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Abstract 

Histidine-rich glycoprotein (HRG) is a plasma protein that regulates key cardiovascular 

processes such as coagulation, angiogenesis and immune response. The protein consists 

of six distinct functional domains: two N-terminal domains (N1 and N2), two proline-

rich regions (PRR1 and PRR2), a central histidine-rich region (HRR) and a C-terminal 

domain. The HRR binds Zn
2+

, which alters the affinity of HRG towards various ligands 

including the anticoagulant, heparin.  

A key aim of this study was to structurally characterise HRG. The 1.93 Å crystal 

structure of the HRG N2 domain presented here represents the first crystallographic 

snapshot of the molecule. The N2 domain is cystatin-like and N-glycosylated at 

Asn184. An S-glutathionyl adduct was observed at Cys185, providing in vivo evidence 

that release of an anti-angiogenic HRR/PRR fragment is controlled in part by a redox 

mechanism, representing a novel further role for GSH in regulation of angiogenesis. 

Since Zn
2+

 regulates some of the functions of HRG, the dynamics of Zn
2+

 in plasma 

were investigated using a combination of ITC, ELISA and thrombin assay systems. Zn
2+

 

is normally associated with albumin in circulation, but its ability to bind Zn
2+

 is 

allosterically inhibited upon fatty acids binding to albumin. Elevated plasma fatty acid 

levels are associated with some disease states. It is proposed that this may alter the 

proportion of Zn
2+

 bound to HRG, which could in turn activate thrombin to promote 

coagulation. These studies provide evidence to suggest that Zn
2+

-dependent activation 

of HRG (following fatty acid binding to albumin) may play a role in the development of 

haemostatic complications in susceptible individuals. 

Finally, the Zn
2+

 binding ability of albumin was probed in order to locate unidentified 

sites using recombinant albumin mutants. H9A, H67A, E252A, D256A and H288A 

mutants all exhibited diminished Zn
2+

 binding ability, indicating that these residues are 

involved directly or indirectly in Zn
2+

 binding. 
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Chapter 1 

Introduction 

The cardiovascular system of humans, and other vertebrates, can be simplified to its 

basic components: the heart muscle, blood vessels and blood itself. Blood is a fluid 

which had a mystic and poetic role in the history of medicine, until slowly revealing its 

complex composition and extensive function through the modern age. Blood can be 

described as a type of connective tissue consisting of 45% formed elements (cells, 

fragments) and 55% aqueous phase (plasma). The formed element phase gives the blood 

its structural matter, containing platelets, white blood cells and the haem-porphyrin 

carrying red blood cells from where the distinctive red colour is observed. Plasma is a 

pale yellow fluid, acting as the continuous phase of the colloidal suspension and a 

solvent for water soluble proteins, small molecules, nutrients and ions. The major 

proteins in plasma include serum albumin, fibrinogen and globulins (Seeley et al. 2007). 

Albumin  

Albumin dominates the proteins which make up the dynamic and diverse plasma 

proteome, circulating at a concentration of 600 µM (approximately 60% of total plasma 

protein) and is responsible for maintaining the osmotic pressure of blood since it does 

not pass easily into tissues (Peters, 1996). The 585 amino acid sequence of albumin 

leads to a single chain globular protein of 66.5 kDa with a characteristic high solubility 

due to the abundance of ionic residues affording a high total charge to the structure at 

physiological pH. This high aqueous solubility allows albumin to indulge in a range of 

binding and transportation activities involving a broad spectrum of compounds, 

including metals, fatty acids, haematin, bilirubin and steroidal hormones (Richieri et al., 

1993; Adams et al., 1980; Brodersen, 1982) that have an intrinsic hydrophobicity which 

would otherwise preclude their high concentrations in plasma.  

Albumin undergoes discrete phases of allosteric modulation in response to external 

conditions and internal effectors. At acidic pH between 2.7 and 4.3, albumin displays 

increased viscosity and decreased solubility with reduced α-helix content in a 

conformation described as the fast (F) form. The neutral (N) form occurs between pH 

4.3 and 8, in the absence of any binding partners. In the presence of ligands at this pH 
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range (or at basic pH above 8 without ligands) albumin develops the basic (B) form, 

losing some α-helix content (Figure 1.1). 

 

Figure 1.1. (a) Crystal structure of human serum albumin (PDB ID: 1BJ5), showing five fatty acid 

binding sites (FA 1-5). The fats are shown as pink spheres with their respective carboxyl oxygen atoms in 

red. Residues forming the major zinc binding site are also shown as spheres where interacting atoms of 

Asn99 and His67 are coloured yellow, and those of His247 and Asp248 are coloured cyan. The protein 

peptide backbone is coloured to show the individual domain as labelled (Barnett et al., 2013). The N- and 

C-terminal are labelled. Figure drawn using PyMol by Dr. Claudia Blindauer. (b) Amino acid sequence of 

human serum albumin, showing the domains (coloured as before) and the secondary structure elements 

(rectangle: α-helix; arrow: β-sheet). 

C

N

DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAEN 60  

CDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDV 120

MCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLD 180

ELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTE 240

CCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSL 300

AADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADP 360

HECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVS 420

RNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCF 480

SALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMD 540

DFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL 609

(a)

(b)
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This flexibility is the key to the extensive binding ability of the albumin molecule and 

its facility to provide a variety of reversible binding sites. Analysis of the primary 

structure shows three homologous domains (domain I, II and III respectively), each 

made up of two separate subdomains (A and B).  The flexibility is a corollary of the 

high α-helix content, inducing a spring-like effect on the structure resulting in controlled 

contraction and expansion influenced by binding partners. X-ray crystal results show a 

globular heart-shaped structure; selected significant albumin structures are given in 

Table 1.1. 

Table 1.1. Selected albumin structures, giving PDB codes and highlighting importance. 

 

Albumin ligand binding: Fatty acids 

Plasma free fatty acids are generally dominated by C16 and C18 (long-chain) fatty 

acids, and these are predominantly mobilised by tightly regulated enzymatic lipolysis 

from triglyceride stores in adipose tissues (Lafontan and Langin, 2009). Following 

which, they are then released into the circulation and made available for transport by 

albumin (van der Vusse, 2009). Transport of fatty acids has a characteristic rapid 

turnover and a short circulatory half-life of up to 4 minutes (Eaton et al., 1969). 

Although the exact mechanism by which albumin enables the uptake of fatty acids to 

cells is unknown, the presence of albumin specific receptors on cell surfaces may 

partake in this process (Schnitzer et al., 1992; Schnitzer and Oh, 1994). Dole and 

Gordon investigated the importance and function of fatty acids in general metabolism 

(Dole, 1956; Gordon, 1957; Gordon and Cherkes, 1956). Fatty acids are the primary 

PDB Code Year Authors Notes

1AO6 1997 Sugio et. al. (1999) First X-ray crystal structure of HSA

1BJ5 1998 Curry et. Al. (1998) Structure of HSA with myristic acid

2BXG 2005 Ghuman et. Al. (2005) HSA complexed with ibuprofen

2I2Z 2006 Yang et. al. (2007) HSA complexed with asprin

4F5S 2012 Bujacz (2012)

First X-ray crystal structure of bovine 

albumin. First structure of albumin 

complexed with a metal (calcium).
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source of energy for several tissues such as the renal cortex, resting skeletal muscle, 

myocardium and liver (Coppack et al., 1994). Concentration of plasma fatty acids has 

been shown to be in the region of 250–500 μM as a basal level (Rogiers, 1993) of which 

most originates from subcutaneous abdominal fat while only a small proportion 

originates from visceral fatty deposits (Nielsen et al., 2004; Karpe et al., 2011). An 

increase in adipose tissue lipolysis is observed when there is an increased demand for 

energy by the body, hence increasing the bioavailability of fatty acids in the system 

(Coppack et al., 1994). Chronically elevated levels of plasma fatty acid have been 

clinically associated with certain conditions such as cancer, obesity and diabetes 

(Richieri et al., 1993). They have also been observed as a symptom of analbuminemia 

(plasma HSA deficiency) (Bartter et al., 1961). In obesity, the plasma fatty acid 

concentration increase is mainly due to the expansion of adipose tissue and a subsequent 

delay in the clearing process (Boden, 1998). In addition, plasma fatty acid levels in such 

conditions can lead to further subsequent elevations, since high levels of fatty acids in 

circulation can inhibit the effects of insulin on lipolysis (Jensen et al., 1989).  

The fatty acid interaction with albumin has been studied extensively by a variety of 

complementary biophysical techniques including dialysis (Pedersen et al., 1995), 
13

C 

NMR (Choi et al., 2002; Simard et al., 2006) and X-ray crystallography (Curry et al., 

1998; Bhattacharya et al., 2000; Petitpas et al., 2001). It is supposed that up to 6 molar 

equivalents of fatty acid can be bound to albumin under physiological conditions with 

Kd values ranging between 1.5 and 90 nM (Peters, 1996). Greater than 2 molar 

equivalents will only bind during conditions of elevated plasma fatty acid levels 

(Richieri and Kleinfeld, 1995). Figure 1.1 illustrates the heart-shaped form of albumin 

and shows the binding sites for its main endogenous ligands, fatty acids, distributed 

across the protein. Human albumin is able to bind up to ten molecules of fatty acids per 

protein molecule, with the five main sites labelled FA1-5 (Figure 1.1) (Bhattacharya et 

al., 2000). Crystallographic analysis describes precise details of each fatty acid binding 

site, revealing a considerable divergence of topology (Curry et al., 1998; Curry et al., 

1999). The sites are situated either within individual sub-domains, at the interface 

between two domains or at the interface of two sub-domains of the same major domain. 

This assortment of binding sites through otherwise homologous domains leads to varied 

fatty acid affinity due to the primary intermolecular interactions involved in non-

covalent bonding and the heterologous steric interdomain regions. Studies on albumin 
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mutants have shown that the greatest affinity of fatty acid binding occurs at sites FA2, 

FA4 and FA5. These sites form narrow tunnels fitting the hydrophobic tail of the fatty 

acid molecule, with its carboxylate head at the pocket entrance interacting 

electrostatically with polar or basic groups (Simard et al., 2005; Simard et al., 2006). 

Two additional sites of medium affinity, fatty acid sites 1 and 3, share a similar 

interaction but form shorter flattened slots as the binding cavity. These sites all involve 

well defined salt bridges between the positively charged protein side chains and 

negatively charged fatty acid head groups as well hydrogen bonding to stabilise the fatty 

acid to protein interaction (Curry et al., 1998; Bhattacharya et al., 2000). The two 

weakest sites, sites 6 and 7, are located at the protein surface, with relatively poorly 

defined van der Waals interactions with the hydrophobic fatty acid tail. Most of these 

binding sites are an intrinsic construct of the protein tertiary structure, but some 

conformational rearrangement is required for albumin to reach repletion of fatty acids.  

The response to fatty acid binding essentially involves the rearrangement of domains I 

and III relative to domain II via rotations around the interdomain helices (Fasano et al., 

2009). Thus, fatty acid sites 2 and 3 which intersect their respective domains (Figure 1) 

take the greatest allosteric responsibility when occupied.  

Preceding the wealth of crystallographic structural information, binding studies by 

Sudlow et al. showed the presence of two drug binding sites (Sudlow et al., 1975; 

Sudlow et al., 1976) located in sub-domains IIA and IIIA respectively (Carter and Ho, 

1994). These sites present an attractive opportunity to allow the transport and delivery 

of drug compounds otherwise affected by adverse solubility in the blood. However, 

physiology exhibits a complexity prohibiting this simplicity. For example, a drug 

compound would need to have a measured affinity for albumin allowing reversible 

binding and favourable pharmacokinetics to reach a desired target. Also, the allosteric 

spirit of albumin is susceptible to changes in levels of endogenous ligands, which could 

result in an unanticipated release of drug compound with the potential for intoxication.  

Albumin ligand binding: Metals  

Having referred so far to examples of organic compounds involved with albumin, it 

should be noted that this relationship is not exclusive: albumin also binds inorganic 

species such as transition metal ions, providing a vehicle for their circulatory travels and 

moderating plasma levels of free species. Essential and toxic cations including Ca
2+

, 
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Ni
2+

, Cu
2+

, Cd
2+ 

and Zn
2+

 have been observed to bind to one of at least four metal sites. 

These metal sites include the generic “Amino terminal Cu
2+

 and Ni
2+

 binding” motif 

(ATCUN) which is present in many proteins, the main Zn
2+ 

binding site known as “site 

A”, a Cd
2+ 

binding site known as “site B” which is currently unidentified and the only 

free thiol group in the structure, Cys34, which can bind heavy metal compounds of Au, 

Pt and Hg
2+

 (Harford and Sarkar, 1997; Bal et al., 1998; Sadler and Viles, 1996; 

Christodoulou et al., 1994; Esposito and Najjar, 2002). This solitary free thiol is redox 

active, partaking in thiolation and nitrosylation and forming mixed disulphides. Also, 

Cys34 is involved in the dimerisation of albumin observed in vitro (Quinlan et al., 

2005). Additionally, albumin is known to bind Ca
2+ 

and Mg
2+

. However, it is known 

that Ca
2+

 (and thus analogously, Mg
2+

) bind stronger to the B form of albumin but also 

help cause this conformational change in a synergistic approach (Kragh-Hansen and 

Vorum, 1993; Peters, 1996).  Recently, a crystal structure of bovine albumin complexed 

with Ca
2+

 was solved, and was the first instance of a metal bound albumin structure 

(Majorek et al., 2012). Figure 1.2 shows a schematic diagram of the HSA molecules, 

with the features significant in regards to this project highlighted.  

 

Figure 1.2. Schematic diagram of HSA, showing the domains labelled I, II and II. The positions of five 

main fatty acid sites (FA1-FA5) are highlighted. The binding positions for Zn
2+

, Cu
2+

, Ni
2+

 and Ca
2+

 are 

shown. The proximity of the major Zn
2+

 binding site (site A) and FA2 can be observed. 

Zinc is an essential nutrient, involved in a profuse array of structural, catalytic and 

cocatalytic functions in enzymes and proteins amounting to 10% of the human 

proteome (Andreini et al., 2006). Zinc was revealed to be an essential nutrient first in 

the 1930s during an animal study on the effect of dietary zinc intake on the growth and 

survival of rats and mice (Todd et al., 1993). However it took 30 years for the 

realisation that zinc is also important for human health (Prasad, 1991). The full d
10

 

valence shell of Zn
2+ 

permits an isotropic ionic environment with regards to ligand 

I II III

Cu2+

Ni2+

Zn2+

FA1 FA2 FA3 FA4 FA5

Sudlow’s site 1 Sudlow’s site 2

Ca2+ Ca2+

Ca2+
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binding, allowing a distortion from strict tetrahedral or trigonal bipyramidal 

coordination spheres which is commonly observed in Zn
2+ 

protein structures (Thorp, 

1998). The d
10

 electronic configuration also renders the zinc ion inactive towards redox 

reactions, indicating a reason for the bias of nature towards using Zn
2+

 in many 

applications, although this property contributes frustration to the analytical chemist. 

Numerous studies have attempted to define the interactions between Zn
2 +

 and human 

blood plasma proteins (Himmelhoch et al., 1966; Song and Adham, 1979; Dawson et 

al., 1981; Scott and Bradwell, 1983; Chilvers et al., 1984; Foote and Delves, 1984; 

Manley and Gailer, 2009; Malavolta et al., 2012), and have led to the agreement that 

serum albumin is the key Zn
2 +

 transporter in plasma (Chesters and Will, 1981). 

Additionally, albumin is suggested to facilitate the endothelial uptake of zinc (Rowe and 

Bobilya, 2000).The proposed zinc binding site in albumin is unusual, firstly because it 

is assumed to adopt the less common trigonal bipyramidal arrangement but also because 

of the inclusion of asparagine as an oxygen donor. Typical ligands are histidine, 

cysteine, aspartic acid and glutamic acid. However, structures of zinc binding proteins 

with the same framework as site A have been solved (Odintsov et al., 2004). A standard 

value for the zinc concentration in normal adult blood plasma is 16.6 ± 6.2 μM 

(Rukgauer et al., 1997). The zinc pool in plasma is subjective to dietary intake, along 

with a range of other influences. For example, plasma zinc levels decrease during 

inflammation and infection as part of the acute phase response. The complete rate of 

turnover of plasma Zn
2 +

 is substantial, since the total amount of plasma zinc is replaced 

around 150 times each day (King, 2011). 

A usual means of assessing zinc speciation in plasma involves fractionation into low- 

and high-molecular weight components (by ultrafiltration) (Foote and Delves, 1988). 

Recently, several zinc specific fluorescent dyes have been synthesised and used to 

quantify total and free plasma zinc (Kelly et al., 2011). A free Zn
2 +

 concentration in the 

range of 1–3 nM was inferred by studies using the dye ZnAF-2 and confirmed that most 

of the Zn
2 +

 binding capability of plasma is located in the high-molecular weight 

fraction. Between 75-90% of total Zn
2 + 

in plasma is chelated to HSA, and this fraction 

makes up the majority of the plasma Zn
2 + 

pool available for exchange (Chilvers et al., 

1984; Manley and Gailer, 2009). Total plasma zinc associated with the low-molecular 

weight fraction was found to be less than 1% (Foote and Delves, 1988), most likely due 

to the amino acids cysteine and histidine chelating zinc (Giroux and Henkin, 1972). The 
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remaining 10–20% of plasma zinc is bound tightly to α2-macroglobulin (Parisi and 

Vallee, 1970) and retinol-binding protein (Chilvers et al., 1984), and is unavailable for 

exchange.The interaction between Zn
2 +

 and albumin is thus particularly important 

within the blood. Perfused rat intestine studies have shown that albumin is responsible 

for the transport of newly-absorbed Zn
2 +

 to the liver (Smith et al., 1979). 

Nuclear magnetic resonance (NMR) experiments have been used to identify the Zn
2 + 

and Cd
2+

 binding sites, using 
111

Cd
2+

 and 
113

Cd
2 +

 as a probe for Zn
2+ 

in combination 

with site directed mutagenesis studies. NMR resonances equate to three different sites 

of chelation for Cd
2+ 

and Zn
2+ 

with each respective metal having one high affinity 

binding site, not affected by competition from other metals. Site A appears at 110–

150 ppm and site B at 25–30 ppm (Martins and Drakenberg, 1982; Goumakos et. al., 

1991; Sadler and Viles, 1996).  

The characteristic chemical shift of site A pointed to a metal coordination which 

included 2 or 3 nitrogen donors with additional oxygen donors, while site B is 

structured around one nitrogen donor and three oxygen donors. Addition of 1 equivalent 

of Zn
2 +

 during the Cd
2+

 NMR experiments blocked the peak relating to site A, but left 

the site B signal intact, leading to the inference that site A had a stronger affinity for 

zinc (Martins and Drakenberg, 1982; Goumakos et. al., 1991; Sadler and Viles, 1996). 

Corresponding examination of the structural database revealed conserved residues at the 

domain I/II interface composed of His67 and Asn99 (domain I) and His247 and Asp249 

from domain II. The high affinity zinc binding site has recently been situated, modelled 

and characterised using NMR, zinc k-edge extended X-ray absorption fine structure 

(EXAFS) spectroscopy and site-directed mutagenesis (Figure 1.3) (Stewart et al., 2003; 

Blindauer et al., 2009).  
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Figure 1.3. Data from Zn k-edge EXAFS experiments for wild-type and mutant albumin-zinc complexes. 

(a) HSA + 1 molar equivalent Zn
2+

 in purple, HSA + 1 molar equivalent Zn
2+

 + 1 molar equivalent Cd
2+

 

in red. HSA + 1 molar equivalent Zn
2+

 + 1 molar equivalent Cd
2+

 + 1 molar equivalent Cu
2+

 in cyan. 

Under these conditions, Zn
2+

 is thought to occupy site A, Cd
2+

 is thought to occupy site B preferentially, 

and Cu
2+

 the N-terminal ATCUN site. The excellent agreement of intense peak at ca. 2 Å suggests that in 

each sample, Zn
2+

 coordinated to the same site. (b) EXAFS spectra for wild-type HSA (purple) and H67A 

mutant HSA (green), where the H67A mutation is clearly shown to perturb zinc binding to albumin. (c) 

Comparison of experimental (purple) and modelled (red) data (Blindauer et al., 2009). 

Site A is fundamentally a five-coordinate interdomain site involving His67 and Asn99 

residues from domain I and His247 and Asp249 residues from domain II, plus one non-

protein ligand, likely to be a water molecule. The backbone carbonyl oxygen of His247 

offers a weak sixth coordination position (Figure 1.4). The molecular model calculated 

for this proposed site showed a favourable geometry with respect to the apo-albumin 

structure. Furthermore, this site neighbours fatty acid site 2 and shows structural 

disruption upon fatty acid binding, correlating with the absence of the characteristic 

111
Cd

2+
 peak in albumin exposed to high fatty acid concentrations (Stewart et al., 2003; 

Lu et al., 2008). This leads to a possible physiological implication where extracellular 

Zn
2+

 concentrations may be influenced by this relation with plasma fatty acid levels.  
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Figure 1.4. Structural overlay of residues forming the main zinc site on albumin from published X-ray 

structure of unliganded albumin (PDB ID: 1AO6) in black, and EXAFS-refined model in Corey-Pauling-

Koltun colouring (Zn ion shown in purple, oxygen in red, nitrogen in blue) (Blindauer et al., 2009).  

Figure drawn using PyMol by Dr. Claudia Blindauer.  

In addition to its role in Zn
2+

 binding, Asp249 in HSA has been identified as being 

involved in the binding of Ca
2 +

, as observed in the crystal structure of bovine serum 

albumin (Asp248 in domain II of bovine albumin corresponds to Asp249 in human 

albumin), signifying that an interplay between Zn
2+

 and Ca
2+

 might occur in plasma 

(Majorek et al., 2012). Also, albumin binding Mn
2+

 has been shown to be affected by 

binding
 
of Zn

2 +
, leading to the conclusion that the high-affinity Zn

2 +
 site is also a Mn

2 +
 

binding site (Fanali et al., 2012a). Cisplatin, the anticancer drug, can preclude Zn
2 +

 

binding to the high-affinity site by crosslinking between the side chains of His67 and 

His247 (Hu et al., 2011). Mutant recombinant human albumins have helped identify the 

major residues involved in the zinc binding site of HSA and have also been shown to 

augment or impede the HSA affinity for zinc. By replacing the weak binding side-chain 

of Asn99 with His or Asp, HSA was shown to have an increased Zn
2 +

 affinity (by one 

order of magnitude at least). In contrast, a decrease in Zn
2 + 

affinity is acquired upon 

mutation of His67 to a non-chelating Ala residue (Blindauer et al., 2009). Extended X-

ray absorption fine structure studies established that both Asn99His and Asn99Asp 

mutants bind zinc in a similar 5(+ 1) coordinate ligand site, while the His67Ala mutant 

data produced an EXAFS fit with one fewer ligand (Figure 1.2). 2D 
1
H total correlation 

spectroscopy NMR analysis of the mutants identified the cross-peaks relating to His67 

and His247 for wild-type HSA, which enabled monitoring of the effects of different 

binding partners (metals, fatty acids) on this site. 

H247 

backbone

H2O
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Albumin ligand binding: Allosteric effects between fatty acids and metals 

Based on the X-ray crystal structural data available at the time, identification of the first 

Zn
2 +

-binding site of HSA (site A) revealed that the site is pre-formed in crystal 

structures of fatty acid free albumin (i.e. fatty acid binding to albumin disrupts the Zn
2 +

-

binding site structure). Fatty acid site 2 (FA2) is the main fatty acid binding site 

accountable for structural disruption in this location. Being one of the highest affinity 

fatty acid sites, even at 1:1 albumin:fatty acid ratios, it is considerably occupied. 

FA2 is one of the highest affinity sites and becomes significantly occupied at fatty 

acid:albumin ratios as low as 1:1 (Simard et al., 2006). It is a very enclosed site with an 

almost completely linear binding pocket shaped from subdomains IA, and IIA and IIB 

(Curry et al., 1999). However, FA2 requires a substantial change in protein 

conformation upon binding fatty acids, since the subdomain pockets which form the 

sites are observed to be apart by 10 Å in structures of fatty acid free albumin. The 

change required involves the rotation of the domains (domain I with respect to domain 

II) (Curry et al., 1998; Bhattacharya et al., 2000), the procession of which alters the 

arrangement of the residues involved in Zn
2 + 

binding. Essentially, this allosteric 

modulation means that the normally preformed zinc site is disrupted, once fatty acid 

binding has occurred at FA2 (Figure 1.5). This phenomenon is observed in all current 

crystal structures of fatty acid bound albumin, over a fatty acid chain length from C10 

to C22 (Bhattacharya et al., 2000; Choi et al., 2002; Lu et al., 2008; Stewart et al., 

2009). However, the crystal based structural data did not allow for any conclusions to 

be drawn regarding the dynamics of zinc and fatty acid binding; fatty acid binding to 

FA2 and zinc binding to site A may be equally exclusive, or fatty acid binding would 

preclude zinc binding (or vice versa). 
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Figure 1.5. Fatty acid binding site FA2 and the major zinc site (site A) residues. The binding pocket for 

fatty acids in FA2 is formed by residues from both domain I (yellow/orange) and domain II (blue), 

illustrated as a coloured surface. The carbons of the fatty acid molecule are shown as pink space-filling 

spheres, and can be seen under the coloured surface. Metal-binding nitrogen and oxygen atoms are also 

highlighted as spheres. The presence of the fatty acid molecules forces the two His residues apart by > 8 

Å, thereby destroying the zinc site. Under apo-conditions, the His residues are separated by 

approximately 4 Å (Barnett et al., 2013). Figure drawn using PyMol by Dr. Claudia Blindauer.  

113
Cd NMR spectroscopy provided early experimental evidence for the disturbing of 

metal binding by fatty acids, since the spectra showed significant broadening and a 

lower intensity in albumin samples isolated from plasma that were not subjected to a de-

fatting process (Sadler and Viles, 1996). Later, it was established for recombinant 

Cd2HSA that an 8-times excess of octanoate had a significant effect on the 
111

Cd peak 

corresponding to site A (although site B was not affected) (Figure 1.6a) (Stewart et al., 

2003). The Hε1 
1
H NMR resonances for His67 and His247 were affected by titrating 

octanoate into HSA, signifying that octanoate binds close to these residues (Figure 1.6b) 

(Lu et al., 2012a). These experiments also determined that zinc binding to site A was 

not eliminated by octanoate binding to FA2, since the 
1
H spectra of Zn–HSA were 

identical, regardless of the presence and absence of octanoate.  

From this, it was unclear if HSA is able to bind Zn
2 +

 stronger to site A than octanoate is 

to FA2 (and therefore causing octanoate displacement), or whether binding of zinc and 

octanoate could occur simultaneously. Isothermal titration calorimetry (ITC) was used 
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to address this question by studying the binding of Zn
2 +

 and octanoate to bovine serum 

albumin (BSA) interactively. Both ligands produced identical binding curves regardless 

of the presence or absence of the other. Incidentally, previous reports had stated that the 

presence of octanoate in HSA samples prevented it from crystallising isomorphically to 

all other fatty acid-bound structures (Bhattacharya et al., 2000). Thus it was proposed 

that the short C8 chain of octanoate is not able to provoke the same conformational 

change that is observed when longer chain fatty acids bind, since it is unable to pin the 

two interdomain half-sites together. This was in agreement with a structural model 

describing the simultaneous binding of Zn
2 +

 and octanoate (Lu et al., 2012a). 

Concerning the disappearance of peak A in 
111

Cd NMR spectra of HSA samples with 

two equivalents of Cd
2+

 induced by octanoate, it is possible that the metal is not 

displaced but binding of octanoate to one pocket simply affects the dynamics of Cd
2 +

 at 

site A. 

 

Figure 1.6. NMR experiments on wild-type and mutant albumins. (a) 
111

Cd NMR spectra conducted 

under conditions of 1.5 mM Cd2HSA, 50 mM Tris, 50 mM NaCl at pH 7.4. The centre spectrum shows 

Cd2HSA. Both octanoate and Zn
2 +

 perturb Cd
2 +

 binding to the peak at ca. 130 ppm corresponding to site 

A. Mutations of zinc-binding residues either eliminate the peak (H67A) or shift it (N99H mutant) (b) 

Resolution-enhanced 
1
H NMR spectroscopy of metal and fatty acid binding to HSA. His Hε1 protons are 

represented by the sharp peaks. Peaks 1 and 4 have been assigned to residues H67 and H247 respectively, 

and both are affected by octanoate, Zn
2+

, and mutations of H67 or N99 (Blindauer et al., 2009). 
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Contrastingly, the competition between Zn
2 +

 and myristate (C14) studied by ITC 

revealed that these ligands influenced the binding of each other to BSA (Figure 1.7a and 

b).  

 

Figure 1.7.Thermodynamic studies between metal and fatty acid binding to HSA by isothermal titration 

calorimetry. (a) Titration of Zn
2 +

 (333 μM) into bovine serum albumin (25 μM) in 50 mM Tris, 50 mM 

NaCl, pH 7.2 at 298 K, in the presence and absence of myristate. Here, zinc binding to two sites was 

observed, with apparent binding constants of log K′ = 5.67 and 4.15 respectively. Correcting for pH 

influence and the weak Zn
2 +

 chelation by the Tris buffer gave a stoichiometric log K = 7.0 for the 

strongest site. At high myristate concentrations (5 molar equivalents), no zinc binding could be detected. 

(b) Titration of bovine serum albumin (12.5 μM) with myristate in the presence and absence of Zn
2 +

 or 

Co
2 +

 in H2O at 298 K. Although no effect on fatty acid binding stoichiometry was observed, there was a 

reduction in the exothermic strength of the interaction, as it is likely that the binding of a fatty acid 

molecule to FA2 requires the removal of metal ions in site A and/or B. (c) Cobalt binding to bovine 

serum albumin was studied under identical conditions to those used for Zn
2 +

 binding to allow for direct 

comparisons to be made. Evidently, Co
2 +

 binding is significantly weaker than Zn
2 +

 binding, in agreement 

with Sokolowska et al. (2009), but an effect of myristate is still seen. However, in contrast to the effect on 

Zn
2 +

 binding, 5 molar equivalents of myristate did not completely eliminate Co
2 +

 binding. This could 

indicate that either site B is less affected by fatty acids than site A, and/or that Co
2 +

 can compensate for 

the potential loss of sites A and B by binding to the N-terminal ATCUN motif (Blindauer, 2013).  

Increasing the myristate concentration significantly decreased the stoichiometry of 

Zn
2 +

:BSA and the overall affinity of the interaction, while Zn
2 +

 did not alter the 

stoichiometry of myristate binding to BSA, but the binding energetics were observed to 

be less exothermic. Thus the affinity of albumin for myristate was concluded to be 

higher than that for Zn
2 +

 (Lu et al., 2012a), consistent with literature data. The data 

obtained showed the occupation of two Zn
2 +

 sites, which were affected by the myristate 

concentration. The maximum ratios used (5:1 myristate:BSA) showed complete 
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inhibition of Zn
2 +

 binding at the experimental conditions used. 
111

Cd NMR experiments 

using myristate showed an effect on a second metal site. Addition of a 5-fold excess of 

myristate suppressed the peak corresponding to site A in a similar manner as octanoate. 

However, unlike with octanoate, the peak corresponding to site B also disappeared upon 

addition of myristate (Lu et al., 2012a). This suggests that myristate binding could have 

an extra influence on site B, which is propositioned as a candidate for a second Zn
2 +

 

site. Site B currently remains unidentified, but based on the effects of fatty acids 

observed in these experiments it is possible that, like site A, it may also be an 

interdomain site.  

Interestingly, the ITC experiments revealed that the zinc binding properties (affinity and 

capacity) of BSA are affected by levels of myristate as low as 1 molar equivalent. 

Therefore, the phenomenon of fatty acids modulating the affinity of albumin for Zn
2+ 

is 

likely to occur at all physiological levels, and is not exclusive to extreme experimental 

conditions. This is given some context by the fact that FA2 is one of the highest affinity 

fatty acid sites and so its occupation upon binding of the first equivalent of fatty acid is 

reasonable (Simard et al., 2006). The binding of zinc and fatty acids (medium to long 

chain) to albumin are therefore interactive, as advocated by the examination of X-ray 

structures. This mechanism might mean that albumin is a link between the distribution 

and levels of plasma fatty acids, which reflect energy status, and zinc in plasma and 

nearby tissues. 

Physiological implications of modulation of metal binding by fatty acids 

There are many links between Zn
2 +

 homeostasis and signalling in energy metabolism 

(Cunnane, 1982; Costarelli et al., 2010). Zinc affects concentration and activities of the 

hormones, glucagon (Hardy et al., 2011), leptin (Mantzoros et al., 1998; Chen et al., 

2000) and insulin (Rutter, 2010). Insulin is essential for sufficient HSA synthesis. In 

diabetes, patients have a diminished albumin synthesis rate, which may influence fatty 

acid transport by albumin and cell uptake (Fanali et al., 2012b). Leptin, made in 

adipocytes, controls energy intake and expenditure and it is believed that because of 

this, Zn
2 +

 status has a direct impact on appetite and eating behaviour (Shay and 

Mangain, 2000). Hyperleptinemia (high levels of leptin) in obesity is coupled with 

hypozincemia (low levels of plasma zinc) (Oh and Choi, 2004). Similarly, zinc 

influences the activity of adiponectin (a hormone also secreted by adipocytes) which is 



16 
 

also implicated in fatty acid oxidation and plays a part in insulin resistance (Briggs et 

al., 2012). The oligimerisation and thus activity of both adiponectin and insulin is due to 

their direct interaction with Zn
2 +

, and so is heavily reliant on available zinc ion levels. 

Fatty acid synthesis and esterification (lipogenesis) in adipocytes has been shown to be 

heightened by Zn
2 +

 in vitro (Oh and Choi, 2004), and Zn
2 +

 is actively taken up into 

adipocytes during fatty tissue formation (Smidt et al., 2011). Increased intracellular 

Zn
2 +

 levels may influence leptin signaling directly via inhibition of protein tyrosine 

phosphatase 1B, which leads to the inhibition of a key enzyme in the leptin and insulin 

signaling pathways, phosphoinositide 3-kinase (Volpe et al., 2007).  

Modulation of the albumin affinity for zinc may lead to substantial consequences. One 

possibility would be that the reduced affinity of fatty acid-bound albumin for zinc alters 

the speciation of zinc in plasma (i.e. the zinc would bind to alternative proteins). 

Another possibility could be a change in plasma zinc speciation would affect its uptake 

by endothelial cells leading to consequent downstream effects.  

Albumin influences Zn
2 +

 uptake into cells, as described by evidence from several 

experiments. Albumin affects uptake of zinc by fibroblasts, since it can act as an 

extracellular ligand for zinc and so buffer the free Zn
2 +

 levels (Ackland and McArdle, 

1990). For endothelial cells, Zn
2 +

 coordinated by albumin can be taken up through 

endocytosis pathways. Also, the cells have a greater affinity for albumin carrying Zn
2 +

 

compared to the apoprotein (Gálvez et al., 2001). Hence, regardless of the mechanism 

by which albumin contributes in cellular Zn
2 +

 uptake, any modulation of its Zn
2 +

 

affinity can be expected to impact cellular Zn
2 +

 homeostasis. However, it should be 

noted that other mechanisms of cellular regulation (including the expression of 

membrane-bound zinc transporters) exist and are significant (Devirgiliis et al., 2007). 

While zinc levels in plasma are reliably constant, there exist certain conditions where 

these levels are reduced (King, 2011). Due to the numerous connections between zinc 

and lipid (and thus energy) metabolism, it is problematic to separate consequences from 

causes. However, in order to ascertain the credibility of a contribution of fatty acid 

induced redistribution of  Zn
2 +

, clinical or physiological conditions in which both raised 

plasma fatty acid levels and reduced plasma zinc levels may be encountered are of 

interest. Conditions where lower plasma zinc levels and increased plasma fatty acid 

levels were observed together have been reported and include vigorous aerobic exercise 
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(Volpe et al., 2007), obesity, diabetes and cardiovascular disease (Ghayour-Mobarhan et 

al., 2005; Soinio et al., 2007; Jansen et al., 2012; Boden, 2011). 

In cardiovascular disease, conditions leading to reduced energy consumption by the 

heart could potentially lead to elevations of free fatty acids (at least a temporary 

increase), since fatty acids provide a large fraction of the energy used by the heart 

(myocardium in particular). Consequently, it could be that the lower levels of plasma 

zinc recorded in chronic heart failure (Foster and Samman, 2010) and acute myocardial 

infarction (Katayama et al., 1990; Tan et al., 1992; Arnaud et al., 1994; Gomez et al., 

2000) are a direct corollary of the high free fatty acids levels. It is known that levels of 

zinc in serum are known to fall suddenly in the few hours following a myocardial 

infarction (MI), with lowest levels detected after 2 or 3 days, subsequently returning 

slowly to baseline values (Katayama et al., 1990). Saliently, the plasma of patients with 

MI was observed to have a reduced capacity to bind metals, resulting in the 

development of a clinical test: the albumin-cobalt-binding (ACB) assay (Bar-Or et al., 

2000).  

MI is defined by the heart muscle experiencing a lack of oxygen supply and is a 

precursory sign for acute myocardial infarction (i.e. heart attack). Bar-Or et al. designed 

the ACB assay (Bar-Or et al., 2000) founded on the premise that MI could provoke 

modifications to albumin molecules in circulation that affect its capability to coordinate 

to metals. It was established that plasma or serum from MI patients exhibits a 

considerably lower capacity for Co
2 +

 binding, which can be measured rapidly in a 

colorimetric assay by the reaction of Co
2 +

 in excess with the reducing agent, 

dithiothreitol. Detection of the brown coloured Co
2+

-dithiothreitol complex is measured 

at 500 nm to provide the result (Bar-Or et al., 2000). The ACB assay has a respectable 

negative prognostic use and is the only clinical test available for the rapid early 

assessment of MI. An abormal reading of the ACB allows MI (and hence imminent 

heart attacks) to be prevented (Collinson and Gaze, 2008; Gaze, 2009; Christenson et 

al., 2001). However, the efficacy of the test has been called into question, since the test 

is not necessarily specific for this condition (Dominguez-Rodriguez and Abreu-

Gonzalez, 2010). Irregular readings relating to low cobalt binding capacity have been 

observed in cases other than that of ischemia. These include diabetes, obesity (Kaefer et 

al., 2010), cancer, metabolic syndrome, fatty liver infections (Amirtharaj et al., 2008), 



18 
 

renal disease, stroke, and even continuous aggressive exercise (Apple et al., 2002; Lippi 

et al., 2005). 

The ACB assay is thought to detect the biomarker known as “ischemia-modified 

albumin” (IMA), with the fundamental premise that ischemia causes modifications to 

the amino-terminal copper and nickel binding (ATCUN) motif. For example, truncation 

at the N-terminus, a known modification of albumin that occurs due to oxidation (Chan 

et al., 1995). Peptide models of the N-terminus have been used to study the binding of 

Co
2 +

 (Bar-Or et al., 2001) but critically N-terminus modifications of albumin from 

ischemic patients could not be validated (Bhagavan et al., 2003; Bar-Or et al., 

2008). The molecular mechanism behind the lower Co
2 +

 affinity has remained obscure. 

Some studies have suggested that the major sites for Co
2 +

 binding are sites A and B, 

and not the N-terminus (Mothes and Faller, 2007; Sokolowska et al., 2009).  

Although the N-terminus can in principle bind Zn
2 +

and Co
2 +

 (Lakusta and Sarkar, 

1979), the ATCUN motif generates a square planar geometry which is more suitable to 

low-spin d
8
 and d

9
 metal ions such as Ni

2 +
 and Cu

2 +
. The d

7
 Co

2 +
 ion and the d

10
 Zn

2 +
 

ion are not as attracted to the ATCUN motif site, instead preferring octahedral 

geometries in general. This introduced the possibility that fatty acids could also 

influence Co
2 +

 binding if site A or B are indeed involved in its coordination (Mothes 

and Faller, 2007). This direct effect was demonstrated, where high levels of plasma fatty 

acids affect the cobalt binding capacity of albumin (Amirtharaj et al., 2008) and the 

correlation between plasma fatty acids and IMA was described as “plausible but not 

causative” (Bhagavan et al., 2009). Later, site B was identified as the major Co
2 +

 

binding site (Sokolowska et al., 2009) which had previously been shown to be 

susceptible to fatty acid binding (Lu et al., 2012a).  

Based on these clinical observations and in vitro studies, it was proposed that IMA was 

simple regular albumin in the presence of higher fatty acid levels. ITC studies involving 

the competitive binding of myristate and Co
2 +

 (analogous to the Zn
2+

 and myristate 

studies) established that the presence of myristate did indeed affect Co
2 +

 binding 

(Figure 1.6b and c) (Lu et al., 2012b). Interestingly, Co
2 + 

binding was less affected by 

the addition of five molar equivalents of myristate compared to Zn
2 +

 binding, where 1.3 

molecular equivalents of Co
2 + 

were still observed to bind. This effect was attributed to 

variances in binding affinities of the three sites (site A, site B and a third unknown site 
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which is possibly the ACTUN motif) for Zn
2 +

 and Co
2 +

, and to the different effects that 

fatty acids induce on each of the three sites. Based on ITC
 
and 

111
Cd NMR data, site A 

is impaired to the greatest extent, followed by site B, but no significant negative change 

is anticipated at the N-terminus, based on structural deliberations. Thus, with site A 

being the primary site for Zn
2 +

 but only a secondary site for Co
2 +

, comprehensive 

abolition of site A has a major influence on Zn
2 +

 binding, but a minor effect on Co
2 +

 

(which can be compensated by alternate binding of Co
2 +

 to the N-terminus). 

Absorbance readings of a mock ACB test involving physiologically applicable 

concentrations of BSA and 0–5 molar equivalents of myristate showed an association 

between the level of fats and the read out from the test (Lu et al., 2012b). This was an in 

vitro demonstration that elevated fatty acids in plasma are able to directly influence the 

results of the ACB assay.  

Additionally, since IMA involves non-covalent binding, it explains the quick return to 

normal IMA levels within hours once the ischemic incident is complete. Since albumin 

has a long half-life in plasma, any covalent modifications that are formed are not likely 

to be processed and cleared in such a short time frame, while plasma fatty acids are 

known to be cleared from the system in a similar frame of time (Eaton et al., 1969). 

Although this is a plausible and likely mechanism, it is important to note that it does not 

exclude the workings of other mechanisms that are able to influence cobalt binding to 

albumin, such as acidosis reducing local pH. 

The abundance of zinc in the body requires tight homeostatic regulation which is 

achieved through many mediators and transporters in both intracellular and extracellular 

environments. As stated earlier, a consequence of fatty acid induced inhibition of zinc 

binding to albumin could be the alteration of the speciation of zinc in circulation. That 

is to say, since albumin is the main transporter of zinc in plasma, if the zinc is unable to 

bind to where it usually would (its binding sites on albumin), the zinc in circulation 

must be bound to alternate proteins. One such protein is histidine rich glycoprotein 

(HRG), which is of particular interest since its action is regulated by its coordination of 

zinc. 
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Histidine Rich Glycoprotein (HRG) 

HRG is a 507 amino acid multidomain protein of an approximate mass of 75 kDa, with 

six predicted N-linked glycosylation sites, present in the plasma at low micromolar 

concentrations (Jones et al., 2005). The plasma proteome is dominated by the presence 

of up to 60% HSA, which equates to around 40 mg/ml. HRG can be said to be 

moderately abundant in plasma since it circulates in the same range as other classic 

plasma proteins such as IgG, IgA, factor H and the complement proteins in the range of 

0.05-0.5 mg/ml (Anderson and Anderson, 2002).  

The amino acid sequence of HRG was derived from the nucleotide sequence of its 

cDNA by Koide et al. (1986). The structure of HRG is composed of two N-terminal 

domains (N1 and N2) evolutionarily related to cystatins, a central eponymous histidine 

rich region (HRR) with two proline rich regions (PRR1 and PRR2) at either side of the 

HRR and a C-terminal domain (C) (Jones et al., 2005). The distinctive domains are held 

together by an arrangement of six disulphide bonds, forming the intact protein molecule 

(Figure 1.8). The domain structure allows for HRG to bind to a multitude of molecules 

including plasminogen (Lijnen et al., 1980), fibrinogen (Leung, 1986), thrombospondin 

(Leung et al., 1984), IgG (Gorgani et al., 1997), heparin (Lijnen et al., 1983a) and haem 

(Katagiri et al., 1987) as well as cell surface receptors such as Fcγ receptors (Poon et 

al., 2010), heparan sulphate (Jones et al., 2004) and platelets (Horne et al., 2001). Some 

of the studies on the binding profile of HRG used recombinant HRG expressed in 

human embryonic kidney cells (Olsson et. al. 2004; Rydengard et. al., 2007) or insect 

cells (Jones et. al., 2004). The variety of ligands that HRG displays an affinity for is 

mirrored in its presence as a regulator of several physiological processes, including 

immune function, angiogenesis and the coagulation of blood.  

HRG binds to heparin, a potent anticoagulant, with a strong affinity thereby regulating 

the cascade of usual mechanisms. Heparin would normally bind to antithrombin III, 

forming a heparin-antithrombin III complex that inhibits activated coagulants such as 

thrombin (Lijnen et al., 1983b). The formation of the HRG–heparin complex is 

enhanced in the presence of Zn
2 +

 (Jones et al., 2004). The most salient feature of HRG 

is promoted by its etymology, it contains an unusual prevalence of histidine (and 

proline) residues each accounting for approximately 13% of the amino acid sequence. 

The histidine rich region bears an extraordinary repeating amino acid sequence of Gly-
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His-His-Pro-His, developing a chain of histidine residues associated with binding metal 

ions (Figure 1.8).  

 

Figure 1.8. (a) The domain structure of the 507 amino acid human HRG represented as blocks, showing 

the N-terminal domains (N1 and N2), the first proline rich region (PRR1), the histidine-rich region 

(HRR), the second proline-rich region (PRR2), and the C-terminal domain (C). The dotted lines show the 

disulphide bridging arrangement through the protein, and the stars represent putative glycosylation sites. 

The unique repeating amino acid sequence of the HRR is also shown. (b) Chemical structure of the 

polysaccharide heparin. X = H or SO3
-
, Y = H, SO3

-
 or Ac. 

Pioneering work by Morgan showed that HRG can bind, Zn
2+

, Cu
2+

, Cd
2+

, Hg
2+

, Co
2+

 

and Ni
2+

 (Morgan, 1981; Morgan and Guthans, 1982). These studies provided 

fundamental insights into the methods of the protein, revealing that the Zn
2+ 

binding is 

pH dependent, with less binding observed at acidic pH, indicating that protonation of 

histidine residues reduces affinity. It was also reported that rabbit HRG is able to 

compete with albumin in respect to Zn
2+ 

binding (Morgan, 1981; Morgan and Guthans, 

1982). This is an intriguing observation since albumin has a greater affinity for Zn
2+

 (Kd 

= 30 nM cf. Kd = 1-4 µM) (Masuoka, 1993) and circulates at a much higher plasma 

concentration than HRG (Masuoka et al., 1993), but has less known binding sites. These 

studies demonstrated that that the affinities of the two proteins are relatively close 

together in relation to Zn
2+ 

chelation.  

The ability of human HRG to bind up to 10 molar equivalents of Zn
2 +

 effectively 

multiplies the zinc binding site concentration of HRG (Morgan and Guthans, 1982). 

Therefore, relatively small perturbations could possibly lead to shifts in Zn
2 +

 

-HPHKHHSHEQHPHGHHPHAHHPHEHDTHRQHPHGHHPHGHHPHGHHPHGHHPHGHHPHCH-

(a)

(b)
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distribution between albumin and HRG. Additionally, the concentration of Zn
2 +

 that is 

essentially free to move in plasma may reach the levels necessary for Zn
2 +

-dependent 

HRG complex formation (i.e. activation) during thrombosis, since platelet-derived α-

granules release Zn
2 +

 at the site of a thrombus (Horne et al., 2001). It is supposed that 

this system may assist in the temporal and spatial regulation of blood clotting (Vu et al., 

2013). 

In individuals suffering from elevated plasma fatty acid levels, it is conceivable that 

fatty acid-binding to albumin could release exchangeable Zn
2 +

 which may consequently 

enhance the formation of HRG–heparin complexes. Indirect evidence for this includes 

blood analbuminemia (no serum albumin), which is associated with hypercoagulability 

(Koot et al., 2004). Dietary studies have also shown that platelet aggregation and 

fibrinolysis can be increased by intake of some fatty acids (Prost-Dvojakovic and 

Samama, 1973; Kerr et al., 1965). Therefore it is possible that this mechanism may 

contribute to thrombotic symptoms that are clinically associated with conditions such as 

diabetes, cancer and obesity (Richieri et al., 1993). The examination of this relationship 

between fatty acid binding to albumin, the consequent Zn
2 +

release and possible 

increased coordination of zinc to HRG forms the premise and hypothesis of this 

research project. 

Albumin, Fatty Acids and Zn
2+

 Dynamics: Activation of HRG and a possible 

implication in blood coagulation  

One reservation regarding the early albumin studies looking at fatty acid and metal 

binding is to do with the preparation of the albumin samples used in experiments. One 

study using sheep albumin gave preliminary results showing no metal binding to the 

protein. It was noted that the albumin preparation did not include a de-fatting step, the 

inclusion of which resulted in the expected metal binding (Sadler and Viles, 1996). 

Following on from here, it was postulated that the presence of fatty acids induces an 

allosteric disruption of the Zn
2+ 

binding site, confirmed by crystal structure comparison.  

This supposed release of exchangeable Zn
2+ 

could switch on a chain of molecular 

events, where its binding to HRG leads to the formation of anticoagulant inhibiting 

complexes. High levels of plasma fatty acids are prevalent in conditions such as cancer, 

diabetes, obesity (Ghayour-Mobarhan et al., 2005; Soinio et al., 2007; Jansen et al., 

2012; Boden, 2011) and these conditions also present an increased risk of thrombosis. 
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With high levels of HRG associated with thrombotic disorders, it is pertinent to propose 

a potential relation between fatty acids binding to albumin, the subsequent release of 

Zn
2+ 

and the increased coordination of zinc to HRG (Figure 1.9). 

 

 

Figure 1.9. Schematic representation of the molecular interactions under investigation. Increasing fatty 

acid levels may shift the equilibrium towards the right.  
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Aims 

The major hypothesis under investigation during this doctoral research project is to 

develop an understanding of the regulation of the Zn
2+

 dependent activities of histidine-

rich glycoprotein as influenced by fatty acid binding to albumin. Another major aim is 

to gain better insight into the metal binding properties of albumin. The project is divided 

into separate chapters with individual aims.  

Chapter 2: Experimental techniques 

Chapter 3: Structural characterisation of HRG.  

Chapter 4: Investigations into Zn
2+

 and heparin binding to HRG and implications for                   

thrombin activation.  

Chapter 5: Identification of novel metal binding sites on albumin.  

Chapter 6: Conclusions 
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Chapter 2 

Experimental techniques 

Protein purification 

One of the simplest and easiest methods for protein purification is immobilised metal 

affinity chromatography, which was developed in the ‘70s (Porath et al. 1975). This 

process utilises either a protein’s native or engineered affinity for metals (usually Ni
2+

 

or Cu
2+

) immobilised on a matrix. Histidine exhibits the strongest interaction with 

immobilised metal ions, as electron donor groups on the histidine imidazole ring readily 

form coordination bonds with the metal. Nickel, copper and zinc can coordinate with 

donor atoms such as O and S but have a distinct preference for N. Also, the imidazole 

group of histidine is partially deprotonated at physiological pH (pKa ~ 6.5). Therefore, 

provided that the histidine is accessible, it will provide the protein with the ability to 

bind to these metal ions.  

Consecutive histidine residue containing amino acid sequences are proficiently retained 

during immobilised metal affinity chromatography. The matrix is washed, and the 

polyhistidine sequences can be eluted simply by either adjusting the imidazole content 

or the pH of the buffer. Imidazole, due to structural similarity with histidine, provides 

effective competition for the metal matrix thereby releasing the histidine sequence from 

binding. Reducing the pH alters the charges of the imidazole group of histidine (making 

it more positively charged), hence precluding its binding to the positive metal matrix. 

This understanding and simplicity led to the development of “His-tags” to modify 

desired proteins for ease of purification (Hochuli et al. 1987, 1988), and is now 

common practise in purification protocols.  

The nickel affinity chromatography method was used here to purify HRG either from 

rabbit serum/plasma or human plasma, by exploiting the histidine-rich nature of HRG 

and consequent affinity for metal ions. The procedure used was a modified version of 

established protocols for HRG purifications (Mori et al. 2003), which in one simple step 

affords high yields and high purities. 

While this one step procedure was deemed suitable for most experiments, an extra 

purification step was added prior to protein crystallography experiments. To further 
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purify and ensure homogeneity, HRG was subjected to size exclusion chromatography 

(also known as gel filtration).  Size exclusion chromatography separates molecules 

based on their hydrodynamic volume (their sphere of rotation in solution) and has been 

applied in protein purification for decades. During size exclusion, larger molecules are 

retained on the column for shorter periods of time than for smaller molecules (which 

could include salt and other buffer constituents), thus effective separation of a 

heterogeneous sample can be achieved, once optimal procedures and conditions are 

developed. This method can also be used to “desalt” or exchange the buffer solution in 

protein samples. Separation is made possible by pores within the resin that provide a 

longer pathway through the column for smaller analytes, which can fit through the pore.  

Size exclusion columns generally have a low resolution and come in many stationary 

phase arrangements of different pore sizes and matrix material allowing for the selection 

of the most appropriate column for specific samples. The state of the protein sample can 

also affect the retention time of proteins, since hydrophobic and electrostatic 

interactions occur between the protein and the matrix, which can result in larger peak 

volumes or lower resolution (Regnier, 1983). The ionic strength of the solution can also 

influence retention times, where moderate to high salt concentrations subdue 

electrostatic interactions of proteins with the column matrix (Stulík et al. 2003). As with 

high-performance liquid chromatography, organic solvents like acetonitrile can be used 

in the buffers to reduce interactions (Welling et al. 1985). However, this is a harsh 

method which can potentially denature the target protein.  

Protein Crystallography  

Protein crystallography attempts a molecular choreography of the most dynamic and 

pliable constructs in chemical physiology. Protein molecules display an abstract quality 

of arranging into structures relating to function while paradoxically being composed of 

apparent random sequences of amino acids. Crystallography is the most powerful 

technique available to examine the tertiary and even quaternary structure of proteins. 

Crystals are achieved by exposing a protein sample of high purity to conditions at the 

limit of precipitation. In order to establish these, parameters including protein 

concentration, salt content, precipitant, pH and temperature are varied to establish 

optimal conditions for crystallisation to occur. Another aspect of importance is the 

homogeneity of the protein in the sample. It is imperative that the protein molecules are 
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of the same homogeneity in order to build on one another to form a crystal (Benvenuti 

and Mangani, 2007). 

During the crystallisation process, molecules in solution associate with each other to 

form a uniform solid phase lattice. This process is encouraged by altering the chemical 

and physical environment to make the formation of the lattice conformation 

thermodynamically favourable. The difference between the changes in entropy and 

enthalpy is the energy released during crystallisation. Due to rotational and translational 

disorder, the molecule has favourable entropy in solution, but is enclosed by a 

coordination sphere of water molecules that give the system unfavourable entropy. The 

surface charge of the protein molecule allows it to hydrogen bond with the water 

molecules (enthalpically favourable). However, these interactions are altered during 

crystallisation where hydrogen bonds with some of the water molecules are sacrificed in 

areas where stronger intramolecular ionic and hydrogen bonds are available, and thus 

the regular order of the crystal lattice lowers the entropy of the crystalline system. 

Hydrophobic regions of protein molecules are likely to be hidden by intermolecular 

interactions, preventing the formation of unfavourable bonds with water molecules. The 

solution entropy is increased however, by the expulsion of water molecules (Benvenuti 

and Mangani, 2007). 

Varying the conditions described above can be used to control and exploit these energy 

profiles. For example, the pH determines the charge on the molecule thereby 

manipulating the interactions of the protein with the solution. Polymeric alcohols such 

as polyethylene glycol (PEG) quench water molecules away from a crystal lattice, 

allowing it to pack tighter. Adding counter-ions can protect surface charges and alter the 

solvent chemical potential. Divalent metals can directly interact with the protein and 

attenuate lattice contacts. The inclusion of metal ions can also help solve phasing issues 

further on in the structure resolution process. The physical environment during 

crystallisation can be changed by several methods including dialysis, controlled 

evaporation or vapour diffusion (Dessau and Modis, 2011).   

A popular vapour diffusion method used routinely for crystallisation is the sitting drop 

vapour diffusion technique. A mixed drop (between nanoliter and microliter in volume) 

containing sample, buffer and precipitant reagents is placed on a platform to put it in 

vapour equilibration with a liquid reservoir well. Initially, the precipitant concentration 
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in the drop is lower than that in the reservoir (i.e. the water concentration in the drop is 

higher). Over a period of time water vapour leaves the drop and equilibrates with the 

reservoir well. Since water is leaving the drop solution, the sample is effectively being 

concentrated thereby increasing the relative supersaturation of the sample. This is a key 

step during crystallisation, since the process involves the effort to push the sample 

through different phases to achieve reproducible crystal growth.   

A phase diagram provides an appropriate illustration of the crystallisation process, 

showing the states which occur during attempted crystallisation. It shows the balance of 

pivotal parameters such as protein concentration, additives and precipitants in a constant 

juggle to produce crystals. Phase diagrams are kept in mind during the design and 

optimisation of crystal experiments (Figure 2.1) (Ataka, 1993; McPherson 1999). 

 

Figure 2.1. Phase diagram for a vapour diffusion crystallisation experiment, showing the four possible 

zones. The protein sample begins in an undersaturated state but during the evaporation process becomes 

more concentrated and tends towards the nucleation zone. Once crystals nucleate, the protein 

concentration in solution drops and the sample sits in the metastable zone, most suitable for crystal 

growth. 

Four zones represent the varying points of saturation where the zone of high 

supersaturation is likely to induce protein precipitation and a zone of undersaturation 

where the protein is soluble and stable in solution thus precluding crystal formation. In 

between these conditions exists a zone of moderate supersaturation, where nucleation 
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occurs spontaneously. This zone is encouraging for the growth of crystals. But the 

desired condition rests in the metastable zone of supersaturation, where crystals forming 

after nucleation are stable and may grow well ordered crystals. Crystallisation ensues in 

two phases, nucleation followed by growth. Nucleation is a necessary for crystallisation, 

but requires different conditions than those required for growth. According to the phase 

diagram, once nucleation has been achieved and spontaneous growth follows, the 

protein concentration in solution will decrease and the phase will drop down into the 

metastable zone (Ataka, 1993; McPherson, 1999). Generally, the crystallisation process 

takes two stages where the first aim is to determine lead conditions for crystallisation of 

the molecule and secondly to optimise those conditions to produce quality single 

crystals of at least 10 μm
3
 in dimension for X-ray diffraction. 

All X-ray diffraction experiments were performed by Dr. Stephen McMahon. 

Isothermal Titration Calorimetry (ITC) 

One of the main calorimetric techniques applied to investigate protein binding 

interactions is isothermal titration calorimetry (ITC). ITC measures the heat energy 

generated during the association of molecules at a constant temperature; once a ligand is 

titrated into a protein solution the exothermic or endothermic heat is detected. ITC 

allows for the association constant (Ka, and thus the dissociation constant, Kd), the 

standard Gibbs free energy change (ΔG), the enthalpy change (ΔH), the entropy change 

(ΔS) and the stoichiometry (n) of the binding reaction to be determined simultaneously. 

Additionally, if experiments are performed over a range of different temperatures the 

heat capacity change (ΔCp) of the binding reaction can be calculated (Chen and Wadso, 

1982; Wiseman et al., 1989; Freire et al., 1990). Since most interacting systems are 

characterised by changes in enthalpy, ITC has vast range of potential applications. 

In modern instruments, the calorimeter is based on a cell feedback system which 

measures the difference in heat effects between the sample cell and a reference cell. A 

constant power is applied to the reference cell which activates the feedback circuit, in 

turn regulating the temperature in the sample cell. The baseline signal is the resting 

power applied to the sample cell. If the reaction between the sample and the titrant is 

exothermic a decrease in the necessary feedback power is required (since the reaction 

provides energy to the system), and endothermic reactions require an increased 

feedback power (since the reaction will take energy out of the system). The reaction 
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enthalpy for each injection is obtained by integrating the area of the peak formed which 

deviates away from the resting baseline. Thus the power applied by the calorimeter to 

keep the system under isothermal conditions is a means of following the interaction. 

Figure 2.2 shows a schematic representation of an ITC calorimeter (Wiseman et al., 

1989; Freire et al., 1990). 

For a typical ITC experiment, the reference cell is filled with water and the sample cell 

with the sample of interest. The ligand is introduced by an electronically controlled 

injection syringe which is continuously stirring during an experiment, to allow complete 

instantaneous mixing in the sample cell after an injection. The mechanical heat provided 

by the stirring is constant and becomes part of the resting baseline. Setting up ITC 

binding experiments is very challenging due to the nature of  non-covalent binding, 

where heats are intrinsically small  (in the range of 5-10 kcalmol
-1

), and are released 

during the binding experiment. Additionally, ligand titration produces further heat 

effects arising from mixing and dilution which are frequently comparable to the binding 

heat of interest, and so corrections must be made to account for these. The setup of an 

ITC experiment depends largely on the thermodynamic characteristics (the expected 

binding affinity and the heat effect) of the system of interest. Thus the appropriate 

concentration of the protein placed in the cell depends on the binding affinity between 

the protein and ligand. The shape of the binding curve is dependent on the product of 

the concentration of macromolecule [M] and the binding constant Ka, which is termed 

as the dimensionless constant, C.  

 

Figure 2.2. Diagram showing the concept behind an isothermal titration calorimeter. The system is kept 

at a constant temperature, and the power required to sustain this temperature relative to the reference cell 

is recorded as the titrant is injected into the sample cell.  

Reference cell Sample cell

Syringe with titrant
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At high C-values (over 500), the shape of the curve approaches a step function and so 

becomes insensitive to changes in Ka and thus unsuitable for determining binding 

constants. At low C-values (less than 10), the binding curve essentially forms a 

horizontal line which reveals very little experimental information regarding affinity 

constants. Conditions should be optimised to have a C-value in the range of 10–100 for 

an accurate and reliable determination of Ka. To measure at these C-values, very strong 

binding interactions (10
7
–10

8
 M

-1
) require low concentrations of the protein. With a 

lower affinity of the interaction or lower concentrations of the protein, the signal will 

becomes smaller and reach the detection limit of ITC. Therefore, it is necessary to use 

high protein concentrations to obtain informative isotherm curves if a low binding 

affinity is expected or observed. There is no limit in principle to the low binding affinity 

interactions that can be determined, however in experimental practice there are 

problems with stability or solubility and often with availability of the precious protein 

sample in order to optimise conditions such that the C-value range is 10–100. Even at 

low ligand concentration, only a small percentage of ligand is bound to the protein, 

making sufficient heat detection difficult and thus problematic to determine ΔH 

accurately (Bhatnagar and Gordon, 1995). 

For high quality isotherms, an appropriate protocol has to be established by optimising 

parameters such as protein concentration, ligand concentration, the injection volume and 

the injection spacing. The ligand concentration is usually much higher than the sample 

concentration since several molar equivalents must be injected to reach saturation. The 

ITC experiment should be designed to reach or at least approach complete saturation of 

the binding sites by the end of the experiment. To generate an appropriate number of 

data points, which will improve data analysis by allowing for better curve fitting, the 

ligand is added in small quotients. However, this volume should not be so small such 

that the heat signal is too small to maintain high precision of each injection data point. 

In the instance of the interaction heat being small, the injection volume can be 

increased. In cases where the ligand has poor solubility, it is possible to place it in the 

sample cell and to inject the protein (Bhatnagar and Gordon, 1995). 

The time interval in between consecutive injections is an additional significant 

parameter in obtaining quality data. If the binding association is quick, the calorimeter 

will be able to equilibrate to baseline in a short time, and so only a few minutes would 

be sufficient to reach baseline again after injection. However, a slow binding process 



45 
 

will require much longer to reach equilibrium. When running an ITC experiment, it is 

imperative that the solutions of protein and ligand are pure and at exactly the same pH, 

buffer composition and salt concentration. To achieve this, the protein and ligand are 

usually dissolved in the same buffer or dialysed prior to the experiment. This ensures 

the prevention of spurious heat effects which result from the mixing of different buffer 

components. Additionally, air bubble formation is to be avoided, and so samples are 

degassed prior to the experiment. Air bubbles in the sample cell can lead to false signals 

since they can interfere with the thermal contact of solution and cell wall. Lastly, the 

heat effect of the first injection is usually too small as a result of diffusion during 

equilibration of the system. Thus it is common practice to make a small first injection 

and then subsequently delete the first data point prior to analysis (Bundle and 

Sigurskjold, 1994). 

ITC measures the total heat released or absorbed during a binding interaction which 

includes the heat contributions from dilution of ligand in the buffer, heat of mixing and 

possible mixing of buffers of slightly different composition. Before analysing the data 

for a specific reaction, these effects (particularly the heat of dilution) need to be 

accounted for by performing control experiments of the injecting ligand into buffer. An 

alternative option is to ensure that the experiment reaches complete saturation by the 

end of the titration so that the nonspecific heat effects can be averaged from the final 

injections. The area under the signal against time curve which is evolved during an ITC 

experiment represents the total heat absorbed or released by an injection (Figure 2.3). 

From this raw data, the baseline and dilution heats are subtracted. The data are 

presented in integral mode as a hyperbolic saturation curve or in differential mode as a 

sigmoid plot (Sigurskjold et al., 1991; Bundle and Sigurskjold, 1994).  

To obtain quantitative information, the data is subjected to non-linear curve fitting. In 

the simplest case, each protein molecule contains only one type of binding site, all of 

which display the same intrinsic affinity for the ligand. More complex fitting methods 

are also used to attempt to describe more complex binding systems, where multiple 

independent sets of binding sites occur or where cooperative binding sites exist. Using 

statistical thermodynamic treatment makes it possible to deconvolute a binding isotherm 

of such complex systems (Perozzo et al., 2004). However, the quality and reliability of 

the experimental data dictate the success of fitting parameters.   
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Figure 2.3. (a) An ITC isotherm for EDTA (0.4 mM) titrated with Ca
2+

 (5 mM). The top panel is the raw 

data showing the heat generated for each injection of Ca
2+

. The bottom panel is an integration of the raw 

data peaks showing the energy per mole of reactant, and the non-linear fit can be used to quantify the 

interaction. In this case, the reaction was exothermic with N= 0.93 and Ka= 1.35  10
5
 M

-1
. The important 

paraeters are highlighted. (b) The thermodynamic equations relating the change in enthalpy (ΔH) and the 

dissociation constant (Kd) with Gibbs’ free energy (ΔG). R is the Gas constant, T is temperature and ΔS 

the change in entropy. 
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Chapter 3 

Structural characterisation of HRG 

This chapter details the structural investigations into histidine-rich glycoprotein (HRG). 

As discussed previously, HRG is known to modulate a variety of processes in plasma 

through its ability to bind to a range of ligands but little is known about how these 

binding interactions occur and how HRG folds into a 3-dimensional structure (Figure 

3.1).  

 

Figure 3.1. Domain structure of rabbit HRG, showing the N1 and N2 domains, the proline-rich regions 

(PRR1 and PRR2), the histidine-rich region (HRR) and the C-terminal domain (C). The putative 

glycosylation sites and the cleavage sites for plasmin are also shown. The disulphide bridging 

arrangement is highlighted by grey lines, with the disulfide bridge between the N2 domain and the 

HRR/PRR fragment highlighted in bold black (Kassaar et al., 2014). 

Although the HRG sequence and domains are well conserved across different species, 

minor variations amongst species exist. Alignment of rabbit HRG with human HRG 

shows a 64% identity, with 69% similarity (Figure 3.2). The greatest homology occurs 

at the N-terminal domains, where the respective N2 domains are 68% identical and 93% 

similar. However, the HRR and PRR regions exhibit a lower degree of homology due to 

substitution of histidine for proline along the sequence in the rabbit protein. The 

HRR/PRR region of rabbit HRG is also extended compared to the human protein; 

human HRG contains 12 tandem repeats of the sequence Gly-His-His-Pro-His, while 

the rabbit HRG contains 16 repeats (including repeats where a proline substitutes for 

histidine). The HRR is involved in the binding of metal ions, particularly Zn
2+

. The 

binding of Zn
2+

 can modulate the affinity of HRG for its other ligand molecules and 

thereby regulate the activity of HRG in several processes like coagulation or 

angiogenesis. 

N1 N2 PRR1 HRR PRR2 C
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bonds
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Figure 3.2. Sequence alignment of human HRG (NCBI: P04196) and rabbit HRG (NCBI: Q28640). 

Domains are labelled and coloured, and the high homology in the N-domains and C-domains can be seen. 

Rabbit HRG has a longer histidine-rich region. 

As described by its etymology, HRG is heavily glycosylated with six putative N-linked 

glycosylation sites. While the histidine- and proline-rich regions are anticipated to be 

intrinsically disordered due to the peculiar sequence, the remaining N1, N2 and the C-

terminal domains are predicted to have ordered structures. In particular, both the N1 and 

N2 domains are derived from the cystatin superfamily of cysteine protease inhibitors 

with which they share high sequence homology (Koide and Odani, 1987). Type 1 

cystatins (stefins) are characterised by a lack of disulfide bridges, while type 2 cystatins 

have two conserved disulfide bridges (Barrett et al., 1986). These include cystatin B and 

cystatin C which are suggested to have roles in inhibiting tumour neovascularisation 

(Chang et al., 2009).
 
The homology between the HRG N1 and N2 domain sequences 

with cystatin proteins has led to the classification of HRG as a type 3 cystatin (in the 

same class as fetuins and kininogens) (Lee et al., 2009). Although HRG has been 

classified as a cystatin, it does not exhibit cysteine protease inhibitor activity since it is 

incapable of inhibiting cysteine peptidases of the papain (C1) family (Lee et al., 2009). 

The N-terminal domains of HRG also share a degree of sequence homology with the N-

terminal region of antithrombin. This is understandable when considering that the 

respective N-terminal domains of both HGR and antithrombin associate with heparin 
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(Koide et al., 1986).This taken together with the fact that both proteins are involved in 

the regulation of thrombin activity, by competing for heparin with one another 

(Kluszynski et al., 1997), suggests an evolutionary relationship between the two. The 

HRG N1 and N2 terminal domains are also involved in interactions with C1q, IgG 

(Gorgani et al., 1997) and FcγRI (Poon et al., 2010) to regulate immune function. 

HRG controls the formation of blood vessels through both positive and negative 

mechanisms. The angiogenic activity of HRG is rooted in its high affinity for the 

angiogenesis inhibitor, thrombospondin, via CLESH motifs within the HRG C-terminal 

domain (Simantov et al., 2001). A similar interaction, but with vasculostatin, is also 

thought to induce a positive angiogenic mechanism (Klenotic et al., 2010).
 
A negative 

angiogenic effect facilitated by HRG was determined to be due to the HRR in studies 

using truncated recombinant HRG proteins, peptides based on the HRR and proteolytic 

fragments (Juarez et al., 2002). Inhibition of the proliferation of endothelial cells both in 

vitro and in vivo has been observed with HRG after being subjected to partial 

proteolysis with the plasma protease, plasmin (Juarez et al., 2002). This proteolytic 

regulation by plasmin of HRG is known to be required for some of its physiological 

functions, where release of a fragment from the intact protein that includes the HRR is 

necessary. For example, the endotoxin-neutralising and anti-microbial properties of 

HRG are solely down to the release of the HRR portion and subsequent further 

degradation (Bosshart and Heinzelmann, 2003; Rydengard et al., 2007). Various 

truncations and fragments of recombinant HRG were examined using fibrosarcoma 

tumor model mice to investigate the anti-angiogenic properties of HRG (Olsson et al., 

2004). HRG proteins and fragments containing the HRR reduced vascularisation and 

tumour growth, while those without the HRR had no effect. This strongly suggests that 

the histidine rich region is a potent angiogenesis inhibitor. HRGP330 is a 35-amino acid 

peptide that is based upon a sequence within the HRR and has been described as the 

minimal sequence with active anti-angiogenic properties in vitro and in vivo (Dixelius et 

al., 2006; Lee et al., 2006).
 
HRGP330 works by disrupting focal adhesion kinase (FAK) 

and integrin-linked kinase functions, subsequently stopping endothelial cell motility 

(Bosshart and Heinzelmann, 2003). Taken together, these studies associate HRG in the 

regulation of angiogenesis through a proteolytically-controlled mechanism which 

releases the HRR (Borza et al., 1996; Poon et al., 2009). The precursor to plasmin 

(plasminogen) is in close association with HRG in circulation, and approximately 50% 



52 
 

of plasminogen is bound to HRG in plasma (Lijnen et al., 1980). However due to the 

presence of a particular conserved disulfide bridge within HRG, proteolysis by plasmin 

alone is not sufficient to release the HRR. Four intradomain and two interdomain 

disulfide bridges hold the structure of HRG together. One of the interdomain bonds 

links the N1 and C-terminal domains, as is observed in the other members of the type 3 

cystatin family. Uniquely to HRG, the second interdomain disulphide links the N2 

domain to a region in between the HRR and PRR2 domains (Figure 3.1) (Sørensen et 

al., 1993). A peptide corresponding to the HRR/PRR fragment has been identified in 

vivo through mass spectrometric analysis of human tissue samples. However, the 

mechanism by which the interdomain disulfide is reduced is not understood (Thulin et 

al., 2009). 

A key aim here was to structurally characterise HRG using X-ray crystallography, 

which may help to unravel the binding characteristics of HRG with its binding partners 

and also provide clues for the in vivo functioning of HRG.  
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Methods 

Purification  

HRG was purified directly from either rabbit serum (Sigma-Aldrich) or human plasma 

(TCS Biosciences, Buckingham, UK) using Immobilised Metal Affinity 

Chromatography (IMAC) by exploiting its intrinsic histidine abundance and subsequent 

affinity for nickel. Elution was achieved by increasing the imidazole content of the 

buffer to provide competition for binding sites as imidazole and histidine show 

structural similarities: both are diazole rings. All purifications were performed using the 

ÄKTApurifier FPLC system (GE Healthcare, UK). 

 

Serum or plasma was centrifuged (4 000 x g, 30 minutes) and filtered through a 0.45 

µm syringe filter (Sartorius, Epsom, UK) to remove any aggregates and large particles. 

The sample was treated with 5 mM imidazole in keeping with the equilibration buffer 

(10 mM Tris, 150 mM NaCl, 5 mM imidazole, pH 8). A 5 ml HisTrap nickel column 

(6% highly cross-linked agarose matrix; GE Healthcare Life Sciences, Little Chalfont, 

UK) was equilibrated with 5-10 column volumes of the equilibration buffer and sample 

(50 ml) loaded. The column was washed with equilibration buffer and then with 30% 

elution buffer (10 mM Tris, 150 mM NaCl, 400 mM imidazole, pH 8). HRG was eluted 

with a gradient of 60-80% elution buffer. The purified HRG sample was then dialysed 

to remove any bound metals in a buffer of choice for further experiments, or in 50 mM 

ammonium carbonate prior to lyophilisation. This protocol was also repeated but using 

one tablet of SIGMAFAST
TM

 (Sigma-Aldrich) protease inhibitor cocktail per 100 ml of 

serum or plasma.  

 

All protein samples were confirmed to contain no detectable levels of Zn
2+

, as assessed 

by the colorimetric Zinc Assay Kit (Sigma-Aldrich). 

 

Protein Concentration Determination 

 

Protein concentration was determined either by direct weighing of samples prior to 

reconstitution in buffer, or by measuring absorbance at 280 nm. An extinction 

coefficient of 32150 M
-1

 cm
-1

 was used for rabbit and 26900 M
-1

 cm
-1

 for human HRG. 
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Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Analysis of protein purifications was followed by SDS-PAGE under denatured 

conditions to determine purities of samples. Samples to be analysed were mixed with 

NuPAGE LDS Sample Buffer at a typical ratio of 3:1 and loaded onto 4-12% NuPAGE 

Bis-Tris gels. Electrophoresis was conducted in NuPAGE MES SDS Running Buffer 

for 45 minutes at 200 V. All electrophoresis materials were supplied from Invitrogen. 

After the desired separation had been achieved, the gels were either stained with 

Coomassie Blue. Gels were visualised by staining with Coomassie stain (0.025% 

Coomassie Brilliant Blue R250, 40% methanol, 10% acetic acid) for 10 minutes, 

followed by destaining in boiling water. If greater sensitivity was desired, the staining 

incubation time was increased. 

 

To determine the redox condition of plasma HRG and the effect of the protease action 

of plasmin, SDS-PAGE analysis followed by Coomassie staining was used to monitor 

the domain structure of HRG after being subjected to a range of conditions: native non-

reduced HRG, native reduced HRG and plasmin-treated reduced HRG. Reduction was 

achieved with 2.5 mM dithiothreitol (DTT). To further analyse HRR/PRR and achieve 

sequence information, a band of approximately 25 kDa, putatively thought to 

correspond to this fragment, was cut and submitted for MS/MS analysis. 

 

Crystallography 

Data collection, structure solution and refinement were performed by Dr. Stephen 

McMahon and Prof. Jim Naismith. 

 

Rabbit HRG was used for crystallisation trials since it is ten times more abundant 

compared to human HRG. Prior to setting up crystallisation trials, the HRG sample was 

furthered purified by size exclusion chromatography using an S-200 column (GE 

Healthcare, Life Sciences) in 10 mM Tris, 150 mM NaCl, pH 8. HRG eluted as a single 

peak at a molecular weight of ~140 kDa. The sample was subjected to a Pre-

Crystallisation Test (Hampton) to determine a suitable concentration for crystallisation 

screens. HRG was screened for crystallization using two commercial screens, JCSG+ 
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and PACT (Qiagen, Manchester, UK), at a concentration of 16 mg/ml, alongside in-

house stochastically designed screens, on an Art Robbins Gryphon crystallization robot 

by sitting-drop vapor diffusion. Crystals appeared after 4 weeks at room temperature as 

two visibly distinct crystal morphologies: cubic and rod-shaped. Crystals were grown 

from 22.5% PEG MME 5000, 100 mM MES and 73 mM potassium sodium tartrate at 

pH 6.5. The rod-shaped crystals diffracted best and subsequently both native and heavy 

atom soaked data sets were collected with this morphology of crystal. For phasing, a rod 

shaped crystal was harvested and soaked for 5 minutes in mother liquor supplemented 

with 50 mM K2PtCl4 before being back-soaked in cryoprotectant (mother liquor with 

25% glycerol) and then immediately frozen in liquid nitrogen.  Data were collected on 

Diamond beamline I02 as 1,000 non-overlapping images using a Pilatus 6M detector. 

Later, a high-resolution native data set was collected on Diamond beamline I04-1 from 

a different crystal. All data were processed with xia2 (Winter et al., 2013). The data 

obtained from these crystals were analysed using PHENIX. Using both anomalous and 

isomorphous difference, Autosol identified two Pt sites in spacegroup P3121 with a 

figure of merit of 0.18 at 3.1 Å. Density modification and extension to 2.9 Å using 

Autobuild gave a preliminary model of 107 residues and an R-factor of 30%. This 

model was rebuilt using COOT by manual inspection and with new data extended to 

1.93 Å. The final structure was deposited in the RCSB Protein Databank (PDB code: 

4CCV). 

 

Protein Deglycosylation  

It was anticipated that the extent of glycosylation on HRG would seriously hinder and 

even preclude the formation of crystals. For this reason, an endeavour to establish a 

viable protocol for deglycosylation was investigated. Sugar chains of the heavily 

glycosylated HRG were removed using a Protein Deglycosylation Mix (NEB). The 

mixture contained PNGase F (500 units/µl), O-glycosidase (40,000 units/µl), 

neuraminidase (50 units/µl), β1-4 galactosidase (8 units/µl) and β-N-

acetylglucosaminidase (4 units/µl). A range of conditions were attempted in order to 

optimise the deglycosylation, the extent of which was analysed using mass 

spectrometry. Essentially, the protein sample was incubated with the Deglycosylation 

Enzyme Mix at 37 °C. Various concentrations of sample and enzymes, for a range of 

incubation times and in a native or denatured state were tested. Samples were denatured 
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by boiling for 10 minutes in the presence of SDS. 

 

Mass spectrometry (MS)  

Mass spectrometry was performed by Dr Catherine Botting. 

  

To determine the intact mass of plasma/serum purified HRG, protein samples (20 µL, 1 

mg/mL) were desalted on-line through a MassPrep On-Line Desalting Cartridge 2.1 x 

10 mm (eluting at 50 µL/min) with an increasing acetonitrile concentration (98 % H2O, 

2 % acetonitrile, 1 % formic acid to 98 % acetonitrile, 2 % H2O, 1 % formic acid) and 

delivered to a Waters LCT electrospray ionisation mass spectrometer. The molecular 

mass of the protein was obtained from an envelope of multiply charged signals which 

were deconvoluted using MaxEnt1 software. The mass spectrometer had previously 

been calibrated using myoglobin. 

 

For sequence analysis, the protein sample was analysed by SDS-PAGE as described 

above and the gel band was excised and cut into 1 mm
3
 cubes. These were subjected to 

a ProGest Investigator in-gel digestion robot (Genomic Solutions, Ann Arbor, MI). The 

gel cubes were digested with trypsin at 37 °C or thermolysin at 55 °C after being 

destained by washing with acetonitrile and subjected to reduction and alkylation. The 

peptides were extracted with 10% formic acid and the solution (0.5 µl) applied to the 

Matrix-assisted laser desorption/ionisation (MALDI) target along with alpha-cyano-4-

hydroxycinnamic acid matrix (10 mg/ml in 50:50 0.1% TFA:acetonitrile, 0.5 µl) and 

allowed to dry. 

 

Trypsin was used as is standard in this type of peptide identification. However, since 

trypsin cleaves after arginine or lysine residues, thermolysin was used in instances 

where the identification of the HRR was required (because of the lack of arginine and 

lysine residues in the HRR domain). 

 

MALDI MS was acquired using a 4800 MALDI TOF/TOF Analyzer (AB Sciex, Foster 

City, CA) equipped with a 355 nm Nd:YAG laser and calibrated using a peptide 

mixture. In positive MS mode, the spot was initially analysed between 800 and 4000 

m/z, by averaging 1000 laser spots. Up to 15 of the most intense peptides were selected 
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for MS/MS analysis and acquired to a maximum of 3000 laser shots or until the 

accumulated spectrum reached a S/N ratio of 35.  All MS/MS data were acquired using 

a collision energy of 1 keV. ProteinPilot 4.1 Paragon algorithm (AB Sciex) was used to 

analyse the MS/MS data, searching against an internal database to which the HRG 

sequence had been added, with no enzyme digestion parameters selected and 

modification of cysteines by carbamidomethyl selected. 

 

Free thiol concentration determination using Ellman’s reagent 

The rabbit plasma or serum samples were diluted 1:50, while the HRG from plasma or 

serum was reconstituted in PBS to 1 mg/ml, pH 7.2, and thiol determination was carried 

out using 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB). 5 µl of a 20 mM DTNB solution 

was added to 100 µl of sample. Absorbance was recorded at 405 nm and a thiol 

concentration calculated using a coefficient of 17 780 M
-1

 cm
-1

 (Ellman, 1958).  

 

Plasmin Digest 

Digests of 1 mg/ml samples of HRG with 1 unit of plasmin were performed for 30 

minutes at 37 °C in 20 mM potassium phosphate, 150 mM sodium chloride at pH 7.5. 

Samples were reduced with the addition of 2 mM dithiothreitol (DTT). 
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Results and Discussion 

Characterisation of HRG 

HRG was purified directly from serum or plasma with a simple one-step protocol, 

taking advantage of its natural abundance of histidine by using a nickel column This 

resulted in high yields (> 80%) and high purity of protein (> 95%) as assessed by SDS-

PAGE. Figure 3.3 shows an SDS-PAGE gel following purification of HRG. As judged 

by comparison with the molecular weight markers (Bioline) the mass of rabbit HRG is 

approximately 75 kDa. The band lanes 1 and 2 at approximately 140 kDa and is a HRG 

dimer.    

 

Figure 3.3. SDS-PAGE analysis (following Coomassie stain) of rabbit HRG following nickel affinity and 

gel filtration purification steps. HRG can be seen in lanes 1 to 8. The sample pooled from lanes 3-7 was 

used for crystallisation trials.   

The relative purity of the sample preparations was assessed using the gel imaging 

software (ImageLab) by comparing the relative intensities of visible bands. Typical 

working samples were > 95% HRG.  To confirm the protein identity, gel bands were 
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excised and submitted for sequence analysis. The mass spectrometry results for 

sequence analysis are shown in Figure 3.4. The rabbit HRG sample achieved coverage 

of 41.2% with 45 significant peptides while the human HRG was covered to 25.5% with 

12 significant peptides.   

 

Figure 3.4. Sequence analysis for identification of (a) rabbit HRG and (b) human HRG. Significant 

peptide fragments are highlighted in green. 

To show that there is no difference in HRG purified from serum or plasma and to 

determine whether the process of plasma developing to serum may have redox 

influences on activity at Cys185, free thiol concentrations were measured to represent 

the redox state in plasma and serum from rabbits. The free thiol concentration of plasma 

was determined to be 250 µM, significantly greater than that of serum, 208 µM (Figure 

3.5A). Additionally, HRG samples prepared from either serum or plasma were 

characterised and compared. Both preparations, serum and plasma HRG, had the same 

free thiol content (0.7 mol thiol/mol HRG; Figure 3.5B). The samples were also 

subjected to analysis by mass spectrometry and showed the same molecular mass 

profile (Figure 3.5C) and thus molecular composition. This provides definitive proof 

that preparing HRG from serum did not affect the redox state of the protein and the 

VSPTDCSAVEPEAEKALDLINKRRRDGYLFQLLRIADAHLDRVENTTVYYLVLD

VQESDCSVLSRKYWNDCEPPDSRRPSEIVIGQCKVIATRHSHESQDLRVIDFNC

TTSSVSSALANTKDSPVLIDFFEDTERYRKQANKALEKYKEENDDFASFRVDRI

ERVARVRGGEGTGYFVDFSVRNCPRHHFPRHPNVFGFCRADLFYDVEALDLESP

KNLVINCEVFDPQEHENINGVPPHLGHPFHWGGHERSSTTKPPFKPHGSRDHHH

PHKPHEHGPPPPPDERDHSHGPPLPQGPPPLLPMSCSSCQHATFGTNGAQRHSH

NNNSSDLHPHKHHSHEQHPHGHHPHAHHPHEHDTHRQHPHGHHPHGHHPHGHHP

HGHHPHGHHPHCHDFQDYGPCDPPPHNQGHCCHGHGPPPGHLRRRGPGKGPRPF

HCRQIGSVYRLPPLRKGEVLPLPEANFPSFPLPHHKHPLKPDNQPFPQSVSESC

PGKFKSGFPQVSMFFTHTFPK

LTPTDCKTTKPLAEKALDLINKWRRDGYLFQLLRVADAHLDGAESATVYYLVLD

VKETDCSVLSRKHWEDCDPDLTKRPSLDVIGQCKVIATRYSDEYQTLRLNDFNC

TTSSVSSALANTKDSPVLFDFIEDTEPFRKSADKALEVYKSESEAYASFRVDRV

ERVTRVKGGERTNYYVDFSVRNCSRSHFHRHPNAFGFCRADLSFDVEASNLENP

EDVIISCEVFNFEEHGNISGFRPHLGKTPLGTDGSRDHHHPHKPHKFGCPPPQE

GEDFSEGPPSQGGTPPLSPPSGPRCRHRPFGTNETHRFPHHRNFSEHHPHGPPP

HGHHPHGPPPHGHHPHGPPPHGHPPHGPPPHGHPPHGPPPHGHPPHGPPPHGHP

PHGPPPHGHPPHGPPPHGHPPHGPPPHGHPPHGHGFHDHGPCDPPSHKEGPQDL

HQHGHGPPPKHPGKRGPGKGHFPFHWRRIGSVYQLPPLQKGEVLPLPEANFPSF

SLRNHTHPLKPEIQPFPQVASERCPEEFNGEFAQLSKFFPSTFPK

a

b
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glutathione related conclusions that can be drawn from structural data are also 

applicable to plasma HRG. The predicted mass of rabbit HRG based on sequence is 58 

015.9 kDa, which is significantly lower than the mass of 72 179.9 kDa observed in ESI-

mass spectrometry. This discrepancy is explained by the heavy glycosyation of the 

HRG molecule, account for the 14 kDa difference in mass.  

 

Figure 3.5. Free thiol measurements of rabbit plasma, serum and HRG samples and mass spectrometric 

analysis of HRG purified from either rabbit serum or plasma. (A) The free thiol concentrations in rabbit 

plasma and serum were found to be different and were calculated to be 250 µM and 208 µM, 

respectively. (B) The free thiol contents of HRG preparations from both rabbit plasma and serum were 

very similar at ~0.7 mol/mol, with this likely to correspond to the reduced form of Cys407. Error bars 

indicate standard deviation. Statistical analyses were performed using a T-test (** indicates p<0.01; n=3). 

(C) ESI mass spectra of rabbit HRG purified from plasma and serum showing the samples to be almost 

identical in composition. One major form of HRG can be observed, which in each sample has essentially 

the same molecular mass (72 179 Da). A minor form can also be observed (72 835 Da), which likely 

corresponds to alternative glycosylation of the protein. 

Crystallography and Structure of HRG 

Prior to setting up crystallisation trials, the HRG sample was subjected to further 

purification by gel filtration to ensure maximum sample homogeneity. HRG eluted from 

the gel filtration column in line with a 140 kDa standard, which would suggest that it 

exists as a dimer, at least in the buffer solution. The precipitation rate of the pre-

crystallisation tests indicated a HRG concentration of 16 mg/ml as a starting point. 

Crystallisation screens set up at room temperature showed several incidents of salt 

precipitation and a few of protein precipitation, indicating promising conditions. After 4 

weeks, rod-shaped crystals appeared and later cubic crystals formed independently in 
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22.5% PEG MME 5000, 100 mM MES and 73 mM potassium sodium tartrate at pH 

6.5.   

The rod-shaped crystals diffracted best and were prioritised. The rod-shaped crystals 

grew from 21.3% PEG MME 5000, 30 mM potassium sodium tartrate, 100 mM MES at 

pH 6.5, which is from a stochastically designed in house crystal screen. Reproducible 

highly diffracting rod-shaped crystals were yielded from expanded trials of this 

condition after four weeks. Crystals with a cubic morphology were also identified 

(Appendix A1.5-A1.8), but only diffracted to 5.2 Å with an average unit cell (a,b,c) of 

87.8,   87.8 and   87.8 Å with angles () of 90,  90 and 90° (space group: F23). The 

rod-shaped crystals diffracted to 1.93 Å with an average unit cell (a,b,c) of 77.1, 77.1 

and 69.2 Å with angles () of 90,  90 and 120° (space group: P 31 2 1).  

The heavy glycosylation and intrinsic disorder of HRG have limited structural studies to 

date. The first step towards 3D characterisation of HRG at the molecular level is given 

here. In this study, crystallisation was attempted using purified intact HRG, producing 

crystals of the N2 domain which required 4 weeks to appear. This suggests that the 

relatively long crystallisation period may be due to the slow degradation process of 

whole HRG to release the N2 domain over this period of time and to allow the domain 

to arrange into a crystal. Flexible linker regions between the distinct domains of HRG 

would be very susceptible to cleavage either in vivo before purification, or even by co-

purified contaminating proteases from serum. Further evidence for a co-purified 

protease causing the cleavage of the HRG molecules was observed during 

crystallisation protocols which included protease inhibitors. These experiments failed to 

yield crystals, despite all other conditions remaining the same.  

It was revealed that these crystals were formed by the HRG N2 domain and thus the 

structure of the N2 domain of rabbit HRG was solved to a resolution of 1.93 Å (Kassaar 

et al., 2014). One complete N2 domain was contained in the structure of 115 amino 

acids from Ser123 to Arg237. Although the asymmetric unit contains a single due to the 

symmetry of the crystal, a dimeric arrangement of the domain exists within the unit cell 

(Figure 3.6). 
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Figure 3.6. Crystal structure of the HRG N2 domain. The structure obtained was in a dimeric 

arrangement of the N2 domain composed of 2 identical chains, A (cyan) and B (magenta). The sequence 

alignment of human and rabbit N2 domains is shown with secondary structure elements emphasised as 

follows: α-helix (cylinder) and the β-sheets (arrows). The N-glycosylated Asn184 residue is shown in 

blue and the conserved cysteine residues within the N2 domain are shown in red (Kassaar et al., 2014). 

Figure was drawn using PyMol by Prof. Jim Naismith. 

Since the rabbit and human HRG proteins share 64% sequence identity and 69% 

sequence similarity and the respective domain sequences of human and rabbit HRG N2 

are highly homologous (68% identity, 93% similarity), it can therefore be stated with 

confidence that these share the same folding pattern. The N2 domain sequence is also 

homologous with the cystatin family and HRG itself is classified as a type 3 cystatin. 

Conformation of this is provided by the structure showing the N2 domain possessing a 

cystatin-like fold consisting of a five-turn α-helix (Figure 3.7A) with a five-stranded 

anti-parallel β-sheet wrapped around it. The fold starts from a short β1 (Leu126 – 

Phe129) and follows through to an α-helix (Glu134 – Glu150) of five-turns with β2 

(Phe157 – Lys169), β3 (Thr174 – Asn184), β4 (Ala195 – Phe205) and β5 (Glu216 – 

Asn226) wrapping and twisting around the central α-helix. Interestingly, the electron 

Human  123-SPVLIDFFEDTERYRKQANKALEKYKEENDDFASFRVDRIERVARVRGGEGTGYFVDFSV-182
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****:**:**** :**.*:**** **.*.: :*******:***:**:*** *.*:*****

Human  183-RNCPRHHFPRHPNVFGFCRADLFYDVEALDLESPKNLVINCEVFDPQEHENINGV-234

Rabbit 183-RNCSRSHFHRHP-AFGFCRADLSFDVEASNLENPEDVIISCEVFNFEEHGNISGF-233
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density maps show the surprising presence of an S-glutathionyl adduct at Cys185 and 

also one site of glycosylation on the heavily glycosylated HRG at the conserved Asn184 

residue. Two N-acetyl glucosamine molecules (NAG1 and NAG2) and one α-D-

mannose molecule (MAN3) can be modelled at each N-linked glycan chain.  

 

 

Figure 3.7. The HRG N2 domain shown in closer detail, emphasising its cystatin-like fold. (A) Chain A 

(from Figure 2.5) is shown illustrating the 5 β-strands (β1- β5) twisting around the α-helix (α1). The 

internal disulfide bridge can be observed connecting β4 and β5 (yellow cylinders). The glycosylation at 

Asn184 and the S-glutathionyl adduct at Cys185 are also shown as labelled. (B) Fo-Fc electron density 

map showing the S-glutathionyl adduct (GSH1) bound to Cys185 as a mixed disulfide. (C) Fo-Fc electron 

density map for the first 3 sugars, NAG1, NAG2, and MAN3, of the carbohydrate chain linked to 

Asn184. The Fo-Fc maps (blue chicken wire contoured at 1s, carve radius 1.6 Å) were calculated from a 

model which has never contained NAG, MAN, or glutathione (GSH) (Kassaar et al., 2014). Figure was 

drawn using PyMol by Prof. Jim Naismith. (D) Chemical structure of glutathione.  

Both N1 and N2, the N-domains of HRG, based on their sequence homology to cystatin 

proteins are predicted to possess a cystatin-like fold (Lee et al., 2009). The N2 domain 
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crystal structure confirms that the N2 domain of rabbit HRG does indeed have a fold 

composed of an anti-parallel five-stranded β-sheet twisting around a five-turn α-helix 

that is characteristic of cystatin-like structures. Although the structure obtained here was 

that derived from rabbit HRG, the findings are also valid to the human protein due to 

the high degree of homology between human and rabbit HRG sequences (Figure 3.2). In 

addition to this structure being the first of HRG, it is also the first of a type 3 cystatin 

protein, even though several structures of other cystatin proteins have been solved. As 

mentioned previously, despite being part of the cystatin family, HRG does not exhibit 

any protease inhibitory activity (Lee et al., 2009). The crystal structures of pig cystatin 

A (Jenko et al., 2003), chicken egg white cystatin (Bode et al., 1988) and human 

cystatin B complexed with the protease papain (Stubbs et al., 1990) reveal the cystatin 

N-terminus and two loops called L1 (between β2 and β3) and L2 (between β3 and β4) to 

be important for their protease inhibitory activity. This wedge shaped segment docks 

into the active site opening of cysteine proteases.
 
By looking at the structure of HRG, in 

the N2 domain the corresponding L2 loop is extended by six amino acids, which would 

preclude binding to papain-like proteases. This would provide an explanation for the 

lack of inhibitory activity of HRG. 

The two N-terminal domains of HRG also share sequence homology with the 

antithrombin III heparin binding region (Jones et al., 2004; Koide et al., 1986). The α-

helix of the cystatin-like fold in the HRG N2 domain could mimic the antithrombin 

heparin binding site which is composed of positively charged helical regions. A heparin 

molecule has been observed binding by hydrogen bonds using its carboxylates and 

sulfates to the D-helix (residues Arg129 and Lys125), to the A-helix (residues Arg46 

and Arg47), to the P-helix (residues Lys114 and Glu113) and to Lys11 and Arg13 at the 

antithrombin III N-terminal (Jin et al., 1997).
 
Helical regions are also found in other 

proteins that bind to heparin, for example the protease nexin-1. The structure of nexin-1 

shows two monomers that bind heparin in between two helical segments with each 

monomer providing one helix (corresponding to helix D in each), and binding to 

heparin through lysine residues (Li and Huntington, 2012).
 
HRG could potentially 

reflect this binding mechanism, where a heparin-binding site could form between the 

helix of the two cystatin-like domains, N1 and N2, which also contain lysine residues.  

The HRG N2 structure provides evidence that the N2 domains of HRG are likely to 

contribute to the formation of HRG dimers in vivo. Although it must be acknowledged 
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that the protein concentration necessary for crystallisation was much greater than 

plasma levels. This could force domains to crystallise in unnatural conformations. It is 

also possible that other domains in solution could disturb the arrangement of the N2 

domains observed in the crystal. However, if the N2 domain does in fact contribute to 

HRG dimerization, it would be a significant advance in our understanding of the protein 

molecule. The PISA server (www.ebi.ac.uk) was used to assess the biological relevance 

of the dimer arrangement which predicts, by analysing the inter-chain interactions, if 

these are likely to be stable in solution. The arrangement was identified as stable by the 

analysis (maximum probability, significance = 1) and this arrangement buries 1,659 Å
2
. 

This suggests that the observed relative conformation of the N2 domains in the crystal 

structure is highly likely to be representative of their structure in the solution phase. 

Additionally, the purification protocol provided evidence for HRG existing as a dimer 

in solution since it eluted at 140 kDa from the gel filtration column. This dimerisation 

of HRG might be a necessary requirement for the protein to form binding sites for some 

of its ligands. In this arrangement the cysteine-glutathionyl adducts are on the same face 

of the dimer which could allow interdomain disulfides to cross over between molecules. 

However, other domain combinations forming a heparin site (or sites) are possible, 

especially as the protein exists as a dimer under native conditions. 

Glycosylation of HRG 

HRG is heavily glycosylated with around 13 kDa of its monomeric 72 kDa total mass 

corresponding to glycan chains and the structure given here confirms Asn184 as one of 

the N-linked glycosylation sites (Figure 3.7A and C). Although the structure only shows 

the beginning of the chain with three sugars, crystals subjected to deglycosylation with 

a mixture of deglycosylation enzymes (PNGase F, O-glycosidase, neuraminidase, β1-4 

galactosidase and β-N-acetylglucosaminidase) were analysed by SDS-PAGE, 

confirming that the electron density maps only show a small extent of the complete 

glycosylation state of the N2 (Figure 3.8A). Asn232 is annotated in the UniProt 

database (UniProt code: Q28640) as another potential glycosylation within this domain. 

However, there was no detectable glycosylation observed at this site in the structure.  

In anticipation of difficulty with crystallography due to the inherent characteristics of 

HRG, prior to obtaining HRG crystals, experiments to investigate deglycosylation of the 

protein were conducted using a mix of N- and O-glycosidases. Heavily glycosylated 
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proteins are notoriously difficult to crystallise due to the heterogeneity and flexibility of 

the glycan chains. The deglycosylation of rabbit HRG with the enzyme mix over four 

hours is shown in Figure 3.8B.  

 

Figure 3.8. SDS-PAGE analysis of (A) N2 domain crystals and (B) HRG having undergone 

deglycosylation. (A1) N2 domain crystals without deglycosylation, highlighted with an arrow. (A2) N2 

domain crystals after deglycosylation, highlighted with an arrow. (A3) The enzyme mix used to achieve 

deglycosylation. (B1) The untreated control HRG sample. (B2) Deglycosylation of HRG under native 

conditions. (B3) Deglycosylation of HRG under denatured conditions. Molecular weight markers are 

given in kDa. 

 The deglycosylation was conducted under native and denatured conditions. In theory, 

by denaturing the protein, the enzymes would have full access to the glycosylation sites 

thereby removing the full quotient of carbohydrate. This would cause degradation of the 

protein and loss of structure and function for subsequent experiments. Native conditions 

are gentler to the protein but could obstruct access to glycosylation sites. To determine a 

more accurate mass, samples were submitted for mass spectrometry analysis (Figure 

3.9).  
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Figure 3.9. ESI mass spectrum of (a) native, untreated rabbit HRG with (b) its calculated mass and (c) 

deglycosylated rabbit HRG with (d) its calculated mass. Insets show data processed to 0.1 Da for the main 

peaks. This was a reaction of 1 mg of HRG with 2 μl of enzyme mix for 4 hours.          

Comparison of the native HRG mass spectrum with the deglycosylated HRG mass 

spectrum (Figure 3.9 a and c) reveals that the native HRG protein had a lower charge 

state distribution. The deglycosylated sample was protonated to a greater extent. This 

could potentially be explained by the presence of the carbohydrate chains in the 

glycosylated sample providing a structural barrier towards protonation. It could also be 

due to their influence on the conformation of HRG. It would be interesting to compare 

the structural dynamics of native and deglycosylated HRG to investigate whether the 

carbohydrate chains are able to induce allosteric modulation of the tertiary structure of 

the protein. The calculated mass of native rabbit HRG (Figure 3.9b) was 72.18 kDa 

which compares with the observed mass on SDS-PAGE (ca. 75 kDa). The 

deglycosylated mass was 61.71 kDa, meaning that 10.47 kDa worth of carbohydrate had 

been removed. The peptide sequence mass of rabbit HRG is 58.5 kDa which means that 

3.21 kDa of carbohydrate remained attached. It also appears that the deglycosylation 

process infracts the homogeneity of the native sample. Figure 3.9b shows one clear 

central peak of a tentative purity of 70-80%, and also shows two smaller peaks which 

might be due to different glycosylation states of the native protein.  The deglycosylated 

sample (Figure 3.9d) shows a distinct decrease in homogeneity, most likely indicative 

of varying extents of deglycosylation. The nature of mass spectrometry does not lend 

(a) (b)

(c) (d)
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itself to quantitative analysis, but a comparison of peak intensity can allow for a relative 

estimation to be made.  

Attempts were made to completely deglycosylate rabbit HRG, 100 μg of HRG was 

incubated with 5 μl of the enzyme mix at 37 °C for 14 hours. Figure 3.10 shows the 

mass spectra for this reaction.  

 

Figure 3.10. ESI mass spectrum of (a) deglycosylated rabbit HRG and (b) its calculated mass. The inset 

shows data processed to 0.1 Da for the main peaks. This was a reaction of 100 μg of HRG with 5 μl of 

enzyme mix for 14 hours.          

By using less HRG and a higher enzyme concentration, a more optimal deglycosylation 

procedure was achieved and resulted in a mass of 61.16 kDa. As before, three discrete 

peaks were observed centred on a mass that was 550 Da less than the previous 

experiment. The homogeneity of this deglycosylation was slightly greater relative to the 

previous experiment, but the considerable increase in ratio of enzymes to HRG did not 

yield a parallel increase in the extent of deglycosylation. These experiments showed 

that, although complete deglycosylation of HRG is not possible using these simple 

procedures, a substantial portion of the glycan chains can be removed by the 

deglycosylation enzymes and provides an important future avenue to explore for the 

possible crystallization and structure resolution of full-length HRG. Table 3.1 

summarises the mass spectrometry data. 

Table 3.1. Summary of mass spectrometry, comparing the predicted mass of rHRG with native and 

deglycosylated rHRG samples.  

 

(a) (b)

Sample Predicted HRG Native HRG Deglycosylated HRG

Mass (kDa) 58 015.9 72 180.0 61 710.0 - 61 160.0
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S-glutathionyl adduct at Cys185 of HRG 

Significantly at Cys185, a S-glutathionyl adduct is observed, providing direct in vivo 

evidence of a redox-regulated mechanism for the release of the anti-angiogenic 

HRR/PRR region (Figure 3.7B). This suggests that the Cys185-Cys407 disulfide bridge 

is reduced by glutathione (GSH) in plasma at its Cys185 end leading to the mixed 

disulfide observed. This reaction would free the HRR domain from the N2 domain, 

which are otherwise connected by the conserved cysteine residues which form the 

interdomain disulfide bridge. 

In an effort to identify the HRR/PRR fragment, purified rabbit HRG was left untreated, 

reduced with DTT or reduced and exposed to the enzyme plasmin. The samples were 

then assessed by SDS-PAGE (Figure 3.11A). The resulting pattern on the gel shows 

interesting features when comparing the appearance of the protein across the range of 

experimental conditions. The native protein appears essentially as a single band under 

non-reducing conditions, as would be expected from a sample not exposed to exogenous 

plasmin. Although a fraction of the protein is subject to cleavage by plasmin in 

circulation, the disulfide bridges hold the protein together (particularly the Cys185-

Cys407 bond). When the HRG sample is reduced by DTT, the bulk of the protein 

sample appears unchanged, but a band of ~25 kDa can be seen to be released. To 

identify this band, it was excised from the gel, and reduced, alkylated and digested with 

thermolysin. The digested peptides were analysed by MALDI MS and MS/MS (Figure 

3.11B). Peptide fragments were identified, confirming the identity of the band as the 

HRR/PRR fragment. A peptide containing Cys407 was amongst the identified 

fragments. Cys407 forms a disulfide bridge with Cys185 in the N2 domain of the non-

reduced protein. The HRR/PRR release following treatment of purified HRG with DTT 

can be explained by in vivo plasmin activity occurring prior to purification. When HRG 

was treated with both plasmin and reducing agent, the protein was cleaved into several 

constituent parts as indicated by the band pattern on the gel, which included an intense 

band corresponding to the HRR/PRR fragment.  

GSH is known to be implicated in angiogenesis through post-translational modification 

of proteins. For example, tyrosine phosphatase provides a negative regulation of 

angiogenesis upon its S-glutathionylation via inhibition of vascular endothelial growth 

factor (VEGF)-regulated focal adhesion kinase activation (Abdelsaid and El-Remessy, 
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2012).
 
GSH is involved in regulating the induction of hypoxia inducible factor 1 (HIF-

1), which controls the expression of angiogenic genes, including VEGF (Forsythe et al., 

1996).
 
In squamous cell carcinoma cells, GSH has been found to reduce HIF-1 binding 

and HIF-1-dependent promoter activity in a dose-dependent manner.
 
Also, it has been 

shown that by quenching reactive oxygen species, GSH can prohibit ischemia-induced 

lung angiogenesis (Tajima et al., 2009).
  

 

Figure 3.11. HRR/PRR fragment release in rabbit HRG. (A) SDS-PAGE investigation of rabbit HRG 

under conditions with or without plasmin and the reducing agent dithiothreitol, as assigned by positive 

and negative symbols. The box highlights the HRR/PRR band and is only observed under reducing 

conditions. (B) MS/MS analysis of the excised HRR/PRR gel band. Peptide sequences giving a 

confidence of 99% are in red, and those with a 74% confidence in italics. NCBI accession 

number:XP_002716393 (Kassaar et al., 2014). 

For the GSH-mediated activation of HRG to affect angiogenesis by releasing the anti-

angiogenic HRR/PRR fragment, plasmin facilitated cleavage of the HRG backbone is 

also required. The fact that appropriate quantities of GSH reduced HRG were present in 

the protein sample to allow N2 domain crystals to form, may suggest that reduction 

occurs first and not proteolysis, however this offers not an absolute answer but only a 

clue. Further evidence that a fraction of the protein is first cleaved by plasmin in plasma 

was the detection of the HRR/PRR fragment in HRG samples in the presence of a 

reducing agent during SDS-PAGE analysis (i.e. the HRG had already been subjected to 

plasmin proteolysis in vivo, but required the reduction of the Cys185-Cys409 bond to 

accomplish the release of the HRR/PRR; Figure 3.12). Addition of plasmin to the 
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sample increased the quantity of the HRR/PRR fragment by further degrading the 

protein.   

 

Figure 3.12. Schematic diagram representing the mechanism of release of the HRR/PRR fragment 

following both plasmin cleavage and reduction of the Cys185-Cys407 bond of HRG by GSH. The second 

interdomain disulfide bond between Cys6-Cys497 stays intact, holding the remainder of the protein 

together (Kassaar et al., 2014). 

HRG shares a close relationship with plasminogen (the precursor to plasmin) in the 

circulation, and it has been established that HRG can assist activation of plasminogen to 

plasmin by forming a complex between glycosoaminoglycans (GAGs) and plasminogen 

at cell surfaces (Jones et al., 2004b). Cleavage of HRG by plasmin has been revealed to 

decrease its capacity to bind heparan sulfate on cell surfaces (Poon et al., 2009). One 

idea suggests that a negative feedback loop exists, where plasmin-mediated cleavage of 

HRG could limit additional activation of plasminogen by decreasing the quantity of 

intact HRG that can proficiently bind plasminogen to cell associated GAGs (Poon et al., 

2009).
 
Release of the HRR/PRR fragment from HRG could consequently act to disrupt 

the angiogenic affects attributed to activated plasminogen through the anti-angiogenic 

action of the HRR (Oh et al., 2003).
 
Plasminogen promotes vascular remodelling in a 

genetic study in knock-out mice, via mechanisms that are both dependent and 

independent on fibrinogen (Drew et al., 2000).
 
Reducing levels of intact HRG could 

conceivably hinder its ability to promote angiogenesis through its binding of 

thrombospondin, since there would be less whole HRG available for this interaction. 

Hence, it is possible that the plasmin regulated degradation of HRG along with the 

release of the HRR/PRR region would simultaneously regulate angiogenesis negatively 

through the actions of independent mechanisms. 

To conclude this chapter on the structural studies of HRG, the crystal structure solved 

here provides the first insight to the molecular arrangement of HRG. The N2 domain is 

folded in a cystatin-like manner and is N-glycosylated at Asn184. In addition, the S-
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glutathionyl adduct observed at Cys185 gives potential in vivo evidence that the anti-

angiogenic HRR/PRR fragment release is controlled in part by a redox mechanism, 

representing a new role for GSH in regulation of angiogenesis. 
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Chapter 4 

Investigations into Zn
2+

 and heparin binding to HRG and 

implications for thrombin activation. 

This chapter aims to investigate the mechanisms by which histidine-rich glycoprotein 

(HRG) is activated by zinc and its subsequent processes in the blood, such as 

coagulation. HRG is a 65 kDa single chain plasma protein, synthesized in the liver and 

present in the circulation of mammals and birds (Hulett and Parish, 2000; Jones et al., 

2005). The protein is moderately abundant in the blood, circulating at a concentration of 

1.5–2.0 μM (Corrigan et al., 1990). HRG interacts with numerous molecules and is 

involved in the formation of multi-protein complexes that regulate coagulation, immune 

complex clearance, cell proliferation, cell adhesion and angiogenesis (Jones et al., 

2005). It has also been suggested that HRG can bind to receptors on the surface of a 

variety of cell types, including immune cells (Saigo et al., 1989). In clinical practice, 

high HRG levels are associated with thrombotic disorders such as thrombophilia and 

blood vessel occlusion (Engesser et al., 1987; Castaman et al., 1993; Kuhli et al., 2003). 

A part for HRG in blood clotting may include cell-cell interactions involving 

macrophages and platelets (Leung, 1986). Structurally, HRG contains two cystatin-like 

N-terminal domains (Kassaar et al., 2014), a histidine-rich region (HRR), two proline-

rich regions (PRR1 and PRR2) and a C-terminal domain (Koide et al., 1986).  

Uniquely, the HRR comprises of  sequential pentapeptide repeat sequences of Gly-His-

His-Pro-His and has the ability to bind to ten Zn
2+

 ions (Kd = 1–4 μM) through 

coordination to the imidazole nitrogen atoms of the many histidine residues (Morgan, 

1978). This coordination of zinc ions is integral to the working of HRG by regulating its 

affinity for the various ligands it binds to, such as directly increasing its affinity for 

heparin (Borza and Morgan, 1998; Mori et al., 2003; Jones et al., 2004a), IgG (Gorgani 

et al., 1999) and tropomyosin (Guan et al., 2004), while inhibiting the interaction 

between HRG and the complement protein C1q (Gorgani et al., 1997). Additionally, 

HRG is able to interact independently of Zn
2+

-binding with other functional partners. 

These include thrombospondin (Walz et al., 1987) and plasminogen (Jones et al., 

2004b), through interactions with the N- and C-terminal domains of HRG. Importantly, 

this Zn
2+

-binding increases the affinity of HRG towards the natural anticoagulants 
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heparin and heparan sulfate, which in turn neutralises these anticoagulants’ inhibition of 

antithrombin III activity (Mori et al., 2003; Jones et al., 2004a). Thus Zn
2+

-binding to 

HRG provides a potential means of regulating haemostatic function. Despite this, the 

Zn
2+

-binding properties of HRG and how exactly Zn
2+

 influences HRG-heparin 

interactions remain to be fully understood.  

Exchangeable zinc in plasma is regulated by albumin and can be affected by fatty 

acids 

Normally, the majority of the 20 μM Zn
2+

 in the blood is bound to human serum 

albumin (HSA) (Sarkar, 1989) and not HRG (Guthans and Morgan, 1982). HSA is a 

66 kDa plasma protein which is composed of three homologous domains (domains I–

III) (Sugio et al., 1999). HSA binds Zn
2+

 with greater affinity than HRG and is much 

more abundant in circulation (Masuoka et al 1993). Despite this, it is possible that 

certain conditions exist where the free Zn
2+

 plasma concentration can reach levels 

required for HRG-complexes that are Zn
2+

-dependent to form, for example, the release 

of Zn
2+

 from platelet-derived α-granules (Gorgani et al., 1999; Jones et al., 2004a), 

especially since HRG is also released by platelets. However,  this would only raise the 

local Zn
2+

 concentration (e.g. at the surface of platelets), and may not be significant to 

cause a systemic shift where the levels of Zn
2+

 released would be adequate to activate 

HRG in the presence of HSA. 

One of the main roles of HSA in circulation is to handle Zn
2+

 and other metals ions in 

order to protect blood cells and the endothelial cells from conditions that would 

otherwise be toxic. Hence, HSA acts as a chelating agent, tightly regulating the levels of 

free metal ions to sustain a viable level. Studies on rat WRL-68 cells have shown this 

protective property in vitro, where HSA reduced the toxicity of Zn
2+

 (Blindauer et al., 

2009). Additionally, an increase in HSA binding to Zn
2+

 is a cause of familial 

hyperzincemia (Failla et al., 1982). HSA is also involved in the transport of Zn
2+

 to cells 

and tissues. HSA is involved in Zn
2+

 uptake by endothelial cells (Rowe and Bobilya, 

2000) and erythrocytes (Gálvez et al., 2001) and has been observed to transport freshly 

absorbed Zn
2+

 in portal blood direct from the intestine to the liver (Smith et al., 1979). 

Recently, the major Zn
2+

 binding site of HSA was discovered using 
111

Cd-NMR in 

combination with site-directed mutagenesis (Stewart et al., 2003; Lu et al., 2008). This 

site (site A) is localised at the interface of domains I and II, and is composed of N-
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donating His67 and His247 residues, O-donating Asn99 and Asp249 residues and a 

water molecule or Cl
-
 as a final coordinating ligand. These residues are highly 

conserved across all mammalian albumin sequences. Previous NMR data supported 

these findings since it was expected that that the major Zn
2+

 site on HSA consisted 

mainly of N- and O-ligands (Goumakos et al., 1991; Sadler and Viles, 1996). 

HSA is the primary fatty acid transport protein in the circulation and binds fatty acids of 

various chain-lengths at 5 high-affinity sites (termed FA1-5) and several lower affinity 

sites. An investigation into zinc and cadmium binding to sheep serum albumin 

surprisingly appeared to show no detectable metal binding to this protein, despite the 

sheep sequence containing all four of the residues required. Interestingly, it was 

remarked that the sample preparation was purified directly from sheep plasma and had 

not been subjected to a defatting protocol. Hence, it was suggested that the observed 

lack of metal binding in these experiments may have been due to an allosteric effect 

caused by fatty acid binding to the albumin. Subsequent removal of fatty acids from the 

sheep albumin samples resulted in a restored metal binding profile at this site (Sadler 

and Viles, 1996). 

X-ray crystal structure comparisons of free and fatty acid-bound HSA (He and Carter, 

1992; Curry et al., 1998; Sugio et al., 1999; Bhattacharya et al., 2000a; Bhattacharya et 

al., 2000b; Petitpas et al., 2001) showed that the Zn
2+

 site is disrupted by fatty acids, 

which disengage the domain II residues (His247 and Asp249) with respect to the 

domain I residues (His67 and Asn99) as shown in Figure 4.1. This structural change is 

arbitrated by association of the fatty acid molecule to the FA2 binding site which lays in 

between domains I and II of HSA. Normal physiological conditions allow for HSA to 

carry 1-2 molecules of fatty acid at other separate fatty acid binding sites. However, 

when fatty acid concentrations increase above base levels, they are able to coordinate 

with this site, thereby reducing the affinity of HSA for Zn
2+

. Significant disruption of 

the Zn
2+

 site (and so Zn
2+ 

binding to HSA) necessitates the binding of 3-5 molecules of 

fatty acid per molecule of HSA. A recent study examining the binding of myristic acid 

(C14) to bovine albumin by isothermal titration calorimetry revealed that even the 

presence of 1 molar equivalent of myristic acid was able to slightly disturb the regular 

ability of albumin to bind Zn
2+

 and 4 to 5 molar equivalents were able to completely 

suppress Zn
2+

 binding at this site (Lu et al., 2008). 
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Figure 4.1. The fatty-acid/Zn
2+

 switch on serum albumin. (a) Overlay of crystal structures of human 

serum albumin with (grey; PDB: 1BK5) and without myristic acid bound (green; PDB: 1AO6) showing 

the location of the major Zn
2+

-binding site. (b) Close-up showing the movement of Zn
2+

-co-ordinating 

residues His247 and Asp249 relative to His67 and Asn99 between the two structures. Figure drawn using 

PyMol by Dr. Claudia Blindauer. 

Fatty acids could switch zinc speciation and activate HRG 

Fatty acids are absorbed into the blood stream through different mechanisms based on 

the carbon chain length. Medium and short chain fatty acids are directly absorbed into 

circulation after dietary intake (Jørgensen et al., 2001) and are transported through the 

circulatory system by HSA, to their intended target site, while long chain fatty acids are 

released into circulation from lipoproteins and adipocytes. Under normal physiological 

conditions the basal plasma concentration of free fatty acid is between 250-500 µM at 

rest (<1 molar equivalent, compared to HSA). However, free fatty acid levels are 

dynamic and rise following meals and during periods of exercise, but the majority 

remain bound to HSA, since the albumin molecule has a large number of fatty acid 

binding sites; HSA is able to bind up to 10 fatty acid molecules in vitro (Bhattacharya et 

al., 2000a). The most abundant serum fatty acids associated with HSA are palmitic acid 

(C16), stearic acid (C18) and oleic acid (C18) (Jørgensen et al., 2001). Chronically 

raised free fatty acid levels are associated with various conditions such as obesity 

(Björntorp et al., 1969; Koutsari and Jensen, 2006), diabetes (Reaven et al., 1988), fatty 

liver disease (Donnelly et al., 2005), cancer (Charles et al., 2001) and are observed as a 

symptom of plasma HSA deficiency (analbuminemia) (Bartter et al., 1961). In obese 

(a) (b)

N99

H67
H247

D249
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individuals, plasma concentrations of free fatty acids at rest are often 2-3 times higher 

(Koutsari and Jensen, 2006), and in some cancer patients are 4-6 times higher than 

controls (Kleinfeld and Okada, 2005). These conditions are also associated with an 

increased risk of thrombotic complications (Connolly and Khorana, 2009; Previtali et 

al., 2011). For example, thromboembolism (caused by obstructive blood clots) is the 

second leading cause of death associated with malignancy (Connolly and Khorana, 

2009). 

From current understanding of the Zn
2+

 binding properties of HSA and HRG, it is clear 

that either continuous or temporary enhanced plasma fatty acid concentrations could 

prospectively increase the fraction of plasma Zn
2+ 

associated with HRG. The reduced 

Zn
2+ 

binding competition from HSA could allow an adequate proportion of Zn
2+

 to 

switch from its usual speciation (being bound to HSA) to being coordinated to HRG. 

This could then lead to activation of HRG with respect to some of its binding partners, 

triggering its actions (such as coagulation). It is likely that HRG and fat-loaded HSA 

would have comparable affinities for Zn
2+

, so under these conditions, HRG could bind 

as much as 5% of plasma Zn
2+

. This is just speculation, and the percentage would 

perhaps be even higher (at the surface of platelets following granule release, for 

example) but would also be contingent on the concentrations of Zn
2+

-binding proteins 

and molecules (such as histidine). These observations led us to hypothesize that under 

conditions where free fatty acid levels are elevated, Zn
2+

 displaced from HSA could 

bind to HRG, enhancing its interaction with heparin/heparan sulfate and induce a pro-

coagulatory effect (Stewart et al., 2009). If so, this would constitute a novel targetable 

mechanism by which thrombotic complications arise in high-risk individuals. 

High HRG levels have clinically been associated with thrombotic disorders including 

blood vessel occlusion (Kuhli et al., 2003), and thrombophilia (Engesser et al., 1987).
 

This is significant when taking the possible switch of Zn
2+ 

speciation into consideration. 

If fatty acid binding to HSA can increase the Zn
2+

 concentration associated with HRG, 

this increase in Zn
2+

 activated HRG could consequently cause thrombotic disorders, or 

at least enhance the possibility of thrombosis occurring. The key mechanism under 

investigation here is the regulation of the coagulation protease, thrombin, which forms 

an inactive ternary complex with its binding partners: antithrombin and heparin.   
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The coagulation cascade and thrombin  

The coagulation mechanism which acts to help prevent infection and the loss of blood 

in mammals and other higher organisms following injury is often described by two 

pathways, known as the contact activation (intrinsic) pathway and tissue factor 

(extrinsic) pathway. These mechanisms converge at the final common pathway (Figure 

4.2).  

 

Figure 4.2. Schematic diagram of the coagulation cascade showing the contact activation, tissue factor 

and common pathways. Factors are shown as their Roman numerals; TFPI is tissue factor pathway 

inhibitor. The blue arrows show the additional functions of thrombin behind its primary function of 

fibrinogen conversion to fibrin, highlighting the central role it plays in the process. It can be seen how 

thrombin is involved in both pro- and anti-coagulant roles and is involved in self-regulation. The red 

arrows show points of inhibition.  

Before these cascades come in to play, platelets become activated and adhere to the 

injury site. These platelets will then aggregate and form a plug to reduce or stop the loss 

of blood temporarily. Activation of platelets releases several proteins that increase and 

accelerate platelet plug formation, and also begin the tissue repair process. The agent, 

von Willebrand factor, forms a bridge between the subendothelium layer and the 

activated platelets, thus playing an important role in platelet adhesion (Ruggeri and 

Zimmerman, 1987). Similarly, fibrinogen forms a bridge between adjacent activated 
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platelets (Savage and Ruggeri, 1991), leading to aggregation and plug formation. These 

reactions make negatively charged phospholipids available on the surface of the 

damaged cell membranes or activated platelets, thereby setting the scene for the 

coagulation cascade and its terminal insoluble fibrin clot formation which strengthens 

the platelet plug.  

In the intrinsic pathway, fibrin formation is a consequence of a series of stepwise 

reactions involving plasma proteins circulating in an inactive or precursor form. These 

zymogens are activated by proteolysis and converted to serine proteases. Many of these 

calcium dependent reactions occur at activated platelets, which provide the 

phospholipids. The intrinsic pathway has an important role in regulating the growth and 

maintenance of fibrin formation, but the extrinsic pathway is the primary and critical 

mechanism in the formation of a fibrin clot. 

The extrinsic pathway is also known as the tissue factor pathway since it requires tissue 

factor, located in the tissue adventitia, which only comes in contact with blood after 

vascular injury (Maynard et al., 1975, Maynard et al 1977; Wilcox et al., 1989). Tissue 

factor apoprotein is a membrane glycoprotein that is tightly associated with 

phospholipids (Broze et al., 1985; Guha et al., 1986) and has a high affinity for factor 

VII (Broze, 1982; Bach et al., 1986; Sakai et al., 1989). At the point of injury, a 

complex between the two proteins is formed in the presence of calcium which facilitates 

the conversion of factor VII to the active factor VIIa by proteolysis (Rao and Rapaport, 

1988; Sakai et al., 1989) by trace levels of a plasma protease in circulation (such as 

thrombin) (Masys et al., 1982; Wildgoose and Kisiel, 1989; Pedersen et al., 1989). The 

tissue factor-factor VIIa complex then activates factor X to factor Xa. This generated 

factor Xa forms a complex with factor Va in the presence of calcium and phospholipids 

(Tracy et al., 1981). This complex converts prothrombin to thrombin, which is the final 

and most critical protease generated in the coagulation cascade since it is the only factor 

capable of cleaving fibrinogen to create a fibrin clot. Fibrin is formed by the proteolysis 

of a peptide bond in each of the fibrinogen chains. This releases four fibrino-peptide 

monomers, which then polymerise to form the insoluble fibrin clot (Laudano and 

Doolittle, 1980). 

Thrombin is the integral enzyme in blood coagulation because of its exclusive ability to 

cleave fibrinogen to fibrin; it contributes to the “thrombin burst” feedback mechanisms 
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and stabilises clots. Any deviation from regular functioning can cause grave effects. 

Without adequate thrombin generation, haemorrhage can occur since stable blood clots 

cannot form. Equally, unregulated thrombin activity can lead to thrombosis in instances 

where clots disseminate away from the site of tissue damage. 

Thrombin is a serine protease and is a member of the chymotrypsin family. It has a 

structure and catalytic function like the prototypic protease chymotrypsin, and works in 

a similar manner to trypsin. The multiple functions of thrombin are balanced by its 

specificity for the particular substrate. Since thrombin has lost the Gla and kringle 

domains of its zymogen prothrombin, all substrate recognition occurs at the catalytic 

domain. Thrombin is composed of two polypeptide chains (A and B) which are linked 

covalently by a disulfide bridge. The A chain is only 36 amino acid residues long and 

has no documented functional roles. The B chain is 259 amino acid residues, and 

composes the entrance to the active site (Bode et al., 1992). The active site cleft is a 

canyon at the centre of the protein. Because of the homology between thrombin and 

trypsin, thrombin also cleaves preferentially at Arg residues of the substrate, but 

selectively at specific Arg sites using auxiliary interactions from two exosites at distinct 

locations from the active site.  

Exosite I contains hydrophobic regions and several charged residues on its surface, 

providing electrostatic navigation and positioning to fibrinogen during its approach to 

the thrombin active site. This epitope extends from exosite I to the active site (Mosesson 

et al., 2001). Similar epitopes are employed by thrombin to interact with the natural 

inhibitor hirudin (Rydel et al., 1991), fibrin (Ayala et al., 2001) and thrombomodulin 

(Pineda et al. 2002). Exosite II is positioned opposite to exosite I and features numerous 

charged residues, but no hydrophobic regions. The charged residues enable interactions 

with anionic heparin and other glycosaminoglycans (GAGs) (Sheehan and Sadler, 

1994). GAGs are highly sulfated polysaccharide molecules of various chain lengths that 

festoon the proteoglycans in vascular and extravascular spaces. Heparin is a highly 

sulfated GAG produced by mast cells and is a potent anticoagulant used in clinical 

practice. The thrombin binding site for heparin is localised at exosite II (Sheehan and 

Sadler, 1994; Gan et al., 1994; Ye et al., 1994; Tsiang et al., 1997), and a high-

resolution crystal structure shows thrombin binding a heparin octa-saccharide (Carter et 

al., 2005) via a non-specific electrostatic interaction (Olson et al., 1991). GAGs are 

used by thrombin to regulate its interactions with other proteins, including antithrombin, 
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which is the basis for heparin’s role as an anticoagulant. Antithrombin is a serpin which 

forms a ternary complex with heparin and thrombin, irreversibly inhibiting thrombin 

activity (Olson and Chuang, 2002). Antithrombin is one of only two specific thrombin 

inhibitors in circulation (with heparin cofactor II being the other, which also requires the 

presence of GAGs), and its important inhibition effects are demonstrated in cases of 

antithrombin deficiency where patients have an increased incidence of thrombosis (van 

Boven and Lane, 1997), and in knockout mouse models where embryonic mortality was 

observed (Ishiguro et al., 2000). Antithrombin recognises a unique pentasaccharide 

sequence of heparin (which has a random distribution along the polysaccharide chains) 

with high affinity that causes a global conformational change through a hinge motion. 

This conformational change has been shown to be important in the action of 

antithrombin on factor Xa, but is not the mechanism behind its thrombin inactivation. 

For this, the heparin chain provides a template on which inhibitor and protease interact, 

where the high-affinity sites of the heparin chain are occupied by antithrombin while 

thrombin translates along the chain until encountering the inhibitor (Li et al., 2004). 

Both unfractionated heparin, which is a mixture of polysaccharide chains ranging from 

3 to 30 kDa, and for low molecular weight heparins (less than 8 kDa) can bind to 

antithrombin. However, for heparin to catalyse antithrombin inhibition of thrombin, a 

specific ternary complex between the three parties needs to form which requires the 

pentasaccharide containing heparin chains to be at least 18 saccharide units long. This 

complex inactivates thrombin activity by factor of greater than 1000. Thrombin binds 

heparin through an interaction at its exosite II, stabilising the thrombin-antithrombin 

complex by sharing the same heparin chain (Stone SR and Le Bonniec, 1997). In 

addition to this, a crystal structure of the ternary complex (Li et al., 2004) revealed a 

close direct contact interface between the thrombin and antithrombin molecules.  

Taking all this information together, we hypothesise that HRG activated by Zn
2+

, the 

dynamics of which have been affected by increased fatty acid binding to HSA, could 

allow for HRG to effectively compete for heparin against antithrombin and reduce 

thrombin inhibition leading to enhanced thrombosis (Figure 4.3). Since clinical 

conditions which are associated with high levels of plasma fatty acids also are known to 

show an increased incidence of thrombosis, this novel molecular mechanism could 

provide an explanation for this observation and also potentially improve the efficacy of 

heparin anticoagulation treatments. To help prove this hypothesis, studies on HRG 
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binding to zinc, heparin and both zinc and heparin were conducted using isothermal 

titration calorimetry and enzyme-linked immunosorbent assays. Similar isothermal 

titration calorimetry studies on HSA binding to zinc under a range of fatty acid 

conditions were also performed and an in vitro thrombin activity assay was developed 

to assess the veracity of the proposed mechanism.  

 

Figure 4.3. A schematic representation of the hypothesis proposed in text. Allosteric modulation of 

albumin (HSA) can switch the Zn
2+

 dynamics towards histidine-rich glycoprotein (HRG). This activation 

of HRG makes it more effective in competition for heparin against antithrombin (AT), thereby breaking 

or preventing the inhibitory ternary complex between AT, heparin and thrombin. This process would free 

the thrombin to proceed in coagulation.    
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Methods 

Purification  

Purification was performed as described earlier (see Chapter 3). 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed as described earlier (see Chapter 3). 

Protein Concentration Determination 

Protein concentration was determined as before (see Chapter 3). 

Isothermal titration Calorimetry (ITC) 

ITC experiments were carried out using a VP-ITC instrument (MicroCal) in 50 mM tris, 

140 mM NaCl, pH 7.4, at 25 °C. Titration reagents (zinc, heparin) were added to the 

reaction buffer and the pH adjusted to 7.4 to match the buffer. Solutions were degassed 

at 22 ºC for 15 minutes prior to running the experiment. Typical titrations performed 

were one 2 μl injection over 4 s followed by up to 55 injections of 5 μl over 10 s with an 

adequate interval of 240 s between injections to allow complete equilibration. The 

stirring speed was 307 rpm. Heats of dilution were accounted for with blank titrations 

performed by injecting ligand solution into reaction buffer and subtracting the averaged 

heat of dilution from the main experiment. Alternatively, in cases of saturated binding 

blank titrations were omitted where the averaged residual signal of the last injections 

was used to determine the heat of dilution. Raw data were processed using MicroCal 

Origin software and data fitted using the same software. Protein concentrations were 

determined either by using absorbance at 280 nm or by weighing out lyophilised 

sample. Specific experimental reaction conditions are given in each figure legend.  

ITC experiments with low molecular weight heparin were performed on an iTC200 (GE 

Healthcare Life Sciences, Little Chalfont, UK) and were typically of 19 injections of 2 

µl with 120 s intervals. Stirring speed was 750 rpm. Consecutive data sets were 

combined using ConCat32 software. 

Raw data for the ITC experiments presented here can be found in Appendix 2. 
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Enzyme-linked immunosorbent assay (ELISA) 

An ELISA experimental set-up was devised to investigate the interaction between HRG 

and heparin compounds. Undefined heparin (Acros Organics) or low-molecular weight 

heparin (Iduron, Manchester, UK) were coated overnight at room temperature onto a 

heparin-binding plate (Iduron) at a concentration of 25 μg/ml in 50 mM HEPES, 150 

mM NaCl, 0.2% Tween 20 at pH 7.4 with or without ZnCl2. The wells were washed 

using the same buffer, and then blocked with the same buffer supplemented with 0.2% 

gelatin from fish skin (Sigma-Aldrich) for 1 hour at 37°C. Human HRG was incubated 

for 2 hours over a range of concentrations (0–3 μM) at 37°C. Binding was detected with 

primary rabbit anti-HRG (Sigma-Aldrich) followed by alkaline phosphatase linked anti-

rabbit antibody (Sigma-Aldrich) and observed with a pNPP substrate (Sigma-Aldrich) 

at 405 nm. 

Thrombin assay 

To investigate the proposed mechanism of thrombin activation via Zn
2+

-dependent 

modulation of HRG functioning by plasma fatty acids, an in vitro assay system was 

established containing all constituents of the proposed pathway at physiological 

concentrations. Serum albumin (600 μM, purchased from Sigma-Aldrich) was pre-

loaded with fatty acid by incubating with lauric acid (0, 1.5 or 3 mM) for 1 hour at 37 

°C in 50 mM HEPES, 150 mM NaCl at pH 7.4 and ZnCl2 (20 μM). HRG (1.5 μM), 

heparin (0.5 U/ml), antithrombin (2 μM) and thrombin (0.5 nM) were mixed with the 

albumin sample and allowed to equilibrate for 1 hour at 37 °C. S-2238 (100 μM), the 

thrombin substrate, was then added to the reaction which was detected after 20 minutes 

at 380 nm using a Fluostar Optima. Final concentrations are shown in parenthesis; 

experiments were performed in triplicate. 

 

 

 

 

 



90 
 

Results and discussion 

Purification of HRG 

HRG samples were purified from human plasma or rabbit serum. Rabbit HRG was used 

in initial experiments since a greater yield of protein was afforded and rabbit serum was 

more readily available. The purification protocol involved one step on a nickel affinity 

matrix and resulted in yields of > 80% and high purity (> 95%) as assessed by SDS-

PAGE (Figure 4.4). Protein identity was confirmed by mass spectrometry.  

 

Figure 4.4. SDS-PAGE analysis of the one step nickel affinity purification of human HRG from plasma, 

stained with coomassie. Molecular weight markers are shown in kDa. HRGcan be seen in lanes 4 to 6. 

The purity of all samples was assessed to be at least greater than 95%, and samples of this quality were 

used in experiments. Rabbit HRG was purified as before (Chapter 3, Figure 2.4). 

The mass spectrometry analysis was shown earlier (Chapter 3, Figure 3.4), as was the 

sequence homology between human and rabbit HRG (Chapter 3, Figure 3.2). Although 

the proteins share a high sequence homology, the greatest variance between their 

respective sequences is observed in the HRR and PRR2 domains. This region of HRG is 

involved in Zn
2+

 and heparin binding, so any difference observed between human and 

rabbit HRG with these interactions could be accounted for by keeping the sequence 

variance in mind.  
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Zinc binding studies with HRG 

The Zn
2+

-binding properties of hHRG (human) and rHRG (rabbit) were studied using 

ITC. Both hHRG and rHRG exhibited almost identical binding profiles, revealing an 

exothermic binding process between HRG and Zn
2+

 (Figure 4.5).  

Figure 4.5. ITC data for Zn
2+

 binding to (a) human HRG and (b) rabbit HRG. 55 injections of 5 μl of 150 

μM ZnCl2 were delivered to HRG (10 μM in buffer containing 50 mM Tris, 140 mM NaCl at pH 7.4) 

over 10 s with an adequate interval (240 s) between injections to allow complete equilibration. Raw data 

can be found in appendix A2.1 and A2.3. 

Previous studies on the metal binding properties of HRG have utilised rHRG since 

rabbit plasma contains almost ten times more of the protein. Thus the hHRG Zn
2+

-

binding characteristics provided here are the first attempts to quantitatively and 

qualitatively interpret this binding. The ITC data determined that hHRG is capable of 

binding 10 molar equivalents (N=10.3) of Zn
2+

, with an average Ka of 8.1  10
4 

(± 4.0  

10
3
) M

-1
 (Figure 4.5a). The rHRG ITC data show that the rabbit protein is also able to 

bind 10 molar equivalents (N=10.4) of Zn
2+

, in keeping with previously reported data 

(Morgan, 1981), but had a lower affinity with an average Ka of 4.4  10
4
 (± 3.3  10

3
) 

M
-1

 (Figure 4.5b). The lower affinity of rHRG for Zn
2+

 when compared with hHRG 
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could potentially help explain why the former is more abundant in rabbit plasma, than 

the latter is in human plasma. In addition to this, although both proteins share a high 

homology, the greatest difference in their sequence comes at the respective HRR and 

PRR2 domains where the rabbit sequence is elongated (Chapter 3, Figure 3.2).  

 

Figure 4.6. ITC data for Zn
2+

 binding to human HRG in physiological ionic strength (PI) and low ionic 

strength (low I) buffers. 55 injections of 5 μl of 150 μM ZnCl2 were delivered to samples of 10 μM HRG 

in buffer containing 50 mM Tris, 140 mM NaCl at pH 7.4 (white squares) or  50 mM Tris, 50 mM NaCl 

at pH 7.4 (Black squares) over 10 s with an adequate interval (240 s) between injections to allow 

complete equilibration. Raw data can be found in appendix A2.2.  

Interestingly, when the ITC experiment was performed under conditions of lower ionic 

strength (the previous experiments were conducted at physiological ionic strength), 

hHRG was shown to bind only 5 molar equivalents of Zn
2+

, with a Ka of 3.6  10
4
 (± 2.4 

 10
3
) M

-1
 (Figure 4.6). This suggests that salt ions are involved in the binding of Zn

2+
 

either as a direct ligand for the Zn
2+ 

ion or by playing a role in forming binding sites 

through salt bridges. Intriguingly, EXAFS studies on HRG led the researchers to 

postulate a Zn
2+

 binding site to be composed of three histidine ligands and one heavier 
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ligand which was proposed to be a cysteine sulfur atom (Mangani et al., 2003).  

However, they admitted that the EXAFS analysis did not allow for the differentiation 

between a sulfur or chloride ion. The data presented here conducted at different ionic 

strengths would support the latter, since at the lower ionic strength (i.e. lower Cl
-
 levels) 

significantly attenuated the ability of hHRG to bind Zn
2+

. If a cysteine sulfur was indeed 

involved in the Zn
2+

 binding, it would have appeared as a distinct region on the ITC 

isotherm. The ITC data shows all 10 sites are identical, but since most cysteine residues 

of HRG are involved in disulphide bridging, it would not be possible for all 10 sites to 

contain a cysteine residue. Although Cl
-
 is a weak Zn

2+
 binding ligand, there is evidence 

that it can form part of a Zn
2+

 binding site (Smith et al., 1996; Hymowitz et al., 1999).       

Heparin binding studies on HRG 

A similar approach using ITC was used to examine the effect of Zn
2+

 on the heparin 

binding properties of hHRG. Unfractionated heparin (molecular weight range 3-30 kDa) 

was injected into samples of hHRG at different concentrations of ZnCl2 (Figure 4.7).  

The presence of ZnCl2 had a marked effect upon the mechanism by which human HRG 

bound heparin. In the absence of Zn
2+

 the interaction between heparin and HRG is 

endothermic. Upon the presence of 1 µM Zn
2+

, an exothermic mode of binding appears 

observable at the start of the isotherm, which becomes more pronounced at 5 µM. This 

suggests that heparin binds HRG via different modes, whereby the exothermic mode 

occurs before the endothermic mode and is enhanced by Zn
2+

 binding to HRG. These 

modes could arise from heparin binding to different regions of the HRG molecule. HRG 

is known to have N-terminal sequence homology with the antithrombin heparin binding 

site which could provide one binding mode, and the HRR (which would become 

positively charged upon binding Zn
2+

, thereby enhancing any effect) could provide 

another region of binding for the negatively charged heparin. It was possible to fit 

curves to the endothermic data collected in the absence and presence of 1 µM ZnCl2, 

but not to the most complex isotherm observed at 5 µM. The resultant curves suggested 

that the endothermic mode most probably corresponds to a single heparin site. The 

calculated Ka for this mode was 3.27  10
6
 (± 2.5  10

5
) M

-1
 with no ZnCl2 and 3.95  

10
6
 (± 5.2  10

5
) M

-1
 in the presence of 1 µM ZnCl2. However, the “real” affinities are 

likely to be higher as this analysis does not take into account binding via the exothermic 

mode. 
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Figure 4.7. Effect of Zn
2+

 on heparin binding to human HRG. Here 45 injections of 5 μl of 50 μM 

heparin (average mol. wt. assumed to be 15 kDa) was delivered to samples of HRG (10 μM in buffer 

containing 50 mM Tris, 50 mM NaCl and 0, 1 and 5 µM ZnCl2 at pH 7.4) over 10 s with an adequate 

interval (240 s) between injections. Zn
2+

 was included in the buffer at concentrations of 0, 1 and 5 μM. 

Raw data can be found in appendix A2.4-2.6. 

It was also observed that there is a difference in the stoichiometry of heparin binding to 

HRG in the presence of 1 µM Zn
2+

 (as illustrated by a shift in the curve to the left) 

compared with the data without Zn
2+

 or with 5 µM Zn
2+

. This correlates with a previous 

study which revealed that complexes of 1 heparin:1 HRG and of 1 heparin:2 HRG can 

form with formation of the 1:2 complex enhanced by the presence of Zn
2+ 

(Burch et al., 

1997). Since we used unfractionated heparin in this instance, it was not possible to 

assign an accurate molecular mass to the titrant solution (an average mass of 15 kDa 

was used), and so the x-axis on Figure 4.7 is to a large degree arbitrary. But, if we use 

the molar ratio of 0.4 observed in these experiments to represent the 1:1 complex 

(which is the calculated N value for both the without Zn
2+

 and 5 µM Zn
2+

 data sets), 

then the molar ratio of 0.2 (which is the calculated N value for the 1 µM Zn
2+

 data set) 

can be taken to represent the 1:2 complex. The data here suggests that higher 
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concentrations of Zn
2+

 (5 µM)
 
preclude the formation of the 1:2 complex, which will 

enhance the proportion of heparin bound to HRG. However, this interaction is complex 

and becomes even more convoluted if experiments at higher Zn
2+

 levels are attempted 

(Appendix A2.7). The complexity is a corollary of the molecules involved, since HRG 

is likely able to bind heparin at different regions, and heparin molecules themselves are 

heterogeneous (existing in varying chain lengths) which interact differently with HRG 

depending on length. For example, heparin chains of 10 kDa do not form the 1 

heparin:2 HRG complex (Burch et al., 1997). It should be stated that the heparin ITC 

experiments were conducted at an ionic strength lower than physiological for qualitative 

and aesthetic reasons. Experiments performed at physiological ionic strength showed 

the same pattern and trends observed here (Appendix A2.8).   

Since quantitative information from the ITC data was problematic to obtain due to the 

mix of endothermic and exothermic interactions observed, and ELISA protocols were 

established to calculate the affinities involved in this interaction (Figure 4.8).  

 

Figure 4.8. (a) Schematic representation of the ELISA set up. (b) The substrate para-

Nitrophenylphosphate (pNPP) cleaved by alkaline phosphatase (AP), to produce a yellow coloured 

compound under basic conditions. 
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In addition, low molecular weight (LMW) heparin was included in these studies to 

provide further insights into the mechanistics of heparin binding to HRG under the 

influence of Zn
2+

. In these experiments plates were coated with unfractionated heparin 

(3-30 kDa) and human HRG solutions containing different concentrations of ZnCl2 

were added. After washing, binding was detected through the use of a specific rabbit 

anti-HRG antibody and an alkaline phosphatase-linked anti-rabbit secondary antibody. 

The alkaline phosphatase cleaves the substrate para-Nitrophenylphosphate (pNPP) to 

produce a yellow compound.  

In each case HRG bound heparin in a concentration-specific manner (Figure 4.9a). In 

the absence of Zn
2+

, the average Kd value was 32.9 nM (much stronger than the affinity 

calculated from the ITC data). However the affinity was significantly higher in the 

presence of Zn
2+

, with similar binding profiles observed at all concentrations 

investigated. In these cases the average Kd values were calculated to be 5.1 nM, 6.2 nM 

and 8.2 nM in the presence of 1 µM, 5 µM and 20 µM ZnCl2, respectively. The 

maximum level of binding was similar in all cases suggesting that the independent 

binding modes observed in the ITC experiments are likely to be mutually exclusive (i.e. 

coordination of Zn
2+

 does not create additional heparin-binding sites). These data 

suggest that even relatively small changes in the speciation of plasma Zn
2+

 are likely to 

affect the heparin-binding properties of HRG and its haemostatic functions. 

Antithrombin has a high affinity for heparin with a Kd in the region of 10-36 nM (Olson 

et al., 1992), and also binds a fraction of heparin (termed low affinity heparin) with a Kd 

of 19 µM (Streusand et al., 1995). Taking these numbers into account with the data 

obtained here (showing that HRG binds heparin with a Kd of 32.9 nM in the absence of 

Zn
2+

 and 5.1-8.2 nM in the presence of Zn
2+

) it is apparent that HRG is an important 

competitor for heparin against antithrombin even under normal conditions; but is a more 

significant and stronger competitor in the presence of Zn
2+

.    
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Figure 4.9. Effect of Zn
2+

 on (a) unfractionated heparin (ranging from 3-30 kDa) and (b) low molecular 

weight heparin (6850 Da) binding to human HRG examined by ELISA. Heparin (25 μg/ml) was coated 

overnight onto a heparin-binding plate in 50 mM HEPES, 150 mM NaCl, 0.2% Tween 20 and 0, 1, 5 or 

20 µM ZnCl2 at pH 7.4 in triplicate. The reaction was washed using the same buffer, then blocked with 

the same buffer containing 0.2% gelatin. Human HRG was then added over a range of concentrations (0–

3 μM) and incubated for 2 hours. Detection was with primary rabbit anti-HRG followed by alkaline 

phosphatase linked anti-rabbit antibody and observed with a pNPP substrate at 405 nm. (c) ITC 

experiments performed using low molecular weight heparin (6850 Da). 2μl injections of 150μM low 

molecular weight heparin was delivered to samples of 10 μM HRG in 50 mM Tris, 50 mM NaCl at pH 

7.4. Buffers contained either 0 or 1 μM ZnCl2. Data from consecutive experiments were combined using 

ConCat32 software. Raw data can be found in appendix A2.9-2.10. 

The complementary LMW heparin ELISA experiments (Figure 4.9b) showed that Zn
2+ 

had no influence on the ability of HRG to bind to the LMW heparin chain, where the Kd 

values were ~30 nM for both without Zn
2+

 and with 1 µM Zn
2+

 (Figure 4.9b). To 

supplement the ELISA data, ITC experiments using the same LMW heparin were 

conducted (Figure 4.9c) and confirmed that Zn
2+

 has no effect on the affinity or 

stoichiometry of the HRG interaction with LMW heparin.    

By taking the data presented here and by combining it with what is already known about 

the HRG-heparin interaction, such as both the N1N2 domain and the HRR can 
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independently bind heparin (Jones et al., 2004a; Vanwildemeersch et al., 2006), a 

schematic representing the sophisticated interaction can be developed (Figure 4.10). 

HRG can initially bind heparin via its N1N2 domain which is then enhanced upon the 

chelation of Zn
2+

 by the HRR. At higher concentrations of Zn
2+

, repulsion effects 

between the dimers force them apart and into the 1:1 complex. This could explain why 

increasing the Zn
2+

 levels in the ELISA experiments did not show a parallel in 

increasing the HRG affinity for heparin. It could also explain why HRG binding to 

LMW heparin is not enhanced by Zn
2+

, since there is not enough template surface (i.e. 

heparin chain length) for this augmentation effect to work.  

 

Figure 4.10. Schematic showing a possible mechanism behind the interaction between HRG and heparin 

and the effect of Zn
2+

. (a) First, a heparin molecule tethers to HRG at either its N1N2 or HRR domains. 

The binding of Zn
2+

 by HRG pulls the longer chain heparin into position (perhaps overlapping both 

regions involved in heparin binding) and facilitates the formation of the 1:2 heparin:HRG complex. As 

the Zn
2+

 levels increase, repulsion between the HRG molecules cause the return to the 1:1 complex. (b) 

Low molecular weight heparin is able to bind in the same initial manner. However, due to its shorter 

length, is unable to provide the template required to feel the effects of Zn
2+

 activated HRG.  

However, this is stated with caution since the data here still does not fully decipher the 

binding mechanism. To do this, a further project would need to be undertaken which 

used isolated N1N2 and HRR domains (either recombinant or otherwise) to conduct 

heparin binding ITC studies. This would allow the binding mechanism to be broken 

down to respective exothermic and endothermic constituents and show how Zn
2+

 

activates the HRR in this specific case, leading to the subsequent building up of the 

mechanism from the bottom up. 
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These data are significant since heparin is used in clinical practice as an anticoagulant, 

although there are some complications with its use (particularly for unfractionated 

heparin). Unfractionated heparin is plagued by a narrow therapeutic window and an 

unpredictable dose-response profile as well as other problems including the inability to 

promote inhibition of fibrin-bound thrombin and platelet-bound factor Xa and the 

potential to trigger heparin-induced thrombocytopenia. LMW heparins have a more 

predictable dose-response profile, but are still unable to inhibit fibrin-bound thrombin 

and platelet-bound factor Xa (Weitz, 1997; Hirsh et al., 2001). The fact that HRG is 

enhanced in its affinity for unfractionated heparin and not LMW heparin (by the 

influence of Zn
2+

) could help explain the poor clinical predictability of the former 

compared to the latter. In cases where individuals have altered Zn
2+

 dynamics from 

normal (e.g. higher plasma fatty acids), a patient receiving unfractionated heparin 

treatment would show a dose-response profile differing from the expected due to the 

fact that HRG is able to compete and bind for the heparin molecules against the 

intended target, antithrombin.    

Thrombin activation by HRG following fatty acid induced Zn
2+

 release 

Previous studies have demonstrated that fatty acid binding to bovine serum albumin 

triggers changes in its ability to bind Zn
2+

 to alter the speciation of this metal in plasma 

(Lu et al., 2012). Here, similar experiments were conducted, but used human albumin in 

place of bovine albumin to examine whether the same process occurs with the human 

protein. ITC experiments were performed with HSA (50 µM), loaded with increasing 

molar equivalents of myristic acid (0-250 µM myristic acid, corresponding to 0-5 molar 

equivalents respectively) being titrated with ZnCl2 (1.5 mM). Myristic acid was used 

since it balances solubility issues with still being able to bind HSA in a manner which 

closely matches that of the more physiologically relevant stearic acid and palmitic acid 

(Curry et al., 1998) albeit slightly weaker (Spector, 1975). Figure 4.11 shows the 

resulting isotherms, where a trend in decreasing stoichiometry and a likely lowering of 

the affinity of HSA for Zn
2+

 are observed when myristic acid concentration increases. 

These salient features of the data confirm that as the level of fat associated with HSA 

progressively increases, its high affinity Zn
2+

 site is destructed as was observed in the 

BSA experiments. 
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Figure 4.11. ITC experiments showing the interaction between HSA and Zn
2+

 under a range of myristic 

acid concentrations (0-5 molar equivalents). 50 µM HSA was loaded with the desired amount of myristic 

acid for 2 hours at 37 °C. The HSA sample was then titrated with 5 µl injections of a 1.5 mM ZnCl2 

solution for 55 injections. Experiments were conducted in buffer containing 50 mM Tris, 140 mM NaCl at pH 

7.4. Raw data can be found in appendix A2.11-2.16. 

The ITC data highlights the complexity of this system where two or three binding sites 

for one ligand and up to ten binding sites for another exist, making complete fitting of 

the curves difficult. However, tentative and simplified fitting approaches were taken in 

an attempt to relatively quantify the process.  A sequential binding site model was used 

to fit two sites to obtain reliable quantitative data for the main Zn
2+

 site (Ka= 1.35  10
5 

± 2.5  10
4
 M

-1
, ΔH= -8166 kJmole

-1
). These values were then used to fit a two site 

model to obtain a stoichiometry for the interaction as it progresses through increasing 

myristic acid levels. The stoichiometry data showed the main Zn
2+

 site disappear as 

observed in Figure 4.10. N decreased from N=0.95, 0.74, 0.55, 0.37, 0.35 to 0.09 as the 

myristic acid level increased. From these data, it is clear that the high affinity Zn
2+

 site 

disappears by 5 molar equivalent of myristic acid but it is uncertain what happens to the 

other sites. This level of fatty acid (which would equate to around 3 mM in vivo) is 
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observed in the clinical conditions described earlier. Also, it is likely that longer chain 

fatty acids, which would be more abundant in vivo, would induce this allosteric effect 

on HSA at concentrations lower than observed for myristic acid in these studies. A 

summary of the ITC data is presented in Table 4.1. 

Table 4.1. Summary of the ITC data for selected interactions, showing the Kd where appropriate and the 

stoichiometry (N). IS is ionic strength; mol. eq. is molar equivalent.  

 

Having clearly established that the fatty acid induced allosteric modulation of HSA 

severely hinders its native ability to bind Zn
2+

, an approach was established to 

determine whether this would be likely to impact upon HRG function. An in vitro assay 

was developed based upon HRG’s ability to neutralise heparin and inhibit thrombin (Fu 

and Horn, 2003). This system uses a colorimetric thrombin substrate (S2238), together 

Interaction Kd (µM) N

hHRG-Zn2+ 12.4 10.3 (± 0.1)

rHRG-Zn2+ 22.8 10.4 (± 0.1)

hHRG-Zn2+ at low IS 27.8 4.9 (± 0.01)

HSA-Zn2+ (Site A) 7.4 0.95 (± 0.01)

HSA-Zn2+ (Site A) + 1 mol. 

eq. Myr
- 0.74 (± 0.01)

HSA-Zn2+ (Site A) + 2 mol. 

eq. Myr
- 0.55 (± 0.01)

HSA-Zn2+ (Site A) + 3 mol. 

eq. Myr
- 0.37 (± 0.02)

HSA-Zn2+ (Site A) + 4 mol. 

eq. Myr
- 0.35 (± 0.02)

HSA-Zn2+ (Site A) + 5 mol. 

eq. Myr
- 0.09 (± 0.01)
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with thrombin, antithrombin III, heparin, human HRG, HSA, Zn
2+

 and different 

concentrations of lauric acid (C12). The reaction scheme is shown in Figure 4.3. The 

assay conditions were optimised to be as close to physiological as possible 

(concentrations of Zn
2+

, serum albumin, HRG, antithrombin and thrombin were all 

within the normal physiological range). Due to complications arising from attempting to 

dissolve fatty acids at millimolar levels in aqueous buffers, lauric acid was chosen 

because of its more favourable solubility, but with the stipulation that any effects 

observed are likely to be increased in conditions where longer chain fats are present 

(e.g. in vivo), since they bind stronger to HSA and would disrupt the Zn
2+

 easier due to 

their increased chain length (Curry et al., 1998). 

In this assay system, increasing concentrations of lauric were found to augment 

thrombin activity, with the highest activity observed in the presence of 3 mM lauric 

acid, which equates to 5 molar equivalents relative to HSA (Figure 4.12).  

 

Figure 4.12. Examination of the fatty acid/Zn
2+

 switch and modulation of HRG functioning in the context 

of thrombin activation. Experiments were performed in triplicate. Data are representative of multiple 

experiments. Error bars presented are S.E.M. Statistical analysis performed was a two-tailed T-test. 

Serum albumin (600 μM) was pre-loaded with fatty acid by incubating with lauric acid (0, 1.5 or 3 mM) 

for 1 hour at 37 °C in 50 mM HEPES, 150 mM NaCl at pH 7.4 with ZnCl2 (20 μM). HRG (1.5 μM), 

heparin (0.2 U/ml), antithrombin III (2 μM) and thrombin (0.5 nM) were mixed with the albumin sample 

and allowed to equilibriate for 1 hour at 37 °C. The thrombin substrate S-2238 was then added to the 

reaction and the reaction was detected after 20 minutes at 380 nm. Final concentrations are shown in 

parenthesis.  
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In this case the increase in activity was statistically significant (p=0.0376). The 

prothrombotic effect of the fatty acid was reversed by the including 0.1 mM EDTA to 

the system, confidently suggesting that Zn
2+

 is central to this phenomenon.  

The concentrations of fatty acid used in this experiment reflect free fatty acid levels 

observed in certain pathological conditions (such as obesity, diabetes and cancer). It is 

important to note that other Zn
2+

-binding molecules are present in the circulation (and 

absent from this simplified experimental system) that could bind at least some of the 

Zn
2+

 displaced from serum albumin. The relative abundance of HRG in plasma (low 

micromolar levels) and its affinity toward Zn
2+

 would suggest that it would be likely to 

bind a significant proportion of this. Furthermore, it is clear from our experiments that 

only a small proportion of the Zn
2+

 bound to serum albumin would need to be displaced 

(and bind HRG) to have a pronounced effect upon the affinity of HRG toward heparin. 

HRG has been shown to neutralise heparin at Zn
2+

 concentrations as low as 1.25 µM 

(Kluszynski et al., 1997), which is consistent with the enhanced binding between HRG 

and heparin observed in the study here. Conversely, it should also be noted that other 

factors (such as factor X) are absent from this system, which would usually also be 

under inhibition by antithrombin. That is to say, in this assay antithrombin solely 

inhibits thrombin since its other targets are unavailable, thereby effectively increasing 

the proportion of antithrombin associated with thrombin than would normally occur in 

vivo. It is also conceivable that some of the HRG, having been activated by Zn
2+

 in this 

manner, would modulate the other processes in which it is known to be involved 

through enhanced binding to its partners and so not all of it would be involved in the 

process described here. Despite the limitations that are obviously intrinsic to such a 

simplified system, the assay proved that activation of HRG by Zn
2+

 can occur under 

conditions of elevated fatty acid levels. The HRG in this system was then enhanced in 

its ability to compete for heparin against antithrombin, which led to increased thrombin 

activity.   

Thus, the data presented here support the hypothesis that elevations in plasma fatty acid 

levels will negatively influence haemostatic function through changes in Zn
2+

 speciation 

and contribute to thrombotic pathologies in some individuals. Interestingly, recent 

clinical trials examining whether the chelation agent, EDTA, offered therapeutic benefit 

to patients with a history of heart disease found that a subgroup of patients who also had 

diabetes (and presumably elevated plasma fatty acid levels) benefited from the 
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treatment (Lamas et al., 2013; Escolar et al., 2014). The molecular basis for this effect 

remains unknown, but it is likely that the EDTA would chelate plasma Zn
2+

, prevent its 

binding to HRG and return thrombin activity to normal levels. 

The results of this study are compelling and provide further evidence to suggest that 

Zn
2+

-dependent activation of HRG (following fatty acid binding to HSA) may play a 

role in the development of haemostatic complications in some individuals. Given that 

this mechanism would likely be targetable with existing therapeutics (such as chelation 

agents and heparins), it requires further investigation. 
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Chapter 5 

Identification of novel metal binding sites on albumin 

This chapter aims to look closer at the metal binding properties of human serum 

albumin (HSA), by attempting to locate the secondary Zn
2+

 binding site. Typically, 

HSA will complex approximately 80% of all plasma zinc (Foote and Delves, 1984), 

making it the major zinc binding protein in plasma (Cousins, 1986). HSA has been 

shown to modulate zinc uptake into cells endothelial cells (Pattison and Cousins, 1986; 

Gálvez et al., 2001), via a receptor-mediated endocytosis pathway (Rowe and Bobilya, 

2000). Additionally, cases of familial hyperzincaemia seem to be a consequence of 

increased zinc binding to HSA (Failla et al., 1982). 

In addition to Zn
2+

, HSA has been shown to bind an assortment of essential and toxic 

metal ions, including Ca
2+

, Cd
2+

, Co
2+

, Cu
2+ 

and Ni
2+

 (Giroux and Schoun, 1981; 

Martins and Drakenberg, 1982; Goumakos et al., 1991; Vidal et al., 1992; Masuoka et 

al., 1993; Masuoka and Saltman, 1994; Sadler and Viles, 1996; Ohyoshi et al., 1999; 

Zhang and Wilcox, 2002). Despite a lack of detailed structural information regarding 

metal coordination to HSA, seven different sites have been described: the N-terminal 

copper and nickel-binding (ATCUN) motif at the N-terminus which is the primary site 

for Cu
2+

 and Ni
2+

 (Harford and Sarkar, 1997); site A, the primary Zn
2+

-binding site that 

also binds other divalent metal ions (Bal et al., 1998); site B, the unknown site which 

displays a high affinity towards Cd
2+

, but is likely to be a secondary Zn
2+

 site (Giroux 

and Schoun, 1981; Goumakos et al., 1991; Sadler and Viles, 1996); and the free thiol 

group at Cys34 which binds heavier soft ions such as Au
2+

 (Christodoulou et al., 1994) 

and Pt
2+

 (Esposito and Najjar, 2002). Lastly, Ca
2+

 is known to be transported by HSA in 

the plasma (Kragh-Hansen and Vorum, 1993), and a recent crystal structure of bovine 

albumin co-crystallised with Ca
2+

 revealed the presence of three binding sites (Majorek 

et al., 2012). 

N-terminal copper and nickel-binding (ATCUN) motif 

The ATCUN motif is characterised by a histidine residue at position three of an amino 

acid chain, as observed for most serum albumins and other metal binding proteins 

(Harford and Sarkar, 1997). This binding site is especially suitable for metal ions that 
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have a desire for square-planar or tetragonal coordination spheres, and provides four 

coordinating nitrogen ligands, including the imidazole nitrogen of His3, the N-terminal 

amino group and two deprotonated backbone amide nitrogens. The ATCUN motif has  

been shown to have a very high affinity for Cu
2+

, with a dissociation constant in the 

picomolar region (Rózga et al., 2007), and a low micromolar dissociation constant for 

Ni
2+ 

(Sokołowska et al., 2002). This high affinity for Cu
2+

 makes HSA one of the 

largest pools of Cu
2+

 in plasma after ceruloplasmin, even though only 2% of the 

ATCUN site is populated with Cu
2+

 (Linder and Hazegh-Azam, 1996). Theoretically, 

because of the residues involved in forming the ATCUN site, it could also bind other 

metals such as Zn
2+

, Cd
2+

 and Co
2+

 but this has not been observed experimentally. The 

Co
2+

 binding is a current controversial topic (Bar-Or et al., 2001, 2008; Mothes and 

Faller, 2007), as was discussed in Chapter 1.  

Site A  

The term “site A” originates from 
111/113

Cd
2+

 NMR experiments where the addition of 

111/113
Cd

2+
 to HSA resulted in two peaks in the NMR spectra; one with a chemical shift 

of around 130 ppm (site A) and the other with a chemical shift of around 30 ppm (site 

B) (Martins and Drakenberg, 1982; Goumakos et al., 1991; Sadler and Viles, 1996). 

111/113
Cd

2+
 NMR provides details regarding the binding environment of the metal ion 

(Oz et al., 1998), and in this case showed two nitrogen donors and two oxygen donors 

were likely to be involved in the binding site. Inspecting the published X-ray crystal 

structures of HSA showed that two histidine ligands in close proximity to potential 

oxygen donors are only found in the region involving His67 and His247. Site directed 

mutagenesis of His67 to alanine had a major effect on site A, strongly suggesting that 

His67 may indeed be involved in metal binding to this site (Stewart et al., 2003). Site A 

is located at the domains I and II interface, where domain I provides His67 and Asn99 

from, and domain II provides His247 and Asp249. In all X-ray structures of fatty acid 

free HSA, this site appears essentially preformed. A fifth ligand has been suggested as a 

water molecule, which can be replaced by Cl
-
 at higher chloride concentrations (Stewart 

et al., 2003). Site A is the preferred site for Zn
2+

 and one of two for Cd
2+

 (Martins and 

Drakenberg, 1982; Goumakos et al., 1991; Blindauer et al., 2009), although binding of 

Cd
2+

 to this site in HSA is not likely to be relevant under normal physiological 

conditions. Other metals such as Cu
2+

 and Ni
2+

 have also been shown to bind to this site 

(Sadler and Viles, 1996; Bal et al., 1998). 
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 Site B 

The location of site B is as yet unidentified. In NMR studies it correspond to a 

111/113
Cd

2+
 peak with a chemical shift of about 30 ppm, indicating the involvement of 

not more than one nitrogen donor (Martins and Drakenberg, 1982; Goumakos et al., 

1991; Sadler and Viles, 1996; Oz et al., 1998). Mutant studies involving His39 showed 

no difference in the Cd
2+

 NMR spectrum (Stewart et al., 2003), meaning it is unlikely 

that this residue forms part of the site. Site B has a lower affinity for Zn
2+

 compared 

with site A, and could be the primary site for Mn
2+

 ions (Fanali et al., 2012).  

Cys34 

HSA in plasma exists as a heterogeneous mixture due to the existence of Cys34. HSA 

contains 35 cysteine residues, of which 34 are involved in the 17 disulfide bridges that 

interconnect α-helices and maintain the tertiary structure of the molecule (Peters, 1985). 

Cys34 in HSA contains the only free thiol group and this can undergo oxidation 

reactions in vivo. Thus, Cys34 is reactive towards glutathione or cysteine (Sogami et al., 

1986), is involved in disulphide dimerisation of HSA molecules and can be nitrosylated 

(Stamler et al., 1992). The HSA molecules which preserve the free thiol form of Cys34 

can bind metal ions at this position. It is most likely that this site is specific for metal 

ions that can bind to the protein effectively through a single bond such as the heavier 

Au
2+

 and Pt
2+

 ions (Isab and Shaw, 1990; Ivanov et al., 1998). 

Ca
2+

 binding sites 

Recently, a structure of bovine albumin was solved with Ca
2+

 bound to the molecule 

(Majorek et al., 2012). This was the first structure of bovine serum albumin and the first 

albumin structure with a metal ion bound. Although the interaction between albumin 

and Ca
2+

 is relatively weak with a dissociation constant in the high micromolar range 

(Kragh-Hansen and Vorum, 1993), around 45% of the 2.4 mM of Ca
2+

 circulating in 

plasma is coordinated to albumin (Peters, 1995). Additionally it has been suggested that 

albumin mirrors this binding with Mg
2+

. Approximately 45% of the 1.2 mM Mg
2+

 is 

also bound to albumin. This would suggest that there are three sites for these ions, as 

was observed in the Ca
2+

 bound crystal structure.   

All three Ca
2+

 binding sites are found in domain I (Figure 5.1). The first site involves 

residues Glu6, Glu243, Asp248 and Glu251. The second site involves residues Asp13, 
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Asp254 and Asp258. The third site includes Ser109 and Asp111. Water molecules 

provided additional ligands in all cases.  

 

Figure 5.1. Crystal structure of bovine serum albumin complexed with three Ca
2+

 ions (PDB code: 

3V03). Site one is highlighted with the residues in red (Glu6, Glu243, Asp248 and Glu251), site two is 

highlighted in blue (Asp13, Asp254 and Asp258) and site 3 in green (Ser109 and Asp111). Ca
2+ 

ions are 

coloured purple and water molecules are coloured cyan. The peptide backbone is highlighted grey. Figure 

drawn using Accelrys. 

Locating metal binding sites on HSA 

The study here aims to locate site B and any other metal binding sites on HSA by site 

directed mutagenesis and use of isothermal titration calorimetry to monitor binding 

energetics between HSA and metals. Figure 5.2 shows putative sites for metal binding 

based on identified clusters of nitrogen and oxygen donating amino acids within close 

proximity of each other.  

 

Figure 5.2. Putative novel metal binding sites on HSA (PDB file: 1AO6). Figure drawn using Accelrys. 
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To probe this experimentally, a eukaryotic recombinant system was developed using the 

yeast K. lactis to express and secrete the proteins of interest. HSA mutants H9A and 

H288A were constructed to determine additional putative Zn
2+

 binding sites, since they 

would require the presence of nitrogen donors (most probably histidine). E252, D255A 

and D256A mutants were constructed to probe Zn
2+

 binding to HSA (the numbering of 

residues differs by one between human and bovine albumin). The position of each of 

these residues in the HSA molecule is shown in Figure 5.3.  

 

Figure 5.3. Crystal structure of human serum albumin (PDB code: 1AO6), showing the positions of the 

amino acid residues which were mutated to alanine in this study. The peptide backbone is highlighted 

grey. Figure drawn using Accelrys. 

α-Fetoprotein (AFP) 

AFP is the main protein of foetal plasma (Bergstrand and Czar, 1956; Ruoslahti and 

Seppälä, 1972) and shares 39.4% sequence identity with HSA. AFP is produced by the 

liver and exists at concentrations ranging between 1–10 mg/ml in the foetus, but it 

decreases sharply down to trace amounts after birth and is replaced by HSA as the 

major component of plasma (Bergstrand and Czar, 1956; Ruoslahti and Seppälä, 1972; 

Deutsch, 1991). It has been observed that the changes in serum AFP levels during 

pregnancy can lead to the development of several embryonic disorders including 

Down’s syndrome and spina bifida (Seppälä and Ruoslahti, 1973; Brock et al., 1975; 
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Seppälä, 1975; Ruoslahti, 1979; Deutsch, 1991) and an increase in AFP level in adult 

plasma correlates with the occurrence of pathological conditions such as hepatocellular 

carcinoma and several others (Abelev, 1971; Okuda et al., 1975; Yoshiki et al., 1976). 

This correlation allows the clinician to use AFP as a diagnostic marker in these cases. 

The assumed function of AFP is that of a transporter molecule, essentially mimicking 

the role of HSA (in adult serum) during foetal development. It has been observed that 

AFP interacts with fatty acids (Parmelee et al., 1978; Hsia  et al., 1980), where each 

molecule of AFP can contain two or three molecules of polyunsaturated fatty acids, 

having a high affinity for arachidonic (C20:4) and docosahexaenic (C22:6) acids 

(Parmelee et al., 1978; Nagai et al., 1982). AFP also binds Cu
2+

 and Ni
2+

 ions (Aoyagi 

et al., 1978) and has a high affinity for bilirubin (Ruoslahti et al., 1979). However, there 

is a significant functional divergence between AFP and HSA. HSA is known to bind 

many more ligands, but it usually shows a dissociation constant for these in the low 

micromolar range, whereas AFP shows stronger binding to its ligands (with dissociation 

constants in the nanomolar range) (Deutsch, 1991). Additionally, unlike HSA, for which 

the transport and storage of ligands represents the major function, AFP participates in 

other physiological processes, such as immune suppression (Yachnin, 1983). AFP has 

also been stated to play a role in the sexual differentiation of the foetal brain, based on 

its ability to bind estrogens (Soloff et al., 1972; Uriel et al., 1972; Nishi et al., 1991), 

thereby protecting the development from the masculinising effects of the hormone. 

However, only rat and mouse AFP have been shown to bind estradiol and the specific 

estradiol binding region on the rat and mouse variants is absent in human AFP (Nishi et 

al., 1991).   

The homology between AFP and HSA has led to the understanding that AFP will be 

similar in structure to that of the much studied HSA molecule, but detailed studies on 

AFP have yet to be conducted. Thus, AFP has been suggested to be composed of three 

domains and due to 15 disulfide bridges, also takes the ‘heart-shape’ formation as 

observed in albumins (Barker, 1988). However, the relationship between structure and 

function of AFP is thought to be more complex than that which has been characterised 

for HSA. HSA is known to go through strict structural changes in response to pH 

changes that are fully reversible and non-reliant on ligand binding (Peters, 1996). In the 

case of AFP, samples purified from the same source but by different methods show a 

heterogeneity which it has been proposed is due to the stripping of natural ligands 
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during preparation processes which can ultimately lead to irreversible denaturation of 

the protein (Uversky et al., 1997a; Tomashevski et al., 1998).      

Hence it is thought that ligands may play a role in maintaining the rigid spatial structure 

of AFP. It has been suggested that AFP represents a ‘molten globule’ conformation in 

its ligand-free form. This means that it will possess compact native secondary structure, 

but without a unique three-dimensional tertiary structure (Uversky et al., 1997b). This 

semi-rigid molten globule model preserves the main features of the native folding 

pattern, while allowing for much greater internal rotations, which could bestow the 

protein molecule with the ideal qualities necessary for living in a cell due to the range of 

conditions that are encountered. A rigid native protein molecule undergoing a structural 

transformation into a molten globule state is associated with a substantial increase in 

flexibility which could prove to be a functional mechanism (i.e. for the release of 

hydrophobic ligands) (Narizhneva and Uversky, 1997). This molten globule state (or 

ligand-free) AFP has been postulated to be a functional form of AFP, with regards to its 

immunomodulating effects. 

The immunosuppressive ability of AFP observed in vitro is known to be susceptible to 

variations (Lester et al., 1977) and depends on the origin and purification procedure 

(Lester et al., 1977; Yachnin and Lester, 1977; Goeken and Thompson, 1977). Also, it 

has been observed that AFP purified from serum is capable of immunosuppression, but 

the source serum (containing the same AFP levels) does not possess the same capability 

(Yachnin, 1983). Also, the immune-suppression strength of AFP preparations is higher 

when cord serum is subjected to acidic conditions during ion-exchange protocols 

(Goeken and Thompson, 1977), which would provide conditions inducing protein 

denaturation (Uversky et al., 1995). 

The study here aims to develop a viable expression and purification system for 

recombinant AFP, which includes the proper conformation of AFP, to be used in 

fundamental binding studies and potential structural characterisation.  
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Methods 

Materials 

Image clones containing full length human serum albumin (HSA) and human α-

fetoprotein (AFP) coding sequences was purchased from Source Lifesciences. All 

primers used during cloning reactions were purchased from Eurofins MWG Operon and 

are described in Appendix A3.1. K. lactis Protein Expression Kit (New England 

Biolabs, USA) was used to engineer recombinant proteins.  

Expression using Kluyveromyces lactis and the pKLAC2 plasmid  

Recombinant protein expression of wild type-HSA (wtHSA) and the albumin mutants 

H9A, H67A, E252A, D255A, D256A and H288A, as well as AFP, was attempted using 

the K. lactis Protein Expression Kit (NEB, E1000) which included the K. lactis strain 

GG799 and the plasmid pKLAC2. The pKLAC2 plasmid contains a LAC4 promoter, 

LAC4 transcription terminator and encodes β-lactamase (Ap
R
) as well as the pMB1 

origin (ori) to allow for propagation in E. coli. The plasmid also contains the K. lactis α-

mating factor secretion leader sequence (α-MF) which can be used if desired to allow 

the protein to be secreted into the growth media. To provide a means of selection, the 

yeast ADH1 promoter drives expression of an acetamidase marker gene, which allows 

selection to be performed on a carbon based medium where the only nitrogen source is 

acetamide. The plasmid can be digested with SacII or BstXI to create a linear DNA 

fragment capable of integrating into the native LAC4 promoter region of the K. lactis 

genome.    

Construction of expression vectors 

HSA coding sequences were amplified using the Expand Long Template PCR kit with 

buffer system 1 (Roche) and cloned into pKLAC2 (Figure 5.4) using XhoI/NotI 

restriction sites. The primers used in this, and all following experiments, are shown in 

Appendix A3.1. Vector and insert DNA (1 µg) were digested with NotI (20 units) and 

XhoI (20 units) at 37 °C for 2 hours. The reaction also contained BSA (100 µg/ml), 

NEBuffer 3 and was made up to 50 µl with ddH2O. Cloning reactions were completed 

by ligation of the inserts in to the restriction enzyme treated plasmid at a ratio of 
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approximately 2.5:1, using T4 DNA ligase (6 units) in reaction buffer (5 µl) at 16 °C 

overnight. 

 

Figure 5.4. The K. lactis integrative expression vector pKLAC2. The multiple cloning site (MCS) is the 

location of gene insertion, which is within the same translational reading frame as the α-mating factor (α-

MF) native K. lactis leader sequence. K. lactis expression is initiated by the PLAC4-PBI promoter. The 

promoter ADH1 drives the expression of an acetamidase gene (amdS), allowing for the selection of 

colonies on acetamide medium. ORI is the origin of replication. 

Site Directed Mutagenesis of Albumin 

Point mutations within the coding sequence of human albumin (corresponding to 

putative metal sites in the expressed protein) were generated via a PCR-based method 

using the Quikchange kit (Stratgene), however VELOCITY DNA Polymerase enzyme 

(Bioline) was used instead of the Pfu Turbo enzyme (which is usually used as part of 

the kit).  Reactions were set up using the primers shown in Appendix A3.1 (125 ng 

each), 2 mM dNTP mix, HSA-pKLAC2 template DNA (25 ng), reaction buffer, Quick 

Solution and polymerase enzyme (2.5 units). The final volume of each reaction was 

made up to 50 µl with ddH20. The DNA was sequenced commercially to confirm 

integration of correct mutations and to show no additional de novo mutations occurred 

(DNA Sequencing & Services, Dundee) using the primers shown in Appendix A3.1.  

Media 

Liquid cultures of the yeast strain were grown in YPGal medium (1% yeast extract, 2% 

Bacto™ Peptone, 2% galactose) or YPGlu (1% yeast extract, 2% Bacto™ Peptone, 2% 

glucose). Solid yeast carbon-based media (YCB) with 5 mM acetamide (New England 
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Biolabs, B9017S) was used to grow colonies under selective conditions. K. lactis cells 

were grown to an OD600 > 30 (typically 4-5 days) in YPGal unless otherwise stated.  

Transformation of K. lactis GG799 cells 

Linearisation of pKLAC2 must precede the integrative transformation of K. lactis 

GG799 cells. This is required to allow integration of the desired gene into the K. lactis 

genome at the LAC4 locus. Plasmid DNA (pKLAC2) containing the coding sequences 

of HSA (wildtype or mutants) or AFP (2 µg) were digested with SacII (20 units) in 1X 

NEBuffer 4 (50 µl) at 37 °C for 2 hours. This gives rise to two fragements, one 

containing the expression cassette and the other containing the remainder of the 

pKLAC2 plasmid. It was not necessary to purify the digested fragment as only the 

expression cassette has the ability to integrate within the K. lactis genome. However, 

agarose gel electrophoresis was conducted to confirm the digestion, yielding the 

expression fragment at >10 kb and the remaining pKLAC2 DNA at 2.8 kb. Following 

this, the DNA was desalted using SOPE resin (EdgeBio).  

Chemical transformation of K. lactis GG799 cells was achieved by incubating the 

linearised DNA (up to 1 µg in less than 15 µl) with the chemically competent K. lactis 

GG799 cells mixed with NEB Yeast Transformation reagent (620 µl) at 30 °C for 30 

minutes. After incubation, the cell mixture was heat shocked at 37 °C for 1 hour. The 

cells were washed and resuspended in YPGlu (1 ml), transferred to a sterile culture tube 

and incubated with shaking at 30 °C for 4 hours. The cell mixture was resuspended in 

sterile PBS (1 ml). A dilution of the transformed cells (10 µl in 50 µl sterile H2O) were 

spread onto YCB agar plates containing acetamide (5 mM) for selection of correctly 

integrated colonies. Colonies were picked and spotted onto fresh plates for further use.  

Identification of integrated cells  

Colonies containing the integrated albumin sequence were confirmed by PCR 

amplification of the yeast genomic DNA with integration primers 1 and 2 (singly 

integrated copies) or integration primers 2 and 3 (multiple integrated copies). Reactions 

were composed of the required primers (5 µl each), dNTP mix (0.2 mM), Green Go 

Taq
®
 Flexi buffer (10 µl), MgCl2 (2 mM), the yeast DNA (up to 1 µg) and Go Taq

®
 

DNA Polymerase (1.25 units). The volume was made up to 50 µl with ddH2O.  
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The PCR reaction followed from isolating the yeast genomic DNA using a Yeast DNA 

Extraction Kit (Thermo) from single colonies grown on YCB agar plates containing 

acetamide (5 mM). A 1 mm
2
 fraction of the colony was suspended in Y-PER (20 µl) to 

form a homogeneous mixture and incubated at 65 °C for 10 minutes. The cells were 

centrifuged (13 000 x g, 5 minutes) and resuspended in DNA Releasing Reagent A (16 

µl) and DNA Releasing Reagent B (16 µl).  The homogeneous mixture was then 

incubated at 65 °C for 10 minutes. Protein Removal Reagent (8 µl) was added into the 

mixture and inverted several times. The mixture was centrifuged (13 000  g for 5 

minutes) and the supernatant transferred to a new tube. Isopropyl alcohol (24 µl) and 

glycogen (1 µl) were added to precipitate the genomic DNA and to make the pellet 

visible; the mixture was inverted and then centrifuged (13 000  g for 10 minutes). The 

supernatant was removed and the DNA pellet washed with 70% ethanol, before 

resuspension in sterile ddH2O (5 µl). 

Fermentation of yeast  

Yeast colonies containing the desired insert were grown overnight in YPGlu medium at 

30 °C, with shaking at 200 rpm, prior to fermentation. The starter culture was used to 

inoculate 3 L of YPGal media in a Fermac 231 fermenter (Electrolab, UK), which had 

been saturated with O2. The fermenter culture was left to grow for 3 days within a pH 

range of 4.5 to 5.5, with stirring at 350 rpm. Cells were removed from the culture by 

centrifugation at 8,000 rpm for 45 minutes. The 3 L supernatant was concentrated using 

a PES membrane filter with a molecular weight cut-off of 30 kDa (Sartorius, UK).  

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed as described before (see Chapter 3). 

After the desired separation had been achieved, the gels were stained either stained with 

coomassie, or were immediately transferred for Western Analysis. In the case of 

staining, gels were visualised by staining with coomassie solution (0.025% Coomassie 

Brilliant Blue R250, 40% methanol, 10% acetic acid) for 10 minutes, followed by 

destaining in boiling water.  
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Immunoblotting Western analysis 

All blot module components (Invitrogen) were immersed in NuPAGE Transfer Buffer 

(Invitrogen) with methanol (20%) before arranging the apparatus. The PVDF membrane 

was soaked in methanol for 5 minutes, followed by water for 5 minutes. The module 

was arranged from the anode with: sponge pads/filter paper/gel/membrane/filter 

paper/sponge pads. The blot module was filled with transfer buffer and the transfer was 

conducted for 1 hour at 30 V.  

Upon completion of the transfer, the blot module was disassembled and the membrane 

washed with methanol, then water. The membrane was blocked overnight at 4 °C in 

Tris-buffered saline (TBS) with 5% skimmed milk. The membrane was quickly rinsed 

and the incubation with the primary antibody was started. Recombinant albumin and its 

mutants were detected using an anti-HSA antibody raised in rabbit (Sigma, A0433), at 

1:1000 dilutions in TBS + 1% skimmed milk and 0.5% Tween 20 for 1.5 hours at room 

temperature. The primary antibody was washed off with three washes of TBS 

containing 0.2% Tween 20 of 15 minutes each.  

The membrane was incubated with alkaline phosphatase conjugated anti-rabbit 

secondary antibody (Sigma, A9919) at a dilution of 1:10,000 in TBS containing 5% 

skimmed milk and 0.5% Tween 20 for 1.5 hours at room temperature. After this time, 

the membrane was washed three times with TBS containing 0.2% Tween as before, 

followed by one wash with TBS then one wash with ultrapure water. Protein bands on 

the membrane were visualised using Western Blue reagent (Promega).   

Purification 

Recombinant HSA was purified using a HiTrap Blue HP column (GE Healthcare, UK), 

followed by size exclusion chromatography using a HiLoad Superdex-75 column (GE 

Healthcare, UK). All preparations were performed on an AKTA Purifier (GE 

Healthcare, UK). The HSA sample was equilibrated to 20 mM potassium phosphate at 

pH 7 and bound to the HiTrap Blue HP column, which had previously been equilibrated 

in the same buffer. After washing with this buffer, elution was achieved by applying 20 

mM potassium phosphate, 1.5 M KCl at pH 7 over a gradient. Fractions containing 

recombinant HSA were pooled and further purified on a HiLoad Superdex-75 column, 
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which had been equilibrated in a desired buffer (typically 50 mM Tris, 140 mM NaCl at 

pH 7.4). 

Recombinant AFP was purified using a HiTrap chelating column (GE Healthcare, UK) 

which was charged with copper sulfate. Binding of AFP was achieved using 20 mM 

sodium phosphate, 1 M NaCl at pH 7.2. After washing in the same buffer, elution was 

achieved by a one-step introduction of 20 mM sodium phosphate, 1 M NH4Cl at pH 7.2. 

The NH4Cl provides weak competitive binding to the column which is enough to 

displace AFP. Fractions containing recombinant AFP were pooled and further purified 

on a HiLoad Superdex-75 column, which had been equilibrated in the experimental 

buffer of choice.   

Protein Concentration Determination 

Protein concentration was determined as before (see Chapter 3). An extinction 

coefficient of 34445 M
-1

 cm
-1

 was used for HSA and 32830 M
-1

 cm
-1

 for AFP. 

Isothermal Titration Calorimetry (ITC) 

ITC experiments were carried out using either a VP-ITC instrument (MicroCal, USA) 

or iTC200 (GE Healthcare, UK) in 50 mM Tris, 140 mM NaCl, pH 7.4, at 25 °C. The 

titration ligand was added to the reaction buffer and the pH adjusted to 7.4 to match the 

buffer of the protein. Specific concentrations used in experiments are given in figure 

legends. The titration of estradiol into AFP included 1% DMSO in the buffer to 

facilitate estradiol dissolution. Solutions were degassed at 22 ºC for 15 minutes prior to 

running the experiment. Typical titrations on the VP-ITC performed were one 2 μl 

injection over 4 s followed by up to 55 injections of 5 μl over 10 s with an adequate 

interval of 240 s between injections to allow complete equilibration. The stirring speed 

was 307 rpm. Typical titrations on the iTC200 were an initial injection of 0.4 μl over 0.8 

s followed by 18 injections of 2 μl over 4 s with an interval of 120 s between injections. 

Heats of dilution were accounted for with blank titrations performed by injecting ligand 

solution into reaction buffer and subtracting the averaged heat of dilution from the main 

experiment. Alternatively, in cases of saturated binding, blank titrations were omitted 

where the averaged residual signal of the last injections was used to determine the heat 

of dilution. Raw data were processed using MicroCal Origin software and data were 
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fitted using the same software. Raw data for the ITC experiments presented here can be 

found in Appendix 3. Plasma HSA was obtained from Sigma-Aldrich.  
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Results and discussion 

Expression of recombinant albumin in K. lactis  

To understand the metal binding properties of albumin, mutant albumins were 

expressed in K. lactis and investigated using ITC. Expression of HSA mutants was 

detected by Western analysis. Figure 5.5a shows analysis of the H288A mutant as an 

example of expression. All recombinant albumins (wtHSA, H9A, H67A, E252A, 

D255A, D256A and H288A) were subjected to the same protocol. 

 

Figure 5.5. (a) Western analysis of the human albumin mutant H228A showing a major band at 65 kDa 

from 10 random K. lactis colonies. (b) Western analysis of the HSA mutant H288A from 3-7 days growth 

of K. lactis. 

Ten K. lactis colonies were grown in 10 ml liquid cultures to evaluate expression levels. 

All yeast colonies showed a distinct band at 65 kDa relating to HSA. Coinciding with 

the mature H288A band is a band at around 45 kDa which was postulated to represent a 

digested fragment. K. lactis are known to secrete proteases and have membrane bound 

proteases which could interact with any secreted protein in the growth medium. Sleep 

et. al. (1990) made a similar observation in their work comparing the expression of 

HSA from S. cerevisiae using different secretion leader sequences. They found that the 

α-MF (the secretion signal used in our work) produced a truncated fragment of HSA for 

secretion and ruled out any degradation possibilities, but were unable to determine an 

exact cellular cause for its appearance. This pattern was reproducible for all 

recombinant HSA constructs. Before transforming the competent K. lactis cells, the 

DNA was sequenced to confirm the presence of the mutation. The Western analysis 

confirms the expression of recombinant HSA, and no de novo mutations were present.  
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In an effort to optimise HSA mutant secretion and purification, the H288A mutant 

expression was monitored over a period of 7 days in order to determine if there was a 

maximum level of expression over time (Figure 5.5b).  The main band at 65 kDa shows 

very little alteration from 3 to 7 days. The truncated fragment at around 45 kDa displays 

a steady increase in secretion during the growth period. It was concluded that no 

significant advantage could be had by growing the yeast strains longer than 4-5 days.  

With regards to recombinant AFP, since at the time we had no anti-AFP antibody, K. 

lactis colonies containing AFP were not subjected to Western analysis; instead they 

were subjected to purification and subsequent analysis by mass spectrometry.  

Purification of recombinant HSA and AFP 

Recombinant HSA was purified from culture medium using a HiTrap Blue column. 

This column contains the ligand Cibracon Blue F3G-A, which is known to bind albumin 

(Altintaş and Denizli, 2006). Following this, size exclusion chromatography was used to 

polish the sample (Figure 5.6). Typical protein yields were 1 mg/ml for shake flask 

cultures, and up to 20 mg for 3 L fermenter culture. The first step of the procedure 

provided a protein sample typically of 90% purity, which was then improved to >99% 

pure following the size exclusion step. All recombinant HSA constructs were isolated to 

this level of purity and used for experimental studies.   

 

Figure 5.6. Example preparation of the recombinant HSA mutant H288A from K. Lactis. (a) SDS-PAGE 

analysis following the first step of purification on a HiTrap Blue column. Lane 1: media sample, lane 2: 

flow through from column, lanes 3-10: eluted HSA protein (b) SDS-PAGE analysis following the final 

size exclusion step, to yield a protein sample of a suitable quality for experimental work. Gels were 

visualised using Coomassie blue stain.   
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Recombinant AFP was purified using a Cu
2+

-column, exploiting the natural affinity 

AFP has for Cu
2+

. This step afforded two bands that eluted under the same conditions, 

which were then separated by size exclusion chromatography to yield a 99% pure AFP 

sample (Figure 5.7).  The gel band was identified as AFP using mass spectrometry.  

 

Figure 5.7. Preparation of recombinant AFP from K. Lactis. SDS-PAGE analysis of an AFP sample 

(marked with an arrow) can be seen in lanes 4-7 following Cu
2+

 affinity and size exclusion 

chromatography. Lanes corresponding to AFP were pooled and used for experimental studies. Gel was 

visualised using coomassie stain.   

The structural integrity of AFP was determined by circular dichroism (CD), since there 

is a note of controversy regarding AFP preparations (Leong and Middelberg, 2006). 

Figure 5.8 shows the near-UV spectrum of AFP, which conforms to the shape 

previously reported indicating that the protein as expressed by K. Lactis is in at 

correctly folded conformation (Leong and Middelberg, 2006). 

 

Figure 5.8. Near-UV CD spectra of recombinant AFP. Peaks in this region confirm the protein is in a 

native folded conformation.  
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Zn
2+

 binding studies on recombinant HSA mutants 

The first step of these studies involved establishing that the properties of the 

recombinant HSA were comparable to that of native plasma-derived HSA, since 

although in theory they are the same protein, being derived from different sources could 

potentially affect binding abilities. To do this, both plasma HSA and recombinant 

wtHSA were subjected to identical ITC experiments with Zn
2+

 titrations (Figure 5.9).  

 

Figure 5.9. Comparison of the Zn
2+

 binding ability of recombinant and plasma derived HSA studied by 

ITC. 50 µM plasma HSA and 46 µM wtHSA were titrated with 1.5 mM ZnCl2. The binding pattern is 

very similar with only minor deviances, most notably with the energies of the first few injections. 

The ITC data prove that there is essentially no significant difference in the Zn
2+

 binding 

ability between wtHSA and plasma HSA, since they both show a similar binding 

profile. However, wtHSA shows lower exothermic energy released for the first 3-4 

injections which could be representative of minor differences between the two samples. 

The wtHSA is supposed to be a more homogeneous sample since each protein molecule 

is theoretically subjected to the same processes during expression. Plasma HSA on the 
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other hand will have been circulating through the plasma prior to purification and so 

would have been subject to various in vivo processes that would lead to heterogeneity 

(e.g. oxidation at Cys34 by different species).  

Having established that the recombinant expression system was able to express reliable 

HSA proteins, all mutants were included in ITC experiments with Zn
2+

 to determine 

qualitative Zn
2+

 binding profiles of the mutant HSAs (Figure 5.10).  

 

Figure 5.10. ITC data comparing the Zn
2+

 binding ability of the six HSA mutants against plasma HSA. 

As expected the H67A mutant shows the loss of the high affinity Zn
2+

 binding site (site A), as does the 

E252A mutant. H9A, D256A and H288A showed a variance in Zn
2+

 binding from plasma HSA which 

would suggest that these residues are involved in forming the weaker Zn
2+

 sites in some way. D255A had 

no effect on Zn
2+

 binding. All experiments were performed with 50 µM HSA samples and 1.5 mM ZnCl2, 

except for H288A which used 25 µM protein and 0.75 mM ZnCl2. Raw data can be found in appendix 

A3.2-3.7. 

The first feature of note is that the D255A mutant shows a virtually identical Zn
2+

 

binding profile to that of HSA, meaning that this residue is not involved in any Zn
2+

 

binding. Conversely, H67A, which is one residue from site A (Stewart et al., 2003), 
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shows significant disruption of the Zn
2+

 binding ability if HSA, as would be expected. 

E252A (violet) also shows a profile similar to that of H67A, suggesting that this residue 

is either involved in directly in Zn
2+

 binding, or allosteric effects caused by mutation of 

glutamic acid to alanine disrupt a metal binding site (likely to be site A, based on the 

comparable ITC data between H67A and E252A). This is understandable since the 

Glu252 residue is only 3.5 Å away from the site A residue Asp249. However, any 

proposals made regarding the E252A binding profile should be taken with caution as 

this was the only mutant HSA that was not reproduced due to time constraints. 

However, the binding profiles of each of the others were reproducible and so can be 

considered as reliable accounts of their respective Zn
2+

 binding abilities, but E252A 

would need to be reproduced before any reliable assessment is made. The remaining 

mutants: H9A, D256A and H288A all showed a significant degree of reduced Zn
2+

 

binding compared to HSA, suggesting that these residues are involved in the weaker 

Zn
2+

 binding sites and could be the location of site B.  

These observations can be understood in context with the crystal structure of HSA. His9 

would be in close proximity to metal binding residues His3 and Asp13 which could 

form part of the metal binding site in this position. His288 has nearby neighbours in 

Glu154 and His157 which would be able to bind metals and together form part of a 

binding site. In the case of D256A, it is difficult to determine any obvious partner 

residues that could form a site for Zn
2+

 binding, but looking at the structure of bovine 

albumin with Ca
2+

 (Figure 5.1), it can be seen that Asp256 is directly next to Ca
2+

 

binding residues. Hence, any mutation of this residue could produce allosteric effects 

which alter metal binding properties of the HSA molecule, which could explain the Zn
2+

 

binding profile of the D256A mutant.   

Although the ITC data alone does not allow for definitive determination of the weaker 

Zn
2+

 binding sites, it does indicate whether residues may be involved. The novel 

histidine mutants (H9A and H288A) showed decreased Zn
2+

 binding ability. Since 

histidine residues are expected in Zn
2+

 binding, and the fact that both His9 and His288 

are in close proximity to other histidine residues (His3 and His157 respectively), it is 

highly likely that these form the remaining two of the three Zn
2+

 sites that HSA is 

thought to have (Lu et al., 2008). As discussed previously in Chapter 3, the non-linear 

curve fitting for this interaction (HSA to Zn
2+

) is complex and proves difficult to 

achieve a complete quantitative picture of the process. This is compounded by the fact 
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that the different mutants show different binding profiles and so the same fitting 

protocol could not be used for each making quantitative comparisons even more 

problematic. For these reasons, the ITC data in this instance was used purely as a 

qualitative measure of observing the Zn
2+

 binding differences between the mutants 

expressed.  

Binding of Zn
2+

 and estradiol to AFP 

The Zn
2+

 binding ability of AFP was monitored by ITC (Figure 5.11). AFP was shown 

to have a similar Zn
2+

 binding profile to HSA as studied by ITC. That is, AFP has one 

high affinity Zn
2+

 site and one (or possibly two) lower Zn
2+

 binding regions. As with the 

HSA and Zn
2+

 titrations, non-linear curve fitting for AFP and Zn
2+

 was not conclusive, 

although a low to mid-micromolar dissociation constant was consistently calculated. 

The data here shows less Zn
2+

 binding to AFP, and at a lower affinity, than previous 

studies which were conducted using different methods (Wu et al., 1987; Permyakov et 

al., 2002).  

 

Figure 5.11. ITC data showing the binding of Zn
2+

 into AFP. 25 µM AFP was titrated with 0.75 mM 

ZnCl2. The shape of the curve is similar to that observed for HSA, albeit with slightly lower affinity and 

stoichiometry. Raw data can be found in appendix A3.8. 
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It should be noted that AFP and HSA are likely to display a cooperative binding ability 

towards Zn
2+

. So, if the initial binding of Zn
2+

 to the protein is able to induce further 

binding to the weaker sites within the molecule, the mixture of the sample in the ITC 

cell becomes heterogeneous (i.e. “protein-Zn
2+

” is a different species from “apo-

protein”). These two species will then compete for the additional Zn
2+

 titrations against 

each other, affecting the appearance of binding isotherm. This highlights the complexity 

of these systems and helps explain why simple fitting is not possible using these 

methods.  

Having established that the expressed AFP is able to bind Zn
2+

, a study on estradiol 

binding to AFP was conducted (Figure 5.12). The estrogen binding ability of AFP has 

received considerable attention due to its potential role in reproductive development. 

Female AFP knockout mice have been shown to be infertile as estradiol can masculinise 

the female foetus, if no protection is provided by AFP (Brock et al., 2012). However, 

only rat and mouse AFP have been observed binding estradiol, whereas human AFP is 

unable to, and so the role of AFP in reproductive development in humans is still 

uncertain. 

 

Figure 5.12. ITC data of AFP being titrated with estradiol. 25 µM AFP was titrated with 250 µM 

estradiol. The experiment showed no binding of estradiol to AFP, which is in line with literature 

observations. Raw data can be found in appendix A3.9. 
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The ITC data here confirmed that AFP lacks the ability to bind estradiol, in keeping 

with literature. These observations here support the fact that AFP expressed in K. Lactis 

is a viable means of preparing this protein for various studies, since the preliminary 

experiments done here are in line with literature data. It would be interesting in future 

studies to investigate the structure-function relationship of AFP, particularly with 

respect to its ligand binding. For example, AFP may need to be in a specific 

conformation (e.g. molten globule) for binding of estradiol to be observed. The study 

conducted here made no attempt to alter the structural state of AFP due to time 

constraints. However, if the molten globule form of AFP could represent a structural 

regulation of the molecule functions, there may be very different binding observations 

under this state. Additionally, native ligands (e.g. fatty acids) may first be required to 

bind to AFP, in order to induce cooperative binding of further ligands to the protein 

molecule. All these factors have to be taken into account and investigated, and could 

provide a reason for differences observed between studies.  

In conclusion, this project was able to develop a recombinant expression and 

purification system for both HSA and AFP, yielding natively folded proteins of a high 

purity. The mutants H9A and H288A were identified as being likely candidates for the 

additional unknown Zn
2+

 binding sites on HSA, while E252A and D256A were also 

shown to have alter the ability of HSA to bind Zn
2+

, although it is not known whether 

these are direct effects. The expressed AFP showed an ability to bind Zn
2+

, but did not 

bind estradiol, suggesting that this expression system is able to produce AFP which 

conforms to literature observations and thus is ready for use in further studies on the 

binding properties of AFP and also for structural characterisation by X-ray 

crystallography. 
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Chapter 6 

Conclusions 

This project started with ambitious aims and strong directives. HRG was to be 

structurally characterised and a functional link between plasma fatty acid levels and 

increased thrombosis through activation of HRG by Zn
2+

 was to be established. Until 

recently, structural information relating to HRG had come only from sequence analysis 

and spectroscopic studies. The study here published the X-ray crystal structure of the 

N2 domain of rabbit HRG. This structure showed the domain has a cystatin-like fold, is 

N-glycosylated at Asn184, S-glutathionylated at Cys185 and is likely to contribute to 

dimerisation (through interaction with another N2 domain). The observation of the 

glutathione adduct at Cys185 provided potential in vivo evidence that the release of the 

anti-angiogenic HRR/PRR fragment is controlled in part by a redox mechanism. 

The major transporter of Zn
2+

 and fatty acids in plasma is HSA. The Zn
2+

 binding site 

on HSA had previously been identified, which is also concurrent with one of the fatty 

acid binding sites. Using ITC experiments to examine the binding of Zn
2+

 to HSA under 

a range of fatty acid concetrations, this study has revealed that pathophysiological 

concentrations of free fatty acids (up to 5 molar equivalents) significantly perturb the 

ability of albumin to bind Zn
2+

, due to disruption of the main Zn
2+

-binding site.  

From what is currently known regarding the Zn
2+

 binding properties of HRG and HSA, 

it is clear that either transient or sustained elevation of plasma fatty acid levels would be 

likely to increase the proportion of plasma Zn
2+

 associated with HRG. Reduced 

competition from HSA due to the presence of fatty acids could allow a sufficient 

proportion of Zn
2+

 to bind HRG, activating HRG and triggering association to heparin. 

This led us to study the the Zn
2+

 binding properties of HRG and the ability of Zn
2+

 to 

influence HRG-heparin interactions by ITC and ELISA.  

The ITC experiments revealed human HRG has 10 Zn
2+ 

binding sites with an average 

Kd of 12.4 µM. The effect of Zn
2+

 on heparin binding by human HRG was also assessed 

using ITC. Heparins of molecular weight range 3-30 kDa were injected into samples of 

human HRG that contained different concentrations of Zn
2+

. Zn
2+

 had a marked effect 

upon the mechanism by which human HRG bound heparin. In the absence of Zn
2+

 the 
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interaction between the first few injections of heparin and HRG was exothermic. This 

initial exothermic form of heparin binding is more pronounced as the concentration of 

Zn
2+ 

is raised to 5 µM. This reveals that heparin binds HRG via different “modes”, 

whereby the exothermic mode of binding occurs with higher affinity than the 

endothermic mode and is enhanced by Zn
2+

. It was possible to fit curves to the 

endothermic data collected in the absence and presence of 1 µM Zn
2+

. These fits suggest 

that the endothermic mode most likely corresponds to a single heparin site. However, 

the “real” affinities are likely to be higher as this analysis does not take into account 

binding via the exothermic mode. Interestingly a difference in the stoichiometry of 

heparin binding to HRG in the presence of 1 µM compared with the data without Zn
2+

 

or with 5 µM was observed, suggesting that a mixture of 1:1 or 1:2 heparin:HRG 

complexes exist in solution. Our study suggests that higher concentrations of Zn
2+

 (5 

µM) inhibit formation of the 1:2 complex, which will enhance the proportion of heparin 

bound to HRG.  

The effect of Zn
2+

 on human HRG-heparin interactions was further explored through the 

use of an ELISA-based assay. In each case HRG bound heparin in a concentration-

dependent manner. In the absence of Zn
2+

, HRG bound with an average Kd= 32.9 nM. 

However the affinity was higher in the presence of 1 µM Zn
2+

 (ca. Kd= 5.1 nM). The 

ELISA assay was repeated using a low molecular weight heparin fraction, 6,850 Da in 

size. Zn
2+

 had no effect upon the ability of HRG to bind 6,850 Da heparin (in each case 

Kd was ~30 nM). The contrast between heparins of different mass ranges is interesting 

given that heparins of different sizes are used clinically as anti-thrombotic agents. 

An in vitro assay to study Zn
2+

-dependent effects upon of the coagulation pathway 

involving HRG, thrombin, antithrombin and apo- and fatty acid-loaded albumins was 

also developed. The assay conditions were optimised to be as close to physiological as 

possible (concentrations of Zn
2+

, serum albumin, HRG, antithrombin and thrombin were 

all within the normal physiological range). Lauric acid was chosen as a medium/long-

chain fatty acid with a relatively high solubility in aqueous solutions. In this assay 

system increasing concentrations of lauric acid were found to augment thrombin 

activity, with the highest activity observed in the presence of 3 mM lauric acid. The 

prothrombotic effect of the fatty acid was reversed by the introduction of 0.1 mM 

EDTA to the system, suggesting that Zn
2+

 is involved. If a role for free fatt acids in 

increasing the risk of thrombotic complications (via modulation of free/exchangeable 
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Zn
2+

 levels) is confirmed, then chelation therapy could be seen as a viable preventative 

treatment in certain individuals. 

To drive this research onwards from the fundamental studies conducted so far, several 

salient aims appear appropriate. The only 3D-structural information that currently exists 

for HRG is the N2 domain structure that was presented here. In order to gain structural 

insight into the organisation of individual domains, interactions with other molecules 

(including heparins) and the molecular basis for Zn
2+

-binding to the HRR, full length 

and individual domains of human HRG (including HRR, N1/N2 together and C2 

domains) should be subjected to crystallisation trials. Full length HRG could be purified 

from human plasma. Where applicable, co-cystallisation could be attempted with Zn
2+

 

and other binding partners. These include homogenous preparations of different 

heparins. 

With the anticipated difficulty in growing suitable crystals of a large protein such as 

HRG, some complementary approaches should also be adopted. Trials to crystallise the 

full length protein following a partial protease (trypsin) step may be carried out. 

Proteases preferentially process proteins at disordered regions, removing these regions 

can greatly increase the potential to form ordered crystals suitable for diffraction 

studies. Enzymatic removal of polysaccharide chains using commercially available 

enzymes may aid formation suitable crystals as can chemical modification (reductive 

methylation).  Any future work should also attempt to establish a recombinant system 

for the expression of full length and truncated versions of HRG.  

To further understand how HRG and heparins interact and the influence of Zn
2+

 in this 

process, the established approaches of ITC and ELISA can be used to examine binding 

of heparins of different chain lengths to full length plasma-purified human HRG and 

recombinant domains (particularly N1/N2 and the HRR, which are known interaction 

sites) in the presence and absence of Zn
2+

. This will not only confirm that these domains 

are responsible for heparin-binding but give clues as to how the Zn
2+

 enhances the high 

affinity mode of binding. More specifically, it will tell us whether the domains act 

independently or in concert (following Zn
2+

-binding) to elicit the high-affinity mode of 

binding.  

Functional assays designed to ascertain the ability of human HRG to neutralise different 

heparins and the role of Zn
2+

 in this process, could be developed. A thrombin assay 
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(utilising physiological levels of albumin HRG, antithrombin, heparin, thrombin and the 

chromogenic thrombin specific substrate S2238) as an in vivo platform to examine the 

effect of Zn
2+

 displacement from serum albumin by free fatty acids has already been 

developed. Using pathophysiological concentrations of free fatty acids and heparins of 

different sizes the influence free fatty acid mediated changes in free/exchangeable Zn
2+

 

has on the ability of HRG to neutralise heparins of different molecular weights could be 

examined. The complexity of this assay could be increased by developing a system to 

detect the thrombin activity in plasma samples. These samples could be spiked with 

increasing fatty acids, and any detectable increase in thrombin activity could be related 

to the mechanism detailed. 

As a side project, to investigate the metal binding properties of HSA, recombinant 

mutants were made in an attempt to identify binding sites. H9A, H67A, E252A, D255A, 

D256A and H288A mutants were engineered. Based on ITC binding profiles between 

Zn
2+

 and the respective mutants, H9 and H288 were identified as being possible 

residues involved in the unknown Zn
2+

 binding sites on HSA. E252 and D256 appear to 

effect the ability of HSA to bind Zn
2+

, although these effects could be through indirect 

means. Recombinant AFP was also expressed and purified during this project, and 

preliminary studies on its Zn
2+

 and estradiol binding abilities suggest that the K. lactis 

expression system used is able to produce viable, fully-folded AFP.  

With regards to identifying new metal binding sites on HSA, towards the end of the 

project our collaborators were able to co-crystallise HSA with Zn
2+

. The functional data 

presented here will compliment the solution of the HSA-Zn
2+

 structure. The future 

direction of the project on AFP could follow the same trajectory as used for the studies 

on HRG and HSA here. The binding properties of AFP could be studied with ITC using 

a variety of ligands including metals, fatty acids or hormones. Since there is no structure 

of AFP currently available, any project involving AFP should make crystallisation trials 

with the ultimate aim of structure solution a main priority. 
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Appendix 1 

The supporting material provided in this section relates to Chapter 2, the structural 

characterisation of HRG. This includes images of the crystals, diffraction patterns and 

X-ray crystallography data tables.  
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A1.1. Photograph of a drop containing HRG N2 domain crystals. 3 crystals are shown 

with arrows.  
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A1.2. Photograph of the HRG crystal used to collect data. 
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A1.3. Diffraction pattern obtained from the rod-shaped crystal. 
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Data Collection K2PtCl4-soaked Native 

Beamline Diamond I02 Diamond I04-1 

Wavelength (Å) 0.97 0.92 

Space group P 31 2 1 P 31 2 1 

Cell dimensions (c), (°) 

 

77.6, 77.6, 69.2 

90, 90, 120 

77.1, 77.1, 69.2 

90, 90, 120 

Resolution (Å) 

(high resolution) 

69.2 – 2.91 

(2.99 – 2.91) 

34.7 – 1.93 

(2.00 – 1.93) 

Rmerge 10.0 (92.3) 5.1 (33.0) 

I / σ (I) 29.2 (5.2) 11.3 (2.1) 

Completeness (%) 99.5 (99.2) 93.7 (69.2) 

Average redundancy 26.9 (28.6) 4.1 (2.7) 

Vm (Å
3
 / Da) 4.3 4.2 

Solvent (%) 71.4 70.9 

Refinement   

Unique reflections  17163 

Rwork / Rfree  0.18 / 0.22 

Geometric  deviations   

Bonds (Å
3
) / Angles (°)  0.017 / 2.02 

No. atoms  1104 

Protein 

Water 

Sugar 

Glutathione 

Glycerol 

 952 

75 

39 

20 

18 
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A1.4. Crystallographic data collection and structure refinement statistics for the rod-

shaped crystal. 

 

 

 

 

B factors (Å)   

Protein  41 

Water  51.8 

Sugar  69.6 

Glutathione  63.6 

Glycerol  74.3 

Ramachandran 

Allowed / disallowed (%) 

  

100 / 0 

Molprobity score / centile  3.52 / 100 

PDB code  4CCV 

* Values in parenthesis refer to the highest resolution shell 
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A1.5. Photograph of a cubic HRG crystal used to collect data. 
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A1.6. Diffraction pattern obtained from diffraction of a cubic HRG crystal. 
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Data Collection HRG – cube 

Beamline Diamond I24 

Wavelength (Å) 0.99 

Space group F 2 3 

Cell dimensions (c), (°) 

172.6 172.6, 172.6 

90, 90, 90 

Resolution (Å) 52.0 – 5.05 

(high resolution) (5.53 – 5.05) 

Rmerge 11.2 (26.5) 

I / σ (I) 2.9 (2.2) 

Completeness (%) 66.2 (66.2) 

Average redundancy 1.4 (1.4) 

 

A1.7. Crystallography data for a cubic HRG crystal. 
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A.1.8. SDS-PAGE analysis of cubic crystals. (a) HRG sample from solution, visualised 

with coomassie stain. (b) Cubic crystals, after washing in mother liquor, visualised with 

silver stain. It appears that this morphology of crystal could contain a significant 

proportion of the protein, as indicated by the arrow.  
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Appendix 2 

The supporting material provided in this section relates to Chapter 3, the investigations 

into Zn
2+

 and heparin binding to HRG and implications for thrombin activation. This 

includes raw data of all of the ITC experiments performed, as well as additional 

experiments as described in the main text (unless otherwise stated). 
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A2.1. ITC data for human HRG titrated with Zn
2+

. 
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A2.2. ITC data for human HRG titrated with Zn
2+

 in a low ionic strength buffer. 
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A2.3. ITC data for rabbit HRG titrated with Zn
2+

.  
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A2.4. ITC data for human HRG titrated with heparin.  
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A2.5. ITC data for human HRG titrated with heparin in the presence of 1 µM Zn
2+

. 
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A2.6. ITC data for human HRG titrated with heparin in the presence of 5 µM Zn
2+

. 
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A2.7. ITC data for rabbit HRG (20 µM) titrated with unfractionated heparin (100 µM, 

average mass of 15 kDa), at increasing concentrations of Zn
2+

. 
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A2.8. ITC data for human HRG titrated with unfractionated heparin at increasing 

concentrations of Zn
2+

. The experiment was conducted in 50 mM tris, 140 mM NaCl at 

pH 7.4. 
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A2.9. ITC data for human HRG titrated with low molecular weight heparin. 

Consecutive experiments were combined using ConCat32. 
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A2.10. ITC data for human HRG titrated with low molecular weight heparin in the 

presence of 1 µM Zn
2+

. Consecutive experiments were combined using ConCat32. 
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A2.11. ITC data for HSA titrated with Zn
2+

.  
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A2.12. ITC data for HSA loaded with 1 molar equivalent of myristic acid, titrated with 

Zn
2+

. 
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A2.13. ITC data for HSA loaded with 2 molar equivalent of myristic acid, titrated with 

Zn
2+

. 
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A2.14. ITC data for HSA loaded with 3 molar equivalent of myristic acid, titrated with 

Zn
2+

. 
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A2.15. ITC data for HSA loaded with 4 molar equivalent of myristic acid, titrated with 

Zn
2+

. 
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A2.16. ITC data for HSA loaded with 5 molar equivalent of myristic acid, titrated with 

Zn
2+

. 
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A2.17. ITC data for heparin (50 µM) titrated with Zn
2+

 (750 µM), using the standard 

conditions described in text. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.0

1.1

1.2

1.3

0.0

0.1

0.2

0 50 100 150 200 250

Time (min)
µ

c
a

l/
s

e
c

Molar Ratio

k
c

a
l/
m

o
le

 o
f 

in
je

c
ta

n
t



177 
 

Appendix 3 

The supporting material provided in this section relates to Chapter 4, the identification 

of novel metal binding sites on albumin. This includes raw data of the ITC experiments 

performed (as described in the main text, unless otherwise stated) and tabulates primers 

used during the cloning of albumin.  
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A3.1. Primers used during the expression of albumin in K. Lactis. 

Primer name Sequence

Expression Primers

HSAexp Fwd1 5'-gcatctcgagaaaagagatgcacaagagtgaggttgc-3'

HSAexp Rev1

5'-cccgcggccgcttacttctcgaattgtgggtggctccataagcctaaggcagcttgacttgc-

3'

HRGexp Fwd1 5'-gcatctcgagaaaagagtgagtcccactgactgcag-3'

HRGexp Rev1

5'-

cccgcggccgcttacttctcgaattgtgggtggctccattttggaaatgtatgtgtaaaaaacatg

gaaacttg-3'

Mutation Primers

H9A fwd2 5'-gatgcacacaagagtgaggttgctgctcggtttaaagatttgggagaag-3'

H9A rev2 5'-cttctcccaaatctttaaaccgagcagcaacctcactcttgtgtgcatc-3'

D256A Fwd1 5'-gatctgcttgaatgtgctgatgccagggcggaccttgccaagta-3'

D256A Rev1 5'-tacttggcaaggtccgccctggcatcagcacattcaagcagatc-3'

H288A Fwd1 5'-gaaaaacctctgttggaaaaatccgcctgcattgccgaagtggaaaatg-3'

H288A Rev1 5'-cattttccacttcggcaatgcaggcggatttttccaacagaggtttttc-3'

Sequence Primers

pKLAC2 seq fwd 5'-gaagaagccttgattgga-3'

pKLAC2 seq rev 5'-tcggcactaataaccgttt-3'

HSA seq1 5'-gaggttgatgtgatgtgc-3'

HSA seq2 5'-cctctgttggaaaaatcc-3'

HSA seq3 5'-gttatgtgtgttgcatgag-3'

HRG seq1 5'-cttgagaagtacaaagaggag-3'

HRG seq2 5'-cctgctcaagttgtcaac-3'

K. Lactis Integration 

Primers

Integration Primer 

1 5'-acacacgtaaacgcgctcggt-3'

Intergation Primer 

2 5'-atcatccttgtcagcgaaagc-3'

Integration Primer 

3 5'-acctgaagatagagcttctaa-3'
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A3.2. ITC data forH9A titrated with Zn
2+

. 
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A3.3. ITC data for H67A titrated with Zn
2+

.  
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A3.4. ITC data for E252A titrated with Zn
2+

. 
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A3.5. ITC data for D255A titrated with Zn
2+

.  
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A3.6. ITC data for D256A titrated with Zn
2+

. 
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A3.7. ITC data for H288A titrated with Zn
2+

. 
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A3.8. ITC data for AFP titrated with Zn
2+

. 
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A3.9. ITC data for AFP titrated with estradiol.  
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Appendix 4 

This section provides sample chromatograms for all protiens purified during this 

project.  
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A4.1. Purification chromatogram for human HRG following nickel affinity column.  
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A4.2. Purification chromatogram for human HRG following size exclusion column. 
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A4.3. Purification chromatogram for rabbit HRG following nickel affinity column. 
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A4.4. Purification chromatogram for rabbit HRG following size exclusion column. 
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A4.5. Purification chromatogram for recombinant HSA following Blue Sepharose 

column. 
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A4.6. Purification chromatogram for recombinant HSA following size exclusion 

column. 
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A4.7. Purification chromatogram for recombinant AFP following copper affinity 

column. 
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