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Abstract

This thesis describes elements of the assessment and application of Bayesian
Maximum Entropy (MaxEnt) image reconstruction techniques for the analysis of
fisheries acoustic survey data. The objective is to investigate the utility of this
approach in mapping density distributions and estimating biomass. The MaxEnt
image reconstruction method derives originally from the field of astrophysics, and this
thesis represents an attempt to apply the principles of MaxEnt to the field of ocean
ecology. Essentially, what is required is to generate maps of the density distribution of
pelagic species (species living in the water column) from extremely limited and
sometimes skewed line-transect acoustic survey data. Techniques used presently are
largely unsatisfactory for a variety of reasons, and are often inapplicable for data from
surveys that do not follow a particular design strategy. This thesis investigates the
usefulness of the MaxEnt technique in overcoming some of the difficulties of acoustic
survey analysis. A study is made into the possibility of objectively testing whether
these techniques offer improvements in accuracy over existing techniques, by
attempting to reconstruct simulated data from a virtual survey. I find that plausible
reconstructions are possible, and that statistical comparisons indicate these
reconstructions are accurate. The technique is also applied quantitatively to
real-world survey data, offering new insights into the abundance of Antarctic krill
(Euphausia superba) in the Scotia Sea - raising abundance estimates from 109 million
tonnes to 208 million tonnes - and into the relative abundance of fish and jellyfish in
the Namibian Benguela, where it is shown that the biomass of jellyfish (12.2 million
tonnes) now exceeds that of fish (3.6 million tonnes).
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Chapter 1: Introduction
1.1 Why do we need reconstructions?

Biomass and distribution data for a wide variety of pelagic (i.e. living in the water
column) species are collected by acoustic survey (e.g. Burczynski and Johnson 1986;
Greenstreet et al. 1997; McGehee et al. 1998; Brierley et al. 1999); sound waves
travel much further than light waves in sea water, and sonar enables a larger volume
of the sea to be studied in a given time than trawl fishing (Maclennan and Simmonds
1992). Also, fishing vessels themselves use echosounders to locate schools of fish,
and these data can sometimes be aggregated with the data from scientific surveys
(Maclennan and Simmonds 1992). Survey data are usually recorded along the
(approximately) straight-line, regular or semi-randomly-spaced transects (Jolly and
Hampton 1990) traversed by the survey ship, and usually deliver data from only a
fraction (0.5%-5%) of the survey area (echosounder beams are only a few degrees
wide, to a depth in the order of 100m, and the transects are spaced a number of
kilometres apart). In a perfect world, we would have either an infinity of survey
vessels, or a stationary species to study, so that we could accrue all the data across the
whole survey area and produce a fine-scale map of the density distribution of a
species. In practice this is of course not the case, and hence methods are needed to
extrapolate from the minimal along-transect data we have to reconstruct the overall
distribution. Furthermore, since this extrapolation will be an approximation, it would
be extremely useful to have a measure of our confidence in the reconstruction.

The problem is unarguably a difficult one, since the results are heavily under-
constrained by the data. The difficulty is greatly increased due to the profoundly
skewed (rare but biologically important extreme values from shoals) and exceedingly
patchy (rare, dense, discrete swarms and schools) nature of pelagic species density
distributions. Successful reconstructions, if they can be achieved, will be of obvious
importance to fisheries management bodies (Hewitt et al. 2002), as well as greatly
assisting understanding of the ecology of (and the man-made changes within) the
pelagic realm.

The use here of a Bayesian Maximum Entropy (MaxEnt) technique has two
objectives:

i) It is hoped that the MaxEnt method can be used to generate more accurate maps
(see Christakos and Li 1998) of the density distribution of a target species than are
currently possible with geostatistical methods (Maravelias et al. 1996; Rivoirard et al.
2000). Essentially, where a ship collects acoustic data along a straight-line transect,
there is a need to ‘fill in the gaps’ between transects. Such maps are difficult to
produce from the very limited data collected, but would be of obvious use to
ecologists in showing the location and size of aggregations of animals. For example, a
swarm of organisms observed in the same place (or in the same depth or temperature
of water for example) over a number of surveys would have evident implications for
our understanding of the behaviour of the creature.

ii) It is hoped that the MaxEnt method can be used to generate improved estimates
(with, in particular, improved error-bars) for the overall biomass of the target species
in the survey area, compared to the standard estimation method of Jolly and Hampton
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(1990). Whilst a knowledge of total biomass is also important to ecologists, the most
pressing need for this information is in fisheries management and quota
determination. More accurate biomass estimates could generate more appropriate
quota levels for the fishing community, enable faster and more definite identification
of upward or downward population trends, and reduce the risk of over-fishing.

The project itself also has two aims:

i) to demonstrate the extent to which MaxEnt can (or can not) achieve these
improvements over existing techniques;

ii) to apply the MaxEnt technique to data in the real world.

Accordingly, this thesis will proceed along the following lines. The remainder of this
chapter will introduce the currently used techniques and the basic concepts of
MaxEnt. Chapter 2 will provide the technical details of the application of the MaxEnt
technique. Chapter 3 will discuss how accurate the MaxEnt reconstructions are, and
Chapters 4 and 5 will show the use of the technique in real world situations. Finally
Chapter 6 will look at recent developments, offer some concluding remarks, and
discuss future possibilities.

1.2 Current statistical methodologies

1.2.1 Simple interpolation

The simplest method for generating a biomass estimate from our on-transect values is
to take a simple mean of the data and apply it to the whole survey area. Because of the
difficulties discussed above, and particularly because of the skewed data, this is far
from satisfactory, since it makes no attempt to deal with the possibility that the
transects may not pass through a representative sample of the survey area and
essentially ignores any spatial structure in the data. Similarly, calculating a simple
standard deviation from the data does not offer a good estimate of possible errors,
again due to the highly skewed nature of the data.

Correspondingly, the simplest way to reconstruct the distribution is to interpolate
between the known values in a linear manner. Again, we know that this is very
unlikely to produce a distribution map that closely mirrors reality, due to the skewed
data, and so we must examine other methods.

1.2.2 Jolly and Hampton

Jolly and Hampton (1990) describe a statistical method for generating biomass
estimates from acoustic surveys (no attention is paid to generating distribution maps)
based on following particular rules when designing the survey. This system has now
become standard for the analysis of most acoustic surveys.

The method involves generating weighted means for a series of semi-randomly placed
transects. The method is sound from a Fisherian statistical viewpoint (see ‘Bayesian
and Fisherian statistics’ below), but can appear confusing. It is an example of the
archetypal frequentist methodology of ‘plugging in the numbers’ – the method will
generate a biomass estimate from given data, but not in a way that allows for
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innovative ideas. The survey design must follow rigid guidelines, and there is no way
to analyse or to incorporate data from non-standard surveys or from other external
information.

In addition, this method offers no help in generating a distribution map from the
survey data.

1.2.3 Kriging

Standard geostatistical analyses of line-transect data have generally failed, particularly
where distributions are highly skewed and patchy (Maravelias et al. 1996; Murray
1996), which is normally the case for Antarctic krill and many other pelagic species.
The most widely used modern geostatistical approach is kriging (after its inventor D.
G. Krige), a method for reconstructing missing data originally developed in the
mining industry. Kriging is the most direct alternative to the Maximum Entropy
approach (for a full description of kriging methods, see Isaaks and Srivaslava 1989;
Rivoirard et al. 2000). Essentially, kriging works by creating a matrix containing the
variance (loosely, the uncertainty in the estimate of the value) at each point in the
reconstruction area, and then using these variances as weighting functions when
estimating the missing data values. The original data remain unchanged, although
their associated variance does alter. The objective of the algorithm is to minimise the
variances of the known data and hence estimate the ‘best’ value for each missing data
point (RSINC 2000).

Kriging can be used to generate both distribution maps and biomass estimates.
However, there are still some advantages to the MaxEnt approach. In order to discuss
these, it will first be necessary to explain briefly the MaxEnt approach and in
particular the Bayesian statistical ideas on which it is based.

1.3 Bayesian and Fisherian Statistics

1.3.1 What are Bayesian and Fisherian statistics?

There are two major contrasting approaches to statistics, known after their original
proponents as Fisherian (Fisher 1925) and Bayesian (Bayes 1763; de Laplace 1812;
Jeffreys 1939). Fisherian statistics are essentially frequentist and Bayesian statistics
are probabilistic. Fisherian statistics have dominated in scientific research since their
inception due to their a priori objectivity, as they deal with long-run frequencies that
can be measured.

Frequentist statisticians can assign probabilities only to events, whether hypothetical
or real, and not to arbitrary statements such as ‘There was life on Mars a million years
ago.’ Frequentists cannot define a suitable sample space and experiment that could
possibly relate to this question. Excluding such seemingly unscientific questions from
Frequentist analysis has not prevented Fisherian statistics from achieving a great deal
in the advancement of science, but in recent years (most particularly since the work of



Page 4

Jaynes (see Jaynes 2003 for a summary)) the Bayesian approach has increasingly been
investigated and applied.

Bayesianism is predicated on indisputable underlying principles – the axioms of
probability theory, from which it is readily derived. It has been shown (Cox 1946) that
these axioms follow directly from Boolean logic and ordinary algebra; and, further,
that any other valid form of probabilistic inference is logically equivalent (i.e. there
exists a one-to-one mapping) to these standard probability rules. Since everything is
derived from a single solid argument, Bayesianism does not suffer from the
apparently ad hoc “cook-book approach to data analysis” (Sivia 1996, p.1) that
bedevils the teaching of Fisherian statistics. Bayesian statistics are not necessarily
easier to use (in fact the opposite is quite generally the case, since one can usually
select a ready-made frequentist approach from a ‘tool-kit’ of different methods) but
Bayesianism does give a scientist a quantitative idea of how much faith they should
have in their results, and it does give them the chance to more accurately fit their
statistical methods to their situation, and to describe the probability of anything that
can be described, whether a one-off event, historical conjecture, or whatever (for
arguments in favour of frequentist statistics, see Efron 1986; Dennis 1996).

Bayesian statistics is, as mentioned, based upon probability theory, and in particular
Bayes’ theorem:

p (hypothesis | data, I) =

[p (data | hypothesis, I) * p (hypothesis| I)] / p (data | I)

[ the following terminology is often used for these probabilities:

posterior probability =

(likelihood * prior probability) / evidence ]

where ‘p’ denotes a probability, ‘|’ means ‘given’, a comma means ‘and’, and I
represents the entirety of all relevant background assumptions and information. It is
formally correct to include I to remind oneself that probabilities are always
conditional on our state of knowledge, but it is usually omitted from calculations to
avoid algebraic clutter, and will generally be omitted in the rest of this thesis.

This formulation of Bayes’ theorem can be very useful – what we normally
want to know is the probability of our hypothesis in the light of our data (the posterior
probability, p(hypothesis | data)) and the other three terms are generally much easier
to assign, as we will see below. The prior probability represents our knowledge or
ignorance about the hypothesis before we look at our data; this is modified via the
likelihood function to give the posterior probability, which represents our adjusted
beliefs in the light of our data. The evidence is simply a normalisation constant that
can be used to discriminate between competing hypotheses – e.g., we may have a
similar amount of faith in two incompatible hypotheses, but when they are applied to
our data (via Bayes’ theorem) it is likely that one hypothesis will generate a higher
evidence value than the other, and this hypothesis will be preferred.
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It is important to understand that in general we deal with a distribution of
probability, or pdf (probability density function), rather than a point probability.
Bayes’ theorem for pdfs is identical to the point probability theorem shown above.
The notation ‘p’ will be used to denote a point probability, and ‘Pr’ will denote a
probability density function.

The biggest challenge in a Bayesian analysis is to set the distribution of the
prior pdf. This can be done with a little thought in simple cases: for example, a
sensible prior pdf for the throw of a die that is assumed to be fair can be derived as
follows:

p(of getting a 1) = p(2) = … = p(6) = 1/6
so the pdf Pr(x) (where x = 1 to 6) is [1/6, 1/6, 1/6, 1/6, 1/6, 1/6]

This covers all possible outcomes and is intuitively obvious, on the basis of symmetry
and because (by convention) the total probability of all possible outcomes is 1.

1.3.2 Example of using Bayes’ Theorem (adapted from Skilling 2003)

Suppose we observe a system X that could be in any of four states (X1, X2, X3, X4).
These four states are equivalent to four competing hypotheses – one of them (and only
one) is the actual situation. We would like to know, in the light of our data, the
probability of each of these states, so we use Bayes’ theorem (substituting Xj for
hypothesis).

We would begin by assigning individual probabilities p(Xj) to each of the four states.
Assuming that we have no other relevant information (I, in the theorem) about which
state is most likely, we must assign

Prior pdf = Pr(Xj) = All the p(Xj) = [¼, ¼, ¼, ¼]

To observe X, we have equipment whose response can be described probabilistically
as giving output (i.e. data) D1, D2 ... Di when the real state is X1, X2 … Xj. This
information would be obtained from a calibration exercise. For example,

Pr(Di | Xj) = Likelihood = 7/10 1/10 4/10 3/10

1/10 5/10 3/10 2/10 D(i)

2/10 4/10 3/10 5/10

X(j)

This can be interpreted as follows: if state X1 (for example) is occurring, we expect
the equipment to respond with D1 70% of the time, with D2 10% and with D3 20%. If
we already had data, we would of course use only that row (D1, D2, or D3), but here
we’re interested in the whole posterior distribution.

The analysis proceeds as follows. The first stage is to construct the joint
probability of all the possible data values and ‘real’ values using the product rule
[Pr(a,b) = Pr(a|b)Pr(b)] of probability theory:
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i

i

j

Joint = (likelihood * prior) = Pr(Di, Xj) = Pr(Di | Xj) Pr(Xj) =

7/40 1/40 4/40 3/40

1/40 5/40 3/40 2/40

2/40 4/40 3/40 5/40

j

The columns Σi Pr(Di, Xj) sum to the prior (each Xi = ¼). The rows Σj Pr(Di, Xj) sum
to the evidence Pr(Di) [or p(data) in the notation for Bayes’ theorem above]. This
makes sense – the total probability for Pr(Di AND Xj) over all possible Xj should be
just Pr(Di). Then:

Evidence = Pr(Di) = Σj Pr(Di, Xj) = 15/40

11/40

14/40

We then use the evidence to normalise the joint probability to get the posterior
distribution for X, which is what we’ve been after.

Posterior = (likelihood * prior probability) / evidence = joint / evidence =

P(Xj | Di) = (Di, Xj) / P(Di) = 7/15 1/15 4/15 3/15

1/11 5/11 3/11 2/11

2/14 4/14 3/14 5/14

So, for instance, if our measurement returns D1, the probability that the real
occurrence is X1 is 7/15; of X2 is 1/15; of X3 is 4/15; of X4 is 1/5.

Try to picture what’s going on with a real-world example. Imagine, for example, that
the measurement equipment described by the above likelihood function is a
thermometer giving data D1 to D3 as 15.1°C, 15.2°C, and 15.3°C; and that states X1

to X4 are temperatures 15.20°C, 15.24°C, 15.26°C, and 15.29°C. From a given
thermometer reading, we could then read off the probability of each possible
temperature.

1.3.3 Real-world prior pdfs

Unlike in the simple assignment Pr(Xj) = [¼, ¼, ¼, ¼] above, in any more complex
problem we find that other factors (the information I above) lead us to believe that a
flat uniform prior pdf is not applicable – some possible results will be more likely
than others. The simplest example of this would be a die that we had reason to believe
may not be fair. In the real world, there may be a large number of apparently
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justifiable but significantly different possible assignments for the prior pdf. Some
non-arbitrary method of choosing between them is required.

1.4 Maximum Entropy Image Reconstruction

1.4.1 The Principle of Maximum Entropy

Assigning a prior in these more realistic situations can be very difficult. For
theoretical reasons (Skilling 1988a; Sivia 1996 pp.113-120) when a variety of
different pdfs are consistent with the constraints imposed by our knowledge I, we
should choose the pdf which maximises the entropy S. This is the principle of
Maximum Entropy (Cox 1961; Jaynes 1978): for different possible priors, maximise

][log
1

ie

n

i
i

ppS 




where n is the number of competing hypotheses (infinity in continuous cases) and pi is
the single (i.e. not a pdf) prior probability p(hypothesis) for hypothesis i. (Note that
possibilities 1 to n must be mutually exclusive and exhaustive of the probability
space; i.e. all possibilities are covered exactly once and without overlap.) A derivation
of the principle of Maximum Entropy can be found in Chapter 4, section 4.2.1.

1.4.2 MemSys 5

The application of Maximum Entropy methods has only become possible recently as
computing power has increased, since they require a great many iterations to solve
intractable equations numerically. The computer program MemSys 5 has been
developed by Steve Gull and John Skilling (see Gull and Skilling 1991) as a generic
system to be used for a multiplicity of different problems. Various parameters can be
set by the user to create a Maximum Entropy problem-solver for their particular data.
Crucially, as well as producing a reconstruction using Bayes’ theorem and the
principle of Maximum Entropy, this software calculates the Bayesian evidence value,
which enables objective comparison of different settings and hypotheses. The
MemSys 5 software is the main computing tool used in this project. Chapter 2 presents
a more detailed description of MaxEnt and MemSys 5.

1.4.3 Why Image Reconstruction?

The problem of reconstructing a density distribution map over a given survey area is
analogous to the reconstruction of an image. A set of point values on a two
dimensional grid can naturally be viewed as a pixellated image. We can imagine the
area of ocean involved in the survey as being divided into a grid of cells of a certain
size, in just the same way as we see an image on a computer screen divided into
pixels. A greyscale image can be defined by the x and y position, and the intensity, of
each pixel; similarly, a distribution map of a survey area can be defined by the latitude
and longitude of, and the density within, each cell.

It is common to display a map of density distribution as a colour-scale image (e.g.
Hewitt et al. 2004a), where higher pixel intensity equates to higher density in that cell.
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The reason this is so natural is that a cellular density distribution and a pixellated
image are, at a basic level, mathematically identical.

The problem of filling in missing data in a survey area is, then, directly analogous to
the problem of reconstructing a damaged photograph, or improving the resolution of
astronomical images, and therefore reconstruction techniques from these disciplines
may sensibly be applied to these biological data. Great success has already been
achieved in image reconstruction using Maximum Entropy techniques in these other
fields (e.g. Gull and Daniell 1978; Burch et al. 1983; Gull and Skilling 1984; Marshall
et al. 2002).

In our case, an acoustic survey records values for those ‘pixels’ that the survey vessel
passes over, and we then use the MaxEnt image reconstruction technique to generate a
value for the density in every cell. Once this has been calculated, it is trivial to sum
the biomass in each cell to arrive at an estimate of total survey area biomass.

1.4.4 MaxEnt Image Reconstruction versus Kriging

Although a fuller description of the MaxEnt method must wait until the next chapter,
it should be possible with the brief outline given so far to discuss the possible
advantages of MaxEnt. The biggest advantage is the ability to use the Bayesian
evidence value to set parameters and to measure the relative accuracy of one
reconstruction against another (this is obviously dependent on showing that the
evidence value does reliably enable us to choose the most accurate reconstruction –
see Chapter 3).

Both kriging and Maximum Entropy approaches provide some measure of the
accuracy of the resulting reconstruction – in MaxEnt through the Bayesian evidence
value, and in kriging through the output of the matrix of variances (in fact, if required,
a similar matrix of errors can be derived for the MaxEnt reconstruction (Bontekoe et
al. 1994)). The matrix of variances does give a good impression of which regions of
the image are more believable, but the single evidence value from MaxEnt provides a
simple criterion for choice between parameters, hypotheses, etc. Also, and
importantly, a relative layman in the fishing industry or in politics can readily
understand the concept of one reconstruction having better evidence than another.
Another advantage of MaxEnt over kriging is its ability to deal with given data points
very close to each other. In kriging, the algorithm requires the matrices it uses
(internally, during calculation) to be invertible, but proximate data points can often
result in singular matrices, rendering calculations impossible. It is necessary then to
choose only one of the data points and discard the other. The MaxEnt techniques do
not suffer from this problem.

One possible advantage of kriging over the MaxEnt approach is the constancy of the
given data values. It seems intuitively reasonable not to change the values that were
actually measured. As a rule, however, the measured values have an uncertainty
associated with them, and it is easy to imagine that the overall probability of a
reconstructed area can be increased by adjusting an outlying measurement. By fixing
the input data exactly, we may sometimes force missing values in the vicinity of an
improbable measurement to have unnecessarily large variances (of course, with
schooling and swarming species, high isolated readings need not be outliers, and they
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should not be overly dragged down by a low average reading. MaxEnt only adjusts
such values via the likelihood function, which is dependent on the accuracy, σ, of the
data. Any further changes to the original data values would make the reconstruction
inconsistent with the data, and hence it would be rejected).

1.5 Recent work in Maximum Entropy Image Reconstruction

Biologists and ecologists have only begun relatively recently to apply MaxEnt
techniques to their data analysis. This is not too surprising, as the landmark paper in
astrophysics was only published in 1978 (Gull and Daniell) and the wider applications
were not immediately obvious. Some work has now been undertaken, however, and it
seems likely that exponentially more will be carried out in the future.

A 1998 paper (Vignaux et al.) successfully used MaxEnt techniques to produce
distribution maps of the density of New Zealand hoki at a finer scale than the original
unit of effort (in this case length of trawl, as this was not an acoustic survey). The
authors achieved this by using the density information inferred from the points where
different tows crossed each other. For example, two trawls which pass through the
same high-density area will both have an above average catch, and vice versa. If
enough trawls cross, as they do in the heavily-fished area off the west of New
Zealand’s South Island, then reasonably complicated inferences about points common
to more than one trawl can be achieved. The authors conclude that the MaxEnt
approach ‘is a useful technique that allows fine-scale maps of fish density distribution
to be generated from [commercial fishing] data.’ (p.1226).

More recently, papers have been produced (Brierley et al. 2003b; Wafy et al. 2003)
dealing specifically with the kind of reconstructions this project will study. The two
papers present map reconstructions of krill distribution and density in two 80100 km
survey boxes near South Georgia. Inevitably, the plausible reconstructions detailed in
these two papers cannot be compared to the actual distributions since these remain
unknown, but they showed promise in a variety of ways. Firstly, it seems possible to
generate a reconstruction in which the original transect positioning is not obvious.
This is a clear prerequisite of a successful reconstruction, as we have no reason to
expect on-transect values in the real world to differ significantly from the off-transect
values. Secondly, using the reconstructions to calculate biomass and mean density
produced plausible values. Thirdly, a visual inspection of the reconstruction showed
that (biologically important) high density values were well preserved, and that
qualitative features of the original data were reproduced in the reconstruction (for
example, isolated high values, or regions of medium-high values). Fourthly, some
known data points were left out of the analysis, and the reconstructions of these points
were not significantly different from their true values (according to a Wilcoxon
signed-rank test).

This project investigates whether there is a solid basis for the prima facie plausibility
of the Wafy, Brierley et al. (2003) results. Those authors themselves suggest that
further work should be done with heavily skewed, extremely patchy, realistic
simulated data (i.e. simulated over the whole survey area, from which virtual surveys
can be taken). Genuine comparisons can then be made between the reconstructions
and the ‘real’ distribution from which the sample data were drawn..
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1.6 Data

1.6.1 The relevance of data collection methodologies

This project focuses on pelagic data collected by acoustic surveys. There is a great
deal of pre-processing associated with this data, notably in calibration and in the
differentiation of species (Maclennan and Simmonds 1992; Hammond and
Swartzman 2001; Korneliussen and Ona 2002). However, the methods employed to
produce the data used in this project are almost irrelevant to the project itself, except
insofar as they enable us to estimate statistical noise (as opposed to acoustic noise,
which has been accounted for in the pre-processing) and errors in the data. The
MaxEnt reconstructions deal only with numbers for x-position, y-position and value,
and their correlations with each other – the numbers could represent krill density,
herring density, pixel brightness; it makes no difference (except in that we expect the
data to be skewed and patchy – smooth data wouldn’t require this sort of
reconstruction). Assuming that the species does not either avoid or follow the survey
ship (see Brierley et al. 2003a), which would obviously make any reconstruction
disastrously inaccurate, there are only two aspects of the data collecting methods that
substantially affect this research:

a) The anticipated errors associated with the data, which constrain the
accuracy of the reconstruction (and of course help to decide in
advance what level of accuracy to require of the algorithm, to avoid
wasting processing time);

b) The spatial resolution of the survey must be considered. Data are
integrated at intervals along the cruise track to generate a biomass
for that cell or pixel, and the length of along-track interval defines
the resolution of the survey results. The resolution of the image
reconstruction should obviously be based where possible on this
information.

There are of course other factors that determine whether the data are suitable for this
form of reconstruction. One is the mathematical distribution of the data, which must
be capable of being transformed to an approximately Gaussian form. This is because
the Memsys 5 system assumes measurement noise to be Gaussian, and hence uses a
Gaussian form for the likelihood function, as described in Chapter 2.

1.6.2 Sources of data

Simulated data (kindly provided by John Simmonds (Simmonds et al. 2002) - see
Figure 1.1) is used to test the success of the MaxEnt approach, so that reconstructions
generated from virtual surveys through the simulated data space can be compared
with the known ‘true’ distribution. This mock data is based on a computer model of
the movement of schools of herring in the North Sea, and is in fact a snapshot of that
dynamic model.
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Figure 1.1: A Representation of simulated herring density distribution in the
North Sea around the Shetland Islands

(Axes in pixels of the reconstruction [roughly 440m, origin at approx 58N, 4W];
Colour map: density of herring in arbitrary units; values over 3000 shown as 3000)

I have also had access to a number of real-world data sets. Two of these are analysed
in Chapters 4 and 5. The first, kindly provided by David Demer, is the result of the
2000 CCAMLR (Commission for the Conservation of Antarctic Marine Living
Resources) survey of the Scotia Sea (Trathan et al. 2001) and consists of point
estimates of krill density. The second data set is the result of a survey, by the Pelagic
Ecology Research Group, of the Benguela off the coast of Namibia (Lynam et al.
2004) and consists of estimates of the density of two jellyfish species and a number of
fish species.
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Chapter 2: Methods
2.1 Maximum Entropy Image Reconstruction and MemSys 5

This is a relatively in-depth description of the MaxEnt method. However, a fuller
understanding can be gained from Gull and Skilling (1991) and Sivia (1996), and a
more mathematical treatment can be found in Wu (1997).

2.1.1 Choosing a prior

Overall, we need the most probable image, i.e. the maximum of Pr(h|D), the posterior
pdf of all possible distributions h, where each discrete hi is the quantity in pixel i and
D is the data.

To use Bayes’ theorem to get Pr(h|D), we need first to assign the prior Pr(h).
According to the Principle of Maximum Entropy (Jaynes 1978; Skilling 1988a; see
also Sivia 1996 pp.113-120), the best set of proportions pi (i = 1,2,…, L) on L a priori
equivalent cells must be obtained by maximising the entropy

S(p) = i

L

i
i pp log

1





The generalisation (to distributions h which need not sum to 1) is to find the most
probable h by maximising

S(h) = ))/log((
1

iiii

L

i
i mhhmh 
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where m is the prior estimate or model, so that each mi is the default value assigned to
cell i (n.b. the justification for this formulation of the entropy can be found in Skilling
(1988a)).

In this case, however, we need to do more than find the most probable h: we need the
full prior pdf Pr(h). Now, if the most probable h is always found by maximising S,
then Pr(h) must be a monotonically increasing function Ф of S

Pr(h) = Ф(S(h))

It can be shown (Skilling and Gull 1989) that Ф must be of exponential form 

Ф(S)  exp(αS)

where α is an unknown constant. Although as written here this is a proportionality, an
equality can in fact be determined (Skilling and Gull 1989). However, the full
equation is rather complicated and not of direct relevance; what matters is that we can
formulate our prior, Pr(h), in terms only of h and one unknown parameter, α.

2.1.2 The Likelihood function

To use Bayes’ theorem, we also need the likelihood. Noise in the data can reasonably
be assumed to be normally distributed, and thus a Gaussian likelihood function will be
adequate. Therefore, we take
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Pr(D|h) =
L

hL
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where N is the number of measurements, and
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and
L(h) = ½ (D-F(h))T [σ-2] (D-F(h))

= ½ χ2(h)

where F(h) are mock data generated from the current estimate of h (so that L(h) is
related to the mismatch between the real data and the mock data).

2.1.3 The Evidence

The Bayesian evidence Pr(D) can be determined from the prior and the likelihood:

Pr(D) = 
h

Pr(h,D) = 
h

Pr(h) Pr(D|h)

2.1.4 Calculating the posterior probability

Once we have the prior, the likelihood and the evidence, we will be in a position to
calculate the posterior probability using Bayes’ theorem.

Pr(h|D) = Pr(h) Pr(D|h) / Pr(D) = Pr(h,D) / Pr(D)

We only know the prior in terms of α, so that the joint probability Pr(h,D) should be
written as

Pr(h,D) = Pr(h,α,D) = Pr(α) Pr(h|α) Pr(D|h,α)

Pr(h|α) is the entropic prior, and Pr(D|h,α) [ = Pr(D|h), since h itself induces the data]
is the likelihood function; both of these are known. Therefore the only unknown in
this expression of Pr(h,α,D) is Pr(α). According to Gull and Skilling (1991), with
realistically large datasets “Pr(D|α) is so sharply peaked that it overwhelms any
plausible prior on α” so we select the ‘best’ value αo [at the maximum of Pr(D|α)] and
use this in our further calculation. Knowledge of the whole distribution Pr(α) is then
unnecessary.

To calculate the optimal reconstruction ĥ(αo) [i.e. the most probable h, given the most
probable α] an iterative algorithm is used. Two more things are necessary to
understand this algorithm as it is used by the software.

First, it is necessary to be able to find the best ĥ(α), the best distribution h at a
particular value of α. This is defined by the maximum of

Q(h) = αS(h) – L(h)
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(Gull and Skilling 1991) which is unfortunately intractable. A quadratic
approximation to Q is used, which can be considered to be accurate within a trust
region near h.

Secondly, we need some way to calculate when the correct value of αo has been
approached to sufficient accuracy. The correct stopping value can always be defined
by an expression of the form

(α) = 1 with d / dα < 0

where  = G / (-2αS), and G can be considered as the number of ‘good’ (i.e.
properly-fitted) data (Gull and Skilling 1991, p.19).

2.2 Simplified MemSys 5 algorithm

Essentially, the algorithm proceeds as follows:

Set α = , at which point ĥ(α) = m (the default model)

Adjust α towards the stopping value αo
(by an amount consistent with not shifting h beyond the

current trust region)

Adjust h away from m toward ĥ(α) for the current value of α

(this is performed by the conjugate gradient method
(Barrett et al. 1994; Wu 1997, p.179-80))

Calculate and display various intermediate statistics –
evidence [ = loge Pr(D|α)], entropy etc., based on the

current estimate of h

Repeat steps 2, 3 and 4 until a termination criterion is met.

[The termination criterion is based on the mismatch (calculated as the cross-entropy,
see Rubinstein and Kroese 2004) between the ‘correct’ probability ‘cloud’ generated
from ĥ and the ‘cloud’ generated from the current estimate of h (Maximum entropy
clouds are explained in Gull and Skilling 1991, p.20). The result of some complicated
mathematics is that the expected cross entropy due to noise equates to G/2, and
therefore termination occurs when the cross entropy reaches G/2.]

This algorithm is crucial to the understanding of how the software works, and is easily
misunderstood (Wu 1997, p.180 offers an incorrect summary, for example). The two
iterations (on h and α) are not nested but interlaced. It is not the case that α is held
constant while a value for ĥ(α) is found – the two iterations are performed at the same
time, so an adjustment to h (approaching ĥ(α)) is followed by an adjustment to α
before ĥ(α) is reached (Gull and Skilling (1991), Gull (pers. comm.)).
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2.3 The Intrinsic Correlation Function

As described, the Maximum Entropy formalism does not account for any correlation
between pixels. It is one of the axioms of Maximum Entropy that this should be the
case (Skilling 1988a), but clearly in an image reconstruction problem some
assumption of correlation is necessary; otherwise there would be no reason to change
off-transect pixels from the default value. Fortunately, correlation (schooling and
swarming behaviour) is a known feature of pelagic ecological systems, and so there is
a sound biological basis for this assumption and a need for its inclusion.

In order for the entropic prior on h to be valid, h itself must be a priori uncorrelated.
Therefore, the correlation must be encoded in a blurred version of a hidden space
containing h. The blurring function used is called the intrinsic correlation function
(ICF), and the blurred result exists in visible space. [The ICF currently used is a B-
spline point-spread function, which approximates a Gaussian distribution but is
considerably quicker to compute. The ICF takes a parameter for the width which
determines the extent of the blurring, and the evidence value can be used to
discriminate between different widths.]

In fact, three domains are required – hidden space, visible space, and data space. The
blurring ICF transforms between hidden and visible space, and a function called
OPUS (representing the response function of the instrument which generated the data)
transforms between visible space and data space (see Figure 1.2). [Note that OPUS
would represent any blurring due to the atmosphere above a telescope lens, or some
other response function associated with gathering a whole image of data – it has
nothing to do with the instrument that collected the acoustic data in our case, the
errors in which are encoded in the likelihood function. The OPUS function used is
identical to the ICF in our implementation of the MemSys 5 software.] Both OPUS
and ICF require reverse transforms, which can be considered as the transpose of the
response matrix of these functions, and are called TROPUS and TRICF.

Figure 2.1

The Maximum Entropy prior remains valid because the correlation does not apply in
the hidden space where h lies. The blurring does affect the posterior probability,
however, since the mock data F(h) [used in our formulation of L(h) above and which
naturally have an effect on the shape of Q = αS(h) – L(h), and therefore on ĥ ] are
drawn from the data space. This is how the choice of ICF affects the choice of optimal
solution.

Hidden Visible Data

ICF OPUS

TROPUSTRICF
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2.4 Multi-Channel MaxEnt

The above should constitute a sufficient explanation of how the Maximum Entropy
method is applied. There is, however, one major extension to the algorithm that
should be mentioned.

The choice of ICF width – i.e. the range of the blurring – will cause the solution to
prefer structure at a certain length-scale. In many problems, there are structures of
many different length scales which are not noise, some of which may be unreasonably
suppressed by the choice of ICF width (even though that width produced the highest
overall evidence value).

Weir (1991) pioneered the use of multi-channel MaxEnt using the MemSys software.
With this technique, a number of hidden reconstructions are created, each with a
different blurring width, each of which will therefore emphasise structure at different
length-scales. The final result is then a weighted combination of these images. The
software currently produces, for n channels, reconstructions with ICF widths 0, 1, 2,
4, … ,2n-1, with each weight a factor of four larger than the previous one; these are
essentially ad hoc choices, and any combination of weights and blurring widths can
be used. The discriminator between various possibilities, and indeed between the
choice of single- or multi-channel operation, is again the improvement or otherwise in
the evidence value.

2.5 User specified inputs to MemSys 5

Figure 2.2
The MemSys 5 input screen

Suffix: A text string to be appended to the filename under which the results are stored
(e.g. resultcomp_1.txt), so that different reconstructions do not become confused.
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Filename: The location of the input survey data (can be chosen with the Browse
button).

X-size, Y-size: the dimensions of the survey area (in pixel units).

Nx, Ny: The dimensions of the reconstructed area. This is always larger than the
survey area to avoid edge effects from the ICF. The output result is always the [X-
size, Y-size] area in the centre of this larger reconstruction.

Nscales: The number of hidden reconstructions with different ICFs.

Initialise Button: Offers the option to continue a previous run or start a new one.

ICF Width: The parameter which determines the extent of the smoothing function.
Note that this parameter is ignored if Nscales  1, since each hidden reconstruction
then has a preset ICF width.

Bayes: Offers a choice of stopping criterion, allowing for an extension to situations in
which i) the noise is unknown and should be calculated from the data, ii) α is known
or arbitrarily fixed, and iii) we wish to use historic MaxEnt (Gull and Skilling 1991),
which stops when χ2 = N, where N is the number of data. Only Bayes = 1 (the
standard stopping criterion described in Appendix A) and occasionally, for diagnostic
purposes, Bayes = 2 (calculating the noise) were used in this project.

Entropy: Offers a choice of five slightly different entropy expressions, extending the
formalism to deal with situations in which i) the distribution can be negative as well
as positive, ii) the distribution has an upper limit (Fermi-Dirac distributions), iii) there
is neither an upper nor a lower limit on values of hi (whereupon MaxEnt reduces to
least squares - Gull and Skilling 1991, p.34), and iv) there is a fixed total across the
whole image. None of these are used in this project - the Entropy flag is always set to
1, which uses the standard entropy discussed in section 2.1.1.

Maxiter: The maximum number of iterations. The algorithm will stop at that point
regardless of convergence.

Nsamples: Number of samples from the posterior cloud Pr(h|D) used in the mask
function to integrate over a pixel.

Nrand: The number of random vectors used to calculate the evidence.

Gauss: 1 = Gaussian statistics, 2 = Poisson statistics. Poisson statistics are not
applicable (Brierley et al. 2003b).

Nonlinear: Refers to the linearity or otherwise of the mask function (Gull and
Skilling 1991, p.25), which integrates Pr(h|D) over each pixel to give a value for that
pixel. We always use a linear function, and hence this flag is always set to 0.

Utol ( 0 < Utol < 1 ): The tolerance for the stopping criterion. Lower values make the
iterated result closer to the true MaxEnt probability cloud, but this is computationally
expensive.
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Default: The uniform default value for all pixels in the absence of data. It is also
possible to set up a non-uniform default map, if relevant prior information is known.

Errors: The uniform standard deviation expected in the data, which is overridden
(and calculated internally) when Bayes = 2. Again, an errors map can be created
instead if the error in each datum is known independently.

2.6 Additional Methods

2.6.1 Changes made to the MemSys 5 software

 Extending the code to cope with Nscales > 8 (see above), the previous limit.
The current maximum is 10.

 Demonstrating that the code can deal with the enormous data spaces involved
in this project ( over 1,000,000 pixels * 10 hidden reconstructions = ~10
million pixels) and removing unnecessary code to increase execution speed. It
had originally been envisaged that the survey space would need to be split into
regions.

 Automating the code to run overnight batch jobs with a variety of different
parameters.

 Adding code to enable the algorithm to be stopped partway through,
whereupon certain parameters can be adjusted before continuing the iteration.
This enables closer examination of the behaviour of the algorithm.

 Creating stand-alone versions of the updated software that can be run on
Windows and Linux operating systems without the need for the source code or
a separate C++ compiler.

2.6.2 Other Software

Various other pieces of software have been used to advance this research. In
particular, Matlab has been used extensively to analyse and display the output from
the MemSys 5 algorithm. Various subroutines have been written in Matlab,
performing such functions as displaying images in the correct colours, scales, and
formats; collating and analysing statistical information (averages, standard deviations,
maxima, the magnitude of changes to on-transect values, and much else); performing
the Syrjala (1996) statistical test discussed in Chapter 3; rotating the survey in the x-y
plane so that it fits into the smallest possible rectangle (thereby saving the algorithm
from processing large amounts of empty space); collating the relevant information
from hundreds of reconstructions together, making it easy to discern that with the
highest evidence; generating a variety of virtual surveys through mock data; etc.
Somewhere in the region of 50 such programs were written, ranging from just a few
lines to many pages of code, and reproducing them here would extend this thesis
unnecessarily. The results of these routines are, however, to be found throughout the
thesis.

In order that the distances between pixels in the data, surveyed on the three
dimensional surface of the earth, are properly represented in the two-dimensional
space of the MaxEnt algorithm, it is necessary to convert from the latitude/longitude
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format to an x-y format. This was achieved using the Proj.4 software
(http://proj.maptools.org/). A Lambert Conformal Conic projection was employed.

VNC (virtual network computing) software (http://www.realvnc.com/) was used to
control remotely a cluster of computers located in Cambridge. The use of these 20
processors enabled large numbers of reconstructions to be run simultaneously, and
also left the office computer in St Andrews free to be used for analysis and other
functions. The PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/) telnet
software was also used to enable the remote connection used by the VNC client.

The version control software CVS (http://www.nongnu.org/cvs/) was used to control
updates to the executable (.exe) version of the MemSys 5 software as changes were
made to the source code.

The changes to the source code itself, and the creation of executable versions, were
made in Microsoft Visual Studio 6.0, using the C++ programming language.
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Chapter 3: Evaluating the accuracy of MaxEnt
reconstructions
3.1 Introduction

In order to justify the use of MaxEnt with real world data, it is necessary to be able to
objectively test the usefulness of the technique. There are two difficulties with this:

i) We can never, as a matter of principle, know the exact at-sea distribution
of a species that we are studying acoustically. The information simply is
not available (but see section 6.2). Therefore, we cannot compare the
results of our analyses with the real distribution and see how accurate our
reconstructions are. For this reason, it is essential to use simulated data.
With an appropriate simulated distribution (a virtual ocean) we can then
run virtual surveys through this mock data, and try to recreate the whole
data set from these few observed on-transect data points. Fortunately, such
mock data has been made available (see Figure 1.1), enabling this problem
to be surmounted.

ii) It is less than obvious on what criteria a reconstruction should be judged
accurate. A balance must be struck between various useful aspects of a
reconstruction – accurately calculating total biomass; accurately
positioning large schools or swarms; accurately predicting the sizes or
number of schools or swarms; etc. Some objective method of comparison
must be arrived at, and this is far from trivial.

Unfortunately, a large amount of useful information on map comparisons (the Map
Comparison Kit – see section 3.4) became easily available only towards the end of
this project. Therefore, there are a limited number of useful results in this chapter
since there has not been time to thoroughly explore the various comparison methods
to the reconstructions.

This chapter, then, will discuss in detail the major method of comparison that was
used during the project, and then briefly describe the (very probably much improved)
methods that would have been used had they been easily available earlier, and which
certainly represent the best way forward in the future.

As a general point about the comparison of reconstructions, it is important to note that
we must objectively assess an objectively chosen reconstruction. It is clearly
unreasonable to use our comparison method to choose the best reconstruction and
then claim that MaxEnt produced an excellent reconstruction – this is a trivially
circular piece of thinking. We must objectively choose a ‘best’ reconstruction first,
and then compare this reconstruction to the original mock data. Specifically, it must
be shown that the reconstruction with the highest value for the log of the Bayesian
evidence value (loge Pr(D|α) – see Methods) corresponds to the best reconstruction
(where ‘best’ is defined in terms of the various properties of the reconstruction –
biomass accuracy, distribution accuracy, etc.). If it turns out that some other
reconstruction, not chosen by the evidence value, is spectacularly accurate, this would
not be a success but a failure.
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3.2 Basic visual comparison

Firstly, it does appear possible to generate plausible reconstructions from transect
surveys through the simulated herring data. Generally, approximately 6 - 8 channels
of hidden reconstructions are sufficient to ‘fill in the gaps’ between transects. Figure
3.1 shows a plot of the evidence from Nscales = 1 to 10, for reconstructions generated
from two surveys through the simulated herring data. (The yellow graph represents a
survey with 15 evenly spaced parallel transects, and the blue graph one with 45
evenly spaced parallel transects). The evidence value rises to a peak between 6 and 8
hidden channels, and then drops as further channels (and hence more smoothing) are
introduced.

Evidence values for different numbers of hidden reconstructions
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Figure 3.1
How the evidence value changes as more hidden reconstructions are

incorporated.
(Note how more transects (blue line) enable a sharper distinction of the ‘best’

reconstruction – with more data, there is less uncertainty in determining the best
reconstruction.)

The evidence falls away to the right of the maximum since the smoother images have
a worse fit to the data, and falls away to the left as more (unnecessary) degrees of
freedom are introduced. The maximum represents a balance between being able to fit
the data and over-fitting them. (Brierley et al. 2003b did not show the evidence falling
off to the right, as no more than seven hidden reconstructions were used in their
analyses.)
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Figure 3.2 shows reconstructions, based on the actual transects of a yearly North Sea
survey, for 1 to 10 hidden channels (with all other parameters held constant). At first,
the transects are individually discernible, clearly indicating that the smoothing has not
been sufficiently applied – there is no reason to expect all the herring to be located on
transects. It is reassuring that the point at which the gaps between data are visibly
filled does indeed correspond to the highest evidence value, at Nscales=8 (for
reconstructions from these transects – for the virtual surveys with 15 or 45 evenly
spaced transects the highest evidence was for Nscales=7 (Figure 3.1)). This is
consistently the case across all the many hundreds of reconstructions undertaken with
these data, with a huge variety of parameter settings. Without fail, the highest
evidence value matches the reconstruction that is just smooth enough to overcome the
striped or boxy appearance due to the transects.

Figure 3.2
Sample reconstructions of the Figure 1.1 data for Nscales = 1 (top left) to Nscales =
10 (bottom right). The colour scale is in the arbitrary units of the simulated data. The
highest evidence for these reconstructions was at Nscales = 8 (bottom middle), which

corresponds to the visually best reconstruction.

Secondly, it appears visually that the reconstructions can correctly position the major
aggregations of herring in the simulated data, and also that the use of regularly spaced
transects is not hugely detrimental in comparison with the use of random sampling.
Figure 3.3 is a surface plot of the actual simulated data at 1/32 resolution, Figure 3.4
is a reconstruction (again at 1/32) from approx. 11,000 randomly sampled data points,
and Figure 3.5 is a reconstruction (at the same resolution) from the approx. 11,000
data points on the transects of the same survey used in Figure 3.2.

6

1 2 3 4 5

7 8 9 10
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Figure 3.3
Simulated herring data (as in Figure 1.1) at 1/32 resolution.

Figure 3.4 Figure 3.5
(from random sampling) (from transect sampling)

We can see that at this resolution the visual comparison is excellent, and that the
transected survey shows only minor drop in reconstruction accuracy compared to the
random sampling. Other applications of MaxEnt (astronomical data, or photograph
enhancement) often have the equivalent of randomly-sampled data, but random
sampling is impossible using conventional research vessel-based approaches.

3.3 A statistical comparison method

Syrjala (1996) proposes a Fisherian statistical method for comparing spatial
distributions. This is based on a bivariate generalisation of the nonparametric Cramér-
von Mises test (Conover 1980) for a difference between two univariate probability
distribution functions.

It is necessary to normalise the two populations to be compared (in this case, the
original simulated herring data and our chosen reconstruction). Normalisation means
that we are only comparing the distributions, and not the biomass estimates. In an



Page 24

ideal world, we would find a method to simultaneously compare both the distribution
and the magnitude. However, given that it is so simple to compare the magnitude of
the biomass – it’s just a number – it is worthwhile employing a method that purports
to resolve the much harder problem of objectively comparing the distributions. The
Syrjala method will not work without normalised data. We proceed as follows:

i) Choose a corner of the rectangular image as the origin. Let (xk , yk) denote the
coordinates of the kth pixel (k=1, ... ,K); let di(xk , yk) denote the density at the kth
sampling location of the ith image (where i=1 is the simulated data, i=2 the
reconstruction).

ii) Normalize the data. We divide each pixel density by the total of the density values
in every pixel of that particular image, so that
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iii) Calculate the cumulative distribution function for each pixel. This is defined as the
sum of all normalized density distributions i (xk ,yk) whose location (x, y) is such that

x ≤ xk and y ≤ yk. Therefore the cumulative distribution function for the ith population
at the kth pixel is
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iv) By analogy with the Cramér-von Mises test, a useful test statistic is the square of
the difference between the two cumulative distribution functions, summed over all
pixels, i.e.
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v) Unlike the traditional univariate Cramér-von Mises test, the statistic  is not
invariant with respect to our choice of origin. Following Zimmerman (1993), we
simply perform the calculation four times with each of the four corners as the
designated origin, and then take the average of these four values to be our final value
for  .

vi) We now have a statistic related to the similarity in distribution of the two maps we
are comparing. In order to assign a level of significance to this statistic, we randomly
swap some values from map 1 (the simulated data) with values from the same pixel
location in map 2 (the reconstruction), and then calculate the test statistic for the two
new maps thus created. We repeat this many times, and then rank the test statistics
that are generated. (It is not possible to calculate the test statistics for every possible
pairwise permutation of the data sets – that would involve calculating  some 2k

times, which in our case (k=1024x896) would be a truly enormous number. Following
Syrjala, we perform the test on 999 random pairwise permutations of the two maps,
which, including the test on the real maps, gives 1,000 values for  ). We then need
to look at the position in the ranking of the actual test statistic from the real maps – if
the actual test statistic is one of the highest, this indicates that the difference between
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the distributions of the two maps is much greater than would be expected randomly.
On the other hand, if many of the randomised permutations generate higher test
statistics than the actual test statistic, this indicates that the difference in distribution
between the simulated data and the reconstruction is not significant.

From a Fisherian point of view, we would say that we have a null hypothesis stating
that the normalised distributions of the simulated data and the reconstruction are the
same. The P value is the proportion of the 1000 test statistic values that are greater
than the actual test statistic. A very low P value (less than 0.05) indicates that the null
hypothesis is invalid (i.e. there IS a difference between the distributions).

The Syrjala comparison method was applied extensively to test for a difference in
density distribution between the simulated herring data and the many reconstructions
generated.

The results are encouraging, but not conclusive. We consider, for a variety of
reconstruction parameters, from a variety of numbers of transects, whether the
evidence and the Syrjala test agree on which number of hidden channels (1 to 10)
creates the best reconstruction.

The reconstruction chosen by the highest evidence value always achieves a higher P-
value as compared to the reconstructions with low values for evidence. Typically,
reconstructions with only 1-4 hidden channels, which are visually very different in
distribution from the simulated data, do indeed have P-values of less than 0.05,
indicating that the Syrjala method has detected a difference in the distributions. Also,
reconstructions with between 6 and 8 hidden channels consistently show no difference
in distribution to the simulated data, as determined by the Syrjala test.

However, it is not always the case that the highest evidence achieves the highest P-
value, which would be a nice indicator of successful reconstruction. The P value of
the ‘best’ reconstruction, as determined by the evidence, is always within 2% of the
highest P value for any reconstruction in that set of 10, but it is not always actually the
highest. This may be because we consider only 1,000 random permutations when
calculating the P value, when theoretically we should consider every permutation.

Nevertheless, what we do find is that where the evidence value struggles to choose
between competing reconstructions (the flattening of the line in figure 3.1), the
Syrjala test is equally unable to choose between the different reconstructions. It may
be that a statistical test which takes into account both distribution and biomass
estimate is necessary to truly test whether the evidence value is a useful objective
selector of the best reconstruction, but such a test was not available through much of
the duration of the work..

In terms of a comparison between our chosen ‘best’ MaxEnt reconstruction and a
kriged reconstruction, the Syrjala technique unfortunately seems too blunt an
instrument. The technique is not sensitive enough to define either the MaxEnt or
kriging result as ‘better’ – it merely shows that both results are not significantly
different from the original simulated data. Different statistical tests will be needed.
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3.4 The Map Comparison Kit

It now seems that such statistical tests are indeed available, though their very novelty
means that they are relatively untested. It would obviously have been very worthwhile
to attempt to apply these methods in this project, but unfortunately, time does not
permit. They offer a fruitful future avenue for research.

The map comparison kit (http://www.riks.nl/mck/ - see Figure 3.6) is a piece of free
software developed by the Research Institute for Knowledge Systems in the
Netherlands. It is the result of an in-depth literature scan across seemingly unrelated
disciplines for the very latest in map comparison techniques, and offers a user friendly
interface to enable complicated comparisons to be undertaken. Within the last few
months, a significant extension to the software has enabled the comparison of
continuous-valued maps like the ones in this project – previously, the software dealt
only with category maps (e.g. land-use maps) with a finite number of distinct
categories. Some of the more promising new techniques are described briefly below,
and some very early results are given.

Figure 3.6: A screen shot of the Map Comparison Kit software. The map in the top
left is of the simulated data from figure 1.1 (rotated due to the way the software reads

the data in, but this does not affect the comparison); bottom left is a MaxEnt
reconstruction; top right is the comparison map generated by the Image Quality

Assessment method, showing regions of disagreement in darker colours; bottom right
is a selection of relevant statistics.



Page 27

3.4.1 Wavelet Analysis

Working in the field of weather forecasting, Briggs and Levine (1997) suggest
decomposing each map, using a discrete wavelet transform, into a series of maps at
different scales. The simpler maps can then be compared more easily, as they contain
far less information, and something as simple as a root-mean-square comparison
should be sufficient. The combined results of these comparisons at different scales
can then be aggregated, and an overall comparison arrived at. This method is
interesting, but has two major flaws with regard to its application to our data. Firstly,
it is relatively arbitrary which pixels fall under a peak in the wavelet transform –
moving the whole map one pixel to the left could give very different results.
Secondly, the MemSys 5 software created the reconstruction using different scales,
and so it would be somewhat circular to deconstruct the map once again before
comparison.

3.4.2 Image Quality Assessment

Working in the field of image processing, Wang et al. (2004) created the concept of
image quality assessment. The method is highly mathematical, but essentially the idea
is that a ‘moving window’ is used. In effect, we study only the part of the map visible
through an imaginary window of, say, 20 pixels by 20 pixels, and then repeat this with
the window moving one pixel at a time. Again, the smaller image under consideration
enables much simpler mathematical analysis of the relation between the two maps.

3.4.3 Information weighted comparison

Again from the field of image processing, Tompa et al. (2000) consider another
method. The basic idea is that variations that occur within value ranges that are
common in the map are weighted less than variations that occur within uncommon
ranges, i.e. it is the outliers that are most taken into account, and small variations
around the common values are ignored. This seem to be a useful idea in the case of
our pelagic reconstructions since, in general, the rare and extreme values are the most
interesting as they contribute enormously to biomass and are extremely important
from a biological perspective.

3.4.4 Image Warping

The method of Reilly et al. (2004), from the field of biometry, is extremely unusual.
The idea here is that instead of directly comparing the two maps, one map is distorted
until it closely matches the other map, and the amount of distortion required is a
measure of the similarity. For example, if a school of herring, in our data, is predicted
in slightly the wrong place or is the wrong size, the reconstruction can be adjusted to
better match the original, and some measure of how much adjustment is required can
be calculated. Unfortunately, this method struggles when there is a large discrepancy
between the two maps, and may in fact be intractable in many cases. On the other
hand, where the maps are relatively similar, for example in the situation above in
which the Syrjala algorithm could not distinguish between reconstructions, perhaps
this method may be of use.
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3.4.5 Bivariate Spatial Association

Lee (2001) offers a statistical measure of spatial association based on a integration of
two accepted statistical measures – an aspatial measure of bivariate association, and a
univariate measure of spatial association. The mathematics is reasonably complicated,
but in essence the method offers a single comparison statistic (called ‘L’), based on
both the magnitude and the distribution within the maps.

3.4.6 Preliminary results

As mentioned, this software has only recently become available, and so the full range
of possibilities has not been explored. Each comparison method has a range of
parameters that can be set, and each offers a resulting statistic that must be understood
differently, so clearly there is great scope for further work. Figures 3.7 and 3.8 show
how various statistics generated using the Map Comparison Kit vary in a broadly
similar way to the evidence – both the evidence and the various statistics reach a peak
for reconstructions with 7-9 hidden channels.

Evidence against Nscales

-45000

-44000

-43000

-42000

-41000

-40000

-39000

-38000

-37000

-36000

-35000
2 3 4 5 6 7 8 9 10

Nscales

E
v
id

e
n

c
e

Figure 3.7: The Bayesian evidence value for ten MaxEnt reconstructions with 1-10
hidden channels, with all other parameters held constant.
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Figure 3.8: The resulting statistics from the comparison of the ten reconstructions
of Figure 3.7 with the original simulated data, by three different comparison methods
– Image Quality assessment (IQA), Bivariate Spatial Association (Lee’s L statistic),

and the Information Weighted Comparison (IWC)

It appears that, at a very broad level, these methods offer some support for the use of
the evidence value in choosing the ‘best’ reconstruction, but a great deal more work
must be done. A change in the number of hidden channels can produce a very
different reconstruction, and so we would expect the evidence to be easily able to
distinguish the ‘best’ one. It would clearly be necessary to look at the evidence and
the comparison statistics for reconstructions that are more similar (for example with
different weighting factors – see figure 4.3 below) to see exactly how accurately the
evidence value can discriminate between competing reconstructions. Also, it will very
much be worth looking beyond the ‘headline’ statistics of the various comparison
methods, and looking at how successfully different regions are reconstructed, how the
results vary with changes to the comparison parameters, and so on. The bottom line,
however, is that the ‘best’ maps are identified.
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Chapter 4: Krill in the Scotia Sea

This chapter is a reprint of a paper published in CCAMLR Science Vol. 13 (2006)
pages 97-116, by Heywood, Gull, and Brierley. The manuscript has been through the
peer-review process and been published in the journal; therefore it is presented here in
this format, even though it may repeat some small parts of the previous method
chapters of this thesis. In terms of intellectual property, this paper is entirely my own
work, with supervisory and editorial assistance from Dr Andrew Brierley. Dr Gull is
listed as an author, but had no additional specific input beyond providing the MemSys
5 software and instruction in how to use it.

A QUANTIFIED BAYESIAN MAXIMUM ENTROPY ESTIMATE OF
ANTARCTIC KRILL ABUNDANCE ACROSS THE SCOTIA SEA AND IN

SMALL-SCALE MANAGEMENT UNITS FROM THE 2000 CCAMLR
ACOUSTIC SURVEY

B.G. Heywood, S.F. Gull, and A.S. Brierley

4.1 Introduction

The CCAMLR 2000 survey (Trathan et al. 2001; Hewitt et al. 2004a) of the Scotia
Sea employed acoustic techniques to measure the density distribution of Antarctic
krill. Due to inevitable pressures of time and expense, only a very small fraction
(0.56%) of the total survey area was acoustically sampled directly, and hence some
method of estimating total abundance from these limited data is necessary. Hewitt et
al. (2002) used the Jolly and Hampton (1990) statistical method and calculated a total
biomass across the survey area of 44.3 million tonnes. The Jolly and Hampton method
involves generating weighted means for a number of semi-randomly placed transects,
and the CCAMLR 2000 survey was designed in accordance with such transect
placing. Demer and Conti (2005) used the same method, but their updated krill target-
strength model led to a biomass estimate of 109.4 million tonnes. We present here a
biomass estimate, based on the Demer and Conti (2005) target-strength model,
derived using a Bayesian Maximum Entropy (MaxEnt) technique rather than the
standard Jolly and Hampton (1990) method. MaxEnt maps of the density distribution
are presented as an alternative to the standard kriged maps (a good description of the
kriging approach can be found in Rivoirard et al. (2000)) of density distribution, as
given by Hewitt et al. (2004a).

In addition to the survey total, we also present biomass estimates derived by the
MaxEnt method for each of the krill small-scale management units ('SSMUs' - Hewitt
et al. 2004b - see Table 4.1 & Figure 4.1). These SSMUs are ecologically crucial
areas around South Georgia, the South Orkney Islands and the South Shetland Islands
within which land-based predators forage, and are likely to be particularly important
from an ecosystem management perspective. Since the densities estimated by the
Jolly and Hampton (1990) method are per stratum of the survey, previous estimates of
biomass within certain SSMUs have been based on the density determined for nearby
strata (Hewitt et al. 2004b), despite the fact that only parts of these strata fall within
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the SSMUs. The density distribution maps generated by MaxEnt enable biomass
values for the SSMUs to be inferred on a more appropriate spatial scale.

Figure 4.1: Small-scale management units (CCAMLR Sub-Areas 48.1 - 48.4 as solid
grey lines; smaller SSMUs in black) in CCAMLR Area 48, numbered following Hewitt

et al. (2004b), and the CCAMLR 2000 survey transects.

Table 4.1: List of the SSMU designations.

SSMU Number Full Title
APPA 1 Antarctic Peninsula Pelagic Area (Sub Area 48.1)

APW 2 Antarctic Peninsula West

APDPW 3 Drake Passage West

APDPE 4 Drake Passage East

APBSW 5 Bransfield Strait West

APBSE 6 Bransfield Strait East

APEI 7 Elephant Island

APE 8 Antarctic Peninsula East

SOPA 9 South Orkney Pelagic Area (Sub Area 48.2)

SOW 10 South Orkney West

SONE 11 South Orkney North East

SOSE 12 South Orkney South East

SGPA 13 South Georgia Pelagic Area (Sub Area 48.3)

SGW 14 South Georgia West

SGE 15 South Georgia East

16 Sub Area 48.4
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The MaxEnt image reconstruction method has been widely and successfully used to
generate complete images from sparse point data in many disciplines, from
astrophysics (e.g. Weir and Djorgovski 1991) to medicine (e.g. Charter and Gull
1991). The inference of krill density values in grid squares across the CCAMLR 2000
survey area can be treated as an exercise in image reconstruction since the data consist
of point estimates of krill density derived from echo integration at a given latitude and
longitude, and hence our data space is two-dimensional. A set of point values on a
two-dimensional grid can naturally be viewed as a pixellated image or picture. The
problem of filling in missing data is then directly analogous to the problem of
reconstructing a damaged photograph, or improving the resolution of astronomical
images, and therefore reconstruction techniques from these disciplines may sensibly
be applied to these biological data. The CCAMLR 2000 data can be considered as an
image in which krill densities are plotted on a rectangular grid, with correspondingly
brighter dots for higher density values. We then endeavour to reconstruct the missing
parts of this image grid, creating a map from which total biomass can be estimated.
The intensity of each pixel in our reconstructed image corresponds to an estimate of
krill density (g m-2) in that pixel, where each pixel represents a 1 nautical mile (nm) 
1 nm cell of the survey area. MaxEnt image reconstruction has previously been used
to generate maps and biomass estimates from smaller scale surveys of krill around
South Georgia (Brierley et al. 2003b; Wafy et al. 2003).

Line-transect data contain potentially valuable information on spatial distribution,
which is ignored by conventional (e.g. Jolly and Hampton 1990) statistical techniques.
We believe that the MaxEnt method offers advantages over the Jolly and Hampton
(1990) method because it makes explicit use of this spatial information (Brierley et al.
2003b). The other commonly used techniques for biomass estimation are
geostatistical (Rivoirard et al. 2000), but Maravelias et al. (1996) showed that such
methods are unsatisfactory when the distribution of biomass is heavily skewed, which
is very much the case with the krill density data from the CCAMLR 2000 survey.
Densities of almost 24,000 g m-2 were reported for individual 1 nm2 regions, but only
0.8% of measurements exceeded 1,000 g m-2, and two-thirds were under 10 g m-2 (see
Figure 4.2).
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Figure 4.2: Histograms of density (g m-2) from the CCAMLR 2000 survey, showing
the extreme skewedness of the data. Histogram (a) shows all data; histogram (b)

shows only those density values over 100 g m-2, demonstrating that the skewedness is
inherent throughout the distribution and not just created by a large number of zeros.

4.2 Methods

4.2.1 What is Maximum Entropy Image Reconstruction?

Image reconstruction, in this case, is the inference of missing values in a grid
framework. MaxEnt describes the statistical, probabilistic framework under which
this is achieved. Johnson and Shore (1980; 1983) and Tikochinsky et al. (1984) offer
clear theoretical and mathematical justifications for the use of MaxEnt, and the
method has been placed robustly in a rigorous Bayesian framework (Skilling 1988a;
Skilling and Gull 1989; Skilling and Sibisi 1990; Gull and Skilling 1991; Skilling
1991; see Sivia 1996 for an introduction to Bayesian data analysis; and Clark 2005
on why ecologists are becoming Bayesians). We present here just one relatively non-
mathematical argument for the use of MaxEnt (drawn from Skilling 1992), and
concentrate on its application to biomass estimation and distribution mapping from
fishery acoustic data.

We make use of Bayes’ Theorem (Bayes 1763; Cox 1946; Jaynes 2003):

Pr(h|data)  Pr(h) Pr(data|h)

where ‘|’ means ‘given’, and h is the set of all possible images [i.e. krill distributions]
h, each consisting of the intensity [i.e. density] values in m pixels [i.e.1 nm  1 nm
cells of the survey area], h1, h2 ... hm. The posterior inference Pr(h|data) measures how
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closely trial images h are in accord with the survey data, given any prior information,
Pr(h). The other factor, Pr(data|h), is the Bayesian Likelihood. Since noise in the data
can tolerably be described by Gaussian statistics (Gull and Skilling 1991), a Gaussian
likelihood function is adequate (Gull and Skilling 1991).

To use the above formula, we need to assign a sensible prior distribution of images,
Pr(h). This specifies our original ideas, without the data, about the plausibility of
various images h. We choose a prior according to the Principle of Maximum Entropy
(Jaynes 1978). One relatively non-technical explanation of why the concept of
entropy should be fundamental to the process is as follows:

Suppose an enormous number N of individual krill are thrown, one by one and at
random, into an empty Scotia Sea, which has been conveniently split into 1 nm  1
nm cells. This imaginary experiment is repeated many times. We wish to quantify our
preferences for different possible distributions of krill, without reference to (i.e. prior
to) any data. Fortunately, not all distributions are equal – some are more probable than
others. For example, a total of seven is the most likely outcome of the roll of two dice,
even though the value on each die is completely random, because there are more ways
to make seven from two dice than any other number. Similarly, there are more ways
of distributing the krill evenly across of the Scotia Sea (i.e. an equal number in each 1
nm  1 nm cell) than there are of distributing them in any particular uneven pattern. In
fact, the prior probability of any particular pattern being produced is proportional to
the number of permutations  of N krill that result in that particular pattern, which is
given by

!!...!
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where n1...nm are the number of krill in cells 1, 2, ... m.

It is mathematically much more convenient to work with the logarithm of , called
the entropy, S.

 ii nnS loglog

Our prior expectation, Pr(h), incorporating our expectation of randomness and
unpredictability (which expresses our lack of prior knowledge) can - after some
mathematical work (see Skilling 1992) which is beyond the scope of this paper - be
written in terms of the entropy S as

Pr(h) )exp(S

Thus we have an entropy-based prior distribution which expresses a preference for
smoothness (since an equal distribution of krill across all cells has the highest number
of permutations). A more rigorous mathematical approach (Skilling 1988a; Skilling
1988b) confirms and justifies this result, and properly calculates the scaling constants
to remove the proportionality.
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Using our chosen prior and likelihood, we are now free to calculate the most probable
posterior image by means of Bayes’ theorem. This most probable image is the
traditional MaxEnt result. However, since our prior is a probability distribution of
images, so is our posterior; we can in fact not only calculate the maximum of the
posterior distribution (the most probable image), but can also sample, from the
posterior probability space, a selection of the images near that maximum. This then
enables calculation of the standard deviation of each pixel in the reconstruction. This
is the quantified MaxEnt result.

4.2.2 Parameter Estimation

Each image reconstruction requires the choice of a small number of parameters, for
example the width of the blurring function, described below, which is used to capture
spatial autocorrelation in the data. Crucially, we can calculate the normalising
constant of Bayes’ theorem, a value which is often known as the evidence, p(data), for
each set of parameters:

p(data) = 
h

Pr(h,data)

where h now contains only those images consistent with our chosen parameters.
p(data) is used to indicate that this is a single probability value (rather than a
distribution) calculated from a particular reconstruction attempt with particular input
parameters. The evidence value is a unitless probability between zero and one, and is
usually presented as its logarithm.

The evidence value is used to discriminate between prior images, much as the
likelihood discriminates between posterior images (Gull and Skilling 1991). Note that
the prior distribution Pr(h) is a distribution of prior images, and not an individual
prior image. This distribution Pr(h) tells us which images are more likely in advance -
before the data - and the comparison of a number of values for evidence tells us which
selection of prior images, defined as those consistent with the chosen parameters,
produced the most likely MaxEnt result, after considering the data.

By running a number of reconstructions with different parameters (i.e. different
assumed prior information; in effect a different set of prior images), and choosing the
one with the highest evidence value, we can progressively approach the optimal
values of any unknown parameters.

The use of the evidence value to objectively decide between possible parameter
values is a major strength of MaxEnt. The chosen reconstruction must be that with the
highest evidence, regardless of the prejudices of the researcher. This applies to any
alterable parameter of the reconstruction, not only those estimated in this paper but
also more fundamental elements such as the shape of the blurring function discussed
below.

The analysis was undertaken using the software MemSys 5 (Gull and Skilling 1991).
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4.2.3 Calculating the Quantified MaxEnt Result

The data gathered by an acoustic survey of a defined area are usually, like almost all
data, incomplete. This is certainly the case for the CCAMLR 2000 survey. There is in
principle no mathematical transform that can be applied to the data that will result in
the actual krill densities in every ‘pixel’ since there is not enough information in the
data – we cannot transform from data to image. Therefore, it is necessary to approach
the problem from the other direction – we generate a trial image (in this case a
possible krill density distribution across the whole survey area) and transform this into
mock data (the set of on-transect values implied by this trial density distribution).
After comparing this with the actual data, another trial image is generated, which has
been updated so that the next mock data set will be a better fit.

The first trial image is simply the uniform image. This is the most likely distribution
in the absence of data. Since the final image evolves from this smooth starting point,
any structure in the reconstructed image must be introduced by the data itself, and
cannot be an artefact of our first trial image. This smooth starting image is then
iteratively updated by comparison with the data (i.e. the on-transect density values
from Demer and Conti (2005)), and becomes progressively less smooth. The
iterations stop when the fit of the mock data (from the latest trial image) to the actual
data is optimal, where optimal is defined in terms of the balance between the entropy
(which decreases as we move away from the completely smooth image) and the
likelihood (which increases as the fit to the data becomes more exact). This balance
between entropy (upon which the prior distribution is based) and likelihood is directly
analogous to the formulation of Bayes’ theorem above. Stopping the iterative process
too soon will mean that some genuine data are not fitted, and stopping too late will
mean that noise in the data begin to be fitted, resulting in unwarranted structure in the
reconstruction. The MaxEnt stopping criterion is chosen on solid mathematical and
probabilistic grounds (Gull and Skilling 1991).

The transform applied to generate the mock data from a trial image depends heavily
on the particular application of the MaxEnt method. In astrophysics, for example, the
data from an instrument may be a Fourier transform of the real-world image, and
therefore such a transform would need to be applied to each trial image in order to
approach the correct result. Similarly, complex transforms are sometimes necessary
with biological data. Lizamore (1995) used commercial trawl data to reconstruct
density distributions for New Zealand hoki. A transform between data space (trawl
length and position, weight of catch) and image space (density in each pixel) was
required.

In the application to fishery acoustic surveys, there is no need for such complication,
since both the data and the image reside in the same mathematical space and share the
same units. Thus, the only transform applied between image and data is a blurring
function, which characterises our expectation that, on biological grounds, some local
smoothness (spatial autocorrelation) should exist in the final image (Weber et al.
1986).

The blurring function used here is simply an approximation to a Gaussian point
spread function. It is necessary to choose a width for this blur, and it has been found
that in practice a particular smoothing width tends to emphasise structure of a similar
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width in the reconstruction. Since it is reasonable to expect local structure (in this
case, krill swarms and/or clusters of swarms) to have varying sizes, this is
unwelcome. The solution proposed by Weir and Djorgovski (1991), subsequently
incorporated into MemSys 5, is to concurrently produce a number of ‘hidden’
reconstructions, each with a different blurring width. These separate but concurrent
reconstruction ‘channels’ are then convolved to produce a single image. Generally,
precedent has suggested that each separate hidden reconstruction should have a
blurring width twice as wide, and a weighting for the convolution four times smaller
than (i.e. one quarter as much as), the previous hidden channel (which we term a
scaling factor for the blur equal to two, and a weighting factor for the convolution
equal to four). Thus with four hidden reconstructions, the blurring widths would be 1,
2, 4 and 8 units, and the 2nd, 3rd, and 4th channels would be 4, 16, and 64 times less
important to the convolved reconstruction than the first channel.

Previous papers (Brierley et al. 2003b; Wafy et al. 2003) used these essentially ad hoc
values (for the scaling and weighting of hidden channels) for their reconstructions of
krill density around South Georgia. However, the evidence value, as described above,
can be used to objectively select not just the number of hidden channels (as Brierley
and Wafy used it) but also to objectively select appropriate scaling and weighting.
Recent changes we have implemented to the software interface used to perform
MaxEnt mean that these values can be chosen at run-time. This has enabled much
deeper exploration of the effect of these values than was available to the authors of
these previous papers.

The standard deviation for each pixel value can be calculated under MaxEnt. A
sampling of the posterior distribution generates a number of images, all very nearly as
probable as the best estimate, but not necessarily similar in shape or total intensity.
Stable, well-predicted pixels will be very similar in almost every reconstruction,
whereas those about which greater uncertainty exists will fluctuate. For each pixel,
there is therefore a population of values (one from each sample image) from which
standard deviation (in g m-2) can very simply be calculated. From these individual
pixel standard deviations, the standard deviation of a given region or of the whole
survey is simply the sum of the standard deviations of the pixels within it.

4.2.4 Data Preparation

The on-transect data used here are exactly as used by Demer and Conti (2005) to
calculate a 109.4 Mt krill biomass estimate. In order to process the data as an image (a
rectangular image, in fact, for ease of computation) it was necessary first to convert
the positional stamps for this data (Demer and Conti 2005) from latitude-longitude
format to Cartesian (x,y) format so that a consistent spatial scale existed across the
grid. A Lambert Conformal Conic projection was used. The coordinates defining the
survey bounds and the SSMUs, identical to those used by Hewitt et al. (2002; 2004a;
2004b), were transformed by the same projection, so that the biomass inferred for any
area could easily be found by summing the biomass of all pixels in that area. [Pixel
biomass is 1,8522 m2  density (g m-2), divided by 1012 to convert from grams to
million-tonnes.] For those SSMUs that extend beyond the bounds of the survey, this
method cannot apply; instead the mean biomass of the pixels within these areas was
multiplied by the total area of the SSMU, using the same SSMU area data as Hewitt et
al. (2004b). Both these methods were applied to the SSMUs around South Georgia to
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check that the simple summing of pixel biomass did not induce any systematic bias.
The estimates generated by the two methods differed by no more than 1%.

In addition, since the density data were extremely heavily skewed (see Figure 4.2),
much better evidence values were obtained by normalising the distribution of the data
somewhat before input to the algorithm. This is due to the normal shape of both the
Likelihood function and the blurring function, which naturally act more evenly on
data with a normal-shaped distribution. Therefore, the second root of the density
(data) was input to the algorithm, and the result was squared twice before output. It
should be noted that proponents of the kriging technique have also used data
transforms to reduce the skew of the input data (Rivoirard et al. 2000); both kriging
and MaxEnt are similarly challenged by skewed data and have developed similar
solutions to the problem. Further experiments with the shape of the blurring function,
which have not yet been undertaken, may reduce the need for such measures under
MaxEnt.
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4.3 Results

Approximately two hundred reconstructions were undertaken in total, and some
statistics relating to a selection of these are presented in Table 4.2. The two
parameters that had most effect on the reconstructed result were the number of hidden
channels and the weighting factor (the rate of change of convolution weighting from
one hidden channel to the next). The scaling factor (the rate of change of the blurring
width) was found to have almost no effect on the result. One hundred of the above-
mentioned reconstructions were therefore undertaken with all integer values of
weighting factor 1 through 10 for all numbers of hidden channels 1 through 10 (each
with an arbitrary scaling factor of two), although they are not all shown here, in order
to check for possible multiple maxima of evidence. Figures 4.3 and 4.4 show some
sample reconstructions created in order to assign values to these parameters. In fact,
the distribution of evidence values for the reconstructions was well behaved and had a
single peak, corresponding to eight hidden channels and a weighting factor of seven.
This is the most probable MaxEnt reconstruction and is shown in Figure 4.5. For
comparison, a previously published kriged estimate of density distribution from the
CCAMLR 2000 survey is reproduced in Figure 4.6.

Table 4.2: A selection of statistics relating to the reconstructions shown in Figures
4.3 and 4.4. The highlighted rows show the reconstruction chosen, based on the

highest evidence.

Channels Weighting Evidence StdDev
Mean
Value

Mean
Error Max Value

Max
Error CV(%)

Biomass
(Mt)

8 5 -12595.1 101.6 17.4 5.5 5657.1 191.3 26.8 42.81

8 6 -12533.6 367.0 48.7 5.4 12261.6 207.7 12.1 94.61

8 7 -12508 994.7 99.5 4.9 43606.5 209.2 4.9 207.98

8 8 -12508.8 1365.9 150.1 4.8 83340.9 182.0 3.0 341.59

8 9 -12512.3 2074.7 225.8 4.9 130628.3 161.8 2.0 500.50

8 10 -12516.1 4608.1 418.5 5.0 188896.3 147.4 1.5 699.19

5 7 -13123.4 250.0 10.2 1.3 925329.7 68.5 6.3 88.44

6 7 -12751.3 505.4 23.5 1.8 627868.5 114.7 3.4 218.79

7 7 -12561.4 20604.3 464.1 2.6 3637959.7 81.9 0.8 1290.40

8 7 -12508 994.7 99.5 4.9 43606.5 209.2 4.9 207.98

9 7 -12546.9 59.2 8.7 13.3 1011.8 104.5 157.1 6.12
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Figure 4.3: Reconstructions with values of a)5, b)6, c)7, d)8, e)9 and f)10 for the weighting factor.
The associated graph shows the highest evidence to be associated with (c).
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Figure 4.4: Reconstructions with a) 6, b) 7, c) 8, and d) 9 hidden channels.
The associated graph shows the highest evidence to be associated with (c).
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Figure 4.5: The MaxEnt result, with the bounds (thick lines) and transects (thin lines) of the CCAMLR 2000 survey.
The colour scale is chosen to facilitate comparison with Figure 4.6
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Figure 4.6: An estimate of krill density distribution from the CCAMLR 2000 survey,
shown in approximately the same colour scale as the MaxEnt reconstructions,

reprinted with permission from Hewitt et al. (2004a).

The total krill biomass estimate from this result is 207.98 million tonnes, with a
standard deviation of 10.08 million tonnes. Biomass estimates from this result are
given for each of the sixteen small-scale management units (Figure 4.1) in Table 4.3.
The standard deviations calculated for each individual pixel value of the image are
shown in Figure 4.7. For some pixels the predicted standard deviation may be larger
than the predicted biomass, thereby apparently suggesting the possibility of a negative
biomass in that pixel; which is obviously impossible. This is a common problem with
noisy data, and may in the case of MaxEnt be related also to a local failure of the
Gaussian approximation to Pr(h|data) that is used in the calculation of standard
deviation (Gull and Skilling 1991).

It is prudent to note, when looking at the biomass and standard deviation values, that
issues of calibration, target strength, krill orientation, species identification, sea-
bottom detection etc., whilst of great importance to the final biomass and error
estimates, lie beyond the scope of this paper – we merely wish, given previously
calculated on-transect density values, to reconstruct the most probable off-transect
distribution. For a discussion and calculation of the errors involved in the gathering
and processing of the CCAMLR 2000 data, see Demer (2004)
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Table 4.3: Biomass estimates for the SSMUs in CCAMLR Area 48.

Mean
Density

Max
Density

Survey 60.4 23,832.7

Entire
Reconstruction 101.1 43,569.5

SSMU AREA

Mean
Density
(MaxEnt)

g m
-2

Mean
Density

(Hewitt)
g m

-2

Max
Density
(MaxEnt)

g m
-2

Biomass
(MaxEnt)

Mt

Biomass
(Hewitt)

Mt

CV
(Maxent)

(%)

APPA 1 134.9 11.2 28,558.9 65.192 5.414 5.1

APW 2 20.5 37.7 237.6 0.753 1.384 70.9

APDPW 3 2,270.5 37.7 28,558.9 35.874 0.596 2.4

APDPE 4 24.2 37.7 1,990.3 0.397 0.618 16.2

APBSW 5 7.6 37.7 89.6 0.167 0.829 336.5

APBSE 6 48.1 37.7 2,306.2 1.381 1.082 2.7

APEI 7 302.4 37.7 8,195.3 10.946 1.365 0.8

APE 8 0.0 37.7 0.3 0.003 2.322 655.5

SOPA 9 38.1 24.5 4,886.0 30.799 19.816 16.5

SOW 10 61.4 150.4 947.2 0.988 2.421 17.4

SONE 11 0.5 150.4 6.4 0.005 1.624 8,751.1

SOSE 12 15.7 150.4 136.4 0.243 2.331 274.5

SGPA 13 61.7 24.5 5,385.9 57.194 22.721 3.5

SGW 14 40.7 39.3 612.5 1.742 1.682 1.2

SGE 15 64.4 39.3 2,998.6 3.554 2.169 1.6

Sub Area 48.4 16 235.3 n/a 43,569.5 198.163 n/a 2.2
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Figure 4.7: The calculated standard deviation for the pixels of the chosen MaxEnt
reconstruction, with the survey transects overlaid.

Even with this exceptionally large data-space (15781094 = 1,726,332 pixels, of
which we have data for 9,586 pixels or just 0.56%) results were obtained in 30-40
iterations of the algorithm, taking in total around 40 minutes on a 2.8 GHz Pentium 4
PC running Windows 2000. This is a sufficiently short time to allow the processing of
the number of reconstructions needed to identify the image with the best evidence.
Very thorough attention was paid to creating a wide range of possible reconstructions
in order to ensure that the chosen result was indeed justified. However, our experience
with this data has supported the expectation that there is a single maximum for
evidence (Gull and Skilling 1991). This being the case, there is no need to continue to
increase or decrease parameters such as weighting factor after a maximum has been
passed, and very many fewer reconstructions are required to choose a result.
Therefore, for confident reconstructions of, for example, images from any subsequent
survey of CCAMLR Area 48 with a similar extent of data coverage, ten to fifteen
reconstructions would be sufficient.

Direct testing of the quality of the reconstruction is not straightforward, since the
‘truth’ of the off-transect distribution of krill density is not and cannot be known.
Concurrent with this work on the CCAMLR 2000 data, however, is an investigation
of the success of the MaxEnt technique in recreating a simulated data set (based on
the distribution of herring in the North Sea - see Simmonds et al. 2002). Although the
area of this reconstruction from simulated data is very much smaller than the
reconstruction area of the CCAMLR data (50,625 nm2 as opposed to 1,726,332 nm2),
the data are integrated on a much finer scale (440 m as opposed to 1 nm), and hence
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the reconstruction of 1024896 pixels is similar in magnitude to the 15781094 pixel
reconstruction of the CCAMLR 2000 data. Values are known for every pixel in this
simulated data set, and hence distributions reconstructed from virtual surveys along
imaginary transects can be compared with the ‘true’ distribution. Many different
virtual surveys can be generated, covering a higher or lower percentage of the total
data space, with different transect spacing and orientation, and with different levels of
noise added to the data, and so on. The preliminary results of this work so far show
that the MaxEnt technique is capable of robust and accurate reconstructions of images
from acoustic survey data with skewed distributions. Specifically, a statistical
hypothesis test (Syrjala 1996) failed to find significant difference spatially between
the original simulated data and our chosen reconstruction, generated from a virtual
survey which provided values for approximately 0.56% of the pixels, the same
percentage as is available for the CCAMLR 2000 reconstructions.

4.4 Discussion and Conclusion

The resulting ‘best’ reconstruction (Figure 4.5) exhibits a number of the qualities we
might wish to see, and indeed which we might ordinarily use to select the best
reconstruction. It is reassuring that, using only the Bayesian evidence value, we have
been led to choose this reconstruction. Firstly, the reconstruction does not show
structure parallel to the original survey transects. Naturally, a failure to properly fill
the gaps between transects would lead to an unsupported bias toward higher values
on-transect than off-transect. Such transect-related structure was evident in krill
reconstructions prepared in previous papers (Brierley et al. 2003b; Wafy et al. 2003),
and suggests that a further increase in the number of hidden channels would have
improved their results. It is a minimum requirement of a plausible reconstruction that
the gaps be filled; equally, any further smoothing beyond the point at which transect-
related structure disappears would unnecessarily reduce the information content of the
image. It is informative that as we look at reconstructions with 6-9 hidden channels
(Figure 4.3), the first image in which transect-related structure is not evident is at
eight hidden channels, which corresponds to the highest evidence value. Furthermore,
the excessive smoothing with nine hidden channels does indeed result in a fall in the
evidence value.

Secondly, the result demonstrates that MaxEnt can assign density maxima off-transect
(Figure 4.5, for example around 40W, 56S). Certainly there is no reason to believe
that the survey transects happened to pass through all the regions of highest krill
density, so this behaviour is very welcome. Inevitably, the position and size of such
maxima is only probabilistically determined from very limited data. However, since
the use of the MaxEnt prior ensures that any structure in the reconstruction must be
based on the data (Gull and Daniell 1978; Gull and Skilling 1991), some level of
support for these off-transect maxima must exist within the data set. This is a clear
example of the spatial information which would be ignored by and hence lost to the
conventional Jolly and Hampton (1990) approach.

Thirdly, the resulting total biomass estimate for the whole survey area of 207.98 
10.08 Mt is plausible, compared with the Demer and Conti (2005) estimate of 109.4 
11.38 Mt generated from the same on-transect data values by the Jolly and Hampton
(1990) method. The MaxEnt estimate is substantially larger, but not implausibly so,
given the tiny number of data involved and the fact that higher off-transect densities



Page 47

are possible. There is considerable doubt about what lies between transects, and it is
reasonable to expect different statistical analysis methods to produce different
biomass estimates. One measure of support for this higher biomass estimate is that it
accords much better with estimates that predator populations require a krill biomass of
between 150-300 million tonnes to sustain them (Priddle et al. 1998; Smetacek and
Nicol 2005).

It is worth remembering that the CCAMLR 2000 survey was designed specifically
with the Jolly and Hampton (1990) approach in mind. Survey transects were pseudo-
randomly placed within chosen strata, in accordance with the Jolly and Hampton
formalism. Conversely, from a MaxEnt point of view, it would be more suitable to
have the transects evenly spaced. Those regions where the transect spacing was as
high as 175 km will inevitably present greater challenges to reconstruction than areas
where the separation was as low as 75 km (or even lower, where extra survey effort
was concentrated, for example to the North of South Georgia). We would suggest that
future surveys be designed on a regular grid.

Summary statistics of krill biomass are shown (Table 4.3) for each of the SSMUs
shown in Figure 4.1 and listed in Table 4.1. However, substantial parts of regions 1, 2,
8, 9, 13 and 16 lie outside the survey area. In these cases, the mean density, calculated
over a small part of the SSMU, has to be applied to the whole SSMU to generate
biomass estimates. It is likely that these mean densities are not representative of the
whole SSMU, and hence the biomass estimates may not be reliable. For example, in
Antarctic Peninsula East (SSMU 8) the biomass estimate of 0.003 Mt reflects the fact
that very few krill were found in the tiny part of SSMU 8 that was in the survey area
(in fact, although the survey bounds do encroach into SSMU 8, no actual transects do
– see Figure 4.1). In the absence of more data, little can be done to better calculate
biomass for such regions.

Hewitt et al. (2004b) took the mean for all SSMUs 2-8 (and 10-12, 14-15) and applied
this to each of the individual areas (see Table 4.3). This is perhaps the best overall
option available, particularly since Hewitt et al. required solid figures to continue their
analysis of possible catch limits, but may not provide the best answer for those
SSMUs (e.g. 3, 4) where more data are available. We have chosen to report all
biomass estimates as calculated, whilst accepting that some values are subject to
severe uncertainty. What Table 4.3 indicates most clearly is the level of ignorance
about these density and biomass values. Bearing in mind that we used data based on
the Demer and Conti (2005) target-strength model, which led to a biomass estimate
about 2.5 times larger than previous estimates (Hewitt et al. 2002), it is fair to assume
that the SSMU biomass and mean density estimates from Hewitt et al. (2004b) are
underestimates also. However, the MaxEnt biomass estimates are sometimes
appreciably lower than those reported in Hewitt et al. (2004b) calculated using the
Jolly and Hampton (1990) method, even in regions (e.g. 10-12) with reasonable
survey coverage. It seems that any putative ‘best estimate’ of biomass in SSMUs is
subject to enormous uncertainty, and estimates from the CCAMLR 2000 data may not
lead to good decisions about catch limits. The application of the ‘precautionary
principle’ would suggest that, in this state of relative ignorance, catch limits for at
least some of the SSMUs should be set at extremely low levels.
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In addition to generating biomass estimates, the second stated ambition of this
research is to generate accurate, useful maps of krill distribution. Figures 4.5 and 4.6
show the MaxEnt reconstruction and an estimated map taken from Hewitt et al.
(2004a). There are clear differences between these maps. The question of which map
better represents the actual krill distribution is hard to resolve in the absence of more
data. Hewitt et al. (2004a) offer only a very short paragraph to explain how their map
was created, since that paper was much more concerned with estimating krill biomass
than with mapping dispersion. It is of course not impossible that the map in Hewitt et
al. (2004a) is more correct than the MaxEnt map, but our analysis provides reason to
believe the MaxEnt solution to be more probable. We believe the MaxEnt solution to
be the most accurate map yet published from the CCAMLR 2000 data.

I submit that any map from which biological or stock-management inferences are to
be drawn should be very carefully considered, since situations of sparse data allow so
many different possible maps to be consistent with that data. We further suggest that
the MaxEnt formalism, with its preference for smoothness and its sound probabilistic
basis, is a useful framework for refining our best estimates.

The errors calculated for the reconstruction, shown in Figure 4.7, do not exhibit large
amounts of unwanted structure. High values of standard deviation are generally found
only where there are high density values, and thus represent small percentage errors.
The exception is to the west of the South Orkney Islands. In terms of the MaxEnt
calculations, this means that there are large variations in the density estimates in this
area between the chosen solution and almost-as-probable candidate solutions. This
may be due to a lack of information in the local data; at this time we are not able fully
to explain this error peak. It is possible that approximations in the algorithm, used to
overcome intractability in some of the calculations, are less than sufficiently accurate
for data in this region.

There are undoubtedly improvements still to be made to our reconstruction algorithm.
Specifically, the Gaussian blurring function is used simply for ease of computation
and has no particular basis in biology. One of the main aims of our research in the
coming months is to redress this situation. Since the MaxEnt formalism treats the
blurring function as entirely separate from the MaxEnt prior distribution, we are free
to adjust it without fear of compromising the validity of the technique. In fact,
different blurring functions will produce different evidence values, and selection
between alternative functions becomes just another exercise in parameter estimation.
As a first step, future investigations will use different blurring widths in different
directions, allowing better reconstruction of data exhibiting significant anisotropy, the
effects of which have not been closely considered in this paper.

Another possible route to better estimates could be found by using more information
that is external to the data set in question. Any information derived from a survey
cannot be used to define a prior for analysis of that survey, since such an idea is
obviously circular; however, information from other sources, other surveys or
experiments, may legitimately form part of the prior information for an analysis.
There is a relatively straightforward way to include such information in the
formalism. Currently, a uniform first trial image is used (see ‘Calculating the
Quantified MaxEnt Result’ above), since we claim no prior knowledge of the
distribution of the species. However, there may be relevant knowledge available – for
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example, a known relationship between water depth and species density. In such
circumstances, we may be justified in basing our first ‘guess’ on some function of the
bathymetry of the survey area. In a very simple case, for example where species
density could be thought approximately linearly related to water depth, our starting
trial image would simply consist of the water depth in each cell of the survey area
scaled by an appropriate constant. Note that the MaxEnt prior distribution was a
formula expressing our relative belief in different possible prior images – whether we
start from a uniform or non-uniform trial image, that formula still expresses our
expectations about the relative probability of changes to that trial image made after
comparison to the data.

In the case of krill, there is evidence (Trathan et al. 2003) that krill density is normally
significantly higher in on-shelf than in off-shelf regions. Using this information, we
can choose a first trial image, based on the bathymetry of the area, with very low
density values in off-shelf areas. This starting image would then ensure a bias towards
higher on-shelf densities that may not be deducible from the CCAMLR 2000 data
directly, but which we are entitled to predict based on other available information.
This can reasonably be expected to further refine our estimates of krill biomass and
density distribution, and is a logical next step for our research. The ability to make use
of such external information represents one of the strengths of the MaxEnt formalism.

One of the aims of this paper has been to consider the possible advantages of MaxEnt
as an alternative to kriging and to Jolly and Hampton (1990) analysis. In reference to
kriging, we believe that the use of the Evidence value offers a chance to objectively
compare competing MaxEnt reconstructions in a way that is not always available
when comparing, for example, reconstructions from two different types of kriging.
Additionally, the possibility of including external information such as the bathymetry
may represent a far bigger advantage over traditional geostatistics.

With respect to the Jolly and Hampton (1990) method, the obvious advantage of
MaxEnt is in making use of the spatial information contained in the data. This
advantage may not be pronounced in this study, due to the enormous transect spacing
of the CCAMLR 2000 survey, but can be expected to be more crucial for smaller
scale surveys such as those studied by Brierley et al.(2003b).

In conclusion, it is our belief that the MaxEnt procedure shows significant promise as
a reconstruction technique, and also as an alternative to the Jolly and Hampton (1990)
method of calculating total biomass. The CCAMLR 2000 data is a particularly strong
challenge for the algorithm, but it so far appears that plausible reconstructions are
possible. Our attempts to generate biomass results demonstrate the shortage of data in
certain SSMUs. This should emphasise that, regardless of apparent errors calculated
by this method or by the Jolly and Hampton (1990) method, enormous uncertainty
exists in these biomass estimates, and this must be taken into account when setting
allowable catch limits.
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Chapter 5: Biomass and Distribution of Jellyfish
and Fish in the Namibian Benguela

This chapter comprises the text of a paper published in the journal Current Biology
Vol. 16, No. 13, by Lynam, Gibbons, Axelsen, Sparks, Coetzee, Heywood and
Brierley. My input in this paper was in generating the maps and biomass estimates
from the survey data, which would have been difficult and statistically questionable
using frequentist statistics due to the non-standard survey design. I include the whole
paper to give context to the work, along with a short introduction discussing the
particular reasons why MaxEnt was employed.

5.1 Why use MaxEnt?

The survey data used in this study are not compatible with the frequentist Jolly and
Hampton analysis, forming as they do a zigzag pattern (see figure 5.1 C-F below)
rather than a series of parallel, randomly-spaced transects. Because the transects are
nearer together as we approach the corners of the zigzag survey, assumptions about
the statistical independence of the data do not hold. In particular, it is an underlying
assumption of the Jolly and Hampton analysis that transects are independent. As long
as the transect spacing is much larger than the autocorrelation range of the data, this
assumption can be said to hold. However, when transects become very close together,
as at the corners of a zigzag survey, this condition is breached. The accepted way to
make the data (approximately) compatible with the Jolly and Hampton analysis would
be to calculate the autocorrelation range of the data, and truncate the transects by at
least this distance at either end, ignoring data collected near the corners. In the case of
the Benguela survey, a significant fraction of the survey data would be ignored. This
is clearly unsatisfactory, both because of the waste of useful data, and also because
the data near the corners can in fact contain the most spatial information about the
scale of swarms - the corners of the zigzag survey have a much greater effective
survey effort than the middle of each transect.

Therefore, since biomass estimates were so vital to the work, we decided to use the
MaxEnt technique, which does not require such starting assumptions. On a technical
note, all the reconstructed maps in the article (chosen because they generated the
highest evidence value) were produced at Nscales=8, although the optimum weighting
factor varied between 3 and 5 for the different species.

5.2 Jellyfish overtake fish in a heavily fished ecosystem

Christopher P. Lynam, Mark J. Gibbons, Bjørn E. Axelsen, Conrad A. J. Sparks,
Janet Coetzee, Benjamin G. Heywood and Andrew S. Brierley.

Over the past half century fishing has led globally to a reduction in the mean trophic
level of commercially landed species, with a significant decline from large predatory
fish toward plankton-eating pelagic species and low trophic-level invertebrates (Pauly
et al. 1998). An implied endpoint of this ‘fishing down marine food webs’ is a
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proliferation of previously suppressed gelatinous plankton (jellyfish) (Pauly et al.
2002) thriving on the food no longer consumed by fish. We report here that, in the
heavily exploited northern Benguela off Namibia, a transition towards this endpoint
has occurred, and jellyfish biomass (12.2 million tonnes (MT)) now exceeds the
biomass of once-abundant fish (3.6 MT). This is a profound ecosystem change, with
possible consequences from carbon cycling to fish stock recovery.

The northern Benguela is a highly productive eastern-boundary ecosystem fertilised
by upwelling, nutrient-rich waters. Historically the region supported large stocks of
fish, including sardines (Sardinops sagax) and anchovies (Engraulis encrasicolis), but
heavy fishing pressure has reduced stocks, and total landings have fallen from around
1.7 MT in the late 1970s to just 0.1 MT now (Figure 5.1A). Prior to this period of
heavy exploitation, large jellyfish (Scyphozoa and Hydrozoa) were not prominent in
the Benguela ecosystem: reports of extensive plankton sampling in the 1950s and
1960s do not mention large jellyfish, although numerous small gelatinous species (e.g.
ctenophores) were observed (for example (Hart and Currie 1960)).

Following early collapses of pelagic fish stocks (in the 1960s), reports of the large and
conspicuous jellyfish Chrysaora hysoscella (mean umbrella diameter ~27 cm
(Brierley et al. 2001)) and Aequorea forskalea (mean umbrella diameter ~13 cm
(Brierley et al. 2001)) became increasingly common (Venter 1988). Since the 1990s,
reports of these jellyfish have been ever-increasing, particularly because of the
nuisance they now cause to fishing (bursting trawl nets, spoiling catches), power
generation (blocking power station coolant intakes) and diamond mining (blocking
alluvial sediment suction). Despite their present prevalence (the term ‘jellyfish
explosion’ has been used (Heymans et al. 2004)), the ascendance of jellyfish has not
been quantified, and ecosystem studies have had largely to ignore jellyfish because of
a lack of quantitative data on biomass and distribution (Heymans et al. 2004).

We have conducted a series of research cruises to study C. hysoscella and A. forskalea
(previously A. aequorea) in the northern Benguela (for example (Brierley et al. 2001)
and (Sparks et al. 2001)). The most recent, in August 2003, was a survey to map
distribution and estimate biomass. We used multi-frequency scientific echosounders
and trawl nets to sample jellyfish and fish (see Supplemental data below) along the
entire Namibian shelf — between the Angolan and South African borders and the 25
m and 350 m depth contours, an area of 33,710 square nautical miles (Figure 5.1B–F).
We estimate that the biomass of jellyfish was 12.2 million tonnes (99% by mass A.
forskalea, mean jellyfish density 361 T n.mi−2, standard error 22 T n.mi−2), and that
the total biomass of fish was 3.6 MT (Cape horse mackerel 1.1 MT, mean 33 T
n.mi−2, SE 1.5 T n.mi−2; Cape hake 1.7 MT, mean 50 T n.mi−2, SE 2.3 T n.mi−2;
clupeids 0.8 MT, mean 23 T n.mi−2, SE 1.0 T n.mi−2). Our fish biomass estimates are
consistent with independent fish stock assessments conducted by others for fishery-
management purposes (see Supplemental data) and our maps of jellyfish distribution
are consistent with recent qualitative surveys (Sparks et al. 2001).
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.
Figure 5.1.

Fish and jellyfish in the Namibian Benguela. (A) Time series of total fish landings
from the northern Benguela (from FISHSTAT+

www.fao.org/fi/statist/FISOFT/FISHPLUS.asp. Data are Capture Production in the
South East Atlantic Major Area 47, Western Coastal Subarea, Divisions 1.3 Cunene,
1.4 Cape Cross, and 1.5 Orange River, covering 15°S to 30°S and from the coast to
10°E). FISHSTAT+ data extend from 1975 only, so do not cover the large sardine
crash in the 1960s (Boyer & Hampton 2001). (B) Bathymetric map (grey contour
lines at 100, 200, 300, 500, 700, and 1000 to 4500 in 500 m increments) and the

cruise track (solid red line) followed southward from the Angola–Namibia border to
the Namibia–South Africa border. CR, Cunene River; WB, Walvis Bay; CC, Cape
Cross; and OR, Orange River. (C–F) maps of distribution of jellyfish and fish from

17°15'S 11°28'E to 28°45'S 15°50'E: (C) Chrysaora hysoscella; (D) Aequorea
forskalea; (E) Cape horse mackerel/Cape hake; and (F) clupeids (sardine, anchovy

and round herring combined). Colour scale is density, tonnes per nautical mile2.
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Figure 5.2
Presence (circles) and absence (crosses) by location in trawled samples of jellyfish

(Chrysaora hysoscella and Aequorea forskalea) and fish (Cape horse mackerel/Cape
hake and clupeids: anchovy, sardine and round herring). Two or three samples were

taken using the pelagic trawl at each location. Bathymetry is as in Figure 5.1.
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Jellyfish biomass has increased substantially in several locations worldwide, perhaps
as a consequence of fishing (Mills 2001). Ecosystem shifts from dominance by fish to
dominance by jellyfish may be irreversible as jellyfish are predatory upon fish eggs
and larvae, and strong competitors for fish food (Lynam et al. 2005) and (Sommer et
al. 2002): jellyfish may thus impede the recovery of fish stocks even after a cessation
of fishing. Jellyfish proliferation may also be climatically driven (Mills 2001), either
directly or in response to the impact of environmental perturbations on abundance and
distribution of fish: an El Niño event in the Benguela in 1963 contributed to the sharp
decline in sardine biomass (Boyer and Hampton 2001), and may have presaged the
early establishment of jellyfish. In the north Atlantic there is a significant link
between climate, as encapsulated by the North Atlantic Oscillation index, and
jellyfish abundance. During the last boreal winter (2005/06) the North Atlantic
Oscillation was in a pronounced negative phase (see
http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html#naopcdjfm) and, if previous
patterns persist (Purcell 2005), this could result in outbreaks of jellyfish in coastal
waters on both sides of the ocean this summer (2006). Such outbreaks have
consequences for fisheries (Lynam et al. 2005) and are trophic dead-ends (jellyfish
have few predators) with consequences for carbon cycling. Jellyfish play potentially
major controlling roles in marine ecosystems and, in this era of apparent jellyfish
ascendancy, marine ecosystem managers and modellers cannot afford to ignore them.
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5.3 Supplemental Data

[The following supplementary section was published online, as was Figure 5.2.]

JELLYFISH OVERTAKE FISH IN A HEAVILY FISHED ECOSYSTEM
Christopher P. Lynam, Mark J. Gibbons, Bjørn E. Axelsen, Conrad A. J. Sparks, Janet
Coetzee, Benjamin G. Heywood, and Andrew S. Brierley

Supplemental Methods

Survey methods - We surveyed the Namibian continental shelf (28
o

38’S to 17
o

15’S,
Figure 5.1B) between August 20 and 31 2003 from the Research Vessel Dr Fridtjof
Nansen. We sampled continuously with calibrated echosounders (Simrad EK500s
operating at 18, 38, 120 and 200 kHz) along an approximately 1800 nautical mile zig-
zag track (Figure 5.1B) from c. 10 m depth to the seabed. We fished periodically with
pelagic and demersal trawls (codend mesh 22 mm) to identify acoustic targets and
obtain jellyfish and fish for size-frequency analysis. Species caught most frequently
were the jellyfish A. forskalea (25% of total biomass caught, present in 72% of trawls)
and C. hysoscella (43% biomass, 42% trawls), and the fish Cape horse mackerel
(Trachurus trachurus capensis) (14% biomass, 17% trawls), Cape hake (Merluccius
capensis) (10% biomass, 19% trawls), and clupeid species (sardine Sardinops sagax,
anchovy Engraulis encrasicolis, round herring Etremus whiteheadi, each 1.5 %
biomass). Total and mean trawl catch compositions differ from total and mean
acoustic estimates of community biomass but, for several reasons, this is not
unexpected. Indeed, part of our motivation for studying jellyfish acoustically over the
past several years (Brierley et al. 2001; Brierley et al. 2004; Brierley et al. 2005) has
been to develop a method that can sample jellyfish effectively, overcoming some of
the well-recognised limitations of net sampling for this group. Reasons for differences
apparent here between the net-based and acoustic measures include: 1) whereas the
acoustic survey track was essentially random, trawls were not targeted randomly but
were aimed at acoustic features that required confirmation of identity; 2) trawls were,
of necessity, deployed through the surface layer that was unsampled acoustically – the
jellyfish acoustic biomass estimate (particularly the C. hysoscella component) may
actually be biased low because on occasion jellyfish were aggregated in the very near
surface; 3) Chrysaora and Aequorea have different size distributions and structural
rigidities, so are not necessarily both sampled with the same net efficiency.

Biomass estimation and distribution mapping - Echo energy allocated to each
species/group was integrated at nautical mile intervals along track and scaled by TS to
produce density estimates per species/group per nautical mile. A Bayesian Maximum
Entropy technique (Brierley et al. 2003b) that takes account of spatial autocorrelation
was used to map species distribution (Figure 5.1C-F) and infer biomass (standard
errors were determined by sampling from the posterior distribution). Bayesian
analyses were conducted using MemSys5 Quantified Maximum Entropy software.

Supplemental Discussion
Our fish biomass estimates are consistent with independent stock estimates (Boyer et
al. 2001; Boyer and Hampton 2001; Cury et al. 2005), and our Bayesian-inferred
maps of fish and jellyfish distributions derived from acoustic data are consistent with
species distributions evident from trawl data (Figure 5.2). We are confident that our
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acoustic data provide a robust view of the distributions and abundances of jellyfish
and fish. Our data suggest that in the northern Benguela jellyfish biomass now
exceeds that of the once-abundant fish. It has been argued that the increases in
Chrysaora hysoscella off Namibia may not be recent (Mills 2001), but the lack of any
sightings or collections of this species during the time of the Great Expeditions (Hart
and Currie 1960) seems remarkable if the species was abundant then (given that many
far smaller and less conspicuous gelatinous species were collected). Our interpretation
of the present survey data, in conjunction with the known timescale of the demise of
commercial fish stocks (Figure 5.1A) and subsequent increasing reports of jellyfish, is
that jellyfish have proliferated in the northern Benguela following release from
competition with fish. Whether fishing was the sole direct cause of fish stock decline,
and thus, as predicted (Pauly et al. 2002), fishing was the ultimate cause of jellyfish
ascendancy, we cannot say: jellyfish increase may be a proximate consequence of fish
stock decline brought about for other reasons (perhaps including temperature and
oxygen fluctuations (Boyer and Hampton 2001)). Irrespective of the ultimate cause of
their ascendance, however, the fact remains that jellyfish biomass on shelf in the
Namibian Benguela now appears to be greater than the biomass of once-abundant
commercially important fish.

Jellyfish are voracious predators on fish eggs and larvae and consequently it may be
difficult for fish populations to become re-established even following reductions in
fishing effort: the Benguela may have switched to an alternate stable state where
jellyfish dominate [cf. (Sommer et al. 2002)]. Jellyfish have few natural predators,
and gelatinous plankton are thus essentially watercolumn trophic dead ends. When
they die, jellyfish sink, serving to sequest carbon and transport nutrients to the seabed.
In the Southern Ocean, environmentally-mediated switches between krill (crustacean)
and salp (gelatinous) dominance of the plankton have the potential to alter carbon
flow radically (Loeb et al. 1997), with severe consequences for krill-dependent higher
predators such as penguins and seals. In the Arabian sea, by contrast, jellyfish falls
may actually be important food sources for the deep sea (Billett et al. 2006). More
research is required in order to understand the full impact of the shift to jellyfish
dominance in the northern Benguela, but consequences for higher fish predators
including Cape fur seals and gannets could be severe [cf.(Boyer and Hampton 2001)].
Although jellyfish are fished in some areas of the world (Kingsford et al. 2000),
jellyfish proliferation is not generally considered to be a desired management
outcome. However, if developments in the Benguela are a portent of more general
consequences of over exploitation of traditional fishery resources, jellyfish dominance
may become a familiar phenomenon in years to come. This possibility should be
viewed with concern not just for Africa, where per capita fish
consumption has declined since the mid-1980s (Delgado et al. 2003), but globally
given the inexorable demand for protein by the rising human population.
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Chapter 6: Discussion and Conclusion
6.1 Recent Developments

Maximum Entropy methods continue to be used in an increasing number of diverse
fields (e.g. de Nazelle and Serre 2006; Law et al. 2006; Lorenz-Fonfria and Kandori
2007). MaxEnt work in the specific area of pelagic ecology remains limited, although
research is in progress on describing stock abundance of prawn and scallop in
Queensland, by Dr. Norman Good at the Southern Fisheries Centre, Deception Bay,
Queensland, Australia. As yet, his research is incomplete and unpublished. His
intention is to use MemSys 5 to analyse abundance distribution using daily catch data
and hourly position data of a large fleet of fishing vessels.

In fisheries acoustics in general (as opposed to just MaxEnt applications) Makris et al.
(2006) offer a very exciting alternative to traditional acoustic surveys. Their method
enables the instantaneous imaging of large areas (thousands of square kilometres) of
the ocean. The technique achieves results so fast that an image of the area can be
taken every 50 seconds or so, and thus a real-time study of behaviour is possible in a
way that has not been seen before. The method uses the continental shelf as an
acoustic waveguide, enabling the acoustic pulses to travel enormous distances, using
sound some three orders of magnitude less intense than an ordinary acoustic survey.

Figure 6.1
Images of the distribution of fish shoals off the coast of Long Island, New York, USA,
on consecutive mornings in May 2003, reprinted from Makris et al. (2006). The star
and the diamond (top left of each image) represent the moored acoustic transmitter
and the receiver vessel respectively. Data cannot be collected within the grey ellipse

surrounding the receiver and transmitter; this is a blind spot.

This new method offers great possibilities. The proportion of the area that is directly
surveyed is many, many times greater than with a traditional, transect-based acoustic
survey. In terms of creating maps of density distribution, this technique is obviously
vastly superior to traditional survey techniques – not only does it sample the whole
area, but it does so in real time, removing problems such as species movement during
the survey period, and even allowing the creation of an animation of the movement of
a species over a period of a few hours (Makris et al. 2006, supplemental online data).
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Figure 6.1 shows the large differences in density distribution that occur in a 24-hour
period, and highlights a problem for traditional surveys that may last a number of
weeks. Fortunately, many species studied by acoustic surveys exist far more
abundantly on-shelf than off-shelf, and so the fact that the technique is limited to on-
shelf areas (because the sea-bed acts as a waveguide) will be a relatively minor
problem in many cases, and the technique may be adopted widely.

In the short term, the new technique does not offer a simple way to generate biomass
estimates. This is because the target-strength and species differentiation models used
in standard acoustic survey analysis are designed for looking at the pelagic realm
from above. The new technique involves the sound waves travelling horizontally
through the ocean, and entirely new models must be created (a two-degree change in
the assumed swimming angle of Antarctic krill can result in a near-doubling of the
biomass estimate (Demer and Conti 2005), so clearly it is not safe to use existing
target strength models in this new context).

It can be expected that techniques for reconstructing density distributions from
traditional acoustic surveys will continue to be useful for at least the following two
reasons:

i) future surveys of off-shelf areas, and
ii) analysis of existing survey data, which will remain vital in determining

ongoing trends in populations.

It is likely to be many years before this new technique becomes usable as a
replacement for traditional survey methods, and research into improved analysis of
traditional survey data remains of great value.

6.2 Suggested Future Work

Naturally, the most pressing need for further work is in the analysis of the accuracy of
the MaxEnt technique. As outlined in Chapter 3, there are a number of methods that it
would be worthwhile applying.

One interesting idea is to use the work of Makris et al. (2006) to provide the kind of
fine-scale data required to test the MaxEnt reconstructions thoroughly. Running
virtual surveys through this genuine data would offer a very direct test of the MaxEnt
reconstruction method. There could be no question of whether the data was similar
enough to the real world to provide a robust test since, unlike the herring data used in
this thesis, it would be real world data.

The herring data were produced using a simulation, which is itself a statistical
process. There is therefore an obvious circularity in using any statistical method to
reconstruct it, and in particular, since geostatistics were actually used in this
simulation, a geostatistical method such as kriging could not be fairly compared to the
MaxEnt method. This would not be a problem with data from the Makris et al. (2006)
surveys. Nick Makris has been kind enough to discuss the possibility of this avenue of
research, but unfortunately the work has not been done in time for inclusion in this
thesis.
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Other possible future work could involve adjusting the Internal Correlation Function
(ICF) used by the MaxEnt method. In theory, any smoothing algorithm could be used,
and the evidence value would offer an objective way to choose the one that performs
best. The ICF currently used (a simple B-spline approximation to the Gaussian (Gull
and Skilling, 1991)) exists because it was sufficiently accurate for the various uses to
which the MemSys 5 software has been put in the past. It may be that other functions
are more suited to biological data, and this could be investigated.

6.3 Concluding Remarks

This project has advanced the work of Brierley et al. (2003b) and Wafy et al. (2003)
considerably, and has further developed the use of MaxEnt for fisheries acoustic data.
It has been shown clearly that plausible reconstructions are achievable, and also that
the evidence value is useful in objectively choosing the reconstruction that also seems
best by other important criteria. Unarguably, more work is required in the testing of
the MaxEnt reconstructions, with regard to the accuracy both with respect to the
original simulated data, and with respect to the performance of other reconstruction
methods.
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