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Abstract 

This thesis investigates the potential of the bivalve Arctica islandica (Linnaeus, 1767) from 

fjordic sites in NW Scotland for reconstructing past marine environmental /climatic variability. 

Using dendrochronological and sclerochronological techniques, six master chronologies were 

created which when compared show little common variability between the sites, indicating no 

common response to regional scale forcing. The chronologies were compared to local and 

regional scale SST and land based datasets, with no significant, time stable responses to 

climate found. It is clear the growth/climate response of A. islandica from these sites is 

complex, potentially due to the shallow nature of the sample sites, direct local drivers such as 

food availability and, potentially, anthropogenic activity in the region. 

Geochemical analyses of the shell material were undertaken to examine the timing and 

magnitude of the radiocarbon bomb-peak and the stable carbon isotope signature of the 

oceanic Suess Effect. The timing of the radiocarbon bomb-peak in Loch Etive does not appear 

to match previously published results from other marine locations and are a potentially serious 

challenge to the assumption that A. islandica GI are always annual features. Results comparing 

δ13C values and the age of the specimen when these values are incorporated into the shell 

material strongly indicate an ontogenetic control over δ13C, meaning the Suess Effect could not 

be effectively investigated. To take these ontogenetic influences into account it is suggested 

that any data from the juvenile period of shell life is not used.  

Analysis of shell biometrics and morphology indicate significant relationships between shell 

age and height and age and weight, however the errors for these are large (±78 years and ±80 

years respectively). These results indicate that despite large errors shell height, as a predictor 

of age, has the potential to be used for in situ population studies. 
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1 Introduction 

1.1 Project Rationale 

Possibly one of the most sensitive locations to study past climate variability in the North 

Atlantic is the west coast of Scotland which is ideally located, in close proximity to the North 

Atlantic Current, to capture the strong regional influence of North Atlantic water masses and 

their variability through time. The North Atlantic Ocean in particular plays an important role in 

regional European climate processes mainly because of the influence of the North Atlantic 

Current/Gulf Stream, the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation 

(AMO) and, indirectly, the North Atlantic Meridional Overturning Circulation (AMOC). 

The variability of the NAO is examined by the differences between air pressure in the Azores 

High and the Iceland Low (Hurrell, 1995; Wanner et al., 2003) and influences the 

transportation of heat/moisture around the Atlantic (Hurrell et al., 2003) (Figure 1.1). NAO 

variations have been shown to influence NW European climate, e.g. during positive NAO 

phases NW Europe experiences warmer and wetter winters (Trouet et al., 2009).  

 

 

Figure 1.1: Schematic figure of the winter North Atlantic Oscillation (NAO) illustrating both phases. A) The NAO in negative 
phase, resulting in a colder and drier NW European climate, B) The NAO in a positive phase with a warmer and wetter NW 
European climate. Adapted from Bell and Visbeck (2012). 
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In addition to atmospheric forcing and NAO variability, NW Scotland is also influenced by the 

North Atlantic Current/Gulf Stream, which transports warm, tropical waters to the North 

Atlantic as part of a global thermohaline circulation (THC) system (Figure 1.2). This process 

ensures that European climates are generally milder than those at the same latitude elsewhere 

in the northern hemisphere, and it has been suggested that the rate of THC reduced in the 

past causing, for example, the Younger Dryas (YD – circa 11-10 ka BP; Gordon, 1997) cooling 

event (Teller et al., 2002). Teller et al. (2002), for example, suggested that during the Younger 

Dryas an outburst of freshwater into the North Atlantic Ocean, caused changes to circulation 

patterns in the THC. To better understand the palaeoclimate history of Scotland, proxy records 

which are sensitive to climatic variability must be developed that extend our knowledge 

beyond the instrumental data available, the focus of this research will be the marine 

environment as there is currently little information available for this region. 

 

 

 

There is currently a distinct lack of high-resolution marine and terrestrial palaeoclimate 

records suitable for such analyses. In this thesis, a high-resolution proxy is defined as having 

annual to decadal resolution. For NW Scotland, Proctor et al. (2000; 2002) produced 

Figure 1.2: Schematic figure of the THC from Rahmstorf (2002; 208). The yellow dots indicate the location of deep 
water formation, red lines are near surface waters, the blue and purple lines represent deep and bottom currents 
respectively. Areas shaded in green are reported as having salinity greater than 36, and the blue shading represents 
salinity levels below 36. 
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speleothem records in excess of 1000 years, which have been used to investigate 

precipitation/NAO and temperature/precipitation/SST/NAO respectively using changes in 

stalagmite growth rate. Proctor et al. (2000) also used their record to investigate the winter 

NAO.  Trouet et al. (2009) used the speleothem record from Proctor et al. (2000) (AD 900-

1993), along with a Moroccan tree record (Esper et al., 2007), as a proxy for NAO variability. 

There is also a move to increase the number of dendrochronological records available for 

Scotland to create longer term interannual summer temperature reconstructions (Wilson et 

al., 2012). Previous work elsewhere has already shown the potential to derive a reconstruction 

of sea surface temperatures (SSTs) from tree ring records, either using them to reconstruct 

coastal water changes or to investigate larger-scale climate events such as El Niño Southern 

Oscillation (ENSO) (e.g. D’Arrigo et al., 1996; D’Arrigo et al., 1999; D’Arrigo et al., 2005; 

D’Arrigo et al., 2006; Wilson et al., 2010). Corals also have huge potential for marine 

palaeoclimate research e.g. research into ENSO (Wilson et al., 2010). However, there are 

currently no published coral records for the coast of Scotland to produce annually-resolved 

climate proxy records. There is also the potential to use coralline algae, which have annual to 

sub-annual banding (Burdett et al., 2011). Kamenos (2010) published a bi-weekly shallow 

water temperature record, for the period 1353 to 2006, using Loch Sween coralline algae 

which highlighted the potential of this emerging research field. There is still a lack of high-

resolution marine records for Scotland as the only available records do not capture high 

resolution climate information well e.g. marine/fjord sediment core records (e.g. Cage 2005; 

Cage and Austin, 2010; Hibbert et al., 2010; Hibbert, 2011). 

In recent years the coastal fjords of NW Scotland have begun to be seen as potentially 

important locations for palaeoclimatic research. Gillibrand et al. (2005) have shown the 

sensitivity of Scottish west coast fjords to NAO forcing, while Cage and Austin (2010) have 

shown their potential as recorders of past climate, such as the local timing of the Little Ice Age 

and an abrupt warming circa. AD 1540. To address the lack of high-resolution (i.e. annually to 

sub-decadally resolved) marine records for NW Scotland, the annually-resolved growth records 

of the marine bivalve A. islandica for six fjordic sites along the west coast of Scotland were 

explored in this study. The advantage of using a species such as A. islandica as a climate proxy 

is its wide geographical distribution (see Section 1.4) around the North Atlantic, allowing the 

development of a network of chronologies to investigate basin-wide responses to climate and 

study the response of this species to different environmental conditions. 
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1.2 Fjords 

Fjords, sometimes referred to as sea lochs, are flooded coastal valleys formed by glacial 

activity (either in the past, or still ongoing in the present day). There are two fjord 

classifications in common use; glaciated (i.e. those in Arctic regions where glacial activity still 

occurs) and non-glaciated fjords (i.e. those around the Scottish coast where glaciers are no 

longer present) (Howe et al., 2010). The two lochs being studied here (Lochs Creran and Etive) 

are non-glaciated fjords. Fjords are complex systems (Figure 1.3) which has led to many 

publications on the processes acting within them (e.g. Gage, 1972a; Gage, 1972b; Edwards and 

Edelsten, 1977; Aarseth, 1997; Allen and Simpson, 1998; Dix and Duck, 2000; Howe et al., 

2001; Austin and Inall, 2002; Howe et al., 2002;Nordberg, 2002; Murray et al., 2003; Filipsson 

and Nordberg, 2004; Lyså et al., 2004; Gillibrand et al., 2005; Nørgaard-Pedersen et al., 2006; 

Leonov and Kaswase, 2008; Hjelstuen et al., 2009). There has also been a recent increase in 

publications studying the potential of fjords as recorders of past climate variability (e.g. 

Nordberg et al., 2002; Mikalsen et al., 2001; Nordberg et al., 2001; Austin and Inall, 2002; 

Murray et al., 2003; Gillibrand et al., 2005; Cage and Austin, 2010). The majority of these have 

focused on either sediment records or the use of foraminifera changes/geochemistry. It is also 

possible to use other fauna e.g. molluscs, living in fjords to investigate palaeoclimatic 

variability (e.g. Stott et al., 2010) which is the focus of this research. Fjord hydrography is 

outlined in more detail in Section 2.1.1.1. 

 

 

Figure 1.3: Main processes acting in a non-glaciated fjord (Adapted from Howe et al., 2010). 
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1.2.1 Potential of Fjords as Palaeoclimate Archives 

As has already been mentioned, it is only recently that the potential of investigating 

palaeoclimate proxies from fjords has begun to be fully investigated, with the focus being on 

sediment and foraminifera records. Nordberg et al. (2000 – in Sweden), Nordberg et al. (2001 

– in Sweden), and Gillibrand et al. (2005 – for Scotland) all found evidence that NAO variability 

can be studied in fjordic settings using a variety of techniques including the use of benthic 

foraminifera analysis (Nordberg et al., 2000) and sediment core analysis (Nordberg et al., 

2001). Mikalsen et al. (2001) and Kristensen et al. (2004) also found NE Atlantic circulation 

influences in the fjords they studied from the west coast of Norway. Cage (2005) suggested 

that it is generally fjords with shallower sills that are able to record NAO forcing (e.g. Nordberg 

et al., 2000; Nordberg et al., 2001). If this is the case then sill depth should be considered as an 

important variable if the intent is to use fjords for NAO reconstructions. However, location and 

orientation of the fjord is also very important as it must be within the geographical area 

influenced by the NAO (Figure 1.1). It may also be expected that sample sites further into a 

fjord would show a dampened NAO signal compared to those nearer the mouth. 

In the Scottish context Gillibrand et al. (2005) showed the potential of a NAO signal being 

recorded in changes in renewal events/basin water salinity in Loch Sunart, while Dix and Duck 

(2000) and Howe et al. (2002) have investigated the late glacial – Holocene transition period 

recorded using seismic stratigraphy analysis and sediment analysis respectively. However, few 

projects have investigated Holocene records in Scottish fjords (Murray et al., 2003; Cage and 

Austin, 2010). Murray et al. (2003) did not develop a palaeoclimate reconstruction, but they 

did determine that high sedimentation rates in Loch Etive (0.5 cm a year; sedimentation rates 

reported by Cage and Austin(2010) for Loch Sunart are ~1 cm a year for 0-50 cm and 4-5 cm 

year for 50-300 cm), along with evidence of fauna responding to past climate variability means 

there is potential to provide high resolution climate records for the overlap between the 

sediment core record and the A. islandica chronology. 
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1.3 Potential proxy records 

There are multiple archives with the potential to create proxy climate records of varying 

resolution.  These include; historical records (e.g. Brázdil et al 2005;Dobrovolný et al., 2008; 

Dobrovolný et al., 2010) , marine sediment core analysis (e.g. Oliver et al., 2010; Cage and 

Austin, 2010), speleothem analysis (e.g. Fairchild et al., 2001; Baker et al., 2002), ice cores (e.g. 

Francey et al., 1999; Steffensen et al., 2008; Berggren et al., 2009; Vinther et al., 2006; Vinther 

et al., 2010), lake sediments (e.g. Bjune et al., 2005), dendrochronology (e.g. Douglass, 1914; 

Blasing and Fritts, 1976) and sclerochronology (e.g. Marchitto et al., 2000; Schöne et al., 2004; 

Kamenos, 2010). Historical record analysis involves using a variety of records including diaries 

and port records as means of reconstructing past climate and can be used to produce both 

temperature and precipitation records (Brázdil et al., 2005). Ice core records can use δ18O 

variations to provide seasonally resolved temperature records (Vinther et al., 2010), while lake 

sediment records have previously been used for a variety of purposes including temperature 

and precipitation for July and the winter respectively (Bjune et al., 2005).Marine sediment 

cores (either from deep-water or coastal locations) can be used to investigate palaeoclimate 

using variables such as foraminifera stable isotope records (e.g. Cage and Austin, 2010) and 

pollen analysis (Mokeddem et al., 2010). Speleothem analysis involves the study of annual 

increments in speleothems (e.g. Fairchild et al., 2006) and through the measurement of stable 

isotopes within the stalagmites (e.g. Baker et al., 2011), while with dendrochronology, tree-

ring analysis can be used to provide climate proxies (e.g. Fritts, 1976; Speer, 2010). 

Sclerochronology uses a variety of proxies including corals (Hudson et al., 1976), otoliths (inner 

ear bones e.g. Surge and Walker, 2005), sclerosponges (sponges with a hard skeleton), 

coralline algae (Kamenos et al., 2008; Kamenos, 2010), bones and shells (e.g. Schöne et al., 

2005a).  Marine sediment cores, speleology, dendrochronology and sclerochronology are all 

described in more detail later in this chapter. 

When selecting any proxy for climate reconstruction, it is important to choose one which 

responds to one dominant climate variable in their surroundings e.g. temperature. If they 

record multiple variables then they are less than ideal, resulting in the fact that a 

reconstruction of one climatic factor would not be possible. Equation 1.1 below is a model 

which can be used to conceptualise the factors influencing growth. Here it focuses on its 

application to dendrochronology and sclerochronology (Cook, 1985a): 
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                     Equation 1.1 

 

Where G is recorded growth 

C is the climate signal in the individual series making up the master chronology 

A is the growth trend related to age (known as the ontogenetic growth trend in 

sclerochronology) 

D1 is a factor influencing growth rates of individuals (e.g. death of an individual 

specimen) 

D2 is a common influence to all individuals at a location (site-specific disturbances e.g. 

pollution and trawlers) 

E represents random variability within growth. 

 

1.3.1 Marine Sediment Core Analysis 

Marine sediment cores, (e.g. van Kreveld et al., 2000; Oliver et al., 2010; Hibbert et al., 2010), 

have the potential to provide a wealth of palaeoclimatic information including; ice sheet 

dynamics (Hibbert et al., 2010), links between ice sheets and marine processes (e.g. D-O cycles 

in van Kreveld et al., 2000), temperature (e.g. Cage and Austin, 2010) and sea circulation 

changes from δ13C measurements in foraminifera (e.g. Oliver et al., 2010).  Unless sampled in 

environments with high sediment deposition (e.g. fjords), marine sediment core proxy 

reconstructions have a low-resolution (defined as proxies with a sample resolution of at least 

one record every 50 years based on work by Cunningham et al., 2013). By sampling in fjordic 

environments with their high sedimentation rates (Howe et al., 2010) the resolution of records 

produced can be decadal or better. There are a variety of variables that can then be studied to 

investigate climate changes recorded in the fjordic environment including foraminifera analysis 

(Cage and Austin, 2010) and changes in sedimentation patterns (Hass et al., 2010). 

For Scottish fjords, Cage and Austin (2010) and Mokeddem et al. (2010) have reconstructed 

past climate change events using a variety of methods between them, both producing climate 

records for Loch Sunart. Cage and Austin (2010) used oxygen isotope records from benthic 
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foraminifera to reconstruct past summer temperature, while Mokeddem et al. (2010) used a 

combination of pollen analysis, grain size variations and benthic foraminifera assemblages to 

reconstruct climate variations such as the timing of the Last Glacial Maximum (LGM). 

Nørgaard-Pedersen et al. (2006) studied sediment records from Loch Etive to investigate 

changes in relative sea-level (RSL) and past variability in deep water renewal events. However, 

the low number of fjordic palaeoclimate records for the region means that it is difficult to 

replicate findings and validate results. The use of additional proxies is therefore required for 

validation purposes. In Cunningham et al. (2013) the Loch Sunart record of Cage and Austin 

(2010) is compared to other marine records from across the North Atlantic. Findings indicate 

that the Loch Sunart results do not fit with those from other records from the NE Atlantic. 

Therefore, to determine why this is the case, it would be advantageous to find alternative 

climate records from the region to verify such results. Another problem with fjord sediments is 

that although they have the potential to provide high-resolution records, they are not 

annually-resolved, making validation with instrumental data difficult. The goal is to produce 

annually-resolved records which can be used to validate the decadal trends from sediment 

core results which reconstruct marine temperature and atmospheric process variability. 

 

1.3.2 Dendrochronology 

Dendrochronology involves the study of annually-resolved tree-rings and is perhaps one of the 

best known annually-resolved proxy archives with its long history (e.g. Douglass, 1914; 

Douglass, 1920; Douglass, 1929; Blasing and Fritts, 1976) and is widely used as the main 

constituent in large-scale multi-proxy studies (e.g. Mann et al., 1998; Newkom et al., 2010). 

Dendrochronology has wide coverage, and because of good site control there is good 

knowledge concerning what different sites will offer a situation that is lacking in many other 

disciplines. Tree-ring research is also important in archaeological work (e.g. Baillie, 1982; 

Bannister and Robinson, 1975; Eckstein et al., 1986) and as a tool for calibration of 14C 

atmospheric curves for 14C dating (e.g. Becker, 1993). Dendroclimatology as the investigation 

of changes in annual ring widths as a means of reconstructing past climate (e.g. Fritts, 1976), 

has multiple sub-disciplines. These include the increasing trend in analysing isotopes in trees as 

climate proxies (e.g. Libby and Pandoffi, 1974; Lipp et al., 1991; Loader and Switsur, 1996; 

McCarroll and Loader, 2005; Loader et al., 2007; Treydte et al., 2007; Loader et al., 2008; 
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Robertson et al., 2008), blue intensity investigation (e.g. Campbell et al., 2007; Wilson et al., 

2012) and maximum density analysis (e.g. Polge, 1970; Jones and Parker, 1970; Parker and 

Henoch, 1971;  Schweingruber et al., 1978; Briffa et al., 2002a; 2002b; Wilson and Luckman, 

2003). Although trees have been used to indirectly reconstruct SSTs (e.g. Wilson et al., 2010) 

they are not ideal for providing deeper marine climate proxy record as they are incapable of 

providing bottom water data.  

There are several key dendrochronological methods which must be outlined as they are 

relevant for sclerochronology. These are crossdating and detrending of raw growth data. 

Crossdating (see Figure 1.4) is the most important dendrochronological technique as it helps 

ensure correct dating control of the final chronology through the identification of common 

wide and narrow rings between tree-ring series (Stokes and Smiley, 1968; Yamaguchi, 1991). 

This technique not only provides a calendar age to each tree-ring, but also helps to identify 

growth series with either missing or false bands. The importance of crossdating for 

constructing robust, correctly dated dendrochronological records has recently begun to be 

recognised in sclerochronology, with researchers beginning to apply the technique (e.g. Black 

et al., 2008; Butler et al., 2010: Stott et al., 2010).Detrending of raw growth rate data is 

necessary due to the presence of a biological trend (known as the ontogenetic growth trend in 

sclerochronology), expressed as higher growth rates in the younger  growth rings, relative to 

later on. Without the removal of this trend there would be a bias in the final chronology 

towards the periods where younger tree records are present. The application of both 

techniques will be further described in the context of this research in Chapter 4. 

 

 

 

Figure 1.4: Principle of crossdating. The top sample was live collected with a known date for the outermost ring. By 
matching the patterns in the ring widths a date can be applied to the dead collected sample below. This 
methodology is also applied to multiple live-collected samples to ensure dating control between samples. 
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1.3.3 Sclerochronology 

Sclerochronology focuses on the investigation of the accreted hard parts of organisms such as 

shells, corals and fish otoliths, to examine how variables such as growth rates and chemical 

composition change during the life-time of the organism (Jones et al., 2007). In the marine 

environment these techniques have been applied to shells (e.g. Schöne et al., 2005a), corals 

(e.g. Hudson et al., 1976) and sclerosponges (e.g. Swart et al., 1998; Hughes and Thayer, 2001). 

Due to the common techniques utilised in both dendrochronology and sclerochronology, the 

former is often considered to be the forbearer of sclerochronological research. Although 

sclerochronology is a relatively new field of research, having only been active since the 

1960s/1970s, there is great potential to use it to develop annually-resolved records that reflect 

marine environmental change. 

As with dendrochronology, sclerochronology has multiple sub-disciplines and applications.  

The primary discipline is scleroclimatology which focuses on creating growth chronologies for 

the purpose of climate research (e.g. palaeoclimatic reconstruction); however, sclerochemistry 

is the application of geochemical analyses to either the hard part of the organism or its soft 

tissue. Gröcke and Gillikin (2008) suggested the use of the term sclerochemistry in the 

literature where geochemical techniques are used; the application of sclerochemistry can be 

used to investigate 14C variations (e.g. Weidman and Jones, 1993) which can be used to 

investigate the difference in the timing of the bomb-peak in the atmospheric and marine 

records, and temperature changes (e.g. Buchardt and Simonarson, 2003).Researching the 14C 

signal in the marine environment is important for a variety of reasons including understanding 

CO2 gas exchanges between the ocean and atmosphere and circulation in water masses 

(Broecker et al., 1980; Weidman, 1988; Scourse et al., 2012; Wanamaker et al., 2012). 

If scleroclimatological or sclerochemical techniques are utilised for the purposes of providing 

annually-resolved climate records then it is necessary to ensure the species fits certain criteria: 

1) There must be evidence of annually deposited growth increments (GIs) in the hard 

part of the organism that can be used to age/date specimens, e.g. GIs of an annual 

nature in the mollusc A. islandica (Schöne et al., 2005b) 

2) They must have a common variance and common response to factors influencing their 

growth allowing crossdating of any internal growth increments to be undertaken 



Chapter 1 - Introduction 

11 

 

3) Variations in their GI widths/geochemical variations in the hard part of the organism 

must have the potential to be used to investigate changes in variables such as 

temperature, salinity, food supply and pollution. However, it is important to note that 

if a specimen is influenced by too many variables it can be difficult, and sometimes 

even impossible, to use the record to reconstruct changes in a single variable e.g. 

climate (see Equation 1.1). If there is a mixed signal concerning the variables 

influencing growth increment widths/geochemistry then it needs to be feasible to 

determine how each variable is influencing the measured proxy, otherwise the species 

is of no use as a palaeoclimatic proxy. 

For the west coast of Scotland there are three main species of marine bivalve that could 

potentially be used for such research. They are Glossus humanus, Glycymeris glycymeris and A. 

islandica. However, at the time of starting this research little was known about the potential of 

Glossus humanus, and Glycymeris glycymeris as palaeoclimatic archives, particularly for 

Scottish sites (this has since been studied in Reynolds, 2011; Brocas, 2013; Reynolds et al., 

2013). As a result the marine bivalve A. islandica was chosen for analysis. The species is 

described in more detail in Section 1.4 and has been studied over the last ~15 years as a proxy 

record for climate variability (e.g. Witbaard, 1996; Witbaard, 1997; Schöne et al., 2003a). The 

work of Brocas (2013) focused on using Glycymeris glycymeris from the Irish Sea to create 

annually-resolved archives and found a significant, positive correlation between shell GIs and 

the winter NAO. Reynolds et al. (2013) were able to use a crossdated growth increment 

chronology from Glycymeris glycymeris to create a multi-proxy record (this included the shell 

growth increment variability and a foraminifera record from a fjordic sediment core) which 

correlated with SST data. These studies indicate that Glycymeris glycymeris has the potential to 

be used as an annually resolved proxy for reconstructing past climate change. To date no peer-

reviewed papers have been published regarding the use of Glossus humanus, however it has 

been studied with some promising results for providing palaeoclimatic reconstructions in the 

future (e.g. Reynolds et al., 2009). 

As already mentioned species can react to multiple variables (Equation 1.1) and if the climate 

signal is not the dominant influence over growth rates because of additional influence from 

site specific factors (Equation 1.1), then it may not be possible to use the record as a climate 

proxy. 
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1.3.3.1 History of sclerochronology 

Since the publication of perhaps the first paper concerning sclerochronological research on 

shells by Davenport (1938) who investigated the timing of GI deposition in the mollusc Pecten 

irradians, research has been carried out on shells for palaeoclimatic and palaeoenvironmental 

proxies. Table 1.1 summarises some of the key past sclerochronological and sclerochemistry 

research (focusing on mollusc and A. islandica based work). The field has changed greatly over 

recent years. Initial research did not use dendrochronological techniques such as crossdating 

until the 2000s (e.g. Schöne et al., 2003a). Since then its application has become standard 

within the field, thus helping introduce improved dating control in chronologies. From Table 

1.1 it is notable that there has been little published research undertaken in fjords and in 

shallow water sites.  
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Year Author(s) Application Geographical location 
of study 

Site water depth: 
Shallow <30 m, 

Medium 99 – 31 m, 
Deep >100 m. 

Crossdating 
applied? 

1938 Davenport The first paper on sclerochronology in 
shells 

Cold Spring Harbour 
(Long Island) 

Not mentioned Not applicable – not 
necessary in study 

1953 Loosanoff Work into A. islandica reproduction Rhode Island Medium Not applicable – not 
necessary in study 

1969 Merrill and Ropes A. islandica distribution researched Continental shelf – Gulf 
of Maine and Middle 

Atlantic Bight 

Not mentioned Not applicable – not 
necessary in study 

1976 Taylor (1976a, b) Two papers researching shell biology in 
A. islandica 

Not applicable – 
laboratory based study 

Not applicable - 
methods paper 

Not applicable – not 
necessary in study 

1976 Bearse Looked at how environmental factors 
influence density and distribution of A. 

islandica in Rhode Island 

Rhode Island Not mentioned Not applicable – not 
necessary in study 

1979 Murawski and 
Serchuk 

Investigated the morphology of A. 
islandica 

Middle Atlantic Shelf Ranges from shallow 
to medium 

Not applicable – not 
necessary in study 

1980 Jones Paper on annual cycles of GI formation  Not applicable - 
methods paper 

Not applicable – not 
necessary in study 

1980 Thompson et al. Looked for synchronisation in A. 
islandica shell growth rates from a single 

population for verification of annual 
nature of GIs 

Middle Atlantic Bight Not mentioned Did not use crossdating, 
but do look for 

synchronous growth 
rate patterns 

1982 Murawski et al. Investigating A. islandica growth. Used 
mark and recapture of shell samples 

Middle Atlantic Bight Medium Not mentioned 

1982 Turekian et al. Researched GIs – helped to prove their 
annual nature 

 Medium Not mentioned 

1983 Jones Possibly the first paper discussing the 
need for standardised growth rates 

Not applicable - 
methods paper 

Not applicable - 
methods paper 

Not mentioned 

1987 Ropes Paper on acetate peel preparation for 
ageing A. islandica 

Not applicable – 
techniques paper 

Not applicable - 
methods paper 

Not mentioned 

1990 Brey et al. Ecological importance and growth of A. 
islandica in Kiel Bay 

Kiel Bay, Western Baltic 
Sea 

Not mentioned Not applicable – not 
necessary in study 

1994 Swaileh and 
Adelung 

Investigated trace metal levels in A. 
islandica 

Kiel Bay, Western Baltic 
Sea 

Not mentioned Not applicable – not 
necessary in study 

1996 Swaileh Investigated trace metal levels in A. 
islandica 

Kiel Bay, Western Baltic 
Sea 

Not mentioned Not applicable – not 
necessary in study 
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1997 Witbaard and et al. 
(a) 

Research into juvenile A. islandica 
growth 

Kiel Bay (Baltic Sea) Not mentioned Not applicable – not 
necessary in study 

1999 Cargnelli et al. Researched A. islandica habitats Not applicable Not applicable - 
methods paper 

Not applicable – not 
necessary in study 

2000 Marchitto et al. Correlated A. islandica chronologies but 
didn’t call it crossdating 

Georges Bank, 
Nantucket Shoals and 

Iceland 

Not mentioned Successfully used 
crossdating 

2000 Dahlgren et al. Distribution and genetics of A. islandica 
studied 

Global locations 
involved 

Not mentioned Not applicable – not 
necessary in study 

2000 Todland et al. Applications of laser ablation ICP-MS for 
sclerochronology 

Cardigan Bay, Wales Not mentioned Not applicable – not 
necessary in study 

2001 Lewis et al. Population recruitment of A. islandica 
on Georges Bank investigated 

Georges Bank Not mentioned No crossdating to 
support sample age 

data 
2003 Schöne et al. (a) First real mention of crossdating in 

sclerochronological literature 
North Sea and 
Norwegian Sea 

Not mentioned Crossdating undertaken 

2005 Liehr et al. Used A. islandica to investigate 
sediment contamination 

Mecklenburgh Bight 
(western Baltic Sea) 

Not mentioned Crossdating not 
mentioned 

2006 Scourse et al. Produced a floating chronology using A. 
islandica for the Mediaeval period 

North Sea – water Deep Yes, crossdated dead 
samples to create a 
floating chronology 

2007 Helama et al. Investigated response of bivalve (A. 
islandica) and tree increments to climate 

change 

Tromsø region – exact 
location unknown 

Not mentioned Crossdating undertaken 
for chronology 
construction 

2008 Harding et al. Investigated how age structure and 
recruitment in A. islandica can be 
influenced by water temperature 

Mid-Atlantic Bight 
(North America) 

Not mentioned Not applicable – not 
necessary in study 

2008 Wanamaker et al. Long lived non-colonial animal found – 
an A. islandica specimen aged 405 years 

old 

Icelandic shelf Not mentioned Potential/concepts of 
crossdating mentioned 

2010 Begum et al. Allometry/morphology of A. islandica 
studied 

Norwegian coast, 
Kattegat, Kiel Bay, 

White Sea, German 
Bight, northeast Iceland. 

Not mentioned No – not the aim of the 
research. 

2010 Stott et al. Investigation of A. islandica growth in a 
Scottish fjord 

Scottish fjords Shallow Yes, but with low inter 
series correlation 

2010 Butler et al. Construction of the longest 
sclerochronological A. islandica record 

Irish Sea Medium Crossdating was 
successfully undertaken 



Chapter 1 - Introduction 

15 

 

for the UK 
2011 Ridgway et al. Investigated how shell size, growth rates 

and maturity are correlated with mollusc 
longevity 

 

Not clearly stated Not stated Not applicable – not 
necessary in study 

2011 Morton Studied A. islandica biology Not applicable Not applicable - 
methods paper 

Not applicable - 
methods paper 

2011 Matras Investigated A. islandica shell growth 
rates in several Faeroese locations 

Several locations 
including one loch 

Not mentioned Not mentioned 

2011 Hiebenthal et al. Studied effect of seawater pCO2 and 
temperature on A. islandica and Mytilus 

edulis shell stability 

Western Baltic Sea Shallow Not applicable – not 
necessary in study 

2012 Scourse et al. Used A. islandica growth increments and 
14

C measurements to study the timing of 
the bomb peak 

Temperate North 
Atlantic: Georges Bank, 

Sable Bank, Icelandic 
Shelf, Tromsø, German 
Bight, Oyster Ground 

Shallow Only shells from the 
Icelandic Shelf were 

crossdated. For some 
sites only one shell 

made up the 
chronology used to 

study the bomb peak 
2013 Brocas et al. Used growth rates in the shell of 

Glycymeris glycymeris to investigate its 
potential as a palaeoclimatic proxy 

Irish Sea Medium Crossdating successfully 
undertaken 

2013 Butler et al. Studied climate change on the North 
Icelandic Shelf using A. islandica 

North Icelandic Shelf, 
close to the North 

Atlantic Polar Front 

Medium Crossdating undertaken 
successfully 

2013 Munro et al Studied aging of A. islandica Not applicable  N/A 
2013 Reynolds et al. Used Glycymeris glycymeris growth rate 

variability from the west coast of 
Scotland, along with a foraminiferal 

record to create a multi-proxy climate 
record 

West coast of Scotland 
(Tiree Passage). 

Shallow to medium Crossdating undertaken 

 
Table 1.1: Key dates in sclerochronology – focusing on its application to the marine bivalve A. islandica. Also indicated is the environmental context in which the studies were 
undertaken and whether any crossdating was applied to samples. Also included is information regarding whether crossdating was undertaken on samples and the location from which 
samples were collected.
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1.4 Arctica islandica 

A. islandica was chosen as the focus for this study as a proxy for environmental change due to 

(1) its well-documented longevity – Wanamaker et al. (2008) report a specimen in excess of 

400 years old, (2) there are a number of variables that can be studied from the shell for 

palaeoclimate investigations including GI width variations and changes in shell geochemistry 

including δ18O (Weidman et al., 1994) and 14C changes (Witbaard et al., 1994), (3) cross 

matching of shell GI widths from a site can be undertaken, indicating growth driven by a 

common response to local variables including such as the climate (Wanamaker et al., 2008), (4) 

it is possible to crossdate fossil shells to create floating chronologies (Scourse et al., 2006), and 

(5) dead-collected samples can be cross dated with live-collected specimens to extend the 

period of analysis (Marchitto et al., 2000). 

 

1.4.1 Species identification 

A. islandica is a sub-littoral, infaunal marine bivalve mollusc (Witbaard, 1997). The main 

identifying features of this species are the periostracum, which is brown for juveniles and black 

in adulthood (Figure 1.5), and the presence of annually-resolved GIs within the shell. Records 

documenting the age to which specimens live commonly exceed 200 years (Witbaard, 1997).  

However, a live-collected sample from the North Icelandic coast (recovered in 2006) was 

determined to have been just over 400 years old when captured (Wanamaker et al., 2008). 
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1.4.2 Shell Growth 

A. islandica shells have two valves, which join in the umbo region of the shell (Figure 1.5) via a 

hinge ligament (Ruppert and Barnes, 1994). The shells themselves have three aragonitic layers: 

an outer prismatic layer, a thin myostracum and an inner layer (Witbaard, 1997). All parts of 

the shell have different micro-structures (Witbaard, 1997), these include: 

- Growth increment boundary/growth increment line (Figure 1.7) – “irregular, simple prisms” 

(Witbaard, 1997; 16) 

- Growth increment (Figure 1.7) – “homogenous structure, which consists of irregular complex 

crossed lamellar and crossed acicular-crossed lamellar microstructures” (Witbaard, 1997; 16). 

The aragonite is deposited as calcium carbonate inside a protein framework (Moore, 2001) and 

covered by the periostracum (Figure 1.5) which is also made of protein (Moore, 2001). The 

periostracum is important in the shell secretion process and is laid down at the periostacal 

Figure 1.5: Main features of an Arctica islandica shell (Left hand valve interior view on left and exterior view on right 
– height of shell is 93 mm). Labelled are the: (A) posterior muscle scar; (B) anterior muscle scar; (C) pallial line; (D) 
hinge tooth; (E) umbo; and (F) the periostracum. The red line on the exterior picture is the line of section and is also 
the line used to work out specimen height. Note that the periostracum (F) is brown in smaller shells, but due to iron 
deposition is black in larger shells (Brey et al., 1990). 
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groove (Ruppert and Barnes, 1994), and supports the growth of new aragonite layers (Marin 

and Luquet, 2004).  Extrapallial fluid, which is present between the mantle and the shell, is 

where the aragonite and organic material from which the shell is constructed is secreted and 

then deposited (Ruppert and Barnes, 1994). Without the periostracum the surrounding sea 

water would be able to interact with the extrapallial fluid, it prevents this by acting as a seal 

between the two reservoirs at the periostacal groove (Ruppert and Barnes, 1994).  

 

1.4.3 Biology and Ecology 

A. islandica favours sandy mud/mud (Liehr et al., 2005) and medium to fine grained sand 

(Thórarindóttir et al., 2008) sediments, and  can regularly be found in water depths ranging 

from 10 to 280 metres, although they can live outside these depths (Thompson et al., 1980). 

They are generally found in water temperatures between 0 and 20oC (Nicol, 1951 in Witbaard, 

1997). The presence of only a short siphon (Figure 1.6), which is used to pump water 

containing the phytoplankton on which it feeds into its body (Cargnelli et al., 1999) (so called 

filter-feeding), means they are only shallow burrowers (Saleuddin, 1964).  However, during the 

summer it is possible to sometimes see specimens on the sea bed itself (Buchardt and 

Simonarson, 2003). 
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Temperature has been shown to play an important role in the development of specimens from 

one stage of growth to another. There are three biologically distinct stages of specimen growth 

(Cargnelli et al., 1999): 

1) Planktonic egg/larvae 

2) Juveniles 

3) Adulthood. 

The larval stage is sub-divided into three developmental periods which rely on temperature to 

allow progression. They are (Cargnelli et al., 1999): 

1) Eggs hatch into planktonic larvae 

2) Larvae develop a shell - this is the first stage where the bivalve shell is present 

3) Larvae become capable of swimming and a burrowing foot develops. 

Once larval development is complete and the specimen enters the juvenile stage, relatively 

fast expansion is observed in sample GIs, which then tapers off as individuals reach adulthood 

and is known as an ontogenetic growth effect in most sclerochronological literature (see Figure 

1.7 for an illustration of this in cross section). This must be accounted for when GI 

measurements are detrended for chronology construction (see Chapters 1 and 4 for further 

Figure 1.6: Photograph of a buried A. islandica specimen with its siphons open. Image 
courtesy of M. Sayer (NFSD). Shell is approximately 12 cm at the widest point. 
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discussion). Sexual maturity is sometimes not reached until the age of 13 years old; however it 

is variable depending on site location and specimen sex (Cargnelli et al., 1999). The 

ontogenetic growth trend can be present in samples until they have reached an age of 30. This 

ontogenetic growth is common in molluscs; as the extent of the ventral margin increases and 

the surface area over which new material is added, the extension rate and hence GI width 

decreases. 

 

 

 

Currently, the timing of the growing season for A. islandica remains uncertain. Schöne et al. 

(2003a) postulated that in the North Atlantic the aragonite in the shell is accreted between 

January/February to August. In Schöne et al. (2004) and Schöne et al. (2005b), the growing 

season of specimens from the North Sea and Iceland respectively was determined to be 

February to September. Weidman et al. (1994 – in Marchitto et al. (2000)) proposed that on 

Georges Bank (America – approximate location 41°N, 66°W), specimens cease to grow during 

the coldest months (January to April). While Witbaard (1997) suggested that they do not grow 

during the winter months because the spring phytoplankton, on which they depend for their 

main food source, is not present before March. Different growing seasons may be observed as 

a result of differences in locations from which the studied samples are taken. This would 

support the observations of Witbaard (1997) that growth starts and ends at different bottom 

temperatures, and fits with evidence from other organisms; the growth season of trees have 

Figure 1.7: Cross-section of an Arctica islandica shell. NB. Wider GIs near the umbo, decreasing in size moving towards 
the ventral margin. (Image adapted from Witbaard, 1997). 



Chapter 1 - Introduction 

21 

 

been shown to vary for different species and locations(Wilson et al., 2007). A further 

complexity is the suggestion that the growth period may not remain the same throughout the 

lifetime of the animal; Schöne et al. (2005b) demonstrated that for the first 39 years of growth 

specimens had the same growth period. If this is the case then it has important implications for 

isotope studies carried out on shells, this is because of the pronounced changes in bottom 

water temperature throughout the seasonal cycle (Austin et al., 2006).  

Temperature is important in determining the rate of A. islandica shell growth, although food 

supply is also likely to be a vital controlling factor. Without food, growth could not occur 

(Witbaard, 1996). Indeed it was proposed by Witbaard (1996) that food availability is more 

likely to influence GI growth rates than any other variable. A. islandica feeds through filtration 

via its siphon when on the sea bed (Witbaard, 1997), but when below the surface of the 

sediment it switches to anaerobic metabolism (Witbaard, 1997).  Through the use of 

laboratory experiments, Witbaard (1996) proposed that food availability for A.  islandica is 

determined by sedimentation rates, upper water column production rates and phytoplankton 

quantity, which is related to copepod abundance further down the water column (Witbaard et 

al., 2003) and, indirectly, to temperature, light and nutrient levels. Given the importance of 

food as a controlling factor on growth, the question remains whether or not growth increment 

data can be used to reliably predict temperature. 

 

1.4.4 Distribution 

An understanding of the distribution of A. islandica is of interest for a variety of reasons.  

1) In Canada and America much work has focused on this subject due to the commercial 

value of the species within the food industry (e.g. Kilada et al., 2007). Knowledge of 

population distribution and numbers is important to prevent depletion of species 

numbers.  

2) The focus in Europe has been to map the distribution of A. islandica to discover where 

it can be used as a proxy for past climate, as well as a tool for investigating past 

anthropogenic influences over the marine environment. As A. islandica originated in 

the Cretaceous period (Witbaard and Bergman, 2003), the investigation of how the 
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distribution of the species has changed within the fossil record may be used to make 

inferences concerning past global climate change on a broad scale. 

3) Continued study of population distribution into the future will also allow changes in 

population locations to be used to make inferences concerning site specific changes 

e.g. temperature, sediment conditions, food availability, and predation. 

Figure 1.8 illustrates the past and present day distribution patterns of A. islandica. Currently A. 

islandica is found widely distributed in the North Sea north of 53o30’N (Witbaard and 

Bergman, 2003), while to the south and east of the North Sea it is found only in water 

exceeding 30 metres depth (Witbaard and Bergman, 2003). Within the North Atlantic Ocean it 

is confined to the boreal waters of Europe including the Bay of Cadiz (north of Iceland), the 

Scandinavian coast, the White Sea, and the Faroe Islands (Thompson et al., 1980).  It is also 

found between the Canadian Arctic and Cape Hatteras (North Carolina) (Kilada et al., 2007). 

 

 

 

 

Figure 1.8: Distribution of Arctica islandica. Grey: Indicates locations where A. islandica are found at present day. 
Red: Sites where A. islandica is now extinct but was found < 9000 YBP. Purple: Sites where there is evidence of the 
species from > 9000 YBP. Adapted from Dahlgren et al. (2000; 488). 
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1.4.5 Growth increments 

A. islandica deposit distinct GIs every year in the shell (see Section 1.4.5.1). When counted 

(ideally after crossdating) these GIs can be used to determine the age of a specimen (e.g. 

Jones, 1980; Schöne et al., 2003a), thus allowing the longevity of the species to be determined. 

Figure 1.7 is a cross-section of an A. islandica shell illustrating how GIs look when a shell is 

sectioned. The figure also highlights that the outermost GI represents the last year of growth 

before death (Witbaard, 1997). Therefore, if a specimen is live-collected then this outermost 

GI represents the year of collection and provides a chronological tie-point when constructing a 

GI chronology for the sample. However this may not always be the case because the 

outermost GI may not be fully developed when sampled or, when a peel is taken, the small 

difference in relief between the shell and resin in the polished section can cause the outermost 

increment on the peel to be unclear and, on some occasions, it may be missing altogether. 

Finally, it is also possible that there has been surface erosion and damage to the shell, often 

including the final bands. 

Sclerochronology has much in common with dendrochronology (Section 1.3.2), the main 

similarities are that like trees most shells exhibit an age-related growth trend (Figure 1.7) 

which must be accounted for using detrending methods. Many other methodologies are 

shared between the two disciplines, including crossdating of the detrended data, the creation 

of master chronologies using software such as ARSTAN and the ability to relate changes in 

annual growth rates to climate variability (Stott et al., 2010). There are, however, some 

differences between the two research areas which mainly relate to the terminology used. For 

example, in dendrochronology, trees are said to deposit annual rings, while shells deposit 

annual growth increments (GIs) (Figures 1.4 and 1.7 respectively); in dendrochronology the 

age-related growth trend is referred to as the age trend, while in sclerochronology it is called 

an ontogenetic trend. 

 

1.4.5.1 Verification of the annual nature of GIs 

Several approaches have been adopted to demonstrate the annual nature of the banding in A. 

islandica. Thompson et al. (1980) carried out a study that determined that the GI width 
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variations in multiple shells from the same populations were synchronous. The synchronisation 

of GIs from within the same sample population indicates that the periodicity with which they 

are deposited is the same between samples. This methodology did not prove definitively that 

GIs in A. islandica are annual; it does however provide strong evidence of the potential to see a 

synchronous response to external factors (such as climate) in the GIs of shells from a given 

population. Ropes (1988; in Scourse et al., 2006) carried out a series of mark and recapture 

experiments on live shells. Between the marking and recapture events the number of GIs 

deposited was the same as the number of years that had lagged between the two events. 

Work by Weidman et al. (1994) looked at variations in the δ18O signal recorded within single 

GIs to prove they are annual because of the seasonal δ18O pattern present. Another tool used 

to determine that GIs are annual is the use of time-dependent, natural (Smith et al., 1991 in 

Witbaard et al., 1994) or anthropogenic radionuclides, signals which are taken up from the 

surrounding water by organisms (e.g. Turekian et al., 1982). Finally, the increasing number of 

publications presenting crossdated A. islandica chronologies (e.g. Schöne et al., 2003; Scourse 

et al., 2006; Witbaard et al., 2005; Butler et al., 2009a; Butler et al., 2009b; Schöne and Fiebig, 

2009; Stott et al., 2010) support the annual nature of GI deposition.  

 

1.4.6 Potential of Arctica islandica in palaeoclimate and anthropogenic impact 

research 

A. islandica has a history of being used successfully to provide sea temperature records. 

Buchardt and Simonarson (2003), Dunca et al. (2006) and Schöne et al. (2004) all used δ18O 

records from shell samples to investigate past sea temperature records. This is possible as the 

shell incorporates δ18O in equilibrium with the surrounding sea water as it grows (Weidman et 

al., 1994). Such research is only viable because species growth is influenced by changes in sea 

water (and by extension air) temperature, amongst other factors including food supply 

(Witbaard, 1996). However, this relationship is not always a straightforward one. For example 

Witbaard et al. (2003) found organisms (e.g., copepod) higher in the water column could 

disrupt the supply of food to the sea bed, thus inhibiting shell GI growth rates. As stated earlier 

food supply has also been shown by Witbaard (1996) and Schöne et al. (2005c) to influence 

annual shell growth rates in A. islandica. The species also has the potential to provide an NAO 

phase proxy record (Schöne et al., 2003; Schöne et al., 2005b; Stott, 2006; Helama et al., 
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2007). It was proposed by Schöne et al. (2003) that this may be partly due to the resuspension 

of sediment containing food suitable for consumption by A. islandica during positive Winter 

North Atlantic Oscillation (WNAO) phases as a result of wind-driven mixing of water masses.  

The variation in 14C between shell GIs has been used in A. islandica for a variety of purposes; 

Weidman and Jones (1993) used 14C records from A. islandica shells to provide information 

concerning palaeo-currents for Georges Bank (USA). 14C has also been used to investigate 

anthropogenic activity as a tracer of atmospheric-marine exchanges. This is achievable due to 

the release of 14C into the atmosphere during the 1950s/1960s during the nuclear bomb 

testing period, which led to a 14C ‘bomb-peak’ in the atmosphere circa. 1963 (Goslar et al., 

2005). The difference in the timing of the bomb-peak in marine records can be compared to 

that in the atmosphere to provide an insight into gas exchanges between the ocean and 

atmosphere. Research into 14C variations can also be used to investigate the marine 14C 

radiocarbon reservoir (e.g. Butler et al., 2009a). δ13C records in shells can also be used in a 

similar manner due to their ability to act as recorders of the timing of the anthropogenic δ13C 

Suess Effect in the marine environment (Butler et al., 2009a; Daniels, 2010). Where the δ13C 

Suess Effect is a change in δ13C values of both the atmosphere and marine environment due to 

CO2 released from fossil fuel combustion (Bacastow et al., 1996), initiated during the Industrial 

Revolution (Baxter and Walton, 1970). Such findings can then be compared to atmospheric 

records to look at the timing/magnitude differences. The use of both δ13C and 14C variability in 

the shells of A. islandica to investigate the timing of the ocean δ13C Suess Effect and the bomb-

peak is discussed further in Chapter 6. 

Geochemical analyses of the shell using laser ablation ICP-MS (LA-ICP-MS) can be used to 

ascertain the prevailing environmental conditions at the time of GI deposition including; 

temperature, salinity, seasonality and productivity (Todland et al., 2010). Liehr et al. (2005) 

carried out LA-ICP-MS measurements on A. islandica shells and atomic absorption 

spectrometry (AAS) on the soft tissue. Their work illustrated the length of time A. islandica soft 

tissue contaminated with Cu, Pb and Zn takes to recover from pollution events (Liehr et al., 

2005). Geochemical analyses have also been carried out by Foster et al. (2009) to determine 

what influences Sr level change in the shell of A. islandica and by Swaileh and Adelung (1994) 

to investigate trace metal levels and how the body size influences content/concentrations. 

Geochemical analyses are valuable for demonstrating the timing of anthropogenic activity 

impacting on the marine environment. It can also help provide a chronology for other marine 
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records where gaining a chronological framework is not always achievable at the annual 

resolution (i.e. sediment cores). 

 

1.5 Aims and objectives 

The previous section highlighted several issues that require investigation to further our 

understanding of the use of A. islandica as a marine palaeoenvironmental proxy. As a result of 

these identified issues there are three main aims of this thesis.  

 

1.5.1 To undertake an investigation into of the potential of Scottish A. islandica to 

provide reliable climate proxy records 

There is a lack of investigations into A. islandica shells as palaeoenvironmental proxies for 

Scotland (Foster, 2007; Stott et al., 2010; Reynolds, 2011). Six sites were sampled in two 

Scottish fjords and investigated using dendrochronological methods to determine if climate is 

the dominant driver of growth rates. Building up a network of six sites should allow the effect 

of site-specific factors such as sediment grain size to also be considered. This research may 

help indicate whether using A. islandica from Scottish fjords is a viable avenue for future 

research, or whether the signal is too diluted by other factors. If A. islandica is proved to be a 

reliable proxy record for climate change in the field area then it is aimed that it will be used to 

address the lack of proxy data for the marine realm. 

 

1.5.2 Testing whether height and/or weight can be used to predict age 

The ability to predict ages either in situ using height, or in the laboratory using height/weight 

with minimum sectioning would be of great benefit. This would not only help to reduce the 

impact on populations through the reduction of sample removal (in the case of in situ 

measurements) and also reduce sampling time in the laboratory. Currently, such analysis can 

only be undertaken on an individual site level; however by testing the relationship between 
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the variables for all the sites combined will also provide an insight into how shells from a larger 

area may be able to use either variable to predict age. 

 

1.5.3 Geochemical analyses to investigate the timing of the ocean δ13C Suess Effect 

and radiocarbon bomb peak in fjordic settings 

Geochemical variations in 14C will be measured to investigate the marine 14C reservoir age 

effect in Loch Etive and the effect of the Sellafield reprocessing plant on local 14C values. These 

will help provide a better understanding of localised variations in the marine 14C reservoir age 

effect using data from Cage et al. (2005). The impact of Sellafield discharge on fjordic sites is 

important to help track how aqueous waste from the plant impacts on marine flora and fauna. 

Analysis of δ13C changes will also be undertaken to investigate the timing/magnitude of the 

ocean δ13C Suess Effect at the sites, these results will be compared to other marine records 

(e.g. Butler et al., 2009a) and the atmospheric record (Francey et al., 1999). δ13C values will 

also be used to investigate whether there is an ontogenetic influence on δ13C values as has 

been observed elsewhere as this has a potential impact on the period of shell growth from 

which material can be sampled.  

 

1.6 Overview of thesis research 

This thesis is split into seven chapters to address the aims and objectives outlined above. 

Chapters 2 to 6 are outlined below, the final chapter is an overall discussion for the entire 

thesis, and the final chapter deals with the conclusion and future directions. Parts of this thesis 

has been written up and published in Stott et al. (2010); however the paper does not make up 

an entire chapter, rather the work is present, as in the paper, in many of the chapters because 

of the structure of the thesis. This paper was written along with five other co-authors, 

however I was the primary author on the paper, and the level of input from the co-authors was 

on a par with that received from supervisors on the thesis. The only exception to this is where 

data was provided by co-authors for the paper (the 14C analysis shells – the Loch Creran data 

was provided by Cage, and the North Sea data by Weidman). Extracts from the paper appear in 

this thesis as in the publication (including in this chapter); for those chapters where this is the 
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case a note has been made in the chapter outline below. Secondary data is also used in 

Chapter 6 for the δ13C investigation of the ocean δ13C Suess Effect. This data comes from an 

undergraduate dissertation project by Daniels (2010) which was carried out with assistance 

from the author. 

Chapter 2 – Field Area and Site Analysis: focuses on introducing the field area and  the 

analysis of sediments collected from the field area as part of the thesis in order to  determine 

how sediment grain size, sediment water content and organic carbon content at each site 

differs. These results are used later in Chapter 7 to look for patterns between results 

generated in Chapters 2, 4, 5 and 6. Parts of this chapter have been taken from Stott et al. 

(2010). 

Chapter 3 – Instrumental Data: in order to fully analyse the chronologies constructed in 

Chapter 4 for their potential as climate proxies, it is important to first gain an understanding of 

instrumental data available for the region. This is achieved through comparing local, regional 

and gridded sea and air temperature datasets to look for a common pattern between these 

series and therefore determine if the longer, gridded sea and air temperature records can be 

used where the local/regional data are too short in length to be of any real use in Chapter 4. 

Chapter 4 – Chronology Construction and Response Function Analysis: this chapter 

introduces the methodology behind constructing A. islandica growth chronologies and how 

they are analysed to determine if they record a climate signal in their growth increment 

variations. A growth chronology is constructed for each of the six sites (introduced in Chapter 

2), and these are compared to see if there is a common signal between the series.  All six 

chronologies are compared to the instrumental datasets selected for analysis in Chapter 3 to 

look for a climate signal in the shell growth records. Parts of the chapter are from Stott et al. 

(2010). 

Chapter 5 – Shell Biometrics and Morphology: in order to determine if there are any 

morphological differences between shells from different sites, analysis of shell width, height, 

length and weight are undertaken and the results compared. In addition, the relationship 

between shell age and weight/height are investigated to determine if either weight or height 

can be used as predictors of age, something which would be of benefit for analysing 

population age structures without sampling as many shells. The population age structures of 



Chapter 1 - Introduction 

29 

 

the six field sites are investigated to determine whether populations are starting to age, or 

show signs of recent recruitment. Parts of the methodology, along with some results, are from 

Stott et al. (2010). Some of the biometrics data (height, weight etc.) were collected by Ms 

Helen Beddow-Twigg, Ms Jodi Old, Ms Liz Daniels and Mr Campbell Dowell, as part of either 

undergraduate dissertation work, or in the case of Campbell during work on a Nuffield 

Summer internship in the department. 

Chapter 6 – Geochemical Analysis: analysis of variations in δ13C and 14C are undertaken to 

investigate the ocean δ13C Suess Effect and the timing of the radiocarbon bomb-peak in the 

field site respectively. Unlike the rest of the analyses, these are undertaken on material from 

the outer shell as there is more material available from this part of the shell. Results are 

compared to those collected by other researchers from elsewhere in the UK, as well as slightly 

further afield. Some of the 14C results and methodology presented here are from Stott et al. 

(2010), while stable isotope results from 1 site come from work undertaken by Ms Liz Daniels 

as part of her undergraduate dissertation (Daniels, 2010). 
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2 Field Area and Site Analysis 

2.1 Field Area 

This chapter describes the field area and the six sample locations which were chosen to 

capture different environmental gradients. These are placed into their wider oceanographic 

context, and the different site conditions are investigated to determine how sediment grain 

size, sediment water content and organic carbon (OC) content varies between the six sample 

sites. Understanding these site characteristics may help explain differences in growth rates and 

climate response between the shell growth records. 

 

2.1.1 Field area setting 

2.1.1.1 Fjord hydrography  

As already mentioned in Chapter 1, all the sample sites are located within fjords on the west 

coast of Scotland (Figure 2.1). Therefore, it is important to consider how the hydrography of 

fjords may vary and how this may have a bearing on processes influencing shell growth at 

these sites. The main features of fjords (Figure 2.1) are a glacially over-deepened basin, and a 

sill at the fjord entrance which separates the fjord from the adjacent water body, thus limiting 

water circulation and oxygen renewal in the fjordic waters (Howe et al., 2010). Fjords also have 

a high freshwater input from the surrounding area, most of which is river-derived, mainly from 

the river at the fjord head (Inall and Gillibrand, 2010). In some cases, such as Loch Etive, the 

level of freshwater input leads to stratification of the water column in the area surrounding 

the river mouths (Howe et al., 2010). This freshwater input means that fjords have a lower 

salinity than the adjoining coastal water (Howe et al., 2010). Within modern non-glaciated 

fjords in the temperate/mid-latitudes, rivers play an important role. Not only do they 

contribute to the carbon supplied to the fjord (along with runoff and primary production (PP)), 

but they are also attributed as one of the controlling factors over fjordic sediment supply 

(Howe et al., 2010). 
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Figure 2.1A: Location of the field area in the context of the United Kingdom and Ireland. 
Also shown is the location of Kentra (red circle) which is relevant for the material discussed 
in Figure 2.3 

Figure 2.1B: Location of the six sample sites in relation to the local instrumental datasets; see Table 
2.1 for location names. Also indicated is the location of the SAMS research station and the two 
fjordic instrumental datasets (Dunstaffnage and Saulmore) 
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Table 2.1: Field site names and depth 

 

 

 

 

 

The water column configuration present in fjords differs from coastal waters due to different 

stratification processes (see Figure 2.2). In coastal waters, stratification is generally driven by 

seasonal thermal changes. This is not the case in fjords where a combination of high 

freshwater inputs and restricted flow of water leads to density driven stratification which has 

no clear seasonality (Inall and Gillibrand, 2010). In many fjords, deep isolated basins also 

create a very distinct water pattern. These basins are often sinks of older water, which is only 

refreshed by newer water which occurs over timeframes from weeks to years (Inall and 

Gillibrand, 2010). Deep water renewal events rely on denser, external water entering the fjord 

and crossing over internal sills to force deeper water in the basin upwards due to density 

differences, therefore causing a renewal of the deep water in the basin (Inall and Gillibrand, 

2010). These deep water renewal events affect bottom water currents, creating maximum 

currents of 0.1 to 0.4 m. s-1, which in turn causes resuspension of sediment and organic 

material from the fjord bed (Inall and Gillibrand, 2010). They also have the potential to cause 

deoxygenated water to move upwards in the water column, this may lead to biodegradation 

and even fish death events (Inall and Gillibrand, 2010). It is important to fully understand such 

events because they have the potential to greatly influence fjordic ecosystems. 

 

 

 

 

Site Name Depth 

C1 Lynn of Lorn 11 to 17 m 

C2 Loch Creran 20 m 

C4 Airds Bay 14 to 18 m 

C6 Ardchatten Priory 12 to 18 m 

C7 Seal Rocks 16 to 24 m 

C8 Ardmucknish Bay 18 m 
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2.1.1.2 Geological setting 

The field area is underlain by rocks from the Dalradian Supergroup (a range of rocks including 

quartz- and mica-rich metamorphic, fine-grained metamorphosed sedimentary rocks, 

limestones and metamorphose basalt). There are also some Caledonian granites and gabbros 

(igneous) and Devonian volcanic (igneous) rocks in the local area (Mitchell, 1997). The region is 

bound by the Highland Boundary Fault to the south and the Great Glen Fault to the north 

(Mitchell, 1997). 

Over the last 500ka multiple glaciations have affected the area (Stoker et al., 2006). These 

events have greatly influenced the local landscape; glacial activity created over-deepened, 

coastal basins, and when the ice retreated they filled with water, creating the fjords present 

along the west coast of Scotland. Other local glacial features include; raised shorelines (a 

glacio-isostatic rebound feature), moraines and glaciofluvial sediments deposited in the area 

as a result of glacial activity. It is possible to use the raised features resulting from deglaciation 

after the Last Glacial Maximum (LGM) to interpret past changes in relative sea level (RSL) as a 

result of glacio-isostatic uplift (e.g. Shennan et al., 2000; Shennan et al., 2012). These are 

outlined in the next section where their implications for fjord and coastal water exchanges will 

be briefly summarised. 

 

Figure 2.2: Fjordic water column structure. The arrows indicate water transport/mixing. (Adapted from Cage, 2005). 



Chapter 2 – Field Area and Site Analysis 

34 

 

2.1.1.3 Relative Sea Level Change 

Relative sea level (RSL) refers to the sea-level in relation to land (Pethick, 1984); a positive RSL 

change reflects either an increase in sea-level or a decrease in land-levels, while the opposite is 

the case for negative RSL changes (Pethick, 1984). There are two main reasons for RSL 

changes: 

1) Eustatic, 

2) Local/regional tectonic activity or isostatic movement. 

In NW Scotland, RSL changes caused by isostatic movements as a result of local/regional glacial 

activity are of particular interest. During the LGM the weight of the ice mass on Scotland 

caused depression of the Earth’s crust. Once the ice melted the land began to recover and 

undergo a process known as isostatic rebound (Pethick, 1984). Isostatic rebound is not uniform 

across Scotland and actually continues today. Coupled with global eustatic sea-level changes 

(i.e. those caused by changes in ocean volume due to the flux of global ice sheet/glacier ice 

into/out of the ocean), RSL has changed over time as the interaction between isostatic 

rebound and eustatic sea-level have changed (Pethick, 1984).  

During periods where RSL has fallen, due to isostatic rebound exceeding changes in eustatic 

sea-level, features such as raised beaches and isolation basins form (Sissons et al., 1966; 

Pethick, 1984; Smith et al., 2003; Shennan et al., 2005; Shennan et al., 2006). These 

geomorphological features can be used to interpret past changes in sea-level, and therefore 

provide a potential constraint on the interactions between coastal and fjordic waters over time 

(i.e. RSL will influence fjord sill depth and therefore exchange). Outer Loch Etive for example 

has raised shorelines dating to the early Holocene at 14m Ordnance Datum (Gray, 1974 in 

Nørgaard-Pedersen et al., 2006). 

 



Chapter 2 – Field Area and Site Analysis 

35 

 

 

Figure 2.3: Relative sea-level (RSL) change for Kentra, 
Scotland relative to present day sea-level (m), the x-axis is 
measured in years BP. The solid line is a best estimate of RSL 
change in the late Holocene (see Shennan and Horton, 
2002). The dashed line comes from work by Shennan et al. 
(2002a in Shennan and Horton, 2002) and illustrate 
predicted past RSL changes (image from Shennan and 
Horton, 2002; 515). The location of Kentra is illustrated in 
Figure 2.1a. 

The exchange of water between the fjords and coastal waters varies between fjords 

(depending on season, tide, freshwater input and sill depth at the fjord entrance (Howe et al., 

2010)), but also over time due to changes in RSL. Since deglaciation after the LGM (c. 20 ka.), 

Scotland has experienced isostatic uplift (see Figure 2.3), leading to the creation of raised 

beaches around the Scottish coast (Sisson et al., 1966; McIntyre and Howe, 2010). Shennan et 

al. (2000) and Lambeck (1995) have carried out research into these features as measures of 

past sea-level changes as a response to glacio-isostatic uplift after deglaciation. Such research 

has indicated that over the Holocene, sea-level changes have fluctuated, thus influencing the 

exchange rates between the fjordic and coastal waters; this not only affects fjord water 

salinity, but also circulation and deep water renewal events (Nørgaard-Pedersen et al., 2006). 

For the time scales investigated in this thesis, such events have no direct impact on the 

research. However, if longer (i.e. Holocene) chronologies were ever developed using fossil shell 

material, then these issues may become important given the late Holocene tendency for RSL 

fall and hence shoaling around entrance sills.  

 

2.1.1.4 Climate 

The predominant influence on local climate for the field area is the North Atlantic, in particular 

the North Atlantic Current/Gulf Stream which is responsible for providing the region with 

moisture and heat from the tropical Atlantic (Met Office, 2012a). Coastal air temperatures for 

the west of Scotland have mean annual values between 4-13°C (max daily temperatures) and 
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0-8°C (min daily temperatures) (Met Office, 2012b), with the warmest months tending to be 

July and August, while January/February are normally the coldest months (Met Office, 2012a). 

Rainfall varies between its highest in October to January, and its lowest in May/June (Met 

Office, 2012a), with an annual average of 180 to 270 days of rain ≥1.0 mm (Met Office, 2012b). 

 

2.1.2 Regional oceanography 

The fjordic region of Scotland is important in the North Atlantic climate context due to its 

oceanographic setting. The area is influenced by the relatively warm, saline waters of the 

North Atlantic Current (Ellett, 1979) and thus is indirectly affected by the North Atlantic 

Meridional Overturning Circulation (AMOC). It is possible that external forcing (e.g. solar and 

volcanic activity) may have influenced the strength of AMOC (Stenchikov et al., 2009), which 

has been shown to have influenced past abrupt climate events during the last glaciations 

(Hofer et al., 2011) and events such as the Little Ice Age. Therefore AMOC has been, and 

remains, an important factor in NW European climate systems (Cage and Austin, 2010). As 

changes in the AMOC can be climatically important, identifying sites which can record past 

variations over time are key. Fjords on the west coast of Scotland are influenced by AMOC and 

westerly air stream changes and therefore are useful for investigating climate variability for 

NW Europe (Austin and Inall, 2002). 

Much work has been carried out studying the currents, salinity and temperature properties of 

the waters off the west coast of Scotland (McKay et al., 1986; Holliday et al., 2000; Inall et al., 

2009). This has been done using a variety of methods such as Conductivity-Temperature-Depth 

(CTD) casts to investigate salinity, and the tracking of radioactive isotopes from the Sellafield 

nuclear reprocessing plant to look at current flows (McKay et al., 1986). Previous research 

indicates there are two main water masses influencing the west coast of Scotland; Atlantic 

waters and the Irish Sea (McKay et al., 1986). The main water bodies present along the west 

coast of Scotland are the Scottish Coastal Current (SCC), the North Atlantic Current, the North 

Atlantic Slope Current (see Figure 2.3 for the location of these three currents), and in the 

Rockall Trough (RT), the Eastern North Atlantic Water (ENAW) and Labrador Sea Water (LSW) 

(Holliday et al., 2000).  
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The SCC (Figure 2.4), a combination of water from the Irish Sea and the Clyde Sea moves 

northwards along the coast of Scotland (Inall et al., 2009) and is the predominant current along 

the west coast of Scotland. The ratio of freshwater, Irish Sea and Clyde Sea water which 

constitutes the SCC is seasonally dependent, as is the mixing that occurs between the water 

masses (Ellet, 1979); the Clyde Sea contribution to the SCC freshens the water mass, as do 

some land-based run-off water sources (McKay et al., 1986). However, the contribution from 

the land is minimal, meaning that the SCC gets diluted by less than 1% by volume (Inall et al., 

2009). Another inshore current influencing the oceanography off the west coast of Scotland is 

the European Slope Current (ESC), which like the SCC, is a north flowing current and has its 

southern limit at the Goban Spur and a northern extent in the Shetland Islands (Inall et al., 

2009). The RT is one of the ways in which North Atlantic waters reach the Norwegian Sea and 

comprises two main water masses; the ENAW in the upper water column and below 1200m 

LSW re-circulates in the basin due to shallower topography in the north meaning that it is 

unable to escape (Holliday et al., 2000). 

 

Figure 2.4: Main currents off the west coast of Scotland (Adapted from Cage and Austin, 2010). The black box 
indicates the location of the field area; for a more detailed map of the sampling sites see Figure 2.1B. 
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2.2 Sample Sites 

All six sites (Figure 2.1B) have several common features; over the 20th century all sites have 

seen some form of anthropogenic activity in the area (which will be discussed in more detail in 

Section 4.3.1).  The timing of the phytoplankton bloom is similar between the sites around 

mid-March (200mg C. m-3) and levels in the summer are also comparable between sites at 

approximately 50mg C. m-3 (Ross et al., 1994). These factors theoretically mean that A. 

islandica at each location should have similar food availability levels, and therefore this should 

not have a large influence on inter-site growth differences. As a result potential common 

response to climate variability between the sites should be maximised. 

 

2.2.1 Lynn of Lorn (Site C1) 

The Lynn of Lorn is a well-mixed coastal site at the entrance to Loch Linnhe, with water depths 

at the point of collection ranging from 11 to 17 m. Sediment here has been previously 

described in Collier and Brown (2005) as consisting of silty mud with variable amounts of silt 

and gravel present. Samples at this site were collected close to sampling site V18 of Brown and 

Collier (2008) – which they classified as habitat type SS.SMu.VirOphPmax (based on the 

classification scheme of Connor et al., 2004, see Appendix 1 for more information), meaning 

the site is classified as having salinity levels between 30-35. In addition, this site is moderately 

exposed to waves with weak tidal streams (Connor et al., 2004). Annual seawater 

temperatures in the area ranged from 5.6°C (January to March), to 15.1°C (August to 

September) (generated from daily average of 240 measurements, August 1995 to March 2009; 

M.D.J. Sayer, unpublished data). Salinity averages range from 33.3 to 34.1 (estimated from 

Firth of Lorne from Heath, 1995).  

 

2.2.2 Loch Creran (Site C2) 

Loch Creran is well-stratified (Ross et al., 1994) with an overall flushing time (the time it takes 

for water to leave the sea loch system) of 6 to 7 days (Tett, 1973 in Ross et al., 1994) and 
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consists of four basins which, according to temperature and density data, are strongly coupled 

(Ross et al., 1994). The different sediment types found in each of these basins is outlined in 

Table 2.2. Loch Creran opens into the Lynn of Lorn (Section 2.3.1) at the narrows near the Isle 

of Eriska (Donovan, 2006) at which point the sill depth (7m deep; Black et al. (2000)) is fairly 

shallow and unobstructed (Ross et al., 1994). Loch Creran has a catchment area of 167 km2 

(Ansell, 1974), and is much smaller than that for Loch Etive.  

Salinity in Loch Creran is comparable to that in the Lynn of Lorn, with variation being less than 

1 at any one time and a range of 2 near the loch bottom (Gage, 1972b). At the surface, 

however, there are indications of fresh water; Gage (1972a) recorded a lowest salinity of 24.6 

which is more than 8 less than the value at the loch bottom at the same time. The only 

seasonal pattern in salinity recorded at the surface is due to periods of increased freshwater 

runoff after heavy rainfall (Gage, 1972a). Temperatures recorded by Gage (1972a) are also 

fairly similar to those in the Lynn of Lorn, with an annual range of approximately 7 to 9°C, the 

lowest value being in February/March (6°C) and the highest in August/September (13 to 15°C). 

Freshwater inputs for Loch Creran come from River Creran at the head of the loch as well as 

from several other rivers (Figure 2.1). River Creran is an important source of terrestrial 

material to the loch (Loh et al., 2008), the mean input of freshwater in Loch Creran in 286x106 

m3.y-1 (Edwards and Sharples, 1983 in Loh et al., 2008). 

 

Table 2.2: Sediment types present in each of the basins in Loch Creran (Figure 2.1), according to Black et al. (2000). 
These results are generalised for each basin, but do indicate changes between the basins. 

 

Site C2 was selected because it was investigated by Gage (1972a; 1972b) (site C5 in these 

papers) when live specimens were collected from the site. Once a robust chronology has been 

constructed for this site it may be possible to crossdate these older samples into the 

chronology, thus extending the record back further in time. The site has a depth of 20m with 

muddy sediments present on the loch floor (Gage and Tett, 1973).  

Basin Sediment type present Sample sites present 

Basin 1 (lower basin) Coarse sediments N/A 
Basin 2 West end: Coarse sediments 

East end: Soft, enriched, muddy sediments 
C2 

Basin 3 Muddy sediments N/A 
Basin 4 Deep sections have a similar biotope present to basin 3 N/A 
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2.2.3 Loch Etive (Sites C4, C6, C7 and C8) 

Loch Etive opens into the Lynn of Lorn at the Falls of Lora, which is a narrow opening causing 

turbulent rapids to flow there during the end of the ebb tide (Ross et al., 1994). It also has a 

high ratio of freshwater discharge to tidal flow (Edwards and Sharples, 1986).  Loch Etive is 

28km long (Ridgway and Price, 1987) and has two basins (within which are assorted smaller 

basins (Howe et al., 2002)), which are weakly coupled (Ross et al., 1994). The overall flushing 

time for Loch Etive is 12 days, although this is increased somewhat due to the large depth of 

the upper basin of approximately 150m (Ross et al., 1994). The outer basin is ~60m deep 

(Ridgway and Price, 1987). This flushing time can be broken down into 3-4 days for the lower 

basin and an exchange time between the two basins of 10 to 14 days (Ross et al., 1994). Loch 

Etive has a catchment area of 1300km2 (Ridgway and Price, 1987), a mean freshwater input 

value of 3037.5 x106.m3. yr-1 (Edwards and Price, 1986, in Loh et al., 2008), a total surface area 

of approximately 28km2 (Ridgway and Price, 1987) and high levels of freshwater input – which 

comes from rainfall and also the Rivers Etive, Awe and Kinglass (Howe et al., 2002) which are 

also important sources of terrestrial material to Loch Etive (Loh et al., 2008, Howe et al., 2002). 

This means that there can be prolonged periods of water stratification in the loch (Loh et al., 

2008). Salinity levels in Loch Etive have previously been shown to range from a maximum of 

~30, while it can reach lows of ~5 (Ansell, 1974), values that are much lower than those seen in 

Loch Creran. 

Deep water renewal (see Section 1.4.1 for definition) in Loch Etive occurs due to low 

freshwater runoff and can be considered aperiodic; average timing of renewal is 1 
 ⁄ years 

(Edwards and Edelsten, 1977). Such long periods between water renewal events in Loch Etive 

causes stagnation of bottom water which causes a second pycnocline (present at depths 

between 30-100 m), below which there are slow variations in salinity and temperature 

recorded (Edwards and Edelsten, 1977).  

The upper section of Loch Etive is within an igneous-metamorphic mixture, with the outer 

portion, to the west of Bonawe (Figure 2.1), having a geological setting of andesitic and acidic 

lavas and tuffs of Old Red Sandstone age (Howe et al., 2001). Between these two geologically 

different areas there is an outcrop of phyllites and slates of Dalradian age (Howe et al., 2001). 
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Bottom water sediment conditions have different characteristics between the two Loch Etive 

basins; in the upper basin oxidation only occurs to a depth of ~1cm, below which the sediment 

present is dark-grey to black (Ridgway and Price, 1987); in this environment there is little 

biological activity – A. islandica can be found and the tube worm Spirochaetopterus typicus is 

present (Ridgway and Price, 1987). It is a different matter in the lower basin, where two tube 

worm species dominate the upper sediment layers; Capitella capitati and Nepthys hombergi 

along with many other macrofaunal species (Ridgway and Price, 1987). The sediments in which 

these fauna live are generally red-brown in colour and oxidation of sediment occurs to a depth 

of ~5cm, below this the colour changes to a green-grey (Ridgway and Price, 1987). The four 

Loch Etive sites are summarised in Table 2.3. 

 

Table 2.3: Site properties, starting with site C7 at the head of the loch moving down to site C8 at the loch mouth; all 
site locations are illustrated in Figure 2.1. 
 

Site Site Description 

C7 Also known as Seal Rocks, site C7 is located in the upper basin of Loch Etive, therefore the flushing time 
here is longer than for sites C4, C6 and C8 (Ross et al. (1994) quote a flushing period for the whole loch of 

12 days, 3-4 days for the lower basin and an exchange time of water between the two basins of 10-14 
days). Site collection depths range from 16 to 24 m. 

Sediment at this site is visually very different to the other Loch Etive collection sites; it is almost liquid/fine 
mud-very fine silt (Sayer pers. comm., 2009). Halocline depth is at ~20 m (Gage, 1972 in Murray et al., 

2003). Temperature at the loch bottom ranges from ~8 to 10°C (Gage, 1972 in Murray et al., 2003). 
C4 The Airds Bay site is within the lower Loch Etive basin (Figure 2.1) and is relatively well sheltered. Shells 

collected at this site come from water depths ranging from 14 to 18 m, where the sediment is visually 
described as being soft but firm (compact) mud sand (Sayer pers. comm., 2009). 

C6 Site C6 (near Ardchatten Priory) like site C4 is also in the lower basin of Loch Etive, but it is closer to the 
loch mouth and is less sheltered than Airds Bay. The site is 12 to 18m deep and has sediment present 

which is visually described as soft but firm (compact) mud sand (Sayer pers. comm., 2009). 
C8 Site C8 is in Ardmucknish Bay is located just outside the mouth of Loch Etive, and has a site depth of 18m. 

The site is visually described as having a muddy substratum mixed with shell, sand and gravel (Sayer pers. 
comm., 2009). 

 

2.3 Site Analysis 

To better understand the conditions in which A. islandica are found, as well as to further 

investigate inter-site variability, the following environmental variables were analysed; grain 

size, sediment water content, and organic carbon (OC) content. These variables were analysed 

for several reasons. Characterisation of grain size data/sediment types in which other A. 

islandica populations have been found has already been undertaken in Iceland (Thórarindóttir 
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et al. (2009) and in the western Baltic Sea (Liehr et al., 2005). Such research has indicated that 

this species favours sandy mud/mud (Liehr et al., 2005) and medium to fine grained sand 

(Thórarindóttir et al., 2009). Therefore, by carrying out similar work for the field area it is 

possible to see how the grain size at the Scottish sites studied here differs to that in which 

other populations are found. OC content was chosen for analysis as no previous research into 

the OC content of sediment in which A. islandica is found has been published. If all the sites 

have similar OC content values this may suggest that the species favours sites with a certain 

OC level. This information could help identify whether changes/differences in OC content at 

the site influences the response of A. islandica to climate. The sediment water content values 

are being studied in an attempt to discover whether this influences where shells are found, 

something which has yet to be studied in the literature in any detail to date. 

 

2.3.1 Methods 

All three variables were measured using samples from sediment cores collected by the 

National Facility for Scientific Diving (NFSD). At each site six push-cores (Wilding and Sayer, 

2002) were collected and subdivided into three equal sections (0-4 cm, 4-8 cm and 8-12 cm). 

The notation for each core section is as follows; (i) site ID, (ii) core number, (iii) sample depth 

(lower depth recorded). For example, core C1 1-4 is core number one from depth 0-4 cm, 

collected at site C1. For some analyses undertaken sample sizes are small due to restricted 

material availability e.g. sediment grain size data, this must therefore be considered when 

choosing analysis methods and undertaking normality tests. 

To analyse sediment water content, samples were freeze-dried and weights from before and 

after recorded. The difference between the two weights can then be used to work out water 

content using Equation 2.1: 

                      (
           ( )             ( )

          ( )
)       Equation 2.1 
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After freeze-drying, samples for grain size analysis were run through a Coulter Counter, with 

each sample processed three times (with sonification between each step to break apart any 

cohesive sediment particles). For each sample run, the three outputs were averaged together, 

meaning only one dataset per sample was later analysed. The analyses carried out on the grain 

size series were threefold; (i) visual comparisons between the data using a combination of 

stack plots (ii) ternary diagrams, and (iii) correlation between the histograms. However, for the 

correlation work it is necessary to take into account potential autocorrelation (AC) of the data 

which can artificially inflate the confidence in the correlation results between series recorded. 

Equation 2.2 was used to calculate the actual degrees of freedom (df) to gain a ‘true’ p-value 

for each correlation carried out. Using Equation 2.3 and the n-value gained from Equation 2.2 

the ‘true’t-value can be calculated, which along with correlation t-tables can be used to see if 

the correlations are significant. 

 

    
(        )

(        )
       Equation 2.2 

Where  r1x and r1y are the first order AC values for samples x and y,  

N’ is the adjusted degrees of freedom (n-value),  

N is the original n-value. 

 

   
 

√ 
    

    
 

        Equation 2.3 

 

Where N’ is the value gained from Equation 2.2 

r is the correlation coefficient value between the two series being investigated. 
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For each site, two sediment grain size datasets were generated for analysis. Initial work was 

undertaken on a single core at each site with one sample from each depth analysed. This is 

done to investigate the homogeneity of sediment grain size down core. However, due to the 

life position of A. islandica (see Figure 4.3) it is mainly the top section (near surface) of the 

cores that is of interest. The results for the grain size analysis are presented on a site basis, and 

then all the site data are compared. For the ternary diagrams, the Wentworth (1922) class 

terms for sediments are used to determine the percentage of clay, silt and sand in each 

sample. The three sediment types are defined according to the following sizes: 

Clay <4 µm 

Silt 4 to 63 µm 

Sand >63 µm 

OC content analysis was carried out on the same cores chosen for the down core grain size 

work. Samples of a known weight were analysed using Loss on Ignition (LOI) in a furnace at 

450°C. Weights prior to and after LOI analysis are recorded and the difference in values used to 

work out the OC content of the samples as a weight percentage. 

 

2.3.2 Results 

2.3.2.1 Sediment water content 

The sediment water content values (median and inter-quartile range (IQR)) for the six sites are 

summarised in Figure 2.5. These results show that at site C7 all the depths analysed have 

higher water content values compared to the same depth at the other five sites. It is only at 

C1, C6 and C7 where all values from the three depths are significantly different (Figure 2.5). 

There are no patterns of decreasing values for C8, and at C4 there is an overall increase in 

values moving down core, however these are not significantly different (at the 95% confidence 

level)1. Whether the higher water content values at site C7 have a bearing on various growth 

factors in A. islandica will be investigated in Chapter 7. 
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To quantify the relationships present between the data shown in Figure 2.5, Kruskal-Wallis 

tests were undertaken for the site data to test for intra-site differences, and for inter-site 

differences for each depth analysed (0 to 4, 4 to 8 and 8 to 12 cm) (Table 2.4). These indicate 

that at sites C2, C4 and C8 there are no significant intra-site differences in sediment water 

content. For sites C1, C6 and C7 there is at least one significantly different inter-site value.  

From the depth data groups it is only C7 that is statistically different from all the other site 

values. The Kruskal-Wallis results (Table 2.4) confirm the visualisation of the data in Figure 2.5. 

 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
1All tests using significance levels are carried out at the 95% significance level unless otherwise 
stated 

Figure 2.5: Sediment water content data for the six sites, the mid-point represents the 
median and the measure of the variance of the data the IQR. Mean and standard deviation 
were not used due to the skewed nature of the data (see Appendix 2). Significance level 
used : 95% 
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Analysis Group H-value p-value 

Site C1 10.84 0.004 

Site C2 2.74 0.254 

SiteC4 0.67 0.714 

Site C6 13.43 0.010 

Site C7 14.75 0.001 

Site C8 0.79 0.672 

Depth 0-4cm 29.96 0.000 

Depth 4-8cm 30.26 0.000 

Depth 8-12cm 19.93 0.000 

 

2.3.2.2 Sediment grain size 

The down core sediment grain size distribution data for the six sites (Figure 2.6) show that the 

predominant sediment type is either sand or silty sand, which broadly agrees with previous 

work characterising the sediment type in which A. islandica occurs (Liehr et al.,2005; 

Thórarindóttir et al., 2008). At sites C1, C4 and C7 data from all three depths plot within the 

same sediment type which are silty sands (C1 and C7) and sand (C4); for the other sites there 

are some down core differences in sediment type observed. For example, at site C8 two of the 

data points are in the silty sand section of the diagram, while the other plots in the sand 

portion. This difference in sediment type with depth is clearly seen in the stack plot of the data 

(shown in Figure 2.7 as an example of an alternative way to present the data – the stack plots 

for the remaining sites are presented in Appendix 3).  

 

 

Table 2.4: Kruskal-WallisH test results on data in Figure 2.5 
comparing intra-site differences in sediment water content 
(rows 2 to 6) and inter-site differences at the three depths 
(rows 7 to 9) 
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Figure 2.6: Ternary diagrams for each site for the three down core sections analysed to indicate sediment type (as 
volume percentage) present at the six sites.  Stack plots for the grain size distribution results for each site are 
illustrated in Appendix 3. Cores analysed here are as follows: C1 – core 5; C2 – core 5; C4 – core 5; C6 – core 4; C7 – 
core 5:  C8 – core 1. 
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Figure 2.7: Example of a stack plot of 
grain size distribution – in this 
instance for site C8, core 1 (down 
core analysis). All the other stack 
plots are in Appendix 3 0-4 cm in red, 
4-8 cm in blue and 8-12 cm in pink. 

 

The ternary diagram plots of the core surface sediment (Figure 2.8) support the findings in 

Figure 2.6 i.e. that the predominant sediment type at all six sites is sand/silty sand. As with the 

down core data, there are still some differences between the sites but they all suggest 

generally consistent sand to silty sand habitat preference. 
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Figure 2.8: Ternary diagrams (volume percentage) illustrating sediment type present in the six core surface samples 
analysed at each site. The stack plots of the data used to generate these results are in Appendix 3. 
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To acquire a better understanding of how the grain size at each site differs, distribution data 

were plotted and correlated (see Appendix 3) to test for a common sediment matrix 

distribution both down core and for the surface sediment series. From the example stack plot 

in Figure 2.7 it is possible to see that there is a visual coherence present with a slight shift in 

the mode of the C8 1-4 sample towards finer grain sizes and a low df (degrees of freedom).  To 

ensure that the low df  did not bias the correlation analyses, the AC corrections outlined in 

Equations 2.2 and 2.3 were undertaken on all data sets; analysis was not feasible where N’ was 

lower than 3. At sites C4, C7 and C8 all the results had N’<3 and therefore correlations could 

not be robustly performed for these examples. Site C1 was the only site where all N’ values 

were greater than 3, however all these correlations were non-significant. It was only for site C2 

where any of the correlations were statistically significant (Table 2.5). All the correlation 

results are presented in Appendix 4.  Ultimately due to the low sample numbers this proved an 

inconclusive and poor approach to the analyses and therefore an alternative method was 

chosen for use – chi-squared. 

 

Table 2.5: Significant correlations between grain size distribution series after correcting for the AC present in the 
grain size distribution series as illustrated in Figure 2.7. All the other correlation results are in Appendix 4. 
 

Site Core sections r p-value 

C2 5-4 and 5-8 
5-8 and 5-12 

0.965 
0.943 

<0.05 
<0.05 

 

The chi-squared test was used to look for significance between the modes of the data 

distributions. The Chi-squared test is also appropriate as it can be used on small data-sets (i.e. 

when df is low, where df is defined as degrees of freedom) and standard normality tests 

cannot be performed (see Appendix 5 for normality test results).  The chi-squared analysis was 

carried out for both the down core and sediment surface data; the results are summarised in 

Table 2.6 and indicate five significantly different results; at site C8 the significantly different 

results are likely due to the shift in the mode of sample 1-4 towards the finer grain size fraction 

(Appendix 3K). For site C1 there are several peaks which deviate from the average mode for 

the surface analyses producing the significantly different results, while at site C2 the mode of 

the surface sample analysed in the down core analysis is shifted towards the finer grained 

sediments compared to the other two results (Appendix 3). Finally, for site C7 the surface 

sample has a mode which is further towards the coarser grained sediment fractions than the 
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two lower core samples. These results support the visual differences inferred from both the 

ternary diagrams (Figures 2.6 and 2.8) and Appendix 3. However, this is not unexpected, and 

simply indicates that the sediments within a single collection site are not completely 

homogenous. Of greater interest is whether or not any of the sites are characterised by 

sediment types which differ from those found by Liehr et al. (2005) and Thórarindóttir et al. 

(2008), which would suggest the ability of A. islandica to inhabit a wider range of sediment 

habitat types. 

 

Table 2.6: Results of chi-squared analyses of the sediment grain size data (modes – as illustrated in Appendix 3), 
down core n = 3, surface n = 6 
 

Site Series Analysed Chi-squaredcalc 

value 
Chi-squaredtab 

value 
Significance 

C1 Down core 
Surface 

1.59 
22.49 

5.99 
11.07 

Not significantly different 
Significantly different 

C2 Down core 
Surface 

9.69 
8.141 

5.99 
11.07 

Significantly different 
Not significantly different 

C4 Down core 
Surface 

0.68 
0.968 

5.99 
11.07 

Not significantly different 
Not significantly different 

C6 Down core 
Surface 

0 
0 

5.99 
11.07 

Not significantly different 
Not significantly different 

C7 Down core 
Surface 

14.99 
0.86 

5.99 
11.07 

Significantly different 
Not significantly different 

C8 Down core 
Surface 

42.75 
60.44 

5.99 
11.07 

Significantly different 
Significantly different 

 

When all of the data from the sites are compared on two ternary diagrams (Figure 2.9) it can 

be seen that all the sites have broadly similar sedimentary characteristics. The surface 

sediment ternary diagram in Figure 2.9 shows that out of the six sites, C1 has the most distinct 

sediment type (silty sand).  In Figure 2.10 the grain size data from both down core and core 

surface samples for each site have been averaged to generate an overall indication of average 

sand, silt and clay content. The data are used later in Chapter 7 for comparison with other site 

variables and shell growth data. 
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Figure 2.9: Ternary 
diagrams for all of the 
sites. The top diagram 
illustrates the sediment 
type present in the core 
top samples, while the 
bottom diagram is the 
sediment type present in 
the down core samples 
from the six sites (0-4, 4-
8 and 8-12 cm). 
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When the sediment type distributions in Figure 2.10 are considered there appears to be a clear 

preference for silty-sand among all the A. islandica sampled within Lochs Etive and Creran. 

Figure 2.10: Bar charts illustrating how the percentage of the three 
sediment types (clay, silt and sand) vary between the six sites (as not all the 
data are normally distributed this is calculated using the median and the 
errors are the IQR. 
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However, when the average mode values for each site are considered (Figure 2.11) it is clear 

that grain size increases moving down Loch Etive from a mode of 103.71 ± 6.1 µm at site C7 to 

228.61 ± 15.8µm at site C8. A down-fjord increase in grain size was also recorded by Gage 

(1972b) in both Lochs Etive and Creran. Gage (1972b) found a relationship between grain size 

and water depth, smaller grain sizes were typically found in deeper water, becoming coarser 

moving towards the shallower waters near the entrance (Gage, 1972b). Gage (1972b) 

suggested that this pattern is likely due to differences in tidal currents within the fjords, 

affecting bottom conditions of sediment entrainment and deposition. Gage (1972b) also 

showed biological community gradients changing in conjunction with grain size data. It is likely 

that fjord hydrography plays an important role in defining these spatial patterns and hence the 

distribution of benthic communities, including A. islandica. 

 

 

Figure 2.11: Map illustrating the grain size average mode values for the six study sites. 
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The grain size data indicate that all six sites are dominated by either sand or silty sand 

sediment (Figures 2.6 and 2.8). These results broadly match earlier findings by Liehr et al. 

(2005) and Thórarindóttir et al. (2008) concerning the sediment types favoured by A. islandica. 

These authors described the species as favouring sandy mud/mud, and medium to fine grained 

sands respectively. Within a fjordic environment, grain size is known to vary greatly and reflect 

hydrographic conditions (Gage, 1972b). As hydrography also impacts food supply (Witbaard, 

1996; 1997) it is entirely likely that all these factors determine the distribution of A. islandica 

(see Figure 2.12). 

 

 

 

 

 

 

That all the A. islandica populations studied here were found within a well-defined sediment 

type range, along with the fact that Liehr et al. (2005) and Thórarindóttir et al. (2008) found 

populations in similar sediments may be of use in the future in using initial bottom surveys of 

sediment type to target potential A. islandica sampling sites. Out of the six sites, C1 has the 

most distinct sediment type (Figures 2.6 and 2.8), while site C7 has the smallest average mode 

grain size. Therefore, molluscs from these sites may exhibit distinct responses to 

environmental conditions. 

 

 
 
 
 
 
Figure 2.12: How hydrographic conditions can impact on Arctica islandica distribution via both sediment type and 
food supply. The other parameters concerns factors which modulate species response to hydrographic condition 
changes e.g. pollution and climate. 
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2.3.2.3 Organic carbon content 

In Loch Creran, Loh et al. (2010) found a pattern of OC content values decreasing from the 

head of the loch to its entrance (Figure 2.13). A similar pattern is found in the Loch Etive 

results presented here (Figure 2.14), with an overall decrease in OC content values from site 

C7 to C8. The values for C4 and C6 do not fit into this overall trend, although as the 2SE (where 

SE stands for Standard Error) bars for these two sites overlap the data are not significantly 

different at the 95% confidence limit. 

 

 

Figure 2.13: Organic Carbon content values from Loch Creran by Loh et al. (2010) in black (Adapted from Loh et al., 
2010) also shown are the OC values from this study in brown. 
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Research by Ansell (1974) and Nørgaard-Pedersen et al. (2006) indicated that riverine inputs 

were important in supplying suspended material and sediment into Loch Etive, including OC. 

For example Ansell (1974) found that in a period of just over a year the River Awe was 

contributing between 8.93 mg/l and 0.116 µg/l of suspended material to the loch per day. It is, 

of course, possible that the size of the particles being introduced to the loch is such that they 

remain in suspension, and that the proximity of any given site to riverine input is not 

significant in determining sediment OC content (Figure 2.14). However another, even larger, 

source of suspended material to Loch Etive is the River Etive at the loch head (Figure 2.1). 

Ansell (1974) recorded daily suspended sediment loadings of between 29.73 mg/l and        

0.153 µg/l. Such a large input of suspended sediment very likely contributes to the high OC 

content values at site C7, together with the other notable organic sources including 

phytoplankton cells, decomposition of macro-algae and phytoplankton production (Ansell, 

1974). These sources coupled with the poor exchange of water between the upper basin in 

which site C7 is located and the lower basin (Ross et al., 1994) are most likely the reason for 

the C7 OC content values also being significantly different from those at the other Loch Etive 

sites. The OC input into the upper basin is less likely to reach the lower basin, especially when 

the long time-frames over which deep water renewal can occur are considered (mean renewal 

rate of   
   ⁄ years in Loch Etive, (Edwards and Edelstein, 1977)).  

 

 

 

Figure 2.14: Organic Carbon content (weight percentage) at each field site; data are 
averages with corresponding 2SE bars (n = 3 for each site). As the datasets here have 
small n values (n = 3), standard tests for normality are not valid, these analyses were 
repeated using the non-parametric Kruskal-Wallis test with similar results. 



Chapter 2 – Field Area and Site Analysis 

58 

 

In Figure 2.14 only the OC content data from site C7 is significantly different (this is supported 

by the ANOVA results shown in the figure; F = 46.04 and p = 0.000) from all the other sites 

studied and agrees with findings of Overnell et al. (1996 in Murray et al, 2003) who recorded 

organic content values of ~15% in sediment from near Bonawe deep in the upper Loch Etive 

basin. The higher OC content values at site C7, together with the quality of that organic 

material could influence the growth response of shells at this location more than at the other 

sites due to the high levels recorded at site C7 compared to the other five sites (Figure 2.14). 

Site specific conditions, including variations in OC content, sediment grain size and sediment 

water content may all be of use later when investigating how shell growth at the six sites can 

be influenced by factors other than climate variability. From these results it is clear that site C7 

is very distinct in terms of OC content (Figure 2.14) and sediment water content (Figure 2.5), 

while site C1 has a distinct sediment grain size type (Figure 2.9).  Whether these site-specific 

factors influence shell responses to climate forcing will be investigated in Chapter 7. 
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3 Instrumental Data 

3.1_Introduction 

Marine instrumental data for Scotland rarely extend over 100 years, and are also spatially 

limited. The location (Figure 3.1) of the Scottish Association for Marine Science (SAMS) on the 

west coast of Scotland has resulted in multiple studies into the marine environment in this 

region (e.g. Gage (1972a);Gage (1972b) ; Tyler et al. (1983); Edwards and Edelstein (1977); 

Howe et al. (2001); Nørgaard-Pedersen et al (2006); McIntyre and Howe (2010); Cundill and 

Austin (2010)). The greater density of instrumental datasets for the region compared to other 

parts of Scotland is therefore part of the reason why this region was chosen for this study. 

However, many of the available datasets are limited as they rarely extend beyond 100 years 

(see Table 3. 1) meaning they are too short for comparative analysis with other instrumental 

records and shell chronologies. As a result there are only a limited number of local and 

regional climate series suitable for analysis (Table 3.1). 

In Chapter 4, an empirical assessment is made between the shell chronologies and climate 

series using correlation analyses. For this so called “correlation response function” analysis 

(CRFA), it is important to identify the most suitable instrumental data. It is expected that if the 

mollusc growth series do record climate changes then the highest correlations would be with 

records local to the sample sites. As the local instrumental datasets are shorter than the length 

of the mollusc chronologies being analysed, they are therefore not long enough to assess 

effectively the mollusc data, meaning that it is important to identify other, longer records 

instead. In this chapter comparison is made between the short local and longer gridded 

records to investigate the presence of a common signal. Those gridded data which do share a 

common signal with the local/regional data can therefore be used to extend the period of 

analysis with the shell growth series beyond the limits of the local series.  

 

3.1 Candidate Instrumental Datasets 

There are six instrumental records examined in this chapter; two local, two non-local and two 

gridded (Figure 3.1 and Table 3.1).  The two local series are Saulmore sea temperature and 
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Dunstaffnage air temperature, while there are also two non-local datasets (non-local is defined 

here as greater than 50 km away from the sample site): a sea temperature dataset from 

Millport (approximately 80km from the field area) and an air temperature series from Tiree 

(approximately 90km from the field area). The two gridded series (from grid 55°N-60°N, 10°W - 

5°W) are HadSST2 (sea temperature) and CRUTEM3 (air temperature). The collection methods 

used to derive each of these instrumental datasets are summarised in Appendix 8. 

 

Table 3.1: Instrumental data information 
 

Dataset 
name 

Map code Type of data Period of 
record 

Depth of record 
(where applicable) 

Source 

Saulmore S Sea temperature 1996 – 
Present 

10m below chart 
datum 

Martin Sayer 
(NFSD/SAMS) 

Dunstaffnage D Air temperature 1972 – 
Present 

N/A Met Office 
website (2011a) 

Millport M Sea temperature 1952 – 
Present* 

Surface Tom Stevenson 

Tiree T Air temperature 1931 – 
Present 

N/A Met Office 
website (2011b) 

HadSST2 Black rectangle 
on Figure 3.1a 

Gridded sea 
temperature 

anomalies 

1850 – 
Present ** 

Various Rayner et al. 
(2006) 

CRUTEM3 Black rectangle 
on Figure 3.1a 

Gridded air 
temperature 

anomalies 

1890 – 
Present *** 

N/A Brohan et al. 
(2006) 

 
*Millport: data collection began in 1952; however this dataset is only used from 1953 onwards 
for most analyses due to incomplete monthly measurements in 1952. 
**HadSST2 data prior to 1903 has too many missing monthly values for meaningful analyses, 
therefore the correlations between HadSST2 and CRUTEM3 are undertaken from 1903 
onwards, the exception to this is for winter, where incomplete monthly measurements for 
1903 mean that analysis starts in 1904. 
***Prior to 1890 the CRUTEM3 dataset has too many missing monthly values for this area to 
be used for analysis. 
N.B. All series were only be analysed until 2008 (even if data is available after this date) as the 
last shells analysed were collected in 2009 and therefore their final complete year should be 
2008. Only the period being investigated is presented in any figures. 
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Figure 3.1A: Location of the gridded dataset (black rectangle) and the two non-local 
datasets (Tiree – T and Millport – M) relative to the field site (red box). 

Figure 3.1B: Location of the six sample sites (see Table 2.1 for site names) in relation to the local 
fjordic instrumental datasets; see Table 3.1 for location names. Also indicated is the location of the 
Scottish Association of Marine Science (SAMS) research station. 
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The instrumental datasets are presented in Figures 3.2 (local), 3.3 (non-local) and 3.4 

(gridded). On the whole, Dunstaffnage (Figure 3.2) shows an increase in temperature, although 

for autumn the rate of increase in temperature per year is lower than for the other seasons 

(see Table 3.2). Over the 1972 to 2008 period it is also possible to see an increase in annual 

temperature in the Tiree, Millport, CRUTEM3 and HadSST2 series (Table 3.2). Herein we define 

the four seasons as Winter – January to March, Spring – April to June, Summer – July to 

September and Autumn – October to December. 

 

Table 3.2: Rate of temperature increase per decade (°C) using data collected over the period 1972 to 2008 at 
Dunstaffnage, Millport, Tiree, CRUTEM3 and HadSST2 
 

Dataset Season Average temperature increase 
per decade (°C)

1 
p-value 

Dunstaffnage Annual 0.411 0.000 
 Winter 0.408 0.012 
 Spring 0.388 0.000 
 Summer 0.379 0.002 
 Autumn 0.162 0.216 

Millport Annual 0.319 0.002 
 Winter 0.301 0.015 
 Spring 0.384 0.002 
 Summer 0.386 0.001 
 Autumn 0.293 0.004 

Tiree Annual 0.279 0.000 
 Winter 0.382 0.004 
 Spring 0.279 0.001 
 Summer 0.265 0.006 
 Autumn 0.262 0.011 

HadSST2 Annual 0.226 0.000 
 Winter 0.198 0.001 
 Spring 0.207 0.003 
 Summer 0.231 0.001 
 Autumn 0.267 0.000 

CRUTEM3 Annual 0.334 0.000 
 Winter 0.392 0.002 
 Spring 0.317 0.000 
 Summer 0.317 0.001 
 Autumn 0.312 0.003 

1
Calculated by multiplying regression slope coefficient by 10
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Figure 3.2: Local datasets used for analysis in this chapter, each season is presented for each of the two local series. The trend in the Dunstaffnage data is also indicated (Table 3.2) as 
are the correlation coefficients and their p-values between Saulmore and Dunstaffnage for each season. 



Chapter 3 – Instrumental Data 

64 

 

 

 

Figure 3.3: Non-local datasets (Tiree air temperature and Millport sea temperature) used for analysis in this chapter. Trends for the period 1972 to 2008 are shown for each series as 
are the r and p-values for the correlations between the two series for each season. 
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Figure 3.4: Gridded datasets (CRUTEM3 and HadSST2) used for analysis. The trend in the data series (1972 to 2008) are shown in red as well as the long-term trends (1903 to 2008). 
The correlation coefficient p and r-values between the series for each season are also shown.  
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3.2 Inter-series comparisons 

Inter-series comparisons are carried out using two different methods. Initial analyses, 

presented in Section 3.3.1 used Pearson’s correlation coefficient analyses between the 

instrumental records to investigate which instrumental series were suitable for comparisons 

with the shell master chronologies in Chapter 4. Following this, in Section 3.3.2, the six 

instrumental series were standardised to z-scores in order to investigate differences present 

between the series on an annual-level over a common period of analysis, along with a measure 

of variance between the series. The purpose of these analyses is to determine whether the 

gridded datasets, which have a much longer time-span compared to the local and non-local 

datasets, are representative of the shorter, more local, temperature series. Through testing 

the coherence between the gridded data and the local and non-local datasets using 

correlations (Section 3.3.1) and investigating variance between the series (Section 3.3.2) it 

should be possible to determine whether these longer series can be used for extended 

analysis. 

 

3.2.1 Correlations 

Correlation analysis was carried out between all six instrumental records to determine which 

are appropriate for comparison with the shell growth chronologies to assess their potential as 

proxy records (see Chapter 4). These comparisons were carried out for five seasonal 

parameters; annual average, Winter, Spring, Summer and Autumn. The results are presented 

in Tables 3.3 to 3.7. Local-local correlations are shown in blue, local-non-local in red and 

local/non-local- gridded in green. Table 3.9 shows the mean value (RBAR) of all correlations 

between each station and the five others analysed. Individual correlations were generated 

over the maximum period of overlap of all bivariate pairs. The RBAR value therefore 

represents a metric mean correlation statistic that should highlight which of the station 

records is most representative of the wider study region.  
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Table 3.3: Annual average correlations between all the datasets being analysed 
 

 Saulmore Dunstaffnage Millport Tiree HadSST2 

Dunstaffnage 0.419 
p = 0.154 

1996 to 2008 

    

Millport 0.509 
p = 0.000 

1996 to 2008 

0.727 
p = 0.000 

1972 to 2008 

   

Tiree 0.866 
p = 0.000 

1996 to 2008 

0.883 
p = 0.000 

1972 to 2008 

0.774 
p = 0.000 

1953 to 2008 

  

HadSST2 0.704 
p = 0.007 

1996 to 2008 

0.898 
p = 0.000 

1972 to 2008 

0.668 
p = 0.000 

1952 to 2008 

0.807 
p = 0.000 

1931 to 2008 

 

CRUTEM3 0.850 
p = 0.000 

1996 to 2008 

0.887 
p = 0.000 

1972 to 2008 

0.810 
p = 0.000 

1953 to 2008 

0.981 
p = 0.000 

1931 to 2008 

0.826 
p = 0.000 

1904 to 2008 

 

All the instrumental records positively correlate (Tables 3.3 to 3.7), but not all are statistically 

significant. For all seasons the relationships between Saulmore and Dunstaffnage are not 

statistically significant, and these are the lowest correlations present for each of the seasons. 

The highest correlations present for each season are those between the CRUTEM3 and the 

Tiree series. These high correlations are due to the inclusion of the Tiree dataset in the 

CRUTEM3 grid being analysed here (Appendix 8).  There are, however, several series other 

than Saulmore and Dunstaffnage with non-significant correlations between them in Tables 3.3 

to 3.7 and these are summarised in Table 3.8. 

Table 3.4: Winter correlations 
 

 Saulmore Dunstaffnage Millport Tiree HadSST2 

Dunstaffnage 0.360 
p-value =  0.250 

1996 - 2007 

    

Millport 0.589 
p-value = 0.034 

1996 – 2008 

0.739 
p-value = 0.000 

1972 – 2008 

   

Tiree 0.541 
p-value =  0.056 

1996 – 2008 

0.978 
p-value = 0.000 

1972 – 2008 

0.719 
p-value =  0.000 

1953 – 2008 

  

HadSST2 0.790 
p-value =  0.001 

1996 to 2008 

0.733 
p-value =  0.000 

1972 to 2008 

0.660 
p-value =  0.00 
1953 to 2008 

0.710 
p-value =  0.000 

1931 to 2008 

 

CRUTEM3 0.539 
p-value =  0.057 

1996 to 2008 

0.972 
p-value =  0.000 

1972 to 2008 

0.693 
p-value =  0.000 

1953 to 2008 

0.992 
p-value =  0.000 

1931 to 2008 

0.703 
p-value =  0.000 

1904 to 2008 
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Table 3.5: Correlations between Spring averages 
 

 Saulmore Dunstaffnage Millport Tiree HadSST2 

Dunstaffnage 0.501 
p-value = 0.081 

1972 – 2008 

    

Millport 0.639 
p-value = 0.019 

1996 – 2008 

0.643 
p-value = 0.000 

1972 – 2008 

   

Tiree 0.751 
p-value = 0.003 

1996- 2008 

0.935 
p-value = 0.000 

1972 – 2008 

0.526 
p-value =  0.000 

1953 – 2008 

  

HadSST2 0.733 
p-value = 0.004 

1996 - 2008 

0.799 
p-value = 0.000 

1972 - 2008 

0.561 
p-value = 0.000 

1952 - 2008 

0.700 
p-value = 0.00 

1931-2008 

 

CRUTEM3 0.608 
p-value = 0.027 

1996 - 2008 

0.941 
p-value = 0.000 

1972 - 2008 

0.584 
p-value = 0.000 

1953 - 2008 

0.968 
p-value = 0.000 

1931-2008 

0.721 
p-value = 0.000 

1903 - 2008 

 

Table 3.6: Correlations between Summer average data 
 

 Saulmore Dunstaffnage Millport Tiree HadSST2 

Dunstaffnage 0.364 
p-value = 0.221 

1996 – 2008 

    

Millport 0.511 
p-value = 0.074 

1996 – 2008 

0.719 
p-value =  0.000 

1972 – 2008 

   

Tiree 0.586 
p-value = 0.035 

1996 – 2008 

0.962 
p-value = 0.000 

1972 – 2008 

0.679 
p-value =  0.000 

1953 – 2008 

  

HadSST2 0.580 
p-value = 0.038 

1996 - 2008 

0.839 
p-value = 0.000 

1972 - 2008 

0.620 
p-value = 0.000 

1952 - 2008 

0.782 
p-value = 0.000 

1931-2008 

 

CRUTEM3 0.570 
p-value = 0.042 

1996 - 2008 

0.950 
p-value = 0.000 

1972 - 2008 

0.724 
p-value = 0.000 

1953 - 2008 

0.980 
p-value = 0.000 

1931-2008 

0.765 
p-value = 0.000 

1903 - 2008 
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Table 3.7: Autumn average data correlation results 
 

 Saulmore Dunstaffnage Millport Tiree HadSST2 

Dunstaffnage 0.302 
p-value = 0.316 

1996 – 2008 

    

Millport 0.543 
p-value = 0.068 

1996 – 2007 

0.495 
p-value =  0.002 

1972 – 2007 

   

Tiree 0.864 
p-value = 0.000 

1996 – 2008 

0.764 
p-value = 0.000 

1972 – 2008 

0.579 
p-value =  0.000 

1953 – 2007 

  

HadSST2 0.803 
p-value = 0.001 

1996 - 2008 

0.538 
p-value = 0.001 

1972 - 2008 

0.653 
p-value = 0.000 

1952 - 2007 

0.696 
p-value = 0.000 

1931-2008 

 

CRUTEM3 0.902 
p-value = 0.000 

1996 – 2008 

0.755 
p-value = 0.000 

1972 - 2008 

0.637 
p-value = 0.000 

1953 - 2007 

0.984 
p-value = 0.000 

1931-2008 

0.747 
p-value = 0.000 

1903 - 2008 

 

Table 3.8: Non-significant correlations (other than between Saulmore and Dunstaffnage) as seen in Tables 3.3-3.7 
 

Season Non-significant correlations r p-value 

Winter Saulmore and Tiree 
Saulmore and CRUTEM3 

0.541 
0.539 

0.056 
0.057 

Summer Saulmore and Millport 0.511 0.074 
Autumn Saulmore and Millport 0.543 0.068 

 

Why Saulmore and Dunstaffnage do not significantly correlate with each other, and the reason 

behind the non-significant results outlined in Table 3.8, is not immediately clear and requires 

further analysis of the data. To do this, the correlations for each individual record versus the 

other series were averaged together to provide a summary diagnostic (RBAR) of overall station 

coherence (Table 3.9). This was done for each seasonal parameter. Additionally, the seasonal 

time series for each record was compared after being transformed to z-scores over the period 

1996 to 2008; these are presented in Section 3.3.2. 
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Table 3.9: Average correlation values between each dataset and all other instrumental series are presented 
individually in Tables 3.3 to 3.7. The highest correlation values for each seasonal parameter are shown in bold, and 
the lowest in italics. 
 

Data series Series 
type 

Average 
correlation 

(Annual 
average) 

Average 
correlation 

(Winter) 

Average 
correlation 

(Spring) 

Average 
correlation 
(Summer) 

Average 
correlation 
(Autumn) 

Saulmore Sea 0.670 0.564 0.646 0.522 0.683 
Dunstaffnage Air 0.763 0.756 0.764 0.767 0.571 

Millport Sea 0.698 0.680 0.591 0.651 0.581 
Tiree Air 0.862 0.788 0.776 0.798 0.777 

HadSST2 Sea 0.781 0.719 0.703 0.717 0.687 
CRUTEM3 Air 0.871 0.786 0.764 0.798 0.805 

Mean - 0.774 0.716 0.707 0.709 0.684 

 

As already mentioned, an important consideration when looking at any of the correlations 

between Tiree and CRUTEM3 (either in Table 3.9 above, or in the individual seasonal 

parameter tables) is that the Tiree data were included in the construction of the CRUTEM3 grid 

(Appendix 8). This would lead to higher correlations between the two series and therefore 

introduce a certain level of bias into the analyses. However, as the local air temperature record 

(Dunstaffnage) also correlates significantly with CRUTEM3, it is felt that this potential bias in 

correlations between Tiree and CRUTEM3 does not pose a problem when selecting a suitable 

temperature record to use in Chapter 4.  

The results in Table 3.9 also indicate that overall Saulmore has the weakest correlation with 

the other instrumental series, supporting earlier findings in this section. Correlation values 

between HadSST2 and CRUTEM3 and the rest of the series presented in Table 3.9 indicate high 

correlations between the gridded data and the local/non-local series. Of the two gridded 

series, HadSST2 has the weaker relationship with the other datasets, meaning that in theory 

CRUTEM3 is more regionally representative for both land and sea temperatures. However, as 

molluscs grow in the marine environment it is important to have a series representative of this 

setting and therefore both gridded datasets will be used so that there is also a sea 

temperature series analysed. 
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3.2.2_Between time-series variance 

To better understand variability between the six instrumental datasets, they have been 

standardised by converting them to z-scores over the common period 1996 to 2008 to 

facilitate comparison (Figure 3.5). The average of the six datasets is also presented to provide a 

measure of how each instrumental record deviates from this value on a year-to-year basis.  In 

Figure 3.5 it is possible to see that for each season there are several years of greater variance; 

these results are summarised in Table 3.10.Divergence has been used to investigate 

differences between the datasets as this is a suitable way to highlight potential problem 

datasets, and the value 0.7 used to highlight pointer years as a subjective value to help identify 

those years with greater variance from the mean value. 

 

Table 3.10: Years of greater variance (i.e. those with highest spread between datasets present) 
 

Season Year(s) of greater  
variance 

Datasets deviating from the mean and contributing  
to greater spread/higher variance 

Annual 2004 
2008 

Dunstaffnage 
All 

Winter 2000 
2002 
2006 

Saulmore and HadSST2 
Saulmore 

All (except Millport) 
Spring 2003 

2008 
Saulmore 
HadSST2 

Summer 2001 
2007 

Saulmore 
Saulmore and HadSST2 

Autumn 2001 
2005 

Saulmore and CRUTEM3 
Dunstaffnage 

 

The results in Table 3.10 highlight that for all the seasons (except for the annual results), there 

is at least one year where the Saulmore dataset does not fit with the overall variability 

presented in the rest of the instrumental datasets. HadSST2 also shows this for three seasons 

(Winter, Spring and Summer). Periods of greater variance between the instrumental datasets 

illustrated in Figure 3.5 are reflected in the correlation results in Section 3.3.1 through lower   

r-values, and although the results in Figure 3.5 are only demonstrated over a short time frame 

(1996 to 2008) they do highlight why some of the results between Saulmore and the other 

datasets (Table 3.9) may be non-significant. However, the low degrees of freedom due to the 

short nature of analysis achievable between Saulmore (due to the short length of Saulmore) 
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and the other series must also be taken into consideration. This means any minor differences 

between Saulmore and the other instrumental records, as seen in Figure 3.5, influence the 

correlation dramatically.   

The results in the bar chart in Figure 3.5 vary from the mean results in Table 3.9. In Table 3.9 

the highest average correlation between the series is the Annual period, while in Figure 3.5 it is 

Spring where the strongest between series common signal is noted. The most likely reason for 

these different results is the different time periods of analysis. These results indicate that 

trends and relationships between the different instrumental series may change over time and 

that a more robust analysis (e.g. Correlation Response Function Analysis) would be appropriate 

over as long a period as possible. 
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Figure 3.5: Time series - normalised to z-scores for each of the six instrumental datasets for the five seasonal 
parameters over which analyses are carried out. Also shown is a bar chart which indicates the RBAR values between 
all of the series for each period of analysis for the timeframe 1996 to 2008. 
Below each graph of the instrumental data is a plot indicating variance between the data over time to help indicate 
years where the common signal between the series is either high or low. The dashed lines represent a variance of 
0.7 and any value above this has been deemed a variable year, worthy of further investigation in Table 3.10. To 
identify pointer years 0.7 was chosen subjectively as the threshold value chosen to identify the top 2 or 3 years 
where datasets have deviated from each other. 
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3.3 Conclusion 

Despite the lack of a significant correlation between Saulmore and CRUTEM3 in Winter, the 

relationships between the local and gridded data, and to a lesser extent the results from the 

non-local vs. gridded data, indicate that the CRUTEM3 and HadSST2 gridded temperature 

records appear to be appropriate datasets to use for expressing local and regional 

temperature variability. It is possible that the lack of a significant correlation between 

Saulmore and CRUTEM3 in the winter is due to the short nature of the analysis, therefore 

meaning that the two datasets only need to differ slightly over this period to lead to a lack of 

significant correlation. In Figure 3.5 it is possible to see that in winter the datasets for 

CRUTEM3 and Saulmore are diverging slightly from each other in the late 1990s and then again 

around 2006. Another possible reason for this difference is that the CRUTEM3 dataset 

represents a larger area which incorporates a variety of processes and input data collection 

sites, therefore meaning that in the winter it may not be truly representative of the sea 

temperature within the sheltered sea loch location of Saulmore. 

Using the CRUTEM3 and HadSST2 datasets for correlation response function analysis (see 

Chapter 4) with the shell growth chronology records allows the analyses to be carried out over 

a longer time period than would be feasible using the local and non-regional series due to their 

short lengths, and allow for assessment of whether any of the shell chronologies have the 

potential to be used as proxy records for climate change. It is important to remember that out 

of the two gridded datasets HadSST2 has the weaker coherence with the other instrumental 

series. However, as HadSST2 is a sea temperature dataset and therefore theoretically records 

changes within the environment in which the molluscs are growing, it will still be used for 

analyses in Chapter 4. In addition to using the longer gridded datasets for analyses in Chapter 4 

the two local datasets, Saulmore and Dunstaffnage are also analysed, this is in part due to the 

lack of a significant correlation between Saulmore and CRUTEM3 in the winter, which cannot 

be fully accounted for, but also because this takes into account the fact that HadSST2 does not 

correlate with the local datasets as strongly as CRUTEM3. One possible reason for this is that 

SST gradients are spatially complex and sometimes steep around the shelf seas (Austin et al., 

2006; Hill et al., 2008). The gridded HadSST2 dataset may therefore be obscuring or averaging 

out some of the complex local SST changes that are present in the local Saulmore dataset. 



Chapter 4 – Chronology Construction and Correlation Response Function Analysis 

75 

 

4 Chronology construction and correlation response function analysis 

4.1 Introduction 

As detailed in Chapter 1 (Table 1.1) A. islandica have been used for a variety of purposes 

including; trace metal level analysis (e.g. Swaileh and Adelung, 1994; Swaileh, 1996), studying 

the influence of water temperature on recruitment (e.g. Harding et al., 2008) and as 

palaeoclimatic proxies (e.g. Helama et al., 2007 – off the coast of Tromsø; Butler et al., 2010 –

30 to 50 m water depth; Butler et al., 2013 – 81 to 83 m water depth). To date, however there 

is a lack of published research into using A. islandica from fjordic environments, for climatic 

analyses. This is surprising given the amount of research indicating the potential of fjords as 

sites for recording past climate change – for example Nordberg et al. (2010) used fjordic 

foraminifera records to study NAO variability (see Section 1.2). This lack of research into A. 

islandica from fjords for geochemical and palaeoclimatic proxies was a driving factor behind 

undertaking research into A. islandica growth at the six fjordic sites being investigated here. 

The primary aim of this chapter is to detail the appropriate processing of mollusc shell growth 

data and ascertain whether there is a robust enough climate signal recorded in the annual 

growth variations with which a climate reconstruction can be developed. The secondary aim is 

to briefly review methods currently applied in sclerochronology and to highlight the potential 

of applying more refined data processing techniques that are commonly used in 

dendrochronology. Although sclerochronology has existed since the 1970s (e.g. Hudson et al., 

1976), its application still has much to learn from dendrochronology (e.g. Fritts, 1976; Cook 

and Kairiukstis, 1990), which has a long and established history. Using methods prevalent in 

dendrochronology, a methodology for constructing growth increment (GI) chronologies in A. 

islandica is proposed. This refined methodology should facilitate the study of past climate and 

environmental change. These methods are outlined here, together with an investigation of the 

statistical relationships between shell chronologies and regional monthly climate variables 

from North West Scotland which were introduced in the previous chapter. 

In sclerochronology, as in dendrochronology, there is the need to detrend raw GI data because 

of the presence of a non-linear ontogenetic growth effect (often referred to as the biological 

age trend in dendrochronology); typically a period of higher growth is observed during the 

juvenile stages which decreases as the individual gets older (Witbaard, 1997). To date, within 
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the majority of A. islandica sclerochronology literature, detrending methods have involved 

using some form of smoothing filter, e.g. flexible splines (Scourse et al., 2006),  or moving 

averages (Epple, 2004). The application of such flexible detrending methods has been used to 

remove the low frequency ontogenetic growth trend to maximise the high frequency year-to-

year signal to facilitate crossdating (see Chapter 1 for a definition). However, such an approach 

fails to fully capture potential multi-decadal or longer time-scale trends present within the 

data. Alternative detrending methods are therefore advisable for the purpose of studying long-

term environmental change and in recent years there has been a move to using methods more 

commonly used in dendroclimatology (e.g. Butler et al., 2009a; 2010; Stott et al., 2010). In this 

study negative exponential (NE) functions, which retain more information than spline 

functions at multi-decadal and longer time-scales, were used where possible. 

 

4.2 Methods 

4.2.1 Sample Preparation 

Prior to analysis for chronology construction, samples were measured for weight (soft tissue 

and shell – both single and paired valves); maximum height, length and width (see Figure 4.1 

for dimensions measured). Once these measurements were made the periostracum (in Figure 

4.1C this is the brown material covering the outside of the shell) was removed, and the shells 

dried out and then weighed again for the dry shell weight. 

 

4.2.2 Sectioning 

To measure GIs, they need to be visible and this requires processing along the line of 

maximum growth/height (see Scourse et al., 2006 and Figure 4.1) as this enables examination 

of the internal structure of the shell (Figure 4.2). To prevent the shell from breaking while 

sectioning, the wings (Figure 4.1B) are removed using a circular diamond saw and the line of 

maximum growth (A on Figure 4.1A) is marked on the shell. The shell was mounted in Aeropia 

epoxy resin in Metprep moulds using a mix of 1/3 hardener to 2/3 epoxy and heated at a low 

temperature prior to pouring to remove bubbles in the mixture. Once the resin had set after 2-
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3 days, sectioning along the line of maximum growth was undertaken using a circular diamond 

saw. In specimens where the hinge plate (see Scourse et al., 2006) is not sectioned properly it 

is possible to grind the section at a coarse level (120µm/74 µm) to reach the line of preferred 

sectioning (see Jones,1980). Once correctly sectioned, the working surface was prepared by 

following a grinding and polishing procedure, working with increasingly finer grinding levels on 

a rotating lapping machine with water dripping onto the grinding surface for lubrication 

purposes. Initial polishing was performed using silicon carbide powder; this was followed by 

using3µm and 1µm diamond paste on a polishing plate. All these stages require the operator 

to hold the resin block onto the surface of the grinding/polishing plates and continuously move 

it around to ensure even removal of any scratches present (see Appendix 9 for more 

details/timings on all the grinding/polishing stages). 
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Figure 4.1: A) Left valve of A. islandica shell indicating the line of maximum growth/height (A), the line of maximum 
length (B) and the position of the pallial line, posterior and anterior muscle scars, the umbo and the hinge tooth. 
B) Image of shell indicating where the wings are cut off prior to being mounted in resin, indicated by black hatched 
off areas. C) Image of an A. islandica showing where width is measured (red line) on shell C7-L42 (width 36.9 mm). 
For those samples where only one valve was available for measurement the value was doubled to get the actual 
sample width. 
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Figure 4.2: Image of a section of the umbo of a shell photographed under the microscope to illustrate a typical 
image analysed for measuring GIs. The red lines indicate the location of several GI lines. 
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Polished sections were then etched (Thompson et al., 1980) by submersion in a 1.5% 

Hydrochloric acid (HCl) solution for 1.5 minutes (based on previous testing, some of which is 

outlined in Daniels, 2010), rinsed in deionised water and left to dry under a fume hood. After 

the resin block dried, acetone was applied to the surface and then cellulose acetate placed on 

top. As the acetone dries out, the acetate ‘moulds’ itself to the relief of the etched surface. 

After an hour the process is complete and the acetate sheet can be removed carefully from the 

resin block. It is then trimmed to allow the peel to be mounted between a standard 

microscope slide (75x25x1.2 mm) and a coverglass (64x22 mm). When a peel was too large to 

fit onto a single slide, it was cut into two pieces and mounted on two different slides. 

Mounting peels between a slide and coverglass is undertaken as it reduces distortion (i.e. 

wrinkling) in the peel and improves the final image obtained when the peel is photographed. 

 

 

4.2.3 Growth increment crossdating and measuring 

Acetate peels were photographed using a digital camera paired with a microscope and stitched 

together in either Adobe Illustrator or Adobe Photoshop to create a composite from which GI 

widths were measured in the hinge plate/tooth (Figure 4.2 shows an example of a single 

photograph taken using this system). Before measuring GIs, crossdating was undertaken to try 

and ensure correct dating of the GIs, crossdating was not possible for many shells (see Table 

4.3). 

The concept of applying crossdating within sclerochronology is still relatively new (Marchitto et 

al.,2000; Helama et al.,2006; Scourse et al., 2006; Butler et al.,2009a; Stott et al.,2010; Brocas 

et al.,2013). Recently, the potential to cross match GI series for dead collected material has 

been demonstrated for North Sea A. islandica, where a floating chronology has been created 

for the period AD 1000-1400 by Scourse et al. (2006), who used radiocarbon dating to help 

constrain chronology dating and crossdated 3 shell series, whilst Butler et al. (2010) have 

successfully constructed a 489-year chronology from 30 shell series by cross matching both 

dead and live samples together for the Irish Sea, thus illustrating the potential of using shells to 

create long marine proxy records. 
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There are two commonly used methods for crossdating; skeleton plotting (see Stokes and 

Smiley, 1968 for more details) and the list method (see Yamaguchi, 1991 for a review). For the 

purposes of this study, the list method was used because it is known to be a robust method 

when crossdating living material. As robust dating using the list method was difficult to 

establish at times, all shell increments (for which readable peels were produced) were 

measured. Measurements were taken using the programme CooRecorder (version 7.1 – 

Larsson, 2008a). The programme CDendro (version 7.1 – Larsson, 2008b) was then used to 

graphically compare different growth time series, as well as to quantify the crossdating quality 

between series by using the Pearson’s correlation coefficient after the series have been high-

pass filtered to remove the ontogenetic growth trends (see Section 1.3 and Equation 1.1 for 

more). If the crossdating is incorrect, then correlations will be weak and non-significant. 

Additional validation of the crossdating was carried out using the programme COFECHA which 

also uses cross-correlation analysis for assessing between series synchronisation (Grissino-

Mayer, 2001). After these steps, only those shells showing robust within-site crossdating were 

used for the chronology construction step (Section 4.2.4). 

 

4.2.3.1 Growth increment comparisons between the umbo and ventral margin 

GI measurements can be undertaken in either the ventral margin or the umbo/tooth region of 

the shell. Generally, analysis of the GIs is carried out on the left-hand valve (illustrated in 

Figure 4.1A) of the shell (Ropes, 1987). Ideally GIs from both the ventral margin and the umbo 

should crossdate (Figure 4.3). Daniels (2010), using data from Stott et al. (2010) clearly 

illustrated this common growth signal between the ventral margin and the tooth (Figure 4.3).  
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However, it should be noted that the excellent crossdating between the inner and outer 

measurements illustrated in Figure 4.3 was a rare example of successful crossdating in shells 

studied by Daniels (2010) outlined in Table 4.1.  To further the Daniels (2010) study an 

additional six shells (Table 4.2) were studied for this project and their umbo and ventral margin 

SGI measurements compared.  

 

4.2.4 Chronology construction 

Once crossdating had been carried out on the raw data, a site mean chronology was 

constructed. This procedure has multiple steps (Cook and Briffa, 1990). Firstly, the GI 

measurements were detrended to remove the ontogenetic growth trend present in the 

individual series (Figure 4.4). Detrending fits a series specific data adaptive function to the raw 

data using ordinary least squares and then removes the trend of this function using either 

division or subtraction. The result of this is a dimensionless index time-series with no age-

related/ontogenetic trend. For this study the main method of detrending used was a negative 

exponential (NE) function (see Equation 4.1), or where this did not fit a linear function was 

used, using programme ARSTAN (Cook, 1985b). Division rather than subtraction was chosen as 

Figure 4.3: Two Standardised Growth Indexes (SGI) detrended series for shell C1-L2, one from the outer shell 
(Daniels, 2010 –red) and the other from the tooth (Stott et al., 2010 – black), the two series share a high visual 
coherence. The corresponding r and p-values between the two series (0.77 and 0.000 respectively) indicate that 
there is a common signal between the two SGI series. 
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this helps stabilise the variance of the final series between the juvenile and more mature 

phases (Cook and Peters, 1997). For some series, detrending using the NE or linear   function 

was not suitable as the fitted function went below zero resulting in indices greater than 

infinity. In these few situations a Hugershoff function (see Equation 4.2) was used (see Figure 

4.4). A Hugershoff function was used as it is more flexible than the NE function and still retains 

some potential lower frequency information recorded in the growth records; as a result it is 

less likely to go below zero therefore minimising end effect index inflation. However, for very 

short series, as those seen in site C6, NE or Hugershoff functions are not appropriate (Figure 

4.5) as the functions are essentially too ‘stiff’ for the short record and would go below zero. In 

these cases, a 10 year smoothing spline (Figure 4.5b) was used for detrending with the caveat 

that such a flexible option would remove any potential climatic information at time-scale 

longer than 5 years. 

 

                   Equation 4.1 

                      Equation 4.2 

Where:   

Gt   is the growth trend of the raw data 

a     is the growth intercept of the function at year t  

e     is the exponential function  

b     is the decay constant 

k     is the positive asymptotic limit or function 
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Figure 4.4: A) Graph illustrating the ontogenetic growth trend in the raw growth in A. islandica GIs and a 
typical negative exponential function detrending curve fitted to the data to remove this trend for shell C8-L3. 
B) Application of Hugershoff detrending to another A. islandica GI series. C and D illustrate the detrended SGI 
for each of the shells for shell C8-L5. C) Illustrates the detrended shell C8L3 series and D) shows the 
detrended series for shell C8L5. 
 
 
 

Figure 4.5: Examples of the application of A) a linear detrending function and B) a Hugershoff detrending function 
to the raw growth series for shell C6-L5 as seen in ARSTAN output when the functions go below zero and are therefore 
inappropriate for detrending. 

A 

B 
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The use of a NE function to detrend data is not new within sclerochronological literature. 

Strom et al. (2004), Strom et al. (2005) and Nielsen et al. (2008) used this method, but with 

different mollusc species, while Butler et al. (2009a; 2010) and Stott et al. (2010) applied NE 

function detrending to A. islandica. Witbaard et al. (2003) used a NE function to detrend A. 

islandica growth records, but this was in conjunction with a 66-year spline as a second 

processing step. Such a practice is also carried out by some dendrochronologists as it is 

believed that such a double detrending approach removes the juvenile growth and then 

secondly reduces the residual noise present within the record (Borgaonkar et al., 1999). 

However, such an approach also removes potential climatically driven long-term variability in 

the series. As the NE function both removes the ontogenetic growth trend and preserves the 

longer-term variability in the shell at frequencies up to the mean length of the samples (Cook 

et al., 1995), a double detrending approach is not used in this study. 

Once the raw data have been detrended, the resulting individual index series are averaged 

together to derive a site specific mean index master chronology. The robustness of the mean 

chronology is related to both the number of series used and the strength of the common signal 

between them (measured by RBAR, where RBAR is defined here as the inter-series correlation 

between all possible pairs of time-series in the sample). The weaker the common signal, the 

greater the number of series needed to derive a robust mean chronology. It is common 

practice to use signal strength statistics in dendrochronology to assess the ‘quality’ of the 

resultant chronology. The seminal paper describing relevant signal strength statistics is that by 

Wigley et al. (1984) where the Expressed Population Signal (EPS) is derived. Essentially, the EPS 

can be thought of as an empirical assessment of how the average of a sample of time-series 

correlates with the theoretical infinitely replicated population time-series. The derivation of 

the EPS can be described as dividing the signal by the total variance (signal + noise). The EPS is 

calculated using the following equation: 

 

     
   ̅

   ̅  (   ̅)
   

      

              
     Equation 4.3 

Where  EPS is the Expressed Population Statistic value 

 n is the number of time series 

  ̅is RBAR 
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Wigley et al. (1984) showed that an EPS value greater than 0.85 was desirable to ensure a 

robust mean chronology. The EPS equation (Equation 4.3) can be rearranged (see Wilson and 

Elling, 2004 for an applied example) to determine how many shell series would be needed to 

derive a robust chronology: 

 

 ̂   
( ̅  )   ( )

 ̅(   ( )  )
        Equation 4.4  

Where EPS(x) is the 0.85 value suggested by Wigley et al. (1984) – although other values can 

be used 

  ̂ is the predicted number of series required to produce a robust chronology 

  ̅ is the inter-series correlation between the series in the master chronology. 

As well as calculating the EPS,  ̂ and  ̅ values for all of the chronologies after they were 

detrended, the EPS value was also calculated once the series had been transformed using first 

differencing (FD) to provide a robust assessment of the inter-annual signal. 

For the master chronology of each site, the EPS statistics for both the whole chronology (WC) 

period and period of maximum replication (PMR), i.e. the time frame for which all shells in a 

chronology are present, are detailed in Section 4.3.1. The RBAR for these periods are 

calculated and then these data are used to work out the theoretical number of shells required 

to reach an EPS value of 0.85 (n value as shown in Equation 4.3). Although not ideal, those 

chronologies where the EPS is below the required 0.85 value will still be compared to the 

instrumental datasets in Section 4.3.4 with the caveat that any results are purely preliminary 

and intended to be used only as a preliminary guide of how shells from different sites may be 

responding to different climatic and environmental conditions. 

 

4.2.4.1 Inter site comparisons 

If growth is dominated by regional influences (e.g. climate), then there should be a degree of 

common variability between the site chronologies. To determine whether there is a common 

signal between the sites, the chronologies (both unfiltered and FD) were compared using 
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correlation analyses. The correlations were carried out with ±3 year lags to look for potential 

leads/lags between the series. While the outermost GI anchors the shell chronology to the 

time of ‘live’ collection, there can be difficulties in counting the outermost few GIs (see Section 

4.2.2). This is because when creating a peel, the most recent GIs sometimes do not appear 

clearly on the image due to an edge effect where the shell and resin block meet. In addition, 

damage to the shell can cause the removal of GIs (although this is less common in the umbo 

compared to the outer shell).   

 

4.2.5 Correlation Response Function Analysis (CRFA) 

CRFA is a method to empirically test for relationships between shell growth chronologies and 

climate using correlation functions (Figures 4.14 and 4.15) and the two instrumental datasets 

(HadSST2 and CRUTEM3 – Chapter 3). Analyses were performed using both the unfiltered and 

transformed (FD) versions for the period of maximum replication (PMR). The exception to this 

is the site C6 chronology where the PMR is only five years, therefore analyse were undertaken 

over a longer period (1992 to 2007) which has six of the eight shells present in the chronology. 

The ideal correlation results would be ones which are consistent between the unfiltered and 

FD analyses, suggesting that any relationships found are consistent at all frequencies. 

 

4.3 Results 

4.3.1 Inner vs. ventral margin GI measurement comparisons 

The additional material studied (Table 4.1) supports Daniels' (2010) findings with only two of 

the shells having reasonable strong correlations between the umbo and ventral margin 

measurements (C6L66 and C7L120). 
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Table 4.1: Correlation results between the umbo and ventral margin SGI data for five shells studied in Stott et al. 
(2010) and Daniels (2010) in rows 2 to 6 and the six site C7 shells analysed for this project in rows 7 to 12. 
 

Shell ID number Correlation between umbo and ventral margin SGI 

C1L2 0.77 

C1L4 0.009 

C1L14 0.21 

C1L17 0.25 

C1L19 0.64 

C6L66 0.895 

C6L85 0.041 

C7L14 0.094 

C7L110 0.004 

C7L120 0.444 

C7L136 0.183 

 

The combined results in Table 4.1 indicate a 36% success rate for crossdating SGI between the 

ventral margin and umbo of the 11 shells studied from sites C1, C6 and C7. Currently these are 

the only shells for which this information is available; part of the reason for this is that 

producing suitable peels for the ventral margin of shells is more difficult than for the umbo 

because the ventral margin portion of the peel is more likely to tear when being removed from 

the resin block. 

Theoretically the GI measurements from the umbo and ventral margin should crossdate well, 

the results in Table 4.1 indicate a 36% success rate for shells studied from sites C1 and C7 with 

no clear reason for this low value. These results highlight a potential problem for any study 

that does not measure both the umbo and ventral margin GIs. It is therefore important that 

further work is undertaken into these relationships given that both areas of the shell GI record 

have been used in studies independently, but rarely are both presented in the same study. 

 

4.3.2 Crossdating success rate 

To better understand how many shells need to be collected and sampled to create a robust 

chronology, the success rates of crossdating individual series into the current site chronologies 

need to be considered, especially as this helps to explain the low replication in the final six site 

chronologies. These results are presented in Table 4.2. 
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Table 4.2: Cross processing and crossdating success rates for each site and an average result for all sites 
 

Site Shells Processed Shells Measured/Analysed 
for age

 
Crossdated Success Rate From Number 

of Shells Processed 

C1 20 15 9 45% 
C2 38 32 9 25% 
C4 49 38 5 10.2% 
C6 37 35 8 21.6% 
C7 45 34 5 11.1% 
C8 33 30 8 24.2% 
All 222 184 44 19.8% 

 

The results in Table 4.2 indicate a wide range of crossdating success rates between the sites. 

The reason that not all the processed shells were measured is because of poor peel quality. In 

some cases peels were constantly tearing when removed from the resin blocks, often with the 

acetate getting caught on the portion of the shell where it meets the resin block and a small 

gap occurs. However, it is not always possible to determine the cause for peel breakage. With 

other shells, although complete peels were produced, when they were investigated under the 

microscope, GIs were not clearly visible; therefore measurements could not be made. It should 

be noted that where there were peel quality issues, either due to tearing of the acetate or GIs 

being difficult to read, multiple peels were made to see if this improved the quality. This was 

done up to a maximum of four times, at which point if the peels were still not usable then 

analysis of that specimen was not pursued for chronology creation purposes.  

The differences in crossdating success rates between the sites may also be linked to the other 

site specific parameters discussed in Chapter 2 (grain size, sediment water content and OC 

content, as well as local SST data discussed in Chapter 3). For example, Figure 2.9 indicates 

that site C1 has a distinct sediment make-up present compared to the other five sites and it 

has the highest crossdating success rate (see Chapter 7). However, for all the other sites there 

does not appear to be a clear relationship present between sediment type and crossdating 

success, as a result this apparent relationship for site C1 may be purely coincidental or, 

indirectly, related to other environmental variables. 

Currently, there is a lack of published data concerning crossdating success rates in A. islandica. 

As a result, findings cannot be compared to those from elsewhere to see if the ranges found 

here are unusual or not. However, the sclerochronology group at the University of Bangor 

(School of Ocean Sciences) report crossdating success rates varying from 30 to 100% 
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depending on species and site, with A. islandica from shallower sites situated at the lower end 

of the range (Reynolds, pers. comm., 2012). It is therefore suggested that collating such 

information may be of use for determining which sites are better to target for sampling of A. 

islandica. There is also potential to use other annually-resolved bivalve species for climate 

reconstruction for Scottish marine waters as demonstrated in Reynolds (2011).  

 

4.3.3 Shell growth chronologies 

The growth chronologies for each site are presented in Figures 4.6 to 4.11. For each site the  ̅, 

EPS and  ̂ values for both the unfiltered and FD chronologies are also presented in these same 

figures. A regression line has been fit to each master growth chronology to see the overall 

trend in the data. 

 

 

Figure 4.6: SGI chronology for the site C1 shell series. Also shown at the top of the graph is the level of replication 
throughout the chronology and the RBAR, EPS and n value (theoretical number of shells required to gain an EPS 
value ≥0.85) statistics for the Unfiltered (U) and FD chronologies for the whole chronology (WC) and period of 
maximum replication (PMR). 
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Figure 4.7: Same as for Figure 4.6 but for site C2. 
 

 

 

Figure 4.8: Same as for Figure 4.6 but for site C4. 
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Figure 4.9: Same as for Figure 4.6 but for site C6. 

 

 

 
Figure 4.10: Same as for Figure 4.6 but for site C7. 
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Figure 4.11: Same as for Figure 4.6 but for site C8. 
 

 

The fact that in general the EPS values are weak and change between the unfiltered and 

filtered chronologies, WC and PMR, simply highlights the overall weak common signal in these 

data and the resultant sensitivity to subtle changes to the data. 

When determining the number of shells that should be included within a chronology an EPS 

value of 0.85 (see Section 4.2.4) is recommended (Figures 4.6 to 4.11) and therefore caution 

must be advised in the interpretation of the current results. Firstly, this is because the RBAR 

values are derived from a very small number of series and so the resultant measure of 

coherence could change markedly as more data are added to the series. Secondly, the analyses 

only used series that crossdated; of all the shells sampled, only 19.8% were used in the final 

chronologies (see Section 4.3.2). 

From the results presented in Figures 4.6 to 4.11 it is clear to see that none of the chronologies 

have an EPS of 0.85 or above for the period of maximum replication (PMR) and only C1 has the 

required EPS value when the whole chronology (WC) is examined (unfiltered). This means that 

when carrying out CRFA with the instrumental datasets (Section 4.3.4), none of the 

chronologies are theoretically robust enough (in how the sample expresses the theoretical 
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population) for the results to be taken as more than simply preliminary indicators of the 

potential for shells to be used as proxies for marine climate change. At sites C1, C2 and C4 

when the master chronologies are transformed (FD) for the WC, the n values required to reach 

an EPS of 0.85 increases, this is also the case for the PMR FD series at sites C1, C6 and C7, i.e. 

the inter-annual signal strength is weaker than for the decadal and longer-term signal. For 

those cases where the opposite occurs (WC – sites C6, C7 and C8; PMR – sites C2, C4 and C8) 

the results suggest that longer term (mid frequency) variability is potentially more coherent 

between individual series.  

 

4.3.4 Inter-site comparisons 

Cross correlation analysis was used to ascertain whether there is common covariation 

between shell growth in the unfiltered (Figure 4.12) and FD (Figure 4.13) site chronologies. As 

it was not known if the outer increment at the time of collection existed in the samples and 

therefore there is no guarantee that the internally cross dated chronologies were exactly 

calendar dated, this analyses was carried out with ±3 year lags between series. This approach 

therefore allows for some realistic movement based on potentially missing GIs in the 

outermost sections of the chronologies. Of interest here are only those correlations that are 

positive. 

There are several chronologies that have the same lag suggested between the unfiltered and 

FD results (Figures 4.12 and 4.13). The most promising results are summarised in Table 4.3: 

1) C6 and C7 where the 0 year lag indicates that for the period of analysis these two 

series are correctly dated in relation to each other, 

2) C2 and C6 (-3), C2 and C7 (-3), C4 and C6 (-3), and C4 and C7 (-3); these results suggest 

that relative to C2 and C4 both C6 and C7 should be shifted back by 3 years. 

Despite these promising findings there is a general lack of consistency in the results presented 

in Figures 4.12 and 4.13, suggesting that there may be some dating control issues with the 

shell chronologies being analysed, something that is not that surprising when the low EPS 

values are considered. As a result, no shifting of the chronologies will be applied to any of the 
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chronologies related to data presented in Figures 4.12 and 4.13. For example, in Table 4.3, the 

results indicate that the C7 and C8 chronologies are both correctly dated in relation to the site 

C6 chronology, however when the C7 and C8 chronologies are compared the results indicate 

that relative to each other they are miss-dated by two years. The idea of dating control issues 

in sclerochronology is not unfamiliar (e.g. Butler, 2008), and is difficult to determine. In 

dendrochronology growth chronologies can be compared to the pre-existing online archives, 

such as the online International Tree-Ring Data Bank (ITRDB) depository, to verify dating. 

However, there are no such depositories currently available for similar analyses by the 

sclerochronological community (Butler, 2008); creating such datasets for sclerochronology 

would represent an important development within the field. However, it is important that 

there is a 100% certainty in the dating control of the chronologies used for these comparisons, 

otherwise, as with this thesis, there would be a situation where analyses is not really possible 

due to poor dating control in the chronologies being compared.  

 

Table 4.3: Suggested lag chronologies consistent between U and FD series 
 

Chronologies Lag  Chronologies Lag 

C1 and C2 -1  C4 and C6 -3 
C1 and C6 -1  C4 and C7 -3 
C2 and C6 -3  C6 and C7 0 
C2 and C7 -3  C6 and C8 0 
C2 and C8 -1  C7 and C8 -2 
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Figure 4.12: Inter-site correlation results for the unfiltered datasets. The red bars represent the highest correlation between the two chronologies being compared; of most interest 
are those correlations which are positive as this indicates that both chronologies are responding the same way to a common signal. Analysis is carried out over the period of 
maximum replication for all sites (1993 to 2005). The y-axis on each graph indicates the correlation coefficient for each analysis. NB for the C7 -  C8 comparison there are two 
correlations highlighted using red due to these results being exactly the same numerical value except one is minus (-1 lag) and the other is positive (-2 lag). 
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Figure 4.13: Inter-site correlation results for the FD datasets. The red bars represent the highest correlation between the two chronologies being compared; of most interest are 
those correlations which are positive as this indicates that both chronologies are responding the same way to a common signal. Analysis is carried out over the period of maximum 
replication for all sites (1994 to 2005).  The y-axis on each graph indicates the correlation coefficient for each analysis. 
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4.3.5 Correlation Response Function Analysis (CRFA) 

The CRFA results (Figure 4.14) between the growth chronologies and the gridded instrumental 

datasets for the period of maximum replication for each site are mainly weak and non-

significant for all six sites. When the results for the six sites are compared (Figure 4.14) it is 

clear there are no consistent inter-site signals between correlation results. This, along with the 

weak signal strengths (refer to relevant tables/figures) and lack of significant inter-site 

correlations res (Section 4.4.3) strongly indicates that there is no common signal and that the 

environmental controls on growth are likely to be site-specific with climate being a weak factor 

at best. There are a range of anthropogenic factors in the region that are potentially 

influencing shell annual growth rates, thus dampening the influence of temperature. These 

anthropogenic factors are discussed in Section 4.6.2. To further investigate what factors may 

be causing the lack of a consistent inter-site signal both between the six master chronologies, 

and between the growth records and instrumental datasets, the RBAR and crossdating success 

results are compared to the site property data (e.g. OC content, sediment water content and 

grain size data) in Chapter 7. 

The length of the PMR for the site C1 chronology (1945-2005 U and 1946-2005 FD) allowed for 

the assessment of the temporal stability of the signal by undertaking the CRFA over two 

independent periods. The results in Figure 4.15 indicate that the relationship between C1 and 

HadSST2 is not time stable. 
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Figure 4.14: Correlation response analysis results between the six master chronologies and the HadSST2 and 
CRUTEM3 instrumental datasets (both unfiltered and FD). Periods of analysis area indicated in the figure. Those 
correlations that are statistically significant, at the 95% confidence level, are indicated with an * over the 
corresponding bar in the graph. 
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Figure 4.15: Graphs investigating the time-stability of the relationship between the C1 chronology and the HadSST2 
instrumental dataset (both unfiltered and FD). 
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4.4 Discussion 

The fact that the shell chronologies from this study do not show a common signal across the 

region (Figures 4.12 and 4.13) together with the overall weak common signal at each of the 

sites (Figures 4.6 to 4.12) may be due to hydrographical differences between the sites, the 

nature of the shallow water environments, site-specific conditions (e.g. sediment water 

content) and anthropogenic influences on the sites (e.g. fish farming). The lack of a clear 

common signal between the sites and the lack of any notable climate signal in any of the 

chronologies means that A. islandica may be of more use to study site specific changes, such as 

the influence of fish farming or local industry, on shell GI growth rates. However, until the 

EPS/replication values for all six site chronologies are improved it will not be possible to do this 

with any confidence. 

 

4.4.1 Inner vs. ventral margin GI measurements 

There are various reasons for the low correlations reported between the umbo and ventral 

margin measurements both for the Daniels (2010) study and this research including; 

1) Peel quality difference between the ventral margin and umbo. For example, the 

ventral margin images of shells C6L85 and C7L14 were unfocussed in places which may 

account for the low correlation between the two measurement series for these 

samples. 

2) The ventral margin is more prone to damage by predators and trawl fishing due to its 

life position (Figure 4.16), meaning that it is more likely to be damaged than the umbo. 

This may account for some of the differences in the umbo vs. ventral margin 

measurements recorded. 

The potential damage to the ventral margin is one of the advantages of working in the umbo, 

although crossdating should help to remove the issue of missing bands. Another reason for 

using the tooth is that it is easier to work with – partly as there is less chance of damage to this 

portion of the shell. The compact nature of the GIs in this part of the shell allows processing 

using fewer photographs, thus speeding up the imaging part of the methodology. Although 

geochemical analyses can often be undertaken in the umbo due to improvements in 

technology, for this research, this was not done and for 14C and δ13C analysis the outer shell 
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was used as there is the ability to get larger samples from this part of the shell. There are some 

differences of opinion in the literature as to whether to focus on the tooth GI or the outer 

margin (see Appendix 10). 

 

 
 
Figure 4.16: Life position of A. islandica: in situ photographs of A. islandica shell courtesy of M. Sayer (NFSD), the first with 
it mainly closed, the second with both valves open – from these images it is clear to see that part of the shell is near the 
sediment surface and therefore prone to damage. Each image is approximately 12 cm across from left to right. 

 

4.4.2 Chronology construction 

Overall, these results suggest that replication at all the sites needs to be increased to improve 

the robustness of each chronology (see Figures 4.6 to 4.11). There are some potential issues 

concerning these chronologies and their construction:  

(i) Although the increment data from C6 were mostly detrended using NE and Hugershoff 

functions, a 10 year smoothing spline was applied to those shells too young to be 

detrended using these methods (C6L5, C6L68) resulting in a bias towards the high 

frequency domain compared to the other site chronologies and the instrumental 

records. To overcome this all the chronologies could be created using the same 

detrending method to allow for consistency in the frequency domain. However, using 

a 10-year smoothing spline for all sites would mean none of the six chronologies would 

retain potential low and high frequency information in the same way as the NE 

function allows. It should also be noted that it may also be achievable to overcome 

such bias through the use of the Regional Curve Standardisation (RCS) method 
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(Mitchell, 1967; Briffa et al., 1992; Cook et al., 1995; Briffa et al., 1996; Esper et al., 

2003; Briffa and Melvin, 2010) which applies a common age/size growth curve for 

detrending to all samples at a site (Cook et al., 2005). However for this to be viable 

sample replication must be much higher. Therefore, while this is not possible at this 

time, there is potential to apply this method in the future.  

(ii) Another concern are the generally low number of shells successfully crossdated into 

each site’s master chronology, and the low inter-series (RBAR) correlations observed. 

These implications are further developed in the next section (4.3.2). The causes of the 

inter-annual variability and its instability between shells at the same site may be 

attributed to anthropogenic influences or possibly site heterogeneity. 

Further discussion of how site differences may influence shell growth are detailed in Chapter 7. 

 

4.4.3 Site Chronologies 

Site C1 has two unusual features, making its chronology stand out from the rest of the records 

(Figures 4.6 to 4.11). The first is the inflated growth indices in the early portion of the 

chronology (1843 to the 1890s); this is likely an apparent inflation of the index values as the 

result of an imperfect fit of the NE function to the one shell present in the series at this point 

(C1-L4). This bias can be minimised by increasing shell replication in this period and is in fact of 

no particular concern for this study as this portion of the record is not utilised for analysis. A 

more flexible detrending function (e.g. a spline) would also lower these higher index values. A 

similar pattern of apparently inflated annual growth rates is also seen in the C8 master 

chronology which has an unusually high peak present in the early portion of the chronology. 

This may also be due to the poor fit of the detrending curves along with low replication during 

this time frame. To determine if the high peaks do truly represent periods of higher mean 

annual growth rates, replication in the earlier chronology portion must be increased. To 

further illustrate this, all the individual detrended series for each site are presented in 

Appendix 13. 

The second unusual feature in the C1 chronology is the suppressed period of growth in the 

1940s to 1980s, followed by a period of release. The reasons behind the lower annual growth 
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rates in the 1940s to 1980s are not clearly known, particularly as there appears to be no direct 

link to climate; the potential anthropogenic influences on shell growth at the six sites requires 

careful investigation.   

 

4.4.3.1 Inter-site comparisons 

Butler et al. (2009b), using five North Sea sites (115 m to 150 m deep) investigating the 

presence of a common signal between sites, found a coherent signal between sites which were 

up to 80 km apart. This is in contrast to the results presented here where there is no clear 

common signal between the six fjordic sites over significantly shorter distances. It is feasible 

that the North Sea results reflect a more stable/homogenous water mass system than those in 

the fjords being studied and therefore would be more likely to record a clearer climate signal 

than in the sea lochs. The deeper water at the North Sea sites may therefore have a bearing on 

the different outcomes recorded. Other researchers have also found common signals between 

sites some distance apart; for example Witbaard et al. (1997b) found a common signal 

between two North Sea chronologies 75 km apart for the earliest part of the records, although 

in the 1960s onwards the two chronologies become inversely correlated. Marchitto et al. 

(2000) carried out research into how the correlations between shell growth series differ over 

increasing distances in Georges Bank (NW Atlantic Ocean). They found an overall decrease in 

correlation the greater the distance between sites, indicating that even where the water 

masses between sites are very similar, A. islandica do not always show the same common 

climate signal. However, as climate changes spatially, this is not entirely unexpected. 

The potential to use A. islandica chronologies from different geographical locations is 

important as it allows samples from many kilometres apart to be used to provide an insight 

into climate change on a larger spatial scale (Butler et al., 2009b) (Figure 1.8 shows where A. 

islandica are found around the North Atlantic). Butler et al. (2009b) suggest that multiple sites 

from across different stratification depths may be able to provide information of past changes 

in stratification. In fjords studying multiple sites may be of use for identifying when 

anthropogenic activity, such as pollution or organic enrichment, began to impact on the 

environment. This, however, is only achievable if the chronologies have robust dating control.  
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4.4.4 Anthropogenic Influences 

When considering anthropogenic controls that may influence shell annual growth rates, there 

are several main factors that must be considered; these are outlined in Figure 4.17 and Table 

4.4. At site C1 there is little evidence of any human influence on growth during the period of 

increased growth starting in the late 1980s when the factors outlined in Table 4.4 and Figure 

4.18 are considered. Possibly the only factor which fits with respect to timing and location is 

the Baracaldine alginates factory which has been operating since the 1940s and reaching peak 

productivity in the 1970s (Black et al., 2000). The factory was responsible for the discharge of 

alkaline liquid whey, formaldehyde and organic particles into the surrounding area (Black et 

al., 2000). The toxic nature of this discharge could very well have had a negative effect on A. 

islandica GI growth rates, especially as it has already been shown that historical discharge from 

the factory had resulted in a lack of Serpulid reefs along 1 km of the coastline around the 

factory (Moore, 1996). This evidence, coupled with the suppressed period of growth in the C1 

chronology, suggests that discharge over the years has directly acted to cause this suppressed 

period at C1. To fully investigate these effects it would be necessary to extend the length of 

the site C2 master chronology to determine if there is a similar impact on annual growth rates 

at the site. Something else that must be considered when investigating site C1 is that out of 

the six sampling locations, this is the one that would probably be most influenced by water 

from the North Atlantic due to its location (Figure 2.1). 
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Table 4.4: Anthropogenic activity in the local area 
 

Anthropogenic 
factor 

Influences 

Fish Farming 1) Fish farming was introduced in Loch Creran in the 1970s by Golden Sea Produce (Black et 
al., 2000), with alternating sites being used. Oysters have been fished in Loch Creran since 

1990 with three oyster farms present within the loch, and two mussel farms are also 
present (Donovan, 2006). Research by Chamberlain et al. (2001) indicated that mussel 
farms can lead to organic enrichment in the area beneath the farm due to faeces and 

pseudofaces, which may cause macrofaunal abundance to be reduced. However, their 
research indicated this is not the case for all mussel farms, but this may also be a 

contributing factor in altering shell annual growth rates. 
2) In Loch Etive, as of June 2010, there were five finfish farm sites operated by Dawnfresh 

which are used in rotation, producing approximately 1,500 tonnes p.a. of trout in 2009 
(Argyll and Bute, 2011). Loch Etive is ideal for use by Dawnfresh for trout fisheries due to 

the brackish nature of the site (Argyll and Bute, 2011). 
Bonawe Iron 

Furnace (IF – Figure 
4.17) 

In 1753 an iron furnace was in place at Bonawe due to the abundance of woodland in the 
area for charcoal production and water for power, it was closed in 1876 (Scotland, 2010) 

and is now a tourist attraction maintained by Historic Scotland.   Such production rates are 
bound to have had a significant impact on the woodland in the area during the time the 
furnace was in use. The iron furnace also had an impact on forestry in the area: in 1789 

Glasdrum Woods were sold to the Lorn Furnace company who cleared the wood for 
converting into charcoal. This area is now a NNR and is run by the SNH (Donovan, 2006). In 
the mid-1700s Glasdrum was being used for black Highland cattle grazing (Taylor and SNH, 

2004) and in 1833 there were 600 sheep being grazed on Glasdrum, which increased during 
the second world war and during the 1950s and 1960s (SNH, 2005). 

Alginates factory 
(Baracaldine – 

Figure 4.17) 

Since the early 1940s there has been an alginates factory at Baracaldine (Figure 4.18)which 
was still in operation in 2000, seeing peak productivity in the 1970s  (Black et al., 2000). This 
factory was responsible for the discharge of alkaline liquid whey, formaldehyde and organic 

particles into the area surrounding it (Black et al., 2000). 

 

The post 1980s increase in GI growth rates at C1 may reflect a return to ‘normal’ annual 

growth rates after the period of lower growth rates preceding this increase in GI widths. 

However, it is also possible that it is due to an increase in nutrient loading at the site as a result 

of the onset of fish farming in the region during the 1970s. Since the 1970s the 

commercialisation of farmed salmon, trout, shellfish and oysters has taken place in the field 

area as a whole with fish farms present in both Loch Etive and Loch Creran. Figure 4.19 shows 

the main fish farming locations in the area relative to the sample sites and other 

anthropogenic sites of interest. It is common practice in aquaculture to attempt to minimise 

the effects of fish farms on the local environment by rotating sites, as this should help reduce 

the enhancement of oxygen uptake in sediment below fish farms, as well as higher nutrient 

fluxes (as seen by Nickell et al. (2003) at some sites). However, research by Pereira et al. (2004) 

indicated that nutrients deposited by fish farms do stay in the fjord environment for up to 15 

months, and so they may have an influence on nutrient availability downstream of the farming 

areas. With the exception of site C7, all sites are downstream of fish farms (although it must be 
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noted that there is a shellfish aquaculture site near C7). Therefore, while an increase in 

nutrient availability in the fjords due to fish farming may be causing the annual growth rates to 

be higher in the most recent part of the C1 chronology, it is unusual that this effect is not seen 

at any of the other sites also downstream of the fish farming activities. It is of course feasible 

that site C1 receives more of the nutrients entering the waters by the farming activities for 

some reason. Alternatively, it is more likely that the nutrients are influencing GI growth rates 

at all of the sites, however due to the suppressed growth period prior to the onset of fish 

farming the effects of nutrient loading may have had a more pronounced impact on the site C1 

chronology. 

To test whether any anthropogenic factors (especially those outlined in Figure 4.17 and Table 

4.3) have any influence on GI widths, it is important to test the hypothesis that anthropogenic 

disturbances are behind the differences seen in the six GI chronologies (Figures 4.6 to 4.11). To 

do this a "clean" site, clear of anthropogenic factors need to be used as a control site – site C7 

is the best candidate. If anthropogenic factors are indeed influencing annual growth rates at 

other sites then it would be expected that the common signal at this site would be the 

strongest, which may be seen by a higher crossdating success rate at the site compared to sites 

C1, C2, C4, C6 and C8. However, this is not the case, with the highest success rate being 

recorded at site C1 (Table 4.2).  

It is possible that the C1 chronology may actually have a higher crossdating success rate due to 

non-climatic environmental forcing influencing the shells; e.g. fish farming influencing GI 

growth rates at the site almost simultaneously creating a stronger common GI width signal. In 

addition to this there is the added complication that C7 has very different site conditions 

compared to the other sites including significantly different sediment OC content (Figure 2.5) 

(at the 95% level) and the lowest average grain size mode, which may influence the poor 

crossdating at the site. As a result it is currently very difficult to determine with any certainty 

whether anthropogenic activity is causing the lack of common signal between the six growth 

chronologies. However, the similar timings between the start of fish farming and the sudden 

change in GI widths at site C1 means it is possible that anthropogenic factors, possibly coupled 

with site-specific conditions (e.g. sediment grain size and OC content), are influencing shell 

annual growth rates. To fully test this it would be necessary to undertake further analysis. 

Ideally this should be undertaken on specimens from a variety of other site conditions both 

with and without anthropogenic influences acting on the site. It is however suggested that 
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future work to investigate the potential of A. islandica from Scotland for reconstructing past 

climate is that sampling is undertaken at deeper sites away from possible sources of 

anthropogenic pollution/influence. 

At present it is difficult to fully explore the impact of anthropogenic influences on shell GI 

growth rates as the experimental design was never set up to test this – the primary research 

objective being to investigate annual shell growth rates at six sites and see how this relates to 

climate. The results presented in this chapter indicate that there is not a common inter-site 

growth signal, or a common response to climatic. Therefore, it is important to try and 

understand what may be causing these results, with one potential influence being 

anthropogenic activity. As a result it is only possible to speculate on the influence of 

anthropogenic activity and additional sampling would be required to further investigate this. 

 

4.4.5 Site Conditions 

Epplé et al. (2006) noted low inter-series correlations between mollusc shells sampled from 

shallow marine settings (15-20 m deep) in the inner German Bight (North Sea). This apparent 

lack of synchronicity was attributed by the authors to the conditions in which the shells had 

grown. Factors such as tidal movements, salinity fluctuations, temperature fluctuations and 

turbidity, which are more prominent in a shallow, coastal water environment, were some of 

the reasons suggested for a lack of common signal between the shells. It is likely that shallow 

water environments create problems for obtaining a synchronous growth between A. islandica 

shells and these likely accounts for not only the poor signal strength, but also why the 

relationships between the shell growth chronologies and the instrumental datasets are 

complex (as in Figures 4.14 and 4.15). However, this anecdotal observation requires further 

exploration before any conclusions can be drawn as to the potential effects of shallow water 

environments on A. islandica sclerochronology. In order to investigate this potential link, more 

sites from around the Scottish coast, including sites from different sea fjords and deeper 

locations should be studied. It is also important to consider that the low EPS values here may 

be improved if shell replication is increased for each of the master chronologies. 
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Overall, the results in this chapter suggest that the shells from the field area cannot be used as 

proxies for past climate. The reasons behind this are not clear at this point and require further 

investigation; this is partly covered in Chapter 7 where site water depth, OC content, sediment 

water content and sediment grain size are compared to master chronology RBAR and 

crossdating success rates. The aim of doing this is to investigate whether these site-specific 

conditions are controlling the ability for shells to exhibit synchronous GI growth rates and 

therefore crossdate.  Work on increasing replication in the master growth chronologies may be 

of use in improving the clarity of the climate signal in the records, however the cost-benefit of 

this must be fully considered as the future of this type of analyses may well lie in deeper,  

non-fjordic locations.
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5 Biometrics and Morphology 

5.1 Introduction 

Biometric data (height, weight, length, width and age) can be used to provide a variety of 

insights into A. islandica including information on population age structure (e.g. Witbaard, 

1997; Zettler et al., 2001; Kilada et al., 2007), the relationship between shell weight/height and 

age, and shell morphology properties using allometric analysis (e.g. Seed, 1968; Dame, 1972; 

Murawski and Serchuk, 1979; Seed, 1980; Gaspar et al.,2002; Kovitavadhi et al., 2009; Sangun 

et al., 2007; Ramesha and Thippeswamy, 2009). The analysis of shell properties for 

morphometrics (the study of change in size and shape) is based on research dating back to 

1891 (Shell - Reiss, 1989), which became known as allometry in 1924 (Huxley, 1924). Allometry 

is the bivariate study of variables such as height, shell weight, soft tissue weight and width, to 

determine if shell properties fit within the ‘normal’ growth patterns expected. Where the 

relationship fits with the expected it is termed isometric; if the growth in the independent 

variable (e.g. length) is greater than that in the dependent (e.g. width) then the relationship is 

negatively allometric and when the reverse is the case it is positively allometric. The concept is 

discussed later in more detail in Section 5.2.1. 

Within the literature there are several examples of biometric analysis for shell population age 

structure being applied to A. islandica; in the North Sea (Witbaard, 1997), the Baltic Sea 

(Zettler et al., 2001) and the east coast of Canada (Kilada et al., 2007). These studies can 

therefore be compared to findings from the west coast of Scotland to determine how 

population recruitment and juvenile survival compares between different locations.  

Allometric analysis of bivalve shells have previously been carried out in a variety of species and 

used to investigate relationships between shell morphology and water depth (Claxton et al., 

1998; Lajtner et al., 2004), currents (Fuiman et al., 1999), different river regimes (Blay, 1989), 

sediment type (Lajtner et al., 2004), field site location in relation to tide (e.g. tidal vs. sub-tidal 

in Dame, 1972), season (Ramesha and Thippeswamy, 2009) and site crowding (Seed, 1968). 

Currently only a few morphological studies have been undertaken on A. islandica (Murawski 

and Serchuck, 1979; Begum et al., 2010).However these did not use the same bivariate pairings 

undertaken in this study. For example in Murawski and Serchuck (1979) A. islandica length and 

drained soft tissue weight data for mid-Atlantic Shelf specimens were analysed and 
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morphological differences were explained as being due to factors including: salinity, food 

supply, temperature and nutrients. 

For this research, shell age, weight (analysed valve), maximum height, length and width were 

recorded for biometric and allometric analysis (see Figure 4.1 for the lines along which height 

and length are measured and Figure 4.1C for where width is measured).  Morphological 

analysis of shell weight, height, length and width are analysed for the entire field site 

population, as well as for each site, in order to determine whether there are any 

morphological differences between shells from the six field sites. As already mentioned, there 

is a lack of similar research carried out on A. islandica. However, such work may help highlight 

why some sites have a stronger common signal for their chronologies when this is considered 

in Chapter7. Those samples for which age are available have been analysed on both the 

individual and whole site level, but also with all data analysed together to create a ‘field site’ 

dataset, to determine if either height or weight can be used as predictors of specimen age. 

Using height, and to a lesser extent weight, to predict the age of specimens would be 

beneficial if it allowed divers and researchers in the laboratory to use either variable to 

estimate shell age without the need to section specimens. In addition, population age 

structure analysis can also be undertaken and the results compared to similar research 

(Witbaard, 1997; Zettler et al., 2001; Kilada et al., 2007). 

The primary aim of this chapter is to provide more information concerning site differences 

relating to specimen morphology and age-related differences. Such information for the six 

sites (Figure 2.1B), together with data from Chapter 2 (site sediment OC content, sediment 

water content and sediment grain size data), may help to explain some of the results already 

presented in Chapter 4 concerning the Correlation Response Function Analysis (CRFA) results 

between the climate series and the shell growth chronologies. 
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5.2 Methods 

5.2.1 Shell Morphology 

To determine how the four morphometric variables being investigated (height, length, width 

and weight) relate to each other, it is important to establish whether the regression slope 

value for each relationship is isometric. An isometric relationship between the length, width 

and max height variables has an ‘expected slope’ value ( ̂) of 1 (Goldman et al., 1990), while 

for weight and length  ̂ = 3 (Ewa-Oboha and Abby-Kalio, 2006). Data were logged prior to 

analysis, as this allows the linear plotting of the relationship (Huxley, 1924), thus allowing a 

simple linear regression between the variables to be performed. The resulting regression 

equation is written as: 

 

            ̂             Equation 5.1  

 

Using this equation, it is possible to determine whether the slope of the regression line is 

statistically significant from the isometric ideal (either 1 or 3). The  hypothesis (adapted from 

Ogle (2011) – also illustrated in Figure 5.1) being: 

 

H0;  ̂ = 1 or 3 (depending on parameters being investigated) → H0; Isometric growth 

H1;  ̂ ≠ 1 or 3 (depending on parameters being investigated) → H1; Allometric growth (either 

positive or negative depending on whether value is above (positive) or below (negative) the 

expected β – see Figure 5.1 for more information). 
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To determine which hypothesis is correct the following equation (Ogle, 2011) is used: 

        
 ̂  

   ̂
        Equation 5.2 

 

Where β is the isometric value (either 1 or 3) 

   ̂is the slope value determined in Equation 5.1  

SE  ̂ is the standard error of the slope coefficient. 

If tn-1df is greater than the t-test value for the sample size minus one (n-1), then the slope is 

significantly different from the isometric value and is allometric; whether it is positive or 

negative depends on whether the value of β̂ is greater than or less than the β value outlined in 

hypothesis H0 (if β̂>β then the slope is positively allometric, if β̂<β then the slope is negatively 

allometric – see Figure 5.3). 

 

 

 

 

 

Figure 5.1: Allometric analysis  ̂ is the slope of the relationship between the variables being analysed. 

The expected value of   ̂ in this chapter is either 1 or 3 depending on which variables are being 
considered. 
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The allometric analyses carried out have the potential to be used for a variety of purposes. 

Although age ranges at the six sites are too different to allow for direct comparisons to be 

made, the results of the individual site analyses can still be used to identify overall growth 

patterns between sites, with the caveat that until the datasets span the same sample age 

range the results are only preliminary. This work was also carried out by pooling data from all 

the sites together to see how the morphology of A. islandica in the field area plots as a whole. 

Each of the bivariate datasets from the individual sites were also plotted and compared to the 

whole field area datasets. Such information can be useful if any unusual patterns are seen for 

certain sites; this may help explain some of the differences between annual growth rates at 

the sites as well as why some sites do not show the same response to climate (see Chapter 4.) 

Biometric results can also be used to investigate differences in the environment that have the 

potential to influence GI growth rates. For example, temperature changes have been shown to 

influence soft tissue and skeletal growth rates (Rhoads and Lutz, 1980) and this explains why 

previous research by Butler et al. (2010) has been able to link A. islandica growth rates with 

sea temperature changes. Seed (1968) suggested that shell morphology is also influenced by 

population density, i.e. in areas of high population density growth may be restricted in certain 

dimensions – something that allometric analysis can help determine.  

 

5.2.2 Age Predictions 

The height, length and weight data collected for all aged samples in Chapter 4 were used along 

with width (see Figure 4.1) to carry out a variety of analyses to investigate how shells at the 

sites compare. For the age prediction work linear regression was used to explore the 

relationships between all bivariate pairs.  

Additional analyses were performed using age, weight and height data to see how data from 

the six sites compare to one another and as well as the all site dataset1. This was done in two 

ways, initially all data were plotted in a single graph with a regression line and corresponding  

1
 For some samples damage to the shell meant that it was not possible to take height and/or weight data. Therefore 

the number of shells is not the same for all analyses using height/weight/age data. 
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95% prediction bands for the all sites data to see how they plotted against each other (with 

age plotted on the x-axis and either height or weight on the y-axis) and the regression line (e.g. 

Figure 5.6). All the regression lines for the six sites are compared together, along with their 

2SE2 bars. This makes it possible to determine which site-specific regression lines are 

significantly different from each other. The median and quartile deviation (QD) for height, 

weight and age for each site are also compared and Kruskal-Wallis analyses were undertaken 

to test whether the samples represent the same population by investigating whether the 

medians for the six datasets are similar. Kruskal-Wallis analysis was chosen as not all the data 

are normally distributed. 

 

5.2.3 Population Age Structure 

An understanding of population age structures can be used to indicate population recruitment 

and future viability. They can also provide site-specific data for regional comparisons. 

However, no direct comparisons between populations of different age structures can be made 

using allometric analyses. To produce a picture of site recruitment, the age distribution of the 

six sites are compared using histograms with bins of 15 years. 

 

5.3 Results 

5.3.1 Shell Morphology 

The individual site results are summarised in Table 5.1, with the respective graphs in Appendix 

14; from Table 5.1 it is possible to see that the data for site C6 are all isometric, site C8 has all 

isometric relationships apart from length and weight which is negatively allometric. The results 

for sites C6 and C8 indicate that at these locations there is little/nothing limiting the growth of 

shells regarding physical constraints on specimen growth e.g. over-crowding. On the other  

 

2 
Where 2SE is used to represent the 95% confidence range of the predicted values around the regression lines. 
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hand the C1, C4 and C7 results are an even split of negatively or positively allometric and 

isometric; indicating that at both these sites there is probably at least one factor other than 

climate causing growth restrictions in various dimensions. The results for site C2 suggest that 

this is the most restricted, with length-width, length-height and height-width all being 

negatively allometric, while only length-weight is isometric. 

 

Table 5.1: Allometric relationships present at the six field sites 
 

 Length – height Length – width Height –width Length – weight 

C1 Isometric Isometric Negatively allometric Negatively allometric 

C2 Negatively allometric Negatively allometric Negatively allometric Isometric 

C4 Positively allometric Isometric Isometric Negatively allometric 

C6 Isometric Isometric Isometric Isometric 

C7 Isometric Negatively allometric Isometric Negatively allometric 

C8 Isometric Isometric Isometric Negatively allometric 
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Figure 5.2 summarises the entire field area dataset and indicates that out of the four analyses, 

two are isometric (length-height and length-weight), while the other two analyses are 

negatively allometric. From the data analysed and presented in Figure 5.2, the results for C8 

consistently plot near the top end of the graphs (with the exception of the length-weight 

graph). Initially, these results appear to contradict those in Table 5.1 which indicate 

predominantly isometric growth at the site, however it is entirely feasible that the C8 results 

appear to be different compared to the other site data in Figure 5.4 because of the different 

population age structures at the six sites (Figure 5.7). The results in Figure 5.4 may also be 

down to the height/weight data for the sites – in Figures 5.4a and 5.6a, the C8 data for the 

age-height and age-weight relationships respectively generally plot higher than the other site 

data. It is possible this is the reason for the C8 data plotting near the top in three of the graphs 

in Figure 5.2 rather than the shell morphology (i.e. a sampling bias due to a wide range of shell 

weights and heights). 

There are some problems with the use of isometric analyses to investigate the morphology of 

samples. When carrying out such work, the comparisons are only between two variables at a 

time and this is somewhat restrictive (Seed, 1980). In addition, although there are ideal 

relationships between variables, such as a regression equation slope (β) of 1 between height 

and length, these may not relevant for all species. Seed(1980) highlighted that these 

relationships are not always present in older samples of the species Mytilus edulis. It is 

therefore important to highlight that these ‘ideal’ relationships may not be relevant for all 

species and locations. There is currently a lack of available literature detailing how the 

variables studied here relate to one another in A. islandica specimens from different 

populations. Therefore the assignment of morphometric terms isometric, positively allometric 

or negatively allometric to any of the bivariate analyses carried out and illustrated in Figure 5.2 

must come with the caveat that these are being presented as relating to the ideal relationships 

which are not A. islandica specific. Seed (1968) highlights that environmental conditions 

influencing morphology vary both over time and space, therefore it is conceivable that animals 

from the same field site may show differing responses; this could be the reason why some of 

the sites have different allometric relationships (Table 5.1). 
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5.3.2 Age Predictions 

5.3.2.1 Height and age 

The height and age data for all six sites are presented in Figure 5.3 as stacked scatter plots to 

highlight differences between the data from all the sites. For each plot the regression lines and 

95% prediction bands are plotted along with the regression line equation, p-value and n-value. 

In Figure 5.3 it can be seen that at sites C1 and C2 the relationship between age and height is 

not significant and therefore from the data currently available it is not possible to use height at 

these sites to predict age. At the other four sites there are statistically significant relationships 

present between the two variables, suggesting that sample ages at sites C4, C6, C7 and C8 can 

be predicted using height.  It is conceivable that at site C1 the reason behind the lack of a 

significant correlation between the variables is partly down to low data replication at the site - 

the n-value is 15. At site C2 it is not clear why the relationship is not significant. However, the 

results in Table 5.1 indicate negatively allometric relationships between height and length and 

height at width at site C2, therefore it is conceivable that environmental conditions at the site 

are having a negative influence on specimen height and overall growth rates, which may 

explain the lack of a relationship between age and height. 
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Figure 5.3: Age – height scatter plots with 
regression line/equation and corresponding 
95% prediction bands (dashed lines) for each of 
the six sites. 
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To better understand how data from each site compares, all data are plotted in Figure 5.6A 

along with the all data regression line, corresponding 95% prediction lines and a regression line 

fitted to the data. Figure 5.4a illustrates that four of the sites have data that plot either 

entirely or predominantly to one side of the regression line; these are C8 (almost entirely 

above), C2 (almost entirely above), C4 (almost entirely below) and C7 (almost entirely below).  

 

 

 

Figure 5.4: Graphs illustrating the age-height A)regression line and related 95% prediction bands (dashed lines) for 
the entire dataset and how the data from each site plots in relation to this, B) regression lines from each site and 
the entire dataset with 2SE bars fitted to the data to investigate significant relationships. 

A 

B 
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When the regression lines (with associated 2SE lines) for each site, as well as the regression 

line representing all the data, are compared (Figure 5.4B), it is clear that none of the individual 

series are significantly different to the all data series (in black) and they are also not 

significantly different from each other. For example, the slope of C1 is less than for C7. These 

growth rate differences may be explained by site differences (see Chapter 2) and are discussed 

further in Chapter 7.  

To test for significant differences between height data from all six sites the median and IQR, 

and the maximum and minimum values are presented in Figure 5.5 along with the Kruskal-

Wallis analysis results. These results indicate that there is a significant difference at the 95% 

confidence level between the height data for the six sites. 

 

 

 

 

Figure 5.5: Median and IQR values for height data from each site in black. Also included is the range of the data in 
red with the maximum and minimum values indicated. The H and p values included in the figure relate to the 
Kruskal-Wallis analysis undertaken on the datasets. 
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5.3.2.2 Weight and age 

In Figure 5.6 the weight-age data for all six sites are illustrated as stacked scatter plots to allow 

easy comparison between the data. For each plot the regression lines and 95% prediction 

bands are plotted along with the regression line equation, p-value and n-value. 

As with the age-height data presented (Figure 5.3) the age-weight data (Figure 5.6) indicates 

that at sites C1 and C2 weight is not a suitable predictor of sample age. These results suggest 

that at sites C4, C6, C7 and C8 there is potential to use sample weight as a predictor of a shell’s 

age, however as this cannot be used in situ it is not as useful as height as a predictor of age. As 

with height it is possible that the relationship between weight and age at C1 is not statistically 

significant due to the low n-value. It is not as clear as to why the relationship at C2 is not 

statistically significant and this requires further investigation. 

When comparing all the site data together in a single graph (Figure 5.7A) it is possible to see 

that the data from sites C8 and C2 plot almost entirely above the regression line and the C4 

and C7 data are almost entirely below the line, as was the case in Figure 5.4A for age-height.  

As with the age-height data (Figure 5.4) these differences between where data plot may 

explain why there is an apparent lack of common climate signal in shells from the region.  

In Figure 5.7B it is possible to see that there are differences between the slopes of the seven 

regression lines plotted, however the only datasets where this is statistically significant at the 

95% confidence level are between sites C2 and C7, and C4 and C8. All the datasets overlap 

with the regression line and 2SE bars plotted for the entire dataset, therefore it is possible that 

for those sites with no significant relationship between age and weight (C1 and C2) the entire 

dataset regression equation may potentially be used to predict shell ages, although this is with 

a large associated error. 
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Figure 5.6: Age – weight scatter plots with 
regression line/equation and corresponding 
95% prediction bands (dashed lines) for each 
of the six sites. 



Chapter 5 – Biometrics and Morphology 

127 

 

 

 

 

 

 

 

Figure 5.7: Graphs illustrating the age-weight A) regression line and related 95% prediction bands (dashed lines) for 
the entire dataset and how the data from each site plots in relation to this, B) regression lines from each site and 
the entire dataset with 2SE bars fitted to the data to identify significant relationships. 

A 

 

B 
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To test for significant differences between weight data from all six sites, the median and IQR, 

together with the maximum and minimum values, are presented in Figure 5.8 along with the 

Kruskal-Wallis analysis results. These results indicate that is a significant difference at the 95% 

confidence level between the weight data for the six sites. 

 

5.3.2.3 Predicting age from height/weight 

The data presented in sections 5.3.2.1 and 5.3.2.2 are useful for investigating the relationships 

between age and height, and age and weight respectively, however the regression equations 

in Figures 5.3 and 5.6 cannot be used to predict age. To produce regression equations that can 

be used to predict age, the axis used for the graphs in Figures 5.3 and 5.6 must be inverted so 

that age is on the y-axis. These analyses are presented in Figure 5.9 for age-height and 5.11 for 

age-weight. At sites C1 and C2 it has been shown that neither height nor weight can be used to 

predict age. To determine whether the regression equation fit to all the datasets can be used 

instead, the regression lines, with 2 SE bars, for all six sites, along with the regression bars for 

the whole dataset are presented in Figures 5.10 and 5.12 respectively.  

 
 
 
 
 
 
 

 
 
Figure 5.8: Median and IQR data for weight data from each site in black. Also included is the range of the data in red 
with the maximum and minimum values indicated. The H and p values included in the figure relate to the Kruskal-
Wallis analysis undertaken on the datasets. 
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Figure 5.9: Age – height scatter plots with 
regression line/equation and corresponding  
95% prediction bands (dashed lines) for each of 
the six sites. Data are plotted with age on the y-
axis so that the resulting regression equation 
can be used to predict age using shell height. 

 



Chapter 5 – Biometrics and Morphology 

130 

 

 

 
 

 

 

Figure 5.10: Graphs illustrating the age-height  A) regression line and related 95% prediction bands (dashed lines) 
for the entire dataset and how the data from each site plots in relation to this, B) regression lines from each site and 
the entire dataset with 2SE bars fitted to the data to identify significant relationships. 

A 

 
B 
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Figure 5.11: Age – weight scatter plots with 
regression line/equation and corresponding  
95% prediction bands (dashed lines) for each 
of the six sites. Data are plotted with age on 
the y-axis so that the resulting regression 
equation can be used to predict age using shell 
weight. 
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The results in Figures 5.3, 5.6, 5.9 and 5.11 indicate that the relationship between height and 

age, and weight and age are statistically significant for sites C4, C6, C7 and C8, therefore the 

site-specific regression equations summarised in Table 5.2 should be used to predict sample 

ages for these sites. The results in Figure 5.10 indicate no statistically significant differences 

between any of the regression lines plotted at the 95% confidence level for age-height. 

Therefore, the regression equation for the whole dataset could potentially be used to predict 

Figure 5.12: Graphs illustrating the age-weight A)regression line and related 95% prediction bands (dashed lines) for 
the entire dataset and how the data from each site plots in relation to this, B) regression lines from each site and 
the entire dataset with 2SE bars fitted to the data to identify significant relationships. 

A 

 B 
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age using height for both sites C1 and C2. For age-weight (Figure 5.12) there are also no 

statistically significant differences between the regression lines plotted and therefore the age 

for specimens from sites C1 an C2 may potentially be predicted using the regression equation  

for the whole dataset. 

 

 
Table 5.2: Regression equations to work out age from Figures 5.7 to 5.10. 
The ± value relates to the 2SE of the estimate. 
 

Site Age-height regression equations Age-weight regression equations 

C1 Age = 80.96 + 0.2734 * Height ±51 Age = 33.3 + 1.33 * Weight ±24 

C2 Age = -14.29 + 0.9181 * Height ±49 Age = 43.5 + 0.402 *Weight ±52  

C4 Age = -149.6 + 3.344 * Height ±54 Age = 0.3 + 2.785 * Weight ±61 

C6 Age = -144.6 + 3.065 * Height ±88 Age = -27.9 + 2.516 *Weight ±70 

C7 Age = -42.4 + 1.857* Height ±38 Age = 53.5 + 1.138 *Weight ±76 

C8 Age = -133.9 +2.485 * Height ±37 Age = -28.9 + 1.662 *Weight ±64 

All sites Age =  20.1 + 1.345 * Height ±78 Age = 51.0 + 0.770 *Weight ±80 

 

The potential problem with using the whole dataset regression equations to predict age is that 

this may increase the error associated with the predicted age compared to using a site-specific 

equation. Additionally, it is not clear why there are not significant relationships between age 

and height/weight at sites C1 and C2. As already mentioned the n-value for site C1 is low (n = 

15) which may account for the lack of a significant relationship at this site. To determine if this 

is the case, increasing the sample size at the site may be beneficial to determining a 

relationship between the two variables. At site C2 it is possible that environmental factors are 

limiting shell height growth (Table 5.1) causing the lack of a relationship between age and 

height. To determine if this is the case and to see what may be causing the lack of a 

relationship between age and weight additional samples should be analysed. It is possible that 

at sites C1 and C2 there is an external factor causing a lack of a significant relationship 

between age and height/weight at these sites. If this is the case then it may not be appropriate 

to use the regression equation for the whole datasets to predict sample ages for sites C1 and 

C2. 
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5.3.3 Population age clustering 

The results concerning age prediction using height and weight indicate that there are 

differences between the relationship of age and height at the six sites; shells of the same 

height are not necessarily the same age between sites. This is most likely due to differences in 

site conditions causing shells to grow at different rates, as illustrated by the allometric results 

in Table 5.1 and the different slopes of the regressions shown in Figure 5.3. 

To test whether the specimens with similar heights have different age structures between the 

six sites, additional age analyses were undertaken on shells within the height range of 90 and 

100 mm (inclusive). This height range was chosen to represent mature adult specimens, 

typically aged > 50 years old; at sites C4 and C7 no shells were present in the collection of this 

height (Figure 5.9). Normality tests were undertaken on the data being analysed, the results 

(presented in Appendix 15) appear to indicate that some of the datasets are non-normally 

distributed, however the low n-values at each site may make these results unreliable (C1 = 2, 

C2 = 7, C6 = 4, C8 = 12). As a result of this the data were analysed using both parametric and 

non-parametric analyses and the results compared. The parametric analysis of the data was 

undertaken by first generating the mean and 2SE values for age data at each site, an ANOVA 

analysis of the raw data was then carried out (Figure 5.13). The results from the ANOVA 

indicate that there is not a statistically significant difference between age data from the four 

sites analysed based on their height range.  
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5.3.4 Population Age Structure 

The population age structure data for the six sites are presented in Figure 5.14. For site C2 the 

majority of shells are from cohorts dating between 1934 to 1948 and 1949 to 1963, while sites 

C4 and C6 are the only ones to have any shells younger than 15 years old in the sample 

population. However, C2 and C7 do also show signs of recent recruitment (1993 to 1979). 

These results indicate that the populations at sites C2, C4 C6 and C7 show signs of recent 

recruitment, which coupled with the presence of some older shells at all these sites, means 

that future sampling, may be able to target shells from a range of ages. Sites C1 and C8 do not 

have any shells younger than 62 and 50 years old respectively in their sample populations 

(Figure 5.15); this could be because of two reasons: (1) the lack of younger shells at sites C1 

and C8 may purely be due to a lack of recent recruitment at the sites, (2) divers collecting the 

shells may have introduced a bias into the sampling process, focusing on collecting larger 

shells, or may not have been able to see/find younger shells due to bottom water conditions. 

However, the NFSD divers were asked to collect samples from a wide range of sizes at each 

field site – this sampling strategy was clearly observed at other sites, and is unlikely to have 

been disregarded at sites C1 and C8. 

 
 
Figure 5.13: Mean age and 2SE data for sites C1, C2, C6 and C8 to investigate the age distribution of shells from the 
sample sites with heights ranging between 90 and 100 mm inclusive. Also included are the results from the ANOVA 
analysis undertaken on the data. 
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Figure 5.14: Population age structure data for each site and also for the entire field site dataset. N.B. Some of these 
ages come from specimens not crossdated into the chronologies. 
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In Figure 5.15, a comparison of the median age of shells from a site (and the corresponding QD 

and minimum/maximum bars) shows that while the age structure at site C2 is younger 

compared to the other sites, all the sites have some degree of overlap regarding their age 

structure data ranges. The Kruskal-Wallis analysis of the data indicates that there is a 

significant difference in terms of shell ages between the datasets at the six sites. 

 

 

 

 

 

5.4 Discussion 

Currently the regression analyses used to determine whether shell age can be predicted using 

either height or weight indicate that there are statistically significant relationships present 

between age and both height and weight at sites C4, C6, C7 and C8. At sites C1 and C2 the 

results indicate no statistically significant relationship exists between age and height/weight. 

The results are promising for using the site-specific regression equations to predict age using 

either height or weight for sites C4, C6, C7 and C8 and the regression equation fit to all the 

Figure 5.15: Median shell age with corresponding inter-quartile range data, also shown 
are the minimum and maximum shell  ages for each site (red error bar lines) 
n-values: C1 = 15, C2 = 32, C4 = 38, C6 = 35, C7 = 34, C8 =30 
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data for predicting age using height/weight at sites C1 and C2. However, the results in Table 

5.2 indicate that there is a large error associated with the predicted ages for specimens. 

The results in Table 5.1 suggest that growth at sites C4, C6 and C8 are less likely to have been 

influenced negatively by factors restricting their growth in any of the morphometric variables 

investigated when compared to the other three sites due to the prominence of isometric and 

positively allometric relationships between variables at these sites. As discussed in Chapter 4 

(Section 4.3.1) it may be that historic discharge of various pollutants from the alginates factory 

in Loch Creran (see Figure 4.11 for location of factory) has influenced shell growth rates at 

these sites C1 and C2, this in turn could explain the negative allometric results in Table 5.1. The 

negatively allometric results at C7 also suggest some external influences which impede growth 

rates, but there is little evidence of this in the C7 chronology itself (Figure 4.9).Hydrographic 

controls at site C7 may play a significant role in controlling shell growth and thus explain the 

allometric results in Table 5.1. Appendix 12 illustrates the juvenile growth trend in the raw 

data; from this data it is possible to see that there are no obvious differences in juvenile 

growth trends between the six sites with the exception of site C1 however this is likely due to 

shells at this site growing in different conditions during their juvenile period. These results aid 

with the understanding of how the strength of trends observed in the data reflect shell age. 

The findings of the age cluster analyses presented in Section 5.3.3 support the data presented 

in Figures 5.5 and 5.10 where the regression analysis lines and their associated 2SE bars 

indicate that there are no statistically significant differences between the age-height datasets 

for all the samples which have been age determined. Although there appears to be differences 

between the distribution of specimen ages at sites C1, C2, C6 and C8 from the height range 90 

to 100 mm (Figure 5.13), these are not statistically significantly different at the 95% confidence 

level. 

Further investigation of population age differences based on sample height should be 

undertaken with two potential lines of enquiry. The first would be to increase sample sizes and 

including sites C4 and C7 in the analyses; this would require the collection of additional shells 

from all six sites using targeted sampling techniques i.e. by asking the SCUBA divers to collect 

shells between 90 and 100 mm in height. The second option would be to repeat the analyses 

carried out in Figure 5.13 for shell samples from a different height (and presumably age) range 

to see how those data compare.  
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Within the field area (Figure 2.1) there are signs of younger shells (those younger than 30 

years old) at four of the six sites (Figure 5.13), indicating conditions at these sites are 

favourable for continued recruitment. However, it is important to note that only site C6 has 

any juveniles present (specimens younger than 10 years old). As already mentioned in this 

section there are two reasons as to why the sample population data in Figure 5.7 may be 

showing no recent recruitment at sites C1 and C8. However, to determine why there are no 

younger shells at some sites more sampling and fieldwork is required to check if there really is 

a lack of recent recruitment. This would further sampling, which has not been feasible within 

the time constraints of this study.  

Other researchers have also found variable age ranges at sites located close to one another; 

Zettler et al. (2001) presented shell height data (taken as a rough estimate of age) from ten 

sites in the Baltic Sea. Out of the ten sites only 40% showed any indication of juveniles present 

(Zettler et al., 2001). Research by Kilada et al. (2007) off the east coast of Canada found a few 

juveniles at two sites at Sable Bank, but a mainly adult population at the nearby St Mary’s Bay. 

While in the North Sea, Witbaard (1997) found very few small/juvenile shells present in the 

two populations studied. 

The findings from this research, combined with those from Witbaard (1997), Zettler et al. 

(2001) and Kilada et al. (2007), indicate that different populations in the same geographical 

region can show variable recruitment rates. This may be due to changing environmental 

conditions at one site compared to the others which cause juvenile mortality, as proposed by 

Witbaard (1997), based on work by Murawski et al. (1982). The results herein also indicate 

some recent recruitment (at the time of sampling) in NW Scotland, the North Sea (Witbaard, 

1997), off the east coast of Canada (Kilada et al., 2007) and in the Baltic Sea (Zettler et al., 

2001).  The presence of juveniles at 40% of the Zettler et al. (2001) sites, 67% of the sites 

studied here, 50% of Canadian sites (Kilada et al., 2007) and only a few North Sea juveniles 

(Witbaard, 1997) suggests that while there may be some positive signs of recent recruitment 

at all these sites relative to the sample dates, there are still signs of population ageing in all the 

studies reviewed here. The caveat to add here is that these studies are not all up to date, and 

in order to really determine the current state of the populations, it would be necessary to re-

visit and re-sample to see how the population structures have changed since the original 

studies. Such follow up work at these sites, and others with population age structure data, 

would help identify areas where A. islandica are thriving and where they are dying out – if the 
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underlying reasons behind such information could be identified, it may help to provide an 

insight into other factors influencing shell growth. 

Despite previous research highlighting the palaeoclimate potential of A. islandica (Schöne et 

al., 2003; 2004; 2005a; 2005b; Butler et al., 2009a; 2009b), there has been little published 

concerning the potential of A. islandica from N. W. Scotland (e.g. Stott et al., 2010). The results 

from this chapter indicate there is between site variability in shell growth form and rate. 
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6 Geochemical Analysis 

6.1 Introduction 

Geochemical analyses constrained by well dated shell chronologies have been used to investigate 

the marine 14C reservoir age effect in Loch Etive, together with the effects of marine discharge from 

the Sellafield reprocessing plant. Radiocarbon results from Loch Etive have been compared to those 

from other researchers (i.e. Cage et al., 2006) to provide a better understanding of local marine 14C 

reservoir age variability. Analysis of δ13C variability can also be undertaken on shell material to 

examine the timing and magnitude of the ocean δ13C Suess Effect (Section 1.4.5) at sites C1 and C7. 

Results from these sites can be compared to both marine (Butler et al., 2009a) and atmospheric 

(Francey et al., 1999) Suess Effect records. The δ13C results are also potentially of use to investigate 

whether there is an ontogenetic growth trend present in the δ13C record as has been demonstrated 

elsewhere (e.g. Butler et al., 2011). If there is a trend present in the data then this must be 

accounted for to remove any bias that it would introduce to any material sampled from periods of 

early shell growth. 

Both the marine and terrestrial 14C records are miss-matched due to two main factors; (i) the 

exchange of gases across the ocean-atmosphere boundary is restricted and therefore limits 14C 

exchange rates, and (ii) upwelling/mixing within the oceans leads to 14C depleted water being 

introduced to the surface ocean which alters its 14C signal (Cage et al., 2006). The result is that 

marine organisms have different 14C ages when compared to terrestrial organisms with the same 

calendar age (Cage et al., 2006). This offset in 14C values between contemporary marine and 

terrestrial material is known as the marine 14C reservoir age; the global marine 14C reservoir age is 

402 years (Stuiver and Brazinuas, 1993). However, there is great variability, both spatially (Stuiver 

and Brazinuas, 1993; Cage et al., 2006) and over time (e.g. Austin et al., 1995). Therefore, where 

possible, a local marine 14C reservoir correction should be applied to material from the marine 

environment. Around the Northeast Atlantic, for example, there are a variety of marine 14C reservoir 

corrections applied; these are summarised in Cage et al. (2006) and show a range of ΔR values from -

107±24 years in the Baltic Sea and 279 years in Danish fjords while the ΔR for Scotland has been 

reported as -79±17 14C years (Ascough et al., 2004). The investigation of the marine 14C reservoir age 

of Scottish fjords has previously been undertaken for Lochs Fyne and Creran by Cage et al. (2006). 

Adding data from Loch Etive (Figure 2.1; Section 2.1.1.1) to this dataset would allow further testing 

of the hypothesis proposed in Cage et al. (2006), that the restricted exchange between coastal and 

fjordic waters (as outlined in Section 1.4) may result in lower fjordic reservoir ages. Correctly dated, 
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well placed, mollusc chronologies can theoretically be used to calculate the marine 14C reservoir ages 

as part of a wider geographical network. 

Marine organisms, such as A. islandica, with the potential for a high 14C sampling resolution, can also 

be used to investigate the timing of the 14C bomb peak in the marine environment. During the 1950s 

and 1960s there were a series of nuclear weapons tests carried out which profoundly influenced the 

atmospheric 14C signature, leading to a significant peak in values in the early 1960s (Levin and 

Kromer, 1997). In the northern hemisphere the timing of the bomb-peak is 1963 (Goslar et al., 

2005), while it dates to 1965 in the southern hemisphere (Currie et al., 2006). The timing of the 

bomb-peak in the marine environment has the potential to be used as a tracer of localised ocean-

atmosphere exchange processes and also to investigate ocean circulation (Weidman and Jones, 

1993). This is done by determining the offset in the timing of the bomb-peak between a marine 

sample and the equivalent atmospheric age.  Data collected from Loch Etive can be compared to 14C 

records from elsewhere to see how the timing of the bomb-peak differs to those from Loch Creran, 

the North Sea, the Labrador Sea and the Scottish west coast. 

Marine calcite/aragonite organisms derive their 14C signature from two sources; dissolved inorganic 

carbon (DIC) and metabolic carbon (Ascough et al., 2005). When choosing a species to work with it is 

important to determine the nature of their food source, as this impacts on the 14C age of the 

metabolic carbon source. Research has shown that deposit feeders, which consume food on the sea 

bed of different ages, do not grow in equilibrium with the surrounding seawater geochemical 

signature (Hogg et al., 1998). However, filter-feeders (Chapter 1) mainly rely on suspended food 

sources such as phytoplankton which generally have the same 14C signature as the water in which 

they grow, and therefore the animals eating them can be considered as growing in equilibrium with 

the surrounding water (Hogg et al., 1998). During the calcification process marine calcite/aragonite 

organisms draw on the seawater DIC pool making it an important source to consider. As A. islandica 

is a filter-feeder it is considered a reliable recorder of seawater 14CDIC. A. islandica growth increment-

resolved 14C data from Loch Etive can therefore potentially be used to investigate the marine 14C 

reservoir age in the loch, as well as the timing of the 14C bomb peak. 

The δ13C Suess Effect (see Chapter 1; Section 1.4.5) causes a change in δ13C values of both the 

atmosphere and marine environment due to CO2 released from fossil fuel combustion (Bacastow et 

al., 1996), a process that has greatly accelerated since the start of the Industrial Revolution (Baxter 

and Walton, 1970). This occurs because fossil fuel-derived CO2 has a 13C depletion (Cage and Austin, 

2010) and therefore as more fossil fuel has been burnt, atmospheric and marine δ13C values have 
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decreased.  Within the marine environment the strength of the Suess Effect differs depending on 

exchange rates with the atmosphere; however 13C in the oceans can also be influenced by changes in 

primary production (Brandes, 2009). When the δ13C of dissolved inorganic carbon (DIC) of water is 

calculated these various influences must be considered. Anthropogenic influences over δ13C-DIC, 

caused by CO2 released by burning fossil fuels, has been proposed as leading to a 1.0‰ shift towards 

lighter values over the last 30 years (Brandes, 2009). In order to accurately measure changes in the 

ocean δ13C Suess Effect signal there are two main sources of information, marine sediment cores 

(e.g. Cage and Austin, 2010) and sclerochronological records (e.g. Butler et al., 2009a). The 

advantage of using δ13C from A. islandica is the ability to provide annually-resolved records of 

changes over time. However there are multiple sources influencing the shell 13C signature which 

must be accounted for when analysing the δ13C record obtained (see Figure 6.1). It is important to 

note that there are very limited direct observations of coastal ocean seawater δ13CDIC values 

available. In Figure 6.1 kinetic effects concerns the rates of diffusion and chemical reactions between 

isotopically light and isotopically heavy elements (Sharp, 2007). A kinetic effect causes an 

enrichment of the lighter 12C and 16O due to fractionation during the calcification process (Butler et 

al., 2011). 

Food supply δ13C signal and metabolic carbon effects can cause the isotopic signal of the shell 

material to become lighter (Butler et al., 2011) and can be accounted for using a model concept after 

McConaughey et al. (1997 in Butler et al., 2011). There is some debate in the literature as to 

whether the ontogenetic growth effect in the GI series also influences shell δ13C. If this is the case 

then it should be clear in the records presented in Section 6.3.2, and can be accounted for by 

excluding data from the early portions of shell growth. There is also the possibility of a kinetic effect 

on the δ13C shell signal which must also be considered. As this kinetic effect fractionation process 

influences both the δ13C and δ18O signature of the aragonite shell, it is possible to use the δ18O 

values (not affected by metabolic influences) to determine if there is a kinetic effect during 

fractionation by determining if the δ18O is being deposited in the shell in equilibrium with the 

surrounding sea water (Butler et al., 2011). Significant positive relationship between δ18O and δ13C 

can also be indicative of a kinetic effect (Butler et al., 2011). 
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6.2 Methods 

Shells were selected for isotopic analysis based on the biometric databases created for each site 

(Chapter 5). Using specimen weight and height data, shells were chosen with a range of predicted 

ages. This was done in an attempt to ensure that sampling for radiocarbon analysis was undertaken 

on shells from a spread of ages. Such a methodology was used to try and ensure that samples were 

taken from a range of calendar ages, thus ensuring that the 14C bomb-peak would be captured when 

samples were analysed. For the δ13C samples the same sampling strategy was used for the site C7 

data, this is because the samples run for δ13C from the C7 shells were undertaken on material left 

over from the 14C analysis. The δ13C samples for site C1 were chosen based on targeting those shells 

already crossdated by Stott et al. (2010) from the site. The methods used for geochemical analysis 

differ for 14C and 13C, depending on the source of the data. The site C7 14C sampling methodology is 

outlined here, while those used for site C2 and the North Sea are outlined in Table 6.1 (the results 

for these were originally published in Stott et al., 2010). These methods primarily differ concerning 

the sampling site; C2 shell material was drilled from the outer shell after sectioning, while the North 

Sea samples were taken from a shell slice 2mm thick, and the outer shell layer was then sub-

sectioned into samples comprising one or more annual bands (Stott et al., 2010). Data for the ocean 

δ13C Suess Effect investigation comes from two sites, C1 (Daniels, 2010) and C7 (this research) (see 

 
 
 
 
Figure 6.1: Main influences on the δ

13
C signature recorded in marine shell material (Information taken from Butler et al., 

2011). 
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Figure 2.1); both used the same material collection methods. The common sampling methods are 

summarised in Figure 6.2 with more detail outlined in Sections 6.2.1 and 6.2.2 for radiocarbon (14C) 

analysis and stable isotope analysis respectively. 

 

Table 6.1: Sampling techniques applied to shells from site C2 and the North Sea (from Stott et al., 2010; 1606) 
 

Site Collection method 

C2 The National Museum of Scotland (NMS) sample NM921-415 (named C2-MS1 for 

analysis at University of St Andrews) was live-collected from site C2 in 1968 (Gage, 

1972a, b) and archived at the NMS. The shell was sampled for AMS radiocarbon analysis 

(AMS 
14

C) to investigate the marine 
14

C radiocarbon reservoir effect in Scotland by 

drilling nine samples from the outer periostracum layer.  Out of the nine shells samples, 

two sample weights were under 4 mg and therefore did not yield useable results. 

Despite this, the advantage of using this sampling technique is that it permits sampling 

of a single GI during the early period of shell growth (where GIs are wider than those 

deposited in later life), allowing for an exact calendar age to be assigned to samples 

from the juvenile period, with an error of one to two years for later life (where smaller 

GIs mean that sampling resolution can cover a several years), e.g. on Figure 6.5, these 

sampling errors are illustrated with horizontal error bars. The standard used for this 

analysis was PDB. 

North Sea, German Bight Shells from the North Sea were live-collected in 1990 using dredge hauls from the 

German Bight (54’N 6’E) at a water depth of approximately 37 m and were analysed by: 

1) Sectioning along the axis of maximum growth and removing a 2mm slice of shell 

2) Sampling the  outer layer sectioned to produce samples of one or more GIs 

3) Creating a GI chronology using photographs of shell thin-sections  

4) AMS 
14

C analysis - shell samples were etched in 10% HCl for 30 seconds (to remove 

contaminants from the surface of the sample) before conversion of the sample to 

CO2 and then graphite, ready for AMS 
14

C analysis (Gagon and Jones, 1993). The 

AMS 
14

C analyses were carried out at the National Ocean Sciences AMS Facility 

(Woods Hole Oceanographic Institution) and samples were normalised following 

the methods in Stuiver and Polach (1977) using PDB. 
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     techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Summary of sampling techniques used for geochemical analysis 
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6.2.1 Radiocarbon (14C)  Analysis 

6.2.1.1 Site C7 shells 

Samples for radiocarbon analysis at site C7 (Figure 2.1) were taken from the outside of three shells 

(C7-L48(2), C7-L127 and C7-L104) - this sampling was undertaken on shells not crossdated into the 

site C7 master chronology, which has implications for the dating control of the radiocarbon and 

stable isotope results, this is considered in the discussion of the results later in this chapter. 

Figure 6.3: Example of sampled shell – each red mark represents a sampling location 

Figure 6.4: Example of a sample site on an acetate peel with red arrow indicating the sample location. 
 

1 cm 
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 It is perhaps worth highlighting that it is not unknown in sclerochronological literature for 

radiocarbon dating to be undertaken on shells where GI calendar age determination is undertaken 

by increment counting without crossdating support (e.g. Weidman and Jones, 1993; Scourse et al., 

2012). 

Previous research by Daniels (2010) was used to ensure sampling did not go too deep into the shell, 

thereby ensuring that adjacent, older material from lower down in the shell was not sampled. 

Where feasible, sampling was carried out on the left-hand valve, though if this valve had already 

been sampled for growth increment analysis then the right hand valve was used (see Figure 6.2 for 

more details). To check for contamination associated with the sampling method (e.g. contamination 

by atmospheric radiocarbon signal due to incorrect storage after sampling) a piece of Icelandic Spar 

Calcite (ISC) was also sampled and prepared in the same way in the laboratory and analysed at the 

same time. The data generated from analysis of the ISC can be used as a standard to check for 14C 

contamination introduced in the laboratory.  

All 14C samples were analysed at the NERC radiocarbon facility at East Kilbride in 2010 and 2011 as 

part of a NERC radiocarbon grant facility award. Once samples were received by the laboratory they 

were removed from the nitrogen-rich atmosphere and prepared for analysis by graphitisation 

reduction (no pre-treatment was required at the laboratory, due to the earlier removal of the outer 

portion of the shell using HCl). Although best efforts were made to ensure that all samples were of a 

suitable weight, some were too small to be run on the conventional sample wheel and had to be 

analysed on a small wheel at the same facility. 

Once the shells had been sub-sampled, they were mounted as outlined in Section 4.2. Through 

careful examination of the peel it was possible to determine which calendar year(s) each sample 

came from (with as much accuracy as possible, but without any crossdating being undertaken), thus 

providing a calendar age to compare with the 14C age and potentially provide a means to determine 

the marine 14C reservoir effect. Ideally, crossdating of growth increments should be undertaken to 

provide confidence in the dating control. However, this is not always achievable using this method 

(see Section 6.4 for a discussion on the limitations of this sampling methodology). 
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6.2.1.2 Marine 14C Reservoir Age Analysis 

The marine 14C reservoir age (R(t)), a term used to describe the offset in 14C values between 

contemporary marine and terrestrial ages, is calculated using Equation 6.1 (adapted from Cage et al., 

2006): 

 

R(t) = 14CM(t) - 14CT(t)        Equation 6.1  

Where R(t) is the marine 14C reservoir age 

14CM(t) is the marine 14C age from the sample 

14CT(t) is the contemporaneous 14C terrestrial age and is determined using the IntCal09 

terrestrial radiocarbon calibration curve (Reimer et al., 2009). 

 

Applying the marine 14C reservoir correction to a sample takes into account the fact that it grew in a 

non-terrestrial setting and thus has a different 14C signal to contemporaneous terrestrial material 

obtaining 14C directly from the atmosphere. To compare radiocarbon data from this thesis to that 

collected elsewhere from the marine environment it must be converted to ΔR values using Equation 

6.2. ΔR is used to investigate how the 14CM(t) differs from the marine radiocarbon calibration model 

curve (Cage et al., 2006). 

 

ΔR = 14CM(t) – Marine09(t)       Equation 6.2 

 

Where 14CM(t) is the measured 14C value from the sample 

Marine09(t) is the contemporaneous marine calibration curve 14C age using the Marine09 

curve (Reimer et al., 2009)1. 

 

 

1
Since the preparation of this thesis chapter there has been an update to this curve which has been published 

(Reimer et al., 2013) 
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ΔR values for the Loch Creran and Etive samples can be compared to those from the North Sea, 

Australia and the Irvine Bay on the Scottish coast (Stott et al., 2010, Duffel and Griffin, 1995 and 

Foster, 2007 respectively). These datasets have been chosen due to their shallow, shelf sea settings. 

Comparisons of these datasets allows for the exploration of differences in the timing and magnitude 

of the 14C bomb-peak in the different locations. 

 

6.2.2 Stable isotope (13C) analysis 

Isotope data are available from two sites – C1 and C7 (Figure 2.1). The C1 data comes from Daniels 

(2010) and the C7 data was specifically run for this research. At C1, data was collected from five 

shells; C1-L2, C1-L4, C1-L14, C1-L17 and C1-L19, while at C7 three shells, C7-L48(2), C7-L104 and C7-

L127, were sampled for δ13C analysis. Out of the five shells sampled from site C1 data for C1-L4 and 

C1-L14 have been omitted because these two shells yielded highly variable data, suggesting an 

unusual level of ‘noise’ in the mass spectrometer analysis of these samples, meaning that there is no 

confidence in the data and therefore it has not been used. However, this data can be seen in 

Appendix 16.  As the C7 shells were initially sampled for 14C radiocarbon analysis, the samples are 

larger in weight than those required for δ13C analysis, therefore fewer samples (with a higher age 

range) are available from these three shells compared to site C1. Excluding C1L19, all samples were 

run at the University of St Andrews (Daniels, 2010); C1L19 analyses were out-sourced to Cambridge 

due to analytical problems at the time of study.  

Sampling methods are outlined in Figure 6.2. Once samples were collected and weighed they were 

prepared for analysis in the gas bench section of the mass spectrometer. This was done by placing 

the sample at the bottom of an exetainer vial where, after being left to dry out at 40°C overnight to 

remove any moisture present, it was flush filled with helium gas to remove any modern CO2 present 

in the vial and thus remove this source of contamination. After successful flush filling, each sample 

had approximately 8 drops of orthophosphoric acid (H3PO4) added to it by injection through the vial 

septum. The acid reacts with the sample to release CO2. After being left for 24 hours in the auto 

sampler for the reaction to complete, the CO2 was then analysed in the mass spectrometer.  

Alongside the samples being analysed, one blank is run at the start and samples with known values 

of δ18O and δ13C are included as standards. The primary standard used is Carrara marble which is run 

in sample pairs, with two standards run for every 10 samples. These standards should be of varying 

weights which encompass the weights of the samples run to help determine the accuracy of the 
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corrections after analysis. In addition to the Carrara marble, NBS-19 standards were also analysed. 

These were not used for standardisation directly; rather they were used to validate the 

standardisation to see how well these values are replicated. 

A Thermo Finnigan™ Delta Plus XP IRMS with a Thermo Finnigan™ GasBench II was used for all 

isotope analysis carried out in house (with the exception of the C1-L19 samples.  To run samples a 

standard run practice was adhered to (outlined in Appendix 17). Once sampling was underway the 

running of the machine was checked occasionally to ensure that for each sample the needle was 

piercing the septum on each vial. After analysis each output file was examined to ensure there were 

no air leaks and that there were 10 peaks present for each sample so that there is confidence in the 

data generated.  

The raw data from runs were exported into Excel™ spreadsheets and then corrected for linearity and 

drift by regression, using the results generated from the ‘standard’ samples. This is done by 

analysing how the output values for the standards compare to the known true values. Some of the 

samples analysed were run as part of an undergraduate dissertation (Daniels, 2010); these are from 

shells C1-L2, C1-L17 and C1-L19.  

 

6.3 Results and discussion 

It is important to highlight that the results presented in this chapter are not based on successfully 

crossdated shells that form part of a site master chronology, therefore the dating control of the 

associated radiocarbon and stable isotopes are not verified. In an attempt to overcome this issue, 

counts to determine the calendar age of the samples were undertaken by several individuals (see 

section 6.3.1 for more about this method). 

 

6.3.1 Radiocarbon (14C) analyses 

The results for sites C7 and C2 (published in Stott et al., 2010), together with those from the North 

Sea (Stott et al., 2010), Irvine Bay in the UK (Foster, 2007) and Australia (Druffel and Griffin, 1995) 

are presented in Figure 6.5.  From Figure 6.2 it is possible to see that the pre-bomb 14C results for 

sites C7, C2 and Australia are very similar, while the Irvine Bay pre-bomb values are higher and the 
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North Sea values lower. The rise in values at site C7 lags those seen in all the other records by up to 

approximately 20 years. This later rise in 14C values at site C7 does not fit with the expected timing of 

the 14C bomb-peak in the marine environment and suggest a possible problem with the shell 

chronology and requires further investigation.  

 

 

 

Out of the three shells sampled for 14C analysis from site C7, it was not possible to crossdate their GI 

chronologies into the master chronology (see Chapter 4). Therefore, in order to determine the year 

from which a sample was taken GI counting alone had to be undertaken. To minimise the potential 

for errors this was undertaken three times for each shell: (1) conservative count – only very clear GIs 

were counted, (2) ‘normal’ count – only GIs normally counted for GI measurements were included, 

Figure 6.5: 
14

C percent modern carbon values for sites C7 (red) C2 (blue) and Irvine Bay, Scotland (green) and Δ
14

C % 
modern carbon values for the North Sea (dark red) and Heron Island, Australia (pink). The 1 sigma 

14
C error is illustrated for 

both datasets, as are the associated dating errors for the calendar ages for each sample. Dating errors for the site C7 
samples were generated using three counts: ‘standard’ – which provides the point plotted, all growth increments counted 
– providing a minus error bar, and minimum error was generated through only counting those growth increments that 
were very clear. It should be noted that the dashed blue line present for the Site C2 dataset is there to highlight the 
presence of the final sample, it is not there as an attempt to predict how the 

14
C values between the two final samples 

would lie. 
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and (3) generous count – all bands however faint were counted. These counts were then compiled 

to create the error bars in Figure 6.5. The lack of crossdating of GIs in the three shells from site C7 

means that any subsequent analysis of the C7 isotopic data (both 14C and δ13C) must be analysed 

with caution as the calendar dates presented may not be absolutely correct. 

When the site C7 dataset is compared to that from Irvine Bay (Figure 6.5), it is possible to see that 

the next nearest 14C record has its bomb-peak in the 1960s/1970s. There are some slight offsets in 

the timing of the 14C peaks in Figure 6.2 between the North Sea, Irvine Bay and Australian records, 

but generally they fall between 1967 and 1973. However, the peak for Heron Islands is slightly later 

(1976). The lag between the timing of the bomb-peak at site C7 compared to the other records in 

Figure 6.5 could be due to a dating issue, however this is unlikely, as not only would any error have 

to be replicated in all three shells analysed, but GI counting was carried out by several individuals for 

confirmation purposes. Figure 6.5 confirms that the timing of the bomb-peak in 14C values at site C7 

is much later than would be expected when looking at other sites. It also highlights that the values 

the C7 shells are recording for the late 1990s and early 2000s are higher than would be expected 

based on other results illustrated in Figure 6.5, with the exception of Irvine Bay. Foster (2007) 

proposed that the Irvine Bay 14C values remain high, post bomb-peak, due to a terrestrial signal 

influencing the site. If this is the case then the shallow nature of sites C2 and C7 (20 m and 16-24 m 

respectively) could also be influenced by a similar signal. It was also proposed by Foster (2007) that 

the Sellafield nuclear reprocessing plant discharge influenced the 14C values in the Irvine Bay A. 

islandica samples. It is clear that the pronounced rise in 14C during the 1960s is absent from the C7 

material, suggesting that there may be a problem with the GI chronology at this site, i.e. multiple 

missing GIs. 

 

6.3.2 Sellafield14C discharge history 

The Sellafield nuclear reprocessing plant (Figure 6.6) has been operating since the early 1950s 

(Gardner, 1993; WISE-Paris, 2001). During most of its history its atmospheric and marine discharge 

rates have been monitored, and several major discharge-related incidents have been reported 

(Simmonds et al., 1995; Greenpeace, 2012). Of interest here are 14C discharge rates, how these have 

varied over time and how 14C has been transported along the west coast to Scotland and beyond. 14C 

discharge rates from Sellafield are illustrated in Figure 6.7, along with the C2, C7 and Irvine Bay data. 

Sellafield14C discharge peaked in the 1990s, early 2000s and later 2000s (Figure 6.7), which could in 
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theory be responsible for the sustained high 14C values recorded in both the Irvine Bay and site C7 

post bomb-peak records. However, whether or not the Sellafield 14C discharge would influence site 

C7 14C values requires further investigation. Moving up the west coast of N. England/ Scotland, from 

Sellafield to Wick (Figure 6.6), records of uptake values of various chemical discharges related to 

Sellafield in seaweed have been studied (RIFE, 1996 to 2009 inclusive). There is generally a lack of 

information concerning 14C, therefore 99Tc data are used and presented in Figure 6.8 for the period 

1995 to 2008 (99Tc can be used as it is also a recorded aqueous discharge from the Sellafield 

processing plant). Moving up from Sellafield there is a general decreasing trend in 99Tc 

concentrations in seaweed, however it is important to note that Sellafield 99Tc is still recorded at 

Cape Wrath and it can be concluded that discharge from Sellafield has a wide reach. It is likely that 

the 14C discharge follows a similar pattern of decreasing values moving up through Scotland. While it 

is feasible that some of the high levels of 14C discharge from Sellafield may influence the high 14C 

values recorded in the shells at site C7 from the 1990s onwards, these data do not help to explain 

why there is no bomb-peak recorded in the 1960s/1970s at the site.  
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Figure 6.6: Location of Sellafield in relation to the field area (black rectangle). Also 
illustrated are the locations from which 

99
Tc contamination levels of seaweed/aquatic 

plants has been analysed (see Figure 6.8). Also illustrated are some of the major currents 
present off the west coast, including the Scottish Coastal Current (light blue), North 
Atlantic Slope Current (dark blue) and the North Atlantic Current (purple). These currents, 
in particular the Scottish Coastal Current, highlight how discharge from Sellafield could 
easily be carried up the coast to the field area (Current information is adapted from Cage 
and Austin, 2010). 
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Figure 6.7: Discharge rates of 
14

C from Sellafield from 1952 to 2008 are presented in grey along with 
14

C data from 
sites C2 and C7 and the Irvine Bay location from Foster (2007). Discharge values for Sellafield come from Jackson et 
al. (2000) for the period 1952 to 1998, data from 1999 to 2008 comes from BNFL (2000; 2001; 2003) and Sellafield 
Ltd. (2008). It should be noted that the dashed blue line present for the Site C2 dataset is there to highlight the 
presence of the final sample; it is not there as an attempt to predict how the 

14
C values between the two final 

samples would lie. As previously stated the data for site C7comes from three different shells, with each data point 
coming from a single sample, rather than representing a pooled value. The shell from which each sample has been 
derived has also been indicated on the figure. This helps to clarify that the samples from where the bomb-peak is 
expected to be seen onwards are not all from the same shell, therefore helping to reduce the possibility that the 
reason for the bomb-peak not being in the expected position is not likely down to a dating control issue. 

 

The lack of a bomb-peak in the 1960s/1970s at site C7 is particularly unusual given that site C2, also 

located in a shallow water fjordic environment, shows a value plotting on the rising limb of the 

bomb-peak. Therefore, it seems unlikely that site C7 would not exhibit a bomb-peak due to its fjordic 

location. The shallow nature of site C7 (16-24 m) means that exchange of 14C between the 

atmosphere and water should lead to the rapid uptake of the bomb-peak signal in the shells of A. 

islandica (Foster, 2007). This is clearly not the case, with the 14C bomb-peak timing being out by 

approximately 15 years in A. islandica from site C7. It is unlikely that this is caused by mis-counting 

of GIs or multiple missing GIs, especially when it is considered that the results presented are from 

three different shells and therefore all three would have had to be mis-counted by the same amount 

or have the same amount of missing GIs. 
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Weidman and Jones (1993) found a slight difference in the timing of 14C bomb-peaks in various A. 

islandica records. It was proposed that this was due to differences in site type, and collection depth 

variations. However, these age offsets were typically only 1 to 2 years (Weidman and Jones, 1993), 

and thus they are not comparable to the delay in the bomb-peak at site C7. Also there is no mention 

of crossdating being carried out by Weidman and Jones (1993); therefore this is within a realistic 

dating uncertainty error. Another potential reason for the later than expected rise in 14C values is 

that perhaps for some reason GIs in the three shells sampled at site C7 are not deposited annually. 

Turekian et al. (1982) found a single shell in their sample set where the number of GIs and calendar 

years did not match up according to 14C data. They inferred that multiple GIs were deposited in a 

single year, although this did not fit with their 228Th data which suggests annual banding in shells at 

the site. Turekian et al. (1982) highlighted that the shell that was apparently exhibiting non-annually 

resolved GIs was from a site with shallower water depths (29 m) compared to the site where no 

problems were found with the 14C data (>55 m). It is also important to note that from the shallower 

 
 
 
Figure 6.8: Values of 

99
Tc recorded in various seaweed species/aquatic plants moving from Auchencaim 

to Cape Wrath (for site locations see Figure 6.5). Data sourced from RIFE reports from 1995 to 2008 
(RIFE, 1996 to 2009 inclusive). 



Chapter 6 – Geochemical Analysis 

158 

site another two shells were analysed and their results were also unclear. They inferred that in the 

shallower site multiple GIs were deposited each year; however they offer no explanation for this, 

although they noted dumping in the area (Gross, 1976 in Turekian et al., 1982) which may also be a 

factor to consider.  The results from Turekian et al. (1982) highlight that there is the potential for A. 

islandica GIs to be non-annual. 

 

6.3.3 Stable isotope (13C) analysis 

6.3.3.1 Kinetic effects 

Whether the A. islandica sampled for δ13C analyses were influenced by kinetic effects deserves 

further investigation. The fractionation of isotopes causing an enrichment of the lighter isotopes can 

be investigated in two ways. The first is to test whether the δ18O signal is in equilibrium with the 

surrounding seawater as this suggests no kinetic effect over δ18O, and therefore by extension δ13C. It 

can also be tested by seeing if there is a significant correlation between the δ18O and δ13C values 

recorded. Previous research (Weidman et al., 1994; Buchardt and Simonarson, 2003; Schöne et al., 

2005) has demonstrated that δ18O in the shell of A. islandica is deposited in equilibrium with 

seawater. Such results can be taken to indicate that there is no kinetic δ13C effect in A. islandica. This 

statement is also supported by Butler et al. (2011) who found no significant relationship between 

δ18O and δ13C values in Gulf of Maine A. islandica. The correlations between δ18O and δ13C for the 

shells used here are presented in Figure 6.9. The site C7 shells and shells C1-L2 and C1-L19 show no 

significant relationship between δ18O and δ13C, indicating there is no kinetic effect on δ13C for these 

five shells. For shell C1-L17 (Figure 6.9) there is a significant relationship between the two variables, 

indicating that there may be a kinetic effect on δ13C values for this shell. The caveat with all these 

analyses is that they were carried out on datasets with low replication, which may influence the 

results. Such results do not fit with the previous findings by Butler et al. (2011) and with the other 

shells studied here; the reason for this is not clear.  
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6.3.3.2 Ontogenetic growth effect 

A scatter plot (Figure 6.10) of samples analysed for δ13C analysis, along with their age and 

measurement errors are presented to investigate the presence of an ontogenetic growth effect on 

δ13C values. Shells C7-L48(2), C7-L104 and C7-L127 (Figure 6.10) were sampled specifically for this 

research, while shells C1-L2, C1-L17 and C1-L19 come from Daniels (2010). There is an early increase 

Figure 6.9: Plots of δ
13

C against δ
18

O values for all six shells analysed/presented here to test for the presence of a kinetic 
effect on δ

13
C values in the shells.  All measurements are ‰ with relation to VPDB. 
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in δ13C values at the beginning of all the series with the exception of shell C7-L127 (Figure 6.10). It is 

important to note that these results include material collected from the three C7 shells on which 

radiocarbon analyses were undertaken. There is the possibility that the GIs in samples C7-L48(2), C7-

L104 and C7-L127, are not annually resolved as highlighted by the late timing of the bomb-peak at 

the site. Therefore, while they are still included here to see if they show similar results to those at 

site C1, they are not used for any ocean δ13C Suess Effect analysis (Section 6.3.2.3). 

All three site C1 shells show clear early increases in δ13C values, while for the site C7 shells this 

increase is not as pronounced (with the possible exception of shell C7-L48(2). The data presented in 

Figure 6.10 also indicates a difference in the δ13C  value ranges between the two sites; C1 has a 

much larger range (0.999 to 2.63‰) than site C7 (0.639 to 1.61‰). The most likely explanation for 

this difference in δ13C values between the two sites is that when moving from the more coastal C1 to 

the fjordic C7 site there is a DIC gradient moving up-fjord, which impacts on the recorded δ13C values 

due to the importance of DIC impacting on shell δ13C signal. There is evidence presented in Bouillon 

et al. (2008) that estuarine and mangrove creek δ13CDIC values are 13C depleted compared to open 

marine δ13CDIC. This is attributed by Bouillon et al. (2008) to be due to; 

1) Freshening of the estuarine water from a freshwater source that is δ13CDIC-depleted (see 

Figure 6 in Bouillon et al., 2008) 

2) The input of negative δ13CDIC from either water column mineralisation processes or intertidal 

sediments sources (Bouillon et al., 2008) 

When looking at global δ13C values (Figure 6.11) it is possible to see great variability depending on 

site location and water depth. Also illustrated in Figure 6.11 are seawater δ13C values recorded by 

Kroopnik (1985). From Figure 6.11 it can be seen that the site C1 and C7 data encompasses the 

average global surface water δ13C value recorded in Kroopnik (1985) of 2.0‰. 
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Figure 6.10: δ
13

C results for the six shells being analysed to investigate the ocean δ
13

C Suess Effect. All measurement errors 
are the SD of the standards run. 
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When the site C1 δ13C data are compared to their equivalent GI data (Figure 6.12) it is possible to see 

that shell δ13C are most enriched after the ontogenetic peak in maximum GI widths. These offsets 

are 7± 3 years. The reason for this offset is not known and requires further investigation into shell 

biology, as well as additional shells sampled for similar analysis to see if this is a common feature at 

other sampling locations. No GI data was available for the shells sampled from site C7. The 

relationship between δ13C and GI widths is also explored in Figure 6.12. For the entire period of 

analysis of the three shells investigated, there is a significant relationship between the two variables 

for C1-L19 only. However, if the period of investigation is limited to the interval over which the 

ontogenetic trend in the δ13C values is observed (i.e. the first 40 years of growth), there is a 

significant relationship between GI width and δ13C in shells C1-L17 (r = 0.579, p = 0.030) and C1-L19 

(r = 0.586, p = 0.014); these relationships remain non-significant in the two other shells.  

Figure 6.11: Different δ
13

C value ranges for multiple marine sources. 
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To investigate the relationships presented in Figure 6.12 further, GI and δ13C data for all three site C1 

shells are plotted (Figure 6.13) to determine how the relationships change when the sample number 

is increased.  From Figure 6.13 it can be seen that when all the site C1 data is analysed that the 

relationship between GI width and δ13C values are significant. 

Figure 6.12: A, C and E; Relationships between raw GI rates (red lines) and δ
13

C values (black circles) for shells from site C1 
and B, D and F; the corresponding linear regressions between these values. It should be noted that after the ontogenetic 
δ

13
C increase, all shell values decrease and then see a later enrichment. 
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If the δ13C data for each shell are plotted along a common axis with each value assigned a year 

corresponding to the date of the sample based on GI counts from year one, then it is possible to see 

the relationship between ontogenetic age and δ13C (Figure 6.14 and Table 6.2). This is of interest to 

define whether the δ13C peaks are the product of either an ontogenetic influence, or some other 

factor (e.g. climate variability) influencing δ 13C at the sites. If the peaks are all within the juvenile 

period of growth, it is likely that the shells are responding to an ontogenetic effect on δ13C. 

Alternatively, if they all have δ 13C peaks at similar calendar dates this would support the idea that 

they represent some sort of environmental influence on the δ13C values recorded in the shells. From 

Table 6.2 it is clear that at both sites the δ13C value peaks occur no more than 8 years after the first 

GI in each shell, well within the juvenile growth period (9.38 years for the Middle Atlantic Bight 

(Thompson et al., 1980)). These all support the idea that shells at site C1 have an ontogenetic δ13C 

effect. Table 6.3 highlights previous research findings concerning ontogenetic influences on δ13C 

values in several shell species, including A. islandica.  

 
 
Figure 6.13: Scatter plot of all site C1 GI and δ

13
C data to further investigate the 

relationship present between the two variables 
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Table 6.2: Difference between year of first growth and δ

13
C peak 

to investigate whether these peaks are ontogenetic, or potentially 
the product of an external factor 
 

Shell ID Year of first growth δ
13

C peak date Offset (years) 

C1-L2 1905 1911 6 
C1-L17 1908 1914 6 
C1-L19 1927 1935 8 

C7-L48(2) 1914 1917 3 
C7-L104 1912 1916 4 
C7-L127 1925 1933 8 

 
 
 
 
 
 
Table 6.3: Summary of findings from previous research concerning the presence of an ontogenetic influence over δ

13
C 

values in several shell species, including A. islandica. 
 

Figure 6.14: δ
13

C values for each site plotted 
so that each sample is assigned a number 
from year 1 (first GI) to investigate the 
timing of the δ

13
C peaks for each shell. The 

shaded area in the two graphs encompasses 
the first 20 years of growth and serves to 
highlight that the peak in δ

13
C values for all 

six shells occur during this period.  Also 
included with the site C1 data is an 
indication of where the final decrease in 
δ

13
C values is seen after the ontogenetic 

peak (40 years for shell C1-L19). The average 
GI width for all three C1 shells is also 
illustrated; this clearly highlights that the 
peak in δ

13
C post-dates the GI peak. 
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Data from the site C1 shells all show a strong ontogenetic δ13C signal with the presence of high δ13C 

values followed by a decline during the juvenile period of growth (Figure 6.14). Although two of the 

shells have their peaks at a similar time (C-1L2 – 1911 and C1-L17 – 1914), this is because of the 

similar ages of the two shells. The period over which the ontogenetic influence on δ13C values varies 

between the shells; although they all peak within the first 8 ontogenetic years of growth, shell C1-L2 

values finish their initial decrease after 19 years, while for shells C1-L17 and C1-L19 this happens at 

14-20 and 40 years respectively. After these initial decreases all shells then exhibit some level of δ13C 

value increases. At site C7 all shells exhibit this final decrease in values during the first 20 

ontogenetic years of growth (Figure 6.13). These results clearly indicate that there should be a 

truncation of the δ13C data prior to analysis of the results for ocean δ13C Suess Effect. However, it is 

not entirely clear how many years of data should be excluded. In Butler et al. (2011) it was suggested 

that the first 40 years of data should not be used. This is supported by the results from shell C1-L19, 

while the other shells analysed here suggest truncation at 20 years. For the purpose of this study the 

first 40 ontogenetic years worth of data was excluded from ocean δ13C Suess Effect analysis based 

on the findings from shell C1-L19 and results presented in Butler et al. (2011). Investigation of 

additional shells from sites C1 and C7, with a higher sampling resolution, may clarify the exact extent 

of the ontogenetic δ13C trend and therefore the point at which a local δ13C series should be 

truncated. At site C7, shells C7-L48(2) and C7-L104 both show an ontogenetic δ13C trend, although 

not as pronounced as for those shells from C1. This is likely due to the lower resolution of within-

shell sampling at C7 compared to site C1 material. Again, for these two C7 shells, the first 40 years 

worth of samples are potentially unsuitable for ocean δ13C Suess Effect work. For shell C7-L127 there 

is no clear ontogenetic trend in the δ13C values (Figure 6.10), and because all sampling occurs within 

Paper Shell type Evidence for/against ontogenetic influence on δ
13

C values 

Jones et al., 
1986 

Tridacara 
maxima 

Records two distinct δ
13

C phases, the first with values from 1.2 to 2.4, then drops to a 
mean value of 1.1 per mille (110mm into the shell which is believed to be the size of 

sexual maturity). If this is due to sexual maturity, it suggests thatδ
13

C changes are 
ontogenetically linked. 

Witbaard, 
1997 

Arctica 
islandica 

Increasing δ
13

C values during the first six years of shell growth – this may be the result of 
ontogenetic influences on δ

13
C uptake 

Schöne et 
al., 2005b 

Arctica 
islandica 

Did not find an ontogenetic influence on δ
13

C values 

Gillikin et 
al., 2007 

Mercenaria 
mercenaria 

The shells investigated recorded an ontogenetic δ
13

C decrease – up to 4‰ over the shell 
lifetime. This is shown not to be the result of respired δ

13
C changes. 

Butler et al., 
2009a 

Arctica 
islandica 

Mentions theory of δ
13

C ontogenetic effect, but shows no supporting evidence 

Butler et al., 
2011 

Arctica 
islandica 

Found evidence of an ontogenetic impact on δ
13

C values. On the basis of this Butler et al. 
(2011) suggested not using δ

13
C values from the first 40 years of growth 

Schöne et 
al., 2011 

Arctica 
islandica 

Found no ontogenetic effect on δ
13

C values in shells from the Gulf of Maine and Iceland. 
However it should be noted that out of four shells analysed only one was sampled 

starting from ontogenetic year 1, the other three were sampled from ontogenetic years 
18, 26 and 28 onwards. 
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the first 40 years of growth, the data are deemed unsuitable for ocean δ13C Suess Effect analysis. 

Figure 6.14 highlights the difference in magnitude of δ13C values, and by extension ontogenetic δ13C 

effect, between sites C1 and C7. It is likely that this is a product of terrestrial suppression of the 

δ13CDIC seawater signal at site C7 and possibly also because of an increased terrestrial (12C – rich) diet 

and water input from the local catchment at the site. 

 

6.3.3.3 Suess Effect - δ13C value comparison with other records 

Once the ontogenetically-influenced δ13C values from site C1 are removed from the dataset there 

are 10 data points suitable for analysis (Figure 6.15) to be compared to other δ13C Suess Effect 

records (both marine and terrestrial). One of the main restrictions with the C1 dataset in Figure 6.15 

is that the timeframe over which it can be analysed is greatly restricted and does not include 

material from the pre-industrial period for comparison purposes (see Cage and Austin, 2010 for an 

example). Figure 6.15 shows that when samples from the early growth period, themselves affected 

by ontogenetic influences on δ13C, are removed, there is an overall decrease in δ13C between 1945 

and 2000 at site C1. As there is no data available from the pre-industrial period it is not appropriate 

to fit a trend line to the data. However, it is possible to compare the data in Figure 6.15 to other δ13C 

records from both the atmosphere (Figure 6.16) and the marine environment (Figure 6.17) to see 

how the site C1 record compares in magnitude and trend over the period for which data are 

available. 
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Atmospheric (Figure 6.16) and marine (Figure 6.17) δ13C data clearly shows a δ13C Suess Effect signal, 

with a post-industrial depletion in values after the 1840s in the atmospheric record (Figure 6.16A). 

The results in Figure 6.16B are in line with other ocean δ13C Suess Effect data, although this is not as 

pronounced as in the atmospheric signal over approximately the same period of analysis; 0.037‰ 

per decade (1945 to 1979) at C1 and 0.16‰ per decade (1944 to 1978) in the atmospheric data 

(Francey et al., 1999). However, this damped δ13C Suess Effect response in the marine environment 

compared to the atmosphere has been noted elsewhere and is likely caused by the mixing of surface 

water (which is sensitive to atmospheric changes) with older, deeper fjordic waters (Cage and 

Austin, 2010) (which is less sensitive and influenced by a larger reservoir of stable seawater δ13CDIC). 

 

 

 

 

Figure 6.15: δ
13

C values for site C1 showing data available for investigation of the  
oceanic  δ

13
C Suess Effect in the area. Typical δ

13
C analytical uncertainty is ±0.07 per 

mille; typical age uncertainty with GIs is ± 2 years. 
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Butler et al. (2009a) (Figure 6.17B) also showed a decrease in δ13C values for the Irish Sea from the 

1800s onwards, which they proposed to be due to the ocean δ13C Suess Effect. The range of δ13C 

values from the Irish Sea (Butler et al., 2009a) (not including the two anomalous results) is 0.3 to 

2.2‰, compared to the 1.35 to 2.09‰ range at site C1 (Figure 6.11). One potential reason for the 

different ranges may be the period for which samples are taken – 1945 to 2000 for C1 and ~1570 to 

1980 for the Irish Sea. It is also possible that the differences are due to site-specific factors. The Irish 

Sea site is dominated by more coastal waters than C1 and this could influence the δ13CDIC values at 

the two sites (similar to those site differences between C1 and C7).  Both the marine datasets (Irish 

Sea and C1) have δ13C value ranges which are significantly different to those seen in the atmospheric 

signal of Francey et al. (1999) (Figure 6.11). Most noticeably the δ13C values for the atmosphere are 

isotopically lighter than for both of the marine records as well as for a number of other marine δ13C 

records from A. islandica for comparison purposes. This is because atmospheric CO2 is isotopically 

lighter than DIC found in the marine environment as a result of isotopic fractionation at the 

Figure 6.16: δ
13

C comparisons between the atmospheric and marine environments. A) Shows the complete Francey et al. 
(1999) δ

13
C values from the atmosphere, the red box highlights the area from which samples have been taken for direct 

comparison with the marine data collected from C1. B) The top portion illustrates the Francey et al. (1999) data being used 
for comparison with the C1 data in blue (bottom panel) 
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atmosphere-marine boundary (Butler et al., 2009a) and the large marine DIC reservoir with which it 

mixes (Cage and Austin, 2010). 

 

 

 

 

 

Figure 6.17: δ
13

C comparisons between the C1 (A) and Irish Sea (B) data (Irish Sea data from Butler et al., 2009a). The two 
filled in circles in the Butler et al. (2009a; 238) dataset are values which were omitted from the analysis of the δ

13
C data in 

their study; a second degree polynomial line was fitted to the data. The rectangle in B illustrates the common period of 
analysis between the two graphs. 

A 
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6.4 Wider Implications 

6.4.1 Sampling methods 

There are some issues surrounding the use of the sampling method both in terms of sample 

collection and analysis that must be considered. While the sampling methods used do allow enough 

material to be collected from a single GI, they do not allow investigation of the internal structure of 

the shell peels prior to any analysis. This means it is not feasible to tell prior to sampling whether 

shells will produce suitable peels and whether it will be feasible to crossdate GI series from the 

shells. Normally, if a shell is not producing workable peels or crossdating is an issue, then other 

shells are sampled. As this is not possible with this method of sampling, the peels that are produced 

must be worked on for dating even if the peels are not optimal. Another drawback of this sampling 

method is that the amount of material required for radiocarbon analysis means that it is only 

feasible to get annually resolved sampling near the umbo where bands are larger. However, when 

moving towards the ventral margin the sampling resolution reduces to a minimum of five years, and 

this can add further uncertainty into the method. One option to remedy this sub-optimal sampling 

method would be to only sample shells where crossdating has successfully been undertaken. 

 

6.4.2 14C analysis 

If the A. islandica growth increment series are correctly dated then the 14C results should clearly 

show a bomb-peak in the 1960s. This is not the case with the 14C results obtained, indicating that the 

timing of the bomb-peak is late in the C7 record by approximately 20 years. Since the atmospheric 

14C signal is known, this potentially has something to do with the shallow nature of site C7 causing 

non-annual GI deposition. There are, however, some problems with this concept. In Section 6.3.1, 

the 14C results from site C2 (water depth 20 m) indicate annual GI deposition due to the timing of the 

final sample being consistent with the rising limb of the bomb-peak (Figure 6.5). In addition to this, 

the site C1 δ13C data in Section 6.3.2 also suggests annual banding at this site, which is shallower 

than site C7, at 11 m deep.  These examples, together with the fact that the Irvine Bay site is only 5m 

deep and has a 14C chronology indicating annual banding in the species, indicate that samples from 

shallow water sites do often exhibit annually-resolved GIs. It is entirely possible that the Turekian et 

al. (1982) example and site C7 data are anomalous in terms of annual GI deposition for some reason 

which may, or may not, be influenced by site-specific conditions including shallow water depth.  
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As previously mentioned, there is evidence of dumping (of waste from New York) in the region of the 

Turekian et al. (1982) site (Gross, 1976 in Turekian et al., 1982) which may have influenced shell GI 

deposition. At Site C7 there are several site-specific factors which make it stand out from the other 

sites studied (see Chapter 2). For example, site C7 has the highest sediment water content recorded, 

the finest grain size mode and the highest OC content values compared to the other sites. 

Additionally, site C7 has the lowest average shell height and average shell weight out of the six sites 

studied (Figure 6.18). As already mentioned, it is possible that conditions at site C7 influence the 

shells in such a way that they do not deposit annual GIs, indeed in this instance the shells would 

have to be missing approximately 20 GIs at site C7 to account for the timing of the bomb-peak at the 

site. Currently it appears unlikely that this is the case, therefore further investigation is required.  

As crossdating has been successfully undertaken at site C7 (in Chapter 4) it has been illustrated that 

there is a degree of common variability in GIs, therefore it is possible to conclude that either (i) 

whatever factor(s) are causing the lack of annual GI deposition  at site C7, all shells are being 

influenced in the same way, or (ii) those shells crossdated into the master growth chronology do 

exhibit annual banding, while shells C7-L48(2), C7-L104 and C7-L127 are the only ones studied here 

that are influenced by factors causing sub-annual banding. The second of these two suggestions 

seems unlikely, particularly when it is considered that all site C7 shells were collected from a small 

depth range and in close proximity. If shells were collected from different depths at the site or were 

influenced by localised disturbance, a limited number of shells might have been affected. However, 

according to the NERC SCUBA divers who collected the shells, the depth of collection at site C7 

ranged from 16-20 m. It is remotely feasible that the three shells from which samples were taken for 

14C analysis came from the shallower collection depths, while those crossdated into the site 

chronology came from the deeper end of the range; there are, however, no constraints in our 

available sampling information to test this possibility. 
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Figure 6.18:  Median and IQR values for height and weight data from each site in black. Also included is 
the range of the data in red with the maximum and minimum values indicated. The H and p values 
included in the figure relate to the Kruskal-Wallis analysis undertaken on the datasets. The n-values 
are as  follows: 
Height: C1 = 15, C2 = 30, C4 = 38, C6 = 35, C7 = 34, C8 = 30 
Weight: C1 = 15, C2 = 24,  C4 = 37, C6 = 35, C7 = 33, C8 = 25 
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To calculate the marine 14C reservoir age it is necessary to establish a known calendar age (Equations 

6.1 and 6.2). Due to some uncertainty concerning the dating control for the site C7 14C data it was 

not possible to establish with sufficient confidence the calendar age of each sample in Figure 6.5. As 

a result of this calendar age uncertainty, the marine 14C reservoir ages for the samples have not been 

calculated and any such calculation should be considered unreliable at this time.  

 

6.4.3 δ13C analysis 

The work presented in Figure 6.14 of this thesis indicates that during the juvenile period of growth 

δ13C values increase to a peak before decreasing again; this occurs before the shells reach the age of 

approximately 20 years old. The timing of these changes is similar for all six shells analysed, and for 

site C1 where clear GI data are available, fits within a juvenile interval of distinct high growth rates in 

the raw shell data. Due to these similarities, this trend is interpreted as an ontogenetic/juvenile 

effect on shell δ13C values lasting approximately 20 years. There is mixed opinion within the 

sclerochronological literature regarding whether there is indeed a juvenile effect on the isotopic 

records in shells, and if there is what causes it. Analysis of A. islandica by Schöne et al. (2005b) found 

no ontogenetic impact on the δ13C record of the shells. Similarly the work by Schöne et al. (2011) on 

A. islandica from the Gulf of Maine and Iceland showed no ontogenetic trend in the δ13C values of 

four shells analysed. It is important to note that in Schöne et al. (2011) only one of the shells 

analysed was sampled from the first year of growth, the other three were sampled from years 18, 26 

and 28 onwards. Therefore, it is possible that the ontogenetic trend was present in these three 

shells, but was simply not captured within the low sampling record which missed the critical, juvenile 

period of growth.   

Conversely, work by Witbaard (1997) on A. islandica δ13C lends support to the theory that there is an 

ontogenetic trend present in δ13C values with an increase in δ13C during the first five years of shell 

growth. As Witbaard (1997) did not sample after the fifth year of growth it is not possible to 

conclusively say whether this is an ontogenetic trend, but it does help support the concept of a 

juvenile effect on δ13C values. Butler et al. (2011) tested to see whether δ13C values in the shell of A. 

islandica do exhibit an ontogenetic trend using isotopic and biological age data from specimens 

collected at four sites. Butler et al. (2011) found that in juvenile A. islandica δ13C records decreased 

during the first 40 years of growth, Foster (2007) also reported a decline in δ13C during juvenile A. 

islandica growth, which they linked to declining GI width values.  Foster (2007) suggested that their 

findings indicate an ontogenetic influence on δ13C values. 
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It was also suggested by Foster (2007) that differences in the habitat or shell growth rates may cause 

different δ13C signals within the shell of A. islandica. One potential reason proposed by Butler et al. 

(2011) for shells exhibiting this ontogenetic trend in δ13C values is that there is a sensitivity to growth 

rates and a relationship between the amount of shell material deposited and metabolic carbon 

availability, which in turn impacts on the δ13C value. Butler et al. (2011) suggested that this means 

that as GI growth rates decrease so do δ13C values. However, Klein et al. (1996a in Foster, 2007) 

found that at lower GI growth rates δ13C values were higher (see Figure 6.10 for how this compares 

to findings from this research). Currently, there is much conflicting evidence within the 

sclerochronological literature as to whether A. islandica exhibits an ontogenetic δ13C trend. From the 

new evidence presented within this thesis and the data in Foster (2007), Butler et al. (2011) and 

Witbaard (1997), it is possible to suggest that certain specimens of A. islandica do exhibit δ13C 

ontogenetic trends.  Taking into account the work of Schöne et al. (2005b; 2011) it should be noted 

that it is possible that not all A. islandica specimens have an ontogenetic δ13C trend. Further work 

should focus on analysing shells with a range of ages from a variety of environments to determine if 

either variable has an impact on the presence of an ontogenetic δ13C signal. 

In Butler et al. (2011) an ontogenetic trend was observed during the first 40 years of growth, while in 

this study the period over which the effect is seen varies from 14 to 40 years. Therefore, the 

suggestion to exclude data from the first 40 years of growth for ocean δ13C Suess Effect 

investigations (Butler et al., 2011) seems broadly valid, although perhaps slightly over-cautious in 

some of the cases presented here. As a result of the strong ontogenetic effect on shell δ13C values, 

the data available for investigating the ocean δ13C Suess Effect in the field area was limited. This 

data, however, (Figure 6.13) does appear to indicate the expected decrease in values during the 20th 

century. Unfortunately, no firm conclusions can be reached concerning the ocean δ13C Suess Effect 

at site C7 until additional data is collected extending measurements back into the 1800s. This would 

not only indicate pre-industrial δ13C levels for the site, but also provide a chronology for the noted 

decrease in values at around AD 1850. The δ13C values recorded in A. islandica shells from these 

fjordic sites may reflect the exchange history and differences in balance between fjord and coastal 

ocean water masses (Figure 6.19). Cage and Austin (2010) proposed their foraminiferal δ13C record 

from Loch Sunart could also be interpreted as a product of exchanges between coastal and fjordic 

waters. 
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Figure  6.19: Schematic of different δ

13
CDIC values affecting fjordic values; the conceptual model suggests that fjordic 

environments might exhibit strong spatial and temporal δ
13

CDIC gradients 
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7. Synthesis and Conclusions 

7.1 Introduction 

The North Atlantic Ocean is important for both global and regional European climate variability 

due to the influence of the North Atlantic Current/Gulf Stream, and the NAO (e.g. Hurrell, 

1995). To fully understand past North Atlantic variability it is important to produce long, high-

resolution climate proxies capable of capturing the effect of these changes. However, a lack of 

high-resolution marine proxy data in the north-east Atlantic sector (Cunningham et al., 2013) 

must be addressed to fully understand past marine climate variability for this region. Scotland 

is in a sensitive location to study past North Atlantic Oscillation (NAO) and North Atlantic water 

mass variability. The fjords of North West Scotland present an excellent opportunity to study 

marine climate change on a range of Holocene timescales.  

Fjordic environments are situated in a unique position with inputs from both marine and 

terrestrial sources (Hjelstuen et al., 2009). This means that fjords can be used to investigate a 

range of past changes, including variability in pollen from the catchment area (Cundill and 

Austin, 2010) and westerly air stream variability (Gillibrand et al., 2005).  Previous studies have 

already indicated the potential of fjords as sources of palaeoclimatic proxy records through the 

use of benthic foraminifera records (e.g. Cage and Austin, 2010), which are of a higher 

resolution compared to the open ocean records due to the higher sedimentation rates (e.g. for 

Loch Sunart sedimentation rates are up to ~1 cm a year (Cage and Austin, 2010)). As well as 

having the potential to record changes in the NAO (e.g. Gillibrand et al., 2005) and westerly air 

stream variability (Austin and Inall, 2002), it is this dual ability of fjords to provide records for 

both marine and terrestrial climate change that makes them important for advancing 

palaeoclimatic research. 

Due to the importance of fjordic environments as potential sources of palaeoclimatic records, 

a major goal in current research has been to supplement the existing lower resolution 

sedimentary records with annually resolved records (e.g. Reynolds et al., 2013); something 

that this thesis aimed to address using the marine bivalve A. islandica. 

A. islandica was chosen for this study as previous research had already established that the 

growth increments (GIs) are annually resolved (Ropes, 1988 in Scourse et al., 2006; Weidman 
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et al., 1994) and show common variance and response to factors influencing growth, which 

allows crossdating of GIs to be undertaken (e.g. Schöne et al., 2005a). The species has also 

been shown to have potential as an annually-resolved palaeo-proxy for climate variability and 

anthropogenic activity using GIs and shell geochemistry (e.g. Butler et al., 2009a; 2010; Schöne 

et al., 2009b). However, there is currently little known about the application of this proxy 

archive in fjordic environments, which deserves investigation given that fjords in the NE 

Atlantic realm have already been shown to be sites sensitive to NAO variability (e.g. Nordberg 

et al., 2000 in Sweden; 2001 in Sweden; Gillibrand et al., 2005 in Scotland). This study aimed to 

investigate the potential of fjordic A. islandica as palaeoclimatic proxies as well as analysing 

δ13C and 14C variability within shells to evaluate their potential as archives of the ocean δ13C 

Suess Effect and marine 14C reservoir age effect/14C bomb-peak timing, respectively. 

It is important that when selecting a proxy for climatic research that the growth variability is 

mainly driven by a single variable (e.g. SST). Where this is the case, annual growth rates from 

individuals collected at a single sample site should share this common variability, therefore 

allowing them to be crossdated. It has also been argued that regional chronologies can be 

constructed from multiple sites when shells display common variability (e.g. Butler et al. 

2009b). Taking this earlier work into account, six sites were sampled and intra- and inter-site 

common variability assessed.  

The results of this study highlight that there is no common signal between the sites, and the 

intra-site signal is weak at best. These results, coupled with the lack of a common signal 

between GI growth rates and the instrumental datasets means that specimens from this study 

should be considered as a poor proxy for marine environmental changes. This chapter aims to 

explore the reasons for these weak/non-existent relationships through bringing together the 

analyses from previous chapters. 

 

7.2 Chronology construction 

The chronology construction methods (See Chapter 4), involved a range of techniques, 

including the important step of detrending the raw GI growth rate data to remove the 

ontogenetic growth trend present. A number of underlying factors underpinning these 
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methods require clarification; even using a NE function to detrend, the amount of long-term 

information contained in the master chronology is still determined by the mean length of the 

samples. This is commonly referred to in dendrochronology as the “Segment Length Curse” 

(SLC) and many more samples will be needed for this project before information can be 

obtained at time-scales longer than the mean length of the samples (Mitchell, 1967; Briffa et 

al., 1992; Cook et al., 1995; Esper et al., 2003). 

In this project the potential information captured by the site chronologies is a function of the 

various detrending methods used. Those detrended using either NE or Hugershoff functions 

will have a bias based on the mean length of the samples (SLC), while the use of a 10 year 

smoothing spline removes potential lower frequency information at time-scales > 10 years. 

Theoretically this bias can be overcome using Regional Curve Standardisation (RCS) detrending. 

RCS has the potential to preserve information at time-scales that are larger than the mean 

sample length by applying a common detrending curve to all samples at a site (Cook et al., 

1995). The samples presented in this thesis (see Chapter 4) do not have a strong common 

signal, therefore, at the moment the use of the RCS is not possible, however it should be 

considered in the future at sites with high sample replication where crossdating works.  

Until it is clear what is controlling inter-annual variability in the shells there is little point in 

trying to capture mid to low frequency variability, pending a fuller understanding of the 

controls over shell GI growth rates within an environment then the focus should remain on 

researching the influences on year to year variability and then move to considering the lower 

frequency trends. Prior to the 1990s no dendrochronological research attempted to capture 

centennial variability, rather they focused on the decadal and higher. For any future work is 

undertaken on A. islandica from shallow water sites it is therefore important not to focus on 

the SLC issue, rather the emphasis should be on investigating the controls on the high 

frequency. 

To investigate why A. islandica from the field area studied here are not exhibiting a clear 

common response the relevant results from the previous chapters have been compared using 

correlation analyses (Table 7.1). Only those results that can potentially contribute to furthering 

our understanding about the drivers behind A. islandica from the field site not showing 

common GI variability. The results being investigated are site-specific factors that may be 

influencing the crossdating success rate and RBAR values at the six sites and therefore be used 
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to determine what site variables are important to consider for site selection. Out of the results 

presented in Table 7.1 only two are statistically significant at the 95% confidence level; average 

sediment grain size mode and crossdating success rate, and clay percentage and crossdating 

success rates. These two results are summarised in Figures 7.1 and 7.2 respectively. 

 

 Crossdating successrate (%)1 RBAR 

RBAR 0.429 
0.396 

 

Sediment water content -0.401 
0.431 

0.124 
0.815 

OC content -0.296 
0.569 

0.205 
0.697 

Sediment grain size mode 0.867 
0.025 

0.260 
0.619 

Clay % 0.953 
0.003 

0.635 
0.176 

Silt % 0.627 
0.183 

0.572 
0.235 

Sand % 0.720 
0.106 

-0.606 
0.202 

Min site water depth (m) -0.314 
0.544 

-0.284 
0.586 

Max site water depth (m) -0.546 
0.262 

0.006 
0.991 

Average site water depth 
(m) 

-0.487 
0.327 

-0.190 
0.718 

 

 

Figure 7.1: Relationship between 
crossdating success rate and average 
sediment grain size mode 
 

 

Table 7.1: Results of correlation analyses 
between the results from chapters 2, 4, 5 
and 6. Results that are statistically 
significant at the 95% confidence level are 
highlighted. For each of these datasets df 
= 6. 

1 
The crossdating success rate was worked 

on in Chapter 4 by comparing the number 
of samples processed at each site 
compared to the number that made it into 
the final master chronology. 

 

% 
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The relationships in Figures 7.1 and 7.2 indicate that sites with higher crossdating success rates 

have higher clay content levels and higher average grain size mode values. These results 

suggest that it may be important to focus on sites with higher levels of clay in the sediment or 

with higher average grain size mode values. For this to be possible site surveys would have to 

be undertaken prior to analysis to determine the type of sediment present at the site.  

Further research investigating the potential number of additional shells required to reach an 

EPS ≥0.85 for all six master chronologies has also been undertaken, using the crossdating 

success rate and the theoretical number of specimens required to reach the required EPS value 

as worked out in Chapter 4. These results (Table 7.2) indicate that potentially another 3443 

samples would have to be analysed to reach the required EPS of 0.85 or greater at all six sites. 

Such findings support the idea that working on A. islandica from shallow water fjordic 

environments with the aim of generating robust chronologies may not be realistic. 

 

 

 

 

 

Figure 7.2: Relationship between 
crossdating success rate and clay 
percentage 
 

 

 

% 

(µ
m
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Site WC (U) PMR (U) WC (FD) PMR (FD) Highest 

C1 8 → 18 21 → 47 90 → 200 31 → 67 200 

C2 17 → 68 20 → 80 25 → 100 18 → 72 100 

C4 15 → 148 5 → 50 259 → 2540 4 → 40 2450 

C6 51 → 237 N/A 48 → 223 N/A 237 

C7 17 → 154 10 → 91 18 → 163 14 → 127 163 

C8 49 → 203 40 → 167 26 → 108 15 → 67 203 

    Total 3443 

 
Table 7.2: Estimates of the potential number of additional shells required to reach an EPS value ≥0.85 for each of 
the chronologies for both the whole chronology (WC) and the period of maximum replication (PMR) for the six sites. 
The first number represents the number of shells required to gain the n-value outlined in Figures 4.7 to 4.12, while 
the second is the number that may be required to be processed to gain this number of additional shells in the 
master chronology for each site (based on the crossdating success rates outlined in Table 4.2. 

 

The sampling to crossdating success rates presented in Table 4.2 is similar to those found 

elsewhere for this species (Reynolds pers. comm., 2012). However, the inter-series correlation 

RBAR values for the site master chronologies are low compared to those reported for A. 

islandica from the Irish Sea(e.g. Butler et al., 2009a; 2010) and other species (e.g. Black et al., 

2008 – yelloweye rockfish; Helama and Nielsen, 2008 – river pearl mussel). One of the reasons 

for this is the low signal strength between the individual shells at the sites, it is also important 

to understand why the individuals at the sites studied are portraying different signals. 

There are statistically significant relationships between RBAR values and shell median age, as 

well as between crossdating success rate and grain size mode/clay percentage. This is 

something that is observed in trees with juveniles expressing a weaker common signal. If this is 

also the case in the A. islandica studied for this project then it is possible that the younger 

shells analysed may have a different responses to climate and this is something that requires 

further investigation for the species and is something already being considered in 

dendrochronology (e.g. Wilson et al., 2004). To fully investigate the reasons behind these 

relationships future research should focus on investigating the hypothesis that sites with 

higher clay content in the sediment and a greater grain size sediment mode value lead to a 

higher crossdating success rate.  

 Another factor which may be influencing signal strength is the shallow nature of the sites. 

Although there is no significant relationship between depth and RBAR in Table 7.1, the 
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maximum site depth is 24 m, and research by Epplé et al. (2006) noted how inter-series 

correlations decrease between A. islandica shell interannual variability sampled from shallow 

settings (15 to 20 m) in the inner German Bight (North Sea). This apparent lack of synchronicity 

was attributed by the authors to the conditions in which the shells had grown, including the 

site temperature, turbidity and salinity fluctuations, which are prominent in a shallow, coastal 

water environment (Epplé et al., 2006). It is possible that the inherent physical, chemical and 

biological heterogeneity within shallow water environments provide problems for obtaining a 

synchronous growth signal between the shells of A. islandica. This could account for not only 

the poor signal strength, but also the poor correlations between shell annual growth rates and 

climate (Chapter 4). The water depth issue requires further investigation; previous work by 

Butler et al. (2009a; 2010) in the Irish Sea demonstrated that A. islandica collected from sites 

with water depths ranging between 30 to 70 m produce robust, crossdated chronologies with 

good signal strength statistics, therefore future work should focus on analysing samples from 

water depths within the 30 to 70 m range. 

 

7.3 Inter-site coherence 

If shells from different sites within a climatologically/oceanographic homogenous region are 

internally crossdated and are responding to the same environmental conditions, the resultant 

site chronologies should correlate with each other (e.g. Witbaard et al., 1997b; Butler et al., 

2009b). Although all the chronologies have been crossdated (Chapter 4) to ensure dating 

control, there is no clear, common inter-site signal. To investigate whether it was a very 

localised climate signal being recorded in the shell GI growth rates rather than the ‘regional’ 

signal represented by the gridded datasets, the master chronologies were also compared to 

the two ‘local’ instrumental datasets (Appendix 18). Although these datasets can be 

considered geographically local due to their location within the field area, they are not 

representative of all six sample sites due to the complex nature of the fjordic hydrography. As 

with the regional dataset correlations, these results didn’t indicate a common relationship 

between the results at the six sites, lending support to the idea that factors other than climate 

have the dominant influence over shell GI growth rates at the sample sites. 
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Witbaard et al. (1999) noted that temperature is not always the primary influence over annual 

growth rates and those other environmental factors can dominate. It is likely that this is the 

case here as there are many non-climatic influences acting in the region that have the 

potential to affect shell GI growth rates from year to year. These include the anthropogenic 

influences outlined in Chapter 4 such as fish farming and industrial activities in the area. To 

minimise the impact of such activities and their added influence to annual growth rate 

variability, future sites must be chosen in locations with minimal anthropogenic impacts. 

In addition to anthropogenic influences food cannot be discounted as a reason for the shell 

growth records not recording changes in temperature. Several other studies have discussed 

not only the importance of food supply (e.g. Witbaard, 1997; Witbaard et al., 1999), but also 

how the abundance of other fauna higher up the water column can influence food availability 

e.g. copepods (Witbaard et al., 2003). Currently there is insufficient information for the field 

area to determine how phytoplankton/copepod abundance influences A. islandica GI growth 

rates and how this may be modulated by climate variability. There is a repository of available 

Continuous Plankton Record (CPR) data which can be used as a proxy for available food over 

time. Using this dataset could aid with selecting future sample sites by ensuring there is 

adequate data to test the hypothesis that in years with higher copepod abundance shells 

experience lower annual growth rates due to less food reaching A. islandica on the bottom. 

This would then allow for direct comparison with the work of Witbaard et al. (2003) who 

reported that copepod abundance influenced A. islandica growth at the Fladen Ground 

(northern North Sea). They found a negative correlation between shell GI growth rates and 

copepod abundance (lagged by 6 months), such that during periods of high shell GI growth 

rates, copepod levels are low and vice versa. Witbaard et al. (2003) suggested that this 

negative relationship indicates that A. islandica and copepods are competing for the same 

food source, therefore at times of high copepod levels they intercept primary productivity (PP) 

food, leaving A. islandica with a much depleted food reservoir and reduced annual growth 

rates. 

 The shells studied here likely reflect local conditions that mask larger-scale climate processes. 

For example, renewal events in fjords change bottom water conditions on a range of time 

scales (Austin and Inall, 2002; Inall and Gillibrand, 2010); however the influence of such events 

on A. islandica GI growth rates and GI deposition is not known and requires further 

investigation as it is possible that at some fjordic sites live specimens could be stuck in ‘old’ 
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bottom water and thus be removed from the climate signal until a renewal event introduces 

fresh water to the site. 

 

7.4 Arctica islandica as a climate proxy 

The Correlation Response Function Analyses (CRFA) Chapter 4 indicated few statistically 

significant relationships between the six master chronologies and the instrumental datasets. 

Those that are present are ambiguous at best and serve to highlight that shell growth 

chronologies from the field area cannot currently be used as proxies for marine climate 

variability. This is partly because none of the chronologies have EPS values greater than 0.85 

for both their whole chronology and period of maximum replication. Until replication and EPS 

values are increased at all the sites these results can only be considered as preliminary. The 

results do suggest is that there may be many factors (climatic and non-climatic) other than just 

temperature influencing annual shell growth rates and inter-annual response, and at times 

these factors dominate the signal recorded in the shells. This is best highlighted by the lack of a 

time-stable relationship between the master chronology for site C1 and the HadSST2 

temperature record (Figures 4.16 and 4.17) (Stott et al., 2010). Research into A. islandica as a 

marine climate proxy from a variety of sites have previously indicated that the species has 

potential to produce annually-resolved records for past climate and environmental changes 

(e.g. Weidman et al., 1994; Witbaard et al., 2005; Schöne et al., 2005b). The results presented 

within this thesis appear to indicate that A. islandica from shallow water fjordic environments 

are unsuitable as proxies for both marine and terrestrial climate change.  These findings have 

important implications for the future of sclerochronological research in fjordic environments, 

suggesting that A. islandica are not a suitable proxy for examining past environmental and 

climate change in shallow water sites in fjords. While research has been published elsewhere 

indicating that shallow water environments can be problematic when analysing shell GI growth 

rates in A. islandica (e.g. Epplé et al., 2006; Butler, 2008), no work has been published about 

shallow water fjordic research for climate reconstructions with the exception of Stott et al. 

(2010) the results of which are included in this thesis. As a result it is important to understand 

what site specific factors may be leading to the poor results presented in Chapter 4. 
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7.5 Biometrics and morphology 

Sediment grain size appears to be a primary driver of shell growth at the six sites with 

significant correlations present between specimen height and weight and the sediment grain 

size mode data, with height and weight being higher at sites with a higher sediment grain size 

modal value (Figure 7.3). Previous research has shown the importance of secondary food 

supply in supporting shell growth; this secondary food supply proposed by Witbaard (1997) for 

A. islandica is material not consumed by other fauna which has subsequently settled on the 

sea/fjord bed, only to be resuspended and eaten at a later date. Duineved and Jenness (1984 

in Witbaard, 1997) also reported that the echinoid Echinocardium cordatum showed higher 

growth rates in coarser sediments which they attributed to the resuspension of food. De la Huz 

et al. (2002) found significantly higher growth rates in coarse sand compared to gravel for the 

bivalve Donax trunculus also lending support to this “resuspension” hypothesis. 

These relationships further suggest that in the study area temperature is not the primary 

driver behind shell growth rates; rather it is sites with larger grain size mode values and 

therefore a greater supply of secondary food that influences the coherence of shell growth 

rates. It is therefore even more important to consider the sediment properties of future 

sample sites due to the influence of the sediment grain size mode on shell growth. 
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Figure 7.3: Relationship between 
median height and grain size 
mode  -  r = 0.956, p = 0.003 (top 
panel), and median weight and 
average grain size mode – r = 
0.915, p = 0.011 (bottom panel) 
 

 

 

7.6 Shell growth rates 

A. islandica shells are obviously being influenced by a range of different factors within the 

fjordic environment studied for this research (Figure 7.4). It is possible to see in Figure 7.4 just 

how complex the growth of A. islandica in fjords actually is. Therefore, it is of little surprise 

that when attempting to use shell GI growth rates as a proxy for marine 

environmental/climatic changes that there is not a clear signal in the shell master 

chronologies. 
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Despite previous research highlighting the palaeoclimate potential of A. islandica (Schöne et 

al., 2003; 2004; 2005a; 2005b; Butler et al., 2009a; 2009b), there has been little published 

concerning the potential of A. islandica from N. W. Scotland (e.g. Stott et al., 2010).  The 

results presented herein, unfortunately indicate that A. islandica chronologies from Scottish 

fjords have limited potential as palaeoclimate proxies.  

 

 

 

 

 

 

 

 

 

 

7.7 Conclusions 

 

7.7.1 Site Selection 

The findings of this thesis clearly highlight that within fjords there are many variables 

influencing shell annual growth rates (Figure 7.4). Therefore, A. islandica from shallow fjordic 

 
 
 
 
 
Figure 7.4: Summary of processes that influence shell growth rates as discussed in this chapter 
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environments should not be considered as suitable candidates for marine 

climate/environmental proxies. It is also questionable whether specimen annual growth rates 

from deeper fjordic sites can be used as climatic proxies due to the mixture of marine and 

terrestrial influences on fjords as outlined by other researchers (e.g. Hjelstuen et al., 2009). As 

a result of these findings it is recommended that future research using A. islandica as a 

climatic/environmental proxy focuses on non-fjordic environments as fjords are too complex 

to provide a clear signal using GI growth rates.  

The results concerning the lack of inter- and intra-site coherence in annual growth rates and 

the lack of a clear climate signal being recorded in the shells of A. islandica from the field sites 

are not clear. However, there are some useful findings for moving forwards with the use of the 

species as a climate proxy regarding site selection. Research undertaken elsewhere has already 

shown that A. islandica prefer sediment conditions that are sandy mud/mud (Liehr et al., 2005) 

and medium to fine grained sands (Thórarindóttir et al., 2008) – similar sediment types were 

found at the six sites studied here. This project however takes the importance of sediment 

type a step further by investigating whether there are links between the sediment in which 

specimens are growing and the site RBAR and crossdating success values. Through examining 

these results (see Section 7.2) it is apparent that sites which have higher clay percentage 

content and higher grain size sediment mode values have higher crossdating success rates. 

Based on these findings it is therefore recommended that where possible future research 

focused on undertaking analysis on A. islandica that involves crossdating should include a site 

survey to determine the clay content of sites and sediment grain size profiles to aid with site 

selection. These should then help researchers focus on sites that have the higher 

clay/sediment grain size values. 

 

7.7.2 Geochemical analysis 

There is a potential problem associated with the sampling techniques applied for collection of 

material for 14C and δ13C analysis (see Section 6.2). As sampling is undertaken on the outside of 

the shell prior to sectioning it is not possible to target certain calendar ages for sampling; the 

date of samples can only be determined once sectioning of the shell has been undertaken. This 

also means that it is not known whether a workable peel can be produced for a shell until after 
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sampling for geochemical analysis has been undertaken. To address this sub-optimal sampling 

in the future, only shells that have been successfully crossdated into a master chronology 

should be analysed as material could be taken from the other valve in the knowledge that 

dating should work, therefore allowing  accurate dating of the sample sites.  

 

7.7.3 Future Directions 

To continue investigating the six sites researched here a potential further 3443 shells would be 

required. This level of sampling would not be cost effective considering the amount of time 

required to analyse such a volume of shells. If research into the use of A. islandica as a 

palaeoclimate proxy for NW Scotland is to be continued then lessons must be learnt from this 

study. From a palaeoclimate proxy point of view the findings presented in this thesis have 

been disappointing and suggest that the future of A. islandica sclerochronological research in 

Scotland may be best focused outside of fjordic environments towards deeper environments. 

Other studies from deeper water locations have shown the potential of A. islandica as a proxy 

for reconstructing past climate variability with stronger inter-series signal strength than for the 

master growth chronologies presented here (e.g. Butler et al., 2010). The fjordic location of the 

sites with the associated restricted exchange of water between the coast and fjord plus 

complex renewal event history, combined with the shallow nature of the six sites, likely cause 

the lack of climate signal in shell growth increment variability. For this reason it is suggested 

that future research investigating the potential of A. islandica as a marine climate proxy should 

focus on deeper water sites, including the west coast of the Scottish islands and the Faroe 

Islands. Both these sites are ideally located within the North Atlantic to capture any NAO and 

Gulf Stream variability and have known A. islandica populations present (Figure 1.8). It may 

also be of use to ensure that any future sampling locations have suitable existing food 

availability datasets (i.e. Continuous Plankton Record datasets), or have the potential for such 

data to be collected, to aid with the identification of the role of food on the interaction 

between shell GI growth rates and the climate/environment. 

Further, δ13C analysis at the Loch Etive sites, including C/N analysis of sample soft tissue should 

be undertaken to investigate the different δ13C ranges recorded between the outer and inner 

fjord sites. This would allow the determination of how diet, and by extension terrestrial 
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material, influences δ13C values. Undertaking this analysis along the length of Loch Etive should 

make it possible to investigate how terrestrial and dietary influences change moving up fjord. 

Over the last 90 years thousands of tree-ring chronologies have been sampled over the whole 

planet (ITRDB, 2012), and this extensive sampling means dendrochronologists have developed 

a good understanding and knowledge of tree growth response to climate as a function of site. 

Similar large scale, multi-site sampling is required for A. islandica for a full understanding of 

site-specific response of the species to climatic/environmental factors. Currently, the site 

specific response of A. islandica is not yet fully understood and this study may help to highlight 

the difficulties of working at shallow sites. 
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Appendix 

Appendix 1: Summary of the definition of habitat type SS.SMu.VirOphPmax (Connor et al., 
2004). This habitat type is present at site C1. 
 

Salinity 30-35 

Wave Exposure Moderately exposed, sheltered/very sheltered 

Substratum Sandy mud, shelly/gravelly mud 

Depth Band 5-10 m, 10-20 m, 20-30 m 

 

Appendix 2: Normality test results for sediment water content data. 
To determine what statistical tests were appropriate for analysis of the sediment water 
content data at each site normality tests were undertaken and the results of these are 
presented here. 
 
Site Anderson-Darling value p-value Normally or non-normally distributed? 

C1 0.199 0.864 Normally distributed 

C2 0.848 0.023 Non-normally distributed 

C4 1.443 <0.005 Non-normally distributed 

C6 0.386 0.350 Normally distributed 

C7 0.973 0.011 Non-normally distributed 

C8 0.949 0.013 Non-normally distributed 
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Appendix 3: Grain size distribution graphs for all six sites illustrating down core and core top 
data. On each graph the mode of the distribution is highlighted using a vertical line. All data 
were tested at the 95% confidence level for significance. These graphs help to illustrate how 
grain size distribution varies at the sites and supplement Figures 2.6, 2.8 and 2.9. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 3A: Down core 
grain size distribution graphs 
for site C1, core 5 
Chi-squared analysis results: 
Not significantly different 
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Appendix 3B: Site C1 top 
core grain size 
distribution graphs. 
Chi-squared analysis 
results: Significantly 
different 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



Reference List and Appendix 

215 

 

Appendix 3C: Down core 
grain size distribution graphs 
for site C2,    core 5 
Chi-squared analysis results: 
Significantly different 
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Chi-squared analysis results: 
Not significantly different 
 
Appendix 2 D: The six top 
core grain size distribution 
graphs for site C2 

Appendix 3D: The six top 
core grain size distribution 
graphs for site C2 
Chi-squared analysis results: 
Not significantly different 
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Appendix 3E: Down core 
grain size distribution graphs 
for site C4, core 5 
Chi-squared analysis results: 
Not significantly different 
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Appendix 3F: Top core grain 
size distribution graphs for 
site C4 
Chi-squared analysis results: 
Not significantly different 
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Appendix 3G: Down core 
grain size distribution graphs 
for site C6, core 4 
Chi-squared analysis results: 
Not significantly different 
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Appendix 3H:Top core grain 
size distribution graphs for 
site C6 
Chi-squared analysis results: 
Not significantly different 
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Appendix 3I: Graphical 
representation of the grain 
size distribution results for 
the three down core sections 
of core number 5 from site 
C7 
Chi-squared analysis results: 
Significantly different 
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Appendix 3J:  Core top grain 
size graphs for the six cores 
from site C7 
Chi-squared analysis results: 
Not significantly different 
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Appendix 3K: Grain size 
distribution graphs for down 
core sections from core 1, 
site C8 
Chi-squared analysis results: 
Significantly different 
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Appendix 3L: Core top grain 
size distribution graphs for 
the six cores from site C8 
Chi-squared analysis results: 
Significantlydifferent 
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Appendix 4: Sediment grain size series correlation data for all six sites. Where the sample size 
was too low to allow a meaningful correlation to be undertaken an N/A was put into the p-
value column to highlight that the corresponding r-value is of no use. 
Correlations were undertaken between sediment grain size data for each site taking into 
account AC. Those results that are not signification are presented here; the significant results 
are in Table 2.5. 
 
Appendix 4A: Site C1 Sediment grain size series correlation 
 
Core 1 Core 2 N’ (From Equation 2.2) r p 

5-4 
 

5-8 

5-8 
5-12 
5-12 

3.75 
3.28 
3.28 

0.895 
0.886 
0.740 

>0.05 
>0.05 
>0.05 

1-4 2-4 
3-4 
4-4 
5-4 
6-4 

3.75 
2.81 
3.75 
3.75 
3.28 

0.869 
0.958 
0.974 
0.902 
0.929 

>0.05 
>0.05 
>0.05 
>0.05 
>0.05 

2-4 3-4 
4-4 
5-4 
6-4 

2.81 
3.75 
3.75 
3.28 

0.935 
0.849 
0.855 
0.936 

>0.05 
>0.05 
>0.05 
>0.05 

3-4 4-4 
5-4 
6-4 

2.81 
2.81 
2.33 

0.941 
0.929 
0.981 

>0.05 
>0.05 
>0.05 

4-4 5-4 
6-4 

3.75 
3.28 

0.907 
0.893 

>0.05 
>0.05 

5-4 6-4 3.28 0.862 >0.05 

 
 
Appendix 4B: Site C2 Sediment grain size series correlation 
 
Core 1 Core 2 N’ (From Equation 2.2) r p 

5-4 
 

5-8 

5-8 
5-12 
5-12 

4.29 
1.39 
4.76 

0.965 
0.949 
0.943 

<0.05 
N/A 

<0.05 
1-4 2-4 

3-4 
4-4 
5-4 
6-4 

0.92 
0.92 
0.92 
2.82 
0.92 

0.976 
0.994 
0.995 
0.884 
0.994 

N/A 
N/A 
N/A 
N/A 
N/A 

2-4 3-4 
4-4 
5-4 
6-4 

0.92 
2.82 
0.92 
0.92 

0.988 
0.992 
0.921 
0.978 

N/A 
N/A 
N/A 
N/A 

3-4 4-4 
5-4 
6-4 

0.92 
2.82 
0.92 

0.999 
0.898 
0.992 

N/A 
N/A 
N/A 

4-4 5-4 
6-4 

2.82 
0.92 

0.904 
0.993 

N/A 
N/A 

5-4 6-4 2.82 0.888 N/A 
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Appendix 4C: Site C4 Sediment grain size series correlation 
 
Core 1 Core 2 N’ (From Equation 2.2) r p 

5-4 
 

5-8 

5-8 
5-12 
5-12 

1.86 
1.86 
1.86 

0.993 
0.996 
0.997 

N/A 
N/A 
N/A 

1-4 2-4 
3-4 
4-4 
5-4 
6-4 

1.39 
1.86 
1.86 
1.86 
1.86 

0.984 
0.999 
0.994 
0.983 
0.993 

N/A 
N/A 
N/A 
N/A 
N/A 

2-4 3-4 
4-4 
5-4 
6-4 

1.39 
1.39 
1.39 
1.39 

0.987 
0.996 
0.994 
0.989 

N/A 
N/A 
N/A 
N/A 

3-4 4-4 
5-4 
6-4 

1.86 
1.86 
1.86 

0.994 
0.980 
0.997 

N/A 
N/A 
N/A 

4-4 5-4 
6-4 

1.86 
1.86 

0.960 
0.992 

N/A 
N/A 

5-4 6-4 1.86 0.967 N/A 

 
Appendix 4D: Site C6 Sediment grain size series correlation 
 
Core 1 Core 2 N’ (From Equation 2.2) r p 

4-4 
 

4-8 

4-8 
4-12 
4-12 

2.34 
2.34 
3.75 

0.952 
0.974 
0.938 

N/A 
N/A 

>0.05 
1-4 2-4 

3-4 
4-4 
5-4 
6-4 

1.39 
0.92 
1.86 
1.39 
1.39 

0.989 
0.998 
0.946 
0.991 
0.986 

N/A 
N/A 
N/A 
N/A 
N/A 

2-4 3-4 
4-4 
5-4 
6-4 

1.39 
2.33 
1.86 
1.86 

0.994 
0.975 
0.990 
0.994 

N/A 
N/A 
N/A 
N/A 

3-4 4-4 
5-4 
6-4 

1.86 
1.39 
1.39 

0.960 
0.995 
0.991 

N/A 
N/A 
N/A 

4-4 5-4 
6-4 

2.33 
2.33 

0.973 
0.981 

N/A 
N/A 

5-4 6-4 1.86 0.988 N/A 

 
Appendix 4E: Site C7 Sediment grain size series correlation 
 
Core 1 Core 2 N’ (From Equation 2.2) r p 

5-4 
 

5-8 

5-8 
5-12 
5-12 

0.92 
1.39 
1.39 

0.871 
0.836 
0.948 

N/A 
N/A 
N/A 

1-4 2-4 
3-4 
4-4 
5-4 
6-4 

0.92 
0.92 
0.92 
0.92 
0.92 

0.999 
0.948 
0.995 
0.996 
0.997 

N/A 
N/A 
N/A 
N/A 
N/A 

2-4 3-4 
4-4 
5-4 
6-4 

0.92 
0.92 
0.92 
0.92 

0.949 
0.995 
0.997 
0.996 

N/A 
N/A 
N/A 
N/A 

3-4 4-4 
5-4 
6-4 

0.92 
0.92 
0.92 

0.923 
0.970 
0.927 

N/A 
N/A 
N/A 

4-4 5-4 
6-4 

0.92 
0.92 

0.989 
0.996 

N/A 
N/A 

5-4 6-4 0.92 0.989 N/A 
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Appendix 4F: Site C8 Sediment grain size series correlation 
 
Core 1 Core 2 N’ (From Equation 2.2) r p 

1-4 
 

1-8 

1-8 
1-12 
1-12 

1.86 
1.86 
1.86 

0.610 
0.640 
0.982 

N/A 
N/A 
N/A 

1-4 2-4 
3-4 
4-4 
5-4 
6-4 

1.86 
1.86 
1.39 
1.86 
1.86 

0.540 
0.557 
0.557 
0.542 
0.523 

N/A 
N/A 
N/A 
N/A 
N/A 

2-4 3-4 
4-4 
5-4 
6-4 

1.86 
1.39 
1.86 
1.86 

0.997 
0.995 
0.999 
0.997 

N/A 
N/A 
N/A 
N/A 

3-4 4-4 
5-4 
6-4 

1.39 
1.86 
1.86 

0.993 
0.996 
0.992 

N/A 
N/A 
N/A 

4-4 5-4 
6-4 

1.39 
1.39 

0.995 
0.996 

N/A 
N/A 

5-4 6-4 1.86 0.978 N/A 

 

Appendix 5: Normality test results for grain size data. These tests were carried out on the grain 
size data to determine the statistical tests to use on the data. 
 
Appendix 5A: Core top data: Data highlighted in yellow are non-normally distributed 
Site Clay Silt Sand 

 Anderson-
Darling value 

p-value Anderson-
Darling value 

p-value Anderson-
Darling value 

p-value 

C1 0.205 0.766 0.189 0.822 0.198 0.790 
C2 0.388 0.260 0.517 0.110 0.476 0.143 
C4 0.954 0.006 0.656 0.043 0.713 0.029 
C6 0.236 0.644 0.172 0.873 0.169 0.883 
C7 0.539 0.095 0.525 0.104 0.562 0.081 
C8 0.306 0.439 0.366 0.301 0.293 0.477 

 
 
Appendix 5B: Down core data: Data highlighted in yellow are non-normally distributed 
Site Clay Silt Sand 

 Anderson-
Darling value 

p-value Anderson-
Darling value 

p-value Anderson-
Darling value 

p-value 

C1 0.190 0.627 0.205 0.562 0.199 0.587 
C2 0.338 0.201 0.190 0.628 0.200 0.581 
C4 0.379 0.141 0.289 0.302 0.343 0.193 
C6 0.463 0.070 0.194 0.608 0.271 0.350 
C7 0.351 0.180 0.255 0.393 0.281 0.323 
C8 0.448 0.080 0.442 0.083 0.457 0.074 

 
Appendx 5C: All data analysed: Data highlighted in yellow are non-normally distributed 
Site Clay Silt Sand 

 Anderson-
Darling value 

p-value Anderson-
Darling value 

p-value Anderson-
Darling value 

p-value 

C1 0.365 0.340 0.265 0.585 0.261 0.599 
C2 0.485 0.159 0.443 0.210 0.429 0.228 
C4 1.137 <0.005 0.805 0.021 0.890 0.012 
C6 0.847 0.016 0.130 0.967 0.234 0.699 
C7 0.889 0.012 0.607 0.074 0.652 0.055 
C8 0.254 0.624 0.523 0.124 0.459 0.188 
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Appendix 6: OC content normality test results. These tests were undertaken on the data to 
determine what test to use to analyse the data. 
 
Site Anderson-Darling value p-value Normally or non-normally distributed? 

C1 0.312 0.249 Normally distributed 

C2 0.190 0.628 Normally distributed 

C4 0.438 0.086 Normally distributed 

C6 0.248 0.420 Normally distributed 

C7 0.292 0.294 Normally distributed 

C8 0.482 0.059 Normally distributed 

 
 
 

Appendix 7: Non-parametric analysis of OC content data. Due to the small n-values of the OC 
datasets both parametric and non-parametric tests were carried out on the data. The tests 
presented here were compared to those in Figure 2.14 and the results discussed in Section 
2.3.2.3. 
 

 
 
The results in the graph above as well as the Kruskal-Wallis analyses of the OC content datasets indicates that the 
parametric analyses carried out on the same dataset in Figure 2.14 are correct and that the data at site C7 are 
significantly different from that at all the other sites. Data presented as the median and IQR of the values. 
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Appendix 8:  Data collection methods. 
To fully understand each instrumental dataset investigated in Chapter 3 their data collection 
methods are considered here. 
 

Dataset Collection methods 

Saulmore Diver –deployed temperature loggers at 10m below chart datum recording temperature every 12 
minutes. Since 2007 two loggers have been used due to previous breakages, data from these are 

averaged to generate daily data. From this monthly, seasonal and annual average data can be 
generated. 

Over time the logger temperature resolution has gone from 0.12 to 0.01°C, the divers test the loggers 
against water of known temperature to check for problems. (Sayer, pers. comm., 2010) 

Dunstaffnage and 
Tiree 

Both datasets are collected using Met Office weather station equipment – there is little information on 
how this has changed over time or what exactly is currently being used at each site. 

At Tiree the station is at 12m above mean sea level (amsl) while at Dunstaffnage it is at 3m amsl. (Met 
Office, 2011d, Met Office, 2011a). 

Millport Temperature taken from samples collected off Keppel Pier using a bucket and then measured using a 
mercury thermometer to 0.1°C. This method has been used since records began in the 1950s. Samples 

are measured at approximately 10am each morning. (Stevenson pers. comm.) 
HadSST2 Data are taken from records collected by ships and buoys – this comes from two databases. These are 

ICOADS (1850 to 1997) and NCEP-GTS (1998 to present). 
The data used are converted to anomalies and gridded; there is a need to correct the data to remove 

any bias introduced due to changes in collection methods before 1942. (Met Office, 2011b) 
CRUTEM3 CRUTEM3 is made up from a variety of monthly mean temperature sources. For the grid being used for 

analysis here there are four datasets: 
Stornoway 

Fort William 
Ben Nevis 

Tiree. 
The fact that the Tiree series is included in the CRUTEM3 dataset explains the high correlations 

between the two series as seen in Chapter 3. 
The data used to create the CRUTEM3 dataset are turned into anomalies – relative to 1961 to 1990 

(UEA, 2011) 
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Appendix 9: Grinding and polishing techniques for resin mounted shell blocks. 
This figure outlines the processes/stages involved in the grinding and polishing of the resin 
mounted shells to prepare the surface for acetate peel production by minimising the number 
of scratches present. 
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Appendix 10: Table highlighting some key papers and the location in the shell analysis was 
undertaken. N.B. (G) denotes that some form of geochemical analysis was undertaken as part 
of this research. This information highlights the split between where analysis is undertaken on 
the shells and the need to investigate growth rates between the umbo and outer sections. 
 

Umbo Outer Both 

Stott et al., 2010 
Wanamaker et al., 2008 

Witbaard et al., 1996; 1999; 2005 
Witbaard, 1997 (younger shells only) 

Kilada et al., 2006 
Liehr et al., 2005 (G) 

Witbaard, 1997 (older shells only) 
Witbaard et al., 2003 

Schöne et al., 2004; 2005b 
Wanamaker et al., 2007 (G) 

Weidman and Jones, 1993 (G) 

Weidman and Jones, 1994 
Butler et al., 2009a 

Daniels, 2010 
Schöne and Fiebig, 2009 

Ropes, 1988, 1989 
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Appendix 11. Raw GI data for all shells measured whether dated into the master chronology or not. All measurements are in microns. 
This data has been obtained through GI measurements of those shells clear enough to faciliate this stage of the analysis process. Also included in 
appendix 11 are the outer vs. inner shell detrended GI measurements for the comparison work undertaken in Chapter 4. 
 
Appendix 11A: Raw GI data for site C1 
 
Year L5 L10 L14 L4 L2 L15 L19 L20B L17 

1843    0.84      

1844    0.632      

1845    0.53      

1846    0.299      

1847    0.305      

1848    0.255      

1849    0.156      

1850    0.064      

1851    0.096      

1852    0.049      

1853    0.097      

1854    0.104      

1855    0.053      

1856    0.06      

1857    0.142      

1858    0.111      

1859    0.127      

1860    0.074      

1861    0.054      

1862    0.047      

1863    0.052      

1864    0.06      
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1865    0.115      

1866    0.109      

1867    0.095      

1868    0.141      

1869    0.153      

1870    0.117      

1871    0.112      

1872    0.072      

1873    0.036      

1874    0.065      

1875    0.065      

1876    0.096      

1877    0.048      

1878    0.077      

1879    0.039      

1880    0.041      

1881    0.044      

1882    0.053      

1883    0.044      

1884    0.08      

1885    0.035      

1886   0.73 0.03      

1887   0.711 0.042      

1888   0.329 0.037      

1889   0.257 0.042      

1890   0.211 0.036      

1891   0.184 0.031      

1892   0.114 0.027      
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1893   0.161 0.017      

1894   0.196 0.027  0.889    

1895   0.197 0.035  1.087    

1896   0.104 0.02  0.852    

1897   0.114 0.024  0.35    

1898   0.146 0.021  0.225    

1899   0.071 0.026  0.18    

1900   0.102 0.025  0.526    

1901   0.083 0.034  0.416    

1902  0.666 0.067 0.037  0.816    

1903  0.741 0.058 0.042  0.441    

1904  0.784 0.093 0.076  0.309    

1905  0.609 0.005 0.027  0.212  0.906  

1906  0.394 0.04 0.059  0.175  0.691  

1907  0.277 0.065 0.036  0.017  0.182  

1908  0.247 0.062 0.034  0.092  0.198  

1909  0.147 0.067 0.038  0.053  0.367  

1910  0.147 0.035 0.021  0.123  0.159  

1911  0.119 0.045 0.077  0.05  0.263  

1912  0.086 0.036 0.028  0.084  0.604  

1913  0.103 0.096 0.019 0.472 0.112  0.344  

1914  0.123 0.097 0.02 0.45 0.069  0.337  

1915  0.089 0.102 0.025 0.433 0.129  0.313  

1916  0.106 0.075 0.016 0.582 0.102  0.408  

1917  0.101 0.061 0.026 0.415 0.054  0.311  

1918  0.125 0.048 0.027 0.386 0.048  0.318  

1919  0.037 0.045 0.016 0.252 0.088  0.268  

1920  0.019 0.054 0.009 0.185 0.043  0.198  
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1921  0.054 0.075 0.015 0.148 0.166  0.117 1.429 

1922  0.047 0.037 0.016 0.131 0.131  0.193 1.11 

1923  0.079 0.032 0.019 0.148 0.051  0.09 0.931 

1924  0.074 0.063 0.052 0.11 0.043  0.195 0.869 

1925  0.051 0.066 0.019 0.128 0.066  0.227 0.487 

1926  0.044 0.073 0.025 0.182 0.138  0.209 0.226 

1927  0.067 0.03 0.017 0.096 0.032  0.165 0.295 

1928  0.059 0.053 0.028 0.112 0.034  0.143 0.133 

1929  0.068 0.05 0.012 0.099 0.084  0.112 0.227 

1930  0.042 0.093 0.034 0.12 0.028  0.158 0.242 

1931  0.047 0.079 0.043 0.15 0.042  0.112 0.208 

1932  0.05 0.012 0.022 0.119 0.032  0.093 0.176 

1933  0.055 0.019 0.033 0.101 0.035  0.076 0.162 

1934  0.053 0.025 0.029 0.112 0.052  0.088 0.134 

1935  0.028 0.012 0.022 0.053 0.043  0.041 0.168 

1936  0.06 0.013 0.035 0.052 0.023  0.083 0.15 

1937  0.069 0.023 0.024 0.064 0.0865  0.125 0.134 

1938  0.054 0.026 0.02 0.112 0.022  0.116 0.062 

1939  0.016 0.005 0.017 0.065 0.0245  0.06 0.093 

1940  0.037 0.013 0.012 0.047 0.019  0.078 0.065 

1941  0.05 0.026 0.015 0.07 0.045  0.104 0.079 

1942  0.099 0.057 0.025 0.098 0.0275  0.129 0.139 

1943  0.056 0.046 0.034 0.103 0.033  0.12 0.094 

1944  0.032 0.035 0.015 0.048 0.0265 1.534 0.038 0.054 

1945 0.779 0.022 0.009 0.01 0.05 0.058 1.745 0.026 0.092 

1946 0.783 0.022 0.006 0.022 0.035 0.042 1.49 0.014 0.077 

1947 0.799 0.03 0.015 0.031 0.04 0.028 0.832 0.02 0.141 

1948 0.828 0.033 0.021 0.039 0.049 0.032 0.51 0.032 0.106 
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1949 0.471 0.022 0.023 0.025 0.03 0.012 0.262 0.044 0.059 

1950 0.366 0.025 0.028 0.011 0.034 0.013 0.237 0.043 0.042 

1951 0.316 0.02 0.022 0.011 0.045 0.012 0.327 0.037 0.021 

1952 0.401 0.046 0.05 0.007 0.07 0.035 0.114 0.034 0.035 

1953 0.251 0.032 0.014 0.015 0.059 0.022 0.12 0.058 0.021 

1954 0.293 0.041 0.017 0.022 0.061 0.025 0.099 0.071 0.038 

1955 0.195 0.034 0.007 0.012 0.044 0.013 0.096 0.051 0.031 

1956 0.232 0.044 0.02 0.009 0.036 0.032 0.063 0.043 0.049 

1957 0.216 0.05 0.031 0.009 0.058 0.039 0.073 0.062 0.041 

1958 0.181 0.031 0.024 0.028 0.032 0.015 0.044 0.066 0.048 

1959 0.193 0.047 0.006 0.016 0.047 0.037 0.05 0.029 0.032 

1960 0.122 0.018 0.004 0.027 0.032 0.017 0.032 0.059 0.027 

1961 0.109 0.018 0.01 0.018 0.037 0.013 0.054 0.032 0.041 

1962 0.07 0.013 0.005 0.023 0.022 0.035 0.035 0.032 0.058 

1963 0.112 0.031 0.01 0.02 0.034 0.027 0.075 0.018 0.067 

1964 0.105 0.031 0.007 0.019 0.046 0.016 0.033 0.032 0.106 

1965 0.093 0.018 0.043 0.022 0.025 0.009 0.034 0.019 0.025 

1966 0.038 0.013 0.01 0.017 0.025 0.01 0.02 0.04 0.027 

1967 0.04 0.016 0.006 0.017 0.029 0.009 0.047 0.017 0.013 

1968 0.039 0.019 0.008 0.007 0.017 0.009 0.026 0.02 0.025 

1969 0.053 0.019 0.007 0.022 0.03 0.037 0.017 0.016 0.017 

1970 0.109 0.017 0.01 0.016 0.055 0.012 0.023 0.013 0.019 

1971 0.043 0.02 0.015 0.017 0.018 0.009 0.013 0.019 0.025 

1972 0.055 0.016 0.014 0.007 0.024 0.01 0.012 0.025 0.018 

1973 0.031 0.021 0.015 0.009 0.024 0.011 0.013 0.041 0.018 

1974 0.044 0.016 0.006 0.03 0.055 0.016 0.055 0.019 0.014 

1975 0.026 0.019 0.011 0.024 0.031 0.012 0.021 0.029 0.013 

1976 0.033 0.014 0.01 0.012 0.055 0.026 0.023 0.013 0.059 
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1977 0.026 0.019 0.009 0.007 0.059 0.016 0.022 0.024 0.017 

1978 0.023 0.011 0.015 0.006 0.036 0.012 0.019 0.018 0.024 

1979 0.034 0.015 0.019 0.015 0.062 0.014 0.013 0.029 0.032 

1980 0.023 0.012 0.017 0.007 0.061 0.01 0.015 0.029 0.022 

1981 0.051 0.024 0.074 0.015 0.076 0.016 0.028 0.033 0.056 

1982 0.053 0.013 0.034 0.009 0.043 0.009 0.031 0.033 0.021 

1983 0.043 0.024 0.015 0.012 0.056 0.028 0.023 0.028 0.013 

1984 0.029 0.015 0.015 0.012 0.052 0.012 0.023 0.025 0.013 

1985 0.082 0.031 0.004 0.01 0.054 0.005 0.017 0.051 0.003 

1986 0.029 0.015 0.057 0.016 0.052 0.011 0.024 0.032 0.038 

1987 0.029 0.017 0.053 0.012 0.02 0.007 0.039 0.022 0.024 

1988 0.033 0.018 0.048 0.009 0.019 0.022 0.007 0.035 0.014 

1989 0.015 0.013 0.013 0.009 0.035 0.017 0.023 0.04 0.029 

1990 0.069 0.078 0.056 0.028 0.033 0.031 0.028 0.047 0.013 

1991 0.084 0.04 0.072 0.03 0.043 0.047 0.041 0.066 0.079 

1992 0.076 0.039 0.056 0.028 0.052 0.025 0.045 0.071 0.065 

1993 0.085 0.066 0.064 0.03 0.047 0.031 0.127 0.098 0.107 

1994 0.066 0.082 0.109 0.032 0.046 0.023 0.082 0.066 0.115 

1995 0.105 0.043 0.032 0.025 0.038 0.051 0.096 0.077 0.07 

1996 0.053 0.038 0.023 0.023 0.07 0.027 0.161 0.081 0.095 

1997 0.098 0.096 0.057 0.029 0.051 0.011 0.093 0.055 0.147 

1998 0.1 0.06 0.069 0.029 0.039 0.03 0.125 0.078 0.083 

1999 0.085 0.05 0.069 0.025 0.039 0.031 0.125 0.06 0.099 

2000 0.091 0.049 0.076 0.028 0.047 0.038 0.095 0.079 0.037 

2001 0.059 0.055 0.033 0.036 0.067 0.018 0.124 0.078 0.103 

2002 0.082 0.066 0.011 0.027 0.022 0.025 0.103 0.05 0.094 

2003 0.097 0.043 0.047 0.018 0.05 0.033 0.078 0.059 0.044 

2004 0.078 0.035 0.03 0.025 0.03 0.033 0.048 0.036 0.058 
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2005 0.061 0.021 0.013 0.018 0.036 0.014 0.075 0.039 0.036 

Appendix 11B: Raw GI data for site C2 
 
Year C2L6 C2L7 C2L8 C2L11 C2L14 C2L41 C2L42 C2L45 C2L47 C2L48 C2L48(2) C2L51 C2L54 C2L57 C2L66 C2L68 

1915   0.076              

1916   1.182              

1917   1.108              

1918   0.668              

1919   0.667              

1920   0.772              

1921   1.072              

1922   1.415              

1923   1.144              

1924   0.623              

1925   0.626              

1926   0.392              

1927   0.103              

1928   0.27              

1929   0.323              

1930   0.051              

1931   0.073              

1932   0.063              

1933   0.163              

1934   0.191              

1935   0.196              

1936   0.155     0.789   0.222      

1937   0.077     0.792   0.448      

1938   0.168     0.61   0.596      
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1939   0.09     0.558   0.639      

1940   0.077    0.803 0.46   0.437      

1941   0.035    0.551 0.38   0.385      

1942 1.267  0.027 0.671   0.199 0.287   0.235      

1943 1.024  0.045 0.166   0.342 0.253  0.8 0.186      

1944 0.895  0.054 0.573   0.167 0.184  0.875 0.14  0.615    

1945 0.538  0.04 0.502   0.381 0.112  1.076 0.015  0.821    

1946 0.467  0.041 0.843   0.407 0.115  0.441 0.143 0.098 0.992 0.789   

1947 0.383  0.029 0.719   0.317 0.148  1.267 0.27 1.041 1.035 0.611   

1948 0.397  0.041 0.64   0.247 0.096  2.121 0.115 1.247 1.241 0.453   

1949 0.348  0.026 0.597   0.265 0.094  1.247 0.081 1.034 0.928 0.437   

1950 0.137  0.042 0.359   0.134 0.035  1.227 0.095 0.838 0.485 0.311  0.8 

1951 0.102 1.007 0.039 0.383   0.284 0.102  0.817 0.125 1.141 0.378 0.262  1.054 

1952 0.108 0.744 0.012 0.296   0.211 0.046  0.878 0.109 0.787 0.4 0.2  0.959 

1953 0.17 0.76 0.014 0.291 0.628  0.267 0.103  0.838 0.027 0.577 0.246 0.163  1.071 

1954 0.22 0.851 0.054 0.252 1.097  0.185 0.096  0.597 0.028 0.471 0.247 0.195  0.766 

1955 0.142 0.732 0.035 0.227 0.348  0.16 0.032  0.604 0.113 0.396 0.196 0.164  0.773 

1956 0.146 0.68 0.032 0.221 0.32  0.195 0.055  0.499 0.109 0.386 0.241 0.173  0.468 

1957 0.159 0.471 0.024 0.155 0.336  0.14 0.038  0.492 0.138 0.345 0.223 0.137  0.37 

1958 0.107 0.391 0.08 0.214 0.305  0.185 0.02  0.25 0.079 0.209 0.241 0.215  0.284 

1959 0.141 0.236 0.041 0.193 0.383  0.106 0.044  0.145 0.113 0.198 0.264 0.116  0.471 

1960 0.119 0.164 0.058 0.144 0.369  0.158 0.064  0.116 0.092 0.19 0.185 0.102  0.207 

1961 0.13 0.213 0.024 0.163 0.263  0.098 0.064  0.142 0.086 0.21 0.211 0.077  0.262 

1962 0.101 0.132 0.036 0.118 0.221  0.119 0.087  0.09 0.078 0.157 0.174 0.123  0.165 

1963 0.1 0.166 0.067 0.172 0.191  0.08 0.064  0.084 0.086 0.024 0.172 0.084  0.163 

1964 0.12 0.154 0.026 0.109 0.216  0.092 0.06  0.043 0.082 0.134 0.17 0.072  0.101 

1965 0.093 0.132 0.02 0.17 0.196  0.092 0.048  0.07 0.07 0.108 0.147 0.095  0.13 

1966 0.068 0.151 0.006 0.17 0.14  0.091 0.074  0.056 0.06 0.092 0.085 0.026  0.128 
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1967 0.068 0.121 0.012 0.146 0.153  0.066 0.048  0.091 0.051 0.122 0.098 0.018  0.155 

1968 0.077 0.078 0.047 0.146 0.149  0.074 0.04  0.099 0.057 0.081 0.078 0.061  0.08 

1969 0.086 0.077 0.017 0.12 0.084  0.063 0.084  0.084 0.073 0.102 0.103 0.061  0.073 

1970 0.094 0.072 0.021 0.071 0.103 0.595 0.053 0.024  0.05 0.077 0.124 0.082 0.081  0.076 

1971 0.063 0.08 0.037 0.074 0.112 0.534 0.056 0.062  0.018 0.059 0.09 0.078 0.067  0.112 

1972 0.103 0.096 0.05 0.127 0.062 0.638 0.07 0.05  0.07 0.082 0.085 0.095 0.042  0.073 

1973 0.053 0.045 0.019 0.077 0.046 0.498 0.064 0.05  0.059 0.045 0.025 0.095 0.064  0.061 

1974 0.059 0.031 0.044 0.068 0.034 0.443 0.061 0.062  0.03 0.042 0.047 0.071 0.046  0.084 

1975 0.042 0.037 0.031 0.057 0.074 0.32 0.107 0.032 0.789 0.069 0.039 0.121 0.078 0.114  0.047 

1976 0.059 0.041 0.027 0.064 0.07 0.367 0.068 0.024 0.764 0.026 0.039 0.069 0.09 0.055  0.056 

1977 0.057 0.045 0.03 0.058 0.069 0.327 0.055 0.032 0.839 0.048 0.052 0.022 0.08 0.054  0.061 

1978 0.05 0.063 0.016 0.079 0.052 0.206 0.035 0.028 0.674 0.009 0.034 0.086 0.069 0.02  0.027 

1979 0.059 0.047 0.028 0.099 0.073 0.141 0.052 0.044 0.496 0.073 0.054 0.086 0.054 0.043  0.052 

1980 0.044 0.05 0.082 0.077 0.042 0.082 0.076 0.014 0.678 0.029 0.032 0.077 0.011 0.017  0.093 

1981 0.048 0.047 0.048 0.053 0.051 0.135 0.067 0.03 0.622 0.028 0.046 0.097 0.012 0.014  0.015 

1982 0.044 0.063 0.024 0.067 0.046 0.102 0.087 0.028 0.282 0.069 0.036 0.04 0.045 0.025  0.083 

1983 0.075 0.037 0.047 0.075 0.052 0.081 0.06 0.014 0.405 0.032 0.075 0.069 0.08 0.079  0.059 

1984 0.025 0.023 0.018 0.072 0.05 0.076 0.077 0.062 0.212 0.038 0.027 0.012 0.085 0.027  0.063 

1985 0.054 0.066 0.033 0.082 0.07 0.088 0.093 0.04 0.273 0.077 0.031 0.043 0.06 0.062  0.031 

1986 0.05 0.03 0.029 0.044 0.048 0.08 0.031 0.044 0.276 0.013 0.076 0.04 0.063 0.052  0.052 

1987 0.031 0.037 0.03 0.084 0.036 0.051 0.059 0.028 0.14 0.046 0.046 0.017 0.044 0.026  0.077 

1988 0.047 0.022 0.054 0.06 0.04 0.078 0.041 0.04 0.18 0.037 0.049 0.048 0.026 0.032  0.029 

1989 0.065 0.032 0.04 0.032 0.052 0.052 0.044 0.038 0.199 0.016 0.031 0.035 0.045 0.029  0.07 

1990 0.029 0.012 0.013 0.048 0.034 0.046 0.054 0.022 0.153 0.027 0.031 0.036 0.048 0.032  0.045 

1991 0.034 0.032 0.026 0.059 0.037 0.042 0.067 0.04 0.094 0.033 0.034 0.02 0.036 0.045  0.084 

1992 0.037 0.028 0.038 0.044 0.036 0.033 0.052 0.062 0.05 0.026 0.024 0.06 0.022 0.037 0.462 0.051 

1993 0.02 0.012 0.042 0.034 0.042 0.022 0.046 0.02 0.024 0.029 0.044 0.047 0.025 0.042 0.527 0.046 

1994 0.048 0.037 0.051 0.051 0.038 0.025 0.017 0.028 0.032 0.037 0.037 0.01 0.022 0.032 1.615 0.048 
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1995 0.036 0.042 0.045 0.041 0.034 0.035 0.02 0.026 0.059 0.068 0.03 0.012 0.021 0.01 0.059 0.053 

1996 0.037 0.037 0.025 0.048 0.066 0.037 0.021 0.032 0.055 0.008 0.054 0.081 0.016 0.02 1.536 0.042 

1997 0.059 0.024 0.018 0.027 0.094 0.053 0.024 0.036 0.056 0.009 0.029 0.062 0.022 0.011 0.92 0.053 

1998 0.033 0.079 0.031 0.036 0.046 0.029 0.016 0.02 0.07 0.01 0.04 0.075 0.028 0.015 0.265 0.017 

1999 0.039 0.022 0.02 0.049 0.066 0.052 0.027 0.028 0.067 0.027 0.032 0.025 0.025 0.034 0.937 0.035 

2000 0.037 0.02 0.021 0.047 0.039 0.013 0.022 0.016 0.1 0.034 0.043 0.011 0.024 0.03 0.607 0.025 

2001 0.044 0.035 0.016 0.031 0.066 0.009 0.075 0.014 0.032 0.019 0.062 0.07 0.014 0.04 0.573 0.045 

2002 0.07 0.035 0.01 0.041 0.048 0.039 0.066 0.03 0.038 0.021 0.053 0.086 0.026 0.05 0.392 0.058 

2003 0.043 0.012 0.023 0.056 0.016 0.056 0.049 0.034 0.031 0.018 0.021 0.046 0.017 0.031 0.292 0.036 

2004 0.031 0.018 0.029 0.067 0.034 0.038 0.037 0.026 0.063 0.042 0.025 0.036 0.013 0.042 0.132 0.046 

2005 0.071 0.019 0.016 0.065 0.018 0.026 0.02 0.022 0.065 0.026 0.035 0.034 0.019 0.034 0.299 0.026 

2006 0.017 0.026 0.012 0.013 0.037 0.02 0.06 0.02 0.022 0.012 0.012 0.047 0.009 0.048 0.131 0.061 

2007 0.015 0.028 0.077 0.017 0.016 0.039 0.012 0.028 0.025 0.034 0.012 0.013 0.047 0.014 0.193 0.021 

2008 0.026 0.017 0.051 0.016 0.029 0.025 0.017 0.028 0.064 0.034 0.017 0.024 0.021 0.042 0.204 0.027 

 
Year C2L76 C2L10 C2L43 C2L3 C2L22 C2L34 C2L35 C2L53 C2L55 C2L69 C2L33 C2L46(2) C2L101(A) C2L101(B) C2L102 C2L104 

1875                0.75 

1876                0.907 

1877                0.973 

1878                0.648 

1879                0.526 

1880                0.495 

1881                0.356 

1882                0.363 

1883                0.378 

1884                0.234 

1885   0.32             0.185 

1886   0.241             0.233 
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1887   0.25             0.145 

1888   0.063             0.155 

1889   0.112             0.085 

1890   0.06             0.119 

1891   0.033             0.12 

1892   0.046             0.124 

1893   0.046             0.116 

1894   0.056             0.123 

1895   0.091             0.059 

1896   0.063             0.142 

1897   0.041             0.048 

1898   0.052             0.146 

1899   0.071             0.059 

1900   0.059             0.076 

1901   0.038             0.063 

1902  0.59 0.117             0.053 

1903  0.739 0.114             0.042 

1904  0.46 0.06             0.033 

1905  0.574 0.127             0.058 

1906  1.006 0.074             0.039 

1907  1.225 0.084             0.031 

1908  0.796 0.084             0.033 

1909  0.619 0.052             0.039 

1910  0.594 0.067             0.016 

1911  0.458 0.022             0.026 

1912  0.469 0.035             0.029 

1913  0.184 0.051             0.038 

1914  0.409 0.117             0.032 
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1915  0.241 0.082             0.032 

1916  0.189 0.068             0.032 

1917  0.087 0.012             0.055 

1918  0.058 0.059             0.021 

1919  0.044 0.068             0.041 

1920  0.091 0.066             0.04 

1921  0.092 0.039             0.055 

1922  0.097 0.015             0.026 

1923  0.068 0.052             0.021 

1924  0.072 0.06             0.015 

1925  0.047 0.039             0.033 

1926  0.073 0.044             0.02 

1927  0.084 0.029             0.015 

1928  0.042 0.032             0.024 

1929  0.019 0.056             0.015 

1930  0.086 0.019             0.005 

1931  0.038 0.023             0.033 

1932  0.053 0.019             0.013 

1933  0.035 0.028   1.047          0.04 

1934  0.02 0.015   0.835          0.018 

1935  0.036 0.026   0.439          0.007 

1936  0.051 0.044   0.622          0.027 

1937  0.039 0.021   0.854          0.016 

1938  0.013 0.048   0.844          0.037 

1939  0.028 0.028   0.636          0.02 

1940  0.049 0.018   0.409          0.012 

1941 2.466 0.036 0.024   0.214          0.017 

1942 0.831 0.034 0.023   0.281          0.021 
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1943 0.773 0.056 0.098   0.132   0.957       0.009 

1944 0.662 0.029 0.022   0.175 1.044  0.555       0.022 

1945 0.67 0.039 0.022   0.173 1.199  0.581       0.024 

1946 0.53 0.022 0.017   0.174 1.114  0.674       0.013 

1947 0.314 0.046 0.015   0.169 0.695  0.587      0.584 0.013 

1948 0.378 0.034 0.023   0.129 0.66  0.614      0.739 0.041 

1949 0.228 0.045 0.036   0.126 0.589 1.272 0.428     0.844 0.738 0.013 

1950 0.183 0.051 0.047   0.119 0.259 1.014 0.186     1.097 0.831 0.013 

1951 0.148 0.033 0.029  0.84 0.115 0.286 0.822 0.139  1.139   0.825 1.035 0.02 

1952 0.07 0.04 0.029  0.776 0.095 0.313 0.804 0.18  1.014   0.737 1.017 0.018 

1953 0.089 0.031 0.047  0.878 0.091 0.314 0.669 0.141  0.83   0.593 0.587 0.02 

1954 0.185 0.03 0.027  0.958 0.117 0.208 0.434 0.129 1.283 0.987   0.342 0.575 0.029 

1955 0.175 0.013 0.022  0.675 0.106 0.208 0.333 0.105 0.939 0.765   0.243 0.416 0.021 

1956 0.148 0.033 0.032  0.647 0.04 0.226 0.065 0.137 1.191 0.684   0.218 0.408 0.017 

1957 0.143 0.043 0.012  0.6 0.039 0.233 0.258 0.131 1.438 0.496   0.194 0.383 0.024 

1958 0.02 0.017 0.018  0.376 0.02 0.186 0.253 0.096 0.727 0.37   0.229 0.247 0.036 

1959 0.057 0.014 0.037  0.341 0.05 0.144 0.205 0.105 0.742 0.232   0.193 0.233 0.026 

1960 0.015 0.032 0.023  0.203 0.068 0.107 0.2 0.086 0.407 0.261   0.248 0.17 0.024 

1961 0.036 0.054 0.028  0.205 0.078 0.148 0.108 0.094 0.405 0.236   0.174 0.142 0.013 

1962 0.028 0.014 0.03  0.171 0.015 0.117 0.065 0.094 0.301 0.149   0.159 0.14 0.029 

1963 0.019 0.013 0.024  0.157 0.022 0.102 0.143 0.078 0.335 0.094   0.163 0.105 0.02 

1964 0.056 0.033 0.029  0.162 0.035 0.153 0.085 0.068 0.214 0.095   0.079 0.124 0.018 

1965 0.036 0.017 0.063  0.119 0.048 0.132 0.024 0.084 0.24 0.17   0.069 0.077 0.038 

1966 0.032 0.026 0.029  0.171 0.046 0.129 0.14 0.051 0.227 0.125   0.077 0.097 0.02 

1967 0.033 0.028 0.038  0.097 0.037 0.08 0.1 0.039 0.168 0.096   0.096 0.142 0.013 

1968 0.033 0.028 0.052  0.095 0.064 0.062 0.109 0.048 0.109 0.113   0.082 0.133 0.035 

1969 0.043 0.033 0.065  0.074 0.042 0.075 0.101 0.048 0.119 0.042   0.095 0.111 0.024 

1970 0.05 0.021 0.042 1.249 0.05 0.043 0.098 0.06 0.038 0.132 0.083  0.581 0.05 0.066 0.024 
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1971 0.054 0.024 0.035 1.166 0.082 0.017 0.059 0.055 0.024 0.115 0.111  1.091 0.057 0.038 0.018 

1972 0.039 0.014 0.027 0.848 0.065 0.032 0.084 0.079 0.034 0.088 0.097 0.872 0.766 0.075 0.059 0.013 

1973 0.047 0.012 0.041 0.986 0.089 0.022 0.064 0.137 0.022 0.064 0.103 0.85 1.081 0.088 0.053 0.018 

1974 0.049 0.012 0.024 1.132 0.057 0.018 0.059 0.118 0.042 0.061 0.073 0.8 1.564 0.065 0.064 0.017 

1975 0.062 0.007 0.056 1.033 0.046 0.016 0.056 0.09 0.031 0.07 0.072 0.736 1.037 0.088 0.056 0.028 

1976 0.036 0.02 0.101 0.728 0.027 0.011 0.077 0.125 0.049 0.101 0.082 0.5 0.642 0.073 0.067 0.042 

1977 0.022 0.03 0.039 0.767 0.04 0.031 0.067 0.071 0.032 0.073 0.098 0.882 0.581 0.078 0.053 0.026 

1978 0.012 0.022 0.027 0.783 0.025 0.011 0.067 0.085 0.04 0.033 0.075 0.817 0.448 0.071 0.04 0.026 

1979 0.008 0.029 0.032 0.503 0.047 0.026 0.058 0.066 0.045 0.062 0.084 0.849 0.532 0.052 0.06 0.023 

1980 0.038 0.017 0.033 0.39 0.038 0.023 0.051 0.064 0.021 0.055 0.059 0.49 0.159 0.062 0.042 0.022 

1981 0.042 0.013 0.066 0.326 0.032 0.012 0.085 0.096 0.04 0.035 0.049 0.556 0.183 0.047 0.029 0.039 

1982 0.012 0.03 0.043 0.324 0.026 0.018 0.056 0.068 0.037 0.08 0.094 0.326 0.065 0.052 0.023 0.029 

1983 0.043 0.031 0.058 0.287 0.038 0.011 0.059 0.097 0.049 0.095 0.067 0.437 0.146 0.062 0.042 0.051 

1984 0.011 0.042 0.039 0.192 0.023 0.012 0.066 0.08 0.029 0.045 0.066 0.324 0.136 0.012 0.069 0.031 

1985 0.064 0.011 0.019 0.136 0.021 0.043 0.048 0.073 0.038 0.017 0.064 0.178 0.211 0.021 0.064 0.038 

1986 0.029 0.035 0.028 0.088 0.032 0.009 0.067 0.059 0.05 0.019 0.059 0.188 0.177 0.066 0.059 0.055 

1987 0.031 0.028 0.019 0.044 0.035 0.073 0.046 0.051 0.029 0.03 0.072 0.126 0.18 0.061 0.051 0.018 

1988 0.023 0.025 0.022 0.166 0.045 0.041 0.061 0.07 0.052 0.074 0.035 0.123 0.085 0.04 0.054 0.04 

1989 0.032 0.027 0.021 0.128 0.009 0.042 0.051 0.082 0.02 0.036 0.07 0.095 0.087 0.021 0.019 0.03 

1990 0.03 0.033 0.03 0.102 0.032 0.029 0.036 0.07 0.028 0.075 0.036 0.068 0.118 0.036 0.065 0.015 

1991 0.019 0.018 0.041 0.141 0.03 0.026 0.042 0.088 0.013 0.075 0.039 0.064 0.101 0.034 0.038 0.021 

1992 0.023 0.018 0.028 0.08 0.025 0.027 0.04 0.015 0.022 0.056 0.044 0.099 0.087 0.048 0.019 0.02 

1993 0.017 0.011 0.078 0.052 0.028 0.025 0.034 0.027 0.021 0.069 0.052 0.063 0.081 0.049 0.024 0.031 

1994 0.025 0.02 0.072 0.058 0.011 0.028 0.049 0.045 0.015 0.047 0.039 0.089 0.07 0.052 0.03 0.016 

1995 0.022 0.016 0.045 0.06 0.031 0.033 0.03 0.064 0.026 0.029 0.055 0.079 0.109 0.063 0.021 0.019 

1996 0.022 0.019 0.057 0.06 0.026 0.037 0.054 0.054 0.018 0.019 0.041 0.091 0.056 0.018 0.026 0.026 

1997 0.028 0.021 0.039 0.044 0.026 0.065 0.05 0.057 0.047 0.021 0.045 0.108 0.093 0.042 0.038 0.028 

1998 0.013 0.033 0.081 0.049 0.054 0.042 0.029 0.04 0.021 0.035 0.055 0.075 0.057 0.057 0.041 0.03 
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1999 0.029 0.019 0.073 0.084 0.051 0.04 0.035 0.055 0.023 0.032 0.036 0.068 0.06 0.049 0.053 0.02 

2000 0.039 0.016 0.053 0.059 0.054 0.025 0.038 0.034 0.025 0.025 0.068 0.076 0.049 0.049 0.037 0.027 

2001 0.017 0.014 0.025 0.067 0.063 0.041 0.025 0.062 0.039 0.067 0.044 0.096 0.047 0.055 0.046 0.028 

2002 0.017 0.033 0.015 0.048 0.053 0.046 0.043 0.041 0.02 0.028 0.052 0.076 0.074 0.052 0.025 0.012 

2003 0.015 0.05 0.021 0.044 0.05 0.036 0.035 0.047 0.016 0.015 0.057 0.051 0.047 0.045 0.045 0.035 

2004 0.006 0.019 0.029 0.037 0.045 0.028 0.044 0.051 0.017 0.019 0.031 0.063 0.052 0.031 0.058 0.005 

2005 0.008 0.011 0.011 0.045 0.026 0.024 0.025 0.05 0.015 0.036 0.044 0.047 0.054 0.046 0.014 0.013 

2006 0.004 0.018 0.013 0.046 0.029 0.022 0.024 0.05 0.013 0.047 0.024 0.047 0.05 0.017 0.039 0.025 

2007 0.003 0.04 0.019 0.033 0.016 0.015 0.023 0.022 0.015 0.024 0.04 0.028 0.026 0.018 0.015 0.015 

2008 0.006 0.021 0.046 0.04 0.011 0.013  0.027 0.011 0.02 0.013 0.027 0.024  0.031 0.035 

 
Appendix 11C: Raw GI data for site C4 
 
Year C4L1b C4L4b C4L5 C4L7 C4L8 C4L9 C4L10 C4L11 C4L13 C4L17 C4L18 C4L19 C4L20 C4L22 C4L32 C4L33 C4L36 C4L41 

1851        0.453           

1852        0.322           

1853        0.716           

1854        0.561           

1855        0.154           

1856        0.495           

1857        0.46           

1858        0.326           

1859        0.207           

1860        0.113           

1861        0.304           

1862        0.127           

1863        0.084           

1864        0.135           
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1865        0.072           

1866        0.144           

1867      0.274  0.175           

1868      0.614  0.103           

1869      0.4  0.097           

1870      0.413  0.087           

1871      0.252  0.132           

1872      0.501  0.117           

1873      0.091  0.129           

1874      0.097  0.094           

1875      0.111  0.075           

1876    0.242  0.061  0.072           

1877    0.346 0.415 0.111  0.065           

1878    0.189 0.489 0.04  0.047  0.674         

1879    0.229 0.355 0.057  0.019  0.356         

1880    0.308 0.829 0.058  0.007  0.245         

1881    0.367 0.108 0.051  0.028  0.301         

1882    0.455 0.077 0.033  0.021  0.139         

1883    0.683 0.281 0.043  0.06  0.138         

1884    0.263 0.1 0.037  0.05  0.076         

1885    0.433 0.322 0.03  0.043  0.076    0.225     

1886    0.277 0.087 0.028  0.052  0.079    0.258     

1887    0.309 0.066 0.015  0.029  0.096    0.522     

1888    0.218 0.278 0.054  0.07  0.066    0.725     

1889    0.402 0.076 0.021  0.041  0.118    1.104     

1890    0.044 0.117 0.033  0.039  0.069   0.13 0.363     

1891    0.059 0.089 0.063  0.033  0.085   0.062 0.753    0.784 

1892    0.109 0.171 0.014  0.048  0.04   0.075 0.517    0.265 
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1893    0.168 0.083 0.012  0.019 0.543 0.063   0.102 0.454    0.602 

1894    0.054 0.104 0.023  0.032 0.515 0.071   0.145 0.242    0.395 

1895    0.022 0.061 0.078  0.016 0.212 0.02   0.027 0.674    0.449 

1896    0.087 0.096 0.03  0.016 0.251 0.039   0.023 0.121    0.338 

1897    0.031 0.064 0.024  0.058 0.188 0.021   0.068 0.133    0.834 

1898    0.017 0.019 0.034  0.04 0.099 0.073   0.055 0.214    0.124 

1899    0.079 0.111 0.022  0.018 0.118 0.016   0.116 0.067    0.12 

1900    0.053 0.024 0.027  0.026 0.17 0.026  0.316 0.028 0.027    0.282 

1901    0.101 0.034 0.052  0.052 0.098 0.047  0.705 0.079 0.022    0.402 

1902    0.024 0.08 0.02  0.016 0.132 0.052  0.181 0.092 0.055    0.103 

1903 0.369   0.025 0.047 0.009  0.013 0.169 0.038  0.242 0.041 0.019    0.146 

1904 0.774   0.006 0.148 0.031  0.04 0.185 0.039  0.368 0.032 0.039    0.069 

1905 0.836   0.049 0.046 0.021  0.036 0.201 0.041  0.434 0.111 0.058    0.096 

1906 1.086   0.026 0.042 0.019  0.027 0.121 0.059  0.204 0.03 0.016    0.083 

1907 0.126   0.013 0.017 0.021  0.028 0.18 0.058  0.182 0.026 0.054    0.209 

1908 1.02  0.259 0.053 0.02 0.015  0.03 0.119 0.046  0.1 0.146 0.025    0.099 

1909 0.23 0.318 0.561 0.022 0.055 0.021  0.049 0.273 0.022  0.201 0.045 0.04    0.108 

1910 0.582 1.378 0.471 0.03 0.041 0.021 0.376 0.03 0.18 0.021  0.102 0.027 0.03   0.205 0.071 

1911 0.354 0.685 0.452 0.056 0.125 0.021 0.468 0.056 0.095 0.016  0.052 0.046 0.025   0.205 0.076 

1912 0.313 0.415 0.601 0.019 0.061 0.03 0.534 0.027 0.053 0.048  0.068 0.032 0.022   0.299 0.075 

1913 0.2 0.563 0.068 0.028 0.011 0.063 0.43 0.06 0.075 0.021  0.086 0.096 0.03   0.468 0.031 

1914 0.28 0.207 0.389 0.061 0.017 0.015 0.118 0.065 0.082 0.033  0.105 0.055 0.067   0.687 0.128 

1915 0.051 0.347 0.067 0.01 0.073 0.016 0.184 0.046 0.055 0.051  0.06 0.031 0.026   0.732 0.026 

1916 0.178 0.179 0.093 0.006 0.02 0.018 0.312 0.038 0.543 0.025  0.092 0.029 0.027   0.236 0.028 

1917 0.278 0.135 0.034 0.019 0.032 0.08 0.22 0.018 0.515 0.018  0.081 0.027 0.169   0.047 0.147 

1918 0.043 0.09 0.071 0.151 0.043 0.027 0.229 0.022 0.212 0.051  0.035 0.034 0.027   0.094 0.016 

1919 0.112 0.237 0.132 0.027 0.04 0.026 0.133 0.017 0.251 0.043  0.058 0.061 0.018   0.075 0.027 

1920 0.032 0.139 0.049 0.026 0.036 0.03 0.107 0.046 0.188 0.045  0.047 0.078 0.023   0.482 0.164 
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1921 0.235 0.204 0.147 0.028 0.015 0.024 0.064 0.013 0.099 0.035  0.039 0.071 0.029   0.516 0.035 

1922 0.108 0.214 0.613 0.027 0.057 0.024 0.171 0.019 0.118 0.054  0.127 0.025 0.05   0.924 0.036 

1923 0.075 0.109 0.075 0.036 0.012 0.049 0.049 0.021 0.17 0.057  0.077 0.055 0.048   0.611 0.03 

1924 0.129 0.131 0.058 0.048 0.038 0.031 0.012 0.012 0.098 0.017  0.136 0.025 0.118   0.539 0.082 

1925 0.087 0.139 0.049 0.024 0.052 0.032 0.024 0.022 0.132 0.019  0.053 0.06 0.046   0.221 0.071 

1926 0.084 0.122 0.132 0.04 0.038 0.016 0.012 0.008 0.169 0.047  0.047 0.085 0.105   0.103 0.045 

1927 0.063 0.131 0.124 0.018 0.038 0.02 0.013 0.017 0.185 0.019  0.049 0.104 0.075   0.23 0.04 

1928 0.063 0.112 0.109 0.017 0.023 0.036 0.084 0.013 0.201 0.039  0.058 0.044 0.029   0.194 0.036 

1929 0.048 0.088 0.099 0.032 0.037 0.022 0.031 0.014 0.121 0.023  0.035 0.021 0.025   0.2 0.076 

1930 0.065 0.07 0.15 0.023 0.034 0.024 0.039 0.01 0.18 0.03  0.107 0.062 0.018   0.119 0.038 

1931 0.064 0.099 0.118 0.025 0.025 0.021 0.026 0.012 0.119 0.035  0.047 0.082 0.046   0.028 0.034 

1932 0.016 0.107 0.08 0.032 0.034 0.021 0.014 0.035 0.273 0.048  0.032 0.083 0.086   0.082 0.041 

1933 0.054 0.046 0.024 0.013 0.028 0.046 0.018 0.019 0.18 0.011  0.052 0.08 0.022   0.089 0.048 

1934 0.023 0.042 0.043 0.03 0.026 0.04 0.055 0.009 0.095 0.043  0.039 0.035 0.021   0.096 0.066 

1935 0.135 0.029 0.07 0.069 0.059 0.036 0.022 0.024 0.053 0.023  0.029 0.049 0.029   0.075 0.091 

1936 0.142 0.041 0.064 0.015 0.015 0.016 0.088 0.031 0.075 0.04  0.041 0.1 0.061   0.072 0.088 

1937 0.03 0.075 0.095 0.024 0.015 0.013 0.04 0.021 0.082 0.073  0.081 0.034 0.024   0.054 0.085 

1938 0.037 0.063 0.18 0.02 0.048 0.04 0.034 0.035 0.055 0.035  0.077 0.018 0.021   0.017 0.092 

1939 0.072 0.021 0.094 0.039 0.053 0.039 0.037 0.018 0.543 0.081  0.072 0.025 0.01   0.02 0.044 

1940 0.04 0.038 0.154 0.033 0.047 0.043 0.01 0.011 0.515 0.059  0.039 0.023 0.022   0.011 0.08 

1941 0.046 0.04 0.171 0.034 0.049 0.021 0.01 0.01 0.212 0.028  0.073 0.059 0.015   0.028 0.081 

1942 0.085 0.054 0.198 0.049 0.009 0.021 0.016 0.011 0.251 0.098  0.059 0.056 0.071   0.061 0.034 

1943 0.043 0.035 0.214 0.022 0.011 0.006 0.03 0.025 0.188 0.024  0.085 0.035 0.043   0.021 0.041 

1944 0.079 0.038 0.049 0.018 0.023 0.015 0.025 0.015 0.099 0.023  0.033 0.016 0.039   0.051 0.072 

1945 0.085 0.066 0.049 0.023 0.102 0.035 0.03 0.008 0.118 0.014  0.033 0.021 0.059   0.026 0.022 

1946 0.032 0.146 0.11 0.014 0.039 0.027 0.033 0.017 0.17 0.033  0.064 0.027 0.055   0.02 0.043 

1947 0.035 0.065 0.285 0.015 0.012 0.018 0.024 0.02 0.098 0.025  0.069 0.066 0.03  0.183 0.026 0.033 

1948 0.044 0.115 0.168 0.011 0.016 0.024 0.044 0.017 0.132 0.042  0.086 0.049 0.092  0.112 0.017 0.092 
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1949 0.057 0.062 0.02 0.033 0.017 0.017 0.022 0.017 0.169 0.023  0.058 0.038 0.025  0.193 0.02 0.031 

1950 0.056 0.022 0.059 0.007 0.049 0.02 0.03 0.009 0.185 0.037  0.027 0.031 0.025  0.19 0.03 0.023 

1951 0.05 0.019 0.029 0.009 0.033 0.016 0.015 0.005 0.201 0.016  0.022 0.043 0.016  0.14 0.028 0.014 

1952 0.023 0.035 0.031 0.023 0.01 0.028 0.013 0.015 0.121 0.014  0.078 0.05 0.048  0.11 0.067 0.033 

1953 0.016 0.038 0.209 0.014 0.021 0.011 0.031 0.042 0.18 0.022  0.022 0.014 0.062  0.361 0.035 0.049 

1954 0.036 0.04 0.056 0.014 0.018 0.034 0.094 0.013 0.119 0.019  0.018 0.032 0.06  0.557 0.031 0.066 

1955 0.076 0.046 0.059 0.029 0.041 0.016 0.023 0.027 0.273 0.015  0.019 0.077 0.021  0.636 0.012 0.074 

1956 0.049 0.047 0.101 0.028 0.029 0.007 0.012 0.016 0.18 0.033  0.045 0.012 0.034  0.638 0.042 0.031 

1957 0.062 0.035 0.07 0.017 0.018 0.021 0.021 0.019 0.095 0.026  0.031 0.024 0.02  0.375 0.034 0.075 

1958 0.047 0.028 0.026 0.009 0.01 0.014 0.042 0.028 0.053 0.029  0.029 0.033 0.067  0.318 0.025 0.043 

1959 0.044 0.031 0.026 0.043 0.015 0.018 0.03 0.008 0.075 0.01  0.021 0.022 0.047  0.248 0.023 0.043 

1960 0.029 0.03 0.072 0.017 0.033 0.013 0.023 0.012 0.082 0.022  0.022 0.028 0.027  0.19 0.031 0.032 

1961 0.069 0.039 0.05 0.02 0.016 0.032 0.024 0.013 0.055 0.012  0.031 0.017 0.033  0.138 0.036 0.018 

1962 0.045 0.03 0.046 0.015 0.021 0.01 0.016 0.012 0.543 0.029  0.035 0.015 0.036  0.077 0.041 0.032 

1963 0.046 0.048 0.042 0.009 0.016 0.008 0.022 0.018 0.515 0.011  0.023 0.022 0.033  0.101 0.041 0.051 

1964 0.031 0.031 0.059 0.029 0.033 0.008 0.01 0.02 0.212 0.024  0.037 0.061 0.018  0.142 0.023 0.087 

1965 0.031 0.046 0.031 0.021 0.032 0.007 0.033 0.011 0.251 0.029  0.026 0.087 0.036  0.11 0.051 0.033 

Year C4L43 C4L45 C4L72 C4L91 C4L103 C4L165 C4L75 C4L80 C4L87 C4L107 C4L73 C4L77 C4L104 C4L2 C4L48 C4L81 C4L102 C4L112 C4L113 C4L114 

1863           0.554          

1864           0.52          

1865           0.081          

1866           0.25          

1867           0.202          

1868           0.2          

1869           0.27          

1870           0.172          

1871           0.172          
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1872           0.125          

1873           0.19          

1874           0.043          

1875           0.114          

1876  0.365         0.076          

1877  0.395         0.03          

1878  0.254         0.064          

1879  0.588         0.025          

1880  0.422         0.042          

1881  0.369         0.074          

1882  0.278         0.065          

1883  0.258         0.041          

1884  0.266         0.041          

1885  0.103         0.064          

1886  0.095         0.068          

1887  0.178         0.151          

1888  0.038         0.067          

1889  0.043         0.041          

1890  0.089         0.054          

1891  0.09         0.051          

1892  0.104         0.023          

1893  0.113         0.106         0.235 

1894  0.052         0.039         0.21 

1895  0.037         0.036         0.527 

1896  0.021         0.038         0.731 

1897  0.03         0.024         0.799 

1898  0.023         0.022         0.191 

1899  0.02         0.049    0.622     0.491 



Reference List and Appendix 

252 

 

1900  0.031         0.048    0.362     0.259 

1901  0.051         0.05    0.441     0.133 

1902  0.023         0.062    0.556     0.102 

1903  0.026         0.06    0.343     0.376 

1904  0.021         0.042    0.145     0.102 

1905  0.023         0.03    0.461     0.139 

1906  0.028         0.028    0.475     0.1 

1907  0.021         0.096    0.186     0.058 

1908  0.021         0.078    0.211     0.033 

1909 0.694 0.04         0.031    0.164     0.063 

1910 0.095 0.05         0.043    0.096     0.034 

1911 0.117 0.038         0.018    0.204     0.062 

1912 0.621 0.092         0.043    0.13     0.051 

1913 0.426 0.034         0.04    0.076     0.04 

1914 0.467 0.029         0.022    0.121     0.034 

1915 0.291 0.023         0.006   0.593 0.097     0.06 

1916 0.61 0.044         0.019   0.756 0.049     0.045 

1917 0.092 0.02         0.018   0.394 0.122     0.075 

1918 0.032 0.031         0.039   0.55 0.056     0.022 

1919 0.157 0.042         0.019   0.155 0.144     0.017 

1920 0.242 0.048         0.029   0.389 0.059     0.048 

1921 0.095 0.034   0.587      0.028   0.452 0.054     0.087 

1922 0.092 0.021   0.556      0.029   0.159 0.052     0.034 

1923 0.048 0.033   0.479      0.041   0.327 0.031     0.029 

1924 0.053 0.018   0.245      0.032   0.071 0.016     0.048 

1925 0.058 0.05   0.355      0.037   0.081 0.067     0.043 

1926 0.15 0.028   0.186      0.061   0.118 0.015     0.084 

1927 0.03 0.03   0.792      0.013   0.103 0.07     0.031 
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1928 0.029 0.032   0.326      0.012   0.096 0.03     0.011 

1929 0.061 0.015   0.234      0.024   0.103 0.012     0.08 

1930 0.032 0.016   0.561      0.04   0.085 0.092     0.029 

1931 0.098 0.026   0.072      0.031   0.046 0.017     0.027 

1932 0.064 0.025   0.541      0.026   0.02 0.134     0.033 

1933 0.081 0.026   0.438      0.048   0.031 0.045     0.04 

1934 0.034 0.014   0.42      0.045   0.077 0.036     0.056 

1935 0.036 0.018   0.319      0.015   0.035 0.045     0.026 

1936 0.037 0.017   0.308      0.035   0.143 0.064     0.038 

1937 0.068 0.029   0.162      0.043   0.041 0.015 0.46    0.031 

1938 0.158 0.036   0.258      0.038   0.027 0.049 0.203    0.051 

1939 0.04 0.022   0.194      0.04   0.015 0.045 1.308    0.044 

1940 0.036 0.032   0.107      0.021   0.082 0.079 0.476    0.064 

1941 0.083 0.044   0.075     0.506 0.018   0.049 0.051 0.425    0.029 

1942 0.12 0.019   0.072     0.287 0.016   0.066 0.051 0.16    0.024 

1943 0.019 0.057   0.108     0.686 0.045   0.044 0.019 0.275    0.034 

1944 0.024 0.031   0.064     1 0.062   0.033 0.066 0.293    0.065 

1945 0.04 0.039   0.071     0.784 0.028   0.08 0.076 0.204    0.034 

1946 0.023 0.049   0.049     0.603 0.041   0.052 0.079 0.211    0.027 

1947 0.027 0.045   0.054     0.442 0.03   0.041 0.018 0.167    0.022 

1948 0.042 0.019   0.025  0.338   0.494 0.016   0.058 0.028 0.236    0.018 

1949 0.041 0.015   0.039  0.398   0.214 0.037   0.037 0.031 0.158    0.023 

1950 0.052 0.015   0.023  0.461   0.58 0.027   0.056 0.047 0.05    0.022 

1951 0.059 0.031   0.017  0.197   0.428 0.031   0.063 0.058 0.127    0.076 

1952 0.028 0.019   0.035  0.134   0.221 0.041   0.047 0.045 0.016    0.031 

1953 0.053 0.024 0.412  0.022  0.109   0.168 0.013   0.027 0.02 0.042    0.022 

1954 0.063 0.016 0.209  0.026  0.151   0.158 0.03   0.019 0.021 0.1    0.029 

1955 0.019 0.021 0.21  0.111  0.135   0.18 0.021   0.053 0.012 0.033    0.043 
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Appendix 11D: Raw GI data for site C6 
 
Year C6L6 C6L9 C6L11 C6L12 C6L15 C6L18 C6L51 C6L52 C6L53 C6L55 C6L57 C6L60 C6L65 C6L66 C6L83 C6L85 

1842      0.936           

1843      0.847           

1844      0.448           

1845      0.648           

1846      0.525           

1847      0.191  0.941         

1848      0.253  0.635         

1849      0.083  0.396         

1850   1.094   0.355  0.483         

1851   1.131   0.153  0.477         

1852   1.041   0.06  0.248         

1853   0.822   0.158  0.215         

1854   0.38   0.172  0.284         

1855   0.534   0.175  0.236         

1956 0.016 0.025 0.485  0.09  0.126   0.26 0.038   0.064 0.013 0.041    0.034 

1957 0.041 0.02 0.554  0.039  0.117   0.171 0.02   0.038 0.063 0.052    0.044 

1958 0.047 0.024 1.128  0.012  0.051   0.098 0.015   0.025 0.03 0.081    0.04 

1959 0.085 0.017 0.194 0.152 0.013  0.096   0.17 0.012   0.025 0.033 0.07    0.023 

1960 0.042 0.028 0.469 0.582 0.1  0.103   0.153 0.022   0.028 0.033 0.114    0.047 

1961 0.041 0.017 0.422 0.589 0.026  0.042   0.085 0.013   0.029 0.036 0.064    0.037 

1962 0.036 0.024 0.15 0.285 0.021  0.052   0.074 0.024   0.072 0.055 0.044    0.027 

1963 0.039 0.009 0.22 0.254 0.012  0.031   0.044 0.03   0.022 0.041 0.076    0.026 

1964 0.048 0.023 0.161 0.312 0.035  0.049   0.044 0.015   0.049 0.04 0.084    0.02 

1965 0.041 0.032 0.142 0.487 0.023  0.027   0.079 0.031   0.038 0.02 0.048    0.016 
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1856   0.334   0.179  0.277         

1857   0.376   0.153  0.157         

1858   0.175   0.141  0.133         

1859   0.256   0.088  0.192         

1860   0.344   0.114  0.129         

1861   0.298   0.055  0.057         

1862   0.122   0.049  0.116         

1863   0.126   0.022  0.082         

1864   0.087   0.036  0.134         

1865   0.057   0.062  0.173         

1866   0.07   0.01  0.092         

1867   0.107   0.077  0.097         

1868   0.032   0.069  0.125         

1869   0.112   0.128  0.154         

1870   0.038   0.015  0.043         

1871   0.033   0.017  0.041         

1872   0.036   0.041  0.02         

1873   0.047   0.027  0.059         

1874   0.109   0.011  0.045         

1875   0.102   0.012  0.042 0.225        

1876   0.045   0.063  0.073 0.169        

1877   0.024   0.047  0.045 0.156        

1878   0.016   0.02  0.038 0.117  0.763      

1879  0.738 0.077   0.015  0.066 0.064  0.839      

1880  1.07 0.041   0.042  0.032 0.36  0.988      

1881  1.133 0.077   0.016  0.02 0.336  0.407      

1882  0.398 0.089   0.055  0.025 0.246  0.43      

1883  0.581 0.089  0.449 0.03  0.015 0.186  0.379      
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1884  0.471 0.099  0.419 0.047  0.038 0.039  0.403      

1885  0.445 0.075  0.259 0.046  0.07 0.035 0.69 0.278      

1886  0.224 0.089  0.276 0.012  0.048 0.221 0.381 0.196      

1887  0.391 0.047  0.326 0.034  0.043 0.082 0.315 0.364      

1888  0.302 0.052  0.208 0.039  0.046 0.077 0.206 0.275      

1889  0.192 0.099  0.163 0.02  0.056 0.124 0.234 0.213      

1890  0.252 0.026  0.285 0.009  0.04 0.151 0.127 0.095      

1891  0.287 0.043  0.185 0.017  0.033 0.113 0.234 0.156      

1892  0.082 0.017  0.214 0.01  0.018 0.044 0.11 0.037      

1893  0.078 0.01  0.166 0.016  0.012 0.058 0.012 0.134      

1894  0.16 0.035  0.225 0.022  0.014 0.104 0.092 0.038      

1895  0.194 0.054  0.081 0.011  0.03 0.063 0.017 0.07      

1896  0.157 0.024  0.188 0.024  0.028 0.103 0.106 0.103      

1897  0.19 0.031  0.095 0.046  0.019 0.061 0.106 0.226      

1898  0.098 0.076  0.157 0.009  0.026 0.085 0.103 0.144      

1899  0.229 0.055  0.097 0.026  0.026 0.069 0.015 0.148      

1900  0.136 0.022  0.09 0.037  0.02 0.068 0.083 0.066      

1901  0.083 0.058  0.051 0.014  0.019 0.057 0.087 0.082      

1902  0.077 0.054  0.06 0.015  0.033 0.078 0.03 0.087 0.475     

1903  0.053 0.052  0.055 0.017  0.029 0.052 0.027 0.166 0.438     

1904  0.088 0.027  0.036 0.037 0.882 0.034 0.025 0.019 0.076 0.461     

1905  0.077 0.072  0.092 0.034 0.581 0.031 0.049 0.097 0.075 0.56     

1906  0.058 0.013  0.04 0.027 0.506 0.031 0.063 0.022 0.065 0.254     

1907  0.021 0.016  0.096 0.018 0.483 0.015 0.025 0.022 0.059 0.254     

1908  0.058 0.032  0.069 0.014 0.478 0.024 0.046 0.025 0.031 0.373     

1909  0.044 0.038  0.015 0.025 0.313 0.021 0.099 0.021 0.092 0.148     

1910  0.043 0.025  0.027 0.025 0.011 0.048 0.051 0.167 0.061 0.189     
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Year C6L104 C6L118 C6L98 C6L103 C6L111 C6L80 C6L92 C6L97 C6L107 C6L112 C6L113 C6L115 C6L116 C6L71 C6L99 C6L5 C6L63 C6L68 

1807        0.701           

1808        0.814           

1809        0.95           

1810        0.917           

1811        0.273           

1812        0.317           

1813        0.2           

1814        0.424           

1815        0.288           

1816        0.21           

1817        0.201           

1818        0.222           

1819        0.223           

1820        0.244           

1821        0.24           

1822        0.102           

1823        0.14           

1824        0.065  0.919         

1825        0.065  0.95         

1826        0.089  1.02         

1827 0.529       0.033  0.543         

1828 0.382       0.065  0.078         

1829 0.267       0.083  0.537         

1830 0.213       0.033  0.112         

1831 0.38       0.024  0.248         

1832 0.199       0.044  0.077         

1833 0.145       0.058  0.12         

1834 0.205       0.068  0.07         

1835 0.152       0.027  0.162         
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1836 0.168       0.048  0.212         

1837 0.077       0.072  0.166         

1838 0.169       0.016  0.219         

1839 0.139       0.019  0.145         

1840 0.045       0.018  0.155         

1841 0.093       0.03  0.072         

1842 0.091       0.046  0.11         

1843 0.067       0.015  0.042         

1844 0.074       0.048  0.042         

1845 0.146       0.045  0.059 0.689        

1846 0.077       0.036  0.06 0.956        

1847 0.04       0.017  0.017 0.935        

1848 0.112       0.04  0.04 0.916        

1849 0.045       0.073  0.019 0.435        

1850 0.089       0.044  0.021 0.126        

1851 0.068       0.038  0.029 0.363        

1852 0.029       0.05  0.036 0.114        

1853 0.017       0.06  0.035 0.18        

1854 0.061       0.048  0.05 0.172        

1855 0.084       0.034  0.015 0.061        

1856 0.056       0.014  0.013 0.067        

1857 0.043       0.012  0.018 0.198        

1858 0.033       0.019  0.019 0.116        

1859 0.041       0.012  0.022 0.126        

1860 0.015       0.028  0.037 0.052        

1861 0.053       0.027  0.01 0.022        

1862 0.043       0.019  0.014 0.123        

1863 0.017    0.404   0.032  0.012 0.054        
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1864 0.028    1.05   0.036  0.026 0.052        

1865 0.023    0.771   0.019  0.023 0.057        

1866 0.032    0.274   0.018  0.031 0.085        

1867 0.031    0.198   0.038  0.017 0.094        

1868 0.034    0.433   0.048  0.013 0.083        

1869 0.036    0.184   0.019  0.015 0.057        

1870 0.02    0.199   0.021  0.011 0.089        

1871 0.034    0.18   0.012  0.007 0.035        

1872 0.017    0.111   0.029  0.008 0.014        

1873 0.009    0.133   0.027  0.025 0.021        

1874 0.039    0.105   0.012  0.062 0.016        

1875 0.035    0.099   0.015  0.01 0.01        

1876 0.037    0.033   0.028  0.013 0.024        

1877 0.059    0.138   0.05  0.039 0.028        

1878 0.017    0.146   0.027  0.036 0.044        

1879 0.009    0.071   0.029  0.01 0.029        

1880 0.031    0.07   0.014  0.013 0.022        

1881 0.013    0.068   0.015  0.021 0.013        

1882 0.022    0.031   0.036  0.024 0.029        

1883 0.018    0.036   0.014  0.027 0.044        

1884 0.022    0.037   0.025  0.015 0.033        

1885 0.018    0.032   0.011  0.025 0.039        

1886 0.016    0.021   0.016  0.019 0.015        

1887 0.016    0.034   0.023  0.019 0.013        

1888 0.021    0.039   0.012  0.013 0.025        

1889 0.018    0.054   0.031 0.36 0.05 0.021    0.435    

1890 0.015    0.026   0.029 0.386 0.034 0.033    0.571    

1891 0.013    0.049   0.019 0.635 0.011 0.023    0.594    



Reference List and Appendix 

260 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Appendix 11E: Raw GI data for site C7 
 
Year C7L136 C7L69 C7L49 C7L30 C7L7 C7L108 C7L113 C7L38 C7L103 C7L8 C7L12 C7L74 C7L92 C7L95 C7L158 C7L58 

1870         0.24        

1871         0.6        

1872         0.45        

1873         0.112        

1874         0.137        

1875         0.065        

1892 0.03    0.035   0.02 0.468 0.038 0.025    0.197    

1893 0.027    0.037   0.03 0.358 0.036 0.012    0.444    

1894 0.011    0.064   0.028 0.362 0.021 0.023    0.571    

1895 0.028    0.025   0.026 0.598 0.01 0.041    0.443    

1896 0.037    0.059   0.015 0.137 0.024 0.033    0.495    

1897 0.013    0.02   0.022 0.482 0.008 0.01    0.382    

1898 0.022    0.057   0.008 0.665 0.023 0.04    0.323    

1899 0.031    0.032   0.014 0.471 0.012 0.021    0.246    

1900 0.026    0.047   0.01 0.36 0.028 0.04    0.259    

1901 0.031    0.076   0.016 0.313 0.012 0.013    0.271    

1902 0.037    0.025   0.009 0.159 0.021 0.014    0.124    

1903 0.017    0.012   0.009 0.052 0.012 0.016    0.224    

1904 0.052    0.045   0.008 0.477 0.029 0.013    0.154    

1905 0.015    0.046   0.009 0.154 0.009 0.01    0.338    

1906 0.059    0.031   0.03 0.132 0.021 0.012    0.167    

1907 0.02    0.028   0.023 0.128 0.008 0.029    0.06    

1908 0.011    0.033   0.022 0.049 0.022 0.018    0.075    

1909 0.024    0.062   0.022 0.029 0.015 0.013    0.116    

1910 0.033    0.058   0.022 0.078 0.022 0.016    0.135    
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1876         0.039        

1877         0.188        

1878         0.198        

1879         0.213        

1880         0.305        

1881         0.067        

1882         0.094        

1883         0.053        

1884         0.053        

1885         0.044        

1886         0.052        

1887         0.022        

1888         0.032       0.463 

1889         0.134      0.077 0.414 

1890         0.046      0.449 0.73 

1891         0.105      0.165 0.092 

1892         0.012      0.271 0.482 

1893         0.013      0.285 0.417 

1894         0.048      0.353 0.193 

1895         0.074      0.067 0.13 

1896         0.117      0.05 0.578 

1897         0.046      0.094 0.629 

1898         0.102      0.11 0.706 

1899         0.112      0.151 0.234 

1900         0.062      0.08 0.115 

1901  0.61       0.021      0.154 0.236 

1902  0.48       0.112      0.142 0.163 

1903  0.182       0.011      0.108 0.215 

1904  0.154       0.012      0.067 0.096 

1905  0.332       0.026      0.067 0.12 

1906  0.156       0.082      0.063 0.104 

1907  0.375       0.1      0.13 0.033 
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1908  0.208       0.01      0.051 0.042 

1909  0.045       0.036      0.206 0.076 

1910  0.219       0.038      0.028 0.059 

1911  0.121   0.652 0.683   0.037      0.156 0.059 

1912  0.235   0.343 0.712   0.059    0.177  0.065 0.034 

1913  0.304   0.48 0.355   0.01    0.535  0.052 0.037 

1914  0.119   0.196 0.39   0.047    0.221  0.069 0.096 

1915  0.188   0.228 0.686   0.062    0.832  0.039 0.085 

1916  0.2   0.266 0.532   0.034  0.156  0.331  0.059 0.058 

1917  0.252   0.152 0.66   0.018  0.544  0.316  0.027 0.091 

1918  0.182   0.205 0.265   0.049  0.168  0.303  0.027 0.05 

1919  0.081   0.096 0.326   0.066  0.574  0.3  0.03 0.033 

1920  0.023   0.046 0.29  1.006 0.034  0.231  0.137  0.02 0.086 

1921  0.15   0.031 0.071  0.685 0.012  0.278 0.519 0.165  0.022 0.179 

1922  0.026   0.048 0.117  0.454 0.024  0.543 0.287 0.143  0.068 0.188 

1923  0.021   0.045 0.033  0.305 0.04  0.609 0.17 0.078  0.039 0.104 

1924  0.081   0.047 0.179  0.414 0.027  0.752 0.292 0.087  0.037 0.176 

1925  0.047   0.036 0.064  0.707 0.01  0.258 0.359 0.131  0.042 0.018 

1926  0.087   0.026 0.133  0.255 0.025  0.334 0.069 0.108  0.024 0.008 

1927  0.011   0.036 0.131  0.152 0.017  0.242 0.222 0.09  0.025 0.019 

1928  0.069   0.051 0.083  0.095 0.014  0.126 0.044 0.114  0.024 0.021 

1929  0.034   0.044 0.072  0.107 0.02  0.229 0.192 0.046  0.024 0.025 

1930  0.075   0.037 0.182  0.098 0.01  0.124 0.317 0.122  0.102 0.025 

1931  0.019   0.034 0.067  0.097 0.048 0.607 0.161 0.057 0.107  0.082 0.017 

1932  0.129   0.05 0.151  0.03 0.015 0.824 0.151 0.152 0.112  0.064 0.017 

1933  0.01   0.015 0.115  0.142 0.034 0.222 0.268 0.15 0.097  0.047 0.016 

1934  0.032   0.053 0.186  0.038 0.037 0.319 0.205 0.186 0.149 0.246 0.064 0.013 

1935  0.064   0.111 0.066  0.093 0.009 0.558 0.196 0.083 0.063 1.153 0.077 0.017 

1936  0.018   0.058 0.063  0.073 0.051 0.781 0.231 0.174 0.031 0.628 0.038 0.01 

1937  0.018   0.036 0.224  0.04 0.017 0.471 0.198 0.046 0.034 0.163 0.044 0.035 

1938  0.022   0.054 0.123  0.124 0.025 0.544 0.27 0.041 0.035 0.368 0.135 0.026 

1939  0.009   0.062 0.084  0.114 0.012 0.299 0.051 0.05 0.031 0.329 0.039 0.033 
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1940  0.013   0.032 0.084  0.059 0.04 0.194 0.092 0.051 0.037 0.164 0.022 0.029 

1941  0.047   0.05 0.098  0.092 0.01 0.172 0.076 0.019 0.031 0.296 0.024 0.013 

1942  0.011   0.055 0.048  0.054 0.026 0.139 0.11 0.037 0.018 0.199 0.042 0.013 

1943  0.118   0.039 0.039  0.031 0.019 0.078 0.043 0.026 0.029 0.114 0.017 0.029 

1944  0.045   0.024 0.036  0.043 0.011 0.086 0.044 0.009 0.017 0.109 0.019 0.014 

1945  0.037   0.032 0.027  0.032 0.01 0.043 0.033 0.018 0.025 0.174 0.041 0.013 

1946  0.017   0.025 0.067 0.104 0.046 0.012 0.117 0.042 0.025 0.038 0.036 0.027 0.02 

1947  0.007   0.044 0.024 0.211 0.031 0.03 0.074 0.034 0.017 0.027 0.116 0.019 0.01 

1948  0.013   0.035 0.025 0.45 0.024 0.012 0.093 0.03 0.041 0.027 0.104 0.042 0.024 

1949  0.008   0.035 0.016 0.35 0.017 0.01 0.057 0.034 0.02 0.029 0.114 0.048 0.017 

1950  0.029   0.07 0.048 0.453 0.048 0.014 0.024 0.033 0.031 0.035 0.142 0.016 0.01 

1951  0.023   0.021 0.045 0.344 0.028 0.021 0.106 0.018 0.12 0.026 0.266 0.015 0.021 

1952  0.012   0.03 0.039 0.315 0.042 0.011 0.02 0.124 0.037 0.073 0.058 0.034 0.036 

1953  0.023   0.044 0.03 0.22 0.142 0.025 0.242 0.03 0.018 0.018 0.024 0.074 0.04 

1954  0.069   0.068 0.081 0.026 0.021 0.015 0.097 0.026 0.014 0.037 0.022 0.065 0.014 

1955  0.04   0.01 0.137 0.102 0.034 0.02 0.088 0.038 0.018 0.021 0.015 0.045 0.131 

1956  0.018   0.034 0.036 0.083 0.012 0.014 0.066 0.031 0.021 0.02 0.06 0.037 0.072 

1957  0.011   0.023 0.049 0.12 0.021 0.074 0.076 0.056 0.013 0.022 0.025 0.029 0.041 

1958  0.011   0.029 0.064 0.057 0.014 0.015 0.079 0.039 0.07 0.031 0.019 0.022 0.03 

1959  0.006   0.025 0.036 0.049 0.012 0.016 0.078 0.037 0.042 0.046 0.044 0.037 0.027 

1960  0.025   0.041 0.052 0.113 0.022 0.015 0.123 0.036 0.029 0.033 0.027 0.028 0.023 

1961  0.036   0.031 0.052 0.104 0.072 0.014 0.114 0.015 0.029 0.011 0.03 0.018 0.021 

1962  0.009   0.043 0.056 0.136 0.035 0.027 0.084 0.036 0.05 0.049 0.039 0.018 0.046 

1963  0.041   0.033 0.058 0.061 0.042 0.019 0.037 0.031 0.049 0.013 0.028 0.052 0.042 

1964  0.011   0.059 0.059 0.135 0.039 0.022 0.029 0.026 0.02 0.032 0.037 0.028 0.059 

1965  0.032   0.043 0.068 0.036 0.061 0.02 0.037 0.02 0.05 0.038 0.134 0.031 0.049 

1966  0.022   0.013 0.03 0.104 0.038 0.015 0.02 0.019 0.017 0.022 0.029 0.038 0.009 

1967  0.005   0.027 0.026 0.065 0.022 0.013 0.072 0.03 0.03 0.033 0.02 0.026 0.025 

1968  0.013   0.013 0.023 0.035 0.039 0.027 0.079 0.027 0.014 0.022 0.024 0.024 0.028 

1969  0.011 0.471  0.025 0.028 0.066 0.031 0.031 0.026 0.019 0.015 0.034 0.015 0.019 0.035 

1970  0.016 0.923  0.023 0.045 0.076 0.012 0.032 0.056 0.024 0.009 0.015 0.015 0.05 0.012 

1971  0.012 0.588  0.024 0.039 0.105 0.021 0.044 0.066 0.031 0.009 0.017 0.038 0.013 0.044 
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1972  0.016 0.823  0.015 0.029 0.023 0.03 0.023 0.046 0.015 0.014 0.017 0.046 0.02 0.009 

1973  0.047 0.776  0.021 0.032 0.03 0.023 0.03 0.035 0.032 0.031 0.019 0.057 0.021 0.011 

1974  0.02 0.702  0.018 0.033 0.075 0.009 0.014 0.031 0.026 0.024 0.019 0.034 0.013 0.044 

1975  0.01 0.553  0.022 0.052 0.091 0.008 0.017 0.032 0.014 0.012 0.025 0.024 0.035 0.02 

1976  0.024 0.532  0.017 0.026 0.141 0.016 0.036 0.017 0.025 0.03 0.014 0.038 0.028 0.008 

1977  0.016 0.418  0.02 0.053 0.023 0.036 0.028 0.02 0.039 0.019 0.013 0.033 0.033 0.021 

1978  0.014 0.399  0.02 0.028 0.025 0.018 0.033 0.014 0.035 0.013 0.02 0.019 0.018 0.026 

1979  0.017 0.303  0.014 0.019 0.013 0.035 0.029 0.024 0.021 0.022 0.023 0.012 0.021 0.013 

1980  0.01 0.378  0.011 0.029 0.023 0.012 0.008 0.063 0.018 0.013 0.018 0.012 0.033 0.017 

1981  0.012 0.185  0.012 0.049 0.029 0.012 0.022 0.072 0.027 0.021 0.013 0.017 0.02 0.018 

1982  0.009 0.258  0.013 0.037 0.077 0.019 0.012 0.09 0.016 0.008 0.009 0.017 0.011 0.032 

1983  0.009 0.267  0.017 0.028 0.016 0.014 0.006 0.046 0.027 0.005 0.015 0.011 0.01 0.048 

1984  0.008 0.2 0.317 0.021 0.046 0.086 0.024 0.01 0.034 0.034 0.004 0.013 0.011 0.018 0.04 

1985  0.016 0.149 0.512 0.022 0.029 0.057 0.01 0.006 0.061 0.022 0.01 0.013 0.03 0.015 0.044 

1986  0.019 0.134 0.444 0.031 0.034 0.03 0.027 0.008 0.046 0.036 0.025 0.027 0.023 0.032 0.047 

1987 0.292 0.012 0.108 0.343 0.013 0.04 0.06 0.025 0.01 0.023 0.061 0.02 0.018 0.037 0.009 0.039 

1988 0.226 0.026 0.092 0.309 0.027 0.029 0.059 0.049 0.014 0.092 0.028 0.02 0.011 0.024 0.043 0.029 

1989 0.317 0.019 0.063 0.638 0.028 0.024 0.116 0.019 0.013 0.067 0.034 0.03 0.02 0.011 0.024 0.054 

1990 0.32 0.016 0.016 0.442 0.049 0.027 0.026 0.033 0.031 0.022 0.034 0.021 0.019 0.015 0.022 0.068 

1991 0.553 0.011 0.067 0.163 0.056 0.049 0.054 0.051 0.015 0.018 0.03 0.013 0.019 0.017 0.019 0.067 

1992 0.338 0.04 0.044 0.243 0.026 0.032 0.019 0.038 0.011 0.024 0.017 0.028 0.016 0.015 0.014 0.086 

1993 0.257 0.008 0.107 0.189 0.021 0.047 0.013 0.028 0.035 0.059 0.022 0.01 0.026 0.018 0.033 0.041 

1994 0.312 0.025 0.071 0.614 0.026 0.039 0.018 0.014 0.02 0.041 0.019 0.045 0.031 0.032 0.015 0.018 

1995 0.567 0.012 0.068 0.37 0.015 0.064 0.041 0.013 0.019 0.032 0.017 0.013 0.008 0.053 0.022 0.02 

1996 0.211 0.026 0.045 1.007 0.029 0.038 0.02 0.005 0.01 0.041 0.027 0.01 0.021 0.011 0.025 0.017 

1997 0.46 0.018 0.056 0.726 0.015 0.036 0.016 0.014 0.016 0.031 0.026 0.006 0.011 0.012 0.034 0.025 

1998 0.318 0.018 0.067 0.39 0.022 0.039 0.025 0.009 0.01 0.054 0.014 0.007 0.022 0.055 0.026 0.025 

1999 0.529 0.011 0.059 0.255 0.016 0.059 0.019 0.008 0.02 0.023 0.02 0.009 0.012 0.014 0.015 0.027 

2000 0.121 0.012 0.072 0.571 0.01 0.031 0.024 0.022 0.014 0.034 0.01 0.013 0.009 0.018 0.006 0.026 

2001 0.112 0.015 0.046 0.361 0.011 0.043 0.035 0.007 0.014 0.024 0.022 0.009 0.012 0.034 0.019 0.014 

2002 0.032 0.011 0.093 0.241 0.014 0.113 0.036 0.012 0.007 0.035 0.014 0.023 0.02 0.039 0.013 0.026 

2003 0.054 0.01 0.072 0.562 0.014 0.037 0.01 0.013 0.013 0.048 0.011 0.009 0.028 0.033 0.037 0.031 



Reference List and Appendix 

265 

 

2004 0.031 0.021 0.054 0.185 0.006 0.049 0.027 0.01 0.007 0.023 0.014 0.013 0.026 0.031 0.006 0.019 

2005 0.078 0.021 0.044 0.035 0.01 0.038 0.01 0.014 0.016 0.027 0.007 0.008 0.019 0.055 0.005 0.036 

2006 0.032 0.039 0.031 0.038 0.011 0.015 0.033 0.009 0.02 0.054 0.014 0.029 0.01 0.008 0.006 0.011 

2007 0.071 0.018 0.037 0.087 0.022 0.017 0.01 0.009 0.008 0.009 0.007 0.006 0.012 0.009 0.013 0.028 

2008  0.009 0.022 0.03 0.015 0.018 0.014 0.021 0.014 0.026 0.014 0.013 0.012 0.038 0.018 0.021 

 
Year C7L3 C7L6 C7L14 C7L16 C7L47 C7L48 C7L56 C7L61 C7L62 C7L66 C7L67 C7L77 C7L83 C7L10 C7L12 C7L110 C7L119 C7L120 

1825        0.15           

1826        0.087           

1827        0.11           

1828        0.06           

1829        0.026           

1830        0.005           

1831        0.03           

1832        0.051           

1833        0.043           

1834        0.026           

1835        0.011           

1836        0.053           

1837        0.047           

1838        0.051 0.058          

1839        0.012 0.3          

1840        0.127 0.048          

1841        0.065 0.1          

1842        0.08 0.38          

1843        0.014 0.177          

1844        0.047 0.279          

1845        0.042 0.098          

1846        0.005 0.125          
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1847        0.017 0.178          

1848        0.03 0.125          

1849        0.038 0.027          

1850        0.008 0.021          

1851        0.018 0.029          

1852        0.014 0.056          

1853        0.025 0.192          

1854        0.01 0.012          

1855        0.036 0.045          

1856        0.009 0.012          

1857        0.084 0.04          

1858        0.01 0.031          

1859        0.063 0.007          

1860        0.079 0.052          

1861        0.068 0.07          

1862        0.018 0.012          

1863        0.03 0.025          

1864        0.019 0.025          

1865        0.008 0.073          

1866        0.015 0.066          

1867        0.048 0.054          

1868        0.024 0.026          

1869    0.335    0.02 0.009          

1870    0.656    0.06 0.074          

1871    0.491    0.012 0.103          

1872    0.294    0.014 0.042          

1873    0.436    0.022 0.088          

1874    0.407    0.012 0.038          
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1875    0.435    0.03 0.034          

1876    0.162    0.012 0.012          

1877    0.049    0.075 0.046          

1878    0.136    0.034 0.016          

1879    0.186    0.03 0.011          

1880    0.083    0.051 0.014          

1881    0.065    0.021 0.007          

1882    0.059    0.032 0.057          

1883    0.137    0.055 0.01          

1884    0.057    0.011 0.029          

1885    0.099    0.02 0.013          

1886    0.117    0.03 0.055          

1887    0.099    0.039 0.006     0.309     

1888    0.172    0.063 0.089     0.162     

1889    0.044    0.027 0.011     0.13     

1890    0.181    0.013 0.061     0.163     

1891    0.177    0.033 0.014     0.232     

1892    0.17    0.033 0.013     0.087     

1893    0.155    0.009 0.071   0.855  0.211     

1894    0.192    0.008 0.047   0.958  0.151 0.257    

1895    0.042    0.012 0.047   0.822  0.046 0.118    

1896    0.023    0.018 0.062   0.384  0.039 0.392    

1897    0.045    0.017 0.009   0.185  0.087 0.616    

1898    0.072    0.008 0.012   0.514  0.041 0.41    

1899    0.1    0.024 0.032   0.203  0.044 0.471    

1900    0.097    0.009 0.055   0.398  0.097 0.288    

1901    0.03    0.012 0.017  0.068 0.319  0.18 0.211    

1902    0.076    0.008 0.021  0.038 0.315  0.052 0.19    
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1903    0.03    0.04 0.026  0.115 0.179  0.156 0.118    

1904    0.068    0.026 0.05  0.073 0.288  0.166 0.264    

1905    0.063    0.012 0.051  0.174 0.107  0.246 0.16    

1906    0.043    0.025 0.026  0.133 0.089  0.116 0.124    

1907    0.033    0.011 0.024  0.149 0.083  0.269 0.158    

1908    0.062    0.023 0.011  0.055 0.183  0.025 0.14    

1909    0.061    0.015 0.01  0.151 0.126  0.083 0.053    

1910  0.077  0.029    0.017 0.021  0.01 0.107  0.02 0.045    

1911  0.256  0.032    0.017 0.044  0.078 0.055  0.075 0.031    

1912  0.051  0.012    0.045 0.004  0.02 0.083  0.012 0.088    

1913  0.183  0.013    0.016 0.013  0.059 0.097  0.063 0.083    

1914  0.111  0.095    0.014 0.013  0.045 0.153  0.038 0.091    

1915  0.151  0.151    0.011 0.013  0.034 0.074  0.035 0.046    

1916  0.093  0.039    0.028 0.015  0.027 0.109  0.036 0.078    

1917  0.582  0.027    0.01 0.021  0.019 0.085  0.034 0.018    

1918  0.139  0.013    0.011 0.008  0.016 0.103  0.007 0.051    

1919  0.378  0.032    0.005 0.008  0.014 0.129  0.026 0.061    

1920  0.39  0.058    0.01 0.017  0.038 0.058  0.035 0.055    

1921  0.7  0.055    0.007 0.015  0.012 0.048  0.022 0.02    

1922  0.269  0.055    0.014 0.011  0.105 0.09  0.008 0.023    

1923  0.662  0.063   0.372 0.01 0.02  0.051 0.063  0.01 0.033    

1924  0.068  0.077   0.469 0.007 0.03  0.026 0.119  0.028 0.034    

1925  0.18  0.061   0.663 0.015 0.016  0.019 0.061  0.014 0.009    

1926  0.154  0.058   0.163 0.02 0.012  0.037 0.112  0.051 0.007    

1927  0.052  0.013   0.108 0.006 0.027  0.123 0.06  0.014 0.033    

1928  0.136  0.023   0.616 0.077 0.032  0.099 0.048  0.038 0.04    

1929  0.056  0.032   0.23 0.013 0.02  0.102 0.058  0.01 0.009    

1930  0.087  0.021   0.515 0.005 0.016  0.068 0.041  0.049 0.03    
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1931  0.109  0.023   0.292 0.009 0.037  0.076 0.042  0.158 0.12    

1932  0.093  0.033   0.149 0.008 0.015  0.06 0.081  0.041 0.023    

1933  0.085  0.076   0.127 0.008 0.02  0.003 0.063  0.044 0.026    

1934  0.059  0.06   0.22 0.015 0.006  0.008 0.054  0.021 0.029    

1935  0.037  0.016   0.236 0.02 0.01  0.088 0.07  0.016 0.028    

1936  0.048  0.011   0.167 0.016 0.011  0.016 0.056  0.024 0.029    

1937  0.077  0.033  0.474 0.067 0.036 0.011  0.124 0.045  0.027 0.04    

1938  0.04  0.05  0.345 0.072 0.012 0.009  0.061 0.06  0.008 0.038    

1939  0.058  0.043  0.329 0.089 0.006 0.016  0.026 0.078  0.029 0.012    

1940  0.051  0.017  0.062 0.048 0.022 0.01  0.06 0.018  0.013 0.059    

1941  0.237  0.012  0.131 0.047 0.006 0.023  0.013 0.054  0.018 0.006    

1942  0.047  0.028  0.158 0.14 0.018 0.004  0.029 0.036  0.031 0.034    

1943  0.036  0.051  0.093 0.098 0.015 0.008  0.06 0.045  0.037 0.036    

1944  0.076  0.006  0.142 0.072 0.019 0.015  0.066 0.037  0.042 0.032    

1945 0.44 0.036  0.019  0.176 0.212 0.009 0.008  0.068 0.071  0.018 0.04    

1946 0.264 0.025  0.018  0.062 0.079 0.009 0.082  0.045 0.045  0.012 0.02    

1947 0.249 0.026  0.027  0.146 0.085 0.026 0.011  0.104 0.036  0.042 0.012    

1948 0.171 0.089  0.053  0.202 0.109 0.021 0.009  0.05 0.043  0.026 0.025    

1949 0.197 0.086  0.019  0.623 0.052 0.006 0.005  0.065 0.031  0.014 0.033    

1950 0.078 0.1  0.005  0.063 0.086 0.012 0.01  0.039 0.045  0.009 0.02    

1951 0.078 0.057  0.046  0.24 0.049 0.01 0.011  0.017 0.034  0.034 0.028    

1952 0.277 0.074  0.025  0.096 0.074 0.004 0.009  0.007 0.049  0.014 0.029    

1953 0.077 0.065  0.011  0.322 0.053 0.01 0.015  0.019 0.026  0.034 0.022    

1954 0.045 0.043  0.04  0.265 0.029 0.015 0.04  0.045 0.069  0.048 0.026    

1955 0.325 0.045  0.014  0.123 0.038 0.014 0.026 0.129 0.007 0.033  0.008 0.025    

1956 0.112 0.017  0.041  0.141 0.033 0.014 0.018 0.06 0.006 0.014  0.022 0.01    

1957 0.287 0.008  0.014  0.103 0.059 0.016 0.013 0.032 0.019 0.047  0.033 0.026    

1958 0.293 0.007  0.019  0.319 0.105 0.037 0.008 0.102 0.018 0.035  0.023 0.014    
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1959 0.215 0.005  0.013  0.29 0.029 0.006 0.007 0.242 0.061 0.041  0.011 0.022    

1960 0.211 0.028  0.016  0.153 0.018 0.026 0.009 0.065 0.05 0.029  0.039 0.015    

1961 0.054 0.004  0.016  0.117 0.022 0.008 0.025 0.229 0.012 0.032  0.008 0.008    

1962 0.037 0.009  0.03  0.083 0.016 0.014 0.015 0.035 0.011 0.035  0.01 0.017    

1963 0.178 0.017  0.022  0.278 0.02 0.017 0.019 0.047 0.01 0.035  0.057 0.021    

1964 0.029 0.022  0.04  0.092 0.018 0.014 0.008 0.429 0.038 0.036  0.02 0.015    

1965 0.085 0.029  0.03  0.143 0.018 0.021 0.006 0.051 0.01 0.016  0.015 0.017    

1966 0.077 0.034  0.017  0.205 0.034 0.019 0.009 0.098 0.025 0.032  0.048 0.027    

1967 0.093 0.017  0.045  0.069 0.025 0.003 0.006 0.034 0.012 0.04  0.006 0.019    

1968 0.109 0.042  0.045  0.127 0.012 0.006 0.008 0.115 0.02 0.032  0.025 0.011    

1969 0.171 0.019  0.008  0.08 0.011 0.015 0.007 0.133 0.013 0.036  0.011 0.007    

1970 0.053 0.011  0.021  0.052 0.038 0.01 0.01 0.035 0.019 0.059  0.009 0.024    

1971 0.035 0.013  0.055  0.249 0.025 0.01 0.016 0.074 0.025 0.055  0.022 0.011    

1972 0.135 0.017  0.008  0.077 0.039 0.026 0.01 0.264 0.036 0.028  0.013 0.009    

1973 0.089 0.016  0.009  0.131 0.039 0.025 0.017 0.013 0.02 0.037  0.021 0.01    

1974 0.07 0.02  0.008  0.059 0.019 0.021 0.005 0.09 0.013 0.036  0.017 0.02    

1975 0.117 0.006  0.014  0.273 0.02 0.035 0.016 0.034 0.013 0.049  0.01 0.016  0.254  

1976 0.055 0.016  0.008  0.031 0.018 0.01 0.011 0.186 0.027 0.025  0.012 0.012  0.364  

1977 0.135 0.013  0.009  0.023 0.009 0.015 0.013 0.008 0.04 0.04  0.017 0.01  0.158  

1978 0.08 0.025  0.047  0.062 0.032 0.008 0.007 0.014 0.043 0.025  0.041 0.01  0.424  

1979 0.146 0.04  0.011  0.107 0.019 0.026 0.013 0.097 0.023 0.027  0.045 0.006 0.164 0.201  

1980 0.089 0.02  0.018  0.159 0.006 0.023 0.024 0.158 0.046 0.031  0.006 0.023 0.138 0.216  

1981 0.108 0.044  0.024  0.198 0.048 0.012 0.005 0.175 0.052 0.09  0.016 0.022 0.179 0.333  

1982 0.036 0.016  0.008  0.122 0.023 0.023 0.006 0.165 0.044 0.045 1.098 0.027 0.016 0.236 0.155  

1983 0.037 0.027  0.007  0.091 0.021 0.007 0.003 0.022 0.027 0.036 1.565 0.011 0.016 0.234 0.099  

1984 0.048 0.012  0.007  0.122 0.018 0.006 0.015 0.126 0.047 0.058 0.858 0.031 0.02 0.239 0.13  

1985 0.07 0.036  0.038 0.574 0.139 0.027 0.011 0.027 0.014 0.022 0.037 0.445 0.026 0.019 0.284 0.236  

1986 0.134 0.04  0.031 0.437 0.212 0.021 0.006 0.018 0.021 0.013 0.052 0.242 0.016 0.008 0.417 0.213  



Reference List and Appendix 

271 

 

1987 0.061 0.026 0.06 0.041 0.128 0.032 0.016 0.007 0.011 0.061 0.039 0.039 1.603 0.015 0.027 0.367 0.216 0.184 

1988 0.093 0.023 0.06 0.014 0.156 0.09 0.028 0.024 0.014 0.013 0.013 0.031 0.445 0.03 0.025 0.602 0.358 0.267 

1989 0.073 0.013 0.055 0.02 0.743 0.044 0.034 0.013 0.019 0.033 0.036 0.031 0.538 0.019 0.01 0.478 0.241 0.194 

1990 0.028 0.035 0.058 0.015 0.34 0.036 0.006 0.006 0.016 0.037 0.018 0.034 0.364 0.043 0.013 0.45 0.115 0.146 

1991 0.039 0.023 0.104 0.007 0.12 0.033 0.017 0.007 0.01 0.008 0.005 0.026 0.466 0.005 0.017 0.17 0.156 0.307 

1992 0.052 0.037 0.012 0.01 0.363 0.064 0.04 0.007 0.018 0.038 0.006 0.023 0.621 0.005 0.028 0.143 0.096 0.042 

1993 0.032 0.015 0.005 0.021 0.138 0.072 0.021 0.008 0.012 0.056 0.036 0.028 0.765 0.029 0.103 0.338 0.149 0.433 

1994 0.095 0.016 0.021 0.023 0.506 0.054 0.018 0.008 0.012 0.046 0.007 0.037 0.395 0.013 0.037 0.246 0.176 0.381 

1995 0.005 0.011 0.028 0.015 0.293 0.017 0.008 0.011 0.015 0.009 0.015 0.034 0.349 0.006 0.016 0.485 0.457 0.068 

1996 0.016 0.011 0.008 0.01 0.465 0.022 0.024 0.023 0.012 0.01 0.019 0.05 0.339 0.006 0.025 0.259 0.131 0.102 

1997 0.03 0.012 0.009 0.015 0.116 0.059 0.012 0.013 0.015 0.034 0.01 0.032 0.565 0.01 0.03 0.034 0.097 0.17 

1998 0.017 0.007 0.021 0.015 0.289 0.019 0.027 0.014 0.014 0.053 0.014 0.032 0.599 0.022 0.03 0.107 0.202 0.057 

1999 0.025 0.014 0.064 0.005 0.226 0.076 0.032 0.015 0.019 0.026 0.011 0.047 0.647 0.011 0.019 0.081 0.13 0.415 

2000 0.021 0.018 0.038 0.005 0.177 0.06 0.011 0.005 0.016 0.022 0.036 0.038 0.206 0.019 0.016 0.019 0.026 0.606 

2001 0.03 0.013 0.003 0.027 0.04 0.047 0.013 0.01 0.01 0.008 0.031 0.01 0.274 0.008 0.012 0.151 0.222 0.162 

2002 0.033 0.009 0.005 0.018 0.042 0.024 0.021 0.012 0.011 0.033 0.014 0.021 0.378 0.036 0.01 0.214 0.327 0.452 

2003 0.057 0.021 0.017 0.014 0.397 0.022 0.014 0.011 0.017 0.018 0.01 0.021 0.044 0.018 0.014 0.067 0.098 0.05 

2004 0.033 0.015 0.114 0.008 0.1 0.015 0.014 0.019 0.016 0.032 0.011 0.022 0.184 0.011 0.009 0.13 0.192 0.086 

2005 0.059 0.014 0.006 0.011 0.056 0.075 0.013 0.007 0.01 0.015 0.012 0.025 0.226 0.016 0.008 0.028 0.044 0.054 

2006 0.072 0.017 0.009 0.006 0.051 0.027 0.014 0.006 0.008 0.034 0.049 0.011 0.252 0.014 0.008 0.009 0.018 0.017 

2007 0.015 0.042 0.021 0.029 0.089 0.033 0.011 0.02 0.011 0.008 0.008 0.017 0.323 0.027 0.008 0.019 0.006 0.054 

2008 0.036 0.009 0.115 0.027 0.089  0.032 0.008 0.013 0.008 0.01 0.011 0.163 0.02 0.008  0.009  

 
 

Appendix 11F: Raw GI data for site C8 
 
Year C8L3 C8L4 C8L5 C8L6 C8L7 C8L8 C8L14 C8L15 C8L16 C8L17 C8L19 C8L31 C8L32 C8L34 C8L59 

1859        1.112        

1860        0.685        
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1861        0.908      1.134  

1862        1.066      0.745  

1863        1.571      0.488  

1864        1.187      0.2  

1865        0.659      0.245  

1866        0.32      0.19  

1867        0.242      0.192  

1868        0.104      0.204  

1869        0.147      0.154  

1870        0.078      0.03  

1871        0.076      0.035  

1872        0.14      0.153  

1873        0.139      0.129  

1874        0.045      0.079  

1875        0.091      0.099  

1876        0.202      0.044  

1877        0.035      0.016  

1878        0.164      0.044  

1879        0.216      0.088 1.585 

1880        0.109      0.115 0.631 

1881        0.058      0.092 0.412 

1882        0.16      0.132 0.416 

1883        0.112      0.048 0.646 

1884        0.176      0.066 0.236 

1885        0.062      0.051 0.479 

1886        0.196      0.057 0.491 

1887        0.091      0.069 0.526 

1888        0.086      0.077 0.248 

1889        0.114      0.097 0.069 

1890        0.085      0.064 0.219 

1891        0.078      0.133 0.304 

1892        0.156      0.078 0.199 
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1893        0.186      0.057 0.261 

1894        0.127      0.038 0.13 

1895        0.087      0.046 0.264 

1896        0.052      0.09 0.212 

1897        0.135      0.071 0.166 

1898        0.084      0.055 0.206 

1899        0.095      0.089 0.166 

1900        0.12      0.082 0.068 

1901        0.084      0.105 0.038 

1902    0.99    0.038      0.065 0.083 

1903    1.289    0.081      0.06 0.141 

1904    0.989    0.021      0.08 0.147 

1905    0.604    0.069      0.044 0.098 

1906    0.542    0.113      0.077 0.042 

1907    0.365    0.138      0.025 0.104 

1908    0.283    0.067      0.082 0.038 

1909    0.374    0.128      0.058 0.117 

1910    0.432    0.068      0.052 0.064 

1911    0.16    0.094      0.029 0.042 

1912    0.19    0.116      0.048 0.029 

1913    0.17    0.063      0.056 0.036 

1914    0.163    0.052      0.032 0.032 

1915    0.183    0.065      0.031 0.042 

1916    0.127    0.111      0.061 0.018 

1917    0.103    0.058      0.044 0.026 

1918    0.105    0.056      0.038 0.035 

1919    0.111    0.06      0.052 0.034 

1920    0.127    0.09      0.063 0.007 

1921    0.088    0.073      0.041 0.028 

1922    0.092    0.071      0.075 0.069 

1923    0.136    0.084      0.019 0.033 

1924    0.059    0.062      0.024 0.043 
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1925    0.107    0.088      0.032 0.032 

1926    0.125    0.043      0.07 0.051 

1927    0.189    0.026      0.032 0.043 

1928    0.037    0.032      0.035 0.037 

1929    0.031    0.049      0.054 0.024 

1930 0.499   0.086    0.03    1.434  0.052 0.033 

1931 0.579   0.09    0.064    0.967  0.02 0.016 

1932 0.263   0.037    0.071    0.651  0.016 0.026 

1933 0.243 0.307  0.046    0.048    0.637  0.022 0.007 

1934 0.388 0.41  0.076    0.021    0.392  0.027 0.006 

1935 0.151 1.476  0.049    0.019    1.022  0.027 0.034 

1936 0.18 0.813  0.074    0.02    0.506  0.033 0.012 

1937 0.118 0.753  0.062    0.021    0.313  0.017 0.025 

1938 0.191 0.549  0.065    0.023 1.075   0.555  0.042 0.02 

1939 0.114 0.119  0.077    0.027 1.136   0.375  0.04 0.025 

1940 0.183 0.583  0.062    0.043 0.995   0.422  0.038 0.018 

1941 0.167 0.599  0.03    0.029 0.772   0.221  0.037 0.017 

1942 0.149 0.54  0.037    0.049 0.596   0.225  0.023 0.013 

1943 0.148 0.456  0.044    0.062 0.697   0.286  0.025 0.025 

1944 0.117 0.282  0.037    0.04 0.929   0.094  0.024 0.026 

1945 0.085 0.127  0.046    0.027 0.939   0.121  0.039 0.028 

1946 0.041 0.118  0.057    0.021 0.758  0.422 0.146 0.64 0.027 0.007 

1947 0.084 0.166  0.032    0.068 0.746 0.768 0.793 0.147 0.638 0.055 0.009 

1948 0.162 0.135  0.029    0.039 0.543 0.887 0.892 0.164 0.547 0.012 0.012 

1949 0.069 0.125  0.024 0.439   0.061 0.326 0.754 0.683 0.083 0.408 0.013 0.005 

1950 0.233 0.115  0.044 0.489   0.042 0.358 1.374 0.495 0.101 0.485 0.034 0.038 

1951 0.116 0.102  0.036 0.468   0.05 0.312 0.289 0.55 0.058 0.428 0.01 0.014 

1952 0.187 0.057 0.698 0.03 0.574  0.52 0.034 0.161 0.708 0.361 0.049 0.289 0.021 0.021 

1953 0.056 0.032 0.696 0.033 0.543  0.541 0.051 0.139 1.002 0.212 0.047 0.267 0.014 0.021 

1954 0.063 0.031 0.226 0.053 0.379 1.068 1.007 0.04 0.17 1.32 0.318 0.065 0.144 0.031 0.013 

1955 0.159 0.071 1.099 0.044 0.578 0.928 0.87 0.054 0.17 0.779 0.211 0.097 0.076 0.015 0.021 

1956 0.076 0.05 0.902 0.048 0.288 0.893 0.563 0.053 0.172 0.587 0.252 0.038 0.222 0.039 0.017 
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1957 0.033 0.042 0.43 0.035 0.045 0.653 0.528 0.021 0.148 0.179 0.155 0.102 0.18 0.016 0.011 

1958 0.081 0.051 0.187 0.048 0.4 0.558 0.454 0.057 0.132 0.269 0.253 0.061 0.119 0.024 0.017 

1959 0.064 0.015 0.858 0.04 0.195 0.41 0.456 0.033 0.076 0.266 0.238 0.098 0.127 0.016 0.013 

1960 0.068 0.035 1.106 0.036 0.226 0.256 0.31 0.039 0.157 0.393 0.187 0.065 0.144 0.017 0.012 

1961 0.066 0.018 0.905 0.034 0.226 0.336 0.296 0.039 0.134 0.069 0.023 0.061 0.1 0.02 0.019 

1962 0.078 0.073 0.726 0.052 0.066 0.377 0.281 0.033 0.085 0.282 0.082 0.058 0.068 0.008 0.014 

1963 0.076 0.118 0.701 0.052 0.076 0.302 0.218 0.047 0.073 0.258 0.139 0.024 0.052 0.018 0.025 

1964 0.053 0.026 0.487 0.039 0.098 0.312 0.188 0.043 0.02 0.156 0.06 0.075 0.041 0.009 0.018 

1965 0.042 0.05 0.243 0.05 0.152 0.426 0.129 0.013 0.027 0.13 0.114 0.047 0.075 0.048 0.037 

1966 0.071 0.023 0.094 0.052 0.06 0.16 0.032 0.05 0.02 0.201 0.146 0.08 0.111 0.048 0.032 

1967 0.039 0.014 0.114 0.048 0.058 0.08 0.096 0.073 0.037 0.22 0.073 0.025 0.069 0.029 0.015 

1968 0.045 0.034 0.07 0.034 0.066 0.231 0.177 0.06 0.04 0.174 0.07 0.052 0.087 0.013 0.011 

1969 0.055 0.034 0.061 0.014 0.072 0.176 0.079 0.057 0.034 0.185 0.059 0.116 0.071 0.018 0.01 

1970 0.081 0.021 0.098 0.016 0.049 0.23 0.135 0.061 0.038 0.132 0.114 0.05 0.112 0.021 0.015 

1971 0.048 0.015 0.074 0.022 0.041 0.106 0.07 0.089 0.038 0.077 0.084 0.049 0.059 0.019 0.027 

1972 0.058 0.097 0.204 0.044 0.039 0.18 0.128 0.054 0.041 0.121 0.135 0.037 0.04 0.029 0.014 

1973 0.074 0.027 0.124 0.046 0.035 0.195 0.118 0.03 0.043 0.077 0.114 0.027 0.042 0.024 0.025 

1974 0.067 0.014 0.088 0.044 0.057 0.189 0.126 0.071 0.031 0.09 0.117 0.045 0.037 0.025 0.007 

1975 0.021 0.023 0.046 0.028 0.019 0.075 0.115 0.027 0.036 0.057 0.107 0.047 0.026 0.016 0.019 

1976 0.075 0.027 0.154 0.031 0.041 0.122 0.056 0.027 0.022 0.109 0.082 0.039 0.057 0.022 0.011 

1977 0.061 0.028 0.082 0.027 0.032 0.066 0.015 0.039 0.022 0.062 0.113 0.058 0.035 0.014 0.01 

1978 0.046 0.051 0.057 0.029 0.034 0.1 0.048 0.037 0.104 0.072 0.149 0.02 0.042 0.038 0.027 

1979 0.033 0.02 0.012 0.027 0.064 0.122 0.055 0.064 0.075 0.054 0.234 0.035 0.05 0.027 0.024 

1980 0.04 0.038 0.069 0.036 0.022 0.111 0.05 0.032 0.064 0.066 0.102 0.024 0.035 0.025 0.028 

1981 0.04 0.055 0.075 0.031 0.053 0.051 0.059 0.033 0.078 0.064 0.09 0.023 0.054 0.037 0.025 

1982 0.035 0.023 0.047 0.018 0.018 0.092 0.03 0.033 0.052 0.033 0.114 0.041 0.044 0.023 0.017 

1983 0.069 0.025 0.05 0.02 0.016 0.129 0.066 0.016 0.045 0.073 0.13 0.01 0.034 0.015 0.023 

1984 0.05 0.021 0.058 0.034 0.017 0.063 0.076 0.017 0.092 0.026 0.082 0.027 0.041 0.038 0.039 

1985 0.045 0.037 0.128 0.043 0.019 0.052 0.085 0.026 0.046 0.08 0.077 0.028 0.038 0.02 0.022 

1986 0.07 0.023 0.075 0.026 0.018 0.049 0.025 0.024 0.073 0.047 0.1 0.037 0.034 0.012 0.015 

1987 0.15 0.03 0.058 0.03 0.025 0.068 0.04 0.031 0.049 0.086 0.08 0.054 0.041 0.011 0.044 

1988 0.086 0.062 0.078 0.031 0.015 0.068 0.085 0.046 0.045 0.063 0.025 0.013 0.042 0.011 0.011 
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1989 0.04 0.032 0.048 0.017 0.023 0.046 0.062 0.037 0.027 0.074 0.079 0.017 0.046 0.03 0.017 

1990 0.043 0.031 0.076 0.024 0.041 0.064 0.089 0.013 0.1 0.05 0.043 0.033 0.044 0.015 0.013 

1991 0.033 0.026 0.052 0.026 0.016 0.061 0.07 0.031 0.038 0.041 0.056 0.028 0.044 0.01 0.013 

1992 0.042 0.035 0.012 0.029 0.058 0.069 0.055 0.02 0.051 0.047 0.018 0.01 0.018 0.042 0.009 

1993 0.035 0.022 0.036 0.022 0.024 0.083 0.062 0.037 0.047 0.064 0.018 0.021 0.036 0.02 0.007 

1994 0.039 0.011 0.016 0.028 0.051 0.088 0.083 0.028 0.044 0.076 0.049 0.017 0.033 0.021 0.008 

1995 0.086 0.025 0.061 0.028 0.034 0.051 0.066 0.037 0.035 0.035 0.048 0.043 0.024 0.02 0.013 

1996 0.045 0.026 0.049 0.05 0.034 0.099 0.044 0.038 0.045 0.034 0.063 0.055 0.039 0.012 0.021 

1997 0.068 0.018 0.018 0.009 0.033 0.057 0.04 0.027 0.038 0.037 0.065 0.026 0.026 0.022 0.01 

1998 0.022 0.025 0.032 0.013 0.053 0.037 0.076 0.03 0.026 0.025 0.054 0.087 0.027 0.02 0.012 

1999 0.046 0.034 0.06 0.027 0.069 0.031 0.053 0.025 0.031 0.046 0.036 0.038 0.036 0.02 0.015 

2000 0.041 0.022 0.042 0.038 0.036 0.027 0.056 0.05 0.041 0.042 0.055 0.051 0.025 0.05 0.012 

2001 0.037 0.019 0.036 0.03 0.019 0.039 0.043 0.035 0.041 0.027 0.073 0.02 0.044 0.012 0.024 

2002 0.045 0.02 0.035 0.041 0.026 0.012 0.07 0.024 0.066 0.058 0.062 0.034 0.021 0.022 0.014 

2003 0.073 0.031 0.092 0.025 0.031 0.048 0.035 0.031 0.039 0.055 0.048 0.03 0.043 0.03 0.027 

2004 0.104 0.042 0.088 0.024 0.051 0.042 0.057 0.043 0.042 0.026 0.016 0.022 0.035 0.018 0.016 

2005 0.102 0.01 0.054 0.01 0.038 0.034 0.02 0.033 0.04 0.068 0.014 0.056 0.048 0.012 0.02 

2006 0.036 0.019 0.03 0.058 0.062 0.068 0.019 0.027 0.058 0.058 0.022 0.016 0.015 0.01 0.023 

2007 0.038 0.015 0.04 0.029 0.013 0.012 0.062 0.014 0.038 0.031 0.041 0.028 0.023 0.013 0.017 

2008 0.027 0.029 0.023 0.021 0.069 0.031 0.032  0.049 0.039 0.019 0.026 0.02 0.014 0.019 



Reference List and Appendix 

277 

 

Year C8x1 C8x2 C8x4 C8x5 C8x7 C8x3 C8x8 C8L24 C8L27 C8L29 C8L30 C8L33 C8x10 C8x11 C8x19 

1845              0.67  

1846              0.93  

1847              0.597  

1848              0.462  

1849              0.084  

1850              0.384  

1851              0.243  

1852              0.211  

1853     1.093         0.235  

1854     0.583         0.316  

1855     0.57         0.414  

1856     0.578         0.22  

1857     0.143         0.206  

1858     0.239         0.093  

1859     0.201         0.129  

1860     0.303         0.024  

1861     0.195     0.779    0.045  

1862     0.23     0.385    0.019  

1863     0.102     0.547    0.025  

1864     0.147     0.892    0.061  

1865     0.152     0.94    0.081  

1866     0.074     0.352    0.048  

1867     0.115     0.516    0.032  

1868     0.1     0.305    0.013  

1869     0.139     0.209    0.05  

1870     0.143     0.287    0.084  

1871     0.079     0.115    0.027  

1872     0.12     0.207    0.05  

1873     0.081     0.08    0.031  

1874     0.128     0.108    0.037  

1875     0.171     0.091    0.041  

1876     0.06     0.075    0.043  
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1877     0.058     0.113    0.013  

1878     0.059     0.137    0.025  

1879     0.052     0.101    0.043  

1880     0.09     0.104    0.029  

1881     0.091     0.093    0.038  

1882     0.048     0.127    0.035  

1883     0.049     0.065    0.015  

1884     0.048     0.075    0.02  

1885     0.042     0.085    0.056  

1886     0.051     0.094    0.069  

1887     0.024     0.124    0.026  

1888     0.08     0.107    0.035  

1889     0.038     0.103    0.022  

1890     0.034     0.052    0.017  

1891     0.084   0.745  0.168    0.025  

1892     0.05   0.708  0.13    0.027  

1893     0.034   1.063  0.096    0.033  

1894     0.028   0.726  0.131    0.021  

1895     0.034   0.729  0.083    0.016  

1896     0.032   0.343  0.094    0.014  

1897     0.018  1.058 0.351  0.117    0.04  

1898     0.036  0.455 0.178  0.042    0.034  

1899     0.082  0.399 0.126  0.091    0.037  

1900     0.1  0.876 0.058  0.073    0.072  

1901     0.062  0.634 0.094  0.041    0.077  

1902     0.062  0.538 0.155  0.027    0.075  

1903    1.032 0.042  0.718 0.074  0.026    0.047  

1904    1.331 0.032  0.796 0.141  0.017    0.035  

1905    1.337 0.042  0.622 0.074  0.03    0.016  

1906    0.964 0.06  0.646 0.12  0.027    0.015  

1907    0.9 0.036  0.751 0.095  0.029    0.009  

1908    0.735 0.022  0.501 0.073  0.045    0.05  
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1909    0.557 0.048  0.385 0.081  0.061  1.105  0.042  

1910    0.444 0.018  0.204 0.095  0.036  0.552  0.019  

1911    0.264 0.032  0.221 0.072  0.035  1.219  0.021  

1912    0.267 0.028  0.143 0.083  0.04  1.501  0.023  

1913    0.19 0.052  0.15 0.07  0.022  1.02  0.03  

1914    0.049 0.038 0.797 0.131 0.063  0.025  0.939  0.022  

1915    0.058 0.034 1.048 0.113 0.082  0.019  0.597  0.016  

1916    0.024 0.038 1.05 0.092 0.123  0.023  0.601  0.013  

1917    0.031 0.032 0.959 0.193 0.085  0.018  0.83  0.011  

1918    0.089 0.012 0.522 0.157 0.07  0.043  0.76  0.024  

1919    0.036 0.042 0.156 0.075 0.067  0.028  0.844  0.025  

1920    0.069 0.032 1.235 0.114 0.101  0.024  0.772  0.017 0.832 

1921    0.115 0.028 1.043 0.097 0.045  0.008  0.364  0.02 0.886 

1922    0.043 0.054 0.575 0.119 0.087  0.026  0.399  0.014 1.343 

1923    0.026 0.016 0.522 0.082 0.04  0.015  0.339  0.019 0.676 

1924    0.062 0.018 0.665 0.036 0.026  0.013  0.25  0.02 1.195 

1925    0.161 0.026 0.411 0.02 0.069  0.006  0.313  0.019 0.819 

1926    0.105 0.042 0.421 0.018 0.108  0.013  0.129  0.02 1.013 

1927    0.087 0.046 0.13 0.019 0.035  0.021  0.096  0.013 0.67 

1928    0.046 0.032 0.245 0.019 0.06  0.029  0.118  0.017 0.538 

1929    0.059 0.034 0.186 0.022 0.039  0.018  0.093  0.027 0.194 

1930    0.068 0.048 0.158 0.025 0.037  0.026  0.141  0.016 0.233 

1931    0.079 0.028 0.102 0.031 0.075  0.029  0.082  0.014 0.212 

1932    0.028 0.024 0.025 0.029 0.039  0.044  0.105  0.016 0.194 

1933    0.025 0.02 0.116 0.039 0.045  0.035  0.113  0.013 0.178 

1934    0.038 0.022 0.052 0.061 0.061  0.024  0.12  0.014 0.139 

1935    0.027 0.024 0.053 0.027 0.042  0.016  0.115  0.013 0.055 

1936    0.016 0.036 0.088 0.031 0.019  0.023  0.1  0.005 0.029 

1937    0.033 0.028 0.103 0.039 0.052  0.027  0.114  0.014 0.024 

1938    0.055 0.03 0.062 0.055 0.032  0.033  0.07  0.011 0.099 

1939    0.045 0.018 0.072 0.051 0.049  0.019  0.088  0.027 0.053 

1940    0.037 0.012 0.038 0.019 0.124  0.022  0.085  0.01 0.062 
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1941    0.019 0.016 0.114 0.021 0.018  0.01  0.091  0.014 0.022 

1942    0.048 0.028 0.028 0.021 0.025  0.018  0.095  0.024 0.037 

1943    0.048 0.018 0.053 0.031 0.016  0.026  0.088  0.012 0.058 

1944    0.019 0.014 0.037 0.033 0.039 0.931 0.019  0.015  0.012 0.094 

1945    0.067 0.028 0.121 0.028 0.034 1.354 0.018  0.05  0.029 0.07 

1946    0.036 0.038 0.142 0.033 0.018 0.515 0.029 1.664 0.06  0.019 0.084 

1947    0.026 0.022 0.053 0.033 0.031 0.395 0.012 1.423 0.058  0.012 0.048 

1948    0.033 0.02 0.055 0.014 0.029 0.331 0.012 1.093 0.064  0.016 0.096 

1949   0.809 0.046 0.02 0.055 0.016 0.031 0.423 0.007 0.669 0.066  0.028 0.068 

1950   0.856 0.045 0.036 0.079 0.017 0.034 0.888 0.009 0.484 0.066  0.011 0.046 

1951   0.753 0.04 0.018 0.084 0.017 0.023 0.947 0.011 0.4 0.047  0.011 0.008 

1952   0.738 0.07 0.01 0.062 0.015 0.036 0.523 0.011 0.241 0.034  0.03 0.009 

1953 0.911  0.56 0.057 0.013 0.064 0.018 0.042 0.772 0.018 0.284 0.054  0.028 0.017 

1954 0.825  0.52 0.013 0.024 0.053 0.014 0.034 0.306 0.006 0.229 0.039  0.015 0.023 

1955 0.777  0.32 0.019 0.028 0.05 0.016 0.067 0.139 0.012 0.223 0.052 1.249 0.009 0.062 

1956 0.639  0.347 0.025 0.02 0.071 0.048 0.019 0.427 0.01 0.236 0.035 1.195 0.009 0.019 

1957 0.495  0.225 0.017 0.016 0.085 0.035 0.025 0.27 0.029 0.234 0.033 0.699 0.011 0.017 

1958 0.784  0.256 0.049 0.014 0.058 0.029 0.023 0.327 0.023 0.24 0.049 1.218 0.01 0.053 

1959 0.761  0.12 0.05 0.016 0.05 0.036 0.027 0.186 0.028 0.143 0.038 1.023 0.012 0.029 

1960 0.58 1.207 0.169 0.013 0.018 0.062 0.026 0.016 0.243 0.022 0.191 0.041 1.738 0.012 0.037 

1961 0.458 0.696 0.137 0.051 0.016 0.096 0.019 0.013 0.159 0.02 0.175 0.057 0.407 0.012 0.065 

1962 0.44 0.604 0.069 0.06 0.028 0.056 0.039 0.033 0.134 0.024 0.128 0.025 0.273 0.021 0.093 

1963 0.185 0.398 0.122 0.012 0.02 0.049 0.011 0.02 0.168 0.016 0.138 0.045 0.191 0.013 0.049 

1964 0.32 0.239 0.148 0.05 0.024 0.028 0.021 0.028 0.027 0.009 0.12 0.016 0.253 0.028 0.056 

1965 0.347 0.185 0.066 0.033 0.024 0.031 0.013 0.018 0.029 0.02 0.096 0.033 0.092 0.011 0.014 

1966 0.164 0.205 0.157 0.017 0.018 0.043 0.025 0.015 0.093 0.019 0.088 0.022 0.205 0.011 0.044 

1967 0.255 0.166 0.179 0.031 0.018 0.036 0.014 0.015 0.084 0.02 0.091 0.072 0.153 0.009 0.05 

1968 0.17 0.137 0.118 0.036 0.024 0.019 0.032 0.016 0.073 0.017 0.127 0.028 0.17 0.02 0.021 

1969 0.138 0.144 0.068 0.05 0.024 0.053 0.026 0.012 0.097 0.005 0.099 0.045 0.067 0.017 0.027 

1970 0.131 0.174 0.083 0.039 0.018 0.031 0.027 0.046 0.079 0.031 0.073 0.072 0.199 0.011 0.042 

1971 0.115 0.153 0.012 0.026 0.028 0.028 0.027 0.03 0.111 0.033 0.084 0.047 0.132 0.016 0.05 

1972 0.137 0.12 0.023 0.044 0.032 0.025 0.037 0.028 0.069 0.018 0.07 0.031 0.228 0.019 0.038 
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1973 0.101 0.099 0.048 0.019 0.022 0.021 0.021 0.044 0.072 0.021 0.04 0.059 0.105 0.025 0.062 

1974 0.186 0.108 0.089 0.015 0.02 0.034 0.02 0.022 0.079 0.024 0.09 0.026 0.103 0.022 0.03 

1975 0.262 0.074 0.022 0.042 0.018 0.059 0.025 0.02 0.043 0.014 0.048 0.034 0.041 0.022 0.044 

1976 0.069 0.045 0.067 0.037 0.01 0.049 0.018 0.05 0.022 0.034 0.062 0.03 0.104 0.009 0.017 

1977 0.076 0.104 0.044 0.017 0.016 0.049 0.022 0.022 0.021 0.023 0.037 0.051 0.099 0.032 0.031 

1978 0.086 0.093 0.02 0.045 0.02 0.013 0.022 0.026 0.099 0.012 0.035 0.063 0.036 0.013 0.061 

1979 0.072 0.024 0.009 0.029 0.02 0.041 0.021 0.04 0.048 0.015 0.053 0.028 0.066 0.024 0.019 

1980 0.103 0.06 0.018 0.015 0.026 0.041 0.023 0.036 0.079 0.014 0.052 0.032 0.05 0.022 0.035 

1981 0.055 0.059 0.035 0.044 0.022 0.087 0.021 0.027 0.048 0.014 0.059 0.045 0.035 0.008 0.048 

1982 0.044 0.034 0.045 0.058 0.024 0.045 0.032 0.029 0.053 0.018 0.046 0.028 0.115 0.012 0.019 

1983 0.018 0.091 0.04 0.034 0.028 0.022 0.031 0.032 0.042 0.018 0.043 0.031 0.03 0.019 0.024 

1984 0.07 0.076 0.073 0.038 0.036 0.012 0.018 0.034 0.032 0.013 0.06 0.034 0.074 0.038 0.096 

1985 0.045 0.099 0.052 0.031 0.024 0.046 0.027 0.022 0.053 0.026 0.02 0.039 0.058 0.011 0.038 

1986 0.076 0.089 0.038 0.02 0.032 0.044 0.025 0.057 0.039 0.019 0.07 0.044 0.044 0.009 0.02 

1987 0.035 0.092 0.056 0.025 0.016 0.028 0.037 0.03 0.084 0.037 0.061 0.027 0.024 0.009 0.021 

1988 0.083 0.075 0.049 0.015 0.016 0.044 0.034 0.02 0.07 0.025 0.041 0.023 0.081 0.017 0.011 

1989 0.038 0.069 0.034 0.024 0.032 0.053 0.025 0.03 0.045 0.032 0.062 0.031 0.051 0.032 0.046 

1990 0.063 0.026 0.043 0.036 0.022 0.044 0.015 0.028 0.057 0.032 0.043 0.025 0.05 0.008 0.011 

1991 0.069 0.033 0.027 0.031 0.042 0.043 0.01 0.026 0.036 0.02 0.02 0.014 0.078 0.015 0.051 

1992 0.071 0.04 0.027 0.02 0.024 0.039 0.018 0.031 0.036 0.024 0.037 0.042 0.017 0.014 0.021 

1993 0.045 0.08 0.053 0.01 0.024 0.028 0.012 0.08 0.05 0.02 0.046 0.034 0.057 0.024 0.027 

1994 0.074 0.016 0.038 0.04 0.018 0.015 0.02 0.049 0.031 0.007 0.044 0.04 0.049 0.029 0.026 

1995 0.097 0.078 0.033 0.013 0.034 0.012 0.02 0.018 0.045 0.024 0.054 0.02 0.07 0.009 0.052 

1996 0.03 0.096 0.041 0.022 0.036 0.047 0.039 0.083 0.051 0.025 0.044 0.026 0.035 0.026 0.01 

1997 0.083 0.066 0.059 0.022 0.016 0.025 0.023 0.026 0.046 0.023 0.035 0.036 0.063 0.021 0.013 

1998 0.049 0.058 0.025 0.015 0.024 0.034 0.019 0.093 0.045 0.01 0.053 0.036 0.025 0.015 0.013 

1999 0.057 0.042 0.028 0.015 0.016 0.02 0.021 0.033 0.047 0.02 0.031 0.015 0.042 0.027 0.014 

2000 0.019 0.072 0.028 0.035 0.028 0.031 0.033 0.036 0.029 0.018 0.036 0.042 0.028 0.01 0.027 

2001 0.108 0.041 0.053 0.032 0.032 0.019 0.013 0.081 0.019 0.012 0.025 0.047 0.036 0.012 0.019 

2002 0.072 0.066 0.014 0.044 0.028 0.021 0.057 0.034 0.016 0.012 0.031 0.037 0.018 0.01 0.013 

2003 0.075 0.066 0.046 0.03 0.026 0.056 0.039 0.05 0.04 0.01 0.031 0.026 0.036 0.009 0.023 

2004 0.046 0.059 0.031 0.026 0.03 0.04 0.025 0.016 0.021 0.011 0.018 0.007 0.031 0.017 0.031 
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2005 0.036 0.055 0.018 0.047 0.03 0.025 0.019 0.026 0.005 0.011 0.036 0.009 0.054 0.012 0.018 

2006 0.083 0.064 0.017 0.007 0.016 0.015 0.039 0.048 0.008 0.014 0.029 0.02 0.053 0.016 0.047 

2007 0.055 0.082 0.024 0.024 0.016 0.012 0.014 0.068  0.018 0.016 0.012 0.029 0.026 0.006 

2008 0.035 0.032 0.016 0.035 0.041 0.037 0.016 0.077  0.018 0.017 0.016 0.053 0.026 0.016 
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Appendix 11G: Inner vs. outer shell measurements (detrended) 

 

 

 C6L85 Outer C6L85 Umbo C6L66 Outer C6L66 Umbo 

1999 1.235    
2000 0.9469  1.205  
2001 1.1763  0.771 0.9776 
2002 0.6445  0.95 0.9186 
2003 1.3306 1.2169 1.349 1.3993 
2004 1.125 0.7676 0.508 0.6905 
2005 0.2071 0.7549 0.879 0.7204 
2006 0.2078 1.3624 1.337 1.3789 
2007 0.5404 0.8746 1.059 0.9706 
2008 2.7852 1.024 0.954 0.9437 

 C7L14 Outer C7L14 
Umbo 

C7L110 
Outer 

C7L110 
Umbo 

C7L136  
Outer 

C7L136 
Umbo 

C1L120 
Outer 

C1L120  
Umbo 

1957 1.3621        
1958 1.0514        
1959 0.933        
1960 0.4663        
1961 0.2595        
1962 0.7766        
1963 0.6941        
1964 2.0169        
1965 0.2367        
1966 1.3744        
1967 0.5059        
1968 0.8763        
1969 1.2462        
1970 0.2375        
1971 2.4923        
1972 0.2679        
1973 1.1522        
1974 2.2911        
1975 0.3487        
1976 1.0497        
1977 2.4857        
1978 2.3054        
1979 1.1506  2.4118 2.1755     
1980 1.5502  0.4634 1.0682     
1981 1.2876  0.3332 0.9624     
1982 2.0031  2.0012 0.9803     
1983 0.668  0.7223 0.8083     
1984 1.4419  1.0643 0.7252     
1985 0.1217  0.5921 0.7901 0.2776    
1986 0.7267  1.3468 1.1011 0.9195    
1987 1.3879 0.7874 1.5725 0.9464 0.0523 0.6872  0.711 
1988 1.1156 0.9166 0.5538 1.553 3.1354 0.5548  1.055 
1989 0.5054 0.9821 0.1155 1.2594 0.8611 0.8134 1.1003 0.784 
1990 0.3932 1.2141 1.7007 1.2329 0.1374 0.8598 0.8054 0.604 
1991 0.3774 2.5545 0.1656 0.4921 0.5957 1.5596 0.6965 1.3 
1992 0.7196 0.3451 0.1108 0.4437 0.9438 1.003 0.5401 0.182 
1993 0.1913 0.1672 0.7068 1.1386 1.2869 0.8046 1.2009 1.926 
1994 0.2411 0.8054 0.5847 0.9105 0.6354 1.0337 0.1495 1.738 
1995 0.3569 1.2054 2.4291 1.9944 2.2157 1.9947 1.3033 0.318 
1996 0.2833 0.375 1.2538 1.1958 1.0773 0.7912 1.2586 0.491 
1997 0.2645 0.4421 5.1276 0.178 2.4147 1.8467 0.9305 0.841 
1998 0.4665 1.0365 1.8893 0.6419 1.5323 1.3736 0.8509 0.29 
1999 0.4369 3.0455 0.2472 0.5624 0.089 2.4727 4.7711 2.173 
2000 0.2098 1.6821 0.4633 0.1543 3.3874 0.6162 0.4983 3.27 
2001 0.3455 0.1202 0.3834 1.45 0.3301 0.6265 0.3585 0.902 
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2002 0.3982 0.1779 0.3424 2.4604 0.3825 0.1985 2.5251 2.597 
2003 1.184 0.5316 0.2314 0.9354 0.1238 0.376 0.3995 0.297 
2004 0.9197 3.1162 0.7731 2.2414 0.1315 0.246 0.4934 0.528 
2005 0.4929 0.1432 0.2495 0.6089 0.2781 0.7192 0.065 0.344 
2006 2.2374 0.188 0.5667 0.2538 0.1515 0.3521 0.2631 0.112 
2007 2.2093 0.3853 0.8525 0.7224 0.6341 0.9688 0.1474 0.37 
2008 5.3374 1.8612 0.4647  1.4375  0.2207  

Year C1L2 Outer C1L2 
Umbo 

C1L4 Outer C1L4 
Umbo 

C1L14 
Outer 

C1L14 
Umbo 

1843    1.0011   

1844    0.9952   

1845    1.0979   

1846    0.8103   

1847    1.0737   

1848    1.1557   

1849    0.9002   

1850    0.464   

1851    0.8607   

1852    0.5336   

1853    1.2579   

1854    1.5728   

1855    0.915   

1856    1.1584   

1857    3.0072   

1858    2.534   

1859    3.0785   

1860   1.06 1.8806   

1861   0.847 1.4238   

1862   0.824 1.2749   

1863   1.152 1.4415   

1864   1.192 1.6911   

1865   0.822 3.2821   

1866   1.117 3.1404   

1867   2.041 2.7566   

1868   0.842 4.1134   

1869   0.937 4.4814   

1870   0.577 3.4373   

1871   0.243 3.2978   

1872   0.837 2.1236   

1873   1.312 1.0631   

1874   0.882 1.9214   

1875   0.653 1.9227   

1876   0.802 2.8412   

1877   0.706 1.4212   

1878   0.582 2.2804   

1879   0.757 1.1553   

1880   0.972 1.2147   

1881   0.765 1.3038   

1882   0.974 1.5706   

1883   0.942 1.304   

1884   0.892 2.371   

1885   1.162 1.0373   

1886   1.29 0.8892  0.9878 

1887   1.249 1.2449  1.2551 
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1888   1.326 1.0967  0.7538 

1889   1.783 1.2449  0.7593 

1890   2.48 1.0671  0.7973 

1891   1.657 0.9189  0.8804 

1892   1.971 0.8003 1.083 0.6824 

1893   1.367 0.5039 1.026 1.1886 

1894   0.76 0.8003 0.675 1.7557 

1895   1.671 1.0375 1.647 2.1026 

1896   0.82 0.5928 0.614 1.2973 

1897   1.623 0.7114 0.679 1.6291 

1898   1.021 0.6225 0.347 2.3437 

1899   1.543 0.7707 1.006 1.2565 

1900   0.674 0.741 1.214 1.9561 

1901   1.089 1.0078 2.467 1.6989 

1902   0.992 1.0967 0.865 1.4446 

1903   1.061 1.245 1.248 1.303 

1904   1.618 2.2528 0.985 2.1575 

1905 0.454  0.795 0.8003 0.91 0.1189 

1906 1.572  1.415 1.7489 0.892 0.9698 

1907 1.277  0.927 1.0671 0.867 1.5993 

1908 0.956  0.818 1.0078 0.643 1.5427 

1909 0.515  1.018 1.1264 0.797 1.6814 

1910 1.455  0.896 0.6225 1.045 0.8841 

1911 1.35  1.217 2.2824 1.25 1.1422 

1912 0.512  0.771 0.83 0.741 0.9172 

1913 0.39 0.8627 1.034 0.5632 0.853 2.4528 

1914 0.892 0.9238 0.965 0.5928 1.242 2.4836 

1915 1.438 0.9972 0.709 0.741 0.646 2.6158 

1916 1.692 1.5014 0.647 0.4743 1.04 1.9257 

1917 1.473 1.1973 0.844 0.7707 0.998 1.5677 

1918 1.541 1.2434 0.59 0.8003 0.819 1.2344 

1919 0.947 0.9045 0.387 0.4743 0.448 1.1579 

1920 0.825 0.7384 0.663 0.2668 0.418 1.39 

1921 0.503 0.6554 0.729 0.4446 1.391 1.9311 

1922 0.533 0.642 0.597 0.4743 0.627 0.9529 

1923 0.555 0.8006 0.993 0.5632 0.849 0.8243 

1924 0.483 0.6549 0.926 1.5414 0.897 1.623 

1925 0.623 0.8362 0.985 0.5632 1.038 1.7004 

1926 1.03 1.3004 1.511 0.741 0.632 1.8809 

1927 0.602 0.7476 0.853 0.5039 0.851 0.773 

1928 0.496 0.9473 1.585 0.83 0.724 1.3657 

1929 0.529 0.906 0.864 0.3557 1.772 1.2885 

1930 1.077 1.1838 1.05 1.0078 1.746 2.3966 

1931 1.242 1.5888 0.663 1.2746 2.06 2.0359 

1932 1.076 1.348 1.264 0.6521 1.438 0.3092 

1933 1.02 1.2186 0.991 0.9782 1.101 0.4896 

1934 1.082 1.4336 0.992 0.8596 0.984 0.6443 

1935 0.521 0.7169 0.732 0.6521 1.012 0.3093 

1936 0.588 0.7403 1.188 1.0375 1.164 0.335 

1937 0.763 0.9554 1.584 0.7114 0.885 0.5927 

1938 1.388 1.7466 1.382 0.5928 0.923 0.6701 

1939 0.764 1.0552 1.517 0.5039 1.008 0.1289 
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1940 0.678 0.7916 1.389 0.3557 0.73 0.335 

1941 0.872 1.2191 1.335 0.4446 1.34 0.6701 

1942 1.28 1.7597 0.736 0.741 0.64 1.469 

1943 1.755 1.9014 0.806 1.0078 0.58 1.1855 

1944 1.056 0.9085 0.664 0.4446 1.36 0.902 

1945 0.654 0.968 1.205 0.2964 0.775 0.2319 

1946 0.598 0.6915 0.859 0.6521 1.089 0.1546 

1947 0.62 0.8049 1.4 0.9189 1.397 0.3866 

1948 1.039 1.0022 1.725 1.156 1.85 0.5412 

1949 0.536 0.6226 0.859 0.741 1.662 0.5927 

1950 0.613 0.715 0.723 0.3261 0.825 0.7216 

1951 0.824 0.9574 0.929 0.3261 0.717 0.567 

1952 1.046 1.5048 0.532 0.2075 1.442 1.2886 

1953 1.126 1.2801 0.735 0.4446 0.556 0.3608 

1954 1.546 1.3344 0.613 0.6521 0.566 0.4381 

1955 1.293 0.9696 0.337 0.3557 0.611 0.1804 

1956 0.908 0.7984 0.674 0.2668 1.18 0.5154 

1957 1.19 1.2937 0.531 0.2668 0.906 0.7989 

1958 0.735 0.7174 0.613 0.83 1.071 0.6185 

1959 0.977 1.0585 0.806 0.4743 0.891 0.1546 

1960 1.262 0.7235 0.592 0.8003 0.9 0.1031 

1961 1.016 0.8395 1.013 0.5336 0.513 0.2577 

1962 0.654 0.5007 0.939 0.6818 0.625 0.1289 

1963 0.787 0.776 1.744 0.5928 1.05 0.2577 

1964 1.061 1.0524 0.47 0.5632 0.479 0.1804 

1965 0.725 0.5732 1.948 0.6521 0.579 1.1082 

1966 0.646 0.5743 0.735 0.5039 0.339 0.2577 

1967 0.701 0.6673 1.217 0.5039 0.565 0.1546 

1968 0.398 0.3917 1.275 0.2075 0.642 0.2062 

1969 0.932 0.6922 0.527 0.6521 0.516 0.1804 

1970 1.313 1.2705 0.672 0.4743 0.405 0.2577 

1971 0.568 0.4162 1.2 0.5039 0.423 0.3866 

1972 0.797 0.5554 0.602 0.2075 0.29 0.3608 

1973 0.662 0.5559 0.592 0.2668 0.65 0.3866 

1974 1.579 1.2748 0.806 0.8893 0.795 0.1546 

1975 0.711 0.7189 0.733 0.7114 0.641 0.2835 

1976 1.375 1.2762 0.939 0.3557 0.465 0.2577 

1977 1.691 1.3697 1.542 0.2075 0.424 0.2319 

1978 1.305 0.8361 1.613 0.1779 0.594 0.3866 

1979 2.059 1.4405 1.228 0.4446 0.342 0.4897 

1980 1.883 1.4177 0.806 0.2075 0.499 0.4381 

1981 2.475 1.7668 0.664 0.4446 0.481 1.9071 

1982 1.356 0.9999 0.532 0.2668 0.788 0.8762 

1983 1.643 1.3025 1.286 0.3557 0.761 0.3866 

1984 1.548 1.2097 0.483 0.3557 2.897 0.3866 

1985 1.597 1.2564 1.001 0.2964 1.395 0.1031 

1986 1.738 1.2101 1.379 0.4743 0.858 1.469 

1987 0.811 0.4655 1.095 0.3557 0.867 1.3659 

1988 1.04 0.4423 0.647 0.2668 1.024 1.237 

1989 1.308 0.8148 1.045 0.2668 0.947 0.335 

1990 0.912 0.7683 1.045 0.83 1.095 1.4432 

1991 1.277 1.0012 1.054 0.8893 1.461 1.8556 
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Year L17 Outer L17 Umbo L19 Outer L19 Umbo 

1908 0.483       

1909 1.221       

1910 1.526       

1911 1.598       

1912 0.364       

1913 1.185       

1914 0.586       

1915 1.003       

1916 0.479       

1917 2.005       

1918 1.354       

1919 0.751       

1920 1.022       

1921 0.404 0.9842     

1922 1.055 0.9858     

1923 1.048 1.0626     

1924 0.775 1.2696     

1925 0.8 0.906     

1926 0.791 0.5319     

1927 0.658 0.8715 1.029   

1928 0.973 0.4885 0.972   

1929 0.784 1.025 0.586   

1930 0.867 1.3259 0.417   

1931 0.529 1.3625 0.342   

1932 0.698 1.3563 1.653   

1933 0.581 1.4438 1.267   

1934 0.814 1.3571 4.128   

1935 1.257 1.9 2.462   

1936 1.011 1.8632 2.346   

1937 0.721 1.8002 1.606   

1938 1.072 0.8885 1.071   

1939 1.082 1.4045 0.73   

1940 1.864 1.024 0.23   

1992 1.426 1.2108 1.027 0.83 1.508 1.4432 

1993 1.234 1.0944 1.183 0.8893 1.259 1.6494 

1994 1.143 1.0712 0.919 0.9485 1.324 2.8091 

1995 0.869 0.885 0.968 0.741 2.19 0.8247 

1996 1.792 1.6303 1.726 0.6818 1.225 0.5927 

1997 1.537 1.1878 0.986 0.8596 1.36 1.469 

1998 1 0.9083 0.836 0.8596 1.26 1.7782 

1999 1.117 0.9084 0.889 0.741 1.678 1.7782 

2000 1.244 1.0947 1.347 0.83 1.602 1.9586 

2001 2.067 1.5606 1.587 1.0671 1.448 0.8505 

2002 0.791 0.5125 0.819 0.8003 1.621 0.2835 

2003 1.643 1.1647 1.024 0.5336 1.234 1.2113 

2004 0.825 0.6988 0.898 0.741 2.479 0.7732 

2005 1.14 0.8386 0.898 0.5336   
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1941 1.612 1.287 1.286   

1942 1.041 2.3255 0.753   

1943 0.836 1.6058 0.814   

1944 0.576 0.9376 0.902 0.8149 

1945 0.759 1.6178 1.06 1.2258 

1946 0.705 1.3674 0.579 1.3808 

1947 0.692 2.523 0.451 1.0142 

1948 0.584 1.9079 0.847 0.8147 

1949 1.019 1.0668 0.735 0.5458 

1950 1.149 0.762 0.703 0.6399 

1951 1.082 0.382 0.344 1.1352 

1952 1.212 0.638 0.522 0.504 

1953 1.03 0.3834 0.366 0.6675 

1954 1.742 0.6947 0.517 0.6833 

1955 1.507 0.5672 0.401 0.8089 

1956 1.155 0.8972 0.376 0.6364 

1957 1.675 0.7512 0.429 0.8668 

1958 0.91 0.8798 0.818 0.6018 

1959 0.913 0.5867 0.338 0.7719 

1960 1.28 0.4952 0.278 0.5469 

1961 0.823 0.752 0.285 1.0035 

1962 1.075 1.064 0.216 0.6961 

1963 0.54 1.2293 0.346 1.5747 

1964 0.666 1.945 0.637 0.7231 

1965 0.431 0.4588 0.205 0.7703 

1966 0.508 0.4955 0.265 0.465 

1967 1.43 0.2386 0.45 1.1145 

1968 0.498 0.4588 0.457 0.626 

1969 0.314 0.312 0.359 0.414 

1970 0.44 0.3487 0.334 0.5651 

1971 0.325 0.4588 0.254 0.3215 

1972 0.511 0.3304 0.426 0.2983 

1973 0.638 0.3304 0.636 0.3244 

1974 0.643 0.257 0.498 1.3762 

1975 0.321 0.2386 0.563 0.5266 

1976 0.251 1.0829 0.359 0.5777 

1977 0.192 0.312 0.487 0.5532 

1978 0.586 0.4405 0.701 0.4782 

1979 0.445 0.5873 0.623 0.3274 

1980 0.517 0.4038 0.783 0.378 

1981 0.578 1.0278 0.536 0.7058 

1982 0.714 0.3854 0.411 0.7817 

1983 0.712 0.2386 0.319 0.5801 

1984 1.681 0.2386 0.709 0.5802 

1985 0.581 0.0551 0.294 0.4289 

1986 0.724 0.6975 1.215 0.6055 

1987 0.785 0.4405 1.122 0.9841 

1988 1.06 0.257 1.308 0.1766 

1989 1.28 0.5323 0.813 0.5804 

1990 1.313 0.2386 1.544 0.7066 

1991 2.795 1.45 0.812 1.0347 

1992 3.246 1.193 2.884 1.1357 
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1993 2.021 1.9639 0.857 3.2051 

1994 1.957 2.1107 1.545 2.0695 

1995 3.842 1.2848 0.795 2.4228 

1996 1.828 1.7436 1.318 4.0633 

1997 1.329 2.698 1.736 2.3471 

1998 1.248 1.5234 2.988 3.1547 

1999 0.984 1.817 2.341 3.1547 

2000 2.623 0.6791 2.38 2.3976 

2001 2.645 1.8905 2.461 3.1295 

2002 1.461 1.7253 1.659 2.5995 

2003 1.663 0.8076 0.637 1.9686 

2004 1.126 1.0645 0.988 1.2114 
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Appendix 12: Raw growth increment data for all six sites (crossdated shell data only). 
These graphs help to illustrate the common ontogenetic growth patterns between the shells at 
each of the sites. 
 

 
Appendix 12A: Site C1 raw growth increment data. The top panel illustrates the raw data by 
calendar year while in the bottom panel all the raw data is aligned starting from ontogenetic 
year one to investigate how similar the growth trend for all data are. Also illustrated in the 
bottom panel is the average raw growth series for all shells crossdated at the site. 
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Appendix 12B: Site C2 raw growth increment data. The top panel illustrates the raw data by 
calendar year while in the bottom panel all the raw data is aligned starting from ontogenetic 
year one to investigate how similar the growth trend for all data are. Also illustrated in the 
bottom panel is the average raw growth series for all shells crossdated at the site. 
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Appendix 12C: Site C4 raw growth increment data. The top panel illustrates the raw data by 
calendar year while in the bottom panel all the raw data is aligned starting from ontogenetic 
year one to investigate how similar the growth trend for all data are. Also illustrated in the 
bottom panel is the average raw growth series for all shells crossdated at the site. 
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Appendix 12D: Site C6 raw growth increment data. The top panel illustrates the raw data by 
calendar year while in the bottom panel all the raw data is aligned starting from ontogenetic 
year one to investigate how similar the growth trend for all data are. Also illustrated in the 
bottom panel is the average raw growth series for all shells crossdated at the site. 
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Appendix 12E: Site C7 raw growth increment data. The top panel illustrates the raw data by 
calendar year while in the bottom panel all the raw data is aligned starting from ontogenetic 
year one to investigate how similar the growth trend for all data are. Also illustrated in the 
bottom panel is the average raw growth series for all shells crossdated at the site. 
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Appendix 12F: Site C8 raw growth increment data. The top panel illustrates the raw data by 
calendar year while in the bottom panel all the raw data is aligned starting from ontogenetic 
year one to investigate how similar the growth trend for all data are. Also illustrated in the 
bottom panel is the average raw growth series for all shells crossdated at the site. 
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Appendix 13: Graphs for individual series used to create master chronologies for all sites. 
These graphs illurate the detrended GI data for each of the cross dated shells for all six sites. 
These results are averaged together to generate the master chronologies presented in Chapter 
4. 
 

 

Appendix 13A: Site C1 graph showing all the detrended series for each of the individual shell 
chronologies used in the final master chronology in Figure 4.6 

 

 

Appendix  13B: Site C2 graph showing all the detrended series for each of the individual shell 
chronologies used in the final master chronology in Figure 4.7 
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Appendix 13C: Site C4 graph  showing all the detrended series for each of the individual shell 
chronologies used in the final master chronology in Figure 4.8 
 

 

 

Appendix 13D: Site C6 graph showing all the detrended series for each of the individual shell 
chronologies used in the final master chronology in Figure 4.9 
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Appendix 13E: Site C7 graph showing all the detrended series for each of the individual shell 
chronologies used in the final master chronology in Figure 4.10 

 

 

Appendix 13F: Site C8 graph showing all the detrended series for each of the individual shell 
chronologies used in the final master chronology in Figure 4.11 
 
 
 
 
 
Appendix 14: Allometric information for each site. 



Reference List and Appendix 

299 

 

In Chapter 5 the allometrics for all six sites are presented together, in this appendix the results 
for the individual sites are presented for comparison purposes. 
 

 

Appendix 14A: Site C1 allometric relationship investigations between A) length-height 
(Isometric), B) length-width (Isometric), C) height -width (Negatively Allometric) and D) length 
–weight (Negatively Allometric). 
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Appendix 14 B: Site C2 allometric relationship investigations between A) length-height 
(Isometric), B) length-width (Negatively Allometric), C) height –width(Negatively Allometric) 
and D) length –weight (Isometric). 
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Appendix 14C: Site C4 allometric relationship investigations between A) length-height 
(Positively Allometric), B) length-width (Isometric), C) height -width (Isometric) and D) length –
weight(Isometric). 
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Appendix 14 D: Site C6 allometric relationship investigations between A) length-height 
(Isometric), B) length-width (Isometric), C) height –width (Isometric) and D) length –weight 
(Isometric). 
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Appendix 14 E: Site C7 allometric relationship investigations between A) length-height 
(Negatively Allometric), B) length-width (Black – Isometric), C) height -width (Black – Isometric) 
and D) length –weight (Black – Negatively Allometric). 
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Appendix 14 F: Site C8 allometric relationship investigations between A) length-height 
(Isometric), B) length-width (Isometric), C) height –width (Isometric) and D) length –weight 
(Negatively Allometric). 
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Appendices 14G to 14L include the raw biometric and morphological data used in Chapter 5. 
Appendix 14G: Biometric and morphological data for site C1 
 

ID Whole 

Shell Wet 

Wt.(g) 

Soft 

Tissue 

Wt.(g) 

Wet 

Empty 

Shell 

Wt.(g) 

Dry 

Wt.(both 

shells) (g) 

Dry 

Wt.(g) 

Ht. 

(mm) 

Length 

(mm) 

Single 

shell 

Width 

(mm) 

Actual 

Width 

(mm) 

Log10 

Whole 

Shell Wet 

Wt.(g) 

Log10  

Soft 

Tissue 

Wt.(g) 

Log10  Wet 

Empty 

Shell Wt.(g) 

Log10 Dry 

Wt. (both 

shells) (g) 

Log10 

Dry 

Wt.(g) 

 

Log10 

Ht. 

(mm) 

Log10 

Length 

(mm) 

Log10 

Width 

(mm) 

C1L1a 182.17 45.85 89.37 87.21 43.60 79.07  24.70 49.40 2.26 1.66 1.95 1.94 1.64 1.90  1.69 

C1L2a 221.71 53.35 120.33 119.71 59.86 86.29  24.80 49.60 2.35 1.73 2.08 2.08 1.78 1.94  1.70 

C1L3a 133.08 43.48 64.57   79.00    2.12 1.64 1.81   1.90   

C1L4a 258.07 57.86 144.85 136.80 68.40 85.25  25.70 51.40 2.41 1.76 2.16 2.14 1.84 1.93  1.71 

C1L5a 198.64 56.58 97.38 93.56 46.78 87.39  20.40 40.80 2.30 1.75 1.99 1.97 1.67 1.94  1.61 

C1L6a 221.88 52.62 109.76 106.47 53.24 85.47 89.40 31.60 63.20 2.35 1.72 2.04 2.03 1.73 1.93 1.95 1.80 

C1L7a 191.71 51.82 100.06 98.19 49.09 79.56 86.80 26.10 52.20 2.28 1.71 2.00 1.99 1.69 1.90 1.94 1.72 

C1L8a 191.52 58.02 98.43 95.98 47.99 82.04 84.70 26.70 53.40 2.28 1.76 1.99 1.98 1.68 1.91  1.73 

C1L9a 214.94 60.19 107.84 103.98 51.99 88.74 89.20 25.40 50.80 2.33 1.78 2.03 2.02 1.72 1.95 1.95 1.71 

C1L10a 189.05 52.64 98.43 91.20 45.60 80.00 81.10 21.70 43.40 2.28 1.72 1.99 1.96 1.66 1.90 1.91 1.64 

C1L11a 265.97 69.82 136.23 126.97 63.49 93.00    2.42 1.84 2.13 2.10 1.80 1.97   

C1L12a 223.79 60.47 121.93 115.83 57.92 93.00  22.90 45.80 2.35 1.78 2.09 2.06 1.76 1.97  1.66 

C1L13a 232.05 60.30 110.85 105.04 52.52 92.00  21.00 42.00 2.37 1.78 2.04 2.02 1.72 1.96  1.62 

C1L14a 219.60 63.35 112.76 111.99 56.00 85.76 80.00 26.20 52.40 2.34 1.80 2.05 2.05 1.75 1.93 1.90 1.72 

C1L15a 138.42 39.25 80.54 79.31 39.65 79.39 82.80 19.20 38.40 2.14 1.59 1.91 1.90 1.60 1.90 1.92 1.58 

C1L16a 188.23 47.38 108.60 106.91 53.46 78.35 89.40 29.30 58.60 2.27 1.68 2.04 2.03 1.73 1.89 1.95 1.77 

C1L17a 198.12 53.48 102.13 100.32 50.16 84.62  24.10 48.20 2.30 1.73 2.01 2.00 1.70 1.93  1.68 

C1L18a 215.31 60.03 91.25 90.69 45.34 89.86 86.90 23.00 46.00 2.33 1.78 1.96 1.96 1.66 1.95 1.94 1.66 

C1L19a 172.59 45.64 99.06 97.08 48.54 82.16 90.00 25.90 51.80 2.24 1.66 2.00 1.99 1.69 1.91 1.95 1.71 

C1L20a 280.48 73.49 152.76 147.64 73.82 101.00  20.70 41.40 2.45 1.87 2.18 2.17 1.87 2.00  1.62 
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Appendix 14H: Biometric and morphological data for site C2 
 

ID Whole 
Shell Wet 

Wt.(g) 

Soft 
Tissue 
Wt.(g) 

Wet Empty 
Shell 

Wt.(g) 

Dry 
Wt.(both 
shells) (g) 

Dry 
Wt.(g) 

Ht. 
(mm) 

Length 
(mm) 

Single 
shell 

Width 
(mm) 

Actual 
Width 
(mm) 

Log10 
Whole 

Shell Wet 
Wt.(g) 

Log10  
Soft 

Tissue 
Wt.(g) 

Log10  
Wet 

Empty 
Shell 

Wt.(g) 

Log10 Dry 
Wt. (both 
shells) (g) 

Log10 
Dry 

Wt.(g) 
 

Log10 
Ht. 

(mm) 

Log10 
Length 
(mm) 

Log10 
Width 
(mm) 

C2-L1a 215.34 59.47 155.87 147.49 73.75 96.20 98.20 21.80 43.60 2.33 1.77 2.19 2.17 1.87 1.98 1.99 1.64 
C2-L2a 257.70 73.41 184.29 173.70 86.85 100.50 100.00 27.90 55.80 2.41 1.87 2.27 2.24 1.94 2.00 2.00 1.75 
C2-L3a 184.31 54.62 129.69 125.97 62.99 89.90 95.90 28.70 57.40 2.27 1.74 2.11 2.10 1.80 1.95 1.98 1.76 
C2-L5a 233.74 61.41 172.33 165.91 82.96 97.40 103.70 33.90 67.80 2.37 1.79 2.24 2.22 1.92 1.99 2.02 1.83 
C2-L8a 186.29 44.12 142.17 136.80 68.40 87.80 92.00 25.20 50.40 2.27 1.64 2.15 2.14 1.84 1.94 1.96 1.70 
C2-L9a 211.78 55.29 156.49 148.82 74.41 90.20 95.40 26.80 53.60 2.33 1.74 2.19 2.17 1.87 1.96 1.98 1.73 

C2-L10a 186.11 52.00 134.11 128.19 64.10 91.90 92.00 22.40 44.80 2.27 1.72 2.13 2.11 1.81 1.96 1.96 1.65 
C2-L11a 196.03 48.63 147.40 142.47 71.23 93.50 97.60 25.10 50.20 2.29 1.69 2.17 2.15 1.85 1.97 1.99 1.70 
C2-L12a 172.99 41.24 131.75 124.05 62.02 87.40 89.90 29.80 59.60 2.24 1.62 2.12 2.09 1.79 1.94 1.95 1.78 
C2-L14a 163.14 42.95 120.20 114.98 57.49 89.90 92.60 24.70 49.40 2.21 1.63 2.08 2.06 1.76 1.95 1.97 1.69 
C2-L15a 172.20 44.97 127.23 121.07 60.53 98.10 91.80 24.60 49.20 2.24 1.65 2.10 2.08 1.78 1.99 1.96 1.69 
C2-L16a 187.64 53.14 134.50 130.11 65.06 94.90 92.80 25.40 50.80 2.27 1.73 2.13 2.11 1.81 1.98 1.97 1.71 
C2-L17a 188.14 44.62 143.51 135.96 67.98 89.30 93.80 22.70 45.40 2.27 1.65 2.16 2.13 1.83 1.95 1.97 1.66 
C2-L18a 191.46 45.82 145.64 138.77 69.39 92.40 96.80 26.70 53.40 2.28 1.66 2.16 2.14 1.84 1.97 1.99 1.73 
C2-L19a 193.08 54.85 138.23 133.51 66.75 92.20 94.30 28.70 57.40 2.29 1.74 2.14 2.13 1.82 1.96 1.97 1.76 
C2-L20a 148.25 40.62 107.63 120.03 60.02 86.30 89.50 29.20 58.40 2.17 1.61 2.03 2.08 1.78 1.94 1.95 1.77 
C2-L21a 195.34 48.47 146.86 141.16 70.58 89.70 96.20 25.40 50.80 2.29 1.69 2.17 2.15 1.85 1.95 1.98 1.71 
C2-L22a 180.86 53.10 127.77 121.88 60.94 86.30 94.20 23.10 46.20 2.26 1.73 2.11 2.09 1.78 1.94 1.97 1.66 
C2-L23a 197.71 54.16 143.56 135.75 67.88 90.80 92.40 28.30 56.60 2.30 1.73 2.16 2.13 1.83 1.96 1.97 1.75 
C2-L24a 164.82 46.06 118.76 113.76 56.88 84.30 84.70 25.40 50.80 2.22 1.66 2.07 2.06 1.75 1.93 1.93 1.71 
C2-L25a 172.29 40.46 131.83 129.86 64.93 83.30 89.50 27.30 54.60 2.24 1.61 2.12 2.11 1.81 1.92 1.95 1.74 
C2-L26a 179.85 49.31 130.53 142.57 71.28 92.40 95.50 25.30 50.60 2.25 1.69 2.12 2.15 1.85 1.97 1.98 1.70 
C2-L27a 189.64 49.31 140.32 135.54 67.77 85.30 90.90 27.40 54.80 2.28 1.69 2.15 2.13 1.83 1.93 1.96 1.74 
C2-L28a 185.79 51.29 134.51 128.80 64.40 94.60 99.00 26.80 53.60 2.27 1.71 2.13 2.11 1.81 1.98 2.00 1.73 
C2-L29a 150.88 38.07 112.81 108.57 54.28 87.00 94.40 23.60 47.20 2.18 1.58 2.05 2.04 1.73 1.94 1.97 1.67 
C2-L30a 176.07 41.83 134.24 140.23 70.12 90.40 96.60 28.00 56.00 2.25 1.62 2.13 2.15 1.85 1.96 1.98 1.75 
C2-L32a 143.19 41.82 101.37 97.96 48.98 85.20 87.90 27.50 55.00 2.16 1.62 2.01 1.99 1.69 1.93 1.94 1.74 
C2-L33a 195.80 54.89 140.91 136.05 68.03 88.70 91.60 24.40 48.80 2.29 1.74 2.15 2.13 1.83 1.95 1.96 1.69 
C2-L34a 121.59 41.02 80.56 77.08 38.54 81.50 83.50 25.10 50.20 2.08 1.61 1.91 1.89 1.59 1.91 1.92 1.70 
C2-L35a 185.93 52.49 133.44 128.40 64.20 92.50 96.60 30.10 60.20 2.27 1.72 2.13 2.11 1.81 1.97 1.98 1.78 
C2-L36a 200.99 57.09 143.90 140.67 70.33 93.10 95.50 25.40 50.80 2.30 1.76 2.16 2.15 1.85 1.97 1.98 1.71 
C2-L37a 157.86 36.94 120.92 114.73 57.37 84.50 87.00 25.50 51.00 2.20 1.57 2.08 2.06 1.76 1.93 1.94 1.71 
C2-L38a 161.87 38.54 123.33 117.52 58.76 85.40 88.40 35.40 70.80 2.21 1.59 2.09 2.07 1.77 1.93 1.95 1.85 
C2-L39a 210.93 48.75 162.18 157.64 78.82 94.80 97.30 27.90 55.80 2.32 1.69 2.21 2.20 1.90 1.98 1.99 1.75 
C2-L40a 155.13 41.62 113.52 109.98 54.99 90.20 93.80 26.70 53.40 2.19 1.62 2.06 2.04 1.74 1.96 1.97 1.73 
C2-L41A 231.69 63.94 167.75 116.37 58.19 86.00 90.20 26.60 53.20 2.36 1.81 2.22 2.07 1.76 1.93 1.96 1.73 
C2-L42A 2213.88 50.80 2163.08 113.30 56.65 83.10 86.90 26.00 52.00 3.35 1.71 3.34 2.05 1.75 1.92 1.94 1.72 
C2-L47A 245.79 50.73  125.35 62.67 87.40 97.20 26.70 53.40 2.39 1.71  2.10 1.80 1.94 1.99 1.73 
C2-L48A 248.99 76.65 172.34 125.28 62.64 87.00 92.20 22.40 44.80 2.40 1.88 2.24 2.10 1.80 1.94 1.96 1.65 
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Appendix 14I: Biometric and morphological data for site C4 
 

ID Whole 
Shell Wet 

Wt.(g) 

Soft 
Tissue 
Wt.(g) 

Wet Empty 
Shell 

Wt.(g) 

Dry 
Wt.(both 
shells) (g) 

Dry 
Wt.(g) 

Ht. 
(mm) 

Length 
(mm) 

Single 
shell 

Width 
(mm) 

Actual 
Width 
(mm) 

Log10 
Whole 

Shell Wet 
Wt.(g) 

Log10  
Soft 

Tissue 
Wt.(g) 

Log10  
Wet 

Empty 
Shell 

Wt.(g) 

Log10 Dry 
Wt. (both 
shells) (g) 

Log10 
Dry 

Wt.(g) 
 

Log10 
Ht. 

(mm) 

Log10 
Length 
(mm) 

Log10 
Width 
(mm) 

C4 L 5a 190.04 41.59 101.42 94.81 47.41 77.90 83.40 25.60 51.20 2.28 1.62 2.01 1.98 1.68 1.89 1.92 1.71 
C4 L 6a 97.78 30.29 60.59 62.84 31.42 75.00 81.30 21.70 43.40 1.99 1.48 1.78 1.80 1.50 1.88 1.91 1.64 
C4 L 7a 85.70 31.11 49.39 57.21 28.61 73.10 77.20 26.20 52.40 1.93 1.49 1.69 1.76 1.46 1.86 1.89 1.72 
C4 L 8a 148.79 35.45 68.42 57.89 28.95 75.40 78.90 23.90 47.80 2.17 1.55 1.84 1.76 1.46 1.88 1.90 1.68 
C4 L 9a 129.12 32.92 54.99 47.89 23.95 72.20 75.30 24.80 49.60 2.11 1.52 1.74 1.68 1.38 1.86 1.88 1.70 

C4 L 10a 128.35 30.06 63.25 56.93 28.47 75.00 78.30 22.60 45.20 2.11 1.48 1.80 1.76 1.45 1.88 1.89 1.66 
C4 L 11a 142.27 40.83 94.95 88.60 44.30 79.10 81.20 23.30 46.60 2.15 1.61 1.98 1.95 1.65 1.90 1.91 1.67 
C4 L 12a 108.07 36.67 66.85 62.31 31.15 75.00 79.10 22.10 44.20 2.03 1.56 1.83 1.79 1.49 1.88 1.90 1.65 
C4 L 13a 93.02 29.09 62.74 56.23 28.12 71.00 78.50 22.40 44.80 1.97 1.46 1.80 1.75 1.45 1.85 1.89 1.65 
C4 L 14a 106.56 40.46 63.79 56.63 28.31 75.80 77.90 22.60 45.20 2.03 1.61 1.80 1.75 1.45 1.88 1.89 1.66 
C4 L 15a 140.23 44.37 93.94 87.24 43.62 77.50 90.90 29.40 58.80 2.15 1.65 1.97 1.94 1.64 1.89 1.96 1.77 
C4 L 16a 124.80 41.26 55.45 49.97 24.98 71.50 74.10 24.80 49.60 2.10 1.62 1.74 1.70 1.40 1.85 1.87 1.70 
C4 L 17a 122.62 35.92 86.70 77.69 38.85 78.70 87.90 27.90 55.80 2.09 1.56 1.94 1.89 1.59 1.90 1.94 1.75 
C4 L 18a 168.46 16.78 28.58 36.20 18.10 60.70 63.90 19.00 38.00 2.23 1.22 1.46 1.56 1.26 1.78 1.81 1.58 
C4 L 19a 168.46 34.46 87.06 78.78 39.39 73.10 77.40 23.20 46.40 2.23 1.54 1.94 1.90 1.60 1.86 1.89 1.67 
C4 L 20a 168.46 29.50 76.99 76.91 38.46 78.00 83.00 30.00 60.00 2.23 1.47 1.89 1.89 1.58 1.89 1.92 1.78 
C4 L 21a 164.09 33.87 68.62 71.51 35.76 75.90 79.30 27.40 54.80 2.22 1.53 1.84 1.85 1.55 1.88 1.90 1.74 
C4 L 22a 131.25 30.20 76.99 65.89 32.94 72.40 76.90 25.40 50.80 2.12 1.48 1.89 1.82 1.52 1.86 1.89 1.71 
C4 L 23a 153.59 34.24 71.47 62.66 31.33 75.10 79.50 23.90 47.80 2.19 1.53 1.85 1.80 1.50 1.88 1.90 1.68 
C4 L 25a 113.63 30.69 54.64 49.39 24.70 67.80 71.00 15.00 30.00 2.06 1.49 1.74 1.69 1.39 1.83 1.85 1.48 
C4 L 26a 56.61 13.34 28.55 25.73 12.86 54.30 61.00 18.00 36.00 1.75 1.12 1.46 1.41 1.11 1.73 1.79 1.56 
C4 L 27a 105.76 28.78 56.05 53.38 26.69 71.90 77.90 19.40 38.80 2.02 1.46 1.75 1.73 1.43 1.86 1.89 1.59 
C4 L 30a 134.30 42.43 65.60 58.76 29.38 71.60 75.10 19.30 38.60 2.13 1.63 1.82 1.77 1.47 1.85 1.88 1.59 
C4 L 32a 71.87 21.73 36.42 33.37 16.69 58.20 61.00 16.30 32.60 1.86 1.34 1.56 1.52 1.22 1.76 1.79 1.51 
C4 L 33a 110.37 22.02 55.21 51.04 25.52 67.10 69.60 23.40 46.80 2.04 1.34 1.74 1.71 1.41 1.83 1.84 1.67 
C4 L 34a 144.94 56.52 60.88 56.85 28.42 72.10 79.40 25.60 51.20 2.16 1.75 1.78 1.75 1.45 1.86 1.90 1.71 
C4 L36a 133.67 40.10 68.90 60.86 30.43 73.40 74.80 23.20 46.40 2.13 1.60 1.84 1.78 1.48 1.87 1.87 1.67 
C4 L 41a 176.91 44.36 89.76 80.04 40.02 80.20 83.80 23.90 47.80 2.25 1.65 1.95 1.90 1.60 1.90 1.92 1.68 
C4 L 43a 133.93 36.35 69.09 61.71 30.86 72.10 82.40 25.50 51.00 2.13 1.56 1.84 1.79 1.49 1.86 1.92 1.71 
C4 L 44a 135.17 45.38 69.47 63.99 32.00 73.00 76.10 17.70 35.40 2.13 1.66 1.84 1.81 1.51 1.86 1.88 1.55 
C4 L 45a 118.11 33.23 58.86 52.49 26.25 68.20 71.40 22.40 44.80 2.07 1.52 1.77 1.72 1.42 1.83 1.85 1.65 
C4 L107 138.06 37.98 100.08 86.37 43.19 80.10 84.00 26.20 52.40 2.14 1.58 2.00 1.94 1.64 1.90 1.92 1.72 
C4 L113 45.54 15.95 29.59 23.73 11.87 50.20 55.90 16.30 32.60 1.66 1.20 1.47 1.38 1.07 1.70 1.75 1.51 
C4 L68 107.14 33.24 73.89 66.07 33.03 70.10 75.80 28.00 56.00 2.03 1.52 1.87 1.82 1.52 1.85 1.88 1.75 

C4 L111 126.28 41.54 84.74 69.59 34.80 70.80 84.30 26.10 52.20 2.10 1.62 1.93 1.84 1.54 1.85 1.93 1.72 
C4 L114 100.99 24.55 76.44 65.52 32.76 70.10 75.90 23.40 46.80 2.00 1.39 1.88 1.82 1.52 1.85 1.88 1.67 
C4 L83 50.85 17.14 33.71 29.22 14.61 50.70 60.60 17.90 35.80 1.71 1.23 1.53 1.47 1.16 1.71 1.78 1.55 

C4 L106 40.01 14.24 25.77 21.25 10.63 50.20 57.70 14.30 28.60 1.60 1.15 1.41 1.33 1.03 1.70 1.76 1.46 
C4 L81 144.74 35.01 109.73 61.15 30.57 70.70 76.30 27.30 54.60 2.16 1.54 2.04 1.79 1.49 1.85 1.88 1.74 
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C4 L110 47.77 15.82 31.95 25.77 12.89 50.20 58.90 18.30 36.60 1.68 1.20 1.50 1.41 1.11 1.70 1.77 1.56 
C4 L108 114.73 33.63 81.10 69.21 34.60 70.40 79.60 26.30 52.60 2.06 1.53 1.91 1.84 1.54 1.85 1.90 1.72 
C4 L78 130.85 39.48 91.36 72.86 36.43 80.10 85.00 23.50 47.00 2.12 1.60 1.96 1.86 1.56 1.90 1.93 1.67 

C4 L102 58.51 17.50 41.02 34.59 17.30 60.00 66.10 18.30 36.60 1.77 1.24 1.61 1.54 1.24 1.78 1.82 1.56 
C4 L77 42.58 15.54 27.04 23.20 11.60 40.90 52.10 16.90 33.80 1.63 1.19 1.43 1.37 1.06 1.61 1.72 1.53 

 
Appendix 14J: Biometric and morphological data for site C6 
 

ID Whole 
Shell Wet 

Wt.(g) 

Soft 
Tissue 
Wt.(g) 

Wet 
Empty 
Shell 

Wt.(g) 

Dry 
Wt.(both 
shells) (g) 

Dry 
Wt.(g) 

Ht. 
(mm) 

Length 
(mm) 

Single 
shell 

Width 
(mm) 

Actual 
Width 
(mm) 

Log10 
Whole 

Shell Wet 
Wt.(g) 

Log10  
Soft 

Tissue 
Wt.(g) 

Log10  
Wet 

Empty 
Shell 

Wt.(g) 

Log10 
Dry Wt. 

(both 
shells) (g) 

Log10 
Dry 

Wt.(g) 
 

Log10 
Ht. 

(mm) 

Log10 
Length 
(mm) 

Log10 
Width 
(mm) 

C6L10a 173.75 135.42 38.33 128.07 64.04 87.20 93.30 26.90 53.80 2.24 2.13 1.58 2.11 1.81 1.94 1.97 1.73 
C6L113 191.10 61.69 129.42 116.28 58.14 80.90 95.40 22.80 45.60 2.28 1.79 2.11 2.07 1.76 1.91 1.98 1.66 
C6L11a 218.30 171.04 47.25 159.97 79.99 92.40 97.80 31.10 62.20 2.34 2.23 1.67 2.20 1.90 1.97 1.99 1.79 
C6L12a 115.91 82.91 33.00 78.20 39.10 83.10 87.90 24.20 48.40 2.06 1.92 1.52 1.89 1.59 1.92 1.94 1.68 
C6L17a 130.34 100.19 30.14 97.01 48.51 85.40 88.70 26.10 52.20 2.12 2.00 1.48 1.99 1.69 1.93 1.95 1.72 
C6L18a 180.98 50.50 130.48 116.29 58.14 90.50 94.00 30.80 61.60 2.26 1.70 2.12 2.07 1.76 1.96 1.97 1.79 
C6L19a 194.20 63.36 130.84 179.40 89.70 89.70 96.00 25.30 50.60 2.29 1.80 2.12 2.25 1.95 1.95 1.98 1.70 
C6L3a 233.36 46.75 147.15 134.07 67.04 89.40 69.70 21.20 42.40 2.37 1.67 2.17 2.13 1.83 1.95 1.84 1.63 
C6L4a 174.10 57.02 117.08 105.33 52.67 85.60 87.50 25.40 50.80 2.24 1.76 2.07 2.02 1.72 1.93 1.94 1.71 

C6L51A 253.98 97.30 156.67 138.76 69.38 98.50 104.30 27.40 54.80 2.40 1.99 2.19 2.14 1.84 1.99 2.02 1.74 
C6L52A 181.92 46.44 135.47 123.77 61.89 89.50 93.90 28.10 56.20 2.26 1.67 2.13 2.09 1.79 1.95 1.97 1.75 
C6L53A 216.08 80.63 135.45 120.95 60.48 86.60 90.70 25.70 51.40 2.33 1.91 2.13 2.08 1.78 1.94 1.96 1.71 
C6L54A 202.62 58.04 144.59 134.44 67.22 89.10 93.20 25.10 50.20 2.31 1.76 2.16 2.13 1.83 1.95 1.97 1.70 
C6L55A 140.72 41.35 99.37 91.31 45.66 78.40 84.10 20.90 41.80 2.15 1.62 2.00 1.96 1.66 1.89 1.92 1.62 
C6L57A 172.84 59.73 113.11 102.68 51.34 84.50 91.40 26.10 52.20 2.24 1.78 2.05 2.01 1.71 1.93 1.96 1.72 
C6L5a 109.90 49.35 60.55 57.16 28.58 69.10 70.40 20.20 40.40 2.04 1.69 1.78 1.76 1.46 1.84 1.85 1.61 

C6L60A 211.14 66.85 144.29 124.99 62.50 84.40 89.80 19.90 39.80 2.32 1.83 2.16 2.10 1.80 1.93 1.95 1.60 
C6L63A 113.67 35.64 78.03 72.13 36.07 74.60 82.40 21.90 43.80 2.06 1.55 1.89 1.86 1.56 1.87 1.92 1.64 
C6L65A 77.24 28.12 49.12 44.78 22.39 66.10 72.50 15.00 30.00 1.89 1.45 1.69 1.65 1.35 1.82 1.86 1.48 
C6L66A 51.11 22.78 28.33 25.65 12.83 52.40 57.50 16.30 32.60 1.71 1.36 1.45 1.41 1.11 1.72 1.76 1.51 
C6L68A 95.76 37.64 58.12 52.77 26.39 67.80 71.40 26.30 52.60 1.98 1.58 1.76 1.72 1.42 1.83 1.85 1.72 
C6L6a 218.95 65.32 153.63 41.61 20.81 57.60 63.00 22.40 44.80 2.34 1.82 2.19 1.62 1.32 1.76 1.80 1.65 

C6L70A 169.00 50.03 118.97 107.62 53.81 85.50 88.20 26.30 52.60 2.23 1.70 2.08 2.03 1.73 1.93 1.95 1.72 
C6L75A 120.15 52.82 67.33 62.28 31.14 73.20 75.50 26.90 53.80 2.08 1.72 1.83 1.79 1.49 1.86 1.88 1.73 
C6L7a 184.22 136.41 47.81 126.21 63.11 92.10 95.20 33.70 67.40 2.27 2.13 1.68 2.10 1.80 1.96 1.98 1.83 

C6L83A 102.82 44.88 57.94 54.09 27.05 69.30 75.80 22.30 44.60 2.01 1.65 1.76 1.73 1.43 1.84 1.88 1.65 
C6L85A 16.01 8.62 7.38 6.74 3.37 32.20 37.70 11.40 22.80 1.20 0.94 0.87 0.83 0.53 1.51 1.58 1.36 
C6L8a 63.79 49.24 14.55 47.20 23.60 58.10 64.40 19.70 39.40 1.80 1.69 1.16 1.67 1.37 1.76 1.81 1.60 

C6 L102 204.82 62.77 142.05 163.24 81.62 90.50 100.00 28.50 57.00 2.31 1.80 2.15 2.21 1.91 1.96 2.00 1.76 
C6 L103 174.44 56.79 117.65 103.82 51.91 80.40 95.00 23.60 47.20 2.24 1.75 2.07 2.02 1.72 1.91 1.98 1.67 
C6 L105 235.48 69.71 165.77 180.40 90.20 74.50 93.40 31.20 62.40 2.37 1.84 2.22 2.26 1.96 1.87 1.97 1.80 
C6 L106 260.58 85.34 175.24 161.49 80.74 90.30 97.40 27.20 54.40 2.42 1.93 2.24 2.21 1.91 1.96 1.99 1.74 
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C6 L107 169.38 52.95 116.43 108.00 54.00 80.10 86.80 26.30 52.60 2.23 1.72 2.07 2.03 1.73 1.90 1.94 1.72 
C6 L110 203.94 53.46 150.47 133.74 66.87 80.80 94.40 22.70 45.40 2.31 1.73 2.18 2.13 1.83 1.91 1.97 1.66 
C6 L111 211.66 62.59 149.07 125.49 62.75 80.80 98.40 33.90 67.80 2.33 1.80 2.17 2.10 1.80 1.91 1.99 1.83 
C6 L112 217.67 52.87 164.80 138.93 69.47 80.40 91.30 26.40 52.80 2.34 1.72 2.22 2.14 1.84 1.91 1.96 1.72 
C6 L114 190.75 57.35 133.40 123.69 61.84 80.00 90.00 32.80 65.60 2.28 1.76 2.13 2.09 1.79 1.90 1.95 1.82 
C6 L115 186.01 61.06 124.95 102.15 51.07 80.50 94.30 23.50 47.00 2.27 1.79 2.10 2.01 1.71 1.91 1.97 1.67 
C6 L116 200.65 64.66 135.99 122.19 61.09 80.80 97.20 37.90 75.80 2.30 1.81 2.13 2.09 1.79 1.91 1.99 1.88 
C6 L118 213.66 62.19 151.47 136.89 68.45 80.80 98.00 31.50 63.00 2.33 1.79 2.18 2.14 1.84 1.91 1.99 1.80 
C6 L120 227.59 64.40 163.19 143.74 71.87 90.40 94.60 26.60 53.20 2.36 1.81 2.21 2.16 1.86 1.96 1.98 1.73 
C6 L80 177.11 57.48 119.63 108.57 54.29 80.70 94.30 35.40 70.80 2.25 1.76 2.08 2.04 1.73 1.91 1.97 1.85 
C6 L92 121.15 30.45 90.71 84.90 42.45 70.90 81.60 28.90 57.80 2.08 1.48 1.96 1.93 1.63 1.85 1.91 1.76 
C6 L98 206.14 61.24 144.90 118.55 59.27 90.00 98.40 26.10 52.20 2.31 1.79 2.16 2.07 1.77 1.95 1.99 1.72 
C6 L99 184.03 53.01 131.02 121.06 60.53 80.50 91.30 28.40 56.80 2.26 1.72 2.12 2.08 1.78 1.91 1.96 1.75 

 
Appendix 14K: Biometric and morphological data for site C7 
 

ID Whole 
Shell Wet 

Wt.(g) 

Soft 
Tissue 
Wt.(g) 

Wet 
Empty 
Shell 

Wt.(g) 

Dry 
Wt.(both 
shells) (g) 

Dry 
Wt.(g) 

 

Ht. 
(mm) 

Length 
(mm) 

 

Single 
shell 

Width 
(mm) 

Actual 
Width 
(mm) 

Log10 
Whole 

Shell Wet 
Wt.(g) 

Log10  
Soft 

Tissue 
Wt.(g) 

Log10  
Wet 

Empty 
Shell 

Wt.(g) 

Log10 
Dry Wt. 
(both 

shells) (g) 

Log10 
Dry 

Wt.(g) 
 

Log10 
Ht. 

(mm) 
 

Log10 
Length 
(mm) 

Log10 
Width 
(mm) 

C7L10 84.29 19.26 65.03 46.01 23.01 66.90 70.90 14.00 28.00 1.93 1.28 1.81 1.66 1.36 1.83 1.85 1.45 
C7L17 79.60 32.66 46.93 43.03 21.52 23.40 23.40 19.40 38.80 1.90 1.51 1.67 1.63 1.33 1.37 1.37 1.59 

C7L136 67.33 23.93 43.41 41.40 20.70 66.80 48.50 16.40 32.80 1.83 1.38 1.64 1.62 1.32 1.82 1.69 1.52 
C7L120 18.52 4.88 13.64 13.06 6.53 43.10 48.90 13.00 26.00 1.27 0.69 1.13 1.12 0.81 1.63 1.69 1.41 
C7L119 37.55 12.23 25.33 24.66 12.33 50.00 55.60 14.60 29.20 1.57 1.09 1.40 1.39 1.09 1.70 1.75 1.47 
C7L98 33.11 8.90 24.21 22.67 11.34 54.50 57.90 17.30 34.60 1.52 0.95 1.38 1.36 1.05 1.74 1.76 1.54 

C7L110 36.88 11.59 25.30 24.09 12.04 56.10 58.90 23.90 47.80 1.57 1.06 1.40 1.38 1.08 1.75 1.77 1.68 
C7L66 68.37 28.80 39.57 32.38 16.19 55.70 59.90 18.70 37.40 1.83 1.46 1.60 1.51 1.21 1.75 1.78 1.57 
C7L83 40.29 15.53 24.76 23.18 11.59 56.60 61.70 16.60 33.20 1.61 1.19 1.39 1.37 1.06 1.75 1.79 1.52 

C7L134 48.80 17.23 31.57 29.83 14.92 56.60 61.90 16.90 33.80 1.69 1.24 1.50 1.47 1.17 1.75 1.79 1.53 
C7L3 60.65 17.64 43.01 32.72 16.36 57.00 62.10 17.10 34.20 1.78 1.25 1.63 1.51 1.21 1.76 1.79 1.53 

C7L100 51.63 20.22 31.42 28.62 14.31 60.90 62.10 19.20 38.40 1.71 1.31 1.50 1.46 1.16 1.78 1.79 1.58 
C7L14 69.70 3.79 65.91 28.86 14.43 58.80 62.90 21.90 43.80 1.84 0.58 1.82 1.46 1.16 1.77 1.80 1.64 
C7L47 138.29 45.50 92.79 83.30 41.65 77.70 63.00 19.30 38.60 2.14 1.66 1.97 1.92 1.62 1.89 1.80 1.59 

C7L113 52.19 20.84 31.35 29.04 14.52 57.10 63.10 17.40 34.80 1.72 1.32 1.50 1.46 1.16 1.76 1.80 1.54 
C7L87 47.89 14.75 33.14 31.83 15.91 69.20 64.00 16.40 32.80 1.68 1.17 1.52 1.50 1.20 1.84 1.81 1.52 
C7L81 56.17 26.66 29.51 42.37 21.18 66.50 64.50 16.50 33.00 1.75 1.43 1.47 1.63 1.33 1.82 1.81 1.52 
C7L2 63.85 10.59 53.26 32.18 16.09 60.20 65.50 18.80 37.60 1.81 1.02 1.73 1.51 1.21 1.78 1.82 1.58 

C7L106 69.07 27.31 41.76 38.92 19.46 69.90 66.00 20.40 40.80 1.84 1.44 1.62 1.59 1.29 1.84 1.82 1.61 
C7L76 53.98 19.00 34.98 32.48 16.24 62.20 66.40 17.40 34.80 1.73 1.28 1.54 1.51 1.21 1.79 1.82 1.54 
C7L73 71.75 28.20 43.55 35.18 17.59 63.25 67.50 20.00 40.00 1.86 1.45 1.64 1.55 1.25 1.80 1.83 1.60 

C7L137 63.29 29.86 33.43 31.87 15.93 60.20 67.50 16.20 32.40 1.80 1.48 1.52 1.50 1.20 1.78 1.83 1.51 
C7L70 62.10 17.56 44.54 42.23 21.12 60.90 68.00 22.60 45.20 1.79 1.24 1.65 1.63 1.32 1.78 1.83 1.66 
C7L42 83.29 17.99 65.31 31.40 15.70 59.80 68.10 18.20 36.40 1.92 1.25 1.81 1.50 1.20 1.78 1.83 1.56 
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C7L95 92.93 44.05 48.87 45.81 22.91 67.80 68.70 18.80 37.60 1.97 1.64 1.69 1.66 1.36 1.83 1.84 1.58 
C7L72 88.25 38.10 50.15 40.78 20.39 67.50 70.50 14.40 28.80 1.95 1.58 1.70 1.61 1.31 1.83 1.85 1.46 
C7L94 72.97 26.09 46.89 35.31 17.66 66.40 70.70 25.40 50.80 1.86 1.42 1.67 1.55 1.25 1.82 1.85 1.71 
C7L74 92.92 12.52 80.40 33.21 16.60 61.90 71.40 23.40 46.80 1.97 1.10 1.91 1.52 1.22 1.79 1.85 1.67 
C7L61 92.32 29.12 63.19 60.23 30.12 70.00 71.70 17.90 35.80 1.97 1.46 1.80 1.78 1.48 1.85 1.86 1.55 
C7L31 77.12 25.07 52.05 47.97 23.98 67.90 71.80 22.60 45.20 1.89 1.40 1.72 1.68 1.38 1.83 1.86 1.66 

C7L102 73.47 31.84 41.63 37.53 18.77 65.30 72.00 20.40 40.80 1.87 1.50 1.62 1.57 1.27 1.81 1.86 1.61 
C7L135 72.19 28.16 44.03 41.32 20.66 67.00 72.00 22.90 45.80 1.86 1.45 1.64 1.62 1.32 1.83 1.86 1.66 
C7L121 73.21 19.77 53.44 49.95 24.97 67.30 72.50 23.40 46.80 1.86 1.30 1.73 1.70 1.40 1.83 1.86 1.67 
C7L97 83.86 37.81 46.06 42.59 21.29 66.00 72.80 21.10 42.20 1.92 1.58 1.66 1.63 1.33 1.82 1.86 1.63 
C7L45 116.17 22.65 93.53 47.00 23.50 68.80 73.40 16.30 32.60 2.07 1.36 1.97 1.67 1.37 1.84 1.87 1.51 

C7L112 105.51 45.72 59.78 54.50 27.25 71.20 73.40 26.40 52.80 2.02 1.66 1.78 1.74 1.44 1.85 1.87 1.72 
C7L96 53.34 14.44 38.91 36.46 18.23 57.80 74.10 17.90 35.80 1.73 1.16 1.59 1.56 1.26 1.76 1.87 1.55 

C7L130 61.05 18.80 42.25 40.93 20.47 67.00 74.20 26.00 52.00 1.79 1.27 1.63 1.61 1.31 1.83 1.87 1.72 
C7L52 69.54 21.74 47.80 43.88 21.94 70.00 74.50 23.60 47.20 1.84 1.34 1.68 1.64 1.34 1.85 1.87 1.67 

C7L107 76.73 31.39 45.34 41.54 20.77 67.70 74.60 22.30 44.60 1.88 1.50 1.66 1.62 1.32 1.83 1.87 1.65 
C7L93 83.44 34.72 48.72 51.07 25.53 70.10 74.70 22.10 44.20 1.92 1.54 1.69 1.71 1.41 1.85 1.87 1.65 

C7L431a 73.23 21.19 52.04 49.57 24.79 67.70 74.80 23.20 46.40 1.86 1.33 1.72 1.70 1.39 1.83 1.87 1.67 
C7L64 124.44 24.02 100.42 51.70 25.85 70.00 74.90 22.90 45.80 2.09 1.38 2.00 1.71 1.41 1.85 1.87 1.66 
C7L89 91.16 37.67 53.48 48.52 24.26 67.10 75.10 28.40 56.80 1.96 1.58 1.73 1.69 1.38 1.83 1.88 1.75 
C7L88 83.26 31.86 51.40 45.10 22.55 68.20 75.20 21.70 43.40 1.92 1.50 1.71 1.65 1.35 1.83 1.88 1.64 
C7L90 93.54 33.24 60.30 54.73 27.37 73.10 76.80 25.50 51.00 1.97 1.52 1.78 1.74 1.44 1.86 1.89 1.71 

C7L105 97.54 39.26 58.28 52.52 26.26 69.60 76.80 18.30 36.60 1.99 1.59 1.77 1.72 1.42 1.84 1.89 1.56 
C7L56 86.34 26.93 59.41 54.14 27.07 73.40 77.10 19.90 39.80 1.94 1.43 1.77 1.73 1.43 1.87 1.89 1.60 
C7L57 113.47 40.87 72.60 67.44 33.72 78.90 77.30 23.30 46.60 2.05 1.61 1.86 1.83 1.53 1.90 1.89 1.67 
C7L13 101.81 19.88 81.93 55.19 27.60 70.80 77.70 22.20 44.40 2.01 1.30 1.91 1.74 1.44 1.85 1.89 1.65 
C7L15 95.43 35.18 60.25 54.06 27.03 72.40 78.10 21.40 42.80 1.98 1.55 1.78 1.73 1.43 1.86 1.89 1.63 
C7L4 119.19 24.41 94.77 58.53 29.27 70.05 78.20 16.00 32.00 2.08 1.39 1.98 1.77 1.47 1.85 1.89 1.51 

C7L50 98.01 33.50 64.51 60.40 30.20 77.80 78.20 17.10 34.20 1.99 1.53 1.81 1.78 1.48 1.89 1.89 1.53 
C7L54 96.43 33.81 62.62 56.48 28.24 71.20 79.00 22.90 45.80 1.98 1.53 1.80 1.75 1.45 1.85 1.90 1.66 
C7L91 100.27 42.04 58.22 24.66 12.33 50.40 80.00 20.90 41.80 2.00 1.62 1.77 1.39 1.09 1.70 1.90 1.62 
C7L11 126.72 30.97 95.75 63.92 31.96 74.80 80.10 24.00 48.00 2.10 1.49 1.98 1.81 1.50 1.87 1.90 1.68 

C7L109 89.26 22.61 66.65 62.51 31.25 73.50 80.60 27.10 54.20 1.95 1.35 1.82 1.80 1.49 1.87 1.91 1.73 
C7L26 85.07 29.39 55.68 80.72 40.36 78.50 81.00 24.20 48.40 1.93 1.47 1.75 1.91 1.61 1.89 1.91 1.68 
C7L62 111.21 26.19 85.02 76.02 38.01 76.40 81.00 25.20 50.40 2.05 1.42 1.93 1.88 1.58 1.88 1.91 1.70 
C7L65 98.38 34.07 64.31 57.74 28.87 76.70 81.80 22.30 44.60 1.99 1.53 1.81 1.76 1.46 1.88 1.91 1.65 

C7L111 133.75 69.16 64.59 57.62 28.81 71.50 81.90 27.10 54.20 2.13 1.84 1.81 1.76 1.46 1.85 1.91 1.73 
C7L5 124.66 28.76 95.90 63.90 31.95 76.90 82.30 18.50 37.00 2.10 1.46 1.98 1.81 1.50 1.89 1.92 1.57 

C7L63 117.62 33.79 83.83 77.69 38.85 78.90 82.40 21.40 42.80 2.07 1.53 1.92 1.89 1.59 1.90 1.92 1.63 
C7L108 118.90 33.06 85.84 28.14 14.07 81.30 82.40 19.90 39.80 2.08 1.52 1.93 1.45 1.15 1.91 1.92 1.60 
C7L114 118.28 39.37 78.91 72.74 36.37 79.30 83.80 32.40 64.80 2.07 1.60 1.90 1.86 1.56 1.90 1.92 1.81 
C7L122 77.99 22.61 55.38 52.50 26.25 69.70 83.80 23.80 47.60 1.89 1.35 1.74 1.72 1.42 1.84 1.92 1.68 
C7L22 119.48 42.97 76.52 69.63 34.82 82.30 84.40 22.40 44.80 2.08 1.63 1.88 1.84 1.54 1.92 1.93 1.65 

C7L103 108.30 38.12 70.18 63.40 31.70 81.00 84.60 20.40 40.80 2.03 1.58 1.85 1.80 1.50 1.91 1.93 1.61 
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Appendix 14L: Biometric and morphological data for site C8 
 

ID 
 

Whole 
Shell Wet 

Wt.(g) 

Soft 
Tissue 
Wt.(g) 

 

Wet 
Empty 
Shell 

Wt.(g) 

Dry 
Wt.(both 
shells) (g) 

Dry 
Wt.(g) 

 

Ht. (mm) Length 
(mm) 

Single 
shell 

Width 
(mm) 

Actual 
Width 
(mm) 

Log10 
Whole 

Shell Wet 
Wt.(g) 

Log10  
Soft 

Tissue 
Wt.(g) 

Log10  
Wet 

Empty 
Shell 

Wt.(g) 

Log10 
Dry Wt. 

(both 
shells) (g) 

Log10 
Dry 

Wt.(g) 

Log10 
Ht. 

(mm) 

Log10 
Length 
(mm) 

Log10 
Width 
(mm) 

C8-L1a 252.72 62.56 190.15 186.25 93.13 96.40 97.00 33.20 66.40 2.40 1.80 2.28 2.27 1.97 1.98 1.99 1.82 
C8-L2a 212.90 63.27 149.63 151.40 75.70 93.70 98.20 32.40 64.80 2.33 1.80 2.18 2.18 1.88 1.97 1.99 1.81 
C8-L3a 198.49 48.16 150.34 145.68 72.84 89.80 90.40 27.80 55.60 2.30 1.68 2.18 2.16 1.86 1.95 1.96 1.75 
C8-L4a 203.50 49.07 154.43 152.61 76.31 91.10 93.20 29.80 59.60 2.31 1.69 2.19 2.18 1.88 1.96 1.97 1.78 
C8-L5a 198.20 49.29 148.91 143.67 71.84 89.80 94.00 29.30 58.60 2.30 1.69 2.17 2.16 1.86 1.95 1.97 1.77 
C8-L6a 245.55 64.83 180.73 170.34 85.17 102.20 104.50 22.50 45.00 2.39 1.81 2.26 2.23 1.93 2.01 2.02 1.65 
C8-L7a 183.81 43.38 140.43 136.52 68.26 86.80 85.60 31.10 62.20 2.26 1.64 2.15 2.14 1.83 1.94 1.93 1.79 
C8-L8a 178.17 44.57 133.60 125.93 62.97 87.80 89.50 32.40 64.80 2.25 1.65 2.13 2.10 1.80 1.94 1.95 1.81 
C8-L9a 256.68 70.04 186.64 181.16 90.58 96.70 104.10 32.80 65.60 2.41 1.85 2.27 2.26 1.96 1.99 2.02 1.82 

C8-L10a 206.95 66.87 140.08 132.49 66.24 81.50 87.60 22.40 44.80 2.32 1.83 2.15 2.12 1.82 1.91 1.94 1.65 
C8-L11a 197.57 61.03 136.54 136.83 68.42 92.10 93.80 28.30 56.60 2.30 1.79 2.14 2.14 1.84 1.96 1.97 1.75 
C8-L13a 196.50 60.36 136.15 129.12 64.56 89.30 98.50 26.20 52.40 2.29 1.78 2.13 2.11 1.81 1.95 1.99 1.72 
C8-L14a 190.48 59.14 131.34 122.94 61.47 88.00 90.00 33.00 66.00 2.28 1.77 2.12 2.09 1.79 1.94 1.95 1.82 
C8-L15a 265.14 79.47 185.67 179.69 89.85 98.20 100.10 32.20 64.40 2.42 1.90 2.27 2.25 1.95 1.99 2.00 1.81 
C8-L16a 254.43 70.44 183.99 173.30 86.65 99.50 100.00 27.30 54.60 2.41 1.85 2.26 2.24 1.94 2.00 2.00 1.74 
C8-L17a 199.52 49.70 149.82 142.85 71.43 92.80 92.00 35.40 70.80 2.30 1.70 2.18 2.15 1.85 1.97 1.96 1.85 
C8-L18a 222.74 56.58 166.17 107.76 53.88 84.60 90.10 31.10 62.20 2.35 1.75 2.22 2.03 1.73 1.93 1.95 1.79 
C8-L19a 189.01 54.74 134.28 129.33 64.66 89.00 93.50 26.30 52.60 2.28 1.74 2.13 2.11 1.81 1.95 1.97 1.72 
C8-L20a 207.26 66.33 140.93 135.66 67.83 96.20 98.70 31.90 63.80 2.32 1.82 2.15 2.13 1.83 1.98 1.99 1.80 
C8L25A 287.81 115.71 172.10 143.44 71.72 93.80 101.50 33.60 67.20 2.46 2.06 2.24 2.16 1.86 1.97 2.01 1.83 
C8x1A 211.15 66.85 144.30 115.42 57.71 89.40 99.00 32.10 64.20 2.32 1.83 2.16 2.06 1.76 1.95 2.00 1.81 
C8x2A 197.79 50.03 147.76 102.77 51.38 81.40 83.40 23.20 46.40 2.30 1.70 2.17 2.01 1.71 1.91 1.92 1.67 
C8x3A 262.33 65.37 196.96 119.72 59.86 87.70 94.10 27.10 54.20 2.42 1.82 2.29 2.08 1.78 1.94 1.97 1.73 
C8x4A 305.05 71.18 233.87 151.16 75.58 88.80 93.00 28.10 56.20 2.48 1.85 2.37 2.18 1.88 1.95 1.97 1.75 
C8x5A 326.54 82.56 243.97 166.54 83.27 94.00 98.60 32.40 64.80 2.51 1.92 2.39 2.22 1.92 1.97 1.99 1.81 
C8x7A 341.60 79.58 262.02 165.37 82.69 97.50 99.30 27.20 54.40 2.53 1.90 2.42 2.22 1.92 1.99 2.00 1.74 
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Appendix 15: Age, height and weight data and normality tests for Chapters 4 and 5. 
These tests were run on the age, height and weight data analysed to determine what tests 
were appropriate for their statstical analysis. 
 
Appendix 15A: Normality test results for data used for age cluster analysis 
Site Anderson-Darling value p-value Normally or non-normally distributed? n-value 

C1 0.250 0.227 Normally distributed 2 
C2 1.318 <0.005 Non-normally distributed 7 
C6 0.286 0.404 Normally distributed 4 
C8 0.555 0.118 Normally distributed 12 

 
Appendix 15B: Normality test results for age data 
Site Anderson-Darling value p-value Normally or non-normally distributed? 

C1 0.482 0.196 Normally distributed 
C2 1.540 <0.005 Non-normally distributed 
C4 1.076 0.007 Non-normally distributed 
C6 0.564 0.134 Normally distributed 
C7 0.579 0.122 Normally distributed 
C8 1.492 <0.005 Non-normally distributed 

 
Appendix 15C: Normality test results for height data 
Site Anderson-Darling value p-value Normally or non-normally distributed? 

C1 0.273 0.614 Normally distributed 
C2 0.603 0.107 Normally distributed 
C4 1.052 0.008 Non-normally distributed 
C6 1.409 <0.005 Non-normally distributed 
C7 0.364 0.420 Normally distributed 
C8 0.417 0.310 Normally distributed 

 
Appendix 15D: Normality test results for weight data 
Site Anderson-Darling value p-value Normally or non-normally distributed? 

C1 0.616 0.088 Normally distributed 
C2 0.293 0.575 Normally distributed 
C4 0.340 0.480 Normally distributed 
C6 1.019 0.010 Non-normally distributed 
C7 0.585 0.117 Normally distributed 
C8 0.212 0.838 Normally distributed 

 
 
Appendix 15E: Specimen Age Data. 
 
C1 Age C2 Age C4 Age C6 Age C7 Age C8 Age 

L1 90 L6 68 L1 106 L5 16 L3 65 L3 80 
L2 94  L7 59 L4 99 L6 59 L6 100 L4 77 
L4 164 L8 95 L5 101 L9 130 L14 23 L5 58 
L5 62 L10 108 L7 133 L11 159 L16 141 L6 108 
L6 108 L11 68 L8 132 L12 57 L47 25 L7 61 
L9 101 L14 57 L9 142 L15 126 L48 73 L8 56 

L10 105 L41 40 L10 99 L18 167 L56 87 L14 58 
L12 124 L42 70 L11 158 L51 105 L61 185 L15 150 
L13 110 L45 74 L13 116 L52 163 L62 172 L16 72 
L14 121 L47 35 L17 131 L53 135 L66 56 L17 63 
L15 113 L48 67 L18 30 L55 125 L67 109 L19 64 
L16 107 L48 (2) 74 L19 109 L57 132 L58 122 L31 80 
L17 86 L51 64 L20 119 L60 108 L77 117 L32 64 
L19 63 L54 66 L22 124 L63 34 L83 28 L33 101 
L20 102 L57 64 L32 23 L65 30 L10 123 x1 57 

  L66 18 L33 62 L66 9 L110 31 x2 50 
  L68 60 L36 99 L68 30 L119 35 x4 61 
  L35 66 L41 118 L75 21 L120 23 x5 107 
  L55 67 L43 100 L83 20 L12 116 x7 157 
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  L101(B) 65 L45 133 L85 7 L136 23 L34 149 
  L76 69 L104 23 L99 121 L69 109 L59 131 
  L43 125 L113 15 L104 183 L113 67 x10 55 
  L3 40 L72 56 L118 98 L49 41 L27 66 
  L22 59 L91 50 L98 59 L30 26 x3 96 
  L34 77 L103 88 L103 88 L7 99 x11 165 
  L53 61 L165 42 L111 147 L108 99 x8 113 
  L33 59 L75 61 L80 87 L38 90 x19 90 
  L46(2) 38 L80 25 L92 52 L103 140 L24 119 
  L101(A) 40 L87 21 L97 202 L8 79 L29 149 
  L102 63 L107 68 L107 121 L12 94 L30 64 
  L104 135 L73 146 L112 186 L74 89   
  L69 56 L77 15 L113 164 L92 98   
    L2 94 L116 59 L95 76   
    L48 110 L71 29 L158 121   
    L81 72 L115 98     
    L102 19       
    L112 21       
    L114 116       

  

Appendix 15F: Normality tests for shell age, weight and height data for shells analysed in 

Chapter 5 for age-weight and age-height relationships 

Site Age Height Weight 

 p-
value 

Normally 
distributed? 

n-
value 

p-
value 

Normally 
distributed? 

n-
value 

p-
value 

Normally 
distributed? 

n-
value 

C1 0.196 Yes 15 0.614 Yes 15 0.088 Yes 15 
C2 <0.005 No 32 0.107 Yes 30 0.575 Yes 24 
C4 <0.005 No 38 0.005 No 38 0.373 Yes 37 
C6 0.083 Yes 35 <0.005 No 35 0.017 No 35 
C7 0.122 Yes 34 0.420 Yes 34 0.117 Yes 33 
C8 <0.005 No 30 0.310 Yes 30 0.838 Yes 25 

 

Appendix 15G: Median and Quartile Deviation (QD) data for shells analysed in Chapter 5 for 

age-weight and age-height relationships 

Site Age Height Weight 

 Median QD Median QD Median QD 
C1 106.0 11.5 85.52 4.37 52.52 5.495 
C2 64.5 6.125 87.8 3.31 62.66 5.725 
C4 99.0 44 71.2 8.6 30.13 9.835 
C6 98 50.75 80.5 5,72 54.08 13.845 
C7 88 35.625 67.15 9.735 20.95 8.31 
C8 78.5 26.75 89.6 6.3 71.34 9.255 
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Appendix 16: Raw isotope data for all shell samples run whether presented in the thesis or not 
 
Appendix 16A: Data for shell C1-L2 (Daniels, 2010) 
 
Sample ID Calendar year assigned True δ13C value Standard deviation True δ18O value Standard deviation 

2-1A 1905 1.20 0.08979 1.38 0.10323 
2-1B 1906 1.38 0.06777 2.26 0.06119 
2-2 1906 1.40 0.07251 1.85 0.04441 
2-3 1907 1.70 0.07591 1.98 0.06029 

2-4a 1907 2.09 0.18316 2.62 0.05363 
2-4b 1907 2.08 0.26719 1.69 0.08192 
2-5 1908 2.00 0.11885 1.33 0.08509 
2-6 1908 1.75 0.05294 2.30 0.04187 
2-7 1908 2.40 0.05705 1.91 0.07201 

2-9 1909 2.19 0.05231 1.87 0.08603 
2-10 1910 2.29 0.04669 1.90 0.07803 
2-11 1911 2.37 0.06371 2.39 0.06258 
2-12 1911 2.21 0.48211 1.91 0.11224 
2-13 1912 2.06 0.09475 1.48 0.10976 
2-14 1913 1.83 0.21244 1.66 0.1004 
2-15 1914 1.99 0.04252 2.04 0.05913 
2-16 1915 1.63 0.31064 1.36 0.18576 
2-17 1916 2.19 0.07222 2.06 0.06531 
2-18 1917 2.30 0.2996 2.36 0.08341 
2-19 1918 2.17 0.06997 2.09 0.04809 
2-20 1919 1.60 0.07495 1.72 0.03871 
2-21 1920 1.53 0.05371 1.82 0.06142 
2-22 1922 2.37 0.73676 1.71 0.12018 
2-23 1926 1.69 0.06491 1.86 0.06573 
2-24 1929 1.85 0.37488 1.81 0.07305 
2-25 1931 1.60 0.08703 1.92 0.05284 
2-26 1939 2.37 0.45992 1.93 0.10542 
2-27 1945 2.05 0.07961 2.44 0.05261 
2-28 1967 2.32 0.29096 2.08 0.09174 
2-29 1980 1.73 0.08514 2.10 0.08164 
2-31 1998 1.47 0.09174 1.81 0.08423 

 
Appendix 16B: Data for shell C1-L4 (Daniels, 2010) 
 
Sample ID Calendar year assigned True δ13C value Standard deviation True δ18O value Standard deviation 

4-2 1860 2.10 0.1807 1.41 0.06501 
4-4 1861 2.08 0.22247 1.89 0.0871 
4-6 1862 2.41 0.11619 2.10 0.0626 
4-8 1863 2.34 0.19534 2.04 0.07075 

4-10 1964 2.81 0.1245 2.47 0.04556 
4-12 1865 2.05 0.14569 2.04 0.07241 
4-14 1866 2.58 0.18432 2.10 0.0581 
4-16 1867 2.38 0.15592 1.98 0.06707 
4-20 1869 1.78 0.12302 1.40 0.05902 
4-22 1873 1.31 0.11899 1.55 0.06474 
4-24 1876 1.21 0.09812 2.33 0.04431 
4-26 1883 1.55 0.13989 1.58 0.05636 
4-28 1890 1.41 0.12318 1.47 0.06135 
4-30 1910 1.86 0.15473 1.80 0.06803 
4-32 1946 2.20 0.15542 1.83 0.05466 
4-34 1990 1.55 0.1539 1.58 0.07528 
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Appendix 16C: Data for shell C1-L14 (Daniels, 2010) 
 
Sample ID Calendar year assigned True δ13C value Standard deviation True δ18O value Standard deviation 

14-1 1892 1.28 0.19655 1.24 0.03871 
14-3 1893 2.12 0.10225 2.34 0.05899 
14-5 1894 1.23 0.12918 1.46 0.04765 
14-7 1895 2.24 0.14488 1.09 0.05329 
14-9 1895 2.14 0.147 1.76 0.03665 

14-11 1896 2.09 0.10941 1.41 0.05431 
14-13 1897 1.70 0.12915 1.81 0.06006 
14-15 1899 2.19 0.14778 1.63 0.05622 
14-17 1901 2.33 0.08237 1.96 0.04576 
14-19 1902 2.23 0.09633 1.59 0.04276 
14-21 1904 2.23 0.09633 1.59 0.04276 
14-23 1907 1.83 0.14104 1.31 0.03974 
14-25 1912 1.46 0.11631 1.74 0.03694 
14-27 1920 1.59 0.15211 1.19 0.04114 
14-29 1931 1.59 0.15211 1.19 0.04114 
14-31 1940 1.89 0.1027 1.77 0.07032 
14-33 1955 2.29 0.11617 1.88 0.06531 
14-35 1965 2.42 0.13981 2.21 0.054 
14-37 1994 1.66 0.15027 1.70 0.10997 

 
Appendix 16D: Data for shell C1-L17 (Daniels, 2010) 
 
Sample ID Calendar year assigned True δ13C value Standard deviation True δ18O value Standard deviation 

17-1 1908 1.38 0.07417 1.44 0.22668 
17-2 1908 1.14 0.06936 1.32 0.04032 
17-3 1908 1.15 0.08467 0.76 0.06013 
17-4 1909 1.10 0.11564 1.38 0.0697 
17-5 1909 1.40 0.05376 1.80 0.03419 
17-6 1909 1.80 0.06671 1.07 0.04 
17-8 1910 2.16 0.07074 1.84 0.04015 
17-9 1910 2.50 0.48729 1.66 0.13803 

17-10 1910 2.05 0.07149 0.92 0.19789 
17-11 1911 1.95 0.45284 1.94 0.15071 
17-12 1911 2.10 0.0743 1.91 0.05557 
17-13 1911 1.79 0.31095 1.63 0.11675 
17-14 1911 2.24 0.10069 1.08 0.03467 
17-16 1913 2.12 0.05555 1.93 0.05706 
17-17 1913 1.82 0.06844 1.28 0.05475 
17-18 1914 2.33 0.03479 2.53 0.0346 
17-19 1915 2.21 0.15501 1.93 0.06731 
17-20 1915 1.97 0.04982 1.54 0.07425 
17-21 1917 3.06 0.63684 2.18 0.09946 
17-22 1917 2.19 0.09895 1.91 0.07317 
17-23 1917 2.12 0.39213 1.48 0.06556 
17-24 1918 1.91 0.04593 1.95 0.02086 
17-25 1918 0.57 0.47402 1.13 0.16984 
17-26 1919 1.37 0.0498 1.88 0.03849 
17-27 1920 1.18 0.07481 1.25 0.11673 
17-28 1921 1.24 0.05147 1.30 0.05006 
17-29 1922 1.26 0.52198 1.22 0.19195 
17-30 1924 1.68 0.10831 1.20 0.05803 
17-31 1925 1.60 0.3598 1.46 0.10054 
17-32 1927 1.22 0.06128 1.34 0.05956 
17-34 1935 1.42 0.08104 1.82 0.04158 
17-35 1940 1.37 0.233 1.98 0.13437 
17-36 1949 2.09 0.08842 1.74 0.06807 
17-37 1959 2.33 0.53893 2.04 0.13576 
17-38 1974 1.76 0.07113 1.99 0.05233 
17-39 1992 1.18 0.29872 1.78 0.06762 
17-40 1996 1.56 0.12161 1.88 0.08717 
17-41 2001 1.53 0.44874 1.94 0.16298 



Reference List and Appendix 

316 

 

Appendix 16E: Data for shell C1-L19 (Daniels, 2010). Note that there are no standard 
deviations presented here as these were not provided by the lab in Cambridge that ran the 
samples 
 
Sample 

ID 
Calendar year 

assigned 
True δ13C 

value 
Standard 
deviation 

True δ18O 
value 

Standard 
deviation 

Cambridge lab 
code 

19-1 1927 1.19 N/A 1.90 N/A S09/1401 
19-2 1927 1.55 N/A 1.44 N/A S09/1402 
19-3 1928 1.58 N/A 1.47 N/A S09/1403 
19-4 1928 1.99 N/A 1.32 N/A S09/1404 
19-5 1928 2.03 N/A 1.10 N/A S09/1405 
19-6 1929 1.88 N/A 1.55 N/A S09/1406 
19-7 1929 2.30 N/A 1.52 N/A S09/1407 
19-8 1930 2.44 N/A 1.20 N/A S09/1408 
19-9 1931 2.13 N/A 1.55 N/A S09/1409 

19-10 1932 2.54 N/A 1.71 N/A S09/1410 
19-11 1932 2.67 N/A 1.39 N/A S09/1411 
19-12 1933 2.53 N/A 1.31 N/A S09/1412 
19-13 1934 2.22 N/A 1.83 N/A S09/1413 
19-14 1934 2.70 N/A 2.14 N/A S09/1414 
19-15 1934 2.77 N/A 1.89 N/A S09/1415 
19-16 1934 2.81 N/A 1.50 N/A S09/1416 
19-17 1934 2.49 N/A 1.13 N/A S09/1417 
19-18 1935 2.57 N/A 1.98 N/A S09/1418 
19-19 1935 2.69 N/A 1.55 N/A S09/1419 
19-20 1936 2.60 N/A 1.27 N/A S09/1420 
19-21 1937 2.43 N/A 1.69 N/A S09/1421 
19-22 1939 1.93 N/A 1.08 N/A S09/1422 
19-23 1940 1.64 N/A 1.31 N/A S09/1423 
19-24 1942 1.43 N/A 1.60 N/A S09/1424 
19-25 1944 1.46 N/A 1.48 N/A S09/1425 
19-26 1947 1.27 N/A 1.30 N/A S09/1426 
19-27 1951 1.56 N/A 1.61 N/A S09/1427 
19-28 1966 1.00 N/A 1.64 N/A S09/1428 
19-29 1979 1.93 N/A 1.78 N/A S09/1429 
19-30 1982 1.36 N/A 1.64 N/A S09/1430 
19-31 1993 1.58 N/A 1.43 N/A S09/1431 
19-32 1998 1.61 N/A 1.46 N/A S09/1432 
19-33 2000 1.65 N/A 1.61 N/A S09/1433 

 
Appendix 16F: Data for shell C7-L48(2) 
 
Sample ID Calendar year assigned True δ13C value Standard deviation True δ18O value Standard deviation 

48(2)-1 1914 0.790308 0.011391 2.21805 0.023952 
48(2)-2 1914 1.813917 0.128125 2.229659 0.036198 
48(2)-2  0.901446 0.099156 2.25602 0.204764 
48(2)-3 1914 1.086631 0.023484 2.425359 0.034619 
48(2)-4 1914 1.016334 0.017285 2.45345 0.015211 
48(2)-5 1914 1.345046 0.042797 2.15394 0.042432 
48(2)-6 1914 1.339452 0.043702 2.210126 0.053368 
48(2)-8 1917 1.604527 0.028147 2.232758 0.033998 
48(2)-9 1918 1.387883 0.030146 2.195573 0.035848 

48(2)-10 1920 1.458012 0.014618 2.080437 0.018552 
48(2)-11 1925 1.201119 0.016674 2.2252 0.034704 
48(2)-12 1930 0.887372 0.013486 2.21187 0.035711 
48(2)-13 1934 0.936292 0.028719 2.131497 0.049118 
48(2)-14 1951 1.288854 0.039479 2.255898 0.027541 
48(2)-16 1959 0.638959 0.041147 2.262176 0.041091 
48(2)-18 1966 1.06244 0.100002 2.240718 0.076849 
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Appendix 16G: Data for shell C7-L104 
 
Sample ID Calendar year assigned True δ13C value Standard deviation True δ18O value Standard deviation 

104-1 1912 1.560926 0.025432 2.031024 0.034073 
104-3 1912 1.120288 0.050858 2.075371 0.043456 
104-4 1912 1.106708 0.017096 2.096593 0.012953 
104-5 1915 1.208067 0.02516 2.058039 0.027641 
104-6 1916 1.446508 0.022108 2.087479 0.028294 
104-7 1919 1.395899 0.013624 2.147062 0.014967 
104-9 1923 1.114994 0.01872 2.105422 0.025938 

104-11 1942 1.352281 0.009435 2.071291 0.020352 
104-12 1952 0.729608 0.010559 2.186925 0.029306 

 
Appendix 16H: Data for shell C7-L127 
 
Sample ID Calendar year assigned True δ13C value Standard deviation True δ18O value Standard deviation 

127-1 1925 1.321824 0.018796 1.996691 0.027668 
127-2 1925 1.442625 0.022569 2.012029 0.018715 
127-3 1928 1.339221 0.025814 1.99429 0.026448 
127-4 1929 1.461931 0.029013 1.897722 0.038056 
127-5 1933 1.540676 0.042462 1.928464 0.047229 
127-6 1934 1.429774 0.012481 1.954875 0.036953 
127-7 1938 0.970802 0.025193 1.945291 0.028815 
127-8 1940 1.538697 0.032573 1.913472 0.06545 

 
Appendix 16 I: Radiocarbon data for shells C7-L48(2), C7-L104 and C7-L127 
 
Publication code Sample ID 14C enrichment % 

modern ± 1σ 
Conventional 

radiocarbon age 
(years BP ± 1σ) 

Carbon content % δ13C ± 0.1% 

SUERC-35191  C7L48(2)#2 96.52±0.44 284±37 11.2 1.4 
SUERC-35192 C7L48(2)#F 125.04±0.57 modern 10.1 1.0* 
SUERC-30484 C7L104(#2-2) 96.82±0.48 259±40 N/A 0.8* 
SUERC-30485 C7L104(#2-8) 95.39±0.44 379±37 N/A 0.8* 
SUERC-30486 C7L104(#2-10) 94.52±0.41 452±35 N/A 0.8* 
SUERC-30487 C7L127(#1-9) 94.94±0.44 417±37 N/A 0.8* 
SUERC-30488 C7L104(#2-13) 94.75±0.43 433±37 N/A 0.8* 
SUERC-30489 C7L127(#1-10) 96.89±0.45 254±37 N/A 1.0 
SUERC-30490 C7L127(#1-11) 95.19±0.42 396±35 N/A 0.9* 
SUERC-30491 C7L127(#1-12) 99.19±0.46 65±37 N/A 0.9* 
SUERC-30494 C7L48(2)(#5-19) 116.91±0.54 modern N/A 1.0 

*Estimated value, insufficient material for an independent δ13C measurement 
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Appendix 17: δ13C run protocol used for analysing δ13C samples processed as part of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples weighed out and placed 

into exetainer vials ready for 

being run 

Exetainer vials are flush-filled to 

remove atmospheric CO2 present 

in the vial 

Acidification of sample in vial to 

release CO2 from the sample 

Sample run on the gas bench to 

analyse the δ13C/δ18O signature of 

the CO2 released 

Data corrected for linearity/drift 

after which data are analysed for 

Suess Effect investigations etc. 
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Appendix 18: Comparison of master chronologies to the two ‘local’ instrumental datasets 
Saulmore and Dunstaffnage to determine if the shell master chronologies show a stronger 
relationship with these datasets compared to those results presented in Chapter 3. 

 

To see if exploring the relationship between the two datasets located within the fjords would be more appropriate 

these have been compared to the master chronologies and the results are presented here. These results indicate 

that using the Saulmore and Dunstaffnage data are not appropriate.
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Glossary 

Acetate peels 
 

Peels created from sectioned shells to look at growth rates 

AMO 
 

Atlantic Multidecadal Oscillation 

AMOC 
 

Atlantic Meridional Overturning Circulation 

AMS Accelerator Mass Spectrometry 
 

CDendro 
 

Software for analysing common patterns in GIs between  
shells 

COFECHA 
 

DOS-based programme for crossdating 

CooRecorder 
 

Software for measuring GIs 

CRFA Correlation response function analysis 
 

CPR 
 

Continuous Plankton Record 

CTD 
 

Conductivity, Temperature, Depth 

Detrending 
 

Method for removing the ontogenetic growth trend in the 
shell GIs 

df 
 

Degrees of freedom 

EPS 
 

Expressed Population Signal 

GI 
 

Growth Increment in the shell of A. islandica 

Growth periods: Juvenile 
                              Young shell 
 

First 10 years of growth 
First 30 years of growth 

List method 
 

Dendrochronological-based method for carrying out initial 
cross-dating 
 

NAO 
 

North Atlantic Oscillation 

NERC 
 

Natural Environment Research Council 

NFSD 
 

National Facility for Scientific Diving 

Ontogenetic growth rate 
 

As shell grows older there is an apparent decrease in shell 
growth rates 
 

SAGES 
 

Scottish Alliance of Geoscience, Environment and Society 

SAMS 
 

Scottish Association for Marine Science 

SD 
 

Standard deviation of the data 

SE 
 

Standard error of the data:          
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Seasons:  
 Spring April, May and June averaged data 
 Summer July, August and September averaged data 
 Autumn October, November and December averaged data 
 Winter 
 

January, February and March averaged data 

Sediment grain size definitions 
(after Wentworth, 1922): 

 

                Clay <4 µm 
                Silt 4 to 63 µm 
                Sand 
 

>63 µm 

SGI 
 

Standardised Growth Index 

Skeleton plotting 
 

Dendrochronological-based technique for initial cross-
dating 

SST 
 

Sea surface temperature 

 

 




