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Abstract

Systems pathology attempts to introduce more holistic ap-
proaches towards pathology and attempts to integrate clinicopatho-
logical information with “-omics” technology. This doctorate re-
searches two examples of a systems approach for pathology: (1) a
personalized patient output prediction for ovarian cancer and (2) an an-
alytical approach differentiates between individual and collective tumour
invasion.

During the personalized patient output prediction for ovarian
cancer study, clinicopathological measurements and proteomic
biomarkers are analysed with a set of newly engineered bioinfor-
matic tools. These tools are based upon feature selection, survival
analysis with Cox proportional hazards regression, and a novel
Monte Carlo approach. Clinical and pathological data proves to
have highly significant information content, as expected; however,
molecular data has little information content alone, and is only sig-
nificant when selected most-informative variables are placed in the
context of the patient’s clinical and pathological measures. Fur-
thermore, classifiers based on support vector machines (SVMs) that
predict one-year PFS and three-year OS with high accuracy, show
how the addition of carefully selected molecular measures to clini-
cal and pathological knowledge can enable personalized prognosis
predictions. Finally, the high-performance of these classifiers are
validated on an additional data set.

A second study, an analytical approach differentiates between
individual and collective tumour invasion, analyses a set of morpho-
logical measures. These morphological measurements are collected
with a newly developed process using automated imaging analysis
for data collection in combination with a Bayesian network analysis
to probabilistically connect morphological variables with tumour in-
vasion modes. Between an individual and collective invasion mode,
cell-cell contact is the most discriminating morphological feature.
Smaller invading groups were typified by smoother cellular sur-
faces than those invading collectively in larger groups. Interestingly,
elongation was evident in all invading cell groups and was not a
specific feature of single cell invasion as a surrogate of epithelial-
mesenchymal transition. In conclusion, the combination of auto-
mated imaging analysis and Bayesian network analysis provides
an insight into morphological variables associated with transition
of cancer cells between invasion modes. We show that only two
morphologically distinct modes of invasion exist.

The two studies performed in this thesis illustrate the potential of
a systems approach for pathology and illustrate the need of quanti-
tative approaches in order to reveal the system behind pathology.
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1
Introduction

By the deficits we may know
the talents, by the exceptions
we may know the rules, by
studying pathology we may
construct a model of health.

Laurence Miller

Cancer is a collection of different diseases. This collection of dis-
eases results in the heterogeneity of cancer, dynamic biological pro-
cesses, and adaptive response to therapy.

Pathology allows us to classify cancer in different categories
based on stage, morphology, histology, etc. These pathological char-
acteristics have shown to help the diagnosis of cancer in the clinic.

Generally, the prediction of therapeutic outcome of a patient with
cancer is still very challenging and in need of new approaches for
its inference. Systems pathology introduces a holistic approach to-
wards building the model of health of a patient. This model is not
only based on the more traditional pathological measures (i.e., stage
or histological state), but it can be extended with “omics” technol-
ogy available for generating data of genomes, exomes, proteomes,
transcriptomes. metabolomes, etc.

In the following sections of this chapter, machine learning will
be introduced. This will be followed by an description of the term
systems pathology. It will be followed by a description of cancer,
and goes into more detail on breast- and ovarian cancer. This intro-
duction chapter reflects the context of this PhD, it studies machine
learning algorithms to build models for the pathology of cancer.

I have constructed a novel set of tools for computational biology
and bioinformatics based on machine learning algorithms for the in-
tegration of complex heterogeneous data. This novel tools are engi-
neered based on high-throughput data collected by my collaborators
and myself. This unique systems approach extends more traditional
approaches for answering fundamental questions in pathology.
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1.1 Machine learning

Machine learning provides an independent “in silico” representation
of learning based on experimental data [Solomonoff, 1956]. This
learning involves recognizing patterns in the underlying distribu-
tion of this data [Bishop, 2006a].

Machine learning can be defined as a computer program that
learns from experience (i.e. data), with respect to a task (i.e. classifi-
cation of patients as having a high risk of recurrence of cancer within
one year, or death within three years, etc.) and some performance
measure (i.e. error rate, accuracy, precision, etc.); its performance on
the task, as measured by the performance measure, improves with
experience [Mitchell, 1997].

Machine learning, and also statistical modelling can be catego-
rized into: generative, and discriminative machine learning [Bishop,
2006b, Jebara, 2002]. Generative machine learning models the prob-
ability density over all variables (joint probability distribution), e.g.
mixture models, Markov logic networks, hidden Markov models,
Bayesian networks etc. Discriminative machine learning specifies
strategies to model direct mappings between input, and output vari-
ables (conditional probability distributions), e.g. logistic regression,
Gaussian processes, support vector machines, etc.

Figure 1.1: Schematic view of genera-
tive machine learning.

Figure 1.2: Schematic view of discrimi-
native machine learning.

Furthermore, machine learning is divided into three types of
learning [Bishop, 2006c]:

1. supervised learning: given a set of input vectors, training data, and
output vectors, learn a function ( f (x)) between input and output
vectors. These learners are used for classification (discrete output
vector) and regression (continuous output vector).

2. unsupervised learning: the data only contains attributes, input- and
output vectors are not distinguished. Examples of these learners
are clustering, density estimation, and visualization.

3. reinforcement learning: a specific type of learner that involves tak-
ing actions depending on the input vectors and its environment.
Specific actions are rewarded and punished depending on how
they are quantified in the learner.

I would like to make a remark upon these categories and types
of machine learning. Many machine learning algorithms combine
these types and categories, e.g. Bayesian networks are a generative
machine learning approach, and are called unsupervised learning
when we perform structure learning.

In the following sections, probabilistic models and survival anal-
ysis will be introduced. More theoretical background and appli-
cations of various machine learning algorithms can be found in
chapters 2, 3, 4, and 5.
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1.1.1 Probabilistic graphical models

Probabilistic graphical models combine uncertainty (probability the-
ory) and graphical structure (independence constraints). It is a very
general approach to construct statistical models (Kalman filters,
hidden Markov models, Isling models, etc.) into a graphical repre-
sentation.

There are three main types of probabilistic graphical models:
(1) Bayesian networks (also called belief networks or causal networks)
[Pearl, 1988], (2) mutual information networks [Meyer et al., 2008],
and (3) Markov networks (also called Markov random fields (MRFs))
[Getoor and Taskar, 2007]. Bayesian networks are directed graphical
models, and mutual information networks and Markov networks are
undirected graphical networks.

Probabilistic graphical models provide a picture of the joint prob-
ability distribution over a set of random variables (χ = {X1, X2, . . . , Xn}).
The structure is a representation of the independence properties of
our system under investigation. These independence properties
represent a high-dimensional joint probability into a compact and
coherent manner.

Probabilistic graphical models are part of artificial intelligence
(AI). AI research is concentrated in two major disciplines: (1) logical
representation (logic programming, description logic, classical plan-
ning, symbolic parsing, rule induction, etc.) and (2) statistical - un-
certainty representation (Bayesian networks, hidden Markov models,
Markov decision processes, statistical parsing, neural networks, etc.).
These two major disciplines of AI are combined into one framework,
called Markov logic [Richardson and Domingos, 2006].

1.1.2 Survival analysis

Survival analysis is applied to describe and quantify time-to-event
data [Stevenson, 2009]. This group of approaches focuses on the
distribution of survival time (T). It has been successfully used for
different types of problems: time-to-death analysis, time-to-event
analysis in sociology, etc. Data collections in a biomedical environ-
ment often contains with a follow-up time dimension. The start
point and end point of this follow-up period could lead to incom-
plete information. This is called censoring. There are three mean
types of censoring: (1) right censoring: if the event of interest occurs
after the recorded follow-up period, e.g. a patient is still alive after
the period of observation, (2) left censoring: if the event of interest
occurs before the recorded follow-up period, e.g. when the initial risk
is unknown, and (3) interval censoring: when left and right censoring
occur together.

There are different statistical approaches to perform survival
analysis, e.g. non-parametric, parametric, and semi-parametric.
The non-parametric approaches are often used as a starting point,
they can be used to plot the survival time distribution, and allow
us to make comparisons between different categories in the data
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Figure 1.3: An example of the survival
function for the progression-free
survival (PFS) for patients under
different treatment regimens (Regimen
1: platinum and Regimen 2: platinum
combined with taxane). The grey area
indicates the 95% confidence interval
(see also section 2.1.2.1 on page 49).

set (see figure 1.3). Examples of non-parametric survival analysis
are Kaplan-Meier, life table method, Nelson-Aalen method, and
Flemington-Harrington method [Collett, 2004a]. Based on this
survival time distribution a parametric approach can be applied.
Finally, the approaches that we will concentrate on during this re-
search are the semi-parametric approaches, e.g. Cox proportional
hazards regression, partial Cox regression, and survival support
vector machines.
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1.2 Systems pathology

The twentieth century is often called the century of physics; the
twenty-first century is often predicted as the century of biology [Sen-
gupta, 2006]. The current trend in biology is to adapt engineering
concepts to have a holistic approach to “what is biology”?, more-
over, to “what is cancer”? The research completed during this thesis
deals with the computational side of biology. It is a crosspoint of
mathematics, computer science and biology. Research at this intense
combination of fields can be named systems biology. It can also be
named computational biology or bioinformatics.

Systems biology is not completely new. Its origin lies in the end of
the ’50s, and the beginning of the ’60s. A pioneer in systems biology
is Denis Noble [Noble, 2006], who is a British biologist - physiolo-
gist. He introduced the first computer model of a virtual heart during
his PhD [Noble, 1961] at University College London in 1961. Because
of gaps in knowledge and the very complex dynamics of biological
systems, systems biologists are still seeking new methodologies,
mathematical modelling, and software. These new findings can have
a major influence on how biologists have new insights in their own
field [Westerhoff and Palsson, 2004, Palsson, 2006].

Biology nowadays is often modelled by pathways. Different in-
teractions between pathways are often called networks. In essence all
relationships can be modelled as a graph. As Bayesian networks use
graphs, Bayesian networks are a good tool for modelling networks.
Networks are a very popular representation of the system under
investigation. Albert-László Barabási [Barabási, 2003] had a major
influence in pointing out general concepts in networks. He is the in-
ventor of the scale-free networks [Barabási and Albert, 1999]. They can
be found in many fields, and also play a fundamental role in biology,
sociology, computer science, simulation, economics, etc. Biology can
be represented as networks of biological interactions [Barabási and
Oltai, 2004]. A genetic mutation can lead to a modification of these
interactions and can be a cause of cancer. Cancer drugs can target
specific nodes in biological network as a strategy for drug develop-
ment [Barabási, 2003]. A special antibody is provided to a tumour
cell to interact with the cancer biology networks to get cancer cells
into apoptosis and the tumour cell disappears [Azim and Jr., 2008]. Figure 1.4: Systems biology block

scheme.This new systems biology trend has gained an ever increasing
interest during the last decade. Often systems biology is a loop of
five successive tasks [Palsson, 2006]: (1) hypothesis, (2) design of
experiment, (3) data, (4) modelling, and (5) simulation. After the
simulation results are analysed, the hypothesis can be tested, and
eventually can lead to a new hypothesis (see figure 1.4). Neverthe-
less, there are still prominent biologists that are very sceptical of the
feasibility of systems biology approaches, e.g. the famous quote by
Sydney Brenner: “low input, high throughput, no output” [Brenner,
2010]. Systems biology attempts to test more holistic hypotheses,
which implies an increased amount of complexity that needs to be
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explained. A systems approach can certainly be a step forward in
understanding biology, but can also lead to wrong conclusions, i.e. if
one misformulates a system specific question, a mathematical model
constructed from a large data set might not provide very meaningful
output.

In medicine a disease is often defined by its etiology (cause), its
clinical observable signs and symptoms, its pathogenesis (underlying
mechanisms that cause the signs and symptoms), its natural history,
and its treatment [Hunter, 2009]. Pathology covers all this informa-
tion, and is the study and the diagnosis of a disease.

Since molecular biology and pathology can be studied with high
throughput “omics” technology this research field goes through
the transition from qualitative to quantitative. This transition can
be explained by the change in data resources (i.e., many patholog-
ical features are qualitative and new imaging analysis can provide
quantitative measures). These novel data collections allow to answer
more holistic hypotheses and is, by analogy with systems biology,
called systems pathology [Faratian et al., 2009].

1.2.1 Clinicopathological definition of a tumour

The histopathological definition of tumour tissue has important
implications on cancer progression and treatment. Microscopic
examination remains the primary diagnostic method for tumour
tissue [Cesario and Marcus, 2011]. The nomenclature of tumours
are based either on histogenesis or histology. The histogenesis studies
the tissue of origin during development and formation of a tumour.
Histology describes anatomic properties of the tumour tissue. In
cancer, histology often compares the tissue under diagnosis with
normal tissue.

Tumour tissues are constructed of two parts: (1) tissue neoforma-
tion (parenchyma) and (2) stroma [Kalluri and Weinberg, 2009, Hong
et al., 2010]. The neoformed tissue appears in two forms: (1) carci-
noma, epithelial cells that form internal and external body surfaces
and cavities, and (2) sarcoma, mesenchymal cells that form more con-
nective tissue, e.g. bone, lymphatic, cartilage, etc. Stroma is impor-
tant for the different biological programs active in a tumour [Beck
et al., 2011]. It is a reservoir for the tumour to find new cells or an
environment that provides resources for tumour invasion [Kalluri
and Zeisberg, 2006].

1.2.1.1 Tumour grading

A tumour appears in two main types: (1) benign or (2) malignant.
Sometimes a tumour is defined into intermediate state, i.e. semi-
malignant, pseudo-malignant, and of questionable malignancy
[Cesario and Marcus, 2011]. Benign neoplasms1 grow slowly, do

1 Neoplasm is a more accurate nomen-
clature as tumour. A neoplasm is an
abnormal construction of tissue result-
ing from neoplasia; neoplasia is the
proliferation of cells. A tumour is a less
specific definition of a swelling.

not harm2, and are non-invasive. Whereas, malignant tumours are
2 Benign tumours can do harm, e.g.
craniopharyngiomas or pituitary
tumours can press on the optic chiasm
impairing vision or causing blindness.

characterized by high proliferation, invade tissue, and metastasize
[Ludwig and Weinstein, 2005].
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The grade of a tumour defines the activity of a malignant tumour.
This activity specifies rate of growth, stromal reaction, and differen-
tiation of cells as a measure of cancer progression.

Table 1.1 lists a brief overview of the tumour nomenclature3

3 Most benign tumours are have the
suffix -oma; there are exceptions, e.g.
melanoma, seminoma, etc.

based on cell origin, mixed tumour tissues, and cell secretory ac-
tivity4.

4 Cell secretory activity results in
emition of chemicals of a cell.

Description Benign tumour nomenclature
Epithelial tumour origi-
nates from glandular tissue
(i.e., gastro-intestinal tract,
breast. kidney, liver, etc.)

Adenoma

Non-secretory epithelial
surfaces (i.e., skin, respira-
tory mucosa, lower urinary
tract, etc.)

Papilloma

Mesenchymal tumour with
fibroblasts

Fibroma

Mesenchymal tumour with
adipocytes

Lipoma

Mesenchymal tumour with
osteoblasts

Osteooma

Mixed epithelial-
mesenchymal tumour

Fibropapilloma, adenofibroma

Cell secretory activity Mucinous, colloid, serous, apocrine, or neuroon-
docrine

Table 1.1: Histogenetic nomenclature of
tumour tissue [Hamilton and Aaltonen,
2000, Chan, 2001]

Tumour grading and its histological typing varies among differ-
ent types of cancer [Hong et al., 2010]. Histopathological types have
a standard nomenclature [Hamilton and Aaltonen, 2000,Chan, 2001].
The definition of grade is complicated by the heterogeneity of cer-
tain neoplasms; its mapping between a histological type and clinical
observation can be partial.

1.2.1.2 Tumour staging

Tumour staging is an important measure for deciding on treatment.
Tumour staging classifies a tumour based upon the spread and size
of the neoplasm [Hong et al., 2010].

An international used staging is called Tumour Node Metastasis
(TNM) staging system. This system has three parameters: (1) T, rep-
resents the size of the primary tumour and its behaviour towards
surrounding structures, e.g. adjacent, in contact, or invasive, (2)
N indicates involvement not important of regional lymph nodes,
and (3) M specifies if metastasis exists. There are two main versions
of the TNM staging system. One is designed by the International
Union Against Cancer (UICC) [Greene and Sobin, 2009], and the
other by the American Joint Comittee on Cancer (AJCC) [Edge and
Compton, 2010].

Tumour TNM classification also specifies four stages [Greene and
Sobin, 2009]: (1) stage 1, tumour invades muscularis propria, but
has not spread to nearly lymph nodes, (2) stage 2, tumour spreads
into the subserosa and/or perirectal tissues with up to three regional
lymph nodes, or directly invades adjacent tissues without lymph
node involvement, (3) stage 3, any depth of tumour invasion, with
four or more positive lymph nodes, but without distant metasta-
sis, (4) stage 4, any depth of tumour involvement, any number of
involved lymph nodes, with distant metastasis.
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Tumour staging is the most powerful, and well standardized, di-
agnostic measure in the clinical environment [Cesario and Marcus,
2011]. Despite its success, it does not capture detailed morphological
characteristics of a neoplasm, information related to the dynamics of
tumour invasion, etc. Therefore, more holistic systems approaches
are required to discover more complete clinical measurements for
better prognosis. There is huge potential for combining computa-
tional modelling with biomarkers as a first step to progress to a more
personalized therapy.

1.3 Cancer

Cancer is heterogeneous disease, and characterized by fundamental
biological processes, e.g. cell regulation, cell proliferation5: cell growth 5 cell proliferation results in an in-

creased number of cells, and is often
a combination of cell growth, and cell
division.

and cell division, cell differentiation, etc. [Hong et al., 2010]. Extra-and
intracellular communication in normal cells leads to homeostatic
mechanisms. Cancer cells, depending on the stage of tumour forma-
tion, are in a certain degree of disequilibrium. From an evolutionary
point of view, biological systems are fairly robust6 [Wagner, 2010]. 6 The most robust biological systems

have a higher probability to survive
compared to less robust biological
systems (i.e., survival of the fittest).

This robustness is tested by the occurrence of specific phenotypes.
Neoplastic diseases can be driven by proliferation. This prolifera-
tion is often, maybe even always, characterized by a disordered
cell differentiation; in tumourigenesis it leads to the construction of
anaplasia7 [Hong et al., 2010]. 7 Anaplasia are malignant neoplasms.

Figure 1.5 on page 21 pictures an overview of many fundamental
biological interactions in cancer. Depending on the type, and sub-
types of cancer, etc. different interactions have more importance for
diagnosing and treating cancer in a more sophisticated approach.
The following sections provide an overview of the most important
known mechanisms in cancerous cells. Some of these mechanisms
are explained in a frequently cited work: The hallmarks of cancer, it
has been recently revised [Hanahan and Weinberg, 2000, Hanahan
and Weinberg, 2011]. A hallmark can be defined as a feature of a
system that differentiates it from other systems [Yuri, 2010]. These
features will be introduced together with the corresponding biologi-
cal implications. As a general guidance table 1.2 on page 22 provides
a summary of the six hallmarks.

These hallmarks are often a consequence of mutations in a cell.
These mutations lead to two main types of oncogenes: (1) proto-
oncogene and (2) suppressor oncogene. These oncogenes can be found
by a microarray experiment; the oncogenes will differentially ex-
pressed for different biological conditions, e.g. compare the gene
expression levels of benign tumours with malignant tumours. A
question that arises when measuring these expression levels for the
discovery of these hallmarks is: “What is the negative control for
defining that an expression level is qualitatively low or high?”. In
the previous microarray experiment, the negative control could be
a benign tumour. So, expression levels of malignant tumours can be
compared against benign tumours [Yuri, 2010].
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The following paragraphs will introduce the global statistics of
cancer and fundamental cancer terminology. Some of these terms
will reoccur in later chapters, other terms are fundamental for un-
derstanding the literature.

Figure 1.5: An overview of of known
biological circuits active during cancer.
The figure is constructed from [Hana-
han and Weinberg, 2000, Hanahan and
Weinberg, 2011].
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Hallmark Pathways Interpretation
1. Sustaining proliferative signaling growth factor ligand normal tissue poorly understood

Ras signal transducer
somatic mutations activate downstream path-

ways
B-Raf, Raf and, MAPK signaling crosstalk among different pathways

PI3K and Akt/PKB signaling
disruptions of negative feedback loop Ras mutation induces Ras GTPase activity homeostatic regulation, and drug resistance

development
PTEN phosphatase, PI3K, and PIP3 loss of function mutations in PTEN amplify

PI3K
mTOR in up-and downstream of PI3K, and
Akt/PKB

anti-proliferative effects of mTOR inhibition

excessive proliferation can trigger cell senes-
cence

Ras, Myc, and Raf too high (Ras) expression can invoke cell
senescence and apoptosis, too low invokes
proliferation

2. Evading growth suppressors Rb, and P53 signaling key targets to make the cell proliferate, or
induce cell senescence and apoptosis
very complicated wiring to activate this fun-
damental targets

mechanisms of contact inhibition and its eva-
sion

NF2, Merlin, E-Cadherin, and RTK homeostatic regulation

LKB1 and Myc LKB1 functions as a suppressor for excessive
proliferation
many more to be discovered

corruption TGFβ pathway promotes malig-
nancy

TGFβ pathway signaling anti-proliferate effects

in late-stage tumours it activates epithelial-to-
mesenchymal transition (EMT)

3. Resisting cell death extra-and intracellular apoptosis inducing
circuits

Bcl-2 family of regulatory proteins: Bcl-XL,
Bcl-w, Mcl-1, and A1

inhibitors of apoptosis

Bak and Bax (share BH3 domains) proapoptotic proteins; BH3 domain induces
Bcl-2 apoptosis inhibition or apoptosis

DNA damage sensor that functions via P53 P53 induces apoptosis by up-regulation of
Noxa and PUMA BH3 only proteins; this is a
response DNA breakage and chromosomal
abnormalities

Bim BH3 only domain protein survival factor signaling
Myc target for apoptosis via Bim and other BH3-

only domain proteins
autophagy mediates tumour cell survival and

death
PI3K, Akt, and mTOR signaling survival factor signaling blocks apoptosis and

autophagy
research needed to discover physiological/ge-
netic features that cause autophagy to die or
survive cancer cells

Beclin-1 BH3 only domain protein targets autophagy, and can induce apoptosis
via Bax/Bak
stress transducing BH3 proteins (Bid, Bad,
Puma, etc.) potentially induce apoptosis/au-
tophagy

necrosis: pro-inflammatory/tumour-promoting
potential

IL-1α stimulate tumour growth potential

4. Enabling replicative immortality telomeres are protecting the end of chromo-
somes are centrally involved in the capacity
of unlimited proliferation

cells continue to proliferate after senescence
and bypass crisis into immortalization

reassessing replicative senescence cell senescence remains a barrier for pro-
liferation; it can depend on the cell culture
conditions.

delayed activation of telomerase may both
limit and foster neoplastic progression

telomerase and P53 lack of telomerase and P53 function

new functions of telomerase TERT, Wnt, and βCatenin/LEF additional functions need to be discovered
5. Inducing angiogenesis VEGF signaling, MMP-9, FGF, TSP-1 important in early development stages of

tumours
TSP-1 key target in the angiogenic switch

key gradations in the angiogenic switch VEGF, Ras, and Myc induction of angiogenesis can also stimula-
tion proliferation

endogenous angiogenesis inhibitors present
natural barriers to tumour angiogenesis

TSP-1, fragments of plasmin angiostatin and
type 18 colagen endostatin

endogenous inhibitors of angiogenesis

pericytes are important components of the
tumour neovasculature

variety of bone marrow-derived cells con-
tribute to tumour angiogenesis
6. Activating invasion and metastasis E-Cadherin loss of E-Cadherin in carcinoma cells; key

cell-to-cell adhesion molecule
EMT program broadly regulates invasion and

metastasis
transcription factors Snail, Slug, Twist, and
Zeb1/2 organize EMT function

EMT supports invasion, avoids apoptosis,
and disseminate

heterotypic contributions of stromal cells to
invasion and metastasis

IL-4, EGF, and CSF-1 crosstalk between cancer cells and cells of
neoplastic stroma induces invasiveness and
metastatis

plasticity in invasive growth program Reverse of EMT: mesenchymal-epithelial
transition (MET)

distinct forms of invasion may underlie differ-
ent cancer types

characterization of different types of tumour
invasion

daunting complexity of metastatic colonization research need to reveal regulatory programs
that define metastatic colonization

Table 1.2: Overview of the six hall-
marks of cancer. The table is con-
structed from [Hanahan and Weinberg,
2000, Hanahan and Weinberg, 2011].
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Global statistics In global death statistics in the US [Murphy et al.,
2012], EU [EUD, 2012], and UK [UKCR, 2012] diseases of heart (ICD:
I00-I09,I11,I13,I20-I51)8, and malignant neoplasms (ICD: C00-C97) are 8 ICD code is the International Classifi-

cation of Disease coding system set by
the World Health Organisation (WHO).

the two main causes of death. Generally, diseases of the heart are
the main cause of death, whereas, e.g. in the UK people aged above
50 [UKCR, 2012], and in US for people aged between 45 and 64,
more than 30 % died of cancer [Murphy et al., 2012].

Proliferation In many cancers proliferation is a driving force [Hall
and Levison, 1990, Schlabach et al., 2008]. Proliferation leads to
an increase of the number of cells, and therefore closely related to
cell growth and division. Since the cell is a robust system, there are
mechanisms that limit this proliferation [Albert et al., 2002, Hong
et al., 2010]. One of this mechanisms is called senescence (i.e. aging of
a biological organism), another mechanism is called apoptosis (i.e cell
death).

Differentiation Cell differentiation occurs when a cell in a multi-
cellular organism is dedicated to become a specific cell type. The
memory of the cell has a predefined biological genetic footprint for
each cell [Albert et al., 2002]. In tumour cells this footprint is disor-
dered; the same genes are part of this footprint, but their expression
levels differ from the prototype cell [Hong et al., 2010].

Metastasis A general capacity of malignant tumours is to spread
into different organs, this capacity is called metastasis [Albert et al.,
2002, Fidler, 2003, Hong et al., 2010]. Tumours that are formed in
the original organ are called primary tumours. Analogously, tumours
that are spread into a different organ are called secondary tumours.
The transition of primary towards secondary tumour is often called
colonization. E.g., a bone metastasis drug called Denosumab (Pro-
lia®by Amgen. Inc.), has been approved by the FDA for cancer pa-
tients [Sethi and Kang, 2011].

Epithelial-mesenchymal transition (EMT) An important and not very
well understood program during development of a biological sys-
tem is called epithelial-mesenchymal transition (EMT) [Kalluri and
Weinberg, 2009, Hong et al., 2010]. This program appears, with sim-
ilar biological phenotypes, in three different classes of biological
development: (1) EMT during implantation, embryogenesis, and
organ development, (2) EMT associated with tissue regeneration
and organ fibrosis, and (3) EMT associated with cancer progression
and metastasis. In primary tumours EMT is active, whereas during
colonization, the inverse process mesenchymal-epithelial transition
(MET) is active [Hong et al., 2010]. The execution of EMT needs fur-
ther investigation in order to improve insights in many biological
processes, e.g. role of EMT during resistance to therapy, role during
tumour invasion, etc. [Sanchez-García, 2009, Davidson et al., 2012].
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Autophagy – angiogenesis Because of the proliferation and the
spread of a tumour, a lot of energy is required to form a malig-
nant tumour. There are two main energy related concepts active
in tumour development: (1) autophagy (i.e. self-eating) [Kondo
et al., 2005] and (2) angiogenesis (i.e. formation of new blood ves-
sels) [Kalluri, 2003]. Both of these concepts can be seen as the re-
quired energy to run the switch of the transition between benign
towards malignant tumours.

Autophagy can suppress tumour growth, but at the same time
it can stimulate tumour growth by providing new energy [Hippert
et al., 2006]. The energy often comes from the inner cells of a tumour
[Mathew et al., 2007]. Despite this dual role of autophagy, it also
plays a role in drug resistance, e.g. in HER2+ breast cancer treated
with Herceptin (also called trastuzumab) autophagy markers were
highly expressed [Vazquez-Martin et al., 2009].

() Angiogenesis, a term for the construction, repair, and migra-
tion of blood vessels, is another fundamental biological program
in cancer [Folkman, 1995, Kullari, 2003]. This program has been
mainly seen as a switch for the transition from primary to secondary
tumours. This switch runs when the angiogenic phenotypes are
triggered. Since the mid 1990s there is growing evidence that an-
giogenic tumour activity is fundamental for tumour growth and
metastasis [Carmeliet, 2005, Sethi and Kang, 2011]. Recently, there
has been multiple angiogenic inhibitors for the clinical practice,
where side effects seem to be one of the biggest drawbacks. Since
angiogenesis is a fundamental process in wound healing, heart func-
tion, reproduction of vessels, etc. If a drug inhibits this process, it
is shown to induce toxicity [Verheul and Pinedo, 2007]. In the clin-
ical environment the progression-free survival was extended, as
there was little improvement of the overall survival figures (e.g.,
pazopanib in renal cell cancer). More holistic drug that integrates
multiple strategies into an agent might introduce less toxicity in the
future.

Cell growth and division cycle An important biological process in
cancer is the cell growth and division cycle [Hartwell and Kastan,
1994, Clyde et al., 2006]. The cell cycle is an ordered sequence of
events whereby a cell grows and then divides resulting in the pro-
duction of two daughter cells that are identical to the original parent
cell.

The cell cycle may be considered in five separate phases [Albert
et al., 2002]:

1. Gap one or G1 phase: the cell undergoes a series of biochemical
and physiological changes including sustained growth.

2. Gap zero or G0 phase: the cell is in a quiescent state and can be
seen as a resting phase; often entered from a cell cycle checkpoint
in the G1 phase. This phase occurs by a lack of mitogenic signal
to proliferate. Most of the cells in a human body are in G0 state.
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3. Synthetic or S phase: the cell copies its DNA resulting in the
development of duplicate copies of each chromosome.

4. Gap two or G2 phase: a second gap phase during which the
proteins and complexes necessary for the remainder of the cell are
synthesized.

5. Mitosis or M phase: mitosis, during which the cell divides with
one set of chromosomes being allocated to each of the two result-
ing daughter cells.

Cell regulation Cell regulation is essential for preserving the ap-
propriate functionality of living cells and maintaining a healthy
phenotype [Clyde, 2006]. Regulation is maintained through a vari-
ety of gene expression processes which result in the supply of the
proteins necessary for cell regulation at the correct time and in the
correct quantities.

Cell regulation consists of a number of separate processes:

1. Growth and division cycle: this biological process occurs se-
quentially in separate steps leading to a terminally differentiated
adult cell.

2. Apoptopic pathways: this intrinsic and extrinsic process regu-
lates cellular death at the appropriate time and to the appropriate
extent.

3. Cell survival pathway and the anti-growth pathway: this pro-
cess is important in maintaining the balance of cells essential
for homeostasis in multi-cellular species. A collection of cellu-
lar events, with an origin from different pathways, occur as a
network.

4. Damage response pathways: this process monitors DNA dam-
age and tries to repair DNA damage. If damage can not be re-
paired, cell will go to apoptosis (see category 2).

All these pathways link the cell’s internal processes. Specific parts
of these pathways are also linked to external intervention processes.
This can be illustrated by the action of growth factor, and other
ligands which can direct appropriate cell regulation as well as other
forms of interaction with adjacent cells, or the extra-cellular matrix
can interact in the cell regulation process.

In the following sections, we describe important facts related
breast- and ovarian cancer.

1.3.1 Breast cancer

During 2008, almost a quarter of the female cancer deaths were
due to breast cancer [Jemal et al., 2011]. Since the 1980s and 1990s,
breast cancer has been slightly decreasing. This decrease is due to
better early detection strategies and less postmenopausal hormone
therapy [Jemal et al., 2011].
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Breast cancer is usually not difficult to diagnose. The problem
lies with stratification of patients for the right treatment, because
of intrinsic or acquired resistance to therapy is hard to predict. A
more successful therapy for a specific patient is still an enormous
scientific challenge because of the heterogenecity of cancer [Sorlie
et al., 2001, Med, 2008].

Figure 1.6: Mammary ductal network
(Modified from: [Med, 2008]). This
ductal network is analysed to detect
the stage of breast cancer.

Classification of breast cancer Breast cancer is one of the best under-
stood cancers [Gray and Druker, 2012]. Breast carcinomas are not
only classified upon their histopathological measurements, Sorlie
et al [Sorlie et al., 2001] (see figure 1.7 on page 27) illustrate, by ap-
plying hierarchical clustering, that breast cancer can be classified
according to the gene expressions of cDNA microarray experiments
into three major groups:

1. ER+ express typical protein of luminal epithelial cells.

• luminal subtype A (most frequently occurring breast cancer).

• luminal subtype B (second most frequently occurring breast
cancer).

• luminal subtype C (least frequently occurring breast cancer).

2. ER-

• HER2+: ERBB2+.
This tumour occurs in approximately 20 % of all breast can-
cers. HER2+ tumours tend to be more aggressive than HER2-
tumours [Azim and Jr., 2008]. Furthermore, these tumours are
characterized with ErbB2 gene amplification and HER2 recep-
tor overexpresssion [Yarden and Sliwkowski, 2001, Hynes and
MacDonald, 2009].

• basal-like (15 % of all tumour carcinoma)

• normal breast-like:
This type of carcinoma has been regarded as a different type
[Sorlie et al., 2006]. Its analysis it very complicated since it is
similar to epithelial cells; its histological characteristics and
clinical prognosis are still under research.

More recently, plenty of research is performed for the discovery
of novel biomarkers and their acceptance into the clinical environ-
ment [McCafferty et al., 2009]. There are four main types of breast
cancer: luminal subtype A, luminal subtype B, basal-like, and HER2;
these types are characterized with four biomarkers: oestrogen re-
ceptor (ER), progesterone receptor (PR), human epidermal growth
factor receptor 2 (HER2), and Ki67. The most frequently occurring
breast cancers are luminal subtype A; they occur with following bio-
logical footprint: ER and PR positive, HER2 negative, and Ki67 low.
Second most frequently occurring beast cancers are luminal subtype
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Figure 1.7: Hierarchical clustering
applied for the gene expression data
(From Fig. 1 of Sorlie et al [Sorlie et al.,
2001]).

B; they occur with ER positive, PR and HER2 negative, and Ki67
high. HER2 breast cancer have HER2 positive, ER and PR negative,
and Ki67 high. It becomes more complicated for the triple negative
breast cancers (ER, PR, and HER2 negative and Ki67 high): basal-
like.

For basal-like breast cancers are further subclassified [Rakha
et al., 2008b]. Basal-like cancers can be identified with a positive
expression of epidermal growth factor receptor (EGFR) and cytoker-
atin 5/6 (CK 5/6) biomarkers [Cheang et al., 2006]. This classification
is not perfect, since triple negative basal-like tumours appear with
negative expressions of EGFR and CK 5/6 and not all basal-like
tumour appear with triple-negative signature [Rakha et al., 2008a].

Finally, aprocrine type are ER and PR negative and androgen re-
ceptor (AR) is positively expressed [Celis et al., 2009]. It is not clear
if this is a class of breast tumours is distinct because of clinicopatho-
logical observations or can by part of any of the above described
tumour classes [Gonzalez et al., 2008].

A systems approach could be beneficial to decipher the complex
cascade of events that could further improve the treatment and
management of breast cancer in the clinic [Barabási and Oltai, 2004,
Nevins, 2007].

1.3.2 Ovarian cancer

Ovarian cancer is the fourth most common cancer death in the UK
[UKCR, 2012], and the seventh most common cancer death in the US
during 2008 [Jemal et al., 2011]. There are two main types of ovarian
cancer: (1) epithelial ovarian cancer (EOC) and (2) ovarian germ cell
tumour.

Epithelial ovarian cancer in early stage has a 5 year survival of
∼90 %, but for late stage it is ∼30 % [Lu et al., 2004, Faratian et al.,
2011]. Currently there are no, or very limited, markers available for
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early detection of epithelial ovarian cancer [Lu et al., 2004, Tothill
et al., 2008]. Despite a need for markers of early detection, a set of
markers is needed to understand the underlying biological mecha-
nisms and molecular pathogenesis to perform better diagnosis and
prediction for epithelial ovarian cancer.

Ovarian germ cancer do not occur very often, ∼1500 times in UK
during 2008 [Jemal et al., 2011], and they are treated different from
epithelial ovarian cancers. Two main molecular markers exist to
detect ovarian germ cancer: AFP (alpha-fetaprotein), and HCG (hu-
man chorionic gonadotrophin). It appears mostly within younger
women, and very often are completely cured.

Ovarian cancer has a lack of systems approaches for biomarker
discovery and classification based on molecular pathology. These
systems approaches have the potential to improve the treatment and
management of ovarian cancer in the next decade. In breast cancer
(see section 1.3.1 on page 25), a set of biomarkers is well established
into a clinical environment. The treatment of ovarian cancer could
be improved by finding a similar set of biomarkers.

1.4 Application of systems approach in pathology

During the last decade, more and more systems approaches have en-
tered into the molecular biology field [Westerhoff and Palsson, 2004].
This systems approach is widely applied in engineering, software
design, and other scientific fields [Hitchins, 2007]. The composi-
tion of a system can be a collection of different building blocks.
Putting these building blocks together is often called synthesis, or a
bottom-up approach. Alternatively, a system can be decomposed
into smaller building blocks, also called analysis, or a top-down
approach. Systems biology research can be seen as a pyramid of
different building blocks (see figure 1.8). Where the foundations of
this pyramid are all the “omics” technologies available for data of
genomes, exomes, proteomes, transcriptomes. metabolomes. On top
of this “omics” technology, all “ology” disciplines help to formulate
more holistic hypotheses of the system under investigation. These
two bottom layers help to explain mechanisms that are important in
ailments, drugs, and processes in life.

Figure 1.8: A pyramid for system
biology illustrates the bottom-up and
top-down approaches.
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Traditional molecular biology research often happened with a
bottom-up approach (reductionism), e.g. pathway analysis. Since
more and more “omics” data is publicly available, more top-down
approaches can be performed. System biology often occurs in hy-
brid fashion, e.g. dynamical interactions between pathways are
analysed to improve the understanding of cancer biology.

Systems biology becomes more and more the standard approach
to perform research in drug discovery (i.e., during 2011: abiraterone,
crizotinib, and vemurafenib) [Butcher et al., 2004, Garnett et al.,
2012], bio-marker selection (i.e., ER, PR, HER2, and Ki67 for breast
cancer) [van’t Veer et al., 2005, Faratian and Bartlett, 2008, Faratian
et al., 2011], understanding biological mechanisms(i.e., C35 gene
expression to indicate tumour invasion) [Faratian et al., 2009].

Reverse engineering [Csete and Doyle, 2002] is a strategy to re-
design functionality of an existing system. In software engineering,
it is used to obtain the source code from the object code9 of a pro- 9 The object code is the machine code

that hardware needs to execute a
program.

gram. In systems biology, this term is often used for specific compu-
tational techniques applied on “omics” data, e.g. automated reverse
engineering ordinary differential equations (ODE) [Bongard and
Lipson, 2007], Bayesian networks [Hartemink, 2005], etc.

To conclude this first chapter, a systems approach can enrich con-
clusions in biology and pathology. This systems approach helps to
discover an “omics” footprint of a category of a biological process.
This footprint aids to understand the mechanisms of this biologi-
cal process, and therefore can potentially improve the insights of
the heterogeneity; this is required to be able to make more holistic
developments that can potentially contribute towards, e.g. a more
personalized diagnosis and treatment [Cesario and Marcus, 2011].

The future of systems approaches will require new integrated
approaches to examine fairly complex and heterogeneous data sets,
e.g. expression data, sequence information, functional annotation,
and the literature. Not only data complexity is a major challenge;
the growth of sequencing data is beating Moore’s law10 in 2008 10 Moore’s law is used in computer

hardware design. It defines that the
amount of transistors on integrated
circuits doubles every two years.

[Goldman and Yang, 2008]. As a consequence of this growth, the
rate of the cost per genome decreases faster as the rate of the cost per
byte in 2008.

The bioinformatics and computational biology community pro-
poses a novel approach for data integration: the gene prioritization
strategies [Moreau and Tranchevent, 2012]. Such a strategy prior-
itizes genes that are most important for the survival of a patient
based upon different “-omics” data resources. Currently, there is an
expansion of novel prioritization tools. Each tool uses different data
resources, different prior knowledge representations, and different
prioritization strategies. The prioritized genes can be checked for
their functionality and network interaction [Barabási et al., 2011].



30

1.5 Layout of the thesis

In the next four chapters, I will first guide you through the method-
ologies I applied during this research: machine learning techniques
and “-omics” technologies. Mainly, I worked on engineering bioin-
formatics tools that could explain fundamental pathological pro-
cesses. This novel computational tools are an important facet in the
interpretation of heterogeneous data collected with state-of-the-art
technologies.

This doctorate is the result of research in two important facets of
pathology: (1) biomaker discovery and (2) tumour invasion.

Biomarker discovery The biomarker discovery study is performed
for ovarian carcinoma. The data of the Edinburgh Ovarian Cancer
Register is used to investigate candidate proteome biomarkers for
prognosis. The characterization of the predictability of more tradi-
tional clinicopathological measurements and a proteomics profile
for prognosis determination is analysed with novel engineered com-
putational tools. The results of these new constructed bioinformatic
tools are presented in chapter 3.

These bioinformatics tools were capable to quantify the signif-
icance of the set of biomarkers and classify patients if they have a
high- or low risk of one-year progression-free and three-year overall
survival. Furthermore, I was able to collect a validation data set for
an independent group of patients. This allowed me to have hand-on
laboratory experience together with the application of high-quality
imaging analysis technology. The performance of these computa-
tional models after cross-validation and the separate validation data
set are at the moment of writing the best found in the literature.

These state-of-the-art bioinformatics tools are also used to con-
struct a biological signature for the histopathological assemblies
of the data set. Potentially, they can be applied in many different
aspects, e.g. for the validation of various biomarkers in a clinical
practice, support engineering of new biomarkers, etc.

The results and the computational methodologies are presented
in chapter 3.

Tumour invasion Tumour invasion assays are extremely heteroge-
neous and pathological characterization of their morphology is im-
portant and poorly quantified [Katz et al., 2011]. This tumour inva-
sion study is concentrated on the morphological characterization of
tumours. The data collected by collaborators applied state-of-the-art
imaging analysis for the collection of morphological measurements
that are known to be important for histopathological examination.

The discriminatory capacity of various morphological measure-
ments are investigated. The results are presented in chapter 4.
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Choice of methodology

Modernism and
postmodernism might be
characterised as the two major
forces of philosophical
thought that have influenced
and continue to influence the
changes in thinking in
research methods. Modernism
is associated with the
scientific understanding of
truth and knowledge,
claiming that there is one
ultimate, objective truth; and
postmodernism relates to the
human-centred holistic
perspective, maintaining that
there are subjective, multiple
truths.

Webster, L. and Mertova, P

The first part of this chapter introduces the computational method-
ologies used during this PhD. As presented in the first chapter, I will
start with the main generative machine learning approach applied:
Bayesian networks. Bayesian networks applied to perform structure
learning will be explained. This will be followed by the discrimina-
tive machine learning algorithms, i.e. the traditional linear models
and support vector machines (SVMs). The final computational ap-
proach explained in this chapter is survival analysis. This first part
will end with the discussion of different machine learning strategies
used for the validation of the resulting models.

The second part of this chapter will describe the biological exper-
iments applied in the course of this PhD. Reverse phase protein arrays
(RPPA) and the tissue microarrays (TMA) experiments will be de-
scribed. I applied TMA technology, in association with collaborators
of the Division of Pathology at the University of Edinburgh, for the
collection of a validation data set for proteome biomarker validation
(see chapter 3).

In this chapter, I will give the background information of the
computational modelling performed in chapters 3 and 4. Intially, I
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performed Bayesian network analysis to build computational mod-
els. In consultation with my supervisors, I have proposed to work
with various computational modelling techniques; this techniques
are nowadays called machine learning. Machine learning has been
applied previously in Bioinformatics [Baldi and Brunak, 2001].

2.1 Computational methodologies

Systems approaches in pathology require computational modelling
to quantify their data resources. Since cancer is such a complicated
collection of diseases, mathematical modelling aids to understand
the underlying patterns. This mathematical modelling is extremely
challenging and the predictive capacity inferred form biological data
is not always sufficient to construct high quality models [Roberts
et al., 2012]. What is modelling and where does a model stands for?
A quote of Einstein gives a very good starting point for a usable
model:

"Everything should be made as simple as possible but not simpler".

This applies also to a model, a useful model models a sufficient
amount of complexity in as simple as possible way.

In computational modelling one could distinguish two different
approaches:

1. Process-driven approach:

• The model is constructed from assumptions, expert knowl-
edge, literature, etc.. The process behind the model is de-
scribed.

• Predictions can be made based on expert knowledge.

• Examples of process-driven computational approaches are or-
dinary differential equations (ODEs), inference over a Bayesian
network, etc.

2. Data-driven approach:

• The data is used as the driving-force behind the construction of
the model. The model is inferred from experimental data.

• Predictions are made from experimental data.

• Examples of data-driven computational approaches are linear
models, support vector machines, structure learning with
Bayesian networks, etc.

In reality process-driven and data-driven approaches are often
combined. Combining knowledge from earlier biological research
with data from current experiments is a common strategy in compu-
tational modelling.

The modelling performed during this PhD will be mainly data-
driven: this type of modelling is often called Data Mining [Hand
et al., 2001]. A potential drawback of these approaches is that they
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can be data hungry. Bayesian networks, linear models, survival
analysis, etc., are parametrized in such a way that our data resources
represent a sufficient sample for modelling.

As described in chapter 1 in page 14, machine learning can be cat-
egorized into generative and discriminative machine learning. In the
following sections, we will provide an overview of machine learning
methodologies applied in different projects. First, a generative ma-
chine learning approach will be explained: Bayesian networks. This
is followed with three discriminative machine learning approaches:
(1) linear models, (2) support vector machines (SVMs), and (3) survival
analysis. This chapter will finish with an overview of different vali-
dation schemes for machine learning algorithms and performance
measures for classification and regression models.

Bayesian networks provide a very strong probabilistic graphical
representation of statistical dependencies between a set of random
variables. They have one big drawback; their data requirements
can be problematic (see section 2.1.1.14 on page 45). Linear models
are very often used as a entry point to start data analysis, i.e. they
can be used for feature selection in combination with a criterion.
Support vector machines (SVMs) are one of the most popular ap-
proaches in machine learning. An detailed explaination of SVMs
will be provided in this chapter. Censored outputs (i.e., progression-
free survival and overall survival) can be modeled with a specific set
of computational techniques called survival analysis.

One of the most fundamental steps in constructing any compu-
tational model is the definition of the preformance measurements.
Nowadays, there are various techniques for building a computa-
tional model; all techniques can be misused. In order to avoid over-
and underfitting problems of a computational model, the perfor-
mance analysis is more crucial than the applied computational tech-
nique. This performance analysis can not always be performed with
one measurement and should use preferably a resampling method.
Resampling methods can be applied in various ways and attempts
to avoid overfitting of mathematical models (e.g., performance mea-
sures and model parameters).

All these terminology explained during this chapter will be ap-
plied in chapters 3 and 4. I used existing machine learning algo-
rithms, together with a series of performance measurements and
resampling methods for constructing novel computational models
that have contributed to reveal the system behind pathology.

2.1.1 Bayesian networks

Bayesian statistics have been very popular in the scientific commu-
nity during the last century. One of the main reason of this success
is that prior knowledge can be combined with new data resources.
This paradigm resulted in applications in statistical inference [Gel-
man et al., 2004a], probabilistic graphical models [Koller and Fried-
man, 2009a], neural networks [Neal, 1995], etc. The Bayesian ap-
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proach gained huge interest in systems biology and systems pathol-
ogy. Systems approaches want to combine prior knowledge with
existing and new generated “omics” data set. During this study, a
specific Bayesian methodology was applied, the so-called Bayesian
networks.

Bayesian networks are probabilistic graphical models, and belong
to the category of generative machine learning algorithms (see sec-
tion 1.1 on page 14). Bayesian networks are conceptually based on
Bayes’ theorem [Korb and Nicholson, 2004].

P(d|s) =
P(s|d).P(d)

P(s)
(2.1.1.1)

• P(d|s): probability of d knowing s.

• P(s|d): likelihood of d resulting in s.

• P(d): probability prior to any evidence d.

• P(s): normalized, so that the conditional probabilities of all hy-
potheses sum to 1.

• P(s|d).P(d): Joint probability distribution (JPD).

This Bayesian theorem will reoccur in various forms during the
explanation of Bayesian networks. Bayesian networks can be ap-
plied in various ways [Korb and Nicholson, 2004]. They are applied
in different computational modelling approaches (see section 2.1 on
page 32):

1. Data driven approach (“building graphs from data directly”): these
types of algorithms propose graphs directly from a data set. It
suggests statistical dependencies between different nodes in a
graph. No statistical dependencies are pre-assumed. This exam-
ple of structure learning algorithms are also called unsupervised
learning.

2. Process-driven approach (“updating graphs according known facts”):
these types of inference algorithms proposes graphs starting
from expert knowledge. The expert knowledge is information pro-
vided by an expert (ex.: input graph, certain relationships, certain
non-relationships, etc.). It retrieves statistical dependencies ac-
cording the data set, and creates more probability feedback from
the graph used as an input. This example of learning algorithm is
also called semi-supervised learning.

Table 2.1: Table of the joint probability
distribution (JPD).

r ras p f s JPD
r1 ras1 p f s1 0.025
r2 ras1 p f s1 0.25
r1 ras2 p f s1 0.05
r2 ras2 p f s1 0.275
r1 ras3 p f s1 0.005
r2 ras3 p f s1 0.015
r1 ras1 p f s2 0.001
r2 ras1 p f s2 0.003
r1 ras2 p f s2 0.125
r2 ras2 p f s2 0.002
r1 ras3 p f s2 0.075
r2 ras3 p f s2 0.219

Probabilistic graphical models (PGM), and Bayesian networks are
a combination of basic statistics and computer science [Koller and
Friedman, 2009b]. In the following sections, the basic concepts and
jargon will be introduced [Spiegelhalter et al., 1993].
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2.1.1.1 Conditioning

Imagine a joint probability distribution over three discrete random
variables (JPD = P(r, ras, p f s), see table 2.1 on page 34):

1. Regimen: treatment of a patient with values r1 and r2.

2. Ras expression: expression levels of Ras: ras1, ras2, and r3.

3. 1Y-PFS: one year progression-free survival: p f s1 and p f s2.

The quantity of parameters is 2 × 2 × 3 = 12, with 11 independent
parameters. A JDP can be conditioned on an observation, e.g. assume
we condition on the observation that ras = ras2. This conditional
probability distribution is written as P(r, p f s|ras2), and is computed
in two steps: (1) reduction (see table 2.2) and (2) normalization (see
table 2.3). The next operation we can perform is called marginaliza-
tion. If r is marginalized out, we can derive, e.g. the probability for
p f s = p f s1.

Table 2.2: Unnormalized probability
distribution conditioned on observa-
tion ras = ras2.

r ras p f s JPD
r1 ras2 p f s1 0.05
r2 ras2 p f s1 0.275
r1 ras2 p f s2 0.125
r2 ras2 p f s2 0.002

Table 2.3: Normalized probability dis-
tribution conditioned on observation
ras = ras2.

r ras p f s JPD
r1 ras2 p f s1 0.110
r2 ras2 p f s1 0.608
r1 ras2 p f s2 0.277
r2 ras2 p f s2 0.005

2.1.1.2 Marginalization

Marginalization is a statistical operation on a set of random vari-
ables. This operations marginalizes the influence of variable on the
resulting probability distribution. In case we marginalize r from ta-
ble 2.3, our marginalized distribution is the summation of each of
the variable states of the subset (see table 2.4).

Table 2.4: Normalized probability
distribution conditioned on observa-
tion ras = ras2 and marginalized the
influence of variable r.

p f s JPD
p f s1 0.718
p f s2 0.282

2.1.1.3 Factor

A factor is a function (υ(x1, x2, . . . , xk)), as every function it has a
scope (x1, x2, . . . , xk). Examples of factors in Bayesian networks are
joint distribution probability (JDP), conditional probability distribution
(CPD), etc.

In order to introduce Bayesian networks, let’s continue with the
simple example introduced in the last paragraphs. This example
will be used to explain some basic concepts in Bayesian networks
(see figure 2.1). These concepts are very important to interpret a
Bayesian network.

Figure 2.1: A simple example of a
Bayesian network to illustrate funda-
mental concepts.

2.1.1.4 Chain rule for Bayesian networks

All the conditional distribution probabilities (CPD) formulate the
joint distribution probability (JPD) by the application of the chain
rule for Bayesian networks (see figure 2.2):

P(R, H, Ras, p53, PFS) = P(R)P(H)P(Ras|R, H)P(p53|H)P(PFS|Ras)
(2.1.1.2)

This allows us to compute the joint probability of any combina-
tion of values of our system under investigation, e.g.

P(r1, h2, ras2, p531, p f s2) = 0.27× 0.21× 0.31× 0.23× 0.47 = 0.0019

Figure 2.2: A simple example of a
Bayesian network to illustrate the
conditional distribution probabilities
(CPD) that are part of the chain rule.

Table 2.5: Conditional probability table
for Regimen.

r1 r2

0.27 0.73

This defines a general definition for Bayesian networks. A Bayesian
network is a directed acyclic graph (DAG) whose nodes represent
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the random variables χ = (X1, X2, . . . , Xn) of our joint probability
distribution; the edges, are the statistical dependencies among those
random variables, represent the conditional probability distribution
for each node (CPD(Xi) = P(Xi|ParG(Xi))). A DAG means that there
are no loops in the network. If we apply the chain rule for Bayesian
networks, then we can write the joint probability distribution (JPD).
This JPD is a factor product of the condition probability distribution,
of our Bayesian network as:

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi|ParG(Xi)) (2.1.1.3)

Table 2.6: Conditional probability table
for histological type.

h1 h2

0.79 0.21

This chain rule for a Bayesian network is a very important formu-
lation. An alternative interpretation of a Bayesian network is given
by a set of conditional independencies. The concept of conditional
independency and how it is encapsulated in a Bayesian network will
be explained in the following sections.

2.1.1.5 Independence

If two random variables, X and Y, are independent, we can write the
following: X, Y, P � X ⊥ Y

P(X, Y) = P(X)P(Y) (2.1.1.4)

P(X|Y) = P(X) (2.1.1.5)

P(Y|X) = P(Y) (2.1.1.6)

2.1.1.6 Conditional independence

A set of three random variables X, Y, and Z where X and Y are con-
ditional independent given Z: P � (X ⊥ Y|Z)

P(X, Y|Z) = P(X|Z)P(Y|Z) (2.1.1.7)

P(X|Y, Z) = P(X|Z) (2.1.1.8)

P(Y|X, Z) = P(Y|Z) (2.1.1.9)

P(X, Y, Z) ∝ υ1(X, Y)υ2(Y, Z) (2.1.1.10)

The conditional independencies in a Bayesian network are often
explained by an active trail. In the next section, an active trail will
be explained together with our simple example from the previous
sections.

Table 2.7: Conditional probability table
for Ras.

ras1 ras2 ras3

r1 h2 0.1 0.68 0.22
r1 h2 0.51 0.31 0.18
r2 h2 0.28 0.23 0.49
r2 h2 0.13 0.15 0.72

Table 2.8: Conditional probability table
for p53.

p531 p532 p533

h1 0.22 0.48 0.3
h2 0.23 0.02 0.71

Table 2.9: Conditional probability table
for 1Y-PFS.

p f s1 p f s2

ras1 0.71 0.29
ras2 0.53 0.47
ras3 0.12 0.88

2.1.1.7 Active trail

A very important, and at the same time an often misunderstood,
concept is to understand how Bayesian networks represent statistical
dependencies in the graph. In the following paragraphs an example
illustrates how Bayesian networks allow you to reason over the
directed graph. A very fundamental question to ask is: “Is node
Xi independent on X j?”. This type of reasoning over a Bayesian
network asks for the introduction of some novel concepts.
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Reasoning on a Bayesian network can be performed in two man-
ners: (1) without a set of evidence nodes and (2) with a set of evi-
dence nodes. Reasoning is often performed with an active trail. An
active trail in a Bayesian network means that node Xi has a statistical
dependency on node X j.

Figure 2.3: The Bayesian network ex-
ample were the v-structure is indicated.

A trail is active in a Bayesian network if:

1. without a set of evidence nodes1:

1 An evidence node is a node that we
have evidence of its probability distri-
bution. If data were collected, we can
calculate its probability distribution.

An trail (X1 ←→ X2 ←→ . . . ←→ Xk) in a Bayesian network
is active if the connected nodes in a Bayesian network contain no
v-structure (Xi−1 −→ Xi ←− Xi+1, see figure 2.3 on page 37).

2. with a set of evidence nodes (Ξ):
A trail (X1 ←→ X2 ←→ . . . ←→ Xk) in a Bayesian network is

active given the set of evidence nodes (Ξ) if:

• for any v-structure (Xi−1 −→ Xi ←− Xi+1) Xi, or any of its
descendants ∈ Ξ

• any other X1→k ∈ Ξ

A v-structure in a Bayesian network (see figure 2.3) without a set
of evidences nodes blocks an active trail. A trail with a v-structure
can only be activated if the node Ras or its descendant PFS is an
element of the set of evidence nodes (Ξ).

A parent node (X j) and a child node Xi in a Bayesian network are
statistical dependent. Obviously, these statistical dependencies are
bidirectional; this can be misleading since the arrow points only in
the direction of the child (X j −→ Xi).

In a longer trail between two nodes in the example Bayesian
network, node R is connected with node PFS (see figure 2.4). In case
there is no evidence set, this trail is active. Alternatively, in case
node Ras is in the evidence set (Ξ), then the trail is no longer active.
Such top-down trail is also called causal reasoning.

Figure 2.4: Statistical dependencies
in a Bayesian network a top-down
information flow (causal reasoning).

Analogously, when the trail between two nodes in the example
Bayesian network node PFS and R are connected (see figure 2.5). If
there is no evidence set (Ξ) then the trail is active. It is only in the
case node Ras is an element of the evidence set (Ξ) that the trail is
not active. This type of bottom-up reasoning is often called evidential
reasoning.

Figure 2.5: Statistical dependencies in
a Bayesian network a bottom-up infor-
mation flow (evidential reasoning).

A trail in a Bayesian network where a parent node has two child
nodes (Xi−1 ←− Xi −→ Xi+1, see figure 2.6) is active if there is no
set of evidence nodes. In case the parent node (Xi) is an element
of the set of evidence nodes (Ξ), the trail is not active (inter-causal
reasoning).

Figure 2.6: Statistical dependencies in
a Bayesian network with a Xi−1 ←−

Xi −→ Xi+1 (inter-causal reasoning).In case a trail, p53←− H −→ Ras←− R, is activated, H may not be
part of the evidence set (Ξ) and Ras, or its descendant (PFS), must be
part of its evidence set (Ξ; see figure 2.7).

Figure 2.7: A trail in a Bayesian net-
work that combines different types of
reasoning.

2.1.1.8 d-separation

Active trails in a Bayesian network are important to retrieve the
conditional independencies [Geiger et al., 1990]. Three nodes in a
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Bayesian network, Xi, X j, and Xk, where Xk d-separate Xi from X j, if
and only if there is no active trail between Xi and X j given Xk.

It is important to understand that factorization and conditional
independency are both represented into a Bayesian network. From
a Bayesian network we can write the joint probability that repre-
sents all the directed connections of the acyclic graph and all con-
ditional independencies. This set of conditional independencies, or
d-separations (direction-dependent separation), are often called an
I-map.

So far we introduced Bayesian networks without any time related
information. Therefore this category of Bayesian networks are called
static Bayesian networks.

2.1.1.9 Static Bayesian network

Static Bayesian networks are restricted to be directed acyclic graphs
(DAG). A static Bayesian network encodes a Joint Probability Dis-
tribution (JPD) over a set of discrete variables (χ = {X1, X2, . . . , Xn})
[Heckerman et al., 1995].

A Bayesian network is mathematically represented by a graph
(G) and a set of parameters (Θ) which describe the probability of
variables taking on each of their discrete values [Heckerman et al.,
1995].

The Bayesian network of χ can be represented as:

BNstatic→χ =< G, Θ > (2.1.1.11)

Graph (G) The nodes in the graph are the random variables (χ =

{X1, X2, . . . , Xn}). The directed links represent the statistical condi-
tional dependencies (X j on Xi) [Yu, 2005].

Set of variables (Θ) For each random variable of the probability
distribution we can write:

Θxi |Par(Xi)
= P(Xi = xi|Par(xi) = par(Xi) (2.1.1.12)

The probability of Xi taking on the value xi given its parents
Pa(Xi) having the values in a particular instantiation of the parents,
par(Xi), for all xi and par(Xi) [Yu, 2005].

Static Bayesian networks have specific limitations. As mentioned
earlier, the graph needs to be acyclic. A unique JPD for a BN can
have several different equivalent factorings (only directions of some
links differ). Dynamic Bayesian networks can bypass some of these
limitations [Yu, 2005], e.g. in case we have time series data of the
system under investigation, we can obtain feedback loops.

2.1.1.10 Temporal models

Temporal models are computational representations of temporal
trajectory distributions. Often the time is discretized, such data sets
are called time series. Time series have often a granularity (∆), where
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each variable at a time frame t is written as X(t), and time series

between ti and t j: X(i: j) =
{
Xi, Xi+1, . . . , X j

}
.

A temporal model will describe a distribution over trajectories,
this formulates as P(Xi: j). An important assumption for temporal
models, in order to compactify this probabilistic distribution, is
called the Markov assumption.

Markov assumption Applying the chain rule of probabilities allows
us to write

P(X(0:T)) = P(X(0))
T−1∏
t=0

P(X(t+1)|X(0:t)) (2.1.1.13)

X(t+1) ⊥ X(0:t)|X(t) (2.1.1.14)

P
(
X(0:T)

)
= P(X(0))

T−1∏
t=0

P(X(t+1)|X(t)) (2.1.1.15)

The Markov assumption is a “forgetting assumption”: we derive
the next state (X(t+1)) based on the current state (X(t)), and forget
about the past (X(0:t)). This Markov assumption might be violated
in certain applications, therefore there are two main strategies to
make this Markov assumption true. First strategy is to add more in-
formation about the state during each step in trajectory. The second
strategy is to include more steps back into history where the next
step will be based on. In this case we define it as a n-order Markov
assumption, where n indicates the number of steps taken into ac-
count.

Time invariance assumption A template probability model that fol-
lows the Markov assumption, can also follow the time invariance
assumption. This assumption restricts the dynamics of the model
during the trajectory. These dynamics are assumed to be equal
between two successive time points. Such a model is also called
stationary or homogeneous [Koller and Friedman, 2009b].

P
(
X(t+1)|X(t)

)
= P

(
X
′

|X
)

(2.1.1.16)

2.1.1.11 Dynamic Bayesian network (DBN)

Dynamic Bayesian networks include the dimension of time. Often
a first order Markov assumption is used. This implies that variables
at one time slice are considered to be affected only by those in the
immediately previous time slice [Yu, 2005].

Such a DBN is a graphical representation of a joint probability
distribution over χ′: set of discrete random variables Xi measured at
times t and t + ∆t [Heckerman et al., 1995]:

χ′ = {X1(t) , X2(t) , . . . , Xn(t) , X1(t+∆t)
, X2(t+∆t) , . . . , Xn(t+∆t) } (2.1.1.17)
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The Bayesian network of χ′ can be represented as [Yu, 2005]:

BNdynamic→χ′ =< G, Θ > (2.1.1.18)

Graph (G) Links are only possible forward in time (Xi(t) −→ X j(t +
∆t)) and all variables have links to themselves (Xi(t) −→ Xi(t + ∆t))
[Yu, 2005].

P(X(t+∆t)|X(0), X(1), X(2), . . . , X(t)) = P(X(t+∆t)|X(t)) (2.1.1.19)
Figure 2.8: DBN representation for an
underlying causal network with loop.

Set of variables (Θ) As above a collection of variables consists for all
Xi(t + ∆t) in χ′ [Heckerman et al., 1995]:

Θxi(t+∆t)|Par(Xi(t+∆t)
) (2.1.1.20)

This formulation of a dynamic Bayesian network is also called
2-time-slice Bayesian network (2TBN). In the previous sections we
provided the theoretical background to perform inference and rea-
soning in a Bayesian network, and explained the difference between
static and dynamic Bayesian networks. During this thesis Bayesian
networks are often applied for structure learning. Structure learning
algorithms for Bayesian networks will be explained in the following
sections.

2.1.1.12 Structure learning

Structure learning of Bayesian networks can be performed in two
manners: (1) construct an I-map based on conditional independence tests
[Cheng et al., 1997, Daly et al., 2009] and (2) search and score structure
[Heckerman et al., 1995, Heckerman, 1996, de Campos, 2006, Cowell,
2001]2. In the course of this study I concentrated on the search and

2 R package:
The following R packages support
various Bayesian network analysis:

• bnlearn [Scutari, 2010]: various
different constraint independence
(CI) tests, and scoring metrices
for Bayesian network analysis are
available.

• deal [Bottcher and Dethlefsen.,
2009]: Bayesian network learning
with discrete and continuous vari-
ables.

score structure approach. In the following paragraphs, I will provide
an intuition for the derivation of a scoring metric for the structure
learning of a Bayesian network3.

3 Java framework:
The following Java framework supports
Bayesian network analysis:

• BANJO [Hartemink, 2005]: Bayesian
Network Inference with Java Ob-
jects.

Scoring metric How big is the probability that a graph G can ex-
plain the data in D? There are two general approaches to score a
graph: (1) maximum likelihood scores and (2) Bayesian scores [Cooper
and Herskovits, 1992]. In this PhD, the main focus was on Bayesian
scores for structure learning of Bayesian networks. A Bayesian score
can be directly derived from the Bayes’ rule (see equation 2.1.1.1 on
page 34) [Heckerman, 1996]:

P(G|D) =
P(D|G)P(G)

P(D)
(2.1.1.21)

P(G|D) ∝ P(D|G)P(G) (2.1.1.22)

Score(G : D) = log(P(G|D)) = log(P(D|G) + log(P(G))) (2.1.1.23)

In the Bayes’ rule the denominator is seen as a normalization term,
and will therefore not be informative about the structure. The prior
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distribution over all the graphs, P(G), specifies the preference over
certain graphs and is often chosen uniform. Designing a Bayesian
scoring metric is equivalent to the marginal likelihood4 or in some 4 Marginal likelihood is different

from the maximum likelihood score
(see section 2.1.1.12). The maximum
likelihood examine the maximum of
the likelihood function of the data
given the network structure, whereas
the marginal likelihood calculates the
average, based on P(θG|G), of the same
likelihood function. This is a main
cause of the risk for over-fitting when
maximum likelihood score is applied.

literature called evidence, P(D|G), which can be written as:

P(D|G) =

∫
θG

P(D|θG, G)P(θG|G)dθG (2.1.1.24)

Computation of a Bayesian scoring metric is done by marginaliz-
ing out (see section 2.1.1.2 on page 35) the parameters of the graph
θG, P(θG|G) is the prior distribution of the parameters of the graph,
and P(D|θG) is likelihood of the data given the Bayesian network
structure parameters. The marginal likelihood follows the Occam’s
Razor principle [Domingos, 1999], meaning that it favors less compli-
cated structures; this property must be understood as a consequence
of more complex structures contain more graph parameters (θG),
which can not contain more probability mass as instinctively avail-
able in the data since the probability constraint sums to one.

If we assume that all graph parameters are independent (see
equation 2.1.1.5 on page 36), we can write:

P(D|G) =
n∏

i=1

∫
θi

P(Xi|ParG(Xi),θi)P(θi) (2.1.1.25)

There exist many different Bayesian scoring metrices. Some of
the scoring metrices are based upon discrete variables, e.g. Bayesian
Dirichlet equivalent, K2, etc., others are based upon continuous vari-
ables, e.g. Bayesian Gaussian equivalent [Heckerman and Geiger,
1995, Nodelman et al., 2002], Bayesian information criterion score,
etc., and there exist also hybrid [Bottcher and Dethlefsen., 2009]
Bayesian scoring metrices. During this PhD, mainly Bayesian scor-
ing metrices for discrete variables are applied. In the following
sections, the Bayesian Dirichlet equivalent (BDe) score will be ex-
plained; the BDe score is one of the most used scoring metrices for
structure learning in Bayesian networks. An alternative Bayesian
scoring metric is the Bayesian Information Criterion (BIC).

Both scoring metrics involve the generation of a Conditional Proba-
bility Table (CPT) for each node.

Conditional probability distribution (CPD) For discrete nodes the
local conditional probability distribution (CPD) is a multinomial
distribution, which results in conditional probability tables (CPT)
for each node. The conditional probability table (CPT) stores the
probabilities estimated from all combinations of parent-child values
extracted from the discretized data θi jk = P(xi = k|Par(xi) = j)
[Heckerman, 1996].

A possible solution to solve equation 2.1.1.25 for discrete nodes
is based on three assumptions: (1) global parameter independence, (2)
local parameter independence, and (3) likelihood equivalence. Global
parameter independence defines that a node in a Bayesian network
(Xi) is independent of all the other nodes given its parents (Par(Xi)).
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We can write for the parameters θi of node Xi:

P(θ) =
n∏

i=1

P(θi) (2.1.1.26)

θi =
{
θi jk; j = 1, . . . , qi, k = 1, . . . , ri

}
(2.1.1.27)

Global parameter independence specifies that the Bayesian score
is a decomposable score; this score can be decomposed into different
terms, and is a very important property for a heuristic search algo-
rithm for finding the highest score.

Local parameter independence defines that the parameters of
each node (Xi) given a parent are independent of the parameters for
the same node given other parent(s).

P(θ) =
qi∏

i=1

θi j (2.1.1.28)

θi j =
{
θi jk; k = 1, . . . , ri

}
(2.1.1.29)

Likelihood equivalence defines that two network structures with
equal I-maps result into equal marginal likelihood (P(D|G1) =

P(D|G2)). In case these three assumptions are not violated5, the prior 5 These three assumptions can be
violated is the global- and local inde-
pendencies are not true for the score
we want to formulate, or equal I-maps
should not represent an equal score.

distribution can be a Dirichlet prior.

Dirichlet prior Each CPD of a variable in the Bayesian network is
a multinomial (P(Xi|Par(Xi) = j) = θi j) with ri possible discrete
values. The Dirichlet prior is defined as:

θi j = Dir(αi j1,αi j2, . . . ,αi jk) (2.1.1.30)

P(θi j|αi j) =

∏ri
k=1 Γ(αi jk)

Γ(
∑ri

k αi jk)

ri∏
k=1

θ
αi jk−1
i jk (2.1.1.31)

The Dirichlet prior distribution is a conjugate6 for the Bayesian 6 If the posterior distribution is of the
same family as the prior distribution,
the prior and posterior are called
conjugate distributions [Gelman et al.,
2004b].

score. Now we can derive the Bayesian Dirichlet equivalent (BDe)
scoring metric.

Bayesian Dirichlet equivalent (BDe) scoring metric The BDe score cap-
tures the full Bayesian posterior probability P(G|D). In this metric,
the prior over graphs needs to be specified (usually the uniform
prior is applied) and the prior over parameters is Dirichlet, a distri-
bution over multinomial distributions describing the conditional
dependency of each variable in the network.

BDe(G : D) = P(D|G) =
n∏

i=1


qi∏

j=1

Γ(αi j)

Γ(αi j + ni j)

 ri∏
k=1

Γ(αi jk + ni jk)

Γ(αi jk)




(2.1.1.32)
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log(BDe(G : D)) =
n∑

i=1

qi∑
j=1

log Γ(αi j) − log Γ(αi j + Ni j) +

ri∑
k=1

(
log Γ(αi jk + ni jk) − log Γ(αi jk)

)
(2.1.1.33)

The Gamma function is calculated for n ∈N+
0 :

Γ(n) = (n− 1)! (2.1.1.34)

The following table 2.10 provides an explanation of the most
important variables required for the computation of the Bayesian
Dirichlet equivalent.

Variable description∏n
i=1 n: number of variables in the data set.∏qi
j=1 qi: number of joint parent states of a child Xi (qi =

1 if Pari = 0).
α Equivalent sample size (ess) [Silander et al., 2007],

expresses prior knowledge (α = 0 no prior knowl-
edge).

αi j Specific value for each BD variant, i.e. BDeu: αi j =
α
qi

ni j Quantity of times for a variable Xi that the parents
are in joint state j, regardless of the state of Xi. Sum
of cases of a particular value (ni j =

∑ri
k=1 ni jk).∏ri

k=1 quantity of different states a variable Xi takes over
the complete data set (quantity of states of a child).

αi jk Pseudo counts (hyperparameters), i.e. BDeu vari-
ant: αi jk =

α
ri.qi

)

ni jk Quantity of times variable Xi is in state k, while its
parents are in joint state j (ni jk = P(xi = k|Par(xi) =

j)). Knowing the state of a child (statechild), how
many times the parents have a particular state?

Table 2.10: Different variables and
corresponding description used for
the computation of Bayesian Dirichlet
equivalent (BDe) scoring metric.

BD score variants Most of the BD variants define a uninformative
prior; in Bayesian statistics it is better to use an uniform or unin-
formative prior distribution instead of an incorrect prior distribu-
tion7 [Gelman et al., 2004b]. 7 Bayesian statistics can produce

unmeaningful results in case the prior
distribution is not defined properly.
An uniform of uninformative prior
distribution is often preferred for
structure learning with Bayesian
networks.

There are a few variants of BD scores. Some of these variants
violate the equivalent likelihood assumption, i.e. K2 score, others do
keep this assumption, i.e. DBe and DBeu score.

The K2 score has an uninformative prior with an equivalent sam-
ple size (α) defined as:

αi j = ri (2.1.1.35)

αi jk = 1 (2.1.1.36)

K2(G : D) = P(D|G) =
n∏

i=1


qi∏

j=1

(ri − 1)!
(ni j + ri − 1)!

 ri∏
k=1

(ni jk)!


 (2.1.1.37)
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The BDeu (u stands for uniform distribution) assigns a uniform
distribution to the joint distribution. The pseudo counts are set in
such a manner that each network is equally likely.

αi j =
α
qi

(2.1.1.38)

αi jk =
α

riqi
(2.1.1.39)

2.1.1.13 Data discretization

Data discretization is an algorithm that transforms continuous vari-
ables into discrete values [Butterworth et al., 2004]. Discretization
of continuous variables allow us to apply structure learning with
scoring metrices for discrete variables. Data discretization influences
substantially the resulting Bayesian network [Steck and Jaakkola,
2006].

Assume n continuous variables in the domain of interest:

Y = (Y1, Y2, . . . , Yn) (2.1.1.40)

In the following paragraphs, a number of these policies will be illus-
trated.

Interval or range discretization A n-way interval discretization for a
data range between x . . . y(y > x):

range1 : 0 . . .
y− x

n
(2.1.1.41)

range2 :
y− x

n
. . . 2.

y− x
n

(2.1.1.42)

. . .

rangen−1 : (n− 2).
y− x

n
. . . (n− 1).

y− x
n

(2.1.1.43)

rangen : (n− 1).
y− x

n
. . . n.

y− x
n

(2.1.1.44)

Quantile discretization The major characteristic of quantile discretiza-
tion is to have equal number of each n-way quantile discretization
levels [Steck and Jaakkola, 2006].

Fayyad-Irani’s discretization This discretization policy is often used
in Data Mining and Machine Learning [Fayyad and Irani, 1993]. It
applies an entropy minimization heuristic in the discretization algo-
rithm [Fayyad and Irani, 1993]8.

8 Python package:
The following Python package to sup-
port different discretization policies:

• orange [Janez Demsar and Curk,
2004]: interval, quantile, and
Fayyad-Irani’s discretization policies
are available.

Hartemink’s pairwise mutual information discretization This discretiza-
tion policy attempts to minimize the total pairwise information
loss [Hartemink et al., 2001, Grzegorczyk, 2006]9. Mutual informa-

9 R package:
The following R package to support
different discretization policies:

• bnlearn [Scutari, 2010]: interval,
quantile, and Hartemink’s pairwise
mutual information discretization
policies are available.

tion is a measurement to define the dependency or distance between
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variables. Many frameworks quantify the linear dependency be-
tween variables, mutual information provides a general measure of
dependencies among variables [Steuer et al., 2002]. We can also say
that mutual information quantifies the stochastic dependence, or the
degree of predictability, between two variables [Hausser, 2006]. The
mutual information between X and Y is defined by [MacKay, 2004]:

MI(X, Y) =
M∑

i=1

M∑
j=1

P(X = i, Y = j) log2
P(X = i, Y = j)

P(X = i)P(Y = j)
(2.1.1.45)

From equation 2.1.1.45, we can derive that the mutual informa-
tion is the ratio between the joint distribution P(X = i, Y = j) and
the product marginal distributions [Hausser, 2006]. In case the joint
distribution and the product of marginals are equal, both variables
are stochastically independent.

2.1.1.14 Data requirements

Bayesian networks tend to be data intensive10 [Yu, 2005]. In order 10 Data intensive means the a rather
high quantity of data samples are
required compared to other other
compared to other computationsl
methods.

to avoid false positives in the graph, sufficient data samples must be
available. The following table gives an overview of the quantity of
data needed for structure learning with the BDe scoring metric:

Number of dis-
cretization levels

Number of sam-
ples: 1 parent -
child relation-
ship

Number of sam-
ples: 2 parent -
child relation-
ships

Number of sam-
ples: 3 parent -
child relation-
ships

Number of sam-
ples needed: 4
parent - child
relationships

Number of sam-
ples needed: 5
parent - child
relationships

Number of sam-
ples needed: 6
parent - child
relationships

2 6 12 24 48 96 192
3 15 45 135 405 1215 3645
4 28 112 448 1792 7168 28672

Table 2.11: Overview of the number of
samples needed in order to avoid false
positives in function of the quantity
of parent - child relationships and the
number of discretization levels (α = 2).

Number of dis-
cretization levels

Number of sam-
ples: 1 parent -
child relation-
ship

Number of sam-
ples: 2 parent -
child relation-
ships

Number of sam-
ples: 3 parent -
child relation-
ships

Number of sam-
ples needed: 4
parent - child
relationships

Number of sam-
ples needed: 5
parent - child
relationships

Number of sam-
ples needed: 6
parent - child
relationships

2 2.27 6.05 15.13 36.31 84.72 193.66
3 8.01 34.18 132.99 409.3 1744.86 6056.47
4 17.35 101.43 533.83 2647.77 12640.98 8763.46

Table 2.12: Overview of the number of
samples needed in order to retrieve the
minimal number of samples needed to
find parents (alpha = 2).

2.1.1.15 Heuristic search methods

Identifying the highest scoring graph is a Non-deterministically Poly-
nomial (NP) complete problem [Chickering, 1996, Korb and Nichol-
son, 2004]. This is a category of complexity theory problems with
an inherent intractability. Heuristic search algorithms are used to
improve results found in a more reasonable time.

Simulated Annealing (SA) [Cerny, 1985] and Greedy search with
random restarts [Chickering, 2003] are both applied in order to verify
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that the modelling results are independent on the applied search
algorithm [Yu et al., 2004].

Recently, there are search algorithms applied for various prob-
lems: Markov Chain Monte Carlo (MCMC) [Grzegorczyk and
Husmeier, 2008], ant colony optimization (ACO) [Daly and Shen,
2009], max-min hill-climbing [Tsamardinos et al., 2006] etc. Many of
these algorithms have been implemented for structure learning of
Bayesian networks.

2.1.1.16 Model averaging

Model averaging is applied for structure learning with Bayesian net-
works since one best network structure learned might have missed
important statistical dependencies among the random variables.
Bayesian model averaging (BMA) [Madigan and Raftery, 1994, Hoet-
ing et al., 1999] provides a framework to avoid over-fitting of the
selected model.

Since the modelling technique reflects the correctness of a certain
network for describing a data set by one score, we can loose some
important patterns. We use model averaging to capture more pat-
terns from the data set as an attempt to capture edges from other
high-scoring networks [Hartemink et al., 2002].

Model averaging of a Bayesian network can be performed over,
e.g. best 100 networks, formulated as [Hartemink et al., 2002]:

p(EXY|D) ≈

N∑
i=1

1XY(Si).eBSM(Si)

N∑
i=1

eBSM(Si)

(2.1.1.46)

The symbols in these formula represent:

• N: number of best graphs according the BDe score.

• EXY: edge between variable X and Y.

• 1XY(Si): is equal to 1 if and only if edge EXY is part of network Si

• BSM(Si): the Bayesian scoring metric for graph Si.

2.1.1.17 Influence score

The influence score (Θi jk) for Bayesian networks informs the sign
and magnitude of influence of a specific edge in the graph [Yu et al.,
2004]. The influence score of a statistical dependency between a
parent- and a child node in the Bayesian network is derived from
conditional probability using a counting and voting mechanism
described in [Hartemink et al., 2001]. Its meaning is described in the
following paragraphs.
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Sign The sign of the influence score expresses the following infor-
mation [Hartemink et al., 2001]:

• positive (+) from X to Y: higher values of parent node X will bias
the distribution of child node Y higher.

• negative (-) from X to Y: higher values of parent node X will bias
the distribution of child node Y lower.

• zero: there is no monotonic influence from X to Y, i.e. U- or hump
shaped relationships.

Magnitude The magnitude specifies the strength of the influence of
a parent node on a child node [Yu et al., 2004].

In the following section, linear models will be explained.

2.1.2 Linear models

One of the most widely used discriminative and supervised machine
learning algorithms are linear models. It is often used as a starting
point for more complicated and nonlinear models. In the next sec-
tions the general- and generalized linear models are introduced.

Throughout the following sections, the data will have following
characteristics. The data set with m samples is constructed of two
parts: (1) n explanatory variables, also called features (x) and (2) the
response- or output variable (y)11: 11 x( j)

i : is the value of the ith feature and
the jth data sample.

∀ j ∈ {1, 2, . . . , m} : d( j) =
{
x( j), y( j)

}
(2.1.2.1)

∀i ∈ {1, 2, . . . , n} : x ∈ Rn×m (2.1.2.2)

y ∈ R1 (2.1.2.3)

A linear regression analysis looks for a linear relationship be-
tween explanatory variables, also called features, and a response- or
output variable:

1. Explanatory variables (features; x) can be continuous or ordinal cate-
gorical. Categorical is also called nominal. It means that a variable
has two of more categorical values. Ordinal specified that their
exists a clear ordering of the variables.

2. Response variable (output variable; y) is the output variable that we
want to predict. In a regression model the response variable is
continuous, and in a classification model the response variable is
categorical.

In the case of multiple explanatory variables, a linear model is
often called Multiple Linear Regression (MLR).

A regression analysis has two levels of interpretation: (1) basic
level interprets the association retrieval between the explanatory and
response variables and (2) sophisticated level specifies the prediction
of response variables based on the explanatory variables.
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A linear model constructs an hypothesis that a set of parame-
ters (θ) explain the relationship among the features and the output
variable. This relationship can be written as:

hθ = θ0 + θ1x1 + θ2x2 + . . .+ θnxn (2.1.2.4)

A cost function is a performance measure that quantifies the
error of a linear model constructed with a set of parameters (θ =

{θ0,θ1,θ2, . . . ,θn}). In the case of the data set has m data points and
n features we can write the cost function as12: 12 The cost function used is the mean

squared error (MSE)

J(θ0,θ1,θ2, . . . ,θn) =
1

2m

m∑
j=1

(
hθ(x( j)) − y( j)

)2
(2.1.2.5)

The goal of constructing a linear model is to minimize the cost
function for a set of parameters (θ) given the data set. A linear
model can be constructed with different statistical software pack-
ages: R, Octave, Python, etc. Now let’s discuss general linear models
and the interpretation of the output provided by many statistical
packages.

2.1.2.1 General Linear Model (GLM)

The general linear model (GLM) framework is the tool to construct
ordinary linear models [Grafen and Hails, 2006]13. 13 R package:

The following R functions to support
general linear models:

• lm: linear model function that fits
parameters θ.

y = θ0 + θ1x1 + θ2x2 + . . .+ θnxn + ε (2.1.2.6)

Typically, the set of parameters (θ = (θ0,θ1,θ2, . . . ,θn)) are
computed to minimize the error distribution of the GLM. This error
distribution, ε = Nn(0, σ2I), is a multivariate normal distribution.
Linear models with different error distributions are called generalized
linear models (GeLM) [Olsson, 2002].

GLM’s can handle two types of features: categorical- and contin-
uous features [Grafen and Hails, 2006]. An analysis with categor-
ical features results in retrieval of difference between mean values
between the different categories and an analysis with continuous
features retrieves the linear relationships with the response vari-
able. An analysis with only categorical variables is called the t-test
and analysis of covariance, an analysis with only continuous vari-
ables is called regression or multiple regression, and an analysis with a
combination of categorical and continuous is called analysis of covari-
ance [Grafen and Hails, 2006].

Categorical variables Categorical variables need special attention if
they are added into a linear model [Serlin and Levin, 1985]. Intu-
itively, a categorical variable of k levels can be represented by k − 1
columns in a matrix. This representation is performed by differ-
ent coding schemes, also called contrasts. There are many different
contrast procedures available, e.g. treatment or also called dummy,
Helmert, sum, and poly [Harrell, 2001, Harrell, 2012b]14. A detailed

14 R package:
The following R functions to support
contrast schemes for categorical vari-
ables:

• factor: a factor type definition indi-
cates a categorical variable in R.

• C: allows specific contrast repre-
sentations. e.g. treatment, helmert,
sum, and poly.

• contr.: allows specific contrast rep-
resentations. e.g. contr.treatment,
contr.helmert, contr.sum, and
contr.poly.
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description of each of these coding schemes is documented in a
report written by Sundström [Sundström, 2010].

The coding schemes of this categorical data help with the inter-
pretation of the effect of an individual coding variable, but it does
not change the overall effect of a set of coding variables on the linear
model fit.

Output The following paragraphs explain the main output di-
agnostics that a statistical software package provides for a linear
model, i.e. ANOVA table, coefficient table, confidence- and pre-
diction intervals, etc. These output diagnostics are very similar for
generalized linear models and Cox proportional hazards regression
models.

ANOVA table An ANOVA table15 illustrates which explanatory 15 R package:
The following R functions outputs the
ANOVA table of a linear model:

• anova: anova function has the linear
model as an argument.

variables are related to the response variable [Grafen and Hails,
2006, Harrell, 2001, Harrell, 2012b]. Low p-values (conventionally
p < 0.05) indicate that the null hypothesis for regression (H0: a
feature (x) adds no extra information to the output variable (y)) can
be rejected, and quantify potential important differences towards the
response variable.

Coefficient table The coefficient (θi), or slope of the linear line, char-
acterizes the linear relationship between a feature and the response
variable [Grafen and Hails, 2006]. It is important to analyse the
standard error16 for each coefficient estimate, the corresponding p- 16

t-ratio =
estimate

standard error
(2.1.2.7)value of the t-ratio is computed based on the standard error [Harrell,

2012b]17.
17 R package:

The following R functions output the
coefficient table of a linear model:

• coef: the coefficient table of the
linear model.

• summary: the diagnostics output of
the linear model.

Confidence intervals for model parameters The reliability of the pa-
rameters of a linear model can be analysed by their confidence inter-
val. The confidence interval is calculated for a specific confidence
level, e.g. 90%, 95%, and 99% levels are often used. Most statistical
software packages provide specific functions for calculation of the
confidence intervals18. 18 R package:

The following R function outputs the
confidence interval:

• confint: returns an overview of the
confidence interval of all the coeffi-
cients in the linear model.

θi ± t α
2 ,n−2 × SE (2.1.2.8)

The parameters of the linear model are often verified by boot-
strapping (see section 2.1.5.1 in on page 82)19 or another resampling 19 R package:

The following R package can be used
for bootstrapping of a linear model:

• boot [Canty and Ripley, 2012]: the
boot function provides implementa-
tion for bootstrapping.

method, e.g. cross-validation.
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Confidence intervals for response variable If we want to predict the
mean response of our linear model given a set of values for our
features, x(i)20: 20 R package:

The following R function outputs the
confidence interval of the response
variable:

• predict: returns an overview of
the confidence interval of the re-
sponse variable in the linear model
(interval=“confidence”).

E(y( j)
|x( j)) = θ0 + θ1x( j)

1 + θ2x( j)
2 + . . .+ θnx( j)

n (2.1.2.9)

ˆy( j) ± t α
2 ,n−k

√
MSE

(
x( j)T

(XTX)−1x( j)
)

(2.1.2.10)

The confidence interval for the response value concentrates on the
sampling error. This sampling error represents the error that a linear
models contains bacause it is not based on the complete population
sample [Faraway, 2002a].

Prediction intervals for response variable The predicted value with
a confidence interval and prediction interval are equal. The only
difference is that the prediction interval is larger (extra MSE term in
equations 2.1.2.10 and 2.1.2.12)21: 21 R package:

The following R function outputs the
prediction interval of the response
variable:

• predict: returns an overview of
the prediction interval of the re-
sponse variable in the linear model
(interval=“prediction”).

E(y( j)
|x( j)) = θ0 + θ1x( j)

1 + θ2x( j)
2 + . . .+ θnx( j)

n (2.1.2.11)

ˆy( j) ± t α
2 ,n−k

√
MSE

(
1 + x( j)T

(XTX)−1x( j)
)

(2.1.2.12)

The prediction interval for the response value concentrates on the
sampling error and the variability around the predicted mean.

2.1.2.2 Model selection

If the constructed model lacks complexity and insufficiently fits the
data, often called underfitting or high bias, the response variable (y)
will not be well predicted. Alternatively, if the constructed model
fits the data very well, and the error of the predicted response vari-
able (y) is very low, there is a risk of overfitting or high variance. This
overfitting means that new predictions of this linear model, based on
another data set, can be still very poor.

Test model fit The variance is often used to test if the data suffi-
ciently fits a model [Faraway, 2002b]. We compare the variance of
the model (σ̂2) with the variance of the variables (σ2).

If we compose a model that is not complex enough for our data,
or has a wrong form, the estimated σ̂2 will be an overestimate. If our
extracted model is too complex and over-fits the data, then σ̂2 will be
underestimated [Faraway, 2002b].

The ratio of the true and estimated variance can be written as
[Faraway, 2002b]:

σ̂2

σ2 ∼
χ2

n−p

n− p
(2.1.2.13)

If there is a lack of fit:

(n− p) σ̂2

σ2 >
(
χ2

n−p

)1−α
(2.1.2.14)
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In order to improve the goodness of fit of a linear model, it is
good to analysis two model properties [Harrell. et al., 1996]:

1. Calibration: in the case of the average predicted response variable
of a regression model is equal to the actual average response
variable, we say the regression model is good calibrated.

2. Discrimination: in the case of the variance of the predicted re-
sponse variable of a regression model is positively correlated with
the variance of the actual response variable.

2.1.2.3 Feature selection

The selection of the most significant features of the linear model is
a fundamental step in model building. This model building follows
the principle of Occam’s Razor:

Among several plausible explanations for a phenomenon, the simplest
is best

This implies the simplest model is the one with the least number
of explanatory variables. The more explanatory variables a model
contains, the more degrees of freedom are not used efficiently [Far-
away, 2002b]. There is not a golden rule to know the number of
features (xi) a linear model should contain. Harrell et. al. [Harrell.
et al., 1996] suggest the following criterion based on the number of
samples (m):

i <
m
10

(2.1.2.15)

Akaike information criterion (AIC) Feature selection for a linear
model is often performed by a stepwise Akaike information crite-
rion. This criterion does not reject any statistical model. It is based
on information theory and informs about how well data supports a
model [Akaike, 1974]. The model with a minimum AIC is the best
according this model selection value22. The stepwise procedure in- 22 R package:

The following R packages provides
a stepwise AIC procedure for linear
models:

• MASS: stepAIC function computes
stepwise AIC procedure for general-
and generalized linear models.

• stats4: AIC function.

cludes different explanatory variables at each step of the procedure;
for each step the AIC is calculated.

AIC = −2 ln Lm + 2i (2.1.2.16)

AIC = m
(
ln (2π) + ln

(SSE
m

)
+ 1

)
+ 2 (i + 2) (2.1.2.17)

Bayesian information criterion (BIC) Bayesian model averaging
(BMA) can also be applied for feature selection in linear models.
In order to perform model selection, it applies the Bayesian informa-
tion criterion (BIC) [Schwartz, 1978]23:

23 R package:
The following R packages provide
Bayesian model averaging (BMA) for
linear models:

• BMA [Raftery, 1995]: bicreg function
computes BIC for general linear
models.

• stats4: BIC function.

BIC = −2 ln Lm + ln (n)i (2.1.2.18)

BIC = m
(
ln (2π) + ln

(SSE
m

)
+ 1

)
+ 2 ln (m) (i + 2) (2.1.2.19)

AIC and BIC are very similar, the main difference is that BIC
penalizes over-parametrization based upon the sample size (m).
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2.1.2.4 Regularization

Regularization is a method to avoid overfitting. Regularization adds
an extra regularization term (Rλ(θ)) that reduces the values of the
parameters of the linear model (θ). For linear models, there are two
main regularization methods: (1) least absolute shrinkage and selection
operator (LASSO) [Tibshirani, 1995] and (2) Tikhonov regularization or
ridge regression [Tikhonov, 1995]. Nowadays, there exist a huge va-
riety of possible regularization terms [Fu, 1998]. Regression models
with a regularization term are often called penalized regression models,
which can be formulated as:

θ̂ arg min
θ

 m∑
j=1

y( j)
−

n∑
i=1

x( j)
i θi




2

+ Rλ(θ) (2.1.2.20)

Rλ(θ) = λ
n∑

i=1

|θ|m (2.1.2.21) Table 2.13: Different regularization
terms for linear models (Rλ(θ)).

Regularization name Regularization term
LASSO λ

∑n
i=1 |θi |

Ridge λ
∑n

i=1 θi
2

Adaptive LASSO λ
∑n

i=1
θi
ˆ|θ|γ

A complementary measure of overfitting is called shrinkage [Co-
pas, 1983, Harrell. et al., 1996]. There are different applications for
shrinkage. A first application is to measure overfitting (γ), often
this measure can be used to correct the coefficient (γθX) in a linear
model. Shrinkage can be performed with bootstrapping, cross vali-
dation, and shrinkage heuristics. An example of a heuristic shrink-
age estimator in a Cox regression model is given by Houwelingen
and le Cessie [Copas, 1983, van Houwelingen J.C. and le Cessie S.,
1990]:

γ =
χ2

model − d f − 1

χ2
model

(2.1.2.22)

This heuristic approach is very useful to have a quick estimate of
the shrinkage in a model, and can be used as a remedie against over-
confident too high or too low predictions [van Houwelingen J.C.
and le Cessie S., 1990]. If we multiply all the predictor coefficients
with the same shrinkage correction, we might still not have a very
rigorous solution. Therefore, estimation of shrinkage factors should
be based on bootstrapping and cross validation in combination with
a penalized maximum likelihood estimate.

2.1.2.5 Performance measures for linear models

Coefficient of determination (R2) One of the most often used perfor-
mance measures for a linear model is the coefficient of determination
(R2; often called R squared). It measures the amount of variance that
is captured by the linear model [Grafen and Hails, 2006]. For a de-
tailed description of the coefficient of determination, often called R
squared (see section 2.1.5.5 on page 85).

2.1.2.6 Interactions

The model performance can be improved by including more compli-
cated features that are based on the original features. One possible
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strategy to find more informative features is to multiply two fea-
tures, which are called interactions.

y = β0 +β1x1 +β2x2 + . . .+βkxk +β12x1x2 +β23x2x3 + . . .+β(k−1)kxk−1xk + ε

(2.1.2.23)
Alternatively, new features can be added into the linear model by

applying transformation function on the original features (e.g., it can
be transforming input data or or adding nonlinear terms) [Harrell,
2012b]. In table 2.14 you can find an overview of the most often used
transformation functions.

Table 2.14: Transformation functions
provided in R.

Function Description
ns natural spline
rcs restricted cubic spline
bs B-spline
log logarithmic
poly polynomial

2.1.2.7 Generalized Linear Models (GeLM)

The generalized linear models (GeLM) are an extension of the gen-
eral linear models (GLM). GLM are described by equation 2.1.2.23
(see on page 53). A GeLM can be written as [Grafen and Hails,
2006]24: 24 R package:

The following R functions to support
general linear models:

• glm: generalized linear model func-
tion that fits parameters θ.

y = g(θ0 + θ1x1 + θ2x2 + . . .+ θnxn) + ε (2.1.2.24)

g−1(y) = θ0 + θ1x1 + θ2x2 + . . .+ θnxn + ε (2.1.2.25)

The main difference between general- and generalized linear
model is the introduction of the canonical link function (g(y)) and the
inverse link function (g−1(y)) [Harrell, 2012b]. These link functions
are the main trick used to let the linear model think the response
variable is still normally distributed. The link function maps pre-
dictor terms (Θixi) and the response variable. The following table
( 2.15) provides an overview of the main link function used in the
context of GeLM.

Distribution Canonical link Inverse link
θ = g(y) y = g−1(θ)

Poisson log y exp y
Binomial

logit link log
( y

1−y

) expθ
1+expθ

probit link Φ−1(y) Φ(y)
cloglog link log (− log (1− µ)) 1− exp (− exp (θ))

Normal y θ

Gamma −
1
µ −

1
θ

Negative binomial log (1− µ) 1− expθ

Table 2.15: The canonical- and inverse
link function for Generalized linear
models.

During this PhD, a logistic regression model was constructed with
generalized linear models. For logistic regression the link is typically
the logit link25 [Harrell, 2012b]. 25 The logit function is also called the

log odds: log
( p

1−p

)
All the concepts that were explained for the general linear mod-

els, are also applicable for the generalized linear models. In the next
sections, support vector machines (SVM) will be explained. They are
one of the most powerful supervised machine learning algorithms.
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2.1.3 Support vector machines (SVM)

The advancements in statistical learning theory (SLT) during 1990s
introduced a rigid framework for the generalization of machine
learning algorithms [Boser et al., 1992]. A major practical outcome
of this frameworks was the introduction of large margin classifiers.
These classifiers learn the maximum margin of decision boundaries,
meaning that not only a function will be used to classify, but also the
maximum margins around this function will be considered. Today
there are two main approaches for large margin classification: (1)
support vector machines and (2) boosting. During this PhD, the support
vector machines were mainly studied and applied.

Support vector machines (SVMs) are a set of learning algorithms
which are called Sparse Kernel Machines [Bishop, 2006d]. After being
introduced by Vapnik et. al. in 1992 [Boser et al., 1992], it became a
popular approach to solve the problem of classification26 in supervised 26 Classification predict a binary output,

e.g. a tumour is benign or malignant.learning. This new approach showed to be easier as the opaque neu-
ral networks [Press et al., 2007]. Very recently, neural networks start
to regain popularity in the machine learning community. They are
based on a paradigm to learn based on the propagation of informa-
tion between neurons in the human brain. In the next paragraphs,
a general formulation of the data set for classification will be pro-
vided. This will be fundamental for later formulations of support
vector machines.

The data set that will be used for binary classification has specific
properties. The data set will contain m samples and contain two
parts: (1) n explanatory variables, also called features (x) and (2) the
response- or output variable (y)27: 27 x( j)

i : is the value of the ith feature and
the jth data sample.

∀ j ∈ {1, 2, . . . , m} : d( j) =
{
x( j), y( j)

}
(2.1.3.1)

∀i ∈ {1, 2, . . . , n} : x ∈ Rn×m (2.1.3.2)

y ∈ {−1,+1} (2.1.3.3)

Support Vector Machines provide a predicted value, not a proba-
bility [Boser et al., 1992]:

f (x) = h(x) + b (2.1.3.4)

h(x) =
∑

i

yiαik(xi, x) (2.1.3.5)

Our system under investigation has been tested with m observa-
tions. As an input for the SVM machine learning algorithms each
observation consists of [Burges, 1998]:

1. Explanatory variables or features (x): a feature vector exists in the
continuous space Rn, but can also contain binary features.

2. Response variable or output variable (y): it would be 1 if the pattern
is recognized and −1 if not.

The task of a SVM algorithm is to learn the mapping between
input- and output space (χ : xi → Υ : y) [Burges, 1998]. The mapping
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is called the hypothesis; it represents a function with adjustable
parameters: x → f (x,α). The adjustable parameters will be trained
for the classifier.

Next, statistical learning theory and Lagrangian formulation are
explained. They are required to understand the mathematics and
logic of support vector machines. In the sections thereafter, statisti-
cal learning theory and Lagrangian formulation will be applied to
derive different support vector formulations. Finally, feature selec-
tion strategies specific for support vector machine will be described.

2.1.3.1 Statistical learning theory

A statistical learning theory formulates a mathematical theory with
four properties [Vapnik, 2010b, Vapnik, 2010a]:

1. Consistency: a learning algorithm must contain consistency condi-
tions based on the empirical risk minimization (ERM).

2. Convergence: quantification of the rate of convergence towards an
optimal learning algorithm.

3. Generalization: a learning algorithm must contain conditions that
guarantee performance on new data, i.e., avoid problems like
overfitting, underfitting, etc.

4. Algorithm: a learning algorithm should be easy to implement and
contain all previous properties.

Different hypotheses for the mapping between the input- and output
space (X : xi → Y : y) can be compared with a loss function or
risk function. This loss function specifies the difference between the
estimated response variable and the response variable of the training
set. There are numerous examples of loss functions, e.g., squared
loss, absolute value loss, zero-one loss, log loss, etc.

As an example the absolute loss function can be written as:

l =
∣∣∣y( j)
− f (x( j),α)

∣∣∣ (2.1.3.6)

The loss function (l), the hypothesis space (H), and the probabil-
ity error measure PXY allow to formulate the expected risk function
R[h]28: 28 In some literature the expected risk is

also called actual risk [Burges, 1998].

R[h] =
∫
XY

l( f (x,α), y)dPXY (2.1.3.7)

For every hypothesis (h), there exist a corresponding prediction
error29 R[h]. The learning task corresponds to find the optimal hy- 29 In some literature the prediction error

is also generalization error.pothesis h∗ characterized by finding the infimum30 of the expected
30 infimum is also called the greatest
lower bound.risk function [Vapnik, 2010a]:

h∗ = arg inf
h∈H

R[h] (2.1.3.8)

Since the underlying probability PXY is unknown, the expected
risk (R[h]) for an hypothesis (h) can not be computed. A possible
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approach to infer the probability PXY would be to estimate the con-
ditional probability PXY(y|x) from the training set. This estimation
can be hard when the quantity of features is high. The training sam-
ples required to estimate PXY(y|x) grows exponentially with the
amount of features.

Statistical learning theory uses a different methodology to derive
the optimal hypothesis h∗. Instead of sampling the probability dis-
tribution PXY, the optimal hypothesis is derived from the training
data set. The condition that is used to select the optimal hypothesis
is called an induction principle [Vapnik, 2010a].

Empirical risk minimization induction principle The empirical risk
function Remp[h] can be formulated based on the mean error on
the predicted training samples. The loss function l, sample size
m, and hypothesis spaceH allow us to formulate the empirical
risk [Vapnik, 2010a]:

Remp[h] =
1
m

m∑
j=1

l( f (x( j)), y( j)) (2.1.3.9)

The empirical risk induction principle is a very limited approach
for finding the optimal hypothesis (h∗). This induction principle
leads to an ill-posed mathematical problem, poor generalization
conditions (no avoidance of under- and overfitting), etc. Therefore
new induction principle will be introduced into the next paragraphs.

Induction principle based on regularization theory The regularization
theory aids to formulate the regularized risk function based on the
empirical risk, a term that penalizes high complexity of the hypothe-
sis spaceH (Ω(h)), and empirical training error (λ):

Rreg[h] = Remp[h] + λΩ(h) (2.1.3.10)

Structural risk minimization induction principle The complexity of
the hypothesis space (H) is a very important measure for obtaining
the risk function for a machine learning algorithm. The hypothesis
space are all combination of decision functions, e.g. binary classi-
fier, rank classifier, regression, etc.. A potential way to measure the
complexity of the hypothesis space is to derive all possible combi-
nations of output assignments that the decision functions should
predict correctly. Obviously, this is not evident to formulate theo-
retically. Therefore, we will introduce one of the most often used
approximations: Vapnik Chervonenkis entropy and Vapnik Chervonenkis
dimension [Vapnik, 2010a].

The random VC entropy of an hypothesis space is formulated as:

HVC = log2 NH (x(1), x(2), . . . , x(m)) (2.1.3.11)

The logarithm of the maximum of the random VC entropy is called
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the growth function:

GH (m) = log2

 max
(x(1),x(2),...,x(m))

NH (x(1), x(2), . . . , x(n))

 (2.1.3.12)

GH (m) = m ln 2 (2.1.3.13)

GH (m) 6 VCdim ln
m

VCdim
+ 1 (2.1.3.14)

The Vapnik Chervonenkis dimension (VC dimension; VCdim) are
the largest number of points that can be predicted by hypothesis h of
hypothesis spaceH .

Risk bound In this case, the loss can only take values 0 or 1. We
choose a η such that 0 6 η 6 1. The following bound holds for losses
with a probability of 1− η:

R(α) 6 Remph(α) +

√√√√VCdim
(
log 2l

VCdim
+ 1

)
− log η

4

l

 (2.1.3.15)

VCdim is a non-negative integer called the Vapnik Chervonenkis
(VC) dimension.

VC confidence is the second term at the right side.

There are three major consequences of the risk bound:

1. Independent on P(x, y): it assumes only that the training set and
the test data are independent according to P(x, y).

2. It is often not possible to compute R(α).

3. If VCdim is known, it is possible to compute the left hand side.

VC dimension VC dimension is a property of a set of functions:{
f (α)

}
. We will only take into account the two-class pattern recog-

nition case ( f (x,α) ∈ {−1, 1}). If m observed data samples can be
labeled in 2m possible ways and a set of parameters of

{
f (α)

}
can

be found that retrieves the exact labels, we say that this set of data
points is shattered by that set of functions.

The VC dimension of a set of functions
{
f (α)

}
is defined as the

maximum number of data points that can be shattered by
{
f (α)

}
.

From equation 2.1.3.15 on page 57, the risk bound where VC di-
mension is represented by VCdim, than there exists at least one set
of VCdim points that can be shattered, but not every set of VCdim

observed data point can be shattered.

Optimization theory Constructing a SVM machine learning model
is based on optimization theory. In the following section primal- and
dual optimization problem will be illustrated in the context of SVMs.
Such an optimization problem is characterized by a quadratic objec-
tive function ( f (x)) and linear constraints.
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In practice, these optimization problems are solved with the La-
grangian formulation. The following paragraphs illustrate the math-
ematical computations required to solve the optimization problems
for support vector machines.

2.1.3.2 Lagrangian formulation

In order to solve the SVM inequality and maximize the margin of the
separating hyperplane (see equation 2.1.3.27 on page 61) Lagrange
multipliers are used. There are two main advantages for applying
Langrangian formulation to solve the constrained optimization
problem: (1) the Lagrange multipliers can take constraints into ac-
count and (2) the training data will only appear in dot products
between vectors.

This type of optimization problem retrieves the stationary points31 31 A stationary point is a point where
the derivative of a function is zero.of a function with several variables that are under one or more con-

straints [Bishop, 2006d].

Maximize : f (x1, x2)

Subject to : g(x1, x2) = 0

The optimization problem can be solved by finding a function
of x1 to express x2 in the form of x2 = h(x1). This can be substi-
tuted into f (x1, x2) which leads to f (x1, h(x1)). The differentiation of
f (x1, h(x1)) will provide the stationary value for x1, which can pro-
vide you the corresponding stationary value of x2 (x2 = h(x1)). The
biggest drawback of this approach is the definition of x2 = h(x1).

A more elegant solution of this problem is by the introduction of
Lagrange multipliers.

Lagrange multipliers The Lagrange formula for solving a optimiza-
tion problem:

L ≡ f (x, y) + λ (g(x, y) − c) (2.1.3.16)

f (x, y) function that needs to be maximized.

g(x, y) = c constraint of this optimization problem.

λ are the Lagrange multipliers. They are the stationary points for the
Lagrange function (λ can be positive or negative).

Geometrical interpretation A D-dimensional variable x with compo-
nents (x1, . . . , xD) and a constraint equation (g(x) = 0) represents a
D-1-dimensional surface in x-space illustrated by figure 2.9.

Figure 2.9: Geometrical interpretation
of Lagrangian multiplier.

At any point of the constraint surface (g(x) = 0), the gradient
of the constraint function (∆g(x)) will be orthogonal on the surface.
This can be formulated by the application of a Taylor series on the
point x + ε:

g(x + ε) ' g(x) + εT∆g(x) (2.1.3.17)
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Since x and x + ε are both on the constraint surface, we can write
g(x) = g(x + ε) and εT∆g(x) ' 0. In the limit:

lim
‖ε‖→0

εT∆g(x) = 0 (2.1.3.18)

Hence ε is parallel to the constraint surface and the vector ∆g is a
normal to the surface.

The aim of this approach is to find the point on the surface of
the constraint so that function f (x) is maximized. Such a point has
the property that the vector ∆ f (x) is orthogonal to the constraint
surface. ∆ f and ∆g are parallel (or anti-parallel) vectors. There
exists a parameter λ such that the following equation can be written:

∆ f + λ∆g = 0 (2.1.3.19)

The λ parameter is called the Lagrangian multiplier, they can be
positive or negative. In analogy with equation 2.1.3.16, the La-
grangian formula can be written:

L(x,λ) ≡ f (x) + λg(x) (2.1.3.20)

The constrained stationary condition (see equation 2.1.3.19) can
be derived because ∆xL = 0. The condition ∂L

∂λ = 0 leads to the
constraint condition g(x) = 0.

Finding the maxima of a function f (x) subject to constraint
g(x) = 0 can be done by solving formula 2.1.3.20. This allows us
to compute the stationary points of L(x,λ).

The problem of finding a maximum of a function can also occur
with inequality constraints (g(x) > 0). Based on the constraint
inequality, there are two possible solutions:

1. Constraint is inactive: the stationary point is situated in the re-
gion: g(x) > 0. The function g(x) has no influence and the station-
ary condition is ∆ f (x) = 0. This corresponds to equation 2.1.3.20,
but this time with λ = 0.

2. Constraint is active: the stationary point is situated on the bound-
ary: g(x) = 0. This is equal to the equality constraint scenario
(λ , 0). The sign of the Lagrangian multiplier will be cru-
cial, since the function ( f (x)) will be its gradient (∆ f (x)); it is
oriented away from the region g(x) > 0. So we can state that
∆ f (x) = −λ∆g(x) for λ > 0.

In both cases, the product λg(x) is equal to zero. We can now
state the following conditions for finding the maximum subject to
the inequality constraints:

g(x) > 0 (2.1.3.21)

λ > 0 (2.1.3.22)

λg(x) = 0 (2.1.3.23)

These conditions are called the Karush-Kuhn-Tucker (KKT) comple-
mentarity conditions.
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Primal and dual problems in quadratic programming

Primal problem A primal problem in quadratic programming can be
written as [Press et al., 2007]:

minimize: f (w)

subject to: g j(w) 6 0
hk(w) = 0

f (w) quadratic function in w

gi(w) 6 0 inequality constraints in w

hk(w) = 0 equality constraints in w

A Lagrangian that incorporates a quadratic form with all con-
straints can be written as:

Lp ≡
1
2

f (w) +
∑

j

α jg j(w) +
∑

k

βkhk(w) (2.1.3.24)

Dual problem Every primal problem can be reformulated into a
dual problem, which can be used as an alternative of solving the pri-
mal problem. The transformation from a primal to a dual problem
starts with composing the subset of conditions for an extremum:

∂Lp

∂wi
= 0,

∂Lp

∂βk
= 0 (2.1.3.25)

This resulting equation will be used to substitute w and Lp by α
and β, which leads to the dual for LD:

maximize: LD

subject to: ∀ j : αi > 0

If x̂ is the optimal solution of the primal problem, and α̂ and β̂ the
optimal solutions of the dual problem, we can write:

f (ŵ) = Lα̂,β̂

∀ j α̂ jg j(ŵ) = 0

This last condition is called the Karush-Kuhn-Tucker (KKT) com-
plementarity condition; it states that at least one α̂ j and g j(ŵ) must be
zero for each j.

This Lagrangian theory will be used to formulate the optimiza-
tion problem for support vector machines in different cases: linear
separable case, linear non-separable case, and nonlinear case.

2.1.3.3 Support vector machines in the linear separable case

Support vector machines in the linear separable case are the most
trackable to compute. They illustrate very well how optimization
theory can be applied for deriving the separating hyperplane. First,
we define a set of symbols that will be important for the following
paragraphs.
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training data
{
xi, yi

}
, i = 1, . . . , m, yi ∈ {−1, 1} , xi ∈ Rd

separating hyperplane with highest margin w.x + b = 0 : the equation
of a straight line.

• w: normal to the hyperplane.

• |b|
‖w‖ : orthogonal distance from the data point to the linear hy-
perplane. ‖w‖ is the Euclidean norm of w.

• d− and d+: shortest distance from the separating hyperplane to
the closest positive or negative data point.

xi.w + b > +1 for yi = +1;
xi.w + b 6 −1 for yi = −1;

(2.1.3.26)

It can be combined into one set of inequalities:

yi(xi + b) − 1 > 0 (2.1.3.27)

Figure 2.10: Support vector machine
(SVM) in the linear separable case.

The data points with f (x) = +/ − 1 are those points that specify
the maximum margin for the separating hyperplanes, they are called
support vectors [Press et al., 2007]:

H1 : xi.w + b = 1 (2.1.3.28)

H2 : xi.w + b = −1 (2.1.3.29)

H1 : orthogonal distance from the origin can be written as |1−b|
‖w‖

H2 : orthogonal distance from the origin can be written as |−1−b|
‖w‖

d+ = d− = 1
‖w‖

2
‖w‖ : the margin between both hyperplanes.
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H1 and H2 are parallel. The maximum margin will be computed
by finding the maxima of ‖w‖−1, which is equivalent of finding the
minima of ‖w2

‖ [Bishop, 2006d]. We can formulate a optimization
problem with a quadratic programme:

minimize: 1
2‖w‖

2

subject to: yi (xi.w + b)

Lagrangian formulation for SVM in the linear separable case This op-
timization problem can be transformed in a Lagrangian formula-
tion [Burges, 1998], and will illustrate how this optimization prob-
lem can be computed. The same procedures as in the previous para-
graphs will be used. First, the primal formulation will be composed,
which can be reformulated into a dual form. This dual form has
often easier constraints and leads to a simpler computation of the
optimization problem.

Primal Lagrangian formulation

LP ≡
1
2
‖w‖2 −

m∑
i=1

αiyi (xi.w + b) +
m∑

i=1

αi (2.1.3.30)

The subset of conditions for extrema:

∂Lp

∂wi
= w−

∑
i

αiyixi = 0⇒ ŵ =
∑

i

α̂iyixi (2.1.3.31)

∂Lp

∂b
=

∑
i

αiyi = 0 (2.1.3.32)

Karush-Kuhn-Tucker (KKT) complementarity condition These condi-
tions are the general optionality conditions. They follow from strong
duality and complementarity, and play a central role in the theory and
practice of constrained optimization [Press et al., 2007].

For the primal problem, the KKT conditions can be stated [Burges,
1998]:

∂Lp

∂wv
= wv −

∑
i

αiyixiv = 0; v = 1, . . . , d (2.1.3.33)

∂Lp

∂b
= −

∑
i

αiyi = 0 (2.1.3.34)

yi(xi.w + b) − 1 > 0; i = 1, . . . , m (2.1.3.35)

∀i : αi > 0 (2.1.3.36)

∀i : αi(yi(w.xi + b)) = 0 (2.1.3.37)

(2.1.3.38)

Dual Lagrangian formulation The substitution of the extrema condi-
tions into the primal Lagrangian formulation allow us to formulate
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the dual Lagrangian formulation:

Maximize: LD =
∑

j α j −
1
2
∑

i
∑

j αiα jyiy jxix j

Subject to: 0 6 αi∑
i αiyi = 0

(2.1.3.39)

In order to solve the SVM problem, we need to solve the KKT
conditions. The solution of this optimization problem is not ex-
pressed in w and b, but are reformulated in dual form. This dual
form reformulates a solution for the classification function. This
solution is reduced to the calculation of the Lagrangian multipliers.

Only the data samples of our training set that have Lagrangian
multipliers not equal to zero (αi , 0) are required to solve the opti-
mization problem. These data points are the so-called support vectors.

The definition of the dual optimization problem is not directly de-
pendent on the training data set, but on their mutual inner products
(xix j).

2.1.3.4 Support vector machines in the linear non-separable case

In real world machine learning problems, it seldom occurs that the
data can be separated linearly. In the case of linear non-separable
data, an alternative formulation is needed to classify the data. It is
necessary to weaken the constraints of the linear separable SVM
(see equation 2.1.3.40 on page 63). Therefore, slack variables (ξi; i =
1, . . . , m) can be introduced into the constraints:

xi.w + b > +1− ξi for yi = +1;
xi.w + b 6 −1 + ξi for yi = −1;
∀i : ξi > 0

(2.1.3.40)

∑
i ξi : is the upper bound on the number of training errors.

The natural way to assign the extra cost of errors is to change the

objective function to be minimized from ‖w‖2
2 to ‖w‖

2

2 + C (
∑

i ξi)
k.

C : end user-defined parameter to configure the penalty to errors. A
higher C corresponds to a higher penalty to errors.

This is a convex programming problem for any integer k. The
2-norm soft margin SVM (k = 2) and 2-norm soft margin SVM
(k = 1) are quadratic programming problems and can be computed
in polynomial time [Press et al., 2007].

minimize: ‖w‖2
2 + C

(∑m
i ξi

)
subject to: xi.w + b > 1− ξn

ξi > 0

Slack variables The slack variables (ξi; i = 1, . . . , l) have specific
values corresponding the data training point [Vapnik, 2010a]:
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Figure 2.11: Support vector machine
(SVM) in the non-separable case.

ξl = 0 data points are on the correct margin or in the correct side for
classification.

0 < ξl 6 1 data points lie inside the margin, but on the correct side
of the decision boundary.

ξl > 1 data points lie on the wrong side of the decision boundary
and are misclassified.

Primal Lagrangian formulation

LP =
1
2
‖w‖2 + C

∑
i

ξi −
∑

i

αi [yi(xi.w + b) − 1 + ξi] −
∑

i

µiξi

(2.1.3.41)

Karush-Kuhn-Tucker (KKT) complementarity conditions The new
Lagrange multipliers (µi) are introduced to enforce positivity of the
ξi. The corresponding KKT conditions are given by:

∂LP

∂wv
= wv −

∑
i

αiyixiv = 0 (2.1.3.42)

∂LP

∂b
= −

∑
i

αiyi = 0 (2.1.3.43)

∂LP

∂ξi
= C− αi − µi = 0 (2.1.3.44)

yi(xi.w + b) − 1 + ξi > 0 (2.1.3.45)

ξi > 0 (2.1.3.46)

αi > 0 (2.1.3.47)

µi > 0 (2.1.3.48)

αi
{
yi(xi.w + b) − 1 + ξi

}
= 0 (2.1.3.49)

µiξi = 0 (2.1.3.50)
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Dual Lagrangian formulation

Maximize: LD ≡
∑

i αi −
1
2
∑

i
∑

j αiα jyiy jxi.x j

Subject to: 0 6 αi 6 C∑
i αiyi = 0

(2.1.3.51)

The dual form for the linear non-separable- and the separable
case have similar formulations. Only the Lagrangian multipliers
(αi) are constrained by user-defined regularization factor C in the
non-separable case. The C parameter is trade-off between the margin
width and training error. The above formulation is referred as C-
SVM formulation [Burges, 1998, Boser et al., 1992].

2.1.3.5 Support vector machines in non-linear case

Many real world applications for SVMs are demanding for a non-
linear decision function. The dual optimization problem of SVMs in
the linear separable- and non-separable case depend on the mutual
inner products. This property is used together with the reproducing
kernel Hilbert space (RKHS) theory to introduce non-linearity for SVM
problems [Vapnik, 2010a].

In order to make a non-linear SVM, we need to map our training
data into the Euclidean space (H). Let’s call this mapping Φ:

Φ : Rd
→H (2.1.3.52)

This mapping is performed on the mutual inner product of the
dual Lagrangian formulation. The inner product kernel trick allows
to higher the dimensional space, but the computational complex-
ity does not increase drastically and the curse of dimensionality is
avoided [M. A. Aizerman and Rozonoér, 1964, Scholköpf, 2001].
The dot products xi.x j inH is transformed after the mapping:
Φ(xi).Φ(xi). The kernel function can be formulated as:

K(xi.x j) = Φ(xi).Φ(xi) (2.1.3.53)

When feature vectors are mapped from a lower-dimensional
space to a higher-dimensional embedding space, non-linear sepa-
ration surfaces can become well approximated by linear surfaces.
In practice, very high dimensional embedded spaces are used.
They enter the SVM calculation only implicitly, through the kernel
trick [Press et al., 2007].

The dual Lagrangian for SVM in the non-linear case can be for-
mulated as:

Maximize: LD ≡
∑

i αi −
1
2
∑

i
∑

j αiα jyiy jK
(
xi, x j

)
Subject to: 0 6 αi 6 C∑

i αiyi = 0
(2.1.3.54)

Reproducing kernel functions There is a set of kernel functions that
are applied for SVM learning:
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Radial basis function (RBF) kernel

K(x, y) = exp
(
−γ‖x− y‖2

)
(2.1.3.55)

Polynomial kernel

K(x, y) = (〈x, y〉+ 1)p (2.1.3.56)

Sigmoidal kernel

K(x, y) = tanh (〈x, y〉 − θ) (2.1.3.57)

ν-SVM formulation Schölkopf et al. [Scholköpf et al., 2000] pro-
posed an alternative for the C-SVM formulation explained in the
previous sections: the ν-SVM formulation. Its main contribution is
to explicitly formulate the margin information for the SVM [Chen
et al., 2005].

H1 : xi.w + b = ρ (2.1.3.58)

H2 : xi.w + b = −ρ (2.1.3.59)

The loss function for the ν-SVM formulation is written as:

Lν(x, y)) =
{

0 if |y− f (x)| > ρ
ρ− y f (x) otherwise

(2.1.3.60)

The optimization problem for the soft margin classifier is formu-
lated as [Press et al., 2007]:

minimize: ‖w‖2
2 − νρ+

∑m
i ξi

subject to: xi.w + b > ρ− ξi

ξi > 0
ρ > 0

Primal Lagrangian formulation

minimize: Lp = ‖w‖2
2 − νρ+

1
m

∑m
i ξi − γρ−

∑m
i αi [yi(xi.w + b) − ρ+ ξi] −

∑m
i µiξi

subject to: xi.w + b > ρ− ξi

ξi > 0
ρ > 0
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Karush-Kuhn-Tucker (KKT) complementarity conditions

∂LP

∂wv
= wv −

m∑
i

αiyixiv = 0 (2.1.3.61)

∂LP

∂b
= −

m∑
i

αiyi = 0 (2.1.3.62)

∂LP

∂ξi
= −ρ− ν− αi = 0 (2.1.3.63)

yi(xi.w + b) − ρ+ ξi > 0 (2.1.3.64)

ξi > 0 (2.1.3.65)

αi > 0 (2.1.3.66)

µi > 0 (2.1.3.67)

αi [yi(xi.w + b) − ρ+ ξi] = 0 (2.1.3.68)

µiξi = 0 (2.1.3.69)

ργ = 0 (2.1.3.70)

Dual Lagrangian formulation The dual Lagrangian for νSVM formu-
lation in the non-linear case can be formulated as:

Maximize: LD ≡
∑

i αi −
1
2
∑

i
∑

j αiα jyiy jK
(
xi, x j

)
Subject to: 0 6 αi 6

1
m∑

i αiyi = 0∑
i αi > ν

(2.1.3.71)

In the following sections, the SVM learning theory for soft margin
classifiers will be reformulated for regression problems.

2.1.3.6 SVM for regression

In SVM regression, the input xi is mapped into a n-dimensional
feature space using a fixed (non-linear) mapping. In this feature
space a linear model is constructed. The linear model can be written
as:

f (x,ω) =
n∑

j=1

ω jg j(x) + b (2.1.3.72)

gi(x) set of non-linear transformations

b bias term

Regression estimates are computed by minimization of the empir-
ical risk on the training data. SVM regression uses a new type of loss
function, called ε-insensitive loss function introduced by Vapnik [Vap-
nik, 2010a].

Lε(y, f (x,ω)) =
{

0 if |y− f (x,ω)| 6 ε
|y− f (x,ω)| − ε otherwise

(2.1.3.73)
Figure 2.12: The soft margin loss for
SVM regression [Smola and Schölkopf,
2004].
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The empirical risk (Remp) for SVM regression is formulated as:

Remp(ω) =
1
n

n∑
i=1

Lε(yi, f (xi,ω)) (2.1.3.74)

The purpose of ε-SV regression is to find a function f (x) with
the maximum deviation (ε) for the predicted output from all the
samples of the training data. An error is only important if it becomes
bigger as the deviation ε

training data : D =
{
xi, yi

}
=

{
(x1, y1), (x2, y2), . . . , (xl, yl)

}
⊂ χ×R

space of input features : χ

Analogously with the SVM margin classifier formulations, we
start from a linear the regression function ( f (x)):

w ∈ χ, b ∈ R : f (x) = 〈w, x〉+ b (2.1.3.75)

〈., .〉 denotes a dot product in χ. This convex optimization prob-
lem can be written as:

minimize : 1
2‖w‖

2

subject to : yi − 〈w, xi〉 − b 6 ε
〈w, xi〉+ b− yi 6 ε

(2.1.3.76)

Necessary in order to deal with the non-separable data, we intro-
duce a soft margin loss function with slack variables (ξi; i = 1, . . . , m;
see section 2.1.3.4 on page 63). The slack variables weaken the con-
straints of the optimization problem (primal problem):

minimize : 1
2‖w‖

2 + C
∑l

i=1 ξi + ξ∗i
subject to : yi − 〈w, xi〉 − b 6 ε+ ξi

〈w, xi〉+ b− yi 6 ε+ ξ∗i
ξi, ξ∗i > 0

(2.1.3.77)

The regularization parameter (C) determines the trade-off be-
tween flatness of f and the amount of tolerated deviations (ε). This
tolerated deviation is formulated by the ε-insensitive loss function.
This convex optimization problem will be solved with the standard
dualization method utilizing Lagrange multiplier as described in
previous sections.

Lagrangian formulation for SVM regression

Primal Lagrangian formulation

LP ≡
1
2
‖w‖2 +C

m∑
i=1

ξi + ξi∗−
m∑

i=1

ηiξi + η∗iξ
∗

i −

m∑
i=1

αi (ε+ ξi − yi + 〈w, xi〉+ b)−
m∑

i=1

α∗i (ε+ ξi + yi − 〈w, xi〉 − b)

(2.1.3.78)
The primal Lagrangian formulation contains Lagrangian multipli-

ers: αi, α∗i , ηi and η∗i .



choice of methodology 69

Karush-Kuhn-Tucker (KKT) complementarity conditions

∂LP

∂w
= w−

∑
i

(
α∗i − αi

)
xi = 0 (2.1.3.79)

∂LP

∂b
= −

∑
i

α∗i − αi = 0 (2.1.3.80)

∂LP

∂ξi
= C− αi − ηi = 0 (2.1.3.81)

∂LP

∂ξ∗i
= C− α∗i − η

∗

i = 0 (2.1.3.82)

∂LP

∂ηi
=

m∑
i=1

ξi = 0 (2.1.3.83)

∂LP

∂η∗i
=

m∑
i=1

ξ∗i = 0 (2.1.3.84)

The dual variables, ηi and η∗i , are eliminated through the partial

derivation( ∂LP

∂ξ
(∗)
i

) and can be reformulated as:

η
(∗)
i = C− α(∗)i (2.1.3.85)

Several conclusions can be drawn from the KKT conditions:

1. Only samples (xi, yi) with corresponding α(∗)i = C are situated
out the ε-insensitive tube.

2. αiα
∗

i = 0, there is no set of dual variables αi,α∗i which are simulta-
neously nonzero.

From these conclusions, the following can be formulated:

ε− yi + 〈w, xi〉+ b > 0 ξ1 = 0 if αi < C
ε− yi + 〈w, xi〉+ b 6 0 if αi > 0

(2.1.3.86)

Dual Lagrangian formulation

maximize 1
2
∑l

i, j=1

(
αi − α

∗

i

) (
α j − α

∗

j

)
〈xi, x j〉 − ε

∑l
i=1 αi + α∗i +

∑l
i=1 αi − α

∗

i

subject to
∑l

i=1 αi − α
∗

i = 0
αi,α∗i ∈ [0, C]

(2.1.3.87)
The partial derivative ∂LP

∂w can be reformulates as:

w =
l∑

i=1

(
αi −

′ alpha∗i
)

xi (2.1.3.88)

f (x) =
l∑

i=1

(
αi − α

∗

i

)
〈xi, x〉+ b (2.1.3.89)

The function f (x) is only dependent on the mutual inner product
of samples in the data set, which again allows us to reformulate the
linear SVR into a non-linear SVR [Basak et al., 2007].
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The parameter b can be derived from the KKT conditions:

αi (ε+ ξi − yi + 〈w, xi〉+ b) = 0 (2.1.3.90)

α∗i
(
ε+ ξ∗i + yi − 〈w, xi〉 − b

)
= 0 (2.1.3.91)

(C− αi) ξi = 0 (2.1.3.92)(
C− α∗i

)
ξ∗i = 0 (2.1.3.93)

2.1.3.7 Nonlinear SVM regression

In order to perform nonlinear SVM regression, a mapping is re-
quired in analogy with SVM formulations for classification (see
section 2.1.3.5 on page 65). This can be achieved by preprocessing
the training patterns into a feature space F:

Φ : ξ→ F (2.1.3.94)

After this preprocessing is executed, the standard SV algorithm
can be applied. One needs to be careful with the application, be-
cause this can become computationally infeasible. In order to over-
come this limitation, kernels can bring a cheaper way of solving the
problem.

Mapping with kernels The SV algorithm (see equation 2.1.3.87 on
page 69) only depends dot products between patterns xi. Therefore
if we can state k(x, x

′

) = 〈Φ(x), Φ(x
′

)〉, than we do not need to
define Φ explicitly. The SV optimization problem can be restated:

maximize −
1
2
∑l

i, j=1

(
αi − α

∗

i

) (
α j − α

∗

j

)
k(xi, x j) − ε

∑l
i=1

(
αi + α∗i

)
+

∑l
i=1 yi

(
αi − α

∗

i

)
subject to

∑l
i=1

(
αi − α

∗

i

)
= 0

αi,α∗i ∈ [0, C]
(2.1.3.95)

We can write w and f (x) as:

w =
l∑

i=1

(
αi − α

∗

i

)
Φ(xi) (2.1.3.96)

f (x) =
l∑

i=1

(
αi − α

∗

i

)
k(xi, x2) + b (2.1.3.97)

2.1.3.8 Other SVM formulations

There are still SVM formulations that will not be handled within
the course of this text. For the soft margin classifiers, there exist a
µ-SVM formulation [Crisp and Burges, 1999] that will not be dis-
cussed. Also, the ν-SVM formulation for regression [Scholköpf et al.,
2000] will not be discussed here32,33.

32 SVM packages:
The following packages supports differ-
ent SVM formulations for classification
and regression:

• libsvm [Chang and Lin, 2011].

• tinysvm [Kudoh, 2000].

33 R package:
The following R package supports
different SVM formulations for classifi-
cation and regression:

• e1071 [Meyer et al., 2012]: R inter-
face to the libsvm package.

2.1.3.9 Feature selection for SVM regression

Feature selection is a technique of selecting optimal feature set
among original features set by removing irrelevant or redundant



choice of methodology 71

features. The major advantages of feature selection are, e.g. increase
systems interpretability, improve generalization performance, mini-
mize the overfitting for some learning algorithms, etc.

There are two main types of feature selection in SVM: (1) filter
methods: independent of the underlying machine learning algo-
rithms and (2) wrapper methods: dependent of the underlying ma-
chine learning algorithms. The wrapper method is preferable in
many applications, but can lead to high computational load.

Originally, feature selection was meant for the classification prob-
lem. For the regression problem, feature selection can suffer from
important ordinal information loss.

F score The F score measures the discrimination between two sets
of real numbers. The higher the F score, the easier it is to discrim-
inate between the positive and negative instances of the training
set [Chen and Lin, 2006].

F(i) ≡

(
x̄+i − x̄i

)2
+

(
x̄−i − x̄i

)2

1
n+−1

∑n+
k=1

(
x+k,i − x̄+i

)2
+ 1

n−−1
∑n−

k=1

(
x−k,i − x̄−i

)2 (2.1.3.98)

number of positive and negative instances of the training set n− and n+.

average value of the complete training set, the negative and positive instances of the feature i
x̄i, x̄−i and x̄+i .

feature i of the kth negative/positive instance x−k,i and x+k,i.

The numerator indicates the discrimination between positive
and negative sets, and the denominator indicates the discrimination
within each of the two sets.

After the SVM formulations, survival analysis will be described.

2.1.4 Survival analysis

Survival analysis is applied to describe and quantify time-to-event
data [Stevenson, 2009]. This group of statistical approaches focuses
on the distribution of survival time (T). It has been successfully
used for a variety of purposes, e.g. overall survival (OS) in a clinical
trail [Collett, 2004b], duration analysis in sociology and economics
[van den Berg, 2001], reliability analysis in engineering [Henley and
Kumamoto, 1999], etc.

First, we will introduce the survival analysis related terminology.
Followed by the computational methodologies used for survival
analysis, i.e. non-parametric- and semi-parametric approaches.
Finally, feature selection techniques and performance measures for
survival analysis will be discussed.

2.1.4.1 Terminology

Survival analysis and its terminology is derived from its proto-
typical event of death. There are two fundamental functions in a
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survival analysis: (1) survival function (S(t)) and (2) hazard function
(h(t)) [Collett, 2004b].

Survival function (S(t)) The time-to-event (t > 0) can be seen as
a sample of a variable T with an underlying probability density
function ( f (t)). The distribution function of T can be formulated as:

F(t) = Pr(T < t) (2.1.4.1)

f (t) =
F(t)
dt

(2.1.4.2)

F(t) =
∫ t

0
f (u)du (2.1.4.3)

The distribution function of T represents the probability that
the survival time is less than some time value t. The proportion of
occurrences that the event has happened as a function of t is called
the failure function (cumulative distribution function) (F(t)).

Survival function (S(t)) The survival function (S(t)) is defined as
probability that the survival time is greater than or equal to t. The
survival function is the complement of the cumulative distribution
function (F(t)):

S(t) = Pr(T > t) = 1− F(t) (2.1.4.4)

The area under the curve (AUC) to the right of t is proportional
to the probability the event of interest has not occurred. The sur-
vival curve is determined from the instantaneous failure rate curve.
The survival function represents the probability that an individual
survives for time t.

S(t) = exp(−H(t)) (2.1.4.5)

S(t) = S0(t)eβ1xi1+β2xi2+...+βkxk1 (2.1.4.6)

S0(t) = exp (−H0(t)) (2.1.4.7)

Instantaneous hazard (h(t)) Another representation of the distribu-
tion of survival times is the hazard function, also often called risk. It is
the conditional probability that a random individual will die at time
t + δt given that the individual has survived until time t. Instanta-
neous hazard (h(t)), or also called conditional failure rate, force of
mortality, risk of death, etc.

h(t) = lim
∆t→0

Pr (t 6 T < t + ∆t|T > t) > t
∆t

(2.1.4.8)

h(t) =
f (t)

1− F(t)
(2.1.4.9)

h(t) =
f (t)
S(t)

(2.1.4.10)

h(t) = −
d
dt
(ln S(t)) (2.1.4.11)
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Cumulative hazard (H(t)), also called integrated hazard, equal
the area under the instantaneous hazard until time t. The relation-
ship between cumulative hazard and survival is as follows:

H(t) =
∫ t

0
h(u)du (2.1.4.12)

H(t) = − ln S(t) (2.1.4.13)

S(t) = exp (−H(t)) (2.1.4.14)

The hazard function, or sometimes the logarithmic hazard func-
tion, can be fitted into a standard distribution, e.g., if the hazard
function is constant (h(t) = α) corresponds with a exponential
distribution of times (see table 2.16).

Table 2.16: Joint probability distribu-
tion table of our small example.

Hazard function Density function
h(α) Exponential distribution

log h(t) = α+ pt Gompertz distribution
log h(t) = α+ p log t Weibull distributionCensoring Survival analysis implies a follow-up period in order

to collect the data. The start point and end point of this follow-up
period could lead to incomplete information, this is called censoring.
Censoring can occur when the event did not occur in the course of
the study, when the person was lost during follow-up, etc. The data
in a survival analysis is of the form:

d( j) =
{
T( j), δ( j), x( j)

i

}
(2.1.4.15)

Survival analysis data is a collection of the failure time or censoring
time (T( j)), the censoring indicator (δ( j); δ = 0 censored and δ = 1 failure

time), and the set of features x( j)
i =

{
x( j)

1 , x( j)
2 , . . . , x( j)

n

}
.

Censoring appears in two basic types [Kalbfleisch and Pren-
tice, 2002, Kleinbaum and Klein, 2005]: (1) type I censoring and (2)
type II censoring. Type I censoring, also called time censoring is not
event-driven, meaning that within the pre-defined time frame of
observation the quantity of failures is random. New items can enter
the study at random, therefore this type of censoring appears often
in medical research. Type II censoring, or order statistic censoring,
is event driven. Hereby, a survival analysis will continue until a
predefined quantity of failures occurred, e.g. perform the survival
analysis for 5, 10, and 15 failures under different temperature 20 °C,
25 °C, and 30 °C.

During this PhD we modelled data with type I censoring (see
chapter 3 on page 3). There are three forms of type I censoring
[van den Berg, 2001, Collett, 2004b]:

1. Right censoring: if the event of interest occurs after the recorded
follow-up period. For example, a patient is still alive after the
period of observation.

2. Left censoring: if the event of interest occurs before the recorded
follow-up period. For example, when the initial risk at the case is
unknown.

3. Interval censoring: when left and right censoring occurs together.
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Kalbfleisch and Pentice [Kalbfleisch and Prentice, 2002] intro-
duced two important characteristics of censored data in statistical
modelling, censoring is (1) independent and (2) non-informative.

The censoring is independent, if the hazard (h(t)) at any given
time (t) would be the same with or without censoring. Whereas,
non-informative means that the model parameters (θ) are not de-
pending on censoring time (T( j)(δ( j) = 0)) [Kalbfleisch and Prentice,
2002].

2.1.4.2 Non-parametric approaches

After collecting the time-to-event data, we would like to construct
a model for that data. The first approach is to visualize the data
by the survival curve. In this way we can identify the appropriate
distribution for the data.

There are three non-parametric techniques for survival analysis:
(1) Life table method, (2) Kaplan-Meier, and (3) Nelson-Aalen. In the
next sections we will illustrate Kaplan-Meier and Nelson-Aalen. The
life table will not be explained during the course of this text.

Kaplan-Meier method The Kaplan-Meier survival estimator is based
upon individual survival times and assumes that the censoring is
independent of survival time. It can be formulated as, for 0 6 t 6 t+:

Ŝ(t) =
∏

j;t( j)6t

r( j)
− d( j)

r( j)
(2.1.4.16)

The total set of collected failure times (t( j)) in the course of a
study is ordered. Each failure time has a corresponding amount
of failures (d( j)) and the number of individuals that are at risk (r( j))
[Collett, 2004b]. This set of measures allow us to plot survival curves
and make estimates on the survival probability at a given time.
Often these curves are plotted for different samples of the data,
e.g. different treatment regimen for a patient, different stages of a
tumour, etc.

A nonparametric hypothesis test, that is often used complemen-
tary to Kaplan-Meier curves is the log-rank test [Kleinbaum and
Klein, 2005]. This test will provide a p-value that indicates how dif-
ferent two samples are, e.g. a clinical trial can be tested if treatment
regimen 1 is better as treatment regimen 234.

34 R package:
The survival R packages provides
Kaplan-Meier estimate and log-rank
test:

• survfit: Kaplan-Meier and
Flemington-Harrington estimate.

• survdiff: log-rank test.

Nelson-Aalen method The Nelson-Aalen method estimates cumula-
tive hazard at time t [Collett, 2004b, Stevenson, 2009]:

Ĥ(t) =
∑

j:t( j)6t

d( j)

r( j)
(2.1.4.17)

The Flemington-Harrington estimate of survival can be calculated
using the Nelson-Aalen estimator (see equation 2.1.4.14 on page
73) [Collett, 2004b].
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Figure 2.13: A survival function for
the progression-free survival (PFS)
for patients under different treatment
regimen.

2.1.4.3 Semi-parametric models

Cox proportional hazards regression Cox proportional hazards regres-
sion models is one of the most popular mathematical models used
for survival analysis; it was first described by D. R. Cox, its formula
specifies the hazard function (h(t)) as follows [Cox, 1975, Collett,
2004b, Kleinbaum and Klein, 2005]:

h(t|x( j)
i ) = h0(t) exp(x( j)

i βi) (2.1.4.18)

In analogy with logistic regression, where the logit is assumed
to be represented by linear related predictors (see section 2.1.2.7 on
page 53). A Cox proportional hazards survival model35assumes 35 R scripting:

The following R libraries support the
calculation of Cox proportional hazard
survival models:

• survival: function coxph

• rms [Harrell, 2012a]: function cph

that ln(h(t)), are linearly related to a set of predictors [Harrell. et al.,
1996].

The examination of the influence of k co-variates on the survival
time can be specified by a linear-like model of the log hazard.

ln (h(t)) = α(t) + β1x( j)
1 + β2x( j)

2 + . . .+ βkx( j)
k (2.1.4.19)

h(t) = exp
(
α(t) + β1x( j)

1 + β2x( j)
2 + . . .+ βkx( j)

k

)
(2.1.4.20)

h(t) = h0(t) exp

 k∑
i=1

x( j)
i , β j

 (2.1.4.21)

h(t) = h0(t) exp( f (X)) (2.1.4.22)

The Cox proportional hazard function is a collection of two dif-
ferent parts [Collett, 2004b, Kleinbaum and Klein, 2005]: (1) baseline
hazard function (h0(t)) and (2) relative risk function [Harrell, 2012b].
An important characteristic of this formula is called the proportional
hazards assumption [Kleinbaum and Klein, 2005]:

The baseline hazard function is a function of time and is not related
to one of the features, whereas the relative risk is independent of time
and is related to the features.
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This proportional hazards assumption is very important for ap-
plying this regression models in the appropriate manner. What do
we do with time-dependent features? Do they break the propor-
tional hazards assumption? We will describe how to handle time-
dependent features in the following sections. First, let’s assume our
features are time-independent. A Cox proportional hazards model
with time-dependent features is often called an extended Cox propor-
tional hazards model.

The baseline hazard rate (h0(t)) is left unspecified, and there-
fore makes the Cox model semi-parametric [Kleinbaum and Klein,
2005, Harrell, 2012b]. According to the proportional hazards regres-
sion model, the baseline hazard function h0(t) is defined as the haz-
ard function for an individual with all co-variates equal to zero36. 36 h(t|x) = h0(t) exp (0)

This parameter can be nuisance, but in case we want to perform a
prediction based on a Cox model, it can be estimated by the method
of Breslow [Breslow, 1974].

The relative risk function is the relationship between the features
and the hazard function [Kalbfleisch and Prentice, 2002]. This rela-
tionship is in the Cox model is represented by the partial likelihood
exp(xi, β); Cox [Cox, 1975] estimates β by maximizing the partial
likelihood (MLE). The name partial likelihood is derived from the
independent non-informative censoring, i.e. the censored times are
not taken into consideration.

L(β|xi) =
n∏
i

exp(xi, β) (2.1.4.23)

L(β) =
r∏

i=1

exp(β
′

xi)∑
k∈R(ti)

exp(β′xk)
(2.1.4.24)

L(β) =
n∏

i=1

 exp(β
′

xi)∑
k∈R(ti)

exp(β′xk)

δi

(2.1.4.25)

log(L(β)) =
n∑

i=1

δi

β′xi − log
∑

k∈R(ti)

exp(β
′

xk)

 (2.1.4.26)

• n individuals

• r distinct death times, and n− r right censored survival times. The
r ordered death times: t1 < t2 < t3, . . . < tr. The likelihood function
depends on the rank order of death times, the risk at each death
time is determined.

• R(ti)
is the group of individuals are alive and uncensored at time

just prior to t j. This group is also called the risk set.

• xi is the vector of co-variates for the individual that dies at the ith
ordered death time ti.

When the Cox proportional hazards regression parameters (β’s)
are estimated. The strength of different effects can be analysed
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by the so-called hazard ratio (HR). Two observations have corre-
sponding linear estimates can be compared [Kleinbaum and Klein,
2005, Harrell, 2012b]:

o( j) = β1x( j)
1 + β2x( j)

2 + . . .+ βkx( j)
k =

k∑
i=1

βiX
( j)
i (2.1.4.27)

o( j+1) = β1x( j+1)
1 + β2x( j+1)

2 + . . .+ βkx( j+1)
k =

k∑
i=1

βiX
( j+1)
i (2.1.4.28)

The ratio of the two hazards is written as:

HR =
h( j)

h( j+1)
=

h0(t)eo( j)

h0(t)eo( j+1)
=

eo( j)

eo( j+1)
(2.1.4.29)

= exp

 k∑
i=1

βi

(
X( j)

i −X( j+1)
i

) (2.1.4.30)

The Cox proportional hazards regression model can plot the sur-
vival function based on the explanatory variables used as predictors.
These survival curves are often called adjusted survival curves. The
survival function can be written as:

S(t) = [S0(t)]
exp(

∑k
i=1

(
β
( j)
i x( j)

i

)
(2.1.4.31)

An alternative way to formulate the proportional hazards as-
sumption is to consider the hazard ratio. The hazard ratio of two
observations is proportionality constant (α). It is crucial for applying
the Cox proportional hazards regression to test this assumption37. 37 R scripting:

The following R libraries support the
test of the proportional hazards as-
sumption for the Cox model:

• survival: function cox.zph
α = exp

 k∑
i=1

βi

(
X( j)

i −X( j+1)
i

) (2.1.4.32)

Grambsch and Therneau [Grambsch and Terneau, 1994] have
proposed a goodness-of-fit testing approach to test the proportional
hazards assumption. This test is nowadays the standard test in
various software packages. In following figure (see figure 2.14 on
page 78), a result of the test is illustrated. The fitted line should be
a constant line, otherwise the proportional hazards assumption is
violated.

Interactions Interactions are product terms that will be added as a
feature into a Cox proportional hazards regression model. In this
type of regression models, the product terms are very often a func-

tion of time (X( j)
i z(t)). The function z(t) can have different forms (see

table 2.17). Time-dependent features need to be used with caution
because they easily violate the proportional hazards assumption.
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Figure 2.14: Analysis of the pro-
portional hazards assumption with
cox.zph function in R. The flatness of
the fitted line illustrates that the Stage
parameter does now violates the pro-
portional hazards assumption over the
survival time (Time).

Table 2.17: Functions of time used as
interactions in the Cox proportional
hazards regression.

Function
z(t) = t

z(t) = log (t)

z(t) =
{

0 if t > t0
1 if t > t0

When a feature violates the proportional hazards assumption, one
possible solution is to use stratification. If this feature is continuous,
it needs to be discretized. A stratified Cox proportional hazards
regression model can be constructed with or without interactions.
Without interactions, the feature is identified with strata in R, and
can be formulated as:

∀strat = 1, . . . , s : hstrat(t) = h0strat(t) exp

 k∑
i=1

x( j)
i , β j

 (2.1.4.33)

A stratified Cox proportional hazards regression can also be con-
structed with interactions. In practice, it means that the model is
fitted for different subsets of the sample. It can be formulated as:

∀strat = 1, . . . , s : hstrat(t) = h0strat(t) exp

 k∑
i=1

x( j)
i , β jstrat

 (2.1.4.34)

2.1.4.4 Feature selection

Feature selection for a Cox proportional hazards regression model
can be very similar as for a linear model, e.g. the Aikake information
criterion, Bayesian information criterion, etc (see section 2.1.2.3 on
page 51). Furthermore, there exist specific strategies to perform
feature selection for Cox proportional hazards regression.

During this PhD, supervised principal component analysis (SPCA)
[Bair and Tibshirani, 2004] and least absolute shrinkage and selection
operator (LASSO) [Tibshirani, 1997] were used to perform feature
selection for survival analysis.

Supervised principal component analysis (SPCA) Supervised princi-
ple component analysis applies principal component analysis (PCA).
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Principal Component Analysis (PCA) is a relatively old statistical
method to identify patterns in data [Kendall, 2004]. This method
is an eigen vector technique that denotes the variance in a data
set [Hand et al., 2001].

A principal component is an uncorrelated linear function that repre-
sents the original data set [Kendall, 2004]. A data set with p vari-
ables and n samples (X1, X2, X3, . . . , Xp), is centered to the mean of
each variable [Holland, 2008]. This is required to insure that the
principal components are centered in the data cloud without vi-
olating: spatial relationships in the data and variances along the
variables [Holland, 2008].

The first principal component (PC1) is a linear combination with
stationary values, and expresses most of the variance in the data
set [Smith, 2002]. In matrix notation PC1 can be written [Holland,
2008]:

PC1 = aT
1 X (2.1.4.35)

Increasing the weights values (ai j) can increase the variance of
the first principal component, therefore the following constraint is
introduced:

a2
11 + a2

12 + a2
13 + . . .+ a2

1p = 1 (2.1.4.36)

The second principal component (PC2) is uncorrelated, or ge-
ometrically perpendicular, to the first principal component. The
second principal component also represent the second highest vari-
ance a principal component can represent [Kendall, 2004] [Holland,
2008]. This continues to the pth principal component.

The most difficult question when PCA is applied: "Did a principal
component contribute any meaningful information?". This question
must be answered for each application of PCA. Supervised principal
component analysis clusters the most important features by scor-
ing the correlation to the output variable and constructs principal
components for groups of co-expression.

y( j) = θ0 + θ1U + ε (2.1.4.37)

∀i ∈ P : X( j)
i = αi + βiU + εi (2.1.4.38)

Each feature (Xi) that is dependent on an underlying latent vari-
able (U), will be used to estimate U and fit a model to predict the
output variable y( j) [Bair et al., 2004]. As a result, this methodology
can be used for features selection38.

38 R package:
The following R package support su-
pervised principal component analysis:

• superpc [Bair and Tibshirani, 2004]:
listfeatures outputs the selected
features.

Least absolute shrinkage and selection operator (LASSO) The regression
coefficients (β̂) are estimated in a Cox proportional hazards regres-
sion model based on partial likelihood (see equation 2.1.4.26 on
page 76). Tibshirani [Tibshirani, 1997] proposes an extra condition
for computation of the regression coefficients [Tibshirani, 1995, Goe-
man, 2010]:
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log (l(β)) = log (l(β)) − λ
k∑

i=1

|βi| (2.1.4.39)

β̂ = arg min [log (L(β))], subject to
∑
|βi| 6 λ (2.1.4.40)

LASSO computes the coefficients of a Cox proportional hazards
model, so the sum of the absolute value of the coefficients are less
or equal to a user-defined constant λ. Applying this extra condition
for the optimization problem leads to less features in our resulting
model39.

39 R package:
The following R package support
LASSO for survival analysis:

• penalized [Goeman, 2010]: LASSO
implementation based on gradi-
ent ascent and Newton-Raphson
algorithm.

• glmpath [Park, 2007]: LASSO imple-
mentation based on path algorithm.

Since a Cox proportional hazards regression model contains
similarities with a linear model, a lot of the concepts used for under-
and overfitting prevention in linear models also apply for the Cox
proportional hazards regression (see section 2.1.2.4 on page 52).

In the following section, a performance measure specific for sur-
vival analysis will be defined.

2.1.4.5 Concordance index

The concordance index [Harrell et al., 1982], also often called c-index,
is a measurement of the discrimination capacity for a survival
model [Gerds et al., ]. Censored data have specific constraints,
which makes it more challenging to extract a predictive model. One
of the main challenges is that many of the patients under investiga-
tion can live longer as the follow-up time of a study (right censoring,
see 1 on page 73).

The c-index can be formulated as [Yan et al., 2004]:

c =

∑
(pi,p j)∈Ω Ŷ

(
t̂i, t̂ j

)
Ω

(2.1.4.41)

where

Ŷ(t̂i, t̂ j) =

{
1 if t̂i > t̂ j;
0 otherwise

a pair of patients (pi, p j)

all possible pairs of patients that can be classified Ω. In order to be a
member of the collection of all possible pairs, the pair need to
fulfill the following two conditions:

1. In case both patients of the pair (pi, p j), the event captured in
the survival analysis reoccurred, and the recurrence time ti of
patient i is lower as the recurrence time t j of patient j.

2. In case one patient experiences the event under investigation
(pi), and patient recurrence time ti is shorter as the follow-up
time of patient p j.

prognostic scores from a survival model t̂i, t̂ j

The c-index represents the probability that a patient with a higher
prognostic survival score (t̂i) will have a lower time to event as a
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patient with a lower prognostic survival score (t̂ j) [Harrell. et al.,
1996] [Gerds et al., ].

The c-index needs to be interpreted in a specific manner. Its val-
ues reflect a specific meaning [Harrell. et al., 1996]: (a) if c = 0.5: no
predictive discrimination of the patients with different outcomes, (b)
c = 0 or c = 1.0 perfect discrimination of the patients with different
outcomes.

As explained in the previous paragraphs, the c-index is a proba-
bility. Many clinicians are more used to a rank correlation coefficient
([−1,+1]). Therefore a Somers’ D rank index was defined as:

D = 2(c− 0.5) (2.1.4.42)

An alternative for Cox proportional hazards regression models
will be introduced in the next section.

2.1.4.6 Partial Cox regression (PCR)

A partial Cox regression model is based on Partial Least Squares
(PLS) [Garthwaite, 1994]. PLS is developed in 1960’s by Herman
Wold, and was first applied in econometrics. Nowadays it is applied
in variety of fields: chemistry, monitoring and controlling industrial
processes [Tobias, 2002]. PLS is an alternative for multiple linear
regression (MLR) (see section 2.1.2 on page 47), and it can overcome
the problem on overfitting in case the amount of observations is
not bigger as the amount of explanatory variables. The effect of the
explanatory variables will not be provided as explicitly as in the case
of MLR, since PLS constructs underlying latent variables. Therefore,
PLS is sometimes also called: projection to latent structure [Tobias,
2002].

The Partial Cox regression model can be written as [Li and Gui,
2004]:

h(t) = exp (α(t) + β1T1 + β2T2 + . . .+ βkTk) (2.1.4.43)

h(t) = h0(t) exp(Ti, βi) (2.1.4.44)

h(t) = h0(t) exp( f (X)) (2.1.4.45)

We will only explain the differences with 2.1.4.3 on page 75:

component Tk

risk function f (X)

Each component (T j) and the risk function ( f (X)) are a lin-
ear combination of all the different explanatory variables (X =

{X1, X2, . . . , Xk}). Taken into account the PLS principles for modelling
the relationship between a explanatory variable X and the hazard.
We restrict the relationship to the variable X has an influence on the
hazard, and the other variables have no influence on this relation-
ship. The other variables have an influence on the hazard by the
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other components [Li and Gui, 2004]. The different components are
computed sequentially, as for the first component we can write:

V1 j = X j − x̄ j (2.1.4.46)

x̄ j =

∑n
i=1 xi j

n
(2.1.4.47)

sample size n

vector of sample values V1 j v1 j = {v11 j, v21 j, . . . , vn1 j} = x j − x̄ j. This
implies that the mean of the samples of V1 j is equal to zero.

fit each variable in the following Cox model h(t) = h0(t) exp(V1 j, β1 j)

2.1.5 Resampling methods

Resampling methods are applied for testing computational models
in various manners. Bootstrapping and cross validation are very
often used to test new constructed computational models.

Bootstrapping and Monte Carlo sampling are resampling meth-
ods that reconstruct a data sample in order to draw conclusion about
the statistics of a computation model.

Cross validation is a statistical benchmark procedure that com-
pares different learning algorithms by dividing the data into two
segments: one for training and a second for validating. Cross valida-
tion is applied for classification and regression problems in machine
learning [Larson, 1931]. Cross validation methodologies can spec-
ify achieve two highly related goals: (1) analysis of generalization of
the algorithm and (2) comparison of the performance of different
algorithms and/or parametrized models.

Next, bootstrapping and Monte Carlo resampling methods will
be introduced. This will be followed with an overview of different
performance measure for regression and classification models.

2.1.5.1 Bootstrapping

The bootstrap method was first introduced by B. Efron [Efron, 1979].
Nowaday, it has been applied in various applications: approximat-
ing the standard error of a sample estimate, estimation of the bias
correction, confidence interval approximation, etc.

Bootstrapping will generate a new data sample from the current
data sample. Such a newly generated data sample is often called
bootstrap subsample or phantom sample [Davison and Hinkley, 1997].
This bootstrap sample is of equal samples size as the original sample
size and will be used to reevaluate a performance measure, the mean
value of a model parameter, or the error on a model parameter, etc.

A bootstrap method determines the data distribution from the
data, without depending on the Central Limit Theorem (CLT)40 [Davi- 40 Central Limit Theorem is the most

fundamental theorem in statistics.
It states that a sample distribution
can be approximated with a normal
distribution.

son and Hinkley, 1997].
The number of times the data needs to be resampled should be

empirically derived [Davison and Hinkley, 1997].
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2.1.5.2 Monte Carlo sampling

Monte Carlo sampling is an alternative approach for model testing.
A new random data sample is generated based on the original data.
This random data sample can be sampled from an fitted distribu-
tion, or the original data sample can be shuffled.

The Monte Carlo sampling techniques used during this doctorate
compare a statistic (i.e. performance measure) of a computational
model with a randomly generated data sample. A p-value quantifies
where the statistic of a computational model is situated compared to
the computed statistic distribution.

The number of times the data needs to be resampled should be
empirically derived [Davison and Hinkley, 1997].

2.1.5.3 Cross validation procedures

Re-substitution validation In the re-substitution validation procedure
all the available data is used to learn the model, and this same data
is applied for testing. This procedure suffers a lot from overfitting.

Hold-out validation This type of procedure has two independent
data sets for training and testing. It avoids an overlap of training
and testing data.

K-fold cross validation Here the procedure starts to partition the data
into k (nearly) equally sized segments, also called folds. The k-fold
cross validation procedure runs with k equal the number of samples
in the data. One observation from the original sample is used as the
validation sample. The remaining samples are used as the training
data.

Leave-one-out cross-validation (LOO-CV) This cross validation pro-
cedure is a special case of k-fold cross validation, where k is equal to
one.

Repeated K-fold cross validation To obtain more reliable performance
estimation or comparison, a large number of estimates are required.
Therefore the k-fold cross validation can be executed multiple times.

2.1.5.4 Performance measures for classification

The formulation of different performance measures for classification
will be provided in the following sections.

Confusion matrix A classification scheme can be analyzed by con-
struction a confusion matrix. Such a matrix collects the counts of true
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN).

Table 2.18: A confusion matrix for the
analysis of a classification model.

ŷ( j) = 0 ŷ( j) = 1

y( j) = 0 TN FN
y( j) = 1 FP TP

From the confusion matrix several performance measures are
derived: accuracy, sensitivity, specificity, positive predictive value, and
negative predictive value.
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Accuracy

acc =
TP + TN

TP + TN + FP + FN
(2.1.5.1)

Sensitivity Sensitivity is also called recall or true positive rate.

sen = rec =
TP

TP + FN
(2.1.5.2)

Specificity

spec =
TN

TN + FP
(2.1.5.3)

False positive rate is equal to 1− spec.

Precision Precision is also called positive predictive value.

ppv =
TP

TP + FP
(2.1.5.4)

Negative predictive value

npv =
TN

TN + FN
(2.1.5.5)

Receiver operating characteristic (ROC) Receiver operating character-
istic (ROC) is a detection measure that originally comes from signal
detection theory. During the World War II radar images were used
to distinct objects in images being an enemy target or not. The area
under the ROC curve is a measure for the discriminatory capacity of
a classification model [Metz, 1978, Fan et al., 2006]41.

41 R package:
The following R package supports
different performance measures:

• ROCR [Sing et al., 2005]: perfor-
mance measures and visualization
method for performance analysis of
classifiers.

Accuracy is a very naive measure for a classifier, i.e. if only 5%
of the samples contain a state of a binary classifier, and the classi-
fier would always result in the other state, the classifier would have
a result of 95%. Therefore, specificity and sensitivity are more ex-
planatory performance measures for a classifier. The ROC curve
plots sen vs 1− spec.

F-measure The F-measure is a measure that takes precision and
recall into consideration:

F = 2×
prec× rec
prec + rec

(2.1.5.6)

SAR metric A more robust42, combined performance measure is 42 It is more robust because it combines
more as one performance measure.the SAR metric [Caruana and Niculescu-Mizil, 2004]. It combines

squared error, accuracy, and area under the ROC curve.

2.1.5.5 Performance measures for regression

The formulation of different performance measures for regression
will be provided in the following sections. The estimated value in
the formulations is written as: ŷ.
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Error sum of squares (SSE)

SSE =
N∑

i=0

(E(y) − ŷ)2 (2.1.5.7)

Total sum of squares (SST)

SST =
N∑

i=0

(
µy − ŷ

)2
(2.1.5.8)

Estimated variance (MST)

MST =
SST

N − 1
(2.1.5.9)

Mean square error (MSE)

MSE =
SSE
N

(2.1.5.10)

Coefficient of determination (R2) The coefficient of determination is
defined as the ratio between the sum of squares explained by the
regression model (SSE) and the total sum of squares around the
mean (SST).

R2 =
SST − SSE

SST
= 1−

SSE
SST

(2.1.5.11)

The coefficient of determination is also often explained as the
ratio of the amount of variance captured by the regression model
and the total amount of variance of the output variable. We can
write:

σy = σŷ + σŷ′ (2.1.5.12)

N∑
i=1

(
y− µy

)2
=

N∑
i=1

(
ŷ− µy

)2
+

N∑
i=1

(y− ŷ)2 (2.1.5.13)

R2 =

∑N
i=1

(
ŷ− µy

)2

∑N
i=1

(
y− µy

)2 (2.1.5.14)

The coefficient of determination is also called squared multiple
correlation coefficient [Harrell. et al., 1996], and can be alternatively be
calculated as:

R2 = 1−
(n− p)MSE

(n− 1)S2
Y

(2.1.5.15)

number of samples n

number of parameters p

sample variance of the response variable S2
Y

Adjusted coefficient of determination is used to compensate for
the fact that the sample is not the complete population sample. If
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the data sample is the complete population sample, then there is no
need for the adjusted coefficient of determination [Faraway, 2002c].

R2
adjusted = 1−

MSE
MST

(2.1.5.16)

2.2 Biological methodologies

Recent developments in new technology for biological experi-
ments lead to the collection of high-throughput, large-scale, and
high quality data. On a transcriptome and genome-level microar-
rays [Schena et al., 1995], massively parallel sequencing (also called
next-generation sequencing) [Schuster, 2008, Reis-Filho, 2009], etc.,
are nowadays well established technologies. The differentially ex-
pressed genes in microarray experiment can discover new targets
for the composition of a biological footprint of a biological process,
but can suffer from the sensitivity and specificity of the probes for
a quantitative analysis. Next-generation sequencing will help to
measure copy number aberrations, genetic aberrations, harbor muta-
tions, etc., to potentially reclassify cancer types.

Cancer is a proteomic and genomic disease [Cesario and Marcus,
2011]. Genetic disorders active during tumour development can re-
sult in a phophorylation in the protein network. By measuring these
phenotypes we are able to better diagnose and understand a cancer,
have a better selection of biomakers for new drug development, and
eventually result in personalized drug development.

However the success of comparative genomic hybridization
(DNA) and transcription profiling (RNA) technologies result in phe-
notype discoveries. In order to answer the functional aftermath of
these phenotypes, there is still a need for reliable proteomics charac-
terization: translational regulation, post-translational modifications,
etc. Therefore we need high-throughput proteomics technologies
to study the structure, function, and activation of proteins. In the
next sections, two proteomics technologies will be discussed: (1)
reverse phase protein array (RPPA) and (2) protein expression in tissue
microarray (TMA).

2.2.1 Reverse phase protein array (RPPA)

Reverse phase protein array (RPPA) are protein microarray [Lio, 2003].
A traditional microarray allows us to collect time series, with mul-
tiple measures for each time point, of an gene expression. Protein
arrays are a grid of immunoblotting, i.e. western blotting, experi-
ments. Experimental results show high correlation between RPPA
and western blotting [Tibes et al., 2005].

Figure 2.15: Forward phase protein
array and reverse phase protein array
have a different configuration of
analytes and antibodies.

There are two main types protein arrays: (1) forward phase ar-
rays and (2) reverse phase arrays [Janzi et al., 2005, Spurrier et al.,
2008]. The forward phase arrays have a bait molecule, i.e. antibody
or antigen, that is present on the substratum of a spot. Each spot has
one specific antibody and the array is incubated with one test sam-
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ple, e.g. lysates of the condition of interest. A specific protein will
bind directly or via a secondary antibody (i.e. sandwich) to the bait
molecule, and multiple analytes are measured at once.

Reverse phase protein arrays has the analytes on the substratum
of the spot, representing a single test sample, e.g. a patient sample.
Each array will be incubated with a single antibody, and multiple
combinations can be measured in parallel.

Figure 2.16: An example of an RPPA
two-by-two grid plate. A set of 9
proteins are measure for a time-series
with 17 intervals. Each dot on the
figure represents the expression of an
antibody of a corresponding target.

For maximizing precision and reliability and minimizing exper-
imental variability, it is important to have predefined laboratory
protocols, e.g. application of positive and negative controls [Spurrier
et al., 2008] and apply computational methods to allow quantita-
tively interarray comparisons [Tibes et al., 2005].

2.2.2 Protein expression in tissue microarray (TMA)

Tissue collection is performed by treating the biopsy with formalin
(i.e. fixation) and paraffin, which results in a tissue block. With
a microtome, a 5 µm slice of this residue is used to examine the
tissue under the microscope. Kononen et al. [Kononen et al., 1998]
introduced a tissue microarray block to assemble tissues with core
needle biopsies of pre-existing tissue blocks [Camp et al., 2001].
These tissue microarrays are used to analyse tissue on the genome,
transcriptome and proteome level by immunohistochemistry and
immunofluorescence analysis [Kallioniemi et al., 2001].

This methodology allows to use archives of tissue blocks and
collect “-omics” data in combination of clinicopathological data
archives. In the following chapter 3, a study will be described
combining these data resources for the prediction of overall- and
progression-free survival.

Tumour tissues are a very complex mixture of malignant and
benign tumour cells, stroma, extracellular material, etc., and can
be an heterogeneous combination of different histological tumour
types. Since a tissue on an array has a 2− 5µm diameter, it might not
represent the true tumour tissue.

Automated quantitative analysis (AQUA®) uses a set of algo-
rithms that allow quantitative protein expression of tissue microar-
rays [Camp et al., 2002]. This method is currently very popular in
combination with immunofluorescence, and has shown to be the
most efficient for the quantification of protein expression of tissue
microarrays [Christopher B. Moeder and Rimm, 2009].

The classification of tumour and stroma in fluorescence tissue
microarrays can improve the automatic quantitation of biomarker
expression [Lahrmann et al., 2011].
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Figure 2.17: Immunofluorescence im-
ages of a tissue microarrays assay (Blue
= DAPI nuclei; Green = cytokeratin tu-
mour mask Red = antibody-conjugated
flourophores) (From Fig. 1 of Faratian
et al. [Faratian et al., 2011]).
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Ovarian cancer

Inside the little rind of this
weak flower, there is both
poison and powerful
medicine. If you smell it, you
feel good all over your body.
But if you taste it, you die.
There are two opposite
elements in everything, in
men as well as in herbs–good
and evil. When evil is
dominant, death soon kills the
body like cancer.

William Shakespeare

Systems pathology searches for new diagnostic markers and
therapeutic targets for a better prognostic determination. Epithelial
ovarian cancer has minor early stage symptoms and a very poor
overall survival rate from 35 to 38 percent for late stage diagnosis. A
systems approach, that incorporates clinical, histopathological, med-
ical information with “-omics” technology, can indicate important
biomarkers in various scenarios and aspects of ovarian neoplasia.

The data used in the course of this study is part of the Edinburgh
Ovarian Cancer Register(EOCR; see Appendix A on page 161).
Histopathological examination is performed on a unique collec-
tion of tumour tissue. These tissues are further analysed with tissue
microarray (TMA) technology in order to investigate proteome
biomarkers.

A battery of complementary machine learning approaches are
applied to investigate the predictability of candidate proteomes and
more traditional clinicopathological measurements for the prognosis
of clinical outputs.

Furthermore, different biological footprints are extracted for
different clinicopathological assemblies. These assemblies are com-
binations of corresponding tumour stages with histological types
that contain sufficient data samples.

This chapter will start to describe the two main parts of the data:
(1) the clinicopathological measurements and the proteomics profile
and (2) the computational models build to select the most important
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diagnostic features for the prognosis of ovarian carcinoma.
I was able to validate these computational models. I used the lab-

oratory infrastructure and the Edinburgh Ovarian Cancer Register of
collaborators to perform in situ proteome experiments with the set
of biomarkers that were most significant for prognosis determina-
tion in ovarian cancer.

I created new computational models based upon machine learn-
ing algorithms that have the potential to revolutionize how biomarker
discovery is performed. I concentrate to avoid overfitting during
feature selection; the selected features are plugged into a classifica-
tion model.

3.1 Data collection

This data is a collection of resources from the Edinburgh Ovarian
Cancer Register of the last three decades. Different clinicopathologi-
cal measurements are combined with a proteomics profile. This pro-
teomics profile was generated by the application of high-throughput
tissue microarray (TMA) technology (see section 2.2.2 on page 2.2.2).
In the next section, the clinicopathological inputs- and outputs will
be described. This will be followed with a description of the pro-
teomics profile defined by the pathology division of the General
Western Hospital in Edinburgh.

3.1.1 Clinicopathological variables

In a clinical environment different pathological measurements are
taken for diagnosis. The two main parts of these clinicopatholog-
ical measurements are tumour grading and tumour staging (see
section 1.2.1 on page 18). This clinicopathological information is
fundamental for the decision-making of the regimen prescription.

The next two sections provide a more detailed overview of the
clinicopathological inputs- and outputs for the computational mod-
els that will be constructed.

3.1.1.1 Clinicopathological inputs for model building

There are four types of clinicopathological inputs for the compu-
tational models: (1) stage (stage 1, stage 2, stage 3, and stage 4), (2)
histological type (papillary serous, clear cell, endometrioid, mixed
mullerian, mucinous, and adenocarcinoma), (3) regimen prescription
(regimen 1 is platinum and regimen 2 is platinum combined with
taxane), and age (age and stratified by age: 50 years).

In the data set, the tumour stages and histological types are not
equally distributed. Figure 3.1 illustrates the different frequencies
for each combination of stage and histological type. In the data
sample, papillary serous in stage 3 and stage 4, endometrioid in
stage 3, and mixed mullerian in stage 3 appear with the highest
frequencies.
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Figure 3.1: Frequencies of stages,
and histological types in the data.
Not all the different combinations of
stage and histological type are equally
distributed in this data set. Later
stage ovarian carcinoma have a higher
frequency compared to the early stage
ovarian cancer.

3.1.1.2 Clinicopathological outputs for model building

The data set contains two clinicopathological outputs that are often
used for the prognosis in a clinical environment: (1) overall survival
(OS) and (2) progression-free survival (PFS). Overall survival is the
time difference between the first histopathological diagnosis and the
day of death of any cause. Whereas, progression-free survival is the
time difference between treatment diagnosis and the first signs of
cancer recurrence (see figure 3.2).

Figure 3.2: The difference in time
between overall survival (OS), and
progression-free survival (PFS) (Dx, Sx:
date of histological diagnosis, CRx:
date of treatment diagnosis, Re/Prog:
date of first signs of disease recurrence,
DLS/Death: date of death from any
cause).

Based on this clinicopathological measurements, I will present
the results of a survival analysis with Cox proportional hazards
regression models. The following question could be asked:

What is the influence of the different regimen prescriptions, regimen 1
based on platinum and regimen 2 based on platinum combined with
taxane, on the overall survival and the progression-free survival?

This question can be answered with building a Cox proportional
hazards model based on this clinicopathological information (see
section 2.1.4.3 on page 75). In order to visualize the different re-
sponses between the different regimen prescriptions Kaplan-Meier
curves are plotted (see figure 3.3). As described in section 2.1.4.2 on
page 74, the Kaplan-Meier curves can be tested on their difference
with a log-rank test. For the progression-free survival, the difference
is below the 1 % significance interval (p = 0.0025). In the case of
overall survival, the difference is less significant (p = 0.0383).
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Figure 3.3: A survival function for the
progression-free survival (PFS) and
overall survival (OS) for patients under
different treatment regimen (Regimen
1: platinum and Regimen 2: platinum
combined with taxane).

The Cox proportional hazards regression model can be used to
quantify the difference in survival of for the two regimen prescrip-
tions in this study by the interpretation of the hazard ratio. For
every patient that recurred in a cancerous state after regimen 1, 0.65
with a 95 % confidence interval (0.51, 0.82) of the patients after reg-
imen 2 recurred in a cancerous state. Similarly, for every patient
that died after regimen prescription 1, 0.75 with a 95 % confidence
interval (0.59, 0.96) of the patient died after regimen prescription 2.

In general, we can conclude that a regimen prescription with
taxane improves the progression-free survival and overall survival.

In the next section, the proteomics profile will be described. This
proteomics profile is a collection of various key proteins in impor-
tant oncogenic pathways.
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Variable Regimen 1 Regimen 2 Hazard ratio p-value
(n=213) (n=126) (95 % CI)

Progression-free survival
(PFS)
Median (months) 10.5 15.2 0.65 (0.51, 0.82) 0.0025
Rate (%)

six months 82 93
one year 44 59
two year 15 25

Overall survival (OS)
Median (months) 23.48 34.05 0.75 (0.59, 0.96) 0.0363
Rate (%)

one year 83 92
three year 35 47
five year 18 18

Table 3.1: Impact of the regimen on
overall survival (OS) and progression-
free survival (PFS)

3.1.2 Proteomics profile

Recent major progress in molecular biology, biotechnology, and
imaging [Fass, 2008] enables to research various diagnostic, prog-
nostic, and therapeutic biomarkers. In order to guarantee an efficient
translation from novel discovered biomarker into a clinical envi-
ronment, specific guidelines for this transition are published by the
National Cancer Institute (NCI) [Dancey et al., 2010]. Biomarker dis-
coveries are fundamental for bringing individual cancer care closer
to reality. Biomarkers can support early stage diagnosis, specific
identification important for therapeutic interventions, and monitor
treatment response.

Collaborators from the Division of Pathology of the Univer-
sity of Edinburgh have selected different candidate proteomes for
analysing their prediction of overall survival (OS) and progression-
free survival (PFS) in ovarian carcinoma. Figure 3.4 illustrates the
biological network among these candidate proteomes. These candi-
date proteomes are key proteins in signal transduction pathways.

Table 3.2 provides an overview of the selected key proteins and
their functionality. These proteomes are measured with antibodies
that are known to bind in the cytoplasm or nucleus of cells.

Target proteomes Functionality Nuclei Cytoplasm
Caspase-3 apoptosis x
ERα, ERβ1, and ERβ2 DNA binding transcription factor x x
E-Cadherin invasion and metastasis x
WT1 cell development and survival x
Slug epithelial-mesenchymal transition (EMT) x
Snail epithelial-mesenchymal transition (EMT) x
ERK proliferation x
STAT3705 and STAT3727 transcription factor, tumor growth x
BRCA1 DNA damage response x
H2AX DNA damage response x
RB proliferation, cell senescence, etc. x
P53 cell growth, apoptosis, etc. x
Ki67 assessing proliferation rate of a tumour x
HH3 proliferation (mitosis) x
β-catenin replicative immortalization x
NF-κB transcription factor targets proliferation and anti-apoptosis x

Table 3.2: List of candidate proteomes
and their known functionality

In the next sections, the machine learning approaches used for
model building are introduced. These computational models will
indicate which proteomes are significantly important for the pre-
diction of patient survival, and the quantity of predictability this
proteomics profile adds towards more traditional clinicopathological
measures.
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Figure 3.4: The biological circuit
of known interactions active in
the proteomics profile for ovarian
cancer [Hanahan and Weinberg,
2000, Hanahan and Weinberg, 2011].

I have combined different machine learning algorithms for the
analysis of the predictability of a candidate proteome biomarkers
for prognosis; especially in these type of studies machine learning
algorithms are prone to overfitting [Ransohoff, 2004, Ludwig and
Weinstein, 2005]. I have combined different performance measure-
ments for overfitting with the most basic computational models for
survival analysis; this outcome selects the features most attributable
to prognosis prediction. The selected features are used as inputs
for a classifications model; this model is constructed to define if a
patient has a low or high risk of (a) recurrence of cancer in one year
(one-year progression-free survival (1YM-PFS)) and (b) patient dies
in three years (three-year overall survival (3YM-OS)).

Biomarker discovery studies are a combination of molecular
biology and computational challenges; I was able to work in both
arenas and applied state-of-the-art imaging analysis to perform
in situ proteome analysis together with building computational
models.

3.2 Machine learning

Different machine learning algorithms were used to model this data
set. First, Bayesian network analysis is used to perform network in-
ference. Next, survival analysis will be applied to the censored clin-
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ical outputs in the data set: overall survival (OS) and progression-
free survival (PFS). In order to follow Occam’s Razor principle,
different feature selection methodologies are used and compared.
In this study, two main feature selection methodologies are applied:
least absolute shrinkage and selection operator (LASSO) (for a descrip-
tion see 2.1.2.4 on page 52) and supervised principal component analysis
(SPCA) (for a description see 2.1.4.4 on page 78). Finally, the features
selected with the survival analysis are used to build classification
models. Two main classification models are constructed: (1) one-year
progression-free survival model (1YM-PFS) and (2) three-year overall
survival model (3YM-OS). The period of one year and three years are
used to have equal amount of patients falling into each interval.

The performance of the different computational models will iden-
tify most significant clinicopathological measurements and pro-
teome biomarkers for the prognosis of ovarian cancer.

3.2.1 Bayesian networks

A first set of computational models are based on a generative ma-
chine learning approach: Bayesian networks (see section 2.1.1 on
page 33). Bayesian networks are probabilistic graphical models that
have been used for medical decision-making since the 1990s [Pearl,
1988]. More recently, Bayesian networks formalism has been suc-
cessfully applied to a variety of biological problems [Yu et al.,
2004, Friedman, 2004, Sachs et al., 2005, Hartemink, 2005].

In the following sections, three different Bayesian networks will
be presented. A first Bayesian network pictures the statistical de-
pendencies among the different proteomes. The second Bayesian
network is built from the clinicopathological measures. The third
and last Bayesian networks is a layered structure. The first input
layer contains all the different clinicopathological inputs in our data
set. No connections among these different clinicopathological out-
puts are allowed. A second layer are composed of the candidate
proteomes. A third layer are the output clinicopathological out-
puts, based upon overall survival (OS) and progression-free survival
(PFS). In the following paragraphs, the main configuration setting
for learning the structure of the Bayesian networks will be described.

These Bayesian networks could be used as a tool for predicting
the prognosis of a patient based upon clinicopathological inputs
and proteome biomarkers. Especially, the layered Bayesian net-
work would emulate the process in a clinical practice. A patient
enters a practice; an histopathological examination is performed
together with the measurement of proteome biomarkers. From the
histopathological examination and the proteome biomarker analysis,
a Bayesian network can predict a patient outcome under different
treatments, and specific values of biomarkers.

The continuous proteomes expression levels, progression-free
survival (PFS), and overall survival (OS) are discretized with the
Hartemink’s pairwise mutual information discretization (described



96

in section 2.1.1.13 on page 44) with 3 levels.
The structure of the Bayesian networks are learned with a search

and score approach. A greedy search algorithm is used with random
restarts every 10000 iterations. The search will allow a maximum
of three parents for each node following the constraints by the data
amount (see table 2.11 on page 45) [Yu, 2005]. The scoring is per-
formed with the BDeu scoring metric with an equivalent sample size
of one.

These Bayesian networks are not temporal models, so static
Bayesian networks are configured.

All the clinicopathological inputs are colored in green, the clini-
copathological outputs are colored in blue, and the candidate pro-
teome biomarkers are colored in yellow. The links, or statistical
dependencies, between the nodes of the Bayesian networks are col-
ored according the influence score (see section 2.1.1.17 on page 46).
The influence score characterizes the type of statistical dependen-
cies. A color scheme is used for optimal visualization if the statistical
dependencies in the Bayesian network. A blue link indicates that
the influence score lies between 0 and -1; this represents that high
values of one node match with low values in the other node, or low
with high. A red link indicates that the influence score lies between
0 and 1; this represents that high values of one node match with
high values in the other node, or high with high. Green links, when
influence score is zero, indicate a non-monotonic relationship, e.g.
U- or hump-shaped.

3.2.1.1 Bayesian network of the proteomics profile

This Bayesian network (see figure 3.5 on page 98) represents the sta-
tistical dependencies among the candidate proteome biomarkers.
Many of the statistical dependencies have a positive influence score
(red links); it indicates that many functional dynamics are positive
correlated and homeostatic mechanisms are switched off. Further-
more, the oestrogen signalling proteomes, i.e. ERβ1 and ERβ2, show
high influence scores for their statistical dependencies. It could be
an indication that endocrine therapy would influence the activity
within epithelial ovarian tumours [Langdon and Smyth, 2008].

STAT3727 is a hub in this network. It is most connected with dif-
ferent with other proteomes. It is known that STAT3 oncogene is ac-
tive in many different biological processes, e.g. tumour progression,
phosphorylation of Ser727 maximizes the transcriptional activity,
etc.

3.2.1.2 Bayesian network of the clinicopathological measurements

The Bayesian network (see figure 3.6 on page 99) pictures the statis-
tical dependencies between the clinicopathological inputs and the
clinicopathological outputs.

The clinicopathological inputs: tumour stages and histological
types are mutually exclusive. Therefore, there are no links allowed
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among the different tumour stages and histological types.
The clinicopathological outputs are based upon the progression-

free survival (PFS) and the overall survival (OS). The nodes PFS and
OS are the discretized representation of the discretized progression-
free survival and overall survival. The nodes 1YM− PFS and 3YM−
OS are respectively one-year progression-free survival and three-
year overall survival binary outputs.

The regimen prescription and tumour staging have the highest
predictive power for the various clinical outputs. The histological
typing appears to be less directly connected to the clinical outputs.

3.2.1.3 Bayesian network of the clinicopathological measurements and
the proteomics profile

The layered Bayesian network, see figure 3.7 on page 100, mimics
the diagnosis process in a clinical practice.

The connectivity between the clinicopathological inputs and the
candidate proteome biomarkers, and between the biomarkers and
the clinicopathological outputs is rather low. For the progression-
free survival (PFS) output nodes: the PFS node has no connectivity
and the 1YM− PFS is only connected towards pP53N and SnailN.

Because the Bayesian network analysis was not very successful
in connecting clinicopathological variables with candidate proteome
biomarkers, I proposed to construct a different set of computational
models that will be presented in the following sections. I do not
argue that Bayesian networks will never be successful for building
this type of probabilistic diagnostic graphical model. The differ-
ence in frequencies for each of the histopathological assemblies is
potentially too big to come to a better connected Bayesian network.
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Figure 3.5: Bayesian network of the
proteomics profile.
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Figure 3.6: Bayesian network of the
clinicopathological measurements.
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Figure 3.7: Three-layered Bayesian
network with a first layer of clinico-
pathological measurements, a second
layer of candidate proteomes biomark-
ers, and third layer of progression-free
survival (PFS) and overall survival
(OS) outputs.
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After a generative machine learning approach, Bayesian net-
works, different discriminative machine learning approaches were
used to build computational models. In the following sections two
discriminative approaches were applied: (1) survival analysis and (2)
classification model.

The survival analysis performed during this study starts with a
feature selection. The selected features will be the inputs for the sur-
vival analysis and the classification models for 1YM-PFS and 3YM-
OS (see section 3.2.3 on page 114). Two feature selection algorithms
are applied: least absolute shrinkage and selection operator (LASSO) (for
a description see 2.1.2.4 on page 52) and supervised principal compo-
nent analysis (SPCA) (for a description see 2.1.4.4 on page 78). The
selected features for the survival analysis are modelled with the Cox
proportional hazards regression. In the block schemes are the selected
features ordered by the absolute value of the regression coefficient in
the Cox proportional hazards model. Each feature is also annotated
with the sign of the regression coefficient.

The collection of different computational models in combina-
tion of the performance measurements to avoid overfitting are a
unique method; its contribution is the capability to select the most
important clinicopathological measurement and candidate proteome
biomarkers and immediately measure the performance in a classi-
fication model. In the following sections, I will present this novel
methodology applied for the discovery of biomarkers for the prog-
nosis in ovarian cancer.

Figure 3.8: The following scheme
illustrates the different discriminative
machine learning methodologies
used during this research: survival
analysis and classification. First,
feature selection is executed on the
clinicopathological, proteomics data,
and the combination of both. The
selected features are plugged into
the survival analysis, and into the
classification model. The survival
model is verified with the following
performance measure: c-index, p value
of a Monte Carlo experiment, and the
shrinkage. The classification models
are verified with area under ROC curve
(AUC), a hybrid metric (SAR), and
precision-recall F measure (F).

Different computational models are compared with performance
measures. The survival models are compared with the performance
measures: (1) concordance index or c-index, (2) p-value from a Monte
Carlo experiment, and (3) shrinkage (γ). The concordance index mea-
sures the discrimination capacity of the survival analysis (see sec-
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tion 2.1.4.5 on page 80). The p-value indicates how significant the
survival model is in the Monte Carlo distribution of the selected
performance measure, i.e. concordance index (see section 2.1.5.2
on page 83). A third performance measure is the shrinkage (γ; see
section 2.1.2.4 on page 52). This performance measure has shown
to be highly informative for characterization of the predictability of
the selected features; it is a unique contribution of my work. This
contribution is related to the choice of the performance measures in
combination with Monte Carlo experiments.

The same selected features are plugged into a classification model
(see section3.2.3 on page 114). Different performance measure are
used for these classification models: (1) area under curve of the ROC
curve, (2) F-measure, and (3) SAR metric. The area under curve of
the ROC curve is often used to analyse the performance of a classi-
fication model (see section 2.1.5.4 on page 84). Based on precision
and recall, the F-measure is a complementary performance measure
(see section 2.1.5.4 on page 84). Finally, a combined performance
measure is used: SAR metric (see section 2.1.5.4 on page 84).

3.2.2 Survival analysis

For the survival analysis, the standard Cox proportional hazards
regression model will be used to select the most important clinico-
pathological measurements and candidate proteome biomakers for
the prognosis of ovarian carcinoma.

3.2.2.1 Feature selection

The most important features for the prediction of progression-free
survival (PFS) and overall survival (OS) will be presented. Different
features are selected from the clinicopathological measurements, the
proteomics profile, and the combination of the clinicopathological
measurements with the proteomics profile.

The quantification of the predictability for the different sets of
selected features will be examined with Monte Carlo experiments.
In analogy with Monte Carlo resampling method described in sec-
tion 2.1.5.2 on page 83, the Monte Carlo experiments compare the
concordance index (c-index) of our constructed model with the con-
cordance index of a model constructed from a random shuffled data
set. There are always three sets of features that are analysed: (1) the
clinicopathological measurements: all clinicopathological measures are
shuffled, (2) the proteomics profile: all proteomes are shuffled, and (3)
the combination of clinicopathological measures with the proteomics profile:
only the proteomes are shuffled. The setup for prediction analysis of
different sets of selected features is unique. It is novel and the results
of its application are excellent.

The next paragraphs introduce the results of the comparison
of different selected features with supervised principal compo-
nent analysis (SPCA), least absolute shrinkage and selection op-
erator (LASSO), and without any feature selection applied. First,
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the results of this comparison will be given for the prediction of
progression-free survival and followed with the analogous compari-
son for the prediction of overall survival.

Progression-free survival (PFS) Supervised principal component
analysis (SPCA) and least absolute shrinkage and selection operator
(LASSO) select regimen and stage from the clinicopathological mea-
sures. Different proteomes from the profile were selected with SPCA
and LASSO. The proteomes pRb, Slug, and E-cadherin are selected
with SPCA. LASSO selects the following proteomes: Caspase-3,
pβCatenin, and E-cadherin. The combination of the clinicopatholog-
ical measures with proteomics profile selected the features as they
were selected from the clinicopathological measurements and the
proteomics separately (see figure 3.9).

The performance measures of these different models indicate the
clinicopathological measurements (SPCA and LASSO: c index =

0.394) contain higher predictability compared to the selected pro-
teomics (SPCA: c index = 0.470 and LASSO: c index = 0.464).
Nevertheless combining clinicopathological measures with the se-
lected profiles perform the best (SPCA: c index = 0.382 and LASSO:
c index = 0.374).

Figure 3.9: These block schemes pro-
vide an overview of the selected fea-
tures and the performance measures:
10-fold cross validated c-index, p-value
of the Monte Carlo experiment, and
the shrinkage for the Cox proportional
hazards regression models for PFS.

The heuristic shrinkage estimator (γ; see section 2.1.2.4 on page 52)
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for the different computational models indicate that the clinico-
pathological measurements suffer less from over-confidence in too
high or too low predictions (γ > 0.9). The candidate proteome
biomarkers are much more vulnerable to overfitting problems.
LASSO selects the less vulnerable features (SPCA: γ = 0.608 and
LASSO: γ = 0.725). The computational model that combines clin-
icopathological measurements with the proteomics profile are not
vulnerable to overfitting problems (γ > 0.9).

Feature selection improves the shrinkage of the computational
model with a low decrease of predictability (e.g., for the combina-
tion of the clinicopathological measurements and the proteomics
profile, no feature selection: c index = 0.373, SPCA: c index = 0.382,
and LASSO: c index = 0.374).

The Monte Carlo experiments (see section 2.1.5.2 on page 83) per-
formed on the different computational models illustrate that the clin-
icopathological measures contain the highest intrinsic predictability.
This is shown by the c-index of the computational model based on
clinicopathological measures lies clearly outside the empirical dis-
tribution (p < 0.001). Feature selection improves the performance
of the computational model, the p-value without feature selection is
0.770, and slightly improves with SPCA feature selection (p = 0.456).
The LASSO selected features perform the best (p = 0.206).

The proteomes selected with SPCA and LASSO in combination
with the clinicopathological measures perform better as a compu-
tational model based on all the clinicopathological and proteome
features. The feature selection with SPCA (p = 0.328) is outper-
formed by the feature selection based in LASSO (p = 0.032). LASSO
feature selection allows us to build a computational model that lies
in the 5 % tail of the Monte Carlo distribution.

Because LASSO provided better feature selection, the features
selected by LASSO (regimen, stage, Caspase-3, pβCatenin, and
E-cadherin) will be used to construct a classification model for one-
year progression-free survival (1YM-PFS). These classification mod-
els will be validated by a independent data set; this validation data
set collects the protein expression levels of Caspase-3, pβCatenin,
and E-cadherin together with clinicopathological measurements for
each patient.

This final Cox proportional hazards regression model, combining
clinicopathological measures with the proteomics profile, has a
c-index equal to 0.374. A 10-fold cross validation resampling on
the c-index results in bias of the c-index equal to −0.002705 and
a standard deviation on the c-index of 0.006888. The coefficient
of determination (R2) has a mean value of 0.1473 with a standard
deviation of 0.012939. This indicates that the c-index is consistent
over 10-fold cross validation segments of the data set.

Tumour staging and regimen prescription are the most important
clinicopathological measurements for the prediction of progression-
free survival (PFS). The proteome biomarkers are less informative
than the clinicopathological measurements. Nevertheless, feature se-
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Figure 3.10: The Monte Carlo distribu-
tion and the performance measures:
10-fold cross validated c-index, p-value
of the Monte Carlo experiment, and
the shrinkage for the Cox proportional
hazards regression models for PFS.

lection with LASSO constructs the best set of proteomes (Caspase-3,
pβCatenin, and E-cadherin) for the prediction of PFS. Combining tu-
mour staging, regimen prescription and the selected set of proteome
biomarkers (Caspase-3, pβCatenin, and E-cadherin) performs the
best for PFS prediction.

In the next sections, the results of a similar analysis are provided
for overall survival.
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Overall survival (OS) The features selected for the Cox proportional
hazards regression models of overall survival (OS) are illustrated
by figures 3.11 and 3.12. The clinicopathological measures contain,
in analogy with the Cox proportional hazards regression model
for progression-free survival, more intrinsic predictability as the
proteomics profile. The combination of clinicopathological measures
and the selected proteomes have the best performance measures.
LASSO selected different features as SPCA, and LASSO performs
slightly better as SPCA.

SPCA and LASSO select the same clinicopathological measure-
ments: regimen and stage. From the proteomics profile, SPCA se-
lects Caspase-3, ERβ2C, ERβ2N, and E-cadherin and LASSO selects
Caspase-3, pβCatenin, E-cadherin, pH2AX, and WT1. When com-
bining the clinicopathological measurements and the proteomics
profile, SPCA and LASSO select a combination of the features that
are selected for only the clinicopathological measurements and the
proteomics profile (see figure 3.11).

A comparison of the concordance index (c-index) for these Cox
proportional hazards regression models illustrate that the clinico-
pathological measurements (SPCA and LASSO: c index = 0.390)
contain higher predictability as the selected proteomes (SPCA:
c index = 0.457 and LASSO: c index = 0.445). A combination of
clinicopathological and selected proteomes has the best performance
(SPCA: c index = 0.377 and LASSO: c index = 0.375).

The heuristic shrinkage estimator (γ) illustrate that the clinico-
pathological measurements (γ > 0.9) suffer less from overfitting
compared to the selected proteomes (SPCA: γ = 0.733 and LASSO:
γ = 0.622). The SPCA selects proteome features that are slightly less
vulnerable for overfitting compared to LASSO.

Feature selection improves the shrinkage of the computational
model with a low decrease of predictability (e.g., for the combina-
tion of the clinicopathological measurements and the proteomics
profile, no feature selection: c index = 0.371, SPCA: c index = 0.377,
and LASSO: c index = 0.375).

The Monte Carlo experiments performed on the different com-
putational models illustrate that the clinicopathological measures
contain the highest intrinsic predictability. This is shown by the
c-index of the computational model based on clinicopathological
measures lies clearly outside the distribution (p < 0.001). Feature
selection improves the performance of the computational model, the
p-value without feature selection is 0.448, and improves with SPCA
feature selection (p = 0.056). The LASSO selected features perform
the best (p = 0.054).

The proteomes selected with SPCA and LASSO in combination
with clinicopathological measures perform better as only the clin-
icopathological measures or only the selection proteomes. The se-
lected proteomes by SPCA (p = 0.174) are outperformed by LASSO
(p = 0.074). When clinicopathological measures are combined with
proteomes, LASSO (p = 0.054) still performs slightly better as SPCA
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Figure 3.11: These block schemes
provide an overview of the selected
features, and the performance mea-
sures: 10-fold cross validated c-index,
p-value of the Monte Carlo experiment,
and the shrinkage for the Cox propor-
tional hazards regression models for
OS.

(p = 0.056). Both feature selection methodologies select those fea-
tures that build a computational model that lies close to the 5 % tail
of the Monte Carlo distribution.

Because LASSO provided better feature selection, the features
selected by LASSO (regimen, stage, Caspase-3, pβCatenin, E-
cadherin, pH2AX, and WT1) will be used to construct a classification
model for three-year overall survival (3YM-OS). These classification
models will be validated by a independent data set; this valida-
tion data set collects the protein expression levels of Caspase-3,
pβCatenin, E-cadherin, pH2AX, and WT1 together with clinico-
pathological measurements for each patient. In comparison with
the previous selected features for the prediction of progression-free
survival, only pH2AX and WT1 are added as proteome biomarkers.

This final Cox proportional hazards regression model, combining
the clinicopathological measures with the proteomics profile, has
a c-index equal to 0.375. A 10-fold cross validation resampling on
the c-index results in bias of the c-index equal to −0.001825 and
a standard deviation on the c-index of 0.007426. The coefficient
of determination (R2) has a mean value of 0.1415 with a standard
deviation of 0.013155. These results are another indication that our
computational model is not vulnerable of overfitting.

Tumour staging and regimen prescription are the most impor-
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Figure 3.12: The Monte Carlo distribu-
tion and the performance measures:
10-fold cross validated c-index, p-value
of the Monte Carlo experiment, and
the shrinkage for the Cox proportional
hazards regression models for OS.tant clinicopathological measurements for the prediction of overall

survival (OS). The proteome biomarkers are less informative than
the clinicopathological measurements. Nevertheless, feature selec-
tion with LASSO constructs the best set of proteomes (Caspase-3,
pβCatenin, E-cadherin, pH2AX, and WT1) for the prediction of OS.
Combining tumour staging, regimen prescription and the selected
set of proteome biomarkers (Caspase-3, pβCatenin, E-cadherin,
pH2AX, and WT1) performs the best for OS prediction.

The model building performed at this point had one outstand-
ing result: the histopathological typing of the ovarian carcinoma
was not selected as a feature. A plausible reason is that histological
typing has a lack of standardization and can vary among different
clinical practices (see section 1.2.1.1 on page 18). Nevertheless, the
different biological footprints for different histological types can be
very valuable information to understand the difference in molecular
pathology between this histological types. In the next sections, com-
putational models will be presented to illustrate the heterogeneity of
the histological types.
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3.2.2.2 Feature selection for the clinicopathological data segmentation

Histopathological typing is a fundamental measure during a clinical
analysis. These histological measurements are not selected by fea-
ture selection methodologies performed on the complete data set.
Therefore, a segmentation of the data set was performed based on
the frequencies of histological type and stage. Regarding figure 3.1
on page 91, papillary serous in stage 3 and stage 4, endometrioid
in stage 3, and mixed mullerian in stage 3 contain the highest fre-
quencies in the data set. On the four segments of our data set, we
performed LASSO feature selection. The LASSO feature selection
methodology was chosen because it outperformed SPCA in previous
analyses (see previous results described in 3.2.2.1).

The performance of the computational models based on the seg-
mented data set will be compared with the previous constructed
models based on the complete data set. The computational models
based upon histopathological assemblies of the data set can inform
about molecular biological signature and perform better as the com-
putational model based upon the complete data set.
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Papillary serous in stage 3 for PFS LASSO selects the clinicopatholog-
ical measurements: regimen and age and the proteomes: Caspase-
3, pNFκB, pBRCA1, pH2AX, pERK, pP53, and E-cadherin. The
computational model for papillary serous in stage 3 (c index = 0.419)
does not perform as well as the computation model based on the
complete data set (c index = 0.374).

Figure 3.13: The block scheme and
the Monte Carlo distribution of the
Cox proportional hazards regression
model illustrate the performance for
predicting PFS in the case of papillary
serous in stage 3.

The Monte Carlo experiment illustrates that the computational
model for papillary serous in stage 3 (p = 0.238) is not as significant
as the corresponding model based on the complete data set (p <

0.05).
This final Cox proportional hazards regression model has a c-

index equal to 0.419. A 10-fold cross validation resampling on the
c-index results in bias of the c-index equal to 0.001702 and a stan-
dard deviation on the c-index of 0.004436. The coefficient of determi-
nation (R2) has a mean value of 0.1124 with a standard deviation of
0.0033.

Papillary serous in stage 4 for PFS LASSO selects only proteome fea-
tures for the prediction of progression-free survival. The following
proteome features are selected: Caspase-3, ERβ2C, ERβ2N, pP53,
pSTAT3727, pSTAT3705, pH2AX, ERβ1N, and Slug. The computational
model for papillary serous in stage 4 (c index = 0.278) performs
better as the computation model based on the complete data set
(c index = 0.374).

Figure 3.14: The block scheme and
the Monte Carlo distribution of the
Cox proportional hazards regression
model illustrate the performance for
predicting PFS in the case of papillary
serous in stage 4.

The Monte Carlo experiment illustrates that the computational
model for papillary serous in stage 4 (p = 0.016) is more significant
than the corresponding model based on the complete data set (p <
0.05).

This final Cox proportional hazards regression model has a c-
index equal to 0.278. A 10-fold cross validation resampling on the
c-index results in bias of the c-index equal to 0.006300 and a stan-
dard deviation on the c-index of 0.017034. The coefficient of determi-
nation (R2) has a mean value of 0.4329 with a standard deviation of
0.0312.
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Endometrioid in stage 3 for PFS LASSO selects the clinicopatholog-
ical measurements: age stratified and regimen and the proteomes:
Caspase-3, pNFκB, ERβ1C, and pERK. The computational model
for endometrioid in stage 3 (c index = 0.228) performs better as the
computation model based on the complete data set (c index = 0.374).

Figure 3.15: The block scheme and the
Monte Carlo distribution of the Cox
proportional hazards regression model
illustrate the performance for predict-
ing PFS in the case of endometrioid in
stage 3.

The Monte Carlo experiment illustrates that the computational
model for endometrioid in stage 3 (p = 0.006) is more significant
than the corresponding model based on the complete data set (p <
0.05).

This final Cox proportional hazards regression model has an
c-index is equal to 0.228. A 10-fold cross validation resampling
on the c-index results in bias of the c-index equal to 0.007651 and
a standard deviation on the c-index of 0.021591. The coefficient
of determination (R2) has a mean value of 0.5124 with a standard
deviation of 0.0821.

Mixed mullerian in stage 3 for PFS LASSO selects the clinicopatho-
logical measurement: age stratified and the proteomes: Caspase-3,
ERβ2C, pSTAT3705, and Ki67. The computational model for en-
dometrioid in stage 3 (c index = 0.228) performs better as the compu-
tation model based on the complete data set (c index = 0.374).

Figure 3.16: The block scheme and
the Monte Carlo distribution of the
Cox proportional hazards regression
model illustrate the performance for
predicting PFS in the case of mullerian
in stage 3.

The Monte Carlo experiment illustrates that the computational
model for mullerian in stage 3 (p = 0.008) is more significant than
the corresponding model based on the complete data set (p < 0.05).

This final Cox proportional hazards regression model has a c-
index equal to 0.175. A 10-fold cross validation resampling on the
c-index results in bias of the c-index equal to 0.0082251 and a stan-
dard deviation on the c-index of 0.019542. The coefficient of determi-
nation (R2) has a mean value of 0.4712 with a standard deviation of
0.0855.
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Papillary serous in stage 3 for OS LASSO selects the clinicopatho-
logical measurement: regimen and the proteomes: Caspase-3,
pBRCA1, ERβ2N, pH2AX, ERβ1N, and pERK. The computational
model for papillary serous in stage 3 (c index = 0.378) does perform
as well as the computation model based on the complete data set
(c index = 0.375).

Figure 3.17: The block scheme and
the Monte Carlo distribution of the
Cox proportional hazards regression
model illustrate the performance for
predicting OS in the case of papillary
serous in stage 3.

The Monte Carlo experiment illustrates that the computational
model for papillary serous in stage 3 (p = 0.048) is as significant than
the corresponding model based on the complete data set (p = 0.054).

This final Cox proportional hazards regression model has an c-
index equal to 0.378. A 10-fold cross validation resampling on the
c-index results in bias of the c-index equal to 0.009175 and a stan-
dard deviation on the c-index of 0.005159. The coefficient of determi-
nation (R2) has a mean value of 0.1251 with a standard deviation of
0.006316.

Papillary serous in stage 4 for OS LASSO selects only proteome fea-
tures: ERβ2C, pHH3, ERβ2N, pβCatenin, pP53, pSTAT3727, pERK,
and Slug. The computational model for papillary serous in stage
4 (c index = 0.290) does perform better as the computation model
based on the complete data set (c index = 0.375).

Figure 3.18: The block scheme and
the Monte Carlo distribution of the
Cox proportional hazards regression
model illustrate the performance for
predicting OS in the case of papillary
serous in stage 4.

The Monte Carlo experiment illustrates that the computational
model for papillary serous in stage 4 (p = 0.024) is more significant
than the corresponding model based on the complete data set (p =

0.054).
This final Cox proportional hazards regression model has an

c-index equal to 0.290. A 10-fold cross validation resampling on
the c-index results in bias of the c-index equal to −0.002900 and
a standard deviation on the c-index of 0.017521. The coefficient
of determination (R2) has a mean value of 0.3745 with a standard
deviation of 0.041447.
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Endometrioid in stage 3 for OS LASSO selects the clinicopathological
measurements: age stratified, regimen, and age and the proteomes:
Caspase-3, pBRCA1, ERβ2N, pH2AX, ERβ1N, and pERK. The com-
putational model for papillary serous in stage 3 (c index = 0.378)
does perform as well as the computation model based on the com-
plete data set (c index = 0.375).

Figure 3.19: The block scheme and the
Monte Carlo distribution of the Cox
proportional hazards regression model
illustrate the performance for predict-
ing OS in the case of endometrioid in
stage 3.

The Monte Carlo experiment illustrates that the computational
model for endometrioid in stage 3 (p < 0.001) is more significant
than the corresponding model based on the complete data set (p =

0.054).
This final Cox proportional hazards regression model has an c-

index equal to 0.228. A 10-fold cross validation resampling on the
c-index results in bias of the c-index equal to 0.005822 and a stan-
dard deviation on the c-index of 0.014788. The coefficient of determi-
nation (R2) has a mean value of 0.5311 with a standard deviation of
0.0725.

Mixed mullerian in stage 3 for OS LASSO selects the clinicopatho-
logical measurements: age stratified, regimen, and age and the
proteomes: Caspase-3, pBRCA1, ERβ2N, pH2AX, ERβ1N, and
pERK. The computational model for papillary serous in stage 3
(c index = 0.378) does perform as well as the computation model
based on the complete data set (c index = 0.375).

Figure 3.20: The block scheme and
the Monte Carlo distribution of the
Cox proportional hazards regression
model illustrate the performance for
predicting OS in the case of mixed
mullerian in stage 3.

The Monte Carlo experiment illustrates that the computational
model for mixed mullerian in stage 3 (p = 0.030) is more significant
than the corresponding model based on the complete data set (p =

0.054).
This final Cox proportional hazards regression model has an c-

index equal to 0.182. A 10-fold cross validation resampling on the
c-index results in bias of the c-index equal to 0.005214 and a stan-
dard deviation on the c-index of 0.025841. The coefficient of determi-
nation (R2) has a mean value of 0.5751 with a standard deviation of
0.0654.

In the following sections, the selected clinicopathological mea-
surements and the candidate proteome biomarkers will be plugged
into a classification model for the prediction of the risk of one-year
progression-free survival (1YM-PFS) and three-year overall survival
(3YM-OS). First, the results for the classification models based upon
the complete data set will be presented. This will be followed by the
classification models for the histopathological assemblies.
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3.2.3 Classification

The classification models presented in the next sections will be con-
structed based upon three different methodologies: (1) logistic re-
gression, (2) Cox proportional hazards regression, and (3) support vector
machines (SVM). Logistic regression is one of the most used method-
ologies for constructing a classification model. The Cox proportional
hazards regression can also be used to construct a classification
model [Meleth et al., 2007]. Support vector machines are very popu-
lar type of large margin classifiers (see section 2.1.3 on page 54).

For each of the presented computational models during the sur-
vival analysis, a corresponding classification model will be con-
structed. One-year progression-free survival and three-year overall
survival classifiers will be presented for the complete data set, papil-
lary serous in stage 3 and stage 4, endometrioid in stage 3 and mixed
mullerian in stage 3 segments of the data set.

All the classifiers constructed in the following sections are 10-fold
cross validated (see section 2.1.5.3 on page 83). So, the performance
measurements presented are average values of our 10 folds.

The classifier based on logistic regression have bootstrapped coef-
ficients based on 1000 iterations. But the performance measures, to
be consistent with the performance measures of the other classifiers,
are 10-fold cross validated.

The Cox proportional hazards regression classifiers have 10-fold
cross validated coefficients and performance measurements.

The support vector machines are based upon the C-SVM formula-
tion. 10-fold cross validation is used to find the optimal regulariza-
tion parameter (C) and the optimal parameter for the RBF kernel.
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3.2.3.1 One-year progression-free survival (1YM-PFS)

Classification models are constructed for the prediction of high/low
risk of one-year progression-free survival.

Figure 3.21 illustrates the comparison of the performance of three
different classification methodologies: (1) logistic regression, (2) Cox
proportional hazards regression, and (3) support vector machines.
Support vector machines outperforms logistic regression and Cox
proportional hazards regression for all performance measures, i.e.
area under the ROC curve, F-measure, and SAR metric (see sec-
tion 3.2.1.3 on page 102).

Figure 3.21: Performance measures,
AUC, F-measure, and SAR for 1YM-
PFS classifier constructed with logistic
regression, Cox proportional haz-
ards regression, and support vector
machines.

The performance measures of the classification models based on
the clinicopathological data segmentation, i.e. papillary serous in
stage3 and stage 4, endometrioid in stage 3 and mixed mullerian in
stage 3, are presented in figure 3.22.

In the following table, the parameters for the logistic regression
are listed. The categorical variables, stage and regimen, are incorpo-
rated as factors (see 2.1.2.1 on page 48).

Variable Estimate Std. Error p-value
Regimen

Regimen:2 9.92e− 01 2.42e− 01 4.52e− 05
Stage

Stage:2 −5.57e− 01 6.74e− 01 4.08e− 01
Stage:3 −1.74e− 00 5.49e− 01 0.15e− 03
Stage:4 −2.02e− 00 5.89e− 01 0.60e− 04

Caspase-3 −4.89e− 01 1.79e− 02 1.14e− 01
pβCatenin 6.54e− 02 4.47e− 03 2.14e− 01
E-cadherin 1.21e− 02 3.52e− 03 2.51e− 01

Table 3.3: The parameters of the logistic
regression for 1YM-PFS classifiers.

Clearly, classifiers based upon support vector machines outper-
form classifiers based upon logistic regression and Cox proportional
hazards regression.

Table 3.14 provides an overview of the characteristics of these
classifiers: data sample, RBF-kernel parameter, SVC regularization
parameter, and the number of support vectors for each class.
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Figure 3.22: The performance mea-
sures, AUC, F-measure, and SAR,
for 1YM-PFS classifier constructed
with logistic regression, Cox propor-
tional hazards regression, and support
vector machines. The classifiers are
constructed based on the clinico-
pathological data segmentation for
papillary serous in stage 3 and stage
4, endometrioid in stage 3, and mixed
mullerian in stage 3.
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Data set RBF-kernel Regularization parameter Number of support vectors
name sample size γ C nSV
Complete 339 0.5 400 233 (113 120)
Papillary serous in stage 3 146 0.04 3000 112 (53 59)
Papillary serous in stage 4 47 0.025 500 35 (19 16)
Endometrioid in stage 3 36 0.08 500 19 (9 10)
Mixed mullerian in stage 3 26 0.01 45 14 (8 6)

Table 3.4: The support vector machine
(C-SVC) specifications for 1YM-PFS
classifiers.

3.2.3.2 Three-year overall survival (3YM-OS)

Classification models are also constructed for the prediction of high-
/low risk of three-year overall survival.

The performance of three different classification methodologies:
(1) logistic regression, (2) Cox proportional hazards regression,
and (3) support vector machines, are compared (see figure 3.23).
Support vector machines outperforms logistic regression and Cox
proportional hazards regression for all performance measures (i.e.,
area under the ROC curve, F-measure, and SAR metric.

Figure 3.23: Performance measures,
AUC, F-measure, and SAR for 3YM-OS
classifier constructed with logistic
regression, Cox proportional haz-
ards regression, and support vector
machines.

The performance measures of the classification models based on
the clinicopathological data segmentation, i.e. papillary serous in
stage3 and stage 4, endometrioid in stage 3 and mixed mullerian in
stage 3, are presented in figure 3.24.

In the following table, the parameters for the logistic regression
are listed. The categorical variables, stage and regimen, are incorpo-
rated as factors (see 2.1.2.1 on page 48).

Variable Estimate Std. Error p-value
Regimen

Regimen:1 1.34e + 00 3.84e− 01 4.51e− 04
Stage

Stage:1 −1.64e + 01 4.12e + 00 9.84e− 01
Stage:2 −1.65e + 01 2.14e + 00 7.15e− 01
Stage:3 −1.14e + 01 3.11e + 00 8.12e− 01

Caspase-3 −2.14e− 01 1.52e− 02 9.13e− 02
pβCatenin −4.12e− 02 4.02e− 03 4.21e− 01
E-cadherin 1.92e− 02 5.17e− 03 6.14e− 01
WT1 1.54e− 02 4.12e− 03 4.86e− 04
pH2AX −2.41e− 03 1.21e− 03 1.84e− 01

Table 3.5: The parameters of the logistic
regression for 3YM-OS classifiers.Clearly, classifiers based upon support vector machines outper-

form classifiers based upon logistic regression and Cox proportional
hazards regression.

Table 3.14 provides an overview of the characteristics of the SVM
classifiers: data sample, RBF-kernel parameter, SVC regularization
parameter, and the number of support vectors for each class.
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Figure 3.24: The performance mea-
sures, AUC, F-measure, and SAR,
for 3YM-OS classifier constructed
with logistic regression, Cox propor-
tional hazards regression, and support
vector machines. The classifiers are
constructed based on the clinico-
pathological data segmentation for
papillary serous in stage 3 and stage
4, endometrioid in stage 3, and mixed
mullerian in stage 3.
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Data set RBF-kernel Regularization parameter Number of support vectors
name sample size γ C nSV
Complete 339 0.6 15 258 (147 111)
Papillary serous in stage 3 146 0.1 1600 32 (18 14)
Papillary serous in stage 4 47 0.04 1000 18 (9 9)
Endometrioid in stage 3 36 0.02 350 17 (8 9)
Mixed mullerian in stage 3 26 0.02 250 14 (6 8)

Table 3.6: The support vector machine
(C-SVC) specifications for 1YM-PFS
classifiers.

After the most significant clinicopathological- and proteome fea-
tures for the prognosis are selected. The classification models based
upon these selected features show very good performance. The last
step for biomarker acceptance is validation [Dancey et al., 2010].
This validation is performed by the collection of a separate data
set with the clinicopathological measures and selected proteome
biomarkers.

In the next sections, the validation results are presented for two
classification models. The classifiers are based on support vector
machines for the prediction of one-year progression-free survival
and three-year overall survival. I was able to validate my computa-
tional results by collecting data in the laboratory. The protocol used
to collect the data will be described in the next sections.

3.3 Validation

The validation process for the classification models will be per-
formed in two steps: (1) the result of the 10-fold cross validation
presented in the previous section will be extended with the confu-
sion matrix, ROC- and precision/recall curves and (2) the predictions
of the classifier from the validation data set will be presented with
the confusion matrix, ROC- and precision/recall curves. This perfor-
mance measures are very similar to performance measure presented
in previous sections; here I will present the plots instead of the raw
numbers.

The classification models are validated with a separately collected
validation data set. This data set is based on the candidate proteome
biomarkers selected during the survival analysis (see section 3.2.2.1
on page 102) [Ransohoff, 2005].

The selected proteome biomarkers are Caspase-3, pβCatenin, and
E-cadherin for progression-free survival and Caspase-3, pβCatenin,
E-cadherin, pH2AX, and WT1 for overall survival.

These selected biomarkers are recollected with tissue microar-
rays (TMA) for another set of patients. I will describe the protocols
used in the laboratory. These validation results contribute to the
confidence in the significance of our biomarkers.

3.3.1 Quantitative fluorescence image analysis

A proteomics profile is collected by the application of immunoflu-
orescence for phosphoantibodies [Camp et al., 2002]. Tissue mi-
croarrays (TMA) slides (diameter: 4 µm) were deparaffinized and
antigen-retrieved by pressure-cooking in either Sodium Citrate
buffer pH 6.0 or Tris-EDTA (TE) buffer pH 9.0 for 5 minutes, fol-
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lowing which the TMA sections were blocked using 3 % H2O2

and serum-free protein block. Followed by an one hour incuba-
tion period at room temperature with one of the following mono-
clonal antibodies: E-cadherin (BD Sciences, 610181), WT1 (Genetex,
GTX15249), phospho-β-catenin Ser33/37/Thr41 (Cell Signalling,
9561), pH2AX Ser139 (Cell Signalling, 9718), Caspase-3 (Cell Sig-
nalling, 9661).

Next, the slides were incubated overnight at 4 ◦C with pan-
cadherin (Cell Signalling, 4068, 1:100) or a combination of pan-
cadherin (Sigma-Aldrich, C1821, 1:750) and CK5/6/8/18 (Novocas-
tro, 6003168, 1:100) to mask tumour areas for rabbit and mouse
based target antibodies respectively. After rinsing three times for
5 minutes in 0.05 % PBST, the second primary antibody was incu-
bated overnight at 4 ◦C. Depending on the primary antibody a Rab-
bit Anti-cytokeratin (Dako: Z0622) with Rabbit anti-pan Cadherin
(Cell Signalling: 4068), or Mouse Anti-cytokeratin (Dako: 3515) was
added. TMA sections were subsequently incubated for 1.5 hours
with secondary antibodies: Alexa Fluor 555 conjugated (Invitro-
gen: mouse A21422; rabbit A21428) antibody (tumour mask) and
horseradish peroxidase decorated dextran polymer backbone (En-
Vision, Dako) to amplify the target protein. DAPI (49, 6-diamidino-
2-phenylin-dole) counterstain was used to visualise the nuclei and
Cy-5-tyramide used to detect target to allow compartmentalised
analysis of tissue sections.

A Olympus AX-51 epifluorescence microscope (20 x objective)
was used to capure monochromatic images for each TMA core.
These high-resolution images are analysed with AQUAnalysis soft-
ware. This analysis starts with the creation of a binary epithelial
mask that indicates if <5% of the total core was epithelium. If this
is the case, the core is excluded from analysis. Analogous binary
masks are generated for cytoplasmic and nuclear compartments
based on DAPI staining of the nuclei. The phosphoprotein expres-
sion was quantified by calculating the Cy5 fluorescent signal inten-
sity on a scale of 0-255 within each image pixel, and the AQUA score
calculated by dividing the sum of Cy5 signal within the epithelial
mask by the area of the cytoplasmic compartment for the cytoplas-
mic proteins and the nuclear compartment for the nuclear proteins.
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3.3.2 One-year model of progression-free survival

The classifier will be analysed with 10-fold cross validation and a
separate validation data set. The 10-fold cross validation process
was previously used to analyse the performance of the classifier.

In the next sections, the confusion matrix, ROC- and precision/re-
call curves will be presented for both validation steps.

3.3.2.1 10-fold cross validation

The confusion matrix the 10-fold cross validated classifier is pre-
sented in table 3.7. Figure 3.25 shows the ROC- and precision/recall
curves.

Table 3.7: A confusion matrix for the
analysis of the 1YM-PFS classification
model.

ŷ( j) = 0 ŷ( j) = 1

y( j) = 0 155 18
y( j) = 1 20 146

Figure 3.25: The ROC- and preci-
sion/recall plot for the classification
model (1YM-PFS) after 10-fold cross
validation.

The performance of the classifier is very good (AUC > 0.9 and
F > 0.9).

Performance measure
Accuracy 0.888
Sensitivity 0.890
Specificity 0.886
Precision 0.880

Table 3.8: Performance measures for
1YM-PFS classifiers.

The performance measurements of the 1YM-PFS classifier with
10-fold cross validation are excellent. These computational models
will be revalidated with a separate validation data set; the separate
validation data set is a result of wet lab work performed by myself.
The laboratory procedure is described in section 3.3.1 on page 119.
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3.3.2.2 Validation based on separate data set

The confusion matrix of the classifier is presented in table 3.9. Fig-
ure 3.26 shows the ROC- and precision/recall curves.

Table 3.9: A confusion matrix for the
analysis of the 1Y-PFS classification
model.

ŷ( j) = 0 ŷ( j) = 1

y( j) = 0 12 12
y( j) = 1 1 28

Figure 3.26: The ROC- and precision-
recall plot for the classification model
(1YM-PFS) after validation with a
separate data set.

The performance of the classifier is still reasonably good (AUC >

0.7 and F > 0.8).

Performance measure
Accuracy 0.755
Sensitivity 0.7
Specificity 0.923
Precision 0.966

Table 3.10: Performance measures for
1YM-PFS.

The 1YM-PFS classifier has a sensitivity of 0.7 and a specificity of
0.923. The comparison of the performance measures during 10-fold
cross validation and validation based on a separate data set is excel-
lent results; the laboratory work that I performed for recollecting the
separate validation data set proves that the discovered biomarkers
have very good predictability of progression-free survival (PFS).
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3.3.3 Three-year model of overall survival

The classifier will be analysed with 10-fold cross validation and a
separate validation data set. The 10-fold cross validation process
was previously used to analyse the performance of the classifier.

In the next sections, the confusion matrix, ROC- and precision/re-
call curves will be presented for both validation steps.

3.3.3.1 10-fold cross validation

The confusion matrix the 10-fold cross validated classifier is pre-
sented in table 3.11. Figure 3.27 shows the ROC- and precision/recall
curves.

Table 3.11: A confusion matrix for the
analysis of the 3YM-OS classification
model.

ŷ( j) = 0 ŷ( j) = 1

y( j) = 0 206 6
y( j) = 1 10 117

Figure 3.27: The ROC- and preci-
sion/recall plot for the classification
model (3YM-OS) after 10-fold cross
validation.

The performance of the classifier is very good (AUC > 0.9 and
F > 0.9).

Performance measure
Accuracy 0.953
Sensitivity 0.951
Specificity 0.954
Precision 0.921

Table 3.12: Performance measures for
3YM-OS.

The performance measurements of the 3YM-OS classifier with
10-fold cross validation are excellent. These computational models
will be revalidated with a separate validation data set; the separate
validation data set is a result of wet lab work performed by myself.
The laboratory procedure is described in section 3.3.1 on page 119.
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3.3.3.2 Validation based on separate data set

The confusion matrix of the classifier is presented in table 3.13. Fig-
ure 3.28 shows the ROC- and precision/recall curves.

Table 3.13: A confusion matrix for the
analysis of the 3YM-OS classification
model.

ŷ( j) = 0 ŷ( j) = 1

y( j) = 0 27 9
y( j) = 1 6 11

Figure 3.28: The ROC- and precision-
recall plot for the classification model
(1YM-OS) after validation with a
separate data set.

The performance of the classifier is still reasonably good (AUC >

0.7 and F = 0.6).

Performance measure
Accuracy 0.717
Sensitivity 0.550
Specificity 0.818
Precision 0.750

Table 3.14: Performance measures for
3YM-OS.

The 3YM-OS classifier has a sensitivity of 0.55 and a specificity of
0.818. These are good results; the laboratory work that I performed
for recollecting the separate validation data set proves that the dis-
covered biomarkers have good predictability of overall survival
(OS).

3.4 Discussion

Clinicopathological measurements, tumour staging and regimen
prescription, and proteome biomarkers, Caspase-3, pβCatenin, and
E-cadherin, are the best set of features to predict progression-free
survival (PFS). Similarly, clinicopathological measurements, tu-
mour staging and regimen prescription, and proteome biomarkers,
Caspase-3, pβCatenin, E-cadherin, pH2AX, and WT1, are the best set
of features to predict overall survival (OS).

These conclusions can be made from a unique battery of compu-
tational modelling techniques in combination of laboratory work.
LASSO feature selection showed to select the set of features with
best predictability; this was measured with a special engineered
performance measurement: Monte Carlo experiments based upon
c-index. These selected features are independently recollected in
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the laboratory of my collaborators; I was able to gain experience
for collecting proteome biomarkers with tissue microarray (TMA)
technology.

Clinicopathological and proteome biomarker signatures are con-
structed for the characterization of different histological types. Each
histological type contains a heterogeneous signature.
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Morphology during tumour invasion

We must consider the
distinctive characters and the
general nature of plants from
the point of view of their
morphology, their behaviour
under external conditions,
their mode of generation, and
the whole course of their life.

Theophrastus

Studies in cancer biology often concentrate on the analysis of
cancer cell and its genome; this type of research has identified nu-
merous oncogenes and tumour-suppressor genes. New technologies
have made a huge contribution in the collection and analysis of this
data. One link that Systems Pathology aims to make is to map the
heterogeneous and structurally complex nature of tissue and organ,
called tumour, with this genome data. This is not only limited to
genome data, but can be applied to the complete “-omics” scale.

Tumours are constantly on the move, they invade, communicate
with their environment, and grow quickly. During this process they
invade in mainly two modes: (1) individual- and collective invasion.
For each of these invasion modes corresponding morphological
measurements were performed with state-of-the-art image analysis.

A Bayesian network analysis was performed to learn the statis-
tical dependencies between the modes of invasion and the mor-
phological measures. These dependencies were further analysed to
illustrated their discriminative properties. My contribution is this
study is to provide analytical support for the determination of the
discriminative capacity of morphological measurements for different
types of tumour invasion.

My collaborators of the Division of Pathology at the University
of Edinburgh collected the data of the tumour invasion. My main
contribution is the analytical analysis; this was performed with a
Bayesian network approach. The statistical dependencies found
with the Bayesian network are independenty confirmed with a more
traditional t-test. This research resulted in a publication [Katz et al.,
2011].
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4.1 Tumour invasion

One of the most complex phenomenon in cancer is tumour invasion.
It is related to many programs of tumour development: metastasis,
epithelial-mesenchymal transition (EMT), autophagy, and angiogenesis.
The environment of a tumour cell during invasion and migration,
the interaction with this environment, the framework that forms the
connective environment around a tumour cell, might play a crucial
role in characterizing cancer and developing better drugs [Meuller
and Fusenig, 2004].

The environment where cells are distributed is called extracellular
matrix (ECM), when a tumour exists its called tumour matrix. A tu-
mour matrix facilitates a tumour to grow in at least three different
tissue compartments [Cesario and Marcus, 2011]: (1) the original
tumour compartment, (2) the mesenchyme of the primary site, also
called tumour invasion, and (3) distant mesenchyme, also called tu-
mour metastatis1. These different environments of tumour matrix can 1 This is based in the definition of a

tumour of Wallace H. Clark [Hong
et al., 2010].

include specific cellular particles, e.g. blood-vessel cells, inflamma-
tory cells, fibroblasts, and tissues related to wound healing.

The inter-cellular communication among different types of cells
is a fundamental program for tumour development. Tumours grow
by excessive preparation of their environment, also called tumour
stroma. One of the biggest problems with most cancer drugs is that
cancer cells are precarious, and become resistant. Stroma cells are
potentially better to treat, and a drug can normalize the stroma can
block tumour development [Meuller and Fusenig, 2004, Elizabeth S
et al., 2012].

One of the most fundamental programs in tumour invasion and
migration is called epithelial-mesenchymal transition (EMT) (see 1.3
on page 23) [Friedl and Wolf, 2003, Hanahan and Weinberg, 2011].
This program, that incorporates a loss of epithelial biomarkers and a
gain of mesenchymal biomarkers, illustrate that cancerous cells are
able to reprogram their functionality [Yilmaz et al., 2007]. Katz et
al. [Katz et al., 2010] have illustrated the overexpression of oncogene
C35 leads to EMT-mediated invasion, which marks the transition
between collective and individual invasion [Christiansen and Ra-
jasekaran, 2006].

Obviously, tumours have other transition mechanisms for inva-
sion and migration, i.e. mesenchymal-amoeboid transition (MAT) [Yil-
maz et al., 2007]. And some of these programs are still not fully
understood [Ilina and Friedl, 2009].

What is the difference between individual and collective inva-
sion? In this study, different types of invasion are analysed with
different morphological measures. Following the invasion model
of Yilmaz et al. [Yilmaz et al., 2007], four different types of invasion
are defined: type I: single cell, type II: small group (2-5 cells/tumour),
type III: cohort (5-10 cells/tumour), and type IV: coordinated (>10 cell-
s/tumour). Type II is defined in vivo [Auguste et al., 2007]. Type I
and type II are individual invasion, and type III and type IV are
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collective invasion.

Figure 4.1: Boxplot for the different
invasion types per cell line (C35pool
and C35hi) [Katz et al., 2011].

Figure 4.2 pictures the result of the in vitro invasion model. This
model is constructed with H16N-2 breast cells in a collagen lattice.
The H16N-2 breast cells with C35 oncogene expression supports
mammary epithelial cell invasion [Evans et al., 2006, Katz et al.,
2010]. A cell line with variable intermediate levels of C35 expression
results in mainly collective invasion (C35pool). Cells is high levels
of C35 expression result in mainly individual invasion (C35hi) (see
Fig. 4.1).

On top of each invasion assay (see figure 4.2), there is a group of
cells with a very high length/width ratio. This groups is called the
origin- or seed group. The origin group and every other each group
of cells that has more as 22 % cell contact with this origin group was
excluded from the analysis.

Figure 4.2: A fluorescent-stained image
from invasion assay. Pan-cytokeratin
rabbit polychonal antibody is used to
select epithelial cells, and visualization
is performed by anti-rabbit-Cy3. DAPI
counterstain was used to identify
nuclei.

4.2 Automated image analysis

The image analysis was performed with Definiens Cellenger®. This
software applies cognition network technology (CNT) for information
extraction of invasion assays. The extraction uses knowledge-based
and context-dependent processing which imitates human cognition
[Athelogou et al., 2007]. This processing is defined in a functional
programming language called cognition network language (CNL).

The CNT-CNL facilitates a high-level semantic network analysis
based on the two main steps: (1) segmentation and (2) classification.
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Segmentation detects the objects of interest and classification depends
on the objects of interest. Both steps are repeated which leads to an
iterative process that performs the imaging processing [Baatz et al.,
2009].

During the segmentation step, a hierarchical network is processed
to detect the different objects of interest. In this study, the image
pixels are first mapped into the nucleus level, where nuclei and cyto-
plasm are screened. Combining objects at the nuclei level leads to
cell objects, and combining cell objects leads to the tumour level (see
figure 4.3).

Figure 4.3: The cognition network
technology (CNT) applied for the
detection of tumours in the invasion
assay.

4.2.1 Morphological measures

The CNT-based imaging analysis support the collection of morpho-
logical properties of the detected tumour objects. From the catalog
of properties provide by Cell Cellenger®, the following morpho-
logical measures were selected: group area, roughness, roundness,
length/width ratio, cell-cell contact, and border-to-origin.

Group area, roundness, length/width ratio, roughness (called
shape index in the Definiens Cellenger reference manual [AG.,
2008]), and cell-cell contact do not need further explanation. The
border-to-origin indicates the contact a group of cell contains with
the origin group of cell at the top of each assay.

In the next sections, Bayesian networks analysis will be used to
quantify and reason about the most important morphological mea-
sures during tumour invasion. It is expected that all these measures
are important, but I would like to answer the question: “Which of
these morphological measures are more important?”.
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4.3 Bayesian network

Bayesian networks are applied to learn the network of statistical
dependencies between the morphological variables and tumour in-
vasion types, and between morphological variables. Hereby, there
are no statistical dependencies allowed between the mutual exclu-
sive invasion types [Friedman, 2004].

The continuous morphological variables are discretized with
quantile discretization (see 2.1.1.13 on page 44) with three discretiza-
tion levels.

This discretized data will be used to construct a Bayesian network
with a search and score approach. The BDeu scoring metric will
be applied with a equivalent sample size equal to one. There is no
dimension of time included into our data set, so a static Bayesian
network is constructed. A greedy search algorithm is used with ran-
dom restarts every 3000 iterations. The search will allow maximum
three parent-child relationships following the constraints by the data
amount (see table 2.11 on page 45) [Yu, 2005].

The statistical dependencies or links among the nodes in the
Bayesian network are annotated with the influence score. This influ-
ence score, as described in 2.1.1.17 on page 46, illustrates the type of
relationship. Red links, a positive influence score, indicate that high
values in one node correspond to high values in the other node, and
low with low. Blue links, a negative influence score, are the oppo-
site, high values in one node correspond to low values in the other
node, and low with high. Green links, when influence score is zero,
indicate a non-monotonic relationship, e.g. U- or hump-shaped.
The direction of the links in the Bayesian network are not included
because they do not have any biological meaning.

The final Bayesian network is a consensus network based on the
top 100 networks (see section 2.1.1.16 on page 46). This consensus
network supports reasoning about the discriminative capacity mor-
phological measures for the different invasion types.

The Bayesian network in figure 4.4 illustrates the statistical de-
pendencies between the morphological measurements and the
tumour invasion types. Cell-cell contact is linked to all invasion
types, as expected the cell-cell contact has high discriminative power
among the different types of invasion.

Group area is linked to the collective invasion types: cohort and
coordinated, and roughness is linked to single cell and small group.
Group area and roughness show to to be directly dependent to tu-
mour invasion types.

The length/width ratio is not directly connected to any of the
invasion types. This is an unexpected result. Since during tumour
invasion, it is often thought that tumours elongate.

We examined the distributions of cell-cell contact, group area,
roughness and length/width ratio for individual- and collective
invasion per cell line (C35pool and C35hi).
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Figure 4.4: Bayesian network con-
structs a graph of statistical dependen-
cies between morphological measures
and tumour invasion types.4.4 Discriminative capacity of morphological measures

A further statistical analysis is performed on the important mor-
phological measures. A summary of the observed group objects are
listed in the table 4.1.

Number of group objects analysed n n
C35pool individual 498 collective 290

C35hi individual 732 collective 86

Table 4.1: Summary of the number of
objects analysis for each invasion type
per cell line.

The observed values of cell-cell contact, group area, roughness
and length/width ratio are listed in the following table 4.2. The mean
and standard deviation as well as the Bonferroni-corrected p-values
of a t-test are listed.

mean SD Mean SD p-value
Cell-cell-contact

C35pool individual 0.25 0.19 collective 0.65 0.08 p < 0.001

C35hi individual 0.17 0.15 collective 0.53 0.11 p < 0.001

Group area
C35pool individual 355.81 255.78 collective 1956.52 1243.44 p < 0.001

C35hi individual 236.40 176.51 collective 1085.98 575.03 p < 0.001

Roughness
C35pool individual 1.335 0.189 collective 1.543 0.272 p < 0.001

C35hi individual 1.392 0.179 collective 1.712 0.201 p < 0.001

Length/width ratio
C35pool individual 1.68 0.64 collective 1.79 0.67 p = 0.15

C35hi individual 1.73 0.57 collective 1.72 0.58 p = 1.0

Table 4.2: Mean values and standard
deviation (SD) for the morphological
measurements during individual- and
collective invasion.
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4.4.1 Cell-cell contact

Cell-cell contact is significant higher in collective invasion compared
to individual invasion (p < 0.001). In the Bayesian network, cell-cell
contact is the only morphological variable connected to all invasion
types.

Figure 4.5: Histogram cell-cell con-
tact for the comparison between
individual- and collective invasion.

4.4.2 Group area

Group area is significant higher in collective invasion compared to
individual invasion (p < 0.001). The area of cells during individual
invasion does not compensate for the area of more cells in collective
invasion, more cells still remain to have a bigger area for group
objects.



134

Figure 4.6: Histogram group area for
the comparison between individual-
and collective invasion.4.4.3 Surface roughness

Individual invasion (single cell and small group objects) occurs in
general with a smoother surface as collective invasion (cohort and
coordinated). The roughness of collective invasion can be of dif-
ferent sources. One possible source of increased roughness is the
formation of invadopodia [Weaver, 2006]. Invadopodia is a biologi-
cal process of the interaction between membrane protrusions (i.e.,
extensions of the cell membrane) and proteolysis of the extracellu-
lar matrix (i.e., breakdown of proteins into polypeptide or amino
acids) [Schoumacher et al., 2010]. A small experiment illustrated col-
lective invasive structures expressed vimentin and MT1-MMP, both
are documented to be active invadopodia [Attanasio et al., 2011].

Figure 4.7: Invadopodia are a source
of surface roughness during collective
invasion. Example of vimentin staining
of a collective invasive group [Katz
et al., 2011].

Figure 4.8: Histogram roughness for
the comparison between individual-
and collective invasion.
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4.4.4 Length/width ratio

Length/width ratio illustrated to have no discriminative capacity
between individual- and collective invasion. As a consequence,
elongation of invasive groups is not only occurring in individual
invasion; the same phenomenon is observed in the Drosophila ovary
[Wang et al., 2010].

Figure 4.9: Histogram length/width
ratio for the comparison between
individual- and collective invasion.

4.5 Discussion

Cognition network technology (CNT) based imaging analysis was
able to collect data of tumour invasion. This method was success-
fully used by the collaborators of the Division of Pathology at the
University of Edinburgh. The analytical analysis that I performed
allowed us to draw following conclusions.

Cell-Cell contact, group area, and surface roughness have the
most discriminative capacity between individual- and collective in-
vasion. In order to come to that conclusion, I performed a Bayesian
network analysis. The Bayesian network allows us to integrate
the tumour invasion types (i.e., single cell, small group (2-4 cell-
s/tumour), cohort (5-10 cells/tumour), and coordinated (>10 cell-
s/tumour)) as nodes into the network; the resulting network (see
figure 4.4 on page 132) pictures the most prominent statistical de-
pendencies among the nodes, the tumour invasion types and the
morphological variables. An independent statistical t-test confirms
the statistical dependencies found in the Bayesian network.

Cell-cell contact is the only morphological measure that is con-
nected to all tumour invasion types in the Bayesian network.

An additional variable highlighted by Bayesian network analy-
sis is that only collectively invading groups (>5 cells) are similarly
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linked to the overall group area. Similarly, roughness is only con-
nected to the individually invading groups (<5 cells).

The length/width ratio has less discriminative capacity between
individual- and collective invasion as presumed. It suggest that
the elongation of a tumour occurs an equal amount of degree in
individual invasion as in collective invasion [Friedl and Wolf, 2003].

This research shows two distinct modes of invasion are found.
Morphological differences between those invasion modes could
now be exploited in both organotypic cell lines models and human
cancer specimens to measure changes in tumour progression or drug
response. Future work could research how organotypic models such
as this used here could be directly translated to the models in a vivo
setting [Timpson et al., 2011].
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Conclusion

The best work in the
pathology of cancer now is
done by those who . . . are
studying the nature of the
seed. They are like scientific
botanists, and he who turns
over the records of cases of
cancer is only a ploughman,
but his observations of the
properties of the soil might
also be useful.

Stephen Paget

This work contributes to machine learning for computational sys-
tems pathology (Chapter 1). Existing machine learning algorithms
and “-omics” technologies have been introduced (Chapter 2). Novel
engineered machine learning models for systems pathology ap-
proaches have been applied for biomarker discovery (Chapter 3) and
understanding discriminative capacity of morphological measure-
ments during tumour invasion (Chapter 4).

5.1 Contributions

5.1.1 Biomarker discovery for ovarian cancer

A unique data set, the Edinburgh Ovarian Cancer Register (EOCR),
is collected by collaborators of the Division of Pathology at the Uni-
versity of Edinburgh was used to perform quantify the predictability
of biomarkers for ovarian cancer.

• Most important clinicopathological measures and proteome
biomarkers are selected for the prediction of overall survival
(OS) and progression-free survival (PFS).

• The selected clinicoapthological and proteome biomarker features
are used to build three-year overall survival (3YM-OS) classifier
and one-year model of progression-free survival (1YM-PFS) clas-
sifier. The high/low risk prognosis of 1YM-PFS classifier has the
area under the ROC curve equal to 0.789 and the F-measure equal



138

to 0.813. A classification model with these performance measures
is defined as very good; in 80 % of the cases it is able to predict if
a patient has a PFS longer as a year on an additional data set.

• Finally, molecular biological signatures are constructed for
histopathological assemblies.

5.1.2 Tumour invasion

The cognition network technology (CNT) applied by my collabora-
tor of the Division of Pathology at the University of Edinburgh was
successfully used for measuring morphological variables of tumours
during invasion.

• I was able to indicate the most discriminative morphological
variables for individual- and collective tumour invasion. This
was performed with a Bayesian network analysis together with
complementary t-test.

• This analytical analysis selected cell-cell contact, group area,
and surface roughness as the morphological variables with the
most discriminative capacity; a complementary t-test illustrated
the discriminative capacity of the morphological measures for
individual- and collective invasion.

• Finally, length/width ratio showed no discriminative characteris-
tics for individual- and collective invasion.

5.2 Future work

5.2.1 Biomarker discovery for ovarian cancer

The classification models constructed from the clinicopathologi-
cal data segmentation are not validated with a additional data set.
Their performance measures during feature selection are better than
the performance measures of the models based on the complete
data set. This could indicate that their corresponding classification
model would potentially perform better. This is the case for all clas-
sification models, except for papillary serous in stage 3 1YM-PFS
classifier.

A systems approach that incorporates clinicopathological and “-
omics” data will potentially benefit from machine learning approach
in order to quantify the predictability of a clinical output. This ma-
chine learning approach has the potential to be applicable for other
biomarkers studies and show the potential to integrate different
data types (i.e., clinicopathological measures in combination with
“-omics” data).

The selected biomarkers could be analysed for their functional
implications (i.e., functional enrichment analysis) in ovarian carci-
noma. Different data resources could be integrated into the analysis
in order to have a more complete picture of the interactions on a
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genomics [Tothill et al., 2008], exomics, transcriptomics, and pro-
teomics level [Mankoo et al., 2011]. A machine learning can provide
analytical support to answer the question: “Which measures are really
important for an patient entering a clinical practice with ovarian cancer?”.

5.2.2 Tumour invasion

Tumour invasion analysis is very challenging. The huge hetero-
geneity of tumour morphology leads to complex object detection
schemes and difficult to find morphological patterns for classifica-
tion of tumours. The biological measures needed to diagnose the
consequences of different types of tumour invasion are very poorly
understood. There is a lot of room for improvement in this area of
cancer biology and pathology. Novel techniques for imaging analy-
sis for biological research facilitate the measurement of morphologi-
cal characteristics of tumours during invasion.

As described during this chapter, tumour invasion is one of the
six hallmarks of cancer and is a fundamental program for tumour
progression. In order to better understand tumour progression and
its biological and clinicopathological implications, more biomarker
studies are required. This study can help to automate this future
research. One example of such a study would be to understand how
tumour invasion changes during drug response (e.g., Tamoxifen
resistance).

Pathologists often examine morphological characteristics for the
definition of tumour grade and histological type. Each of these cat-
egories can be characterized with a biological signature by applying
“omics” technology. These signatures will become important for
designing better diagnostic and prognostic tools. Here, I demon-
strate one of the first steps to quantify the system behind pathology;
these systems approaches have the potential to improve the clinical
practice in the future.
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7
Appendix A: data sets

This appendix will provide an overview of the data sets that are
used in course of this doctorate. All data set are collected in a
spreadsheet: PhD_Wim_Verleyen.xls. All the data was collect at
the laboratory of my collaborators at the Division of Pathology at the
University of Edinburgh.

7.1 Edinburgh Ovarian Cancer Register (EOCR)

From the Edinburgh Ovarian Cancer Register (EOCR), there are two
data sets related to the study explained in chapter 3 on page 89: (1)
the original data set used for feature selection and training set for
the 1YM-PFS and 3YM-OS classifiers and (2) additional validation
data set for the validation of 1YM-PFS and 3YM-OS classifiers.

7.1.1 Original data set for feature selection and training set for 1YM-
PFS and 3YM-OS classifiers

EOCR_original sheet contains the data with no missing values. This
data contains the following clinicopathological variables:

Age age of the patient (minimum age = 30 and maximum age = 86).

AgeStratified age stratified by 50 years (1: patient is younger as 50
years and 2: patient is older as 50 years).

Stage the stage of the tumour (1: stage 1, 2: stage 2, 3: stage 3, and 4:
stage 4).

Regimen the regimen prescription for a patient (1: platinum and 2:
platinum combined with taxane).

HistologicalType histological type (1: papillary serous, 2: clear cell, 3:
endometrioid, 4: mixed mullerian, 5: mucinous, and 6: adenocar-
cinoma).

7.1.2 Additional validation data set for the validation of 1YM-PFS and
3YM-OS classifiers

EOCR_validation sheet contains the additional data set (with no
missing values) used for validation of the 1YM-PFS and 3YM-OS
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Histological type Stage 1 Stage 2 Stage 3 Stage 4

Papillary serous 7 9 146 47
Clear cell 3 6 3 2
Endometrioid 5 7 36 10
Mixed mullerian 3 7 26 6
Mucinous 0 1 5 0
Adenocarcinoma 3 0 6 1

Table 7.1: Frequency table of the
histological types in each stage.

classifiers.

7.2 Tumour invasion data set

Tumour_invasion sheet contains the data used for the tumour inva-
sion study in chapter 4 on page 127. This data set has no missing
values.
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