
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 138.251.162.240

This content was downloaded on 09/07/2014 at 11:33

Please note that terms and conditions apply.

An all-optical feedback assisted steady state of an optomechanical array

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 023009

(http://iopscience.iop.org/1367-2630/16/2/023009)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/2
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


An all-optical feedback assisted steady state of an
optomechanical array

Chaitanya Joshi1,2,4, Uzma Akram3 and G J Milburn3

1 SUPA, Institute for Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh
EH14 4AS, UK
2 School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
3 Centre for Engineered Quantum Systems, School of Mathematics and Physics, The University
of Queensland, St Lucia, QLD 4072, Australia
E-mail: cj30@st-andrews.ac.uk

Received 22 August 2013, revised 14 January 2014
Accepted for publication 15 January 2014
Published 5 February 2014

New Journal of Physics 16 (2014) 023009

doi:10.1088/1367-2630/16/2/023009

Abstract
We explore the effect of all-optical feedback on the steady state dynamics
of optomechanical arrays arising from various topologies. First we consider
an array comprised of a pair of independent optomechanical cavities coupled
reversibly via their optical modes. Next we consider an optomechanical network
formed from coupling two optical modes with interactions mediated via a
common mechanical mode. Finally we extend the analysis to a large network
of N-coupled optomechanical systems. Our results show implementing an-all
optical feedback loop in each arrangement can enhance the degree of steady
state entanglement between inter cavity optical and mechanical modes.

1. Introduction

The drive toward exploring quantum features at the mesoscopic and macroscopic scale has
intensified in recent times with marked advances in understanding of the quantum–classical
transition [1]. The prime motivations have been to test the limits of the quantum theory
and to search for various quantum communication protocols [2] while discovering novel
applications of mesoscopic systems as components of quantum memories and repeaters required
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in the implementation of various quantum information processing tasks [3, 4] and new sensor
technology [5, 6].

In this respect vastly different physical systems such as ultra-cold atoms coupled to
nanomechanical systems [7–10], superconducting qubits coupled to microwave resonators [11]
and opto- and electro-mechanical cavities [12–34] have recently attracted a lot of attention in
probing quantum signatures at the mesoscopic scale. By and large the goal has been to achieve
coherent control over the motion of the mechanical element via coupling to electromagnetic
and optical modes in the quantum regime [35]. Such a coupling inevitably has the potential to
engineer a hybrid quantum device composed of otherwise incompatible degrees of freedom of
different physical systems. Among the plethora of such proposals, special attention has been
devoted to explore further the potentials of optomechanics, in particular. Optomechanics makes
use of radiation pressure of light on a mechanical element resulting in reversible coupling
between optics and mechanics, two vastly different physical systems at the extremes of the
quantum world. Recent progress in the field not only promises to strongly couple these very
disparate modes identifying a whole new class of engineered quantum systems but also to
control the dynamics of such systems [36].

In an optomechanical (OM) set-up, the resonance frequency of the optical cavity under
consideration can be altered by the displacement of the mechanical element which may for
example form one of the mirrors in a Fabry–Pérot cavity. As a result of radiation pressure of
light, reversible coupling is generated between the optical and mechanical modes. The strength
of the OM coupling is however derived from the magnitude of the radiation pressure force
which can be enhanced by strong coherent driving in the considered OM system. As has been
extensively shown in the resolved sideband regime [37–43] (see Hartmann and Plenio [24]),
OM interaction can generate entanglement between the optical and mechanical modes within
an OM system. Further for two or more coupled OM systems forming an OM array, intra cavity
OM entanglement can be distributed over inter cavity modes in the steady state [34, 44, 45].
In this work we are interested in devising a scheme whereby entanglement can not only be
generated but can also be controlled as well. The ability to control entanglement would be a
useful resource in the design and implementation of quantum repeaters and quantum memories
crucial in the implementation of quantum information processing. It may also enable new
measurement protocols based on mechanical sensors, for example, weak force sensors [6, 46].
With this objective in mind we apply an all-optical feedback scheme to earlier proposals, [45]
considering coupled OM arrays. All-optical feedback was considered extensively in the context
of cascaded cavities [47] and associated amplitude and quadrature feedback.

We apply similar coupling configurations to a system of OM cavities in our analysis and
compare the steady state dynamics of various OM networks both in the presence and absence
of an all-optical feedback loop. Specifically we address two different topologies: firstly we
consider a pair of independent but reversibly coupled OM systems. Secondly we consider an
OM arrangement where two different optical modes are coupled via a common mechanical
element. In fact our results also apply to a hybrid system in which one optical mode and one
microwave mode interact via a common mechanical element as in [48, 49]. In each case the
all-optical feedback loop is implemented by an additional irreversible coupling between the two
optical modes. Our results show that while a reversibly coupled OM network can result in steady
state entanglement between the inter cavity mechanical modes, implementing an all optical
feedback loop can enhance the generated entanglement. Hence an all-optical feedback can be
used as a resource to control entanglement in the steady state of an OM network. Furthermore in
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Figure 1. Model 1: implementing an all-optical feedback scheme in an OM array. Two
OM cavities are coupled reversibly with a coupling strength κ via neighboring optical
modes a1,2 as well as irreversibly with mode â1 driving â2 in a forward feed direction.
The optical mode â j and mechanical mode b̂ j in each cavity are coupled reversibly by
an OM coupling strength g j .

the last section of this work, we extend our analysis to a large array comprising of reversibly
coupled OM ports. Each OM port in the array is composed of a pair of OM systems coupled
via an all-optical feedback loop. Our results show bipartite steady state entanglement only
exists between mechanical resonators from different OM ports with different parity, and can
be enhanced in the presence of feedback.

2. Feedback in an optomechanical (OM) network

2.1. Two coupled OM cavities

We begin by first considering the set-up in figure 1 which comprises of two OM cavities (OM
1 and 2), coupled reversibly via their optical modes. Additionally the optical mode a1 of OM 1
is also coupled irreversibly to mode a2 of OM 2. Simultaneous presence of unidirectional and
bidirectional coupling between the optical modes constitute an all-optical feedback loop [47].
The system OM 1 acts as a source driving the state of the OM 2 cavity which in turn influences
the state of source cavity through reversible coupling of arbitrary strength κ .

In the usual convention, radiation pressure is induced by strong external coherent driving
on each OM system hence displacing the cavity field by its steady state amplitude. The resulting
OM interaction is then linearized such that a quadratic coupling is induced between the optical
and mechanical modes in each system [45]. In this linearized regime and in the rotating frame
of the external drive, the OM interaction between each individual cavity takes the form (in units
h̄ = 1) [45]

HI =

2∑
j=1

1 j â
†
j â j + ωm j b̂

†
j b̂ j + g j(â j + â†

j )(b̂ j + b̂†
j), (1)

3
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where 1 j = � j − ωL j , where ωL j is the frequency of the external laser drive pumping the j th
cavity with resonance frequency � j , ωm j is the fundamental resonance frequency of the j th
mechanical mode, g j is the effective OM coupling strength proportional to the steady state
amplitude of the cavity field due to linearization of the radiation pressure force and â j(b̂ j) and
â†

j (b̂
†
j) are the respective annihilation and creation operators for the optical (mechanical) modes

for each cavity. In the presence of the OM interaction of the form (1), the optical and mechanical
modes of each individual OM network will become quantum entangled. In this work we are
interested in achieving long-distance entanglement in coupled OM cavity arrays. Moreover, we
want to explore the influence of an all-optical feedback on inter-cavity entanglement. In the
presence of an all-optical feedback and under the Born–Markov approximation [50], the open
system dynamics of the coupled OM cavities is given by the following master equation:

dρ

dt
= − i[HI, ρ] − iκ[â1â†

2 ei(ωL2−ωL1 )t + â2â†
1 ei(ωL1−ωL2 )t , ρ]

+
√

0102

(
[â1ρ, â†

2] ei(ωL2−ωL1 )t + [â2, ρâ†
1] ei(ωL1−ωL2 )t

)
+

2∑
j=1

0 jD[â j ]ρ + γ j(n̄ j + 1)D[b̂ j ]ρ + γ j n̄ jD[b̂†
j ]ρ, (2)

where the linewidth of each OM cavity is given by 0 j while the mechanical resonators are
allowed to decay to a thermal bath with average thermal occupancy n̄ j at a rate γ j . The damping
superoperator in equation (2) D[A] is defined in the usual way by

D[A]ρ = Aρ A†
−

1
2(A† Aρ + ρ A† A). (3)

In the interaction picture of the unitary operator Û = e
∑2

j=1 i(1 j â
†
j â j +ωm j b̂†

j b̂ j )t , the master
equation (2) takes the form

dρ

dt
= −i

2∑
j=1

g j [(â j e−i1 j t + â†
j ei1 j t)(b̂ j e−iωm j t + b̂†

j eiωm j t
), ρ] − iκ[â1â†

2 ei(ωL2−ωL1 +12−11)t

+ â2â†
1 ei(ωL1−ωL2 +11−12)t , ρ] +

√
0102([â1ρ, â†

2] ei(ωL2−ωL1 +12−11)t + [â2, ρâ†
1]

× ei(ωL1−ωL2 +11−12)t) +
2∑

j=1

0 jD[â j ]ρ + γ (n̄ + 1)D[b̂ j ]ρ + γ n̄D[b̂†
j ]ρ. (4)

For simplicity, we take both OM systems to be identical such that �1 = �2, both
mechanical resonators have the same frequency, ωm j = ωm, mechanical damping rate γ j = γ

and thermal occupation number n̄ j = n̄. Each OM cavity is however driven on a different
sideband. In particular we drive OM 1 exclusively on the blue sideband, 11 = −ωm and OM 2
on the red sideband, 12 = ωm. Under the rotating-wave approximation (RWA) [45, 50], the OM
interaction simplifies to the following form:

H̃ I = g1(â1b̂1 + â†
1 b̂†

1) + g2(â
†
2 b̂2 + â2b̂†

2) (5)

4



New J. Phys. 16 (2014) 023009 C Joshi et al

and the master equation describing the open system dynamics of the coupled OM network takes
the following form:

dρ

dt
= − i[H̃ I, ρ] − iκ[â1â†

2 + â2â†
1, ρ] +

√
0102([â1ρ, â†

2] + [â2, ρâ†
1])

+
2∑

j=1

0 jD[â j ]ρ + γ (n̄ + 1)D[b̂ j ]ρ + γ n̄D[b̂†
j ]ρ. (6)

The first two commutators on the right hand side of the above equation denotes the unitary
evolution of the coupled OM network, the successive two commutators represents the
irreversible coupling between the optical modes of the first and the second cavity and the last
six terms takes into account the damping of optical and mechanical modes. Reversible coupling
between the optical modes can be generated either through evanescent coupling of the adjacent
optical modes or through an optical fiber [34]. Irreversible coupling between the source and the
driven cavity can be established using an optical circulator [45, 51]. A non-reciprocal optical
device such as Faraday rotator can be used to establish irreversible coupling between the optical
modes of two adjacent OM cavities.

This particular choice of detuning configurations in such a coupled array induces a
two mode squeezing interaction between the optical and mechanical modes in OM 1, and a
beam splitter interaction resulting in state transfer between optical and mechanical modes in
OM 2. This configuration of coupled dynamics has been analyzed in detail in [45], where
two independent coupling configurations between individual OM systems were analyzed, i.e.
the OM systems were considered to be either reversibly or irreversibly coupled via their
optical ports. In the present work, however we extend the consideration to an added coupling
channel between coupled OM systems 1 and 2. This additional coupling is engineered as an
unidirectional coupling emanating from the optical mode of OM cavity 1 to the optical mode
of OM cavity 2, while also maintaining a reversible coupling between the two inter cavity
optical modes: hence implementing an all-optical feedback loop [47] in the OM array. As has
been established previously, coupling between such driven OM systems results in distribution of
entanglement generated between optical and mechanical modes in OM cavity 1 over inter cavity
modes in the steady state [45]. However in the present work we are interested in exploring the
possibility of controlling/altering the steady state inter cavity phonon–phonon entanglement
via an all-optical feedback loop.

Alternatively such a network of coupled cascaded quantum systems shown in figure 1
can also be conveniently modeled using the SLH framework [52, 53]. H is the Hamiltonian
operator for the system, L is the coupling vector and S is the scattering matrix. The SLH
formalism is useful in forming reducible networks of coupled open quantum systems with the
objective of implementing quantum control analysis and design. In the SLH formalism, an open
quantum system [3] is described by a set of three parameters, G = (S, L , H) where S denotes
the scattering matrix, L is the coupling vector and H is the Hamiltonian operator for the system.
Hence the set of coupled quantum OM systems summarized in figure 1 forms a series product
connection under the SLH formalism [52]

G2 G G1 = (Seff, Leff, Heff)

=

(
S2S1, L2 + S2L1, H1 + H2 +

1

2i
(L2

†S2L1 − L1
†S2

†L2)

)
, (7)
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where the specific variables of the series product are Sj = I, Lj =
√

0 j â j corresponding to
each OM system and the combined coupling vector is Leff =

√
01â1 +

√
02â2. The Hamiltonian

operator of the combined system is given as

Heff = H̃ I + κ(â1â†
2 + â2â†

1) +
1

2i

(
L2

†S2L1 − L†
1S2L2

)
, (8)

where H̃I has been defined earlier in equation (5). The master equation of the reduced network
can then be deduced from the three variables as [52]

d

dt
ρ = i[ρ, Heff] +D[Leff]ρ. (9)

Substituting the expressions for Heff and D[Leff] in the above equation one gets

d

dt
ρ = − i[H̃ I, ρ] − iκ[â1â†

2 + â2â†
1, ρ] + 01D[â1]ρ + 02D[â2]ρ −

√
0102

2
[â1â†

2 − â2â†
1, ρ]

+
√

0102

(
â1ρâ†

2 −
1

2
â†

1 â2ρ −
1

2
ρâ†

1 â2

)
+
√

0102

(
â2ρâ†

1 −
1

2
â†

2 â1ρ −
1

2
ρâ†

2 â1

)
.

Simplifying the above equation we get

d

dt
ρ = − i[H̃ I, ρ] − iκ[â1â†

2 + â2â†
1, ρ] + 01D[â1]ρ + 02D[â2]ρ

+
√

0102(â1ρâ†
2 + â2ρâ†

1 − â1â†
2ρ − ρâ2â†

1). (10)

Taking into account the damping of mechanical modes b1 and b2 by coupling them to identical
independent thermal reservoirs, the dynamics of the coupled OM network is then given by

d

dt
ρ = −i[H̃ I, ρ] − iκ[â1â†

2 + â2â†
1, ρ] +

√
0102(â1ρâ†

2 + â2ρâ†
1 − â1â†

2ρ − ρâ2â†
1)

+
2∑

j=1

0 jD[â j ]ρ + γ (n̄ + 1)D[b̂ j ]ρ + γ n̄D[b̂†
j ]ρ. (11)

It is thus clear that the master equation (11) is identical to the master equation (6) of the OM
network.

It is easy to see from equation (6) that the Hamiltonian, the Lindblad operators and
the all-optical feedback loop are all bilinear in bosonic operators. Thus it is guaranteed
that if the coupled OM array is initially prepared in a Gaussian state, then the evolution
described by the master equation (6) maintains this Gaussian character. Thus to solve the
master equation (6) for an initial Gaussian state, it is consistent to make a Gaussian ansatz
for the normal-ordered quantum characteristic function of the following form χ(ε, η, x, y, t) =

exp[−zTA(t) z + izTh(t)], where A(t) is a time-dependent 8 × 8 matrix and h(t) is a 1 × 8
time-dependent vector and zT

= (ε, ε∗, η, η∗, x, x∗, y, y∗). An explicit solution of the master
equation (6) is outlined in appendix A. From the solution of the normal-ordered quantum
characteristic function it is a straightforward exercise to calculate all the correlators between
the desired modes.

To quantize the entanglement between any two modes, we utilize the logarithmic negativity
as a measure of entanglement for Gaussian states [54]. For a two-mode Gaussian continuous

6
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(a) n̄ = 0 (b) κ = 0.1

Figure 2. Steady state entanglement between the two mechanical modes in presence
(solid) and absence (dashed) of an all-optical feedback. Physical parameters (in units of
01 = 02 = 0): γ1 = γ2 = 10−2, g1 = 0.01 and g2 = 0.05.

variable state characterized by its covariance matrix V, the logarithmic negativity is computed
as N = Max[0, −log(2ν−)] [54] where ν− is the smallest of the symplectic eigenvalues of

the covariance matrix given by ν− =

√
σ/2 −

√
(σ 2 − 4 DetV)/2. Here σ = Det A1 + Det B1 −

2 Det C1 and V =

(
A1

CT
1

C1
B1

)
, where A1 (B1) accounts for the local variances of the two modes and

C1 for the inter-mode correlations.
We compute logarithmic negativity measuring the quantum entanglement between the

mechanical modes b1 and b2 in the steady state and in figures 2(a) and (b) plot it as a function
of the reversible coupling strength between the optical modes κ and the thermal occupancy
of each mechanical mode n̄. We find finite steady state entanglement between the two inter
cavity mechanical modes in the steady state. We observe the entanglement persists for a finite
amount of non-zero thermal occupation number n̄. We also note the entanglement between
the mechanical modes is higher for smaller values of coupling strength κ between the optical
modes.

To explore the advantage of using an all-optical feedback, in figures 2(a) and (b) we
also plot the entanglement between the mechanical modes b1 and b2 in absence of all-optical
feedback. Clearly the presence of feedback increases the degree of entanglement between inter
cavity phonons. It can be seen from figure 2(a) that presence of reversible and irreversible
couplings between the optical modes does have an impact on the entanglement between the
mechanical modes. The influence is clearly marked for small values of κ and under which case
feedback generates stronger entanglement between the mechanical modes. From figure 2(b) it
is clear that an all-optical feedback results in generating entangled state of mechanical modes
which is more robust to thermal fluctuations.

It is also interesting to see how the inter cavity phonon–phonon entanglement N , varies as
a function of the different OM coupling strengths g1 and g2 in the OM array. These are plotted
in figures 3(a) and (b) in the presence and absence of feedback, respectively. Hence the added
coupling channel between the inter cavity optical modes forming the feedback loop, can be used
to increase the steady state entanglement in such an OM array.

To gain some more insight into the constructive role played by an all-optical feedback
in coupled OM array we consider a pragmatic regime where the linewidth of each cavity
mode is very large compared to all other system parameters. Under this regime both the cavity

7
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(a) (b)

Figure 3. Steady state entanglement between the two mechanical modes plotted as a
function of g1 and g2 in (a) presence and (b) absence of an all-optical feedback. Physical
parameters (in units of 01 = 02 = 0): γ1 = γ2 = 10−2, κ = 0.1 and n̄ = 0.

κ

| b1b2 |

Figure 4. Absolute value of steady state correlator 〈b̂1b̂2〉 plotted as a function of κ in
presence (solid) and absence (dashed) of an all-optical feedback. Physical parameters
(in units of 01 = 02 = 0): g1 = 0.01, g2 = 0.05, γ1 = γ2 = 10−2 and n̄ = 0.

modes can be adiabatically eliminated and stochastic differential equations for the mechanical
modes can be arrived at. The detailed calculation is outlined in appendix B. The effect of
feedback is clearly imprinted on the steady state correlators between the mechanical modes
given by equations (B.5) and (B.6). The steady state correlator |〈b̂1b̂2〉| in presence and absence
of feedback is plotted in figure 4. As can be clearly seen from figure 4, feedback has a
clear influence on quantum correlations between the two mechanical modes. In particular for
low values of κ , feedback helps in building stronger quantum correlations between the two
mechanical modes. For values of κ ∼ 0, there is no evident difference in the strength of quantum
correlations between the mechanical modes in the presence and absence of all-optical feedback
in OM network array. This observation is also imprinted in figure 2(a).

2.2. Mechanics assisted optical coupling

In the present section we shall discuss the effect of all-optical feedback in a different setting of
coupled optical and mechanical modes. We consider a scenario where the two optical modes
are coupled to a common mechanical mode with a bilinear interaction as shown in figure 5. The
Hamiltonian describing the interaction between the three coupled bosonic modes thus takes the

8
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Figure 5. Model 2: implementing an all-optical feedback scheme in an OM network.
Two optical modes â1,2 are coupled reversibly via a common mechanical mode b̂
forming an OM network. An additional irreversible coupling is channeled with mode
a1 driving mode a2 forming the feedback loop. The OM interaction on either side of the
mechanical element is denoted by a coupling strength g j .

following form:

H̃ =

∑
j=1,2

1 j â
†
j â j + ωm b̂†b̂ + (g1(â

†
1 + â1) + g2(â2 + â†

2))(b̂ + b̂†), (12)

where 1 j = � j − ωL j , where ωL j is the frequency of the external laser drive pumping the j th
cavity whose resonance frequency is � j . The above Hamiltonian, for instance, can also describe
the coherent coupling between three bilinearly coupled harmonic oscillators arranged in an open
chain. In pursuit of main aim of this work we consider a scenario where in addition to an indirect
interaction between the two optical modes, the two optical cavity modes also interact with a
forward feed coupling. Under the Born–Markov approximation, the open system dynamics of
the coupled OM cavities then takes the following form:

dρ

dt
= −i[H̃ , ρ] +

√
0102[â1ρ, â†

2] ei(ωL2−ωL1 )t +
√

0102[â2, ρâ†
1] ei(ωL1−ωL2 )t

+
∑
j=1,2

0 j

2
Lâ j ρ +

γ1

2
(n̄ + 1)Lb̂ρ +

γ1

2
(n̄)Lb̂†ρ. (13)

Working in the interaction picture of the bare frequency of the optical and the mechanical modes
and further choosing the physical parameters such that 11 = −ωm and 12 = ωm, then under the
RWA the coupled system dynamics is governed by the following master equation:

dρ

dt
= −ig1[â†

1 b̂† + â1b̂, ρ] − ig2[â†
2 b̂ + b̂†â2, ρ] +

√
0102[â1ρ, â†

2] +
√

0102[â2, ρâ†
1]

+
∑
j=1,2

0 j

2
Lâ j ρ +

γ1

2
(n̄ + 1)Lb̂ρ +

γ1

2
(n̄)Lb̂†ρ, (14)

where an explicit time independent form of the master equation has been arrived at by choosing
the physical parameters such that �1 = �2 = (ωL1 + ωL2)/2 and ωm = (ωL1 − ωL2)/2. Taking

9
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N

g1

(a) (b)

Figure 6. Steady state entanglement between the modes (a) â1, b̂ and (b) â2, b̂ plotted
as a function of g1 in presence (solid) ssssand absence (dashed) of feedback. Physical
parameters (in units of 01 = 02 = 0): g2 = 0.05, γ1 = γ2 = 10−2 and n̄ = 0.

a similar approach to the previous section, it is possible to solve the master equation (14) and
the solution is outlined in appendix C.

From the steady state solution of the master equation (14) we compute the logarithmic
negativity between the optical and mechanical modes. We plot the logarithmic negativity as an
indicator of steady state entanglement between the optical and mechanical modes as a function
of OM coupling strength g1 in figure 6. The entanglement between the modes a1 and b is plotted
in figure 6(a), while figure 6(b) shows the entanglement between the modes a2 and b. Each figure
compares how the steady state entanglement between the relevant mode varies in the presence as
well as absence of all-optical feedback. We note that feedback does not bring about qualitative
change in the steady state of optical and mechanical modes a1, b. On the other hand we observe
that the presence of feedback generates entanglement between otherwise unentangled modes
a2 and b. The degree of entanglement between the modes a2 and a1 (not shown here) remains
relatively small both in the presence and absence of the all-optical feedback.

Some more insight into understanding the role of all-optical feedback in generating
quantum entanglement between modes a2 and b can be obtained by writing Langevin’s
equations of motion for the modes a2 and b. In the absence of an all-optical feedback and
adiabatically eliminating the cavity mode a1 results in

d

dt
â2 = −ig2b̂ −

0

2
â2 +

√
0âin(2, t), (15)

d

dt
b̂ = −ig2â2 −

(
γ

2
− 2

g2
1

0

)
b̂ −

2ig1
√

0
â†

in(1, t) +
√

γ b̂in(1, t). (16)

It is a straightforward exercise to arrive at steady state expressions for the modes a2 and b.
In the steady state one obtains(

â2(∞)

b̂(∞)

)
= lim

t→∞

∫
∞

0

(
x1(t ′) x2(t ′)

x3(t ′) x4(t ′)

)
A(t − t ′) dt ′,

A(t − t ′) =

( √
0âin(2, t − t ′)

(−2ig1/
√

0)â†
in(1, t − t ′) +

√
γ b̂in(1, t − t ′)

)
, (17)(

x1(t ′) x2(t ′)

x3(t ′) x4(t ′)

)
= eBt ′, B =

(
−0/2 −ig2

−ig2 −(γ /2 − 2g2
1/0)

)
.

10
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It is easy to verify that presence of completely uncorrelated noise operators âin(1, t), âin(2, t)
results in 〈â2(∞)b̂(∞)〉 = 0. Thus in absence of all-optical feedback between the optical modes
results in an uncorrelated steady state of modes a2 and b.

On the other hand, in the presence of all-optical feedback between the optical modes a1

and a2 adiabatically eliminating the cavity mode a1 results in

d

dt


â2

â†
2

b̂

b̂†

=


−0/2 0 −ig2 (2ig1/0)

√
02

0 −0/2 −(2ig1/0)
√

02 ig2

−ig2 0 −(γ /2 − 2g2
1/0) 0

0 ig2 0 −(γ /2 − 2g2
1/0)




â2

â†
2

b̂

b̂†



+


−

√
0âin(1, t)

−
√

0â†
in(1, t)

√
γ b̂in(1, t) − (2ig1/

√
0)â†

in(1, t)
√

γ b̂†
in(1, t) + (2ig1/

√
0)âin(1, t)

 . (18)

It is easy to obtain expressions for steady state correlations between modes a2 and b. Assuming
that the modes a2 and b are in contact with a zero-temperature reservoir one arrives at

〈â2(∞)b̂(∞)〉 =

∫
∞

0
(0y1,1 y3,2 + 2ig1 y1,1 y3,3 + γ y1,3 y3,4 − 2ig1 y1,4 y3,2 +

4g2
1

0
y1,4 y3,3) dt ′,


y1,1 y1,2 y1,3 y1,4

y2,1 y2,2 y2,3 y2,4

y3,1 y3,2 y3,3 y3,4

y4,1 y4,2 y4,3 y4,4

= eCt ′,

C =


−0/2 0 −ig2 (2ig1/0)

√
02

0 −0/2 −(2ig1/0)
√

02 ig2

−ig2 0 −(γ /2 − 2g2
1/0) 0

0 ig2 0 −(γ /2 − 2g2
1/0)

 . (19)

Thus in the presence of all-optical feedback between the optical modes a1 and a2, we clearly
have a non-vanishing steady state correlation function between the modes a2 and b. This feature
is corroborated in figure 6(b).

3. N-coupled OM cavities

We now extend our analysis to study the influence of all-optical feedback on a large network of
coupled OM cavities. We consider an array of N-OM ports. Each ‘port’ itself comprises of a unit
formed by two OM cavities coupled through an all-optical feedback, as described in section 2.1.
To invoke a genuine OM array with non-trivial quantum features in the steady state, we consider
a scenario where there is a finite inter-mode coupling between different ports. In the absence
of an inter-port coupling, quantum mechanical evolution of each individual port is described by

11
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Figure 7. A schematic of a model of coupled OM array. Each box denotes an OM ‘port’
which is coupled to its neighboring ‘ports’ with coupling strength χ .

the master equation (6). Denoting ρn for the state of nth port in a network with N-coupled OM
cavities, the joint state of the OM array is thus simply given by ρ = ⊗

N
n=1ρn. The optical and

mechanical modes associated with an i th ‘port’ are labeled ai,1, ai,2 and bi,1, bi,2, respectively.
The inter-port coupling between i th and i+1th ports then takes the form

Vint = χ(a†
i,2ai+1,1 + a†

i+1,1ai,2), (20)

where χ is the coupling strength. A schematic of such a model is shown in figure 7. This sets the
stage to understand the influence of all-optical feedback on a network of coupled OM cavities.
We now numerically solve the master equation for the network of coupled OM cavities with
inter-port coupling of the form (20), where each individual port is evolving under the master
equation (6). From the solution of the master equation we compute the steady state entanglement
between distant mechanical modes and the result is plotted in figure 8. Our simulations show
that entanglement can only be generated between mechanical modes of different parity, i.e.
bi,1 and bi+1,2. This result arises because entanglement can only be generated between any
two oscillators when one OM system driven on the blue sideband is coupled to the next OM
system driven on the red sideband, and vice versa. However driving any two oscillators on the
same sideband, does not result in a distribution or generation of entanglement [45]. Therefore
mechanical modes such as bi,1 and bi+1,1 remain separable for all parameters regardless of the
absence or presence of the feedback loop.

As illustrated in figure 8, we find once again that an all-optical feedback loop helps
in generating stronger quantum entanglement between mechanical oscillators belonging to
different ports. This observation follows from the results displayed in figure 2 which show
that the presence of feedback enhances the entanglement between the inter cavity mechanical
modes in each port. Hence in the OM array composed of N-ports, where each port has a
similar topology to that discussed in section 2.1, we notice stronger entanglement between
mechanical modes bi,1 and bi+1,2. Another noteworthy feature of figure 8 is that for smaller
values of reversible coupling κ between the optical modes, more entanglement is generated
between distant mechanical modes. However, the spatial range of entanglement is short. On the
other hand, for larger values of inter-optical coupling κ (∝ χ ) spatial range of entanglement
between the mechanical modes grows. This, however, happens at the cost of reduced magnitude
of entanglement between the mechanical modes.

12
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Figure 8. Steady state logarithmic negativityN1,d plotted as a measure of entanglement
between first mechanical oscillator and even-numbered oscillator in a chain of coupled
OM ‘ports’ in the presence (solid) and absence (dashed) of all optical feedback for
different values of κ . Physical parameters (in units of 01 = 02 = 0): g1 = 0.01,
g2 = 0.05, γ1 = γ2 = 10−2, n̄ = 0, χ = κ and number of ports N = 10.

4. Discussion and summary

Optomechanics is rapidly emerging as an exciting branch of quantum technology where it
is possible to engineer unique hybrid quantum devices composed of seemingly incompatible
physical systems. In the present work we have focused on a regime where each individual
OM cavity is very strongly pumped and thus allowing us to linearize the inherently nonlinear
interaction between the optical and the mechanical modes. It should, however, be noted that
there has also been interest in exploring the nonlinear OM interaction by going beyond this
linearization technique and thus allowing one to explore the non-Gaussian steady states of OM
cavities [55, 56].

Expanding from previous work on distribution of entanglement in OM arrays, our scheme
illustrates an all-optical feedback can be implemented to control the distributed entanglement
in coupled OM arrays as well as generate otherwise non-existent quantum correlations as in the
mechanics assisted OM interaction scheme. It should also be noted that our control protocols
apply equally well to hybrid optical–microwave schemes as in the recent experiments [48].
Our scheme involving an all-optical feedback has a clear advantage in generating spatially
separated macroscopic entangled states. In this work we have shown that using a cascaded
coupling between the optical modes, the degree of quantum correlations in an OM network
can be further enhanced. As shown in figures 2 and 3, using an all-optical feedback results
in generating stronger entanglement between distant mechanical modes and is more robust
to thermal fluctuations of the mechanical resonators. The advantage of using an all-optical
feedback is clearly imprinted in the physical regime when the reversible coupling between the
optical modes is small. We believe this is not a handicap for our scheme and in fact provides
more flexibility in choosing the separation between distant nodes of an OM network. For
an alternate topology considered and as shown in figure 6, we again find that an all-optical
feedback may help in generating quantum correlations between distant optical and mechanical
modes. We, however, do note that for the range of parameters considered in figure 6 steady
state logarithmic negativity is one order of magnitude smaller as compared to figures 2 and 3.
This brings us closer to make a short remark on the physical meaning of non-zero value of

13



New J. Phys. 16 (2014) 023009 C Joshi et al

logarithmic negativity and a possible way to enhance entanglement between the mechanical
modes.

As is well established now quantum entanglement is a vital requirement for the realization
of various tasks including quantum cryptography, quantum metrology and quantum computing.
However, entanglement is not very robust to environment induced decoherence and thus
generally requires entanglement distillation as an auxiliary tool to counteract the degradation
of coherence. Entanglement distillation refers to extracting a small number of maximally
entangled states from a larger ensemble of weakly entangled states [57]. Logarithmic negativity,
on the other hand, provides an upper-bound on the amount of distillable entanglement [58].
Thus one can make use of continuous variable entanglement distillation protocol to increase
the entanglement of the shared state [59]. It should be mentioned that for distilling
Gaussian continuous variable states, non-Gaussian operations including photon addition/photon
subtraction needs to be employed [60]. An alternative approach is based on distilling Gaussian
entanglement using quantum memory [61].

The ability to entangle a distributed array of mechanical elements will provide a path to new
kinds of quantum enabled sensors. The Gaussian entanglement between harmonic oscillators
that we have discussed in this paper is completely analogous to Gaussian entanglement for
multi mode light fields. The enhanced metrology schemes that have been proposed in that case,
for example [62], can carry over to the case of mechanical modes.

Since it is comparatively easier to distill and detect quantum correlations between optical
modes, as compared to directly detecting quantum entanglement between mechanical modes,
it has been suggested to swap the non-local correlations from the mechanical modes back to
the optical modes [34, 37, 44]. As shown in figure 9 this can, for instance, be implemented
using two auxiliary light modes, each initially prepared in classical uncorrelated states. These
auxiliary modes can be two modes of distant cavities, and the geometry so arranged that each
entangled mirror couples independently to the two modes. The non-local correlations may then
be transferred from the movable mirrors to the initially uncorrelated auxiliary modes, which
may eventually become entangled. Quantum correlated optical modes can then be eventually
distilled. Thus, using standard homodyne measurement techniques, the entire correlation matrix
of the two optical auxiliary modes can be reconstructed. A presence of non-zero quantum
correlations between these optical modes will be an indirect signature of non-zero quantum
correlations between the mechanical modes. The setup shown in figure 9 thus can also be used
to ascertain the entanglement between the mechanical modes.

In this work we have outlined a possibility of generating remote macroscopic
entanglement. The possibility of generating such macroscopic superpositions could shed light
on understanding the mysteries of nature [1] and well be a useful resource in the construction
of long-distance quantum communication networks [3]. The model of OM network discussed
in this work is general and we believe the ideas presented here could potentially be tested
in number of physical settings. The parameters we have considered to describe the all-
optical feedback scheme in this work do not place any stringent requirements on the degree
of OM coupling strength nor the mechanical damping. Hence the ideas proposed in this
paper would be suitable to a number of existing OM systems [63–65]. Comparing specific
parameters from Chan et al [65] where mechanical damping γ = 7.5 kHz for cavity damping
rate 0/2π = 214 MHz and OM coupling strength g = 1.1 MHz fit in the regime of parameters
we have considered in our calculations. A suitable system to realize our scheme would be
the implementation of cavity optomechanics using ultra-cold atoms as discussed in [64].
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Figure 9. A schematic of the scheme to detect quantum correlations between the
mechanical modes of distant OM cavities.

Mechanics assisted coupling between the optical modes as required in the topology shown
in figure 5 can be achieved using collective vibrational degree of freedom of an ensemble
of ultra-cold atoms [64]. Another interesting test-bed for our results could be provided by
optomechanical crystal (OMC) array which is a periodic structure that comprises both a
photonic and a phononic crystal [66]. Coherent coupling between the photons and phonons
in the crystal provides the ingredients for the OM interaction discussed in this work.

Other than creating massive quantum mechanical superposition of optical and mechanical
modes, OM interaction provides other interesting avenues for implementing various tasks of
quantum information processing. Storing and on-demand retrieval of quantum light, without
compromising with its quantum character, has attracted wide attention both in the fields of
quantum optics and quantum information processing [67, 68]. When it comes to implementing
quantum light memory, electromagnetically induced transparency (EIT) is a much favored
technique [69], where one can retain the large and highly desirable nonlinear optical properties
associated with the resonant response of a material system. In analogy to the EIT in the
atomic medium, optomechanically induced transparency has been experimentally demonstrated
in [70]. Moreover as illustrated in [66], an optical waveguide can be coupled to an OMC array
and quantum state of the light from the waveguide can be coherently transferred onto long-
lived mechanical vibrations of the OMC array. OM transducers provides another promising
application where coherent interaction between optics and mechanics can be exploited. As
proposed in [3], an OM network can be employed to mediate interactions between distant
nodes of a quantum network. Solid state qubits or electronic spin/charge degrees of freedom
could form nodes of the network. Coupling can be achieved between (a) the evanescent field of
the microcavity and motion of the mechanical resonator and (b) also between local nodes and
vibrational degree of freedom of the mechanical resonator. Thus, indirect interaction mediated
via mechanical resonator can then be set between optical mode and a distant node of the
quantum network.

To summarize we have analyzed the influence of an all-optical feedback loop on the steady
state dynamics of OM arrays. We considered different topologies forming OM networks and
found that entanglement can be distributed over the chain of modes in the steady state and at
finite temperatures. This opens up an interesting possibility to study spatially separated massive
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Schrödinger cat states. In each case our results demonstrate that all-optical feedback can be used
to enhance and thus control entanglement between inter cavity mechanical and optical modes.
For the OM network resulting from two optical modes with a common mechanical element,
we note that the presence of feedback in fact generates entanglement between the optical mode
a2 and mechanics b which otherwise remain unentangled. We have also extended the analysis
to the case of an OM network comprised of N-OM ports. We have shown that an all-optical
feedback also helps in distributing stronger entanglement between inter cavity mechanical
cavity modes. To conclude, we believe that the experimental demonstration of the quantum
nature of macroscopic mechanical objects would help us to test long-standing questions about
macroscopic quantum coherence and long-lived mechanical states.
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Appendix A. Solution of the master equation for first OM network

To solve the master equation (6) we make a Gaussian ansatz for the quantum characteristic
function of the following form χ(ε, η, x, y, t) = exp[−zTA(t) z + izTh(t)], where A(t) is
a time-dependent 8 × 8 matrix and h(t) is a 1 × 8 time-dependent vector and zT

=

(ε, ε∗, η, η∗, x, x∗, y, y∗). The corresponding partial differential equation for χ(ε, η, x, y, t)
then becomes

∂

∂t
χ(ε, η, x, y, t) = zTNzχ(ε, η, x, y, t) + zTM∇χ(ε, η, x, y, t), (A.1)

where ∇ =

(
∂

∂ε
, ∂

∂ε∗ ,
∂

∂η
, ∂

∂η∗ ,
∂

∂x ,
∂

∂x∗ ,
∂

∂y ,
∂

∂y∗

T
)

N =



0 0 ig1/2 0 0 0 0 0
0 0 0 −ig1/2 0 0 0 0

ig1/2 0 0 −γ n̄/2 0 0 0 0
0 −ig1/2 −γ n̄/2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −γ n̄/2
0 0 0 0 0 0 −γ n̄/2 0


, (A.2)

M =



−01/2 0 0 −ig1 iκ 0 0 0
0 −01/2 ig1 0 0 −iκ 0 0
0 −ig1 −γ /2 0 0 0 0 0

ig1 0 0 −γ /2 0 0 0 0
iκ −

√
0102 0 0 0 −02/2 0 ig2 0

0 −iκ −
√

0102 0 0 0 −02/2 0 −ig2

0 0 0 0 ig2 0 −γ /2 0
0 0 0 0 0 −ig2 0 −γ /2


.
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Using the Gaussian ansatz for the quantum characteristic function χ(ε, η, x, y, t), it easily
follows that

∂χ

∂t
= −zT dA

dt
zχ + izT dh

dt
χ, ∇χ = −2Azχ + ihχ. (A.3)

Using (A.3), the partial differential equation (A.1) for χ becomes

−zT dA
dt

zχ + izT dh

dt
χ = zTNzχ − 2zTMAzχ + izTMhχ. (A.4)

Recalling that A(t) is symmetric, the symmetric part of the (A.4) results in following two matrix
differential equations:

−
dA(t)

dt
= −MA − AMT + N;

dh

dt
= Mh. (A.5)

The above coupled matrix differential equations can now be numerically solved to get the
time evolved quantum characteristic function for the coupled OM cavities. For an initial
Gaussian state evolving according to master equation (A.5), it is sufficient to fully characterize
the quantum correlations between various optical and mechanical modes in terms of their
Wigner covariance matrix. The covariance matrix V is a 8 × 8 real symmetric matrix Vi, j =

(〈Ri R j + R j Ri〉)/2 where i, jε{a, b} and RT
= (q̂a, p̂a, q̂b, p̂b). Here q̂i and p̂i are the position

and momentum quadratures of the i th mode. From the expression of the quantum characteristic
function it is straightforward to extract the Wigner covariance matrix as follows, 〈b̂†m

1 b̂n
2〉 =

( ∂

∂η
)m(− ∂

∂y∗ )
nχ(ε = 0, x = 0, t)|η=0,y=0.

Appendix B. Influence of feedback

In this section we study in more detail how feedback affects the steady state correlations between
the mechanical modes b1 and b2. We focus our attention to a regime where each cavity mode has
a large line width and can thus be adiabatically eliminated. An equivalent way of describing the
dynamics of coupled OM network array is to write the following coupled Langevin equations:

d

dt
â1 = −ig1b̂†

1 − iκ â2 −
0

2
â1 +

√
0âin(1, t), (B.1)

d

dt
â2 = −ig2b̂2 − iκ â1 −

0

2
â2 −

√

02â1 +
√

0âin(1, t − τ), (B.2)

d

dt
b̂1 = −ig1â†

1 −
γ

2
b̂1 +

√
γ b̂in(1, t), (B.3)

d

dt
b̂2 = −ig2â2 −

γ

2
b̂2 +

√
γ b̂in(2, t), (B.4)

where for simplifying the calculations we have assume that γ1 = γ2 = γ and 01 = 02 = 0.
Neglecting the time delay between the source and the driven cavity τ and adiabatically
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eliminating both the cavity modes â1 and â2, Langevin equations for the mechanical modes
become

d

dt
b̂†

1 =

(
−

γ

2
+

0

2

g2
1

σ ∗

)
b̂†

1 +
√

γ b̂†
in(1, t) +

(
i

g1

2σ ∗
03/2 + g1

κ
√

0

σ ∗

)
âin − iĝ1ĝ2

κ

σ ∗
b̂2,

d

dt
b̂2 =

(
−

γ

2
−

0

2

g2
2

σ ∗

)
b̂2 +

√
γ b̂in(2, t) + g1g2

(
√

02 + iκ)

σ ∗
b̂†

1

+

(
ig2

√
0

(
√

02 + iκ)

σ ∗
− ig2

03/2

2σ ∗

)
âin,

where σ = 02/4 + i
√

02κ + κ2.
After a lengthy but otherwise straightforward exercise it is possible to obtain the steady

state correlators between the two mechanical modes. Assuming that both the cavity modes
are in contact with a zero temperature reservoir then the only non-zero correlator between the
mechanical modes takes the form

〈b̂1b̂2〉feedback=0 =
4iκg1g2

α2
γ

(
0(g2

1 + g2
2)

2β2

β1
+ α

)
β2

β2
1 − 4β2

2

, (B.5)

〈b̂1b̂2〉feedback 6=0 =
4(

√
02 + iκ)g1g2

α2 − i16κ
√

02g2
1g2

2

γ

(
0(g2

1 + g2
2)

2β̃2

β̃1

+
√

α2 − i16κ
√

02g2
1g2

2

)
β̃2

β̃2
1 − 4β̃2

2

,

(B.6)

where

β1 = γ + 20
(g2

2 − g2
1)

02 + 4κ2
, (B.7)

β2 =
α

02 + 4κ2
, (B.8)

β̃1 = γ + 20
(g2

2 − g2
1)

02 + 4κ2 − i4κ
√

02
, (B.9)

β̃2 =

√
α2 − i16κ

√
02g2

1g2
2

02 + 4κ2 − i4κ
√

02
, (B.10)

α =

√
02g4

1 + 2(02 + 8κ2)g2
1g2

2 + 02g4
2. (B.11)
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Appendix C. Solution of the master equation for second OM network

As done before, to solve the master equation (14) we again convert it into a partial differential
equation for the quantum characteristic function. Following the same steps as outlined in
the previous section we again define a normal-ordered characteristic function χ(ε, η, x, t) =

〈eεâ†
1 e−ε∗â1 eηâ†

2 e−η∗â2 exb̂†
e−x∗b̂

〉. Now getting an expression for the time evolved quantum
characteristic function reduces to solving the following coupled matrix differential equations

∂

∂t
χ(ε, η, x, t) = zTNzχ(ε, η, x, t) + zTM∇χ(ε, η, x, t), (C.1)

where ∇ = ( ∂

∂ε
, ∂

∂ε∗ ,
∂

∂x ,
∂

∂x∗ ,
∂

∂η
, ∂

∂η∗ )
T

N =


0 0 ig1/2 0 0 0
0 0 0 −ig1/2 0 0

ig1/2 0 0 −γ1n̄/2 0 0
0 −ig1/2 −γ1n̄/2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (C.2)

M =


−01/2 0 0 −ig1 0 0

0 −01/2 ig1 0 0 0
0 −ig1 −γ1/2 0 ig2 0

ig1 0 0 −γ1/2 0 −ig2

−
√

0102 0 ig2 0 −02/2 0
0 −

√
0102 0 −ig2 0 −02/2

 .

References

[1] Zurek W H 1991 Decoherence and the transition from quantum to classical Phys. Today 44 36
[2] Romero-Isart O, Panzer A C, Blaser F, Kaltenbaek R, Kiesel N, Aspelmeyer M and Cirac J I 2011 Phys. Rev.

Lett. 107 020405
[3] Stannigel K, Rabl P, Sørensen A S, Zoller P and Lukin M D 2010 Phys. Rev. Lett. 105 220501
[4] Bagheri M, Poot M, Mo L, Pernice W P H and Tang H X 2011 Nature Nanotechnol. 6 726
[5] Woolley M J, Milburn G J and Caves C M 2008 New J. Phys. 12 125018
[6] Gavartin E, Verlot P and Kippenberg T J 2012 Nature Nanotechnol. 7 509
[7] Treutlein P, Hunger D, Camerer S, Hänsch T W and Reichel J 2007 Phys. Rev. Lett. 99 140403
[8] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[9] Murch K W, Moore K L, Gupta S and Stamper-Kurn D M 2008 Nature Phys. 4 561

[10] Joshi C, Hutter A, Zimmer F E, Jonson M, Andersson E and Öhberg P 2010 Phys Rev. A 82 043846
[11] Majer J et al 2007 Nature 449 443
[12] Marquardt F and Girvin S M 2009 Physics 2 40
[13] Favero I and Karrai K 2009 Nature Photon 3 201
[14] Jiang X, Lin Q, Rosenberg J, Vahala K and Painter O 2009 Opt. Express 17 20911
[15] Wiederhecker G S, Chen L, Gondarenko A and Lipson M 2009 Nature 462 633
[16] Ma R, Schliesser A, Del’Haye P, Dabirian A, Anetsberger G and Kippenberg T 2007 Opt. Lett. 32 2200
[17] Park Y-S and Wang H 2009 Nature Phys. 5 489

19

http://dx.doi.org/10.1063/1.881293
http://dx.doi.org/10.1103/PhysRevLett.107.020405
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1038/nnano.2011.180
http://dx.doi.org/10.1088/1367-2630/10/12/125018
http://dx.doi.org/10.1038/nnano.2012.97
http://dx.doi.org/10.1103/PhysRevLett.99.140403
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1103/PhysRevA.82.043846
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1038/nphoton.2009.42
http://dx.doi.org/10.1364/OE.17.020911
http://dx.doi.org/10.1038/nature08584
http://dx.doi.org/10.1364/OL.32.002200
http://dx.doi.org/10.1038/nphys1303


New J. Phys. 16 (2014) 023009 C Joshi et al

[18] Kippenberg T J and Vahala K J 2008 Science 321 1172
[19] Romero-Isart O, Pflanzer A C, Juan M L, Quidant R, Kiesel N, Aspelmeyer M and Cirac J I 2011 Phys.

Rev. A 83 013803
[20] Romero-Isart O, Juan M L, Quidant R and Cirac J I 2010 New J. Phys. 12 033105
[21] Chang D E, Ni K-K, Painter O and Kimble H J 2012 New J. Phys. 14 045002
[22] Chang D E et al 2010 Proc. Natl Acad. Sci. USA 107 1005–10
[23] Corbitt T et al 2007 Phys. Rev. Lett. 98 150802
[24] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175

Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
Marshall W, Simon C, Penrose R and Bouwmeester D 2003 Phys. Rev. Lett. 91 130401
Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J and Aspelmeyer M 2007 Phys. Rev. Lett.

99 250401
Hartmann M J and Plenio M B 2008 Phys. Rev. Lett. 101 200503

[25] Schliesser A, Del’Haye P, Nooshi N, Vahala K J and Kippenberg T J 2006 Phys. Rev. Lett. 97 243905
[26] Eichenfield M, Michail C P, Perahia R and Painter O 2007 Nature Photon. 1 416–22
[27] Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724
[28] Gorodetksy M L, Schliesser A, Anetsberger G, Deleglise S and Kippenberg T J 2010 Opt. Express 18 23236
[29] Thompson J D et al 2008 Nature 452 72–5
[30] Cleland A N, Aldridge J S, Driscoll D C and Gossard A C 2009 Appl. Phys. Lett. 81 1699
[31] LaHaye M D, Buu O, Camarota B and Schwab K C 2004 Science 304 74
[32] Naik A, Buu O, LaHaye M D, Armour A D, Clerk A A, Blencowe M P and Schwab K C 2006 Nature 443 193
[33] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
[34] Joshi C, Larson J, Jonson M, Andersson E and Öhberg P 2012 Phys. Rev. A 85 033805
[35] Aspelmeyer M et al 2010 J. Opt. Soc. Am. B 27 A189–97
[36] Aspelmeyer M, Kippenberg T J and Marquardt F 2013 arXiv:1303.0733
[37] Vitali D et al 2007 Phys. Rev. Lett. 98 030405
[38] Ebhardt H M, Rehbein H, Schnabel R, Danzmann K and Chen Y 2008 Phys. Rev. Lett. 100 013601
[39] Vitali D, Mancini S and Tombesi P 2007 J. Phys. A: Math. Theor. 40 8055
[40] Rogers B, Paternostro M, Palma G M and De Chira G 2012 Phys. Rev. A 86 042323
[41] Genes C et al 2009 Adv. At. Mol. Opt. Phys. 57 33
[42] Tian L 2012 Phys. Rev. Lett. 108 153604
[43] Tian L 2013 Phys. Rev. Lett. 110 233602
[44] Mazzola L and Paternostro M 2011 Phys. Rev. A 83 062335
[45] Akram U, Munro W, Nemoto K and Milburn G J 2012 Phys. Rev. A 86 042306
[46] Miao H, Srinivasan K and Aksyuk V 2008 New J. Phys. 14 075015
[47] Wiseman H M and Milburn G J 1994 Phys. Rev. A 49 4110
[48] Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A and Lehnert K W 2013

arXiv:1310.5276
[49] Barzanjeh Sh, Abdi M, Milburn G J, Vitali D and Tombesi P 2012 Phys. Rev. Lett. 109 130503
[50] Walls D F and Milburn G J 2008 Quantum Optics (Heidelberg: Springer)
[51] Akram U, Kiesel N, Aspelmeyer M and Milburn G J 2010 New J. Phys. 12 083030
[52] Gough J and James M R 2009 IEEE Trans. Autom. Control 54 2530
[53] James M R and Gough J E 2010 Trans. Autom. IEEE. Control 55 1806
[54] Adesso G and Illuminati F 2007 J. Phys. A: Math. Theor. 40 7821
[55] Nunnenkamp A, Børkje K, Harris J G E and Girvin S M 2010 Phys. Rev. A 82 021806
[56] Børkje K, Nunnenkamp A, Teufel J D and Girvin S M 2013 Phys. Rev. Lett. 111 053603
[57] Horodecki M, Horodecki P and Horodecki R 1997 Phys. Rev. Lett. 78 574
[58] Audenaert K, Plenio M B and Eisert J 2003 Phys. Rev. Lett. 90 027901
[59] Opatrný T, Kurizki G and Welsch D-G 2000 Phys. Rev. A 61 032302

20

http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1103/PhysRevA.83.013803
http://dx.doi.org/10.1088/1367-2630/12/3/033015
http://dx.doi.org/10.1088/1367-2630/14/4/045002
http://dx.doi.org/10.1073/pnas.0912969107
http://dx.doi.org/10.1103/PhysRevLett.98.150802
http://dx.doi.org/10.1103/PhysRevA.56.4175
http://dx.doi.org/10.1103/PhysRevLett.88.120401
http://dx.doi.org/10.1103/PhysRevLett.91.130401
http://dx.doi.org/10.1103/PhysRevLett.99.250401
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevLett.97.243905
http://dx.doi.org/10.1038/nphoton.2007.96
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1364/OE.18.023236
http://dx.doi.org/10.1038/nature06715
http://dx.doi.org/10.1063/1.1497436
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1038/nature05027
http://dx.doi.org/10.1038/nature09898
http://dx.doi.org/10.1103/PhysRevA.85.033805
http://dx.doi.org/10.1364/JOSAB.27.00A189
http://arxiv.org/abs/1303.0733
http://dx.doi.org/10.1103/PhysRevLett.98.030405
http://dx.doi.org/10.1103/PhysRevLett.100.013601
http://dx.doi.org/10.1088/1751-8113/40/28/S14
http://dx.doi.org/10.1103/PhysRevA.86.042323
http://dx.doi.org/10.1103/PhysRevLett.108.153604
http://dx.doi.org/10.1103/PhysRevLett.110.233602
http://dx.doi.org/10.1103/PhysRevA.83.062335
http://dx.doi.org/10.1103/PhysRevA.86.042306
http://dx.doi.org/10.1088/1367-2630/14/7/075015
http://dx.doi.org/10.1103/PhysRevA.49.4110
http://arxiv.org/abs/1310.5276
http://dx.doi.org/10.1103/PhysRevLett.109.130503
http://dx.doi.org/10.1088/1367-2630/12/8/083030
http://dx.doi.org/10.1109/TAC.2009.2031205
http://dx.doi.org/10.1109/TAC.2010.2046067
http://dx.doi.org/10.1088/1751-8113/40/28/S01
http://dx.doi.org/10.1103/PhysRevA.82.021806
http://dx.doi.org/10.1103/PhysRevLett.111.053603
http://dx.doi.org/10.1103/PhysRevLett.78.574
http://dx.doi.org/10.1103/PhysRevLett.90.027901
http://dx.doi.org/10.1103/PhysRevA.61.032302


New J. Phys. 16 (2014) 023009 C Joshi et al

[60] Eisert J, Scheel S and Plenio M B 2002 Phys. Rev. Lett. 89 137903
[61] Datta A, Zhang L, Nunn J, Langford N K, Feito A, Plenio M B and Walmsley I A 2012 Phys. Rev. Lett.

108 060502
[62] Vahlbruch H, Chelkowski S, Danzmann K and Schnabel R 2007 New J. Phys. 9 371
[63] Groeblacher S, Hill J T, Safavi-Naeini A H, Chan J and Painter O 2013 Appl. Phys. Lett. 103 181104
[64] Brooks D W C, Botter T, Purdy T P, Schreppler S, Brahms N and Stamper-Kurn D M 2012 Nature 488 476–80
[65] Chan J, Safavi-Naeini A H, Hill J T, Meenehan S and Painter O 2012 Appl. Phys. Lett. 101 081115
[66] Chang D E, Safavi-Naeini A H, Hafezi M and Painter O 2011 New J. Phys. 13 023003
[67] Hedges M P, Longdell J J, Li Y and Sellars M J 2010 Nature 465 1052
[68] Karpa L, Nikoghosyan G, Vewinger F, Fleischhauer M and Weitz M 2009 Phys. Rev. Lett. 103 093601
[69] Harris S E 1997 Phys. Today 50 36
[70] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science

330 1520

21

http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.108.060502
http://dx.doi.org/10.1088/1367-2630/9/10/371
http://dx.doi.org/10.1063/1.4826924
http://dx.doi.org/10.1038/nature11325
http://dx.doi.org/10.1063/1.4747726
http://dx.doi.org/10.1088/1367-2630/13/2/023003
http://dx.doi.org/10.1038/nature09081
http://dx.doi.org/10.1103/PhysRevLett.103.093601
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1126/science.1195596

	1. Introduction
	2. Feedback in an optomechanical (OM) network
	2.1. Two coupled OM cavities
	2.2. Mechanics assisted optical coupling

	3. N-coupled OM cavities
	4. Discussion and summary
	Acknowledgments
	Appendix A. Solution of the master equation for first OM network
	Appendix B. Influence of feedback
	Appendix C. Solution of the master equation for second OM network
	References

