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ABSTRACT

Aims. With the aim of characterizing the flux and color variations of the multiple components of the gravitationally lensed quasar UM673 as
a function of time, we have performed multiepoch and multiband photometric observations with the Danish 1.54 m telescope at the La Silla
Observatory.
Methods. The observations were carried out in the VRi spectral bands during four seasons (2008–2011). We reduced the data using the point
spread function photometric technique as well as aperture photometry.
Results. Our results show for the brightest lensed component some significant decrease in flux between the first two seasons
(+0.09/+0.11/+0.05 mag) and a subsequent increase during the following ones (−0.11/−0.11/−0.10 mag) in the V/R/i spectral bands, respec-
tively. Comparing our results with previous studies, we find smaller color variations between these seasons as compared with previous ones. We
also separate the contribution of the lensing galaxy from that of the fainter and close lensed component.
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1. Introduction

Multiply imaged quasars are of great interest in astrophysics
due to the possibility, from observed flux and color varia-
tions between the lensed components, to distinguish between
intrinsic quasar variations caused by the accretion mechanism,
and microlensing effects induced by stars in the lens galaxy
(Wambsganss 2006).

In previous papers (Ricci et al. 2011b,a), we have studied
such variations for the quadruply imaged quasar HE 0435-1223,
observed in the framework of a VRi multiepoch monitoring
of five lensed quasars1, a parallel project of the Microlensing
Network for the Detection of Small Terrestrial Exoplanets
(MiNDSTEp) campaign (Dominik et al. 2010).

In the current paper, we focus on UM673/Q0142–100 (see
Fig. 1), a doubly imaged quasar discovered by Surdej et al.
(1987) during a high resolution imaging survey of HLQs (Highly
Luminous Quasars) and subsequently studied by our team
(Smette et al. 1990, 1992; Daulie et al. 1993; Nakos et al. 2005).

Surdej et al. (1988) reported a separation of 2.22′′ between
the components “A” (brighter) and “B” (fainter), and found
their V magnitudes to be 16.9 and 19.1 respectively, at a red-
shift z = 2.719. The redshift of the sensibly fainter (R = 19.2)

� Based on data collected by MiNDSTEp with the Danish 1.54 m
telescope at the ESO La Silla Observatory
�� Light curves are only available in electronic from at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A104
��� Royal Society University Research Fellow.
���� Also Directeur de Recherche honoraire du FRS-FNRS.

1 UM673/Q0142-100, HE0435-1223, Q2237+0305, WFI2033-4723
and HE0047-1756.

lensing galaxy, located very close to the “B” component, was de-
rived to be z = 0.49, and the time delay between the two lensed
components was estimated around 7 weeks.

A photometric monitoring of UM673 was performed during
the years 1987–1993 (Daulie et al. 1993), but the photometry
did not show any clear evidence for relative variations over the
considered period.

In the framework of the CfA Arizona Space Telescope LEns
Survey (castles) project, precise astrometry of the components
and of the lens galaxy “G” was obtained2. The colors of the lens
galaxy were found to match those of a passively evolving early-
type galaxy at z ≈ 0.5 (Muñoz et al. 1998).

Lehár et al. (2000, 2002) reported Hubble Space Telescope
(HST) observations of UM673 at optical and infrared wave-
lengths, and Sinachopoulos et al. (2001) observed the lensed
quasar in the R filter for six seasons (1995–2000), detecting a
significant increase by 0.3 mag of the combined system (lensed
components) with respect to the values reported at discovery,
with a peak of 0.5 mag during the period 1995–1997. Lehár
et al. (2000) performed photometric measurements on HST data
taken in the R filter, and obtained magnitudes of 16.67, 18.96,
and 19.35 for the “A”, “B” components and the lens galaxy,
respectively.

After spectrophotometric observations performed in 2002 by
Wisotzki et al. (2004), which did not show any evidence of mi-
crolensing, the first multifilter monitoring of UM673 was car-
ried out by Nakos et al. (2005) between 1998 and 1999, in
the Cousins V and Gunn i filters. Analysis of the light curves
was made using three different photometric methods: image

2 http://www.cfa.harvard.edu/castles/Individual/Q0142.
html
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Fig. 1. DFOSC V filter image, taken on 2008-08-03, showing the po-
sition of UM673 and the stars “R”, “S”, “T”, “U”, and “V” used to
search for a suitable reference star. The “V” star was finally chosen.
“G1” and “G2” are field galaxies. The inset zoom shows the two com-
ponents “A” and “B” of the lensed quasar.

deconvolution (Magain et al. 2007), point spread function (PSF)
fitting, and image subtraction. Nakos et al. (2005) found that
component “A” displayed possible evidence for microlensing.

Koptelova et al. (2008, 2010a,b) and Koptelova &
Oknyanskij (2010) observed the object in the VRI bands and
succeeded for the first time in determining a time delay:
150+7 +42

−18 −36 days (at 68% and 95% confidence levels).
Furthermore, Fadely & Keeton (2011) examined the wave-

length dependence of the flux ratios for several gravitationally
lensed quasars using K and L′-band images obtained with the
Gemini North 8m telescope, detecting no difference between
the two flux ratios for the specific case of UM673 (“B”/“A” =
0.128 ± 0.002 in the K-band and 0.132 ± 0.006 in the L′-band).

Finally, in a recent paper, Koptelova et al. (2012) re-
estimated the determination of the time delay to a value of 89 ±
11 days using 2001–2011 VRI observations, and suggested the

Table 1. Number of CCD images collected for each filter and each year
of observation of UM673.

Images Nights
Season V R i total V R i total
2008 42 45 43 130 15 15 15 45
2009 34 35 26 95 12 13 9 34
2010 72 78 0 150 23 26 0 49
2011 51 53 9 113 15 16 1 32
total 199 211 78 488 65 70 25 160

Notes. The corresponding number of nights for each filter is also shown.

brightness variations to be mainly due to intrinsic variations of
the quasar.

We present multiepoch photometric monitoring data of
UM673 over four seasons (2008–2011), carried out in three
filters (VRi) with the Danish Faint Object Spectrograph and
Camera (DFOSC) instrument of the Danish 1.54 m telescope
at the La Silla Observatory.

The observations and the pre-processing of the images are
presented in Sect. 2. Section 3 presents the reduction techniques
and the results are shown in Sect. 4. Finally, Sect. 5 contains the
main conclusions.

2. Observations and pre-processing

We monitored UM673 during four seasons (2008–2011) us-
ing the Danish 1.54 m telescope at the La Silla Observatory,
equipped with the DFOSC instrument, providing 2147 ×
2101 pixel CCD frames over a field of view of 13.7′ ×13.7′ with
a declared resolution of 0.39′′/pixel. The RON (read-out-noise)
of the CCD camera in high-mode (gain g = 0.74 electron/ADU)
is 3.1 electrons per pixel. With the exception of the re-
aluminization of the primary mirror in 2009, the configuration
software/hardware of the telescope did not change over the four
seasons of observation. The data were collected in the Bessel V ,
Bessel R, and Gunn i filters3.

We obtained a total number of 488 VRi images correspond-
ing to 160 nights over the four seasons. The details are given in
Table 1.

In 2010, no i filter image was taken, as the monitoring was
foreseen since the beginning in the only VR filters, and the i filter
images were taken depending on the remaining telescope time
with respect to the other MiNDSTEp parallel projects. All the
frames were acquired with a 180 s exposure.

We treated the images following the same procedure as those
relative to HE 0435-1223 described in a previous paper (Ricci
et al. 2011b), with the exception that we used the images al-
ready de-biased and flat-fielded in loco by the Interactive Data
Language (IDL) automatic pipeline used at the Danish Telescope
for the daily monitoring of the bulge microlenses.

3. Data reduction

We carefully checked the history of the scale of the images
between the various seasons, and we found a constant value
of 0.395′′/pixel. We froze this angular scale in the data re-
duction. We also checked the evolution of the position angle

3 More details are available at http://www.eso.org/lasilla/
telescopes/d1p5/misc/dfosc_filters.html
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Table 2. Maximum differences of the R filter magnitudes between sea-
sons and in σ units for the stars “R”, “S”, “T”, “U”, and “V” in Fig. 1.

Star ΔmR ΔmR/σR

“R” 0.014 0.67
“S” 0.030 1.29
“T” 0.058 2.69
“U” 0.037 0.84
“V” 0.020 0.90

between the CCD pixel grid and the equatorial coordinate sys-
tem, finding a change in angle between the seasons: 4.5′ be-
tween 2008 and 2009, 5.2′ between 2008 and 2010, and 4.7′
between 2008 and 2011. We took this effect into account in our
data reduction.

Finally, we checked the seeing values for all the observa-
tions. We decided to fit the “U” star (see Fig. 1) with a two-
dimensional Gaussian function, and we found that the R filter
images had the best seeing. We then decided to search for a suit-
able reference star in that filter.

We disregarded all those images for which the two lensed
components were unresolved (seeing >2′′). Independently we
measured the flux ratio between the two bright galaxies “G1”
and “G2” (see Fig. 1) using aperture photometry (we integrated
a square area of 40 × 40 pixels centered on each galaxy). In the
analysis we only used those images for which this flux ratio was
stable, corresponding to a total of 9–18 images per season, de-
pending on the filter.

The reference candidates are the stars “R”, “S”, “T”, “U”
and “V” in Fig. 1: we compared the fluxes of these stars with the
total flux of the bright galaxies “G1” and “G2” using aperture
photometry. For this test we decided to use galaxies because we
can be sure of their stability. Table 2 contains the maximum dif-
ferences of the magnitudes between seasons and in sigma units
for the five concerned stars.

On the basis of this analysis, we conclude that star “R” and
star “V” are comparably stable. However, star “V” is closer to
the lens system, and it is therefore better to use its shape as a
reference PSF for the lens fitting. Also, it had been found to be
photometrically stable by Sinachopoulos et al. (2001) and Nakos
et al. (2003); finally it was already used by Nakos et al. (2005)
as a reference for the PSF fitting of UM673.

From all these considerations, we decided to use star “V”
as the reference star for the PSF fitting of the lens system. To
calibrate the magnitudes in the VRi filters, we used the values
of the star “V” provided by Nakos et al. (2003): mV = 16.54 ±
0.01, mR = 16.00 ± 0.01, and mI = 15.55 ± 0.01. Moreover, we
calculated the R magnitude of the “G1” and “G2” galaxies with
aperture photometry, using “V” as the reference star. We found
values of mR = 17.47 ± 0.03 for “G1”, and mR = 17.92 ± 0.05
for “G2”.

We tested if it was possible, on the basis of our data, to mea-
sure independently the magnitude of the lens galaxy “G” in each
band. We found that the R band images had better quality, and we
proceeded using these images. Each image was interpolated with
a bicubic spline and every pixel was divided in a grid of 20 × 20
new sub-pixels. Then we superposed these oversampled images
and we summed them up to obtain an oversampled image with
a high signal-to-noise ratio (see Fig. 2). We used the “V” refer-
ence star as reference PSF. We fitted the gravitational lens sys-
tem with two PSFs for the “A” and “B” lensed components, fix-
ing their relative astrometry. We then adjusted the scale factors
of those two PSFs to retrieve the uncontaminated image of the

background lens galaxy. We used aperture photometry to derive
its magnitude relatively to the “V” reference star.

To improve the accuracy of the photometry, we added two
factors to scale the fluxes of the “A” and “B” lensed components.
We varied the factor of the “A” component from 0.94 to 1.1 with
a step of 0.0022, and we varied the factor of the “B” component
from 0.2 to 1.1 with a step of 0.04.

First we constructed an array of residual maps for these
two factor combinations, and for each residual map we calcu-
lated the coordinates of the light center of the galaxy “G”. As
a criterion for the correctness of the obtained galaxy image we
chose the distance from its light center to the expected one, pro-
vided by the accurate astrometry measurements. The distance
between the “B” lensed component and the galaxy “G” provided
by HST data is 0.38′′, which is ≈20 new sub-pixels. So we as-
sumed that the distance between the obtained and expected light
center of “G” should be less than half the distance between the
galaxy “G” and the “B” lensed component (<10 new sub-pixels).

We applied the same criterion between the expected and ob-
served position of the maximum of light of the galaxy “G”.
Indeed, the light center of “G” may be slightly offest from its
maximum of light.

We considered that the overlap between the regions where
these two conditions are satisfied fixes the region of allowed val-
ues for the two scale factors, and the minimum and maximum
magnitudes of galaxy “G” which are 19.02 and 19.56, respec-
tively. From that, we then independently calculated the magni-
tude of the lensing galaxy “G” in the R band as 19.29 ± 0.27.
If we calculate this value as an average magnitude over all the
allowed values for the two scale factors, we obtain 19.27± 0.15.
Both these values, within the error bars, are in good agreement
with the HST data. An image of the reconstructed galaxy is
shown in Fig. 3.

Therefore, in the following analysis we considered the mag-
nitudes of the lens galaxy “G” as being those previously mea-
sured with HST. HST results (named GHST), obtained using
HST filters, were converted to the ground-based photometric
system by Lehár et al. (2000) using Holtzman et al. (1995)
calibrations. The V , R and i magnitudes that they derived for
the galaxy are: GV = 20.81± 0.02, GR = 19.35± 0.01, and GI =
18.72 ± 0.03.

We applied the PSF fitting technique while accounting for
the magnitude of the lens on the best frames previously chosen,
by refining the robust method already used in our previous work
(Ricci et al. 2011b).

Our method is based on the simultaneous fit of each frame
with two PSFs for the “A” and “B” components, and the de
Vaucouleurs profile for the lens galaxy “G”, fixing the relative
astrometry between the components in accordance with mea-
surements from Muñoz et al. (1998). We also fixed the mag-
nitudes of the galaxy “G” to the above mentioned values. For
a more accurate fitting, we used a bicubic interpolation of the
images.

Koptelova et al. (2010b, 2012) observed UM673 with the
VRI filters, and derived the photometry without separately
taking into account the magnitude of “B” and that of the
lens galaxy “G”. As the lens galaxy is located very close to
the “B” component, and for comparison with other works, we
also calculated the magnitudes of the “B”+“G” components as
a simple superposition of their fluxes. Let us label “B+G” the
results obtained in this way.
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Fig. 2. Composite image of UM673 obtained by superposing the 44 best
quality CCD images in the R filter, resampled by dividing each pixel in a
grid of 20× 20 subpixels and recentering the images with an accuracy of
one new subpixel. The positions of the components, provided by HST,
are also shown.

4. Results

4.1. Flux variations

The separate light curves of the two lensed components “A”
and “B” of UM673 and the “B+G” light curve are shown in
Fig. 4.

For a robust measurement of variability, we calculated the
average and the standard deviation over each season. Then,
we also measured the photometry of the whole system (A +
B + G)aperture using aperture photometry. The aperture photom-
etry was calculated using two independent routines: a custom
routine set up by our team, and the IRAF daophot package. As
the results were robust and coherent between each other, we de-
cided to normalize the averaged PSF fitting results to aperture
photometry. We then calculated for each year a normalization
parameter k = [(A+B+G)aperture−GHST]/(APSF+BPSF), and we
corrected all PSF magnitudes for k. These averaged results are
in agreement with the non normalized results, and are shown in
Fig. 5 and in Table 3.

Furthermore, in Table 3 we list the magnitudes of “B+G”
as a mere superposition of their fluxes. The contribution due
to the galaxy “G” in the total flux of the unresolved compo-
nent “B+G” is quite important: near 18%, 45% and 52% in the
V , R and i bands, respectively.

We see an initial common behavior for the different filters
and components: the flux slightly decreases between the 2008
and 2009 seasons, and increases between the 2009 and 2010 sea-
sons. Then, during the 2011 season, the flux of the “A” com-
ponent keeps increasing, while the “B” component slightly
decreases.

In particular, in the V filter we notice a decrease in
flux by 0.09 mag between the 2008 and 2009 seasons for
the “A” component (corresponding to a decrease of 3σ), and an
increase in flux by 0.10 mag between the two successive seasons
(2009–2011). The flux of the “B” lensed component, as well as
of “B+G”, slightly decreases in this filter over the four seasons,
but not significantly.
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Fig. 3. Reconstructed image of the lens galaxy of UM673. Orientation,
pixel scale and marks are the same as those shown in Fig. 2. See the text
for the details relative to the reconstruction technique.

Table 3. Average magnitudes for the gravitationally lensed components
of UM673 in the VRi bands.

Component Season V R i

A

2008 16.79 ± 0.02 16.48 ± 0.03 16.27 ± 0.03
2009 16.88 ± 0.04 16.59 ± 0.04 16.32 ± 0.03
2010 16.84 ± 0.01 16.55 ± 0.02
2011 16.77 ± 0.03 16.48 ± 0.03 16.22 ± 0.01

B

2008 19.13 ± 0.06 19.09 ± 0.05 18.80 ± 0.10
2009 19.20 ± 0.04 19.16 ± 0.05 18.85 ± 0.04
2010 19.16 ± 0.06 19.10 ± 0.05
2011 19.18 ± 0.05 19.22 ± 0.10 18.84 ± 0.06

B+G

2008 18.92 ± 0.07 18.46 ± 0.05 18.01 ± 0.10
2009 18.98 ± 0.04 18.50 ± 0.05 18.03 ± 0.05
2010 18.94 ± 0.06 18.47 ± 0.05
2011 18.96 ± 0.06 18.53 ± 0.10 18.03 ± 0.07

In the R filter the behavior is the same: for the “A” compo-
nent the flux decreases by 0.11 mag (above 3σ) between the first
two seasons and successively increases by 0.11 mag between the
2009 and 2011 seasons. The flux of the “B” lensed component
slightly decreases, as well as the flux of “B+G”, with a less sig-
nificant amplitude.

Finally, in the i filter we notice less evident trends than de-
tected in the other filters, excepted for the brighter “A” lensed
component which presents a smaller decrease in flux between
the first two seasons and a further increase by 0.10 mag between
2009 and 2011.

Our results are in good agreement with Koptelova et al.
(2012) recent results for the same epochs (see the larger back-
ground symbols in Fig. 5). We obtain for the “A” lensed com-
ponent a magnitude ≈ 0.02–0.08 larger for all the filters. The
magnitudes of “B+G” are slightly smaller: within 2σ in the R
and i bands. These differences might derive from using differ-
ent techniques for PSF fitting and/or setting the photometric
zero-points.
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Fig. 4. Light curves in the VRi filters of the lensed components “A”
and “B” of the gravitationally lensed quasar UM673. The plot also
shows the “B+G” values. The “B” and “B+G” light curves have been
shifted by −1.5 and 0.5 mag, respectively. Typical errors of individual
observations are near 0.02 and 0.05–0.08 mag for the “A” and “B” com-
ponents, respectively.

Table 4. Average R − i and V − R color indices for the gravitationally
lensed components of UM673.

Component Season R − i V − R V − i

A

2008 0.21 ± 0.04 0.32 ± 0.04 0.52 ± 0.03
2009 0.26 ± 0.05 0.29 ± 0.06 0.56 ± 0.05
2010 0.29 ± 0.02
2011 0.26 ± 0.03 0.30 ± 0.04 0.55 ± 0.03

B

2008 0.28 ± 0.11 0.04 ± 0.08 0.32 ± 0.12
2009 0.32 ± 0.06 0.04 ± 0.06 0.35 ± 0.06
2010 0.06 ± 0.07
2011 0.38 ± 0.11 −0.04 ± 0.11 0.34 ± 0.08

B+G

2008 0.45 ± 0.11 0.46 ± 0.08 0.91 ± 0.12
2009 0.47 ± 0.07 0.48 ± 0.06 0.95 ± 0.07
2010 0.48 ± 0.08
2011 0.51 ± 0.12 0.43 ± 0.11 0.93 ± 0.09

4.2. Color variations

From the data collected during the 2008, 2009, and 2011 sea-
sons, we were able to build a color-color diagram to search for
color variations of the two lensed components and of “B+G”
with time. The results are shown in Fig. 6 and in Table 4.

All color variations over each epoch are found to be within
the error bars. Our results also show that within these error bars
the color indices of the “A” component and of “B+G” are coher-
ent with the work of Koptelova et al. (2010b, 2012) data, and we
find small variations with respect to HST data which are relative
to 1994.

Moreover, the temporal evolution of the color index between
the observations of Koptelova et al. (2010b, 2012) and the cur-
rent data shows a weak trend indicating that the quasar becomes
redder as its flux decreases, as already observed in our multicolor
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Fig. 5. Average light curves over the four seasons of observation for the
two lensed components “A” and “B”. The “B+G” average light curve is
also shown (see the text for details). The error bars indicate the standard
deviation over the epoch. The larger background symbols show recent
results independently obtained by Koptelova et al. (2012).

study of the gravitationally lensed quasar HE 0435-1223 (Ricci
et al. 2011b).

Galaxy “G” affects quite strongly the color of “B+G”. We
find a difference of 0.17–0.13 mag between the R − i color in-
dex of “B+G” and “B”, a difference of 0.42–0.47 mag in V − R
and of 0.59–0.60 mag in V − i. On the basis of HST data,
corresponding differences in colors between the “B+G” and “B”
components are 0.17, 0.37 and 0.54 (Lehár et al. 2000). This
supports the view that the contribution of galaxy “G” cannot be
neglected in any considered band.

Nakos et al. (2005) reduced UM673 data in the V and i fil-
ters by using three different techniques: MCS deconvolution,
difference imaging, and PSF fitting. The first two techniques
allow in principle to get rid of the contribution of “G”, while
results obtained with PSF fitting are contaminated by the lens
galaxy. Despite this, Nakos et al. (2005) results are coherent
with each other. We compared their V − i color index ob-
tained by the different methods. Nakos et al. (2005) obtained
differences on the V − i color index between “B+G” and the
“B” components smaller than 0.04 mag, which is compara-
ble with their photometric errors. This is in contradiction with
Lehár et al. (2000) results and our results, which lead to 0.54
and 0.59−0.60 mag, respectively. As it was shown above, the
brightness of galaxy “G” cannot be neglected in the V , R or
i bands. The contribution of galaxy “G” significantly changes
the color of “B+G”.

In Fig. 7 we compare the evolution of the V − i color index
with time, by using the data collected from HST (Muñoz et al.
1998), Nakos et al. (2005), and Koptelova et al. (2010b). An
adaptation of recently published data by Koptelova et al. (2012)
is also shown. We find good agreement with their data.
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Fig. 6. Color–color diagram for the 2008, 2009 and 2011 seasons (black
bold dots) of the two lensed components “A” and “B” of UM673.
The “B+G” values are relative to the color indices of the “B” component
that includes the contribution of the lens galaxy, as in the approach of
Koptelova et al. (2010b). The diagram also includes HST (Muñoz et al.
1998) data (black light points) and Koptelova et al. (2010b) data (lit-
tle gray points). The larger background symbols refer to the data from
Koptelova et al. (2012).

4.3. “Global i” light curve

A “global i” light curve which also includes the results of Muñoz
et al. (1998), Nakos et al. (2005) and Koptelova et al. (2010b,
2012) is shown in Fig. 8. To construct this figure, first we
shifted in time the light curve of “B+G” using the value of
the time delay (89 days) provided by Koptelova et al. (2012).
Then we calculated for each filter the average 2008 difference in
magnitude between the two components, and we corrected the
“B+G” light curve for these values. Finally, we corrected the V
and R light curves of both components by their average 2008
V − i and R − i color indices, respectively. We chose the 2008
season as a reference only because it represents the beginning
of our observations. Figure 8 shows that the flux of the quasar
intrinsically varied over the different seasons, with an amplitude
of ≈0.6 mag, peak-to-valley over the last two decades.

5. Conclusions

We have presented a photometric monitoring, carried out during
four epochs in three different filters, of the doubly imaged quasar
UM673.

The results show a significant decrease in flux of the “A”
lensed component between the first two seasons (2008–2009),
and a smaller increase between the successive three seasons
(2009–2011). This behavior is mostly significant in the V
and R bands.

Moreover, our observations are in good agreement with the
previous works carried out by Muñoz et al. (1998), Koptelova
et al. (2010b), and Koptelova et al. (2012) in terms of flux varia-
tions and color index. We also separated the contribution of the
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Fig. 7. Evolution of the V − i color index of “A” (triangles), “B”
and “B+G” (rhombi) with time, including the data from HST (Muñoz
et al. 1998), from Nakos et al. (2005), from Koptelova et al. (2010b)
and from the present work. Adaptation of recently published data by
Koptelova et al. (2012) is also shown (larger background symbols).
The “A” component is shifted by +1 mag.
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Fig. 8. “Global i” light curve of UM673 built by including data from
HST (Muñoz et al. 1998), Nakos et al. (2005), Koptelova et al. (2010b)
and the present work. An adaptation of recently published data by
Koptelova et al. (2012) is also shown (larger background symbols). The
technique used to build this curve is explained in detail in Sect. 4.3. In
particular, filled and open symbols are used for the “A” and the “B+G”
lensed components, respectively.

lens galaxy from the fainter lensed component, showing the ef-
fects of this operation on the color index of the latter. We con-
clude that the contribution of the lens galaxy in the photometry

A104, page 6 of 7

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118755&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118755&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118755&pdf_id=8


D. Ricci et al.: Flux and color variations of the doubly imaged quasar UM673

of UM673 cannot be neglected and we give an independent esti-
mation of the magnitude of the lens galaxy.

Further observations could help in corroborating the sepa-
rate color variations of the components, and the slight flux trend
observed between the seasons.
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