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ABSTRACT

Following earlier authors we re-examine the upper limits on the radial velocity anisotropy
of general stellar systems; these constraints coming generically from phase-space density
positivity, stability, and separability. Galaxy models almost always satisfy an inequality § <
y /2, i.e. the radial anisotropy is locally no greater than half of the logarithmic density slope.
Some complex separable models are the only known cases which disobey this inequality and
do so by having an exceptionally large anisotropy at the centre. Here we present new families of
non-separable but simple models which have 8 > y /2. Such large, superthreshold anisotropy
always occurs in a finite region in between an isotropic core and an isotropic outer boundary.
Our models are always self-consistent and hence maintain the positivity of the phase-space
density. Nevertheless, regions with superthreshold anisotropy are potentially subject to secular

instability and may thus be observed in a short-lived phase of galaxies.
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1 INTRODUCTION

Real and simulated stellar systems are often anisotropic as the lack
of two-body collisions allows anisotropy from the initial configu-
ration of phase space to persist in equilibrium. Radial anisotropy
is difficult to measure observationally because of the lack of 3D
velocity information. This, in turn, widens the uncertainty of our
estimates of the mass and gravity of galaxies and black holes us-
ing the traditional Jeans equation approach. It is thus desirable to
set some limits on this anisotropy from arguments such as positiv-
ity, stability, and even separability of the underlying phase-space
density.

Usually a particular potential or density profile will be chosen to
model a particular system of interest. The most effective and pow-
erful presentation of such a system is the phase-space distribution
function (DF) which is connected to observable, real-space quanti-
ties of a system via various integral relations. Because the DF is a
probability distribution that describes the phase space of a system
there are some fundamental requirements for a DF that produces a
viable system. The most basic constraint is the positivity of the DF
over the entire permitted domain of the system as while a system
with a positive DF may not be stable, but a system with a negative
DF cannot even be created.

The relationship between a density profile and a DF is compli-
cated and is not even one-to-one (Dejonghe 1987). Since the DF
describes the full six-dimensional shape of the system there are
multiple possible DFs that can produce the same density profile
that only differ through, for example, their anisotropy profiles. Ac-
cordingly, it is very important to be able to derive unambiguous
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analytical expressions for a system of interest so that the positivity
can be known precisely.

The main problem here is that the process of finding an expression
for the DF of an arbitrary system is highly non-trivial and can usually
not be done analytically. The most reliable method of finding a DF
is through Eddington’s formula (Eddington 1916) which inverts
the integral relationship between the density and the DF, however,
even this is only analytic for a selection of density profiles and
parameters.

So in general, while specific models and schemes to produce
analytical DFs for a given density do exist, there is a pressing need
for simple, fundamental relationships between the quantities of a
system that can constrain the positivity of a DF. A way to look at
a particular model and know, without having to work through the
inversions, whether or not the DF is likely to be positive would be
ideal.

One particularly important result was that of Ciotti & Pellegrini
(1992) who found a simple criteria for the consistency of models
using an Osipkov—Merritt anisotropy scheme. This paved the way
for a dramatic expansion in the scope of such relations, bringing
us to the birth of the result we will be examining. The first major
step towards a completely general analytical constraint was made
by Hansen (2004) in the form of hard constraints on the conditions
in the centre of a dark halo under reasonable assumptions of spher-
ical symmetry, a power-law phase-space density (Taylor & Navarro
2001), and the requirement for physical solutions to the Jeans equa-
tions. They found that any system with an inner density profile p o
r~7 would obey 1 4+ B8 < y < 3, where S is the velocity anisotropy
parameter.

This was subsequently improved until the relation could constrain
a non-negative DF (An & Evans 2006) in multicomponent systems
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(Ciotti & Morganti 2009) and Cuddeford models (Cuddeford 1991;
Ciotti & Morganti 2010a) which contain the Osipkov—Merritt mod-
els as a special case. After the discovery that the constraints held
even for systems outside these model groups (Ciotti & Morganti
2010c) there was an effort made to define exactly how universal
such constraints could be. This lead to the significant result of
Ciotti & Morganti (2010b) where it was proven that a large class of
models obey the relation:

Y = 2B. ey

This relationship was termed the global density slope—anisotropy
inequality (GDSAI) and was shown to be strongly connected to the
positivity of the DF in this broad class of multicomponent models,
Cuddeford models as well as in a variety of other anisotropic sys-
tems. Specifically, the work of Van Hese, Baes & Dejonghe (2011)
showed that obeying the GDSALI is a necessary condition for DF
positivity in models where the central anisotropy was By < 0 but
did demonstrate counterexamples for larger anisotropies.

All the systems that had been investigated and had a proven
relationship to the GDSALI fall into the category of models with
separable augmented density. An augmented density is one that can
be described only in terms of a potential as a function of radius and
the radius itself. A separable model of this kind can be described
thusly

p() = pag(W(r), 1) = fF(Y)g(r), 0= <, (@)

where we alter the usual notation for the augmented density to avoid
later confusion with our dimensionless variables.

Since the GDSAI has been proved for all separable augmented
systems with Sy < 0 and is understood in such systems with 8 >
0, we will investigate the behaviour of augmented systems which
are non-separable. We accomplish this by using monoenergy DFs
that produce non-separable density profiles which, while highly
artificial, are also comparatively easy to understand and analyse.

We present a simple spherical model that significantly violates
the GDSAI over a range of radii, produces systems with gy = 0,
and has a globally positive DF. The DF is a monoenergy halo that
is separable in E and L. We suggest that this is evidence that the
GDSAI cannot be extended to all non-separable systems and cannot
be used to constrain the positivity of their DFs. We instead suggest
that, since our DF is not guaranteed to be dynamically stable, system
stability is still the principle measure that can confirm whether such
non-separable systems can be created and kept in equilibrium.

In Section 2 we briefly confirm the inadequacies of a purely
Jeans-equation-based approach, Section 3 shows our construction
of a simple system that does not follow the inequality, Section 4 ex-
amines the practical implications of the system, Section 5 examines
the stability of the system, Section 6 describes the generalization of
our model, and Section 7 concludes.

2 THE INADEQUACY OF A JEANS’ EQUATION
APPROACH

Itis already known that the criteria provided by the Jeans’ equations
are not as stringent as testing for the positivity of the DF. However,
there are mathematical difficulties associated with calculating prop-
erties of most general DFs which mean the Jeans’ equations are still
relevant.

We will demonstrate why apparently simple violations of the
GDSAI which rely on the Jeans’ equations are insufficient to dis-
prove it, as noted in Ciotti & Morganti (2010b). This is done by
creating a density profile from two simple, superimposed models
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Figure 1. Density profiles of a simple composite model designed to violate
the GDSAL The dashed and dotted lines are the 1/r(1 + r)> cusped and 5
x 10° /(7 4+ r*) cored subsidiary models while the solid line is the sum of
the two profiles.

which, together, should apparently break the GDSAI according to
the Jeans’ equation. We will then show why the model fails to
achieve this by being unphysical in a way that the Jeans’ equations
cannot indicate.

So, the system we construct is created by overlaying a large
cusped model from the Zhao (1996) family of models on to a smaller,
cored, Hernquist model (Hernquist 1990) to create a structure with
the density profile shown in Fig. 1 described by

1 5% 10°
(4} T+

p 3

271(7000147 4 8500042r + 150000372 4

= 3r(1+r)(T +r)? ' @

The smaller model has a cusp with p oc 7! in the centre transi-
tioning to p oc #~* while the larger of the two models is cored. This
means the constant density core extends past the point where the
smaller model has declined to »—*. This creates a region in between
the »~! cusp and the »—* halo where the Hernquist profile starts to
dominate leading to a flattening of the density profile. In this region
the density slope is very close to zero, so if we state that our system
has an anisotropy of § = 1/2 everywhere then the system will not
follow the inequality.

So, we then attempt to solve the Jeans’ equation for the system:

dpo}) 2p0}  d¢

= —. 5
pdr r dr )

We want to solve this for o, so we can express this as follows
assuming constant 8:

*® d
or¥fo? = / przﬁdj dr. (6)
, r

By definition, we can replace j—i’ with terms of density instead

oo G r
or¥fo? = / ,orzﬁr—2 {/ 4mtr’p dr} dr. @)
r 0

A full, rigorous treatment of this integral can be performed, how-
ever, the density function is sufficiently complex that the analytical
result is too large to be worth reproduction here. The result is a
collection of hypergeometric series which depend, in part, upon 8.

The problem is that the result for o2 is not defined for all values
of B. If B is such that 8 > 1/2, then our expression will include
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instances of evaluating 1/0 which is undefined. In other words, we
cannot evaluate o2 for 8 > 1/2 meaning that any attempt to force
an anisotropy which violates the GDSAI results in an unphysical
solution.

The problem is that it is difficult to predict this failure in advance
of solving a specific instance of the Jeans’ equation. The separate
components of the model are both independently stable, so nothing
immediately seems to be wrong with the system that we attempted
to create. Rather than working through large numbers of possible
models to find combinations of parameters that work, it is easier to
work directly with DFs.

For instance, with the benefit of a little a priori knowledge, we
could have known this system would not be physical. In a system
such as this we can assume that the DF follows the form (Cuddeford
1991)

1 d(rp)

— 2 . -
J(E,L)y=L""PF(E); e dp

F(E)| =g =

®

where we assumed the form of the function F(E) according to An
& Evans (2006) assuming that 8 = 1/2. The problem is that the
angular momentum term will always be positive but if we look at
the energy term there is one region where F(E) is locally negative.
We can see this more clearly by breaking down the expression for
the energy function:

_d(rp) _ d(rp) /d¢
dp ~—  dr / dr’

To be clear, given that we need the entire energy term to be
non-negative and non-zero everywhere, we require @ / % < 0.
However, the term % is always going to be positive as % = %
and clearly neither the radius nor the contained mass will be able
to become negative. The problem comes from the other term, d((ff ),
i.e. the requirement that p must fall steeper than .

The problem is highlighted in Fig. 2 where we see that rp rises
for all small radii, meaning the gradient is positive. This is the
region that we are interested as it contains the transition between
the two components of our model and the region in which we were
investigating the inequality. However, since the gradient is positive
here, our energy function equation (9) will be negative. This has
the unfortunate implication that there is a significant section of

F(E) x ©))
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Figure 2. Plot of rp, the differential of which comprises half of the energy
function of equation (9). As discussed, we require this function to have a
negative gradient everywhere in order for the DF to be non-negative. This
figure shows that everywhere where the model could potentially fail to
follow the GDSAI has a positive gradient, indicated by the shaded areas,
strongly suggesting the model is unphysical.

The non-separable GDSAI ~ 3535

our system for which the DF is negative overall; the system is
unphysical.

In other words, the one region where we would might see vi-
olation of the inequality is unphysical by definition. If we are to
investigate the GDSAI we are going to have to start with the DF
and work up, rather than the other way around.

3 THE DISTRIBUTION FUNCTION APPROACH
We set up a system where the DF is defined as
f(E,L)= AS(E — Eg)H (L%, —L%), (10)

cut

where the constant A is for dimensional consistency. This represents
a system where all allowed orbits have exactly energy E, and must
have angular momentum L? under L2, as defined by a § function
and a Heaviside function:

{1 if L2 < L2

cut?

0 ifL?>>1L2

cut®

H(L,— 1) = an

This system is actually a type of polytropic model developed
by Polyachenko, Polyachenko & Shukhman (2013) to study radial
orbit instability. The model we use is equivalent to their ¢ = —1
monoenergy model and is interesting to us for its non-monotonic
density profile. Given that the DF is potentially of interest, we wish
to extract density and anisotropy profiles from it to examine in
detail.

3.1 Finding density

The density is defined as the integral of the DF over all phase space:

p(r):/f(E, L)dv, dv),dvzz/f(E,L)dv,de dvy.  (12)

To ease the subsequent integration we express the integration
variables in terms of E and L which we do by solving only for a
constant radius, r. We use the following relationships between the
velocity components:

2

v, 4 vy = (13)

TH
r2

2
v, =\/§1/E—d>(r)—%, (14)

which we then use to rewrite our integration variables:

dE
T, (15)

dv, dvy dvg =
rote Tt v, r?

We first integrate with respect to E. This is simple as there is
only one function of E, namely v,, and the § function makes the
integration trivial. We are then just left with the integration of L?:

At [ L>\1~ 5
= — 2(E)—®— — dL-. 16
p=w (5] a0

o=

A similar trick is employed to deal with the Heaviside function
as it has the property of constraining the limits of integration. We
thus end up with an expression for the density:

LZ
p =4AV2r | /E)— @ — E()—tb—z:';' ) a7)

The second square root term can become imaginary for small
values of r or particularly large values of L2,. This represents

cut*
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parts of the system where all real orbits of the system lie under
the angular momentum threshold. Consequently the only excluded
orbits, which are those represented by the second term, are those
which do not correspond to real possible states of the system. We
avoid mathematical inconsistency in such cases by only taking the
real component of the result, i.e. 0.

3.2 Finding anisotropy

Next, we find an expression for the anisotropy profile. We start from
the definition:

092 —l—a;

1= B =~

(18)

We now use the fact that v?p gives us the pressure along a given
axis and combine it with our definition from equation (12). This
allows the velocity dispersion to be written as

o2 J v f(E, Lyd*v

- i 19
! p(r) (19

and likewise for o = o,;. We can apply this to equation (18) and
cancel the factors of p(r) because symmetry tells us they are equiv-
alent. After changing variables we are left with the following:

J(2) s (2]E- 00 - £])7 azas

t=pm= [ (202) F(E. L)dE dL?

(20)

As before we easily perform the integration over E and use the
Heaviside functions to place limits on the integration over L? but
the resulting expression is more complicated:

-1
G (22 2\ 7
5l (%)(Eo—w)—z%) a g,

1 - B(r) = / =7
22 [ (B - o) - &) e ’

2n

These integrals can be solved analytically by the substitutions
shown in Appendix A and the result for 8 expressed as

VI—x (%;) Lzur _ L<2:u[

Bp=———%, wherex = = .
1—(— x)? 2r2(Ey— @) r?vk,

(22)

As with the density profile the anisotropy profile can produce

imaginary results if x > 1 in regions where erzm > % This, again,
corresponds to regions of the system where all real orbits lie below
the angular momentum threshold. Since we know that this case is
not physical we resolve it by enforcing a maximum value such that
Vx > 1, x = 1. This constrains the angular momentum threshold to
be locally no greater than the largest possible angular momentum at
radii where the imaginary numbers would otherwise be produced.
This does not change the physical implications of the formula and
just ensures mathematical consistency.

We can calculate o2 by using equation (19) and following a simi-
lar line of reasoning as for the anisotropy. Using the parametrization
from equation (22) yields

i 2(E0—d>)[1—(1—x)%] ”
Y PRy R =
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The tangential dispersions can either be found similarly or by
combining the radial dispersion with the anisotropy. They will not
be reproduced here as they are not used in our analysis.

3.3 Finding potential

We can use Poisson’s equation to find the potential by integrating
the following second-order ordinary differential equation (ODE):

P L?
D) A | VE b [E— - ) g

4ntGr dr? 2r2

where, to be rigorous, we have included the dimensional pre-factor A
from our DF of equation (10). This can be cast into a dimensionless
form by the following scaling:

d(Ey— ") dv

— Bii ®=E)—CV— _.
e 0 7 dF

(25)

where we require that C = (AB>G)? for consistency. This gives us
the following dimensionless expression that requires solving:

1 d dy - S
5 (PG) = aven | V- e 2

T 4 dF dF

= 4V27p(F). (26)

As before we have a non-physical case for small r and large Lult
which we resolve by taking only the real part of the root. To solve
the ODE we apply standard initial conditions that
- d¥(F =0
B =0 = @ =0 @7

dF
where the choice of the constant (471)? is arbitrary and has been
chosen here to make the radius of the system of order unity. Re-
grettably this equation must be solved numerically and the resulting
U (r) is shown in Fig. 3.

1)
100

50 f

~50f

~100f

~150 |

Figure 3. The numerically derived potential for our DF. The potential
becomes positive at the point where p = 0. The potential is plotted for three
models corresponding to & = {1, 1.5, 2} (see equation 28) for the solid,
dashed, and dotted lines, respectively. Although W is decreasing faster than
7 in the outer regions, it will behave like a Kepler potential at radii larger
than the size of the system as the system is truncated at finite radius.
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4 UNDERSTANDING THE SYSTEM

We have arrived at an analytically self-consistent system which
should avoid the problems from Section 2. We can summarize the
system by collating our results so far:

L
p=a2mA (VU - fw— )
-

o 2(E, — ®) {1—(1—x)%]’

! 9(1—v1—x)
VI=E (3) L,

= — 27 h = —.
B where x 22 (Eo — @)

3

1—(1-x)2

4.1 Characterizing the density profile

We first of all note that for a particular value of L., our density
profile is an augmented density profile, i.e. our density can be ex-
pressed only in terms of W and r. However, unlike the augmented
density functions examined in Ciotti & Morganti (2010b) and Van
Hese et al. (2011), ours is not separable in terms of those variables.
This means that our model falls outside the set of models for which
the GDSAI has been studied. However, our model is also highly un-
usual and possesses profiles that are distinctly artificial so we will
spend this section characterizing and explaining the model before
drawing any conclusions.

The density at a given point can be thought of as the amount
of orbits which require a particle to pass through that radius. As
we established, our DF from equation (10) means that we are only
allowing orbits with angular momentum 0 < L? < L2, and energy
E = E. It is convenient to think of the density as being the sum of
all possible, physical orbits of energy Eo minus all orbits of energy
Ey and L? > L2, that pass through a certain radius. We can see
this interpretation directly in equation (17) where the density is
the difference between two terms which, as we will now discuss,
correspond to the description above.

The first term, / Ey — &, represents all physical orbits of energy
Ey. As we can see from Fig. 3, the potential of the system is a
monotonically increasing function.

The second term, / Ey — & — gégl, is more complex due to the
addition of an angular momentum term. This represents all orbits
of energy Ey and an angular momentum of at least L2,

In Fig. 3, and in most subsequent figures, we plot a handful of
models with different values of L2 as this is key parameter which

determines the behaviour of the model. The models are generated
by

L2, =14.37¢, (28)

where £ is a free parameter and useful index for a particular model.
The constant 14.37 was chosen to give an arbitrary but convenient
value for igm(g = 1) and is related to W(7 = 0). As we can see
from Fig. 3, increasing L2, will decrease the radius of the system.
To allow for better comparison of models we normalize the radius
of each model to 1 in subsequent figures.

As we see from Fig. 4 each term in the density can itself describe a
meaningful density and we have arranged them such that the number
of allowed orbits is proportional to the area under the curve. The
area under the largest curve contains all orbits given by /Ey — &

The non-separable GDSAI ~ 3537
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Figure 4. Both components of the density in our example model. The
area under the largest curve (thick, solid line) contains all physical orbits
in the system while the smaller curves (solid, dashed, and dotted) contain
all allowed orbits that have L? greater than L2, for & = {1, 1.5, 2} (see
equation 28).
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Figure 5. The full density profile for our DF. The density is plotted for three
models corresponding to & = {1, 1.5, 2} (see equation 28) for the solid,
dashed, and dotted lines, respectively. Significant violation of the GDSAI is
expected to occur in the sharp peak at large radii.

and any physically permitted angular momentum. The area under

the smaller curve is given by 1/ Eg — ® — gf‘;‘ which only contains

orbits with angular momentum greater than L2, for several different
values of the threshold.

We recall that our overall density is the difference between these
two components which produces Fig. 5. The immediate feature of
note is the sharp peak towards the outer edge which is the feature
that makes this system so useful.

Now that we understand how this profile is formed we explain
why these features arise. It must be borne in mind that this is a
monoenergy system and that all orbits have total energy of exactly
Ey.

At small radii, our angular momentum constraint has minimal
impact. The small value of r means that even a highly tangential orbit
will have an angular momentum that is under the L2, threshold. We
thus find there are a large number of possible orbits and the density
is high.

As we move further out an orbit of given circularity will have
higher angular momentum so allowed orbits will be progressively
more radially anisotropic in order to fit under the angular momentum

MNRAS 442, 3533-3543 (2014)
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Figure 6. Variation of the maximum possible angular momentum, L2, (7),
with radius showing that at large and small radii it is impossible for a particle
of energy Ej to surpass the angular momentum cut-off. The cut-off ng(s =

1) is indicated by the horizontal line with the shaded region representing

otherwise permissible orbits that will fail the angular momentum cut. L2,
was found by using equation (29).

limit. Accordingly, fewer allowed orbits exist at these radii and the
density is lower than expected.

Finally, in the outermost regions the angular momentum limit
no longer has any impact. Although the radius is large, the angular
momentum of a highly tangential orbit here is very low as the
majority of a particle’s energy is used to overcome the potential.
This means that little is left for kinetic energy and thus the tangential
velocity is extremely small. Even a completely circular orbit at this
radius will have an angular momentum below the threshold. Using
the same logic as for small radii this means that the density will be
proportionally higher as all the possible orbits are permitted by the
threshold. This can be seen in Fig. 6.

The last feature to understand is the sharp rise in the density at
large radii. This is difficult to discuss analytically due to the lack
of an analytical solution to the potential. For example, if we try to
understand how angular momentum changes with radius we could
look at the angular momentum of an orbit whose apocentre is at a
given radius. If the particle is at its apocentre, then we know that
v, = 0 at that point and that the angular momentum will be
L} =2r"W(r). (29)

max

Since we do not know the dependence of W on r we cannot
construct analytical expressions for the slope. Thus, to explain the
reason for the increase in density we must rely on the figures and
numerical results to support the explanation.

At the point where the density rises we can see from Fig. 6 that
L2, is decreasing rapidly. This means that, as the radius increases, a
particle can eventually have an increasingly large tangential velocity
at apocentre and still be under the angular momentum threshold. In
other words, a particle is allowed to make a larger angle between the
radial axis and its velocity vector the further it is from the centre.
This also means that the amount of orbits possible at these radii, i.e.
the density, is increasing in proportion.

In the absence of an angular momentum limit then, as seen in
Fig. 4, the density naturally decreases monotonically as the nega-
tive potential increases towards the edge of the system. However,
comparing these two figures shows that the rate of decline in phase-
space density due to the potential is lower than the rate of increase
due to the range of allowed angles for velocity vectors. In other
words, the increase in density due to the lessening impact of Ly

MNRAS 442, 3533-3543 (2014)
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Figure 7. The anisotropy profile for our system demonstrating the isotropic
core and edge regions for the three models & = {1, 1.5, 2} (the solid,
dashed, and dotted curves). The dot—dashed line represents the anisotropy
corresponding to the nominal radial orbit instability threshold of 27, /T; ~
2.3 (Merritt & Aguilar 1985).

overpowers the natural decline in phase-space density due to the
potential.

This means that over a small range of radii the density actually
increases until all orbits fall under the angular momentum threshold
again. At this point the system has no orbits left to be added to the
density as the radius increases because none is being excluded and
the decline in density resumes until the edge of the system.

4.2 Characterizing the anisotropy profile

One key feature of this model is that it has very low central
anisotropy. The examination of Van Hese et al. (2011) proved the
GDSALI held for all separable systems with By < 1/2 which makes
an investigation into non-separable models with By, = 0 of particu-
lar interest. In fact our models are isotropic at both small and large
radii and only become radially anisotropic for a set of intermediate
radii as shown in Fig. 7.

As discussed in our consideration of the density profile, the an-
gular momentum threshold removes no orbits from the core of the
system or the outskirts. This is because even particles at apocentre
at these radii have low angular momentum due to either the small
radius of the orbit or the low tangential velocity of the particle. At
these radii the angular momentum function of our DF is fixed at
H(L?, — L* = 1 for all orbits and thus the total DF is a function
only of energy. This means that all energy is necessarily split evenly
between velocity components and that region is isotropic (Binney
& Tremaine 2008).

In the regions where the angular momentum limit is removing or-
bits, the change in anisotropy can be thought of as follows. Imagine
trying to construct a particle on an orbit that tries to maximize its
angular momentum by minimizing its radial velocity component,
as we did when constructing equation (29). Since this orbit must
have a certain amount of energy it has a very predictable angular
momentum which will put the particle over the L2, threshold. This
means that this orbit and all highly tangential ones are removed,
leaving only the more radial ones. Given that the system would
be isotropic if not for this process, we can say that any radius at
which the angular momentum cut removes orbits is guaranteed to
be radially anisotropic.

This behaviour is shown directly by looking again at Fig. 6.
The shaded orbits above the angular momentum threshold L2, are
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Figure 8. The radial velocity dispersion profile of our system for the three
models & = {1, 1.5, 2} (the solid, dashed, and dotted curves). Upon entering
or leaving regions of the model where the angular momentum cut is removing
orbits there is a discontinuity as there is a abrupt decrease in the amount of
energy that can be used in tangential motion.

excluded which implies that any radii at which a portion of the area
under the curve is shaded will be radially anisotropic. The amount
of anisotropy will grow with the size of the shaded area.

Because the transition between the isotropic regions and the
anisotropic regions is a sharp one we find discontinuities in the
gradient of individual velocity dispersions. Fig. 8 shows how the
slow decrease of energy in the radial velocity component is sharply
reversed upon reaching the anisotropic regions of the system. A
smaller discontinuity is also present upon reaching the isotropic
regions at large radii. These correspond exactly to the two discon-
tinuities in the slope of the density profile.

4.3 The inability to extend the GDSALI to this model

We can now confirm that our system does not obey a GDSAI-like
relation at certain radii. We have proved that our system is radially
anisotropic in the regions where the angular momentum threshold
is removing orbits. We have also demonstrated that our system’s
density profile is either flat or rising in those same regions due to
the exclusion of a region of phase space. From this we can see that
there are two regions where we would expect to find that y < 28
which runs counter to an attempt to extend the GDSAL

At the radii immediately prior to the density peak we are guar-
anteed not to recover a relationship that follows the GDSALI as the
density is rising sharply with radius and so y < 0. However, we
also fail to find the relation at a large range of intermediate radii
where the density profile is approximately flat and thus y & 0. Since
the anisotropy here is high, the system can be configured such that
y < 28 at these radii as well.

The degree to which our system fails to follow the same inequality
as the GDSAI and the regions in which this occurs are plotted in
Fig. 9 where we show curves of y and 28 for the model £ = 1. Any
radius where y < 28 demonstrates that the GDSAI could not be
extended to include this model. We can see that approximately two-
third of radii in this model display such behaviour, corresponding
to 16 per cent of the model’s mass. Accordingly, we suggest that
the GDSAI cannot be extended to guarantee the existence or non-
existence of phase-space consistency in a non-separable DF of this
kind.

The non-separable GDSAI ~ 3539

Figure 9. Showing both y (solid) and 28 (dotted) as functions of radius for
the model £ = 1. The point where the lines cross represents the beginning
of the regions that fail to obey a GDSAI-like relation.

Having demonstrated the theoretical interest of our system we
will now discuss the stability of the equilibrium solution found for
our DF.

5 SYSTEM STABILITY

5.1 Radial instability

A fundamental measure of radial stability is the anisotropic ex-
tension of the Doremus—Feix—Baumann theorem (Doremus, Feix
& Baumann 1971; Doremus, Baumann & Feix 1973; Gillon et al.
1976; Binney & Tremaine 2008) which states that a stable system
must satisfy dfy/dH, < 0. For our DF this requires that dE)/dE < 0
which is problematic because fiE) = §(Ey — E) and, due to the
peculiarities of the Dirac delta, its derivative is formally undefined.
However, since this is also a necessary criteria for the emergence
of the Hénon instability (Barnes, Hut & Goodman 1986; Merritt
1999) we can use the Hénon criteria as an indicator of potential
radial instability.

5.2 Hénon instability

Perhaps the most similar system to ours to undergo extensive sta-
bility testing is the n = 1/2 polytrope. The testing of Hénon (1973)
and Barnes et al. (1986) demonstrated that the oscillatory stability
of the polytrope was due to an uneven radial velocity distribution
that was termed the ‘Hénon instability’. It is interesting to note that
the systems of Van Hese et al. (2011) which demonstrated that the
GDSALI lacked predictive power for separable systems of 8y > 1/2
were unstable according to the Hénon criteria.

The Hénon instability will appear in our systems if they possess
two or more distinct peaks in the radial velocity distribution P(v,)
where

P(v,) = /f 8(E — Eg)H (L%, — L*) dvy dvy

—H(lz—‘l/()-f—% _H(lZ_\IJ() (30)
— 2vr r 2r2 Zvr r .

This distribution will, after being normalized, give us a probabil-
ity density that is constant over a narrow range of radial velocities:
2

-2, 1
P(v,) #0, where —= < —v? — W(r) < 0. @B
2r? 2
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P(v,)
0.4

Figure 10. A probability distribution bar plot showing the normalized prob-
ability of finding a particle with a given radial velocity at certain radii. Bars
topped with a dotted, dot—dashed, dashed, and solid line represent the prob-
abilities at 7 = {0.22, 0.27, 0.6, 1.25}, respectively.

Between this and our understanding about the allowed orbits we
can explain the distribution seen for a selection of radii for the model
& =11n Fig. 10.

At small radii, }LF%Z“‘ <« 0 so the only constraint on v, is energy
conservation. Thus we expect a range of velocities out to some
maximum value.

At intermediate radii a particle is not allowed to have negligible
radial velocity. If a particle here has v, &~ 0, then the monoen-
ergy constraint would demand that it compensate with significant
v, which, at these radii, would put it over the L2 threshold. Ac-
cordingly, the radial velocity distribution at these radii will be two
sharp peaks with a gap around v, = 0. The width of the peaks is
determined by L2, and the radius.

Finally, at the outer edge of the system the angular momentum
threshold no longer removes orbits and so particles with v, ~ 0
are allowed once again. The two peaks reform into a single peak
centred around v, = O like at small radii but with a smaller width
due to the smaller amount of kinetic energy available at these radii.

Since our models clearly possess two very sharp and well-defined
peaks at most radii we conclude that this model may be susceptible
to the Hénon instability.

5.3 Radial orbit instability

The stability of our system to non-radial modes is easier to assess.
We use the simple stability measure of 27, /7, = 2.3 which has
been the subject of much debate (Merritt 1999). Looking back at
Fig. 7 we see that the model £ = 1 is over the limit throughout most
of the system. However, models with a higher angular momentum
threshold can consistently have low enough anisotropy to avoid the
instability.

This is shown in Fig. 11 where the radial orbit instability criteria
is plotted against the angular momentum threshold. Models with
& &~ 1.45 and above appear to be stable. So, it appears that the
stability of the system is a function of the parameter &.

5.4 Stability dependence on L2

We have seen how our system has the potential to suffer from a
variety of stability problems. However, there is reason to believe

MNRAS 442, 3533-3543 (2014)

Figure 11. The dependence of 27, /T, against the £ of the model. The radial
orbit instability criteria of 27, /7, ~ 2.3 are marked with a dashed line for
clarity. The stability of the model depends on & with larger values producing
more stable systems.

y-28

Figure 12. The GDSALI function plotted as y — 28 for the three models
& = {1, 1.5, 2} (the solid, dashed, and dotted curves). Where this function
is positive the inequality is obeyed and where it is negative the inequality is
not obeyed. Models with small £ will never fail to meet the GDSAI criteria
everywhere, only across a larger range of radii. In our models y — 28 > 0
is always true at r = 0.

that the degree of instability can be controlled if not mitigated
entirely.

‘We begin by once again noting that in regions where qul is higher
than the largest possible angular momentum (see Fig. 6) our system
behaves as if the DF is exclusively a function of energy and is thus
always isotropic. Additionally, we consider that L2, is a tunable
parameter through equation (28).

In Fig. 12 we can see that if we raise L2, then it affects less of the
system which, in turn, will become increasingly isotropic. Impor-
tantly, both the Hénon and radial orbit instabilities are diagnosed
by considering the ratio or allowed domain of velocity components.
Therefore, if our system is isotropic then it is guaranteed to be stable
to both of these effects. This is what we see in Fig. 11.

Accordingly, it is the case that the higher L2, is set the greater
the proportion of the system that will be isotropic and the larger
the volume of the system that will pass those stability criteria. This
implies that the stability of the system is exclusively dependent on

the value of the freely tunable parameter qul. The only limits are

102 ‘¥ Jequiides uo smaipuy 1S Jo A1sieAlun e /61o'sfeulno [piojxoseluwl//:dny wody papeojumoq


http://mnras.oxfordjournals.org/

the cases of an exactly radial system of infinitesimal density and a
completely isotropic system, i.e. 0 < L2, < Max[L2_ (r)].

Thus, one can construct a system using this DF that does not obey
the relation of the GDSAI to a specific degree over a specific set of
radii by choosing a large enough value for L2 . It thus follows that
a system could be constructed which produces a small degree of
violation over such a small range of radii that it would only be sus-
ceptible to the Hénon and radial orbit instabilities to a vanishingly
small degree. It is thus true to say that the stability implications
become negligible as L2, — Max[L?  (r)].

This is particularly true for the radial orbit instability criteria as
the susceptibility is averaged over the entire system. Additionally,
the Hénon criteria is only necessary, not sufficient, for instability
(Merritt 1999) and it is thus difficult to claim that small, highly local
violations of the criteria represent chronic instability in the model.

This is seen clearly if the GDSAI function is plotted for a selection
of our models. In Fig. 12 we can see the impact of changing & on
our models. Regions where the function is negative indicates that
system is not following the criteria of the GDSAL In particular, we
have shown that the model we have been investigating where & =
2 is stable against radial orbit instability and also fails to follow the
same criteria as the GDSAI over a range of radii. In particular, the
difference at large radii is significant.

The DF of the model is positive, the majority of the system is
isotropic, and the system fails to adhere to any similar relationship
to the GDSALI The only problem with the system is that its stability
cannot be rigorously guaranteed. We believe that this proves that
the slope—anisotropy inequality cannot be extended to include all
non-separable systems in addition to its current areas of success.
We obviously cannot speak specifically for each and every non-
separable model, but we can demonstrate that DFs of this form with
non-trivial values for L., do not obey such a relationship. We find
that stability criteria are the principal measure of the success of our
system and correlate to regions of the system which fail to obey a
GDSAI-like relation.

This dependence extends to the observables of the system.
For example, by integrating the velocity distribution from equa-
tion (30) over radius we can find the line-of-sight velocity distribu-
tion (LOSVD) for a line-of-sight passing through the centre of the
system.

In Fig. 13 we plot the LOSVD for a variety of models. In most
cases the double peak structure is very clearly seen although it
diminishes in strength as L2, rises. This is because, as discussed
earlier, the double peak only appears at certain radii depending on
the value of L2,,. For large values of L2, the double peak will only
appear at a very small range of radii and will be insignificant com-
pared to the isotropy at other radii. Consequently, when integrated
over the line-of-sight, the feature is lost and the system appears
single peaked.

6 GENERALIZING THE MODEL

We now aim to generalize our DF so as to examine a wider variety
of non-separable systems. Additionally we would like to identify a
non-separable system that does not follow a GDSAI-like relation
whilst also retaining the quality of dynamical stability.

The problems with instability cannot be resolved by using a
monoenergy DF. Remember that we established that our systems
do not obey anything similar to the GDSAI by excluding high
angular momentum orbits to create a density plateau and radial

The non-separable GDSAI ~ 3541
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Figure 13. The LOSVD through the centre of our system is plotted for three
models corresponding to & = {1, 1.5, 2} (see equation 28) for the solid,
dashed, and dotted lines, respectively. The double peak feature is retained in
the majority of models although is not apparent in models with a high Lgm.
In such models the double peak appears only at a very small range of radii

and is not significant enough to stand out against the background.

anisotropy. Given that is the case we can generally describe our DF
as a monoenergy halo of energy E;:

f(E,L)=8E; — E)F(L?), (32

where we require that F(L?) decreases as L? rises which is how we
specify that the model will favour low angular momentum orbits. We
can then use this DF to find a general expression for the probability
distribution of radial velocities as required for an analysis of the
Hénon instability (see Section 5.2):

2 2 2
P(v,,r) = 27:/5 (E1 — () — % - %’) F (v2r?)d <%> :

(33)
This then gives a general solution:
P, r)=F v2r? 2
@) (i) Y—p—00-4
=F ((2E; —2® —v})r?). (34)

Now, we specified that F(L?) is a function which decreases as its
argument increases. This means that for a fixed radius r, F((2E, —
2@ — v?)r?)is an increasing function of v,. This has the unfortunate
implication that F(L?)|,,—o < F(L?)|,,-0-

In other words the velocity distribution will always has a trough
at v, = 0 and two peaks at v, = £/2E; — 2® meaning the Hénon
instability is always going to cause problems for models of this
kind.

To try and avoid this we must generalize the model further by
weakening the condition that it is monoenergy. Our generalized DF
is of the form

f(E,L)=[H(E — Ey) — H(E — E))| H (L}, — L*) g(E),
35)

where g(E) is a function of energy which we assume, for illustrative
purposes, is given by g(E) = e *F. We define E;, < E, < 0 as
constant values for energy. With this DF we allow orbits in the
system that have angular momentum L? < L2, energies of E; <

E < E, and the function g(E) is left free. We can see that the DF
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of equation (10) can be approximated by the special cases where
E, — E, and g(F) is constant.
The corresponding density function for this illustrative model is

o= {47tﬁb’1‘5 [e7"® [[(1.5, b(E| — @) — (1.5, b(E, — ®))]

—e " [N(L5, b(Ey — ) = T(LS.b(Ex = )I]} . (36)
where ¢ = & + gf;*, b is a constant, and I'(a, x) is the incomplete
Gamma function which is defined as I'(a, x) = f;o 1 le " dr.

The corresponding potential is numerically derived and the other
system characteristics are computed using the same methods as in
Section 3. The analytical formulae are not given here as they are
prohibitively large and the model is only for illustration.

This generalized DF is non-separable and still demonstrates be-
haviour that is not in agreement with an extended GDSAI. For
example, recall how in the density peak of Fig. 5 we had a transition
domain where y <« 0 while the anisotropy profile was making a
transition from strongly radial anisotropy to isotropy as was dis-
cussed in detail in Section 4.

This behaviour remains unchanged in the generalized DF as the
angular momentum limit can be set so that it removes all particles
whose orbits are highly tangential at intermediate radii, making
the system underdense and anisotropic. Again, since this cut only
removes highly tangential orbits it can only make the system more
radially anisotropic at these radii. Thus the failure to obey a relation
similar to the GDSALI is still seen in our generalized system in the
region where the density peak is produced as the system moves out
of the underdense domain and towards isotropy.

Accordingly, behaviour different to that described by the GDSAI
in this region can be caused by simply setting L2, < 2R*(E| — ®),
where R is some chosen intermediate radius at which the angu-
lar momentum of a completely tangentially moving particle in the
system is maximized. This causes the angular momentum cut to ex-
clude all orbits which are highly tangential around this radius down
to the ones of lowest allowed energy as shown in Fig. 14. Note
that, as demonstrated in Fig. 12, the difference from the GDSAI
will actually begin at smaller radii due to the gradual flattening of
the density profile occurring alongside the rise in anisotropy. How-

0.00 0.05 0.10 0.15 0.20 0.25 7

Figure 14. Plots of important energies for a particular case of the illustrative
model of equation (36) where E; = —70, E; = —10, b = 0.0005, and
U (7 = 0) = (4702 The solid and thicker solid curves are E; — ® and E; —
®. Other curves are L2,,/2r? for different values of 2. The dashed line is
for a harsh cut of L2, = 0.012566. The dot—dashed line is L2, = 0.022934
which only touches E; — ®. The dotted curve is L2, = 0.075398 which

cut
only excludes a very small amount of orbits.
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Figure 15. The density models of the systems in Fig. 14. The systems are
all Ey = =70, E; = —10, b = 0.0005, and ¥ (7 = 0) = (471)> where the
solid line is L2, = 0.012566, the dashed line is L2, = 0.022934, and the
dotted curve is L2, = 0.075398. Note the bump at intermediate radii rather
than the sharp peaks seen in previous models as well as the difficulty in

getting a positive gradient.

ever, the exact point at which this takes place will be very model
dependent.

The problem remains that, as discussed in Section 5.2, removing
all highly tangential particles implies that P(v, &~ 0) = 0 which
leads to the sharply double-peaked velocity distributions that are
indicative of the Hénon instability. So, if we set a harsh angular
momentum limit then we can remove a large amount of tangential
energy and create our peak and anisotropy which will not follow
the GDSALI at the cost of stability. Conversely, if we remove the
limit entirely, then the system becomes isotropic and smooth but
fails to produce any interesting behaviour relating to the inequality.
However, while these were the only options for the original DF, the
new DF allows intermediate cases which can give us some insight
as shown in Figs 14 and 15.

We examine the case where L2, = 2r*(E; — ®) has a single
solution compared to the usual two as shown in Fig. 14. In this
instance the angular momentum limit only excludes orbits down to
the orbit of lowest energy which has the highest angular momentum.
In other words, if the limit was raised infinitesimally, then it would
just be possible to have an orbit with kinetic energy of exactly
E; — ®(R) whose apocentre was at a radius R which maximized
that orbit’s angular momentum.

What we see in Fig. 15 is that already the model is not excluding
enough orbits to force a local y < 0, which is the feature in our
models which always guarantees behaviour that can demonstrate
disagreement with a GDSAlI-like relation. This is not encouraging
as this the earliest case where P(v, = 0) # 0 for all energies which
means that that this case is still significantly unstable by the Hénon
criteria because P(v, = 0) < P(v, > 0). However, it is already
unlikely to produce behaviour different to the GDSAI dueto y > 0
and an anisotropy that will not be as high as in models with harsher
angular momentum cuts.

This is true of every model where 2r?(E; — ®) < L2, <
2r2(E, — ®). As the number of high angular momentum orbits
allowed increases, it follows that y must rise, 8 must tend towards
0, and P(v, = 0) will also rise. However the probability of very
low v, will still be reduced compared to a system where no orbits
are removed. In other words, the instability will be present to some
degree over some range of radii if the angular momentum threshold
excludes any orbits at all.

$T0Z ‘¥ JoquR1das U0 SMaIpUY IS 10 A1SIeAIUN T2 /6I0S [euno o Jxo'seuw//:dny Wo.j papeo umod


http://mnras.oxfordjournals.org/

Between these cases we see that the behaviour of our general-
ized model is comparable to that of our simpler, more specific DF.
Depending on the choice of parameters the system can demonstrate
behaviour over a range of radii that is in disagreement with a po-
tential extension of the GDSAI, however, causing such behaviour
decreases the chance of finding particles with low v,. Cutting a
large amount of orbits can guarantee this behaviour at the cost of
severe instabilities where P(v, ~ 0) = 0, while weaker cuts cause
milder instability where P(v, = 0) # 0 and may fail to demonstrate
inconsistency with an extended GDSAL

This line of reasoning leads us to the conclusion that while any
suitable combination of parameters can create systems that do not
follow a GDSAI-like relationship the mechanism of removing high
angular momentum orbits is never going to produce a model that
passes the Hénon criteria.

7 SUMMARY

We have managed to construct a non-separable, equilibrium system
with By < 1/2 using a globally positive DF which demonstrates
behaviours inconsistent with an application of the GDSAI The
magnitude of the departure from the GDSAI is dependent on the
value of the angular momentum threshold L2, which is also the
parameter that controls the stability of the model. It is possible to
pick values of this parameter where the majority of the system fails
to agree with an extension of the GDSAI but is also unstable, or
where the failure is highly local and the instability is negligible. This
is a significant expansion on previous work proving the efficacy of
the GDSALI in separable systems (Ciotti & Morganti 2010b; Van
Hese et al. 2011) and is suggestive that the GDSAI may not be
applicable to models with non-separable augmented densities.

We conclude this shows that whether or not a non-separable
system obeys the GDSAI does not constitute proof of the positivity
or otherwise of the system’s DF. We do, however, note that there is
a non-trivial relationship between disagreement with an extended
GDSAI and the stability of the system. We suggest that GDSAI may
not imply phase-space consistency in such systems but may be able
to make some predictions of model stability.

Exploring generalizations of the simple system have shown
that this approach will not be able to yield a system that is sta-
ble under the Hénon criteria. Future work will therefore focus
on mechanisms beyond the removal of high angular momentum
orbits. In conclusion, we feel that while the GDSAI remains a
useful guide for non-separable systems, it should not be consid-
ered a definitive criterion in discussions of DF positivity in such
systems.
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APPENDIX A: SUBSTITUTIONS FOR
DERIVING THE ANISOTROPY

For clarity we solve each integral individually as they require sub-
stitutions to be easily soluble. We consider the numerator first and
make a substitution of ¥ = L?/L2  to make the problem dimen-
sionless:

cu L2
I, = / _dr?
2\ Eo—0(r) — &

\/Lfm/ \/ 22 By — ()] — Y

Similarly for the denominator we make the same substitution:

Lgu! L2
112=2f2/ Ey— &) — — dL?
0 2}’2

_ 213, \/
Zom / [Eo — ®(r)] — Y dY. (A2)

These integrals are simpler to evaluate and yield the results of
Section 3.2.

cut

day. (A1)
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