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Abstract

The aim of this paper is to demonstrate the R package conting for the Bayesian analysis
of complete and incomplete contingency tables using hierarchical log-linear models. This
package allows a user to identify interactions between categorical factors (via complete
contingency tables) and to estimate closed population sizes using capture-recapture studies
(via incomplete contingency tables). The models are fitted using Markov chain Monte
Carlo methods. In particular, implementations of the Metropolis-Hastings and reversible
jump algorithms appropriate for log-linear models are employed. The conting package is
demonstrated on four real examples.
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1. Introduction

Contingency tables (see, e.g., Agresti 2007) are formed when a population is cross-classified
according to a series of categories (or factors). Each cell count of the contingency table gives
the number of units observed under a particular cross-classification. The purpose of forming a
contingency table is to identify the dependence structure between the factors, i.e., to identify
associations (or interactions) between the factors, using statistical models. Additionally,
incomplete contingency tables formed from capture-recapture studies can be used to estimate
closed populations (Fienberg 1972). Here some of the factors correspond to sources which
have or have not observed members of a target population. Cell counts corresponding to
not being observed by any of the sources are missing (or unknown). However they can be
estimated by fitting a statistical model to the observed cell counts and predicting the missing
cell counts. Note that our definition of an incomplete contingency table differs from that of,
e.g., Mantel (1970) who defines incomplete contingency tables to be those with structural
zeros. We can also distinguish our concept of incomplete contingency tables from those where
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the cell counts are misclassified or are only partially observed due to non-response from units
of the population, see, e.g., Gelman, Carlin, Stern, and Rubin (2004, Sections 21.5 and 21.6)
and Tan, Tian, and Ng (2010, Chapter 4).

Log-linear models are typically used to model the observed cell counts, where the log of
the expected cell count is proportional to a linear combination involving unknown model
parameters. Each interaction term between two or more factors is associated with a set of
model parameters and if these model parameters are non-zero it indicates that there exists an
association between these factors. Every unique combination of interactions defines its own
log-linear model. Therefore identifying interactions is a model determination problem.

Log-linear models are a special case of generalized linear models (GLMs; e.g., McCullagh
and Nelder 1989). Therefore, within R (R Core Team 2014), log-linear models can be fitted
via classical maximum likelihood using the glm() function. Model determination can then be
achieved using, for example, differences in deviance or the Akaike information criterion (AIC).
Still under the classical approach, the loglm() function in the MASS package (Venables and
Ripley 2002) provides an alternative approach to fitting log-linear models. Note that loglm()
is a user-friendly wrapper to the loglin() function in the stats package (R Core Team 2014).

In this paper and in conting (Overstall 2014), the Bayesian approach is used. For a review of
the Bayesian approach to contingency tables with log-linear models, see, e.g., Forster (2010).
The Bayesian approach involves evaluating the posterior distribution of model parameters
and model indicators. Typically, the posterior is analytically intractable and requires approx-
imation. The standard approach is to use Markov chain Monte Carlo (MCMC) methods to
generate a sample from the posterior.

The R package conting facilitates the Bayesian analysis of complete and incomplete contin-
gency tables using log-linear models. This is accomplished with the use of MCMC meth-
ods that are particularly suitable for log-linear models. This paper demonstrates conting
and is structured as follows. In Section 2 we describe log-linear models for the analy-
sis of contingency tables. In Section 3 we describe suitable MCMC computational algo-
rithms that are required to generate posterior samples. We also describe how these methods
are implemented in conting. We conclude with an extensive examples section (Section 4)
that fully exhibits the capabilities of conting for complete and incomplete contingency ta-
bles. Note that conting is available from the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/package=conting.

2. Log-linear models

In this section we set-up our notation and define the concept of a log-linear model under a
Bayesian approach in the presence of model uncertainty. This set-up closely follows that of
Overstall and King (2014).

Suppose there are a total of F factors (and/or sources) such that the jth factor, for j =
1, . . . , F , has lj levels. The corresponding contingency table has n =

∏F
j=1 lj cells. Let y be

the n× 1 vector of cell counts where each element of y is denoted by yi with i = (i1, . . . , iF )
identifying the combination of factor levels that cross-classify this cell. Let S denote the set of
all n cross-classifications and thus the set of all cells in the table. Let N =

∑
i∈S yi denote the

total population size which can, in the case of incomplete contingency tables, be unknown,
due to certain elements of y being unobserved.

http://CRAN.R-project.org/package=conting
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For example, consider the alcohol, obesity and hypertension (AOH) data given by Knuiman
and Speed (1988) and included as an example dataset in conting. Here, 491 people from
Western Australia are cross-classified according to the following F = 3 factors: alcohol intake
(l1 = 4 levels); obesity (l2 = 3 levels) and hypertension (l3 = 2 levels). Therefore, there are
n = l1× l2× l3 = 24 cells in the corresponding contingency table and the total population size
is N = 491. See Section 4.1 for the associated Bayesian analysis of this table using conting,
which identifies interactions between the factors.

For a log-linear model it is assumed that

yi ∼ Poisson (µi) , (1)

independently, for i ∈ S, where logµi is written as a linear combination of the intercept,
main effect and interaction parameters (see, e.g., Overstall and King 2014). However for
identifiability, these parameters are constrained using, for example, sum-to-zero or corner-
point constraints. In this paper and in conting, we use sum-to-zero constraints. The log of
the expectation, µi, of yi can then be written as

logµi = ηi = φ+ x>i θ, (2)

where ηi is referred to as the linear predictor, φ ∈ R is the unknown intercept parameter,
θ ∈ Rp is the p× 1 vector of unknown regression parameters and xi is the p× 1 design vector

that identifies which elements of θ are applicable to cell i ∈ S. Let β =
(
φ,θ>

)>
be the

(p+ 1)× 1 vector of log-linear parameters. We can write (2) in matrix form as

logµ = η = φ1n + Xθ = (1n,X)β, (3)

where µ and η are n × 1 vectors with elements given by µi and ηi, 1n is an n × 1 vector of
ones, X is the n× p design matrix with rows given by xi and log(·) is applied element-wise.

The specification given by (2), and equivalently by (3), assumes that we know which inter-
actions are present in the model. This will not be the case in practice, so we introduce an
unknown model indicator, m, which denotes a combination of interactions. We now write the
log-linear model as

logµi = ηi = φ+ x>m,iθm, (4)

where θm is the pm × 1 vector of regression parameters for model m and xm,i is the pm × 1
design vector that identifies which elements of θm are applicable to cell i ∈ S for model m.

Let βm =
(
φ,θ>m

)>
denote the vector of log-linear parameters for model m. In matrix form

this model is

logµ = η = φ1n + Xmθm = (1n,Xm)βm, (5)

where Xm is the n× pm matrix with rows given by xm,i.

LetM be the set of all models we wish to consider. In this paper and in conting,M consists
of hierarchical log-linear models (e.g., Dellaportas and Forster 1999). Note that hierarchical
models include, as a subset, the classes of graphical and decomposable models. Hierarchical
models adhere to the principle of marginality (e.g., Fox 2002, p. 135), i.e., we cannot have a
higher-order interaction unless all the constituent lower-order interactions are included in the
model. Typically, see, e.g., Dellaportas and Forster (1999), the simplest (or minimal) model
we wish to consider is the so-called independence model, i.e., the model with main effects for
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all factors but no interactions. We also now define the concept of the maximal model, i.e.,
the most complex model we wish to consider. This is usually accomplished by specifying the
highest-order interaction terms that we will consider. The saturated model, for a complete
contingency table, is the one that contains the F -way interaction between all factors.

To complete the model specification under the Bayesian approach, we specify a joint prior
distribution for φ, θm and m which is denoted by π(φ,θm,m). We decompose this distribution
as follows

π(φ,θm,m) = π(φ,θm|m)π(m),

where π(φ,θm|m) is the joint prior distribution of φ and θm conditional on model m ∈ M
and π(m) is the prior model probability of model m ∈M, such that

∑
m∈M π(m) = 1.

In this paper, and in conting, we assume a position of having weak prior information and wish
to specify prior distributions that reflect this position. However due to Lindley’s paradox
(see, e.g., O’Hagan and Forster 2004, pp. 77–79) care must be taken when specifying prior
distributions that reflect weak prior information since the posterior model probabilities will
be sensitive to the scale of the prior variance.

One approach from the literature is to use a “default” prior distribution (Kass and Wasser-
man 1996). For examples of such prior distributions which are directly applicable to log-
linear models, see Dellaportas and Forster (1999), Ntzoufras, Dellaportas, and Forster (2003),
Sabanés-Bové and Held (2011) and Overstall and King (2014). We use the generalized hyper-g
prior proposed by Sabanés-Bové and Held (2011) where for a log-linear model, we decompose
the joint prior distribution of φ and θm as

π(φ,θm|m) = π(φ)π(θm|m),

with π(φ) ∝ 1 and

θm|σ2,m ∼ N

(
0, σ2n

(
X>mXm

)−1)
,

with σ2 > 0 an unknown hyperparameter with a hyper-prior distribution given by σ2 ∼
IG
(
a
2 ,

b
2

)
, where a and b are specified hyperparameters. The Sabanés-Bové and Held prior

distribution is a generalization to GLMs of the Zellner g-prior (Zellner 1986) for linear models.
It can be interpreted as being the posterior distribution from a locally uniform prior and
an imaginary sample where 1/σ2 indicates the size of this “prior sample” (Dellaportas and
Forster 1999). If σ2 = 1, then the Sabanés-Bové and Held prior distribution provides the same
information as a prior sample of one observation and the prior reduces to the unit information
prior (Ntzoufras et al. 2003).

Both the Sabanés-Bové and Held and unit information priors are implemented in conting. The
user can specify the value of the hyperparameters a and b, under the Sabanés-Bové and Held
prior. They have default values of a = b = 10−3 and we use these default values whenever we
employ the Sabanés-Bové and Held prior for the examples in Sections 4.3 and 4.4.

For the prior model probabilities we assume a uniform prior over the model space, i.e., π(m) =
|M|−1 where |M| denotes the number of models in M.

Note that, as an alternative to the model specification given in (1), we can assume that

y|N,ρ ∼ Multinomial (N,ρ) ,
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where the elements of ρ are given by

ρi =
µi∑
i∈S µi

. (6)

Under the multinomial specification, the intercept, φ, is unnecessary since it will cancel in the
numerator and denominator of (6). For complete contingency tables, Forster (2010) shows
that the joint posterior distribution of θm and m are identical under both the Poisson and
multinomial models, if the joint prior distribution for φ and θm is specified as π(φ,θm|m) =
π(θm|m), i.e., as is true for the Sabanés-Bové and Held and unit information priors.

Overstall, King, Bird, Hutchinson, and Hay (2014) extend this result to incomplete contin-
gency tables and show that the joint posterior distribution of θm, m and the missing cell
counts are identical under the Poisson and multinomial models if we adopt the same prior
structure as above for φ and θm, and the prior distribution for the unknown total population
size, N , under the multinomial model is of the form π(N) ∝ N−1, i.e., the Jeffreys prior
(Madigan and York 1997).

It follows that the MCMC methods detailed in Section 3 allow us to evaluate the posterior
distribution under either the Poisson or multinomial model formulations.

Under the Sabanés-Bové and Held, and unit information prior distributions described above,
the posterior distribution is analytically intractable necessitating the use of the MCMC meth-
ods, detailed in Section 3, to estimate, for example, the posterior model probabilities. Under
the subset of decomposable models and the multinomial model formulation, Dawid and Lau-
ritzen (1993) show that by using a hyper-Dirichlet prior distribution the posterior model
probabilities are available in closed form. Madigan and York (1997) used this result to es-
timate closed population sizes from incomplete contingency tables. However, as noted by
Dellaportas and Forster (1999), we should not restrict ourselves to the less flexible class of
decomposable models for solely computational reasons. Hence we consider the much richer
class of hierarchical models and use the prior distributions described above.

3. Methods and implementations

3.1. Posterior distributions

In the case of complete contingency tables we evaluate the joint posterior distribution of φ,
θm, σ2 (if unknown) and m given by

π(φ,θm, σ
2,m|y) ∝ π(y|φ,θm,m)π(θm|σ2,m)π(σ2)π(m), (7)

where π(y|φ,θm,m) is the likelihood function under model m ∈ M. This distribution is
analytically intractable so we generate a sample from it using MCMC methods. In partic-
ular we use the reversible jump algorithm (Green 1995). We briefly describe a particular
implementation of this algorithm, suitable for log-linear models, in Section 3.2.

For incomplete contingency tables, let y =
(
y(O),y(U)

)
where y(O) and y(U) are the observed

and unobserved cell counts, respectively. Furthermore, let O and U denote the sets of observed
and unobserved cells, respectively, so that O ∩ U = ∅ and O ∪ U = S. We evaluate the joint
posterior distribution of y(U), φ, θm, σ2, and m, i.e.,

π(y(U), φ,θm, σ
2,m|y(O)) ∝ π(y(O),y(U)|φ,θm,m)π(θm|σ2,m)π(σ2)π(m), (8)
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where π(y(O),y(U)|φ,θm,m) = π(y|φ,θm,m) is the complete-data likelihood function. We
generate a sample from this posterior distribution using a data-augmentation MCMC algo-
rithm (King and Brooks 2001). This algorithm is briefly described in Section 3.2.

In some cases, for incomplete contingency tables, one of the sources may observe individuals
who are not members of the target population. An example of this is from the capture-
recapture studies that have been used to estimate the number of people who inject drugs
(PWID) in Scotland in the years 2003, 2006 and 2009 (see, King, Bird, Brooks, Hutchin-
son, and Hay 2005; King, Bird, Hutchinson, and Hay 2009; King, Bird, Overstall, Hay, and
Hutchinson 2013, respectively). Here there are four sources who observe PWID. One of the
sources is the Hepatitis C virus (HCV) database. This database does not actually observe
PWID, but instead people who are newly diagnosed with the HCV and have injecting drug use
as a historical risk factor. Assuming that these people are PWID results in over-estimation
of the total population size of PWID in Scotland (see King et al. 2009 and Overstall et al.
2014). A modeling approach was adopted by Overstall et al. (2014) whereby people observed
by the HCV database and another source are regarded as PWID, however the true number
of PWID observed by just the HCV database is unknown but bounded from above by the
count in this cell, i.e., the cell count is left censored. Let y(O), y(U) and y(C) be the observed,
unobserved and censored cell counts. Let z(C) be the observed cell counts of the censored
cells, i.e., the upper bound on the true cell counts, y(C), for the censored cells. Furthermore,
let C denote the set of all censored cells, so that all pairwise intersections of O, U and C are
the empty set and O ∪ U ∪ C = S. We evaluate the joint posterior distribution of y(U), y(C),
φ, θm, σ2 and m, given by

π(y(U),y(C), φ,θm, σ
2,m|y(O), z(C)) ∝
π(y(O),y(U),y(C)|φ,θm,m)π(z(C)|y(C))π(θm|σ2,m)π(σ2)π(m), (9)

where π(y(O),y(U),y(C)|φ,θm,m) = π(y|φ,θm,m) is the complete-data likelihood function
and π(z(C)|y(C)) gives the distribution of z(C) conditional on y(C). Overstall et al. (2014)
specified

z
(C)
i |y

(C)
i ∼ U[y

(C)
i ,∞),

for i ∈ C, i.e., uninformative censoring. The data-augmentation algorithm used to generate a
sample from the posterior distribution given by (9) is described in Section 3.2.

The posterior distributions given by (7), (8) and (9) are all joint distributions of the model
parameters, missing cell counts (in the case of (8) and (9) for incomplete contingency tables)
and the model indicator. The model defined by such a joint distribution (i.e., including the
model indicator) is known as the encompassing model (O’Hagan and Forster 2004, p. 164).

3.2. Computation

In this section we describe the computational algorithms used to generate an MCMC sample
from the posterior distributions given by (7), (8) and (9) in Section 3.1, i.e., for complete
contingency tables, and for incomplete contingency tables (without and with censoring). We
begin by describing the most general data-augmentation algorithm which can be used to
generate an MCMC sample from the posterior distribution given by (9), i.e., the joint posterior
distribution of φ, θm, σ2, m, y(U) and y(C). The algorithms for generating an MCMC sample
from the posterior distributions given by (7) and (8) are special cases of the general algorithm.
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The general data-augmentation algorithm cycles through the following steps.

1. Given the current values of φ, θm, σ2, m and y(C), generate new values of the un-
observed cell counts, y(U), from the full conditional distribution which is denoted by
π(y(U)|φ,θm, σ2,m,y(C),y(O), z(C)).

2. Given the current values of φ, θm, σ2, m and y(U), generate new values of the cen-
sored cell counts, y(C), from the full conditional distribution which is denoted by
π(y(C)|φ,θm, σ2,m,y(U),y(O), z(C)).

3. Given the current values of y(C) and y(U), generate new values of the model parameters
and model indicator, φ, θm, σ2 and m, from the full conditional distribution which is
denoted by π(φ,θm, σ

2,m|y(C),y(U),y(O), z(C)).

We will shortly describe how we can generate values from the full conditional distributions
given in Steps 1, 2 and 3. The above algorithm is implemented in conting by the functions
bict() and bictu(), which act as wrapper functions for bict.fit() which is the workhorse.
For incomplete contingency tables, with no censored cell counts, we can skip Step 2. This
algorithm is also implemented by bict() and bictu(). For complete contingency tables, we
can skip Steps 1 and 2. This algorithm is implemented in conting by the functions bcct()

and bcctu(), which again act as wrapper functions for bcct.fit().

We now briefly describe how the simulation in each of the above three steps can be achieved.
We do not describe the methods in detail but outline the algorithms involved and point the
appropriate references out to the reader.

The simulation in Step 1 is trivial. The full conditional distribution can be written as

π(y(U)|φ,θm, σ2,m,y(C),y(O), z(C)) ∝ π(y(U)|φ,θm,m),

and each element of y(U) can be generated as follows

yi|φ,θm,m ∼ Poisson (µi) ,

for logµi = φ+ x>m,iθm and i ∈ U .

Similarly in Step 2, the full conditional distribution can be written as

π(y(C)|φ,θm, σ2,m,y(U),y(O), z(C)) ∝ π(y(C)|φ,θm,m)π(z(C)|y(C)),

and each element of y(C) can be generated as follows

yi|φ,θm, zi,m ∼ Trunc-Poisson (µi, zi) ,

for i ∈ C, where zi is the element of z(C) corresponding to yi and Trunc-Poisson(µ, z) is the
truncated Poisson(µ) distribution bounded from above by z.

In Step 3, the univariate full conditional distribution of σ2 is

σ2|θm,m ∼ IG

(
a+ pm

2
,
b+ 1

nθ
>
mX>mXmθm

2

)
.

The full conditional distribution of φ, θm and m can be written as

π(φ,θm,m|y, σ2) ∝ π(y|φ,θm,m)π(θm|σ2,m)π(m),
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and can be generated from using the reversible jump algorithm. The reversible jump algorithm
works as follows. Suppose the current model is m with current log-linear parameters βm =
(φ,θ>m)>. We propose a move to model k with probability πm,k. Innovation variables (Green
2003), which are denoted by um, are generated from some proposal distribution and then a
mapping function is applied to βm and um to produce the proposed log-linear parameters
βk = (φ,θ>k )>. We accept this proposed move with an associated acceptance probability.
The key is the joint specification of the mapping function and the proposal distribution with
different implementations resulting from different specifications. We use the specification for
GLMs proposed by Forster, Gill, and Overstall (2012). For details on this specification for
log-linear models, see Overstall et al. (2014). This method is implemented in conting by the
function RJ_update().

Note that πm,m, the probability of proposing a move to the current model (called a null
move), can be positive. In this case, we generate new values for the log-linear parameters,
βm, conditional on the model, m. We use the Metropolis-Hastings algorithm, in particular,
the iterated weighted least squares implementation for GLMs proposed by Gamerman (1997).
For details on this method applied to log-linear models, see Overstall et al. (2014). This
method is implemented in conting by the function iwls_mh().

The values of πm,k are specified such that only local moves are proposed, i.e., πm,k are only
non-zero for models k that can be derived from m by adding or dropping a single interaction
term (both subject to the principle of marginality). The moves of adding or dropping a term
are referred to as birth or death moves, respectively, by Forster et al. (2012). Suppose our
current model is m, and we can propose a birth or death move to Tm models, then we set
πm,k = (1 − πm,m)T−1m for k 6= m. In conting, the user may specify the probability, πm,m,
of the null move as an optional argument to the functions bcct() and bict(), with default
value 0.5.

3.3. Assessing model adequacy

In this section we briefly review the method of assessing model adequacy, under the Bayesian
approach, which is implemented in conting. This method uses predictions from the model of
the observed cell counts. The idea is to compare these predicted cell counts to the observed
cell counts. If they are inconsistent, then we can conclude that the model is inadequate. For
more details on other approaches to assessing model adequacy, under the Bayesian approach,
see Gelman et al. (2004, Chapter 6).

The comparison of predicted and observed cell counts can be made using the Bayesian (or
posterior predictive) p value. In general, let yrep and ψ denote the predicted cell counts and
the vector of all of the model parameters. Define T (Y,ψ) to be a discrepancy statistic that
can depend on both the cell counts, Y, and the parameters, ψ. The Bayesian p value is
defined as

pB = P (T (yrep,ψ) ≥ T (y,ψ)|y) ,

where the probability is with respect to the joint posterior distribution of yrep and ψ. If the
model is inadequate, the distribution of T (yrep,ψ) will be inconsistent with the distribution
of T (y,ψ), therefore the Bayesian p value will be close to zero or one.

The Bayesian p value differs from the classical p value in that for a classical p value the
discrepancy statistic only depends on the cell counts. The probability that defines the classical
p value is with respect to yrep, conditional on a fixed value for ψ (either from the null
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hypothesis or an estimated value). Under the Bayesian approach, the discrepancy statistic
can depend on ψ, over which we integrate out uncertainty with respect to the posterior
distribution.

We can easily estimate the Bayesian p value using the MCMC sample generated from the
posterior distribution. In the case of log-linear models applied to contingency tables, ψ =

(φ,θm,m), and let φ(j), θ
(j)

m(j) and m(j) be the jth value of φ, θm and m from the MCMC

chain. We generate a predicted response vector, y(j), using

y
(j)
i |φ

(j),θ
(j)

m(j) ,m
(j) ∼ Poisson

(
µ
(j)
i

)
,

where log µ
(j)
i = φ(j) + x>

m(j),i
θ
(j)

m(j) , for i ∈ O. Therefore for an MCMC sample of size M , we

will have M sampled values, y(1), . . . ,y(M) from the posterior predictive distribution of yrep.
Let

T
(j)
O = T (y,µ(j)),

T
(j)
P = T (y(j),µ(j)),

and we estimate the Bayesian p value to be the proportion of T
(j)
P ≥ T (j)

O , for j = 1, . . . ,M .

Examples of discrepancy statistics which are appropriate for contingency table data are the
χ2, deviance and Freeman-Tukey statistics, given by

χ2 : T (y,µ) =
∑

i∈O (yi − µi)2 /µi,
Deviance : T (y,µ) = −2

∑
i∈O (yi logµi − µi − log yi!) ,

FreemanTukey : T (y,µ) =
∑

i∈O
(√
yi −

√
µi
)2
.

Each of these statistics can be used within conting to assess model adequacy using the
bayespval() function (see Section 3.4). This function estimates the Bayesian p value also

and allows the user access to the sampled values T
(j)
P and T

(j)
O , for j = 1, . . . ,M .

3.4. Functions of conting

Figure 1 shows all of the functions of conting that the user will typically call. The main two
functions are bcct() and bict() that implement the MCMC algorithm in Section 3.2, for
complete and incomplete contingency tables, respectively. Mandatory arguments to bcct()

and bict() will be the form of the maximal model (in terms of a ‘formula’ object) and
the number of MCMC iterations to perform in the first instance. The data are introduced to
bcct() and bict() using the data argument, where the data must be either a ‘data.frame’ or
‘table’ object. Otherwise, the variables in the maximal model are taken from the environment
from which bcct() or bict() is called. Once the data-augmentation algorithm has finished
the requested number of iterations, then additional iterations can be requested using bcctu()

and bictu(), for bcct() and bict(), respectively.

The functions bcct() and bcctu() will return an object of class ‘bcct’ which is a list contain-
ing all of the MCMC output. Correspondingly, bict() and bictu() will return an object of
class ‘bict’. The S3 generics print and summary can be applied to ‘bcct’ and ‘bict’ objects
producing a very simple summary (in the case of print) and a more detailed summary (in
the case of summary).
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bayes_pval 

mod_probs 

bcct bict find_cens 

“bcct” “bict” bcctu bictu 

accept_rate 

inter_probs 

sub_model 

inter_stats 

total_pop 

 

“pval” 

 

 

“modprobs” 

 “submod” 

 

 “totalpop” 

print 

summary 

 “sbcct”  “sbict” 

“acceptrate” 

“interprobs” “interstats” 

plot 

  function object 
S3 

method 

LEGEND 

Figure 1: The functions of conting.
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Name of Description Produces an S3 methods
function object of that can be

class applied to this
class

accept_rate() Calculates the acceptance rates ‘acceptrate’ print

of the reversible jump and
Metropolis-Hastings algorithms
which can be used to assess
MCMC performance (see
Brooks, Giudici, and Roberts 2003).

bayespval() Performs assessments of model ‘pval’ print

adequacy by predicting from the plot

model to calculate the Bayesian
p value

inter_probs() Calculates the posterior ‘interprob’ print

probability of each term in the
maximal model.

inter_stats() Calculates the posterior ‘interstat’ print

probability, mean, variance, and
highest posterior density interval
(HPDI) of each log-linear
parameter of the maximal
model.

mod_probs() Calculates the posterior ‘modprobs’ print

model probabilities.

sub_model() Conditional on a user-specified ‘submod’ print

model of interest, calculates the
posterior mean, variance and HPDI
for the log-linear parameters, as
well as assessments of model
adequacy and estimates of the total
population size.

total_pop() Derives an MCMC sample from ‘totpop’ print

the posterior distribution of the plot

total population size. Can only
be applied to ‘bict’
objects.

Table 1: The seven specific functions that can be used for ‘bcct’ and ‘bict’ objects.

There are also seven specific functions that can be used for ‘bcct’ and ‘bict’ objects and
these are summarized in Table 1. The functions shown in Table 1 (except for inter_probs(),
accept_rate() and sub_model()) are used to construct the output given by the summary()

function applied to ‘bcct’ and ‘bict’ objects.
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4. Examples

In this section we use four examples to demonstrate conting. The first two examples involve
complete contingency tables and the latter two involve incomplete contingency tables. The
data for the four examples are included in conting. In each example, we have specified the
seed using the set.seed() function, so that all of the examples are fully reproducible.

4.1. Alcohol, obesity and hypertension

In Section 2, we introduced the AOH data as an example of a complete contingency table.
We now conduct a Bayesian analysis of this table using the bcct() and bcctu() functions.

The mandatory arguments to bcct() are the form of the maximal model and the number
of MCMC iterations. We specify that the maximal model be the saturated model which
includes the three-way interaction. We initially request 1000 MCMC iterations. Optional
arguments to bcct() involve specifying the starting values of the MCMC algorithm, the prior
(Sabanés-Bové and Held, or unit information), the value of πm,m and details for saving the
MCMC output to external files. Additionally, we can also specify the hyperparameters for the
Sabanés-Bové and Held prior (a and b from Section 2) and request a progress bar to monitor
the iterations. We assume the unit information prior distribution but allow the remaining
arguments to take their default values so that the algorithm starts from the posterior mode
of the maximal model, πm,m = 0.5, the output is not saved to external files, and no progress
bar is displayed. Once the initial 1000 MCMC iterations are complete we request a further
9000 iterations (making a total of 10000) using the bcctu() function. We then print out the
resulting ‘bcct’ object which gives a very simple summary which essentially informs the user
of the analysis performed.

R> set.seed(1)

R> data("AOH", package = "conting")

R> aoh_ex <- bcct(formula = y ~ alc * hyp * obe, data = AOH,

+ n.sample = 1000, prior = "UIP")

R> aoh_ex <- bcctu(object = aoh_ex, n.sample = 9000)

R> aoh_ex

Number of cells in table = 24

Maximal model =

y ~ alc * hyp * obe

Number of log-linear parameters in maximal model = 24

Number of MCMC iterations = 10000

Computer time for MCMC = 00:01:06

Prior distribution for log-linear parameters = UIP

The object aoh_ex is a list which includes BETA, a matrix containing the MCMC samples for
the log-linear parameters. We assess MCMC convergence informally (O’Hagan and Forster
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Figure 2: Trace plot for the intercept parameter, φ, in the alcohol, obesity and hypertension
example.

2004, p. 426) by inspecting trace plots of the sampled values. For example we can produce a
trace plot of the intercept parameter, φ, using the following line of code.

R> ts.plot(aoh_ex$BETA[, 1], ylab = "Intercept parameter",

+ xlab = "Iteration number")

The resultant plot is shown in Figure 2. We see that convergence occurs very quickly. For a
detailed summary of the analysis performed, including posterior summary statistics, use the
generic S3 method summary(). This function has optional arguments which control how the
MCMC output is used. These are the number of burn-in iterations (n.burnin), the amount of
thinning (thin), the cutoff of the posterior probability for presenting results on the log-linear
parameters (cutoff), the discrepancy statistic (statistic), values to control which posterior
model probabilities to present (best and scale), and the target probability (prob.level)
for the highest posterior density intervals (HPDIs). We use a conservative burn-in phase
of 5000 iterations, present posterior summary statistics only for log-linear parameters with
probability greater than 0.05 and present the posterior model probabilities of the four models
with the highest values for these probabilities. We use the χ2 discrepancy statistic and no
thinning which are the default values of the arguments statistic and thin.

R> aoh_ex_summ <- summary(aoh_ex, n.burnin = 5000, cutoff = 0.05, best = 4)

R> aoh_ex_summ

Posterior summary statistics of log-linear parameters:

post_prob post_mean post_var lower_lim upper_lim

(Intercept) 1.0000 2.87831 0.002953 2.77321 2.98174
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alc1 1.0000 -0.05246 0.007552 -0.22109 0.12462

alc2 1.0000 -0.06679 0.006965 -0.22473 0.10549

alc3 1.0000 0.09071 0.006147 -0.05021 0.24773

hyp1 1.0000 -0.51223 0.002758 -0.61998 -0.41760

obe1 1.0000 -0.03502 0.006740 -0.20669 0.11304

obe2 1.0000 -0.01829 0.004804 -0.15216 0.11661

hyp1:obe1 0.4556 -0.19692 0.005621 -0.33686 -0.05046

hyp1:obe2 0.4556 -0.03208 0.005590 -0.19581 0.09921

NB: lower_lim and upper_lim refer to the lower and upper values of the

95 % highest posterior density intervals, respectively

Posterior model probabilities:

prob model_formula

1 0.5344 ~alc + hyp + obe

2 0.4492 ~alc + hyp + obe + hyp:obe

3 0.0100 ~alc + hyp + obe + alc:hyp

4 0.0064 ~alc + hyp + obe + alc:hyp + hyp:obe

Total number of models visited = 4

Under the X2 statistic

Summary statistics for T_pred

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.183 18.810 23.250 23.950 28.080 61.940

Summary statistics for T_obs

Min. 1st Qu. Median Mean 3rd Qu. Max.

13.26 25.45 32.28 31.55 36.35 60.93

Bayesian p-value = 0.2246

First, under the χ2 discrepancy statistic, the Bayesian p value of 0.22 does not indicate an
inadequate model meaning that predictions of the cell counts are consistent with the observed
cell counts. The posterior modal model is the independence model and the model with the sec-
ond largest posterior model probability only contains the hypertension and obesity interaction
(hyp:obe). These two models are estimated to account for approximately 98% of the pos-
terior probability. This shows there are no strong interactions between the factors although
there is some evidence for interaction between hypertension and obesity. From inspecting
the posterior means of the log-linear parameters associated with the hypertension and obe-
sity interaction, it indicates that as obesity level moves from low to high, the probability of
hypertension increases.

Now suppose we were interested in inference solely based on the model with the second
highest posterior model probability, i.e., the model with formula = y ~ alc + hyp + obe

+ hyp:obe. We can produce posterior summary statistics similar to those given by summary(),
but which are conditional on a model of interest. This is accomplished using the sub_model()
function. There are two ways to pass the model of interest to sub_model(); either by providing
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a formula, or by the ranking of the model with respect to its posterior model probability
(order). We demonstrate with the latter, i.e., set order = 2.

R> sub_model(object = aoh_ex, order = 2, n.burnin = 5000)

Posterior model probability = 0.4492

Posterior summary statistics of log-linear parameters:

post_mean post_var lower_lim upper_lim

(Intercept) 2.86613 0.002993 2.76755 2.97230

alc1 -0.04840 0.007238 -0.21232 0.11952

alc2 -0.06900 0.006670 -0.24143 0.07961

alc3 0.09178 0.006074 -0.04605 0.24327

hyp1 -0.51954 0.002843 -0.61771 -0.41347

obe1 -0.08635 0.005781 -0.23917 0.05344

obe2 -0.02019 0.005841 -0.16255 0.13261

hyp1:obe1 -0.19665 0.005563 -0.33610 -0.05114

hyp1:obe2 -0.03199 0.005572 -0.19581 0.09921

NB: lower_lim and upper_lim refer to the lower and upper values of the

95 % highest posterior density intervals, respectively

Under the X2 statistic

Summary statistics for T_pred

Min. 1st Qu. Median Mean 3rd Qu. Max.

7.662 18.730 23.330 23.950 28.350 63.310

Summary statistics for T_obs

Min. 1st Qu. Median Mean 3rd Qu. Max.

17.23 22.15 25.00 25.80 28.17 48.01

Bayesian p-value = 0.4114

Note that if the MCMC algorithm has not visited the specified model (given by formula or
order) then sub_model() will return an informative error.

4.2. Risk factors for coronary heart disease

In this section, we consider the 26 complete contingency table given by Edwards and Havránek
(1985) and used by, for example, Dellaportas and Forster (1999) and Forster et al. (2012) to
demonstrate statistical methodology for complete contingency tables. Here 1841 men have
been cross-classified by six risk factors (each with two levels) for coronary heart disease. The
factors are: A, smoking; B, strenuous mental work; C, strenuous physical work; D, systolic blood
pressure; E, ratio of α and β lipoproteins; F, family anamnesis of coronary heart disease. We
set the maximal model to be the saturated model including the six-way interaction. Starting
from the model including all two-way interactions, we request 50000 iterations of the MCMC
algorithm, under the unit information prior. We save the MCMC output to external files
every 1000 iterations.
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R> set.seed(1)

R> data("heart", package = "conting")

R> heart_ex <- bcct(formula = y ~ (A + B + C + D + E + F)^6, data = heart,

+ n.sample = 50000, start.formula = y ~ (A + B + C + D + E + F)^2,

+ save = 1000, prior = "UIP")

R> list.files()

[1] "BETA.txt" "MHACC.txt" "MODEL.txt" "RJACC.txt" "SIG.txt"

The last line of code above, shows the MCMC output files in the working directory. We
calculate the acceptance rates of the MCMC algorithms used.

R> accept_rate(heart_ex)

Acceptance rate of reversible jump proposals = 14.9384 %

Acceptance rate of Metropolis-Hastings proposals = 75.8558 %

Convergence of the MCMC iterations was assessed informally using trace plots (not shown)
similar to Section 4.1. We now summarize the analysis. We use a burn-in phase of 10000
iterations, the deviance discrepancy statistic, and request 99% probability intervals for the log-
linear parameters. We only present the posterior model probabilities for the models with the
four highest probabilities. We could achieve this by using the summary() function. However,
we instead calculate the Bayesian p value using the bayespval() function, the posterior
summary statistics for the log-linear parameters using the inter_stats() function, and the
posterior model probabilities using the mod_probs() function. Thus we demonstrate the use
of these dedicated functions.

R> heart_ex_bp <- bayespval(heart_ex, n.burnin = 10000,

+ statistic = "deviance")

R> heart_ex_bp

Under the deviance statistic

Summary statistics for T_pred

Min. 1st Qu. Median Mean 3rd Qu. Max.

312.0 344.7 352.0 352.6 359.9 416.1

Summary statistics for T_obs

Min. 1st Qu. Median Mean 3rd Qu. Max.

346.8 361.8 365.5 366.2 369.7 401.0

Bayesian p-value = 0.1502

R> inter_stats(heart_ex, n.burnin = 10000, prob.level = 0.99)

Posterior summary statistics of log-linear parameters:
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post_prob post_mean post_var lower_lim upper_lim

(Intercept) 1.0000 2.69922 0.0015485 2.59372 2.79933

A1 1.0000 -0.03725 0.0007013 -0.10644 0.03646

B1 1.0000 -0.22973 0.0016583 -0.32235 -0.11395

C1 1.0000 -0.16069 0.0010445 -0.24495 -0.07997

D1 1.0000 -0.13602 0.0006591 -0.20335 -0.06653

E1 1.0000 -0.12742 0.0009243 -0.19963 -0.03890

F1 1.0000 -0.89965 0.0011254 -0.98633 -0.81541

A1:C1 1.0000 0.13400 0.0005913 0.07056 0.19688

A1:D1 0.9671 -0.08805 0.0005665 -0.14956 -0.02815

A1:E1 0.9992 0.11984 0.0006039 0.05499 0.18183

B1:C1 1.0000 -0.69960 0.0009270 -0.77933 -0.62331

D1:E1 0.9859 0.09479 0.0005992 0.03273 0.15784

NB: lower_lim and upper_lim refer to the lower and upper values of the

99 % highest posterior density intervals, respectively

R> mod_probs(heart_ex, n.burnin = 10000, best = 4)

Posterior model probabilities:

prob

1 0.19462

2 0.12968

3 0.07010

4 0.06705

model_formula

1 ~A + B + C + D + E + F + A:C + A:D + A:E + B:C + C:E + D:E

2 ~A + B + C + D + E + F + A:C + A:D + A:E + B:C + B:E + D:E

3 ~A + B + C + D + E + F + A:C + A:D + A:E + B:C + B:E + C:E + D:E

4 ~A + B + C + D + E + F + A:C + A:D + A:E + B:C + B:F + C:E + D:E

Total number of models visited = 394

Under the deviance discrepancy statistic, the Bayesian p value of 0.15 does not suggest an
inadequate model. The models with the four highest posterior model probabilities are the
same as identified by Dellaportas and Forster (1999) and Forster et al. (2012). With regards
to the log-linear parameters we used the default value for cutoff so we are only presented
with results for parameters with posterior probability greater than 0.75. This suggests there
are strong interactions between smoking and strenuous physical work (A:C), systolic blood
pressure (A:D) and the ratio of α and β lipoproteins (A:E), as well as for the interactions
between strenuous mental and physical work (B:C) and between systolic blood pressure and
the ratio of α and β lipoproteins (D:E).

4.3. Spina Bifida

In this section we consider a 23 × 3 incomplete contingency table given by Madigan and
York (1997). Between 1969 and 1974, in upstate New York, 621 people born with Spina
Bifida are observed by three sources: birth certificates (S1), death certificates (S2), and
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medical rehabilitation records (S3). Additionally, these people are cross-classified according to
ethnicity (eth) which has three levels: Caucasian, Afro-American and Other. These data can
be used to estimate the total population size of people born with Spina Bifida by estimating
the missing cell counts of people not observed by any of the three sources.

Below we print out the data. It can be seen that the three cell counts corresponding to people
not observed by any of the three sources (one for each classification of ethnicity) are NA. This
tells bict() that these cell counts are missing.

R> data("spina", package = "conting")

R> spina

y S1 S2 S3 eth

1 NA un un un caucasian

2 45 un obs un caucasian

3 230 obs un un caucasian

4 134 obs obs un caucasian

5 52 un un obs caucasian

6 3 un obs obs caucasian

7 107 obs un obs caucasian

8 12 obs obs obs caucasian

9 NA un un un afro-american

10 3 un obs un afro-american

11 13 obs un un afro-american

12 8 obs obs un afro-american

13 8 un un obs afro-american

14 1 un obs obs afro-american

15 3 obs un obs afro-american

16 0 obs obs obs afro-american

17 NA un un un other

18 0 un obs un other

19 1 obs un un other

20 0 obs obs un other

21 0 un un obs other

22 0 un obs obs other

23 1 obs un obs other

24 0 obs obs obs other

We begin by considering the independence model only, i.e., we do not consider model un-
certainty. Single model inference can be achieved using bict() (and bcct() for complete
contingency tables) by specifying the model of interest as the maximal model and then setting
πm,m = 1 (i.e., null.move.prob = 1). Note that single model inference can also be achieved,
having already fitted the encompassing model (Section 3), by using the sub_model() func-
tion as demonstrated in Section 4.1. We use 25000 iterations under the default Sabanés-Bové
and Held prior. When the MCMC algorithm has finished, we summarize the analysis after
discarding the first 5000 iterations as burn-in and use the default χ2 discrepancy statistic.

R> set.seed(1)

R> spina_ex_ind <- bict(formula = y ~ S1 + S2 + S3 + eth, data = spina,

+ n.sample = 25000, null.move.prob = 1)
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R> summary(spina_ex_ind, n.burnin = 5000)

Posterior summary statistics of log-linear parameters:

post_prob post_mean post_var lower_lim upper_lim

(Intercept) 1 1.37569 0.053109 0.8693 1.7748

S11 1 -0.35986 0.003265 -0.4731 -0.2501

S21 1 0.49110 0.002028 0.4047 0.5798

S31 1 0.55756 0.002120 0.4693 0.6495

eth1 1 2.77890 0.052561 2.3624 3.2639

eth2 1 -0.01643 0.057632 -0.4700 0.4627

NB: lower_lim and upper_lim refer to the lower and upper values of the

95 % highest posterior density intervals, respectively

Posterior model probabilities:

prob model_formula

1 1 ~S1 + S2 + S3 + eth

Total number of models visited = 1

Posterior mean of total population size = 757.4334

95 % highest posterior density interval for total population size =

( 717 797 )

Under the X2 statistic

Summary statistics for T_pred

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.517 14.480 19.050 20.970 24.940 246.800

Summary statistics for T_obs

Min. 1st Qu. Median Mean 3rd Qu. Max.

61.21 68.07 71.92 73.22 76.75 110.60

Bayesian p-value = 0.003

The Bayesian p value is very close to zero which suggests that the predicted cell counts from the
model are inconsistent with the observed cell counts indicating that the model is inadequate.
We elaborate the model by including model uncertainty and fitting the encompassing model.
We set the maximal model as the model with all two-way interactions and request 25000
iterations.

R> set.seed(1)

R> spina_ex <- bict(formula = y ~ (S1 + S2 + S3 + eth)^2, data = spina,

+ n.sample = 25000)

R> spina_ex_summ <- summary(spina_ex, n.burnin = 5000)

R> spina_ex_summ
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Posterior summary statistics of log-linear parameters:

post_prob post_mean post_var lower_lim upper_lim

(Intercept) 1 1.13984 0.065807 0.6276 1.57305

S11 1 -0.42069 0.032310 -0.6791 0.05947

S21 1 0.75397 0.008459 0.5912 0.91438

S31 1 0.77893 0.007449 0.6151 0.94123

eth1 1 2.75560 0.062992 2.2954 3.21856

eth2 1 0.01322 0.077752 -0.4928 0.52171

S21:S31 1 -0.43865 0.004804 -0.5808 -0.30623

NB: lower_lim and upper_lim refer to the lower and upper values of the

95 % highest posterior density intervals, respectively

Posterior model probabilities:

prob model_formula

1 0.40965 ~S1 + S2 + S3 + eth + S2:S3

2 0.14595 ~S1 + S2 + S3 + eth + S1:S2 + S2:S3

3 0.13730 ~S1 + S2 + S3 + eth + S1:S3 + S2:S3

4 0.11350 ~S1 + S2 + S3 + eth + S1:eth + S2:S3

5 0.06110 ~S1 + S2 + S3 + eth + S1:S2 + S1:eth + S2:S3

6 0.05505 ~S1 + S2 + S3 + eth + S1:S3 + S1:eth + S2:S3

Total number of models visited = 24

Posterior mean of total population size = 725.8932

95 % highest posterior density interval for total population size =

( 676 781 )

Under the X2 statistic

Summary statistics for T_pred

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.509 13.970 18.240 20.930 24.190 745.100

Summary statistics for T_obs

Min. 1st Qu. Median Mean 3rd Qu. Max.

7.308 18.490 22.190 22.850 26.480 57.180

Bayesian p-value = 0.3622

The Bayesian p value is now 0.36 which indicates that there is no evidence of an inadequate
model. By looking at the posterior model probabilities and the posterior probabilities of the
log-linear parameters, there is overwhelming evidence of an interaction between the death
certificate and medical rehabilitation sources. The posterior mean of the log-linear parameter
associated with this interaction is negative indicating that a person observed by the death
certificate source has a reduced probability of being observed by the medical rehabilitation
source, and vice versa. The posterior mean of the total population size is 726. We can access
the MCMC sample from the posterior distribution of the total population size using the
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total_pop() function. The total_pop() function will return an object of class ‘totalpop’
which is a list including a component called TOT, which is the required MCMC sample. Below,
as an example, we use this sample to produce the point estimate that minimizes the relative
squared error loss function, i.e., the point estimate is given by N̂ = E(N−1|y(O))/E(N−2|y(O)),
(Madigan and York 1997).

R> spina_tot <- total_pop(spina_ex, n.burnin = 5000)

R> round(mean(1/spina_tot$TOT) / mean(1/(spina_tot$TOT^2)), 0)

[1] 724

Madigan and York (1997) found a point estimate of 731, under the same loss function, with
a 95% probability interval of (689, 794). Note that they collapsed the Afro-American and
Other levels of the ethnicity factor to one level: Afro-American and Other.

4.4. Estimating the number of people who inject drugs in Scotland

In this section we consider a 27 incomplete contingency table which is given by King et al.
(2013). These data relate to estimating the number of PWID in Scotland in 2006. There
are four sources: social inquiry reports (S1); hospital records (S2); Scottish Drug Misuse
Database (S3); HCV database (S4), and three additional factors: age (age; < 35 years, 35+
years), gender (gender), and region (region; Greater Glasgow & Clyde, Rest of Scotland).
A total of 5670 PWID are observed by the four sources. As discussed in Section 3.1, the
cell counts corresponding to only being observed by the HCV database (S4) are subject to
censoring. We need to identify which cells are subject to censoring. This can be done via the
find_cens() function.

R> data("ScotPWID", package = "conting")

R> cens <- find_cens(sources = ~ S1 + S2 + S3 + S4, cens_source = ~ S4,

+ data = ScotPWID)

R> ScotPWID[cens, ]

y S1 S2 S3 S4 Region Gender Age

9 122 un un un obs GGC Male Young

25 135 un un un obs GGC Male Old

41 48 un un un obs GGC Female Young

57 38 un un un obs GGC Female Old

73 134 un un un obs Rest Male Young

89 104 un un un obs Rest Male Old

105 78 un un un obs Rest Female Young

121 25 un un un obs Rest Female Old

We set the maximal model to include all two-way interactions and specify the default Sabanés-
Bové and Held prior distribution. We request 2 million iterations of the MCMC algorithm
and save the MCMC output to external files every 1000 iterations. We also tell the function
bict() that we have some censored cells using the cens argument. The default value for this
argument is NULL meaning there are no censored cell counts.
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R> set.seed(1)

R> scot_ex <- bict(

+ formula = y ~ (S1 + S2 + S3 + S4 + Age + Gender + Region)^2,

+ data = ScotPWID, cens = cens, n.sample = 2000000, save = 1000)

Throughout our summary of the above analysis we use a burn-in phase of 200000 iterations
(i.e., we discard the first 10% of the iterations) and due to the size of the MCMC output we
base our inference only on every 5th iteration by setting thin = 5. Following Gelman et al.
(2004, p. 295) we only recommend using thinning when there are problems with computer
memory due to large numbers of parameters and/or MCMC iterations. To assess model
adequacy we use the Freeman-Tukey discrepancy statistic.

R> scot_ex_bp <- bayespval(scot_ex, n.burnin = 200000, thin = 5,

+ statistic = "FreemanTukey")

R> scot_ex_bp

Under the Freeman-Tukey statistic

Summary statistics for T_pred

Min. 1st Qu. Median Mean 3rd Qu. Max.

16.23 28.49 31.30 31.54 34.32 54.88

Summary statistics for T_obs

Min. 1st Qu. Median Mean 3rd Qu. Max.

27.13 33.00 34.24 34.44 35.67 50.62

Bayesian p-value = 0.26

The Bayesian p value is 0.26 which indicates that there is no evidence of an inadequate
model. We now calculate the posterior probabilities of the log-linear parameters using the
inter_probs() function and only present those with probability greater than 0.70.

R> inter_probs(scot_ex, n.burnin = 200000, thin = 5, cutoff = 0.70)

Posterior probabilities of log-linear parameters:

post_prob

(Intercept) 1.0000

S1 1.0000

S2 1.0000

S3 1.0000

S4 1.0000

Age 1.0000

Gender 1.0000

Region 1.0000

S1:S3 0.9442

S1:Age 0.9991

S2:S4 1.0000
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S2:Age 0.9865

S2:Gender 0.9999

S3:Age 1.0000

S3:Region 1.0000

Age:Gender 1.0000

Age:Region 1.0000

The posterior probabilities of the log-linear parameters are consistent with those found by
Overstall et al. (2014). Finally we derive an MCMC sample from the posterior distribution
of the total population size and find its posterior mean and 95% HPDI using the tot_pop()

function.

R> scot_ex_tot <- total_pop(scot_ex, n.burnin = 200000, thin = 5)

R> scot_ex_tot

Posterior mean of total population size = 22856.24

95 % highest posterior density interval for total population size =

( 16427 27097 )

The posterior mean of the total population size of PWID in Scotland in 2006 is 22900 (to
nearest 100). This value is consistent with that found by Overstall et al. (2014). Applying
the S3 generic plot() to an object of class ‘totpop’ will produce a histogram of the MCMC
sample from the posterior distribution of the total population size.

R> plot(scot_ex_tot)

The resultant histogram is shown in Figure 3. Note that the bimodal nature of the posterior
distribution of the total population size was also found by Overstall et al. (2014). This
bimodality is caused by the presence, or absence, of the interaction between the social inquiry
and Scottish Drug Misuse Database sources (S1:S3). The posterior mean for this interaction
is positive so that the upper mode corresponds to the presence of the interaction, and the
lower mode to absence.

5. Concluding remarks

This paper demonstrates the use of the R package conting, for the Bayesian analysis of com-
plete and incomplete contingency tables. The conting package allows a user to identify in-
teractions between factors and to estimate closed populations using incomplete contingency
tables from capture-recapture studies. The capabilities of conting are demonstrated via four
examples.

A novice user need only supply the data, the form of the maximal model (in the usual R way
of using a formula), and the number of MCMC iterations. The S3 method for summary()

will then provide all of the relevant information.

However a more experienced user can also access the sampled values of the model param-
eters and missing cell counts (for an incomplete table). For example, from Section 4.4,
scot_ex$BETA is the 2 million by 29 matrix containing the sampled values of the β pa-
rameters and scot_ex$Y0 is the 2 million by 16 matrix containing the sampled values of the
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Figure 3: Histogram of the posterior distribution of the total population size of PWID in
Scotland in 2006.

unobserved and censored cell counts. Furthermore, if the argument save is not NULL, then
bcct() and bict() will save the MCMC output to external files; see Section 4.2. These files
can be read into R and manipulated however the user wishes. Possible applications of this
output include more extensive assessments of MCMC convergence and model adequacy, and
the calculation of posterior summaries relevant to a specific research question.

Future work will involve updating conting to fit Bayesian models to contingency tables in-
volving structural zeros, misclassified cell counts and ordinal factor levels.
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