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ABSTRACT
The geologic records associated with the formation of the super-

continents Rodinia and Gondwana have markedly different seawa-
ter Sr and zircon Hf isotopic signatures. Rodinia-related (Grenville-
Sveconorwegian-Sunsas) orogens display signifi cantly less enriched 
crustal signatures than Gondwana-related (Pan-African) orogens. 
Seawater Sr isotope ratios also exhibit a more pronounced crustal sig-
nal during the span of the Gondwana supercontinent than at the time 
of Rodinia. Such isotopic differences are attributed to the age and 
nature of the continental margins involved in the collisional assem-
bly, and specifi cally to the depleted mantle model ages, and hence 
the isotope ratios of the material weathered into the oceans. In our 
preferred model the isotopic signatures of Rodinia-suturing orogens 
refl ect the closure of ocean basins with dual subduction zones verging 
in opposite directions, analogous to the modern Pacifi c basin. This 
would have resulted in the juxtaposition of juvenile continental and 
island arc terrains on both margins of the colliding plates, thus fur-
ther reworking juvenile crust. Conversely, the assembly of Gondwana 
was accomplished primarily via a number of single-sided subduction 
zones that involved greater reworking of ancient cratonic litholo-
gies within the collisional sutures. The proposed geodynamic mod-
els of the assembly of Rodinia and Gondwana provide a connection 
between the geodynamic confi guration of supercontinent assembly 
and its resulting isotopic signature.

INTRODUCTION
Secular trends of geologic features such as U-Pb detrital zircon 

ages, abundance of passive margins, and Sr isotopes in seawater vary 
with the cycle of assembly and dispersal of supercontinents (Fig. 1; 
Hawkesworth et al., 2010; Bradley, 2011; Cawood et al., 2013). The run-
ning average of epsilon (ε) Hf in zircon has similar secular trends with 
peaks and troughs of positive and negative values (Fig. 1; e.g., Belousova 

et al., 2010; Roberts, 2012; Cawood et al., 2013). Specifi cally, the run-
ning average of εHf analyses from a worldwide database of ~7000
U-Pb and Hf analyses of zircons from Phanerozoic sediments (from 
Dhuime et al., 2012) shows the most negative trough of −12 at 550 Ma 
(Fig. 1), corresponding to the timing of the Gondwana-forming oroge-
nies. These strongly negative values associated with Gondwana assembly 
contrast with those at the time of the Rodinia-forming orogenies (1250–
980 Ma), when the εHf running mean remains near the chondritic uniform 
reservoir (Fig. 1).

We argue that the Sr and Hf isotopic characteristics of material 
formed during the assembly of supercontinents (specifi cally Rodinia and 
Gondwana), and consequently the Sr isotope ratios of seawater, are conse-
quences of the age and isotope composition of the margins associated with 
the assembly of each supercontinent. We relate these isotopic features to 
differing models of supercontinent assembly.

RODINIA AND GONDWANA CONTINENTAL MARGINS
The ages of preserved continental margins involved in the assembly 

of Rodinia and Gondwana differ signifi cantly in age and isotopic character. 
Relatively young, isotopically juvenile rock units dominate the continental 
margins incorporated into Rodinia, whereas the Gondwanan margins are 
signifi cantly older and more evolved. Prior to the Rodinia-forming orog-
enies, the early Mesoproterozoic crust of the 1.5–1.3 Ga Granite-Rhyolite 
(USA), 1.51–1.45 Ga Pinwarian (Canada), 1.56–1.3 Ga Rondonian (Bra-
zil), and 1.52–1.48 Ga Idefjorden, Bamble, and Telemark (Norway) prov-
inces (Whitmeyer and Karlstrom, 2007; Bettencourt et al., 2010; Bingen 
et al., 2008) dominated the colliding margins of Laurentia, Amazonia, and 
Baltica. The rocks on these margins were <400 m.y. old at the time of 
collisional assembly. Other end-Mesoproterozoic orogenic events are also 
found in Australia, Antarctica, India, and north China; however, the assem-
bly of these blocks resulted in geographically restricted episodes of mag-
matism (e.g., Kröner et al., 2003; Collins and Pisarevsky, 2005; Cawood 
and Kosch, 2008; Zhao and Cawood, 2012) (Fig. 2B). In contrast, Archean 
and Paleoproterozoic crust dominates the continental margins associated 
with the assembly of Gondwana. The Damara-Zambezi belt juxtaposes 
the northern Archean–Paleoproterozoic margins of the Kalahari craton and 
Rayner-Rauer complex with the southern Archean margins of the Congo 
and Dharwar cratons (Gray et al., 2008, and references therein; de Waele 
et al., 2008). The Dahomeyide, Pinjarra, and Brasiliano collisional oro-
gens share similar relationships (e.g., Cawood, 2005; Rapela et al., 2011). 
These margins were signifi cantly older at the onset of the amalgamation of 
Gondwana than those involved in the formation of Rodinia.

Using geologic maps and ArcGIS the present-day lengths of the 
margins were measured for the Rodinia- and Gondwana-forming orogens 
and the adjacent geologic provinces. This indicates that 63% of the Gren-
ville-Sunsas-Sveconorwegian orogenies were juxtaposed with 1.3–1.5 Ga 
crust, the remaining comprising ca. 1.7–1.9 Ga crust (e.g., Labradorian 
and Yavapai provinces) (Fig. 2B). This is in stark contrast to the Gond-
wana-forming (Pan-African) orogenies, in which 58% of the margins 
involved are adjacent to Archean cratons and the remaining are comprised 
of Neoproterozoic and Mesoproterozoic crust and minor Paleoproterozoic 
crust (Fig. 2A).

Assuming that the present distribution of exposed rock units is 
representative of the relations at the time of syncollisional erosion, we 
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Figure 1. Normalized seawater 87Sr/86Sr curve (Shields, 2007) plotted 
with 5% running average of initial zircon εHf (i.e., 5% of total number, 
n, in database is used for period of running average) from global 
database of modern and recent river sediments (see Dhuime et al., 
2012, for references). Time periods of Grenville and Pan-African oro-
genic events (Bradley, 2011) are outlined (CHUR—chondrite uniform 
reservoir).
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compared the relative proportions of juvenile versus evolved crust asso-
ciated with orogenesis during assembly of Rodinia and Gondwana. The 
compiled U-Pb and Hf analyses from Phanerozoic sediments (from 
Dhuime et al., 2012) were used to evaluate initial Hf isotope ratios in zir-
con and Hf depleted mantle model ages for zircons that crystallized in the 
periods associated with the assemblies of Gondwana and Rodinia in the 
Pan-African and Grenville orogenies, respectively.

Zircons with U-Pb crystallization ages of 520–650 Ma were selected 
to represent the isotope compositions of the rocks associated with the 
formation of Gondwana, and those with ages of 980–1250 Ma represent 
the assembly of Rodinia (Cawood and Buchan, 2007; Bradley, 2011). 
Depleted mantle model ages were then normalized to ages of 900 and 
480 Ma, which broadly represent the end of the Rodinia- and Gondwana-
forming orogenies, respectively (i.e., 480 and 900 Ma were subtracted 
from the present-day depleted mantle model ages of zircons that crystal-
lized in the time periods identifi ed, using an average crustal Lu/Hf = 0.15). 
Integration of probability density plots highlights that Rodinia-forming 
orogenies incorporate signifi cantly more material with relatively young 
model ages, whereas Gondwana-forming orogens have a greater propor-
tion of relative old model ages (Fig. 3).

The average depleted mantle model Hf ages from the Gondwana- 
and Rodinia-forming orogenies were in turn used to calculate the bulk Sr 
isotopic composition of the eroded margins at 900 Ma for Rodinia and 
480 Ma for Gondwana assuming an average upper crustal Rb/Sr ratio 
of 0.256 (Rudnick and Gao, 2003). The Sr isotope ratio of seawater is 
~0.7053 at 900 Ma and ~0.7082 at 480 Ma (from Shields, 2007), and the 
calculated average Sr isotope ratios of the active margins at those times 
were 0.709 and 0.711, respectively. Thus the Sr isotope ratio of seawater 
increased by 0.0029 between 900 Ma and 480 Ma, and the runoff from the 

active margins increased by 0.0019. Assuming that the Sr abundances in 
the fl uxes from the mantle and crustal end members are similar to those of 
the present day, much of the difference between the Sr isotope signals for 
the Rodinia- and Gondwana-forming orogenies can therefore be attributed 
to the differences in the ages of the preexisting rocks reworked along those 
margins, and the rest may largely refl ect the Sr isotope ratios of continen-
tal runoff from areas not involved in these two orogenic systems.

The different zircon Hf and seawater Sr isotope signatures of the 
Grenville and Pan-African orogenic systems is readily explained by 
contrasting geodynamic scenarios. The assembly of Rodinia (ca. 1250–
1140 Ma) was primarily accomplished through dual opposing subduction 
zones beneath the Kalahari-Amazonia on one side (Ibanez-Mejia et al., 
2011, and references therein; Jacobs et al., 2008) and Laurentia-Baltica on 
the other (Cawood et al., 2007; Rivers and Corrigan, 2000, and references 
therein; Bingen et al., 2008) (Fig. 4). This dual-sided subduction system 
juxtaposed juvenile continental arcs on the colliding continental margins. 
Several previously accreted island arc terranes are also found throughout 
the Grenville and related orogens (Rivers and Corrigan, 2000; Bingen et 
al., 2008), adding to the juvenile component of the continental margins. 
Compiled zircon Hf isotopes from Grenville-derived sedimentary rocks 
in Laurentia and Baltica (Fig. DR1 in the GSA Data Repository1) show 
an increasingly juvenile signature with time just prior to the collisional 
assembly of Amazonia, Laurentia, and Baltica (i.e., the ca. 1.5–1.3 Ga 
Granite-Rhyolite, Pinwarian, Labradorian, and Gothian provinces), 
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Figure 2. A: Map of Gondwana (ca. 500 Ma) showing extent of Gondwana-forming orogenies and distribution of Precambrian prov-
inces (modifi ed from Li et al., 2008; Cawood and Buchan, 2007; Torsvik and Cocks, 2009, and references therein). B: Map of Laurentia 
(ca. 1.3 Ga), with Paleozoic and younger geology omitted, showing extent of Rodinia-forming orogenies (modifi ed from Tohver et al., 
2002; Cawood and Buchan, 2007; Jacobs et al., 2008). PanAfr—Pan African; Paleopro—Paleoproterozoic; Meso—Mesoproterozoic; 
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1GSA Data Repository item 2013219, compiled zircon Hf isotopes from sedi-
mentary rocks derived from the Grenville/Sveconorwegian and Pan-African orog-
enies (sensu stricto), is available online at www.geosociety.org/pubs/ft2013.htm, or 
on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 
9140, Boulder, CO 80301, USA.
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consistent with a dual-opposing subduction model, and analogous to the 
modern Pacifi c (Fig. 4; see also Collins et al., 2011). Following the ini-
tial stages of collision (ca. 1.25 Ga), zircon Hf isotopes became increas-
ingly isotopically enriched with a greater degree of crustal reworking 
(Fig. DR1).

The assembly of Gondwana was primarily accomplished through 
collision between the Amazonian–West African, Sao Francisco–Congo, 
Kalahari, India, and Australia-Antarctica cratons between 650 and 520 Ma 
(Collins and Pisarevsky, 2005; Cawood and Buchan, 2007) (Fig. 4). In 
contrast to the assembly of Rodinia, the isotopic data associated with the 
assembly of Gondwana require the incorporation of greater proportions 
of older crustal material (Avigad et al., 2012). We infer that the assembly 
of Gondwana was dominated by single-sided subduction, which allowed 
for the juxtaposition of juvenile continental arcs with passive margins (see 
also Meert, 2003; Gray et al., 2008). Although the Pan-African and other 
orogens associated with the assembly of Gondwana have a signifi cant 
juvenile component in some areas (e.g., accreted island arcs and ophiol-
ites of the Arabian-Nubian shield) (Stern, 2002; Johnson et al., 2011), Hf 
isotopic signatures indicate that an evolved continental signature domi-
nated the orogenic system (Fig. 4). This is similar to the long-lived uni-
directional subduction systems of Eurasia (Fig. DR1; see also Collins et 
al., 2011).

The observed isotopic patterns associated with the assembly of 
Gondwana and Rodinia refl ect the ages of the contemporaneous continen-
tal margins and different styles of subduction and subsequent collision. 
These patterns can aid in the discrimination of various geodynamic styles 
of continental collision (e.g., single versus dual-sided assembly; Collins et 
al., 2011). Further work is needed along the margins of the other ancient 

supercontinents to assess the geodynamic confi guration of supercontinent 
assembly and associated isotopic characteristics.
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