Ammonium Phenylphosphonamidodiselenoates and Phenylphosphonamidodi-selenoic Diamides from the Selenation of Primary and Secondary Amines

Guoxiong Hua, Rebecca A. M. Randall, Alexandra M. Z. Slawin and J. Derek Woollins*

Keywords: Woollins’ reagent; Amines; Ammonium phenylphosphonamidodiselenoates; Phenylphosphonamidodiselenoic diamides; X-ray structures.

Abstract. By reacting two equivalents of primary or secondary amines with 2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide (Woollins’ reagent) at room temperature a series of new ammonium phenylphosphonamidodiselenoates 1 – 7 have been obtained in good to excellent yields (70 – 99%). The first metal complex of phenylphosphonamidodiselenoate, the complex of Cd₂L₄ (L = [Se₂PPh(NCH(CH₃)₂)]⁻) 8, has been prepared from the reaction of diisopropylamine N-isopropyl-P-phenylphosphonamidodiselenoate with Cd(CH₃COO)₂ in dichloromethane. Upon heating to 130ºC the ammonium phenylphosphonamidodiselenoates lose hydrogen selenide leading to give the corresponding phenylphosphonamidodiselenoic diamides 9 – 11 in almost quantitative yields. The same products 9 – 11 can also be prepared directly from the reaction of primary amines with Woollins’ reagent in refluxing toluene. Three representative X-ray structures are described.

*Prof J D Woollins Tel.: (+44)-1334-463384; Email: jdw3@st-and.ac.uk
EaStCHEM School of Chemistry,
University of St Andrews,
Fife, KY16 9ST, UK

In Memorial Of Kurt Dehnicke,
A fine scientist in the best tradition of German Chemistry.

This is an accepted manuscript of an article published as:
Ammonium Phenylphosphonamidodiselenoates and Phenylphosphonamidodi-selenoic Diamides from the Selenation of Primary and Secondary Amines
Introduction

Despite their toxic nature in general, selenium compounds have now found applications in many areas such as organic synthesis,[1] biochemistry,[2] xerography,[3] the synthesis of conducting materials,[4] and semiconductors,[5] and ligand synthesis.[6] A wide range of selenation reagents can introduce selenium into organic substrates by both nucleophilic and electrophilic pathways, and the resulting selenium-containing products can be further converted into useful targets that may or may not retain the selenium atom.[7] 2,4-Bis(phenyl)-1,3-diselenadiphosphethane-2,4-diselenide [{PhP(Se)(μ-Se)}₂] (Woollins’ reagent, WR, a selenium counterpart of Lawesson’s reagent) has proved to be an efficient selenation reagent in organic synthetic chemistry in part due to its relatively pleasant chemical properties and ready preparation.[8]

Reactions of Woollins’ reagent with organic substrates display a wide spectrum ranging from simple oxygen-selenium exchange to the formation of complex phosphorus-selenium heterocycles as well as surprising phosphorus-selenium-free products.[9-17] Herein, as part of our investigation into the reactivity of Woollins’ reagent towards different organic substrates, we report the synthesis of a series of novel ammonium phenylphosphonamidodiselenoates and phenylphosphonamidodiselenenoic diamides from the selenation of primary/secondary amines, the complex of Cd₂L₄ (L = [Se₂PPh(NCH(CH₃)₂]⁻) and three representative related single crystal X-ray structures. To the best of our knowledge this is the first reported synthesis and characterization of ammonium phenylphosphonamidodiselenoates and phenylphosphonamidodiselenenoic diamides and the representative coordination compound, providing a valuable addition to the library of phosphodiselenoate compounds known.

Results and Discussion

The ammonium phenylphosphonamidodiselenoates 1 – 6 were synthesized by reaction of Woollins’ reagent with two molar equivalents of primary or secondary amines (Scheme 1). However, the reaction of Woollins’ reagent with two molar equivalents of isopropyamine gave a mixed ammonium phenylphosphonamidodiselenoate 7 (Scheme 2). It was found that isopropyamine was not pure but mixed with some diisopropyamine (ca. 5%), which was formed during the purification process with CaH₂ (Scheme 3).
Breaking the four-membered ring in Woollins’ reagent forms the ammonium phenylphosphonamidodiselenoates 1 – 7 in 70 – 99% yields as either off-white solids or pale yellow pastes, which are soluble in polar and chlorinated solvents such as alcohols, dichloromethane and chloroform but are insoluble in less polar solvents such as ethers and hexane. Compounds 1 – 7 are air stable for several weeks, after that obvious signs of degradation occur including reddening of the powders due to the expulsion of elemental selenium; this decomposition is accompanied by the evolution of foul smelling gas.

The characterisation of 1 – 7 is based on elemental analyses, 1H, 13C, 31P and 77Se NMR, IR spectroscopy and mass spectrometry. The elemental analyses for all compounds were satisfactory. The 31P NMR spectra of 1 – 7 showed sharp singlets in the range of 42.0 – 70.0 ppm, flanked by a single pair of selenium satellites with 31P-77Se coupling constants in the range of 612 – 636 Hz, which are much smaller than the values in sodium phosphonodiselenoate salts (667 – 675 Hz), indicating a P-Se bond order of
approximately 1.5 as expected. This was further substantiated by the 77Se NMR spectra which exhibited doublets in the range of 31.6 – 62.8 ppm, with matching 31P-77Se coupling constants.

Attempts to crystallize ammonium salts proved unsuccessful apart from compound 7, which was obtained by diffusion of the dichloromethane solution into hexane at room temperature. The building block for compound 7 is shown in Figure 1 and Table 1. The P-Se bond distances [2.1545(9) and 2.1537(8) Å] are slightly shorter than those found in amine salts of bisdiselenophosphonic acid [2.1280(11)-2.1350(12) Å]$^{[19]}$ and other symmetrical phosphonium salts [ca. 2.13 Å]$^{[20]}$, however, being still intermediate between single bond [ca. 2.38 Å] and double bond [P=Se double bond length ca. 2.08 Å]$^{[21]}$ indicating significant delocalisation of the negative charge over the Se-P-Se fragment. It should be noted that the two Se···N distances between the anion and cation are significantly different [6.024(2) Å for N(2)···Se(1) and 3.424(2) Å for N(2)···Se(2)].

Figure 1. Single crystal structure of compound 7 (Hydrogen atoms on carbon atoms omitted for clarity). Selected bond lengths (Å) and angles (°) (esds in parentheses): Se(1)-P(1) 2.1545(9), Se(2)-P(1) 2.1537(8), P(1)-N(1) 1.665(2), P(1)-C(1) 1.830(2), N(1)-C(7) 1.474(4), N(2)-C(10) 1.507(3), N(2)-C(13) 1.504(4); Se(1)-P(1)-Se(2) 116.57(4), Se(1)-P(1)-N(1) 114.62(9), Se(1)-P(1)-C(1) 106.76(10), Se(2)-P(1)-N(1) 105.79(9), Se(2)-P(1)-C(1) 109.15(10), N(1)-P(1)-C(1) 103.05(14), P(1)-N(1)-C(7) 121.39(19), C(10)-N(2)-C(10) 118.0(2).

The preparation of the first metal complex of ammonium phenylphosphonamidodiselenoate has been carried out. Cadmium acetate dihydrate was stirred with two equivalents of 7 in dichloromethane at room temperature to generate the complex 8 (Scheme 4). The complex was obtained in high yield (98%) as a white solid soluble in dichloromethane. The 31P NMR spectrum of 8 displays a sharp singlet at δ_P 35.7 ppm, flanked by a single pair of selenium satellites with a 31P-77Se coupling constant of 554 Hz. Meanwhile the 77Se NMR spectrum showed a doublet at δ_{Se} 225.5 ppm with a matching coupling constant.
The results show that upon complexation there is not only a change in chemical shift (a decrease at δ_p from 42.0 to 35.7 ppm and an increase at δ_{Se} from 70.7 to 225.5 ppm) but also a significant decrease in the ^{31}P-^{77}Se coupling constant (a decrease from 615 Hz to 554 Hz). A similar pattern was found in the 1H and ^{13}C NMR spectra of 8 as in the starting material 7. The mass spectrometry found the 1/2 expected parent ion at m/z 761.

![Scheme 4. Synthesis of the complex 8](image)

The single crystal X-ray structure of 8 was determined (Figure 2 and Table 1). Although no literature example of structurally characterised cadmium complexes with such NP(Se)Se containing ligands have been found, one example of cadmium complex of a similar OP(Se)Se containing ligand19 and many examples of OP(S)S containing ligands have been documented.$^{[22]}$ All examples exhibit a structural motif of an eight-membered Cd$_2$P$_2$Se$_4$ or Cd$_2$P$_2$S$_4$ ring with two terminal bidentate ligands each bound to one cadmium atom via both seleniums/sulfurs and the other two acting as bridging ligands with their selenium/sulfur atoms binding to two different cadmium atoms. Not surprisingly, the structure of compound 8 shows a dimeric complex in the solid state with an eight-membered Cd$_2$P$_2$Se$_4$ ring, flanked by two four-membered rings, which is very closely related to the similar OP(Se)Se complex.$^{[18,23,24]}$
Refluxing a toluene solution of ammonium phenylphosphonamidodiselenoates for 12 h led to the corresponding phenylphosphonamidodiselenenic diamides 9 – 11 in almost quantitative isolated yields with evolution of hydrogen selenide (Scheme 5). The same products 9 – 11 could be also obtained in 90% – 95% yields via the reaction of Woollins’ reagent with two equivalents of the corresponding primary amine in refluxing toluene (Scheme 6).
Compounds 9 – 11 are soluble in common chlorinated solvents and air stable for several months as sticky oils or solid. Their formulations were confirmed by IR, MS (including accurate mass measurement), solution multinuclear NMR spectroscopy and one representative X-ray structure determination. The 31P NMR spectra of 9 – 11 showed sharp singlets at δ_P 60.3, 46.0 and 62.4 ppm, respectively, the singlet in each case was flanked by a single pair of selenium satellites with 31P-77Se coupling constants in the range of 763 – 813 Hz, indicating typical P-Se double bond character. This was further confirmed by the 77Se NMR spectra which exhibited doublets at δ_{Se} -243.2, -180.4 and -250.4 ppm, respectively with matching 31P-77Se coupling constants. The 1H and 13C NMR spectra of 9 – 11 were as expected confirming the presence of phenyl and NH moieties. Mass spectra for them showed the expected parent ions as [M+Na].

Compound 11 was crystallized by slow evaporation of dichloromethane solution to give transparent, colourless cubic crystals. The data for X-ray structure of compound 11 shows in Figure 3 and Table 1 The phenyl rings attached to phosphorus atom via a CH$_2$-NH bridge are opposite positions with an inclined angle of 74.2° and being bent towards the different side of the phenyl ring directly attached phosphorus atom with angles of 61.8° and 76.5°, respectively. The single crystal structure shows marginally longer P-Se double bond length [2.1175(12) Å], compared to the normal double bond length [ca. 2.08 Å][21] and significant shorter P-N single bond distances [1.652(3) and 1.664(3) Å], compared to the other typical P-N single bond system [ca. 1.80 Å][25] suggesting the more or less extent of resonance delocalization.
Figure 3. Single crystal structure of compound 11 (Hydrogen atoms on carbon atoms omitted for clarity). Selected bond lengths (Å) and angles (°) (esds in parentheses): Se(1)-P(1) 2.1175(12), P(1)-N(1) 1.652(3), P(1)-N(2) 1.664(3), P(1)-C(15) 1.811(5), N(1)-C(1) 1.475(6), N(2)-C(8) 1.449(5); Se(1)-P(1)-N(1) 116.50(12), Se(1)-P(1)-N(2) 107.49(13), Se(1)-P(1)-C(15) 115.34(15), N(1)-P(10)-N(2) 106.75(18), N(1)-P(1)-C(15) 102.21(20), N(2)-P(1)-C(15) 108.00(18), P(1)-N(1)-C(1) 118.2(3), P(1)-n(2)-C(8) 125.6(3).

Table 1. Details of the X-ray data collections and refinements for compounds 7, 8 and 11

<table>
<thead>
<tr>
<th>Compound</th>
<th>7</th>
<th>8</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{15}H_{20}N_{3}PSe_{2}</td>
<td>C_{18}H_{22}N_{3}P_{2}Se_{4}Cd</td>
<td>C_{20}H_{21}N_{3}PSe</td>
</tr>
<tr>
<td>M</td>
<td>426.30</td>
<td>760.61</td>
<td>399.33</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_1/c</td>
<td>P-1</td>
<td>P-1</td>
</tr>
<tr>
<td>a/Å</td>
<td>11.060(3)</td>
<td>8.5190(14)</td>
<td>5.687(10)</td>
</tr>
<tr>
<td>b/Å</td>
<td>11.767(3)</td>
<td>11.6632(2)</td>
<td>10.2583(18)</td>
</tr>
<tr>
<td>c/Å</td>
<td>15.528(4)</td>
<td>13.167(2)</td>
<td>16.204(2)</td>
</tr>
<tr>
<td>α°</td>
<td>90</td>
<td>90.897(4)</td>
<td>107.730(9)</td>
</tr>
<tr>
<td>β°</td>
<td>108.299(7)</td>
<td>95.8114(4)</td>
<td>90.680(5)</td>
</tr>
<tr>
<td>γ°</td>
<td>90</td>
<td>96.400(4)</td>
<td>97.955(4)</td>
</tr>
<tr>
<td>U/Å^3</td>
<td>945.81(7)</td>
<td>1238.2(4)</td>
<td>2209.4(7)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>μ/mm^−1</td>
<td>1.476</td>
<td>2.040</td>
<td>1.489</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>14281</td>
<td>12299</td>
<td>9000</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3863</td>
<td>5604</td>
<td>4047</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.079</td>
<td>0.1819</td>
<td>0.0954</td>
</tr>
<tr>
<td>R1; wR2 [I > 2σ(I)]</td>
<td>0.0429; 0.1137</td>
<td>0.1036; 0.2383</td>
<td>0.0594; 0.1065</td>
</tr>
</tbody>
</table>
Conclusions

In conclusion, the reaction of Woollins’ reagent with the primary or secondary amines gives the non-symmetric phosphoronamidodiselenoate anions [Ph(R^1R^2N)PSe_2]^- as their ammonium salts in good to excellent yields. The latter can be converted into the corresponding phenylphosphonamido-diselenoic diamides in almost quantitative yields with evolution of hydrogen selenide. The same products, phenylphosphonamido-diselenoic diamides, can be directly obtained via the reaction of Woollins’ reagent with two equivalents of primary amine in excellent yields. The first metal complex of a phosphoronamidodiselenoate anion shows a conformation with a dimeric nature, which is very closely related to the known OP(Se)Se system.

Experimental Section

Unless otherwise stated, all reactions were carried out under an oxygen free nitrogen atmosphere using pre-dried solvents and standard Schlenk techniques, subsequent chromatographic and work up procedures were performed in air. ^1H (270 MHz), ^13C (67.9 MHz), ^31P-{^1H} (109 MHz) and ^77Se-{^1H} (51.4 MHz referenced to external Me_2Se) NMR spectra were recorded at 25 °C (unless stated otherwise) on a JEOL GSX 270. IR spectra were recorded as KBr pellets in the range of 4000-250 cm\(^{-1}\) on a Perkin-Elmer 2000 FTIR/Raman spectrometer. Microanalysis was performed by the University of St-Andrews microanalysis service. Mass spectrometry was performed by the EPSRC National Mass Spectrometry Service Centre, Swansea and the University of St Andrews Mass Spectrometry Service. X-ray crystal data for 7, were collected using the Rigaku STANDARD system\(^{26}\) and for 8 and 11 using a Rigaku SCXMIni Mercury CCD system. Intensity data were collected using φ steps accumulating area detector images spanning at least a hemisphere of reciprocal space. All data were corrected for Lorentz polarization effects. Absorption effects were corrected on the basis of multiple equivalent reflections or by semi-empirical methods. Structures were solved by direct methods and refined by full-matrix least-squares against F^2 by using the program SHELXTL.\(^{27}\) Hydrogen atoms were assigned riding isotropic displacement parameters and constrained to idealized geometries. CCDC 829188 7, 829187 8, 829186 11 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

General procedure for the formation of ammonium phenylphosphonamidodiselenoates 1 – 7. A mixture of Woollins’ reagent (0.54 g, 1.0 mmol) and primary or secondary amine (4.0 mmol) in 50 mL of
dry tetrahydrofuran was stirred at room temperature. While the red suspension disappeared gradually and a greyish white suspension formed after stirring at room temperature for 2 h. Upon evaporating to remove the solvent the residue was dissolved in dichloromethane. After removal of insoluble solid with a celite pad, the filtrate was dried in vacuo to give ammonium phenylphosphonamidodiselenoates 1 – 7.

Diethylamine N,N-diethyl-P-phenylphosphonamidodiselenoate (1). A pale yellow paste (0.800 g, 97% yield). Anal. calcd. for C_{14}H_{22}N_{2}PSe_{2} (427.39): C, 39.34; H, 9.91; N, 6.55. Found: C, 39.70; H, 10.01; N, 6.70. Selected IR (KBr, cm\(^{-1}\)): 1565(w), 1458(m), 1434(s), 1381(s), 1167(s), 1090(m), 1055(s), 1013(s), 905(m), 745(m), 691(s), 547(vs, P-Se), 500(s). \(^1\)H NMR (CD\(_2\)Cl\(_2\), \(\delta\)): 8.17-8.09 (m, 2H, Ar-H), 7.33-7.32 (m, 3H, Ar-H), 6.84 (wide peak, 2H, NH), 3.20-3.08 (m, 4H, CH\(_2\)), 3.03-2.95 (m, 4H, CH\(_2\)), 1.31 (t, \(J(H,H) = 7.2\) Hz, 6H, CH\(_3\)), 1.02 (t, \(J(H,H) = 6.9\) Hz, 6H, CH\(_3\)) ppm. \(^{13}\)C NMR (CD\(_2\)Cl\(_2\), \(\delta\)): 130.9 (Ar-C), 130.7 (Ar-C), 129.6 (Ar-C), 127.2 (d, \(J(P,C) = 12.5\) Hz, (Ar-C)), 53.1 (CH\(_2\)), 41.5 (CH\(_2\)), 13.9 (CH\(_3\)), 11.2 (CH\(_3\)) ppm. \(^{31}\)P NMR (CD\(_2\)Cl\(_2\), \(\delta\)): 55.8 (s, J(P,Se) = 615 Hz) ppm. \(^{77}\)Se NMR (CD\(_2\)Cl\(_2\), \(\delta\)): 62.8 (d, J(P,Se) = 616 Hz) ppm. Mass spectrum [ES\(^-\), m/z]: 348 [M-HN(C\(_2\)H\(_3\))\(_2\)]\(^-\).

Butan-1-amine N-butyl-P-phenylphosphonamidodiselenoate (2). A pale yellow condensed oil (0.810 g, 98% yield). Anal. calcd. for C\(_{14}\)H\(_{22}\)N\(_2\)PSe\(_2\) (411.26): C, 40.89; H, 6.37; N, 6.81. Found: C, 41.10; H, 6.55; N, 6.70. Selected IR (KBr, cm\(^{-1}\)): 1640(w), 1582(m), 1479(m), 1435(m), 1387(m), 1096(m), 1069(m), 740(m), 690(m), 554(s, P-Se), 496(s). \(^1\)H NMR (CD\(_2\)Cl\(_2\), \(\delta\)): 8.12-8.06 (m, 2H, Ar-H), 7.33-7.31 (m, 2H, Ar-H), 6.05 (wide peak, 3H, NH\(_3\)), 2.80 (t, \(J(H,H) = 6.9\) Hz, 2H, CH\(_2\)), 2.66 (t, \(J(H,H) = 7.2\) Hz, 2H, CH\(_2\)), 2.11 (wide peak, 1H, NH), 1.57-1.21 (m, 8H, CH\(_2\)), 0.92-0.79 (m, 6H, CH\(_3\)) ppm. \(^{13}\)C NMR (CD\(_2\)Cl\(_2\), \(\delta\)): 130.4 (Ar-C), 130.3 (Ar-C), 129.8 (d, \(J(P,C) = 3.1\) Hz, Ar-C), 127.5 (d, \(J(P,C) = 12.5\) Hz, Ar-C), 43.4 (d, \(J(P,C) = 5.2\) Hz), 40.2, 33.2 (d, \(J(P,C) = 9.3\) Hz), 32.1, 20.2, 20.0, 13.7, 13.5 ppm. \(^{31}\)P NMR (CD\(_2\)Cl\(_2\), \(\delta\)): 44.3 (s, J(P,Se) = 613 Hz) ppm. \(^{77}\)Se NMR (CD\(_2\)Cl\(_2\), \(\delta\)): 57.9 (d, J(P,Se) = 613 Hz) ppm. Mass spectrum [ES\(^-\), m/z]: 340 [M-H\(_2\)NC\(_4\)H\(_3\)]\(^-\).

Benzylic N-benzyl-P-phenylphosphonamidodiselenoate (3). An off-white solid (0.902 g, 99% yield). M.p. 150 – 152°C. Anal. calcd. for C\(_{26}\)H\(_{22}\)N\(_2\)PSe\(_2\) (479.30): C, 50.11; H, 4.63; N, 5.85. Found: C, 50.20; H, 4.95; N, 6.01. Selected IR (KBr, cm\(^{-1}\)): 1569(m), 1493(m), 1468(m), 1377(m), 1199(w), 1063(s), 732(m), 696(vs), 548(s), 483(s). \(^1\)H NMR (THF-d\(_8\), \(\delta\)): 8.28 (dd, \(J(P,H) = 13.8\) Hz, J(H,H) = 7.9 Hz, 2H, Ar-H), 7.55-7.07 (m, 13H, Ar-H), 6.72 (wide peak, 3H, NH), 3.92 (d, \(J(P,H) = 9.3\) Hz, 2H, CH\(_2\)), 3.58 (s, 2H, CH\(_2\)), 3.40 (wide peak, 1H, NH) ppm. \(^{13}\)C NMR (THF-d\(_8\), \(\delta\)): 145.0, 143.9, 141.6, 141.4, 134.9, 130.9, 130.8, 129.1, 128.6, 128.3, 128.0, 127.8, 126.6, 126.4, 126.1, 47.5, 43.2 ppm. \(^{31}\)P NMR (THF-d\(_8\), \(\delta\)): 46.1 (s, J(P,Se) = 634 Hz) ppm. \(^{77}\)Se NMR (THF-d\(_8\), \(\delta\)): 39.9 (d, J(P,Se) = 634 Hz) ppm. Mass spectrum [ES\(^-\), m/z]: 566 [M-2HNC\(_4\)H\(_3\)]\(^-\).
m/z: 374 [M-H₂CH₂Se⁺]. [ES⁺, m/z]: 108 [M-C₆H₃P(Se)NHCH₂C₆H₅Se⁺]. Accurate mass measurement (ES MS): 373.9115, calculate mass for [C₂₀H₂₂N₂PSe₂-C₆H₅CH₂NH₂]: 373.9116.

N-benzyl-2-phenylethanamine
N-benzyl-N-phenethyll-P-phenylphosphonamidodiselenoate (4). A reddish golden paste (1.280 g, 93% yield). Anal. calcd. for C₃₄H₃₈N₂PSe₂ (663.57): C, 61.54; H, 5.77; N, 4.22. Found: C, 61.52; H, 5.95; N, 4.41. Selected IR (KBr, cm⁻¹): 1601(w), 1494(m), 1434(m), 1454(m), 1092(m), 747(s), 696(vs), 544(m), 486(m). ¹H NMR (CD₂Cl₂, δ): 8.38 (dd, J(P, H) = 13.8 Hz, J(H, H) = 7.2 Hz, 2H, Ar-H), 8.02 (wide peak, 2H, NH), 7.47-6.81 (m, 13H, Ar-H), 4.12 (s, 4H, CH₂), 3.27-3.05 (m, 4H, CH₂), 2.65-2.51 (m, 4H, CH₂) ppm. ¹³C NMR (CD₂Cl₂, δ): 140.3, 137.1, 131.8, 131.6, 131.4, 130.0, 129.0, 128.8, 128.7, 128.6, 128.3, 128.2, 128.1, 127.9, 127.7, 127.5, 127.4, 126.9, 125.8, 51.7, 50.8, 47.5, 34.8, 32.7, 30.4 ppm. ³¹P NMR (CD₂Cl₂, δ): 70.0 (s, J(P, Se) = 620 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂, δ): 56.1 (d, J(P, Se) = 620 Hz) ppm. MS [ES⁺, m/z]: 454 [M-H₂N(CH₂C₆H₅)CH₂CH₂CH₂C₆H₅⁺]. Mass spectrum [ES⁺, m/z]: 212 [H₂N(CH₂C₆H₅)CH₂CH₂CH₂C₆H₅⁺].

Diisobutylamine
N,N-diisobutyl-P-phenylphosphonamidodiselenoate (5). An orange paste (1.000 g, 95% yield). Anal. calcd. for C₂₂H₄₂N₂PSe₂ (523.48): C, 50.48; H, 8.09; N, 5.35. Found: C, 50.69; H, 8.35; N, 5.70. Selected IR (KBr, cm⁻¹): 1560(m), 1468(s), 1435(m), 1388(m), 1368(m), 1092(m), 988(m), 769(m), 748(m), 695(s), 554(s), 511(s). ¹H NMR (CD₂Cl₂, δ): 8.24 (dd, J(P, H) = 13.9 Hz, J(H, H) = 7.2 Hz, 2H, Ar-H), 7.90 (wide peak, 2H, NH), 7.30-7.28 (m, 3H, Ar-H), 2.82 (dd, J(H, H) = 7.2 Hz, J(H, H) = 7.7 Hz, 4H, CH₂), 2.80 (d, J(H, H) = 7.2 Hz, 4H, CH₂), 2.13 (septet, J(H, H) = 6.9 Hz, 2H, CH), 1.81 (septet, J(H, H) = 6.6 Hz, 2H, CH), 1.01 (d, J(H, H) = 6.6 Hz, 6H, CH₃), 0.75 (d, J(H, H) = 6.6 Hz, 6H, CH₃) ppm. ¹³C NMR (CD₂Cl₂, δ): 142.8 (d, J(P, C) = 83.0 Hz), 131.8 (d, J(P, C) = 11.4 Hz), 129.4 (d, J(P, C) = 3.1 Hz), 126.8 (d, J(P, C) = 12.5 Hz), 56.9, 53.8, 27.2 (d, J(P, C) = 7.3 Hz), 25.1, 20.6, 20.2 ppm. ³¹P NMR (CD₂Cl₂, δ): 63.9 (s, J(P, Se) = 617 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂, δ): 31.6 (d, J(P, Se) = 617 Hz) ppm. Mass spectrum [ES⁺, m/z]: 396 [M-HN(C₄H₉)₂⁺], 129 [HN(C₄H₉)₂⁺].

Benzenamine
N,P-diphenylphosphonamidodiselenoate (6). An yellow paste (0.640 g, 70% yield). Anal. calcd. for C₁₈H₁₈N₂PSe₂ (451.24): C, 47.91; H, 4.02; N, 6.21. Found: C, 47.98; H, 4.25; N, 6.50. Selected IR (KBr, cm⁻¹): 1600(s), 1494(s), 1434(m), 1378(m), 1282(m), 1027(m), 905(s), 742(s), 689(s), 527(m), 478(m). ¹H NMR (Tetrahydrofuran-d₈, δ): 8.02-6.90 (m, 15H, Ar-H), 6.71 (d, J(P, H) = 7.7 Hz, 1H, NH), 5.39 (wide peak, 3H, NH) ppm. ¹³C NMR (Tetrahydrofuran-d₈, δ): 143.3 (d, J(P, C) = 87.2 Hz), 132.5 (d, J(P, C) = 3.1 Hz), 130.5, 126.8 (d, J(P, C) = 12.5 Hz), 129.5, 129.4, 129.2, 129.0, 128.8, 128.0, 127.8, 122.7, 119.6, 119.5, 119.0 ppm. ³¹P NMR (Tetrahydrofuran-d₈, δ): 46.2 (s, J(P, Se) = 636 Hz) ppm. ⁷⁷Se
NMR (Tetrahydrofuran-d₈, δ), 39.0 (d, J(P,Se) = 636 Hz) ppm. Mass spectrum [ES⁺, m/z]: 360 [M-H₂NC₆H₅]⁺, 93 [H₂NC₆H₅]⁺.

Diisopropylamine N-isopropyl-P-phenylphosphonamidodiselenoate (7). An yellow solid (0.810 g, 95% yield). M.p. 119 – 120°C. Anal. calcd. for C₁₅H₂₉N₂PSe₂ (426.30): C, 42.26; H, 6.86; N, 6.57. Found: C, 42.40; H, 7.05; N, 6.70. Selected IR (KBr, cm⁻¹): 1578(m), 1434(m), 1406(m), 1129(m), 1093(m), 1023(m), 1020(m), 751(m), 694(m), 547(vs, P=Se), 500(m). ¹H NMR (CD₂Cl₂, δ), 8.15-8.08 (m, 2H, Ar-H), 7.81 (wide peak, 2H, NH), 7.32-7.27 (m, 3H, Ar-H), 3.49-3.42 (m, 1H, CH), 3.32-3.22 (m, 1H, CH), 2.48 (wide peak, 1H, NH), 1.46 (d, J(H,H) = 6.3 Hz, 12H, CH₃), 0.99 (d, J(H,H) = 6.6 Hz, 6H, CH₃) ppm. ¹³C NMR (CD₂Cl₂, δ), 130.5 (d, J(P,C) = 12.5 Hz, Ar-C), 129.4 (Ar-C), 127.3 Ar-C, 127.1 (Ar-C), 48.6, 46.1, 24.8, 20.0 ppm. ³¹P NMR (CD₂Cl₂, δ), 42.0 (s, J(P,Se) = 615 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), 70.7 (d, J(P,Se) = 615 Hz) ppm. Mass spectrum [ES⁺, m/z]: 326 [M-H₂NC₆H₅H₁₄]⁺.

Bis(N-isopropyl-P-phenylphosphonamidodiselenoato)cadmium (8). N-isopropyl-P-phenylphosphonamidodiselenoate (0.048 g, 0.1 mmol) and Cd(CH₃COO)₂•2H₂O (0.013 g, 0.05 mmol) in 10 mL of dichloromethane was stirred at room temperature for 2 h. A colourless solution formed. Upon filtering to remove unreacted solid, the filtrate was dried in vacuum to give as a white solid (0.036 g) in 97% yield. Colourless crystals suitable for X-ray analysis were grown by vapour diffusion of hexane into a dichloromethane solution. Anal. calcd. for C₃₆H₅₂N₄P₄Se₈Cd₂ (1521.22): C, 28.42; H, 3.45; N, 3.68. Found: C, 28.67; H, 3.70; N, 3.79. Selected IR (KBr, cm⁻¹): 1562(m), 1006(m), 880(s), 748(s), 692(s), 541(s). ¹H NMR (CD₂Cl₂, δ), 8.14-8.06 (m, 8H, Ar-H), 7.41-7.38 (m, 12H, Ar-H), 3.25 (q, J(H,H) = 6.6 Hz, 4H, CH₂), 2.65 (very wide peak, 4H, NH), 1.26 (d, J(H,H) = 6.6 Hz, 24H, CH₃) ppm. ¹³C NMR (CD₂Cl₂, δ), 138.8 (d, J(P,C) 83.0 Hz), 131.4 (d, J(P,C) = 3.1 Hz), 130.8 (d, J(P,C) = 13.5 Hz), 128.0 (d, J(P,C) = 13.5 Hz), 46.6, 19.3 ppm. ³¹P NMR (CD₂Cl₂, δ), 35.7 (s, J(P,Se) = 514 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), 225.5 (d, J(P,Se) = 514 Hz) ppm. Mass spectrum [MALDI, m/z]: 761 [1/2M⁺, 440 [1/2M-PSe₂NC₆H₁₃]⁺.

General procedure for formation of phenylphosphonamido-diselenoic diamides 9 – 11.

Route A: A toluene solution (20 mL) of ammonium phenylphosphonamidodiselenoate (0.05 mmol) was refluxed under N₂ gas for 12 h. Upon cooling to room temperature the mixture was evaporated to remove solvent and the residue was purified by silica gel column (dichloromethane as eluent) to afford the corresponding compounds 9 – 11.
Route B: A suspension of primary amine (2.0 mmol) and Woollins’ reagent (0.54 g, 1.0 mmol) in 20 mL of dry toluene was refluxed under N₂ for 12 h. The red suspension disappeared and an yellow suspension formed. Upon cooling to room temperature and removing the unreacted solid by filtration, the filtrate was evaporated and the residue was purified by silica gel column (dichloromethane as eluent) to give the corresponding compounds 9 – 11.

N, N-Dibutyl-P-phenylphosphinoselenoic amide (9). An yellow oil (99% yield from Route A and 91% yield from Route B). Selected IR (KBr, cm⁻¹): 1463(m), 1436(m), 1402(m), 1106(s), 1081(s), 755(m), 694(m). ¹H NMR (CD₂Cl₂, δ) 7.95 (dd, J(P,H) = 13.2 Hz, J(H,H) = 7.4 Hz ppm, 2H, Ar-H), 7.47-7.44 (m, 3H, Ar-H), 2.94-2.82 (m, 4H, CH₂), 2.47 (wide peak, J(P,H) = 6.3 Hz, 2H, NH), 1.60-1.25 (m, 4H, CH₂), 0.87 (t, J(H,H) = 7.2 Hz, 6H, CH₃) ppm. ¹³C NMR (CD₂Cl₂, δ), 135.5 (d, J(P,C) = 112.1 Hz), 131.6, 130.9 (d, J(P,C) = 11.4 Hz), 128.3 (d, J(P,C) = 16.2 Hz), 41.6, 33.5, 20.1, 13.6 ppm. ³¹P NMR (CD₂Cl₂, δ), 60.3 (s, J(P,Se) = 763 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), -243.2 (d, J(P,Se) = 763 Hz) ppm. Mass spectrum [ES⁺, m/z]: 355 [M+Na]⁺. Accurate mass measurement (ES⁺MS): 355.0820, calculate mass for C₁₄H₂₅N₂PSeNa: 355.0818.

N, N-Diphenyl-P-phenylphosphinoselenoic amide (10). A pale yellow solid (98% yield from Route A and 95% yield from Route B). Selected IR (KBr, cm⁻¹): 1597(s), 1495(s), 1389(m), 1281(m), 1221(m), 1100(m), 1028(m), 911(m), 745(s), 688(s). ¹H NMR (CD₂Cl₂, δ) 8.02-7.93 (m, 2H, ArH), 7.58-7.44 (m, 3H, Ar-H), 7.24-6.96 (m, 10H, Ar-H), 5.38 (d, J(P,H) = 9.1 Hz, 2H, NH) ppm. ¹³C NMR (CD₂Cl₂, δ), 140.0 (d, J(P,C) = 3.1 Hz), 134.8 (d, J(P,C) = 113.1 Hz), 132.5 (d, J(P,C) = 3.1 Hz), 130.6 (d, J(P,C) = 11.4 Hz), 129.2, 129.1, 128.8, 122.7, 119.6, 119.5 ppm. ³¹P NMR (CD₂Cl₂, δ), 46.0 (s, J(P,Se) = 812 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), -180.4 (d, J(P,Se) = 813 Hz) ppm. Mass spectrum [ES⁺, m/z]: 395 [M+Na]⁺. Accurate mass measurement (ES⁺MS): 395.0195, calculate mass for C₁₈H₁₇N₂PSeNa [M+Na]: 395.0192.

N, N-Dibenzyl-P-phenylphosphinoselenoic amide (11). A yellow oil (99% yield from Route A and 90% yield from Route B). Selected IR (KBr, cm⁻¹): 1435(m), 1394(m), 1261(m), 1051(s), 800(s), 744(s), 695(vs), 550(m), 485(m). ¹H NMR (CD₂Cl₂, δ) 8.14-7.97 (m, 2H, Ar-H), 7.49-7.21(m, 13H, Ar-H), 6.34 (wide peak, 2H, NH), 4.16-4.06 (m, 4H, CH₂) ppm. ¹³C NMR (CD₂Cl₂, δ), 139.6, 135.9, 132.9, 132.0, 131.1, 131.0, 130.6, 130.5, 130.2, 129.2, 129.0, 128.6, 128.4, 127.6, 127.4, 127.2, 127.0, 45.9 ppm. ³¹P NMR (CD₂Cl₂, δ), 62.4 (s, J(P,Se) = 775 Hz) ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), -250.4 (d, J(P,Se) = 775 Hz) ppm. Mass spectrum [ES⁺, m/z]: 423 [M+Na]⁺. Accurate mass measurement (ES⁺MS): 423.0507, calculate mass for C₁₈H₁₈N₂PSeNa [M+Na]: 423.0505.
Acknowledgments
The authors are thankful to the University of St Andrews and the Engineering and Physical Science Research Council (EPSRC, U.K.) for financial support.

References

