?mr=3249877
http://www.ams.org/mathscinet-getitem?mr=759699
http://www.ams.org/mathscinet-getitem?mr=759699
http://www.ams.org/mathscinet-getitem?mr=929529
http://www.ams.org/mathscinet-getitem?mr=929529
http://www.ams.org/mathscinet-getitem?mr=1261210
http://www.ams.org/mathscinet-getitem?mr=1261210
http://www.ams.org/mathscinet-getitem?mr=1078175
http://www.ams.org/mathscinet-getitem?mr=1078175
http://www.ams.org/mathscinet-getitem?mr=1078176
http://www.ams.org/mathscinet-getitem?mr=1078176
http://www.ams.org/mathscinet-getitem?mr=1332298
http://www.ams.org/mathscinet-getitem?mr=1332298
http://www.ams.org/mathscinet-getitem?mr=940282
http://www.ams.org/mathscinet-getitem?mr=940282
http://www.ams.org/mathscinet-getitem?mr=2217632
http://www.ams.org/mathscinet-getitem?mr=2217632
http://www.ams.org/mathscinet-getitem?mr=2206591
http://www.ams.org/mathscinet-getitem?mr=2206591
http://www.ams.org/mathscinet-getitem?mr=3068953
http://www.ams.org/mathscinet-getitem?mr=0214652
http://www.ams.org/mathscinet-getitem?mr=0214652
http://www.ams.org/mathscinet-getitem?mr=604599
http://www.ams.org/mathscinet-getitem?mr=604599
http://www.ams.org/mathscinet-getitem?mr=1230143
http://www.ams.org/mathscinet-getitem?mr=1230143

	1. Introduction
	2. Statements of the main theorems
	2.1. The symmetric group
	2.2. The pointwise stabiliser of a finite set
	2.3. The stabiliser of an ultrafilter
	2.4. The stabiliser of a finite partition

	3. Containment
	4. Generating pairs
	5. Inverses and parameters of mappings
	6. The symmetric group –The proof of Theorem A
	7. Pointwise stabilisers of finite sets –The proof of Theorem B
	8. The stabiliser of an ultrafilter –The proof of Theorem C
	9. The almost stabiliser of a finite partition – The proof of Theorem D
	10. Maximal subsemigroups of the symmetric group
	References

