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ABSTRACT

So far, the straight flux tube model proposed by Edwin & Roberts is the most commonly used tool in practical
coronal seismology, in particular, to infer values of the (coronal) magnetic field from observed, standing kink
mode oscillations. In this paper, we compare the period predicted by this basic model with three-dimensional (3D)
numerical simulations of standing kink mode oscillations, as the period is a crucial parameter in the seismological
inversion to determine the magnetic field. We perform numerical simulations of standing kink modes in both straight
and curved 3D coronal loops and consider excitation by internal and external drivers. The period of oscillation for
the displacement of dense coronal loops is determined by the loop length and the kink speed, in agreement with
the estimate based on analytical theory for straight flux tubes. For curved coronal loops embedded in a magnetic
arcade and excited by an external driver, a secondary mode with a period determined by the loop length and external
Alfvén speed is also present. When a low number of oscillations is considered, these two periods can result in a
single, non-resolved (broad) peak in the power spectrum, particularly for low values of the density contrast for
which the two periods will be relatively similar. In that case (and for this particular geometry), the presence of this
additional mode would lead to ambiguous seismological estimates of the magnetic field strength.
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1. INTRODUCTION

In the last 15 years or so, coronal seismology (Uchida 1970;
Roberts et al. 1984) has developed extremely rapidly, taking
full advantage of modern-day high-resolution observations. In
particular, coronal seismology using standing modes of coronal
loops has been used to produce estimates of the Alfvén speed
or the magnetic field strength (e.g., Nakariakov et al. 1999;
Nakariakov & Ofman 2001; and, more recently, Wang et al.
2012; White & Verwichte 2012; Nisticò et al. 2013). Basic
theoretical models for slab and cylindrical geometries were
produced by Edwin & Roberts (1982, 1983), and further studies
have considered additional effects such as curvature (Gruszecki
et al. 2007; Ruderman 2009; Van Doorsselaere et al. 2009),
longitudinal density variations (Erdélyi & Verth 2007; Verth
et al. 2007; Pascoe et al. 2009b), and transverse structuring
(Arregui et al. 2007; Ballai 2007; Pascoe et al. 2007).

For seismological purposes, simple models are preferable be-
cause the use of more complex models makes the seismological
inversions non-trivial. Hence, coronal loop oscillations are of-
ten interpreted using the basic, straight cylinder/slab models
developed by Edwin & Roberts (1982, 1983), despite the ob-
served complex and dynamical nature of coronal loops. The
applicability of this model is usually justified by assuming
that, as far as practical coronal seismology is concerned, ad-
ditional effects such as curvature or stratification are negligi-
ble (e.g., compared to observational uncertainties). However,
for the seismologically derived parameters to be reliable, it
is important to demonstrate the robustness of this simple but
commonly used theoretical model or, in other words, to demon-
strate that additional effects such as curvature are indeed very
small. So far, however, three-dimensional (3D) numerical sim-
ulations of transverse loop oscillations excited by an external
pulse have failed to support this approach. For example, Pascoe
et al. (2009a) performed numerical simulations of impulsively
excited MHD waves in a 3D loop model to investigate the im-
portance of the attack angle in determining the efficiency of such

excitations. In a follow-up paper, De Moortel & Pascoe (2009)
considered the same model and demonstrated that the error in
the seismologically inferred magnetic field strength could be
approximately 50%.

The crucial parameter in these models is the period of the
(“observed”) oscillations; therefore, this paper is concerned with
the period of oscillation of numerically modeled standing kink
modes in curved 3D coronal loops, which has not yet been found
to be consistent with the (theoretical) estimate for standing kink
mode oscillations in straight tubes. For example, Miyagoshi
et al. (2004) performed simulations for a 3D potential field
and described the period of oscillation in terms of the Alfvén
speed at the loop top rather than the kink speed. The interaction
of fast MHD waves with 3D active regions was also modeled
numerically by Ofman & Thompson (2002) for potential and
force-free fields. This work was extended to use a magnetic
field from potential extrapolations by Terradas & Ofman (2004)
and Ofman (2005, 2007). Simulations, including an individual
loop density structure, were performed by McLaughlin &
Ofman (2008). In this paper, the authors performed numerical
simulations of kink modes in a straight cylinder, for which they
obtained the expected period dependence (i.e., consistent with
the model of Edwin & Roberts 1983). However, when they
considered a curved loop embedded in a dipole magnetic field,
the period of oscillation demonstrated a significant departure
from the straight tube estimate.

The goal of this paper is to use 3D numerical simulations
to investigate the applicability and robustness of the commonly
used, basic straight flux tube model as the simplest, most useful
model desirable for practical seismological studies. Hence,
analytical models incorporating more complex effects, such as
curvature, are deliberately ignored because they are likely to
have a much smaller impact on the seismologically inferred
values of the magnetic field than the 50% deviation found by,
e.g., De Moortel & Pascoe (2009). The paper is organized as
follows: in Section 2, a straight coronal loop with internally
and externally driven oscillations is considered; in Section 3, a
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Figure 1. Model setup for the straight loop simulations. The magnetic field and
loop axis are aligned with the z-axis.

curved 3D loop in a magnetic arcade is explored; in Section 4,
a discussion of the results is provided; and in Section 5,
conclusions are given.

2. STRAIGHT FLUX TUBE

Before we consider the oscillations of a curved coronal loop,
we first obtain agreement between numerical and analytical
results in a straight flux tube. The modes of oscillation for this
geometry are described in detail by Edwin & Roberts (1983).

2.1. Model Setup

For the simulations of straight loops, the magnetic field is
uniform and aligned with the axis of the loop which is taken to
be the z-axis (see Figure 1). The loop structure is defined as a
density enhancement based on the general symmetric Epstein
profile (e.g., Nakariakov & Roberts 1995):

ρ (x, y) = (ρ0 − ρe) sech2(r/a)p + ρe, (1)

where r =
√

x2 + y2, ρ0 is the internal density, ρe is the
external density, and p determines the steepness of the profile.
We choose p = 10 in order to approximate the step-function
profile used in Edwin & Roberts (1983) while still having a finite
transition from inside to outside the loop, which can be resolved
numerically. Note that although the resolution (typically ∼4003)
is sufficient to resolve the transition layer, it is not sufficient to
resolve the resonant absorption that arises as a result of this finite
boundary layer (e.g., Goossens et al. 2011). However, this paper
focuses on the period of the oscillations and the damping rate
is not considered in this study. Convergence tests carried out
by doubling the resolution changed the measured oscillations
by less than 1% and had no effect on the period of oscillation.
Therefore, we can be confident that any discrepancy we might
find between the period of our (numerical) loop oscillations and
the theoretical model is not due to the resolution of the numerical
simulations.

All simulations are performed using Lare3D (Arber et al.
2001) to solve the (nonlinear) 3D MHD equations. The boundary
conditions are periodic in the x- and y-directions, with damping
layers near the edge of the numerical domain to reduce the
amplitude of perturbations propagating across the boundary. The

upper and lower z-boundaries are line-tied to simulate reflective
loop footpoints.

The radius of the loop is chosen to be a = 0.5 Mm.
The numerical domain has a size of 10 × 10 × 50 Mm, so the
length of the loop is L = 50 Mm. This corresponds to the
long wavelength limit with an aspect ratio of a/L = 0.01, or
normalized wavenumber ka = 0.01π for a global mode with
the wavelength λ = 2L. In this limit, the kink mode phase speed
tends to the kink speed Ck; therefore, the period of oscillation
for the global kink mode is Pk = 2L/Ck with

Ck =
√

ρ0C
2
A0 + ρeC

2
Ae

ρ0 + ρe

, (2)

where CA0 is the internal Alfvén speed and CAe is the external
Alfvén speed. The equilibrium for the loop is defined by
satisfying the condition of total pressure balance across the loop.
We consider the case of thermal pressure being much lower than
magnetic pressure, i.e., plasma β = 0.001.

Kink oscillations are readily excited by any perturbation to
the loop axis. For the case of an internal perturbation, the global
kink eigenmode, or a close approximation to it, can be applied.
The approximation used here is based upon, in the transverse
direction, the kink eigenfunction for the Epstein profile (e.g.,
Cooper et al. 2003), which is symmetric at about r = 0 and
so displaces the loop axis. In the longitudinal direction, the
fundamental or global loop harmonic is selected by setting

vy (x, y, z) = A0sechν(r/a) cos kz, (3)

where A0 = 0.001 Mm s−1 is the amplitude and the wavenum-
ber is k = π/L for the global mode. For the Epstein pro-
file with p = 1, the analytical solution gives ν = (|k|a/CAe)√

C2
Ae − (ω/k)2. Here, we choose ν = 1.5 as an approxima-

tion for the eigenfunction for our geometry and density profile
(p = 10) since this gives a perturbation with suitable spatial
extent, i.e., comparable to the radius of the loop.

Our choice of a low-amplitude perturbation allows us to avoid
nonlinear effects, such as changes to the density profile along
the loop driven by the ponderomotive force (e.g., Terradas &
Ofman 2004).

We also consider excitation by an external perturbation based
on the model of a fast magnetoacoustic wave excited by some
external energy release, such as a flare propagating through
the corona and hitting the coronal loop from the side (e.g.,
Nakariakov & Verwichte 2004). We approximate this by a plane
wave with a Gaussian cross-sectional profile propagating in the
y-direction:

vy (y) = A0 exp −
(

y − d

σ

)2

, (4)

where A0 = 0.05 Mm s−1, d = −2 Mm is the initial position
of the fast wave relative to the loop axis, and σ = 0.3 Mm
determines the spatial extent of the profile.

2.2. Results

Figure 2 shows the transverse velocity signal measured at the
middle of a loop (i.e., r = 0, z = L/2) with a density contrast
of ρ0/ρe = 2. The top panel shows the transverse velocity for
the case of internal excitation. This is achieved by applying the
above velocity perturbation that approximates the global kink
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Figure 2. Transverse velocity signals vt for a straight tube with a density contrast
of 2 excited by an internal (dashed lines) and external (solid lines) driver. The
bottom panel shows the periodogram of the signals. The vertical lines denote
the natural frequencies loop (longitudinal harmonics n = 1, 2, 3).

eigenmode (Equation (3)). Although it is not an exact solution,
it has the same radial and longitudinal form and is sufficiently
close to the exact solution to efficiently excite a kink oscillation.
The oscillation has the form of a harmonic oscillation with
damping. We note again that the strong damping might be an
artifact of the numerical resolution, which is not sufficient to
resolve potential resonant absorption (but does not affect the
period that is the main parameter we are concerned with in this
study).

The middle panel of Figure 2 shows the same signal for the
case of excitation by an external perturbation (Equation (4)).
This has the form of a plane wave generated outside the
loop that propagates toward, and through, the loop, displacing
the loop axis and generating kink oscillations. Comparing the
oscillation to that produced by the internal perturbation, the
evident differences are that there is a much longer initial
stage during which the perturbation generates the oscillation
(the leaky impulsive phase during t < 50 s) and the signal is no
longer a single harmonic.

The bottom panel of Figure 2 shows a periodogram of the two
transverse velocity signals. The vertical lines denote the natural
frequencies of the loop, i.e.,

ω = kCk, (5)

where k = 2π/λ and λ = 2L/n for the longitudinal harmonic
of order n. The (normalized) spectral power for both signals
shows a peak corresponding to the global (n = 1) kink mode.
For the case of internal excitation, this mode was prescribed
by the applied perturbation. For the external excitation, there is
also a weak oscillation generated corresponding to n = 3. The
n = 3 harmonic is consistent with the applied perturbation and
boundary conditions, i.e., having nodes at the loop footpoints
prescribed by the line-tied boundaries but allowed to oscillate
elsewhere. Harmonics with odd n are consistent with our
external perturbation, whereas those with even n are unlikely due
to the symmetry of the driver. (For reference, Pascoe et al. 2009a
demonstrated the efficient excitation of the n = 2 harmonic for
an external driver exciting a loop with an attack angle of ≈45◦.)
Overall, we expect the global mode to be the most strongly
excited by the plane wave due to its extended nature, as is the
case in Figure 2.

In summary, for the straight model, our numerical simulations
are consistent with the analytical (Edwin & Roberts 1983)
results for a straight flux tube in terms of the period of oscillation,
as the error in the period is only ≈0.4% and, therefore, negligible
for practical seismological purposes. The period is not found to
depend upon the method of excitation, although the particular
harmonics excited would depend upon the driver.

In reality, coronal loops are, of course, curved, but, so far,
the straight flux tube model is the most commonly applied in
seismology studies. Indeed, for these purposes, it makes sense to
use the least complex model that can be shown to be applicable
and robust to keep the seismological inversions simple. Keeping
this in mind, we will now explore to what extent the estimated
Pk (from the basic, straight flux tube model of Edwin & Roberts
1983) is consistent with the period of oscillations in curved
coronal loops in our numerical simulations.

3. CURVED CORONAL LOOPS

We investigate a 3D loop embedded in a 2.5D magnetic
arcade, i.e., the same model setup considered by Pascoe et al.
(2009a) and De Moortel & Pascoe (2009). In this geometry,
the kink oscillation may be considered to displace the loop axis
perpendicular to the plane of the loop (horizontal polarization),
radially in the plane of the loop (vertical polarization), or some
combination of the two.

The observational signatures of horizontal and vertical kink
modes were considered by Wang et al. (2008) in their funda-
mental mode and second harmonic. It was found that various
combinations of viewing angles and loop geometry can make
it difficult to distinguish between different types of kink mode
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Figure 3. Model setup for the curved loop simulations. The magnetic field is a
2.5D arcade in the xz plane.

using only a time series of images. However, this distinction
is trivial for our numerical simulations, and the polarizations
are expected to have almost identical periods of oscillation
(Ruderman 2009; Van Doorsselaere et al. 2009).

3.1. Model Setup

The magnetic field is a semi-circular 2.5D arcade with
B ∼ 1/rp (e.g., Brady et al. 2006; Pascoe et al. 2009a), where
rp = √

x2 + z2 is the radial distance in the plane of the arcade
(see Figure 3). Within this arcade, a curved loop of (minor)
radius a is modeled as a density enhancement given by

ρ (x, y, z) = (ρ0 − ρe) sech2(r/a)p + ρe, (6)

where r =
√

(rp − rc)2 + y2, rc = L/π is the major loop radius.
The loop length L, minor radius a, and steepness parameter p
are the same as for the simulations with the straight flux tube
(Section 2).

The typical resolution is 1002 × 376 × 502 grid points for
a numerical domain of size 44 × 7.5 × 22 Mm. The boundary
conditions are periodic in y (with damping layers) and line-
tied for x and z. Since the magnetic field becomes singular for
rp → 0, we define an inner region rp � 5 Mm for which
perturbations are set to zero. This allows the magnetic field
profile to stop before rp = 0 without leading to changes in the
equilibrium. Since we also do not want changes in equilibrium
due to curved magnetic field lines intersecting the upper z- and
x-boundaries, we similarly define the region of rp > 21 Mm
where perturbations are prohibited.

3.2. Internal and External Drivers

We can consider the same internal and external (plane-wave)
drivers as in Section 2, with the minor modification that the
internal driver now considers the curvature of the loop, i.e.,

vy (x, y, z) = A0sechν(r/a), (7)

where r =
√

(rp − rc)2 + y2, as for the density profile in
Equation (6).

Figure 4 shows the transverse velocity signals vt (top panel)
at the loop apex for a curved coronal loop with a density
contrast of 2. The dashed and solid lines correspond to internal
and plane-wave drivers, respectively. The bottom panel shows
the corresponding periodograms. As with the straight loop,
for the internal driver, we obtain a peak in spectral power at
the frequency corresponding to the global kink mode (dashed
vertical line). However, for the external driver, we now see a
different behavior. There is a peak at the global kink mode
frequency ωk = 2π/Pk , but also a larger second peak at a

Figure 4. Transverse velocity signals vt at the apex of a curved loop with a
density contrast of 2 excited by an internal (dashed) and external (solid) driver.
The bottom panel shows the periodogram of the signals. The vertical lines
represent ωk (dashed) and ωA (solid).

higher frequency. This peak occurs at a frequency determined
by the (external) Alfvén speed rather than the kink speed, i.e.,
ωA = 2π/PA, where PA = 2L/CAe and CAe ∝ 1/rp (solid
vertical line). The small offset (≈2%) between the locations of
the peaks in the power spectrum (of the curved numerical loop
oscillations) and the predicted values of ωA and ωk (based on the
straight flux tube model) is of the order of the effect of curvature
on the kink mode period predicted by Van Doorsselaere et al.
(2009).

Figure 5 shows the variation of the spectral amplitude for
ωA with angle θ around the loop, where the loop footpoints
are at θ = 0◦ and 180◦ and the apex is at θ = 90◦.
The crosses and squares correspond to the behavior for vt and
the radial velocity signal vr , respectively, with each normalized
to the maximum spectral amplitude for vt . Although the driver
is initially a plane wave, it undergoes significant refraction due
to the non-uniform magnetic field strength and Alfvén speed.
Therefore, the loop has an oscillation in the radial direction,
i.e., a vertically polarized global kink mode. The period of this
mode is consistent with Pk since both horizontally and vertically
polarized modes have the same frequency. Both profiles show
the expected global mode structure, indicated by the sinusoidal
curves.

In addition to the internal and plane-wave drivers, we can also
consider an external driver generated by a localized impulsive
energy deposition, as in Pascoe et al. (2009a), who investigated
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Figure 5. Variation of the spectral amplitude at ω = ωk with angle θ around the
loop. The crosses and squares correspond to the vt and vr signals, respectively.

Figure 6. Simulation for excitation of loop oscillations using a pulse driver. The
solid and dotted curves represent the periodograms for the signals in vt and vr ,
respectively, at the loop apex. The vertical lines represent ωk (dashed) and ωA

(solid).

the case of a localized driver situated at the height of the
loop apex in detail. The behavior is similar to the plane wave
described above, i.e., the spectra for transverse loop oscillations
show two distinct peaks corresponding to ωk and ωA. Figure 6
shows the periodogram for the transverse and radial velocity
signals (solid and dotted lines, respectively) for a simulation
with the pulse located at (0, d, rc − d). This driver appears
to generate the kink oscillation only in the radial velocity
perturbations because the pulse is located lower than the loop
apex, making it less efficient at exciting transverse oscillations
than the plane-wave driver. A peak only occurs at ωk for the
radial velocity oscillations.

3.2.1. High Density Contrast Loop

Figure 7 shows the periodograms for the transverse (solid) and
radial (dotted) velocity signals at the loop apex for simulations
with loop density contrasts of ρ0/ρe = 2 (top panel; see
also Section 3.2) and 10 (bottom panel). The horizontally and
vertically polarized modes have the same frequency; however,
the radial velocity signal again does not contain the second
peak in frequency corresponding to the arcade oscillation.
For both the high and low density contrasts, we see that the

Figure 7. Simulation for a loop with density contrasts (top) ρ0/ρe = 2 and
(bottom) 10 excited by a plane-wave driver. The solid and dotted curves represent
the periodograms for the signals in vt and vr , respectively, at the loop apex. The
vertical lines represent ωk (dashed) and ωA (solid).

transverse velocity signal contains two components, close to
the frequencies of ωk (dashed vertical line) and ωA (solid
vertical line), whereas the radial velocity signal only appears
to contain the ωk component. For higher density contrasts,
the kink frequency ωk is smaller, while ωA remains constant.
Consequently, the two peaks in the spectral profile are separated
for increasing density contrast.

3.2.2. Simulation with no Loop Structure

Here, we consider the oscillations generated by the plane-
wave driver propagating through our two-dimensional (2D)
magnetic field with no density structure, i.e., ρ0/ρe = 1.
Figure 8 shows the periodogram for the transverse and radial
velocity signals (solid and dotted lines, respectively) for a
simulation with uniform density. The signals are taken at the
same location as in previous simulations; however, no loop is
currently present at that location.

Both the transverse and radial signals have a single period
of oscillation corresponding to PA = 2L/CA, i.e., the period is
determined by the loop length and the Alfvén speed. Note that
the Alfvén speed of CA is equal to the external Alfvén speed
of CAe used earlier, but is now the only characteristic speed
in our model since the density is uniform and β is small. The
bottom panel of Figure 8 shows the variation of the spectral
amplitude for ωA with angle θ around the loop, as in Figure 5.
The global mode structure is once again evident, so we have
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Figure 8. Simulation for the plane-wave driver in a plasma with uniform density,
i.e., no loop structure. The solid and dotted curves in the top panel represent
the periodograms for the signals in vt and vr , respectively, taken at the same
location as Figure 7. The dashed vertical line represents ωA. The bottom panel
shows the variation of the spectral amplitude at ω = ωA with angle θ around the
loop. The crosses and squares correspond to the vt and vr signals, respectively.

a global standing Alfvén mode: the oscillation has a global
standing mode structure (k = π/L) and a period of oscillation
that satisfies the Alfvén wave dispersion relation ω = CAk. This
mode is not seen in the case of a straight magnetic field without a
loop structure because the uniform field does not define any flux
surfaces. The curved magnetic arcade reduces the symmetry and
requires a varying field strength (which varies perpendicular to
the axis of the field) and allows flux surfaces to be defined.

Note that the radial oscillation at PA was not seen in the
previous simulations. This suggests that when the loop is
present, the radial oscillation tends to be dominated by the kink
mode, possibly due to the extended and collective nature of the
kink mode eigenfunction, i.e., the kink eigenmode extends over
multiple flux surfaces and couples them together to create a
coherent oscillation with a single “averaged” frequency of ωk .
This produces a spatially (radially) robust signal, in contrast
with the Alfvén mode which has a different frequency, ωA (r),
for each individual flux surface (and which also leads to phase
mixing of Alfvén waves).

4. DISCUSSION

Figure 4 of De Moortel & Pascoe (2009) shows a periodogram
with a peak spectral amplitude at a period significantly less than

Figure 9. Reproduction of Figure 4 in De Moortel & Pascoe (2009) (solid
curve). The spectral power has a broad peak at a period of PA = 2L/CAe

(solid vertical line). A longer data series (dashed curve) resolves the peak at
Pk = 2L/Ck (dashed vertical line).

Pk = 2L/Ck . There is an asymmetric broadening to the peak on
the high period side. Here, we demonstrate that this asymmetric
broadening is in fact an unresolved version of the double-peak
structure shown by the dashed line in Figure 4 of this paper; in
Figure 9, the dashed curve is the same signal as in our Figure 4
and contains ≈6 periods of oscillation. The solid curve is the
periodogram of the same signal, but only considers ≈3 periods
of oscillation. For the shorter time series, the dominant peak at
PA = 2L/CAe (vertical dashed line) is resolved, but the peak at
Pk (vertical solid line) is unresolved. Note that even in the case
of the two peaks being resolved, the damping of the oscillations
leads to finite peak widths. The agreement of the peaks with
the predicted frequencies of ωk and ωA (see also the previous
figures) is ≈2%. Our simulations therefore cannot rule out the
possibility of curvature having a small effect on the period of
oscillation of kink modes (e.g., Van Doorsselaere et al. 2009),
but they do explain the much larger discrepancy reported in De
Moortel & Pascoe (2009).

It is possible that a similar effect could account for other
3D numerical studies of curved loop oscillations also obtaining
a period of oscillation not consistent with Pk (as determined
from the straight flux tube model). For example, McLaughlin
& Ofman (2008) considered oscillations excited by a velocity
pulse launched from the boundary similar to our plane-wave
driver. These authors considered a dipole magnetic field rather
than the arcade studied here; however, it shares the property of
being a symmetric but non-uniform field, so Alfvén waves may
be supported by the flux surfaces defined by the field.

Miyagoshi et al. (2004) excited oscillations by applying a
velocity field to the top of their loop in a way similar to
our internal driver. For our internal excitation simulations, we
find the period of oscillation is consistent with Pk, whereas
Miyagoshi et al. (2004) described the period of oscillation
in terms of the Alfvén speed at the loop top and found that
P ∝ ρ0.33

0 . Figure 10 shows the dependence on the period
of oscillation on the density contrast. The solid curve is the
dependence of the global kink mode period for our simulations,
i.e., Pk = 2L/Ck and Equation (2) with L = 50 Mm. The
symbols represent the analytical kink period Pk for the density
contrast ratios considered by Miyagoshi et al. (2004). The
dashed line represents the power law P ∝ ρ0.33

0 , which can
be fitted reasonably through a limited parameter range such
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Figure 10. Dependence of period of oscillation of the global standing kink
mode upon density contrast. The dashed line represents a power law of the form
P ∝ ρ0.33

0 , suggested by Miyagoshi et al. (2004), which may approximate the
kink mode behavior for the narrow range of parameters considered by those
authors (symbols).

as the one they considered. Therefore, it is possible that the
period of oscillation found by Miyagoshi et al. (2004) is actually
consistent with the estimate based on straight tube theory;
however, to confirm this, a more detailed analysis of their data
is required.

5. CONCLUSIONS

We have performed numerical simulations of curved 3D
coronal loops and demonstrated that the period of oscillation
for kink modes (in the long wavelength limit) is sufficiently
determined by the loop length and kink speed to support the use
of straight tube theory for practical coronal seismology. This
applies to both horizontally and vertically polarized kink modes
and does not depend upon the method of excitation. However, for
a symmetrical magnetic field, such as the 2D magnetic arcade
used in Section 3, it is also possible for an external driver to
efficiently generate arcade oscillations for which the period
is essentially determined by the loop length and the external
Alfvén speed. When a low number of oscillations is considered,
these two periods might not be distinctly resolved, but they
result in a broad peak in the power spectrum, particularly for
low values of the density contrast for which the two periods
will be relatively similar. This accounts for the deviation in the
period of oscillation reported by De Moortel & Pascoe (2009)
and, possibly, also the departures of the period from the straight
tube estimate reported by other authors. It may be necessary for
this to be taken into account in similar numerical simulations
performed with a symmetrical setup. Although the effect mainly
arises due to the symmetry in our simulations, it could be
relevant to observations of highly symmetrical configurations,
such as those present in post-flare coronal loops (e.g., Verwichte
et al. 2004) and isolated dipole-like active regions, particularly
because the number of observed oscillations tends to be low
(e.g., Aschwanden et al. 2002). In such a case, the two periods
are unlikely to be resolved and the single broad peak in the power

spectrum would lead to ambiguous seismological estimates of
the magnetic field strength. However, the importance of this
effect for observations of more complex active regions requires
further investigation.
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