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Abstract 

California sea lions (CSLs) have an unusually high occurrence of urogenital cancer 

(UGC), with studies revealing metastatic carcinoma in 26 % of CSLs admitted to a 

rehabilitation centre between 1998 and 2012. It is likely that the aetiology of this 

disease is multi-factorial as genetics, viral infection and exposure to contaminants have 

been associated with this cancer to date.  The goal of this study was to investigate the 

association of a number of factors using a case-control study design on animals 

admitted to a rehabilitation centre. The study additionally concentrates on two main 

areas; (i) genetic factors and (ii) the presence of herpesvirus.  

Previous investigations identified cancer to be more likely in animals with specific 

microsatellite alleles. In the present study genotyping of CSLs at three microsatellite 

loci revealed that homozygosity at one marker (Pv11) was significantly associated with 

the presence of the disease. Pv11 was found to be located within a gene called 

heparanase 2 (HPSE2) and investigations into the expression of its protein revealed 

differences according to Pv11 genotype.  

The presence of herpesvirus was investigated by two PCR methods and identified the 

gammaherpesvirus OtHV-1. The results of the two methods were contradictory with 

one method identifying a highly significant relationship between the presence of OtHV-

1 and UGC whereas the other did not. Complicating factors such as potential 

differences in sensitivity of the tests along with the possible presence of closely related 

viruses or variants of OtHV-1 may explain this.     

The availability of necropsy data for the CSLs in the study allowed the inclusion of 

body condition data in the statistical analysis to evaluate other potential risk factors.  

Final analysis revealed the presence of three risk factors; Pv11 genotype, OtHV-1 

presence and thinner blubber.   

This study is the largest study undertaken so far in order to investigate the involvement 

of risk factors associated with UGC in the CSL and supports a multi-factorial aetiology 

of this disease. 
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Chapter 1  

General Introduction 

1.1 Cancer in humans and domestic animals 

Over the last 100 years there have been enormous advances in the field of human 

medicine and health care. Conditions which previously resulted in premature mortality 

rarely now do so in the developed world.  This change is driven by improvements in 

facilities for disease control, prevention and detection along with the development of 

vaccines and antibiotics enabling previously fatal conditions to be treated or managed 

(Tu, 2010, Hicks and Allen, 1999, Weatherall et al., 2006). Conversely to this, the 

incidence of morbidity and mortality due to neoplastic conditions in humans has 

increased through the twentieth century and recent predictions (in the UK) have 

identified, that this trend regarding certain cancers, will continue.  The increase in 

number has been attributed to both life style and increasing age and size of the 

population (Tu, 2010, Mistry et al., 2011).   

In domestic animals cancer is also frequently diagnosed (Kidd, 2008, Knottenbelt, 2003, 

Misdorp, 1996) and is noted to affect a variety of body tissues (Paoloni and Khanna, 

2008).  In companion animals, greater owner expectations regarding health care for their 

pets has encouraged further research into diagnosis and treatments of these conditions 

(Dobson, 2013, Stoewen, 2012, Villalobos and Kaplan, 2007).  Although advances have 

trailed behind that of human cancer research, in recent years studies have identified 

significant similarities between certain cancers in humans and those found in animals 

(Airley, 2012, Paoloni and Khanna, 2008).  Examples include comparable gene 

expression patterns in human and canine osteosarcoma and mutations identified in a 

tyrosine kinase growth factor receptor occurring in both human gastrointestinal cancer 

and in canine mast cell tumours (Paoloni and Khanna, 2008, Airley, 2012, Hirota et al., 

1998, London et al., 1999, Mueller et al., 2007). Recognition of cases such as these has 

highlighted the importance of comparative oncology and what can be achieved by 

implementing a “one health” approach to medicine (Airley, 2012, McAloose and 

Newton, 2009, Munson and Moresco, 2007). 
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1.2 Cancer in wild animals  

As in domestic animals cancer does occur in wild species, both in the captive and free- 

ranging situation (McAloose and Newton, 2009, Lombard and Witte, 1959).  

Neoplasms have been identified in a number of captive wild animal species belonging 

to various taxa during routine necropsy examinations at zoological institutes (Lombard 

and Witte, 1959, Ratcliffe, 1933, Effron et al., 1977). In some instances the cancer has 

been recognised to be a result of a management technique such as in the case of 

mammary carcinomas in zoo felids treated with the contraceptive melengestrol acetate 

(McAloose et al., 2007, Harrenstien et al., 1996). In free-ranging wild animals the 

identification of neoplasia is more challenging and relies on access to carcasses fresh 

enough to be adequately examined, therefore detection of cancer in wild animal species 

tends to be lower than in domestic animals (McAloose and Newton, 2009).  In spite of 

these difficulties there are a few cases in the literature where certain forms of cancer are 

reported in a large number of individuals of a wild free-ranging population, these 

cancers and the species they affect are detailed below. 

The endangered marsupial the Western barred bandicoot (Perameles bougainville) 

suffers from a neoplastic condition called papillomatosis and carcinomatosis (Woolford 

et al., 2007).  The condition is associated with infection with a novel virus called 

bandicoot papillomatosis carcinomatosis virus type 1 (BPCV1) (Woolford et al., 2007). 

Affected animals have lesions varying in severity from wart like papillomas to 

squamous cell carcinoma affecting both skin and mucosal areas (Woolford et al., 2008). 

In addition to the identification of the disease in the Western barred bandicoot, a 

Southern brown bandicoot (Isoodon obesulus) belonging to the same Peramelidae 

marsupial family, was found to be suffering from similar lesions.  PCR analysis 

subsequently identified a related virus designated bandicoot papillomatosis 

carcinomatosis virus type 2 (BPCV2) (Bennett et al., 2008). Genetic analysis of BPCV1 

and BPCV2 indicated that they were novel, however they had genomic similarities with 

both papillomaviruses and polyomaviruses suggesting either a common viral ancestor or 

viral recombination (Bennett et al., 2008, Woolford et al., 2007). 

Viruses have been associated with other wildlife cancers including herpesvirus 

associated fibropapillomatosis in various species of sea turtle (Quackenbush et al., 
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1998).  Fibropapillomatosis in sea turtles is characterised by multiple lesions affecting 

various regions of the body from the integument and eyes to internal organs (Brooks et 

al., 1994, Jacobson et al., 1991, Harshbarger, 1991). The consequence of these space-

occupying lesions depends on their location, as growth progression of a lesion can 

severely compromise an animal’s ability to function normally (Brooks et al., 1994, 

Herbst, 1994). The herpesvirus believed to be involved in the aetiology of the disease is 

related to alphaherpesviruses (Quackenbush et al., 1998, Greenblatt et al., 2005). Viral 

particles presumed to be herpesvirus were first identified from cutaneous lesions by 

histopathology and electron microscopy (Jacobson et al., 1991), the presence of 

herpesvirus DNA in affected tissues from four species of sea turtle was later identified 

by PCR (Quackenbush et al., 1998).  

The Western barred bandicoot is not the only endangered marsupial to suffer from a 

high presence of cancer as carcinoma in a second endangered marsupial has received 

much attention in recent years.  The Tasmanian devil (Sarcophilus harrisii) is a 

carnivorous marsupial found on the Island of Tasmania, that is affected by a metastatic 

tumour of neuroendocrine origin (Loh et al., 2006b, Loh et al., 2006a, Murchison, 

2009). The disease termed Devil Facial Tumour Disease (DFTD) was first reported in 

the late 1990’s and has now caused a 60% decrease in the population.   If mortality from 

this disease continues at the current rate; the species is expected to become extinct in the 

wild within 20 years (Jones et al., 2007, McCallum, 2008).   

DFTD is a transmissible allograft tumour where the tumour cells themselves act as an 

infectious agent, the only other cancer identified in the wild with this trait is canine 

transmissible venereal tumour (CTVT) (McCallum, 2008, Siddle et al., 2007, 

Murchison et al., 2012, Murchison, 2009).  Spread of DFTD is believed to be via biting 

and possibly through cannibalism (Jones et al., 2007), it initially develops in the soft 

tissues of the face and is always fatal (Murchison, 2009).  As the disease progresses the 

lesions affecting the facial tissues can become so severe that the animal is rendered 

unable to feed and can die of starvation. It additionally has the ability to metastasise and 

commonly spreads to lymph nodes, lung and spleen along with other organs also 

resulting in death if the animal has not already succumbed (Murchison, 2009, Loh et al., 

2006a).  
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Cytogenetic analysis carried out on the DFTD tumour cells revealed large chromosome 

aberrations with one study identifying the apparent loss of five chromosomes and the 

gain of four abnormal chromosomes (Murchison, 2009). Clonality of the tumours was 

confirmed via microsatellite analysis, along with allele analysis at four major 

histocompatibility (MHC) loci (Murchison, 2009).  Although steps have been made in 

identifying the origin of the cancer (Murchison et al., 2012), research has also suggested 

that loss of diversity of MHC may be a contributing factor (Siddle et al., 2007).  

Management strategies in order to save the species include establishing “insurance” 

populations of disease free animals and potentially the development of a vaccine, 

although the latter may be challenging due to the recent discovery of tumours 

cytogenetically different from the original strain (Pearse et al., 2012, Deakin et al., 

2012). 

1.3 Cancer in marine mammals 

In marine mammals the range of species where neoplastic conditions have been reported 

is large, encompassing all the families within the marine mammal group.  However in 

many cases neoplasia is an incidental finding and accounts of a particular condition are 

solitary, therefore gauging the true level of neoplasia in marine mammal species is 

difficult (Newman and Smith, 2006). Detection is hindered by the habitats they occupy 

which make surveillance logistically difficult (Gulland and Hall, 2007), as animals 

dying at sea may never be recovered. Additionally in the event of a carcass being 

salvaged it frequently is found to have undergone severe post mortem change, making a 

viable diagnostic necropsy impossible (Newman and Smith, 2006). 

There are two species however where neoplasia is recognised in higher numbers; the 

California Sea Lion (Zalophus californianus) – the species of interest in this study and 

the Beluga whale (Delphinapterus leucas) (Newman and Smith, 2006).  Necropsy 

examinations undertaken on stranded Beluga whales from the St Lawrence estuary in 

Canada have identified them as having a high prevalence of tumours (Martineau et al., 

2002b).  The tumours are found to mainly be gastrointestinal epithelial cell tumours and 

not haemopoietic tumours which are more commonly identified in cetaceans (Martineau 

et al., 2002b).  The St Lawrence Estuary suffers from a high level of pollution and it is 

postulated that this is a major factor causing this phenomenon (De Guise et al., 1994, 
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Martineau et al., 2002b, Newman and Smith, 2006).  Indeed elevated levels of 

organochlorines (OCs) and polycyclic aromatic hydrocarbons (PAHs) have been 

identified in tissues from St Lawrence Beluga whales in comparison to the levels found 

in Beluga whales from the Arctic (Newman and Smith, 2006, Metcalfe et al., 1999). 

The greater number of gastrointestinal tumours have been attributed to feeding on PAH 

contaminated fish (Martineau et al., 2002a), as the route of exposure to a contaminant 

can determine the type of tumour that develops.  This was demonstrated in a number of 

experiments where mice were administered PAH by various routes resulting in different 

tumours (Culp et al., 1998). The involvement of contaminants in cancer affecting 

California sea lions has also been investigated and is discussed in section 1.5.4.    

1.4 The California sea lion (Zalophus californianus) 

1.4.1 The California sea lion  

The California sea lion (Zalophus californianus) is a large carnivorous mammal of the 

suborder pinnipedia, which includes seals, fur seals and walruses.  They are placed 

within the group Otariidae which like other pinnipeds arise from the extinct arctoid 

carnivores (Higdon et al., 2007).  It is estimated that there are over 200,000 animals 

within the population  that are found mainly along the west coast of America with a 

range from as far south as the Mexican Baja coast to as far north as British Columbia 

(Heath and Perrin, 2009) and as with other marine mammals they are protected under 

the Marine Mammal Protection Act (MMPA) (Moore et al., 2013).   

California sea lions (CSL) feed on a variety of fish species and cephlopods but will also 

consume crustaceans if other food sources are unavailable (Heath and Perrin, 2009). 

They are particularly social animals and group together at haul out sites often exhibiting 

close contact  (Heath and Perrin, 2009, Reidman, 1990a).  A polygymous mating system 

is present and during the breeding and pupping season (May to July), males establish 

territories in order to mate with females within those areas (Gerber et al., 2010, Heath 

and Perrin, 2009).  In addition CSL exhibit philopatry; returning to their birth place to 

breed (Miller, 2009).  Male and female CSL reach sexual maturity at four to five years 

old, however they may not breed successfully until they are older (Heath and Perrin, 

2009).  Female CSL are monoestrus and ovulate approximately one month after 
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pupping. Gestation is 11 months which includes a three month period of embryonic 

diapause (delayed implantation) (Reidman, 1990b, Robeck et al., 2001). Delayed 

implantation is common to all pinnipeds however the length of time between conception 

and implantation varies between species (Robeck et al., 2001).  

The life span of wild CSL has been reported as 15-24 years (Heath and Perrin, 2009).  

However in the absence of birth data precise aging of free ranging wild marine 

pinnipeds is difficult.  In lieu of this standard body measurements and assessment of 

pelage are used as a guide to provide age ranges (Jeglinski et al., 2010, Wilson, 1974).  

In addition, measurement of dentine growth layers in teeth to predict the age of animals 

is also possible (Jeglinski et al., 2010, Mansfield and Fisher, 1960).  Table 1.1 presents 

an outline of the morphometric classification of age ranges used to define CSL admitted 

to The Marine Mammal Center (TMMC), Sausalito, California.  TMMC is a large 

marine mammal rehabilitation organisation that rescues between 600 and 800 animals a 

year; it additionally has a strong research focus, investigating a wide range of aspects 

concerning marine mammal health and disease. TMMC were major collaborators in this 

study.  

Table 1.1: Guide to aging of CSL via morphology 

Sex Age class Approx. Age (years) Morphology 

Female Yearling* 1-2 Incisors and canines 

the same length 

 No Juvenile Category 

Sub-adult 

Adult 

- 

3-5 

5+  

- 

Canine larger 

>150cm in body 

length 

    

Male Yearling* 

 

Juvenile 

Sub-adult 

 

Adult 

1-2 

 

2-4 

4-8 

 

8+ 

Incisors and canines 

the same length 

Canine larger 

Small sagittal crest 

present 

Full sagittal crest 

present 

*Using the assumption all CSL are born on 15
th
 of June (Data courtesy of Lauren Rust, The 

Marine Mammal Center, personal communication) 
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1.4.2 Diseases of the California sea lion 

Wild CSL suffer from a range of disorders.  In an analysis of over 3000 animals 

stranded between 1991 and 2000 the most common conditions identified were 

malnutrition (32%), leptospirosis (27%),  trauma (18%), domoic acid toxicity (9%) and 

cancer (3%) (Greig et al., 2005).  Cases of malnutrition were highest during the El Niño 

years (1992, 1993 and 1998) when the food supply was depleted (Greig et al., 2005, 

Melin et al., 2010).    

Leptospirosis in CSL results in interstitial nephritis which can progress to renal failure if 

left untreated (Cameron et al., 2008).  The aetiological agent is Leptospira interrogans 

serovar Pomona, a spirochete bacteria with a postulated route of transmission via the 

urine (Cameron et al., 2008, Norman et al., 2008).  Outbreaks of leptospirosis occur 

yearly between the months of June and December, however every three to five years 

epizootics of a larger scale occur which result in significant mortality (Cameron et al., 

2008, Lloyd-Smith et al., 2007).   

Incidents of trauma are frequent and include anthropogenic causes such as entanglement 

in fishing line, injuries due to propellers and gunshot wounds along with more natural 

causes such as shark bites (Greig et al., 2005, Moore et al., 2013).   Domoic acid 

toxicity was first diagnosed in 1998, domoic acid is a neurotoxin produced by the 

marine diatom Pseudo-nitzschia, ingestion of toxin results in seizures that can progress 

to coma and death (Goldstein et al., 2008).  Domoic acid toxin is similar in structure to 

the neurotransmitter glutamic acid; the structural similarity enables it to bind glutamate 

receptors in the brain causing excitement. Since its identification cases have increased 

with increases in blooms of Pseudo-nitzschia (Goldstein et al., 2008, Mos, 2001).  

Other documented conditions include infection with a variety of agents (Greig et al., 

2005, Thornton et al., 1998).  Bacterial infections secondary to trauma or parasitic 

infection can result in serious conditions such as pneumonia and peritonitis (Greig et al., 

2005).  Parasitic infections with nematodes including parafiliroides and anisakid species 

are reported to contribute towards micro-abscesses in the lungs and gastric ulcers 

respectively (Greig et al., 2005, Kelly et al., 2005).  Diseases due to a number of viruses 

are reported, a common example is a Calicivirus called San Miguel Sea Lion Virus 
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which can cause a range of disorders from ulcerations of the skin and mucosal regions 

to encephalitis (Li et al., 2011).  Viruses have also been isolated from neoplastic 

conditions and these are summarised in Table 1.2, however further work is required to 

confirm causation.  Neoplasms in individual CSL are sporadically reported throughout 

the literature affecting both wild and captive animals; examples of these are also 

detailed in Table 1.2. The table is by no means exhaustive as reports of over 10 types of 

cancer affecting greater than 20 different tissues have been made as reviewed by 

Newman and Smith, 2006 (Newman and Smith, 2006). The most predominant cancer 

identified is urogenital carcinoma (UGC) (Newman and Smith, 2006) and is the subject 

of this study.   

The reports of various cancers in captive CSL appear to be more frequent in older 

animals (Table 1.2); this is consistent with what is reported in companion animals and 

other captive wild animals possibly due to their longer life expectancy (Lohmann, 2007, 

Martineau et al., 2002b, Courtenay and Santow, 1989, Lombard and Witte, 1959, 

Paoloni and Khanna, 2008).  The aging process is associated with a higher occurrence 

of cancer due to the increased time allowing the accumulation of DNA mutations 

(Dunn, 2012). In many cases the literature does not state whether the animal was captive 

bred or originated from the wild. In the case of UGC there are many reports of the 

disease in wild animals as will be discussed further, in addition to this captive bred 

animals are also reported to suffer from the condition alongside captive wild-born 

animals (Dr Michelle Davis, SeaWorld Orlando, personal communication). 
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Table 1.2: A selection of neoplasms reported in CSL in the wild and in captivity 

Type of cancer Captive or 

wild?  

Virus isolated? Comment Reference 

Fibropapilloma on 

tongue and T Cell 

intestinal 

lymphoma 

Wild Polyomavirus 

designated 

California sea 

lion 

polyomavirus 1. 

Lymphoma 

induction via 

the virus was 

considered 

unlikely 

(Colegrove et al., 

2010) 

B cell 

lymphoblastic 

lymphoma 

Captive (24 yrs 

old) 

Otarine herpes 

virus - 3 

More studies 

required to 

assess the 

potential link 

(Venn-Watson et 

al., 2012) 

Urogenital 

carcinoma* 

Wild and 

Captive 

Otarine herpes 

virus - 1 

On-going 

studies  

(Gulland et al., 

1996, King et al., 

2002, Lipscomb 

et al., 2000, 

Buckles et al., 

2006) 

Metastatic 

adenocarcinoma 

affecting lymph 

nodes, lung, liver, 

kidney and spleen 

Wild Not reported Primary site of 

cancer not 

identified, but 

suggestion of 

genital tract 

origin 

(Brown et al., 

1980) 

Metastatic 

squamous cell 

carcinoma 

affecting the 

lymph nodes, 

lungs, liver, 

kidney and ovary 

Wild Not reported Primary site of 

cancer not 

identified, but 

suggestion of 

genital tract 

origin 

(Joseph et al., 

1986) 

Cutaneous 

squamous cell 

carcinoma 

Captive (~18-

20 yrs old) 

Not reported Locally 

invasive, no 

evidence of 

metastasis 

(Anderson et al., 

1990) 

*Multiple cases of this type of neoplasia 
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Type of Cancer Captive or 

wild? 

Virus isolated? Comment Reference 

Multicentric 

neurofibromatosis  

Captive (~31 

yrs old) 

Not reported  (Rush et al., 

2012) 

Gingival 

squamous cell 

carcinoma 

Captive (~30 

yrs old) 

Not reported Locally 

invasive, no 

evidence of 

metastasis 

(Bossart, 1990) 

Metastatic hepatic 

carcinoma with 

spread to spleen 

Wild Not reported Hepatic origin (Acevedo-

Whitehouse et al., 

1999) 

Mammary 

carcinoma with 

metastasis to 

regional lymph 

nodes 

Captive (~28 

yrs old) 

Not reported Mammary 

origin 

(Matsuda et al., 

2003) 

 

1.5 Disseminated carcinoma of urogenital origin in the California sea lion 

CSL appear to have a particularly high occurrence of UGC within their population. This 

was highlighted initially by a study of the occurrence of neoplasia in this species in 

animals presented to TMMC between 1979 and 1994 (Gulland et al., 1996).  Of the 370 

sub-adults and adults examined in the 15 year period via necropsy and histology, 18% 

were found with the presence of metastatic carcinoma. It was additionally stated that 

during the earlier four years of the study, the true number of cases may actually have 

been higher as the necropsies preformed during this time had been less meticulous 

(Gulland et al., 1996).  Since that study monitoring of the level of UGC has continued 

and in the 15 years between 1998 and 2012 has shown an overall increase in prevalence 

to 26%. During this time 931 dead adult CSL were examined of which 205 were 

diagnosed with UGC (Dr Frances Gulland/TMMC, personal communication).  

Due to the nature of marine mammal habitats it is not possible to establish the true 

prevalence of UGC in the wild population as animals that die at sea may never be 

recovered. It should be remembered that the prevalence stated here is calculated from 

animals admitted to TMMC only, however the findings of this study indicate that UGC 

is an important cause of morbidity and mortality in this species (Gulland et al., 1996).  

Table 1.2 cont. 
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1.5.1 Signalment  

The disease affects sub-adults and adult animals of both sexes of a mean age of 

approximately eight years old (Gulland et al., 1996, Buckles et al., 2006).  In the wild 

CSL can live into their 20’s therefore this is not a cancer typical of old age (Gulland et 

al., 1996). In this way the condition mirrors the situation in human cervical cancer, 

where cases tend to occur in adult but not necessarily aged women (Hemminki et al., 

2001, Gustafsson et al., 1997). 

1.5.2 Clinical presentation  

Affected animals can present with a variety of clinical symptoms including cachexia, 

hind flipper paresis, ascities, hind flipper and perineal oedema (Figure 1.1), in addition 

to these in severe cases rectal prolapse may occur (Gulland et al., 1996).  

 

 

 

 

Fig. 1.1. Example of clinical 

signs seen in a female CSL with 

UGC (animal post mortem).     

A: Perineal and hind flipper 

oedema, B: Visible emaciation. 

Photos taken during a necropsy 

examination at The Marine 

Mammal Center.   

B 

A 



12 
 

1.5.3 Pathology  

1.5.3.1 Gross pathology  

On gross pathological examination a range of lesions may be identified affecting both 

the genital tract and the rest of the body.  Abnormalities in the genital tract may be 

present (Figure 1.2), however in some cases lesions may not be obvious and neoplasia 

may be diagnosed incidentally by histopathology of genital tissue (Gulland et al., 1996). 

In advanced cases metastasis is common and lesions are noted in a number of sites 

including the abdominal and pelvic lymph nodes along with more distant sites such as 

the liver (Figure 1.2), lungs and spleen. The renal system is frequently affected, with 

metastatic lesions present in the kidneys along with bladder distension and in some 

instances hydroureter and hydronephrosis (Gulland et al., 1996).     

 

 

 

 

 

 

A B 

Fig.1.2: Examples of lesions seen on gross 

pathology of a CSL with metastatic 

urogenital carcinoma. A: Numerous 

metastatic lesions in the liver, B: Ulcerative 

lesions on the cervix indicative of urogenital 

carcinoma, (cervix circled). Photos taken 

during a necropsy examination at The 

Marine Mammal Center 
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1.5.3.2 Histopathology 

Initial work suggested that the origin of the tumour was the urinary tract, based on 

histological findings of the presence of presumed transitional cells (Gulland et al., 

1996), however later work identified genital epithelial lesions which corresponded to 

lesions known as intraepithelial neoplasia (IEN) (Lipscomb et al., 2000).  IEN lesions 

also occur in humans and are frequently associated with cervical cancer where they are 

classified according to the cervical intraepithelial neoplasia (CIN) grading system and 

range from CIN I (mild) to CIN III (carcinoma in situ) (Crum, 2005, Herbert et al., 

2007, Buckley et al., 1982). CIN III is considered to be a predictor of probable invasive 

carcinoma (McCredie et al., 2008, Crum, 2005). The grades describe the level of 

cellular dysplasia when changes are restricted to the epithelial layer (i.e. they are 

“intraepithelial” lesions) once the basement membrane is breached however, invasive 

carcinoma ensues (Liotta, 1984, Stewart and McNicol, 1992). The identification of IEN 

in genital tissue points towards a genital origin of the disease alone rather than a urinary 

tract origin as was previously suggested (Lipscomb et al., 2000, Lipscomb et al., 2010).   

In the CSL the classification of histopathological lesions uses the terminology; low-

grade intraepithelial (LGIL) lesions, which encompasses CIN I and high-grade 

intraepithelial (HGIL) lesions encompassing CIN II and III as opposed to the CIN 

grading system. LGIL and HGIL are used in preference as lesions identified are not 

restricted to the cervix as they have been reported in the vagina, penis and prepuce (Dr 

Kathleen Colegrove, personal communication (Colegrove et al., 2009)).  In addition to 

this LGIL and HGIL have been identified in urethral tissue, suggesting that the point of 

origin of the disease still requires clarification (Colegrove et al., 2009, Lipscomb et al., 

2010). The majority of carcinomas identified in CSL are squamous cell carcinomas 

however adenocarcinomas have also been noted (Colegrove et al., 2009, Gulland et al., 

1996).  Examples of different histological findings are shown in Figure 1.3. 
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Fig. 1.3. Haematoxylin and eosin stained sections illustrating various pathologies in samples 

taken from CSL from normal cervix (A) to infiltrative carcinoma in (D). A] Normal cervix B] Low 

grade intraepithelial neoplasia showing mild dysplasia in the epithelial layer ; C] High grade 

intraepithelial neoplasia showing dysplasia affecting the full thickness of the epithelial layer; D] 

Infiltrative carcinoma in showing breach of the basement membrane. (Sections courtesy of Dr 

Kathleen Colegrove, Veterinary Diagnostic Laboratory, University of Illinois, USA and  prepared 

by Ms Jeanie Finalyson, The Moredun Research Institute, Edinburgh, UK). 

1.5.4 The story so far… 

Cancer is a multifactorial disease making the identification of the aetiology of a 

particular neoplasm challenging (Stanhope et al., 1964, Bunz, 2008). In some cases the 

cause has been identified as with transmissible allograft cancer in DFTD and CTVT 

(McCallum, 2008, Murchison, 2009, Murchison et al., 2012, Siddle et al., 2007). In 

other instances tumours are associated with viruses such as BPCV1 and herpes-

associated fibropapillomatosis mentioned earlier, however the presence of viral 

infection does not necessarily result in cancer development suggesting the role of other 

factors are at play (Morris et al., 1995). In other cases the relationship with a causal 

A 

D C 

B 
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agent remains only strongly associative as in the Beluga whales exposed to pollution in 

the St Lawrence estuary (Newman and Smith, 2006, Martineau et al., 2002b, De Guise 

et al., 1994).  

In order to further investigate UGC in the CSL the Sea Lion Cancer Consortium 

(SLiCC) was established in 2010 (http://www.smru.st-andrews.ac.uk/slicc/ accessed on 

19/02/14).  To date, the studies carried out have covered four main areas as potential 

factors involved in the aetiology of this disease; exposure to contaminants, hormone 

receptor expression, infectious agents and genetic factors.  

1.5.4.1 Exposure to contaminants: 

The link between certain contaminants and cancer has been known since the 18
th

 

century when Sir Percival Pott in 1775 identified that a high number of chimney sweeps 

were suffering from scrotal cancer and concluded that it was associated with soot 

collecting in the rugae of the scrotum reviewed by Brown and Thornton, 1957 (Brown 

and Thornton, 1957).  In modern times one of the best known links regarding 

contaminants and neoplasia is that of lung cancer and cigarette smoke (Hecht, 1999, 

Stanhope et al., 1964, Doll and Hill, 1954).  Cigarette smoke has additionally been 

implicated in other cancers including cancer of the colon, breast, cervix and bladder 

(Botteri et al., 2008, Gaudet et al., 2013, Brennan et al., 2000, Trimble et al., 2005).    

PAHs and OCs have been mentioned earlier with regards to the high number of cancers 

identified in the St Lawrence Beluga whales (Metcalfe et al., 1999, Newman and Smith, 

2006).  The PAHs have a direct genotoxic effect by the formation of DNA adducts, 

where the compound becomes covalently bonded to DNA resulting in structural 

deformities thus predisposing the cell to altered gene expression (Weinstein, 1988, 

Farmer, 2004).  Additionally increased levels of OCs such as polychlorinated biphenyls 

(PCBs) and dichloro-diphenyl-trichoroethane (DDT) have been associated with genetic 

mutations and tumour promoter activity (Howsam et al., 2004, Porta et al., 1999, 

Scribner and Mottet, 1981).  Environmental studies have identified OC and PAH 

pollutants in coastal waters around California (Oros et al., 2007, Zeng and Venkatesan, 

1999, Schiff et al., 2000) and previous work has found the presence of these compounds 

in tissues from  CSL (Le Boeuf and Bonnell, 1971, Le Boeuf et al., 2002b, Colegrove, 

http://www.smru.st-andrews.ac.uk/slicc/
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2008).  In light of this the level of OCs in the blubber of CSL diagnosed with UGC was 

compared to the level in blubber from non-cancer animals with an increased level in 

cancer animals being identified (Ylitalo et al., 2005). This suggested an association 

between the level of contaminant and the presence of cancer, however confounding 

factors such as the effect of changing body condition and blubber dynamics need to be 

understood before this relationship is verified (Ylitalo et al., 2005).  PAH related 

pathology in the form of PAH-adducts have been identified in the liver of CSL however 

as yet a link with neoplasia has not been established (Colegrove, 2008).  

1.5.4.2 Reproductive hormone receptor expression: 

Oestrogen and progesterone receptors have previously been identified as prognostic 

markers in assessing breast cancer in humans (Murphy and Watson, 2002, 

Vollenweider-Zerargui et al., 1986). Loss of expression of estrogen receptor alpha (ER-

α) and/or progesterone receptor (PR) is seen to indicate poor prognosis (Vollenweider-

Zerargui et al., 1986).  A recent study however has questioned the merit of measuring 

progesterone receptor expression in assessing prognosis in ER positive breast cancer,  as 

although PR expression holds prognostic value, the expression of other genes examined 

in the study were identified as being more strongly associated with prognosis (Hefti et 

al., 2013).  The findings suggested that other genetic markers may be of more value in 

assessing ERα positive breast tumours. In the case of ERα negative tumours PR 

expression wasn’t found to be associated with prognosis (Hefti et al., 2013). 

Studies in animals have identified similar associations.  Increased ER-α and PR 

expression were found to be correlated with a better prognosis in canine mammary 

tumours (Nieto et al., 2000, Mariotti et al., 2013). In rabbits with uterine 

adenocarcinoma however the situation was different and expression of ERα and PR was 

not seen to reflect prognosis (Asakawa et al., 2008).  Rabbits have a high occurrence of 

metastatic uterine adenocarcinoma with the disease frequently affecting animals of 

approximately five years old (Asakawa et al., 2008, Baba and von Haam, 1972, Greene 

and Saxton, 1938).  Two histological types of adenocarcinoma (papillary and 

tubular/solid tumours) have been identified exhibiting different expression patterns of 

ERα and PR.  It is postulated that the varying hormone receptor expression plays a role 

in the development of the different types of tumours identified (Asakawa et al., 2008).  
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In addition there appears to be a breed predisposition to the disease (Baba and von 

Haam, 1972).   Hormone receptor expression in the CSL has been investigated in CSL 

with UGC using immunohistochemistry (Colegrove et al., 2009).  In a recent study no 

difference in PR expression was identified between tumour affected tissues and normal 

tissues, however oestrogen receptors were found to be reduced in affected tissue 

(Colegrove et al., 2009).  This reduction coincided with increased Ki67 (cell 

proliferation) index and p53 expression. The protein p53 is the product of expression of 

the tumour suppressor gene P53, the increased labelling identified suggests that it may 

be involved in cancer pathogenesis.  (Colegrove et al., 2009).   

1.5.4.3 Infectious agents: 

To date two infectious agents have been linked to UGC in the CSL; Otarine herpes virus 

1 (OtHV-1), a gamma herpesvirus (Lipscomb et al., 2000, King et al., 2002, Buckles et 

al., 2006) and beta (β) haemolytic Streptococcus. The association of OtHV-1 and UGC 

is discussed in greater detail in Chapter 6.  Studies into cervical bacterial flora in 

humans have identified an association with abnormal flora and the presence of CIN 

(Guijon et al., 1992).  Similarly investigations in CSL have identified a β-haemolytic 

Streptococcus as being significantly associated with the presence of UGC in females 

only (Johnson et al., 2006). However, the true nature of this association has yet to be 

determined (Johnson et al., 2006).   

1.5.4.4 Genetic factors:  

Cancer is essentially a genetic disease occurring as a result of loss of control of the cell 

cycle and research into the genetic basis of various cancers is the main focus of many 

studies today (Weinstein and Case, 2008, Bunz, 2008).  To rule out large scale 

chromosome aberrations such as those present in DFTD and CTVT, karyotyping of the 

CSL genome was carried out to compare the karyotype from cells from normal tissue 

with those affected with cancer.  No abnormalities have been identified in karyotype 

number, however intra-chromosomal copy number aberrations were noted and this is a 

continued area of investigation (Breen, 2011).  Loss of diversity at the MHC loci has 

been identified as important in cancer in the Tasmanian devil (Siddle et al., 2007), 

likewise an association has been identified in the CSL, where a specific MHC class II 
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locus (Zaca-DRB.A) is seen as important with regards to the presence of UGC.  The 

DRB family of genes in the CSL consists of eight loci designated Zaca-DRB.A to Zaca-

DRB.H (Bowen et al., 2004, Bowen et al., 2005) and varying combinations of these 

have been identified. However the presence of the Zaca-DRB.A locus in any 

combination was found to be significantly associated with the presence of UGC (Bowen 

et al., 2005).  A final genetic association has been identified in the CSL indicating a 

potential effect of inbreeding with susceptibility to cancer (Acevedo-Whitehouse et al., 

2003).  The study incorporated microsatellites as genetic markers and resulted in the 

identification of two microsatellites of particular interest called M11a and Pv11 

(Acevedo-Whitehouse, unpublished).  Subsequent work involving the Pv11 

microsatellite led to the identification of a potential gene of interest in UGC called 

heparanase 2 (HPSE2) (Acevedo-Whitehouse and Hammond, unpublished).  The 

relevance of these microsatellite markers along with the potential importance of the 

HPSE2 gene in UGC will be discussed further in subsequent chapters. 

1.6 Summary  

The CSL shares much of its coastal habitat and diet with humans and can be considered 

as a sentinel species for the health of the marine environment (Bossart, 2006). UGC in 

CSL is an important cause of morbidity and mortality with environmental, genetic and 

infectious factors potentially all playing a role in its development. Determining the 

aetiology of the condition is clearly important for future management and conservation 

plans for this protected species.     

1.7 Project aims and thesis structure 

Due to the complexities of neoplasia there are many possible avenues of investigation of 

this disease, however it is not possible to address them all, instead I have focussed on 

two areas of investigation; particular genetic factors (Chapters 2-5) and herpesvirus 

infection (Chapter 6).  The overall objectives of each chapter are as follows: Chapter 2 - 

To ascertain the true nature of the relationship between the genetic markers previously 

identified as important (Acevedo-Whitehouse, unpublished)  and the occurrence of 

UGC  using a case-control study design; Chapter 3 – To confirm the location of one of 

these markers within the CSL genome; Chapter 4 – To investigate the possibility of a 
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genetic mutation, utilizing a single genetic marker; Chapter 5 - To investigate the 

activity of the HPSE2 gene in the CSL; Chapter 6 - To determine herpesvirus 

prevalence in the study animals, again through a case control study.  The final chapter 

(Chapter 7) collates the information gained throughout the study in order to draw 

conclusions and determine appropriate areas of future investigation.   

The aims detailed above for each chapter assist in offering support for a general 

hypothesis for the thesis: 

“ Urogenital carcinoma in the California sea lion has a multi-factorial aetiology 

including a genetic and infectious basis” 

In order to support this hypothesis the following study questions will be considered: 

1. Is there an association between the genotype of certain genetic markers and the 

presence of UGC in the CSL? 

2. If an association is identified with a genetic marker and the presence of UGC 

does it indicate a gene of interest? 

3. Does genetic instability occur in CSL with UGC? 

4.  Is the presence of herpesvirus associated with the occurrence of UGC? 
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Chapter 2 

Microsatellite genotype as a predictor for the presence of 

urogenital carcinoma in the California sea lion (Zalophus 

californianus). 

2.1 Introduction 

The investigation of the occurrence and causes of disease in free ranging wild 

populations of animals presents logistical difficulties. Identifying related animals in 

order to study the effects of inbreeding or to identify familial traits can be particularly 

challenging.  Animals may be found in environments that are difficult to access, have a 

nocturnal existence or be particularly elusive (Witmer, 2005). The utilization of genetic 

microsatellite markers to identify related individuals has made keeping track of the 

dynamics of a population possible (Webster and Reichart, 2005, Jarne and Lagoda, 

1996). Microsatellites are highly polymorphic repeat units of nucleotides of up to six 

base pairs (bp) and are reviewed by Ellegren, 2004 and Selkoe and Toonen, 2006. The 

repeats can occur between five to forty times at any one site in the genome and 

thousands of times at different sites throughout the genome (Ellegren, 2004, Selkoe and 

Toonen, 2006).  It is estimated that microsatellites account for 3% of the human genome 

(Ellegren, 2004, Lander et al., 2001). 

Polymorphism of microsatellite alleles are commonly due to variations in the length of 

the allele caused by variations in the number of repeat units, rather than as a result of 

variations in the actual repeated sequence (Ellegren, 2004).  Their presumed neutrality, 

along with their polymorphic existence have resulted in their frequent use as markers in 

population genetic studies involving the investigation of population structure, paternity 

and gene flow in a number of species ranging from Zebra finches (Taeniopygia guttata) 

and Black-faced Lion tamarins (Leontopithecus caissara) to Blacktip Reef sharks 

(Carcharhinus melanopterus) and Caribbean star corals (Montastraea faveolata) 

(Davies et al., 2013, Vignaud et al., 2013, Martins and Galetti, 2011, Webster and 

Reichart, 2005, Dawson et al., 2013). The field of marine mammal research poses 

additional logistical difficulties due to the aquatic environment of the animals 

investigated, however obtaining DNA is possible and it has been extracted from various 
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sources including skin and blood (Bean et al., 2004, Yu et al., 2011, Torres-Florez et al., 

2012).  Samples such as these however require direct access to the animal which is not 

always possible, so additional non-invasive sampling methods have been employed 

such as extracting DNA from collected faeces or carcasses (Reed et al., 1997, Bean et 

al., 2004, Kretzmann et al., 2006). More recently studies into the merits of 

environmental DNA sampling using sea water have been investigated (Foote et al., 

2012).  These various methods of obtaining DNA have allowed population genetic 

studies using  microsatellite markers on a variety of marine mammals, enabling a 

greater understanding of their populations (Buchanan et al., 1998, Graves et al., 2009, 

Bean et al., 2004, Torres-Florez et al., 2012).  

Microsatellites are found in both coding and non-coding regions of DNA, however the 

majority are found in non-coding DNA such as intergenic sequences or introns 

(Ellegren, 2004) which are removed by RNA splicing prior to translation (Faustino and 

Cooper, 2003, Jaillon et al., 2008).  In spite of this, polymorphisms within these 

microsatellites have increasingly been found to be important in genetic function (Li et 

al., 2004, Zhang et al., 2009). An example of this is the microsatellite found within the 

Epidermal Growth Factor Receptor gene (EGFR), where polymorphisms of the CA 

repeat in intron one is associated with differing clinical outcomes in non-small cell lung 

cancer (Shitara et al., 2012) and oesophageal cancer patients (Vashist et al., 2013).  

Additionally the presence of shorter CA repeats at this locus was identified as more 

common in osteosarcoma patients (Kersting et al., 2008).  Similarly longer CA repeats 

in intron five of the oestrogen receptor gene ESR2 have been identified as a risk factor 

in breast cancer in Nigerian women (Zheng et al., 2012).  This challenges the argument 

of microsatellite neutrality (Li et al., 2002, Kashi and King, 2006).  

Further to this microsatellites have been useful in detecting significant genetic 

associations to common diseases in humans and domestic animals (Gulcher, 2012). One 

such example is that of type 2 diabetes in humans where, along with obesity and life 

style, genetic factors have been highlighted as additional risk factors.  Individuals with a 

history of the disease in their family have been identified as being at greater risk 

(Reynisdottir et al., 2003). Positional cloning through a genome-wide linkage study of 

Icelandic families led to the identification of the Transcription Factor 7-Like 2 gene 
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(TCF7L2), variants of which are seen to be associated with the risk of developing type 2 

diabetes (Reynisdottir et al., 2003, Grant et al., 2006).  Associations have also been 

identified in neoplastic conditions. Certain alleles of the ZuBeCa3 microsatellite have 

been found to be associated with the presence of mammary tumours in various breeds of 

dog.  The candidate gene of interest in this case is believed to be the Breast cancer-

associated gene 1 (BRCA1) located in close proximity on chromosome 9 in domestic 

dogs. However, the relationship is yet to be confirmed (Bhattacharya et al., 2007).  

The consequences of inbreeding in animal populations have also been assessed using 

microsatellites.  Increased homozygosity of microsatellite alleles in inbred animals have 

been found to be associated with decreased fitness traits including reduced sperm 

quality, increased parasite load and presence of skeletal deformities (Rijks et al., 2008, 

Gage et al., 2006, Fitzpatrick and Evans, 2009, Lacy and Horner, 1996). Inbreeding 

depression (reduced fitness in a population) has important implications, as the tendency 

towards homozygosity due to mating of related individuals has the potential to reveal 

deleterious alleles along with the loss of heterozygous advantage (Lacy and Horner, 

1996, Hansson and Westerberg, 2002, Charlesworth and Willis, 2009). However, with 

regards to studying inbreeding, the relationship between measures of microsatellite 

heterozygosity and fitness known as heterozygosity-fitness correlations are only found 

to be fulfilled under specific circumstances.  For instance when populations are small or 

when mating systems include behaviours such as polygyny (Balloux et al., 2004, 

Fitzpatrick and Evans, 2009).  

In the CSL microsatellite markers have been used to evaluate variation in the 

susceptibility to a number of diseases (Acevedo-Whitehouse et al., 2003) leading to the 

conclusion that  morbidity in the species may not be a random event.  The study 

incorporated 11 polymorphic microsatellite markers, which enabled the measurement of 

“internal relatedness” (Amos et al., 2001, Balloux et al., 2004) of 371 animals, 13 of 

which had a diagnosis of carcinoma of unspecified type.  The animals had been 

admitted to the Marine Mammal Center in Sausalito, California, due to stranding.  

Internal relatedness (IR) is a measure of heterozygosity and can reveal inbreeding of an 

individual.  The equation used IR=2H-Ʃfi / 2N-Ʃfi, where H is the number of loci that 

the individual is homozygote at and N is the number of loci genotyped, includes every 
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allele genotyped in an individual as well as in the study population, as Ʃfi is the sum of 

the population frequencies of all the (i) alleles (Amos et al., 2001, Balloux et al., 2004). 

Therefore the IR calculation takes into account rare alleles in the population studied 

(Balloux et al., 2004, Amos et al., 2001). If the result of the calculation gives a positive 

number inbreeding is indicated, whereas a negative value suggests outbreeding and a 

zero result indicates that the parents were unrelated (Valimaki et al., 2007, Amos et al., 

2001, Balloux et al., 2004).   

The results of the study by Acevedo-Whitehouse et al., (2003) suggested that inbreeding 

may play a part in increased susceptibility to disease. An independent study confirmed 

that the CSL dataset published by Acevedo-Whitehouse and collaborators (2003) did 

indeed contain inbred individuals (Balloux et al., 2004), a phenomenon most likely 

explained by the species’ strong polygyny and philopatry (Gerber et al., 2010, Miller, 

2009, Young and Gerber, 2008, Heath and Perrin, 2009).  Interestingly, the condition 

most highly associated with the internal relatedness measure was that of carcinoma.  

However the role of “in-breeding” per se is uncertain as further statistical analysis by 

Acevedo-Whitehouse (unpublished) found that the strength of the measure was driven 

by particular microsatellites in the animals with neoplasia, namely Pv11 (Goodman, 

1997) and M11a (Hoelzel et al., 2001).   

Therefore the aim of the present study was to (i) investigate the relationship between the 

Pv11 and M11a loci with the occurrence of UGC in a new sample population.  The new 

sample set only consisted of adult female animals in order to remove the confounding 

factors of sex and age. The study also incorporated a third microsatellite, Hg8.10 (Allen 

et al., 1995) not previously associated with cancer, that was used as a control.  

In addition to the dataset generated by this study, a second separate dataset was 

provided for analysis, the second dataset was genotyped by Dr Acevedo-Whitehouse 

and consisted of 270 adult and sub-adult animals of both sexes, 66 of which were 

suffering from UGC specifically.   
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2.2 Materials and Methods 

2.2.1 Microsatellite genotyping 

Sample collection: 

Genotyping was undertaken on DNA extracted from skin samples. Samples were 

obtained by staff at The Marine Mammal Center (Sausalito, California, USA) during 

necropsy examinations of 113 female adult CSLs (Figure 2.1). The animals were 

admitted between October 2004 and December 2010.  Adult status was assessed by 

body length, with animals >150cm considered as adults. Only adult female animals 

were included in the study to remove the confounding factors of sex and age.  This is in 

comparison to the dataset compiled by Dr Acevedo-Whitehouse which consisted of 

adults and sub-adults of both sexes. 

 

The gross necropsy and histology reports were reviewed for all 113 animals allowing 

classification according to cause of death.  UGC was diagnosed in 43 of the animals 

sampled and 70 were considered as control animals; having died or being euthanized 

due to a condition other than typical UGC. Cause of death in control animals is detailed 

in Figure 2.2 and Appendix A .   

Fig 2.1: Obtaining a skin sample 

for DNA analysis during a 

necropsy examination at the 

Marine Mammal Center. 

Samples taken from the hind 

flipper. 
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Fig. 2.2 Cause of death of control animals based on predominant necropsy finding recorded.  

(Undet: Undetermined, Other Neo: Neoplasia other than UGC identified; Misc Inf: Miscellaneous 

Infection; Lept: Leptospirosis; DA: Domoic acid). Undetermined indicates cases where a cause 

of death was not determined, however urogenital carcinoma (UGC) was not identified. 

Information regarding which sample came from the UGC positive animals and which 

came from the control animals was not accessed until the analysis stage of these 

experiments was reached, to ensure unbiased data analysis. 

The skin samples were stored in ethanol and sent to the Sea Mammal Research Unit (St 

Andrews, Fife) and on arrival they were stored at -20°C.   

DNA extraction, purification and preparation: 

DNA was extracted from the skin samples using the Puregene DNA isolation method 

detailed below in batches of 10-12 samples.  

A small section (approximately 3 mm×3 mm) was cut from the skin samples and further 

sectioned with a sterile razor.  The skin pieces were added to 600 μl of chilled cell lysis 

solution (0.1 M EDTA (VWR International Ltd, Poole, UK), 0.2 M Tris (VWR 

International Ltd) pH 8.5, 1% SDS (VWR International Ltd /BDH) in a 1.5 ml 

Eppendorf, 6 μl of Proteinase K (20 mg/ml) (Bioline Reagents Ltd, London, UK) was 

then added to the samples and they were incubated at 55°C with mixing overnight.  If 

the samples had not digested thoroughly following overnight incubation they were 
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homogenised with a micropestle and a further 6 μl of Protinase K (20mg/ml) (Bioline 

Reagents Ltd, London, UK) was added followed by further incubation at 55°C (with 

mixing) for 60 min.  Once digestion had taken place, 3 μl of RNase A (10 mg/ml) 

(Sigma-Aldrich Ltd, Gillingham, UK) was added and the samples were mixed by 

inverting them approximately 20 times.  They were then incubated at 37°C for 60 min 

followed by cooling to room temperature and 200 μl of 5 M Potassium acetate (VWR 

International Ltd, Poole, UK) was added. The samples were mixed by vortexing at top 

speed for 20 s prior to being centrifuged at 17,000 × g for 3 min. The supernatant was 

decanted via pipette into a new 1.5 ml Eppendorf containing 600 μl of 100% 

isopropanol and the tubes containing the sediment were discarded.  The supernatant and 

isopropanol were mixed by inverting gently until clumps of DNA could be seen. The 

DNA was pelleted by centrifuging at 17,000 × g for 1 min and the supernatant 

discarded.  The pellet was washed by adding 600 μl of 70% ethanol, the sample was 

centrifuged at 17,000 × g for a further minute and the supernatant discarded.  To ensure 

complete removal of all the ethanol the samples were dried in an incubator at 37°C.  Re-

suspension of the DNA was carried out by adding 100 μl of MilliQ water and 

incubating the samples overnight at room temperature. 

Following re-suspension of the pellet, the quantity of DNA in the extraction samples 

was measured with a Nanodrop spectrophotometer (ND-1000, Thermo Fisher Scientific, 

Wilmington, USA) and working stocks were made by diluting the samples to 10 ng/μl 

by the addition of MilliQ water.  The working stocks and the undiluted stocks were 

stored at -20°C. 

Amplification of microsatellite markers: 

Amplification of the three microsatellite markers; Pv11, M11a and the control 

microsatellite Hg8.10, was undertaken via a multiplex polymerase chain reaction 

(PCR).  The protocol was adapted for the three microsatellites from one used previously 

to examine a number of microsatellite markers (including the three in the present study) 

in other marine mammal species by Dr Valentina Islas (University of St Andrews) 

following the Qiagen multiplex PCR kit protocol. 
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For the PCR, 10 μl reaction mixtures were prepared consisting of 20 ng DNA, 5 μl 2× 

Multiplex Master Mix (Qiagen, Crawley, UK) and 3 μl of primer mix. The primer mix 

was prepared by combining 6 pmol of forward primer and 6 pmol of reverse primer of 

the three microsatellites along with 3.3 pmol of Pv11 forward primer with a D3 

fluorescent tag (green), 2.1 pmol of M11a forward primer with a D4 fluorescent tag 

(blue) and 3 pmol of Hg8.10 forward primer with a D2 fluorescent tag (black) and 2.1 

μl RNase-free water (Qiagen, Crawley, UK).   Primers were obtained from Invitrogen 

(Paisley, UK) and fluorescent tags from Sigma-Aldrich Ltd, (Gillingham, UK). Primer 

sequences are detailed in Table 2.1. Amplification of the microsatellite markers was 

carried out in a G-Storm thermo-cycler (G-Storm, Somerton, UK) using the following 

temperature cycling conditions; 95°C for 15 min, followed by 35 cycles of 94°C for 30 

s, 57°C for 90 s, 72°C for 45 s, followed by a final extension step of 72 °C for 10 min 

then the samples were held at 4°C. To check for errors in the amplification 30% of the 

samples were run twice and two negative controls per 96 well plate were included to 

highlight any contamination should it occur.   

Table 2.1. Primer sequences for microsatellite loci used for amplification 

Primer  Sequence 5’-3’ Reference 

Pv11 F: GTG CTG GTG AAT TAG CCC ATT ATA AG 

R: CAG AGT AAG CAC CCA AGG AGC AG 

(Goodman, 1997) 

M11a F: TGT TTC CCA GTT TTA CCA 

R: TAC ATT CAC AAG GCT CAA 

(Hoelzel et al., 2001) 

Hg8.10 F: AAT TCT GAA GCA GCC CAA G 

R: GAA TTC TTT TCT AGC ATA GGT TG 

(Allen et al., 1995) 

 

Fragment analysis: 

Fragments were analysed via automated capillary electrophoresis, this technique allows 

more accurate scoring of allele sizes in comparison to the use of polyacrylamide or 

agarose gels (Wang et al., 2009).  

PCR products were diluted with 10 μl of autoclaved MilliQ water prior to analysis and 2 

μl of each of the diluted products were transferred to a 96 well reaction plate containing 

40 μl per well of a 400 bp size standard.  The size standard was prepared by adding 55 
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μl of 400 bp size standard (GenomeLab
TM

, Beckman Coulter Ltd, High Wycombe, UK) 

to 4.6 ml formamide (Sigma-Aldrich, Gillingham, UK).  A drop (approximately 0.1 ml) 

of mineral oil (GenomeLab
TM

, Beckman Coulter Ltd, High Wycombe, UK) was applied 

on top and the plate briefly centrifuged. Separation buffer (GenomeLab
TM

, Beckman 

Coulter, High Wycombe, UK) was added to a flat bottomed 96 well plate and both 

plates loaded into a CEQ™ 8000 Genetic Analysis System (Beckman Coulter, High 

Wycombe, UK).   

 Analysis was then completed using CEQ specific software and the resultant fragments 

assigned homozygous or heterozygous according to the peaks produced.  The sizes of 

the peaks were recorded and analysed graphically in order to assign alleles to each size 

group. 

2.2.2 Statistical analysis: 

Datasets were analysed using the open access statistical software package R (R 

Development Core Team, 2012). Crude odds ratios were calculated for each 

microsatellite (Pv11, M11a and Hg8.10) by binomial generalised linear models (GLMs) 

to establish whether homozygosity at a particular locus is a risk factor for neoplasia. 

Likelihood ratio p values were reported for each GLM.  In the event of a significant 

finding the dataset provided by Dr Acevedo-Whitehouse was analysed in addition to 

and in combination with the dataset generated by this study. This data set consisted of 

270 animals genotyped at the Pv11 locus, 66 of which were UGC positive (Appendix 

B). Further analysis to identify specific alleles of importance was undertaken by 

establishing whether the chance of being UGC positive was more likely in animals with 

certain Pv11 alleles. This was undertaken by calculating the median probabilities from a 

cumulative binomial distribution at each allele and comparing the number of UGC 

positive animals to the total number of animals genotyped.   

2.2.3 Problems encountered 

Contamination was initially encountered and identified at the fragment analysis stage as 

peaks appearing in the negative control wells. This resulted in the need to repeat the 

experiments. The problem was overcome by placing the PCR tubes, pipettes and tips in 

a UV light box for 10 min prior to preparing the multiplex PCR and similarly placing 
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the 96 well plate, pipettes and tips in the UV light box for 10 min prior to preparing the 

samples for capillary electrophoresis.    

 

2.3: Results 

2.3.1 Spread of alleles  

The DNA extracted from the 113 skin samples was of adequate quality for 

microsatellite analysis.  The resultant electropherograms were examined and 

microsatellite sizes for each of the three microsatellites were recorded and the samples 

categorised as heterozygous or homozygous. On examination of the peaks those with 

signal intensity below 1000 relative fluorescence units (RFU) were considered as 

artefacts. Figure 2.3 illustrates examples of heterozygous and homozygous 

microsatellites.  

Following analysis of the electropherograms each individual allele was plotted on a 

scatter plot in order to assign allele size groups for each microsatellite; these are 

illustrated in Figure 2.4.  Each microsatellite was identified as being polymorphic in the 

CSL, with five alleles identified in Pv11 between 176 bp and 184 bp, nine alleles 

identified in M11a between 136 bp and 152 bp and seven alleles in Hg8.10 between 176 

bp and 188 bp. 

The most frequent allele identified in Pv11, M11a and Hg8.10 were; allele one (176 bp), 

allele eight (150 bp) and allele five (184 bp) respectively. The allocated allele number 

and the frequencies of each allele of the three microsatellites in the 113 animals sampled 

are illustrated in Figure 2.5. Figure 2.6 illustrates the frequencies of each genotype 

identified in UGC positive and control animals at the three loci. Appendix A details the 

resultant genotype of each of the 113 animals in the study. 
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Fig 2.3. Examples of microsatellite electropherograms from CEQ software from two samples. 

The three microsatellites were included in one multiplex PCR however the Hg8.10 microsatellite 

(tagged black) was analysed separately due to the allele size range of the microsatellite (176-

188bp) overlapping with that of the Pv11 microsatellite (176-184bp).   A (sample: 8431(69)): 

Example of an M11a heterozygote (blue) of allele sizes 136 and 150 and a Pv11 homozygote 

(green) of allele size 176. B (sample: 9198(21)): Example of a Hg8.10 heterozygote (black) of 

allele sizes 182 and 186.  
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Fig. 2.4 Scatter plots of each microsatellite locus and each of the 226 alleles 

recorded from the 113 samples analysed.  A: Pv11, illustrating five alleles from 

176bp to 184bp; B: M11a, illustrating nine alleles from 136bp to 152bp; C: Hg8.10, 

illustrating seven alleles from 176bp to 188bp 
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Fig 2.5. Frequencies of the alleles identified in the three microsatellites 

examined. A: Frequency of the five Pv11 alleles; B: Frequency of the nine 

M11a alleles; C: Frequency of the seven Hg8.10 alleles 

A 

C 

B 
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Fig 2.6. Frequency of genotypes identified at the three microsatellite loci examined according to 

presence (Pos) or absence Neg) of UGC. Bar width corresponds to the proportion of animals of 

a particular genotype, with the height of dark grey indicating the portion of animals of that 

particular genotype without UGC and the light grey indicating the proportion animals of a 

particular genotype with UGC.  A: Pv11; B: M11a and C: Hg8.10 
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2.3.2 Association of homozygosity with UGC 

In order to investigate whether homozygosity is associated with the presence of UGC at 

the three microsatellite loci, GLMs were fitted to the data. Both the M11a and Hg8.10 

loci failed to show a significant association with regards to the presence of UGC; 

however animals homozygous at the Pv11 microsatellite locus were found to be twice 

as likely to be suffering from UGC, but only at the 10% significance level (Table 2.2).  

In order to investigate whether this was a small sample size effect as the lower CI for 

the OR was close to 1.0, the dataset was combined with that supplied by Dr Acevedo-

Whitehouse.  The GLM was repeated with the expanded dataset and the subsequent 

results showed that the crude Odds Ratio was 1.62 and the CI was much narrower, 

giving an increase in significance to p =0.033 (Table 2.2).     

Table 2.2 Results of GLM analysis of the three microsatellite loci with regards to the presence of 

UGC 

Microsatellite 

locus 

UGC status Number of 

Heterozygotes 

Number of 

Homozygotes 

Odds ratio (CI) P value 

(LR) 

Pv11 Control 54 16 2.00 (0.87-4.6) 0.103 

 Positive 27 16   

M11a Control 52 18 0.99 (0.42-2.37) 0.987 

 Positive 32 11   

Hg8.10 Control 49 21 0.80 (0.34-1.89) 0.611 

 Positive 32 11   

*Pv11 Control 183 91 1.62 (1.04-2.58) 0.033 

 Positive 60 49   

*Expanded dataset; CI: Confidence Interval; LR: Likelihood Ratio 
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2.3.3 Association of Pv11 genotype with UGC 

Due to the significant relationship identified between homozygosity at the Pv11 locus 

and the presence of UGC, the various Pv11 genotypes were investigated using the 

expanded dataset to establish whether a genotype of importance existed. Five 

comparable alleles were identified in the two datasets.  The larger dataset additionally 

found two extra alleles, only identified in three animals and due to the low frequency of 

these alleles the animals were removed from the analysis.   Figure 2.7A show the 

frequency of the various allele combinations recorded in both UGC positive and control 

animals in the expanded dataset.  Figure 2.7B illustrates the binomial probability 

distribution for each genotype, indicating the probability that an animal is UGC positive 

as opposed to being a control according to a particular genotype. The genotype 3,3 has 

the highest median probability however its lower confidence interval overlaps with the 

median probabilities for genotype 2,4 and 4,4 and it was concluded that in this sample 

there was no statistical evidence that the 3,3 genotype was of any more importance than 

the other genotypes with regards to the occurrence of UGC. It should be noted however 

that a number of genotypes identified were present only in small numbers; therefore 

repeating the analysis with a larger sample population should be undertaken before 

definitive conclusions are made. 
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Fig. 2.7 A: Frequency of Pv11 genotypes identified in the expanded dataset according to 

presence (Pos) or absence Neg) of UGC. Bar width corresponds to the proportion of animals of 

a particular genotype, with the height of dark grey indicating the portion of animals of that 

particular genotype without UGC and the light grey indicating the proportion animals of a 

particular genotype with UGC. B: Binomial probability distributions for each Pv11 genotype 

identified, showing higher median probability of genotype 3,3 but overlap of the lower 

confidence interval with the median probabilities for genotype 2,4 and 4,4.    
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2.4 Discussion 

The aim of this study was to investigate the relationship between certain microsatellite 

loci and the presence of UGC using a sample population free of the confounding factors 

of sex and age. The study found weak evidence that animals homozygous at the Pv11 

locus are around twice as likely to be suffering from UGC as animals that are 

heterozygous at this locus (crude OR: 2.00, CI: 0.87-4.6, p=0.103). Although only 

significant at the 10% level, in light of the odds ratio identified (and the lower CI being 

close to 1.0) along with the previous findings by Acevedo-Whitehouse (unpublished), it 

was decided that further investigation was necessary to improve the power of the study.  

The data set therefore was combined with that provided by Dr Acevedo-Whitehouse. 

Analysis of the combined dataset resulted in a strengthened relationship between 

homozygosity at the Pv11 locus and the presence of UGC, however this re-introduced 

confounding factors of sex and age (crude odds ratio: 1.62 CI: 1.04-2.58, p=0.033). No 

significant relationships were found with any particular Pv11 allele or with 

homozygosity at the M11a locus.  

To verify the trend identified here and to look in greater depth for potential Pv11 alleles 

of importance it is necessary to expand the single sex/age data set significantly.  The 

present study is nested within a wider epidemiological study being carried out over a 

number of years by the Sea Lion Cancer Consortium (SLiCC) and ultimately the aim is 

to undertake a sex and age matched analysis in a larger sample population than was 

possible in the present study. Power calculations that have been carried out in order to 

design the larger case-control study have shown that a minimum of 100 UGC positive 

animals along with 200 controls are necessary to detect a true difference of the expected 

magnitude (Hall and Gulland, 2011). 

Understanding what the result of this study is telling us is difficult. The association 

between Pv11 homozygosity and cancer may simply reflect inbreeding, resulting in 

reduced heterozygosity and therefore reduced fitness (Osborne et al., 2011, Keller and 

Waller, 2002).  Homozygosity and reduced fitness has been noted in CSL before, where 

it was identified that more inbred individuals have longer recovery time from disease 

(Acevedo-Whitehouse et al., 2003).  However with previous work suggesting that the 

relationship between inbreeding and cancer in the CSL was driven by the Pv11 
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microsatellite locus there is an implication that this microsatellite holds greater 

importance in the development of the disease (Acevedo-Whitehouse, unpublished). It is 

therefore possible that the microsatellite is linked to a fitness related gene (Osborne et 

al., 2011, Hansson et al., 2004, Balloux et al., 2004).  The CSL genome has been 

sequenced (Dinsdale, 2011), however it is low coverage at present and consists of many 

unassembled short reads.  Therefore it is not possible to pinpoint the location within the 

genome of a particular marker, making the identification of associated genes 

problematic.  Further work has been carried out to identify the location of Pv11 using 

comparative genomics and molecular techniques and this is covered in Chapter 3.  

Similar situations have been reported in relation to homozygosity and disease 

susceptibility in both humans and animals and include studies into the pathology 

associated with hookworm infection (Uncinaria spp.) in CSL pups and New Zealand 

sea lion (Phocarctos hookeri) pups (Acevedo-Whitehouse et al., 2006, Acevedo-

Whitehouse et al., 2009) and mortality associated with invasive bacterial infection in 

children (Lyons et al., 2009).  In the CSL pups the study involved the genotyping of 181 

pups at 13 microsatellite loci and of those with hookworm attributed lesions (n=130) it 

was identified that anaemia was associated with homozygosity at a particular 

microsatellite locus (Hg4.2) (Acevedo-Whitehouse et al., 2006). Similarly genotyping 

of 39 New Zealand sea lion pups at 22 microsatellite loci revealed that homozygosity at 

a single locus (ZcCgDh3.6 ) was associated with anaemia (Acevedo-Whitehouse et al., 

2009). In humans an association was found concerning homozygosity at five 

microsatellite loci (out of 134 genotyped) in children succumbing to bacterial infections 

in Kenya.  Interestingly the strength of the association was seen to change between type 

of infection (gram positive or gram negative) and also age class (Lyons et al., 2009). 

This highlights the importance of both accurate identification of cause of death or 

morbidity along with careful matching in a case-control study when investigating these 

associations.   

In humans, genome wide association studies (GWAS) using both microsatellites and 

single nucleotide polymorphisms (SNPs) as markers have been employed in 

investigating disease with a suspected genetic component especially those with a 

familial root (Lyons et al., 2009, Chung et al., 2010, Burton et al., 2007). A previously 
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mentioned example was that of studies into type 2 diabetes (Grant et al., 2006). Various 

cancers have also been investigated in this way including prostate cancer. This led to the 

identification of variants of a particular microsatellite allele on chromosome eight in 

humans being found to be associated with the disease (Amundadottir et al., 2006, 

Gulcher, 2012). GWAS have also been carried out in animals both to look for candidate 

genes of importance in disease for example in canine atopic dermatitis and canine 

systemic lupus erythematosus (Tengvall et al., 2013, Wilbe et al., 2010) and, largely for 

economic reasons, in looking for genes of importance in race horse performance or 

productivity in dairy cattle (Tozaki et al., 2010, Meredith et al., 2012).   

The multi-factorial aetiology of neoplasia indicates that the relationship identified here 

between homozygosity at the Pv11 locus and UGC is unlikely to be the full story with 

regards to the development of the disease.  The odds ratio reported is considered crude 

as it does not take into account other factors previously identified as being linked to the 

occurrence of UGC.  These include persistent organic pollutants and herpesvirus 

(Buckles et al., 2006, Ylitalo et al., 2005) and it is possible that the strength of the 

association between Pv11 and UGC may increase once these additional exposures have 

been accounted for.  This will be explored further in Chapter 7. In spite of the small 

sample size the identification of a microsatellite marker with a significant relationship to 

the occurrence of cancer does offer a starting point for investigating a genetic basis of 

the disease.  
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Chapter 3 

Identification of the genetic location of the Pv11 microsatellite 

marker in the California sea lion (Zalophus californianus) - a 

non-model wild species 

3.1 Introduction 

Genome wide association studies (GWAS) are used to investigate a disease with a 

suspected genetic component. The markers (commonly SNPs or microsatellites) used in 

these studies assist in the identification of regions of interest in the genome known as 

quantitative trait loci (QTL) (Meredith et al., 2012, Zhang et al., 2012).  For the 

identification of a candidate gene it is presumed that linkage disequilibrium is occurring 

(Zhang et al., 2012, Wray et al., 2008).  Linkage disequilibrium (LD) describes the non-

random association of alleles, where alleles of different loci are found together more 

often than expected, as opposed to linkage equilibrium (LE) where alleles of different 

loci are randomly associated and occur together at no greater frequency than would be 

predicted (Goldstein and Weale, 2001, Lewontin and Dunn, 1960, Geiringer, 1944, 

Nicholas, 2010c). Identification of markers in LD with specific genes allows linkage 

mapping, where loci are mapped according to recombination frequency instead of 

distance apart on the chromosome (Wong et al., 2010, Mellersh et al., 1997, Werner et 

al., 1999, Nicholas, 2010b).      

If, following a GWAS, a particular marker shows an association with a trait or disease, 

the information can be used to identify a QTL. QTLs are commonly very large and can 

be over 20 cM encompassing many genes (Miles and Wayne, 2008, Meredith et al., 

2012, Flaherty et al., 2005).  The identification of a potential gene candidate responsible 

for the trait or disease of interest may also be possible.  However a number of genes 

may be responsible for a trait and the effect of a single gene alone may be quite small, 

thus complicating the understanding of a genetic basis of a condition (Meredith et al., 

2012, Miles and Wayne, 2008, Stranger et al., 2011, Flaherty et al., 2005, Wray et al., 

2008). In addition an assembled genome covering the region of interest is necessary in 

identifying gene candidates (Osborne et al., 2011). The previous chapter demonstrated 

that animals homozygous at the Pv11 locus were almost twice as likely to be suffering 
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from UGC, than those that were heterozygous.  It is therefore possible that Pv11 is 

marking a QTL and identifying its location within the genome and genes within its 

vicinity may yield information concerning the aetiology of UGC, this in turn could 

indicate pertinent routes of further investigation.  A limitation of the present study 

however, is the lack of an assembled genome for the CSL or indeed any other pinniped 

(Osborne et al., 2011). This complication however may be partly overcome by 

comparing the genomes of closely related species where conservation of segments of 

the genome is seen to occur (Osborne et al., 2011, Ferguson-Smith and Trifonov, 2007, 

de Grouchy et al., 1978, Dawson et al., 2006). A predicted map of genetic markers has 

been created based on chromosomal synteny for  pinnipeds using sequence alignments 

of phylogenetically related  members of the  order carnivora; the domestic dog (Canis 

lupus familiaris), domestic cat (Felis catus) and giant panda (Ailuropoda melanoleuca) 

along with using the dog genome as a chromosome scaffold (Osborne et al., 2011). 

Osborne et al (2011) went on to investigate potential gene candidates associated with 

the microsatellites Hg4.2 and ZcCgDh3.6. As discussed in Chapter 2 homozygosity of 

Hg4.2 and ZcCgDh3.6 were noted as being important in the pathology of hookworm 

infection in in CSL and New Zealand sea lion pups respectively, specifically in relation 

to the occurrence of anaemia (Acevedo-Whitehouse et al., 2009, Acevedo-Whitehouse 

et al., 2006). This finding  suggested that these microsatellites were in  LD with genes 

involved in this pathology and the predicted microsatellite map along with analysis of 

the regions of the dog genome were used to suggest  potential candidate genes (Osborne 

et al., 2011). Genetic conservation therefore offers a starting point in identifying the 

location of Pv11 in the CSL.  The study undertaken by Osborne at al., (2011) did 

include Pv11 and placed it on chromosome 28 of the canine genomic scaffold; however 

it did not examine genes in the vicinity. The present study aimed to use both 

comparative genomics and molecular methods to confirm the location of Pv11 in the 

CSL genome and if possible, to identify genes within this genomic location.    
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13.2 Materials and Methods 

3.2.1 Comparative genomics 

In the absence of an assembled CSL genome other methods were undertaken to 

establish the location of the Pv11 microsatellite; these included the implementation of 

molecular methods and comparative genomics. A short region of sequence flanking the 

Pv11 microsatellite consisting of 153bp was analysed using the NCBI Basic Local 

Alignment Search Tool (BLAST) (Altschul et al., 1990).  The analysis identified a 

region in the HPSE2 gene on chromosome 28 in the dog genome with 91% nucleotide 

identity over 83% of sequence.  Subsequent alignment of this region in the horse, dog 

and pig enabled the design of primers to amplify a larger region of 2kb across the Pv11 

microsatellite. This larger gene fragment was found to be clearly orthologous to intron 9 

of the HPSE2 gene (Hammond, unpublished).        

Further analysis utilizing comparative genomics was then carried out confirming that 

this gene is conserved in mammals (Hammond, unpublished). The HPSE2 gene is large 

in all mammals and in the dog spans over 630kb. It is comprised of 12 exons separated 

by large intronic regions, with intron 9 being 101kb in size (NCBI Gene ID: 486831).  

The HPSE2 gene will be discussed in more detail in section 3.4. 

3.2.2 Southern Blot 

To provide supporting evidence for the location of Pv11 within the HPSE2 gene a 

southern blot was carried out. 

Sample selection 

To perform the Southern blot, genomic DNA from harbour seal (Phoca vitulina) and 

CSL were used. These species are descended from a common canine ancestor and 

therefore conservation of the genetic structure is expected. The advantage of using both 

species in the Southern blot is that it allows the confirmation of genetic conservation.   

                                                           
1
 The comparative genomic work was carried out by Dr John Hammond prior to the start of my 

PhD.  The Southern Blot was undertaken in collaboration with Dr John Hammonds Lab at The 
Compton Laboratory, The Pirbright Institute, Compton, UK. 
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The Southern blot was undertaken using the DIG Luminescent Detection Kit for 

Nucleic Acids, (Roche Applied Science, Mannheim, Germany). Southern blots allow 

the detection of specific DNA sequences along with the potential detection of multiple 

homologous genes in a genome should they occur.  In order to achieve this the 

digoxygenin (DIG)  system relies on DNA probes labelled with DIG which following 

hybridisation to target DNA sequences, are bound by an anti-DIG antibody which itself 

has the enzyme alkaline phosphatase (AP) attached to it. The addition of a 

chemiluminescent AP substrate subsequently results in the detection of the hybridised 

probe. The process requires a number of steps; (1) DNA extraction, (2) restriction 

digestion and DNA separation, (3) gel preparation and blotting, (4) preparation of 

probes, (5) hybridization and (6) detection. The steps undertaken are detailed in full in 

Appendix D.  

Two probes were employed in the study, therefore prior to the southern blot two 

identical restriction digests per DNA sample were carried out.  In order to undertake a 

restriction digest restriction enzymes (RE) are used. RE are derived from bacteria and 

make up part of a bacterium’s defence mechanism against viral infection reviewed by 

Nicolas, 2010 (Nicholas, 2010b).  A particular RE has the ability to “cut” DNA at a 

specific sequence.  The particular sequence may occur more than once throughout the 

genome therefore the DNA is subsequently digested into a number fragments (Nicholas, 

2010b), for example digestion of the human genome with the RE EcoRI (from 

Escherichia coli) results in approximately 800,000 fragments (Chen et al., 2008).  The 

frequency of sites recognised by RE throughout the genome depends on the size of their 

recognition sequence. In the human genome a recognition sequence for a RE specific to 

a 6bp sequence will occur approximately every 4kb whereas one with a 4bp recognition 

sequence is expected to occur more frequently (approximately every 250bp) (Griffiths 

et al., 2000).  There have been over 3600 RE identified of which around 580 are 

commercially available (Roberts et al., 2005).  

The restriction enzymes BamHI (New England Biolabs Hitchin, UK) and HindIII (New 

England Biolabs Hitchin, UK) were chosen as they were identified as suitable due to 

their ability to cut  the DNA into the larger fragments required due to the large size of 

the intron 9 where Pv11 is expected to be situated (Hammond, unpublished). This 
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increased the chances that the sequences targeted by the probes wouldn’t be on different 

fragments of DNA, thus allowing a greater chance of hybridisation of the probes to the 

same DNA section. 

The two probes used in the Southern Blot were called probe A and probe B.  Probe A 

was 520bp in size and incorporated 22bp of exon 9 of the HPSE2 gene whereas probe B 

was 1kb in size and flanked the Pv11 microsatellite. The position of the two probes is 

illustrated in Figure 3.1. 

 

Fig 3.1: Structure of the HPSE2 gene is conserved amongst mammals and consists of 12 exons 

separated by large intronic regions.  The pop out window illustrates the position of the two 

probes (A and B) employed in the southern blot. Probe A being ~500bp in size and 

incorporating 22bp of exon 9 and probe B being ~1kb in size and flanking the Pv11 

microsatellite. 

 

In order to make the two probes, 50 μl PCR’s were carried out using CSL genomic 

DNA as a template and degenerate PCR primers supplied by Sigma-Aldrich 

(Gillingham, UK).  Degenerate primers allow the amplification of DNA fragments via 

PCR in cases where the actual sequence is unknown and are designed by examining 

DNA sequences of a genetically similar species (Kwok et al., 1994, Lang and 

Orgogozo, 2011).  In the case of the present study the primers were designed using the 

dog, horse, cow and harbour seal genome as illustrated in Figure 3.2 (Hammond, 

unpublished). The sequences of the primers used to make the probes are detailed in 

Table 3.1. The 50 μl reactions consisted of 10x NH4 buffer (Bioline, London, UK), 1.25 

μl 50 mM MgCl2, 0.5 μl 10 mM dNTP (Invitrogen, Paisley, UK), 1 μl of forward and 

reverse primer from 10 μM stock solutions, 0.5 μl (2 units) Bio-X-ACT short DNA 
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polymerase (Bioline, London, UK), 38.75 μl of RNase free water (Qiagen, Crawley, 

UK) and 2 μl (124 ng/μl) of DNA template.  The reaction cycle for probe A was as 

follows 95°C for 1 min, followed by 35 cycles of 95°C for 1 min, 59°C for 1 min, 72°C 

for 2 min, then 72°C for 15 min before being stored at 4°C. For probe B the same 

reaction cycle was used with the modification of the annealing temperature being raised 

to 64°C.  The products were resolved on 1% agarose gels and bands of appropriate size 

extracted and purified using QIAquick gel extraction kit (Qiagen, Crawley, UK) as per 

manufacturer’s instructions. The product was quantified by running 5 µl of the purified 

product alongside three lambda DNA size markers: 25 ng, 50 ng and 100 ng (Promega, 

Southampton, UK) on a 1% agarose gel.  

            

 

Fig 3.2. Sequence allignments from the dog, horse, cow and harbour seal of four regions in the 

HPSE2 gene used in order to design primers for southern blotting. These alignments illustrate 

where the degenerate sites arise. A and B illustrate the forward and reverse primers used to 

make probe A; C and D illustrate the forward and reverse primers used to make probe B.  

 

 

A 

B 

C 

D 
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Table 3.1. Primer sequences used to make probes for Southern blotting  

Probe Sequence 5’-3’ Reference 

Exon (probe 

A) 

F:   CYA AGA GAY GGG TTC CTA C 

R: TGG GTT YAA ATT CTG GTC CA 

(Hammond, 

unpublished) 

Pv11 (probe 

B) 

F: CAA CTG CTC CTT GGG TGC TTA CTC TGT G 

R: GGC AGA TTA TTW ATT CTC TYG GRC TCT G 

(Hammond, 

unpublished) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

3.3 Results 

The two DNA probes (A and B) utilised in the Southern blot hybridised to the same 

CSL genomic DNA fragment and was replicated in the harbour seal (Figure 3.3).  This, 

alongside the previous comparative genomic investigation (Hammond, unpublished) 

confirmed that the Pv11 microsatellite is located within intron 9 of the CSL HPSE2 

locus. 

 

 

 

 

 

20kb 

Fig 3.3. Southern blot 

revealing hybridisation of 

both probes (A and B) to 

the same location in the 

CSL and harbour seal 

genome. 
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3.4 Discussion 

Genotyping of the Pv11 microsatellite revealed that animals homozygous at this marker 

were approximately twice as likely to suffer from UGC as those that were heterozygous.  

Analysis using comparative genomics suggested the location of Pv11 was within the 

HPSE2 gene in the CSL, a conserved location in mammals.  This genomic location was 

then verified by Southern blot.  Examination of published genomes of a variety of 

species in the NCBI database revealed a number of genes in the vicinity of HPSE2.  It is 

possible that Pv11 is marking a QTL and as discussed earlier these can cover large 

genomic regions containing a number of genes, thereby making the identification of the 

gene or genes responsible for a particular disease or trait difficult.  However the large 

size of the HPSE2 gene across all species examined suggests it has an important role, 

thus making it a probable gene candidate involved in UGC in the CSL; hence this gene 

was investigated further.   

The HPSE2 gene was discovered by McKenzie et al., (2000) and the protein, HPA2, it 

encodes was found to share approximately 35% amino acid sequence identity over the 

coding regions with the protein heparanase 1 (HPA1) encoded by the heparanase gene 

(HPSE) (McKenzie et al., 2000).  HPSE has been the subject of much research due to its 

involvement in neoplasia (Vlodavsky et al., 2005, Vlodavsky et al., 1999); therefore a 

gene sharing sequence similarity is of potential clinical interest.  In comparison to 

HPSE, research into HPSE2 is still in its infancy and only a handful of published papers 

exist regarding its potential role (Levy-Adam et al., 2010, Pang et al., 2010, Peretti et 

al., 2008, Mahmood et al., 2012, Marques et al., 2012, de Moura et al., 2009, Giordano, 

2008, McKenzie et al., 2000, Zhang et al., 2013, Daly et al., 2010). In light of the lack 

of information regarding HPSE2 along with the sequence similarity between HPA1 and 

HPA2, the function and activity of HPSE and its protein HPA1 will be discussed first. 

HPA1 has enzymatic activity; it is an endo-β-glucuronidase which acts on the substrate 

heparan sulfate, breaking it down into smaller fragments reviewed by Barash et al., 

2010 (Barash et al., 2010).  The importance of this action (in terms of neoplasia) is the 

effect the enzyme has on heparan sulfate proteoglycans (HSPG) which are an important 

constituent of the basement membrane (BM) and extracellular matrix (ECM).  Cleavage 

of heparan sulfate chains from their proteoglycan core results in loss of cellular integrity 
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thereby permitting cellular invasion and subsequent metastasis (Edovitsky et al., 2004, 

Shafat et al., 2008, Barash et al., 2010, Levy-Adam et al., 2010). This action 

additionally causes the release of bioactive molecules such as cytokines and growth 

factors attached to the heparan sulfate which are involved in cell growth and 

angiogenesis (Boyd and Nakajima, 2004, Barash et al., 2010, Ostrovsky et al., 2009).   

Increased expression of HPSE mRNA and HPA1 protein production has been noted in a 

number of cancers affecting a variety of body tissues including colon, bladder, breast 

and pancreas amongst others (Vlodavsky et al., 2005, Peretti et al., 2008, Zhao et al., 

2009).  In addition HPA1 has been identified as a potential diagnostic and prognostic 

marker with high levels indicating a poor prognosis and reduced survival time (Ilan et 

al., 2006, Davidson et al., 2007, Shafat et al., 2008, Zhao et al., 2009).  

The majority of the published research has concentrated on HPSE’s role in cancer 

metastasis; however other roles of the enzyme have been explored. These include in 

embryo implantation in the uterus and inflammation (Rodrigues et al., 2011, D'Souza et 

al., 2008). In addition to HPA1 enzymatic action in remodelling of the ECM it also has 

been found to have a pro-adhesive role due to clustering of HSPG, this action is pH 

dependent (Gilat et al., 1995, Levy-Adam et al., 2010). HPA1 is initially expressed as 

an inactive pro-enzyme, 65 kDa in size and proteolytic processing by protease enzymes 

such as cathepsin L is required to convert it into an active enzyme.  The 65 kDa pro-

enzyme is cleaved into two parts by removing a 6 kDa linker segment.  The two 

resultant sub units (of 8 kDa and 50 kDa) join together to form the active enzyme that is 

responsible for HSPG degradation (Arvatz et al., 2011). 

HPSE is found to be conserved amongst mammals, however in invertebrates examined, 

the gene, although present, shows similarity within other members of the class insecta 

rather than between classes (Shaik et al., 2012, Vlodavsky et al., 1999). In HPSE2 

however although the gene is identified as conserved in mammals, unlike HPSE, it has 

not yet been identified in invertebrates (Pang et al., 2010).  HPSE2 is a large gene 

consisting of 12 exons and is approximately 630 kb (NCBI Gene ID: 486831) and 776 

kb (Pang et al., 2010) in the canine and human respectively.  Alternative splicing of 

exons three and four in humans results in four putative proteins containing 480, 534, 

538 and 592 amino acids (Daly et al., 2010). Further sequence analysis found that the 
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similarity in HPA1 and HPA2 sequences was particularly strong across the two subunits 

that join to make up the active enzyme of HPA1 (50 kDa and 8 KDa), however the 

linker region, which is cleaved during proteolytic processing, was not well conserved 

(McKenzie et al., 2000). Further to this it was found that mRNA expression patterns of 

HPSE and HPSE2 differed in normal tissues.  

HPSE is expressed in greater levels in placenta and lymph node whereas HPSE2 

expression is found to be absent or low in these tissues, but is higher in mammary 

gland, prostate, small intestine, testis and uterine tissue along with developing and adult 

urinary bladder and kidney (Daly et al., 2010, McKenzie et al., 2000).  Expression of 

both genes was also seen in different regions of the brain (McKenzie et al., 2000, Daly 

et al., 2010).  When tissue affected by neoplasia was examined, there was also a 

disparity in the expression pattern of these two genes, with one study reporting high 

levels of HPSE expression in all tumour tissues examined (breast, colon, lung, prostate, 

ovarian and pancreatic), and low levels of HPSE2 expression in the same tissues except 

for in the pancreas where it was significantly higher (McKenzie et al., 2000).  

Although expression profiles of HPSE2 mRNA have been carried out using many 

tissues the results of these do not necessarily provide information regarding the 

presence of the protein (Huang et al., 2011). A few studies have investigated the 

presence of the protein. These immunohistochemical and immunocytochemical studies 

used a polyclonal antibody raised against human HPA2 (with the ability to detect three 

of the reported isoforms) to identify the presence of the protein in ovarian cancer (de 

Moura et al., 2009), head and neck tumours (Levy-Adam et al., 2010), colorectal cancer 

(Peretti et al., 2008), cancer of the cervix (Marques et al., 2012) and gastric cancer 

(Zhang et al., 2013).  All studies identified that HPA2 was up-regulated in the 

neoplastic regions and Table 3.2 sums up the published information available. Marques 

et al., (2012) additionally found an increase in HPA2 expression with an increase in the 

severity of the lesion. However, the study undertaken by de Moura et al., (2009), 

investigating HPA2 expression in ovarian neoplasia, found that there was no difference 

in expression in malignant compared to benign tissues, although differences did occur 

with stage of differentiation. In this case the authors concluded that HPA2 was involved 

in tumour expansion but did not definitively conclude how.  
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Table 3.2. Summary of studies into the presence of HPA2 in various human tumours  

Tumour site hpa2 presence Reference 

Head and neck tissue Increased in tumour tissue; 

undetected in adjacent 

normal epithelium 

(Arvatz et al., 2011, Levy-Adam et 

al., 2010)  

Breast (study into 

hpa2 in lymphocytes) 

High in lymphocytes in 

patients; Low in controls 

(Theodoro et al., 2007) 

Ovary High in neoplastic epithelial  

tissue low or absent in 

normal 

(de Moura et al., 2009) 

Cervix Increased presence with 

increased severity of cancer, 

lower in normal tissue 

(Marques et al., 2012) 

Stomach Increased in cancer tissue, 

low in adjacent normal tissue 

(Zhang et al., 2013) 

Colon High in carcinoma affected 

tissues, low in non-neoplastic 

tissue 

(Peretti et al., 2008) 

 

Although the majority of studies identifying HPA2 have involved human tissue the 

protein has been identified in rats in a study investigating intervertebral disc 

degeneration (Oliveira et al., 2013). Further to this HPSE2 homologues have been 

reported in a number of species (NCBI, HomoloGene: 19680).  

It was initially believed that HPSE2 had a similar action to HSPE, however (Levy-

Adam et al., 2010) published a study which took steps towards characterising the gene 

and discovered important differences with HSPE. Unlike HPA1, HPA2 was found not 

to exhibit enzymatic activity and also had a stronger affinity to heparin and heparan 

sulfate than HPA1.  This action led the authors to postulate that HPA2 may in fact work 

against HPA1, potentially inhibiting its action.  HPA2 expression was investigated in 

head and neck carcinoma and it was deduced that metastasis was higher in cases where 

HPA2 expression was lower (Levy-Adam et al., 2010). Additionally, disease 

recrudescence was longer where HPA2 expression was higher, this finding was 
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replicated in studies into gastric cancer where better prognosis was seen in cases of 

higher HPA2 expression (Zhang et al., 2013, Levy-Adam et al., 2010).  

Similarly to the investigations into HPSE and neoplasia further potential roles were 

noted with regards to HPSE2.  For example, its increased expression in the uterus 

suggests a role (as with HPSE) in pregnancy, however further work is required to 

confirm this (D'Souza et al., 2008).  In 2010 another development in the HPSE2 story 

was discovered when researchers identified a role of HPSE2 in a genetic disorder, 

urofacial syndrome (or Ochoa syndrome).  Urofacial syndrome (UFS) (OMIM#236730) 

is an autosomal recessive condition occurring in humans that has been linked to the 

HPSE2 gene (Daly et al., 2010, Pang et al., 2010, Mahmood et al., 2012). The condition 

is characterised by a number of clinical symptoms relating to dysfunctional urination 

including recurrent urinary tract infections, dysuria and incontinence (Pang et al., 2010).  

If left untreated the defects affecting the urinary tract can cause the condition to 

progress to renal failure.   The most notable symptom of UFS is a facial grimace made 

when the patient attempts to smile (Pang et al., 2010). A number of mutations in HPSE2 

have been attributed to the condition including in frame whole exonic deletions and 

frameshift mutations due to insertions or deletions of base pairs (Daly et al., 2010, Pang 

et al., 2010). It is noted that deletions of exon three are of particular importance in cases 

of UFS (Daly et al., 2010).  Additionally UFS has also occurred with no identified 

mutation to HPSE2 suggesting that it is a heterogeneous condition (Woolf et al., 2013). 

UFS is presently considered a rare condition and Mahmood et al., (2012) state that so 

far there have been only 18 published cases.  However, diagnosis is difficult partly due 

to variation in severity of clinical presentations that result in it not being recognised, the 

condition may therefore be more common than is presently reported (Mahmood et al., 

2012). 

The uncertainty surrounding the role of HPSE2, especially in its relation to the 

inhibition or promotion of neoplasia, presents the question of whether this gene has 

oncogenic activity or is in fact a tumour suppressor gene. The location of the Pv11 

microsatellite within the HPSE2 gene of CSL and its link with the homozygous state 

and UGC, offers another avenue of investigation in characterising this gene. 
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Chapter 4 

Limited genetic instability is present in lower genital tract 

tissue from California sea lions (Zalophus californianus) with 

and without urogenital carcinoma 

 4.1 Introduction 

Neoplasia is essentially a genetic disease; its occurrence being a consequence of genetic 

alterations that result in the loss of control of cell division (Hahn and Weinberg, 2002, 

Collins et al., 1997).  When this occurs, cells can proliferate uncontrollably and in the 

case of metastatic neoplasia, spread to parts of the body which are distant from the 

primary lesion (Vile and Morris, 1992, Adkinson and Brown, 2007). 

More than one event affecting the genetic code of the cell is necessary for the 

development of neoplasia (Hahn and Weinberg, 2002, Land et al., 1983) and in a study 

regarding endometrial neoplasia it was proposed that six genetic alterations were 

necessary for tumour development (Peiffer et al., 1995). However the true number of 

alterations in a particular cancer remains undetermined and is almost certainly tumour 

dependent.  Genetic alterations may involve a hereditable component leaving certain 

animals predisposed, but the majority occur due to spontaneous mutations in somatic 

cells which are left uncorrected by the cells safety mechanisms (Bunz, 2008, Hsieh and 

Yamane, 2008, Srivastava and Grizzle, 2010).  The rate of mutation of DNA in higher 

eukaryotic organisms is much less than that identified in lower organisms.  In RNA 

viruses for example mutations can be as frequent as one per genome per replication as 

reviewed by Drake et al., 1998 (Drake et al., 1998). This in comparison to a rate of  2 to 

30 x 10
-7

 mutations per cell division identified in a study of B lymphoblastoid cells from 

normal human donors (Araten et al., 2005). Mutations in DNA can occur as a result of 

factors within the cell, for instance by-products of respiration; however mutations can 

also occur due to exposure to external factors such as radiation or cigarette smoke, with 

one study identifying a 56% increase in mutation frequency in T-lymphocytes in 

smokers compared to non-smokers. Increases in mutation rate increase the risk of a 

deleterious outcome (Beebee and Rowe, 2008, Malkin, 1995, Ding et al., 2011, Cole et 

al., 1988).   
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Mutations within the genome can occur on a large scale, to the extent that the 

chromosome number may be altered from that normally observed for the species 

(Gordon et al., 2012).  In neoplasia this has been seen in the neoplastic cells of canine 

transmissible venereal tumour (CTVT) and the more recently reported Devil facial 

tumour disease (DFTD) in the Tasmanian devil (Sarcophilus harrisii) (McAloose and 

Newton, 2009, Murchison, 2009, Thomas et al., 2009). In these cases the tumour cells 

themselves act as infectious agents.  Alterations in DNA can occur on a smaller level 

than those affecting whole chromosomes.  Translocations of genes can have a 

significant effect, for example, if the genes are moved to a location where they are 

placed under different promoter control, as in the case of Burkitts lymphoma (Madisen 

et al., 1998).  In this condition translocation of the MYC gene, a gene involved in cell 

division, is placed under control of a promoter which increases its expression (Madisen 

et al., 1998, Adkinson and Brown, 2007).  DNA mutations can also occur at the level of 

the nucleotides where point mutations in the form of additions, deletions or substitutions 

can affect the translation of a gene product (Beebee and Rowe, 2008, Bunz, 2008).  

Microsatellite instability (MI) and Loss of Heterozygosity (LOH) are two forms of 

genetic instability. LOH describes the situation where loss of an allele occurs rendering 

a previously heterozygote locus homozygote (Dietmaier et al., 1999, Thiagalingam et 

al., 2002) and is discussed below.  MI refers to the situation where alterations in 

microsatellites occur during DNA replication and result in expansion or contraction of 

the repeat unit.  These changes can result in frameshift mutations and subsequent 

erroneous gene transcription (Sourvinos et al., 1997, Oda et al., 2002, Yamamoto et al., 

1997, Imai and Yamamoto, 2008). MI has been noted to be a result of a mutation in one 

of the genes of the mismatch repair pathway (MMR). The MMR is a complex of genes 

that offer the cell protection against mutations (Hussein and Wood, 2002, Aquilina and 

Bignami, 2001). Mutations occurring in the MMR genes can render their protective 

mechanisms redundant and promote the development of neoplasia, as noted in the case 

of hereditary nonpolyposis colon cancer (HNPCC) in humans (Atkin, 2001, Adkinson 

and Brown, 2007). MI has also been seen in other cancers such as endometrial 

carcinoma and gastric adenocarcinoma.  However in these cancers an association with 

mutations in the MMR is less obvious (Gurin et al., 1999, Atkin, 2001) and it is noted 

that other genes involved with maintaining genetic integrity are still unknown (Sieber et 
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al., 2005, Hussein and Wood, 2002).  MI has been used as a prognostic marker for 

disease as it has been noted that tumours that are microsatellite stable offer a better 

prognosis than those which show even a low level of instability (Hussein and Wood, 

2002).  

Genes implicated in the development of neoplasia can be broadly split into two 

categories; oncogenes and tumour suppressor genes as reviewed by Adkinson and 

Brown, 2007,Chow, 2010 and Bunz, 2008 (Adkinson and Brown, 2007, Chow, 2010, 

Bunz, 2008).  Oncogenes are genes that due to a mutation have acquired the ability to 

enhance cell proliferation in the absence of appropriate signals, due to the production of 

an erroneous protein (Adkinson and Brown, 2007, Bunz, 2008, Chow, 2010).  

Additionally, oncogene acquisition may occur in animals via viral infection with or 

without integration of genetic material, for example in the non-acute and acute 

transforming retroviruses respectively (Maeda et al., 2008). Oncogenes act in a 

dominant fashion therefore only one affected allele is necessary to produce an 

oncogenic effect (Adkinson and Brown, 2007). In general oncogenes have their origins 

in proto-oncogenes; these are normally functioning genes that are involved in the 

process of cell division (Bunz, 2008, Chow, 2010).  

As their name suggests, tumour suppressor genes act in an opposite way to oncogenes; 

they function to suppress the proliferation of cells, however if they are mutated they can 

lose this action (Adkinson and Brown, 2007, Bunz, 2008). In comparison to the 

dominant way in which oncogenes operate, mutated tumour suppressor genes lose the 

function of both alleles and therefore assist the development of neoplasia in a recessive 

manner (Adkinson and Brown, 2007, Chow, 2010).  One of the most important tumour 

suppressor genes is Tumour Protein 53 (TP53) which codes for the protein p53.  This 

protein is expressed when the cell is affected by factors that cause mutations, it acts to 

halt cell division until the cell has repaired the damage (Meek, 2009, Harris, 1996).  

Both TP53 alleles are required to be inactivated for neoplasia to occur.  It is this gene 

that features in familial Li-Fraumeni syndrome, where the gene is transmitted in an 

autosomal dominant manner (Bunz, 2008, Pantziarka, 2013, Li et al., 1988). Members 

of a family carrying this gene therefore only require the mutation of one TP53 allele for 

disease to occur. A variety of neoplastic conditions are reported to occur at a young age 
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in members of families carrying this gene (Pantziarka, 2013, Adkinson and Brown, 

2007, Malkin, 1994).  

It has been suggested that tumour suppressor genes may occur in regions of the genome 

affected by LOH (Wang et al., 2004). It has been identified that  particular regions of 

the genome are predisposed to LOH which can increase the risk of neoplasia, including 

urogenital carcinoma in humans (Cheung et al., 2005, McKenzie et al., 2000, Peiffer et 

al., 1995, Smith et al., 1992). In CSL the location of HPSE2 in the genome has not been 

determined, however in the human genome it is located at 10q23-24 (McKenzie et al., 

2000). This is noted as being in a so-called loss of heterozygosity LOH region 

(McKenzie et al., 2000, Thiagalingam et al., 2002).  Thaigalingam et al., (2002) 

summarises seven potential ways LOH may arise; localized deletion, gene conversion, 

mitotic recombination, translocation, chromosome breakage and loss, chromosome loss 

or chromosome loss and duplication. In cases where one of the alleles has already 

undergone a mutation, as has been noted in familial retinoblastoma, the potential loss of 

the unaffected allele leaves the individual at risk of developing neoplasia (Thiagalingam 

et al., 2002).  Although at this stage it is unclear whether HPSE2 is a tumour suppressor 

gene or an oncogene, it is interesting that in humans it is located close to the tumour 

suppressor gene phosphatise and tensin homolog (PTEN) at 10q23-25 (Thiagalingam et 

al., 2002, McKenzie et al., 2000, Li et al., 1997).  PTEN is associated with a number of 

cancers including genital, (Bunz, 2008, Ali et al., 1999, Li et al., 1997). The PTEN gene 

is stated as being “one of the most commonly mutated tumour suppressors in human 

cancer” (Salmena et al., 2008).   

Due to the identification of the Pv11 microsatellite within the HPSE2 gene and its 

association with UGC in the CSL, the study planned to investigate whether genetic 

instability was present at this locus.  Initially the study aimed to (i) identify the structure 

of the Pv11 microsatellite in the five allele types identified, (ii) using DNA extracted 

from skin and DNA extracted from corresponding urogenital tract tissues from the same 

animal, compare sequences of the Pv11 microsatellite of each allele type.  Comparing 

DNA from the two tissues would establish if there was any indication of MI at the Pv11 

locus that could potentially affect RNA splicing and translation of the HPSE2 gene and 

(iii) to investigate whether LOH was occurring by comparing electropherograms of 
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PCRs of the Pv11 locus from DNA extracted from skin and lower genital tract tissue 

from the same animal. Identification of LOH would assist in ascertaining the putative 

function of HPSE2. 

 

4.2 Materials and Methods 

4.2.1 Investigation of Pv11 structure  

Sample selection 

Where possible, animals previously identified as homozygous in Chapter 2 at each of 

the five alleles were selected. In total 32 homozygotes were identified consisting of 

nineteen allele one, six allele two, five allele three and two allele four animals, due to an 

absence of allele five homozygotes, two heterozygotes were included. Corresponding 

lower genital tract tissue was available for 30 of the animals.  

DNA extraction and preparation 

DNA was extracted from skin samples as previously described in Chapter 2. DNA from 

the lower genital tract tissue was extracted with the inclusion of an additional incubation 

step with alpha amylase (Sigma-Aldrich Ltd, Gillingham, UK) 10% by volume for 2 h 

at 37°C, prior to the addition of RNase A. This was as per the protocol used by Buckles 

et al., (2006) in order to remove tissue proteoglycans. Skin and lower genital tract DNA 

was quantified as described in Chapter 2 and diluted with MilliQ water to working 

stocks of 10 ng/μl and stored at -20°C. To prevent confusion with DNA extracted from 

the skin, the samples extracted from the lower genital tract were given an additional 

number (shown in brackets after the accession number). 

Amplification of Pv11 

A nested PCR protocol was employed in order to increase the specificity of the PCR to 

amplify a 719 bp of sequence in intron 9 that included the Pv11 microsatellite for the 

purpose of sequencing. The reaction mixture for both the primary and nested PCR 

consisted of 25 μl reactions of 2.5 μl of Pfu DNA polymerase 10 X buffer (Promega, 

Southampton, UK), 0.5 μl 10 mM dNTPs (Qiagen, Crawley, UK), 0.5μl of forward and 
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reverse primer from 50 μM stock solutions, 0.21 μl Pfu DNA polymerase (0.63 units) 

(Promega, Southampton, UK), 19.79 μl RNase free water (Qiagen, Crawley, UK) and 1 

μl of 10 ng/μl DNA template in the case of the primary reaction.  For the nested reaction 

the product of the primary reaction was diluted 1:5 with RNase free water (Qiagen, 

Crawley, UK) and 1 μl of this was used as the template. The primers used were 

designed based on preliminary sequences obtained from CSL of the intron containing 

Pv11, in addition sequences from the following species were examined; canine, equine, 

bovine and harbour seal (Phoca vitulina). This enabled the identification of conserved 

regions for the design of primer sites, short regions of the alignment along with the 

primer sites are illustrated in Figure 4.1. The primers were obtained from Invitrogen 

(Paisley, UK) and the sequences are detailed in Table 4.1. 

   

Fig 4.1 The primers used in the PCR to amplify a fragment across the Pv11 microsatellite in 

order to sequence it were designed from an alignment of the following species; CSL, canine, 

equine and bovine. Short regions of the alignment are illustrated above to show how the primers 

were designed.  A and B show the regions used to design the forward and reverse primers used 

in the primary PCR; C and D show the regions used to design the forward and reverse primers 

used in the secondary PCR. 

A 

D 

C 

B 
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Table 4.1 Primer sequences used in the nested PCR for sequencing the Pv11 locus  

Primer  Sequence 5’-3’ Reference 

Pv11a 

(primary) 

Pv11b 

(nested) 

F: CCT TGA CTT ATC CCT TCA TCT C 

R: CAG GTG AGG ACC AGG CTC 

F: CAC CTT TAA CCC ATT GCC TCT G 

R: CAT TGA GGT GAT GCT GGA AAG 

(This study) 

 

(This study) 

 

A negative control was included in both the primary and nested reactions by substituting 

DNA template with the same volume of autoclaved MilliQ water. Amplification of the 

microsatellite marker was carried out in a PTC-200 DNA Engine Cycler (Bio-Rad 

Laboratories Inc., Hercules, USA) using the following temperature cycling conditions 

for both primary and nested reactions; 95°C for 2 min, followed by 35 cycles of 95°C 

for 45 s, 50°C for 30 s, 72°C for 4 min, followed by a final extension step of 72°C for 5 

min before being stored at 4°C.  

Fragment analysis 

To analyse the products, 5 µl of PCR product was combined with 2.5 μl Orange G 

loading dye (Sigma-Aldrich Ltd, Gillingham, UK) and resolved at 80 V for 30 min on a 

1.5% agarose gel containing 2.5 µl ethidium bromide (Sigma-Aldrich Ltd, Gillingham, 

UK) alongside a 1 kb ladder (Invitrogen, Paisley, UK). Bands were visualised in a UV 

light box (UVITEC, Cambridge, UK).  Samples showing successful amplification on 

gel electrophoresis were purified using MSB® Spin PCRapace PCR purification kits 

(Stratec molecular, Berlin, Germany) and then quantified by running 5 µl of the purified 

product alongside three lambda DNA size markers: 25 ng, 50 ng and 100 ng (Promega, 

Southampton, UK) on a 1% agarose gel.   Where possible, 40 ng of PCR product was 

submitted for sequencing along with 3.2 pmol of both forward (Pv11bF) and reverse 

(Pv11bR) primer from the nested reaction. 

Sequencing 

DNA sequencing was performed by DNA Sequencing & Services (MRCPPU, College 

of Life Sciences, University of Dundee, Scotland, www.dnaseq.co.uk) using Applied 

Biosystems Big-Dye Ver 3.1 chemistry on an Applied Biosystems model 3730 
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automated capillary sequencer. The DNA sequences were analysed to identify where 

variations occurred within the repeat unit of the microsatellite and in addition to 

compare sequences obtained from amplification of the region using skin DNA as 

opposed to DNA extracted from lower genital tract tissue. DNA sequence analysis was 

performed using the software programme Geneious Pro v5.6.6 created by Biomatters. 

Available from http://www.geneious.com/).  

4.2.2 Loss of Heterozygosity 

Sample selection 

To investigate the occurrence of LOH, the Pv11 microsatellite marker was amplified 

alone within skin and corresponding lower genital tract tissue in 128 samples (64 skin 

DNA samples and 64 corresponding lower genital tract DNA samples) from 34 

previously genotyped heterozygote animals and 30 homozygote animals.  Homozygotes 

were included in the experiment as controls to confirm consistency in amplification of 

Pv11 due to previous knowledge of their genotype.  The heterozygotes were made up of 

seven cases and 27 controls. 

DNA extraction and preparation 

DNA was extracted from skin and lower genital tract tissue as previously. 

Amplification of Pv11 

The PCR undertaken was similar to that described in Chapter 2 with the modification of 

only one microsatellite being amplified. The reactions consisted of 10 μl mixtures of 20 

ng DNA template from either skin or lower genital tract, 5 μl 2×Qiagen Multiplex 

Master Mix (Qiagen, Crawley, UK) and 3 μl of primer mix. The primer mix was 

prepared by combining 6 pmol of forward and reverse primer along with 3.3 pmol of 

Pv11 forward primer with a D3 fluorescent tag (green) and 2.7 μl RNase-free water 

(Qiagen, Crawley, UK).   Primers were obtained from Invitrogen (Paisley, UK) and 

fluorescent tags from Sigma-Aldrich Ltd (Gillingham, UK).  Primer sequences for Pv11 

amplification are detailed in Table 2.1 in Chapter 2. Amplification of Pv11 was carried 

out in a PTC-200 DNA Engine Cycler (Bio-Rad Laboratories Inc., Hercules, USA), 

using the following temperature cycling conditions: 95°C for 15 min, followed by 35 
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cycles of 94°C for 30 s, 57°C for 90 s, 72°C for 45 s, followed by a final extension step 

of 72 °C for 10 min. The samples were stored at 4°C prior to analysis.  

Fragment analysis 

Fragment analysis was achieved via automated capillary electrophoresis followed by 

peak analysis using CEQ specific software as described in Chapter 2.  In addition to 

ascertaining whether samples where homo or heterozygous, the peak heights of the 

fluorescent signal peaks were recorded to allow comparison of the signal strength 

between samples from skin DNA and those from lower genital tract DNA to enable 

LOH calculations. To check for errors in the amplification 30% of the samples were run 

twice and two negative controls per 96 well plate were included to highlight any 

contamination should it occur. 

LOH analysis 

LOH was investigated using the formula (N2/N1)/(T2/T1) where N is the peak height of 

the assumed normal alleles (in this case in the samples of DNA from the skin) and T is 

the peak height of the potential abnormal alleles (in this case the samples of DNA from 

the lower genital tract tissue). Using this formula, LOH is strongly suggested if the ratio 

is <0.5 or >2.0 (Poetsch et al., 2004, Dietmaier et al., 1997).  

4.2.3. Statistical analysis 

In the event of the identification of LOH, a Fisher’s exact test was carried out to 

establish significance using the open access statistical software package (R 

Development Core Team, 2012). 
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4.2.4 Problems encountered 

Similarly to the genotyping in Chapter 2, contamination was an issue with peaks 

appearing in the water negative control wells on analysis, this was remedied by UV 

irradiation as in Chapter 2 and with purchasing a new capillary array.  The removal of a 

heterozygote from the study was required due to the erroneous sampling of a 

homozygote of similar animal number; 8921(33), a homozygote with a 4,4 Pv11 

genotype was confused with 9821(72) a heterozygote with a 1,2 Pv11 genotype. 

Although consistency in amplification was noted by comparison of the allele profile 

recorded from the multiplex PCR reactions undertaken in Chapter 2, the actual size of 

the five Pv11 alleles identified here were five base pairs larger. The reaction mixtures, 

primers and analysis method were the same with the exception that only the Pv11 

microsatellite, rather than a multiplex reaction of the three microsatellites was 

undertaken in this experiment. The nested sequencing PCR traces were analysed using 

the primer sequences used for genotyping in Chapters 2 and 4 (Table 2.1) and it was 

found that the actual size of Pv11 was different again (Table 4.2).  This should be 

remembered if the actual fragment size is required. 

Table 4.2 Variation in Pv11 allele size identified in different experiments  

Allele Multiplex PCR (bp) Pv11 only (bp) Actual (bp)* 

1 176 181 179 

2 178 183 181 

3 180 185 183 

4 182 187 185 

5 184 189 X 

* Including primer sequences; X: Insufficient sequence quality to identify both primer sites; bp: 

base pairs 
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4.3 Results 

4.3.1 Pv11 structure and microsatellite instability 

Due to the previously identified association of homozygosity at the Pv11 locus with 

UGC (Chapter 2) the structure of different Pv11 alleles in normal unaffected tissue 

(skin) was investigated in comparison to that in genital tissue in order to establish both 

normal structure and identify possible instability. The Pv11 microsatellite was amplified 

successfully in the majority of samples from both skin DNA and DNA extracted from 

lower genital tract tissue. Six were deemed of inadequate quality for analysis (Table 

4.3).  An example gel electrophoresis of PCR products is illustrated in Figure 4.2.  

Subsequent sequencing of the purified products resulted in approximately 200-300 bp of 

good quality sequence from both the forward and reverse reads (except in the case of 

the heterozygotes including allele five where less good quality sequence was obtained) 

and included the Pv11 microsatellite. This allowed both the structure of the 

microsatellite to be gained along with sequence comparison of the variable 

microsatellite region within individual animals from both healthy and diseased tissue of 

different Pv11 genotypes. The position of the primers used in the PCR in relation to the 

structure of the HPSE2 gene is indicated in Figure 4.3. 

The structure of the five Pv11 alleles was almost identical in DNA from the skin and the 

genital tract from the same individuals.  The microsatellites were polymorphic and 

comprised a variable region of CA dinucleotide units that were preceded by seven AC 

dinucleotide units (Figure 4.4). The end of the microsatellite had a mononucleotide C 

repeat sequence that also varied in number depending on the allele (Table 4.3). The 

structure of the alleles was as follows; allele one: (AC)7G(CA)13(C)4, allele two: 

(AC)7G(CA)13(C)6, allele three: (AC)7G(CA)15(C)4, allele four: (AC)7G(CA)16(C)4 

and allele five: (AC)7G(CA)17(C)3.  Allelic imbalance in the form of an apparent 

microsatellite contraction in the CA repeat was observed in three animals; two allele 

two control animals and one allele two UGC animal all showing (CA)13→(CA)12  

difference between skin and genital tract DNA (Table 4.3). Conclusions from such 

limited instability cannot be made, especially considering potential taq polymerase 

slippage during PCR.  In all animals the preceding AC repeat units and the 

mononucleotide C repeat sequences were unaltered between the tissues (Table 4.3).  
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Fig 4.2 Gel electrophoresis of 5 μl of nested Pv11 PCR product of lower genital tract DNA to 

confirm presence of appropriate sized fragment. Lane 1] 1kb ladder, 2] 7972(74), 3] 7997(68), 4] 

8431(69), 5] (7867(73), 6] 9339(70), 7] (9572(71), 8] (9325(76), 9] (7819(75), 10] (9821(72), 11] 

(9184(14), 12] (9724(25), 13] Negative control. 

 

 

Fig 4.3: Structure of the HPSE2 gene is conserved amongst mammals and consists of 12 exons 

separated by large intronic regions.  The first pop out window illustrates the position of the two 

probes (A and B) employed in the southern blot. Probe A being ~500bp in size and 

incorporating 22bp of exon 9 and probe B being ~1kb in size and flanking the Pv11 

microsatellite. The second pop out window illustrates the position of the two sets of primers 

used to amplify the Pv11 region prior to sequencing the microsatellite; the light orange arrows 

indicate primers used to amplify the ~1.7kb fragment in the primary PCR and the red arrows 

indicate the primers used in the nested reaction to amplify the ~700bp fragment which was 

submitted for sequencing.   

1kb 

500bp 

1 2 6 8 12 13 9 10 11 7 4 5 3 
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Fig 4.4  Electropherogram of reverse primer sequencing results revealing the Pv11 variable 

dinucleotide (CA) and mononucleotide (C) regions in DNA from skin, indicated by the black 

arrows. Height of light blue background indicates confidence that the base is the one that is 

shown (higher the level of light blue the more confident). A: Animal 7750, an allele two showing 

(CA)13 and (C)6; B: Animal 8921(33) an allele four showing (CA)16 and (C)4. 
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Table 4.3. Pv11 sequencing results including those showing apparent allelic imbalance 

(indicated in red). Allele five sequence was identified by excluding the presence of the allele two 

sequence.  

Animal No. Pv11 genotype UGC 
positive/Control 

Skin DNA Genital tissue 
DNA 

9184(14) 1,1 Control (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9325(76) 1,1 Control (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9114(2) 1,1 Control (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9303(36) 1,1 Control X (AC)7G(CA)13(C)4 

9463(28) 1,1 Control (AC)7G(CA)13(C)4 X 

9100(77) 1,1  Control (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9196(78) 1,1 Control (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

8958(79) 1,1 Control (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9008(80) 1,1 Control (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9804(81) 1,1 UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

7972(74) 1,1  UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

7997(68) 1,1 UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

8431(69) 1,1 UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9757(39) 1,1 UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9827(41) 1,1 UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

9911(34) 1,1 UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

7140(82) 1,1 UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

7468(83) 1,1 UGC positive (AC)7G(CA)13(C)4 (AC)7G(CA)13(C)4 

6370 1,1 UGC positive (AC)7G(CA)13(C)4 XX 

7819(75) 2,2 Control (AC)7G(CA)13(C)6 (AC)7G(CA)13(C)6 

9597(43) 2,2 Control (AC)7G(CA)13(C)6 (AC)7G(CA)12(C)6 

7750 2,2 Control (AC)7G(CA)13(C)6 XX 

8029(84) 2,2  Control (AC)7G(CA)13(C)6 (AC)7G(CA)12(C)6 

9724(25) 2,2 UGC positive (AC)7G(CA)13(C)6 (AC)7G(CA)13(C)6 

9770(42) 2,2 UGC positive (AC)7G(CA)13(C)6 (AC)7G(CA)12(C)6 

7131 3,3 Control (AC)7G(CA)15(C)4 XX 

7867(73) 3,3 UGC positive (AC)7G(CA)15(C)4 (AC)7G(CA)15(C)4 

9339(70) 3,3 UGC positive (AC)7G(CA)15(C)4 (AC)7G(CA)15(C)4 

9572(71) 3,3 UGC positive (AC)7G(CA)15(C)4 (AC)7G(CA)15(C)4 

8059(30) 3,3 UGC positive (AC)7G(CA)15(C)4 (AC)7G(CA)15(C)4 

7159 4,4 Control (AC)7G(CA)16(C)4 XX 

8921(33) 4,4 UGC positive (AC)7G(CA)16(C)4 X 

9254(3) 2,5 Control (AC)7G(CA)17(C)3 X 

9871(23) 3,5 Control X X 

XX: Sequence unavailable due to absence of tissue sample; X: inadequate sample quality 
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4.3.2 Loss of Heterozygosity 

Particular regions of the genome are predisposed to a loss of heterozygosity (LOH) 

which can increase the risk of neoplasia, including urogenital carcinoma in humans 

(Cheung et al., 2005, McKenzie et al., 2000, Smith et al., 1992). LOH at Pv11 was 

investigated by PCR using DNA from skin and lower genital tract tissues, utilising 

fluorescently tagged primers targeted to the Pv11 microsatellite followed by detection 

by capillary electrophoresis. This technique allowed analysis of the intensity of the 

fluorescent signal to identify if LOH, either partial or full, was occurring (Dietmaier et 

al., 1999, Poetsch et al., 2004).   

Consistency of Pv11 amplification was noted in the samples by comparison with the 

genotyping results in Chapter 2 and of the 128 samples two lower genital tract samples 

(both from homozygotes) failed to amplify. In all of the heterozygotes in the study 

amplification of Pv11 in both tissues was successful.  However one heterozygote was 

removed from the study due to the sampling error described previously.  Analysis of the 

33 remaining Pv11 heterozygote animals (consisting of 26 control animals and seven 

diagnosed with UGC), identified LOH in one UGC animal (Figure 4.5).  Animal 

9904(45) had an LOH ratio of 2.27, with ratios of <0.5 or >2 being strongly suggestive 

of LOH (Dietmaier et al., 1999, Poetsch et al., 2004).  However, the Pv11 genotype of 

this animal remained as 1,3, suggesting partial allele loss rather than complete LOH. 

The spread of the LOH ratios calculated from the control animals ranged from 0.73 – 

1.23 and the spread of ratios from the UGC animals ranged from 0.90 – 2.27 (Figure 

4.6).  
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Fig 4.5. Electropherograms of microsatellite Pv11 PCR in DNA from skin (A) and urogenital tract 

(B). Red peaks are 400 bp size standard and green peaks are Pv11 microsatellite alleles of 

sample 9904(45).  N1 and N2 are alleles amplified from presumed normal tissue, T1 and T2 are 

alleles amplified from presumed tumour tissue. LOH ratio of peak height (N2/N1)/(T2/T1) was 

2.27 suggesting partial allele loss.
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Fig 4.6.  Boxplot 

illustrating the range of 

LOH ratios, the majority 

being in the normal 

range of >0.5 and <2 

except for animal 

number 9904(45) which 

had a ratio of 2.27 

indicated by the arrow. 
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Statistical analysis 

The results of the fishers exact test indicated that LOH is not significantly associated 

with the occurrence of UGC in the CSLs examined in this study (p=0.212).  

 

4.4 Discussion 

Alterations in the length of a microsatellite can affect protein coding of a gene and 

disease susceptibility as in the example discussed in Chapter 2 concerning the CA 

repeat in intron one of the epidermal growth factor receptor gene (EGFR) (Vashist et al., 

2013, Suzuki et al., 2008).  The structure of Pv11 in the present study revealed an 

increasing CA repeat unit with increasing allele number, yet statistical analyses 

undertaken (Chapter 2) didn’t find any evidence that a particular allele was significantly 

associated with UGC.  However, this may be a result of the small sample size.   Out of 

the 25 animals examined where successful amplification of Pv11 in both skin and lower 

genital tract tissue was achieved, apparent MI was seen in the form of microsatellite 

contraction in three allele two animals, consisting of two controls and one UGC 

positive. Although determining whether this is due to Taq polymerase slippage during 

PCR or is a result of true instability is not possible (Clarke et al., 2001), however if 

instability is occurring in the microsatellite it is rare.   

Pv11 was the only microsatellite examined for instability in the present study. In studies 

involving MI in human colorectal cancer a panel of five microsatellites known to be 

prone to instability are used and the extent of instability graded according to the number 

of microsatellites exhibiting it (Boland et al., 1998, Dietmaier et al., 1997, Dietmaier et 

al., 1999).   It is unknown whether defects in the MMR are a contributing factor to UGC 

in CSL and additionally the susceptibility of Pv11 to MI is unknown.  This along with 

the small sample size and the lack of micro-dissection carried out on the lower genital 

tract tissues prior to DNA extraction may contribute to the absence of clearly 

identifiable MI. Micro-dissection is necessary to be certain that DNA is extracted from 

tumour affected cells rather than normal tissue (Boland et al., 1998, Nishimura et al., 

2000, Dietmaier et al., 1999).  
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The lack of micro-dissection may also have contributed to only a single case of LOH 

being identified, therefore in spite of the non-statistically significant finding further 

investigation is warranted as it is possible that other cases were not detected because of 

the experimental methods used.  In future investigations cases should be subjected to 

more meticulous sample taking and preparation, additionally the analysis of a larger 

number of animals would be beneficial. The location of HPSE2 in the human genome 

(10q23-24) reinforces the need for more studies as it is noted to be in an LOH region, 

regions which are believed to contain tumour suppressor genes (Wang et al., 2004). 

Further to this expression of the HPSE2 gene is repressed by the Polycomb Group 

(PcG) protein (EZH2) and genes supressed by this are thought to be tumour suppressors 

(Yu et al., 2007, Levy-Adam et al., 2010).  EZH2 itself is considered a marker of 

invasive breast cancer (Kleer et al., 2003, Yu et al., 2007). These findings support the 

idea that HPSE2 is potentially a tumour suppressor rather than an oncogene, however 

information regarding the activity of this gene in cancer is still scarce and although 

increased expression of its protein has been recognised in a few cancer studies (Table 

3.2) its true nature is presently unknown (Levy-Adam et al., 2010).  LOH of the 10q23-

24 region in humans has been identified in a number of  cancers including 

hepatocellular carcinoma, cervical carcinoma, prostate cancer, small cell lung cancer 

and medulloblastoma (Okuno et al., 2009, Rizvi et al., 2012, Leube et al., 2002, Kim et 

al., 1998, Scott et al., 2006).  The tumour suppressor gene PTEN is also found in this 

chromosomal region and in many cases it is suggested as a candidate gene, however 

studies also acknowledge that there may be other unknown genes in the vicinity that are 

involved in the neoplasm in question (Kim et al., 1998, Leube et al., 2002, Okuno et al., 

2009, Scott et al., 2006).   

Stage of disease may also be a factor in whether MI or LOH is detected. In breast cancer 

it was found that MI occurred early on in the course of disease whereas LOH appeared 

to occur later (Sourvinos et al., 1997) this is in comparison to uterine cervical cancer 

where the opposite was reported (Nishimura et al., 2000).  It is therefore possible that 

time of sampling within the course of the disease in CSL may contribute to whether 

genetic instability is detected or not.  Although course of disease in the CSL is 

unknown, the necropsy histopathology reports of the animals entered into the study 

suggest many of them were in an advanced state of disease.  
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In this study genetic instability in the form of MI and LOH was not found to be 

significantly associated with the presence of cancer, however as discussed more work is 

required to confirm that instability is not part of the molecular pathogenesis of this 

disease. 
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Chapter 5  

Characterisation of the activity of the Heparanase 2 (HPSE2) 

gene in urogenital tract tissue from the California sea lion 

(Zalophus californianus) and its association with the presence 

of urogenital carcinoma. 

5.1 Introduction 

5.1.1 Basics of gene expression 

The process of gene expression occurs in two main stages; transcription occurring in the 

nucleus of the cell and translation in the cytoplasm (Clancy, 2008a, Phillips, 2008, 

Alberts et al., 1994).  Transcription describes the replication of DNA into an RNA copy 

and comprises three steps starting with initiation. In initiation RNA polymerase binds to 

the DNA helix at the promoter sequence, this is followed by the elongation step where 

the DNA helix is opened exposing the template strand and allowing the subsequent 

addition of nucleotides at the 3 prime (3’) end. Nucleotides are made up of three 

components, a base, a phosphate molecule and a ribose sugar.  The 3’ end refers to the 

ribose end of the molecule, conversely the end containing the phosphate molecule is 

called the 5 prime (5’) end (Nicholas, 2010a).  The final step of transcription is 

termination and when the RNA polymerase reaches a terminator sequence it results in 

the release of the RNA polymerase and new RNA transcript (Clancy, 2008a).  At this 

stage the RNA transcript is called pre-messenger RNA (pre-mRNA), until it undergoes 

post transcriptional modification by 5’ capping with a methylated guanine nucleotide, 

polyadenylation and splicing into messenger RNA (mRNA) (Minvielle-Sebastia and 

Keller, 1999, Smith and Valcarcel, 2000) . The mRNA transcript then moves out of the 

nucleus and into the cytoplasm where translation begins (Alberts et al., 1994, Avison, 

2007).  

During translation, ribosomal subunits in the cytoplasm consisting of a large and a small 

subunit join onto the mRNA transcript and move in a 5’ to 3’ direction along the 

mRNA.  Transfer RNA (tRNA) carrying amino acids corresponding to the triplet code 

on the mRNA are placed in sequence with the formation of peptide bonds between them 
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resulting in a polypeptide chain.  Translation always starts with a codon corresponding 

to the methionine (MET) amino acid and ends with one of three stop codons.  When a 

stop codon is reached translation is ceased and the polypeptide chain along with the 

mRNA is released from the ribosomes (Huang et al., 2011, Avison, 2007, Clancy and 

Brown, 2008). Post translational modification of the polypeptide then occurs with 

folding of the polypeptide chain. The resultant shape is dependent on the different 

affinities of the amino acids present and the action of additional protein molecules 

called chaperones (Vabulas et al., 2010). 

All cells contain the same genes however which ones are expressed varies between the 

tissues, this is known as differential expression and explains the different phenotypes of 

tissues (Smith, 1990, Evans and Wheeler, 2001). The exceptions are the so called 

housekeeping genes which are required for all cellular functions and are believed to be 

expressed at a relatively constant level. However, even expression of these varies to 

some extent and care is required in choosing particular housekeeping genes as controls 

in expression studies (Silver et al., 2006, Eisenberg and Levanon, 2013).  When gene 

transcription occurs it is estimated that only up to 40% of mRNA is translated into 

protein, therefore identifying the presence of mRNA does not necessary mean that the 

protein is present (Huang et al., 2011, Nie et al., 2006, Tian et al., 2004).  Control of 

gene expression to the subsequent production of an active protein can occur at various 

stages from transcriptional control by transcription factors (Phillips and Hoopes, 2008, 

Yang, 1998) to the control of translation of mRNA transcripts via mRNA silencing by 

microRNAs (miRNA) and short interfering RNAs (siRNA) (Valencia-Sanchez et al., 

2006, Wu et al., 2006).  

The number of proteins produced by the human genome exceeds the number of genes 

present; this is possible due to a post transcriptional modification called alternative 

splicing (As) (Faustino and Cooper, 2003, Dutertre et al., 2011, Smith and Valcarcel, 

2000).  Splicing removes the introns from the mRNA prior to translation, whereas As 

removes both introns along with some exons allowing the expression of one gene to 

result in more than one protein product or isoform (Berget, 1995, Clancy, 2008b). 

Splicing and As take place in the nucleus of the cell by the action of a large 

ribonucleoprotein structure called the spliceosome (Will and Luhrmann, 2011). As has 
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been noted to occur in HPSE2 expression in humans where four isoforms have been 

reported (Daly et al., 2010), similarly three isoforms have been detected in the domestic 

dog (NCBI UniGene: XM_856105).  

 

5.1.2 Gene expression studies and disease 

Gene expression studies are frequently undertaken in disease investigations and 

comparisons of expression (of both mRNA and protein) between affected and 

unaffected individuals can assist in investigating the postulated involvement of a gene 

or molecular pathway.  Over the past 20 years gene expression studies have advanced to 

include the use of microarrays including in CSLs (see Chapter 7). Microarrays enable 

the examination of the up or down regulation of a number of pre-selected genes at once 

(Trevino et al., 2007, Schena et al., 1995). Examples of gene expression studies in 

veterinary species include the identification of differing expression patterns in canine 

atopic dermatitis and canine brain tumours (Merryman-Simpson et al., 2008, Thomson 

et al., 2005). These studies led to the identification of candidate genes for future 

investigation and in the case of canine brain tumours the discovery of genetic 

similarities with the condition in humans.  In addition to assessment of differences 

between the activity of genes in affected and unaffected tissues, identification of the 

protein is useful both as a prognostic and diagnostic tool (Weinstein et al., 2002, Lahoti 

et al., 1996). In the case of HPA2, discussed in Chapter 3, the presence of the protein 

has been identified as a prognostic marker in both gastric and head and neck carcinoma 

(Levy-Adam et al., 2010, Zhang et al., 2013). 

Homozygosity at the Pv11 locus was found to be significantly associated with UGC. 

Further investigation failed to identify any significant finding concerning Pv11 structure 

(Chapter 4), however due to the location of Pv11 within HPSE2; expression of this large 

gene was examined. The present study aimed to fulfil a number of objectives; (i) to 

establish if HPSE2 is expressed within tissues of the lower genital tract in female CSL, 

namely in vaginal and cervix tissue and (ii) to identify the presence or absence of 

isoforms and to compare the expression profile of different genotypes of both UGC 

positive and control animals and (iii) to investigate the presence of the expressed protein 
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in the lower genital tract of animals of different genotypes.  Both UGC positive and 

control animals will be investigated, with UGC positive cases consisting of samples 

from animals of differing histological disease grade.  

 

5.2 Materials and Methods 

5.2.1 Investigating HPSE2 Transcription 

Sample selection: 

 Where possible, animals of the same genotype, but of different cancer status were 

included in the study to investigate potential differences with regards to mRNA 

expression and disease state.  In total 21 animals were entered into the study and their 

individual genotype, along with the cancer status of the animals is detailed in Table 5.1. 

The lower genital tract tissues were stored at The Marine Mammal Center (TMMC), 

Sausalito, California, at -80°C following necropsy examinations carried out by TMMC 

staff.   The tissue samples were then shipped on dry ice to the Sea Mammal Research 

Unit (St Andrews, Fife) and on arrival they were stored at -80°C. 

The experiments detailed in Chapter 3 identified HPSE2 in the CSL; however it is not 

known whether this gene is transcribed in the lower genital tract of this species.  In 

order to establish if this occurs and to identify any variation in the mRNA transcribed, 

cloning was undertaken. The process of cloning allows the amplification and 

subsequent sequencing of a single expressed gene fragment via its isolation in a single 

bacterial colony (Lodish et al., 2000).   Examination of different colonies therefore 

enables the analysis of different expressed isoforms and/or polymorphisms within them. 

To undertake cloning of  HPSE2 mRNA the following steps were carried out; (1) 

mRNA extraction and conversion to cDNA, (2) Confirmation of cDNA integrity, (3) 

Small amplicon PCR, (4) Full length amplicon PCR and gel extraction and purification, 

(5) Cloning and confirmation of positive clones, (6) Sequencing and isoform analysis. 
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Table 5.1. Pv11 genotype and cancer status of animals included in the HPSE2 transcription 

study.   

Accession No. Pv11 genotype Cancer/Control 

9184(14) 1,1 Control 

9325(76) 1,1 Control 

9114(2) 1,1 Control 

9303(36) 1,1 Control 

9463(28) 1,1 Control 

7972(74) 1,1 Cancer 

7997(68) 1,1 Cancer 

8431(69) 1,1 Cancer 

9757(39) 1,1 Cancer 

9827(41) 1,1 Cancer 

9911(34) 1,1 Cancer 

7819(75) 2,2 Control 

9597(43) 2,2 Control 

9724(25) 2,2 Cancer 

9770(42) 2,2 Cancer 

7867(73) 3,3 Cancer 

9339(70) 3,3 Cancer 

9572(71) 3,3 Cancer 

8059(30) 3,3 Cancer 

9821(72) 1,2 Control 

9906(26) 1,2 Control 

 

(1) mRNA extraction and conversion to complimentary DNA (cDNA) 

RNA extraction and preparation 

Total RNA was extracted using RNeasy Mini extraction Kit (Qiagen, Crawley, UK). 

The protocol was modified slightly from the manufacturer’s instructions and is detailed 

below. The steps where the protocol deviates from the manufacturer’s instructions are 

indicated in brackets at the relevant step. They include increased centrifugation times 

and additional incubation steps.  The increased centrifugation times were employed as it 

was found that the ones in the protocol were insufficient to remove the fluid from the 
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spin column. The additional incubation steps where included in order to reduce 

contamination in the case of the incubation with buffer RW1 and to increase RNA 

elution in the RNase free water in the final steps. For all centrifugation steps the 

centrifuge was heated to 20-25°C. Extractions were not carried out in batches; instead 

each extraction was completed on its own to prevent any delays between the steps or the 

chance of contamination.  New pipettes were purchased for the RNA extractions and 

filter tips were used at all times. In addition RNase free Eppendorf tubes were used. 

Between extractions the lab bench was cleaned down with UltraClean Lab Cleaner 

(Cambio, Cambridge, UK) and the homogeniser was cleaned thoroughly with RNase 

AWAY reagent (Invitrogen, Paisley, UK) to prevent nuclease and DNA contamination. 

The buffer RLT was prepared by the addition of 450 μl 14.3 M β-Mercaptoethanol 

(Sigma-Aldrich, Gillingham, UK) and buffer RPE were prepared by adding 44 ml of 

ethanol (100%).  

Frozen tissue (10-30 mg) was excised and put into a 15 ml falcon tube as quickly as 

possible to avoid thawing and RNA degradation. Immediately, 600 μl of RLT buffer 

was added to the tube and the tissue homogenised. The homogenised tissue was 

transferred to a 1.5 ml Eppendorf and centrifuged at 17,000 x (g) for 3 min. The 

supernatant was added to 600 μl of 70% ethanol at 37°C and immediately mixed by 

pipetting.  An RNesay spin column was placed into a 2 ml collection tube and up to 700 

μl of the sample was added to the spin column. The sample was centrifuged for 1 min 

(increased from 15 s) at 14,500 x (g) and the flow through discarded; this was repeated 

with any remaining mixture followed by the addition of 700 μl of buffer RW1 to the 

spin column.  The sample was incubated for 5 min (additional incubation step) at room 

temperature (15-25°C) then centrifuged for 1 min (increased from 15 s) at 14,500 x (g). 

The flow through was again discarded. The spin column was then washed by the 

addition of 500 μl of buffer RPE and centrifuged at 14,500 x (g) for 1 min (increased 

from 15 s), followed by a second wash step by the addition of 500 μl of buffer RPE and 

centrifuged for 2 min at 14,500 x (g).  The RNeasy spin column was then placed in a 

new 2 ml collection tube and the old collection tube discarded with the flow through. 

The tube was centrifuged at 17,000 x (g) for 2 min (increased from 1 min). The RNeasy 

spin column was then placed in a new 1.5 ml collection tube and 30 μl of RNase-free 

water (Qiagen, Crawley, UK) was added directly to the spin column membrane.  This 
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was incubated for 5 min (additional incubation step) at room temperature (15-25°C) 

followed by centrifuging it at 14,500 x (g) for 3 min (increased from 1 min). The elute 

was pipetted back into the spin column and the tube incubated at room temperature for 

(15-25°C) for 10 min (additional incubation step) before a final centrifugation step at 

14,500 x (g) for 5 min (increased from 1 min). The quantity of RNA in the extraction 

samples was measured with a Nanodrop spectrophotometer (ND-1000, Thermo Fisher 

Scientific, Wilmington, USA), the samples were then stored at -80°C.  Prior to storage 5 

μl of extracted total RNA sample was removed and transferred on ice to a different lab 

for gel electrophoresis.  The samples were resolved on 1.2% agarose gels for 15 min at 

80 V.   

Conversion to complementary DNA (cDNA) 

To enable PCRs on the extractions the mRNA was converted to complementary DNA 

(cDNA) via reverse transcription using an Invitrogen Superscript III Reverse 

transcriptase kit (Invitrogen, Paisley, UK).  

Each component in the kit was mixed and briefly centrifuged before use and 5 μg of 

total RNA along with 1 μl of 50 μM oligo(dt)20 and 1 ul of annealing buffer were added 

to a 0.2 ml PCR RNase free tube in that order and made up to 8 μl with RNase free 

water (Qiagen, Crawley, UK). The mixture was incubated in a preheated thermal cycler 

(PTC-200 DNA Engine Cycler, Bio-Rad Laboratories Inc., Hercules, USA) with the 

heated lid turned on, at 65°C for 5 min.  Immediately after the 5 min the tubes were 

placed on ice for at least 1 min before brief centrifugation. The tubes were placed back 

on ice and 10 μl of 2X First-Strand reaction mix and 2 μl of SuperScript III/RNaseOUT 

Enzyme mix was added.  The tubes were briefly vortexed then centrifuged to collect the 

sample.  The mixture was then incubated in the thermocycler for 50 min at 50°C 

following which the reaction was terminated by heating it to 85°C for 5 min before 

chilling on ice and storing at -20°C. 

(2) Confirmation of cDNA integrity 

To confirm the integrity of the RNA extracted and resultant cDNA, PCR reactions were 

carried out using primers targeted to the mammalian beta actin gene (ACTB). ACTB  is 

considered a housekeeping gene, its expression being important for correct cellular 
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function due to production of a cytoskeletal structural protein called beta actin (β actin) 

(Ng et al., 1985, Daud and Scott, 2008). The assumed continuous expression of 

housekeeping genes make them useful as internal controls to target when validating the 

quality of extracted RNA (Lee et al., 2002, Eisenberg and Levanon, 2013).  However β 

actin levels vary amongst different tissues and its use has been questioned (Ruan and 

Lai, 2007, de Jonge et al., 2007), nonetheless it has been used successfully in female 

genital tissues in human studies (Baijal-Gupta et al., 2000, Arenas-Hernandez and 

Vega-Sanchez, 2013). Furthermore it has been used as an internal control previously in 

marine mammal studies therefore it was considered suitable for this study (Smolarek-

Benson, 2005). Primers were obtained from Invitrogen (Paisley, UK) and the primer 

sequences are detailed in Table 5.2. 

Table 5.2. Primer sequences for β-actin PCR 

Primer Sequence 5’-3’ Reference 

BAF GAGAAGCTGTGCTACGTCGC (Smolarek-Benson, 2005) 

BAR CCAGACAGCACTGTGTTGGC (Smolarek-Benson, 2005) 

 

The PCR reaction used Taq DNA polymerase (New England Biolabs, Hitchin, UK) 

with thermopol buffer (New England Biolabs, Hitchin, UK) in 25 μl reaction mixes 

consisting of 2.5 μl reaction buffer, 0.5 μl 10 mM dNTPs (Qiagen, Crawley, UK), 0.5 μl 

BAF forward primer (10 μM), 0.5 μl BAR reverse primer (10 μM), 0.125 μl Taq (0.625 

units) and 18.375 μl RNAse free water (Qiagen, Crawley, UK). 2.5 μl of unquantified 

cDNA was added as template. Amplification was carried out in a PTC-200 DNA 

Engine Cycler (Bio-Rad Laboratories Inc., Hercules, USA)  using the following cycle; 

95°C for 30 s followed by 35 cycles of 95°C for 30 s, 53°C for 30 s, 68°C for 60 s.  The 

samples were then held for 5 min at 68°C before being stored at 4°C. Confirmation of 

successful conversion to cDNA was made by resolving the products on a 1.5% agarose 

gel with an expected product size of 275 bp. If unsuccessful the reactions were repeated 

with increased primer and Taq concentration (1 μl 10 μM BAF and BAR along with 0.2 

μl Taq (1 unit) respectively). A negative control was included by substituting the cDNA 

template with the same volume of RNAase free water (Qiagen, Crawley, UK) and a 

positive control included by amplifying previously verified cDNA.    
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(3) Small amplicon PCR  

To confirm the presence of HPSE2 mRNA in the samples a hemi-nested PCR reaction 

was carried out to generate a small fragment. The primer sequences used were 

previously designed and validated for the purpose of this study (Hammond, 

unpublished), and were obtained from Invitrogen (Paisley, UK). Primer sequences are 

detailed in Table 5.3 and their position relative to the structure of the HPSE2 gene is 

illustrated in Figure 5.1. 25 μl reactions were used consisting of 5 μl Go Taq flexi 

colourless buffer (Promega, Southampton, UK), 2.5 μl MgCl2 (25 mM), 0.5 μl 10 mM 

dNTPs (Qiagen, Crawley, UK), 1.5 μl forward primer (10 μM), 1.5 μl  reverse primer 

(10 μM), 0.125 μl Go taq polymerase (0.625 units) (Promega, Southampton, UK), 

12.875 μl RNase free water (Qiagen, Crawley, UK). 1 μl of un-quantified cDNA was 

used as the template. The primary reaction cycle carried out in a PTC-200 DNA Engine 

Cycler (Bio-Rad Laboratories Inc., Hercules, USA) was as follows; 94°C for 2 min 

followed by 35 cycles of 94°C for 20 s, 56°C for 20 s and 72°C for 30 s, the mixtures 

were then held at 72°C for 7 min before being stored at 4°C.  A 1:5 dilution of the PCR 

product was made by adding 5 μl of product to 20 μl of RNase free water (Qiagen, 

Crawley, UK) and 1 μl of this was then used as the template for the nested reaction.  

The reaction mix was the same as the primary mix but the reaction cycle was modified 

by reducing the cycle number to 30. A negative control was included in both reactions 

by substituting the template with RNase free water (Qiagen, Crawley, UK). The 

presence of HPSE2 isoform was identified by resolving 5 μl of product of the secondary 

PCR combined with 2.5 μl Orange G loading dye (Sigma-Aldrich, Ltd, Gillingham, 

UK) on a 1.5% gel containing 2.5 μl of 10 mg/ml ethidium bromide (Sigma-Aldrich 

Ltd, Gillingham, UK).  The expected product size was 159 bp.   

Table 5.3: Primer sequences used the PCR to amplify a for small fragment of HPSE2.  

Primer Sequence 5’-3’ Reference 

Primary PCR   

105S 

358AS 

F: ATG CCC TCC AGC AAC TCC 

R: AAT CGA GCC AGC CAT CAT G 

(Hammond, unpublished) 

Nested PCR   

199S 

358AS 

F: GAG ACA GGA GAC CCT TGC C 

R: AAT CGA GCC AGC CAT CAT G 

(Hammond, unpublished) 
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(4) Full length amplicon PCR  

A hemi-nested PCR was carried out to amplify the full length HPSE2 isoform in six of 

the 21 samples of different genotype and disease state; these are detailed in Table 5.4.  

The primers used were previously designed and validated for the purpose of this study 

(Hammond, unpublished), the primers were obtained from Invitrogen (Paisley, UK) and 

the sequences are detailed in Table 5.5 and their position relative to the structure of the 

HPSE2 gene is illustrated in Figure 5.1. The primary PCR reaction consisted of 25 μl 

reaction mixtures of 2.5 μl 10xNH4 buffer (Bioline Reagents Ltd, London, UK), 1.25 μl 

50 mM MgCl2 (Bioline Reagents Ltd, London, UK), 0.5 μl 10 mM dNTP (Qiagen, 

Crawley, UK), 1 μl (10 μM) forward primer (HPSE2_5’UTR-S), 1 μl (10 μM) reverse 

primer (HPSE2_3’UTR-AS2), 0.25 μl Bio-X-ACT short DNA polymerase (1 unit) 

(Bioline Reagents Ltd, London, UK), 17.5 μl RNase free water (Qiagen Crawley, UK) 

and 1 μl of un-quantified cDNA as template. Amplification was carried out in a PTC-

200 DNA Engine Cycler (Bio-Rad Laboratories Inc., USA) and was as follows; 94°C 

for 2 min, followed by 35 cycles of 94°C for 25 s, 57°C for 20 s, 72°C for 2 min 30 s, 

before being held at 72°C for 7 min and then stored at 4°C.   

For the nested reaction a 1:5 dilution of the PCR product of the primary reaction was 

made and 2 μl of this was used as template DNA.  50 μl reaction mixtures were used 

and five reactions for each sample were prepared to give greater yield of product for 

subsequent cloning.  The reactions consisted of; 5 μl 10xNH4 buffer (Bioline Reagents 

Ltd, London, UK), 2.5 μl 50 mM MgCl2 (Bioline Reagents Ltd, London, UK), 1 μl 10 

mM dNTP (Qiagen, Crawley, UK), 2 μl 10 mM forward primer (HPSE2_5’UTR-S2), 2 

μl 10 mM reverse primer (HPSE2_3’UTR-AS2), 0.5 μl (2 units) Bio-X-ACT short 

DNA polymerase (Bioline Reagents Ltd, London, UK) and 35 μl RNase free water 

(Qiagen, Crawley, UK). The reaction cycle was modified by reducing the cycle number 

to 30.  A negative control was included in both reactions by substituting the template 

with RNase free water (Qiagen, Crawley, UK).  The products of the five reactions per 

sample were each combined with 5 μl Orange G loading dye (Sigma-Aldrich, 

Gillingham, UK) and resolved side by side at 80 V on a 30 cm 1.2% agarose gel.  The 

gel was post stained by soaking it in 1 litre of distilled water containing 15 μl of 10 
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mg/ml ethidium bromide (Sigma-Aldrich Ltd, Gillingham, UK) for 20 min, followed by 

soaking the gel in 1 litre of distilled water prior to visualising it in a UV light box 

(UVITEC, Cambridge, UK).  The product size of the secondary PCR was 1870 bp.  

Table 5.4. Pv11 genotype and disease state of animals used to investigate HPSE2 isoforms 

Accession No. Genotype Cancer/Control 

9463(28) 1,1 Control 

7972(74) 1,1 Cancer 

9770(42) 2,2 Cancer 

9339(70) 3,3 Cancer 

9572(71) 3,3 Cancer 

9821(72) 1,2 Control 

 

Table 5.5. Primer sequences used in the PCR to amplify the full length HPSE2 isoform 

Primer Sequence 5’-3’ Reference 

Primary PCR   

HPSE2_5’UTR-S 

HPSE2_3’UTR –AS2 

F:ATC AGA GGG ATT TAA TGA GGG TG 

R:CAT GGT GAC TGG AGG GAT GAC 

(Hammond, 

unpublished) 

Nested PCR   

HPSE2_5’UTR-S2 

HPSE2_3’UTR –AS2 

F:ATG AGG GTG CTC TGT GCC TTC 

R:CAT GGT GAC TGG AGG GAT GAC 

(Hammond, 

unpublished) 
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Fig 5.1: Structure of the HPSE2 gene is conserved amongst mammals and consists of 12 exons 

separated by large intronic regions.  The first pop out window illustrates the position of the two 

probes (A and B) employed in the southern blot. The second pop out window illustrates the 

position of the two sets of primers used to amplify the Pv11 region prior to sequencing the 

microsatellite. The three blue arrows situated above exons 1 and 2 illustrate the position of the 

primers used in the hemi-nested PCR carried out to amplify a small fragment of the HPSE2 

gene. The dark blue arrows indicate the primer positions for the primary PCR and the light blue 

arrow indicates the position of the forward primer in the secondary PCR. The two large black 

arrows situated above exons 1 and 12 indicate the position of the primers used for amplify the 

full length amplicon.   
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(5) Cloning and confirmation of positive clones 

Identification of isoforms following PCR was achieved via cloning and subsequent 

sequencing, the method undertaken is detailed in full in Appendix D.  Following 

sequencing initial identification of the presence of  HPSE2 isoforms was carried out 

using the online NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., 

1990). The sequences were then visualised using the software programme Geneious Pro 

v5.6.6 (Biomatters, available from http://www.geneious.com/).  The primer regions 

were removed along with trimming of end sequences of low quality.  This was followed 

by a multiple alignment, of the sequences to allow the identification of different 

isoforms.  Any isoforms identified were then mapped to the canine full length isoform 

HPSE2 cDNA sequence scaffold (consisting of all 12 exons) in order to visualise their 

structure.   

 

5.2.2 2HPSE2 Translation 

Sample selection 

Formalin fixed paraffin embedded blocks containing tissues including lower genital 

tract tissues from 15 animals (previously admitted to TMMC) were supplied by Dr 

Kathleen Colegrove (University of Illinois, Chicago, USA).  The samples included six 

UGC negative controls and nine UGC positive animals. The samples affected by 

neoplasia were graded according to their disease stage by Dr Kathleen Colegrove as 

previously described (Colegrove et al., 2009).   

In order to investigate HPSE2 expression at the protein level in lower genital tract tissue 

immunohistochemistry (IHC) was carried out.  IHC allows the visual detection of an 

antigen (protein) of interest, in this case HPA2, by utilizing labelled antibodies 

specifically raised against it (Haines and Chelack, 1991).  The IHC protocol undertaken 

in this study employed the avidin-biotin complex (ABC) method which increases the 

chance of detection due to increased amplification of the chromogen signal (Haines and 

Chelack, 1991).  

                                                           
2
 The IHC protocol was carried out in collaboration with Dr Mark Dagleish’s Lab at The Moredun 

Research Institute, Edinburgh, UK  
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The steps employed in the study were as follows; (1) Sample preparation, (2) Antigen 

retrieval, (3) Blocking, (4) Application of antibodies, (5) Detection and (6) Slide 

analysis.         

(1) Sample Preparation 

Two consecutive serial sections (4 µm) were cut per tissue, to allow the inclusion of a 

negative control for each sample, and mounted on Superfrost™ slides (Menzel-Gläser, 

Braunschweig, Germany) by Ms Jeanie Finalyson (The Moredun Institute, Edinburgh, 

UK).  Sections were dewaxed in xylene and rehydrated through graded alcohols in a 

Varistain™ 24-4 Automatic Slide Stainer (Thermo Scientific, Waltham, USA). 

 

(2) Antigen Retrieval  

The success of an IHC reaction relies on the antibody being able to recognise its 

antigen. Prior to embedding in paraffin wax, tissue samples are preserved in 

formaldehyde. This results in protein cross linking that can mask antigenic sites 

(Ramos-Vara, 2005, Sutherland et al., 2008). Antigen retrieval is required to reverse the 

cross-linking and can be achieved both by heating the sample and the use of enzymes.  

In this case enzymatic antigen retrieval was carried out by treating the samples with 

trypsin. 0.1 g of Chymotrypsin (Sigma-Aldrich Ltd, Gillingham, UK) was added to 200 

ml trypsin working solution (20 ml 0.1 M CaCl2, 20 ml 0.5% trypsin stock solution, 160 

ml purified water at pH 7.8).  The solution was heated to 37°C and the slides incubated 

for 15 min followed by washing in running tap water for 5 min.   

(3) Blocking 

Blocking of three elements in the tissues was carried out to prevent non-specific 

background labelling. These were endogenous tissue peroxidase (which can react with 

the chromogen used for detection), non-specific antibody binding sites and endogenous 

biotin which can also result in non-specific binding (Ramos-Vara, 2005, Haines and 

Chelack, 1991). Blocking endogenous tissue peroxidase activity was carried out by 

immersion in H2O2 in methanol (3% v/v) for 20 min.  Sections were then washed in 

running tap water for 5 min.  The slides were then put into coverplates using phosphate 
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buffered saline (PBS) and loaded into Sequenza chambers for the rest of the process 

(Figure 5.2), prior to being immersed in 25% normal rabbit serum (NRS) diluted in 0.33 

M pH 7.4 PBS for 30 min at room temperature to block non-specific antibody sites.  

This was followed by blocking of endogenous tissue biotin binding with a commercial 

kit (Avidin/Biotin blocking kit, (Vector Laboratories, Peterborough, UK) as per 

manufacturer’s instructions.  

 

 

(4) Application of antibodies 

The primary antibody used in this study was a polyclonal, goat IgG raised against a 

peptide of human heparanase 2 (HPA2, C-17, Santa Cruz Biotechnology, Inc. Santa 

Cruz, USA). It is reported to target a peptide near to the C terminus and is reported in 

the data sheet as suitable for detecting HPA2 in species other than humans including 

canine. The primary antibody was diluted 1:100 in 25% NRS/PBS and 100 μl applied 

before being incubated in the fridge at 4°C overnight. A negative control preparation for 

each of the tissue sections comprised of substituting the primary antibody with normal 

goat serum at a dilution of 1:100.  Slides were rinsed in PBS three times prior to 

addition of the secondary antibody. This was a rabbit anti-goat IgG:biotin conjugate 

(Dako, Ely, UK) diluted 1:200 in 25% NRS/PBS, 100 μl of which was applied to the 

slides  for 60 min at room temperature, followed by a further three washes in PBS.   

(5)  Detection 

The application of the secondary biotinylated antibody allows the binding of an avidin 

protein, which itself can bind four molecules of biotin resulting in an avidin biotin 

Fig 5.2 

Immunohistochemistry  

Sequenza chamber 

containing slides of 

lower genital tract 

tissue sections.  
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complex (ABC).  The biotin in the ABC avidin biotin kit (Vector Laboratories, 

Peterborough, UK) used in this study is labelled with horseradish peroxidase (HR). HR 

can act on a chromogen substrate resulting in a visible label, which is subsequently 

amplified due to the formation of ABC complexes arising from a single antigen-

antibody interaction (Ramos-Vara, 2005, Haines and Chelack, 1991).  The ABC kit was 

prepared by adding 100 μl of solution A (containing avidin) and 100 μl of solution B 

(containing biotinylated horseradish peroxidase) to 10 ml PBS and immediately mixing. 

The ABC complex was incubated at room temperature for 30 min before 100 μl of it 

was applied to the slides. The slides were incubated at room temperature for 30 min 

before being rinsed three times with PBS.  The liquid was emptied from the Sequenza 

chambers prior to the application of the chromogen NovaRED (Vector Laboratories, 

Peterborough, UK). The NovaRED was prepared according to manufacturer’s 

instructions and 100 μl was applied to the slides and they were incubated for 10 min at 

room temperature. The slides were then washed with tap water and removed from the 

Sequenza chamber before being counter stained with haematoxylin in the Varistain™ 

24-4 Automatic Slide Stainer (Thermo Scientific, Waltham, USA). Coverslips were 

then applied and the slides left to dry. 

(6) 3Slide analysis 

Sections were observed using an Olympus BX50 microscope at magnifications of x200 

or x400 and photographed using an Olympus U-CMAD digital camera and AnalySIS 

Five software (Soft Imaging System GmbH, Münster, Germany). The presence of 

labelling was compared between the UGC positive and UGC negative samples as well 

as examination of the negative control slides (where normal goat serum was substituted 

for the primary antibody). The samples were scored “yes” if clear labelling was present 

and “no” if labelling was absent.  In ambiguous cases findings were noted.  Additional 

tissues (other than those from the lower genital tract) incidentally on the slides were 

also reviewed for the presence of labelling; these included three sections of urinary 

bladder and two sections of uterus. In the absence of clear information on the normal 

protein expression profile of HPA2 in tissues, the uterus and urinary bladder sections 

                                                           
3
 Interpretation of histology slides was undertaken with the assistance of Dr Mark Dagleish and 

Ms Johanna Baily, The Moredun Research Institute, Edinburgh, UK and Dr Kathleen Colegrove, 
Veterinary Diagnostic Laboratory, University of Illinois, USA. 
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were considered as potential positive control tissues due to previous reports of high 

mRNA expression in these tissues. 

5.2.3 Problems encountered 

During the investigation of HPSE2 transcription three main issues were encountered; 

(1) the samples were held up in transit from the USA and on arrival were found to be 

defrosted and there was a concern that RNA degradation had occurred, (2) the gel rigs 

and pipettes used for gel electrophoresis to analyse the extracted and purified total RNA 

were not specific for RNA work.  Therefore there was a high chance of nuclease 

contamination and therefore degradation of the samples, additionally degradation of the 

samples during transfer on ice to the other lab was possible (3) Ligating the insert into a 

vector prior to transformation into TOP10 cells (Invitrogen, Paisley, UK) initially was 

unsuccessful.  The ligation vector employed initially was the TOPO TA vector for 

sequencing (TOPO®TA Cloning ® Kit for Sequencing, Invitrogen, Paisley, UK).  

Experiments using the control reaction and subsequent insert of size 750 bp were 

successful, however ligation of the insert created by this study (of approximately 1870 

bp) consistently failed.  The literature available suggested that the insert size was the 

issue and that TOPO vector works well for inserts of less than 1 kb, whereas success 

was reduced with inserts of greater than this.  The pGEM T-easy vector however was 

observed to work well with inserts up to 3 kb (Litterer, 2009), therefore this vector was 

used instead.   

Identifying the presence of HPA2 was complicated by the lack of a definite positive 

control tissue as a result of the small number of studies that have been undertaken on 

HPA2 presence in tissue. 
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5.3 Results 

5.3.1 HPSE2 gene transcription 

Extraction of total RNA was successful from all 21 samples with quantities between 

53.4 ng/μl and 400.8 ng/μl recorded.  Gel electrophoresis revealed a varied banding 

pattern with the majority revealing only a single band (Figure 5.3). This was possibly 

due to degradation of the samples mentioned above. 

 

Fig. 5.3: Example of gel electrophoresis following total RNA extraction. Lane 1] 1kb ladder, 2] 

9184(14), 3] 9770(42), 4] 8431(69), 5] 8059(30), 6] 7819 (75), 7] 7867(73), 8] 9114(2)  

In the β actin PCR to confirm cDNA integrity, 19 out of the 21 reactions were clearly 

successful (Figure 5.4). PCRs were repeated on the two unsuccessful samples utilizing 

the higher primer and taq concentrations.  On gel electrophoresis one sample (8431(69)) 

still did not reveal successful amplification of the β actin fragment.  

 

Fig 5.4. Example of gel electrophoresis of products of β actin PCR to assess cDNA integrity. 

Bands of appropriate size (approx. 275bp) are seen. Lane 1] 100bp ladder, 2] 9911(34), 3] 

7867(73), 4] 9339(70), 5] 9572 (71), 6] 8059 (30), 7] Positive control, 8] Negative control 

(showing evidence of primer dimers >100bp) 

1 2 3 4 5 6 7 8 

1kb 

300bp 

1 2 5 6 7 8 4 3 
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Small amplicon PCR 

Initially a small fragment (159 bp) of HPSE2 cDNA was amplified during a hemi-

nested PCR to confirm the presence of HPSE2 mRNA in the samples (Figure 5.5). 

Clear amplification was identified in 18 of the 21 samples however three revealed only 

weak amplification, including sample 8431(69) which as noted above failed to amplify 

a β actin fragment.  

 

Fig 5.5 Example of gel electrophoresis of hemi-nested PCR result revealing amplification of a 

small fragment of the HPSE2 gene (expected band size of 159bp). Lane 1] 100bp ladder, 2] 

9184(14), 3] 9325(76), 4] 9114(2), 5] 9303(36), 6] 9463(28), 7] 9906(26), 8] 7972(74), 9] 

7997(68).  

Large amplicon PCR 

Six samples were used to amplify the full length amplicon. The six samples were 

chosen due to their differing genotype and disease state. Each PCR being repeated five 

times to allow sufficient quantity for subsequent cloning of each isoform.  In all six 

samples the expected multiple banding pattern was visualised by gel electrophoresis.  

An example of the banding pattern for the four different Pv11 genotypes is shown in 

Figure 5.6. There were variations visualised in the banding pattern from the five 

repeated PCR reactions carried out on the same DNA template, however a comparison 

of the overall banding pattern between the different animal samples did not reveal any 

correlation with disease state or genotype. Therefore only the three dominant bands 

closest to the expected product size of approximately 1870 bp were extracted for 

cloning and sequencing (Figure 5.6). 

200bp 

1 2 4 5 6 7 8 9 3 
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Fig 5.6. Gel electrophoresis of five of the isoform PCRs illustrating multiple banding patterns 

from animals of different disease states and genotype. The expected product size of the full 

length isoform is ~1870bp, the blue arrows indicate the 2kb marker associated with each gel 

and the orange box illustrates the bands that were extracted for cloning.  A1, B1, C1, D1 and E1 

illustrated the corresponding 1kb marker pattern. A2: Banding pattern from PCR amplification of 

DNA from animal 9463(28), a control allele one homozygote. B2:  Banding pattern from PCR 

amplification of DNA from animal 7972(74), a UGC allele one homozygote. C2: Banding pattern 

from PCR amplification of DNA from animal 9770(42), a UGC allele two homozygote. D2: 

Banding pattern from PCR amplification of DNA from animal 9572(71) a UGC allele three 

homozygote and E2: Banding pattern from PCR amplification of DNA from animal 9821(72) a 

control allele one/two heterozygote. 

Cloning and sequencing 

Cloning success varied amongst the samples with six to 12 out of the 16 colonies taken 

resulting in positive plasmid preparations on digestion, identified as bands of the 

appropriate insert size on gel electrophoresis following the digestion reaction (Figure 

5.7).  Sequencing of positive clones revealed the presence of five isoforms, four 

produced via intron deletions and a fifth truncated miss-spliced isoform (Table 5.6 and 

Figure 5.8).  The vast majority of the clones sequenced were the full length isoform 

(isoform one) which corresponded to canine isoform two, and isoform three which 

corresponded to canine isoform four. On examination of the sequences no 

polymorphism was identified between any of the products or animals in the study.  
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Fig 5.7 Gel electrophoresis of an example of one positive plasmid prep following restriction 

digest (Lane 3), the other lanes (2, 4-6) show inserts of clearly the wrong size. Lane1] 1kb 

ladder.   

 

Table 5.6 Isoforms identified with corresponding disease state along with Pv11 genotype of the 

animals the isoforms were obtained from, size of isoform and spliced structure of isoform. 

Isoform Size(bp) Structure Disease 

state 

Pv11 

genotype 

Animal ID 

One 

 

One 

1686 

 

1686 

Full length 

 

Full length 

Control 

 

UGC 

positive 

1,1; 1,2 

1,1 ; 2,2; 3,3 

9463(28); 9821(72) 

7972(74); 9770(42); 

9572(71) 

Two 1512 Exon 4 out Control 1,2 9821(72) 

Three 1525 Exon 3 out UGC 

positive 

2,2; 3,3 9770(42); 9339(70) 

Four 1571 Exon 9 out Control 1,1 9463(28) 

Five 728 Miss-spliced UGC 

positive 

1,1 7972(74) 

 

1kb 

1 2 3 4 5 6 
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Fig. 5.8. Structure of the five identified CSL isoforms highlighting the variable spliced exons. 

Exons are depicted as boxes and intron regions and spliced exons as the thin lines connecting 

them. In cases of miss-splicing the intron line is represented as a thick line indicating some 

intron sequence present.  The 12 exons of HPSE2 are at the top of the diagram. Primer sites 

are indicated by the arrows. Isoform one was isolated from both control and UGC animals is the 

full length isoform containing all of the exons; Isoform two was isolated from a control animal 

and has exon 4 spliced out; Isoform three was isolated from UGC animals has exon 3 spiced 

out; Isoform four was isolated from a control animal and has exon 9 spliced out; Isoform five is 

comprised of exon 1 and intron 1 sequences due to miss-splicing.   

 

The diagram illustrated in Figure 5.9 gives an overview of the investigations carried out 

on the HPSE2 gene in the present study. It includes positions of the probes used in the 

southern blot (Chapter 3), position of primers used in amplifying the Pv11 microsatellite 

for sequencing (Chapter 4) along with the position of the primers used to amplify the 

isoforms during the experiments detailed in this Chapter.  The diagram also indicates 

the exons which were identified as alternatively spliced on examination of the isoform 

sequences.  
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Fig 5.9: Structure of the HPSE2 gene is conserved amongst mammals and consists of 12 exons 

separated by large intronic regions.  The first pop out window illustrates the position of the two 

probes (A and B) employed in the southern blot. The second pop out window illustrates the 

position of the two sets of primers used to amplify the Pv11 region prior to sequencing the 

microsatellite. The three blue arrows situated above exons 1 and 2 illustrate the position of the 

primers used in the hemi-nested PCR carried out to amplify a small fragment of the HPSE2 

gene. The two large black arrows situated above exons 1 and 12 indicate the position of the 

primers used for amplify the full length amplicon.  Exons 3, 4 and 9 shaded in grey were found 

to be alternatively spliced on examination of isoform sequences. 
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5.3.2 HPSE2 translation 

Identification of protein in lower genital tract tissue 

IHC was undertaken to identify the presence of HPA2 in samples of lower genital tract 

tissue from 15 animals of differing Pv11 genotype.  The animals were chosen due to the 

availability of suitably preserved tissue and consisted of nine UGC positive and six 

UGC negative animals. Four of the samples – 9463(28), 7972(74), 9770(42) and 

9339(70), had additionally been included in the investigation into transcription of the 

HPSE2 gene. Therefore it was known that HPSE2 isoform mRNA was present in these 

tissues indicating that there was potential for the HPA2 protein to be present. 

Of the 15 lower genital tract sections examined five (all UGC positive) were positive 

for HPA2. Interestingly, all the IHC positive tissues were from Pv11 allele one 

homozygote animals (Table 5.7 and Figure 5.10 and 5.11). In three of the positive 

samples labelling was seen within the neoplastic cells with the greatest amount in cells 

in the basal layer of the epithelium (Figure 5.10).  In the remaining two IHC positive 

animals, labelling was present within the cytoplasm of neurons associated with the 

cervix and within mononuclear inflammatory cells within the cervix submucosa (Figure 

5.11). There was no evidence of labelling in any of the other lower genital tract samples 

examined, including the UGC negative animals with a Pv11 one homozygote genotype, 

or the negative control samples (where the goat-anti human HPA2 polyclonal antibody 

was substituted with normal goat serum). Therefore, HPA2 presence is associated with 

animals with UGC of one homozygous Pv11 genotype, and confirms the link between 

HPSE2 and UGC.   
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Table 5.7 Results of HPA2 immunolabelling of lower genital tract tissues of various Pv11 

genotype and disease states. LGIL: Low grade intraepithelial lesion; HGIL: High grade 

intraepithelial lesion; IC: Invasive carcinoma. Numbers in bold indicate the samples where 

labelling was within neurons associated with the cervix tissue (8431(69)) and in inflammatory 

cells in the cervix tissue (9757(39)). 

              

  

Pv11 

genotype 

UGC 

positive/control 

animal 

ID 

genital 

tissue 

labelling 

genital tissue 

(lesion grade) 
  

              

  

1,1 

Control 

9184(14) Negative Cervix   

  9325(76) Negative Cervix +vagina   

  9114(2) Negative Cervix+vagina   

  9463(28) Negative Cervix   

  

UGC positive 

7972(74) Positive Vagina (HGIL)   

  7997(68) Positive Cervix (IC)   

  8431(69) Positive Cervix (HGIL)   

  9757(39) Positive Cervix (IC)   

  9911(34) Positive Cervix (IC)   

              

  

2,2 

Control 7819(75) Negative Cervix+vagina   

  

UGC positive 

9724(25) Negative Cervix (HGIL)   

  
9770(42) Negative 

Cervix+vagina 

(LGIL)   

              

  

3,3 

UGC positive 7867(73) Negative Cervix (HGIL)   

  
UGC positive 9339(70) Negative 

Cervix+vagina 

(HGIL)   

              

  2,4 Control 9274(8) Negative Cervix   
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Fig 5.10. Positive immunolabelling of HPA2 in neoplastic lower genital tract tissue from three 

female CSLs of homozygous Pv11 genotype 1,1. Sequential negative control sections (A2, B2 

and C2) are pictured on the right. A: Animal 7972(74) (vagina) B: Animal 7997(68) (cervix) C:  

Animal 9911(34) (cervix) 



98 
 

 

Fig 5.11. Positive immunolabelling of HPA2 in neoplastic lower genital tract tissue from two 

female CSLs of homozygous Pv11 genotype 1,1. Section D and E illustrate the unusual 

labelling pattern identified in animals 8431(69) and 9757(39) where cytoplasmic labelling was 

identified within neurons associated with the cervix and in mononuclear inflammatory cells in the 

cervix submucosa, respectively. 

Identification of protein in other tissue 

The tissue blocks obtained for the study incidentally contained tissues other than those 

from the lower genital tract.  Due to the small number of studies that have identified 

expression of HPSE2 at the protein level (Table 3.2), these tissues were examined for 

labelling in addition to the main study. Of particular interest being tissues from the 

genital tract, other than cervix and vagina.  The tissues examined included uterus, ovary, 

heart, diaphragm, stomach, urinary bladder and lymph node.  Of these tissues protein 

has only been reported previously in the ovary in cases of benign and malignant ovarian 

cancer (de Moura et al., 2009) and in the stomach in cases of gastric neoplasia (Zhang et 

al., 2013). Uterus and urinary bladder have been noted to show high levels of HPSE2 

mRNA (McKenzie et al., 2000, Pang et al., 2010).  On examination of the samples 

labelling was only identified in the stomach (animal 9911(34), an allele one 

homozygote suffering from UGC).  The findings are summarised in Table 5.8 and the 

positive stomach sample and an example of a negative uterus sample are illustrated in 

Figure 5.12. 
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Table 5.8. Results of tissues other than lower genital tract tissues examined for HPA2 

immunolabelling. The only tissue that exhibited immunolabelling was in the stomach of cancer 

animal 9911(34) 

Accession No. Pv11 genotype Other tissues Cancer/Control Labelling 

9184(14) 

 

1,1 Urinary bladder 

Diaphragm 

Control Negative 

Negative 

9463(28) 1,1 Ovary 

Lymph node 

Heart 

Control Negative 

Negative 

Negative 

7972(74) 1,1 Urinary bladder 

Heart 

Cancer Negative 

Negative 

9911(34) 1,1 Stomach Cancer Positive 

7819(75) 2,2 Lymph node Control Negative 

9724(25) 2,2 Tonsil Cancer Negative 

7867(73) 3,3 Ovary 

Uterus 

Cancer Negative 

9339(70) 3,3 Urinary bladder Cancer Negative 

9274(8) 2,4 Ovary 

Uterus 

Control Negative 

 

 

Fig  5.12. Immunohistochemistry sections of other tissues examined. A] Positive labelling in the 

stomach. B] Uterus with obvious haemosiderin deposits seen as the brown areas, but no 

labelling. 

 

 

A B 
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5.3 Discussion 

The work carried out in previous chapters identified Pv11 as a microsatellite marker 

with a significant association with UGC in the CSL.  Comparative genomics and further 

molecular work placed it within an intron of the large genetic locus HPSE2.  The 

association discovered regarding Pv11 potentially indicates a QTL and the large size of 

HPSE2 along with the reported sequence homology to the HPSE gene in humans made 

it a natural choice to investigate further.  However the candidate gene responsible for 

the association identified may be at a location distant from Pv11 in the genome. In spite 

of this HPSE2 offered a good starting point in investigating a genetic basis to the 

condition.  

The findings of this study demonstrate that the HPSE2 gene is expressed at least to the 

mRNA level in lower genital tract tissues of the female CSL of different Pv11 

genotypes. In addition the presence of alternative splicing was confirmed by the 

identification of five splice variants. It is likely however that the true number of 

isoforms is greater than the five examined here as the resultant gels following PCR 

revealed multiple banding patterns.  Further cloning and sequencing of each band is 

required in order to clarify this. No variation was detected between isoform sequences 

from animals with UGC compared to control animals; however it was not determined 

how much mRNA was present for each isoform detected.  The use of quantitative 

techniques such as qPCR in future studies would assist in assessing if any differences in 

the quantity of mRNA for a particular isoform was occurring between cases and 

controls or amongst different genotypes.  This possibility is supported by the labelling 

pattern identified where HPA2 was only expressed in animals suffering from UGC that 

were of a single homozygous genotype. In two of the samples the labelling pattern was 

unusual, with labelling identified in neurons associated with cervix tissue and within 

mononuclear inflammatory cells in cervix submucosa rather than in cervix epithelium. 

Although there is scant information in the current literature regarding the presence of 

HPA2 within tissues as discussed earlier, there is a report of increased presence of 

HPA2 in cells in the peripheral blood mononuclear cell fraction in humans with breast 

cancer (Theodoro et al., 2007).  Similarly identification of HPA2 in neurons has also 

been previously reported in a study investigating HPSE2’s role in Urofacial syndrome 
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(OMIM#236730) (Stuart et al., 2013).  There was a complete absence of labelling in 

lower genital tract tissues of other genotypes and disease state, additionally stage of 

cancer did not appear important as other samples of the same histological cancer  grade, 

but genotypes other than 1,1 did not show labelling. The HPA2 antibody is targeted to 

the C terminus; therefore it is likely that the IHC study would identify isoforms one, 

two, three and four, but not isoform five due to its truncation, therefore identifying 

which isoform is being labelled is not possible. In addition to this, the multiple bands 

produced during amplification of the HPSE2 isoforms suggest the presence of more 

than the five isoforms sequenced and it is therefore possible that one or more of these 

are being labelled instead.  

The labelling pattern identified in our study offers further evidence that the Pv11 marker 

and the HPSE2 gene are linked.  Incidental labelling was also identified in the stomach 

of one of the UGC positive genotype 1,1 animals.  HPA2 has been identified in the 

gastric mucosa of humans suffering from gastric neoplasia (Zhang et al., 2013) yet on 

reviewing the histopathology report of the animal in question, although it reported 

metastasis to various organs the stomach was not mentioned as one of them.  One of the 

problems this study faced was the absence of a clear positive control tissue due to the 

lack of information regarding the normal presence of HPA2 both in humans and in other 

species. In lieu of this, tissues with a previously reported high mRNA level such as 

uterus and urinary bladder were considered as potential positive controls, however out 

of the four samples of these tissues examined labelling was not identified in any of them 

(including in the allele one homozygote UGC positive animals), this is not unexpected 

however due to the lack of correlation of mRNA expression with presence of its 

corresponding protein discussed previously.  

HPA2 presence has been identified as a possible prognostic marker by having an 

inverse correlation with metastasis (Levy-Adam et al., 2010). The findings of the 

present study potentially imply that disease course may be slower in allele one 

homozygote animals. However assessing whether protein expression is associated with 

neoplastic spread in the CSL in this study is not possible as the majority of animals, 

when they are first presented, are already in an advanced state of disease and there is no 
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way of determining any differences in the course of disease of animals of  the various 

genotypes.  

The labelling of only a single allele type in our study strongly suggests that HPSE2 is 

important in UGC in the CSL, however further investigation consisting of a larger 

sample set is clearly warranted. The findings of this study along with those reported 

previously in human studies support the need for additional research into the role of this 

gene.  
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Chapter 6 

Prevalence of herpesvirus in California sea lions (Zalophus 

californianus) with urogenital carcinoma – A case-control 

study. 

6.1 Introduction 

The presence of herpesvirus intranuclear inclusion bodies in tumour tissue from a CSL 

was first reported approximately 14 years ago during a study investigating the primary 

site of UGC in CSLs (Lipscomb et al., 2000).  Subsequent PCRs undertaken on DNA 

extracted from metastatic tissue allowed initial sequencing and phylogenetic analysis.  

The results of this indicated that the novel virus identified was a gammaherpesvirus, 

and placed it within the genus Rhadinovirus (Lipscomb et al., 2000). This novel 

herpesvirus was subsequently named Otarine herpesvirus-1 (OtHV-1) following further 

work that determined it was distinct from other pinniped herpesviruses (King et al., 

2002).   

The Herpesviridae family is divided into three subfamilies, Alpha (α), Beta (β) and 

Gamma (γ) with OtHV-1 being in the subfamily Gammaherpesvirinae  (King et al., 

2002, Maness et al., 2011, Lipscomb et al., 2000, McGeoch et al., 2006). Herpesviruses 

are large DNA viruses that mainly infect vertebrate species with around 200 herpesvirus 

species being detected so far (Maness et al., 2011, Davison et al., 2009, McGeoch et al., 

2000).  In pinnipeds there are eight known herpesviruses, consisting of one α-

herpesvirus (Phocid herpesvirus-1) and seven γ-herpesviruses (Phocid herpesvirus-2, 

Hawaiian monk seal herpesvirus, Northern elephant seal herpesvirus, Otarine 

herpesvirus-1, Otarine herpesvirus-2, Otarine herpesvirus-3  and Otarine herpesvirus-4 

(Cortés-Hinojosa et al., 2013, Venn-Watson et al., 2012, Maness et al., 2011, Lipscomb 

et al., 2000, King et al., 2002, Goldstein et al., 2006b, Goldstein et al., 2006a, Osterhaus 

et al., 1985, King et al., 1998, Harder et al., 1996, Lebich et al., 1994) 

Many herpesviruses are host species specific and evolutionary analysis of their lineage 

has suggested co-divergence with the host (Maness et al., 2011, McGeoch et al., 2006), 

however deeper analysis of mammalian γ-herpesviruses have indicated that  interspecies 
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transfer has also played a part in their evolution (Ehlers et al., 2008).  The phylogeny of 

OtHV-1 was established by sequencing and analysis of the DNA polymerase (Dpol) and 

terminase gene fragments (Lipscomb et al., 2000, King et al., 2002).  Phylogenetic 

analysis using the Dpol gene fragment placed the newly discovered OtHV-1 close to 

human herpesvirus-8 (HHV-8), (Lipscomb et al., 2000, King et al., 2002). Additional 

research into the relationship between OtHV-1 and phocid herpes virus 2 (PHV-2), a γ-

herpesvirus affecting another member of the subgroup Pinnipedia, the phocids was 

carried out using GCG-gap (Genetics Computer Group, global alignment) (King et al., 

2002). It showed that PHV-2 was more closely related to HHV-8 and Equine 

herpesvirus 2 (EHV-2) and was distinct from OtHV-1.  EHV-2 is postulated to play a 

role in immunosuppression and respiratory disease whereas so far the clinical 

significance of PHV-2 is unknown (Harder et al., 1996, Franchini et al., 1997, Blakeslee 

et al., 1975, Craig et al., 2005).  Differences in the position of OtHV-1 on the 

phylogenetic tree were reported when comparing the analysis of the terminase fragment 

with that of the Dpol fragment, but both approaches identified OtHV-1 as being a γ-

herpesvirus (Lipscomb et al., 2000, King et al., 2002).  The herpesvirus genome 

contains core genes that are common to the herpesviridae, additionally a particular 

herpesvirus will  contain genes that are specific to its  subfamily along with genes that 

are found in viruses closely related to it, therefore to confirm the classification of 

OtHV-1 further genome sequencing is required  (King et al., 2002, Alba et al., 2001).  

The lifecycle of herpesviruses include both a latent and a lytic stage with the ability to 

establish latent infections being a hallmark of the herpesviruses (Croen, 1991, Stevens, 

1989).  The three subfamilies display different cell tropisms;  α and β-herpesviruses 

establish latent infection in neurons and T cells respectively whereas the γ-herpesviruses 

are classed as lymphotrophic, having preference for latency within B lymphocytes 

(Croen, 1991).  The oncogenic potential of γ-herpesviruses has been recognised in the 

human medical field with Epstein Barr virus (EBV, Human herpesvirus-4 (HHV-4)) of 

the genus lymphocryptovirus and Kaposi’s sarcoma herpesvirus (KSHV, Human 

herpesvirus-8 (HHV-8)) of the genus rhadinovirus (Chang et al., 1994, McGeoch et al., 

1995, Antman and Chang, 2000, Neipel et al., 1998) and in the veterinary field with 

Herpesvirus saimiri (HSV) and  Herpesvirus ateles (HVA) both of the genus 

rhadinovirus being of interest (Melendez et al., 1970, Hunt et al., 1970, Hunt et al., 
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1972, Melendez et al., 1972, McGeoch et al., 1995, McGeoch et al., 2000, Neipel et al., 

1998). Infection with EBV or KSHV doesn’t always result in neoplasia as it is 

commonly the case with viruses and cancer that the prevalence of the virus in the 

population is greater than the occurrence of the associated tumour (Morris et al., 1995, 

Monini et al., 1996). This suggests the role of other factors in cancer development.  In 

the case of KSHV and EBV, co-infection with human immunodeficiency virus (HIV) is 

particularly important.  The probability of developing Kaposi’s sarcoma (KS) (a 

vascular neoplastic condition of varying severity resulting in skin lesions progressing to 

lesions in internal organs) is reported to increase by 60% per year following co-

infection of KSHV and HIV, suggesting that duration of HIV infection is important in 

the pathogenesis of the disease (Jacobson et al., 2000, da Silva and de Oliveira, 2011, 

Antman and Chang, 2000, Patel et al., 2004). Further to this genetic susceptibility to 

infection with KSHV has also been recognised (Plancoulaine et al., 2003, Pedergnana et 

al., 2012).  

EBV is associated with a number of different neoplasias in humans including B-cell 

lymphoma, nasopharyngeal carcinoma, Hodgkins lymphoma and the African form of 

Burkitts lymphoma (Zheng, 2010, Damania, 2004, Thompson and Kurzrock, 2004, 

Young and Rickinson, 2004).  KSHV is also associated with more than one neoplastic 

condition alongside KS namely  primary effusion lymphoma and Castleman’s disease (a 

lymphoproliferative disorder) (Patel et al., 2004, Zheng, 2010, Soulier et al., 1995, 

Damania, 2004, Cai et al., 2010). HSV and HVA are oncogenic primate γ-herpesviruses 

that are not associated with disease in the natural reservoir host, these being the squirrel 

monkey (Saimiri sciureus) in the case of HSV and the spider monkey (Ateles geoifroyi) 

in the case of HVA (Hunt et al., 1972, Hunt et al., 1970). However experimental 

infection of HSV into cotton-topped marmosets (Saguinus oedipus) and owl monkeys 

(Aotus trivirgatus) was found to result in the development of a malignant lymphoma, 

this result was also seen with infection of  HVA into cotton-topped marmosets 

(Damania, 2004, Hunt et al., 1970, Hunt et al., 1972). 

It has been proposed that oncogenic transformation due to γ-herpesvirus infection is a 

result of the virus expressing proteins to assist its survival in the host cells (Hardie, 

2010). These proteins help the virus avoid the immune system along with allowing it to 
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replicate during cell division (Hardie, 2010, Damania, 2004). In the case of KSHV the 

proteins expressed exert a variety of actions including inactivation of p53, an important 

cell cycle control protein frequently associated with cancer development, along with the 

expression of viral cytokines which encourage angiogenesis and cell proliferation 

(Friborg et al., 1999, Hardie, 2010, Nigro et al., 1989, Martin and Gutkind, 2009, Aoki 

et al., 1999). Expression of KSHV oncogenes occur in both the lytic and latent stage of 

the life cycle (in comparison to EBV where transformation is thought to occur only 

during the latent stage) (Hardie, 2010, Damania, 2004) and both genetic factors along 

with infection with other agents that result in immunosuppression have been implicated 

as co factors in assisting disease development (Damania, 2004, Jacobson et al., 2000, 

Plancoulaine et al., 2003, Diepstra et al., 2005).    

The initial CSL tumour-herpes study was small and only tissue samples from four of the 

10 animals in the study were available for the determination of herpesvirus status.  

However, consensus PCR identified the presence of herpesvirus DNA in all four 

samples and sequencing confirmed the presence of the γ-herpesvirus (Lipscomb et al., 

2000).  The subsequent studies carried out in 2002 and 2006 demonstrated the presence 

of OtHV-1 DNA by PCR in tissues from all the study animals affected by neoplasia 

(n=16 and 15 respectively) (King et al., 2002, Buckles et al., 2006).  Of some note was 

that the prevalence of the virus was found to be significantly lower in non-tumour 

animals; only being present in tissues from two out of 17 control females and three out 

of eight control male animals (Buckles et al., 2006).  

In animals with UGC the virus was found to be more widely disseminated in body 

tissues in comparison to animals in the control group, although it was found more 

frequently in regions affected by the tumour particularly vaginal tissue in females 

(78%), prostate tissue in males (80%).  In addition the lumber lymph nodes were 

commonly affected in both sexes (60% and 78% in males and females respectively) 

(Buckles et al., 2006).  There is the possibility that the virus is a secondary opportunistic 

pathogen that has taken advantage of an affected animal’s malnourished state (Gulland 

et al., 1996, Katona and Katona-Apte, 2008). A second possibility is that latent infection 

with OtHV-1 is already occurring and stress placed on the cells by the presence of 

neoplasia drives the virus into the lytic phase. It has been shown that lytic activation of 
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KSHV occurs in areas of low oxygenation (Davis et al., 2001) and that the 

concentration of oxygen in the female urogenital tract is low and becomes even lower 

when inflamed (Shima et al., 2011).   

Buckles et al., (2006) carried out PCRs targeting OtHV-1 Dpol fragments using DNA 

extracted from archived sections of non-urogenital tumours from 13 California sea 

lions. However they were not able to demonstrate the presence of the virus in tumour 

tissue from any of these animals suggesting that OtHV-1 may not be an opportunistic 

virus.  If it were it might also be expected in these cases, secondary herpesviral 

infections have been seen to occur in immunosuppressed cancer patients (Wong and 

Hirsch, 1984). The 13 animals consisted of three juveniles and 10 adults of both sexes 

with varying type and site of tumour, five out of the eight of the tumour types were 

malignant.  This study also found the virus was absent in juvenile animals.   

A further study investigated the prevalence of the virus in pharyngeal and urogenital 

tract swabs and in peripheral blood mononuclear cells (PBMC) from 212 wild caught 

animals at two study sites (San Miguel Island, California and Puget Sound, 

Washington), of which 112 were immature  along with 27 adults and 12 juveniles 

admitted to TMMC (Buckles et al., 2007).  Detection of virus from pharyngeal swabs 

was low with a prevalence of only 2% and the virus was undetected in PBMC, 

urogenital tract swabs however showed a higher detection rate.  OtHV-1 was identified 

by PCR in the immature animals, but its prevalence was at a significantly lower level 

than in the adults (5.8% compared to 19.6% (p<0.05) and 44.1% (p<0.05) in adult 

females and males respectively). The decreased presence of virus in immature animals 

along with a higher detection rates in urogenital secretions points towards OtHV-1 

being a sexually transmitted infection.  The study drew a parallel between the 

epidemiology of OtHV-1 infection in CSL with infection of humans with the closely 

related KSHV (HHV-8) (Buckles et al., 2007).   Studies on the epidemiology of KSHV 

have suggested that sexual activity plays an important role in the transmission of the 

virus (Monini et al., 1996) particularly in the case of AIDS associated KS, where the 

existence of another co-factor is suspected (Kedes et al., 1996, Cai et al., 2010).  

However a definitive answer regarding transmission of KSHV is yet to be found as 

transmission appears to vary according to endemicity.   Non-endemic areas appear to 
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have a high level of spread by sexual contact whereas in endemic areas sexual contact, 

vertical transmission and transmission between siblings is also of importance (Cai et al., 

2010, Plancoulaine et al., 2000, Hengge et al., 2002, Lacoste et al., 2000, Martin et al., 

1998, de-The et al., 1999).  

In the study carried out by Buckles et al, (2007) the prevalence of OtHV-1 in adult 

males was significantly higher than in adult females (p<0.05).  At present the reason for 

this is unknown but it is postulated that if OtHV-1 is sexually transmitted a number of 

factors may play a part.  Differences in the microenvironment of the genital tract of 

males and females could influence success of infection, along with the polygynous 

mating behaviour of CSL that potentially results in more males contracting the virus 

through a higher number of sexual contacts (Buckles et al., 2007).  However as with the 

closely related virus KSHV, the virus associated with KS in humans other routes of 

transmission should not be ruled out as sexually immature animals have been identified 

with the virus albeit at a much lower prevalence (Buckles et al., 2007). 

The present study further investigates the potential involvement of herpesvirus in cases 

of UGC among CSL.  Previous studies have produced contradictory results with a 

relatively high occurrence of the virus identified in presumably healthy adult wild 

animals (Buckles et al., 2007), but a low level found in stranded neoplasia negative 

animals along with animals with tumours other than UGC and a high occurrence in 

adults with neoplasia (Buckles et al., 2006, King et al., 2002). However it should be 

remembered that it is not known how many of the wild caught animals sampled in the 

study by Buckles et al., (2007) went on to develop UGC. The sampling technique also 

varied between the studies, with the initial work isolating viral DNA from tissues at 

necropsy (Buckles et al., 2006, King et al., 2002) and the later study isolating it from 

swabs (Buckles et al., 2007).  In cases of UGC detection of the virus was higher in 

samples from the urogenital tract and sub-lumber lymph nodes than in the other body 

tissues (Buckles et al., 2006).  

In comparison to previous studies investigating the involvement of OtHV-1 in UGC 

(King et al., 2002, Lipscomb et al., 2000, Buckles et al., 2007), the present study only 

included DNA from lower genital tract tissue from adult female animals thereby 

removing sex and age class as confounding variables.   This study was designed in a 
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case-control fashion.  It included a larger sample size, thereby increasing the power of 

the study, than previous work. Furthermore as detailed in Chapter 7 the study was able 

to explore potential co-factors involved in UGC as a result of additional information 

available in necropsy reports for each animal entered into the study.   

The aims of the study were to (i)  determine the prevalence of herpesvirus in the CSL 

using a pan-herpes screening PCR that employed degenerate primers targeted to the 

conserved DNA polymerase gene (Dpol). The pan-herpes PCR would potentially enable 

the detection of more than one herpesvirus species in the CSL in the study.  (ii) To 

establish whether OtHV-1 specifically is associated with the occurrence of UGC in the 

CSL again using a PCR targeting the Dpol gene.  In both instances DNA extracted from 

lower genital tract tissues was used as a template due to previous investigations that 

identified that OtHV-1 is more frequently found in urogenital tract tissue (Buckles et al., 

2006).  (iii) Using Pv11 genotype data obtained earlier in this study to investigate 

whether there was an association between herpesvirus infection and homozygosity at 

the Pv11 locus. 

 

6.2 Materials and Methods 

6.2.1. Preparation for herpesvirus PCR 

Sample collection 

Tissue samples from the lower genital tract were collected from 65 female adult animals 

during necropsy examinations carried out by staff at the Marine Mammal Center, 

Sausalito, CA, USA. These consisted of 54 cervical tissue samples along with nine 

cervix/vagina samples and two proximal vaginal samples, 64 of the samples were from 

animals sampled in Chapter 2. The gross necropsy and histopathology reports were 

reviewed and the animals classified according to cause of death.  UGC was diagnosed in 

23 animals and 42 were considered as control animals; having died or being euthanased 

due to a condition other than UGC as detailed in Figure 6.1. 
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Fig 6.1.  Cause of death of control animals based on predominant necropsy finding recorded.  

(Undet: Undetermined, Other Neo: Neoplasia other than UGC identified; Misc Inf: Miscellaneous 

Infection; DA: Domoic acid). Undetermined indicates cases where a cause of death was not 

determined, however urogenital carcinoma (UGC) was not identified. 

Tissues were shipped on dry ice to the Sea Mammal Research Unit, St Andrews, Fife 

where they were stored at -80°C prior to use. 

DNA extraction and preparation 

DNA extraction and quantification was carried out as detailed in Chapter 4 (page 57).  

Following quantification samples were diluted with MilliQ water to a concentration of 

50 ng/μl.  The samples were then stored at -20°C prior to use.  

6.2.2 Amplification of a DNA polymerase gene fragment of herpesvirus 

The Dpol gene is involved in DNA replication and is present in a number of viruses 

including herpesvirus (Joyce and Steitz, 1994, Earl et al., 1986).  It has been identified 

as a conserved core gene in the genome and therefore is a useful target in investigating 

herpesvirus presence (Alba et al., 2001, VanDevanter et al., 1996, Ito and Braithwaite, 

1991). The two different PCRs carried out in this study used primers that amplified 

across different fragments of the Dpol gene. 
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6.2.2.1 Pan-herpes PCR 

It is common for animals to be infected with more than one herpesvirus (Prepens et al., 

2007) and in order to investigate the presence of other herpesviruses in the lower genital 

tract tissues a pan-herpes screening protocol was carried out. The protocol, involved a 

nested PCR that was not specific to any one herpesvirus species but instead could 

identify the presence of many herpesviruses (Ehlers et al., 1999, VanDevanter et al., 

1996). It employed degenerate primers due to their ability to identify  a number of 

species of herpesvirus by targeting highly conserved regions within the Dpol gene 

without requiring the exact sequence of each virus to be known (VanDevanter et al., 

1996).  The degenerate primers were further modified by replacing positions that had 

three or four fold degeneration with a deoxyinosine base, as it was reported previously 

to increase product yield (Ehlers et al., 1999).  The primer sequences are detailed in 

Tables 6.1 and 6.2. 

Table 6.1 Primer sequences for primary pan-herpes PCR 

Primer Sequence 5’-3’ 

Forward  

DFA* GAY TTY GCI AGY YTI TAY CC 

ILK* TCC TGG ACA AGC AGC ARI YSG CIM TIA A 

Reverse  

KGI* GTC TTG CTC ACC AGI TCI ACI CCY TT 

*(Ehlers et al., 1999)  I=deoxyinosine substitution 

 

Table 6.2 Primer sequences for secondary pan-herpes PCR 

Primer Sequence 5’-3’ 

Forward  

TGV* TGT AAC TCG GTG TAY GGI TTY ACI GGI GT 

Reverse  

IYG* CAC AGA GTC CGT RTC ICC RTA IAT 

(Ehlers et al., 1999) I=deoxyinosine substitution 
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The pan herpes screening protocol involved a nested PCR.  Both reactions used Qiagen 

HotStarTaq (Qiagen, Crawley, UK) with a reaction volume of 50 μl.  The primers were 

obtained from Invitrogen (Paisley, UK). The reaction mix and cycling conditions were 

as per Madeleine Maley, University of Edinburgh (personal communication).  

The 50 µl reaction mix for the primary PCR contained per reaction; 5 μl 10×Buffer 

(Qiagen, Crawley, UK), 5 μl of 10 μM primer DFA (forward), 5 μl of 10 μM primer 

ILK (forward), 5 μl of 10 μM primer KGI (reverse), 1 μl of 10 mM dNTPs (Qiagen, 

Crawley, UK),  0.25 μl (1.25 units) HotStarTaq (Qiagen, Crawley, UK), 20.75 μl MilliQ 

water and 8 μl of DNA template (400 ng).  The 50 µl nested reaction used 1 μl of the 

product of the primary reaction diluted 1:5 with MilliQ water (Qiagen, Crawley, UK) as 

a template (the template was not quantified prior to the nested reaction), the reaction 

mix was made up to 50 μl with 5 μl 10×Buffer (Qiagen, Crawley, UK), 5μl of 10 μM 

TGV primer (forward), 5 μl of 10 μM IYG (reverse) primer, 1 μl of 10 mM dNTPS 

(Qiagen, Crawley, UK), 0.25 μl (1.25 units) HotStarTaq (Qiagen, Crawley, UK) and 

32.75 μl MilliQ water Negative controls were included in both the primary and the 

nested PCRs by substituting the DNA template with the same volume of MilliQ  water.  

The cycle conditions for both PCR reactions were as follows using a  PTC-200 DNA 

Engine Cycler (Bio-Rad Laboratories Inc., Hercules, USA) 95°C for 15 min, followed 

by 45 cycles of 94°C for 30 s, 46°C for 60 s, 72°C for 60 s, then 72°C for 10 min before 

being held at 4°C. 

The primary PCR reaction had an expected product size of approximately 440 bp.  The 

expected product size of the nested PCR was approximately 220 bp. Only the products 

of the nested PCR reaction were evaluated by gel electrophoresis and to do this 5 µl of 

PCR product mixed with 2.5 µl Orange G loading dye (Sigma-Aldrich Ltd, Gillingham, 

UK) was then resolved at 80V for 30 min on a 1.5% agarose gel containing 2.5 µl 

ethidium bromide (Sigma-Aldrich Ltd, Gillingham, UK) alongside 2.5 μl of 100 bp size 

standard (GeneRuler
TM 

100 bp Plus DNA Ladder, Thermo Fisher Scientific, 

Loughborough, UK). Bands were then visualised in a UV light box (UVITEC, 

Cambridge, UK). PCRs were repeated on 50% of the samples that were found to be 

negative on gel electrophoresis to confirm the result. 
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6.2.2.2 Otarine herpesvirus -1 PCR 

The OtHV-1 specific PCR used primers that were specifically targeted to a fragment of 

the Dpol gene in the OtHV-1, the primers were obtained from Invitrogen (Paisley, UK) 

and the sequences are detailed in Table 6.3. The reaction mix and cycling conditions 

were as per Dr Tracey Goldstein, UC Davis Wildlife Health Center, California, USA 

(personal communication).  

The 25 μl reaction mix consisted of 2.5 μl 10 x PCR Buffer (Invitrogen, Paisley, UK), 

0.75 μl of 50mM MgCl2 (Invitrogen, Paisley, UK ) (50 mM), 0.5 μl PolFor (10 μM 

forward primer), 0.5 μl PolRev (10 μM reverse primer), 0.5 μl of 10 mM dNTPs 

(Qiagen, Crawley, UK), 0.1 μl (0.5 unit) Platinum® Taq DNA polymerase (Invitrogen, 

Paisley, UK), 5 μl DNA template (250 ng) and 15.15 μl MilliQ water. The cycle 

conditions for the PCR reaction was as follows using a  PTC-200 DNA Engine Cycler 

(Bio-Rad Laboratories Inc., Hercules, USA) 94°C for 2 min, followed by 35 cycles of 

94°C for 40 s, 54°C for 40 s, 72°C for 40 s, then 72°C for 10 min before being held at 

4°C. A negative control was included by substituting the DNA template with an equal 

volume of MilliQ water. 

The PCR reaction had an expected product size of approximately 740 bp.  To analyse 

the fragments 5 µl of PCR product was mixed with 2.5 µl Orange G loading dye 

(Sigma-Aldrich Ltd, Gillingham, UK) and resolved at 80V for 30 min on a 1.5% 

agarose gel containing 2.5 µl ethidium bromide (Sigma-Aldrich, Gillingham, UK) 

alongside 2.5 μl of 1kb size standard (1Kb Ladder, Invitrogen, Paisley, UK ). The 

presence of bands of an appropriate size were identified by visualisation in a UV light 

box (UVITEC, Cambridge, UK).  PCRs were repeated on negative samples to confirm 

the result. 

Table 6.3 Primer sequences for OtHV-1 specific PCR 

Primer Sequence 5’-3’ Reference 

PolFor TTA CAC TTC TAC GTG ATG G (Buckles et al., 2007) 

PolRev* TCT TCG TCC AGT ATC ATT G (Buckles et al., 2007) 

*The reverse primer in the paper referenced (Buckles et al., 2007) is published in the wrong 

direction, the correct 5’-3’ sequence is shown here.  
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The position of the primers used in both the pan herpes PCR and the OtHV-1 specific 

PCR are detailed in Figure 6.2. The OtHV-1 gene fragment (NCBI GenBank: 

AF236050.1) was aligned with the DNA polymerase gene from Human Herpesvirus-4 

(NCBI GenBank: NC_007605.1) in order to illustrate the position of all of the primer 

sites. 

 

Fig 6.2. Illustration of the location of primers (indicated by the arrows) used in the two PCR 

protocols to detect the presence of herpesvirus in UGT of CSL. Green arrows indicate the sites 

of the primers used in the OtHV-1 specific PCR, purple arrows indicate the sites of the primers 

used in the primary pan-herpes PCR and the blue arrows indicate the sites of the primers used 

in the secondary pan-herpes PCR. The whole of the DNA polymerase gene of human 

herpesvirus 4 (HHV-4) is aligned with the known fragment of the Otarine herpesvirus-1 (OtHV-1) 

gene in order to indicated all the sites of the primers used in the pan-herpes protocol.  Arrow 1] 

Forward primer (PolFor) for OtHV-1 specific PCR; 2] Reverse primer (PolRev) for OtHV-1 

specific PCR; 3] Pan-herpes primary PCR forward primer DFA; 4] Pan-herpes primary PCR 

forward primer ILK; 5] Pan-herpes primary PCR reverse primer KGI; 6] Pan-herpes secondary 

PCR forward primer TGV; 7] Pan-herpes secondary PCR reverse primer IYG.  

 

6.2.2.3 Analysis of PCR products 

In the case of both the pan-herpes PCR and the OtHV-1 specific PCR, products deemed 

positive on agarose gel were purified using MSB Spin PCRapace PCR purification kit 

(Stratec molecular, Berlin, Germany) and 5 µl of the purified product mixed with 2.5 µl 

Orange G loading dye (Sigma-Aldrich Ltd, Gillingham, UK) and resolved on 1% 

agarose gel containing 2.5 µl 10mg/ml ethidium bromide (Sigma-Aldrich Ltd, 

Gillingham, UK), alongside three lambda DNA size markers; 25ng, 50ng and 100ng 

(Promega, Southampton, UK) for quantification.   In the case of the pan-herpes screen, 

where possible, 20 ng of PCR product was submitted for sequencing along with 3.2 

pmol of forward or reverse primer (TGV and IYG).  For the OtHV-1 specific PCR, 

where possible 40 ng of PCR product was submitted for sequencing along with 3.2 

pmol of forward or reverse primer (PolFor and PolRev). All of the pan-herpes PCR 

samples and OtHV-1 samples seen to be positive on gel electrophoresis were submitted 

for sequencing.  DNA sequencing was performed by DNA Sequencing & Services 
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(MRCPPU, College of Life Sciences, University of Dundee, Scotland, 

www.dnaseq.co.uk) using Applied Biosystems Big-Dye Ver 3.1 chemistry on an 

Applied Biosystems model 3730 automated capillary DNA sequencer.  

DNA sequence analysis undertaken on sequences obtained from both PCRs were 

achieved via multiple alignment, following removal of primer sequences and performed 

using the software programme Geneious Pro v5.6.6 created by Biomatters. Available 

from http://www.geneious.com/). In addition the multiple alignment of sequences 

obtained from the pan-herpes PCR was undertaken with four pinniped γ-herpesviruses 

from the NCBI GenBank database and included partial CDS of the Dpol gene from 

OtHV-1; AF236050, Phocid herpesvirus-2; GQ429152, Hawaiian monk seal 

herpesvirus; DQ093191 and Northern elephant seal herpesvirus; DQ183057 (King et 

al., 2002, Maness et al., 2011, Goldstein et al., 2006a, Goldstein et al., 2006b). For 

sequences obtained via the OtHV-1 specific PCR the multiple alignment was carried out 

with the partial CDS of the Dpol gene from OtHV-1(GenBank: AF236050) (King et al., 

2002). 

 

6.2.3 Statistical analysis 

Statistical significance with regards to cause of death and presence of herpesvirus  from 

both the results of the pan-herpes screen and OtHV-1 specific PCR screen was carried 

out using fisher exact tests. In addition, genetic susceptibility at the Pv11 locus to 

infection was investigated using the genotype data  established in Chapter 2, fishers 

exact tests were carried out using the results of both PCRs to identify any association 

with homozygosity at this locus and presence of herpesvirus. Statistical analysis was 

carried out using the open access statistical software package R (R Development Core 

Team, 2012). In all tests a p-value of <0.05 was considered statistically significant. 

6.2.4 Problems encountered  

A number of problems were encountered while undertaking this work:  

Pan herpes PCR:  The herpes status of the animals was unknown which meant the 

absence of a positive control. The PCR initially produced no positive results, however 
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this was later found to be the result of a defective thermocycler. On repeating the 

reactions on a different machine positive results were seen. Contamination was 

additionally an issue, this was resolved by both preparing the PCR mix in a DNA free 

area, but also by irradiating the pipettes and tubes with UV light for approximately 10 

min prior to use. Further to this the identification of reactions not affected by 

contamination was difficult due to the nested PCR reaction resulting in a band around 

the expected product size even in the absence of DNA template. This issue was 

confirmed by carrying out the PCR three times without template DNA and including in 

each nested reaction either 1] the IYG primer only, 2] the TGV primer only or 3] both 

primers. When both primers were included a band was identified at ~200bp (Figure 

6.3).  This artefact was not a consistent finding in all the PCRs run, however any bands 

appearing in the negative control were sent for sequencing to rule out true 

contamination.   

            

 

OtHV-1 PCR: Undertaking the pan herpes PCR screen allowed the identification of 

potential positive controls for the OtHV-1 PCR, however the OtHV-1 PCR initially did 

not result in any positive samples.  A gradient PCR was carried out to identify whether 

the provided protocol was compatible with the thermocycler available.  The original 

protocol stated an annealing temperature of 63°C, however the gradient PCR (run with 

annealing temperature between 53°C and 65°C) gave a positive result at 53°C and 55°C 

only (Figure 6.4) therefore the annealing temperature was reduced to 54°C for the 

subsequent reactions.  Issues with contamination were resolved as above. 

1 4 5 6 2 3 

 200bp 

Fig 6.3. Gel electrophoresis of 

PCR products without DNA 

template to investigate primer 

artefacts. Lane 1] 100bp ladder, 

2] PCR mix (no primers), 3] 

Primer TGV only, 4] Primers 

TGV and IYG, 5] Primer IYG 

only, 6] 100bp ladder. Lane 4 

clearly shows a band where the 

expected product size for the 

pan-herpes PCR would be.   
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6.3 Results 

6.3.1 Pan-herpes PCR 

On examination of gels following gel electrophoresis of PCR products a band of 

appropriate size was identified in 38 samples and all 38 were submitted for sequencing. 

The repeated PCRs on 50% of the negative samples again resulted in negative results.  

An example of a positive gel is shown in Figure 6.5. Sequencing was performed in both 

directions and sequences of adequate quality from both forward and reverse primers 

were obtained for 24 of the samples.  Only forward or reverse reads were obtained for 

eight of the samples and the remaining six samples were of inadequate quality for 

further analysis (consisting of samples from one UGC positive animal and five controls) 

and were therefore removed from the study. Removal of primer sequences and trimming 

of ends to remove bases of inadequate quality was carried out on the reads from the 32 

samples prior to multiple alignment and resulted in sequence reads between 83bp to 

166bp. On sequence analysis sequences were found to be identical and all of the 

samples were identified as OtHV-1. 

Out of the 59 samples where herpesvirus status was determined, 32 were identified as 

positive for herpesvirus, giving an overall prevalence of 54%. Out of the 22 animals 

diagnosed with UGC 11 were confirmed positive for OtHV-1 giving a prevalence of 50 

% in affected animals, whereas in control animals the prevalence was found to be 57%. 

1 2 4 5 6 7 8 3 Fig 6.4. Gel electrophoresis 

of OtHV-1 specific PCR 

using sample 9770(42) at a 

gradient. Lane 1] 1kb 

ladder, 2] 53°C, 3] 55.1°C, 

4] 58.6°C, 5] 62.6°C, 6] 

65°C, 7] Negative control 

(MilliQ H2O). Annealing 

temperature 53°C and 

55.1°C show a positive 

result. 

1kb 

 500bp 
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Statistical analysis did not find herpesvirus presence significantly associated with 

cancer; p=0.788, OR (crude): 0.77 (95% CI: 0.23-2.50).  

Homozygosity at the Pv11 locus was not found to be significantly associated with the 

presence of herpesvirus; p=1.00, OR (crude): 1.03 (95% CI: 0.32-3.26).   

              

6.3.2 OtHV-1 PCR 

All 16 samples deemed positive on gel electrophoresis were submitted for sequencing in 

both directions. The repeated PCRs on samples found to be negative again yielded 

negative results. An example of a gel with bands of expected size is illustrated in Figure 

6.6. Sequences obtained from two samples (consisting of one UGC positive and one 

control) were deemed of inadequate quality and therefore removed from the analysis. 

Sequences from the remaining 14 samples were trimmed to remove bases of inadequate 

quality resulting in sequence reads of between 396bp and 688bp.  A multiple alignment 

was carried out with all the sequences aligning with OtHV-1 (GenBank: AF236050) 

(King et al., 2002) as expected.  

Out of the 63 samples where OtHV-1 status was determined, 14 were found to be 

positive for OtHV-1 giving an overall prevalence of 22%. Out of the 22 animals 

diagnosed with UGC 11 were positive for OtHV-1 giving a prevalence of 50% in 

affected animals, whereas in control animals the prevalence was found to be 7%.  

Statistical analysis identified a strongly significant relationship between the occurrence 

of UGC and the presence of OtHV-1; p=0.0002, OR (crude): 12.04 (95% CI: 2.59-

79.11). Homozygosity at the Pv11 locus was again not found to be significantly 

 200bp 

6 3 2 1 4 5 Fig 6.5.  Example of a gel 

following pan-herpes PCR 

illustrating two positive samples. 

Lane 1] 100bp ladder, 2] 

9827(41), 3] 8431(69),  4] 

9770(42), 5] 9205(19), 6] 

Negative control   

10 
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associated with the presence of OtHV-1; p= 0.364, OR (crude): 0.52 (95% CI: 0.12-

2.02).  

            

 

 

6.4 Discussion 

The results from the two PCRs give extremely different outcomes, with the pan-herpes 

PCR not identifying a significant association between the presence of herpesvirus and 

UGC and the OtHV-1 specific PCR resulting in a highly significant relationship. An 

association was not identified from the results of either PCR between the presence of 

herpesvirus and homozygosity at the Pv11 locus. 

The pan-herpes PCR, identified a single virus on sequencing; OtHV-1. The prevalence 

of which in the animals in the study was found to be 54%, this is in comparison to 22% 

of OtHV-1 prevalence identified using the OtHV-1 specific PCR. The higher prevalence 

identified by the pan-herpes screen could be explained by the increased number of 

amplification cycles as a result of the nested protocol thereby increasing its sensitivity 

(90 across the two PCRs in comparison to the 35 cycles in the OtHV-1 specific PCR).  

Quantitative PCR has been recognised as more sensitive than the standard OtHV-1 

protocol (Buckles et al., 2007), therefore implementing this protocol in future may assist 

in determining if a sample is truly negative. 

Alternatively, as the primers used in the two PCRs amplify across different fragments of 

the Dpol gene there is the potential that variation in the sequence is occurring, but not 

1kb 

 500bp 

1 2 5 8 7 6 3 4 Fig 6.6.  Example of a gel following 

OtHV-1 PCR illustrating three 

positive samples. Lane 1] 1kb ladder, 

2] 9100(77), 3] 9196(78), 4] 

8958(79), 5] 9008(80), 6] 9804(81), 

7] 7140(82), 8] 7468(83),  9] 

Negative control, 10] 1kb ladder   

 

9 10 
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within the region amplified by the degenerate primers therefore the PCR is detecting a 

closely related virus or a variant of the OtHV-1 virus.  Variants of a herpesvirus have 

been identified in other vertebrates.  Elephants, in particular Asian elephants (Elephas 

maximus) are affected by an acute haemorrhagic disease which has been associated with 

infection with β-herpesviruses of a new genus; Proboscivirus, known as Elephant 

Endotheliotropic Herpesviruses (EEHV) (Richman et al., 1999, Latimer et al., 2011, 

Ehlers et al., 2001, McGeoch et al., 2006). One of which; EEHV1 was identified as 

having two variants (EEHV1A and EEHV1B) following sequence analysis of the 

terminase gene (Latimer et al., 2011, Fickel et al., 2001).  

It is expected that the pan-herpes PCR would identify all the herpesvirus positive 

animals in the study, however six samples found to be positive in the OtHV-1 specific 

PCR were negative in the pan-herpes screen. Pan-herpes PCRs were repeated on four of 

these samples with the results again being negative, therefore implying that false 

negatives occur with this protocol.  An observation supporting this theory was made in a 

study again investigating elephant herpesviruses where it was noted that sequence 

variation was occurring in the primer binding sites of  the pan-herpes primers used, 

resulting in reduced detection of virus compared with a virus specific PCR  (Latimer et 

al., 2011).   

It should also be remembered that it is common for vertebrates to harbour more than 

one herpesvirus and during pan-herpes PCR screening the dominant virus present is 

more likely to be amplified (Ehlers et al., 2008, Prepens et al., 2007) therefore the 

presence of other herpesvirus species in the tissues examined cannot be ruled out. It has 

been suggested that the identification of different herpesvirus within a sample can be 

undertaken by degenerate PCR targeting the glycoprotein B (gB) gene alongside the 

pan-herpes PCR targeting the Dpol gene. This approach has been seen to successfully 

identify more than one herpesvirus in blood samples from primates including Black-

and-White Colobus Monkeys (Colobus guereza) and cynomolgus monkeys (Macaca 

fascicularis) (Prepens et al., 2007, Ehlers et al., 2008). 

In spite of these complications the prevalence of 50% identified in lower genital tract 

tissues of affected animals by both PCR protocols is comparable to the previous finding 

of 55% in cervix tissue from animals with UGC (Buckles et al., 2006). However the 
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present study did identify a higher level of virus in tissue from the lower genital tract of 

control animals.  The pan-herpes PCR and OtHV-1 PCR gave prevalence’s of 57% and 

7% respectively, unlike the previous study where it was undetected in lower genital tract 

tissues from female control animals (Buckles et al., 2006). This may be a result of the 

larger sample size or changing prevalence of the virus in the population over time.  

Further to this in the case of the pan-herpes protocol, the potential additional detection 

of a closely related virus as mentioned above may contribute to higher detection; even 

so the high prevalence in non-cancer animals suggests that OtHV-1 (or a closely related 

virus or variant) is widespread in the population.  

The life cycle stage of the herpesvirus may also influence whether detection occurs. The 

viral DNA load in tissues increases when cells enter the lytic stage of their life cycle as 

a result of virus reactivation and replication, therefore detection of viral DNA via PCR 

during this stage is more likely (Pusterla et al., 2009, Lunn et al., 2009, Traylen et al., 

2011). It was noted that detection of EEHV by PCR using primers targeting the gB gene 

in latent infection was not reliable as a potential screening technique as the virus was 

only detected in samples (tissue and blood) from affected animals and not suspected 

carriers (Fickel et al., 2003).   Therefore although the results of the present study 

suggest a highly significant relationship between the presence of OtHV-1 and UGC in 

CSL this may be more a result of lack of detection in carrier animals rather than the 

increased presence in UGC positive animals. This would also suggest that the viral load 

is higher in lower genital tract tissues of UGC positive animals potentially due to the 

virus being placed under stress and entering the lytic stage, whereas in animals 

unaffected by UGC if OtHV-1 is present it is more likely to be latent in the lower 

genital tract tissues. 

The association of an infectious agent in the aetiology of UGC in CSL has potential 

implications for captive management of these animals, if the maintenance of a disease 

free population of CSL is desired. Additionally OtHV-1 has been recently identified in 

another member of the Otariidae family, a South American fur seal (Arctocephalus 

australis) suffering from UGC in a UK zoo (Dagleish et al., 2013). In light of this 

finding it was proposed that screening of otrarids for OtHV-1 should be considered 

prior to relocating an animal to another institution (Dagleish et al., 2013). The success 
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of this however would depend on the availability of a test with enough sensitivity to 

detect latent infection.  

Although there is a clear need for further investigation into the involvement of 

herpesvirus in UGC in CSLs, this study supports previous work and provides a strong 

indication that the presence of OtHV-1 is a risk factor for the disease.   
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Chapter 7 

Risk factors associated with the development of urogenital carcinoma in 

the California Sea Lion (Zalophus californianus) 

7.1 Introduction 

The multi-factorial aetiology of neoplasia presents great difficulties in establishing the 

cause of the disease and necessitates the investigation of a number of factors. These 

challenges are amplified in wildlife studies, where achieving an adequate sample size, in 

order to investigate suspected risk factors is particularly problematic (Newman and 

Smith, 2006, McAloose and Newton, 2009).  The present study has made use of 

archived skin and lower genital tract tissue samples stored at the Marine Mammal 

Center, enabling the opportunity to include a larger sample size than is frequently 

possible.  In addition to the tissues samples from each of the 113 animals entered into 

the study, necropsy reports consisting of gross pathology and histopathology were 

available.  These reports contained body condition data detailing body length, mass, 

girth and blubber thickness, thereby providing further information about each animal 

that could be analysed alongside the Pv11 genotype and herpesvirus status determined 

by this study.    

This work has so far demonstrated an association both with HPSE2 (Pv11) genotype 

and OtHV-1 status and the presence of UGC in the CSL.  Animals identified as 

homozygous at the Pv11 microsatellite within the HPSE2 gene were identified as 

almost twice as likely to have cancer.  Further to this the identification of differential 

labelling of only one homozygous genotype in tissues from animals with UGC supports 

the notion that the Pv11 marker and the HPSE2 gene are linked.  PCRs undertaken on 

DNA extracted from lower genital tract tissues targeting the Dpol gene of the OtHV-1 

virus found that the presence of the virus was significantly associated with UGC.  The 

aim of this final chapter is to bring together the findings of the previous chapters along 

with an analysis using the additional body condition data.    

 

 



124 
 

7.2 Materials and Methods 

Two binomial generalised linear models (GLMs) were fitted to the data.  The first 

involved all 113 animals (43 cases and 70 controls) and investigated the influence of the 

following variables on the presence of UGC; previously determined homozygous or 

heterozygous genotype of Pv11, M11a and Hg8.10 (Chapter 2 and appendix A), along 

with body length, mass, girth and ventral blubber thickness as provided in the necropsy 

reports.  

The second GLM involved the 57 animals (21 cases and 36 controls) where lower 

genital tract tissue was also available.  The study additionally included data on 

herpesvirus status in order to investigate the effect that the presence of herpesvirus may 

have on the likelihood of cancer. Genotype and herpesvirus status was previously 

determined as detailed in Chapters 2, 6 and appendix B and body condition data was 

supplied in the necropsy reports. 

The GLMs were carried out using the open access statistical software package R (R 

Development Core Team, 2012). 

 

7.3 Results 

The first GLM consisting of the 113 animals investigated all variables. The “step” 

function was then applied to the model to identify the variables providing the best fit. 

The best model included the variables Pv11 genotype, Blubber thickness, mass and 

girth (with an Akaike’s Information Criterion (AIC) of 142.6).  A significant 

relationship was identified between presence of cancer, homozygous Pv11 genotype (p= 

0.02950) and blubber thickness (p= 0.00381) and although the other variables were not 

individually significant this model selection (stepwise) process indicated they should 

remain in the model.  

However, linear models and pairwise plots (Figure 7.1) identified correlations between 

blubber thickness, girth and body mass.  Thus including all of them in the model would 

violate the assumption of GLMs that the independent variables are not related to each 
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other. The GLM was repeated including either blubber thickness, girth or body mass 

(alongside Pv11 genotype) giving AIC scores of 141.7, 153.2 and 151.1 respectively. 

The lower AIC score identified with blubber thickness in the model suggested that its 

inclusion out of the three body condition measures provides the best fit. Therefore girth 

and mass were removed from the model and the GLM repeated investigating the effect 

of only Pv11 genotype and blubber thickness on the presence of cancer.

 

The results of the model again identified a significant relationship between the presence 

of cancer and homozygosity at the Pv11 locus and also between the presence of cancer 

and thinner blubber (Table 7.1). The difference between blubber thickness in UGC 

positive and control animals for the 113 animals is illustrated in Figure 2. 

Table 7.1 GLM results showing a significant relationship (p<0.05) between homozygosity at the 

Pv11 locus and blubber thickness with the presence of UGC. 113 animals were included in the 

model. 

Variable Estimate Standard error Pr(>|z|)    

*Pv11GTHO 0.9474     0.4633    0.04087  

**BT -1.1842      0.3905    0.00243 

*Pv11 homozygous genotype; **Blubber thickness 

   

 

 

Fig. 7.1 Pairwise plots 

investigating correlations 

between three body 

condition variables; blubber 

thickness (BT), body, mass 

and girth. Correlations are 

seen between all three.  
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The adjusted odds ratio for the association of homozygosity at the Pv11 locus was also 

recorded with UGC found to be over twice as likely in animals homozygous at the Pv11 

locus (Table 7.2). 

Table 7.2 Crude and adjusted odds ratios for Pv11 genotype showing that UGC is over twice as 

likely in animals homozygous at the Pv11 locus. Significance accepted at the 5% level.  

Variable Crude OR (95% CI)  Adjusted OR (95% 

CI) 

P(LR-test) 

*Pv11GT: 

HO vs HT 

2 (0.87,4.6) 2.58 (1.04,6.39) 0.039      

*Pvll genotype, HO: homozygous; HT: heterozygous 

The second model included fewer animals (57) as lower genital tract tissues used to 

investigate herpesvirus status were only available for a subset of the animals.  In 

addition eight animals were removed due to an inconclusive herpesvirus PCR result.  

The variables included in the model were Pv11, M11a and Hg8.10 genotype, pan-herpes 

virus PCR results (positive or negative) and OtHV-1 specific PCR results (positive or 

negative) and blubber thickness.  Due to the correlation identified between the body 

condition measures (Figure 7.1), only one body condition measure was included in the 

model. Blubber thickness was chosen due to its previously identified importance in 

predicting cancer status. Further to this it is not affected by other pathological processes 

which could potentially affect the other measures, an example being an increase in body 

mass due to ascites or organomegaly which would make an animal appear in better 

condition than it actually was.  

Fig 7.2. Comparison of 

blubber thickness in 113 

CSLs; 70 controls and 43 

with UGC. Animals with UGC 

have significantly thinner 

blubber.  
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The “step” function was again used and best model identified was found to include 

blubber thickness, OtHV-1 status specifically and Pv11 genotype (AIC 60.73). The 

results of this GLM are shown in Table 7.3. This model identified a significant 

relationship between the presence of cancer and homozygosity at the Pv11 locus and 

positive OtHV-1 status, but unlike the model consisting of 113 animals a significant 

relationship was not identified regarding blubber thickness.  

Table 7.3 GLM results showing a significant relationship (p<0.05) between homozygosity at the 

Pv11 locus and OtHV-1 postive virus status with the presence of UGC. 57 animals were 

included in the model. 

Variable Estimate Standard Error Pr(>|z|)    

*Pv11GTHO 1.8732      0.7032    0.00772 

**BT -0.9382      0.5942    0.11438    

***OtHV-1Pos 2.3141      0.8431    0.00606 

*Pv11 homozygous genotype; **Blubber thickness;***OtHV-1 status as gained from the OtHV-1 

specific PCR 

Odds ratios were also recorded for Pv11 genotype and OtHV-1 status as detailed in 

Table 7.4.  The odds ratios recorded were much greater than in the previous model 

however the confidence intervals were also larger, this may be an effect of the smaller 

sample size. 

Table 7.4 Crude and adjusted odds ratios for Pv11 genotype and OtHV-1 status showing that 

UGC is over six times as likely in animals homozygous at the Pv11 locus and over 10 times as 

likely with animals  positive for OtHV-1. Significance accepted at the 5% level. 

Variable Crude OR (95% CI) Adjusted OR (95% 

CI) 

P(LR-test) 

*Pv11GT:HOvsHT 5.68 (1.74,18.54) 6.51 (1.64,25.83) 0.005 

**OtHV-1:Pos vs Neg 10 (2.32,43.04) 10.12 (1.94,52.8) 0.003 

*Pvll genotype, HO: homozygous; HT: heterozygous; ** OtHV-1 status as gained from the 

OtHV-1 specific PCR 
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Discussion 

The results of the present study indicate that out of the areas examined, three risk factors 

for the presence of UGC in the CSL are apparent; Pv11 genotype, blubber thickness and 

OtHV-1 status.  Both GLMs show a relationship with homozygostiy at the Pv11 locus 

and UGC, whereas the additional two microsatellite loci examined (M11a and Hg8.10) 

remain insignificant.  Blubber thickness was not found to be significant in the smaller 

sample size analysed, however in the analysis involving all 113 animals it was found to 

be significantly associated with the presence of UGC, The discrepancy between the two 

models suggests that sample size affects this result.  The presence of OtHV-1 as 

determined by the OtHV-1 specific PCR indicates a strong association with UGC. 

In this study blubber thickness could be thought of as a surrogate for blubber 

contaminant (pollutant) level. Previous studies have demonstrated contaminant levels in 

blubber are associated with the presence of UGC (Ylitalo et al., 2005). The study by 

Ylitalo et al., (2005) measured organochlorine (OC) contaminants directly in blubber 

samples and identified higher levels of polychlorinated biphenyls (PCBs) in animals 

dying of UGC compared with those dying of other causes.  In order to confirm that the 

use of blubber thickness is appropriate as a surrogate for the direct measurement of 

contaminants, an understanding of blubber dynamics is necessary. To clarify the 

situation, an investigation was carried out into the concentration of various persistent 

organic pollutants and changing blubber mass
4
 in animals suffering from domoic acid 

toxicity. (Hall et al., 2008).  The study identified that as blubber mass decreased, 

contaminant levels increased suggesting that they concentrate in the remaining blubber 

(Hall et al., 2008). Therefore although the actual levels of contaminants in the blubber 

of animals entered into our study were not available as the samples are still be analysed, 

the result that blubber thickness is significant could be due to this relationship.  It could 

however be postulated that the higher contaminant level identified in blubber in animals 

suffering from UGC is a result of the thinner blubber rather than being associated with 

the presence of cancer. Ylitalo et al., (2005) investigated this possibility and identified 

that after controlling for differences in blubber thickness between control animals and 

                                                           
4
 Blubber mass is correlated with blubber thickness in pinnipeds as they only store fat subcutaneously  

(Hall et al., 2008)    
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those with cancer, PCB levels were still found to be significantly associated with the 

presence of UGC.  

As large marine predators, CSLs are particularly susceptible to the effects of 

contaminants due to biomagnification through the food chain and numerous studies 

report on the levels of contaminants including OCs in tissues from CSLs  (Harper et al., 

2007, Stapleton et al., 2006, Kajiwara et al., 2001, Connolly and Glaser, 2002, Blasius 

and Goodmanlowe, 2008, Le Boeuf et al., 2002a).  It is known that the waters the CSLs 

inhabit are historically contaminated with various industrial and agricultural chemicals 

including PCBs and dichloro-diphenyl-trichloroethanes (DDTs). These compounds have 

been identified in CSL prey species thereby allowing exposure via ingestion of 

contaminated food (Brown et al., 1998, Venkatesan et al., 1999, Blasius and 

Goodmanlowe, 2008, Jarvis et al., 2007).  In female pinnipeds OC levels in the blubber 

are seen to fluctuate with physiological changes such as lactation and it is recognised 

that OCs can pass to the young both via the milk and in-utero (Debier et al., 2003b, 

Addison and Brodie, 1977, Bacon et al., 1992, Debier et al., 2003a, Greig et al., 2007).  

Lactation and pregnancy are  therefore postulated to reduce contaminant load in female 

animals,  males are clearly unable to unload contaminants in this way and higher 

contaminant levels in the blubber of male CSLs with UGC have been recognised in 

comparison to those in female animals (Ylitalo et al., 2005, Debier et al., 2003b, Nakata 

et al., 1995). 

Contaminants can have a direct genotoxic effect predisposing the animal to cancer as 

mentioned in Chapter 1 (section 1.5.4).  They are also seen to cause detrimental health 

effects in the form of immunosuppression. This effect has been reported in experiments 

involving harbour seals fed with fish caught in waters known to be polluted with 

organochlorines, where reduced activity of natural killer cells and T cell response was 

recognised in comparison to in control animals (de Swart et al., 1996, Ross et al., 1995). 

The known immunosuppressive effect of contaminants holds relevance to the present 

study as it could be speculated that an increased contaminant level in blubber of the 

CSLs suffering from UGC predisposes the animals to infection with OtHV-1.   

OtHV-1 as demonstrated by the OtHV-1 specific PCR in the present study appears to be 

strongly associated with the presence of UGC in CSL. However this study identified 
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that OtHV-1 is also present in animals not suffering from the disease, therefore the 

involvement of other factors in cancer pathogenesis cannot be ruled out. Indeed in a 

study investigating the development of Kaposi sarcoma, disease was not seen to develop 

until co-infection with the retrovirus HIV had occurred (Jacobson et al., 2000).  The 

only retrovirus so far identified in CSLs is a retrovirus belonging to the subfamily 

Spumavirinae (known as “foamy viruses” ) in lymph nodes in a captive CSL suffering 

from recurrent skin lesions (Kennedy-Stoskopf et al., 1986). Unlike the other two 

subfamilies in the retrovirus group (the Oncovirinae and the Lentivirinae) neoplastic 

disease has not been associated with infection with viruses belonging to the group of 

foamy viruses (Coffin, 1990, Meiering and Linial, 2001).   However, other health 

effects have been noted as rabbits experimentally infected with Simian foamy virus type 

7 showed immunosuppression for up to two weeks following inoculation, in addition to 

this a herpesvirus infection (of unspecified species) was diagnosed in one of the rabbits 

(Hooks and Detrick-Hooks, 1979).  Interestingly, a herpesvirus (of unspecified species) 

was also isolated from the CSL infected with a foamy virus (Kennedy-Stoskopf et al., 

1986).   

Identifying the candidate agent responsible for initiation or promotion of cancer is 

challenging and becomes more difficult if that agent is no longer present. In a study 

investigating genital tumours in Atlantic bottlenose dolphins (Tursiops truncates) a γ- 

herpesvirus was identified via PCR carried out on DNA extracted from the tumours.  

The authors additionally carried out serology for papillomavirus, the results of which 

indicated past or present infection with a papillomavirus in 12 out of 14 animals 

suffering from genital tumours. In addition they reported that the remaining two animals 

had antibody levels near to the seropositive cutoff (Rehtanz et al., 2012).  This finding 

led Rehtanz et al., (2012) to postulate that a “hit and run” effect may be occurring where 

initiation of cancer was potentially due to a papillomavirus infection that had since 

cleared.  It was therefore concluded that it was not possible to know which viral agent 

(herpes or papillomavirus) potentially initiated or promoted the disease (Rehtanz et al., 

2012).   

Previous work investigating the involvement of papillomavirus in CSL with UGC has 

been undertaken in two studies (Lipscomb et al., 2000, Buckles et al., 2006). The first 
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study examined metastatic tissue from four animals via both southern blotting (using 

five different papillomavirus probes) and PCR (targeting the conserved E1 gene) but 

failed to find the virus (Lipscomb et al., 2000). In the second study only one out of the 

15 animals with UGC investigated was found to be positive for papillomavirus via PCR 

(targeting the conserved L1 gene) with the papillomavirus identified as being human 

papillomavirus 21, suggesting contamination during tissue handling (Buckles et al., 

2006).  At the time of these experiments papillomavirus had not been found  in 

pinnipeds, however in 2012 a novel papillomavirus was successfully identified in skin 

lesions from two CSLs (Rivera et al., 2012).  In this study  four nested PCRs using 

degenerate primers were used and targeted the conserved papillomavirus E1 gene 

(Rivera et al., 2012).  Phylogenetic analysis identified that the novel ZcPV1 virus was 

closely related to canine papillomaviruses 3 and 4 (CPV3, CPV4) of genus 

Chipapillomavirus. In dogs these viruses have been associated with skin lesions and in 

the case of CPV3 a role in skin cancer has been suggested (Lange et al., 2009b, Lange et 

al., 2009a).  All three studies used degenerate primers targeted to conserved 

papillomavirus gene regions to allow the detection of virus in the absence of exact gene 

sequence.  Rivera et al., (2012) additionally used a nested technique which potentially 

increased the sensitivity of the test as a result of the increased number of amplification 

cycles.  

UGC in CSL mirrors human cervical carcinoma in age demographic as human cervical 

cancer predominately occurs in adult but not necessarily aged women (Buckles et al., 

2006, Gustafsson et al., 1997). Worldwide the disease in women has been strongly 

associated with papillomavirus 16 and 18 and this has influenced vaccine development 

(Munoz et al., 2004, Bosch et al., 2008, Schiffman et al., 1993). This along with the 

findings in the bottlenose dolphins with genital tumours indicates that the possible 

involvement of papillomavirus in UGC in CSL merits further investigation.   

Viruses, including various herpesviruses, are reported to be present at a higher 

prevalence in the population than the disease they are associated with and the action of 

co-factors helps to explain this phenomenon (Morris et al., 1995, Monini et al., 1996, 

Roizman, 1995).  Further to this genetic susceptibility to herpesvirus infection has been 

reported.  A study undertaken into KSHV infection susceptibility in individuals in an 
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KSHV endemic area identified a genetic predisposition via a segregation analysis 

(Plancoulaine et al., 2003).A further study using a genome wide linkage analysis in 

samples from a different endemic area found a genetic locus of interest on chromosome 

three (Pedergnana et al., 2012). Due to the lack of information available regarding the 

role of the HPSE2 gene it is not known whether it may influence susceptibility to 

OtHV-1 infection and the present study is too small to assist in clarifying this, as certain 

genotypes only appear in small numbers in the CSLs.  However, the reported route of 

entry of herpesviruses into cells includes binding to heparan sulphate ligands, thus 

suggesting a potential role due to experiments identifying HPA2’s high affinity to 

heparan sulphate (Levy-Adam et al., 2010, Shukla and Spear, 2001, Akula et al., 2001). 

That being said, the route of entry of KSHV, the virus identified as closely related to 

OtHV-1, into B cells where latency occurs is not completely understood as heparan 

sulphate is found to be expressed only at low levels on the surface of these cells 

(Jarousse et al., 2008).        

CSLs homozygous at the Pv11 locus were found to be more likely to have UGC than 

those that were heterozygous.  The location of Pv11 within the HPSE2 gene and the 

presence of differential labelling of HPA2 in UGC affected animals of one genotype 

strongly suggests that HPSE2 plays a role in UGC in the CSL.  Allele 1 was by far the 

most common Pv11 allele identified in this study and the only homozygous allele type 

that exhibited labelling of HPA2, therefore posing the question as to whether this 

genotype offers a protective advantage to this species.  There is relatively little known 

about the function of the HPSE2 gene even in humans and there is much scope for 

further investigation into this gene in the CSL. If future studies confirm the involvement 

of HPSE2 in UGC in CSL a potential diagnostic role could be explored. The HPSE2 

gene shares sequence homology with the HPSE gene and heparanase mRNA has been 

investigated as a possible diagnostic marker in urine for bladder cancer in humans 

(Zhao et al., 2009). 

Although the present study has identified HPSE2 as potentially important in the 

pathogenesis of UGC in the CSL, the involvement of other genes in the vicinity cannot 

be discounted and this should be considered in future investigations.  
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Future Directions 

This study is nested within a wider epidemiological study with the main focus of future 

directions involving Pv11 genotyping, OtHV-1 virus screening and contaminant 

analysis of a larger number of animals in order to increase the power of the study. The 

extended study would  ideally contain at least 100 cases and  200 controls, all adult 

female animals so as to remove the confounding factors of sex and age (Hall and 

Gulland, 2011).  

From the findings of the present study there are areas that would benefit from further 

scrutiny. The possible presence of genetic instability in the form of microsatellite 

instability and loss of heterozygosity at the Pv11 locus should be investigated in a larger 

number of samples and importantly following micro-dissection. More detailed analysis 

of the HPSE2 gene in UGC positive and control animals by cloning and sequencing 

more potential isoforms along with the identification of HPA2 protein will allow greater 

understanding of the role of HPSE2 in UGC. This could be complimented by 

quantitative PCR (qPCR) in order to identify any difference in the level of expression of 

a particular isoform in animals with UGC compared to those without.  Investigations 

into the presence of OtHV-1 in CSL could be modified by implementing a qPCR as a 

more sensitive test in order to identify the virus.  Further to this the undertaking of a 

second degenerate PCR, targeting the glycoprotein B gene alongside the pan-herpes 

PCR targeting the Dpol gene, may assist in clarifying whether a closely related virus or 

variant of OtHV-1 is present.  Finally the potential involvement of a retrovirus either 

oncogenic or benign in CSL with UGC, along with serology for past or present infection 

with papillomavirus should be considered in future investigations. 

Due to the complicated nature of neoplasia it is very unlikely that the HPSE2 gene is the 

only gene associated with UGC in the CSL and carrying out genome wide studies may 

present other avenues of investigation into the disease. A study such as this has been 

undertaken previously in CSL and employed microarray technology to compare gene 

expression profiles in animals suffering from leptospirosis to those suffering from 

domoic acid toxicity (Mancia et al., 2012). The study developed a microarray for CSL 

by identifying probes exhibiting cross hybridisation with a canine commercial 

microarray and resulted in a custom array of 15000 probes. The study identified the 
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differential expression of 348 genes in domoic acid toxicity compared to in animals 

suffering from leptospirosis (Mancia et al., 2012). Implementing this technology in 

studying UGC in CSL may therefore be a beneficial next step in gaining a wider 

understanding of a genetic basis of the disease. 
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Conclusion  

Cancer is not a “new” disease as evidence of neoplasia has been seen in both dinosaurs 

and in individuals from ancient civilisations (Binder et al., 2014, Rothschild et al., 

2003). It is a complex multi-factorial condition where the occurrence of genetic defects 

ultimately results in loss of control of the cell cycle (Stanhope et al., 1964, Bunz, 2008, 

Hahn and Weinberg, 2002, Collins et al., 1997). The present study has aimed to answer 

four main questions and these will now be considered alongside a summary of the main 

findings:        

1. Is there an association between the genotype of certain genetic markers and the 

presence of UGC in the CSL?  

The study has identified a significant association between homozyosity at the Pv11 

microsatellite and the presence of UGC in the CSL, where animals were found to be 

almost twice as likely to suffer from the disease if they had a homozygous Pv11 

genotype (crude odds ratio: 1.62 CI: 1.04-2.58; p=0.033).  No particular allele 

combination was identified as significant; however this was possibly the result of the 

sample size as a number of genotypes were only present in small numbers.  

2. If an association is identified with a genetic marker and the presence of UGC 

does it indicate a gene of interest? 

Comparative genomic studies and molecular techniques placed the Pv11 microsatellite 

within the HPSE2 gene. The HPSE2 shares 35% amino acid sequence identity with the 

HPSE gene, a gene long known to be involved in tumour metastasis.  Studies so far 

undertaken into the role of HPSE2 have suggested that HPSE2 does play a role in 

cancer however the exact function is unknown.  Although the present study failed to 

identify differences between HPSE2 expression products in animals of different Pv11 

genotypes and disease state, differential labelling of the HPA2 protein in urogenital tract 

tissue was evident. Labelling of HPA2 was only present in CSL suffering from UGC of 

only one Pv11 homozygous genotype (1,1).  The presence of differential labelling 

strongly suggests that Pv11 and the HPSE2 gene are linked and therefore indicates that 

HPSE2 is a gene of interest in the development of UGC in this species.    
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3. Does genetic instability occur in CSL with UGC? 

Microsatellite instability (MI) in the form of contraction of the repeat CA unit was 

identified in three samples; two control animals and one UGC positive animal.  The 

limited instability identified suggests that MI at the Pv11 locus is not a common change. 

Additionally there is the potential that the MI identified is a result of Taq polymerase 

slippage during PCR.  Loss of heterozygosity (LOH) at the Pv11 locus was identified in 

one UGC positive animal (out of the seven UGC positive heterozygotes and 26 control 

heterozygotes examined).  Clarification of the situation as to whether genetic instability 

is a feature of the Pv11 locus is still required and repetition of the experiments 

investigating the presence of MI and LOH at the Pv11 locus should be carried out with 

a larger sample size alongside implementing micro-dissection to collect samples. 

4. Is the presence of herpesvirus associated with the occurrence of UGC? 

The two methods employed to identify the presence of herpesvirus yielded very 

different results. Although sequences gained from the pan herpes PCR identified a 

single virus (OtHV-1) it also identified a higher prevalence in the control animals than 

the OtHV-1 specific PCR. This resulted in the lack of a significant association between 

the presence of OtHV-1 and UGC being identified with the pan herpes screen 

(p=0.788), this was opposed to a strongly significant association identified with the 

OtHV-1 specific PCR (p=0.0002).  The contradictory results could be explained by 

potential differences in sensitivity of the tests or presence of a variant of the OtHV-1 

virus being detected by the pan herpes screen.  Quantitative molecular techniques along 

with more detailed sequencing of the OtHV-1 virus is therefore required to assist in 

further understanding the relationship between herpesvirus and UGC in the CSL.  

Alongside the identification of a genetic basis and potential infectious aetiology to UGC 

in the CSL, further analysis identified thinner blubber thickness to be a risk factor (with 

blubber thickness being considered a surrogate for contaminant level). Therefore the 

multi-factorial nature of cancer is clearly recognised in UGC in the CSL with more than 

one risk factor being identified.  Thus strongly supporting the initial general hypothesis:  

 “Urogenital carcinoma in the California sea lion has a multi-factorial aetiology 

including a genetic and infectious basis” 
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The importance of understanding UGC in CSL has heightened since the discovery of 

the disease in a South American fur seal.  The fact that it has been recognised in an 

otariid species other than the CSL suggests that other otariids including those 

considered as an endangered or threatened species may also be at risk. 

Investigating diseases in animals, especially wildlife, holds many difficulties not 

encountered in disease investigation in humans, however the parallels that exist to 

human diseases show it to be an area worthy of further exploration (Airley, 2012, 

Paoloni and Khanna, 2008).   The present study has identified what may be the first 

cancer gene in a wildlife species.  These findings offer support for further studies into 

HPSE2s involvement in cancers in other species including in humans, where 

investigations involving this gene are still in their infancy. 

In light of recent world events such as the Deepwater Horizon oil spill in the Gulf of 

Mexico, resulting in a large environmental exposure to carcinogens, studies into wildlife 

cancer may become more important. Effects on wildlife have already been noted in the 

form of endocrine disruption in bottlenose dolphins in the area (Schwacke et al., 2014).  

The role that marine mammals are believed to play as sentinels for the health of the 

marine environment reinforces the importance of understanding what factors challenge 

their health as it may well highlight risks to our own.  
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Appendix A  

Genotypes of the 113 animals in the study at three microsatellite loci including cause of death 

(DAT: domoic acid toxicity; Misc. Inf.: Miscellaneous infection and inflammation; Undet.: 

Undetermined; Other Neo. Neoplasia other than urogenital carcinoma; UGC: urogenital 

carcinoma).  Genotype derived from skin DNA. 

Animal ID Pv11 genotype  M11a genotype  Hg8.10 genotype Cause of death 

9086 (1) 1,3  2,8 6,7 DAT 

9113 (7) 2,4 3,4 2,7 DAT 

9114 (2) 1,1 8,8 2,5 DAT 

9120 (20) 1,2 3,4 2,4 DAT 

9184 (14) 1,1 7,8 5,6 DAT 

9190 2,3 1,1 4,4 DAT 

9193 (27) 2,4 1,8 2,5 DAT 

9196 (78) 1,1 7,8 4,6 DAT 

9198 (21) 1,4 1,8 4,6 DAT 

9201 (6) 1,4 7,7 5,5 DAT 

9205 (19) 2,4 1,8 2,5 DAT 

9208 (11) 1,4 3,8 2,4 DAT 

9212 (10) 1,2 8,8 4,7 DAT 

9221 (16) 1,3 7,8 2,4 DAT 

9245 (46) 1,2 7,7 5,6 Misc. Inf. 

9254 (3) 2,5 1,8 2,5 Misc. Inf. 

9260 (13) 1,2 3,7 4,4 DAT 

9299 (24) 1,2 2,7 4,5 DAT 

9303 (36) 1,1 7,7 4,4 DAT 

9304 (47) 1,2 1,3 5,5 DAT 

9315 (48) 1,3 6,8 5,5 DAT 

9320 (29) 1,4 4,9 5,6 DAT 

9356 (32) 3,4 1,2 4,5 DAT 

9463 (28) 1,1 4,4 5,5 Misc. Inf. 

9468 (5) 1,4 2,7 4,4 Misc. Inf. 

9574 (40) 1,2 2,8 4,5 DAT 

9597 (43) 2,2 7,9 2,6 DAT 

9694 (9) 1,2 3,7 2,4 Misc. Inf. 

9755 (35) 1,2 8,8 7,7 Undet. 
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Animal Pv11 genotype M11a genotype Hg8.10 genotype Cause of death 

9764 1,3 1,8 5,5 DAT 

9779 (4) 1,4 1,3 2,5 Misc. Inf. 

9801 1,4 3,7 4,5 DAT 

9821 (72) 1,2 8,8 4,4 DAT 

9866 (44) 1,4 4,7 2,6 DAT 

9871 (23) 3,5 3,8 2,4 DAT 

9881 1,2 7,7 2,3 DAT 

9906 (26) 1,2 1,8 5,7 DAT 

9907 (37) 1,2 3,3 5,6 DAT 

7819 (75) 2,2 3,8 4,4 DAT 

9325 (76) 1,1 8,8 2,5 DAT 

7290 2,4 7,8 4,5 DAT 

7295 1,2 3,7 4,4 Other Neo. 

7371 2,4 4,7 5,5 Other Neo. 

7147 1,4 2,8 7,7 DAT 

7329 1,2 3,3 2,2 Misc. Inf. 

7159 4,4 7,8 4,5 DAT 

7131 3,3 8,8 4,5 DAT 

7741 3,4 3,8 5,7 DAT 

7750 2,2 7,7 4,5 Undet. 

8029 (84) 2,2 3,7 4,7 DAT 

6863 1,2 3,8 2,4 Lept. 

8041 1,3 3,8 5,5 DAT 

8645 1,2 2,4 2,4 Trauma 

9100 (77) 1,1 2,4 2,4 DAT 

9079 1,4 2,7 2,5 DAT 

8901 1,2 3,8 4,6 Misc. Inf. 

8999 1,4 1,8 5,7 Trauma 

8795 1,2 8,8 5,7 DAT 

8958 (79) 1,1 7,8 4,6 DAT 

9112 1,2 3,4 2,7 DAT 

9157 1,2 3,8 4,4 DAT 

9164 1,3 1,7 5,5 DAT 

8722 1,4 7,8 5,5 DAT 

9155 1,2 4,4 5,7 DAT 
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Animal Pv11 genotype M11a genotype Hg8.10 genotype Cause of death 

9255 1,2 1,2 2,4 Misc. Inf. 

9008 (80) 1,1 1,7 4,6 DAT 

9032 1,2 8,8 5,7 Misc. Inf. 

9534 1,4 3,8 6,6 Other Neo. 

7977 (17) 1,2 1,8 2,6 Other Neo. 

7594 2,3 1,8 5,7 DAT 

7919 1,2 3,3 2,5 UGC 

7997 (68) 1,1 7,8 5,5 UGC 

8059 (30) 3,3 8,8 4,5 UGC 

8431 (69) 1,1 1,8 4,5 UGC 

8489 (15) 1,2 8,8 5,5 UGC 

8921 (33) 4,4 4,8 2,4 UGC 

8992 (22) 1,2 3,8 4,5 UGC 

9107 (12) 1,3 4,7 4,7 UGC 

9225 (18) 1,4 1,4 5,7 UGC 

9251 1,4 4,8 7,7 UGC 

9333 (38) 1,3 8,8 1,4 UGC 

9339 (70) 3,3 2,4 5,5 UGC 

9572 (71) 3,3 8,8 5,5 UGC 

9724 (25) 2,2 3,4 2,5 UGC 

9757 (39) 1,1 1,1 4,5 UGC 

9770 (42) 2,2 1,8 5,6 UGC 

9804 (81) 1,1 2,4 4,5 UGC 

9827 (41) 1,1 1,8 5,5 UGC 

9853 (31) 1,2 7,8 6,7 UGC 

9904 (45) 1,3 4,7 4,5 UGC 

9911 (34) 1,1 8,8 4,7 UGC 

7867 (73) 3,3 8,8 4,6 UGC 

7972 (74) 1,1 7,7 2,4 UGC 

7278 1,2 6,8 4,5 UGC 

7495 1,3 4,8 4,5 UGC 

7468 (83) 1,1 2,7 4,7 UGC 

7506 1,2 3,3 4,5 UGC 

7379 1,4 2,8 4,6 UGC 

7380 1,4 2,7 4,5 UGC 
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Animal Pv11 genotype M11a genotype Hg8.10 genotype Cause of death 

7425 1,2 1,8 6,7 UGC 

7325 1,2 4,6 2,7 UGC 

7140 (82) 1,1 1,8 2,5 UGC 

6370 1,1 7,8 4,4 UGC 

7150 2,4 1,7 2,5 UGC 

7720 1,4 1,8 4,5 UGC 

7892 1,3 3,8 5,6 UGC 

7766 2,4 8,8 4,4 UGC 

8018 1,2 3,8 2,5 UGC 

8039 1,3 7,8 6,6 UGC 

8068 2,4 3,8 2,6 UGC 

7755 1,2 3,4 4,4 UGC 

8673 1,4 5,8 4,4 UGC 

9091 1,2 2,7 2,4 UGC 
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Appendix B   

Details of the Pv11 genotype of the 270 additional samples consisting of 66 animals with 

urogenital carcinoma (UGC) and 204 without UGC (Control) genotyped by Dr Karina Acevedo-

Whitehouse.  (Two additional alleles were identified by Dr Acevedo-Whitehouse and are 

detailed in the table as alleles ‘A’ and ‘B’). Genotyped derived from skin DNA.  

Animal Pv11 genotype Urogenital carcinoma status 

Z1132 A, A Control 

Z104 B,1 Control 

Z1234 1,1 Control 

Z797 1,1 Control 

Z251 1,1 Control 

Z805 1,1 Control 

Z792 1,1 Control 

Z864 1,1 Control 

Z1408 1,1 Control 

Z148 1,1 Control 

Z1133 1,1 Control 

Z798 1,1 Control 

Z1031 1,1 Control 

Z353 1,1 Control 

Z1211 1,1 Control 

Z800 1,1 Control 

Z799 1,1 Control 

Z1396 1,1 Control 

Z809 1,1 Control 

Z499 1,1 Control 

Z1232 1,1 Control 

Z471 1,1 Control 

Z1293 1,1 Control 

Z263 1,1 Control 

Z1220 1,1 Control 

Z1238 1,1 Control 

Z833 1,1 Control 

Z1212 1,1 Control 

Z041 1,1 Control 
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Animal  Pv11 genotype Urogenital carcinoma status 

Z1100 1,1 Control 

Z1060 1,1 Control 

Z811 1,1 Control 

Z870 1,1 Control 

Z1079 1,1 Control 

Z485 1,1 Control 

Z1030 1,1 Control 

Z015 1,1 Control 

Z1111 1,1 Control 

Z1153 1,1 Control 

Z008 1,1 Control 

Z075 1,1 Control 

Z270 1,1 Control 

Z112 1,1 Control 

Z1379 1,1 Control 

Z476 1,1 Control 

Z961 1,1 Control 

Z1335 1,1 Control 

Z143 1,1 Control 

Z277 1,1 Control 

Z967 1,1 Control 

Z124 1,1 Control 

Z252 1,1 Control 

Z158 1,1 Control 

Z484 1,1 Control 

Z1308 1,2 Control 

Z1160 1,2 Control 

Z1248 1,2 Control 

Z802 1,2 Control 

Z1383 1,2 Control 

Z871 1,2 Control 

Z944 1,2 Control 

Z260 1,2 Control 

Z1214 1,2 Control 

Z268 1,2 Control 
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 Animal Pv11 genotype Urogenital carcinoma status 

Z818 1,2 Control 

Z822 1,2 Control 

Z407 1,2 Control 

Z249 1,2 Control 

Z1147 1,2 Control 

Z1129 1,2 Control 

Z435 1,2 Control 

Z245 1,2 Control 

Z812 1,2 Control 

Z789 1,2 Control 

Z004 1,2 Control 

Z1219 1,2 Control 

Z1110 1,2 Control 

Z1205 1,2 Control 

Z951 1,2 Control 

Z945 1,2 Control 

Z1155 1,2 Control 

Z1235 1,2 Control 

Z863 1,2 Control 

Z796 1,2 Control 

Z1134 1,2 Control 

Z1237 1,2 Control 

Z803 1,2 Control 

Z162 1,2 Control 

Z121 1,2 Control 

Z1154 1,2 Control 

Z092 1,2 Control 

Z831 1,2 Control 

Z1298 1,2 Control 

Z1083 1,2 Control 

Z111 1,2 Control 

Z007 1,2 Control 

Z145 1,2 Control 

Z218 1,2 Control 

Z423 1,2 Control 
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Animal Pv11 genotype Urogenital carcinoma status 

Z841 1,2 Control 

Z1123 1,2 Control 

Z113 1,2 Control 

Z1381 1,2 Control 

Z1143 1,2 Control 

Z1120 1,2 Control 

Z187 1,2 Control 

Z189 1,2 Control 

Z403 1,2 Control 

Z207 1,2 Control 

Z1376 1,2 Control 

Z832 1,2 Control 

Z1386 1,3 Control 

Z868 1,3 Control 

Z1240 1,3 Control 

Z038 1,3 Control 

Z891 1,3 Control 

Z037 1,3 Control 

Z790 1,3 Control 

Z022 1,3 Control 

Z1159 1,3 Control 

Z1034 1,3 Control 

Z1131 1,3 Control 

Z1310 1,3 Control 

Z823 1,3 Control 

Z185 1,3 Control 

Z062 1,3 Control 

Z469 1,3 Control 

Z147 1,3 Control 

Z177 1,3 Control 

Z119 1,3 Control 

Z462 1,4 Control 

Z942 1,4 Control 

Z125 1,4 Control 

Z026 1,4 Control 
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Animal Pv11 genotype Urogenital carcinoma status 

Z810 1,4 Control 

Z807 1,4 Control 

Z1324 1,4 Control 

Z470 1,4 Control 

Z257 1,4 Control 

Z1204 1,4 Control 

Z793 1,4 Control 

Z947 1,4 Control 

Z057 1,4 Control 

Z359 1,4 Control 

Z1239 1,4 Control 

Z1397 1,4 Control 

Z816 1,4 Control 

Z016 1,4 Control 

Z791 1,4 Control 

Z990 1,4 Control 

Z1331 1,4 Control 

Z097 1,4 Control 

Z069 1,4 Control 

Z133 1,4 Control 

Z1325 1,4 Control 

Z795 1,5 Control 

Z475 1,5 Control 

Z455 1,5 Control 

Z1229 2,2 Control 

Z1236 2,2 Control 

Z395 2,2 Control 

Z153 2,2 Control 

Z939 2,2 Control 

Z804 2,2 Control 

Z1231 2,2 Control 

Z472 2,2 Control 

Z247 2,2 Control 

Z817 2,2 Control 

Z946 2,2 Control 



195 
 

Animal Pv11 genotype Urogenital carcinoma status 

Z1319 2,2 Control 

Z001 2,2 Control 

Z1177 2,2 Control 

Z1051 2,2 Control 

Z049 2,2 Control 

Z1314 2,2 Control 

Z031 2,3 Control 

Z806 2,3 Control 

Z045 2,3 Control 

Z867 2,3 Control 

Z262 2,3 Control 

Z869 2,3 Control 

Z826 2,3 Control 

Z330 2,3 Control 

Z463 2,3 Control 

Z1375 2,3 Control 

Z450 2,3 Control 

Z814 2,4 Control 

Z278 2,4 Control 

Z409 2,4 Control 

Z042 2,4 Control 

Z866 2,4 Control 

Z1198 2,4 Control 

Z454 2,4 Control 

Z1103 2,4 Control 

Z838 2,4 Control 

Z018 3,3 Control 

Z815 3,3 Control 

Z442 3,3 Control 

Z1294 3,4 Control 

Z003 3,4 Control 

Z100 3,4 Control 

Z1242 3,5 Control 

Z024 4,4 Control 

Z801 4,4 Control 
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 Animal  Pv11 genotype Urogenital carcinoma status 

Z139 B,1 UGC 

Z077 1,1 UGC 

Z1116 1,1 UGC 

Z265 1,1 UGC 

Z827 1,1 UGC 

Z1048 1,1 UGC 

Z829 1,1 UGC 

Z954 1,1 UGC 

Z808 1,1 UGC 

Z006 1,1 UGC 

Z1380 1,1 UGC 

Z105 1,1 UGC 

Z835 1,1 UGC 

Z181 1,1 UGC 

Z443 1,1 UGC 

Z273 1,1 UGC 

Z141 1,1 UGC 

CSL33 1,1 UGC 

CSL223 1,1 UGC 

CSL292 1,1 UGC 

Z1312 1,2 UGC 

Z426 1,2 UGC 

Z445 1,2 UGC 

Z012 1,2 UGC 

Z1311 1,2 UGC 

Z1384 1,2 UGC 

Z172 1,2 UGC 

CSL221 1,2 UGC 

Z096 1,3 UGC 

Z482 1,4 UGC 

Z819 1,4 UGC 

Z788 1,4 UGC 

Z1151 1,4 UGC 

Z830 1,4 UGC 

Z825 1,4 UGC 
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 Animal  Pv11 genotype Urogenital carcinoma status 

Z828 1,4 UGC 

Z013 1,4 UGC 

Z1385 1,4 UGC 

Z464 2,2 UGC 

Z821 2,2 UGC 

Z1382 2,2 UGC 

Z127 2,2 UGC 

Z101 2,2 UGC 

CSL183 2,2 UGC 

CSL310 2,2 UGC 

Z845 2,3 UGC 

Z824 2,3 UGC 

Z839 2,3 UGC 

Z1387 2,4 UGC 

Z079 2,4 UGC 

Z837 2,4 UGC 

Z091 2,4 UGC 

Z836 2,4 UGC 

Z425 2,4 UGC 

Z083 2,4 UGC 

CSL198 2,4 UGC 

Z775 2,4 UGC 

Z005 3,3 UGC 

CSL241 3,3 UGC 

CSL284 3,3 UGC 

Z844 3,3 UGC 

CSL177 3,4 UGC 

CSL371 3,4 UGC 

CSL16 4,4 UGC 

Z117 4,4 UGC 

CSL243 4,4 UGC 
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Appendix C 

Results of the pan-herpes PCR and OtHV-1 specific PCR. An undetermined result indicates an 

inconclusive PCR. All pan-herpes PCR positive samples were identified as OtHV-1 on 

sequencing. Cause of death: - DAT: domoic acid toxicity; Misc. Inf.: Miscellaneous infection and 

inflammation; Undet.: Undetermined; Other Neo. Neoplasia other than urogenital carcinoma; 

UGC: urogenital carcinoma). (*Genotype determined from DNA from lower genital tract tissue).  

Animal 

ID 

Pv11 

genotype 

Tissue  Pan-herpes 

PCR 

OtHV-1 specific 

PCR 

Cause of 

death 

9086 (1) 1,3 Cervix Positive Negative DAT 

9114 (2) 1,1 Cervix Positive Negative DAT 

9254 (3) 2,5 Cervix Positive Negative Misc. Inf. 

9779 (4) 1,4 Cervix Positive Negative Misc. Inf. 

9468 (5) 1,4 Cervix Positive Negative Misc. Inf. 

9201 (6) 1,4 Cervix Positive Negative DAT 

9113 (7) 2,4 Cervix Negative Negative DAT 

9274 (8) 2,4* Cervix Undetermined Negative DAT 

9694 (9) 1,2 Cervix Negative Negative Misc. Inf. 

9212 (10) 1,2 Cervix Undetermined Negative DAT 

9208 (11) 1,4 Cervix Positive Negative DAT 

9260 (13) 1,2 Cervix Positive Negative DAT 

9184 (14) 1,1 Cervix Positive Negative DAT 

9221 (16) 1,3 Cervix Negative Negative DAT 

7977 (17) 1,2 Cervix/vagina Negative Negative Other Neo. 

9205 (19) 2,4 Cervix Negative Negative DAT 

9120 (20) 1,2 Cervix Negative Negative DAT 

9198 (21) 1,4 Cervix Positive Negative DAT 

9871 (23) 3,5 Cervix Positive Positive DAT 

9299 (24) 1,2 Cervix Positive Negative DAT 

9906 (26) 1,2 Cervix Positive In DAT 

9193 (27) 2,4 Cervix Undetermined Negative DAT 

9463 (28) 1,1 Cervix Undetermined Negative Misc. Inf. 

9320 (29) 1,4 Cervix Positive Negative DAT 

9356 (32) 3,4 Cervix Negative Positive DAT 

9755 (35) 1,2 Cervix Positive Negative Undet. 

9303 (36) 1,1 Cervix Undetermined Negative DAT 
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Animal 

ID 

Pv11 

genotype 

Tissue Pan-herpes  

PCR 

OtHV-1 specific 

PCR 

Cause of 

death 

9907 (37) 1,2 Cervix Negative Negative DAT 

9574 (40) 1,2 Cervix Negative Negative DAT 

9597 (43) 2,2 Cervix Positive Negative DAT 

9866 (44) 1,4 Cervix Positive Negative DAT 

9245 (46) 1,2 Cervix Positive  Negative Misc. Inf. 

9304 (47) 1,2 Cervix Negative Negative DAT 

9315 (48) 1,3 Cervix Negative Negative DAT 

9821 (72) 1,2 Cervix Positive Negative DAT 

7819 (75) 2,2 Cervix/vagina Positive Negative DAT 

9325 (76) 1,1 Cervix/vagina Positive Negative DAT 

9100 (77) 1,1 Cervix Negative Negative DAT 

9196 (78) 1,1 Cervix Negative Negative DAT 

8958 (79) 1,1 Cervix Negative Negative DAT 

9008 (80) 1,1 Cervix Negative Positive DAT 

8029 (84) 2,2 Cervix Negative Negative DAT 

9107 (12) 1,3 Cervix Negative Positive UGC 

8489 (15) 1,2 Cervix Negative Positive UGC 

9225 (18) 1,4 Cervix Negative Negative UGC 

8992 (22) 1,2 Cervix Positive Negative UGC 

9724 (25) 2,2 Cervix Negative Negative UGC 

8059 (30) 3,3 Cervix/vagina Negative Negative UGC 

9853 (31) 1,2 Cervix Negative Positive UGC 

8921 (33) 4,4 Cervix/vagina Positive Undetermined UGC 

9911 (34) 1,1 Prox. Vagina Positive Positive UGC 

9333 (38) 1,3 Cervix Undetermined Positive UGC 

9757 (39) 1,1 Cervix Negative Positive UGC 

9827 (41) 1,1 Cervix Positive Positive UGC 

9770 (42) 2,2 Cervix Positive Positive UGC 

9904 (45) 1,3 Cervix Positive Negative UGC 

7997 (68) 1,1 Cervix Negative Negative UGC 

8431 (69) 1,1 Cervix/vagina Negative Negative UGC 

9339 (70) 3,3 Cervix Negative Negative UGC 

9572 (71) 3,3 Cervix/vagina Positive Positive UGC 

7867 (73) 3,3 Cervix/vagina Positive Negative UGC 
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Animal 

ID 

Pv11 

genotype 

Tissue Pan-herpes  

PCR 

OtHV-1 specific 

PCR 

Cause of 

death 

7972 (74) 1,1 Cervix Negative Negative UGC 

9804 (81) 1,1 Cervix Positive Negative UGC 

7140 (82) 1,1 Prox. Vagina Positive Positive UGC 

7468 (83) 1,1 Cervix/vagina Positive Positive UGC 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



201 
 

Appendix D  

Standard experimental methods: 

Chapter 3: - Southern blot  

Performing the Southern blot using the DIG method requires a number of steps: 1. DNA 

extraction, 2. Restriction digestion and DNA separation, 3. Gel preparation and blotting, 

4. Preparation of probes, 5. Hybridization and 6. Detection, these are detailed below: 

(1) DNA extraction 

 

Genomic DNA previously extracted from CSL and harbour seal tissue at The Pirbright 

Institute (Compton, UK), were used in this study. All tissues were stored at -80°C and 

following extraction DNA was stored at -20°C.   

(2) Restriction digest and DNA separation 

 

The restriction digest was carried out by combining 40 μl of genomic DNA, 10 μl of 

reaction buffer (NEBuffer3.1 and NEBuffer2.1 for BamHI and HindIII respectively 

both obtain from New England Biolabs Hitchin, UK), 8 μl of either BamHI or HindIII 

and 42 μl of water followed by incubating the mixture overnight at 37°C.  The digest 

reactions were loaded onto a 1% TBE agarose gel with 2 μl loading dye, BlueJuice™ 

Gel Loading Buffer (Invitrogen, Paisley, UK) along with 5 μl of DIG-labelled DNA 

molecular weight marker (Roche Applied Science, Mannheim, Germany). Gel 

electrophoresis was carried out at 100 V until the blue dye was seen to reach the bottom 

of the gel.  The corner of the gel was nicked to prevent incorrect orientation and the gel 

was post stained by briefly submerging it in 1 litre of distilled water containing 25 μl of 

10 mg/ml ethidium bromide (Sigma-Aldrich Ltd, Gillingham, UK).  The gel was then 

photographed under UV light with a ruler alongside to allow future size determination. 

(3) Gel preparation and blotting 

Prior to transferring the DNA onto a membrane (blotting) it was necessary to depurinate 

and denature the DNA to assist in transfer of DNA to the membrane and to break the 

DNA into single strands allowing future hybridisation of probes (Brown, 2001). 
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Depurination was undertaken by placing the gel in approximately 250 ml of 0.25 M HCl 

for 10-15 min, the liquid was agitated gently by rocking, and the gel was then rinsed in 

distilled water for 5 min before the denaturation step. The DNA was denatured by 

placing the gel in approximately 250 ml of a buffer of 1.5 M NaCl and 0.5 M NaOH for 

15-20 min, this step was repeated following replacement with fresh buffer. The gel was 

rinsed again for 5 min in distilled water before being rocked for 30 min in a solution of 

0.5 M Tris 7.5 and 1.5 M NaCl, the solution was renewed and the gel rocked again for 

30 min. The gel was then rinsed for 10 min in 20x Saline-Sodium Citrate (SSC) buffer 

(Sigma-Aldrich, Gillingham, UK). 

To enable blotting a piece of Whatman 3MM paper (GE Healthcare, Little Chalfont, 

UK) was placed on a platform in a tray containing 20x SSC buffer (Sigma-Aldrich, 

Gillingham, UK), the Whatman paper was then left to draw up the buffer until it was 

soaked.  The gel was positioned on top of the soaked Whatman paper and a piece of 

Hybond-N+ (GE Healthcare, Little Chalfont, UK) positively charged nylon membrane, 

cut to the size of the gel, was placed on the gel. Parafilm was placed around the gel and 

two more pieces of soaked Whatman paper placed on the membrane followed by two 

dry pieces and then a stack of paper towels.  Finally a tray with a weight on it was put 

on top (Figure 3.1). The blot was left overnight to allow the transfer of DNA onto the 

membrane by capillary action. 

 

Following overnight blotting the DNA was fixed onto the membrane by UV 

crosslinking in a Stratalinker (Stratgene UV Stratlinker 1800, La Jolla, USA) set at 

Fig. D.1 Southern blot.  Tray 

containing SSC buffer with 

Hybond-N+ membrane on the 

agarose gel, allowing transfer of 

DNA via capillary action. 
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120,000 microjoules/cm
2
. The membrane was then rinsed in distilled water and left to 

air dry.  Once dry it was placed between two sheets of dry Whatman paper in a sealed 

bag and stored until it was required at 4°C. 

(4) Preparation of probes 

In order to label the probes, 300 ng of template DNA probe was added to  an Eppendorf 

containing a total reaction volume of 16 μl (made up with double distilled water) and  

denatured by placing it in a boiling water bath for 10 min followed by chilling on ice. A 

vial of DIG-High Prime (Roche Applied Science, Mannheim, Germany) was mixed and 

4 μl of which was added to the DNA and mixed and briefly centrifuged. The mixture 

was incubated overnight at 37 °C before the reaction was stopped by heating it to 65°C 

for 10 min.  The quantity of labelled probe is estimated by the manufacturer to give an 

expected average yield of 2000 ng.  

(5) Hybridization  

Hybridization was carried out separately for both probes using the same protocol. Prior 

to applying the probe a pre-hybridization step was carried out to reduce background 

staining where the membrane was incubated for 1 hr at 37°C in a sealed bag containing 

30 ml of DIG Easy Hyb solution (Roche Applied Science, Mannheim, Germany).   To 

make a hybridization solution approximately 500 ng of labelled probe was added to 50 

μl of water in an Eppendorf and placed in boiling water for 10 min followed by chilling 

on ice.  A further 30 ml of DIG Easy Hyb solution (Roche Applied Science, Mannheim, 

Germany) was warmed to 37 °C and the labelled probe was added to this and the 

solution mixed by inverting. The pre-hybridization solution was then removed from the 

bag containing the membrane and replaced with the hybridization solution, the bag was 

re-sealed removing any air bubbles.  The bag was placed in a water bath at 42 °C (with 

gentle rocking) overnight.   

Following overnight incubation the hybridization solution was removed from the 

membrane and the membrane placed in a tray with 200 ml of Low Stringency Buffer; 

2x SSC (Sigma-Aldrich, Gillingham, UK) with 0.1% sodium dodecyl sulfate (SDS), 

(Sigma-Aldrich, Gillingham, UK),   for 5 min with shaking at room temperature, this 

was repeated with fresh buffer. High Stringency Buffer (0.5x SSC (Sigma-Aldrich, 
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Gillingham, UK) with 0.1% SDS, Sigma-Aldrich, Gillingham, UK) was pre-warmed to 

68 °C and following the low stringency washes the membrane was placed in the heated 

high stringency buffer for 15 min, this was repeated with fresh buffer.  The stringency 

washes were undertaken to prevent non-specific binding of the probe. Finally the 

membrane was rinsed for 1-5 min in 100 ml of Washing Buffer (0.1 M Maleic acid, 

0.15 M NaCl; pH 7.5; 0.3% (v/v) Tween 20). 

(6) Detection 

Prior to chemiluminescent detection the membrane was incubated for 30 min in 100 ml 

Blocking Solution (10 x Blocking stock solution, Roche Applied Science, Mannheim, 

Germany, diluted 1:10 with 
5
maleic acid buffer) with shaking in order to reduce 

background. This was  followed by 30 min in 20 ml Antibody Solution (Anti-

Digoxigenin-AP, Roche Applied Science, Mannheim, Germany, diluted 1:10,000 with 

Blocking Solution prepared as above)  with shaking to apply the anti-DIG-alkaline 

phosphatase  before being washed twice for 15 min in 100 ml of Washing Buffer (0.1 M 

Maleic acid, 0.15 M NaCl; pH 7.5; 0.3% (v/v) Tween 20). The membrane was then 

placed in 20 ml of Detection Buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5) for 2-5 min.  

After which the membrane was placed in a hybridization bag and 1 ml CSPD ready-to-

use (Roche Applied Science, Mannheim, Germany) was applied. The bag was closed 

but not sealed in order to remove air bubbles and spread out the CSPD.   The membrane 

was incubated at room temperature for 5 min. The excess liquid was then removed from 

the bag; the bag was sealed and incubated at 37 °C for 10 min.  Detection of the DIG 

labelled probes was achieved via exposure to an x-ray film for 15 min.  The film was 

then examined to identify the location of the hybridised probes 

Following detection of hybridisation of the first probe, the membrane was “stripped” in 

order to remove the first probe before application of the second.  Stripping was carried 

out by rinsing the membrane in double distilled water for 1 min followed by washing 

the membrane twice for 15 min at 37°C in Stripping Buffer; 0.2 M NaOH containing  

0.1% SDS (Sigma-Aldrich, Gillingham, UK) and completed by rinsing the membrane 

twice with 2 x SSC (Sigma-Aldrich, Gillingham, UK). 

                                                           
5
 Malic acid buffer: 0.1 M Maleic acid, 0.15 M NaCl; adjusted to pH 7.5 with NaOH pellets 
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Chapter 5: - Identification of isoforms by cloning 

In order to identify isoforms present cloning of PCR products followed by sequencing 

was undertaken using the following steps; (1) Preparation of insert, (2) Ligation, (3) 

Transformation, and Identification of positive transformants and (4) Sequencing and 

isoform analysis.  The methods used as detailed below. 

(1) Preparation of Insert 

The three largest bands were chosen for gel extraction as they were consistently the 

strongest bands in all the samples, closest to the expected product size and therefore 

likely to be full length or the largest splice variant of HPSE2.  Gels were visualised in a 

UV light box and a clean scalpel was used to extract the chosen bands.  All of the gel 

containing a chosen band was placed into a 15 ml falcon tube and gel extraction carried 

out using a QIAquick gel extraction kit (Qiagen, Crawley, UK).  Due to the higher 

quantity of gel, the protocol was modified by adding QG Buffer until the gel was 

covered instead of the measured amount. This resulted in a high quantity of liquid 

which was repeatedly put through the spin filter until it was all gone; the extraction was 

then continued as per manufacturer’s instructions.  The DNA was eluted with 30 μl of 

RNase free water (Qiagen, Crawley, UK) and the concentration of eluted DNA was 

measured on a Nanodrop spectrophometer (ND-1000, Thermo Fisher Scientific, 

Wilmington, USA). 

(2) Ligation 

The plasmid pGEM-T easy vector was used to amplify the insert.  Plasmids are extra-

chromosomal circular pieces of DNA that are replicated during cell replication therefore 

when used as cloning vectors the genetic material of interest is replicated also (Lodish et 

al., 2000). To prepare the ligation reaction the pGEM-T easy vector (Promega, 

Southampton, UK) was centrifuged and the ligation buffer mixed by vortex.  Ligation 

buffer (5 μl) (Promega, Southampton, UK) along with 1 μl of vector, approximately 100 

ng of insert, 1 μl of T4 DNA ligase and RNase free water (Qiagen, Crawley, UK) to 10 

μl were combined in 0.2 ml PCR tubes. Although it was preferred to have 100 ng of 

insert for the ligation reaction this was not possible in all cases as the DNA 

concentration from the gel extraction was too low, in these cases the maximum volume 
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of 3 μl of gel extraction product was added instead. The reactions were mixed by 

pipetting gently and incubated at 4°C overnight.  

(3) Transformation and Identification of Positive Transformants 

Transformation describes the uptake of extra DNA such as plasmids into bacterial cells 

(Lorenz and Wackernagel, 1994).  When used as cloning vectors plasmids can be 

transferred to cells by either electro-transformation or chemical transformation and in 

either case the target cells must be suitably competent as reviewed by Trevors, 1998 

(Trevors, 1998). In order to carry out the transformation reaction the ligation reaction 

was centrifuged briefly and a vial of TOP10 cells (One Shot® TOP10 Chemically 

Competent E. coli cells, Invitrogen, Paisley, UK) thawed on ice.  Once the cells had 

thawed all of the ligation reaction was added to them.  The mixture was flicked gently 

to mix and placed on ice for 20 min. Once the incubation time on ice had been 

completed the cells were heat shocked in a water bath heated to exactly 42°C for 45-50 

s. The tubes were immediately returned to ice for 2 min, followed by the addition of 950 

μl of SOC medium (Invitrogen, Paisley, UK) at room temperature. The tubes were then 

incubated for 1.5 h with shaking (150 rpm) at 37°C. While the tubes were incubated two 

Luria-Bertani agar (LB agar, Sigma-Aldrich Ltd, Gillingham, UK) plates containing 

100 μg/ml ampicillin (Sigma-Aldrich Ltd, Gillingham, UK) and 80 μg/ml 5-Bromo-4-

chloro-3-indolyl β-D-galactoside (X-gal) (VWR International Ltd, Lutterworth, UK) 

were dried. After the incubation step 200 μl of the reaction was plated onto one of the 

X-gal/amp plates and the remainder plated onto the second plate.  

The pGEM-T Easy vector has two important features; it carries a selection marker along 

with a reporter gene. The selection marker is in the form of an ampicillin resistance 

gene (β-lactamase) which results in only those colonies carrying the plasmid being able 

to survive when challenged with ampicillin in the agar (Wong, 2006, Preston, 2003). 

The second important feature of this plasmid is the presence of a functioning lacZ gene. 

The lacZ gene acts as a reporter gene allowing the identification of potential positive 

transformants via colour screening of bacterial colonies. The lacZ gene codes for the 

enzyme β-galactosidase, which acts upon the β-galactoside X-gal incorporated into the 

agar resulting in a blue colour.  Ligation of the insert into the vector disrupts the coding 
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ability of the LacZ gene, therefore preventing the production of β-galactosidase and the 

subsequent production of white colonies (Burn, 2012).   

Although the presence of white colonies suggest cloning success it is still necessary to 

confirm that the insert cloned is the one of interest.  In order to do this plasmid 

preparations followed by diagnostic digests were carried out.  The plasmid vector has a 

number of restriction enzyme sites which are located either side of the site of insertion. 

By carrying out a restriction digest and releasing the insert it can be established if the 

DNA fragment cloned is of appropriate size. 

Sixteen white colonies were isolated per sample from the two X-gal/amp plates using a 

sterile culture loop and sub-cultured into sterile universal tubes containing 5 ml Luria-

Bertani  broth (LB broth  Sigma-Aldrich Ltd, Gillingham, UK) supplemented with 100 

μg/ml ampicillin (Sigma-Aldrich Ltd, Gillingham, UK). The tubes were incubated 

overnight at 37°C with shaking at 150 rpm. A PureLink Quick Plasmid Miniprep Kit 

(Invitrogen, Paisley, UK) was used as per manufacturer’s instructions to isolate plasmid 

DNA, the DNA was eluted with 30 μl of RNase free water (Qiagen, Crawley, UK). The 

plasmid DNA was quantified on a Nanodrop spectrophometer (ND-1000, Thermo 

Fisher Scientific, Wilmington, USA) and diagnostic EcoRI digests consisting of 700-

1000 ng of DNA, 2 μl of EcoRI buffer H 10x (Promega, Southampton, UK), 0.2 μl of 

10 mg/ml acetylated bovine serum albumin (Promega, Southampton, UK) and 0.5 μl of 

20,000 U/ml EcoRI (Promega, Southampton, UK) and RNase free water (Promega, 

Southampton, UK) to a total reaction volume of 20 μl. The reaction was mixed prior to 

the addition of the enzyme. The reaction was then incubated in a water bath at 37°C for 

2.5 – 3 h. Following incubation the digest reactions were resolved on a 1.5% agarose 

gel to identify the presence of an insert of the correct size.  Positive transformants were 

subsequently quantified by running 5 μl of plasmid DNA mixed with 2.5 μl Orange G 

loading dye (Sigma-Aldrich, Gillingham, UK)  against 5 μl of 5 ng/μl, 10 ng/μl and 25 

ng/μl lambda DNA (Promega, Southampton, UK) again each mixed with 2.5 μl Orange 

G loading dye (Sigma-Aldrich, Gillingham, UK) on a 1.5% agarose gel containing 2.5 

μl of 10 mg/ml ethidium bromide (Sigma-Aldrich Ltd, Gillingham, UK). 
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(4) Sequencing and Isoform Analysis 

Where possible, 500-600 ng of plasmid DNA was submitted for sequencing. DNA 

sequencing was performed by DNA Sequencing & Services (MRCPPU, College of Life 

Sciences, University of Dundee, Scotland, www.dnaseq.co.uk) using Applied 

Biosystems Big-Dye Ver 3.1 chemistry on an Applied Biosystems model 3730 

automated capillary DNA sequencer.  The Sequencing service provided the M13 

primers in order to sequence the insert.  These primer sequences are located either side 

of the insertion site.  
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Appendix E  

Submitted papers  

Submitted paper: 

“Evidence for a genetic basis of urogenital carcinoma in the wild California sea lion” 

Submitted to Proceedings of The Royal Society B: Biological Sciences.  
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Appendix F   

Formal presentations of data.  

Talks: 

 “Why is Cancer so Common in California Sea Lions?”  - The Marine Mammal Center 

(TMMC), Sausalito, California, October 2011. 

“Investigating the aetiology of urogenital carcinoma in California sea lions (Zalophus 

californianus)” - UK Regional Student Chapter for the Society of Marine Mammals, 

Sea Mammal Research Unit, St Andrews, February 2012. 

“The multifactorial aetiology of urogenital carcinoma in California Sea Lions (Zalophus 

californianus) – A case-control study” - The 61th Wildlife Disease Association (WDA) 

and 10th European Wildlife Disease Association (EWDA) Joint Conference, Lyon, 

France, July 2012. 

“Investigating the aetiology of urogenital carcinoma in California sea lions” – School of 

Biology, Post graduate Conference, University of St Andrews, St Andrews, January 

2014.  

“Investigating the aetiology of urogenital carcinoma in California sea lions” - SMRU 

lunchtime seminar, University of St Andrews, St Andrews, March 2014 

Poster presentations: 

“Investigating the aetiology of urogenital carcinoma in the California sea lions 

(Zalophus californianus) - A case-control study” - British Veterinary Zoological 

Society 50th Anniversary Conference, Cheshire, 2011: Winner of the poster prize. 

“Investigating a genetic basis of urogenital cancer in California sea lions (Zalophus 

californianus)” - School of Biology, Post graduate Conference, University of St 

Andrews, St Andrews, March 2013. 

“Investigating a Genetic Basis of Urogenital Cancer in California Sea Lions (Zalophus 

californianus)” -  44th Conference of the International Association of Aquatic Animal 

Medicine (IAAAM), California, April 2013 
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“Urogenital cancer in California Sea Lions (Zalophus californianus) – A case-control 

study” - 11
th

 European Wildlife Disease Association conference, Edinburgh, August 

2014  

 


