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Background. Mycoplasma amphoriforme has been associated with infection in patients with primary antibody
deficiency (PAD). Little is known about the natural history of infection with this organism and its ability to be trans-
mitted in the community.

Methods. The bacterial load was estimated in sequential sputum samples from 9 patients by quantitative poly-
merase chain reaction. The genomes of all available isolates, originating from patients in the United Kingdom,
France, and Tunisia, were sequenced along with the type strain. Genomic data were assembled and annotated,
and a high-resolution phylogenetic tree was constructed.

Results. By using high-resolution whole-genome sequencing (WGS) data, we show that patients can be chronically
infected with M. amphoriforme manifesting as a relapsing-remitting bacterial load, interspersed by periods when the
organism is undetectable. Importantly, we demonstrate transmission of strains within a clinical environment. Antibi-
otic resistance mutations accumulate in isolates taken from patients who received multiple courses of antibiotics.

Conclusions. Mycoplasma amphoriforme isolates form a closely related species responsible for a chronic relaps-
ing and remitting infection in PAD patients in the United Kingdom and from immunocompetent patients in other
countries. We provide strong evidence of transmission between patients attending the same clinic, suggesting that
screening and isolation may be necessary for susceptible patients. This work demonstrates the critical role that WGS
can play in rapidly unraveling the biology of a novel pathogen.

Keywords. Mycoplasma amphoriforme; whole genome sequencing; respiratory infection; infection control;
primary antibody deficiency.

Lower respiratory tract infection (LRTI) is an important
cause of morbidity and mortality in all age groups,
especially in immunocompromised patients. An etiolog-
ical agent is only found in approximately 70% of
cases despite intensive investigation [1]. Mycoplasma

amphoriforme was first isolated from a patient with X-
linked agammaglobulinemia with chronic bronchitis in
1999. The patient was expectorating a large volume of
sputum that tested negative for all other recognized
lower respiratory tract pathogens [2]. The organism
was identified as a novel bacterial species and given the
name M. amphoriforme (MAM) [2]. Based on 16S ribo-
somal RNA (rRNA) gene sequencing, the closest species
is Mycoplasma testudinis [2]. MAM grows poorly on
standard mycoplasma media and lacks the appearance
of other Mycoplasma species. Only a limited number
of strains have been isolated worldwide, and the majority
of isolates are from patients with primary antibody
deficiency (PAD) attending a single specialist clinic in
London, with additional isolates from immunocompe-
tent patients in Denmark, France, and Tunisia [3].
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Considering the burden of disease from LRTIs on human
health and the recent association of MAM with LRTI in immu-
nocompetent patients [1, 4], it is important to understand the
dynamics of chronic infection with this organism and to deter-
mine whether it is being transmitted among vulnerable patients
and how these strains relate to other isolated strains. Using the
available clinical case notes and whole-genome sequencing
(WGS), we provide evidence for multiple strains circulating in-
ternationally, chronic relapsing respiratory infection, and, cru-
cially, patient-to-patient transmission within a hospital
environment.

METHODS

Patients, Samples, and Ethical Approval
The Ethics Committee of the Royal Free London National Health
Service Foundation Trust (RFL) approved these studies. Sputum
samples were collected from a total of 88 adult patients with PAD
attending the PAD Clinic at the RFL and tested for MAM using
Mycoplasma culture, a 16S rRNA geneMAM-specific polymerase
chain reaction (PCR) (16S PCR), and a uracil DNA glycosylase
MAM-specific quantitative PCR (udg quantitative polymerase
chain reaction [qPCR]) [4]. A total of 19 sequential isolates
from 9 of the 17 MAM positive patients were available for
WGS. Additionally three patients from three patients reported
previously provided by the University of Bordeaux (Supplemen-
tary Table 1) [3]. The clinical information was reviewed for
evidence of symptoms associated with LRTI.

Extraction of DNA
Extraction of DNA from sputum samples was performed using
a Chelex-based method as previously described [4]. DNA for
WGS was extracted using the Wizard Genomic DNA extraction
kit (Promega, Southampton, UK) following the manufacturer’s
instructions using the protocol for gram-negative bacteria, and
amplified using the illustra Genomiphi V2kit (GE Healthcare),
according to the manufacturer’s instructions.

MAM-Specific PCR
The MAM-specific conventional 16S PCR was performed pro-
spectively, and the real-time qPCR targeting udg was performed
retrospectively on DNA extracts from PAD patient samples as
described previously [4].

WGS: Reference Genome
The genome of the reference MAM strain A39 was Sanger se-
quenced to a depth of 8 times coverage using cloning vector
p0TWI2 with a selection of insert sizes (2–3 kb, 3–4 kb, and
4–5 kb) using dye terminator chemistry on ABI3700 automated
sequencers (Life Technologies Ltd, Paisley, UK). Repetitive re-
gions of the genome were spanned and the assembly manually

was finished using long-range PCR and pair read information.
The genome was annotated as described previously, using Arte-
mis [5–7]. The genome was sequenced to a level classified as
“finished.” The MAM genomic DNA sequence was compared
against the European Molecular Biology Laboratory (EMBL)
prokaryote database using BLASTN and BLASTX [8]. Transfer
RNAs were predicted by tRNAscan-SE [9]. Potential coding se-
quences were predicted using GLIMMER [10] and the results
were combined and checked manually. The predicted protein
sequences were searched against a nonredundant protein data-
base using WUBLASTP and FASTA. The complete 6-frame
translation was used to search PROSITE [11], and the predicted
proteins were compared against the Pfam database of protein
domain [12] using hidden Markov models and the Conserved
Domain Search tool against the Conserved Domain Database
from the National Center for Biotechnology Information [13].
The results of these analyses were compiled using Artemis and
used for a manual gene-by-gene annotation of the sequence and
predicted proteins. Annotation was based, wherever possible,
on characterized proteins or genes. Repeat sequences were iden-
tified using the Dotter program [14] and manually.

WGS: Clinical Isolates
WGS was performed on single isolates on a MiSeq Instrument
(Illumina, San Diego, California). A 300-cycle MiSeq Reagent
Kit version 2 was used to generate 75-bp paired-end reads. The
reads obtained for each isolate were mapped against the MAM
reference strain A39 with SMALT (Available at: http://www.
sanger.ac.uk/resources/software/smalt/). Single-nucleotide poly-
morphisms (SNPs) were identified using SamTools Mpileup
[15] and bcftools, and filtered as previously described [16].

Accession Numbers
The raw sequence data are available under the accession number
ERP000340. The sequence and annotation for MAM A39 have
been deposited with EMBL (accession number HG937516).

Phylogenetic Analysis
Regions with high-SNP density or SNPs within repetitive re-
gions were excluded from the phylogenetic analysis as described
previously [17]. Maximum likelihood phylogenetic trees were
constructed with randomized axelerated maximum likelihood
using a generalised time reversible evolutionary model and a
γ-correction for among-site rate variation. Support for relation-
ships in the maximum-likelihood phylogenetic tree was as-
sessed by running 100 bootstrap replicates.

Detecting Minority Variants
Minority variants were extracted from the mapping data using
stringent filters to distinguish true variants from sequencing or
mapping errors. A variant was only counted if confirmed by at
least 4 reads with at least 2 reads on each strand, and a base
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and mapping quality of 50 and 30, respectively. The variants re-
quired strand bias P value of at least .05, depth of coverage within
a normal range (± 50% of the average), and a distance of at least
200 bp from another variant. As depth of coverage varies across
the genome, we corrected each count of a minority variant by di-
viding it by the depth. For example, for a particular position with
a depth of coverage of 100 reads, we recorded 0.01. We summed
these values to produce a minority variant score for each sample,
with higher scores indicating higher diversity in the sample.

RESULTS

Patients, Longitudinal Samples, and Bacterial Load
All of the patients had evidence of chronic productive cough
and some experienced high sputum volumes. The duration
over which samples were collected ranged from 2 to 5 years
with the number of recurrent episodes of MAM-associated
LRTIs ranging between 4 and 11 episodes for which clinical
data are available. It is notable that half of the patients had ev-
idence of obstructive airway disease while infected with MAM.

Of the 94 serially collected samples available for laboratory in-
vestigation from 9 patients, 53 of 92 (57.6%) were found to be
positive for MAM by culture, 85 of 92 (92.4%) were positive by
16S PCR, and 81 of 89 (91%) were positive by qPCR. No other
recognized LRTI bacterial pathogen was identified in 51 of the
64 samples for which routine sputum culture results were avail-
able. Of those samples positive for MAM where another LRTI
pathogen was cultured, 3 samples containedHaemophilus influ-
enzae, 6 Streptococcus pneumoniae, and 3Moraxella catarrhalis
(Figure 1). A summary of the findings for all MAM-positive
samples is given in Supplementary Table 1.

Bacterial load data obtained by qPCR indicate prolonged in-
fection (Figure 1 and Supplementary Figure 1). We use patient
1, from whom the original isolate and now the type strain, A39,
was isolated [18], as an exemplar of the observed course of in-
fection. This patient experienced a chronic course of productive
purulent or mucopurulent sputum for >4 years with a consis-
tently high MAM bacterial load (Figure 1). Of the 40 samples
taken between 2001 and 2005 from patient 1 (Figure 1),
MAM was detected by PCR on all but 5 occasions; MAM

Figure 1. Natural history of a patient withMycoplasma amphoriforme infection (patient 1). Colony-forming units are estimated using the udg quantitative
polymerase chain reaction (PCR). The symbols represent the bacteria isolated and the antibiotic treatment used. *udg PCR was not performed, but the
patient was positive by culture or 16S ribosomal RNA PCR. Abbreviations: AMX, amoxicillin; AZM, azithromycin; CM, clarithromycin; CPR, ciprofloxacin;
DOX, doxycycline; H Inf, Haemophilus influenzae; M Catt, M. cattarhalis.
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Figure 2. Maximum likelihood phylogenetic tree for 20 isolates of Mycoplasma amphoriforme from 9 patients distinguished by color and the strain designated by its code (8 from Royal Free London National
Health Service Foundation Trust and 1 of 3 French/Tunisian isolates). The table was constructed with randomized axelerated maximum likelihood using a Generalised time reversible evolutionary model and a γ-
correction for among-site rate variation. Single-nucleotide polymorphisms (SNPs) are noted for the 23S ribosomal RNA, and nonsynonymous SNPs for gyrA, gyrB, and parC genes using M. amphoriforme
numbering. For each, a red or salmon-pink bar indicates evidence of association of the SNP with phenotypic antibiotic resistance, pink a possible association, and blue represents the ancestral, sensitive allele.
Bootstrap support values for the relationships shown in the phylogeny can be found in Supplementary Figure 3.
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culture was positive for 22 specimens, negative for 14, contam-
inated for 4, and not performed for 1. The only other recognized
bacterial pathogens identified in the MAM-positive samples
from this patient were M. catarrhalis and H. influenzae (Fig-
ure 1). Patient 8 also followed a chronic course, with evidence
of a productive cough at all 18 visits over 4.5 years with purulent
or mucopurulent sputum. The samples were MAM culture pos-
itive on 10 occasions and all those tested by PCR were positive,
with only a single isolation of S. pneumoniae during this period.

Genome Sequences of Clinical Isolates
WGS has the benefit of providing the highest possible resolu-
tion data with which to differentiate closely related isolates.
The A39 genome is 1.03 Mb with a 31.6% G + C content. Fur-
thermore, whole-genome draft sequences using MiSeq were de-
termined for 19 of the 35 cultured MAM isolates, this set being
limited by isolates that failed to reculture.

By calling SNPs against our high-quality reference sequence,
we constructed a maximum likelihood phylogenetic tree taking
account of possible recombination [19] by using the method of
Croucher et al [17]. Supplementary Figure 2 shows the regions
of high SNP density identified in the MAM isolate genomes and
may be representative of recombination events from bacteria be-
yond the studied isolates.

The phylogenetic tree (Figure 2) shows that the sequenced
MAM isolates fall into 5 main clades: 4 represented by UK iso-
lates taken from patients attending the RFL and a fifth containing
a single out-group strain (Ma4526a). Additionally, 1 French, 1
Tunisian, and 1 UK strain were highly diverse and were not in-
cluded in this phylogenetic analysis (Figure 2 and Supplementary
Figure 3). The overall level of sequence-based variation is low,
with distances between clades ranging from 159 to 254 SNPs,
and a maximum of 76 SNPs (minimum = 4) separating any
pair of isolates within 1 clade. It is clear that the UK isolates
from the RFL are more similar to each other than the French
out-group strains. Isolates from an individual are more closely re-
lated to each other than to those from other patients . Where we
have multiple longitudinal samples taken from a single patient
(eg, patient 1), the phylogeny does not appear to be entirely con-
sistent with the dates of sample collection. Some isolates that ap-
pear more basal in the tree were collected more recently
(Figures 2 and 3A), Across the strain set, we detected 636 minor-
ity variants, and in patient 1 there was a trend toward increasing
numbers of numbers of minority variants over time (Figure 3B).

Cross-infection and Evolution
There were several different patterns of infection (Figure 2): pa-
tient 3 presented twice with almost identical isolates from the
same lineage between 2002 and 2003; patients 125 and 65 each
only contributed single samples that could be sequenced, which
are closely related to but distinct from the UK RFL isolates. The

comparative SNP analysis of MAM isolates from patient 8 indi-
cates a probable transmission event. The first sequenced isolate
from patient 8 (IM117-1; Figure 2) collected in 2002 falls within
clade 2, but is distinct from the other members of this clade that
is, a distinct strain. The sequences of the subsequent isolates
(O30-1 and 772-1) collected in 2004 and 2005 fall within the di-
versity of the isolates from patient 1 (Figures 2 and 3A). The col-
lection dates of the specimens indicate that patient 1 and patient
8 attended the outpatient clinic on the same day on 2 occasions.
The 2003 isolates from patient 1 share ≥37 SNPs, with the latter
isolate from patient 8; the highest number of shared SNPs be-
tween the isolates of these 2 patients is found in early 2004, sug-
gesting transmission around this date (Figure 3A).

Antibiotic Resistance
From sequence analysis, there were no whole-gene acquisitions
within the course of any of the UK PAD patient infections, pro-
viding no evidence of resistance acquisition by horizontal gene
transfer (eg, tetM). A total of 64 SNPs were identified in all iso-
lates in gyrA, 11 of which were nonsynonymous, but none were
found in the quinolone-resistance determining region (QRDR).
Among 43 SNPs detected in gyrB, there were 3 nonsynonymous
amino acid changes at positions V17I, P389Q, and V620A. A
total of 23 nonsynonymous SNPs were identified in the parC
gene, 1 at position 89 (position 80 in Escherichia coli numbering)
found within the QRDR. The 3 isolates from France and Tunisia
had a serine residue at the position 89 (associated with a suscep-
tible phenotype), whereas all UK isolates, including the reference
isolate A39, had either F or Y substitutions, implying that the UK
isolates were quinolone resistant. A total of 22 mutations were
detected in the 23S rRNA gene, 1 of which was located within
a region associated previously with macrolide resistance. Two
strains from patient 2 (both isolated in 2001) both carry an
A2059G substitution in the 2 latest isolates of this series. In
vitro susceptibility testing of this isolate showed that this strain had
a minimum inhibitory concentration of 0.2 µg/L and 1.5 µg/L for
doxycycline and ciprofloxacin, respectively.

DISCUSSION

There is, as yet, little clinical, pathological, molecular, or geno-
mic information aboutM. amphoriforme [4], and this study sig-
nificantly expands our understanding. Patients with PAD are
especially susceptible to infections of the respiratory tract, otitis
media, and sinusitis [20]. Pneumonia is a common reason for
presentation; it may recur on multiple occasions [21] and can
result in death [22]. Chronic infection is common and often
complicated by bronchiectasis [22], an important prognostic in-
dicator [23]. Patients with PAD often are commonly infected
with S. pneumoniae, H. influenzae, Staphylococcus aureus, and
Pseudomonas species [20]. In these patients, joint, urogenital,
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and respiratory tract infections may be caused by Mycoplasma
species. Ureaplasma urealyticum,Mycoplasma orale, andMyco-
plasma pneumoniae were identified during episodes of respira-
tory infection in 18 of 23 patients [24], and Mycoplasma
hominis has also been reported in an immunocompetent pa-
tient [25].

The genome of MAM has a similar G + C content to other
Mycoplasma species, and a detailed gene-by-gene analysis of the
type strain A39 will be published subsequently. The isolates from
patient 1 are sufficiently related to each other to indicate chronic
infection with the same strain. The bacterial load varies (Figure 1
and Supplementary Figure 1), indicating a relapsing-remitting
course in patients with PAD, lasting at least 1626 days (Figure 1)

and associated with purulent and mucopurulent sputum. Patients
were udg qPCR positive on all but 7 occasions (Figure 1 and Sup-
plementary Figure 1). WGS data demonstrate that relapse was
with the same strain, suggesting that intervening qPCR negatives
were false negatives or below the limit of qPCR detection.

Relapsing respiratory symptoms are common in PAD pa-
tients and, in the absence of other recognized respiratory path-
ogens and the continued presence of symptoms, it suggests that
MAM is causing bronchial inflammation. A similar relapsing
course is seen in immunocompetent patients with chronic ob-
structive pulmonary disease where bacterial load is higher dur-
ing exacerbation than during stable state [26]. Control of
bacterial load is associated with a reduced risk of relapse [27].

Figure 3. A, Accumulation of single-nucleotide polymorphisms (SNPs) detected in availableMycoplasma amphoriforme isolates within patient 1 (orange)
and 8 (green or blue) from 1999 to 2006. Numbers indicate the number of SNPs the isolates have compared to the A39 type strain sequence, which was also
isolated from patient 1. B, Measure of clinical isolate diversity detected at different sampling times for patient 1. The numbers represent the numbers of
minority variants detected, corrected for depth of coverage. Minority variants were counted if they were supported by at least 4 reads, with 2 reads on each
strand and a base and mapping quality of 50 and 30, respectively. There is a positive nonsignificant trend between time and number of minority variants,
indicating an increase of diversity over the course of the infection (linear regression model: r2 = 0.532, P = .099).
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Continuing purulent sputum and obstructive airway disease
suggest ongoing airway inflammation in association with
MAM. Further work is required to elucidate the relationship be-
tween this organism and changing respiratory function.

A trend for an increase in minority variants in a chronically
infected individual who failed to achieve statistical significance
may suggest that organisms exist as an increasingly heteroge-
neous mixture in chronic infection. This result should be treat-
ed with caution as it is unknown what affect whole-genome
amplification may have on the error rate of the sequencing
reads. In addition, we do not know how many variants may
have been generated or selected for during in vitro growth of
these samples. The limited number of samples and sampling
depth is insufficient to capture the full diversity of isolates in-
fecting a single person at a particular time-point. However,
this observation is consistent with studies from chronic infec-
tions [28] and explains the complex relationship between phy-
logeny and date of isolation. In an outbreak of S. aureus in a
neonatal care unit, the strain carried by a staff member differed
by up to 27 SNPs when different colonies from a sample were
sequenced independently [28], and is consistent with the poor
correlation between isolation date and phylogenetic relatedness
of serial samples from patients shown here.

Patients with anatomical or genetic deficits or immunocom-
promise are susceptible to cross-infection in the hospital envi-
ronment and respiratory pathogens in a clinic setting such as
Mycobacterium tuberculosis in human immunodeficiency
virus–positive patients and Burkholderia cepacia in patients
with cystic fibrosis [29–31]. As most M. amphoriforme strains
were isolated at a single hospital, it was possible that this repre-
sented an unrecognized nosocomial outbreak. WGS has en-
abled us to answer this question unequivocally. Almost all of
the patients investigated in this collection had a genetically dis-
tinct strain in their lungs, which excludes the possibility of this
being a point source outbreak. The interaction between patients
1 and 8 is significant, as these patients were in the clinic on the
same day on at least 2 occasions in 2002 and 2003. The strain
isolated from patient 8 in 2002 is distinct from the 2 strains iso-
lated in 2004 and 2005, and the latter strains are sufficiently
similar to the 2004 strain from patient 1 to indicate that trans-
mission had occurred. The map of SNP accumulation for pa-
tient 1 (Figure 3A) suggests that transmission was associated
with clinic visits that occurred in early 2004.

It is notable that all but 2 of the isolates from UK PAD
patients and 2 from France and Tunisia, although distinct,
are closely related. The other isolates are more diverse but
part of the same species. More highly divergent strains may
form distinct lineages or may ultimately be described as distinct
taxa, but deeper understanding of the population genetics of
this organism will only be achieved when more strains are
sequenced.

PAD patients received multiple antibiotic treatment courses
(Figure 1 and Supplementary Figure 1) and received immuno-
globulin regularly. Changing bacterial load may be related to
treatment, but the incomplete record makes the relationship be-
tween treatment and bacterial load uncertain. We detected resis-
tance mutations in the QRDR of parC of all the UK isolates,
indicating that these strains are likely to be resistant. This pro-
vides genetic evidence for the previously reported clinical finding
in patient 1, who was treated with courses of antibiotics, includ-
ing quinolones, without improvement and who only responded
to the pleuromutilin agent valnemulin (Econor) [18]. The substi-
tution of the serine residue at position 89 of the QRDR (80 by E.
coli numbering) [32] is known to confer quinolone resistance in
M. hominis [33]. Mutations associated with macrolide resistance
were also detected in the PAD patients; later isolates from patient
2 had an A2059G substitution, which is a hotspot mutation con-
ferring macrolide resistance [34].

In summary, we have used genomics to differentiate between
persistence and reinfection, providing evidence that M. am-
phoriforme infects immunocompetent and immunocompro-
mised patients [3, 18], is chronic in patients with PAD, and is
associated with obstructive airway disease. Transmission can
occur in a clinical environment, suggesting that respiratory pre-
cautions may be required. The use of next-generation sequenc-
ing has allowed us to improve our understanding of the biology
and epidemiology of this more rapidly than by phenotypic
or other genotyping methods.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data
provided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are the
sole responsibility of the authors. Questions or messages regarding errors
should be addressed to the author.
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