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ABSTRACT

We study the evolution of the phase space of collisionless N-body systems under repeated
stirrings or perturbations, which has been shown to lead to a convergence towards a limited
group of end states. This so-called attractor was previously shown to be independent of
the initial system and environmental conditions. However, the fundamental reason for its
appearance is still unclear. It has been suggested that the origin of the attractor may be
either radial infall (RI), the radial orbit instability (ROI), or energy exchange which, for
instance, happens during violent relaxation. Here, we examine the effects of a set of controlled
perturbations, referred to as ‘kicks’, which act in addition to the standard collisionless dynamics
by allowing pre-specified instantaneous perturbations in phase space. We first demonstrate that
the attractor persists in the absence of RI and ROI by forcing the system to expand. We then
consider radial velocity kicks in a rigid potential and isotropic velocity kicks, since there are
no energy exchanges in these two recipes of kicks. We find that these kicks do not lead to
the attractor, indicating that the energy exchange in a dynamic potential is indeed the physical
mechanism responsible for the attractor.
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1 INTRODUCTION

It is known that N-body simulations tend to yield a narrow range
of density profiles for stellar bulges or dark haloes (Dubinski &
Carlberg 1991, and references therein). These are often
parametrized using subfamilies of profiles of Zhao (1996) such
as the Hernquist profile (Hernquist 1990) for stellar spheroids or
the NFW profile (Navarro, Frenk & White 1996) for haloes. These
density profiles and corresponding velocity anisotropy profiles are
a result of the energy and angular momentum distribution of parti-
cles in the simulation (Hernquist & Spergel 1992), especially how
particles exchange their energy and angular momentum, as well
as the dynamical friction/tidal disruption of subclumps and the ab-
sence/existence of an expanding cosmic background (Syer & White
1998; Taylor & Navarro 2001).

Any N-body code must have its physical laws for such things
programmed into it a priori, an act which implies that those laws
and their implications are comparatively well understood. This pa-
per is part of an ongoing investigation into an unexpected result,
namely the identification of an attractor in the phase space of
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N-body systems, as discussed in Hansen, Juncher & Sparre (2010).
The attractor is a single-valued relationship between parameters
of the Jeans equation; parameters which could have been entirely
independent.

The formulation of the Jeans equation that we make use of is

vl =—0l(y + & +2p), )]

where v, is the circular speed, af is the radial velocity dispersion,
y and « are the gradients of log(p) and log(o?), respectively, with
respect to log(r), and finally 8 is the velocity anisotropy.

The ‘attractor’ relationship appears if an arbitrary system was
repeatedly randomly perturbed away from equilibrium and then
allowed to settle again. The perturbations consist of an alternating
cycle of perturbations, referred to as ‘kicks’, with a subsequent
period of relaxation to a new equilibrium state, referred to as the
‘flow’.

The kicks are a set of controlled, artificial perturbations which act
in addition to the standard collisionless dynamics by allowing pre-
specified perturbations in phase space. These perturbations were
often constructed to be instantaneous, and in most previous studies,
these kicks allowed energy exchange amongst a set of particles, even
though these particles have negligible two-body energy exchange.

A system perturbed with such repeated kick-flows demonstrates
a strong tendency to equilibrate along solutions, regardless of the
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initial characteristics of the perturbed system (Barber et al. 2012;
Sparre & Hansen 2012b), as follows:

_ —0.15y — 0.85«
T (1+(=0.15y — 0.85k)3)1/3

B @3]
This is not the first time that relations and constraints have been
discovered in components of the Jeans equation, nor is it the first
time that specific relations between 8 and y have been identified
(Hansen 2004; An & Evans 2006; Ciotti & Morganti 2010).

Our previous paper primarily focused on the bulk properties of
the initial system and the statistics of the perturbation schemes being
used. In this paper, we focus on the fundamental requirements of
the emergence of this attractor phenomenon.

This is particularly relevant for observations as, depending on
the physics responsible for the attractor, it may be either irrelevant
for cosmological structure or it may be of fundamental importance
to all equilibrated structures. As we will explain, the attractor may
appear due to physics which happens during each merger throughout
the history of structure formation. We will demonstrate that this is
the case, rendering the attractor potentially very important for the
equilibrated part of all cosmological structures, in agreement with
the results of large cosmological simulations (Ludlow et al. 2010).

This paper focuses on the origin of the attractor in spherically
averaged quantities in an effort to find out what the driving factors
for the convergence are. For comparison, two recent papers, Sparre
& Hansen (2012a,b), discuss how the attractor does appear in the
spherically averaged characteristics of many haloes but becomes
more complicated when the merger history of the object is con-
sidered. Those works, using radially aligned, conical bins rather
than spherical averages, find deviations from the attractor along
preferred axes defined by the vectors along which past mergers had
taken place. However, spherically averaged properties still follow
the attractor in most cases.

As this work uses the same analysis pipeline as our previous
paper,Barber et al. (2012, hereafter B12), a detailed description
of the method can be found there. In summary, we use NMODY
(Ciotti, Londrillo & Nipoti 2006), a particle-mesh code developed
for use with Modified Newtonian Dynamics (MOND), although it
is used only in its purely Newtonian mode here. The systems used
throughout this paper are Plummer spheres of scale radius 0.05 kpc,
containing 5 x 108 Mg in 750000 particles. Plummer spheres
were chosen as they are formally unrelated to the NFW profile and
are easy to create with varying anisotropies using the methods of
Gerhard (1991), based on using a particular distribution function
into two independent functions that represent the distribution of
energy and angular momentum, respectively.

The paper is structured as follows: Section 2 will be on the effect
of collision and resolution, Section 3 will be on radial infall (RI)
and the radial orbit instability (ROI), Section 4 gives two recipes to
avoid the attractor and Section 5 concludes.

2 IMPACT OF NUMERICAL RESOLUTION
EFFECTS

We begin by examining the possibility of a connection between
our results and the numerical resolution of our simulations; the
suggestion being that our conclusions were heavily influenced by
numerical artefacts rather than by the physics of the system. Of spe-
cific concern was whether the behaviour we were describing could
be caused by collisional relaxation and would thus be governed by
the softening length of the simulation.
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NMoDY uses a self-consistent field (SCF) method similar to that
described in Hernquist & Ostriker (1992), i.e. it describes the po-
tential and density by expanding them into a series of terms in some
basis functions. Ciotti et al. (2006) is mainly concerned with demon-
strating accurate recovery of MONDian potential-density pairs via
this method and thus does not spend time looking at the impact
of resolution explicitly. However, the two methods are sufficiently
similar that informative results can still be found by examining the
impact of numerical resolution in the Hernquist & Ostriker (1992)
method.

This work showed that for a variety of initial density models the
relative importance of each subsequent term in the basis series de-
creases exponentially for Plummer models such as ours, providing
better than 1 per cent accuracy, in terms of orbit conservation, when
using around five terms in the series. It is noted that cored mod-
els, such as a Plummer sphere, can be particularly well described
by this kind of expansion method if the basis functions are chosen
appropriately.

Having demonstrated the accuracy of the method, Hernquist &
Ostriker (1992) examine the emergence of collisional relaxation
in such a simulation. As there is no explicit softening length used
in the method, they note that an SCF code should not suffer from
limitations on spatial resolution and can, in principle, resolve much
steeper density gradients than other methods. Overall, from the
conclusion of this paper, we would expect that a code such as NMoDY
would be efficient at suppressing relaxation noise as only a handful
of basis terms are required to provide ample spatial resolution for
the simulation.

With this in mind, to explicitly examine the impact of smoothing
lengths and resolution on our simulations, several supplementary
simulations were run that fell into one of the two categories: rougher
or smoother models, cf. Fig. 1.
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Figure 1. Attractor plot demonstrating that there are negligible two-body
interactions. It shows the state of three simulations approximately one third
(in terms of elapsed time) of the way towards convergence with the attractor
(red line). All three use the violent exchange algorithm outlined in B12 with
scaling factor 0.5 and 37gy, flow time per kick. Our benchmark simula-
tion from B12 (black circles) overlaps comfortably with both the rougher
(green squares) and smoother (blue triangles) bins of the newer simulations
demonstrating a very similar rate of convergence. This shows that the evo-
lution of our systems towards the attractor, which is where they eventually
rest, is unaffected by the resolution of the simulations and, consequently, by
collisional effects.
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Rougher models lowered the resolution of the model in two ways.
First, when the code developed the spherical harmonics that de-
scribed the potential, it used twice the number of terms in the series,
making the potential more variable on shorter scales and thus mag-
nifying the effect of short distance interactions. This approach was
used rather than simply changing the smoothing length because, as
previously discussed, NMoDY does not support the direct selection
of a desired smoothing length due to the SCF scheme.

Secondly, the initial conditions modelled the same systems as in
B12 but now using half the number of particles. This preserved the
dynamical time-scale of the system while also making the particle
distribution noisier. Overall, we would expect the combination of
these two effects to emphasize any effect from collisions and, if
they are driving the attractor, to lead to the attractor faster.

Smoother simulations use the same reasoning except they halved
the number of terms in the harmonics, effectively smoothing out
perturbations on short length-scales, and had double the number
of particles modelling the system which should smooth the distri-
bution overall. If artificial numerical collisions were governing the
attractor, then the de-emphasis of short-scale interactions and the
smoother particle distribution should suppress the effect.

Overall, these rough/smooth schemes allow us to control the
resolution and susceptibility of the system to collisional effects
and short-scale interactions while retaining comparable simulations
that, as a practical benefit, require comparable amounts of process-
ing time to yield results.

To demonstrate this, we present Fig. 1 which shows the state of
three comparable simulations’ 10 kick-flow cycles (10 perturbing
events spaced evenly throughout a total simulation time of 30 dy-
namical times). This is approximately one third of the time required
for the systems to reach the attractor, given the chosen magnitude
of the perturbation according to B12, and demonstrates that the
systems are indistinguishable from each other in terms of the pa-
rameter space they occupy. Our simulations eventually end up lying
in the parameter space of the attractor in a manner indistinguish-
able from the results from B12. In particular, we establish that the
behaviour is preserved down to the speed at which the convergence
occurs.

The same rougher/smoother dichotomic scheme was applied to a
new perturbation method that performs systematic alterations to the
system’s velocity anisotropy profile. This new perturbation method
will be explained in detail in Section 4.1, and it is mentioned here
only insofar as to make clear that it also appears unaffected by
alterations to the smoothing of the potential.

In summary, the attractor effect is demonstrated to progress the
same regardless of the number density of the system or how accu-
rately the simulation models short-scale behaviour and is present
in simulations that use different codes (Hansen et al. 2010 used
GADGET-2 which has a different architecture to NMoDY) to solve for
the particles motions. Accordingly, it is not thought that the attrac-
tor shares any significant causal link to collisional relaxation or any
effect deriving from two-body interactions.

3 RULING OUT RADIAL INFALL BY ADDING
ENERGY

A characteristic feature of the previous simulations from B12 was a
significant amount of RI whereby systems would collapse into more
radially anisotropic systems as they were kicked. The fact that all
the simulations shared this common mechanism raises the question
of whether or not Rl is a contributing factor to the attractor.
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3.1 Algorithm for avoiding infall

To examine whether or not RI is necessary for the attractor, we
now use a variation of the scheme from B12 whereby random
numbers were used to scale the three Cartesian velocity vectors of
the system’s particles; however, it dispenses with the now redundant
routines for assessing energy conservation for reasons that will be
explained shortly. The scheme is now as follows.

(i) Setup a series of radial bins. We choose to create bins defined
to contain 5000 particles.

(i1) For each particle in each bin, we examine each of the three
orthogonal velocity vectors and multiply each by a random number
f drawn from a uniform distribution centred around 1.5 e.g. 1.0 <
f < 2.0. This instantaneous perturbation is referred to as the ‘kick’
and f can be called the ‘kick scalefactor’. That the distribution is not
centred on unity is what lends this scheme its desired asymmetry,
as any given velocity component will be at least as big as it was
prior to this scaling.

(iii) Derive a dynamical time-scale for the system

1 0.95 x M
fayn = | =—, Wwhere p = D E— 3)
G'O 57'[7'95 per cent

where we are using the 95th mass percentile as a representative
distance for the system. For our initial systems, this is equivalent
to approximately three scale radii and is identical to the previous
method.

(iv) The system is then left to evolve in an N-body simulator for
three dynamical time-scales. This ‘flow’ period allows the system
to relax and find a new equilibrium. If we were to apply another
kick too soon, then the impact of the second kick would be indis-
tinguishable from that of the first.

(v) Repeat the cycle as needed.

This kick can only be applied a finite number of times before a
significant number of particles become unbound from the system.
After a large amount of particles become unbound they will no
longer interact with each other and the system ceases to have a
meaningful dynamical time. We find that for this particular kick
this effect starts to dominate around the fifth kick cycle by which
point the outermost 50 bins, i.e. 250 000 particles or a third of the
entire system, have become entirely unbound from the structure.
At this point, the simulation is manually halted as the divergent
behaviour of the dynamical time-scale becomes insurmountable as
well as increasingly physically meaningless.

3.2 Relation between RI and ROI

The link between the perturbation used in B12 and RI was in
how the system conserved energy. The perturbation in B12 per-
proceeded to conserve energy in the form of v?. This meant that
the conservation was asymmetrical compared to the perturbation as
[(v 4+ 8v)*> — v?| > |(v — 8v)?> — v?| unlike the perturbation where
(v 4+ 8v) — v| = |(v — v) — v|, i.e. the particles that had their
overall velocity increased were contributing more to the kinetic en-
ergy of the bin than was being removed by particles which had
their velocities decreased by the same amount, leading to an overall
increase in energy. The energy conservation code worked on all
particles equally, so most particles in a bin ended up losing energy
overall to compensate for the small fraction of particles which got
large velocity increases and thus significant energy increases. This
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sudden removal of energy resulted in the compaction of the system
and placed many more particles on more radial, infalling orbits.

The main concern was that if RI proved to be necessary for
the attractor, and the algorithm was artificially inducing such an
infall, then the attractor may just be an artefact of the perturbation
scheme. This was compounded by the fact that the ROI displays
several convergent behaviours in the parameter spaces of g and y,
as outlined in many papers over the years (Huss, Jain & Steinmetz
1999; Barnes et al. 2005; Hansen & Moore 2006; Hansen et al. 2006;
Macmillan, Widrow & Henriksen 2006; Bellovary et al. 2008; Lapi
& Cavaliere 2011), which bear some noticeable similarities to the
attractor.

ROI refers to the unstable nature of orbits in initially spherically
symmetric systems which have a large population of their particles
on highly radial orbits. Systems set up in this way will depart from
spherical equilibrium and will eventually become triaxial systems
(Antonov 1973). This behaviour was seen in the majority of the
simulations from B12, only noticeably milder than one would expect
from a system governed by ROI due to the mild nature of the
perturbation. It was therefore suggested that the attractor was being
driven by the statistical effects of the kick that caused RI. The
increased amount of radial orbits could then lead to ROI which
would slowly dominate the system giving rise to the convergent
behaviours in our parameter space that we called the attractor.

3.3 Result

We therefore wished to define an algorithm that could rule out, or
confirm, RI as a contributing mechanism. To that end we designed
the simple kick outlined above, based on the same algorithm of
random numbers as in B12. The key difference is that the kick is
now asymmetrical, only ever adding energy to a bin, never removing
it, and we do not enforce any kind of energy conservation after the
kick. The idea is that the system will expand as a result of the added
energy and is thus not placing more particles on radial, inwards
orbits, preventing a collapsing state, and thus not triggering either
RI or ROL

If the system did not evolve towards the attractor or evolved
in a completely different manner now that any kind of infall was
being prevented, then that would suggest that RI was an important,
necessary factor.

Fig. 2 shows a plot of the attractor for this kick. The open shapes
represent bins of 5000 particles each, and the red line represents
data from Hansen et al. (2010), which marks the position of the
attractor in the parameter space. The system shows, despite the
unrealistic kick, significant evolution towards the same space as
the attractor: from the black circles to the green squares. It is not
sitting directly on the attractor but this is, as discussed previously,
because of the amount of unbound material causing the simulation
to end prematurely. The system shows regular evolution towards
the attractor which slowed in proportion to the amount of unbound
material.

We conclude from this that neither RI nor ROI are driving the
convergence, as repeated expansions still lead to the attractor. This
is in agreement with Sparre & Hansen (2012b) where different per-
turbations were presented, all of which lead to the attractor even in
cases where the structures remained perfectly spherical throughout.

4 TESTING THE REQUIREMENTS

Having demonstrated that ROl is not the driving force behind the at-
tractor, we now consider possible origins discussed in the literature,
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Figure 2. Plot showing the system’s progress towards the attractor using
the energy-adding kick. Each point represents a mass bin of 5000 particles
and the red line represents the position of the attractor. The black circles
show bins from the initial conditions, whilst green squares show likewise
the state after 5 kicks.

namely energy exchange and phase mixing in a dynamic potential.
We will show that those two effects are both necessary and sufficient
conditions for the emergence of the attractor. Since these effects are
always present during mergers, this shows the potential importance
of the attractor for cosmological collisionless structures (Ludlow
et al. 2010).

Energy exchange refers to energy being passed between particles
by gravitational interaction. While it may seem that any evolv-
ing system must exchange energy to evolve, it is possible to design
perturbations that change the system without exchanging energy be-
tween particles. For example, one could design a kick which moved
the system in phase space by rotating velocity vectors, which would
perturb the system but would not cause the particles to exchange
energy; they would all still be on stable orbits since their kinetic
and potential energies are identical to their previous ones; hence,
the radial regions indicated by the apocentres of the particles barely
change, while the pericentres move because of the kicks of the
angular momentum.

4.1 Energy exchange: the velocity anisotropy axis kick

In order to investigate the importance of energy exchange between
collisionless particles, we will now construct a kick which conserves
the energy of each particle.

The new kick, which we will refer to as the ‘anisotropy kick’,
kicks in velocity isotropy only. It aims to move the system in 8 by
rotating each particle’s velocity vector by a calculated amount. This
does not change the total energy in the bin — each particle indepen-
dently and exactly conserves its kinetic and potential energy — but
does, by definition, change the angular momentum. The means by
which the velocity rotations are performed is outlined in Appendix
A. The foundation of the method remains the same as from previous
examples, alternating patterns of kick and flow, only now the kick is
a function that rotates velocity vectors rather than randomly scaling
individual components of velocity.

The resulting system will be slightly radially Jeans-unstable, i.e.
not satisfying the static spherical Jeans equation, after the kick so the
system will still need to re-establish equilibrium. This kick should

MNRAS 440, 1044-1051 (2014)
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Figure 3. Contours showing the changes in velocity anisotropy of an ini-
tially radially anisotropic system as it recovers from a moderately isotropiz-
ing kick. As the system relaxes over time after being kicked, it is measured
every 1 per cent of a dynamical time and the velocity anisotropy of each bin
is compared to its previous anisotropy. The change in anisotropy at a cer-
tain radius from moment to moment is represented by the brightness of the
contours, where dark colours indicate an ongoing change towards tangential
anisotropy and white colours indicate likewise for radial anisotropy. Grey
represents no evolution of anisotropy between outputs.

require the system to find a new equilibrium but does so without a
prescribed way so that the new equilibrium is reached.

We first take an initial system with a radially anisotropic velocity
ellipsoid and force it to become more isotropic. Fig. 3 examines the
change in the velocity anisotropy of the system as it equilibrates
after the kick. We define the ‘change in velocity anisotropy’ simply
as i—’f, where At is the time between outputs of the state of the
system, i.e. 0.017y,. The kick is visible as the large, dark section at
the beginning of the time series. Afterwards, the system relaxes over
the course of about a dynamical time. The relaxation is visible in the
lighter grey tint across the rest of the plot, showing a general trend
for the system to drift towards a more radial velocity anisotropy
again. See Fig. 4 for an alternative representation of some of the
information displayed in Fig. 3.

There are two particularly prominent features in Fig. 3 that require
comment. The first is the kick itself, clearly visible as a large, dark
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Figure 4. A more familiar presentation of some of the data sets represented
in Fig. 3 using the plot axes of the attractor space. Note the gentle drift of
the data towards radial anisotropy during the first 3 per cent of a dynamical
time after the kick, as summarized in Fig. 3 by the light grey tone of the
majority of the contours.
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area along the left-hand side, and the other is the ‘sawtooth’ pattern
of spikes in velocity anisotropy rate, which run along the bottom of
the graph. Both of these features saturate the actual point of interest,
the general trend of the plot, and accordingly all future plots will be
cropped and re-scaled to present the clearest view of the data. We
will now take a moment to justify the removal of these features.

First, removing the kick is regrettable but it is of such greater
magnitude than anything else in the plot that retaining it oversat-
urates the important contours. The only useful information that it
contained was the direction of the kick which will always be indi-
cated.

Secondly, the ‘sawtooth’ pattern that appears at very small radii is
caused by an unfortunate combination of two factors: the logarith-
mic scale artificially overemphasising the relative importance of the
inner bins (in terms of how much of the contour area they occupy)
and the tendency for the very innermost bins to have an extremely
noisy velocity anisotropy as a result of the data analysis. Clipping
those few bins cleans the data considerably, removes only a small
amount of particles, and does not destroy any useful information.

The amount of settling is a negative feedback effect that is a
fraction of the size of the perturbation. For example, if the system
is initially strongly radial and the kick is strong enough to make
the system isotropic, then the settling will act to reverse the kick
by drifting towards radial states, as seen in Fig. 5. This drifting is
stronger and more pronounced the larger the initial kick and is never
enough to undo the kick.

We will now demonstrate that this negative feedback is not related
to the attractor. In Fig. 6, we take an initially tangentially anisotropic
system and perturb it towards isotropy. What we see is the reverse
of Fig. 3 with the settling being more tangential and thus dark grey.

This demonstrates that when a system is perturbed using the
anisotropic kick, its subsequent relaxation will undo a small fraction
of that isotropy change. This means that while this perturbation does
destabilize the system and allow it to find new equilibria, it does not
lead towards the attractor.

In our final test of this, we took an initially slightly radially
anisotropic system and repeatedly perturbed it such that the system
gradually moved up to, and then past, the phase-space region of
the attractor. The reasoning behind this scheme is that if the system
is still affected by the attractor, then we would expect it to behave
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-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

log(r) (kpc)

-1.5¢

-2.0

0.02 0.04 0.06 0.08 0.10
Time after kick (Tdyn)

Figure 5. Contours showing the changes in velocity anisotropy of an ini-
tially radially anisotropic system as it recovers from a kick that set it to be
completely isotropic. Note that the system recovers by settling back towards
radial anisotropy like Fig. 3, only much more strongly. Also note that, in
line with the discussion in the body text and in contrast to Fig. 3, the over-
saturated noise and kick features have been removed. Thus, the whitish spot
along the left is not the kick itself, but the resettling of the system after the
kick has occurred.
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Figure 6. Contours showing the changes in velocity anisotropy of an ini-
tially tangentially anisotropic system as it recovers from an isotropic kick.
The dark grey hue of most of the plot, demonstrating motion towards tan-
gential anisotropy, shows that settling is not directed towards the attractor.
The two large stripes across the plot are equivalent to the white spot in Fig. 5
and are for the settling of the system against the kick. Here, the settling is
towards a more tangential anisotropy and occurs as a ripple of anisotropy
through the system from the inner regions to the outer. This effect is still
minor compared to the kick and overall does still obey the established rule.

differently when it is passing over it, perhaps changing the magni-
tude or direction of the settling.

We found that none of the kick-flow cycles in the series
showed any evidence of being drawn to the attractor. The velocity
anisotropy evolution remained comparatively featureless through-
out and showed no behaviour different from any other system per-
turbed by the anisotropic kick.

Overall, it appears that this method of perturbing the system does
cause the system to undergo some slight evolution in response to
the kick, but it seems restricted to a weak, negative feedback effect
that bears no relation or correlation to the attractor.

4.2 Phase mixing in a fixed potential: the massless kick

By phase mixing we mean how particles disperse through the phase
space of the system, generally reducing the coarse grained phase-
space density by filling their orbital tori evenly. This is a kinematic
process that causes dispersion of particles along their orbits, which
even occurs in static potentials (Binney & Tremaine 2008) and cor-
responds to the processes that occur during the ‘flow” periods of our
perturbation schemes. In B12, we showed that repeated kicks, with-
out subsequent periods of settling flow, do not lead to the attractor.
Here, we will further emphasize the importance of the dynamics of
the flow by considering relaxation in a fixed potential.

This perturbation involved making the particles massless. We
took the same initial Plummer spheres as before but then froze
the system’s numerical, not analytical, potential and transformed
the particles into a population of massless tracer particles. This
means the background potential is no longer coupled to the particle
distribution and, because the simulation is collisionless, the particles
have no way of interacting with each other. After the kick has
occurred, the particles will not be able to directly influence each
others’ positions in phase space.

If the attractor is driven only by the kick, then removing the
dynamical potential should have minimal effect on the system’s
convergence to the attractor as simply the act of kicking would
cause convergence.

We show the effects of applying the normal scaling kick of B12
to our massless system in Fig. 7. The system has not evolved since
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Figure 7. A plotshowing an initially anisotropic system after an application
of the ‘massless kick’. Comparison between the current system and its initial
state is made difficult as the system has not evolved at all as a result of the
kick. The black circles represent bins of the system after one kick and were
completely unaffected by the kick. The red line represents the attractor.

the kick and has certainly not moved towards the attractor. This
shows that the attractor does not arise from the statistics of the kick
mechanism alone and does in fact require the subsequent mixing
in a dynamical potential. Such mixing in a dynamical potential is
fortunately always present during realistic cosmological structure
formation.

5 SUMMARY

We have addressed the fundamental physical mechanism respon-
sible for the attractor. We find that the ROI is not the underlying
reason for the robustness of the attractor.

Instead, we find that both energy exchange and phase mixing in
a dynamical potential are necessary conditions for the appearance
of the attractor. Since earlier studies have indicated that those two
are sufficient conditions (Sparre & Hansen 2012a,b), we believe
we have established the physics underlying the attractor. Since both
effects are present during structure formation, in particular through
violent relaxation of mergers, this shows that the attractor is relevant
for the fully equilibrated part of cosmological structures.
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APPENDIX A: CONSTRUCTION OF THE
ISOTROPISING KICK

The nomenclature used in this section is as follows: a bin in our
system has a population of n particles that give the bin an anisotropy
of B based on their kinetic energy, 7, in the radial, 7}, and tangential,
T, directions; T; being made up of Ty and T;. We are talking about a
perturbation, so we speak in terms of an initial state, B, and a final
state, B,. We find it helpful to specifically define 7, as %(Te +Ty)
as this simplifies matters.
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Figure Al. A visual representation of how the perturbation changes
anisotropy. The particles are moved along isoenergy contours from the open
symbols to the closed symbols. This plot shows a kick of « = 6 applied
to two groups of particles, one with most of their energy in the tangential
velocity components (squares) and the other with a more even distribution
(circles). The distance moved along the isoenergy contours depends on the
particle’s initial position along them.
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As such, we begin from

i:Tm
Bri=1-=1 (A1)

n

ST
izl

Our perturbation acts to move the anisotropy from §; to 85, the
change being expressed as x| = 8,, sO we can say

n n

Z T, a(x) Z Ta;
xpr=1-"T—=1-—" (A2)

ZTrZI b(x)ZTrli

i=1 i=I

where a and b are just another, more helpful way of assessing
the impact of x on the particle energies. Speaking of the particle
energies, we require global energy conservation, so we specify that

2a(0) Y Tui+b0)Y T =2 Tui+ > T =€, (A3)
i=1 i=1 i=1 i=1

where £ is the system’s overall kinetic energy. We can thus create
definitions of ¢ and b,

S—b(x)zn:Tm 5_20(X)§:Tm'
ax)= —=" 1 )= ———= (A4)

n

n
23 Tu; > T
i=1 i=1

and feed them into each other to get solutions that are still linked
by energy conservation but can be expressed separately;

a(x) = n;; b(x) = n; (AS)

;Tl]i [2+ I*Lﬁl] YT [3—2xpi1]

i=1

This tells us how the bin as a whole must act, but does not tell us
how to achieve this by manipulating individual particles. To move
on to that stage, we must make a and b more applicable to each
particle.

When we scale the tangential energy, > ;_, Ty;, by a, what we
are actually doing is multiplying each particle’s energy by some
number, quite possibly a different number for each of them, and we
need a way to determine what that number should be. To that end,
we create two numbers, d and e, and let them take different values
for each particle, .

For convenience, we do not write out the dependence of d and e
on a vis. d(a);. This is primarily to reduce clutter and because the
final result of the process will not need to refer to a, b, or any of the
other scale factors introduced in this process.

&

ZTQi:a(x)ZTlli:ZdiTtli:ﬁ (A6)
i=1 i=1

i=1 1—=xBi

n n n S
;Trz,:b(x); Tm=;e,-ﬂ.,-=m. (AT)

As well as global energy conservation, we now specify that we
would like energy conservation at the particle level as well:

2d;Ta; + €T =2To; + T = E;. (A8)
At this point it is most convenient to start constructing the problem
in terms of a single variable that we must solve for, a:
Toi  diTu; o T,
= =q; .
Toi  eTn; Th;

(A9)
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This allows energy conservation to be rephrased in ways such as

Ty,
20[,‘ +1 e,-Tm- = E,’. (AlO)
rli
By manipulating energy conservation in this way, we arrive at
the definitions:

E; Tu;
4Ty = —5—— (AL1)
20 T +1 T
and
T Ei (A12)
eiln; = ——.
T

By taking these results back to equations (A6) and (A7), and then
combining them with our starting point of equation (A2), we arrive

Stirring N-body systems (Part2) 1051
at our final result:

“ E T
Z 2 Tllli lai T:i
i=1 “%i T

=1—xp. (A13)

There are a lot of solution sets for « that will yield the result we
want, and we have no way of choosing between them without stating
another condition. The condition we set is that « has one fixed value
for each mass bin, and then we solve the equation iteratively.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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