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Using hidden Markov models to deal with availability bias on line transect surveys
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Summary: We develop estimators for line transect surveys of animals that are stochastically unavailable for detection
while within detection range. The detection process is formulated as a hidden Markov model with a binary state-dependent
observation model that depends on both perpendicular and forward distances. This provides a parametric method of dealing
with availability bias when estimates of availability process parameters are available even if series of availability events
themselves are not. We apply the estimators to an aerial and a shipboard survey of whales, and investigate their properties
by simulation. They are shown to be more general and more flexible than existing estimators based on parametric models of
the availability process. We also find that methods using availability correction factors can be very biased when surveys are
not close to being instantaneous, as can estimators that assume temporal independence in availability when there is temporal
dependence.
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1. Introduction

Density estimates from line transect (LT) surveys of animals
that are not always available for detection while within de-
tectable range are subject to negative bias if animal availabil-
ity is not accounted for. This is often referred to as “availabil-
ity bias” (McLaren, 1961; Marsh and Sinclair, 1989). While it
may be possible to deal with availability bias using mark-
recapture LT (MRLT) methods (see Laake and Borchers,
2004), this does not specifically account for animal availability
and is not effective for animals that are unavailable for long
periods relative to their time in view. MRLT survey methods
are also more difficult to implement than single-observer
methods.

A common way of dealing with availability bias on single-
observer surveys is to “correct” conventional line transect
(CLT) estimators for animal availability. CLT estimators
assume that detection probability is 1 for any animal at
perpendicular distance zero (i.e. p(0) = 1, where p(x) is
the probability of detecting an animal that is at perpen-
dicular distance x) - see Buckland et al. (2001). When this
assumption holds, CLT estimators provide unbiased estimates
of the detection function p(x) and of animal density, but
when p(0) < 1, they provide unbiased estimates ĝ(x) of the
shape of p(x) but not of its height, i.e. E(ĝ(x)) = p(x)/a
for some unknown a. CLT estimates of p(x) are “corrected”
for availability bias by multiplying them by an estimate of
a obtained from independent observations of the availability
process (see below).

Availability correction factors are used for estimation from

both aerial surveys (Innes et al., 2002; Pollock et al., 2006,
for example) and shipboard surveys (Forcada et al., 2004;
Gomez de Segura et al., 2006, for example). The simplest
correction factor â1 is the estimated proportion of time an
animal is available for detection, which is an estimator of the
probability that an animal is available at any randomly chosen
instant and is therefore an appropriate correction factor when
the survey is instantaneous. The longer animals are within
detectable range, the less appropriate this correction factor
will be.

Our motivating surveys are an aerial survey of bowhead
whales (Balaena mysticetus) with perpendicular distance data
only and a shipboard survey of beaked whales (Ziphius cavi-
rostris) with both forward and perpendicular distance data.
The aerial survey was conducted in West Greenland in March
and April 2006, flying at approximately 46.3 m/s. In addition
to the survey data, time series of animal depths were available
from 8 independently tagged animals, and these were used
to model the availability process (see below). The shipboard
survey was conducted in the Alboran Sea in 2008 and 2009,
sailing at approximately 3.5 m/s. In this case we do not have
a full time series of depths from which to estimate availability.
Instead we have estimates of E(ta) and E(tu) (where ta and
tu are times available and unavailable within a single dive
cycle, respectively), together with estimates of their standard
errors from focal follows of beaked whales in the region.

After reviewing existing methods (Section 2), we formulate
the survey as a hidden Markov model that integrates avail-
ability and detection processes (Section 3) and we develop
maximum likelihood estimators (Section 4). These are used
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to estimate detection probability on the aerial and shipboard
surveys in Section 5, after which we investigate estimator
properties by simulation in Section 6. We extend the method
to include hidden semi-Markov models for availability in Sec-
tion 7 and finish with a summary and discussion in Section 8.

2. Review of existing methods

2.1 Instantaneous survey correction factor

The simplest correction factor â1 mentioned above is an ap-
propriate correction factor for the case in which only animals
detected at a single pre-specified forward distance y0 are
included in the sample (e.g. when animals come abeam, at
y0 = 0). In this case, the probability that an animal at
perpendicular distance x is detected is a1g(x), where a1 is
the probability it is available at the selected y0 and g(x) the
probability that an available animal at forward distance y0
and perpendicular distance x is detected. Hence if â1 is an
unbiased estimator of a1 obtained independently of the survey
and ĝ(x) an unbiased estimator of g(x), then p̂1(x) = â1ĝ(x)
is an unbiased estimator of detection probability p(x).

2.2 Non-instantaneous survey correction

Now consider the more usual case in which animals are
detectable at a range of forward distances, and in which
an animal at x is in detectable range for a time T (x). In
this case â1 is clearly not an appropriate correction factor,
since the probability of an animal being available in a time
interval T (x) is greater than the probability it is available at
an instant. Hence p̂1(x) will be a negatively biased estimator
of p(x). This led McLaren (1961) and Laake et al. (1997)
to develop estimators of p(x) that involve multiplying an
estimator of detection probability given availability by an
estimator of the probability that an animal is available at
least once in T (x). McLaren’s correction factor is based on
animals deterministically alternating between being avail-
able for an estimated time t̂a and unavailable for an esti-
mated time t̂u, and is â2(T (x)) = {t̂a + T (x)}/(t̂a + t̂u).
The correction factor of Laake et al. (1997) is â3(T (x)) =[
Ê(ta) + Ê(tu)

{
1− e−T (x)/Ê(tu)

}]
/{Ê(ta) + Ê(tu)}, where

Ê(ta) and Ê(tu) are estimates of the average times that
animals spend available and unavailable in a single available-
unavailable cycle. This estimator is based on the assumption
that the availability process is a two-state Markov process
in which the expected duration of animal availability periods
is E(ta) and the expected duration of animal unavailability
periods is E(tu). The terms Ê(ta) and Ê(tu) are estimators of
these expectations, obtained independently of the LT survey.

As Laake et al. (1997) note, â2(T (x)) is obtained in the
limit from â3(T (x)) as T (x) approaches zero, but with t̂a and
t̂u replaced by Ê(ta) and Ê(tu). So for small T (x) the two
estimators are virtually indistinguishable but for other T (x),
â3(T (x)) is clearly better since when T (x) > t̂u, â2(T (x))
is greater than 1, and so â3(T (x)) should always be used in
preference to â2(T (x)).

The estimator of p(x) proposed by Laake et al. (1997)
is p̂3(T (x)) = â3(T (0))ĥ(x), where ĥ(x) is the estimated
probability of detecting an animal that is available within

detectable range. Although Laake et al. (1997) did not use
it in this way, it has been used by Forcada et al. (2004),
Gomez de Segura et al. (2006) and others as a correction
factor for CLT estimators, as follows: p̂3(x) = ĝ(x)â3(T (0)),
where ĝ(x) is the estimated detection function from a CLT
analysis with ĝ(0) = 1. We show below that even if T (0)
were known (which it is usually not), p̂3(x) is not an unbiased
estimator of p(x) in general.

2.3 Poisson availability estimators

Skaug and Schweder (1999), Okamura (2003) and Okamura
et al. (2003) developed methods for dealing with availability
bias that do not use correction factors and which model
availability either as a Poisson process or as a deterministic
process. The deterministic process is obviously not realistic
and we note for reference below that the defining feature of
the Poisson process is that it has a constant event hazard.

These models use detection hazard functions that depend
on both perpendicular and forward distances, but they do
not use forward distance data in estimation. The models we
develop below are similar in spirit, but they accommodate
availability processes with non-constant event hazards and
do use forward detection distances in estimation.

2.4 Non-Poisson availability estimators

Okamura et al. (2012) developed one such model. It involves
two states that correspond to surfacing and diving, respec-
tively, with cues (blows, for example) assumed to be gener-
ated according to a Poisson process when whales are in the
surfacing phase. The Poisson rate parameter was estimated
from visual observation, and integration over the state process
was performed by substituting empirical dive data (i.e., the
state process is characterised nonparametrically). While the
method is formulated in continuous time, in their application
Okamura et al. (2012) use discrete-time depth data from
tagged whales with depth records every 60 seconds (after thin-
ning 1-second data to save computer memory). The method
uses a result of Skaug and Schweder (1999) to integrate the
hazard in the forward detection, conditional on availability,
and obtains the expectation over availability by averaging
over all possible starting positions of the observed availability
sequences. Okamura et al. (2012) say “Although we dealt with
the surfacing/diving pattern in a nonparametric way, it would
be interesting to develop more parametric methods for the
treatment of surfacing/diving patterns”. We develop one such
method here.

3. A hidden Markov model for the detection process

We define a Cartesian coordinate system that moves with
the observer along a transect line, and has the observer at
(x = 0, y = 0) (see Figure 1). Forward distance is denoted y
and perpendicular distance from the line, x. At time t animal
i is located at (xi, yit). In common with almost all LT models
we assume that animals do not move while within detectable
range as the observer moves along the transect line. The data
are truncated for estimation at some maximum perpendicular
distance W , and at perpendicular distance x the observer
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Figure 2: Schematic representation of the hidden Markov model (HMM) for a single animal. For times t∗ = (t− 1), t, (t+ 1):
St∗ are the hidden states, At∗ are the availability indicators, δt∗ are the detection indicators, γSt∗ ,St∗+1

are the transition

probabilities, and xt∗ and yt∗ are the Cartesian coordinates of the animal relative to the observer. fA|S(·) is the pmf of the
availability indicator given state, and fδ|A(·) is the pmf of the detection indicator given availability and position.
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Figure 1: Notation for field of view and location. The vertical
arrow is the transect line, with the arrow indicating direction
of the observer’s movement. The black whale shape shows the
location of whale i when it is detected (at forward distance
yi and perpendicular distance xi). The maximum forward
distance that an animal at perpendicular distance x can be
detected denoted ymax(x). The whale in the figure “survived”
detection for a distance ymax(xi) − yi. W is the maximum
perpendicular distance considered for estimation.

searches out to some maximum forward distance ymax(x) (see
Figure 1).

3.1 Availability process models

Bowhead and beaked whales have availability processes that
are more clustered than Poisson. To accommodate this, we
model availability using hidden Markov models (HMMs), and
later hidden semi-Markov models (HSMMs). Although the
availability process is in reality a continuous-time process,
here we consider time in discrete units, with equal time
between units. We discretize for two reasons, the first being

that it is often the case that tags attached to animals to
record their depth, and hence availability, gather data at fixed
time intervals (one second in the data we consider below),
and it is from these data that the availability process model
is constructed. Secondly, modelling the availability process
as a discrete-time process allows us to take advantage of
the substantial body of HMM (and HSMM) literature and
software to model the process. And if availability data do not
come pre-discretised, a HMM can get arbitrarily close to a
continuous-time model simply by shortening the HMM time
unit.

We also note that both errors in distance estimation (which
are typical of line transect surveys) and animal movement
translate into errors in estimating how far in time detections
are ahead of observers. On shipboard surveys this time error
will very often be much greater than one second (which corre-
sponds to a distance of about 5m when moving at 10 knots),
so that any benefit of modelling the availability process at
higher resolution than a second will be swamped by the much
greater errors in estimating distance. This is less the case on
aerial surveys, where, depending on survey protocol, the time
it takes a detected animal to come abeam after detection may
be recorded to within a second or less.

For an animal at any x, the process is modelled as a discrete
time series with availability At = 1 if an animal is available at
time t and At = 0 otherwise (t = 1, . . . , T (x)), where t = 1 is
the first time unit after the animal enters the observer’s field
of view, and T (x) the last before it leaves.

We allow animals to be in one of m notional hidden
states; the state at time t is denoted St. Given this state,
the probability mass function (pmf) of At is fA|S(At|St) =

λAt
St

[1 − λSt ]
1−At , where λSt is the probability of the animal

being available, given its hidden state St. St takes on values
1, . . . ,m according to a homogeneous and irreducible Markov
chain with m × m transition probability matrix Γ, with
stationary distribution τ = (τ1, . . . , τm). Γ has elements γj,k,
which are the transition probabilities from states j to states
k (j, k ∈ {1, . . . ,m}).

HMMs do not have constant event hazards, but they in-
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clude a constant-hazard process as a degenerate case: a single-
state HMM with a binary state-dependent process with pa-
rameter λ∗ is a constant-hazard process with event rate λ∗. By
setting λ∗ =

∑m

k=1
τkλk we create a constant-hazard process

with the same mean event rate as an m-state HMM with
stationary distribution τ = (τ1, . . . , τm) and state-dependent
event rates λ = (λ1, . . . , λm). We use this process in our
simulation study below.

3.2 Detection process models

We assume that when At = 0 animals are not detected, when
At = 1 animals may be detected or missed and the farther
an available animal is from the observer, the less likely it
is to be detected. To model this, we introduce a random
variable δt, such that δt = 1 if the animal is detected at
time t, δt = 0 otherwise and we define the pmf of δt to be
fδ|A(δt|At, xt, yt) = h(xt, yt)

δt [1−h(xt, yt)]
1−δt if At = 1, and

0 if At = 0. Following Skaug and Schweder (1999), we refer
to h(x, y) as the discrete detection hazard; it has a parameter
vector β, which is to be estimated. Note that h(x, y) is the
conditional probability of detecting an available animal and
is therefore similar to h(x) in the formulation of Laake et al.
(1997), but with dependence on forward distance.

4. Model fitting and checking

We condition on estimates of Γ and λ = (λ1, . . . , λm) for
estimation and include uncertainty in estimating them via a
bootstrap procedure (below).

4.1 Detection probability

Given only the state St and position (x, yt) of an animal at
time t, the pmf for δt is fδ|S(δt|St, x, yt) = [λSth(x, yt)]

δt [1−
λSth(x, yt)]

1−δt . We can therefore model the time series of
observed δs as a hidden Markov model (HMM) with states
as above, but with δt considered as arising directly from St,
according to fδ|S .

The positions (x, yt) of an animal that is within detectable
range at time occasions t = 1, . . . , T (x) are easily calculated
using the speed of the vessel. Because detection probability
is believed to change after first detection and subsequent
detections are typically not recorded, we use data only up to
the time of first detection, as is usual on line transect surveys.
As a result, the δs for an animal first detected at time t is a
series of (t− 1) zeros, followed by a single 1. Given the series
of states of the animal, ST (x) = (S1, . . . , ST (x)), and recalling
that t is 1 when the animal enters the detectable range, we
can write the probability of first observing the animal at time
t as Pr(δ1, . . . , δt | ST (x), x) =

∏t

u=1
fδ|S(δu|Su, x, yu), where

δu = 0 for u < t and δt = 1. Adapting a standard HMM
formulation (see Zucchini and MacDonald, 2009, for example)
for our purposes, we can write the unconditional probability
that an animal at x is first detected at time t as follows:

p(x, yt) = τ

(
t−1∏
u=1

B(δu = 0, x, yu)

)
B(δt = 1, x, yt) 1′(1)

where τ = (τ1, . . . , τm) is the stationary distribution of
the Markov chain, B(δu, x, yu) = Γf(δu | x, yu) and

f(δu | x, yu) = diag(fδ|S(δu|Su = 1, x, yu), . . . , fδ|S(δu|Su =
m,x, yu)), and 1′ is a column vector of m 1s. The probability
of detecting an animal that is at perpendicular distance x is
the complement of the probability of non-detection, namely

p(x) = 1− τ
(∏T (x)

u=1
B(δu = 0, x, yu)

)
1′.

4.2 Only perpendicular distance observed

The detection function p(x) is a function of the availability
process parameters Γ and λ (which are taken as known in the
likelihood) and the detection hazard parameters β. Writing
the detection function as p(x;β), the likelihood for β, given
that n animals were detected at distances x = (x1, . . . , xn) is

Lx(β|x) =

n∏
i=1

p(xi;β)π(xi)∫W
0
p(x;β)π(x) dx

=

n∏
i=1

fx(x;β) (2)

where π(x) = 1/W , as is usual with LT surveys.

4.3 Both perpendicular and forward distances observed

Let yi be the forward distance at which animal i is first
detected (i = 1, . . . , n). For an animal at x, the pdf of
y is fy|x(y|x;β) = p(x, y;β)/p(x;β) and we can write the
likelihood for β as Lxy(β | x,y) = Lx(β|x)Ly|x(β|x,y),
where Ly|x(β|x,y) =

∏n

i=1
fy|x(xi, yi;β). Hence

Lxy(β|x,y) =

n∏
i=1

p(xi, yi;β)π(xi)∫W
0
p(x;β)π(x) dx

. (3)

4.4 Accommodating individual variation in availability
processes

It is frequently the case that there is individual heterogeneity
in the surfacing process, and there may be temporal het-
erogeneity and heterogeneity due to environmental factors.
From the surveyor’s perspective, individual heterogeneity is
essentially random, as is heterogeneity due to time or envi-
ronment if the effects of these covariates on availability are
not modelled.

We use the sample of parameters obtained by fitting HMMs
to individual whales as an empirical estimator of the joint
distribution of individual random effects and draw inferences
by marginalising over these. When separate HMMs have
been fitted to availability data from J animals, the marginal
likelihoods when only perpendicular distances are recorded,
and when perpendicular and forward distances are recorded,
are

Lx(β|x, {Γ,λ}) =
1

J

J∑
j=1

Lx(β|x,Γj ,λj) and (4)

Lxy(β|x,y, {Γ,λ}) =
1

J

J∑
j=1

Lxy(β|x,y,Γj ,λj) (5)

where {Γ,λ} = (Γ1,λ1, . . . ,ΓJ ,λJ) and Γj and λj (j =
1 . . . , J) are the estimated HMM parameters for animals 1
to J . (The terms inside the summations on the RHS of
Equations (4) and (5) are just Equations (2) and (3) with
dependence on the HMM parameters made explicit.)
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We estimate detection probability as p̂ =
1
J

∑J

j=1

∫W
0
p(x; β̂ | Γj ,λj)π(x) dx, where β̂ is the value of

β that maximises Equation (4) (when only perpendicular
distances are available) or (5) (when perpendicular and
forward distances are available) .

4.5 Density estimation

It is ultimately animal density rather than detection proba-
bility that is the object of inference and LT density estimators
have the form D̂ = n

2WL
1
p̂
, where n is sample size, W is the

searched strip half-width, L is line length and p̂ is estimated
detection probability. Here n

2WL
is the observed density of

animals and 1/p̂ can be viewed as a correction factor for
animals that are missed. In evaluating estimator bias, we
therefore focus on estimators of 1/p.

If we let g(x) = p(x)/p(0), we can write 1/p as 1/{p(0)g},
where g =

∫W
0
g(x) 1

W
dx. CDS estimators assume that p(0) =

1 so that the bias-corrected CDS estimators of 1/p using â1
and â3(T (0)) are 1/(â1ĝ) and 1/(â3(T (0))ĝ). We therefore in-
vestigate bias in bias-corrected CDS estimators by considering
the bias in 1/â1 and 1/â3(T (0)) as estimators of 1/p(0).

4.6 Interval and variance estimation

When time series of availability data are available (as in
the aerial survey), variance and confidence interval estimates
are obtained by bootstrapping as follows: (1) Resample in-
dividuals with replacement; (2) Simulate availability data
for each resampled individual’s fitted availability HMM, (3)
re-estimate HMM availability model parameters from these
availability data; (4) resample detection locations with re-
placement; (5) refit detection hazard model given the refitted
availability model.

When we have only Ê(ta) and Ê(tu) and an estimate of
their variance-covariance matrix, we bootstrap as follows: (1)
parametrically resample Ê(ta) and Ê(tu) assuming bivariate
normality; (2) resample detection locations with replacement;
(3) re-estimate detection probability given the resampled
Ê(ta) and Ê(tu) and resampled detection locations. In the
case of the shipboard survey here, we do not have estimates
of the covariance of Ê(ta) and Ê(tu) and therefore assume
them to be independent. In both cases interval estimates are
obtained using the percentile method.

4.7 Goodness of fit

Goodness-of-fit was evaluated using Q-Q plots and
Kolmogarov-Smirnov (KS) tests separately in the x
and y dimensions. In the x-dimension, the ith CDF
value used in the KS tests and Q-Q plots is evaluated as
F(i) = Fx(x(i)|β̂) =

∫ x(i)
0

fx(x; β̂)dx, where x(i) is the ith
smallest observed x.

To apply a KS test and do Q-Q plots in the y-dimension
the CDF values are evaluated as Fi = Fy|x(yi|xi; β̂) =∫ yi
0
fy|x(y|x; β̂)dy, then these and the corresponding empirical

CDF values were sorted in order of increasing Fi.

4.8 Discrete detection hazard models

Implementation requires functional forms for h(x, y). We
consider variants of two forms in the LT literature and we
assume that an animal that is available at radial distance

zero will be seen (i.e. h(0, 0) = 1). This is a much weaker
assumption than is made by CLT estimators (which assume
that any animal at perpendicular distance zero will be seen).
Our first form is the exponential power model, variants of
which were used by Skaug and Schweder (1999), Okamura
(2003) and Okamura et al. (2003). The most general form we
consider is h(x, y) = exp

{
−
(
x
σx

)γx − ( y
σ

)γ}
. We refer to this

as the EP2x model, and consider a number of special cases
of it. When the x and y scale parameters are constrained
to be equal (i.e. σx ≡ σ) we call it the EP2 model. When
the two scale parameters are allowed to differ but the shape
parameters are equal (i.e. γx ≡ γ) we call it the EP1x model,
and when the scale parameters and the shape parameters are
constrained to be equal (i.e. σx ≡ σ and γx ≡ γ) we call it the
EP1 model. Skaug and Schweder (1999) used EP1, Okamura
(2003) and Okamura et al. (2003) used EP2 and Okamura
et al. (2006) used EP2x. The final form we consider is the
inverse power model (IP model), used by Skaug and Schweder

(1999) which is defined as h(x, y) = σγ/
(
σ2 + x2 + y2

)γ/2
.

We allow the detection hazard functions to depend on a
covariate vector through the scale parameter(s), using a log
link function. That is, we have σ(z;βz) = exp(βTz z) and
σx(zx;βx,z) = exp(βTx,zzx)), where z and zx are covariate
vectors, the latter being specific to σx, and βz and βx,z are
associated parameter vectors, the latter being specific to σx.

5. Applications

5.1 Aerial bowhead survey

5.1.1 The data. No forward distances were recorded on
this survey, and only n = 33 groups were detected. Perpen-
dicular distances and school sizes for all detected groups were
recorded, . All but three detections were of single animals;
the rest were schools of size two. Independently of the survey,
electronic depth-recording tags were attached to eight bow-
head whales from the population surveyed, generating time
series of durations between 2.6 and 53 hours, with depths
recorded every second - see Laidre et al. (2007). Following
previous practice (Heide-Jørgensen et al., 2007), animals were
considered to be available for detection only when within 2m
of the surface. The time series were accordingly converted
into binary availability time series. The challenge facing an-
alysts after the survey was how best to estimate detection
probability and whale density when there may be substantial
availability bias and only perpendicular distance data were
recorded on the survey.

To investigate this, we start by fitting HMMs to the tag
data and maximising Equation (4) conditional on the esti-
mated HMM parameters. HMMs were fitted separately to
each time series of availability data by numerically maximis-
ing the (standard) HMM likelihood. We considered models
with a variety of values for m and found models with m = 2
states to be best on the basis of AIC values. Details of the
fitted models are given in the web appendix.

5.1.2 Detection function estimation. Models with and
without school size were fitted and those without school size
were preferred on the basis of AIC. AICs for models with
school size were larger by about 1 than models without school
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Figure 3: Fitted models to aerial (top) and shipboard (bottom) in the perpendicular distance and forward dimensions. (a):
Aerial survey fitted pdfs of perpendicular distance overlaid on the histogram of perpendicular distances of the 33 detected
animals. (b): Aerial survey fitted pdfs of forward detection times. (c): Ship survey fitted detection functions overlaid on the
histogram of perpendicular distances of the 73 detected animals. (d): Ship survey estimated pdfs of forward detection distance
overlaid on the histogram of forward detection distances. (The pdfs for models other than IP are virtually coincident.)

size. Figure 3 shows the estimated pdfs of perpendicular
distance obtained by maximising Equation (4) with respect
to detection function parameters using models EP1x, EP2,
EP1 and IP without school size. The fit of the most flexible
model (EP2x) failed to converge. All models fit the perpen-
dicular distance data well, with KS test p-values ranging from
0.969 to 0.997. Model EP1 is preferred on the basis of AIC
(∆AIC=1.67 for EP1x, 1.98 for EP2 and 0.08 for IP). The
estimate of 1/p from EP1 is 4.62, with an estimated CV
and 95% confidence interval from 999 bootstraps of 20.9%
and (3.43, 7.29) respectively. When the estimated availability
HMM is treated as known the CV drops to 19.4%.

The models predict very different forward detection dis-
tance distributions (Fig 3(b)), and estimates of p(0) and mean
detection probability p that differ by up to 22%. Estimated
p(0)s are 0.33, 0.33, 0.31 and 0.27 for models EP1, IP, EP2
and EP1x respectively, with estimated CVs of 0.03, 0.09, 0.71,
0.04. Estimated ps are 0.21, 0.22 0.20 and 0.18 for models EP1,
IP, EP2 and EP1x respectively, with estimated CVs of 0.03,
0.09, 0.71, 0.04.

When either the scale or shape parameter of the hazard
function is allowed to vary separately in x- and y-dimensions,

these parameters are estimated with very poor precision in
the y-dimension (for model EP1x, ĈV (γy) = 2, 373% and for
model EP2, ĈV (σy) = 212%) and when both scale and shape
are allowed to vary separately in the two dimensions (model
EP2x), we are unable to estimate either parameter. The very
high CV of p̂(0) in the case of model EP2 arises because p(0)
is sensitive to how far ahead animals are detected and of the
fitted models, EP2 is the only one that allows a separate scale
parameter in the x and y dimensions. The derivatives of p̂(0)
with respect to the hazard function parameter associated only
with x in models EP2 and EP1x is zero, i.e. for model EP2,
∂p̂(0)/∂γx = 0 and for model EP1x ,∂p̂(0)/∂σx = 0. This
confirms what one would expect a priori: that when the model
parameters relating to the perpendicular distance direction
are not tied to those relating to the forward direction, the
perpendicular distance data contain no information about
p(0). When there are no forward distance data, p̂(0), p̂ and
D̂ are model-dependent: they are determined by the form of
the assumed hazard function for a given availability model.

There is large inter-whale variation in estimated detection
probabilities. Separate fits of model EP1 using each one of the
eight sets of availability data separately produce estimates of
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Figure 4: Estimated bias of the availability correction factor 1/â3(T (0)) (solid line) for (a)-(c) the aerial and (d) the shipboard
survey. Plots (a), (b) and (c) are assuming models IP, EP1x and EP2 respectively. Plot (d) assumes model IP for the shipboard
survey. The open dot in (d) corresponds to the time in view of the shipboard sighting that was made at greatest forward
distance; using this T (0) results in a negative bias of 77%. The solid dots are the bias of the correction factor 1/â1, which
results in biases of 25%,-0.5%, 14% and 89% in scenarios (a) to (d) respectively.

p(0) ranging from 0.16 to 0.61, from which it is clear that
individual heterogeneity in availability pattern has a very
large effect on estimated detection probability and that use
of availability data from a single whale could result in very
biased estimates.

In addition, estimates are sensitive to the availability model
used. When we fit EP1 with availability HMMs that have
constant hazards (with the same mean availability rates as
the 8 original HMMs) the fit is excellent (KS p-value=0.99)
but p(0) and p are estimated to be 0.97 and 0.66 respectively
- three and two times the size of the estimates when using the
original HMMs.

5.1.3 Correction factor bias. Figures 4(a)-(c) show the
biases of 1/â1 and 1/â3(T (0)) as estimators of 1/p(0). The
bias of 1/â3(T (0)) is shown as a function of the maximum
time in view, T (0). In the absence of compelling evidence
in favour of any one of the four models fitted to the aerial
survey data, we consider this bias assuming each of the fitted
models IP, EP1x and EP2 to be true. (We do not consider
EP1 as it produced a very similar fit to IP.) We plot %bias as
100(â−1

1 /p(0)−1 − 1) and 100(â3(T (0))−1/p(0)−1 − 1), where

p(0) is the intercept of the assumed model. The values of â−1
1

and â3(T (x))−1 used in the figure are the averages of of â−1
1

and â3(T (x))−1 over the eight tagged whales.
The bias of 1/â1 and 1/â3(T (0)) depends strongly on the

true model, and more specifically the true distribution of
forward detection distances. The bias using 1/â1 is virtu-
ally zero for model EP1x because in this case the survey
is virtually instantaneous. The bias when using 1/â3(T (0))
can be substantial and either positive or negative, depending
on the value assumed for T (0), and in the limit, as true
T (0) → 0, both it and 1/â1 are unbiased. Conversely the
longer the true T (0) is, the more arbitrary 1/â3(T (0)) is as
a correction factor. This makes 1/â3(T (0)) potentially much
more dangerous as a correction factor for shipboard surveys,
where T (0) is typically much longer than on aerial surveys.
We therefore now turn our attention to the shipboard survey
data.

5.2 Shipboard beaked whale survey

5.2.1 The data. The shipboard survey has a larger sample
size (n=73) and both perpendicular and forward distances to
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all detections. In addition the height of the observer (ht), the
school size (ss) was recorded for every detection.

Data on availability was less comprehensive than was the
case with the bowhead survey. Rather than time series of
available/unavailable status for a number of whales, we have
only the mean time animals are available and unavailable
(Ê(ta) and Ê(tu)) and their standard errors, obtained by
focal follows of J = 57 animals. We are therefore not able
to estimate HMM parameters for the availability process and
instead assume that the availability process is a two-state
Markov process: λ1 and λ2 are set to 0 and 1, respectively,
and the state transition probabilities set to γ12 = 1/Ê(tu)
and γ21 = 1/Ê(ta) (see Zucchini and MacDonald, 2009, p133
for justification of this). Ê(ta) and Ê(tu) were estimated to
be 2 minutes and 26 minutes, with inter-animal coefficients of
variation (CVs) 7.9% and 8.5%, respectively.

Focal follows involve visually tracking animals for as long
as possible after first detection and recording when they
are available and unavailable for detection. This method of
obtaining availability data is somewhat less reliable than
obtaining it from recorders attached to animals, because it
is possible that some availability events may be missed, but
it is very much easier and cheaper than attaching tags and
sometimes the only feasible option. The approach of Conn
et al. (2012) may be useful for modelling availability when
availability events are missed.

5.2.2 Detection function estimation. All five models were
fitted to the survey data after truncating at a perpendicu-
lar distance of 2,000 m, without covariates in the detection
function. The best model, on the basis of AIC, was found
to be model IP and this was then fitted with σ depending
on ht, on ss, on ht and ss and on ht, ss and a ht × ss
interaction. The best model (by AIC) was that with ht and ss
but no interaction. Each of the other detection function model
forms were then fitted with σ (and in the case of model EP2
σx) depending on ht and ss and no interaction. Model IP
was found to be best. The differences in AIC statistics and
the Kolmogariov-Smirnov goodness of fit p-values in the x
and y dimensions for each combination of covariates when
using model IP are given in web Appendix A. The fit in
the perpendicular and forward distance directions is shown
in Figure 3(c) and (d). The KS goodness of fit tests for the
perpendicular and forward distance fits for the selected model
have p-values of 0.94 and 0.83, respectively.

With 999 bootstrap replicates, the CV of 1/p̂ is estimated
to be 31.8% (the point estimate is 25.4) with a 95% confidence
interval of (14.7, 45.0). When uncertainty in HMM estimation
is neglected (by using the original HMM in all bootstrap
resamples), the CV of 1/p̂ reduces to 30.6%

When model IP is fitted using a constant-hazard HMM
with the same mean availability rate as the original availabil-
ity HMM, the fit is good but p(0) and p are both estimated to
be roughly 7 times larger than when using the original HMM.

5.2.3 Correction factor bias. Figure 4(d) shows the bias
of 1/â1 and 1/â3(T (0)) as estimators of 1/p(0), where truth
is taken to be the fitted IP model. It is clear from the
figure that the bias correction methods do not in general
give unbiased estimates of density or detection probability,

and when animals are within detectable range for a long
time relative to the mean time that they are available for
detection, as in this shipboard survey, their bias can be very
large (between -77% and +89% here). With an estimated p(0)
of 0.136 from the HMM line transect (HMMLT) model, it is
also clear that estimating density using a CLT estimator with
no availability correction would result in large negative bias
(-86.5% bias if the fitted IP model were truth).

6. Simulation study

We conducted a simulation study to investigate the HMMLT
model performance for the aerial and shipboard survey sce-
narios with a range of sample sizes including those observed
(E[n]=33, 73, 200 and 1,000) . We investigate the performance
of the HMMLT estimator with forward distances using the
fitted model EP1 to generate perpendicular and forward dis-
tance observations for the aerial survey scenarios and model
IP for the shipboard scenarios. In both cases we simulate and
fit without covariates in the detection hazard functions.

In the simulations N = E[n]/p̂ animals were distributed
uniformly in a strip of half-width W , where p̂ is the estimated
detection probability from the model in question. In the case
of the aerial survey, each animal was assigned an availability
process by simulating 8 sets of availability data from the
8 HMMs, refitting HMMs to each simulated dataset and
randomly assigning one of these to each whale. In the case of
the shipboard survey, each animal was assigned an E[ta] and
E[tu] by drawing from a normal distribution with parameters
corresponding to the original estimated E[ta] and E[tu] and
their variances. Detections were simulated according to the
HMMLT models described above and forward and perpendic-
ular distances of all detections were used to estimate model
parameters. This process was repeated 500 times for each
scenario.

To investigate the effect of neglecting the uncertainty in
the HMM for availability, we also conducted simulations in
which the original HMMs for availability and original E[ta]
and E[tu] were used in estimation (“Fixed” in Table 1). And
to investigate the performance of estimators that assume
a constant hazard availability process, we also estimated
assuming HMMs with parameters set to generate constant-
hazard availability, as described above (“ConstHaz” in Ta-
ble 1). Finally, in the case of the aerial survey where we have
availability time series data, we investigate the adequacy of
the availability HMM by repeating these simulation scenarios
but simulating availability by randomly sampling segments
of length greater than maximum time in view from the 8
time series. Estimated biases, standard errors and root mean
squared errors for each scenario are shown in Table 1.

The HMMLT estimators are almost unbiased for all sce-
narios with availability generated from fitted HMMs, even for
small sample sizes. While the HMM availability model for the
aerial survey (at least) is not a perfect model - as evidenced
by the fact that when availability is generated from the raw
availability data the HMM-based estimator is more biased
by a couple of percent - it nevertheless performs well, with
low bias in all scenarios. The fact that the hazard models
used for generation and estimation are identical means that
the estimator performance in simulations will be somewhat
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Table 1: Estimated percentage bias,standard error (se) and root mean squared error (RMSE) of 1/p̂ for aerial survey scenarios
(with Bowhead whale availability model) and shipboard survey scenarios (with Beaked whale availability model), for four
expected sample sizes (E[n]), using the estimated hazard models EP1 from the aerial survey and IP from the ship survey,
respectively. Results are shown for scenarios in which the availability HMM parameters are re-estimated (Random), treated
as known (Fixed) and for the case in which the availability is assumed to be constant-hazard and known (ConstHaz). ‘HMM
Avail. Generation’ means animal availability was generated using the fitted HMM for the scenario; ‘Tag Avail. Generation’
means animal availability was generated by randomly sampling segments of the original tag data.

HMM Avail. Generation Tag Avail. Generation
Scenario E[n] HMM %Bias se RMSE %Bias se RMSE

Aerial 33 Rand 1.05 0.290 0.294 -1.15 0.353 0.357
EP1 73 0.76 0.197 0.200 -1.67 0.225 0.239

200 0.32 0.114 0.115 -1.93 0.128 0.158
1000 0.38 0.049 0.052 -1.96 0.058 0.111

33 Fixed -0.28 0.299 0.299 -0.91 0.347 0.350
73 -0.72 0.179 0.182 -1.72 0.225 0.240

200 -1.03 0.113 0.122 -2.08 0.125 0.160
1000 -1.17 0.048 0.072 -2.08 0.057 0.120

33 ConstHaz -65.7 0.100 3.01 -65.5 0.139 3.17
73 -66.0 0.068 3.02 -66.0 0.079 3.19

200 -66.0 0.040 3.02 -64.1 0.045 3.19
1000 -66.1 0.018 3.02 -66.1 0.021 3.19

Ship 33 Rand 2.95 8.00 8.02
IP 73 1.81 5.52 5.54

200 -0.87 3.01 3.02
1000 -0.46 1.32 1.32

33 Fixed 3.04 8.70 8.72
73 1.12 4.98 4.98

200 -0.07 2.89 2.89
1000 -0.61 1.32 1.33

33 ConstHaz -85.2 0.89 21.2
73 -85.6 0.52 21.3

200 -85.8 0.30 21.4
1000 -85.8 0.13 21.3

better than can be expected in practice and we expect that
a sample size of 33 is too small for reliable inference. A rule-
of-thumb sample size for CLT surveys is around 60 and we
expect that similar or larger sample sizes will be required for
HMMLT estimators in practice.

Assuming a constant-hazard availability process results in
large negative bias in all scenarios. A more clustered avail-
ability process (as with the estimated HMMs) allows more
animals to have few or no availability events while in view
and hence overall detection probability to be lower than
would be the case with a constant-hazard availability process.
Assuming constant-hazard availability runs the risk of severe
estimator bias in general.

Failing to incorporate the uncertainty associated with es-
timating the availability HMMs (“Fixed” scenarios) has very
little effect.

7. Hidden semi-Markov availability models

An implicit assumption of HMMs is that the state dwell-
times (i.e., the durations the process spends in each state)
are geometrically distributed. This is not always biologically
reasonable for marine mammals. For example, a state that is
associated with a deep dive may have a much lower probability

of short duration and higher probability of long duration than
can be modelled by a geometric distribution, resulting in a
poor fit. In such cases the use of HMMs may lead to bi-
ased density estimates. So-called hidden semi-Markov models
(HSMMs) allow flexibility in the dwell-time distributions by
modelling them explicitly using some distribution on the pos-
itive integers. Langrock and Zucchini (2011) showed that by
expanding each semi-Markovian state into a sufficiently large
set of Markovian states sharing the same state-dependent dis-
tribution, and structuring the transition probabilities between
those states appropriately, one can approximate the desired
dwell-time distributions arbitrarily accurately and hence ap-
proximate any HSMM with arbitrary accuracy using a HMM.
Using this approach, all methods described in Section 4 above
are straightforwardly applicable. In particular, the formulae
given for the likelihood of associated detection models remain
valid. So when combined with the method of Langrock and
Zucchini (2011), the methods of this paper provide a means of
accommodating HSMM availability processes in line transect
surveys. The added flexibility that HSMMs provide does come
with a computational cost, as the HMM representation of a
HSMM typically requires many more states than are in the
HSMM, making the corresponding HMM transition probabil-



10 Biometrics, September 2013

ity matrix large, which can slow down likelihood computation
substantially.

To investigate the utility of HSMMs relative to HMMs, we
fitted two-state HSMMs with negative binomial state dwell-
time distributions to the bowhead availability series. (We do
not have availability time series in the case of the beaked
whales.) This leads to much improved AIC values (see web
Appendix A). However, the stationary state probabilities of
the HSMMs are very similar to those obtained for the HMMs
(cf. we Appendix A), and as a consequence of this and of
the short time the whales are in view on the aerial survey,
the resulting estimates of 1/p are close to the HMM-based
estimates. They differ by only 7%: 4.62 when HMMs are used
to model availability, compared to 4.94 when HSMMs are
used. Given the small difference (in the context of a CV of
some 32%) and the substantial increase in computation time
associated with fitting the HSMM, we have not calculated
bootstrap confidence intervals for 1/p using the HSMM.

Although we were not able to fit a HSMM in the case
of the bowhead shipboard data, we anticipate that the use
of HSMMs, as opposed to HMMs, can make a substantial
difference to estimates of 1/p from shipboard surveys, where
animals spend more time within detectable range. In this case
it is likely more important to obtain the best possible model
of the availability process. We therefore recommend checking
the adequacy of the Markovian assumption by fitting HSMMs
to availability time series before deciding which availability
model to use for estimation of 1/p.

8. Discussion

Unless animals are within detectable distance for little more
than an instant, existing correction factor methods for dealing
with availability bias result in biased estimation of detection
probability and density. This is because they do not account
properly for the facts that the survey is not instantaneous
and that detection probability changes while animals are
within detectable range. Bias is lower for aerial surveys than
shipboard surveys because animals are within viewing range
for shorter periods, but bias can still be substantial.

Our estimators are able to estimate density with little or no
bias in the presence of stochastic animal availability by using
a HMM or HSMM to model availability. Unlike the methods
of Skaug and Schweder (1999), Okamura (2003), Okamura
et al. (2003), our method uses both forward and perpendicular
distance data. We found estimators without forward distance
data to be quite heavily model-dependent and advise against
their use when animals are not continuously available. We also
found that estimators based on constant-hazard availability
can be severely biased when the availability hazard is not
constant.

Unlike the methods of Skaug and Schweder (1999), Oka-
mura (2003) and Okamura et al. (2003), our methods are
based on discretizing time. Our discrete-time formulation
allows us to take advantage of the considerable body of HMM
and HSMM theory and software for inference. While the
actual survey process operates in continuous time, availability
data are usually available in discrete time. In any case,
continuous time can be approximated arbitrarily closely by
finer temporal discretization. And because there are errors in

timing and locating detections, there is likely little gain from
having a model with temporal resolution that is very much
finer than the size of these errors.

Our model is similar in concept to the model of Okamura
et al. (2012) although their model is formulated in continuous
time. By using discrete-time models for both processes, we
are able to take advantage of HMM and HSMM methods
both for flexible modelling of the availability process and for
efficient integration of the detection and availability processes.
Our model accommodates intermittent availability (in which
animals alternate between being available and unavailable
continuously for some times), instantaneous availability, and
a mixture of the two. The model of Okamura et al. (2012) is
designed for instantaneous availability processes only. Being
parametric, our model is also able to deal with situations in
which availability time series are unavailable but estimates of
key availability model parameters (such as expected durations
of available and unavailable periods) are available, whereas
the model of Okamura et al. (2012) requires time series of
availability. In short, our model provides a flexible, extendable
alternative to the model of Okamura et al. (2012) for dealing
with availability bias on single-platform LT surveys.

The methods of this paper have modest data demands
relative to existing methods. Like all methods for dealing
with availability bias on single-platform LT surveys, they
require independent data on animal availability. To model
the availability process reliably, moderately long series of
availability data are needed (at least some tens of records
long, preferably more). The only additional demand on the
LT surveys themselves is that forward distances (or times)
be recorded, and on many surveys these would be recorded
anyway.

9. Supplementary Materials

Web Appendices referenced in Sections 5 and 7 are available
with this paper at the Biometrics website on Wiley Online
Library, together with R functions and example code for
fitting models when both forward and perpendicular distance
data are available.

10. Acknowledgements

This work was part-funded by EPSRC grant EP/I000917/1.
The beaked whale data collection was funded by the
Strategic Environmental Research and Development Program
(SERDP) contract SI-1539 and the US Office of Naval Re-
search (ONR), contract N00014-09-10528, and conducted un-
der NMFS permits 981-1707 and 14241. We would like to
thank the Greenland Institute of Natural Resources for pro-
viding us with the bowhead whale data, and two anonymous
referees for useful comments that substantially improved the
manuscript.

References

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake,
J. L., Borchers, D. L., and Thomas, L. J. (2001). Intro-



Line Transect Availability Bias 11

duction to distance sampling. Oxford University Press,
Oxford.

Conn, P. B., Johnson, D. S., London, J. M., and Boveng,
P. (2012). Accounting for missing data when assessing
availability in animal population surveys. Methods in
Ecology and Evolution 3, 10391046.

Forcada, J., Gazo, M., Aguilar, A., Gonzalvo, J., and
Fernandez-Contreras, M. (2004). Bottlenose dolphin
abundance in the nw mediterranean: addressing hetero-
geneity in distribution. Marine Ecology Progress Series
275, 275287.

Gomez de Segura, A., Crespo, E. A., Pedraza, S. N., Ham-
mond, P. S., and Raga, J. A. (2006). Abundance of small
cetaceans in waters of the central spanish mediterranean.
Marine Biology 150, 149–160.

Heide-Jørgensen, M. P., Laidre, K., Borchers, D. L., Samar-
rra, F., and Stern, H. (2007). Increasing abundance of
bowhead whales in west greenland. Biology Letters 3,
577–580.

Innes, S., Heide-Jørgensen, M. P., Laake, J. L., Laidre, K. L.,
Cleator, H. J., Richard, P., and Stewart, R. E. A. (2002).
Surveys of belugas and narwhals in the canadian high
arctic in 1996. NAMMCO Scientific Publications 4, 169–
190.

Laake, J. L. and Borchers, D. L. (2004). Methods for in-
complete detection at distance zero. In Buckland, S.,
Anderson, D., Burnham, K., Laake, J., Borchers, D., and
Thomas, L., editors, Advanced Distance Sampling., pages
108–189, Oxford. Oxford University Press.

Laake, J. L., Calambokidis, J. C., Osmek, S. D., and Rugh,
D. J. (1997). Probability of detecting harbor porpoise
from aerial surveys: estimating g(0). Journal of Wildlife
Management 61, 63–75.

Laidre, K., Heide-Jørgensen, M. P., and Nielsen, T. (2007).
Role of bowhead whale as a predator in west greenland.
Marine Ecology Progress Series 346, 285–297.

Langrock, R. and Zucchini, W. (2011). Hidden markov models
with arbitrary state dwell-time distributions. Computa-
tional Statistics and Data Analysis 55, 715–724.

Marsh, H. and Sinclair, D. F. (1989). Correcting for visibility
bias in strip transect aerial surveys of aquatic fauna.
Journal of Wildlife Management 53, 1017–1024.

McLaren, I. A. (1961). Methods of determining the numbers
and availability of ring seals in the eastern canadian
arctic. Arctic 14, 162–175.

Okamura, H. (2003). A line transect method to estimate
abundance of long-diving animals. Fisheries Science 69,
1176–1181.

Okamura, H., Kitakado, T., Hiramatsu, K., and Mori, M.
(2003). Abundance estimation of diving animals by the
double-platform line transect method. Biometrics 59,
512–520.

Okamura, H., Minamakawa, S., and Kitakado, T. (2006).
Effect of surfacing patterns on abundance estimates of
long-diving animals. Fisheries Science 72, 631–638.

Okamura, H., Minamikawa, S., Skaug, H. J., and Kishiro, T.
(2012). Abundance estimation of long-diving animals
using line transect methods. Biometrics 68, 504–513.

Pollock, K. H., Marsh, H. D., Lawler, I. R., and Alldredge,
M. W. (2006). Estimating animal abundance in hetero-

geneous environments: An application to aerial surveys
for dugongs. Journal of Wildlife Management 70, 255–
262.

Skaug, H. J. and Schweder, T. (1999). Hazard models for line
transect surveys with independent observers. Biometrics
55, 29–36.

Zucchini, W. and MacDonald, I. (2009). Hidden Markov Mod-
els for Time Series: An Introduction Using R. Chapman
& Hall/CRC.

Received August 2012. Revised March 2013.
Accepted March 2013.


