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Abstract 

In conservation ecology, abundance estimates are an important factor from which management decisions are 

based. Methods to estimate abundance of cetaceans from visual detections are largely developed, whereas 

parallel methods based on passive acoustic detections are still in their infancy. To estimate the abundance of 

cetacean species using acoustic detection data, it is first necessary to correctly identify the species that are 

detected. The current automatic PAMGUARD Whistle Classifier used to automatically identify whistle 

detection of cetacean species is modified with the objective to facilitate the use of these detections to 

estimate cetacean abundance. Given the variability of cetacean sounds within and between species, 

developing an automated species classifier with a 100% correct classification probability for any species is 

unfeasible. However, through the examples of two case studies it is shown that large and high quality 

datasets with which to develop these automatic classifiers increase the probability of creating reliable 

classifiers with low and precise misclassification probability.  

Given that misclassification is unavoidable, it is necessary to consider the effect of misclassified detections 

on the number of observed acoustic calls detected and thus on abundance estimates, and to develop robust 

methods to cope with these misclassifications. Through both heuristic and Bayesian approaches it is 

demonstrated that if misclassification probabilities are known or estimated precisely, it is possible to 

estimate the true number of detected calls accurately and precisely. However, misclassification and 

uncertainty increase the variance of the estimates. If the true numbers of detections from different species 

are similar, then a small amount of misclassification between species and a small amount of uncertainty in 

the probabilities of misclassification does not have a detrimental effect on the overall variance and bias of 

the estimate. However, if there is a difference in the encounter rate between species calls associated with a 

large amount of uncertainty in the probabilities of misclassification, then the variance of the estimates 

becomes larger and the bias increases; this in return increases the variance and the bias of the final 

abundance estimate. This study despite not bringing perfect results highlights for the first time the 

importance of dealing with the problem of species misclassification for cetacean if acoustic detections are to 

be used to estimate abundance of cetaceans.  
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Chapter 1: General Introduction 

 

1.1. Background 

The viability of many populations in all taxonomic groups is threatened by anthropogenic 

disturbances, such as habitat loss and degradations, harvesting (for hunting or gathering for 

food, medicine, fuel and material), diseases, accidental mortalities due to interaction with 

human activities, pollution and/or climate change (Schipper et al., 2008; Stuart et al., 2004). 

To protect them, environmental managers and policy makers have the responsibility to seek 

advice and gather information from scientists to create policies and to organise management 

actions which will hopefully help the preservation and conservation of these natural 

ecosystems. Ecosystems are complex, non-linear and influenced by stochasticity, it is thus 

difficult for scientists who try to understand them to predict their natural dynamism 

accurately. Anthropogenic disturbances and current management strategies add other levels 

of complexity; and given this complexity the outcome of scientific analysis and advice 

contains numerous sources of uncertainty that environmental managers and policy makers 

need to consider when they make decisions. By identifying the origin of these uncertainties, 

characterising them, quantifying them and finally understanding their impact on particular 

management actions scientists will help decision-makers to make cost-effective decisions to 

minimise potential risks to the environment. Four sources of uncertainty are commonly 

recognised (Akçakaya et al., 2000; Boyd et al., 2010; Harwood and Stokes, 2003): 

Natural uncertainty: This uncertainty is a consequence of the natural demographic and 

environmental stochasticity (Akçakaya et al., 2000; Harwood and Stokes, 2003).  

Measurement error: This uncertainty is a consequence of inaccuracy and imprecision during 

data collection or in the estimation of the parameter of interest. Most of the time only a 

sample of the observations of interest is collected. The choice of the sampling strategy or the 

method of statistical inference used to estimate the parameter of interest from the 

observations generates this uncertainty. 

Model error: Models are regularly used to describe complex natural processes, to better 

understand their mechanism and/or to predict how this system will change in the future. 

Given the complexity of natural processes, models can only be an approximation of reality 

and thus they provide an incomplete representation of the reality. Model errors come from the 

differences between the model and the reality. (Harwood and Stokes, 2003). 
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Implementation errors: These errors are a consequence of errors in the management strategy, 

for example these could arise from delays in the establishment of protected areas, inadequate 

protection within them, imperfect policy implementation and/or unpredicted changes which 

generate a failure to reach the management objectives (Ellison, 1996). 

 

Given these uncertainties, risk assessment frameworks have been defined to help in the 

decision process. A risk is the probability that a hazardous outcome will happen and risk 

assessment is the quantification of this probability (Rowe, 1977). If there was no uncertainty 

then a scientist would be certain about the outcome and there would be no risk. The role of 

conservation scientists is to use robust methods to measure the probability of an outcome that 

will characterise and incorporate all these uncertainties. The role of environmental managers 

and policy makers in view of the uncertain outcome is to decide if the risk is acceptable or 

not, and if it is not, to propose new management strategies which will minimise the risk and 

optimise the balance between social, economic and ecological objectives.  

Complex mathematical models, often called “operating” models, have been developed for 

this purpose (Harwood and Stokes, 2003). These models are a combination of three types of 

models: a process model, describing the underlying biological process with factors 

influencing this process, an observation model, illustrating the data collection and analysis, 

and finally a management model, simulating the effect of management decisions on the 

biological model (Harwood and Stokes, 2003). These models are used to test the performance 

of different management options. 

Either a frequentist or a Bayesian statistical framework can be used to develop such models. 

However the interpretation of the result will be different depending on the statistical approach 

used. To illustrate these differences, consider a model � describing a system of interest. 

Conventional frequentist statisticians will establish whether the null hypothesis (H0 : data x 

come from the model M) is rejected or failed to be rejected at �-level of significance. This 

framework does not give information about the actual probability of obtaining the model 

given the data ��|�� (Ellison, 1996). A Bayesian framework, based on the Bayes’ theorem 

(Bayes and Price, 1763)(Eq1-1) estimates this probability: 

 

 ���|�� ∝ ���|��. ���� (1-1)     
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Where ���|�� is the likelihood function describing the data, ���|�� is the posterior 

distribution representing the probability of obtaining the model given the data and current 

information about the model M (����). 

The Bayesian framework provides decision-makers a probability of the outcome. In this 

particular example, the outcome is the probability that the model describes the system given 

the data and prior knowledge of the model M. It is then the responsibility of the decision 

makers to interpret this outcome (probability) within a risk assessment framework to 

determine if the risk of damage or disturbance is too high, and that potential irreversible 

damage will occur to the system. It is the presence of the prior distribution that makes 

Bayesian inference a good tool to be used during the risk assessment procedure. The choice 

of the prior distribution variance for a given parameter generates its level of uncertainty. 

Running a sensitivity analysis comparing the outcome of similar models with different prior 

variances will help in evaluating the consequences of parameter uncertainty, and to select the 

model generating the lowest acceptable risk. If models are sensitive to the prior, then every 

effort should be made to collect more information to reduce the variance of the priors 

(Harwood and Stokes, 2003). 

 

1.2. Abundance estimation a tool for management strategy 

1.2.1. Generalities 

Article 1.a of the European Habitats Directive defines conservation as “a series of measures 

required to maintain or restore the natural habitats and the populations of species of wild 

fauna and flora at a favourable status”. The notion of “a favourable status” for a species is 

defined in Article 1.i and refers to the idea of  “maintaining a population or species on a long-

term basis as a viable component of its natural habitats”, neither reducing nor likely to reduce 

their habitat range and ensuring there is and will continue “to be a sufficiently large habitat to 

maintain its population on a long-term basis” (European Union, 1992). Risk assessment 

methods such as Population Viability Analysis (Gilpin and Soulé, 1986) used to predict the 

probability of extinction within a particular interval of time, and Management Strategy 

Evaluation (Punt, 1992) used in fisheries management to evaluate the expected performance 

of harvest strategies, are frequently used in conservation biology to achieve the Habitats 

Directive objectives. 

Maintaining, and/or restoring a population, predicting a probability of extinction or 

measuring the impact of harvesting strategies, all require knowledge of the size of the current 
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population. Conservation strategies consist of measuring trends in population size, and 

considering if this size is large enough to insure the existence of the population in the long 

term. 

Ideally to measure the exact population size of a species it would be necessary to detect all 

the animals within the population. In practice due to, for example, the behaviour, the habitat 

or the distribution range of species, it is rarely possible to do so. Thus, abundance must be 

estimated from a sample of the population. Once the number of animals has been counted and 

identified, it is then necessary to extrapolate these counts to estimate the abundance of the 

species. Given that in the majority of the counts not all animals can be detected, an intuitive 

estimator of abundance, !", assuming the entire habitat range of the species is surveyed, is 

given by: 

!" = #�$ 

where n is the number of animals detected and �$ represents the estimated probability of 

detecting an animal (Buckland et al., 2001). Depending on the approaches used to detect and 

count individuals, �$ can be estimated by different methods (Borchers et al., 2004; Buckland 

et al., 2001). One common method used to estimate �$ is the distance sampling theory 

described in detail by (Buckland et al., 2001, 2004). This theory is based on the principle that 

the probability of detecting an animal decreases with the distance between the animal and the 

observer. This method consists of surveying randomly placed transects (line transect 

sampling) or randomly placed points (point transect sampling) (Borchers et al., 2004; 

Buckland et al., 2001) and counting the number of animals detected along them, and 

measuring the distance between the animal and the line or point. The basic formula to 

estimate abundance becomes: 

 !" = #%&�' 
(1-2)     

with n being the number of detected animals, a is the surveyed area (area of all the transects), 

A is the total area of interest and finally Pa is the mean probability of detecting an animal. In 

this formula only Pa is unknown. In the simplest model, the only factor influencing Pa is 

assumed to be distance from transect or sample point, i.e. g(x) being a function linking the 

probability of detecting an animal to its distance from the line or point. This basic theory is 

based on four key assumptions (Buckland et al. 2001):   
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1. all animals directly on the transect line or at the sample point are certain to be 

detected (g(0)=1; 

2. animals do not move before detection in reaction to the observer or observation 

platform; 

3. the distance of a detected animal from the transect or sample point is measured 

accurately;  

4. detections are independent events. 

 

1.2.2. Abundance estimation of cetaceans 

Depending on the species for which this abundance estimation method is being used, some or 

all these assumptions can be violated. With cetacean species, the four key assumptions of the 

distance sampling theory are violated. 

 

Marine mammals and particularly cetaceans spend all their time in the water and most of the 

time underwater (Boyd et al., 2010). They can be visually detected when they come to the 

surface to breath. However, during their underwater time some species are extremely vocal 

(Richardson et al., 1995). Odontocete species produce vocalisations generally grouped into 

three categories: whistles (frequency modulated sounds which vary with time), clicks (very 

short broad band sounds), and long pulsed sounds also referred to as burst pulse calls 

(Richardson et al 1995). Depending on species these vocalisations can be detected up to few 

tens of kilometres. Baleen whale species produce sounds (moans, calls) detectable up to 

several hundreds of kilometres (Sirovic et al., 2007). 

Violation of assumption 1 

Cetaceans that are on the transect line or at the sampling point may be missed because of 

availability bias or perception bias: 

- Availability bias happens when the animal is not detectable. With visual detections, 

the situation happens when cetaceans are under the water. For acoustic detections, 

availability bias occurs if the species does not vocalise or chooses not to vocalise, for 

example sperm whales and beaked whales vocalise essentially during their dive 

(Barlow and Taylor, 2005; Johnson et al., 2006), for humpback whale, males vocalise 

mainly during breeding season whereas female vocalise very rarely (Vu et al., 2012).  

- Perception bias occurs when the animal is detectable but missed by the observer. With 

visual detection this situation happens when the animals are at the surface but are not 
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detected by observers. With acoustic detections this type of bias occurs when animals 

are vocalising but are not detected (acoustic missed detection). Acoustically, a missed 

detection can arise if the vocalisation is not loud enough to be detected, or if the 

vocalisation is very directional and the animal is not pointing the hydrophone 

(Zimmer et al., 2008). 

Violation of assumption 2 

This assumption is regularly violated as many cetacean species have been observed avoiding 

the survey platform (Au and Perryman, 1982; Barlow, 1988) or are attracted to it (Buckland 

and Turnock, 1992). These behaviours have consequences for both visual and acoustic 

detections. 

Violation of assumption 3 

The accuracy of the distance measurement is dependent on the reliability of the method used 

to estimate the distance. It will nearly always be an estimate as it is difficult at sea to have an 

exact measurement (Gillespie et al., 2010; Leaper et al., 2010). 

Violation of assumption 4 

This assumption is violated in situation where, for example, species live in groups. Thus, if 

one animal is detected then the probability of detecting other individuals within the group 

may rise after the first detection because it is difficult for the observer not to look harder in 

the area of the first detection. 

 

1.2.2.a Abundance estimation from visual detections 

Nevertheless, distance sampling theory is one of the most common methods used to estimate 

abundance of cetaceans (Boyd et al., 2010). This is possible because a lot of work has been 

carried out to make distance sampling methods robust to these violations when being used 

with visual detections. 

 

Line transect sampling has been combined with capture-recapture theory to estimate g(0) 

despite the perception bias of the observers (Borchers et al., 2004; Borchers and Samara, 

2007; Buckland et al., 2004; Skaug and Schweder, 1999). In this approach, different 

observers survey the same area from two independent platforms. Each observer records their 

detections, and detections from all observers are then compared. Detections that have been 

made by both observers are recorded as duplicates, and correspond to recaptures in capture-

recapture theory (e.g Canadas et al., 2005; Hiby and Hammond, 1989; Hiby, 1999).  
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Other methods have been developed to deal with the problem of availability bias for visual 

detections. For cetaceans this availability bias is often dependent on the surfacing behaviour 

of the species. If the animals become available for an instant only, then it is necessary to 

account for this in the abundance estimation formula by adding a component modelling the 

probability of being available while within a detectable range (Buckland et al., 2004; Skaug 

and Schweder, 1999). If the animal is available for detection for some time and its 

availability changes when it is within detectable range (for example a sperm whale can stay at 

the surface for up to 10 minutes before diving for periods of 50 minutes or more) then its 

availability is classified as ‘intermittent’ (Buckland et al., 2004). In this situation the 

component of the abundance estimation function modelling availability should model the 

process of becoming available and the duration of availability. Borchers and Samara (2007) 

developed a line transect sampling method using a hidden Markov model to deal with 

intermittent availability. Their method modelled the probability of detecting an animal 

available at time t, as a function of its probability of being available at time t-1. 

Buckland and Turnock (1992) developed a survey approach to accommodate violations of the 

second and third assumptions. Using their approach, two independent platforms, the tracker 

and primary platforms, survey different areas ahead of the vessel to account for responsive 

movements by the animals to the approaching survey platform. The tracker platform uses 

high power binoculars (Big Eyes) to survey an area well ahead of the vessel with the 

objective of detecting animals before they respond to the boat  (Buckland and Turnock, 1992; 

Hedley et al., 1999). This estimation method deals with the responsive and/or random animal 

movement and reduces the dependence between detection which can rise from un-modelled 

variables such as animal surfacing behaviour (Hedley, 2000). 

The violation of the fourth assumption is not important in practice as robust methods have 

been developed to deal with it (Buckland et al., 2010). 

 

1.2.2.b Abundance estimation from passive acoustic detections 

1.2.2.b.i  Visual versus Acoustic detections 

For some species, detecting cetaceans by the sounds they produce is often a more efficient 

method than detecting them visually, and practically it offers many advantages over visual 

methods. Acoustic detections are independent of daylight and they are less dependent on 

environmental conditions (visual detections are dependent on distance of visibility, sun glare, 

sea state) (Palka, 1996). Another advantage is that the acoustic detection process can be fully 
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automated (Baumgartner et al., 2008; Gillespie and Chappell, 2002; Mellinger and Clark, 

1997; Mellinger et al., 2011) while automated detection and species recognition form visual 

recordings is in its infancy. However, in practice it is only in the last decade or two, with the 

improvement of underwater recording systems and computer technology that the interest in 

using acoustics to detect cetaceans has rapidly grown. Passive acoustic monitoring (PAM), 

the recording and analysis of sounds emitted by species, is more widely used than active 

acoustics to detect cetaceans. Passive acoustic methods may use stationary hydrophones 

(autonomous or cabled) (Mellinger and Clark, 1997; Sousa-Lima et al., 2013), which can 

record what is happening in a specific area over a longer period of time and at a relatively 

low cost, or towed hydrophones, which allow a wider spatial coverage and can be used in 

association with visual observations.  

 

1.2.2.b.ii Abundance estimation from fixed hydrophones: cue counting 

methods 

Using acoustics to detect cetaceans is a relatively recent innovation and consequently 

estimating abundance from acoustic detections is in its infancy (Marques et al., 2013). 

Currently most of the methods used to estimate abundance of cetaceans from acoustic 

detections are based on distance sampling theory used for visual detections. This method 

needs to be modified before it can be properly used with the acoustic detections. Indeed the 

basic formula 1-2 in distance sampling is based on the number of animals n visually detected. 

With acoustic detections, one animal can produce numerous vocalisations in a short period of 

time. Animal abundance can be estimated using cues, where cues are defined as 

instantaneous availability events (Buckland et al., 2004). Acoustic detections, particularly 

vocalisations from cetaceans, can thus easily be defined as cues when estimating animal 

abundance because they are not produced continuously. The description of a cue can be 

species dependent; for example a blue whale (Balaenoptera musculus) call is considered a 

cue (Moore et al., 1998), whereas for humpback whales (Megaptera novaeangliae) a song 

unit is considered a cue (Swartz et al., 2003). For echolocating species, one click of a beaked 

whale is considered as a cue by Marques et al. (2009) whereas Kyhn et al. (2012) used a click 

train from a harbour porpoise as a cue. For whistling species a cue could be considered to be 

one whistle (Ansmann et al., 2007). However with cetaceans a cue does not have to be 

necessary the vocalisation produced by the animals, Moretti et al. (2010) used the acoustic 

component at the beginning of a Beaked whale dive as a cue whereas for example Hiby 
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(1985) used the surface behaviour of great whales to estimate their abundances. From these 

cues, Hiby (1985) developed a cue counting theory to improve the detection of whales during 

line transect surveys. This theory is derived from distance sampling theory and is often 

referred to as the cue-counting distance sampling method (Buckland et al., 2001; Marques et 

al., 2011). If only cues are used in the abundance estimation formula then it is the abundance 

of cues, that will be estimated and not the abundance of the population. To overcome this 

issue several approaches have been proposed for estimating abundance from acoustic 

detections / acoustic cues. These approaches fall into two broad categories; firstly, those 

dealing with acoustic cues from stationary hydrophones, and secondly those dealing with 

detections from towed hydrophones. 

 

Marques et al (2011) proposed a method based on cue counting theory to estimate the density 

of right whales (Eubalaena japonica) in the Bering Sea detected by stationary hydrophones: 

 (" = #)*1 − ,-./&0�$12̂  
(1-3)     

where #) was the number of detected right whales calls in T hours within the covered area &0, 2̂ represented the call rate per individual, �$ the detection probability within &0 and ,-. 

corresponded to the estimated proportion of false positive detections. In this formula   

#)*1 − ,-./ corresponded to the true number of calls detected and  
45*678-9/:;̂   measured the 

number of individual n of the abundance estimation equation 1-2 with visual detections. 

The density estimation (" (and consequently the abundance estimation) was dependent on the 

estimation of three parameters (�$, 2̂ and ,-.) which required independent analysis to be 

obtained.  

To estimate the detection function �$ it is necessary to estimate the distance of the vocalising 

animal to the hydrophones. In this paper they used a predictive acoustic propagation model 

from a single hydrophone to estimate the distance. Other authors have used a variety of 

physical or mathematical models to estimate the distance of the vocalising animal from a 

single hydrophone (McDonald and Fox, 1999) or array of hydrophones (Harris, 2012; Thode 

et al., 2012); these include hyperbolic techniques, waveguide models (Wiggins et al., 2004) 

and multipath propagation models (Tiemann et al., 2004).  

Marques et al., (2013), in a review of passive acoustic density estimation methods, 

recommended that cue rates should be estimated in the survey area, while the survey was 
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being conducted, and over a large and random sample of animals. Indeed acoustic cue rates 

have been shown to vary as a function of time of day, (Boisseau et al., 2008; Gordon et al., 

2000; Matthews et al., 2001), group size (Ansmann et al., 2007), and behaviour. These 

sources of variation make cue rate a difficult parameter to estimate accurately. 

 

In equation 1-3, ,-. is a parameter estimating the probability of false positive detections. 

Detections are classified as false positives when they have been identified by the detector as 

vocalisations made by the species of interest, but in reality these sounds were not. A false 

detection is generally generated by the presence of a sound with characteristics similar to the 

sound of interest such that the detector cannot differentiate them. These sounds could be 

either other biological sounds made by another species or associated with the environment or 

it could be anthropogenic sounds such as boat noise, electrical noise, sonars, or echo 

sounders. If false positive detections are not identified and removed, the number of 

vocalisations from the species of interest will be over-estimated. 

 

1.2.2.b.iii Abundance estimation from towed hydrophones 

Abundance of cetaceans estimated from towed hydrophones has been estimated principally 

for sperm whales (Barlow and Taylor, 2005; Borchers et al., 2007; Lewis et al., 2007) and 

porpoise species (Gerrodette et al., 2011; Gillespie et al., 2005). For both species the method 

used was the same as used for visual line transect theory and visual detections. These species 

have some of the most distinctive vocalisations of all the cetacean species making them easy 

to detect automatically with low false positive detection rates. Similarly their vocalisation 

rates are very predictable.  

Sperm whales produce clicks almost continuously during their dive with a constant inter-click 

interval. This regularity makes it is easy for a manual operator to identify individuals in the 

same way as a visual operator does with a surfacing animal. This regularity also allows 

measurements of the bearing (angle between the hydrophones and the vocalising animal) to 

be estimated by measuring the time delay between detections at a pair of hydrophones. The 

intersection point of consecutive bearings is then used to estimate the distance between the 

animal and the track line (Leaper et al., 2000). However this distance could be a source of 

bias when used in distance sampling theory. Indeed, ideally the distance needed to have a 

robust abundance estimate is the horizontal distance projected to the surface and not the 

perpendicular distance to the transect lines. To obtain horizontal distance the depth of the 
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animal needs to be known. In the current literature, most of the abundance estimation studies 

(Leaper et al., 2000; Lewis et al., 2007) using towed hydrophones ignored this factor whereas 

some authors demonstrate that in their study the average distance between the animal and the 

hydrophones is such that the difference in slant and horizontal distance is small enough to be 

ignored (Barlow and Taylor, 2005). 

Porpoises do not produce regular clicks but do produce frequent sequences of clicks (click 

trains) (Linnenschmidt et al., 2013). It is generally easy for an operator looking at a display of 

bearing versus time to identify click trains and thus individuals. However, there are 

difficulties in estimating the number of individuals accurately, particularly when there is a 

group of several animals. In this case the detection unit can be a group and a new parameter 

needs to be added to Eq. 1-3 specifying the average group size. To the best of my knowledge 

no abundance estimate of species other than sperm whales or porpoises have been made using 

data from towed hydrophones only. A current study on minke whale is ongoing (Norris et al., 

2010). 

 

1.2.2.b.iv Classifiers 

As well as modifying visual distance sampling theory, estimating abundance from acoustic 

detections also requires improvements in the methods used to detect and identify (classify) 

sounds. Visual detection and identification is dependent on environmental conditions, species 

behaviour and observer competence. Although, reliable and consistent automatic detection 

systems have been developed for marine mammal vocalisations (Baumgartner et al., 2008; 

Gillespie and Chappell, 2002; Mellinger and Clark, 1997; Mellinger et al., 2011), that are 

largely unaffected by most environmental conditions, these detectors lack the ability to 

immediately identify the vocalising species. While some species produce easily identifiable 

vocalisations, e.g. sperm whale, harbour porpoise, humpback whale, blue whale, the majority 

do not, and produce vocalisations that are difficult to differentiate (Oswald et al., 2003; 

Rendell et al., 1999).  

 

In the early days of passive acoustic detection, species were identified by listening and 

observing the spectrogram of their recorded sounds (Clark et al., 1996; Thomas et al., 1986). 

This process is time consuming and only possible if the observer is very familiar with the 

entire vocal repertoire of each species, or if the species has very specific vocal characteristics. 

With the improvement of passive acoustic monitoring systems, it is now common to record 
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terabytes of acoustic data after only a few weeks of recording. With such large data volumes, 

manual identification and classification of individual cues is not practical or feasible. Over 

the last two decades classifiers (Gillespie and Caillat, 2008; Gillespie et al., 2013; 

Nanayakkara et al., 2007; Oswald et al., 2007; Roch et al., 2007) have been developed to 

automatically identify species from their vocal characteristics. One advantage of these 

automatic classifiers is their ability to classify gigabytes of data in few hours. On the other 

hand, they may not be as accurate as a human operator. The accuracy of identification is a 

species specific problem, and some sounds are more difficult to identify than others, for 

example, whistles from pelagic delphenid species are more difficult to identify to species than 

blue whale calls.  

 

Among the current classifiers developed it is possible to identify three common stages for the 

creation of these classifiers. For each stage different methods specific to the classifiers can be 

used: 

1. Feature or variable extraction: For each species to be identified / discriminated, some 

physical characteristics are extracted from vocalisations recorded concurrently as an 

observer was visually identifying the species. For click vocalisations these parameters 

can be peak frequency (maximum frequency), click length, frequency bandwidth 

(Gillespie and Caillat, 2008; Soldevilla et al., 2008). For whistle vocalisations, peak 

frequency, number of inflexion points within the whistle, start and end frequency are 

commonly used (Oswald et al., 2003; Rendell et al., 1999). Parameter extraction can 

be done manually (Oswald et al., 2003) or automatically (Gillespie et al., 2013) 

2. Statistical selection of the most appropriate classification algorithm: Once these 

variables are extracted a statistical method is used to find the best algorithm which 

will identify each species. Some of the most used methods are linear discriminate 

function analysis (Gillespie et al., 2013; Oswald et al., 2003), neural network process 

(Mellinger, 2008; Potter and Mellinger, 1993; Thode et al., 2012) and tree 

classification (Gillespie and Caillat, 2008; Oswald et al., 2003).  

3. Efficiency testing: Finally, this algorithm is tested with data where the species has 

previously been reliably identified, to measure and report the efficiency of the 

classifier. When only two species are classified, this efficiency can be represented by 

a curve called Receiver Operating Characteristic (ROC) (Fawcett, 2006), representing 

the false negative versus the false positive rates. When more than two species are 

classified, the accuracy of the classification can be illustrated by the correct 
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classification probability of each sound only (Gillespie and Caillat, 2008; Roch et al., 

2007; Soldevilla et al., 2008) or it can be expressed in a matrix called confusion 

matrix. This confusion matrix has the useful advantage of expressing both correct 

classification probabilities and misclassification probabilities. In a square confusion 

matrix of dimension < × <, m representing the number of classification groups, here 

the number of species to discriminate, and each element of the matrix pij is the 

probability of classifying species j (column) as species i (rows). In particular, the 

entries for i=j represent the probabilities of correctly classifying a species (success) 

and the off-diagonals (i≠j) are probabilities of incorrectly classifying species j as 

species i (failures or misclassification). A small pij, ∀ i≠j, means a low 

misclassification probability of species j as species i while a large pij, ∀ i≠j, means a 

high misclassification probability. On the other hand, a small pij, ∀ i=j, means a low 

correct classification probability of species j and vice versa for a high pij, ∀ i=j, 

Hence, the confusion matrix is given as 

 

 > =
?
@A

�BB ⋯ 	⋮ ⋱ 	�GB⋮�HB
⋯⋱⋯ 	

�BI ⋯⋮ ⋱�GI⋮�HI
⋯⋱⋯

						
�BH⋮�GH⋮�HHJ

KL  

where ∑ NOPP = 1∀1 ≤ R ≤ <. The confusion matrix quantifying the misclassification 

between species is a precious tool to be able to measure the false positive detection 

probabilities for each species.  

Once created a classifier is used to associate to new acoustic detections a species of the 

classification group of the classifier. 

 

1.3. Thesis outline 

The aim of this PhD is to modify current methods for classifying whistle vocalisations and to 

develop new methods for estimating the correct number of whistle vocalisations detected by a 

hydrophone, with an objective of using these detections to estimate animal abundance.  

Several studies have previously estimated abundance of cetacean species from clicks or calls 

(e.g. Gerrodette et al., 2011; Gillespie et al., 2005; Marques et al., 2011, 2009; McDonald and 

Fox, 1999), but to the best my knowledge this has never been done using whistles.  
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Most of the odontocete cetaceans produce whistles. Whistles are a frequency modulated 

signal emitted mainly for communication. These sounds are highly variable within (Rendell 

et al., 1999) and between species (Rendell et al., 1999; Steiner, 1981). So the first challenge 

in using whistles to estimate abundance is to identify the species producing the detected 

whistles. In the first part of this PhD (chapters 2 to 5) whistle classifiers are developed. The 

objective of these chapters was not to develop yet another whistle classifier technique, but to 

identify those parameters influencing the quality of the classifier, and to establish a method to 

quantify the uncertainty of the classification probabilities due to measurement error. In 

chapter 2, the current PAMGUARD Whistle Classifier (http://www.pamguard.org/) 

developed by Gillespie et al. (2013) is modified to develop a new method to quantify the 

uncertainty of the classification probabilities. In chapters 3 and 4 this modified classifier is 

applied to data to identify which features of an acoustic dataset are important to obtain a 

reliable classifier. The datasets in chapters 2 and 3 were compiled from data recorded from 

towed hydrophones towed by several small survey platforms operating around the coast of 

Scotland with the specific objective of developing a classifier to identify the presence of 

bottlenose dolphin (Tursiops truncatus) (a protected species in European waters) in some 

potential wind farm sites. The dataset for chapter 4 was collected from towed hydrophones 

during a large scale survey organised to assess the impact of bycatch on some cetacean 

species with a view of providing recommendations on safe bycatch limits for the common 

dolphin (Delphinus delphis) (CODA, 2009). Chapter 5 is a general discussion around the 

previous three chapters. 

 

From the literature a summary of the vocalisation frequency range of all the species classified 

within these three chapters are presented in Table 1-1. Papers of data collected from wild 

animals and in the North Atlantic and preferably close to the British isles were preferred 

when possible. When no reference was found with these criteria then references from data 

collected in other oceans are used. All the referred studies used different type of hydrophones 

with the maximum frequency detected specified in the table. This table highlights the large 

overlap of the whistle frequency ranges between species. 

 

The nature and the variety of whistles, means that a perfect classifier will never exist, and that 

a confusion matrix of a classifier will always have misclassification probabilities greater than 

zero (non-diagonal elements ≠ 0). The consequence of such classification probabilities is that 

the observed number of detections for a species i after classification is the sum of detections 
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correctly identified plus detections of other species misidentified as species i. So the observed 

number of detections of species i is a biased estimate of the actual number of detections of 

that species and should then not be used directly to estimate abundance. So the second part of 

this PhD (chapters 6 and 8) proposes three methods evaluated on simulated data (chapters 6 

and 7) and then applied to real data (chapter 8) to estimate the true number of detections for 

each species from the observed detections after classification. The principal objective of these 

chapters was to investigate the impact of different misclassification probabilities and varying 

amounts of uncertainty within the confusion matrix, on the reliability and precision of 

estimated true number of detections. In chapter 6 analytical and heuristic methods are used to 

conduct this investigation whereas a Bayesian framework is used in chapter 7. Finally chapter 

8 applies these methods to some of the data used in chapters 3 and 4.  

Chapter 9 summarised the results of the three chapters in a general discussion about the 

impact of misclassification and concludes this thesis. 
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Table 1-1: Whistle frequency ranges for the species used in this thesis, with the location of recordings, the 

frequency limit of the recording system and the references. 

 
Whistles 
frequency 

range (kHz) 

Recorder 
frequency 
limit (kHz)  

Location References 

Bottlenose dolphin 

Tursiop truncatus 
7.3-16.2 20 North Atlantic (Steiner, 1981) 

Common dolphin 

Delphinus delphis 
3.56-23.51 48 British Isles 

(Ansmann et al., 
2007) 

Striped dolphin 

Stenella coeruleoalba 
8.1-14.8 22 

Tropical East 
Pacific 

(Oswald et al., 
2003) 

Short finned pilot whale 

Globicephala 
macrorhynchus 

6.32-8.69 15 Caribbean 
(Rendell et al., 

1999) 

Long finned pilot whale 

Globicephala melas 

4.15-8.86 

2.821-4.72 

15 

20 

Mediterranean 

Atlantic 

(Rendell et al., 
1999) 

(Steiner, 1981) 

White beaked dolphin 

Lagenorhynchus 
albirostris 

3-35 44 Iceland 
(Rasmussen and 

Miller, 2002) 

White sided dolphin 

Lagenorhynchus acutus 
8.21-12.14 20 Atlantic (Steiner, 1981) 

Risso’s dolphin 

Grampus griseus 
6.63-13.41 15 Azores 

(Rendell et al., 
1999) 
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1.4. Overview of Bayesian theory  

1.4.1. Introduction 

The objective of the second part of this thesis is to estimate the true number of whistle 

detections for several species from the number of observed whistle detections, an unknown 

number of which are misclassified. For a fixed survey period, the true number of acoustic 

detections is mainly dependent on three parameters, the number of individuals producing 

sounds, the call rate of the species and the detection probability of the whistle detector. Some 

prior knowledge about these different parameters is sometimes available from previous 

surveys or analysis. Although this prior knowledge can occasionally be very accurate, it is 

most of the time very vague. As explained above in section 1.1, Bayesian methods provide a 

well-adapted framework to analyse the impact of uncertainty of model parameters on the 

precision of the outcome variables. This section provides a detailed description of the 

principles of Bayesian theory. 

 

1.4.2. Bayes’ theorem 

The Bayesian approach was first introduced at the end of the eighteen century by 

mathematicians, such as Bernoulli, Bayes and Laplace (Fienberg, 1992).  

Bayesian statistics make inference about a parameter θ conditioned on the observed data X 

and on some knowledge about θ which is assumed to be gained prior to the observation of the 

data (Gelman et al., 2004). The data are seen as fixed and the inference on U is based on the 

posterior distribution, V�U|W), which is the conditional probability of U given X. This 

posterior distribution comes from the application of the Bayes’ Theorem (Bayes and Price, 

1763).  

 V(U|W) =
,(W|U)X(U)

,(W)
, (1-4)     

where ,(W|U) is the likelihood (as it is used in  classical frequentist statistics), X(U) 

represents the prior distribution and ,(W) is the function of the data, independent of  U. 

Because the data are considered as fixed, X(W) can be considered as constant and Eq 1-4 can 

be formulated as (Gelman et al., 2004) 

 V(U|W) ∝ 	,(W|U)X(U)  
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1.4.3. Elements of Bayesian analysis 

1.4.3.a Prior distribution 

The prior distribution,	X�U�, represents the initial knowledge that we have about the 

parameter of interest, before the data are observed. In the absence of prior knowledge, an 

uninformative or “vague” prior is used. Uninformative priors are selected such that they have 

a suitable large variance (Gelman et al., 2004). In this case, the inference on the parameter U 

depends mainly on the data. However, when information about U that has been gained 

independently of the data (for example, from experts’ opinion and/or previous studies) is 

available, the prior distribution can be chosen such that it is ‘informative’_ in other words, a 

suitable prior probability distribution is selected that expresses the available information as 

accurately as possible. The data, via the likelihood function, will help refine the prior 

distribution to obtain the posterior distribution. If the data are sufficiently informative, the 

actual choice of the prior should have little influence on the posterior distribution that is 

derived in the end. 

When the posterior distribution is of the same family of probability distribution as the prior, 

then the prior is called a conjugate prior for the likelihood. The Dirichlet distribution is an 

example of a conjugate prior for the multinomial likelihood (Gelman et al., 2004). Conjugate 

priors are a useful tool in Bayesian analysis as they facilitate the use of a Gibbs sampler (see 

section 1.4.3.c.ii). 

 

It is possible to conduct a prior sensitivity analysis to assess the sensitivity of the outcome of 

the Bayesian analysis, e.g. the mean of the posterior distribution(s) or some other summary 

statistic, with respect to the choice of the prior distribution. A simple prior sensitivity analysis 

consists of varying the parameters of the prior distribution, for example by systematically 

increasing or decreasing its variance. Subsequently, the differences observed to the posterior 

distribution of the parameter of interest are introduced by these different variances (King et 

al., 2010). Prior sensitivity is not regarded as a problem in itself, but it may indicate problems 

such as parameter redundancy (over-parameterisation of the model, so it is not possible to 

estimate all the parameters in the model) or overly restrictive prior assumptions (King et al., 

2010). 
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1.4.3.b Posterior distribution 

The posterior distribution incorporates all the information about the parameter of interest. 

When the model contains more than 2 or 3 parameters the posterior distribution becomes very 

complex (King et al., 2010). As a consequence, the information regarding one single 

parameter is obtained from the marginal posterior distribution of this individual parameter 

rather than the joint distribution. The marginal posterior is derived by integrating over the rest 

of the parameters (“integrating out”). For example, if Y = {U6, … , U4}, the posterior marginal 

distribution of U6 is given by (Gelman et al., 2004): 

 V�U6|W� = ] V�U|W�^U_ … ^U4.  

This integration is often complex and difficult if not impossible to derive explicitly. The 

introduction of the Markov chain Monte Carlo (MCMC) integration methods  (Smith and 

Gelfand, 1992) made it possible to obtain an estimate of this marginal posterior distribution 

without too much difficulty. 

 

1.4.3.c Bayesian computation: Markov Chain Monte Carlo 

MCMC methods are a combination of Markov chain theory (Gilks et al., 1995) and Monte 

Carlo integration (Morgan, 1984). They are based on the idea of constructing a sequence of 

values (a Markov chain) whose distribution converges towards the posterior distribution, if 

the chain is run for long enough and if the conditions of aperiodicity and irreducibility are 

met (King et al., 2010). The characteristic of the Markov chain is that the distribution of a 

given value, U`, depends only on the previous value,	U`76. Thus, if there is a sequence, U`, 
with a = 1,2,3 …, starting at Ub then, for each t, U`~1̀ �U`|U`76�, with 1̀  being a transition 

distribution that depends on the iteration t. A key element is to define an appropriate 

transition distribution such that the Markov chain converges to a unique stationary 

distribution, namely the posterior distribution of the parameter U (Gelman et al., 2004). 

Once it has converged to the stationary distribution, the sequence of values can be used to 

obtain empirical (Monte Carlo) estimates of the posterior distribution of U (King et al., 2010). 

In this thesis, two types of MCMC algorithms are used to sample from the posterior 

distribution: the Metropolis-Hasting algorithm (Hastings, 1970; Metropolis et al., 1953) and 

the Gibbs Sampler (Geman and Geman, 1984). 
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1.4.3.c.i       The Metropolis-Hasting (MH) algorithm 

The MH algorithm involves three main steps: 

1. selection of initial parameter values U` 	 with t=0. This could be done either from a 

starting distribution Nb�U� or from a set of starting values dispersed around a crude 

approximate of the estimate (Gelman et al., 2004); 

2. generation, at iteration t, of a candidate value U∗ via a specified proposal density 

distribution e�U∗ |U` ); 
3. determination of whether or not the new candidates values are accepted as a tth +1 

element of the chain, through the use of an acceptance function α�θg, θ*):  

 ��U`, U∗� = <i#�1, V�U∗|��e�U`|U∗�V�U`|��e�U∗|U`��  

Then either the candidate value U∗is accepted with a probability α�θg, θ*) and set U`j6 = U∗, or it is rejected and U`j6 = U`. 
Block updates 

With the MH algorithm it is possible to update either one parameter at a time using the single 

update Metropolis-Hasting algorithm or to do a multi-parameter update called a block 

parameter update. This last method is often used when there is high correlation between some 

parameters which can generate slow converging (King et al., 2010), although it can be 

difficult to specify a suitable multi-dimensional proposal distribution. Due to the nature of the 

Bayesian models developed in this thesis, some parameters are highly correlated and those 

parameters are updated in a block. 

 

1.4.3.c.i  The Gibbs Sampler 

The Gibbs sampler algorithm is a particular case of a MH algorithm where the acceptance 

probability is always 1. The proposal distribution for a given parameter is the conditional 

posterior distribution of that parameter (King et al., 2010). Gibbs samplers are easily 

implemented when conjugate priors are adopted in the model, as the posterior conditional 

distributions with such priors are of standard form. 

For a vector of parameter Yk = �U6, … , Ul� at a state t of the Markov chain iteration, each Ul̀ 

in turn is sampled from the conditional distributions as follows (Gelman et al., 2004). Ul̀j6~V�Ul|U7l` , ��, 

Where U7l`  represents all the components of U, except Ul, at their current values t.  
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1.4.4. Mixing 

The proposal distribution is one of the factors that determine the mixing speed of a chain. If 

the candidate parameter value drawn for the proposal distribution is too far from the current 

values (large step) the acceptance rate of candidate value will be low, resulting in a chain that 

frequently fails to move and thus poor mixing, it will thus take longer to reach the stationary 

distribution. On the other hand, if the step between the current draw and the candidate is too 

small, the acceptance rate is going to be high but it will take a long time to move over the 

parameter space and so for the chain to reach the stationary distribution (King et al., 2010). 

Observation of time-series trace plots representing the parameter values for each iteration are 

a good indicator of the mixing speed (Figure 1-1). A “grassy” plot is sign of good mixing plot 

(Figure 1-1.a) whereas a plot where a “plateau” can be observed (Figure 1-1.b) is a sign of 

slow mixing. 

 

 

Figure 1-1: Trace plots representing a good (a) and a slow (b) mixing of the MCMC chains. These plots 

were extracted from (King et al., 2010, p131). 

 

1.4.5. Burn-in and convergence 

To be sure that the sample used to obtain inference for the parameter of interest rises from the 

posterior distribution, the chain needs to have reached convergence to the stationary 

distribution. In practice this means that observations from the start of the chain are discarded, 

to use only observations once the chain as converged (King et al., 2010). This initial part of 

the chain discarded is called burn-in period.  

a) b) 
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Numerous diagnostic methods have been developed to test if convergence is reached (Cowles 

and Carlin, 1996). The Brooks-Gelman-Rubin (BGR) (Brooks and Gelman, 1998), 

convergence diagnostic is one of the most popular and will be used in this thesis. Their 

diagnostic is based on performing an analysis of variance between different chains starting 

from different over-dispersed starting points. They looked at the ratio of the within-chain 

over the between-chain variance and defined a reduction factor m$0. If this factor is close to 1 

it can be said that the chain has converged (Brooks and Gelman, 1998). However a reduction 

factor greater than 1.2, means the chains have failed to converge (Gelman et al., 2004). This 

diagnostic test only gives an indication if the chain has converged toward a common 

distribution; they do not indicate if they have converged toward the correct stationary 

distribution (and indeed no test can do this). 

 

1.4.6. Parameter inferences 

Once the chains have converged then it is possible to obtain empirical estimate of any 

posterior summaries of interest. When data are generated from simulation point summary 

statistic such as the mean, median, mode can be used, to measure the error between the 

posterior point estimate and the expected parameter true value. But a point estimate by itself 

is not very meaningful: information on the uncertainty of the point estimate is very important. 

In this thesis the coefficient of variation (CV) is the statistic used to measure the uncertainty 

of the point estimate. Coefficient of variation measures the standard deviation of the posterior 

samples relatively to the mean of the samples.  
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Chapter 2: Measuring the variability of an automatic whistle 

classifier 

2.1. Introduction 

Whistles produced by odontocete cetaceans are highly variable between and within species. 

Comparative analyses of whistle characteristics have shown that factors such as taxonomy, 

morphology and natural selection pressure can explain some of the variation between species 

(Rendell et al., 1999; Steiner, 1981), whereas variation within species is correlated with 

population structure, environmental heterogeneity and/or behaviour (Rendell et al., 1999). 

The variability in whistles can be useful to identify odontocete species as some whistle 

features are characteristic to each species.  

To identify species by their whistles, whistle classifiers have been developed (chapter 1 

2.2.b.iv, Classifier p11). These classifiers are created using data for which species’ identities 

are known (training data) and the performance of the classifier is presented by a < ×<	confusion matrix with each element pij giving the probability of classifying species j as 

species i (see chapter 1 p13). Once created, these classifiers and their trained species 

categories are subsequently used to identify whistles in new acoustic data. 

 

2.1.1. Misclassification 

For species living in the same type of environment and/or being closely related to each other, 

the confusion matrix is expected to have misclassification probabilities higher than 0 because 

the similarity in vocalizations between species makes it difficult to tell them correctly apart 

(Steiner, 1981). In reality none of the whistle classifiers developed to date (Datta and 

Sturtivant, 2002; Gillespie et al., 2013; Oswald et al., 2007) are able to identify any 

odontocete species perfectly. A consequence of misclassification is that the observed number 

of detections as identified by the classifier for each species, n = �#6, … , #P , … , #o�,  contains 

(after classification) correctly identified detections as well as misidentified detections. 

Chapters 6 and 7 demonstrate that it is possible to estimate the true number of detections of 

each species from the observations, if it is assumed that there is no uncertainty on the 

classification probabilities pij. However if the classification probabilities have uncertainty 

attached to them, chapter 7 of this thesis demonstrate that estimating the true number of 

detections for each species becomes much more challenging and estimates can be very 

imprecise, even if the variance of the classification probabilities is small.  
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The most common method to estimate abundance from acoustic data is based on cue counting 

theory according to which the number of counted cues has to be multiplied by some factors 

such as cue probabilities, to estimate the number of individuals (chapter 1: 2.2.b.ii, p8). 

Clearly, if the number of counted cues is biased then the final abundance estimate will be 

biased as well. Furthermore, if the number of counted cues contains uncertainty then the final 

abundance estimate will also contain this uncertainty. It is important for management 

decisions to know the precision of the abundance estimates, so understanding and measuring 

the uncertainty of the observed number of cues (here detected whistles), and consequently 

uncertainty of the true number of cues, is essential. The uncertainty of the number of 

observed cues comes in part from uncertainty in the classification probabilities of the 

classifiers. 

 

2.1.2. Uncertainty in the estimates of classification probability 

Given the method used to develop a classifier (chapter1: 2.2.b.iv p11), the classification 

probabilities of the confusion matrix are only estimates of the true classification probabilities. 

Indeed conceptually, the classification probabilities NOP are estimated from two sampling 

processes both of which generate uncertainty in the estimation of N̂OP: 

Uncertainty from the training process: The vocalisations used as training data to create the 

classifier are a sample of the entire set of vocalisations that could be used to train the 

classifier – i.e., the vocalisations across all the populations for which the classifier can be 

used to produce an acoustic abundance estimate. Consequently, there is uncertainty as to the 

performance of the classification algorithm that arises from this sampling process. 

Uncertainty from the testing process: An additional source of uncertainty arises when 

attempting to measure the performance of the classifier, regardless of how it was trained.  To 

exactly evaluate performance, the classifier would have to be tested on the entire set of 

possible vocalisations. However this is clearly not possible in practice, and a small set of 

testing data is used, which can be regarded as a sample from the entire set.  Hence additional 

uncertainty about the classifier performance arises from this sampling process. 
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2.1.3. PAMGUARD Whistle Classifier 

The PAMGAURD whistle classifier (PWC) developed by Gillespie et al. (2013) is the only 

whistle classifier to my knowledge that measures the uncertainty in the classification 

probabilities. Their classification process is organised in six main stages (i to vi) and tries to 

classify groups of whistle contours organised in section rather than individual whistle 

contour. A whistle contour being a representation in time and frequency of the whistle 

detected (Fig3.1). The details of the process is described in Gillespie et al., (2013), Figure 2-1 

and the following lines give only a summary of  the main stages of this process. (i) For each 

species, detected whistle contours are divided into small units (called fragments). For each of 

this fragment 3 parameters are extracted:  the mean frequency; the slope of the frequency 

change over time and the curvature of the fragment. (ii) For each species a separate random 

start is taken within the fragments; 2/3 of the fragments read consecutively from that point 

are used to train the classifier whereas the remainder is used for testing. (iii) Within the 

training and testing dataset, fragments are grouped into consecutive sections, containing a 

number of fragments ordered by date and time. While the distribution of the three primary 

parameters extracted for each fragment overlaps largely between species, they also have a 

markedly different shapes (Gillespie et al 2013). Therefor by accumulating these fragments in 

section it is possible to build a distribution of those primary parameters from which a 

secondary set of parameters, being the mean, the standard deviation and the skew, of each 

distribution of the primary parameters is calculated, giving a final of 9 parameters extracted 

for each section. (iv) A Linear Discriminate function Analysis (LDA) using those 9 

parameters is applied to the training data (made of sections from each species); the output of 

this method is a linear combination of the section’s parameters. (v) Based on this linear 

combination, for each section in the test data, a relative probability is assigned to each 

classification group (each species of the training data) of the classifier such that the sum of 

the probabilities across the classification group is one. The classification of the section 

corresponds to the classification group with the higher probability. (vi) The outcome of this 

classification is compared with the test data representing the truth and as a result of this 

comparison a confusion matrix (C) is derived.  

Gillespie et al. (2013) repeats stages (ii) to (vi) B times. For each repetition a new random 

selection of training and testing dataset is generated. After the B bootstraps are done, the final 

LDA algorithm is calculated using the entire training dataset (Figure 2-2). It is thus not 

possible to derive the confusion matrix from this last run. This last run is done to create a 

classifier algorithm with the maximum data possible.  
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Figure 2-1: Schematic diagram of the PAMGUARD Whistle classifier training process during the B 

bootstraps. 

 

The final confusion matrices shown in Gillespie et al., (2013) are each an average over the B 

confusion matrices created and the variability is estimated by measuring the standard 

deviation over the B bootstraps of the N̂ij. This estimate of the variability contains several 

sources of uncertainty in one measurement: uncertainty from the training process, uncertainty 

from the testing process and uncertainty from the bootstrap method used, which is close to a 

moving-block bootstrap method. Ideally when developing a classifier one should try to 

minimize uncertainty. To do so, the first stage is to identify and quantify as many sources of 

uncertainty as possible. 
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Figure 2-2: Last run of the PAMGUARD Whistle classifier training process. 

 

As explained in the description of the PWC, to create a classifier one part of the training data 

is used to train the classification algorithm and the second part is used to test this algorithm. 

Given that the quantity of uncertainty (from the training and testing process) is linked to the 

sample size of the data, a trade-off between the proportion of the training data used to train 

and test the algorithm needs to be found. A large proportion of the data used to train the 

classifier will decrease the training uncertainty but increase the testing uncertainty and vice 

versa when a small proportion of the data is used to train the classifier. The optimum 

classifier should be obtained when all the training data are only used to train the classifier 

algorithm (it is what is done with the PWC during the last run of the PWC process). In this 

configuration the testing process uncertainty is removed and the training uncertainty is 

minimized.  

 

In this chapter, the uncertainty of the training process is described using Nonlinear Least 

Square models which are used to predict the final uncertainty when all the data have been 

used for training. To do so a modification of the PWC is proposed that enables us to measure 

independently the two sources of uncertainty (testing and training) generated by the sampling 

process.  
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2.2. Methods 

2.2.1. Data 

Whistle contours used in this chapter were extracted by the PAMGUARD Whistle and 

Moans detector (Gillespie et al. 2013) from data of the MORL_BOWL project presented in 

detail in chapter 3. The MORL_BOWL dataset consisted of whistle detections from 5 species 

(Bottlenose dolphin, Tursiops truncatus, Common dolphins, Delphinus delphis, Risso’s 

dolphin, Grampus griseus, White beaked dolphins, Lagenorhynchus albirostris, and Stripped 

dolphins, Stenella coeruleoalba) recorded along the Scottish coasts. Each acoustic recording 

was associated with a visual detection confirming the species identification.  

 

2.2.2. PAMGUARD Whistle Classifier modifications 

The PWC was modified such that it was possible to measure the training variability 

independently of the testing variability. In the PWC described by Gillespie et al., (2013), the 

data are divided in one training and one testing dataset. In this improved method, the PWC 

was modified to divide the data in one training and two test datasets (Figure 2-3). Despite this 

difference, the classification process was exactly the same, divided into 6 main stages as 

outlined above.  

With a=two test datasets per bootstrap replicate it was possible to measure the variance 

between each bootstrap replicate (between variance) and the variance within each bootstrap 

replicate (within variance). The between component of variance should capture the training 

uncertainty generated by the different training data used at each bootstrap replicate whereas 

the within component of variance should capture the testing uncertainty generated by the 

different test data used in each bootstrap replicate.  

Following the idea that the variance decreases when the sample size increases, three 

differently sized subsets of data were used to train the classifier: half, a quarter and an eighth 

of the sections were used to train the classifiers. For each classifier, B=100 bootstraps were 

run with random start point but with the same proportion of training data. The output of each 

bootstrap was two confusion matrices Cba with classification probabilities N̂ijba. For each 

classifier the between variance of each N̂ijb (Vij) was estimated by using the formula for the 

between variance of a standard analysis of variance (ANOVA): 
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 var*N̂rs/ = Vrs =
∑ *N̂rst + N̅OP/

_v
wx6

B + 1
 

 

 

Finally models were fitted to these between variances with the objective of being able to 

predict what the between variance be if all the data were used to train the classifier. 

 

 

Figure 2-3: Training process of the modified PAMGUARD Whistle classifier. Note the testing dataset has 

been divided in two so it is possible to measure a between and within variance. 

 

2.2.3. Models 

2.2.3.a Underlying framework 

It was assumed that, within the columns of C, the N̂ij followed a Dirichlet distribution with 

parameters (α1j,αij ,...,αmj). A confusion matrix of dimension < � < will have m Dirichlet 

distribution. A Dirichlet distribution (Royle and Dorazio, 2008) is a continuous multivariate 

distribution with concentration parameters (α1,αι,...,αm) where for x~Dir(α1,αι,...,αm), �O ∈

�0,1�, ∑ �O
o
Ox6 � 1 and {��O� �

|}

∑ |}
~
}��

.  
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Since in C,  ∑ NOPoOx6 = 1, this distribution seems a reasonable assumption. Consequently, we 

have 

{�NOP� = ∑ .�}������v = |}�∑ |}�~}�� . 

Then in theory, the variance Vij for each	{�NOP�should be described by the variance of a 

Dirichlet distribution: 

 �&2*N̂OP/ = �OP = �OP*�b − �OP/�b_��b + 1�  
(2-1) 

where �b = 	 ∑ �OPoOx6  

 

For real data, however, the variability was suspected to be different than for a true Dirichlet 

distribution due to the presence of the other sources of variability. Hence it was assumed that 

Vij was proportional to the expression on the right hand side of Eq.2-1 To include these 

variance factors, two unknown parameters �6	and �_ were multiplied and added to the 

baseline Dirichlet variance formula:  

 �OP = �6 �OP*�b − �OP/�b_��b + 1� + �_ 
(2-2)     

 

Equation 2-2 for the variance suggested that the relationship between the concentration 

parameters (and indirectly the N̂ij) and the Vij was not linear but quadratic. For this reason 

non-linear least square (NLS) models (Bates and Watts, 1988) of the form of Eq.2-2 (see 

below) were fitted to the Vij. The models were fitted using the ‘nls’ library (Bates and Watts, 

1988) implemented in the statistical software R (R Development Core Team, 2012).  

 

2.2.3.b Models tested 

From this underlying model, three different forms of the concentration parameters of the 

Dirichlet distribution were tested as a function of the cell-wise N̂OP’s and the sample size 

(number of section for each species used for training) to find which form fit best the data and 

thus will predict best the variance when all the data are used to train the classifier. The first 

form of the concentration parameters (Model1) was selected such that there was no 

dependency to the sampling size but only on the actual classification probabilities. For the 
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second (Model2 ) and third (Model 3) form, the concentration parameters were selected such 

that they were proportional to the sample size as well as to the classification probability.  

 

Model1: Sample size independent Eq.2-3 

In the simplest case, the concentration parameter was only dependent on the NOP: �.P = N.P. 

 �$OP = �6 N̂OP*1 − N̂OP/2 + �_ 

(2-3)     

 

Model2: Species sample size dependent Eq. 2-4  

With acoustic data, there are different numbers of detections for each species in the training 

dataset, resulting in different numbers of sections (�P� for each species, with for some species 

a large sample size (large number of training section) and for other a very small sample size. 

The parameters �OP in this model were choosen such as they were proportional to both  N̂OP and 

the sample size per species �P : �.P = �PN.P.  

The �$OP were then inversely proportional to Sj for each species. 

 �$OP = �6 ∗ N̂OP ∗ *1 − N̂OP/�P + 1 + �_ 
(2-4)     

Consequently only 5 classification probabilities were associated with each sample size Sj. 

Due to this small sample size, the result of the model fitting process has limited validity and 

needed to be treated with caution.  

 

Model3: All species sample size dependent Eq.2.5 

 In model 2 only 5 classification probabilities (as the classifier discriminate 5 species) were 

available for each sample size. Being aware that this small number of data can generate 

unreliable results, it was decided to explore what would be the consequences of having 

concentration parameters dependent on the total number of sections for the 5 species �.P =�N.P,  with S (� = ∑ �PP  ), being the total number of sections for the 5 species of the classifier. 

 �$OP = �6 N̂OP*1 − N̂OP/� + 1 + �_ 

(2-5)     
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Models comparison 

Between these three modelling options, the model with the smallest AIC (Akaike, 1974) was 

selected. Predictions for when all the data were used, were derived from this model. To 

predict �$ ij, the average pij over the 3 classifiers (from using half, a quarter and an eighth of 

the original data for training) was used. 

 

2.3. Results 

2.3.1. Data description 

The total number of sections used in the training dataset was unequal between species (Table 

2-1). The majority of whistle contours in the data came from bottlenose and common 

dolphins. The number of sections for both Risso’s and white beaked dolphin was very small: 

e.g., only four and 3 sections respectively when only an eighth of the sections were used to 

train the classifiers. 

 

Table 2-1: Number of sections Sj for each species used to train the classifier. The number of sections is 

dependent on the proportion of the data used to train the classifier. The first classifier used half of all the 

sections, the second a quarter and the third an eighth, whereas for the prediction, 100% of the sections 

are used to train the classifier. 

 Sj 

Proportion of      
training sections 50% 25% 12.5% 100%  

Bottlenose dolphin 422 211 105 844 

Common dolphin 595 297 148 1190 

Risso’s dolphin 17 8 4 34 

White beaked dolphin 15 7 3 30 

White sided dolphin 55 27 13 110 

TOTAL 1104 550 273 2208 
 

The variance of a Dirichlet distribution follows a bell shape curve moving from 0 to 1 with a 

maximum when {�NOP� = 0.5 (Figure 2-4). The observed variances when half, a quarter and 
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an eight of the data section are used to train the classifier followed the same bell curve shape 

but with smaller values than the theoretical Dirichlet variances (Figure 2-4).  

 

 
Figure 2-4: Variances of the classification probabilities (�" ij) for a given classification probabilities (��ij) 
and a training sampling size (S). S is the proportion of the sections used to train the classifier: half of the 
sections used to train the classifier (black open circles), a quarter of the sections (red triangle) and an 
eighth of the sections (blue cross). Symbolised with a black cross are the variances as function of 
probabilities obtained from a Dirichlet distributio n directly. 
 

2.3.2. Model selection 

Model 3 (variance dependent on the total number of section for all species, S) was the model 

with the smallest AIC and residual sum of squares (r2) (Table 2-2). In this model the unknown 

parameter �_ was not significantly different to zero (p>0.05) whereas �6 was positively 

correlated to the Vij’s. 

�OP = 70.19
N̂OP*1 + N̂OP/

� � 1
� 0.01 

 

 

 

 

 

^ 
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Table 2-2: ∆∆∆∆ AIC, AIC and residual sum of squares for the three models 

Model ∆ ∆ ∆ ∆ AIC AIC r 2 

Model 1 18.38 -475.50 7.2×10 -3 

Model 2 51.63 -442.25 11.1×10 -3 

Model 3 0 -493.88 5.6×10 -3 

 

Model 2 (for which the concentration parameters were associated with the number of sections 

for each species within the training dataset, Sj) was the model exhibiting the worst fit.  

With Model3, the predictions of the variances if the classifier had been trained with all the 

sections available ranged from 0 (when N̂ij =0) to 7.10-3. 

 

 
Figure 2-5 : Observed data (open symbols) versus predicted (lines) and extrapolation (bold black 
triangles) with full dataset. Each colour represents a sampling size as described in previous figure. 

 

2.3.3. Comparison of the variance with the version of the PWC described in 

Gillespie et al. (2013) 

Standard deviations were measured from these predicted variances and they were compared 

with the standard deviation measured with the original PWC (Table 2-3). The standard 

^ 
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deviation measured with the modified version of the whistle classifier was smaller than with 

the original version; the average standard deviation for all the confusion matrices was 3.9% 

(±3%), whereas the average standard deviation measured with the PWC of Gillespie et al., 

(2013), was 8.2% (±9%). Only for three classification probabilities the predicted variance is 

slightly larger (for white sided dolphin misclassified as bottlenose dolphins, bottlenose 

dolphins misclassified as Risso’s dolphin and white beaked dolphins)  

 

Table 2-3 Estimated standard deviation by the least squares model 3 if 100% of the data were used to 

train the classifier. Values in brackets show the measured standard deviation by the PWC of Gillespie et 

al., (2013) when 2/3 of the data are used to train the classifier. BND=Bottlenose dolphin COD=common 

dolphin, RSD =Risso’s dolphin, WBD=white beaked dolphin and WSD= white sided dolphin 

 True Species 

Standard deviation in % BND COD RSD WBD WSD 

BND 8.6 (26.7) 5.8(9.6) 2.3 (4.5) 2.8 (6.2) 1.8 (1.4) 

COD 7.5 (18.0) 8.2(11.9) 0.0 8.7 (27.0) 5.5 (15.1) 

RSD 2.5 (2.2) 0 2.4 (4.5) 0.0 0.0 

WBD 3.3 (3.1) 5.5 (5.8) 0.0 8.8 (28.6) 3.4 (4.1) 

WSD 4.7 (11.1) 4.6 (5.0) 0.0 4.3 (8.8) 6.7 (15.8) 

 

 

In parallel to the least square method used, a Generalised Additive Model (GAM) was fitted 

to the data. These models gave a better fit of the data however the extrapolation to estimate 

what would have been the variance if 100% of the data were used to train the classifier 

appeared not to be realistic. For this reason only the result of non-linear least square models 

is presented here.  

 

2.4. Discussion 

With the Model 3 depending on the probabilities of classification and the total number of 

training sections of the classifier, the prediction of the data was the best obtained and seemed 
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reasonable. This model, selected because of its smaller AIC, tended to homogenise the 

variance between species. This homogenisation was a consequence of the denominator S 

(total number of training section) of the model. A more easily defended model is one where 

species with less data in the training data generated more variability. Model 2 should have 

captured this factor, because of the denominator of the model being directly dependent on the 

number of training section per species. The worse AIC value for Model2 than Model3 is 

perhaps a consequence of the fact that for this model the predictions were based on a small 

number of data. For each sample size only five data (one per species) were available. In 

theory, the model with the best diagnostics for fit is considered the 'best' statistically (Model 

3 in this case) but biologically, another model (in this case Model 2) may be preferred. In this 

specific case the homogenisation of the variance generated by Model 3 will make the final 

precision of the estimate of the true number of detections less sensitive to the amount of 

detections for each species. Consequently the precision of the true number of detections for 

rare species will probably be lower and vice versa higher for the common species than if 

Model 2 was used. 

  

In conclusion, this chapter proposed a new approach to try to measure the training variability 

of a whistle classifier. Other solutions may exist requiring a statistical approach more robust 

to small datasets and dealing with the complexity of the bootstrap method used by the PWC 

classifier. The following chapters show the importance of the quantity and quality of the 

training dataset to develop a reliable (low uncertainty) and accurate (high correct 

classification probability) classifier. Then the second part of this thesis will demonstrate how 

and why estimates of uncertainty in the performance of a whistle classifier should always be 

associated with the estimated confusion matrix if the acoustic data are to be used to estimate 

abundance of species. 
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Chapter 3: Classification of data from a reliable training dataset 

 

3.1. Introduction 

In certain circumstances, for example when vocalisation characteristics are easy to identify, it 

is possible to estimate the abundance of cetacean species using only passive acoustic devices. 

For example, Marques et al. (2011) obtained density estimates of the endangered North 

Pacific right whale (Eubalaena japonica) in the Bering Sea from fixed passive acoustic 

devices only. Martin et al. (2012) were able to estimate abundance of minke whales 

(Balaenoptera acutorostrata) in Hawaiian waters from 14 bottom-mounted hydrophones; and 

at present the SAMBAH1 project aims to improve the management strategy for the 

conservation of the rare population of Harbour porpoises (Phocoena phocoena)  in the Baltic 

Sea using acoustic data collected from a large array of C-POD hydrophones. Using solely 

passive acoustic data from fixed devices to verify presence and estimate abundance of species 

is cost-effective in the long term: once the hydrophones are installed the recordings can be 

collected remotely or can be retrieved by a small boat from the devices. Fixed hydrophones 

allow for large temporal coverage (as hydrophones can stay for months or years in the same 

place), but spatial coverage depends on the quantity and spatial extent of the installed 

devices. For this reason, environmental and governmental agencies are interested in passive 

acoustic methods to monitor and better understand the presence of cetacean species at a local 

scale.  

This chapter presents the results of a study in which it was necessary to distinguish bottlenose 

dolphin (Tursiops truncatus), a protected species under Annex II of the EU Habitats 

Directive, from other species present at two major off-shore wind farm sites in the Moray 

Firth, called MORL2 and BOWL3 (Map 3-1). While mike whale, right whale, harbour 

porpoise have very distinctive vocalisations, bottlenose dolphins vocalisations are similar to 

those of the other species (common dolphin (Delphinus delphis), white beaked dolphin 

(Lagenorhynchus albirostris), white sided dolphin (Lagenorhynchus acutus) and Risso’s 

dolphin (Grampus griseus)) likely to be found in the same area (chapter 1 table1.1, p16). 

Hence, to be able to differentiate whistles from bottlenose dolphins accurately from those of 

                                                 
1 Static Acoustic Monitoring of the Baltic Sea Harbour Porpoise. http://www.sambah.org/ 
2 Moray Offshore Renewables Ltd 
3 Beatrice Offshore Windfarm Ltd 
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other species it is necessary to develop a reliable whistle classifier. A prerequisite to create 

such a classifier is the collection of data from already identified species (training data).  

 

This chapter describes the development of two classifiers from the same, high-quality 

training dataset. The first classifier differentiates bottlenose dolphins from the four other 

species, where the latter are pooled into one group (two classification groups). The second 

classifier differentiates all five species (five classification groups). Then these classifiers were 

used to identify species within recordings made on the wind farm sites, for which no visual 

data were collected. 

 

 

Map 3-1: Map of the North East coast of Scotland with the wind farm sites (in color) and the position of 

the EARs deployment (D01,E21,E17,E16,A20.A22) and the delimitation of the Special Area of 

Conservation (S.A.C) for bottlenose dolphins. 
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3.2. Methods 

The classifiers in this chapter were created with the PAMGUARD Whistle Classifier (PWC) 

modules Gillespie et al. (2013) with the modification explained in the previous chapter 

(chapter 2: 2.2 p29). The classification of new data was done using the PWC module in a 

configuration to use the classifier to identify this data and not to create a classifier (Table 3-

1). 

3.2.1. Creation of the classifiers 

When a classifier is created, the ultimate objective is to have a classifier algorithm as efficient 

as possible to discriminate the different species of interest and to create a confusion matrix 

illustrating the accuracy and precision of the classifier.  

The creation of the classifiers with the PWC were made in several steps (Table 3-1 A.) 

described in the next sections (3.2.1a to 3.2.1.c).. 

 

Table 3-1: Main stages to create a whistle classifier and to apply it on new data using the PWC. 

A:Creation of a classifier with PWC B: Classification of unidentified data with PWC 

Data: time frequency contours from identified 

species 

Data: time frequency contours from unidentified species 

organised in fragments and sections of optimal 

length measured in (A.1) 

1. Selection of optimal fragment and 

section lengths (comparing quality 

coefficient, Q) 

1. Classify sections 

2. Creation of the confusion matrix: 

2. Classification probabilities, pij 

3. Variance for each pij 

4. Organise sections in encounters and classify 

encounters (optional) 

5. When it is possible, compare classification 

results with prior information 

 

3.2.1.a Identified dataset 

The identified data were used to create a classifier (Table 3-1 A). It was comprised of 

bottlenose dolphins, common dolphins, Risso’s dolphins, white beaked and white sided 
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dolphins recordings collected by different research groups (Table 3-2) on different small 

surveys platforms (sailing boat, small motor boats) along the coast of Scotland (Map 3.2).  

 

 

Map 3-2: Locations of the training dataset. 

 

For all different recordings it was possible to identify the recorded species with high 

confidence due to the proximity of the animal to the visual observers.  

The following data sources were used: Recordings of all the species, except for bottlenose 

dolphins, were collected from the quiet sailing boat of the HWDT4 during small scale survey 

along the West coast of Scotland (Embling et al., 2010). Few additional recordings of Risso’s 

dolphins came from the North of Scotland. All recordings of bottlenose dolphins were 
                                                 
4 Hebridean Whale and Dolphin Trust 

West Coast 

Shetland 

Moray Firth  

St Andrews 

Bay  
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collected by scientists of the Sea Mammal Research Unit of St Andrews from a small motor 

boat in the North and in the East of Scotland for projects aiming to collect vocalisations to 

study social interaction or particularities in vocalisation patterns; e.g Janik, 2000; Quick et 

al., 2008) (Table 3-2). The sampling rates of the recordings varied from 48 kHz to 500 kHz. 

 

Table 3-2: Training dataset and the general location and sources which collected them. 

Species Location Sources 

Bottlenose dolphin 
Moray firth 

St Andrews Bay 
Shetland 

St Andrews University 
St Andrews University 
St Andrews University 

Common dolphin West Coast HWDT 

White-beaked dolphin West Coast HWDT 

White-sided dolphin West Coast HWDT 

Risso’s dolphin 
West Coast 
Shetland 

HWDT 
St Andrews University 

 

The first classifier (called 2Sp classifier) classified acoustic detections as “BND” (for 

Bottlenose dolphins) or OTHER (for the four other species) (Table 3-3). The second classifier 

(called 5Sp classifier) distinguished between all five species in classification groups called 

“BND”, “COD” (common dolphin), “RSD” (Risso’s dolphin), ”WBD” (white Beaked 

dolphins) and  “WSD” (white side dolphin).  

 

Table 3-3: Groups of species classified for both classifiers.  2Sp classifier discriminated Bottlenose 

dolphins from all other species pooled, whereas 5Sp classifier discriminated between all five species. 

Species 2Sp 5Sp 

Bottlenose dolphin BND BND 

Common dolphin OTHER COD 

White-beaked dolphin OTHER WBD 

White-sided dolphin OTHER WSD 
Risso’s dolphin OTHER RSD 

 

To be comparable and usable by the PWC, all the recordings were decimated to 48 kHz. Any 

sounds over a defined threshold (8dB) were automatically detected using the PAMGUARD 

Whistle and Moan detection module (Gillespie et al., 2013). The output of the detector 

created a file for each recording, with the time-frequency contours of each sound detected 

(Figure 3-1). These contour files were then used in the PWC to train the classifier. 
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Figure 3-1 Example screen grab showing whistle contours extracted from recordings of bottlenose 

dolphins using the PAMGUARD Whistle and Moan detector module. Frequency (kHz) is on the y-axis 

and time (10 seconds) is on the x-axis). The different colours show the contours identified by the WMD 

(clicks are also visible above 6 kHz). (SMRU ltd et al., 2011) 

 

3.2.1.b Selection of the optimal parameters 

The PAMGUARD Whistle classifier works by comparing properties of a group of whistle 

contours and does not look at each contour individually. Indeed, the output of the detector is 

rarely a full whistle contour but a part of a whistle contour. Often, contours break into 

segments because of other transient noises masking the whistle for a very short period of time 

or because whistles are intersecting each other and it is difficult for the detector to recognise 

the full contour. To homogenise these contours, Gillespie et al., (2013) divided each contour 

into smaller uniformly sized units called fragments. Many consecutive (in time) fragments 

are then regrouped in sections, from which nine parameters are extracted to run the classifier 

(Gillespie et al., 2013; chapter 2). These parameters described the properties of each section. 

The length of these fragments and sections were expected to influence the quality of the 

classifier. Indeed, short fragments and sections are more likely to generate unstable 

measurement of parameters. Whereas long fragments and sections require many more 

whistles to obtain a classification result (Gillespie et al., 2013).  
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When a classifier is created, the effect of fragment and section lengths on the classification 

probabilities needs to be measured to select the optimum lengths. To do so, the whistle 

classifier process described in the previous chapter (Figure 2-3, p30) was applied to the 

identified data set, using 80% of the sections to generate the training data (of the 

classification process). One hundred bootstraps were run for each possible combination of 

fragment lengths ranging from 26ms to 187ms (equivalent to 5 to 35 bins) and section lengths 

ranging from 10 to 60 fragments. To select the optimum fragment and section length, a 

variable was introduced called quality coefficient (Q). For each species j and each 

combination of fragments and sections length, Qj (Eq. 3-1) measured the quality of the 

classifier by subtracting the average correct classification probability (T) over the 100 

bootstraps to the average false positives rates (F).  

 �P = ∑ ���������6bb − ∑ ���������6bb  
(3-1)     

 

A good classifier is characterised by a high correct classification probability and a low false 

positive classification probability so the higher Qj, the better was the classifier. 

 

3.2.1.c Creation of the confusion matrix 

These optimal parameters were used to generate the final confusion matrix of both the 2Sp 

and 5Sp classifiers. The classification probabilities of these final confusion matrices were an 

average of 100 bootstraps run with the training section being 80% of the identified data and 

with the optimal fragment and section length. 

To estimate the variability of the classification probabilities, each classifier were trained with 

a training dataset made of 12.5%, 25%, 50% and 80% of the identified data. The nonlinear 

Least Squares Model 3 of chapter 2 was used to predict the variance if all the identified data 

were used to train the classifier. 

 

3.2.2. Classification of unidentified data 

Once the optimal parameters were selected the final run of the classification process was 

made with 100% of the identified data. This final run generated the classifier algorithm. Once 

generated, this classifier algorithm was used to classify new data. If species identities of the 

new data are already known, then comparing the classification result with the reality allows 
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the user to confirm the reliability of the classifier. However, if species of the new data are 

unidentified, then only prior information concerning the classification groups (e.g abundance 

or density of the species classified) can be used to evaluate the reliability of the classifier. 

The classification of unidentified data was done in several steps (Table 3-1B) using the PWC 

module to identify new data. 

 

3.2.2.a Origin of the unidentified data 

The unidentified data for this study were recordings collected from five (E16, A20, E17, E21) 

autonomous Ecological Acoustic Recorders (EARs, Lammers et al., 2008) positioned at the 

MORL and BOWL sites (Map 3-1) and one (D01) positioned in-shore within the Moray Firth 

Special Area of Conservation (S.A.C), which is one of the two UK areas of conservation for 

bottlenose dolphins (Cheney et al., 2012). The EARs recorded broadband sounds at 64 kHz 

sample rate discontinuously (30 minutes recording, followed by 30 minutes off) for periods 

ranging from 1 day to 25 days between July and October 2010 (Table 3-4). 

To be used with the 2Sp and 5Sp classifiers the recordings were decimated to 48 kHz and 

processed with the PAMGUARD whistle and Moan detector prior to the classification. 

 

Table 3-4: Details of EAR deployments from (SMRU ltd et al., 2011) 

Site Site Deployment Date Recovery # Days 

E16 MORL 22/09/2010 16/10/2010 24 

A20 MORL 25/07/2010 15/08/2010 21 

A22 MORL 22/09/2010 23/09/2010 1 

E17 BOWL 24/07/2010 11/08/2010 18 

E21 BOWL 16/08/2010 09/09/2010 24 

D01 Sutors 07/10/2010 01/11/2010 25 

 

3.2.2.b Classification process of the unidentified data 

The PWC module used to identify new data works in real time or can process archived data. 

The recordings were processed with both the whistle detector and PWC modules activated. 

Each time a sound was detected, the sound frequency contours were divided in fragments of 
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the same length as used to create the classifier. These fragments were accumulated in sections 

until there was the same number of fragments as in the section used to create the classifier. 

The 9 parameters used in the PWC algorithm were then extracted and the classifier estimated 

the probability of the section to be one of the classification groups (chapter1, p26, stage v). 

The observed identification of the section was the species corresponding to the classification 

group with the larger probability. Then all the fragments were cleared and the PWC started 

accumulating new fragments. If there was less than five fragments within 10 minutes of 

recording then whatever the number of fragments within the section, this one was identified 

and a new section started when new fragments were detected. With this system some sections 

were classified despite not having the optimal number of fragments within it. 

 

3.2.2.c Organisation of the sections in encounters 

Only sections with the optimal length were used to analyse the classification result and short 

sections were discarded. When animals are passing close to hydrophones it is usual to get 

many whistles detected, as they are often travelling in group, prior to a gap without detections 

when the animals are too far to be detected. This period of high detections are commonly 

called encounters. By observing the classification result an encounter will be a period of time 

with many sections followed by a gap without sections. Grouping the sections in encounters 

and classifying these encounters allowed to be more accurate and to decrease the chance of 

misclassification. The identification of an encounter was the classification group with the 

higher average classification probability among all the complete sections of the encounter. 

In this chapter given that recordings were made discontinuously every other 30 minutes, an 

encounter was defined by a succession of sections with less than 30 minutes between each of 

them. 

 

3.2.2.d Analysis of the classification results 

A manual verification was conducted by going through all the encounters to determine 

whether the contour classified were from dolphins or were false positive detections due to 

other noises. Classification results were then compared with data from previous visual 

studies.  
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3.3. Results 

3.3.1. Training dataset 

The number of whistle contours per species presented in the training is summarised in Table 

3-5. Two species, bottlenose and common dolphins had more data than the others. 

Nevertheless, a reasonable amount of data was available for the other species that were 

included in the classifier. 

 

Table 3-5: Number of whistle contours extracted for each species in the training data set. 

Species Number of whistle contours extracted 

Bottlenose dolphin 61934 

Common dolphin 69761 

White-beaked dolphin 2554 

White-sided dolphin 5505 

Risso’s dolphin 6358 

 

3.3.2. Selection of the optimal fragment and section length 

For both classifiers, the quality coefficient Q increased with fragment and section length and 

it reached a plateau at a fragment length of 25 bins (0.29 s) and a section length off 50 

fragments (Figure 3-2,Figure 3-3). These parameters were close to the fragment lengths of 30 

bins and section of 60 fragments measured in Gillespie et al. (2013). 
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Figure 3-2: Quality coefficient Q of the 2Sp classifier for varying fragment lengths (averaged over section 

lengths between 10 and 60 fragments) and varying section lengths (averaged over fragment lengths 

between 5 and 39 bins). 

 

Figure 3-3: Quality coefficient Q of the 5Sp classifier for varying fragment lengths (averaged over section 

lengths between 10 and 60 fragments) and varying section lengths (averaged over fragment lengths 

between 5 and 39 bins). 
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3.3.3. Training of the classifiers 

3.3.3.a 2Sp classifier 

The confusion matrix representing the classification probabilities of the 2Sp classifier is 

shown in Table 3-6. A t.test with an alternative hypothesis that the correct classification 

probabilities is not smaller than a random classification (>50%) proved that for both 

classification groups the null hypothesis failed to be accepted with a probability lower than 

5%. For bottlenose dolphins, detections were correctly classified at 90.7% whereas ‘Other’ 

detections were correctly classified at 93.7%. The false positive classification probability was 

slightly higher for the ‘Other’ group (9.0%) than for the bottlenose dolphin group (6.5%). 

 

Table 3-6: Confusion matrix of the 2Sp classifier. The classification probabilities are the probabilities 

observed when 80% of the training data are used to train the classifier. The standard deviation (in %, 

within the brackets) is an estimation if 100% of the data were used to train the classifier. BND=bottlenose 

dolphins, Other=all other species. p being the p-value of a t.test with the alternative hypothesis being the 

true difference in mean is not smaller than by chance. 

 True Species   

Classified as % BND Other False Positive Classifications (%) p 

BND 90.7 (3.3) 6.3 (3.0) 6.5 <2.10-16
 

Other 9.3 (3.3) 93.7 (3.0) 9 <2.10-16
 

 

3.3.3.b 5Sp classifier 

The confusion matrix of the 5SP classifier is shown in Table 3-7. A similar t.test to the one 

applied on the 2Sp classifier, with a probability of being classified by chance of 20%, proved 

that the correct classification probabilities were significantly greater than a random 

classification and for four of the five species it was higher than 75%. Risso’s dolphin’s 

vocalisations seemed to be very distinctive from those of the other species with a correct 

classification probability close to 100% and both, false positive and false negative 

classification probability being very low, 1.6% and 0%, respectively. Bottlenose dolphin 

were still very well identified with a correct classification probability slightly smaller than 

with the 2Sp classifier. 
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At the opposite end, white beaked dolphin was the species with the smallest correct 

classification probability of 59.8%, and classification events for this species were 

misclassified mostly (35.8%) as those of common dolphin. 

The standard deviation of the correct classification probabilities for the five species was low, 

close to 10% of the correct classification probabilities. The standard deviations of the 

misclassification probabilities were often high relative to the estimated misclassification 

probabilities themselves.  

 

Table 3-7: Confusion matrix for the 5Sp classifier. The classification probabilities were the probabilities 

observed when 80% of the training data were used to train the classifier. The standard deviation (in % 

within bracket) was an estimation if 100% of the data were used to train the classifier. BND=bottlenose 

dolphins, COD=common dolphins, RSD=Rissos’ dolphins, WBD=white beaked dolphins, WSD= white 

side dolphins. p being the p-value of a t.test with the alternative hypothesis being the true difference in 

mean is not smaller than by chance. 

 True Species   

Classified as 
% BND COD RSD WBD WSD 

False Positive 

Classifications(%) 
p 

BND 86.6(7.6) 3.3 (6.3) 0.0 (6.0) 2.0 (303) 0.0 (5.8) 5.8 <2.10-16
 

COD 8.5 (6.9) 77.3 (8.0) 0.0 (5.8) 35.8 (24.2) 18.6 (7.6) 44.9 <2.10-16
 

RSD 1.6 (6.1) 0.0 (5.8) 100 (5.9) 0.0 (5.8) 0.0 (5.8) 1.6 <2.10-16
 

WBD 2.7 (6.2) 13.0 (7.2) 0.0 (5.8) 59.8 (8.7) 4.1 (6.4) 24.9 <2.10-16
 

WSD 0.6 (6.0) 6.4(6.7) 0.0 (5.8) 2.5 (6.3) 77.3 (7.9) 11.0 <2.10-16
 

False Negative 

Classifications 
13.4 22.7 0.0 40.2 22.7   
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3.3.3.c Classification of the EARs data with the 2Sp classifier 

3.3.3.c.i  Analysis of false detections 

For all encounters, the spectrogram were investigated by eye to determine whether the 

encounter was correctly classified as dolphins or whether there had been any false detections 

(FD) due to artificial noise. An encounter was classified as FD if only all the contours within 

it were re classified as false detections. The majority of sounds identified as false detections 

were mechanical ‘rubbing’ sounds, potentially associated with a swivel on the mooring of the 

EARs deployment. These sounds generated an upsweeping tonal sound with several 

harmonics between 1.5-24KHz. (Figure 3-4). 

On the 93 encounters detected from the EARs deployments, 40 were rejected as being false 

detections (Appendix A for details). The majority of them (80%) were detected at the E16 

and A20 sites. Sites E17 and DO1 did not have any false detection and site E16 had only FD, 

so it was ignored for the rest of the analysis (Table 3-8). 

 

 

Figure 3-4: Screen capture from PWC of a “rubbing” false detection. Frequency is on the y-axis (0 to 24 

kHz) and time (5.58seconds) is on the x-axis. The different colours show the contours generated by the 

PAMGAURD whistle detector. (SMRU ltd et al., 2011) 
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3.3.3.c.ii Analysis of the classification encounters 

The summary of the classification by the 2Sp classifier is shown in Table 3-8 and in Map 3-3 

(see Appendix A, Table A.1 for the full details of the classification). With the 2Sp classifier, 

32 encounters were identified as bottlenose dolphins, 21 as ‘Other’. For the deployments E21 

and E17 at the BOWL site, all the encounters not re-classified as FD (5) were classified as 

‘Other’.  

At the MORL site, no detections were observed at the A22 deployment and seven encounters 

were classified as ‘Other’ at the A20 site. The EAR deployment at DO1 site was the only site 

with encounters (32) classified as BND, nine were classified as ‘Other’.  

 

 

Map 3-3 : Results of the classification of the EARs deployment using the 2Sp whistle classifier. Each bar 

represents the numbers of encounters classified as: bottlenose dolphins (BND) (white); ‘other’ dolphins 

species (OTHER, light grey); or as false detection (FD, dark grey). 

 

3.3.3.d Classification of the EARs data according to the 5Sp classifier 

The four EARs deployments (E21, E17, A20, D01) for which some encounters have been 

classified as BND or ‘Other’ by the 2Sp classifier were subsequently classified using the 5Sp 

classifier. The summary of the classification result are show in Table 3-8 and Map 3-4, and 

the full detail are in the Appendix A, Table A.2. For the deployment at the wind farm sites 

(A20, E17, E21) no encounters were classified as BND and events classified as ‘Other’(12 in 

total) were classified as COD (11) and WBD (1), respectively. As with the 2Sp classifier the 
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encounters of the DO1 deployment were mostly classified as BND. One encounter classified 

as BND by the 2Sp classifier was classified as RSD by the 5Sp classifier. Three encounters 

classified as ‘Other’ by the 2Sp classifier were now classified as BND by the 5Sp classifier. 

The remaining ‘Other’ encounters were classified as COD, RSD and WBD .  

 

Table 3-8: Comparison of the EARs recording classification by the 2Sp and 5Sp classifier. Only EARs 

deployments with dolphins encounters have been processed with the 5Sp classifier. 

   2Sp classifier 5Sp classifier 

Site No. Nbs of 
Encounters FD BND OTHER BND COD RSD WBD WSD 

E16 19 19 0 0 0 0 0 0 0 

A20 20 13 0 7 0 7 0 0 0 

A22 0 0 0 0 0 0 0 0 0 

E17 4 0 0 4 0 4 0 0 0 

E21 9 8 0 1 0 0 0 1 0 

DO1 41 0 32 9 34 3 2 2 0 

TOTAL 93 40 35 21 34 14 2 3 0 
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Map 3-4: Results of the classification of the EARs deployment using the 5Sp whistle classifier. Each bar 

represents the numbers of encounters classified as: bottlenose dolphins (BND) (white); ‘other’ dolphins 

species (OTHER, light grey); false detection (FD, dark grey);  common dolphins (COD); Risso’s dolphins 

(RSD); white beaked dolphins (WBD); white sided dolphins (WSD). 

 

3.4. Discussion 

Regular visual aerial surveys have been conducted in the inner and outer Moray Firth since 

2004. During these surveys common dolphins, white-beaked dolphins and Risso’s dolphins 

were regularly sighted at the wind farm sites (Moray Offshore Renewables ltd, 2010) In 

contrast, in the S.A.C area (Map 3-1), the large majority of visual detections were of 

bottlenose dolphins, with very few reports of sightings of common dolphins and white beaked 

dolphins. The classification result supported these findings, at least during the sampling 

period of the study (July-October). None of the five EARs deployment within the wind farm 

areas recorded whistles encounters that could be attributed to bottlenose dolphins. However, 

encounters were classified as common dolphins, Risso’s dolphins or white beaked dolphins 

by the 5Sp classifier which is consistent with the visual survey data. The EAR deployment 

within the S.A.C was the deployment with most of the detections (41% of all the encounters) 
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and the only deployment with detections of bottlenose dolphins. Seventy eight per cent (78 

%) of these detections were classified as bottlenose dolphins. The classification results 

estimated that three (7.3%) encounters of common dolphin and two (4.8%) of white beaked 

dolphin occurred in a 25 days period of time. Even though it is possible to observe common 

dolphin and white beaked dolphins within this area (Moray Offshore Renewables ltd, 2010), 

these encounters should be rare. Furthermore, the 5Sp classifier predicted that 8.5% and 2.8% 

of bottlenose dolphin encounters should be misclassified as common and white beaked 

dolphin respectively. Hence, it is probable that the 3 (7.3%) encounters classified as common 

dolphin and the 2 (4.8%) of white beaked dolphin encounters were misclassifications by the 

5Sp classifier.  

Rissos’ dolphins have never been observed in the S.A.C, so these classifications were 

probably the result of misclassification by the classifier. The 5Sp classifier predicted that on 

average 1.6% (sd=6.1) of the classification events for bottlenose dolphins should be 

misclassified as Rissos’ dolphin. In the DO1 deployment the Risso’s encounter represented 

4.8% of all the encounters that is within the standard deviation of the expected 

misclassification probability.  

 

The five species classified in this study have a large overlap in the frequency range of their 

sounds (chapter1 table1.1) given that one third of the whistle classifier parameters depends on 

the mean frequency, it is difficult to find an algorithm which will discriminate these species 

better using the mean frequency parameter. Increasing the amount of training data may 

improve the classifier by reducing the misclassification probabilities.  

In this study the main objective was only to detect the presence of the bottlenose dolphins. 

Given the result and the clear difference in numbers of occurrence of classification events of 

bottlenose dolphins between the wind farm site and the S.A.C site, we can be confident that 

bottlenose dolphins were not frequent at the MORL and BOWL sites, at least between July 

and October 2010. 

It is impossible to make a more accurate statement on the presence or absence of bottlenose 

dolphins in the area. Some missed-detections are to be expected due to the fact that the 

recordings are not continuous (30 minutes of recording, followed by 30 min off) and because 

of whistle rates being low or quiet whistles not reaching the detection threshold. Another 

important source of misclassification and/or missed-detection is the presence of high ambient 

noise. Depending on its frequency range, ambient noise can mask parts of or the totality of 

the signal of interest. The whistle detector is then not able to detect the whistles themselves. 
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For three of the five deployments at the wind farm sites, on average 91.3% of the encounters 

were false detections, and so irrelevant for the classification, because of the mooring 

structures (e.g. swivels, loose chains etc..). With the 2Sp classifier, all of these false 

detections were misclassified as bottlenose dolphins, whereas with the 5Sp classifier they 

were mainly classified as Risso’s dolphins. In the case of this study, a control for 

misclassifications caused by noise was possible in form of a manual operator analysing all the 

classification events. However, for a bigger data set or during real time classification, this 

may not be feasible. Nevertheless, it may still be possible to re-analyse a sample of the data 

manually to detect any recurrent noise generating misclassifications and to set up some filters 

to remove these signals if they are outside the frequency range of the species of interest. For 

common noise sounds the classifier could be trained with this noise incorporated as an extra 

species. 

 

Because this project focused on coastal species, it was relatively easy to build the training 

dataset of good/high quality based on local coastal surveys. This is not always possible.  

Next chapter illustrates one possible way of developing a similar automatic classifier from 

acoustic data collected during a large scale offshore survey.  
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Chapter 4: Classification of data from a less reliable training 

dataset 

4.1. Introduction 

Large scale cetaceans surveys such as the North Atlantic Sightings Surveys (NASS) (Lockyer 

and Pike, 2009), the Southern Ocean Whale and Ecosystem Research Programme (SOWER) 

(Ensor et al., 2010) or the Small Cetaceans in the European Atlantic and North Sea survey 

(SCAN’s), (SCANS-II, 2008), are encouraged by governmental and non-governmental 

agencies to estimate abundance of species and to detect changes in the distribution of the 

species. The information collected during these surveys are used to make management 

decisions.  

These surveys often use a standardised survey protocol across several vessels and a large 

geographic area (Ensor et al., 2008; SCANS-II, 2008), and both visual and acoustic detection 

systems are commonly used to detect marine mammals. To be able to use the acoustic data, 

reliable classifier need to be developed to identify the species detected. As explained in the 

previous two chapters the classifier performance is dependent on the training dataset. An 

ideal training data set would consist of acoustic recordings made in the presence of visually 

identified species. These data could have been collected in a previous survey (as in chapter 3) 

or during the survey itself. Where the degree of intra species variation in whistles is high, the 

classifier performs better if trained with data collected in the same area as the survey. The 

offshore location, cost and geographic scale of some surveys often make it difficult and 

costly to organise pre-surveys with the sole objective of collecting an acoustic training data 

set. When the classifier training data set is collected at the same time as the survey it is 

necessary to associate visual detections (sightings) with acoustic detections to be able to 

assign species identity to acoustic recordings. Once a classifier is created, it can be used to 

identify detections made during the survey that are not associated with visual detections. 

 

It is often the case that during combined visual and acoustics surveys, e.g. SCANS-II, 

CODA, hydrophone arrays are towed a few hundred meters behind the visual survey 

platform. This makes the task of associating visual detections with acoustic detections 

challenging, and requires numerous assumptions to be made. However, without the 

development of automated acoustic classifiers, acoustic data from most cetacean species 

cannot be used in any further analyses. Currently only those species with very distinctive 
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vocalisations such as the sperm whale (Physeter macrocephalus) (Wahlberg, 2002), harbour 

porpoise (Phocoena phocoena) (Goodson and Sturtivant, 1996) and some species of baleen 

whale (Gillespie, 2004; Mellinger and Clark, 1997) can be reliably detected and classified to 

species, and it is for these species that it is possible to estimate animal abundance using 

acoustic detection only (Barlow and Taylor, 2005; Gerrodette et al., 2011; Kyhn et al., 2012; 

Marques et al., 2011).  

 

In July 2007 a large scale survey, Cetacean Offshore Distribution and Abundance in the 

European Atlantic (CODA) involving several vessels, was organised in European Atlantic 

waters beyond the continental shelf. The principal aims of this cooperative European project 

were to “(1) estimate the abundance of common dolphin (Delphinus delphis) and other 

cetacean species in offshore European Atlantic waters, (2) to assess the impact of by catch,  

and finally  (3) to recommend safe by catch limits for the common dolphin” (CODA, 2009). 

During this survey both acoustic and visual data were collected.  

 

This chapter presents a method to create a classifier training dataset from the CODA visual 

and acoustic detections, and uses the classifier to identify acoustic detections not associated 

with a visual detection. Then the results are analysed to identify which parameters influence 

the quality of the classifier. The challenge of this chapter, contrary to the previous one, was 

that the acoustic data used to train the classifiers came from the survey itself and they were 

collected independently to the visual detections. The first part of this chapter describes the 

creation of a training dataset when acoustic detections were not identified in real time. This 

was done by relating visual identifications of sighted species to acoustic detections. Two 

training dataset were created, with data recorded in different area of the survey. Once the 

training datasets were created, the second part describes the creation of a classifier for each 

dataset with a similar approach than in the previous chapter. Each classifier was tested on the 

dataset not used to create it. Finally in a last part, these classifiers were used to identify 

acoustic detections for which no species identification was possible from the visual data. To 

evaluate the quality of the classifiers, these non-identified acoustic data were classified with a 

classifier created from a good training dataset independent of the CODA survey data. The 

classifiers were created using the same PAMGUARD whistle classifier module (Gillespie et 

al., 2013), as used in the previous chapters. 
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4.2. Datasets 

During the CODA survey, five ships surveyed four offshore survey blocks that extended from 

the Faroe Islands in the North to the Portuguese EEZ in the South (Map 4-1). Each vessel 

sailed pre-designed transects and surveys were carried out using visual and acoustic methods. 

Data from four ships cruising in the blocks 2 to 4 were used for this analysis (two French 

vessels : A634 Rari and F735 Germinal, two Spanish vessels :RV. Investigador and RV. 

Cornide de Saavedra), data from the fifth ship (M/V Mars Chaser) surveying in block 1 was 

excluded from the analysis due to high levels of  noise in the acoustic data. For clarity in this 

chapter data collected in block 2 are referred to as the French dataset while data collected in 

blocks 3 and 4 are referred to as the Spanish dataset. 

 

4.2.1. Visual survey 

 Visual surveys were conducted using the survey methods developed and employed 

during the SCANS-II project (SCANS-II, 2008). A double platform of observers was used, 

with a “Primary” and a “Tracker” observer teams. The “Primary” team consisted of two 

observers searching with naked eyes an area ahead and at close distance to the vessel (out to 

500m). The “Tracker” team was composed of two observers positioned on a second, higher, 

platform to scan an area far away from the ship using big eyes (10x25) or 7*50 binoculars 

(CODA, 2009). For each sighting (visual detection), information including the vessel's 

position, species identification, confidence level of this identification, radial distance and 

sighting angle relative to the vessel's heading to each group, behaviours and cues were 

recorded.  
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Map 4-1: CODA survey area and survey blocks (CODA, 2009). Block 2 was surveyed by French vessels in 

this chapter they are referred to the “French dataset”. Blocks 3 and 4 were surveyed by Spanish vessels 

and they are referred to the “Spanish dataset”. 

 

4.2.2. Acoustic survey 

4.2.2.a Description of the recording systems 

The aim of the acoustic survey was to detect as many odontocete species as possible with a 

focus on sperm whales, beaked whales, oceanic dolphins and harbour porpoises (CODA, 

2009). Two automated detection systems were used to record the wide range of frequencies 

emitted by these species:  
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1. A high frequency (sampling rate of 500 kHz) automatic click detector designed to 

detect harbour porpoise. 

2. The second system recorded continuously at 192 kHz giving an effective system 

bandwidth of 2 kHz to 90 kHz making it sensitive to all other odontocete species 

(CODA, 2009). 

A hydrophone array with two sensor sections was towed behind each survey vessel. The first 

sensor section consisted of 2 hydrophones at 200, 203m respectively from the dry end of the 

cable, while the second sensor section consisted of three 3 hydrophones at 400, 400.25 and 

403m. Distance between elements was optimised for the localisation of harbour porpoise and 

sperm whale clicks. Hydrophone elements in the second sensor section were towed further 

behind the vessel to minimise the impact of the vessel noise on recordings. Only recordings 

coming from hydrophones in last sensor section were used for this analysis. Data were 

collected automatically during the day, using IFAW’s Logger 2000- software (Gillespie et al., 

2010) until it was switched off in the evening or until it crashed. The automatic recording 

system recorded continuously to hard disk using the *.wav format and recording were 

ranging from 1 seconds to 647 seconds with an average recording length of 427 seconds.  

On shore each recording was re-processed with the PAMGUARD Whistle and Moan detector 

(Gillespie et al., 2013) using a high pass filter (1.5 KHz) to remove low frequency sounds 

generated by ambient noise. For each recording a “contour file” containing all the time 

frequency contours detected was created. 

 

4.2.2.b False positive analysis 

The automatic whistle and moan detector is not perfect and there are numerous sources of 

noise (electric, mechanical, sonar, echo sounders…) that can create false positive detections. 

These false positive contours can generate a non-negligible bias in the quality of the 

classifier. The main characteristic differences between a whistle contour and another non 

biological noise contour are the length and the regularity of occurrence of these noises. A 

false positive analysis was conducted to minimise the selection of these contours before the 

training process.  

 

A false positive analysis consists on randomly selecting acoustic detection contours and 

checking visually on the spectrogram if the contour was made from a dolphin or not. Given 

the amount of acoustic data, to optimise the random selection of the contours, every recording 
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with acoustic detections was divided into one minute bins. The Total Contour Length per 

minute (Lm) was calculated by summing the length of all the whistle contours within the 

minute. 

 

Sixty per cent and 80% (Figure 4-1) of the Lm were less than four seconds long for the French 

and Spanish dataset respectively.  

 

 

Figure 4-1: Total Contour Length per minutes for A) the French dataset and B) the Spanish data set. 

Figures on the right are zoomed to 40 s with the vertical line being placed at 4  s of contour length per 

minute. 

 

From these results, the Lm was organised into seven categories. Because the length of false 

positive contours was expected to be small, categories reflect this expectation and smaller 

lengths were oversampled. The seven categories ranging from less than 0.1 second to more 

than four seconds were such:  

1) Lm ≤0.1s 

2) 0.1s<Lm ≤0.5s  

3) 0.5s<Lm ≤1s 

4) 1s<Lm ≤2s 

5) 2s<Lm ≤3s  

6) 3s<Lm ≤4s 

7) Lm >4s 

A) B) 
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For each dataset and each of the seven categories, a maximum of 100 minutes were randomly 

selected. For categories with less than 100 minutes available, all the minutes were analysed. 

The spectrogram of each selected minute was visually inspected and each detected contour 

was classified as either false positive or whistle contour. For 98% of the minutes all the 

contours within the minute were either false positive or whistle contours, so the minutes were 

categorized as false detections (FD) contours or as whistle contours (W) otherwise. The 2% 

remaining minutes contained both false positive and whistle contours, the proportion of false 

positive contours was measured if this proportion was greater than 50% then the minute and 

so the contours within it were categorized as FD otherwise they were categorized as W.  

Then the contour lengths of the contours within the FD minutes were compared with the 

contour lengths of the contours within the W minutes and the optimal contour length which 

discarded most of the FD contour in the same time as keeping most of the W contours was 

selected as a threshold. All the contours with a length under this threshold were discarded the 

longer contours were used for the rest of the analysis.  

 

4.3. Methods 

4.3.1. Creation of the training datasets 

The inputs of the PWC are the time frequency contour files (one for each recording) extracted 

by the automatic whistle and moan detector. To train the classifier each recording needed to 

be associated with one visually identified species. This was done by linking recordings to 

sightings. This selection process was done in several stages described in a schematic diagram 

(Figure 4-2 i to v) and in the following paragraphs. The main stages were to (i) select the 

visual detections of interest, (ii) extract the acoustic data of interest (iii) link visual and 

acoustic detections, (iv) train the classifier, and (v) test it. This process was done individually 

for both the French and Spanish dataset. 

 

4.3.1.a Selection of visual detections 

During the survey seven whistling species were visually detected: bottlenose dolphin 

(Tursiops truncatus), common dolphin (Delphinus delphis), striped dolphin (Stenella 

coeruleoalba), killer whales (Orcinus orca), long finned pilot whale (Globicephala. melas), 

short finned pilot whale (G. macrorhynchus), and Risso’s dolphin (Grampus griseus). 
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Common and striped dolphin were often observed together in large mixed groups, and in this 

situation the visual observer identified the groups as common and striped (C&S) . 

The CODA visual survey protocol required observers to give the degree of confidence (High, 

Medium, Low) of species identification for each sighting (CODA, 2009). For quality assurance 

purpose, all primary and tracker sightings with high or assumed high (blank in the database) 

identification confidence were selected. (Figure 4-2, i.a).  

 

4.3.1.b Link between visual and acoustic detection 

4.3.1.b.i Time at hydrophones (Figure 4-2 iii.a)  

As mentioned in the description of the data, the visual observers looked for animals ahead of 

the vessel, whereas the hydrophones, from which acoustic data were extracted, were towed 

up to 400m behind the vessel. Due to the distance between the visual platform and acoustic 

platform, the probability of simultaneously detecting the same animal both visually and 

acoustically was not optimal. Thus the following method was adopted for linking visual and 

acoustic detections; For each visual detection, the time when the hydrophones were at the 

perpendicular distance of the sighting (this variable will be called “abeam time”: TAb ) was 

estimated using the formula below 

 1�w = ���*%-/m + 4005.14 + 1� 
(4-1)     

 

where Â  was the angle between the bearing of the vessel and the animal, radial distance (R) 

estimated by the visual observer. Then the distance between the visual team and the 

hydrophone was added (400m). This total distance was dived by the vessel speed 5.14 meters 

per seconds and added to the time of visual observation (TV). 

It was assumed that the animal did not move significantly between the visual detection and 

the time the hydrophones were abeam of the animals.  

 

4.3.1.b.ii Acoustic selection (Figure 4-2 iii.b) 

Each visual detection (Primary and Tracker) of species of interest with a high confidence 

level of identification was associated with the acoustic recordings corresponding to the 

“abeam time” of detection. To be sure not to miss any vocalisations, while at the same time 
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ensuring not to select recordings with two different species several rules were applied to be 

conservative on the choice of recordings: 

• immediate recordings before and after the “abeam time” corresponding to the visual 

detection were selected; 

• if within a selected recording more than one species was observed the recording was 

not selected for the analysis; 

• if an adjacent recording contained a visual detection of a different species these 

adjacent recordings were not selected; 

• the last two rules were not applied to the common (COD), striped (STD) and 

common/striped (C&S) detections. Indeed, during the visual survey an initial sighting 

would be made and then consecutive re-sightings were made during which the 

confidence of species identification went up. Common and striped dolphin were 

regularly observed in large mixed groups (C&S, common AND striped), within these  

mixed groups smaller, single species subgroups were observed (common OR striped; 

so that consecutive re-sightings separated by 5 minutes or less would alternate 

between groups consisting entirely of common dolphins and groups consisting 

entirely of striped dolphins. For this reason if any of these three groups (C&S, COD 

or STD) were sighted within the same or adjacent recordings, these recordings were 

selected and identified as CSD detections. 

 

4.3.2. Creation of the classifiers 

Four classifiers were trained and tested using the CODA data; two with the French dataset 

and two with the Spanish dataset. For each dataset a first classifier, called 2Sp French 

classifier and 3Sp Spanish classifier were trained with all the detections from COD, STD and 

C&S pooled in one unique classification group (CSD). This setup was a conservative 

approach which matched with the misidentification of these species by the visual teams. Then 

each dataset was used to train a classifier with the COD, STD and C&S detections 

representing a classification group each. They were called 4Sp French classifier and 5Sp 

Spanish classifier.  

Finally a last classifier, called the North Atlantic classifier, has been trained using the data of 

Gillespie et al., (2013). This classifier was trained with the same species group as the 3Sp 

classifier and with the optimal fragment and sections length measured by Gillespie et al. 
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(2013). This classifier was made using data recorded in different areas of the North Atlantic 

ocean generally from a small sailing research vessel in the vicinity of groups of dolphins or 

made while underway with dolphins close to the vessel (Gillespie et al., 2013) 

 

The training was done following the method developed in the previous chapter (chapter 3 2.1 

p 43). To identify the optimal fragment and section length, the quality coefficient (Q) was 

calculated on the pooled French and Spanish datasets. Fragments and sections ranging 

respectively from 5 to 15 bins (27ms to 80ms) and 10 to 30 fragments were tested. 

 

Each classifier was represented by its confusion matrix when 80% of the training data were 

used to train the classifier. To estimate the precision of the classification probabilities if 

100% of the training data were used to train it, each classifier was trained with different 

proportions of training data as described in (chapter 2). However the final algorithm of the 

classifier which was used to classify new data was created using 100% of the training data. 

 

4.3.3. Classification of new data 

To analyse the potential effect of acoustic differences between cetacean populations and the 

sensitivity of the classifier to the data, the acoustic detections of the French dataset were 

classified using the Spanish (3Sp and 5Sp) classifier algorithms and the Spanish dataset were 

classified using French (2Sp and 4Sp) classifier algorithms. Then both datasets were 

classified with the North Atlantic classifier. 

Finally recordings without visual identifications were classified using the classifiers trained 

with data from the same detection area and the North Atlantic classifier. 

 

The results of these classifications were presented in two different ways. First, as a confusion 

matrix, similar to the output from PAMGUARD, for the Spanish and French training data,  

secondly, as in the previous chapter, sections were grouped in encounters. In this chapter the 

definition of an encounter is slightly different from the previous chapter 3. This difference is 

due to the type of hydrophones used and the recording pattern. In the previous chapter the 

hydrophones were bottom mounted with a discontinuous recording pattern, and the animals 

moved relative to them, whereas in this chapter the hydrophones recorded continuously and  

moved with the vessel, and the animals were assumed to be stationary with respect to the 

hydrophones; i.e. tow speed >> swim speed. So the interaction time between animals and 
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hydrophones were likely to have been shorter during this survey. For this reason and the 

observations of all the classification events, a gap of 10 minutes without any classification 

event was selected to define two encounters. The identification of an encounter was the 

classification group with the higher average classification probability among all the sections 

on the encounter (chapter 2: 1. PAMGUARD whistle classifier stage v, p2.1). 

 

Figure 4-2: Schematic diagram of the data selection and decision process. (i) Selection of visual data with 

a high confidence of species identification. (ii) Detection and selection of whistles contour and discard of 

the false positive contours. (iii) Creation of the training dataset by assigning sightings to recordings. (iv) 

Training of the classifiers with the datasets. (v) Testing of the classifiers on identified data.(vi) use of the 

classifier to identify new data. 
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4.4. Results 

4.4.1. Visual detection selection 

Of the 1257 (782 for the Spanish data and 475 for the French data) primary and tracker visual 

detections between the four vessels, 443 (35.2%) were sightings of whistling species with 

353 of this sightings identified with a high or assumed high confidents level and used in this 

chapter. 

 

Eighty per cent of the selected sightings were of common and striped dolphin (CSD) species 

individually or together (Table 4-1). The other whistling species identified with confidence 

were bottlenose dolphin, pilot whale (both long finned pilot and short finned pilot whales) 

and Risso’s dolphin.  

More sightings, but fewer species were reported in the Spanish data set (five species for 

seven in the French dataset) (Table 4-1).  

 

Table 4-1:  Numbers of visual detections with a high or assumed high confidence level on the French and 

Spanish vessels. 

Species French data Spanish data TOTAL 
Bottlenose dolphin 20 9 29 
Common dolphin 37 119 156 
Striped dolphin 10 39 49 
Common and Striped dolphin 3 72 75 
Long or  short finned pilot whale 1 0 1 
Long finned pilot whale 23 19 42 
Risso’s dolphin 1 0 1 
TOTAL 95 258 353 

 

4.4.2. Acoustic Data 

4.4.2.a Quantitative description 

The French and the Spanish acoustic datasets were made of 1367 (223.43.77 hours) and 2086 

(250 hours) recordings respectively. Among them 51% of the French recordings and 92.3% 

of the Spanish recordings contained acoustic detections.  
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Table 4-2: Summary of the numbers (n) of recordings in total, with all the acoustic detections and when 

the false positive detections (FD) have been removed. Also summary of the total number of acoustic 

detections contours as well as the number of acoustic contours used for the rest of the analysis when the 

false positive detections were removed. 

 French Spanish 

 n Recordings n Contours n Recordings n Contours 

TOTAL 1367  2086  

With all Detections 697 92666 1925 77821 

Without FD 102 23074 451 31676 

With visual detections 34  135  

Without visual detections 68  316  

 

4.4.2.b False detection removal 

Four hundred and seventy two (472) minutes and 558 minutes were analysed from the French 

and Spanish datasets respectively. For all minutes with a total contour length greater than 0.1 

seconds the contour lengths from the FD minutes differed significantly from the contour 

lengths from the W minutes. The average contour length in the FD minutes was 0.07 seconds 

whereas the average contour length in the W minutes was 0.14 seconds (Figure 4-3). 
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Figure 4-3: Distribution of the false positive detections (FD ) and whistle (W) contour lengths for each 

category of Lm. The * indicates if the mean difference between the false detection contours and whistle 

contours was significant with a probability (p)<0.05. 

 

The optimum contour length to discard the maximum of false positive meanwhile keeping the 

maximum number of whistle contours was 0.10 seconds. With a contour length of 0.10 s for 

both datasets 96% of the false detection contours were removed whereas 79% and 84% of 

respectively the French and Spanish whistle contours were kept (Table 4-3). 
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Table 4-3: Proportion (%) of detection contour lengths within the false detections (FD) and whistles (W) 

minutes below the contour length for each dataset. 

  Contour length (s) 

 Contour class ≤0.07 ≤0.08 ≤0.09 ≤0.10 ≤0.11 

French 
FD 43% 76% 89% 96% 97% 

W 7% 11% 17% 21% 26% 

Spanish 
FD 47% 73% 90% 96% 98% 

W 4% 4% 9% 16% 25% 
 

Once the false positive detection contours were removed only 40% and 25% of, respectively, 

the totality of the French and Spanish detection contours remained (Table 4-2) to be 

associated with the sightings of whistling species. 

 

4.4.3. Link between Acoustic and Visual observations 

The next stage in the creation of the classifier training dataset was to associate the 353 

sightings (Table 4-1) of whistling species, for which the observer was highly confident on the 

species identification,  to the 553 recordings with 54 750 whistle contours (Table 4-2).   

In the French dataset 32% of the false detection free recordings were associated with at least 

one visual detection, and in the Spanish dataset 30% of these recordings were associated with 

at least one visual detection.  

 

Finally Table 4-4 summarises the number of contours assigned to each species used to train 

the whistle classifiers. These contours have a minimum length of 0.10 seconds and a range in 

frequency from 1500Hz to 48000Hz. Contours above 48000 Hz were not selected as they 

may have contained other non-biological sounds and the frequency range for the species of 

interest was not higher than 24 kHz (chapter 1, table 1.1). 
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Table 4-4: Numbers of whistles contours used in the whistle classifier for each species and datasets. 

Species Abbreviation French dataset Spanish dataset TOTAL 

Bottlenose 
dolphin 

BND 2 53 55 

Common dolphin COD 2164 18618 20782 
Striped dolphin STD 247 973 1220 

Common/Striped 
dolphin 

C&S 110 2917 3027 

Long or short 
finned pilot whale 

FPW 842 17 859 

Risso’s dolphin RSD 3 0 3 
TOTAL  3368 22578 25946 

 

4.4.4. Parameter optimisation 

The average Q over species and section length showed that a fragment length of 11bins (59 

ms) gave the best classification result (Figure 4-4). Q increased slightly when the section 

length increased from 10 to 25 fragments per section. For some species not enough data were 

available to generate sections of 30 fragments of 11 to 15 bins long. This lack of data could 

explain the decrease of the average Q across all fragments when the section length reached 30 

fragments. Even for sections of 25 fragments when the fragments length was of 13 or 15 bins 

some species did not have enough data to be part of the classifier.  

 

So to insure to have enough data to train and test the classifiers for each species the optimal 

fragments length of 11 bins and section length of 20 fragments were selected to train the 

classifiers with the different datasets. While this very short fragment and section length (they 

were of respectively 25 and 60 in the previous chapter and in Gillespie et al., 2013), the very 

small number of contours assigned to Risso’s dolphins made them unusable as it would not 

be possible to create a training and a testing section. For the same reason the bottlenose 

dolphin contours were excluded from the French whistle classifier while they were used in 

the Spanish whistle classifier. However, there were just enough pilot whale contours in the 

Spanish dataset to create at least one training and one testing section in the classifier.  
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Figure 4-4:  Quality coefficient Q for varying fragment lengths (averaged over section lengths between 10 

and 30 fragments); and varying section lengths (averaged over fragment lengths between 5 and 15 bins) 

used to classify five groups of species (bottlenose dolphins, common dolphins, common/striped dolphins, 

pilot whales and striped dolphins) from both the French and Spanish datasets. 

 

4.4.5. Classifier Training 

4.4.5.a French classifiers 

The 2Sp French classifier classified the CSD detections better than by chance (p<0.001) with 

a correct classification probability of 65% (Table 4-5), however the pilot whale detections 

were classified at the same rate as if it was at random (p=0.89) (Table 4-5). 

With the 4Sp French classifier correct classification probabilities were low for all species 

with a maximum correct classification probability of 51% for the C&S group. Adding to this 

low correct classification probability the false positive misclassification probabilities were 

high for all species with a minimum of 55% for the pilot whale group. The STD detections 

were not classified better than by chance alone (p=0.004) 

Forty five per cent, 37% and 66% of the COD, C&S and STD classification groups 

respectively were misclassified as one of these groups.  
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Table 4-5: 2Sp French classifier with the classification probabilities when the classifier was trained with 

80% of the French dataset. Standard deviations (%) are within the brackets. Species codes are the same 

as in table 1-4, with CSD = COD +STD + C&S pooled. P = p-value of a one-tailed t-test to test, the null 

hypothesis that the results were obtained purely by chance, �� = 	�% 

Classified as %  False Positives (%) p 

 CSD FPW   

CSD 64.9 (11.8) 50.3 43.7 <0.001 

FPW 35.0 49.7(19.7) 41.3 0.89
 

 

Table 4-6: 4Sp French classifier confusion matrix: Classification probabilities of the classifiers trained 

with 80% proportion of the French dataset. Standard deviations are within the brackets. p-value of a one-

tailed t-test to test the null hypothesis that the results were obtained purely by chance, �� = �	% 

Classified as % True Species 
False 
Positives 

(%) 
p 

 COD C&S FPW STD   

COD 34.0 (13.2) 8.8 23.2 34.6 66.2 <0.001 

C&S 18.7 51.3 (13.3) 23.0 30.9 58.6 <0.001 

FPW 21.4 11.7 37.5 (13.3) 13.9 55.6 <0.001 

STD 25.9 28.2 16.5 20.6 (13.3) 77.4 0.004
 

False negatives 66 48.7 62.5 79.6   

 

4.4.5.b Spanish classifiers 

With the 3Sp Spanish classifier, both the BND and CSD classification groups were very well 

identified, with a correct classification probability greater than 90%. The false positive 

misclassification of BND was small (14%) whereas it reached 49% for the CSD classification 

group. This high rate was directly linked to the high misclassification of FPW detection as 

CSD (83%) consequently FPW detections were poorly classified with a correct classification 

probability of 6% different (p<0.001) and lower than by chance alone.  

When the CSD classification group was divided in three groups (COD,C&S and STD) in the 

5Sp Spanish classifier, BND whistles contours were still very well discriminated (92% 
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correct classification probability) with a relatively low false positive misclassification 

probability of 20%. COD and STD had a probability of being correctly classified close to 

40% with high false positive misclassification probabilities (70%). This high rate was largely 

due to the fact that 75% of both the FPW and C&S detections were classified as COD or STD 

(Table 4-8). Both the C&S and FPW detections were not classified better than by chance. 

The confusion matrix of this Spanish classifiers differed significantly to the 4Sp French 

confusion matrix for three (C&S, FPW, STD) of the four species in common.  

 

Table 4-7: 3Sp Spanish classifier confusion matrix with the classification probabilities when the classifier 

was trained with 70% of the Spanish dataset. Standard deviations (%) are within the brackets. Species 

codes are the same as in table 1-4, with CSD = COD +STD + C&S pooled. P = p-value of a one-tailed t-

test to test the null hypothesis that the results were obtained purely by chance, �� = ��% 

Classified as %  False Positives (%) p 

 BND CSD FPW   

BND 91.5 (13.6) 2.9 11.5 13.6 <0.001 

CSD 5.8 91.1(13.4) 83.0 49.4 <0.001 

FPW 2.8 5.9 5.5(13.1) 61.3 <0.001 

False Negatives 8.5 8.9 94.5   
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Table 4-8: 5Sp Spanish confusion matrix with the classifiers trained with 70%n of the Spanish dataset. 

Standard deviations are within the brackets. P = p-value of a one-tailed t-test to test the null hypothesis 

that the results were obtained purely by chance, �� = ��%. 

Classified as % True Species 
False 
Positives 

(%) 
p 

 BND COD C&S FPW STD   

BND 91.5(11.4) 3.1 1.7 12.0 4.4 18.9 <0.001 

COD 1.0 40.8 (12.4) 39.1 44.0 24.3 72.7 <0.001 

C&S 1.2 23.1 17.0 (11.9) 7.0 26.2 77.2 0.004 

FPW 3.8 5.0 6.3 6.0(11.0) 4.8 76.8 <0.001
* 

STD 2.5 28.0 35.9 31.0 40.3(12.5) 70.7 <0.001 

False Negatives 8.5 59.2 83 94 59.7   

 

4.4.5.c North Atlantic classifier 

From Gillespie et al., (2013), the optimal fragments and section length measured with their 

data were respectively 30 bins (160ms) and 60 fragments per section. The classification 

probabilities were high with the correct classification probabilities, greater than by chance for 

the three classification groups, ranging from 70% to 89% and a low false positive rates 

ranging between 4% to 28%. 

Table 4-9: North Atlantic classifier confusion matrix with the classifiers trained with 80% of the dataset. 

Standard deviations are within the brackets. p = p-value of a one-tailed t-test to test the null hypothesis 

that the results were obtained purely by chance, �� = ��%. 

Classified as %  False Positives (%) p 

 BND CSD FPW   

BND 70.3 (10.8) 10.7 8.0 21 <0.001 

CSD 26.9 88.8 (10.3) 5.7 27.5 <0.001 

FPW 2.8 0.5 86.4 (10.2) 3.7 <0.001 

False Negatives 29.7 11.2 13.7   
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4.4.6. Classification of new data with the classifiers 

4.4.6.a French dataset 

4.4.6.a.i Classified with Spanish and North Atlantic classifiers 

With the North Atlantic classifier, fewer sections were created and classified as the fragment 

and section length parameters were longer than in the French and Spanish classifiers. 

As expected from the 5Sp Spanish classifier confusion matrix both common and striped 

dolphin sections were correctly identified at a rate close to 40% (40% for COD and 32%. for 

STD) (Table 4-10). C&S dolphin sections were classified at a rate very different to the 

expected correct classification probability of the Spanish confusion matrix; 67% versus the 

17% expected. The pilot whale sections were very poorly identified with the Spanish 

classifier with only 3% of the sections correctly identified whereas they were expected to be 

correctly identified at 38% with the 4Sp French classifier.  

Once classified with the 3Sp Spanish classifier (Table 4-10), the identification of the CSD 

sections were much higher than the prediction with the French classifier and in the same 

order as the predictions of the Spanish 3Sp classifier. The proportion of pilot whales 

detections correctly identified was better than expected from the confusion matrix of the 

Spanish classifier. 

Finally classification of these data with the North Atlantic classifier (Table 4-10) gave on 

average a better correct classification probabilities. The main improvement was seen in the 

classification of FPW detections, but the proportion of FPW section correctly identified was 

still low at 34%. 

 

Organising the sections into encounters reduced the amount of data available for 

classification. The 876 sections classified formed 16 encounters (Table 4-11) with a 

maximum of 403 sections per encounter for the common dolphin classification group (see 

Appendix B, Table B.1). Nevertheless the proportions of encounters correctly classified were 

slightly better than when the results were compared by sections. COD and C&S classification 

groups had a better classification probability when they were organised into encounters with 

up to 100% of correct classification when the 3Sp classifier was used. However the four 

encounters of STD detections were never correctly identified with the 5Sp classifier and they 

were misclassified as BND, COD or C&S. With the 3Sp classifier three of them (75%) were 

correctly identified. Even if this classification probability was lower than the 91% observed 
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in the confusion matrix (Table 4-7), only one encounter out of a total of four was 

misclassified. However, having the results organised into encounters did not improved the 

identification of the French FPW sections, with both Spanish classifiers all FPW encounters 

were misidentified. 

Table 4-10: Classification result of the French dataset classified with the Spanish and North Atlantic 

classifiers. 

 True Species 

Classifier Classified as % COD C&S FPW STD 

5Sp 

BND 2 0 30 3 

COD 40 27 23 30 

C&S 31 67 23 32 

FPW 2 0 3 3 

STD 25 7 22 32 

2Sp 

BND 3 0 28 5 

CSD 95 100 67 95 

FPW 2 0 5 0 

North Atlantic 

BND 13 0 5 0 

CSD 87 100 61 100 

FPW 0 0 34 0 

 

Because of the bigger fragment and section lengths used in the North Atlantic classifier the 

French data were organised into only 11 encounters (Table 4-12, Appendix B, Table B.3). 

Only one of these encounters was misidentified (FPW encounter misclassified as 

common/striped). 
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Table 4-11: Encounters classification of the French acoustic dataset classified with the Spanish classifier.  

  True Species 

 
Number of Encounters 

Classified as 
COD C&S FPW STD 

5Sp 

BND 0 0 2 1 

COD 4 0 0 1 

C&S 1 1 1 2 

FPW 1 0 0  

STD 2 0 0  

3Sp 

BD 0 0 2 1 

CSD 8 1 1 3 

PW 0 0 0 0 

 TOTAL 8 1 3 4 

 
Mean (sd) 

number of sections/encounters 
74(132) 15(0) 78(61) 9(9) 

 

Table 4-12: Encounters classification of the French acoustic dataset classified with the North Atlantic 

classifier (N.Atlantic) 

  COD C&S FPW STD 

N. Atlantic 

BND 0 0 0 0 

CSD 5 1 1 2 

FPW 0 0 2 0 

 Number of Encounters 5 1 3 2 

 

Mean (sd) of 

number of 
sections/encounters 

27.2(33.0) 2(0) 14.67(13.6) 3(1.41) 
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4.4.6.a.ii Unidentified dataset classified with French classifier 

Fifty recordings, out of a total of the 68 selected recordings without visual detections, 

contained identified sections. These sections were grouped into 25 encounters with the 

French classifier and 8 with the North Atlantic classifier (Table 4-13, see Appendix B, Table 

B.3, for details). With the 4Sp French classifier 5 (20%) of the encounters were classified as 

STD, 11 (44%) as COD, one (4%) as C&S and seven (28%) as FPW. One encounter had an 

equal probability to be classified as COD or STD. With the 2Sp French classifier, 17 (68%) 

encounters were classified as CSD dolphins, 71% of them were in common with the 4Sp 

French classifier. However only 3 of the 7 encounters classified as FPW were classified by 

the 4Sp French classifier as FPW as well. Five encounters (62%) generated by the North 

Atlantic classifier were identified as CSD like they were with the 2Sp French classifier.  

These encounters were compared with the effort of the visual teams (see Appendix B, B.3). 

For 64% of these encounters the visual team was off effort. The remaining encounters were 

detected when the visual team was on effort. For four of these encounters no sightings of a 

whistling species was detected within 10 minutes of the whistles detections, for the remaining 

five, a visual detection of a whistling species was recorded. 
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Table 4-13: Encounter identification of the French acoustic detection, not associated with a visual 

detection, using the French and North Atlantic classifiers. COD=Common dolphin, C&S=Common and 

Striped dolphin, FPW=Pilot whale, STD=Striped dolphin, unidentified=when a section contain the same 

maximum classification probabilities between several species. 

  French Classifiers 
North Atlantic 

classifier 

4Sp 

COD 11  

C&S 1  

FPW 7  

STD 5  

Unidentified 1  

2Sp 

BD  1 

CS 17 7 

PW 7  

Unidentified 1  

TOTAL  25 8 
 

 

4.4.6.b Spanish dataset 

4.4.6.b.i Training dataset classified with French and North Atlantic classifiers 

The Spanish data classified with the 4Sp French classifier were on average correctly 

identified with almost the same probability as expected with the Spanish classifier itself 

(Table 4-14, and Appendix B, B2 for details). STD were slightly better identified with the 

French classifier (53.6% versus 40.3 with the 5Sp Spanish classifier) while COD detections 

were better identified with the Spanish classifier (40.8%) than with the French one (32.4%). 

C&S detections were largely misidentified as STD, the expected correct classification 

probability of this group with the 4Sp French classifier was 51.3% and only 16.4 % of the 

Spanish C&S detections have been correctly identified. The Spanish data contained only one 

section of FPW detections which was misclassified as COD (Appendix B, B2). 
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The classification results with the 2Sp French classifier (Table 4-14, and Appendix B, Tbale 

B3) were worse than what was expected from the confusion matrix. None of the three 

classification groups were correctly identified at a rate greater than 50%. The BND sections 

were not classified as the French classifiers did not have a bottlenose classification group 

(Table 4-4). 

 

However, the North Atlantic classifier identified the COD, C&S and STD sections correctly 

more than 90% of the time (Table 4-14). But the only section of BND was misidentified as 

FPW and there were not enough sections of FPW to generate at least one section. 

 

Table 4-14: Spanish data classified with the 3Sp, 2Sp French classifiers and by the North Atlantic 

classifiers. CD=Common dolphin, CS=Common and Striped dolphin, PW=Pilot whale, SD=Striped 

dolphin. 

  True Species 

Classifier Classified as % BND COD C&S FPW STD 

4Sp 

COD 0.0 32.4 24.7 100 28.0 

C&S 0.0 15.2 16.4 0.0 11.9 

FPW 0.0 15.4 13.2 0.0 6.5 

STD 0.0 37.0 46.1 0.0 53.6 

2Sp 
CSD 0.0 49 39 100 38 

FPW 0.0 51 61 0 62 

North Atlantic 

BOD 0.0 10 10 0.0 0.0 

CSD 0.0 90 90 0.0 100 

FPW 100 0.0 0.0 0.0 0.0 

 

The 4602 sections of the Spanish data formed 48 encounters; 18 COD, 19 C&S, 1 FPW and 

10 STD (Table 4-15, and Appendix B, Table B.2 for details). These encounters were made of 

1 to 448 sections. Encounters of COD contained more sections (average of 216 sections per 

encounters), whereas the encounter of FPW was made of only one section. COD encounters 

were mostly (>50%) correctly classified by both classifiers. Encounters of other species were 
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largely misclassified as STD or COD when classified with the 4Sp classifier and as FPW 

when classified with the French classifier. Fifty six per cent (56%) of the encounters were 

identified as the same species by the two classifiers.  

 

Table 4-15: Encounters of the Spanish data classified with the 3Sp, 2Sp French classifiers. 

 Number of encounters classified 
as 

COD C&S FPW STD 

4Sp 

COD 10 4 1 4 

C&S 0 0 0 0 

FPW 1 2 0 1 

STD 5 12 0 5 

Unidentified 2 1 0 0 

2Sp 

CSD 12 6 1 4 

FPW 5 12 0 5 

Unidentified 1 1 0 1 

 Total number of encounters 18 19 1 10 

 
Mean (sd) 

number of sections/encounters 
216(373) 28(62) 1(0) 17(23) 

 

With the North Atlantic classifier 97% of the 36 encounters were correctly classified, only the 

BND encounter, made up of a unique section, was misclassified as FPW (Table 4-16). 
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Table 4-16: Encounters of the Spanish data classified with the North Atlantic classifier 

  BND COD C&S FPW STD 

 
Number of Encounters 

Classified as 
1 17 13 0 5 

 
Mean (sd) of 

number of sections/encounters 
1 42(74.12) 7(13.6) 0 6(5.5) 

N.Atlantic 

BD  0 0 0 0 

CS  17 13 0 5 

PW 1 0 0 0 0 

 

4.4.6.b.ii Unidentified dataset classified with Spanish classifier 

These detections were grouped into 62 encounters made of  1 to 370 sections (Appendix B. 

Table B.4 for details). The classification groups containing COD had a much higher number 

of sections per encounter (Table 4-17). Only one encounter of FPW was identified with only 

1 section in it. 

When this unknown dataset was classified with the 5Sp classifier, 51 encounters were 

classified as COD, C&S and STD. With the 3Sp classifier 54 were identified as CSD and 

only two of them were identified differently with the 5Sp classifier. With the 5Sp classifier 

eight encounters were identified as BND seven of them were identified similarly with the 3Sp 

classifier. The remaining BND encounter was classified as CSD with a probability just over 

the average (52%). The encounter identified as FPW with the 5Sp classifier was classified as 

CSD with the 3Sp classifier. With the North Atlantic classifier, 37 encounters were generated, 

with 32 of them being identified as CSD a similar number to the 3Sp French classifier. Two 

were identified as FPW and one as BND.  

The spectrograms of all the encounters were examined visually to detect any false positive 

detections (Appendix B, Table B.4). Eleven encounters (18%) were false positives detections, 

three were due to the presence of a sonar, producing a discontinuous long signal in the 

frequency range of the species of interest, and eight contained numerous electric noises.  

Twenty seven (43%) encounters were detected when the visual team was off effort. For 19 

encounters (31%) the visual team was on effort but did not detect any animal and for the 
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remaining five encounters (8%) a visual detection happen 10 minutes before or after the 

encounter time. Each of these encounter have been identified with the same species as the 

visual observations (Appendix B, Table B.4). 

 

Table 4-17: Classification result of the Spanish acoustic dataset classified using the Spanish and North 

Atlantic classifiers. Number of sections classified with the corresponding classification probability 

(%).CD=Common dolphin, CS=Common and Striped dolphin, PW=Pilot whale, SD=Striped dolphin. 

The number in bracket is the number of sections classified similarly by the Spanish and the North 

Atlantic classifiers. 

  Spanish Classifier 
North Atlantic 

Classifier 

5Sp 

BD 8  

CD 26  

CS 11  

PW 1  

SD 14  

Unidentified 2  

3Sp 

BD 7 1 

CS 54 33 (32) 

PW 0 2 

Unidentified 1 1 

TOTAL  62 37 
 

 

 

 

 

 



Part I Classification  Chapter 4: Classification of data from a less reliable training dataset 

86 
 

4.5. Discussion 

4.5.1. Parameters influencing the performance of a classifier 

In this chapter, two sets of classifiers have been created using data collected during the 

CODA large scale survey. One of the main objective of the CODA project was to estimate 

the common dolphin abundance, and if possible the abundance of other cetaceans species. 

Visually Common and striped dolphins are hard to tell apart at large distances or are often 

found in mixed groups, hence the need for a C&S group. With the acoustic classifier the same 

result was achieved, indeed when these two species were pooled in one group, they were very 

well discriminated from bottlenose dolphin and pilot whale. However, like with visual 

detection, it was more challenging to tell apart acoustically common to striped dolphin. The 

results of this chapter were in accordance with previously published results (Gillespie et. al., 

2013, Oswald, 2007) showing important misclassification between common dolphin and 

striped dolphins. The misclassification between these two species observed in those papers 

was smaller than the one observed in this thesis. This difference may be explained by the 

smaller size and the less accurate species identification of the training data which generated a 

new source of misclassification due to misclassification within the training dataset itself 

 

4.5.2. Consequences of a lack of training data 

The very large proportion of false positive detections (almost 80% between both datasets)  

reduced the amount of data available to build stable and reliable classifiers. The differences 

observed in the pilot whale correct classification probabilities between the French and 

Spanish classifiers (40% and only 5% respectively) may be explained by the lack of data in 

the Spanish dataset. Only 17 pilot whale contours were available to train the Spanish 

classifiers whereas 842 were available in the training data of the French classifiers. With this 

quantity of data it was difficult to create a stable classifier. This low ability to identify pilot 

whale detections explained the poor classification of the French pilot whale detections by the 

Spanish classifiers (maximum correct classification probability being 5%). Even so the 

French training dataset contained more pilot whale contours, the identification of pilot whale 

by the 2Sp French classifier was not better than by chance. However, in the North Atlantic 

classifier, for which 20 times more data were used for this species, the expected correct 

classification probability reached 86%. So the classification probability observed for the 2Sp 

French classifier may as well be due to a lack of data. Even if the French and Spanish pilot 

whale data classified with the North Atlantic classifier were not correctly identified with such 
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success (34%), of the five classifiers tested it gave the most accurate classification. This 

smaller correct classification probability relative to the expected one may be due to another 

source of misclassification; the difference of vocalisation characteristics between population 

or strongly related species. Indeed, the pilot whale detections of the French, Spanish and 

North Atlantic training data were a combination of both the long finned and short finned pilot 

whale species. Gillespie et al., (2013) shown that these two species can be discriminated well 

with a small misclassification probability between them (between 6 to 12%). In this chapter, 

the French pilot whale detections were in majority from long finned pilot whale whereas the 

majority of the pilot whale detections of the North Atlantic classifier were from short finned 

pilot whales (Gillespie et al., 2013).  

 

4.5.3. Consequences of a lack of the accuracy of species identification 

In this analysis, the species identification was done by associating a species sighted several 

hundred meters in front of the acoustic detection system. Given this distance, the method 

chosen to link the visual to the acoustic detection could be at the origin of a wrong species 

identification. The low classification probability of the C&S group within the 5Sp Spanish 

classifier, despite being the group with the second largest number of contours, can be 

explained by the selection process for this group. During the selection only adjacent 

recordings with one species were selected. However, an exception was made for COD, STD 

and C&S groups (see section 3.1.b.ii for explanation). The Spanish CSD data contained more 

recordings associated with COD and STD sightings than the French CSD data. Maybe some 

assumptions were wrong and some significant differences were to be expected between these 

three groups. Each time the large CSD classification group was involved in the classification 

(either to train the classifier or when it is classified with the French classifier) the 

classification probability was low.  

The difference between the correct classification probabilities for the STD group between the 

French and Spanish classifiers was less expected. In the French classifier the striped dolphin 

detections were classified randomly with an even misclassification between COD and C&S 

which means that the classification of the Spanish striped dolphin by the 4Sp French classifier 

were similar to a random classification and so cannot be considered as reliable. When this 

source of mistake was removed by pooling the three classification groups as a unique one the 

confusion matrix for these classifiers showed an average correct classification probability of 

60% versus the 38% when the three groups were run independently. 
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Finally the North Atlantic classifier which combined good large training dataset and reliable 

species identification for the training data and also one common group for the common and 

striped detections gave the best classification results for all the datasets.  

 

4.5.4. Advantages of acoustic detections over visual detections 

This chapter showed how difficult it is, using the current methodology to make a reliable link 

between visual and acoustic detections with survey method similar to the one used in the 

CODA survey. The main difficulty highlighted was the ability to create a large enough 

acoustic dataset despite weeks of acoustic survey. The presence of non-dolphin noise with the 

disproportionately high number of false positive detections, stems from the use of noisy 

survey platforms. Although it was possible to remove most false positive detections from the 

dataset, those that could not be removed shared characteristics similar to those of the whistles 

that were attempting to be classified.  

 

The distance between the visual team and the acoustic detection was also a problem as it 

increased the chance of mistakes in the association of sightings to an acoustic detection. 

There is no doubt that acoustic detections are important to detect animals missed-detected 

visually (Table 4-18); the 61% of the classified encounters not associated to a visual detection 

proved it. Half of the encounters (50%) not associated with a visual detection were made 

when the observers were off effort. For the other half either no sighting was recorded or a 

sighting was recorded within 10 minutes but it was not selected due to the selection criteria 

used in the method of this analysis. However, with the current survey method and with the 

method used in this analysis, the classification results of the encounters not associated with a 

visual detection were not very reliable. 

 

With some modification in the survey method it would be possible to create a training dataset 

of quality from the survey data themselves. Similarly to the selection of well trained and 

highly qualified visual observer to optimise the chance of getting reliable identifications, a 

good classifier training data will optimise the chance of getting reliable acoustic 

identification. The better classification results with the North Atlantic classifier illustrated 

this point. But given the observations of different whistles characteristics between 

populations, an ideal training dataset should be made of data collected in the same area of the 
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survey, which is not always possible. Nonetheless some modification of the survey actual 

method similar to what is regularly done by the Southwest Fisheries Science centre in the 

United State (Barlow and Forney, 2007) would be beneficial for both the visual and the 

acoustic detections. They are using a closing mode procedure during the survey that consisted 

of breaking the transect line to go closer to sightings. They can then, verify their species 

identification and group size estimates. This verification can be used to measure their 

probability of correct identification from the transect line. This method will be also beneficial 

for the acoustic detections as it will generate some recordings directly associated with a 

species. These recordings can then be used to train the classifier or to verify the quality of the 

classifier.  

Table 4-18: Summary of the numbers of encounter classified per species for the training dataset and the 

number of encounters classified by the classifier but for which the species identification was not known. 

 n visual 
detections 

n encounters Off Effort 

On effort 

No visual 
detec. Visual detec. 

BND 29 0    

COD 156 26    

C&S 75 20    

FPW 43 4    

STD 49 14    

RSD 1 0    

No Id  87 43 28 11 
 

If the closing mode is not possible then allowing for some visual detection when the animals 

pass abeam of the hydrophones and monitor the distance from the hydrophones should help 

also in the creation of a more reliable acoustic database of sound from which the species is 

identified.  

 

In conclusion this chapter highlighted the need to improve and/or generalise the used of 

methods such as close up mode to accumulate a reliable training dataset to be used during the 

creation of an acoustic classifier. By developing more cost-effective methods to select a good 
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training dataset, it can be hoped that the part of the misclassification generated by 

misclassification within the training dataset will be diminished and only the misclassification 

generated by similarity between species will stay. Furthermore this misclassification can be 

decreased by grouping similar species as a unique classification group  



Part I Classification  Chapter 5: Classification:  General Discussion 

91 
 

Chapter 5: Classification:  General Discussion 

 

5.1. Introduction 

One of the difficulties with acoustic data from cetaceans is correct identification of the 

detected sounds. Several classifiers (Datta and Sturtivant, 2002; Gillespie et al., 2013, 2011; 

Nanayakkara et al., 2007; Oswald et al., 2003; Soldevilla et al., 2008) have been developed 

based on different methods. With the exception of Gillespie et al., (2013), the confusion 

matrix is the only quantitative description for these classifiers. Gillespie et al. (2013) 

presented for the first time a measure of uncertainty of the confusion matrix by associating 

the standard deviation of the correct classification probabilities in the confusion matrix.  

The objective of the first part of this thesis was not to develop yet another whistle classifier 

method but to determine the factors influencing the quality of acoustic classifiers. The 

analysis in these chapters were based on two case studies of surveys, which were organised to 

get more information about the distribution of cetacean species for conservation and 

management decisions. The prime objective of the first case study (MORL_BOWL, chapter 

3) was to develop a classifier to discriminate bottlenose dolphin from other species present in 

the area of interest. This case study is similar to the numerous papers describing classifiers, in 

the respect that data to train the classifier have been carefully selected to optimise the 

classification result. The main objective of the second case study (CODA, chapter 4) was to 

detect the presence of cetacean species with particular focus on common dolphin species. For 

this case study the main analysis was done by visual observations but an acoustic detection 

system was added in the process to complement the visual survey. Classifiers were developed 

with the data collected during the survey itself. 

 

5.2. Parameters influencing on the quality of the classifier 

These two chapters demonstrated the importance of the quality of the dataset used to train 

classifiers. The quality of the training dataset was defined by the amount of data available to 

train the classifier, the reliability of the identification of species and the presence of false 

positive detections in the data.  
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5.2.1. Size of the training dataset 

Both, the MORL-BOWL (chapter 3) and the North Atlantic (chapter 4) classifier were trained 

with data collected from quiet platforms with accurate visual confirmation of the recorded 

species. The average number of contours per species in the training dataset was 29222 for the 

MORL-BOWL classifier and 37000 for the North Atlantic classifier. Classifiers trained with 

these data were able to identify on average 83% (sd=12%) of the detections correctly. 

However, the French and Spanish classifiers from the CODA data were trained with data 

containing an average of 2680 contours per species and the species identification relied on a 

less accurate method than for the previous dataset. For these classifiers the average correct 

classification probability was 46% (sd=30%).  

 

5.2.1. Reliability of the visual observation 

An important assumption made in chapter 3 was the high confidence in the species visual 

identification of the acoustic detections used in the training dataset. At the opposite in chapter 

4 it was suggested that one of the reason of the poor classification result was perhaps due to 

errors in the identification of the recordings occurring close to a visual detection. These 

possible wrong associations between visual and acoustic detections generated the creation of 

training datasets less reliable than for the previous chapter. This point highlights the problem 

of the accuracy of visual detection and its consequence during the classification process 

necessary to use most of the cetacean acoustic data. During the selection process of the 

training data in chapter 3, some of the initial data available from the west coast of Scotland 

were discarded due to misidentification of the species by the visual observer. While initially 

these data were included in the training dataset the output of the classifier was not good and 

raised suspicion. After a direct observation of these recording spectrograms it was clear that 

these acoustic detections were not from the species identified by the visual observer. They 

were then discarded form the training dataset and the classification result was largely 

improved. It was not possible to tell if the mistake come from a misidentification from the 

observer or from an error during the data transcription on the database. 

This example illustrates perfectly a major problem encountered with cetacean visual 

detection which is the reliability and the lack of method to detect these misidentifications. At 

the opposite of acoustic detections, visual detections are most of the time not recorded such 

that a double verification is possible after the survey and so as soon as the animal is not 

visible any more the only information available is the species identification recorded by the 
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observer associate with its level of confidence. The method of double observer widely used in 

visual survey can help in dealing with this issue if the animals are detected by both observers. 

For terrestrial survey and mainly avian and anuran species the problem of misidentification, 

generating false positive detections, and its negatives consequences in abundance estimation 

is now  recognise and analytical method are developed to correct it (McClintock et al., 2010a, 

2010b).   

5.2.2. Characteristics of the classification groups  

The accuracy of the classifiers was dependent on the number and characteristics of the 

species groups used for classification. The high misclassification probabilities of the 4Sp 

French and 5Sp Spanish classifiers were explained by the similarity between common 

dolphins and striped dolphins. When these species were pooled the average correct 

classification probability of the classifiers increased. In contrast, the good result of the 

MORL-BOWL classifier was partly due to the large size of the dataset and partly due to two 

species, white side and white beaked dolphins, which are relatively easy to tell apart 

(Gillespie et al., 2013) from the other classification groups. Increasing the number of 

classification groups in the MORL-BOWL dataset slightly decreased the correct 

classification probability of the bottlenose dolphins (chapter 3). 

 

5.2.3. False positive detections 

The presence of false positive detections in the training data can be responsible for a bad 

classification result. Frequently in underwater acoustic surveys, there are numerous sources 

of noise with similar characteristics as the sound of interest. A high amount of broadband, 

short noises such as shrimp clicks, very short electric noises and echo sounders can easily 

been missed - detected as cetacean clicks. Other noises such as sonars, more persistent 

electric noises, and rubbing noises from mooring, can easily produce sounds with the same 

frequency range and length as whistles. Being able to develop a perfect detector that 

recognises all these natural and anthropogenic sources of noise will never be possible. 

However, a false positive analysis on the training data prior to training the classifier can 

reduce the impact of such false detections. Because the CODA data were known to be 

collected from noisy ships, a false positive detection analysis was conducted before training 

the classifier. Such an analysis permitted to identify a single parameter (contour length) 

which led to the removal of 80% of all the detections (of electric noise in the majority of 

these cases) leaving 20% good ones. It seems obvious that if these contours were used for the 
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classification, the classification results would have been worse despite being based on a 

larger dataset. This false positive detection analysis prior to training the classifier was not 

conducted on MORL-BOWL dataset because this dataset came from quiet platforms where 

operators were being more careful about the quality of the data that they were recording and 

hence the amount of noise was negligible.  

 

5.3. Defining the robustness of a classifier 

In addition to comparing the classification probabilities as a function of the quality of the 

training dataset, chapter 2 highlights the notion of uncertainty within the confusion matrix of 

a classifier. As explained in chapter 2 and in Caillat et al., (2013), whistles are highly variable 

within and between species, and hence the probability of obtaining exactly the same 

confusion matrix from two different samples of training data is very low. Due to this high 

variability, a classifier should be presented with a measure of uncertainty for each 

classification probability. In chapter 2 a method was proposed to measure and predict the 

variability of the classifier, along with a discussion of the limits of this method. However, by 

drawing a parallel between the measured variability of the classifiers in chapters 3 and 4, it 

can once again be seen that classifiers with a good training dataset contain less uncertainty: 

the average coefficient of variation of the correct classification probabilities for the 

MORL_BOWL and North Atlantic classifier was 10% while it was between 40% and 180% 

for some correct classification probabilities of the French and Spanish classifiers. This result 

will be essential for further analysis (Part II). 

 

5.4. Specificity of the PAMGUARD Whistle Classifier 

All the classifiers generated in this thesis were based on the automatic PAMGUARD Whistle 

Classifier and the whistle contours were detected by the automatic PAMGUARD Whistle and 

Moan detector. A disadvantage of such an automatic classifier is that it is more likely to 

include contours of false positive detections in the classification process than a classifier that 

is based on the selection of the whistles contours by an operator. A specific feature of the 

PAMGUARD Whistle classifier is the division of whistle contours into smaller parts. One 

can argue that by doing so, information on the overall shape of the contours is ignored and 

that classical parameters used to discriminate species, such as end frequency, start frequency, 

number of inflections, cannot be used. Consequently, important characteristics of the whistles 

are not taken into account. However, the good result of the identification of the EARs data in 
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chapter 3 showed that, with a good training data, this classifier correctly identifies unknown 

data. The advantage of automated classification on the other hand is the ability to process 

quickly a large amount of data from detection to classification and it is probably more 

consistent than a human operator. 

To further improve our knowledge on the potential of this classifier it would be interesting to 

study its quality for a small, but accurate dataset and to analyse which of the nine parameters 

used in the discriminate function are the most useful for the classification.  

 

5.5. Recommendations of creating a good whistle classifier 

In conclusion, developing a classifier is a task which requires a training dataset of high 

quality to obtain accurate and good classification probabilities. In the case of marine 

mammals, it is often difficult and time consuming to get large training datasets. However, it 

is still possible to improve the methodology and to be rigorous in the collection of small 

datasets to assure their quality. For acoustic data, it is now relatively easy to collect a large 

amount of them (due to increase in computer storage capacity and improvement of 

technology), but if the operators are not careful about assuring the quality of the recordings, 

large datasets quickly become useless.  

My recommendations to develop a classifier would be to: 

1. ensure correct identification of species within the data used to train the classifier (see 

suggestion of methods in 4.5.4); 

2. ensure that the training data does not contain false positive detections; 

3. ensure that there is enough data for each species for the classifier to be reliable; 

4. be careful about the selection of species to classify, in particular by selecting only 

species which are present in the area of interest. This avoids having too many species 

in the classifier which increase the probability of misclassification; 

5. run a false positive detection analysis on a subsample of the data after classification;  

6. measure the variability of the classification probabilities that is due to the sampling 

process; 

Nevertheless, given the high variability of the whistles even with a perfect protocol, a very 

good data set and quiet acoustic system, the chance to create a classifier able to discriminate 

each species without misclassification is not possible. It is then important to find some 

methods which from the observed classification result calculate the true number of acoustic 
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detections for each species. The second part of this thesis demonstrates one method to solve 

this problem. 
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Part II. Misclassification 
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Chapter 6: A heuristic method to estimate the number of 

acoustic detections in the presence of species misclassification.5 

6.1. Introduction 

Over the last two decades, researchers and managers have become increasingly aware of the 

advantages of using passive acoustic monitoring over visual cues to detect marine mammals 

and so to potentially estimate their abundance. Many studies, in particular those processing 

large datasets from long-term fixed hydrophone deployments, rely on automatic detectors and 

species classifiers to decrease the time and cost of analysis. In the previous part of this thesis, 

it was demonstrated the importance of a good quality dataset to develop a reliable whistle 

classifier. It was also admitted than it will never be possible to develop a classifier able to 

discriminate species perfectly; hence there will always remain misclassification between 

species. However, in any management strategy, accurate and precise quantification of 

population size (“abundance”) is crucial to develop appropriate management actions.  

 

A standard method for estimating abundance based on acoustic detections is cue counting, 

where the cues are the vocalisations detected (Marques et al., 2011, 2009 and chapter 

1.2.2.b.ii p9). The general formula to estimate a species’ abundance from cues is given by 

 !" = #�1 − �̂�%&1�$2̂  (6-1)     

where n is the number of detected cues, �̂ is the estimated proportion of false positives 

detected (calls classified as the species of interest which originated from other species or 

other sources of noise), a is the area in which cues can be detected, �$ is the estimated average 

probability of a cue being detected within this area during recording time T, 2̂ is the estimated 

cue production rate and A is the total study area (Marques et al., 2009). Apart from the fact 

that this formula requires knowledge of the cue production (i.e., vocalization) rate, which is 

unknown for many species, the abundance estimate in Eq. 6-1 only considers the presence of 

one species at a time in the area of interest.  

 

                                                 
5 A slightly modified version of this chapter has been accepted in J. Acoust. Soc. Am. : Caillat, M., Thomas, L., 
Gillespie, D. (2013) The effects of acoustic misclassification on cetacean species abundance estimation. 
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In this part of the thesis (chapter 6 to 8), only issues on determining the true number of calls 

v
)

, which is equivalent to )1( cnv
)) −=  of Eq. 6-1, are addressed. Marques et al. (2009) 

estimated the proportion of false positive detections, �̂, by visually examining 30 periods of 

10 minutes from 6 days of recordings, a process which relied heavily on a human operator 

being able to distinguish between the sounds of interest and a range of other sound sources.  

If the main source of false positive detections is the presence of other species with similar 

vocalisations in the study area, then the rate of false positive detections will be strongly 

related to the relative call densities from the different species. For example, if it is known that 

species A and B are often confused by the classifier, and that species B is much more 

common or more vocal than species A, then a high percentage of the detections attributed by 

the classifier to species A will in fact be false positive detections resulting from the presence 

of species B. If on the other hand, species B were extremely rare or very silent, then there 

would be few misclassifications assigned to species A from species B. 

Since the interest is in estimating the density of multiple species within a given study area, it 

becomes necessary to replace the )1( c
)− term with the more general equation 

 �� = ��n� (6-2)     

Where v
)

 and n are now vectors representing the true numbers of calls and the numbers of 

calls counted for each species after misclassification respectively, and M is a more general 

misclassification operator.  

 

As described in the previous chapters, the level of misclassification between species can be 

described in terms of a confusion matrix formula 6-3 (e.g. chapters 3 and 4, Gillespie et al., 

2013; Oswald et al., 2007), which summarises the probabilities for correct, false positive and 

false negative classifications of all species considered (Part I.1.2.2.b.iv, p11).  

 > =
?
@A

�BB ⋯ 	⋮ ⋱ 	�GB⋮�HB
⋯⋱⋯ 	

�BI ⋯⋮ ⋱�GI⋮�HI
⋯⋱⋯

						
�BH⋮�GH⋮�HHJ

KL, 

 

(6-3)     

where ∑ NOPP = 1	∀1 ≤ R ≤ <. 
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The expected number of detected calls )(nE for each species following misclassification is 

therefore given by  

 {�n� = �. �  

and it follows that the true number of detections for each species can be estimated using  

 �� = �76. n (6-4)     

where �76 is the inverse of the confusion matrix	�. 

 

Species classification is a stochastic process where each classification may be considered as 

an independent random event. In addition, it cannot be assumed that the confusion matrix is 

known precisely since it is typically derived from a finite sample of real data (chapter 2). 

Gillespie et al. (2013) and chapters 3 and 4 showed uncertainties, expressed as a measure of 

standard deviation, ranging from 0.04 to 0.48 for the probabilities of a typical confusion 

matrix. The stochastic nature of the classification process combined with the imperfect 

knowledge of the confusion matrix add to the uncertainty of any estimate of the true number 

of detected cues (��) and consequently, to the uncertainty of estimated species abundance if 

misclassification is taken into account.  

 

With this in mind, this chapter examines the bias and precision of the estimates of the true 

number of detected calls from multiple species which arise from the stochastic nature of the 

confusion process, as well as the uncertainty within the confusion matrix. This is achieved by 

looking at hypothetical confusion matrices and simulated data. After a brief description of the 

classification process in mathematical terms, which also serves as an introduction of notation, 

a simple model containing only the stochasticity within the classification process is analysed. 

This analysis is then extended by incorporating uncertainty in the rates of misclassification.  

 

6.2. The classification process 

Classification events are assumed independent of each other. Thus the classification for each 

species j can be described as the outcome of a multinomial process, where the vector of 

probabilities of the corresponding multinomial distribution is given by the probabilities of the 

jth column of the confusion matrix. The numbers of trials in these multinomial distributions 
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are the true number of detections v, i.e., vj is the number of trials, or the true number of 

detections for species j. 

 

The expected observed number of vocalisations of species i (ni) is equal to the number of 

vocalisations of species i correctly classified as species i plus the false positive classifications 

when vocalisations of another species ij ≠  are misclassified as species i. 

 

 

 

{[#O] = NOxP�O + � NOP�Ps�r  (6-5)     

The following interpretation is useful when simulations are considered later on; since each 

column is identified with the probability vector of a multinomial distribution, it follows from 

Eq. 6-5 that the observed data for species i (ni) are the sum of the output values of the ith 

components of m multinomial distributions, i.e., 

 				#O = � ���ai*�P , �.I/[i]o
Px6  (6-6)     

with the number of trials being the true number of detections �P and the multinomial 

probability for species j being the jth column �.I of the confusion matrix, e.g., n1 is the sum of 

the 1st realized values of m multinomial distributions.  

 

6.3. Methods 

For this study, the effects of animal encounter rate (v) have not been considered, which can 

be an important source of uncertainty on animal abundance estimates, but would detract from 

the primary purpose of this chapter which was to examine the effects of misclassification. 

Therefore only the following two sources of uncertainty were considered:  

1. the stochastic nature of the classification process; 

2. Imperfect classifier performance (i.e., uncertainty on the values of the elements of 

the confusion matrix).  

 

Correct 

Classified 

Misclassified 

species 
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6.3.1. Models tested 

First, only the stochastic nature of the classification process was considered, by assuming that 

the confusion matrix was known (i.e., no uncertainty). In a second step, additional uncertainty 

in the values of the confusion matrix itself was included.  

The bias and variance on the estimates of the true number of detected calls was assessed 

using five different confusion matrices (Table 6-1) with increasing levels of misclassification. 

These included the identity matrix (i.e., no misclassification) and four others containing both 

low (Scenarios b or c) and high (Scenarios d or e) rates of misclassification with the 

misclassification being either the same (Scenarios b or d) or differing for each species 

(Scenarios c and e). For each confusion matrix the bias and variance using both equal data 

(i.e., same number of calls for each species, Scenario 1) and unequal data (i.e. differing 

numbers of calls per species, Scenario 2) were evaluated. All models were developed with 

four species. For equal data, the true number of calls was exactly 3000 for each species. For 

unequal data, values of 8000, 3000, 950 and 50 calls, respectively were selected. Thus the 

total number of calls was the same as the equal data, but with a 160-fold difference in the 

number of vocalisations between the most and the least abundant species. 

The ten different scenarios (five confusion matrixes with equal and unequal data) are 

summarised in Table 6-2. 

Table 6-1: The five different confusion matrixes (a - e) used during the simulation studies. Confusion 

matrix a is the identity matrix (no misclassification), b and c both have a high correct classification 

probabilities, but differ in that the misclassification probabilities of b are equal between species, whereas 

they are different in c. Confusion matrices d and e both have low rates of correct classification and again 

differ in that misclassification is equal between species in d, but varies in e. 

 

a) 

True species 
 

b) 

True species 
 

c) 

True species 

SpA SpB SpC SpD  SpA SpB SpC SpD  SpA SpB SpC SpD 

Predicted 
species 

SpA 1 0 0 0 

 

0.85 0.05 0.05 0.05 

 

0.85 0.08 0.02 0.01 

SpB 0 1 0 0 0.05 0.85 0.05 0.05 0.10 0.85 0.03 0.09 

SpC 0 0 1 0 0.05 0.05 0.85 0.05 0.03 0.05 0.85 0.05 

SpD 0 0 0 1 0.05 0.05 0.05 0.85 0.02 0.02 0.10 0.85 

 Scenario x.a Scenario x.b Scenario x.c 
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d) 

True species 
 

e) 

True species 

SpA SpB SpC SpD  SpA SpB SpC SpD 

Predicted 
species 

SpA 0.52 0.16 0.16 0.16 

 

0.52 0.04 0.20 0.20 

SpB 0.16 0.52 0.16 0.16 0.15 0.52 0.13 0.05 

SpC 0.16 0.16 0.52 0.16 0.10 0.14 0.52 0.23 

SpD 0.16 0.16 0.16 0.52 0.23 0.30 0.15 0.52 

 Scenario x.d Scenario x.e 

 

Table 6-2 Summary of the scenarios tested in the simulation study; similar misclassification probabilities 

means that elements of the confusion matrix outside the diagonal are the same between species (scenarios 

x.b and scenarios x.d), whereas for different misclassifications rates, they are different between species 

(scenarios x.c and scenarios x.e). 

  Equal Data Unequal Data 

No misclassification  Scenario 1.a Scenario 2.a 

Low misclassification 
probabilities 

Similar misclassification 
probabilities 

Scenario 1.b Scenario 2.b 

Different misclassification 
probabilities 

Scenario 1.c Scenario 2.c 

High misclassification 
probabilities 

Similar misclassification 
probabilities 

Scenario 1.d Scenario 2.d 

Different misclassification 
probabilities 

Scenario 1.e Scenario 2.e 

 

6.3.2. Analytical approach 

For the simple case, in which the variance within the values of the confusion matrix was 

assumed zero, an analytical solution for the bias and variance on the true number of detected 

calls (Appendix C.1) was derived. However, when uncertainty was added to the confusion 

matrix, the analytical approach became more complex, so bias and variance through 
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simulation were also explored. When variability in the values of the confusion matrix was 

added to the model, bias and precision were measured from simulation only.  

 

6.3.3. Data simulation 

6.3.3.a Stochastic nature of classification only 

For each simulation (b), the numbers of misclassified, or observed, calls nb were generated 

from the sum of four multinomial distributions with parameters vb representing the true 

number of calls and p’s being the confusion matrix probabilities (Eq. 6-6). The estimated true 

number of calls ��w was then estimated by multiplying the inverse of the confusion matrix by 

the number of misclassified (observed) calls (Eq. 6-7). 

 ��w = �76nw (6-7)  

For each scenario, this process was repeated 10 000 times and the mean (Equation C.4 in 

Appendix C.1) and variance (Equation C.10 in Appendix C.1) of the estimated �� calculated. 

6.3.3.b Presence of uncertainty in the confusion matrix 

When uncertainty in the confusion matrix was considered, the probabilities N̂.P of the jth 

column of the confusion matrix were viewed as realisations of a probability distribution. To 

meet the requirement that columns have to sum to one, this distribution was chosen to be a 

Dirichlet distribution (Part I.2.2.3.a,p 30)  

For each of the 10 000 simulation trials, new values for the confusion matrix probabilities pij 

were generated from a Dirichlet distribution; these were then used in the same multinomial 

misclassification process as for the simpler situation. The true number of calls �� was again 

estimated using the inverse of the mean of the confusion matrix used to simulate the observed 

data (Eq.6-7). Simulations were run with two levels (low and high) of uncertainty on the 

confusion matrix. In both situations, the alpha parameters of the Dirichlet distribution were 

selected such that the means of the parameters were equal to the confusion matrix 

probabilities of the different scenarios (Table 6-3). To generate low uncertainty in the 

confusion matrix, the parameters were selected to have a variance equal to 0.01 on average. 

The parameters for the high level of uncertainty were selected to match a variance of 0.1 

observed with real data in Gillespie et al. (2013). 
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Table 6-3: Examples of Dirichlet   parameters used for species A for each scenario. For the remaining 

species parameters   were the same but in different order to match the confusion matrices. 

� for Sc.x.a Sc.x.b Sc.x.c Sc.x.d Sc.x.e 

Low 
uncert
ainty 

100,0,0,
0 

85,5,5,5 85,10,3,2 52,16,16,16 52,15,10,23 

High 
uncert
ainty 

0.1,0,0,0 0.85,5,5,
5 

0.85,0.1,0.03,0.0
2 

0.52,0.16,0.16,0.1
6 

0.52,0.15,0.1,0.2
3 

 

6.4. Results 

Through this study the precision of the estimates was represented by the coefficient of 

variation (CV), which is the standard deviation of the estimate divided by the estimate, 

generally reported in per cent.  

6.4.1. No uncertainty in the confusion matrix 

When there was no uncertainty in the element of the confusion matrix, the analytical 

approach demonstrated that the means of  ��  were an unbiased estimate of the truth (n), 

(Appendix C, Table C.1). The simulations verified this result (Appendix C, Table C.2); no 

significant difference between means and variances calculated analytically and estimated 

through simulation was observed. 

As expected, without misclassification and despite the level of uncertainty, the estimates were 

unbiased and precise (CV=0). A decrease in the rate of correct classifications (scenarios b 

and c versus d and e) did not affect the �� estimate’s means but it did significantly increase the 

variance and so the CV of these estimates (Figure 6-1).  
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Figure 6-1: Expected true number of detections for each species, from simulation without uncertainty 

within the confusion matrix: for equal data scenarios Sc1a to Sc1e (A) and for unequal data scenarios 

Sc2.a to Sc2.e (B). Solid bars show the standard deviation and the dotted line the true number of 

detections. 

 

Where there were different numbers of calls from the four species, unbiased estimates of the 

true numbers of calls were again obtained. The CV on the estimates of numbers of the more 

common species decreased (due to lower variance coming from misclassifications of the rarer 

species) but the CV of the estimates of the numbers of rare species calls rose significantly, 

reaching over 200% with confusion matrixes c and d (Figure 6-2 and Table C.1 & Table C.2).   

 

6.4.2. Uncertainty in the confusion matrix 

When uncertainty in the confusion matrix was included, the simulations again showed 

unbiased estimation of �� for all the misclassification scenarios (Appendix C, Table C.3 and 

Table C.4). However, adding uncertainty to the confusion matrix generated a large increase in 

the CV due to an increase of the variance (Figure 6-3). With equal data the CV, across all 

scenarios, increased on average from 2% without uncertainty to 11.7% with low uncertainty 

and to 87.7% with high uncertainty (Figure 6-3A). 

 

SpD 
SpC 
SpB 
SpA 
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Figure 6-2: CV of the expected true number of detections for unequal data for each scenario (Sc2b to 

Sc2e), with different misclassification probabilities and no uncertainty in the confusion matrix. The y axis 

is on the log10 scale. 

 

Figure 6-3: Mean of the CV of the expected true number of detections across the ten scenarios Sc1a to 

Sc1e (A) and Sc2a to Sc2e (B) for each species and each level of uncertainty of the confusion matrix 

values, no uncertainty, low uncertainty and high uncertainty. The y axis is on the log10 scale. 

Equal data Unequal data 
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With the unequal data the average CV across all scenarios for the common species (species A 

and B) increased on average from 1.4% without uncertainty to 9% with low uncertainty to 

69% with high uncertainty in the confusion matrix. For the rare species (species D) the 

average CV across the five scenarios was at 125% without uncertainty rising to 1 009% with 

a low level of uncertainty and 7 030% with a high level of uncertainty (Figure 6-3 B). With 

the high variability in the confusion matrix some individual simulation results gave some 

negative estimates of ��, which is clearly not possible with real data. 

The presence of uncertainties in the confusion matrix did not alter the fact that a confusion 

matrix with low misclassification will give a more precise estimation of �� than a confusion 

matrix with high misclassification probabilities (Appendix C, Tables C.3 and C.4). 

 

 

6.5. Discussion 

The results showed that it was possible to derive unbiased estimates of the true number of 

detections of each species from data containing misclassified acoustic detections. However 

the precision of the estimates was strongly related to the degree of misclassification (Figure 

6-1) and the degree of uncertainty within the confusion matrix (Figure 6-3). 

A low CV (<10%) on the estimated numbers of calls can be achieved in some situations, such 

as when there were similar numbers of calls between species, a low misclassification 

probability, and low uncertainty within the confusion matrix. In cases where there were large 

differences in the numbers of detected calls between species (scenarios 2.x), the CV was 

much higher on the estimates of the number of calls from the rarer species. In the more 

optimistic scenarios (low misclassification probability and low uncertainty within the 

confusion matrix), the CV for the common species A and B varied between 0.55% to almost 

9%. However, the CV increased close to 100% for less common species (species C) in 

scenarios with a high rate of misclassification and low uncertainty for the values of the 

confusion matrix. For species with a very low encounter rate (Species D), even with a small 

level of uncertainty and low misclassification probability, the CV was higher than 400%, 

reaching the value of 2500% with a high misclassification probability. With uncertainties in 

the confusion matrix similar to those observed in real data (Gillespie et al., 2013), the CV 
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was higher than 50%, even for common species, and the estimate became totally 

uninformative for the rare species (CV>10000%). 

 

For the rare species, some estimates of the true number of detections were not biologically 

possible as they were negatives. These negative predictions were a result of the mathematical 

characteristics of the inverse confusion matrices (containing negative values) associated with 

the stochastic process between the inverse of the confusion matrix and the observed number 

of detections. The inverse of all the confusion matrices used contained large negatives values. 

To obtain the true number of detections these inverse matrices were multiplied by a vector of 

observed data containing only positive values and obtained from a stochastic process from 

the confusion matrices (sum of multinomial distributions). Consequently some outputs could 

be negatives. For example if only 2 species A and B are considered with few detections of 

species A (10) observed and much more of species B (60) and species B is 40% of the time 

misclassified as species A then mathematically the true number of detections will be negative 

(see Box 1 for demonstration). However the average of the estimates was always positive and 

was unbiased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the results it appeared that uncertainty in the confusion matrix was the parameter 

responsible of most of the variance of the estimates. Indeed the average CV, across all 

0.8 × & + 0.4 × ¢ = 10 0.2 × & + 0.6 × ¢ = 60 

& = −45	 ¢ = 115 

Confusion matrix for species A and B:    0.8 0.40.2 0.6 

Observed number of detections of species A and B: 1060 

True number of detections for species A and B: 
&¢ 

Then: 

So: 

Box 1:  Demonstration that in some situation it is possible to obtain negative 

estimates of the true number of detections a and b for respectively species  A  

and B. 
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species and all misclassification probabilities, was 70 times higher when a high level of 

uncertainty (average CV across 4 species = 1885) was assumed for the confusion matrix than 

where there was no uncertainty in the confusion matrix (average CV across 4 species = 27). 

Whereas the average variance, across all species and all levels of uncertainty within the 

confusion matrix, was only 29 times higher for models with a high misclassification 

probability (mean CV=13211) that for models with a low misclassification probability (mean 

CV=450).  

A CV of 10% on a density estimate is considered as very good, a CV of 20% as reasonable 

and a CV of 100% near useless (Thomas and Marques, 2012). Particularly for rare species, 

CV’s are often high, generally due to a low encounter rate. For example, Hammond et al. 

(2002) used visual line transect distance sampling methods to estimate the abundance of the 

relatively common European harbour porpoise, Phocoena phocoena, with a CV of 14%, but 

the abundance of the rarer common dolphin Delphinus delphis from the same survey, had a 

CV of 67%. (Gerrodette et al., 2011) estimated the abundance of the extremely rare Vaquita 

Phocoena sinus in the Gulf of California with a CV of 73%.  

 

In this chapter, only uncertainty in estimates of the true number of detections due to 

misclassification has been considered. In practice, however, significant contributions to the 

overall CV can be expected from the estimate of detection range, the encounter rate, and the 

estimate of vocalisation (cue) rate which is unknown for many species. Thomas and Marques 

(2013) outline a number of methods for estimating both detection range and cue rate and the 

method chosen will be dependent on both the species and the study area. If we consider the 

species for which the true number of detection is estimated with a CV lower than 50% (for 

example, common species A and B), we can hope that, despite unavoidable 

misclassifications, acoustic detections provide useful information. However for the rare 

species, a small amount of misclassification from the more common species can render the 

acoustic data useless for all practical purposes.  

 

Since the uncertainty on the estimate of each species is highly dependent on the presence of 

other species, incorporating information on the likely abundance of calls from other species 

will hopefully lead to more robust estimates. Therefore the next chapter presents the 

development of a Bayesian model which incorporates prior information on the relative 

abundance of calls from different species (based on previous survey work and information on 

call rates) as well as the uncertainty on the values in the confusion matrix. The Bayesian 
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approach will also resolve the problem encountered by your analytical method which can 

(incorrectly) produce point estimates that are negative: the Bayesian estimation has the 

stochastic nature of the observations built in. 
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Chapter 7: A Bayesian method to estimate the number of 

acoustic detections in the presence of species misclassification. 

 

7.1. Introduction 

The previous chapter proposed a non-Bayesian method to estimate the true number of 

acoustic detections, for several species at the same time, from simulated observed acoustic 

detections misclassified by an automatic classifier. The influence of the misclassification 

probabilities and of the uncertainty within the confusion matrix on the bias and precision of 

the estimates were compared. For all classification scenarios (Table 6-2,p103) the true 

number of acoustic detections could be estimated without bias. However, the precision of the 

estimates varied from a CV of few per cent to a CV of more than 1000% depending on the 

classification probabilities, the uncertainty within the confusion matrix and the encounter rate 

of a species. The method used in chapter 6 had two main limitations. It sometimes generated 

negative estimates (see Figure 6.1, Species D), which clearly would not be found in real data 

in the given context. In addition, a reliable measure of the precision of the estimates could 

only be obtained with a sufficiently large sample size. In practical applications, it may be 

unrealistic to collect data with a sufficiently large sample size to quantify the precision of the 

estimates.  

 

However, for some acoustic detection studies the true number of detections and the amount 

of uncertainty in the confusion matrix might be available from prior surveys or analyses. 

Indeed the true number of detections depends mainly on the number of animals within the 

acoustic detection range, on the call rate and on the detection rate. If the PAMGUARD 

Whistle Classifier (PWC) is used to identify the species, then the true number of detections 

also depends on the fragment and section lengths of the whistle contours (see Part I). 

Previous surveys and also prior knowledge from other sources might be used to obtain some 

of this information. Given the development process of the PWC (chapter 2 and 3), it is 

possible to obtain measurements of the confusion matrix uncertainty when it is used for 

classification.  

In this chapter it was assumed that such prior knowledge is often available. In the analysis of 

ecological data a Bayesian approach is frequently used since it allows us to include prior 

knowledge in the model (Eguchi and Gerrodette, 2009; King et al., 2010; Taylor et al., 1996; 
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Wade, 2000). In addition, it is possible to assess the impact of the precision of the prior 

knowledge on the final estimate by extracting summary statistics of the posterior 

distributions. Another advantage of the Bayesian framework is that prior distribution for the 

parameters may be chosen such that the estimate will have only positive values.  

 

Similar to the previous chapter, this chapter discusses a simulation study. Here the 

performance of the estimation of the true number of acoustic detections for four species in a 

Bayesian framework is assessed. The same models as used in the previous chapter with 

different misclassification probabilities (Table 6-1), amount of uncertainty in the confusion 

matrix and level of knowledge about the true number of detections are considered. 

 

7.2. Methods 

7.2.1. Data  

For each model a dataset was simulated for four species using the method described in the 

previous chapter (Part II.6.3.3.b, p104) where the confusion matrix and the (true) number of 

detections were the same as in the different scenarios listed in Table (Table 6-2, p103). 
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7.2.2. Overview 

A summary of the notation that was already used in the previous chapter and is again needed 

for this chapter is provided in Table 7-1. 

Table 7-1: Summary of the notation used in previous chapter. 

Symbol Description 

n 

Vector containing the number of observed detection of species i with # = �#6, … , #O , … , #o�  ∀i = 1, … , m 

      � 

Vector containing the true number of detections:  � = ��6, … , �P , … , �o� 

with  ∀j = 1, … , m 

N̂OP  

Estimated classification probabilities: Estimated probability of classifying 

species j as species i from PAMGUARD Whistle classifier 

¦OP Number of acoustic detections classified as species i and made by species j 

     C Confusion matrix: <	 × 	< matrix (6.2, pp100) 

     f() Likelihood functions 

    ρ() Prior distribution functions 

    π() Posterior density functions 

 

The Bayesian models used in the chapter are based on the model described in the previous 

chapter 

 {[��] = {[�- 76]{[#].  

The parameters to estimate were the true number of detections ��P (Table 7-1) for each species 

j=1,..,4. The simulated data, n, consisted of realisations from a stochastic process that 

depended on the classification probabilities NOP in the confusion matrix C and on the vector v, 

which contained the true number of detections (Eq.7-1).  
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As described in the classification process (Part II.6.2, p100) the observed data for species i 

(ni) was the sum of the ith realized values of the vector of <, multinomial distributions (the ith 

realized values is symbolised by the [i] in Eq. 7-1) where the number of trials being the true 

number of detections �P and the multinomial probabilities for species j is given by the jth row 

N̂.P of the confusion matrix. If yij were the realized values of the jth multinomial then 

#O = � ¦OP
o

Px6 	with	¦.P~���ai*�P , ��.I/ 
(7-2)     

According to Bayes’ theorem and assuming v and p are independent, the joint posterior 

distribution for v is: 

 V��|n, �� ∝ ,�n|�, ��X���X���, (7-3)     

where ,�n|�, �� is the likelihood and X��� and X���  are the prior distributions for � and p, 

respectively. These prior distributions denote the probability of obtaining the acoustic 

detections � and the classification probabilities p before the data n have been observed. � and 

p are independent, as the classification probabilities in the confusion matrix are obtained 

independently of v. For more details of Bayesian theory, see section Part I.1.4 (p17). 

 

7.2.3. Likelihood functions 

The simulated data derived as the sum of unobserved parameters y (Eq.7-2) hence 

with the likelihood being a product of multinomial distributions 

 ,�ª.I|�, �� = �P!¦6P! … ¦OP! … ¦oP! N6P¬�� … NOP¬}� … NoP¬~�
 

 

 

 				#O~ � ���ai*�P , ��.I/[i]o
Px6  (7-1)     

 ,�n|�, �� = ­ ,�ª.I|�, ��o
Px6  
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7.2.4. Prior distributions 

7.2.4.a Prior distributions for the true number of detections v  

The following was based in the assumption that some prior knowledge about some of the 

parameters (i.e r,P, see equation 6.1) driving the number of detections was available from 

previous studies. Indeed, depending on species, the CV of the abundance estimates may be 

very different. However, for whistling species, the CV of the abundance estimates frequently 

ranges from 20% to 60% (Barlow and Forney, 2007; CODA, 2009). For most species, the 

call rates are either completely unknown or known but with information on precision not 

available. Indeed call rates are dependent  as it is a parameter that depends on various factors 

such as group size or behaviour (Buckastaff, 2004; Quick and Janik, 2008) hence they are 

difficult to measure. Hence the CV for this parameter was expected to be high. Finally, for 

the detection probability, two parameters are commonly measured to establish the 

performance of a detector, the precision, estimating the rate of correct detections, and the 

recall, measuring the detection efficiency(Gillespie et al., 2013).  

 

To model these priors knowledge’s, the prior distribution on the number of detections was 

assumed to follow a negative binomial distribution (Eq. 7-4) with parameters ® (mean) and ¯_(variance) to account for over dispersion in the data. Conventionally the parameters of a 

negative binomial function are the number of trials	# and the probability of success for each 

trial p, respectively 

 X*�P|®, ¯_/ =
°*�P � #/

°(#)�P!
N4(1 − N�±� 

 

(7-4)     

with # = ²³´³7² and N = 44j². 

 

A prior sensitivity analysis was carried out with three different sets of priors (Table 7-2) and 

their impact on the estimate of true number of detections for each species was analysed. Each 

set of priors contained four prior distributions, one for each species in the classifier: 

Prior V1: This set of prior parameters was chosen so that the CV of the prior distribution was 

equal to 40% (a common CV value found for abundance estimates of cetacean populations 

(Barlow and Forney, 2007; CODA, 2009; Forney et al., 1995)).  
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Prior V2: The second set of prior parameters, on the other hand, was selected to mimic a 

situation where the true number of detections was fairly well-known with a CV of 10%. In 

practice, such a situation is rather unrealistic, especially if the parameter v depends on other 

highly variable parameters such as the call rate. Despite the fact that this it is a rare situation, 

this CV was simulated to better understand the relative strength of the parameters’ influence 

on the precision of an estimate. It is important to identify the main source(s) of uncertainty to 

target these specifically if one seeks to reduce uncertainty in the estimates of the true number 

of detections.  

Prior V3: Since the previous chapter has indicated that rare species tend to be more sensitive 

to misclassification than common species, this chapter investigated the consequences of a 

prior with a large CV on rare species (as found in the literature (Gerrodette et al., 2011)) 

along with a small CV on the more common species for which more prior information are 

available as they are easier to detect. As a consequence, this last set of prior parameters was 

used only with unequal data (scenarios 2.x) and prior distribution parameters were chosen 

such as the CV’s of the distribution were different for each species (Table 7-2). These 

parameters were chosen such as the CV for the rarest species (species D) was 60% for 

Models A (see section 7.2.4.b), but 40% for models B because a lack of convergence of the 

algorithm was noted when 60% was used.  

 

Table 7-2: Prior parameters of the negative binomial prior distribution �B, �� and ��. 

  Scenarios 1.x Scenarios 2.x 

  All Species SpA SpB SpC SpD 

Prior V1 

CV=10% 

mean 3000 8000 3000 950 50 

variance 1.8×105 1.25×106 1.8×105 1.8×104 51 

Prior V2 

CV=40% 

mean 3000 8000 3000 950 50 

variance 1.4×106 10.2×106 1.4×106 1.44×105 400 

Prior V3 (Models A) 

CV=10%,20%,40%,60% 

mean  8000 3000 950 50 

variance  1.25×106 3.6×105 1.44×105 900 

Prior V3 (Models B) 

CV=10%,20%,40%,40% 

mean 

variance 
 

8000 

1.25×106 

3000 

3.6×105 

950 

1.44×105 

50 

400 
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7.2.4.b Prior distributions for the classification probabilities	�.I	  
In chapters 3 and 4 and also in Gillespie et al. (2013) the classification probabilities in the 

confusion matrix of each generated classifier were associated with a standard error. This 

variability was caused primarily by the sampling process used to develop the classifiers 

(chapter 2). The previous chapter (chapter 6) has demonstrated that uncertainty within the 

confusion matrix had more impact on the precision of the estimate of the true number of 

detections than the actual misclassification probabilities. 

In the Bayesian model described previously, the prior distribution X�N.P� reflects this 

uncertainty. Following the same reasoning as in the previous chapter, this prior followed a 

Dirichlet distribution, which took on similar values to mirror the entries of the confusion 

matrix (in particular the requirement that probabilities in each column of the confusion matrix 

have to sum to 1 (chapter6 Eq.6-3, p99) used in the different scenarios. Furthermore, the 

Dirichlet distribution is the conjugate prior distribution of a multinomial distribution (Gelman 

et al. 2004). The Dirichlet distribution is defined by a vector parameters � = ��6, … �O, … �o� 

with �o > 0 (Gelman et al., 2004) as 

 X*N.P|�.P, … , �OP , … , �oP/
= ¶*�6P + ⋯ + �OP + ⋯ �oP/¶*�6P� … ¶��OP� … ¶��oP/ N6P|��76 … N6P|}�76 … N6P|~�76

 

(7-5)    

with N6P, … NOP, … NoP ≥ 0; ∑ NOP = 1oOx6 ;�b = ∑ �OPoOx6  

The results in chapter 6, showed that classification probabilities with high uncertainty 

reduced the precision of the estimate of the true number of detections. The consequences of 

different level of uncertainty on the classification probabilities are investigated in this chapter 

by a sensitivity analysis with four different Dirichlet parameters for each misclassification 

scenario (for the exact values of the parameters �, see Appendix D, Table D.1) and for each 

of the prior assumed for the parameters of the true number of detections.  

 

Models A: P0 

A first series of models were tested assuming the classification probabilities were not 

estimates but known values. These models (Models A, Eq.7-6) did not have a prior 

distribution (P0) on the p parameters. 
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 V��|#, �� ∝ ,�#|�, ��X��� (7-6)     

 

Models B 

Three sets of priors on the parameters p were tested, with each set containing four prior 

distributions on the parameters p for each species. The parameters � of the Dirichlet 

distributions were chosen such that 
|}�|� = {�N̂OP� and such that the CV’s of the correct 

classification probabilities (N̂OO� were different between the priors tested. Comparing the CV 

of the confusion matrices generated in chapters 3, 4 and Gillespie et al (2013), it was 

observed that the CVs of the correct classification probabilities of a confusion matrix were 

influenced by the quality of the training data. In chapter 4 the quality of the training dataset 

was low and the CV of the correct classification probabilities ranged from 15% to 57%. In 

chapter 3 where the confusion matrix was obtained with a better data set the CVs ranged from 

3.6% to 23%. Finally in Gillespie et al (2013) for which a very good quality training dataset 

was used to train the classifier the CVs of the correct classification probabilities ranged from 

0.2% to 54%. The choice of the parameters of the Dirichlet distribution for each set of prior 

was made such that these ranges of CVs were represented. 

Prior P1 was an informative prior with the parameters � selected for each species such that 

¸±';�.}}�¹[.}}] = 0.01	to simulate a CV of 1% for the correct classification probabilities, with 

{�N̂OP� being the classification probabilities of the confusion matrix used in Scenarios .x . 

Prior P2: The second prior was less informative with a set of parameters selected such the 

CV of the correct classification probabilities was equal to 40% and with {�N̂OP� being the 

classification probabilities of the confusion matrix used in Scenarios .x. 

Prior P3: The third prior was selected to simulate a confusion matrix with random 

classification and hence all parameters � were equal to 1. With such parameters {�N̂OP� =0.25 and the CV=77% for the correct classification probabilities. 
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7.2.5. Investigated scenarios 

A total of 85 models were tested (Table 7-3) on simulated data. 

7.2.5.a Models A: known	�GI 
Twenty-five models were tested with a prior on the v parameters and no prior (P0) on the 

classification probabilities. The same confusion matrices as in the previous chapter 

(Scenario.a to Scenario.e) were used. Each of these five scenarios was associated with two 

(for equal data) and three (for unequal data) priors on the v parameters (Table 7-3). 

 

7.2.5.b Models B: including prior on  �GI (P1 to P3) 

Given the properties of the Dirichlet distribution it is not possible to choose parameters	� 

such that {[N̂OO] = 1 and �&2�NOO� ≠ 0, consequently Scenario.a have not been tested with 

Models B. So Models B corresponded to 20 Models A for which priors on the NOP′s were 

added to each model. The priors P1, P2 and P3 described in Section (7.2.4.b) were tested on 

each of the 20 models.  

 

Table 7-3: Summary of all the investigated Bayesian models. Sc1.x and Sc2.x correspond to the scenarios 

of misclassification (Scx.a ,Scx.b, Scx.c, Scx.d, Scx,e) described in chapter 6. The prior parameters were 

described in the section 7.2.4. MH (Metropolis Hastings) and GS (Gibbs sampler) are the MCMC 

alogithms used in the models 

  v priors MCMC 

Algorithms   V1 V2 V3 

p 
pr

io
rs

 

P0 

 

Sc1.x Sc1.x  
MH 

Sc2.x Sc2.x Sc2.x 

P1 
Sc1.x Sc1.x  

MH 

+ 

GS 

 

Sc2.x Sc2.x Sc2.x 

 P2 
Sc1.x Sc1.x  

Sc2.x Sc2.x Sc2.x 

 P3 
Sc1.x Sc1.x  

Sc2.x Sc2.x Sc2.x 
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7.2.6. Posterior inference 

To obtain posterior inference on the parameters ��, a Markov chain Monte Carle algortyhm 

was used (Part I.1.4.3.c, p19). For Models A, this was implemented using a Metropolis-

Hastings (MH) sampling algorithm; for Models B a Gibbs sampling algorithm was added to 

update the parameters p (see below for details in both cases). All the algorithms were 

implemented in the statistical software (R Development Core Team, 2012) 

 

7.2.6.a Metropolis-Hasting (MH) algorithm: the proposal density function 

The MH (Hastings, 1970) algorithm was used to update the parameters y and v. 

Because the data were derived as a sum of the ith elements of m multinomial distributions 

(Eq.7-2) the parameters were updated by blocks of m parameters. The proposal density 

function was a multinomial distribution such that: 

 ¦O. = #O!¦O6! … ¦Oo! » �6�O6∑ �P�OPoPx6 ¼¬}� … » �P�OP∑ �P�OPoPx6 ¼¬}� 	  

Once a block of j ¦OP′s was updated, the �P were also updated (Eq. 7-7) and the current 

parameter values were accepted following the acceptance rules described in the introduction 

(Part I.1.4.3.c, p19). 

 �P = � ¦OP
o

Ox6  (7-7)     

7.2.6.b Gibbs sampler  

The Dirichlet distribution is the conjugate prior for the probability parameters of the 

multinomial distribution. Thus the conditional posterior distribution of the probability p.j of 

observing ¦.P was a Dirichlet distribution with parameters (�6 + ¦6, … , �OP + ¦OP, … , �oP +¦oP� (Gelman et al., 2004). 

 

7.2.6.c Convergence, burn-in and thinning  

For each model, three MCMC chains (Part I.1.4.3.c, p19) with different initial values were 

run for up to 800 000 iterations. The initial values of one chain were the true values. The 

initial values of the two other chains were simulated from the prior distributions of the 

models and values at least 20% away from the true values were selected. For successive 
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sections of 10% of the iterations a convergence diagnostic was applied to detect the section in 

which the Markov chain had converged. Trace plots, auto-correlation plots (acf plot) and a 

BGR (Part I.1.4.5, p21) convergence test were used to determine if the model had reached 

convergence within this section. The section for which the convergence reduction factor was 

lower than 1.2 (Part I.1.4.5, p21) for the ��P parameters for each species was then identified as 

the section of convergence. The iterations before convergence were discarded as a burn-in. If 

convergence was not reached after 800 000 iterations, a second set of three chains was 

generated with one chain starting from the true value while the starting values of the two 

remaining chains were simulated similarly as in the first run, but with values being selected 

around 10% away from the true values. The same convergence diagnostic was applied. If 

after this second MCMC run, the chains still did not converge, the corresponding model was 

declared as non-converging and no further analysis was done for this model. Each converging 

model was replicated L=300 times. For all the replicates the initial values of the parameters 

have been chosen to be the true values used to simulate the data. 

 

Due to high serial auto-correlation in the chains, only one in every four iterations (“thinning”  

(King et al., 2010)) were kept after burn in to sample from the posterior distributions of the ��P 

parameters. Summary statistics (mean and standard deviation) were extracted from these 

posterior distributions.  

 

7.2.6.d Model performance and summary statistics 

 

To analyse the impact of the different priors and confusion matrices on the estimates the 

relative errors (where “relative error” is defined as the difference between the mean of the 

posterior distribution and the expected true value divided by the expected true value) and 

posterior distribution coefficient of variation (CV) for each species were measured for each 

replicate. Based on the relative errors the relative biases (mean of relative errors) between 

models were compared to analyse the impact of the prior variances on the accuracy of the 

estimates. The means of the CVs for each model were compared to analyse the impact of the 

prior variances on the precision of the estimates.  
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7.2.7. Statistical versus biological significance 

To compare the bias and precision between models ANOVA was used. In this thesis the null 

hypothesis compared if the relative bias or precision of the estimates of the true number of 

detections were significantly different between the priors used in the model. While most of 

the tests were statistically significant, the question of whether this marks a biologically 

significant difference has to be considered separately. The decision about whether or not such 

a difference is biologically significant has to take into account the specific context of the data. 

For example a difference of 50 detections between two estimates of a species for which the 

average number of detection is 3000 is not the same as a difference of 50 detections when the 

average number of detection for a species is 100 detections. In density estimation a CV of 

10% of a density estimate is considered as very good, a CV of 20% is reasonable whereas a 

CV of 100% is nearly useless (Thomas and Marques, 2012). Given that this study was carried 

out within the larger picture of the whole abundance estimation process in mind, a relative 

bias or difference in CV that is lower than 10% will not be considered as biologically 

different in this discussion. A difference between 10 to 40% will be considered as 

biologically significant and one that is greater than 40% as highly significant. 

 

7.3. Results 

7.3.1.a Convergence and sensitivity with respect to the starting values 

For Models A with known classification probabilities and equal data, convergence was 

always reached (Appendix D table D-2) after 30 000 iterations.  The MCMC chain showed 

good mixing (Figure 7-1) and a relatively rapid decrease in auto-correlation (Figure 7-2).  
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Figure 7-1: Trace plots showing MCMC sample values for parameters v (y-axis) vs. sample iteration (x-

axis, after thinning), obtained with classification scenario Sc1.b and prior V1.  

 

 

Figure 7-2: Auto-correlation plots of the posterior distributions of parameters �I obtained from the model 

with classification scenario Sc1.b and prior V1. Note that samples were thinned, so that a lag of 1 

corresponds to 4 MCMC sample iterations. 

Nonetheless for models simulated with a CV of 40% for the prior distribution on the 

parameters � (prior V2) and high misclassification probabilities (Sc1.d and Sc1.e), 

convergence depended on the Markov chains’ initial values. When these values were more 

than 20% away from the true values, despite apparently good mixing within each chain, the 

multiple chains did not converge (Figure 7-3, Appendix D Table D-2). Convergence was 

achieved for all models if the initial values were selected within 10% of the expected true 

values.  
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Figure 7-3: Trace plots for each chain obtaine in the analysis of model with scenario Sc.e and prior V2 for 

each species. Within-chain mixing is good but the chains arere not converging towards the same values. 

 

In models were the true number of detections differed between species (classification 

scenarios Sc2.x), all models with a CV of 40% for the prior distribution of the parameters � 

(V2) were sensitive to the initial values of the Markov chain independent of the classification 

scenarios (Appendix D Table D-2). When the prior CV was different between species (V3), 

only models with high misclassification probabilities were sensitive to the initial values. 

However, it was not possible to estimate ��½	 for the rare species (Species D) in these models: 

after few iterations the chain stopped updating and no new parameter values were accepted. 

In these cases, more iterations (60 000) were necessary to achieve convergence in v for the 

other species.  

Models B were also sensitive to the initial values of the Markov chains. An increase in the 

variability of the prior distributions as well as in the misclassification probabilities made the 

Markov chains more sensitive to the initials values (Appendix D Table D-3). The issue was 

aggravated with unequal data. With initial values, around 10% of the true values, as described 

for Models A convergence was reached for all models after up to 480 000 iterations.  
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7.3.1.b Sensitivity analysis and posterior inferences  

Across all tested models, the Markov chain stopped updating for 0.02% and 4% of replicates 

of Models A and Models B, respectively. This concerned essentially estimates for species D. 

When the models were run with no misclassifications the estimates for all species were equal 

to the expected true values for each replicate. 

 

7.3.1.b.i Bias in the estimated number of detections by species 

Impact of the proportion of true number of detections between species 

The accuracy of the estimates was influenced by the ratio in true numbers of detections 

between species. For each scenario with  an equal true number of detections between species, 

the ��P estimates for each species were unbiased ( Table 7-4, Figure 7-4).  

For scenarios with unequal data between species, the relative bias was higher 0.3% and -

3.51% in Models A and Models B respectively (Figure 7-4). Furthermore the standard 

deviations of the mean bias were higher than with equal data (Table 7-4). 

 

Table 7-4 : Mean and standard deviation (in brackets) of the relative bias across all Models A and all 

Models B when the same number of detections for each species was simulated (Sc1,equal data) and when 

different number of detections between species were simulated (Sc2, unequal data). 

 Models A Models B 

Sc1: Equal data 0% (0.06) 0% (0.1) 

Sc2.: Unequal data 0.31% (4.6) -3.6% (14.9) 
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Figure 7-4: Relative bias (beanplots) and mean relative bias (bold lines) for each species for models where 

p is assumed known (Models A) or is estimated (Models B), and for models with equal and unequal data. 

The thin lines crossing the entire plot (close to zero) are the mean across the four species. For Models A 

and equal data each beanplot is computed from 10 values (the relative bias for 5 scenarios times 2 priors 

on v), for unequal data each beanplot is computed from 15 values (the relative bias for 5 scenarios times 2 

priors on v). For models B each bean plot is computed from 24 and 36 values from equal and unequal 

data, respectively (relative bias for 4 scenarios times 3 priors on p times 2 or 3 prios on v, respectively). 

 

Unequal data in Models A 

In models A with unequal data, the impact of the prior variances and of the misclassification 

probabilities was different depending on the species. Nonetheless, decreasing the 

informativeness of the prior (by increasing its variance) on v increased the absolute values in 

the relative bias statistically significantly for all species (p<0.001) (Figure 7-5) but 

biologically insignificantly for all species except species D. For this rare species, this increase 



Part II Misclassification  Chapter 7: A Bayesian method to estimate the number of acoustic 
detections in the presence of species misclassification. 

128 
 

was the most pronounced. On average across all misclassification scenarios the relative bias 

for species D ranged from -0.63 for V1 to 9.63 for V3. More precisely at a low 

misclassification probability level this bias reached 15% and 28% (Figure 7-5,) with prior V3 

and misclassifications scenario b and c (not no data were available for scenario Sc2.d and e). 

For the other species the maximum bias difference observed between V1 to V3 was for 

Species C with a relative bias ranging from -0.45 to 0.42 whereas the maximum range of 

relative bias observed for the three other was for species C with a relative bias ranging from -

1.63% to 0.88%.  

 

 

Figure 7-5: Beanplots of the relative bias of the estimates as function of the priors on the parameters v 

(V1 to V3) and species. The bold lines are the mean relative bias for each beanplot whereas the dotted line 

is the mean across all beanplots. 

 

Increasing the misclassification probabilities increased the relative bias for all species. The 

standard deviations of the mean relative bias across priors on v increased when changing 

from low to high misclassification probabilities for species A to C whereas it decreased for 

species D (Table 7-2). 
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Table 7-5: Mean relative bias (%) and their standard deviation in brackets across the priors on v for each 

species. The different colours represent the different level of misclassification: No misclassification 

(white), low misclassification (light grey) and high misclassification (dark grey). 

 SpA SpB SpC SpD 

Sc2.a 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Sc2.b 0.07 (0.5) 0.14 (1.18) 0.14 (3.32) 1.87 (27.01) 

Sc2.c 0.03 (0.58) -0.00 (1.55) 0.19 (2.91) 2.39 (25.11) 

Sc2.d 0.16 (1.52) 0.26 (3.70) -0.23 (9.94) -4.37 (8.50) 

Sc2.e 0.25 (1.25) 0.08 (3.04) -0.42 (7.80) -5.05 (7.35) 
 

Unequal data in Models B 

For Models A the Markov chains stopped updating for species D in models with 

classification scenarios Sc2.d and Sc2.e and with prior V3. For Models B this occurred for all 

four species but not for all replicates. In V1 andV2 in the models 30% of the replicates did 

not converge whereas in models with classification scenarios Sc2.e and prior P1 and 66% of 

the replicates did not converge. These replicates were not used in the rest of the analysis. 

 

When the parameters p were estimated, rather than assumed known (i.e., Models B), the 

estimates of �� for all the species were significantly (p<0.001) influenced by the classification 

scenario, however with differences between the species (Figure 7-6). For species A and B, 

the largest bias occurred in scenario Sc2.e, which had high misclassification and asymmetric 

misclassification between species. The mean relative bias for species A for Sc2b,c,d together 

and Sc2.e was -1.30 (sd=0.71) and -16.0 (sd=6.63) respectively. For species B it was 1.95 

(sd=1.25) versus -31.29 (sd=25.3) for Sc2.b,c,d all together and Sc2.e respectively. For 

species C and D differences between scenarios with high and low misclassification 

probabilities were less pronounced (Figure 7-6).  



Part II Misclassification  Chapter 7: A Bayesian method to estimate the number of acoustic 
detections in the presence of species misclassification. 

130 
 

 
Figure 7-6: Beanplots of the relative bias for each species as function of the classification scenarios used in 
the Models B with unequal data. The bold lines are the mean of the relative bias for classification 
scenarios and the dotted lines are the average relative bias across the four classification scenarios. Each 
beanplot is computed from 9 values (three priors on p × three priors on v) 
 

When Sc2.e was kept in the sensitivity analysis, no clear pattern was observable between 

species and the different priors (Appendix D fig D-1). However, once this scenario was 

removed, it was easier to detect the statistically significant (p<0.001) impact of the 

differences in prior variability on the accuracy of the estimates ��P for each species. Relative 

bias of the ��P appeared to be affected differently by the various prior variances, depending on 

the species (Figure 7-7): for species A to C, an informative prior on the classification 

probabilities (P1) decreased the effect of the priors on v, while for species D, the relative bias 

decreased with the informativeness of the prior on v from -0.82% to -7.50% with V1 and 

V2/V3 respectively independently of the informativeness of prior on the classification 

probabilities (P1). 
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When the priors on the parameters p were less informative (P2), the relative bias increased 

for species A to C and was influenced by to the variance of the prior on v. For species C the 

relative bias increased greatly and biologically significantly from -0.65% on average with P1 

to 24% with P2, whereas for species D a less informative prior on p decreased slightly from -

5% to -4% the overall relative bias between P1 and P2 respectively.  

Finally with the vague prior P3, for species A to C the relative bias decreased in comparison 

to models with prior P2 and was sensitive to the v prior variability, whereas for the rarest 

species the relative bias doubled between model with prior P2 and models with prior P3. 

 

 

Figure 7-7: Beanplots of the relative bias distributions for Models B without classification scenarios Sc2.e 

with unequal data as a function of the v and p priors for each species. Each beanplot is made from 4 

values (4 classification scenarios), the bold line being the mean relative bias of the bean plot. The dotted 

lines are the mean across all the prior combinations. 
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7.3.1.b.ii Precision of the estimated number of detections by species 

The precision of the estimates was analysed by comparing the mean CV of the posterior 

distributions across replicate between models. 

 

Equal data 

The sensitivity analysis showed a statistically significant (p<0.001) impact of the degree of 

informativeness of the prior distributions on the precision of the estimates. For models with 

equal data and known p (Models A) or very informative prior on p (Models B, P1), 

statistically significant (p<0.001) but biologically insignificant differences (absolute 

difference of <2%), were observed between the mean of the CVs of models with informative 

(V1) or uninformative (V2) prior on v and between models with low or high misclassification 

probabilities (Table 7-6). When the variance of the prior on p increased (P2 and P3), the 

difference between models with informative (V1) and uninformative priors on v (V2) 

increased by a factor of 4. The difference between low and high misclassification 

probabilities were of a factor 8 for P2, whereas for P3 no difference were observed anymore 

between the mean CVs for the four classification scenarios (Table 7-6). 

Table 7-6: Mean CV for models with scenarios Sc1.a to Sc1e with equal data priors V1 and V2 and 

Models A and Models B. 

  Sc1.a Sc1.b Sc1.c Sc1.d Sc1.e 

  V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 

Models A : P0 0 0 1.06% 1.06% 1.05% 1.05% 3.13% 3.34% 3.01% 3.18% 

M
od

el
s 

B
 

P1 0 0 1.89% 1.93% 1.87% 1.92% 3.76% 4.14% 3.58% 3.95% 

P2 0 0 1.16% 4.64% 1.45% 4.57% 8.72% 30.23% 8.72% 30.93% 

P3 0 0 8.75% 32.10% 8.73% 32.01% 8.77% 32.24% 8.78% 32.50% 

 

Unequal data: 

For unequal data, the same relationship was observed between the different priors and their 

effect on the CV of the estiamtes, but with the absolute values of the CVs being higher (23% 

versus 9% for equal data). The overall imprecision of the estimates ��P increased from 5.6% 

for Models A (P0) to 26% for Models B with P3. The precision was noticeably affected by 

the informativeness of the priors (Table 7-7). The differences on the mean CV between V1 

and V2/V3 were <10% when no priors, prior P1 or prior P2 with low misclassification 

probabilities were used in the models. When the priors in the models were either P2 together 

with high misclassification probability or P3 these differences were greater than 20%.  
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The difference in mean CV between classification scenarios was small, when there was no 

prior on the p parameters (Models A) or prior P1 in Models B and was amplified with prior 

P2. Similar to the scenarios with equal data, these differences disappeared when prior P3 was 

included in the models (Table 7-7).  

 

 

Table 7-7: Mean CV for unequal data for the four species for the different classification scenarios (Sc2.b 

to Sc2.c), priors on parameters v (V1 to V3) and no priors (Models A P0) or priors on parameters p 

(Models B P1 to P3). 

 Sc2.b Sc2.c 

 V1 V2 V3 V1 V2 V3 

Models A : P0 4.42% 8.66% 7.06% 4.22% 7.45% 6.00% 

P1 5.72% 12.25% 11.88% 5.61% 10.93% 10.98% 

P2 10.09% 17.97% 16.51% 11.44% 15.60% 17.78% 

P3 11.98% 36.64% 28.11% 12.11% 36.69% 34.58% 

 Sc2.d Sc2.e 

Models A : P0 6.70% 13.07% 4.53% 6.20% 12.52% 3.67% 

P1 7.45% 13.90% 13.74% 2.24% 3.27% 11.77% 

P2 11.65% 32.83% 27.23% 11.64% 32.48% 24.83% 

P3 11.78% 39.52% 27.51% 12.01% 34.41% 26.57% 
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Comparing results across species, precision of the estimates was the lowest (higher CV) for 

species D, for all models (Figure 7-8).  

 

Figure 7-8: Bean plots of mean CV for all models as a function of species identities. The Y axis is 

displayed on the log scale. 

 

7.4. Discussion 

In this chapter, a Bayesian framework was developed to estimate the true number of 

detections from observed misclassified detections. The results showed that it was possible to 

estimate the true number of detections for each species and that bias and precision of the 

estimates depended on the prior information that was used to feed the models. This chapter 

highlighted that the uncertainty on the classification probability was the factor that generates 

most of the variability. 

 

7.4.1. Consequences of unequal number of detections between species 

This study showed that having an unequal number of detections between species generated 

bias and reduced the precision of the estimates. The estimates for species where less data 

were available were more sensitive to the prior variances and to the number of 

misclassifications. 
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7.4.2. Results of the prior sensitivity analysis  

Different sources of variability were included in the models, namely different 

misclassification probabilities, uncertainty in the misclassification probabilities and 

uncertainty in the true number of detections between species. The sensitivity analysis 

demonstrated that among these different sources of variability, when each of them varied 

within the ranges observed with the real data of chapters 3 and 4, uncertainty within the 

classification probabilities was the most sensitive parameter. In the model without a prior for 

the parameters p (Models A) or when a very informative prior (P1) for p was chosen, the 

differences in the relative bias and in the mean CV between the two (for equal data) or three 

(for unequal data) priors on the parameters v were not biologically significant (Figure 

7-5,Figure 7-7). However, if the prior variance on the p parameters was increased, the prior 

variance of the v parameters had a greater impact on the relative bias and the precision of the 

estimates. Models with prior V1 had a smaller absolute relative bias in comparison to models 

with V2 and V3. Model with prior V3 on the parameters v had a smaller absolute relative bias 

than models with prior V2. This result was unsurprising since in models with prior V3, the 

CV of the prior distributions were chosen to be different between species such that the total 

variance across the four species was smaller than for priors V2. The mean CV followed the 

same pattern.  

The results for the relative bias of models with prior P3 on the parameters p were surprising. 

Estimates obtained with P3 were not the most biased despite prior P3 being the less 

informative prior. The parameters of this prior were such that the average classification 

probabilities were 25% for all species. The similar classification and misclassification 

probabilities explained why no differences in mean CV were observed between the 

classification scenarios, the source of variability being the same between species.  

 

 

7.4.3. Impact of classification scenarios 

The different classification scenarios had an impact on the relative bias of the estimates. 

However this overall result was most pronounced in classification scenario Sc.e which 

showed a large bias for all species, except species D, (Figure 7-6). This scenario simulated a 

confusion matrix with high and asymmetric misclassification probabilities. It is unclear why 

the relative bias and CV were so important for this scenario. Furthermore, more of the 

Markov chains for the replicates generated by the models under this scenario stopped 
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converging after several thousands of iterations than under other scenarios. To overcome this, 

a modification of the Metropolis Hasting algorithm in the analysis was introduced to try to 

propose new values for the Markov chain when it stopped converging. This modification did 

not solve the problem. 

 

7.4.4. Rare species  

Among the four species that were considered in the simulations, particular results were 

always derived for the rarest species D. The relative bias for the estimates of this species was 

more sensitive to the prior variances on the parameters v independent of the prior on the p 

parameters (Figure 7-7). The results for this species were also the most sensitive to the choice 

of the classification scenario (Table 7-5). Usually, a rare species will be difficult to observe 

and hence the prior knowledge on this species is likely to be vague (i.e. an uninformative 

prior should be chosen). Models A with prior V3 showed that when the prior CV was very 

high (60%) in addition to a high misclassification probability , it was not possible to derive an 

estimate with this Bayesian method as the chain converged towards zero and stopped 

updating. When the CV was reduced to 40% (Models B, V3), this problem was not observed. 

Nonetheless, for 30% of the replicates for this species, the Markov chains stopped 

converging. 

 

7.4.5. Criticism of the model and conclusion 

Overall, the results were highly sensitive to the initial values of the parameters and when 

these initial values were just over 20% away from the truth the models did not converge for 

some scenarios. This sensitivity can be explained by the fact that with this misclassification 

problem no unique set of solution exist. If there is not enough constraint on the priors and the  

initial values are far from the truth then the MCMC might converge but towards an estimate 

different to the reality (see next chapter). With such constraints it will not be possible to 

estimate the true number of detections if prior information on the true number of detections is 

totally absent and the prior on the classification rate is vague. This situation has more chance 

to happen for rare species for which it is difficult to collect any information. As the results 

shown, an important parameter which help in having more accurate and less bias results are 

the uncertainties around each classification rate. These measurements are mainly dependent 

on the data used to create the classifier and on the statistical methods used to measure them 

during the creation of the classifier and not on the abundance of the number of detections.  
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Finally, the parameters in this chapter were deliberately chosen with the specific intention to 

test the models under some extreme classification scenario or for cases of extreme prior 

variances. As such, they were not necessarily close to realistic values. Indeed, a CV of 40% 

was never observed in the classifiers developed in the previous chapter as long as the correct 

classification probability was sufficiently high. In the next chapter, the heuristic method of 

chapter 6 and the method of this chapter are used to estimate the true number of detections 

for the real data which is described in the first part of this thesis.  
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Chapter 8: Methods to estimate the number of acoustic 

detections in the presence of species misclassification applied 

to real data 

 

8.1. Introduction 

The output of the PAMGUARD whistle classifiers (PWC) used to identify the species in 

chapters 3 and 4 was a classification of acoustic detections organised in sections containing 

fragments of whistle contours. Due to the imperfection of the classifiers, some of the sections 

were misclassified. This chapter provide a demonstration of the three methods developed in 

chapters 6 and 7 with simulated data, and summarised in Table 8-1, with a selected subset of 

the real datasets and classifiers used in chapters 3 and 4 to estimate the true number of 

sections detected for each species.  

 

Table 8-1: Summary of the methods used to estimate the true number of sections. For each method the 

type of confusion matrix (C) used in the models is described: PAMG. mean is the mean confusion matrix 

given by the PWC at the end of a classification process whereas PAMG. samples is the confusion matrices 

of each bootstrap of the classification process, Dirichlet dist. is the confusion matrices generated from a 

Dirichlet distribution. Initial values indicates whether the initial values are needed (Y) or not (N) for the 

method. prior on parameters v and p describe the parameters needed for the prior distributions on v and 

p in the Bayesian models. 

Method  

name 

Method  

description 
C 

Initial  

values 

prior on 

parameters v 

prior on 

parameters p 

H1 
Heuristic, 

 known p 
PAMG. mean N   

H2 
Heuristic, 

 estimated �� 
PAMG. samples N   

Models A 
Bayesian 

 known p 
PAMG. mean Y 

Mean,  

variance 
 

Models B 
Bayesian,  

estimated �� 
 Dirichlet dist. Y 

Mean, 

variance 

Alpha  

parameters 
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Among the five datasets of chapters 3 and 4, four classified with two classifiers are selected 

and analysed in this chapter  

The first dataset is the French training dataset introduced in chapter 4. Since the data were 

used for classifier training, the true number of sections for each species is known and can be 

compared with the estimates provided by the heuristic and Bayesian methods. The second 

dataset is the MOR_BOWL training data introduced in chapter 3, which was used to identify 

the presence of bottlenose dolphins within wind farm sites. Similarly to the previous dataset, 

the true number of sections detected for each species is known (Table 4-4, p72), and it can be 

compared with the estimated true number of sections calculated with the different heuristic 

and Bayesian methods.  

The third and fourth datasets are the EARs data also introduced in chapter 3, for which the 

species emitting the sounds detected is not known. These datasets were from the Moray Firth, 

which has been extensively surveyed for bottlenose dolphins (and other species). This meant 

that good information on the presence or absence of the classified species is known and thus 

could be used in the Bayesian models. Therefore, even though the results from these datasets 

could not be compared with truth, these datasets allow the consequences of misclassifying 

sections as species known to be rarely present in the study area to be investigated. The 5Sp 

classifier, introduced in chapter 3, was used to generate the observed number of sections from 

these datasets.  

 

The method section describes in detail the parameters needed for each of the four methods 

and the prior information available for each dataset. Estimates of the true number of sections 

are then obtained with the four methods, and a sensitivity analysis is conducted on the prior 

distributions of the true number of sections.  

 

8.2. Methods 

8.2.1. Heuristic methods 

8.2.1.a Known classification probabilities (H1 method) 

When the classification probabilities were known, the inputs needed to estimate the true 

number of sections �� = *��6, … , ��P , … ��o/ for each species j were the observed number of 

sections n = *#6, … , #P , … #o/ for each species j and the mean confusion matrix (�̅) of the 

classifier used to identify the sections: 
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�� = �̅76n  (chapter 6, Eq. 6-4, p100) 

 

The confusion matrices used were the final confusion matrices given by the PWC (Table 8-9, 

Table 8-10). 

 

8.2.1.b Estimated classification probabilities (H.2 method) 

With the second heuristic model the classification probabilities were assumed to be estimated 

with some uncertainty. The inputs needed for this method were the observed number of 

sections n for each species j and several samples of the confusion matrix of the classifier used 

to identify the sections. In chapter 6, the confusion matrix samples were generated from a 

Dirichlet distribution. In this chapter, the data were classified with classifiers created with the 

PWC, so that at each bootstrap b of the classification process two confusion matrices were 

created (see chapter 2 for details of the bootstrap procedure). Each mean of these two 

confusion matrices (�w̅) were used as a confusion matrix sample. The estimate of the true 

number of sections was thus obtained by calculating the average of the observed data 

multiplied by the confusion matrix of bootstrap b, �w̅76: 

�� = ∑ ��¾vwx6¿ = ∑ �w̅76nvwx6¿  

 

8.2.2. Bayesian methods  

The parameters required to run both Bayesian methods were as follows. 

1. observed number of sections for each species; 

2. initial values of the Markov chains for all the model parameters; 

3. parameters (mean and variance) for the prior distributions on the true number of 

sections v; 

4. parameters (alpha) for the prior distributions on the classification probabilities p (for 

Models B only). 

 

8.2.2.a Selection of initial values 

Chapter 7 showed that the Bayesian models developed were sensitive to the initial values of 

the Markov chains. It was thus necessary to select an appropriate approach to generate these 

values such that they were not too far from the expected true values. 
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The initial values of the parameters v for Models A were obtained from the true number of 

sections estimated with the heuristic 2 method. However, the H2 method generated some 

negative estimates and it was thus not possible to use them as initial values. In this situation, 

the initial values of the species with negative estimates were set to the minimum value 

possible 1. The initial values of the parameters v in Models B were estimates of the true 

number of sections obtained with the Models A method. For Models B, the initial values of 

the parameters p were the classification probabilities of the confusion matrix of the classifier 

used to process the data. 

 

8.2.2.b Parameters for the prior distribution on the v parameters 

Given the real data used in this thesis, obtaining prior information on the expected true 

number of detected sections was difficult. Theoretically, the number of sections is dependent 

on the fragment and section length parameters of the classifier, on the average contour length 

and number of whistles per section, on the detection rate of the whistle detector, on the 

vocalisation rate and, finally, on the number of animals. For this chapter, different methods 

were used to give a value to the prior mean of the parameters v.  

 

The prior means on the parameters v were estimated from prior knowledge obtained 

independently of the acoustic survey. Prior variances were then selected such that the 

coefficients of variation (CV) of the prior distributions were 40% and 10% similarly to the 

values used in chapter 7. The prior distributions in the Bayesian models were negative 

binomial distributions, consequently when the prior mean was small it was not possible to 

select a variance that allowed a corresponding CV of either 40% or 10%. When this situation 

happened, the variance of the prior distribution was selected such that the CV was the closest 

as possible to the desired CV. The sections below describe each dataset used in this chapter 

and how the prior means and variances have been selected. 

 

8.2.2.b.i Data 1: French training dataset  

For this dataset collected during the CODA survey, the abundances of all species identified 

by the classifier were estimated from visual detections (Table 8-2). From these estimated 

abundances the means of a first set of prior distributions for each species come from the 

proportion that each species contributed to the overall animal abundance. It was assumed that 

each species had similar vocalisation and detection rates. 
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Table 8-2: Abundances estimation from the CODA visual survey (CODA, 2009) for each species (BND 

(bottlenose dolphin), COD (common dolphin), C&S (common and stripped dolphin), STD (stripped 

dolphin), FPW (long and short finned pilot whale), and each classification group. The encounter 

proportion for each classification group is the abundance for that classification group as a proportion of 

the total abundance of the 5 species.  

 BND COD C&S STD FPW TOTAL 

Abundance for each species 11536 56638 115398 33254 4857 84823 

Abundance for each 
classification group 

11536 68430 4857 84823 

Encounter proportion 14% 80% 6% 100% 
 

This data set was also used to train the French whistle classifiers (chapter 4) so the number of 

contours for each species before classification was known (Table 8-3).  A second set of prior 

distributions were derived from these known numbers of contours. The number of contours 

for each species was converted to a proportion of the total of contours across all species, and 

these figures were applied to the observed number of section and they were used as the means 

of the prior distributions.  

 

Table 8-3: Number of contours classified for each species and each classification group. The contour 

proprotion is the proportion of contours for a classification group relatively to the total number of 

contours of the 5 species.  

 BND COD C&S STD FPW TOTAL 

Contours  for each species 2 2164 110 247 842 3365 

Number of contours for 
each classification 

group 
2 2521 842 3365 

Contour proportion 0.1% 74.9% 25.0% 100% 
 

Then for each set of priors, two variance parameters were chosen such that the CV of the 

prior distribution was equal to 40% and to 10%. The prior parameters for these two set of 

prior distributions are summarised in Table 8-4. 
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Table 8-4: Mean and variance parameters (with associated CV in parentheses) of the prior distributions 

on parameters v for each species or classification group (CSD is common and striped dolphins). The 

number of observed sections n and the parameters αααα of the Dirichlet distribution for the prior 

distribution on the p parameters are also summarised. 

  BND CSD FPW 

Observed sections  83 772 25 

prior from survey 

mean 123 704 53 

Variance (40% CV) 2420.64 79298.56 432.64 

Variance (10% CV) 151.29 4956.16 27.04 

prior from contour 

mean 1 659 220 

Variance (40% CV) 1.01 69696 7744 

Variance (10% CV) 1.01 4356 484 

Dirichlet parameters  

2.93 

0.18 

0.09 

0.10 

3.18 

0.21 

0.115 

0.830 

0.055 

 

8.2.2.b.ii Dataset 2: MORL_BOWL training data (chapter 3) 

The training dataset of the 5Sp classifier of chapter 3 was a concatenation of recordings made 

around the coast of Scotland during different independent surveys, so they were not 

associated with abundance estimates from visual detections. However, in chapter 3, the exact 

number of whistle contours for each species was measured. The number of contours for each 

species was converted to a proportion of the total contours across all species (Table 8-6), and 

these figures applied to the total number of observed sections were used as the means of the 

prior distributions (Table 8-5). 
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Table 8-5: Number of contours n classified for each classification group (bottlenose dolphin (BND), 

common dolphin (COD), Risso’s dolphin (RSD), white beaked dolphin (WBD), white side dolphin (WSD). 

The contour rate is the proportion of contours for a classification group relatively to the total number of 

contours of the 5 species. 

 BND COD RSD WBD WSD TOTAL 

n of whistles contours 61934 69761 2554 5505 63584 146112 

Contour proportion 42% 48% 2% 4% 4% 100% 
 

Then for each set of priors, two variance parameters were chosen such that the CV of the 

prior distribution was equal to 40% and to 10% (Table 8-6).  

 

Table 8-6: Mean and variance parameters (with associated CV in parentheses) of the prior distributions 

for each classification group (classification abbreviation similar to previous table) . Number of observed 

sections and the parameters αααα of the Dirichlet distribution for the prior distri bution on the p parameters 

are also summarised.  

  BND COD RSD WBD WSD 

Observed n 

 sections 
 415 877 9 143 153 

prior  

parameters 

mean 671 766 32 64 64 

Variance (40%CV) 72038 93881 164 655 655 

Variance (10%CV) 4502 5867 32.01 64.01 64.01 

Dirichlet  

parameters 
 

16.53 

1.62 

0.31 

0.52 

0.12 

0.87 

20.42 

0.00 

3.43 

1.69 

2.5 10-3 

2.5 10-3 

0.99 

2.5 10-3 

2.5 10-3 

0.62 

11.01 

0.00 

18.40 

0.77 

0 

5.04 

0.00 

1.11 

20.96 
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8.2.2.b.iii Dataset 3: Data recorded from the DO1 EAR in the Moray Firth S.A.C.  

The DO1 deployment was in an area frequently visually surveyed to estimate abundance of 

bottlenose dolphins, harbour porpoises and harbour or common seals. Abundance estimates 

were available for these species. However, no abundance estimates were available for the 

other species used in the classifier. Only relative information such as the frequency of 

observations (i.e., seasonal, frequent or rare) were available (Moray Offshore Renewables ltd, 

2010; Reid et al., 2003; Thompson et al., 2010). The prior distribution means were selected 

such that these observation frequencies were represented quantitatively. Within the S.A.C, 

bottlenose dolphins are common all year around, whereas sightings of common dolphins and 

white beaked dolphins are seasonal, and sightings of white sided dolphins and Risso’s 

dolphins are rare (Hastie et al., 2003; Moray Offshore Renewables ltd, 2010). To match these 

observations, it was decided from the total number of observed sections that 90% of observed 

sections were bottlenose dolphins, 4% were common dolphins, 4% were white beaked 

dolphins, 1.5% were Risso’s dolphins and 0.5% were white sided dolphins. These values 

were used as the means of the prior distributions for each of the species and two variance 

parameters were selected such that the CV of these prior distributions were as close as 

possible to 40% for one set of priors and as close as possible to 10% for the other set (Table 

8-7). 

 

Table 8-7: Number of observed sections detected by the DO1 deployment in the S.A.C, as well as the 

mean and variance parameters (with associated CV in parentheses) of the prior distributions on 

parameters v for each classification group (classification abbreviation similar to previous table).  

  BND COD RSD WBD WSD 

Observed  

sections 
 94 15 5 16 1 

prior  

parameters 

mean 118 5 5 2 1 

Variance (40%CV) 2227.84 5.01 5.01 2.01 1.01 

Variance (10%CV) 139.24 5.01 5.01 2.01 1.01 
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8.2.2.b.iv Dataset 4: Data recorded from EARs (E17,A20,A21) deployed in the 

MORL-BOWL wind farm sites  

This dataset combined all the sections identified as vocalisations from dolphin species 

detected at the three EAR deployments E17, A20 and A21. In contrast to the Moray Firth 

S.A.C., bottlenose dolphins were rarely observed in the MORL_BOWL site whereas white 

beaked and common dolphins were the more frequent species visually detected. To match 

these observations, it was decided from the total number of observed sections that 0.5% of 

observed sections were bottlenose dolphins, 46% were common dolphins, 50% were white 

beaked dolphins, 2% were Risso’s dolphins and 1.5% were white sided dolphins. These 

values were used as the mean of the prior distribution (Table 8-8) for each species, 

respectively. Two variance parameters were selected such that the CV of these prior 

distributions were as close as possible to 40% for one set of priors and as close as possible to 

10% for the other set. 

 

Table 8-8: Number of observed sections detected by the EARs deployed in the MORL_BOWL sites, as 

well as the mean and variance parameters (with associated CV in parentheses) of the prior distributions 

on the parameters v for each classification group (classification abbreviation similar to previous table). 

  BND COD RSD WBD WSD 

Observed 
sections 

 15 351 1 72 35 

 prior 
paramet
ers 

mean 2 218 9 237 8 

Variance (40%CV) 2.01 7603.84 12.96 8987.04 10.24 

Variance (10%CV) 2.01 475.24 9.01 561.69 8.01 
 

8.2.2.c Parameters for the prior distribution on the parameters p 

When all the datasets described above were used with the Models B method, the parameters 

of the prior distribution on p were selected such that they matched the classification 

probabilities and standard deviations of the confusion matrices from the given classifier used 

to classify the sections. For the first dataset the 3Sp Spanish classifier was used to classify the 

French sections. The confusion matrix of the classifier is given in Table 8-9. 

 

 



Part II Misclassification  Chapter 8: Methods to estimate the number of acoustic detections in 
the presence of species misclassification applied to real data 

147 
 

Table 8-9: 3Sp Spanish confusion matrix, with the classification probabilities and their standard deviation 

(in brackets), discriminating bottlenose dolphins (BND), common and striped dolphins (CSD) and long 

and short finned pilot whales (FPW. ) 

 True Species 

Classified as % BND CSD FPW 

BND 91.5 (13.6) 2.9 11.5 

CSD 5.8 91.1(13.4) 83.0 

FPW 2.8 5.9 5.5(13.1) 

 

For the remaining three datasets the 5Sp classifier of chapter 3 (Table 8-10) was used to 

classify the sections.  

 

Table 8-10: Confusion matrix, with the classification probabilities and their standard deviation (in 

brackets),  of the 5Sp classifier discriminating bottlenose dolphin (BND), common dolphin (COD), Risso’s 

dolphin (RSD), white beaked dolphin (WBD) and white sided dolphin (WSD). 

 True Species 

Classified as % BND COD RSD WBD WSD 

BND 86.6 (7.6) 3.3 0.0 2.0 0.0 

COD 8.5 77.3 (8.0) 0.0 35.8 18.6 

RSD 1.6 0.0 100 (5.9) 0.0 0.0 

WBD 2.7 13.0 0.0 59.8 (8.7) 4.1 

WSD 0.6 6.4 0.0 2.5 77.3 (7.9) 

 

The alpha parameters of the prior Dirichlet distribution are in Table 8-4 and Table 8-6 for the 

3Sp classifier and 5Sp classifier, respectively. 

 

8.2.3. Description of the results 

For each dataset, the following information is reported in a single table: (1) estimates of the 

true number of sections per species obtained with each method; (2) the prior parameters used; 
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(3) the mean and the CV of the estimates for the heuristic models; (4) the posterior means, 

CVs and 95% credible intervals for the Bayesian models. 

 

8.3. Results 

8.3.1. Dataset 1: French training dataset classified with the 3Sp Spanish 

classifier 

With the French dataset classified with the 3Sp Spanish classifier, the first heuristic method 

(H1), estimated a very large number of sections for FPW and very large negative value for 

the other species (Table 8-11). By contrast, the H2 method estimates were all positive and 

relatively close to the truth (Table 8-11). 

When the prior distribution means were chosen as a function of the species abundance 

estimated from visual surveys, the absolute relative error between the Bayesian estimates and 

the true number of sections ranged from 20% (for CSD) to more than 1000% (for BND). For 

these models, the presence of the prior distributions on p increased the CV of the estimates 

from 12.5 % to 13.5 % (Table 8-11). However, when the prior distribution means were based 

on the total number of contours, the absolute relative error for the estimates for each species 

decreased substantially, particularly for Models B, with an absolute relative error ranging 

from 0% for BND to 7% for FPW sections (Table 8-11). When no uncertainty in the 

confusion matrix was considered (Models A), the estimated number of sections attributed to 

CSD and FPW were significantly different (p<0.05) between prior distributions with a CV of 

40% and a CV of 10%. In Models B, the 95% credible interval for the estimates overlapped 

between the two types of prior but the CV of the estimates was higher when the prior 

distribution CV was 40%. 
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Table 8-11: Mean, CV and 95% credible interval (CI) of the estimated true number of sections for the 

three species classified with the heuristic methods (H1 and H2) and with the Bayesian Models A (A) and 

Models B (B), with priors on parameters v estimated from the visual survey (p. f.surv) or from the 

proportion of whistle contours per species (p. f. cont) with variance parameters such that the CV was 

40% or 10%.  The observed number of sections from the classifier results (Observed) and the true 

number of sections (Truth) from the training dataset are also reported for each species. 

  BND CSD FPW 

  mean CV% CI mean CV% CI mean CV% CI 

Truth 0   644   236   

Observed 83   772   25   

H1 -2144   -19824   22848   

H2 32 533.9  623 75.6  225 225.5  

A 
p. f surv. 

40% 
60 8.7 50-70 773 2.4 730 - 803 47 42.4 16 - 94 

A 
p. f surv. 

10% 
71 6.3 62-80 759 1.0 743 - 774 50 14.2 37 - 65 

B 
p. f surv. 

40% 
89 21.0 52-131 741 3.5 684 - 785 50.0 38.1 20 - 94 

B 
p. f surv. 

10% 
115 9.6 96-139 712 1.8 685 - 735 53 12.9 40 - 67 

A p.f cont 
40% 

0   303 16.8 204 - 403 576 8.8 477 -676 

A p.f cont 
10% 

0   589 3.5 547 – 630 291 7.2 250 -333 

B p.f cont 
40% 

0   668 11.8 480 – 787 212 37.1 93 -399 

B p.f cont 
10% 

0  0 660 3.0 619 – 697 220 9.1 183-261 
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8.3.2. Dataset 2: Training data of 5Sp classifier  

The estimates of the true number of sections for the five species with all the methods and 

models are summarised in Table 8-12. With the heuristic methods the estimate of the number 

of sections for the white beaked dolphin was negative. 

With the Bayesian approach, when no uncertainty was considered in the confusion matrix 

(Models A), the true number of section estimates were close to the truth with an absolute 

relative error ranging from 0% to 2% for the species with most observed sections (BND and 

COD). However, for the rarest species, when the CV of the prior distributions was 40%, 0 

sections of RSD and WBD were estimated and the Markov chain stopped updating (both CI 

and CV equalled 0). When the prior distribution was more informative, the number of 

estimated sections for RSD and WBD were 6 and 53 respectively.  

When uncertainty in the confusion matrix was considered (Models B) and with the less 

informative prior (CV = 40%), the estimates of the true number of sections had a higher CV 

and absolute relative error values than the results from Models A. For all species, when the 

CV of the prior distribution was close to 10%, the Markov chains stopped updating after a 

few iterations. However, the mean of the posterior distributions for the two more common 

species (BND and COD) were very close to the truth before the chains stopped updating. 
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Table 8-12: Mean, CV and 95% credible interval (CI) of the estimated true number of sections for the 

three species classified with the heuristic methods (H1 and H2) and with the Bayesian Models A (A) and 

Models B (B), with priors variance on parameters v such that the CV was 40% or 10%.  The observed 

number of sections from the classifier results (Observed) and the true number of sections (Truth) from 

the training dataset are also reported for each species 

  BND COD RSD WBD WSD 

  mean CV%  CI mean CV%  CI mean CV%  CI mean CV%  CI mean CV%  CI 

Truth 442   1031   4   22   98   

Observed 415   877   9   143   153   

H1 439   1069   2   -19   106   

H2 443 11.9  1105 23.3  1 6.0  -66 -3.5  114 76.4  

A 
Prior  

CV 40 
442 2.2 423 -461 1053 1.3 1025-1080 0  

0 

 
0   102 9.7 83-122 

A 

Prior  

 CV 

 10% 

442 2.2 424 -461 1011 1.3 985 -1037 6 21.0 4 -8 53 12.8 40-66 85 7.8 72-98 

B 

Prior  

 CV 

 40% 

452 13.1 343 -582 1004 6.9 860 -1135 9 63.4 0 -28 59 39.2 22-112 72 38.2 26-132 

B 

Prior  

 CV  

10% 

445 0 445 -445 1031 0 1031-1031 6   54   82   

 

 

 

8.3.3. Dataset 3: Data recorded from the DO1 EAR deployment in the Moray 

Firth S.A.C 

The estimates of the true number of sections for the five species of this dataset with all the 

methods and models are summarised in Table 8-13. 
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With the heuristic methods, the estimates for Risso’s, white beaked and white sided dolphins 

were very imprecise with CVs ranging from 70% to 614%. 

The Bayesian Models A estimated that 123 sections contained BND contours and the 8 

remaining sections contained WBD contours. With this model, no other species were selected 

in the classification process. With the Bayesian Models B, all the sections were estimated to 

contain BND contours and, after moving from the initial values, the Markov chains stopped 

updating.  

 

Table 8-13: Mean, CV and 95% credible interval (CI) of the estimated true number of sections detected 

by the DO1 deployment,  for the three species classified with the heuristic methods (H1 and H2) and with 

the Bayesian Models A (A) and Models B (B), with priors variance on parameters v such that the CV was 

40% or 10%.  The observed number of sections from the classifier results (Observed) and the true 

number of sections (Truth) from the training dataset are also reported for each species 

  BND COD RSD WBD WSD 

  mean CV%  CI mean CV%  CI  mean CV%  CI  mean CV%  CI mean CV% CI 

Truth Unknown Unknown Unknown Unknown Unknown 

Observed 94   15   5   16   1   

H1 108   -3   3   23   0   

H2 110 10.1  9 7.16  3 70.4  10 590  -2 614  

A 
Prior CV 

40% 
123 1.6 119-126 0  0-0 0  0-0 8 22.9 5-12 0  0-0 

A 
Prior CV 

10% 
131 0 131-131 0  0-0 0  0-0 9 22.2 5-12 0  0-0 

B 
Prior CV 

40% 
131 0 131-131 0  0-0 0  0-0 0  0-0 0  0-0 

B 
Prior CV 

10% 
131 0 131-131 0  0-0 0  0-0 0  0-0 0  0-0 

 

 

 



Part II Misclassification  Chapter 8: Methods to estimate the number of acoustic detections in 
the presence of species misclassification applied to real data 

153 
 

8.3.4. Dataset 4: Data recorded from EARs (E17,A20,A21) deployed in the MORL-

BOWL wind farm sites 

The estimates of the true number of sections for the five species of this dataset with all the 

methods and models are summarised in Table 8-14. 

With this dataset, the H2 method estimated a negative number of sections for the WBD 

species only, but the CVs for BND and WSD were very high due to numerous estimates with 

negatives values for these species as well. 

With the Bayesian Models A, no sections were estimated to contain contours from BND, 

RSD or WSD. The estimates of the number of sections attributed to the remaining two 

species were significantly different (p<0.01) between Models A with a prior CV of 40% and 

Models A with a prior CV of 10%. 

When a prior on the parameters p was added to the models (Models B), the estimate of the 

number of sections containing contours from RSD ranged between 1 and 13. Similarly to 

Models A, there was a significant difference between the estimates of the number of sections 

using priors on v with CV of 10% and CV of 40% for section attributed to both COD and 

WBD. For all Bayesian models, when the mean of the posterior distributions was zero, the 

Markov chain stopped updating. 
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Table 8-14: Mean, CV and 95% credible interval (CI)l of the estimated true number of sections detected 

by the EARs deployed in the MORL_BOWL sites,  for the three species classified with the heuristic 

methods (H1 and H2) and with the Bayesian Models A (A) and Models B (B), with priors variance on 

parameters v such that the CV was 40% or 10%.  The observed number of sections from the classifier 

results (Observed) and the true number of sections (Truth) from the training dataset are also reported for 

each species 

  BND COD RSD WBD WSD 

  mean CV%  CI  mean CV%  CI mean CV%  CI mean CV%  CI mean CV% CI 

Truth Unknown Unknown Unknown Unknown Unknown 

Observed 15   351   1   72   35   

H1 0   441   1   25   8   

H2 1 1795  483 31.5  1 40.3  -15 -948.6  3 1048  

A 
Prior CV  

40% 
0  0-0 435 2.4 414-454 0  0-0 39 26.2 20-60 0  0-0 

A 
Prior CV  

10% 
0  0-0 353 2.7 334-372 0  0-0 121 8.0 102-140 0  0-0 

B 
Prior CV 

40% 
0  0-0 368 7.4 310-418 2 124.9 1-10 104 26.1 54-162 0  0-0 

B 
Prior CV  

10% 
0  0-0 258 6.2 227-290 4 99.1 1-13 212 7.6 180-244 0  0-0 
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8.4. Discussion 

Applied to real data, the limitations of the heuristic methods were clearly demonstrated with 

negative estimates and/or unrealistic estimates e.g., 22848 sections were predicted for pilot 

whales in the French dataset, although only 880 sections were classified in total (Table 8-11). 

However, with the H2 method, when the estimates were not negative, they were relatively 

close to the truth. Of all the species classified (across the two classifiers) for which the truth 

was known, six had a relative error smaller than 10%, two had a high relative error due to 

either a small estimate (RSD) or because the true number of sections was zero (BND in 

French data) and so relative error was not measurable. As shown in the previous chapter, the 

Bayesian models were sensitive to the choice of the initial values of the Markov chains. 

When the initial values were too far from the truth, the Markov chains did not converge. 

Therefore, the decision of using the estimates from the H2 method was reasonable.  

 

The results showed a clear negative impact on the estimates of a wrong or too uninformative 

prior. With the French dataset, the true number of sections estimated when the prior means 

were based on the abundance estimates of individuals was far from the truth. This difference 

mainly affected the estimates for bottlenose dolphins; in reality, no sections were from 

bottlenose dolphins but the Bayesian models estimated that between 60 (Models A, CV: 

40%) and 115 (Models B, CV: 10%) sections were attributed to this species. On the other 

hand, when the prior means were based on the proportion of contours detected, the estimates 

of the true number of sections were closer to the truth when the uncertainty of the confusion 

matrix was included in the models (Models B). An explanation for the poor estimation using 

the first set of priors (based on abundance) is that unrealistic assumptions were made in order 

to link the number of individuals to the number of contours i,e., same vocalisation and 

detection rates between species were assumed. The prior means were probably too far from 

the truth to be able to give accurate estimates of the true number of sections. For the data 

from which the truth was known, the estimates generated by Models B were slightly less 

biased and also less precise than the estimates generated by Models A.  

 

For the last two datasets for which the truth was unknown, the estimates reflected the 

expectation, modelled by the selection of the prior means, of the presence and absence of 

some species in the monitored area. Indeed, in the S.A.C. where the DO1 recording device 

was deployed, bottlenose dolphins were expected to be the predominant species. The 

Bayesian Models A estimated that few sections (8) were attributed to white beaked dolphins, 
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which were occasionally observed in the area. For the three other Bayesian models, the 

estimates predicted that all the sections detected were attributed to bottlenose dolphins.  

In contrast, at the wind farm site, bottlenose dolphins were expected to be rare and none of 

the Bayesian models estimated that any section was produced by this species.  

 

With regards to the results for the datasets where truth was known, it can be assumed that the 

estimates from Models B with a CV prior of 10% were probably the best estimates. However, 

it is important to keep in mind that these results are reliable only if the prior means on the 

parameters v were estimated accurately. 

 

For all datasets, it was observed that each time the posterior mean was zero, the Markov 

chains stopped updating. This phenomenon was also observed in two other situations: under 

the Models B with the second dataset where the CV of prior distribution on v was close to 

40%, and with the third dataset each time the estimates of the BND sections reached the true 

values. The stopping movement within the Markov chain was a consequence of the 

multinomial function used to update the parameters in the Metropolis Hasting (MH) function. 

The probability parameters of the ith multinomial update function at iteration t of a Markov 

chains were dependent to the ¦O.’s parameters (Part II.7.2.6.a, p121, Eq 7-7) of iteration t-1. If 

at iteration t-1 one of the ¦O.’s parameters was zero, consequently the probability of the 

multinomial distribution corresponding to this ¦OP become also zero and so it can only 

propose new zero values at iteration t. The stopping of updating when the posterior mean was 

not zero was due to a very slow mixing, which can be due to an inappropriate proposal 

function. One potential solution is to use another proposal distribution such as a random walk 

when slow mixing was detected. Initially a random walk was used, but once priors on 

parameters p were added, the models were not updating. 

The real data highlighted a limitation of the negative binomial distribution for the prior on the 

v parameters. When the true number of detections was predicted to be small, the variance 

needed to reach the CV wanted was smaller than the mean and so not possible to use it with 

the negative binomial prior. The implementation of a Conway-Maxwell-Poisson distribution 

(Conway and Maxwell, 1961) which allows for both under and over-dispersed data would 

have allowed to solve this issue. 
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In conclusion, this chapter demonstrated that the Bayesian models used to estimate the true 

number of sections were reliable when appropriate prior distribution means of the model 

parameters were used. Having an informative prior improved the precision of the estimates in 

comparison with the use of an uninformative prior, but, if the mean distribution of the prior 

on the true number of detections was completely inappropriate, the estimates of the true 

number of sections or detections will be unreliable even with an informative prior. This 

chapter shows that even if there is no prior information on the absolute abundance, relative 

abundance between species present in the area of interest and used in the classifier is good 

enough to be able to estimate the true number of detections which will can then be used to 

estimate absolute abundance when other parameters such as cue rates, detection rates will 

become available. 
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Chapter 9: Dealing with species misclassification: General 

discussion  

 

It will never be possible to create the perfect classifier with the ability to identify whistles 

without error, so the next logical step is to develop methods able to estimate from the 

misclassified observations the true number of whistle detections for each species. The 

objectives of the last three chapters (6 to 8) were to: (1) find a reliable method to estimate this 

true number of detections in the presence of misclassification and (2) to identify those factors 

that most influenced the accuracy and precision of these estimates generated. 

 

The heuristic methods used in chapter 6 were simple, intuitive but probably not optimal 

whereas the Bayesian methods of chapter 7 were more difficult to implement, less intuitive 

but gave better results. For these two chapters the data were simulated whereas in chapter 8 

these two methods were applied to real data. With the heuristic methods, some estimates of 

the true number of detections for both the simulated and the real data were negative. Negative 

values are obviously not possible when trying to quantify a number of detections.  

Both methods identified that the proportion of detections by species, the misclassification 

probabilities and the uncertainty of these misclassification probabilities had the greatest 

influence on the accuracy and precision of the estimates. However, the relative importance of 

these factors varied between methods. 

 

9.1. Equal versus unequal detections between species 

When the number of detections was high (3000) and similar between species (equal data) no 

bias was observed between the expected true number of detections and the estimated 

numbers, whatever the statistical approach and the parameters used in the models. In the 

heuristic models when the true number of detections was different between species (unequal 

data), no bias was observed between the estimates and the truth. However, in the Bayesian 

models relative biases ranging from 0.1% to 40% were observed when uncertainty in the 

confusion matrix was associated to unequal data.  

 

With equal or unequal data the variance of the estimates was affected by the classification 

probabilities, uncertainty of the classification probabilities for all methods and prior 
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knowledge of the true number of detections for the Bayesian method. With the heuristic 

method, the CV of the estimates reached unreasonably high values (>400%) for rare species 

even with a low misclassification probability and a small uncertainty in the confusion matrix, 

whereas in the Bayesian model the highest CV observed for an estimate was 70% when a 

high misclassification probability and high level of uncertainty were simulated.  

 

9.2. Prior sensitivity 

In the Bayesian models, there were two random variables (the true number of detections v 

and the classification probabilities p) that required prior distributions. In general the estimates 

of the true number of detections were sensitive to the prior variances. When these variances 

increased, the precision of the estimates decreased: for example with both the simulated data 

(chapter 7) and the real data (chapter 8) the CV of the estimates were for the most part lower 

when the parameters of the prior distribution on the parameters v were such that the CV was 

10% instead of 40%. In the scenario with low misclassification probabilities and with equal 

numbers of detections between species, both prior variances on p and v had a similar impact 

on the CV of the estimates. However when more misclassification was added to the models, 

and the number of detections between species were unequal, increasing the variance of the 

prior of p had a bigger impact that increasing the prior variance of v (Table 7-4, p126 ). 

 

The prior variance on the parameters affected also the accuracy of the estimates. When this 

variance was equal to zero or small such that the prior CV was 10%, the bias for all species 

was zero (with heuristic methods) or small (Bayesian method) and insignificant for all 

practical purposes. The example of the French data in chapter 8 when the prior means were 

based on the abundance of a species showed that the mean of the prior was also a very 

important parameter to obtain unbiased estimates. With the simulated data the scenario where 

the prior means were intentionally different to the truth was not tested. However with the 

simulated data the situation where the prior means of the parameters p were far from the 

expected truth was tested. The results showed these priors had an impact on the accuracy of 

the estimates (Table 8.11). 

 

9.3. Misclassification probabilities 

Similarly to the influence of the prior on the v parameters, when the classification 

probabilities were considered as known (heuristic and Models A) or with small uncertainty 
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(Models B with prior P1) the different misclassification probabilities had no impact on the 

relative bias of the estimates (Figure 6-1 and Figure 7-7). On the other hand when larger 

uncertainty on the classification probabilities was simulated, then increasing the 

misclassification probabilities decreased the accuracy and precision of the estimates. 

Particularly high misclassification associated with asymmetric misclassifications (Sc2.e) 

between species generated the largest bias observed of all modes.  

 

9.4. Grouping species, an alternative to decrease misclassification rates 

Given the general availability of cetacean species and the cost and time necessary to obtain 

data, obtaining more precise information regarding the true number of detections can quickly 

become challenging and costly. Chapter 8 showed that using information of relative 

abundance is a good alternative to obtain reliable estimates of the true number of detections. 

However, improving the output of the classifier by decreasing the misclassification rates and 

their associated uncertainties depends on the training dataset quality and also on the method 

used to develop the classifier. As shown in chapters 3 and 4 grouping different species in one 

classification group can improve the general classification rates. Such grouping systems need 

to be used suitably and generally to answer a management or conservation concern. In 

chapter 3, species were grouped to answer a management problem question which was to 

identify the protected bottlenose dolphins from all the other species encountered in the same 

area. By grouping the species in two groups the classification results were greatly improved. 

Differently in chapter 3, common dolphin and spotted dolphins were grouped because of their 

very close acoustic characteristics generating a high level of misclassification between this 

two species. Given the objective of the CODA survey grouping these two species was not a 

problem and it decreased the level of misclassification in the classifier. 

 

9.5. Rare species 

For all methods and models, the estimates of the simulated rare species had a larger CV and a 

larger bias (with Bayesian models) than the other species. The data were simulated in such a 

way that it was not possible within the scope of this thesis  to determine if  these results were 

an artefact of unequal detections or just a consequence of a small number of detections. To 

distinguish between these hypotheses, models could be tested with 50 detections per species 

rather than the 3000 used here. However, it is more realistic to expect, in the real world, to 

encounter a situation similar to that simulated in this thesis. Given the results of these three 
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chapters, the benefice of using acoustic survey over the visual survey, for rare species will be 

mainly dependent on the vocal characteristics and vocalisation rates of the species. Indeed if 

the rare species vocalise regularly and can be clearly discriminated acoustically, such that it is 

possible to develop a reliable classifier with a low misclassification probability for this 

species then, it can be hoped that using acoustic detections will improve the accuracy of the 

abundance estimate for this species. On the other hand if the rare species is difficult to 

discriminate acoustically, as well as difficult to detect visually, then using acoustic detection 

may not be useful to improve its abundance estimation. The problem of rare species is 

recurrent for all detections method used. In several studies (McClintock et al., 2010a; Miller 

et al., 2011; Royle and Link, 2006) which tried to deal with species misidentification, a 

common conclusion was that when species misidentification is considered in the model the 

largest bias on the abundance estimate occurred when the occupancy probability is low.  

 

9.6.  Limitations of the methods 

Both approaches showed their limits when the number of detections was small for a given 

species: with the heuristic method unrealistic estimates were predicted and with the Bayesian 

method the MCMC frequently stopped updating when the estimates of the true number of 

detections were zero. Furthermore the values of the confusion matrices had been selected 

such that it was possible to analyse the impact of the misclassifications rates and their 

uncertainty independently. The confusion matrices of the classifier created in the first part of 

this thesis as well as the confusion matrix of Gillespie et al., (2013), never had a high correct 

classification probability associated with a CV of 40% as it was simulated. In a further work, 

confusion matrices with different correct classification probabilities between species 

associated with a low CV for a high correct classification probability, and a high CV for a 

low correct classification probabilities can be tested. Given all the observed results more 

accurate and precise results are to be expected for the species with high correct classification 

probability and vice-versa. 

 

Finally, estimating the true number of detections from misidentified data is not a problem 

specific to unidentified cetacean acoustic cues. The problem of species identification is also 

present with visual detections and with species other than cetaceans (McClintock et al., 

2010b; Miller et al., 2011). Species misidentification (from visual survey) or misclassification 

(when identification via a classifier) generates false positive detections. In occupancy and 
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abundance estimation model  the impact of false negative errors has been widely analysed 

and method to decrease the bias it can generate on the final estimate have been largely 

developed (Buckland et al., 2004; MacKenzie et al., 2002). However the problem of false 

positive detections due to misidentification has been ignored for a long time, despite 

demonstration that such errors occurred even with experimented observers (McClintock et 

al., 2010b; Simons et al., 2007). In their studies McClintock et al., (2010a), Miller et al., 

(2011), Royle and Link  (2006) have demonstrated that false positives detections rapidly lead 

to misleading inferences. With cetacean surveys, false positive detection errors caused by 

misidentification from visual observations have always been ignored. Generally with 

cetacean acoustic, a parameter within the abundance formula includes false positives 

detections rates ((Marques et al., 2009; Thomas and Marques, 2012). To refer to the equation 

in this thesis, the misclassification parameter was called �̂ in equation (6-1 (p98). Nonetheless 

this parameter is general and represents the probability that the detections are misclassified as 

another sound not species specific.  It does not acknowledge the misclassification between 

species and its consequences on the misleading observed data.  In anuran studies for which it 

is easier to detect false positive detections they are developing methods to measure the bias 

generated by such species misidentification on the final abundance estimation (McClintock et 

al., 2010a; Miller et al., 2011; Royle and Link , 2006). These studies focus either on 

misidentification between two species only or they were done in a very controlled system. 

The conclusions of this PhD with the consequences of misclassification with more than 2 

species and a less controlled system are similar to the conclusions of the anurans studies. 

These similar conclusions being that the level of uncertainty of the species identification as 

well as the level of species concurrency played the major role on the bias and accuracy of the 

estimates.  

 

 

9.7. Abundance estimation using misclassified observed detections 

 

It is important to keep in mind that the true number of detections is only one variable in the 

process of estimating abundance from acoustic detections, and consequently it is not the only 

parameter responsible for the accuracy and precision of the abundance estimates. As 

expressed in Eq 9.1, at least two other parameters in the abundance equation need to be 

estimated: the cue rate (r�s) and the detection probability (P"s).  
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 NÂ" = v�saTP"sr�s A (9.1)     

 

 

Both these parameters are species dependent and can be challenging to estimate. As 

mentioned several times in this thesis, the cue rate is largely unknown for most of the 

whistling species and it is likely to be highly variable. The average probability of detection in 

itself is also dependent on numerous factors (such as distance from the hydrophone, 

directionality of the call, ambient noise, and detector performance). 

 If all these estimates are considered as independent then the precision of the abundance 

estimate (N"s) can be calculated by using the delta method (Gerrodette et al., 2011; Seber, 

1982).  CV_*N"s/ = CV_*v�s/ + CV_*P"s/ + CV_*r�s/ 

The CV of the true number of detections estimates is thus only one element of the overall CV 

of the abundance estimate. Its influence on the final abundance estimate can only be 

considered relative to the CV of the other estimates. Indeed if for example the CV of the 

estimated true number of detections is 70% (as the highest CV observed with simulated data 

in chapter 7) and the CVs of the cue rates and detection probability are 10% then the CV of 

the abundance estimate will be mainly influenced by v�s. To improve these estimates this 

thesis showed that one solution is to improve the classification process, so that as the correct 

classification probability increases and the uncertainty around this rate decreases. Another 

solution is to have a robust method to estimate the true number of detections. While, if the 

contribution of the true number of detections CV is not important relative to the other 

parameters then more effort should be taken in improving the estimation of the cue rates and 

detection probabilities. However having biased estimates of the true number of detections is a 

more important problem than imprecise estimates, as in this situation the abundance estimate 

will also be biased and that can lead for example into inappropriate management, 

conservation decisions.  

One advantage of the Bayesian framework developed in this thesis is that it was possible to 

quantify how much bias and variance the parameters used in the Bayesian models generated 

on the estimates. By incorporating the other parameters of the abundance equation in a 

Bayesian framework we can hope that it will be possible to identify for future surveys or 

projects those parameters of the abundance equation that generate most of the bias and 
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uncertainty, and once identified it will be easier to find solutions to improve the 

measurement. The Bayesian method developed in this thesis is a first approach and has its 

limitations. A priority will be to improve the method such that the Markov chains become 

less dependent on the initial values and the issue of lack of convergence should be solved. 

 

 

9.8. Conclusion 

 

In summary and conclusion this thesis highlighted more questions and problems to be solved 

than bringing complete solutions to estimate abundance of cetaceans solely from acoustic 

detections. Through the comparisons of the results of chapter 3 and 4 and from the results of 

the second part it is possible to suggest some methods which should help in the process of 

obtaining reliable abundance of cetacean using their acoustic signatures. A critical point is the 

correct identification of the sound detected which can be done by an automatic classifier. The 

creation of a reliable classifier with the quantification of the uncertainty for each 

classification rate has been shown to be very important. Box 3 summarises the important 

steps associated with some applied methods to reach this objective.   The most important step 

is the availability of a reliable training dataset ideally without any misclassification. Using 

survey methods which allow a close interaction between the hydrophones, the animals and 

the observer should help to accumulate such a dataset. Then to be able to use the classifier 

outputs, having a measure of the uncertainty of this output is indispensable to be able to 

measure the bias and precision of the estimate of the true number of detections. Including in 

the classifier only species present in the area of interest and/or grouping, when possible, 

species with a high chance of misclassification in the same classification group will help to 

decrease the overall misclassification rate.  

Nonetheless before being able to estimate abundance, parameters such as the cue rates and 

the cue detection rates needed to be estimated. The cue rate particularly is very difficult to 

obtain due to its high variability within and between individuals. Consequently a large sample 

size covering numerous different individuals and numerous behaviours is needed to obtain a 

reliable cue rate estimate. Cue detection rates can be estimated using propagation models, 

once the frequency and the source level of the sounds are known, associated with false 

positive detection analysis. 
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Box 2: Summary of the different parameters needed to estimate abundance form acoustic detection with 

suggestion of some method to obtain them. 

 

Having uncertain estimates in itself is not a problem as given the complexity of biological 

models it will never be possible to have models representing a biological system without 

uncertainty. So ecologists often confront uncertainty and must try hard to identify  the 

sources of uncertainty, how to quantify it and what are the consequences on the output of the 

model. Policy makers or environmental managers are now totally aware that it is impossible 

to ask for certain output, estimates and predictions. Large management programs such as the 

Revised Management Procedure (RMP) of the IWC have been developed to establish catch 

limit quotas to protect the stock of some species (Punt and Donovan, 2007). In this 

management procedure measurement of uncertainty is part of the models used to simulate the 

impact of the management decisions on the species stock of interest. More generally once 

uncertainty is identified and most importantly quantified, appropriate management options or 

policies can been established with more confidence (Ascough II et al., 2008; Harwood and 

Stokes, 2003). The managers or policy makers will be able to quantify the risk their decisions 

A. Developing a reliable classifier

1. Identify species present in the area of interest

2. Identify species of interest

3. Create a reliable acoustic training database:

1. Identify accurately species detected 

visually (close up survey method)

2. Allow for a close interaction between 

hydrophones and identified species

3. Insure quality and quantity of recordings 

(several 100’s of whistles should be 

recorded for each species)

B. Measure uncertainty on the classification rates

C. Estimate the true number of detections for each 

species:

• Using a reliable method  to define the 

misclassification operator which will estimate the 

true number of detections from the numbers #
observed.

• If it is the method used in this chapter prior 

information of the relative abundance for the 

species of interest are needed from previous 

surveys.

Æ" = Ç n ÈÉÊË"Ì�
Reliable estimate of cue rates for each species:

Large sample of individuals and behavioural 

situation needed to be collected.

Estimating  cue detection rates:

• By doing some work on the false 

detection rate sof the detector

• Estimating the distance at which sounds 

can be detected (propagation models)

• Doing some signal to noise ratio analysis 

to identify the impact of noise on the 

detection rate

Abundance estimation

formula
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create in a given situation and consequently to modify their strategy if this risk is not 

acceptable.   

In the model used to estimate abundance from acoustic detections, this thesis only identifies 

and quantifies which parameters in the species identification process are responsible for most 

of the uncertainty of the estimate. These findings need to be implemented in the more 

complete and complex model of abundance estimation.  

Finally, although this thesis focused only on whistling species, the problem can be easily 

extended for all species for which acoustic surveys are used to estimate abundance or for any 

problem of misclassification/ misidentification between species.
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Appendix A. Appendix for chapter 3 
 

Table A-1 Classification result of the EAR data classified with the 2Sp classifier: Encounters time: time of 

the first section of the encounter. n= total numbers of sections within each encounters of bottlenose 

dolphins (nBND) and other dolphins (nOTHER). p is the average probability of a section to be classified 

as bottlenose dolphins (pBND) or as other dolphins (pOTHER). Classified as: final classification of the 

encounter after observation by the manual observed. When all the contours within an encounter are false 

detections then the encounters was classified as a false detection (FD) encounters. 

EAR: E21       

Encounters time n 

n p 

Classified as 

BND OTHER BND OTHER 

18/08/2010 02:20:20 4 4 0 1.00 0.00 FD 

18/08/2010 12:08:15 12 12 0 0.98 0.02 FD 

20/08/2010 14:27:00 1 1 0 0.98 0.02 FD 

20/08/2010 15:28:53 3 3 0 0.99 0.01 FD 

22/08/2010 03:23:08 5 1 4 0.20 0.80 OTHER 

22/08/2010 03:53:08 1 0 1 0.20 0.80 OTHER 

24/08/2010 06:34:35 1 1 0 1.00 0.00 FD 

05/09/2010 08:30:47 1 1 0 1.00 0.00 FD 

07/09/2010 07:30:45 1 1 0 0.99 0.01 FD 

07/09/2010 08:00:45 2 2 0 0.99 0.01 FD 

07/09/2010 09:36:18 1 1 0 0.99 0.01 FD 

EAR: 17       

Encounters time n 

n p 

Classified as 

BND OTHER BND OTHER 

29/07/2010 09:22:19 15 0 15 0.09 0.91 OTHER 

29/07/2010 13:22:47 40 0 40 0.12 0.88 OTHER 

01/08/2010 23:31:19 57 0 57 0.05 0.95 OTHER 

04/08/2010 21:26:29 8 0 8 0.08 0.92 OTHER 
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EAR: A20       

Encounters time n 

n p 

Classified as 

BND OTHER BND OTHER 

22/07/2010 17:14:28 2 2 0 0.97 0.03 FD 

24/07/2010 17:05:17 1 1 0 0.94 0.06 FD 

26/07/2010 09:23:41 89 2 87 0.13 0.87 OTHER 

26/07/2010 09:23:41 89 2 87 0.13 0.87 OTHER 

29/07/2010 10:05:45 92 1 91 0.09 0.91 OTHER 

29/07/2010 11:20:32 2 0 2 0.19 0.81 OTHER 

29/07/2010 13:02:22 120 0 120 0.08 0.92 OTHER 

31/07/2010 18:25:49 1 0 1 0.30 0.70 OTHER 

01/08/2010 23:01:27 43 

 

43 0.02 0.98 OTHER 

03/08/2010 09:02:24 12 12 0 0.99 0.01 FD 

04/08/2010 18:20:35 2 1 1 0.82 0.18 FD 

04/08/2010 19:08:06 3 3 0 0.82 0.18 FD 

05/08/2010 00:17:59 1 1 0 1.00 0.00 FD 

06/08/2010 15:29:15 1 1 0 0.83 0.17 FD 

07/08/2010 18:29:57 1 0 1 0.08 0.92 FD 

09/08/2010 22:12:21 1 0 1 0.01 0.99 OTHER 

11/08/2010 01:05:04 3 2 1 0.70 0.30 FD 

12/08/2010 14:24:44 1 1 0 0.67 0.33 FD 

13/08/2010 11:12:10 1 0 1 0.00 1.00 FD 

13/08/2010 15:09:06 1 1 0 0.95 0.05 FD 

13/08/2010 23:18:38 1 0 1 0.00 1.00 FD 

14/08/2010 02:20:56 1 0 1 0.16 0.84 FD 
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EAR: E16       

Encounters time n 

n p 

Classified as 

BND OTHER BND OTHER 

22/09/2010 23:23:22 1 1 0.83 0.17 FD 

23/09/2010 10:19:58 1 1 

 

0.91 0.09 FD 

23/09/2010 19:25:05 2 2 

 

0.72 0.28 FD 

24/09/2010 10:21:22 2 2 

 

0.76 0.24 FD 

24/09/2010 13:16:04 1 1 

 

0.8 0.2 FD 

25/09/2010 10:16:34 1 1 

 

0.84 0.16 FD 

25/09/2010 12:03:50 2 2 

 

0.78 0.22 FD 

25/09/2010 23:16:22 2 2 0.91 0.09 FD 

28/09/2010 08:11:12 2 

 

2 0.09 0.91 FD 

01/10/2010 15:23:38 2 

 

2 0.25 0.75 FD 

01/10/2010 17:22:16 2 

 

2 0.34 0.66 FD 

03/10/2010 16:13:02 1 1 0.99 0.01 FD 

05/10/2010 05:24:23 1 1 

 

0.59 0.41 FD 

07/10/2010 12:14:32 1 1 

 

0.99 0.01 FD 

08/10/2010 13:03:57 2 2 

 

1 0 FD 

10/10/2010 06:24:58 1 

 

1 0 1 FD 

13/10/2010 06:20:44 87 87 

 

0.98 0.02 FD 

13/10/2010 15:14:31 1 1 

 

0.99 0.01 FD 

14/10/2010 22:12:31 1 1 1 0 FD 
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EAR: D01       

Encounters time n 

n p 

Classified as 

BND OTHER BND OTHER 

08/10/2010 17:27:22 5 3 2 0.68 0.32 BND 

09/10/2010 07:47:14 5 0 5 0.27 0.73 OTHER 

09/10/2010 19:37:12 1 1 0 0.7 0.3 BND 

09/10/2010 21:54:32 1 1 0 0.98 0.02 BND 

09/10/2010 22:46:05 1 1 0 0.55 0.45 BND 

10/10/2010 03:46:59 2 2 0 0.69 0.31 BND 

10/10/2010 23:38:13 3 3 0 0.7 0.3 BND 

11/10/2010 04:39:10 1 0 1 0.19 0.81 OTHER 

11/10/2010 20:26:07 4 4 

 

0.86 0.14 BND 

11/10/2010 22:34:32 2 2 

 

0.96 0.04 BND 

12/10/2010 06:37:49 3 3 

 

0.92 0.08 BND 

12/10/2010 15:35:37 1 1 0.89 0.11 BND 

13/10/2010 20:45:44 20 20 

 

0.92 0.08 BND 

14/10/2010 12:25:38 1 

 

1 0.24 0.76 OTHER 

14/10/2010 17:51:26 1 1 

 

0.8 0.2 BND 

15/10/2010 07:33:37 1 1 

 

0.71 0.29 BND 

15/10/2010 09:47:13 1 1 

 

0.92 0.08 BND 

15/10/2010 13:42:35 2 

 

2 0 1 OTHER 

15/10/2010 16:50:54 2 2 0.97 0.03 BND 

16/10/2010 09:27:20 1 1 

 

1 0 BND 

16/10/2010 19:49:24 2 2 

 

0.82 0.18 BND 

18/10/2010 01:39:38 4 4 

 

0.94 0.06 BND 

20/10/2010 19:31:34 2 1 1 0.48 0.52 OTHER 

20/10/2010 21:42:10 2 2 0 0.84 0.16 BND 

20/10/2010 22:28:17 4 0 4 0.36 0.64 OTHER 



Appendices 

A-5 

EAR: D01       

Encounters time n 

n p 

Classified as 

BND OTHER BND OTHER 

21/10/2010 21:32:55 6 6 0.88 0.12 BND 

21/10/2010 22:26:48 1 1 

 

0.81 0.19 BND 

22/10/2010 04:28:38 1 

 

1 0.45 0.55 OTHER 

22/10/2010 16:29:21 4 2 2 0.55 0.45 BND 

22/10/2010 17:45:04 4 1 3 0.46 0.54 OTHER 

22/10/2010 23:36:16 6 6 

 

0.83 0.17 BND 

23/10/2010 10:32:47 2 2 

 

0.9 0.1 BND 

23/10/2010 22:29:53 4 4 1 0 BND 

24/10/2010 18:27:55 4 3 1 0.67 0.33 BND 

24/10/2010 22:44:01 1 1 

 

0.94 0.06 BND 

25/10/2010 01:35:00 5 4 1 0.82 0.18 BND 

25/10/2010 18:34:00 1 1 0.8 0.2 BND 

25/10/2010 20:42:13 2 2 0 0.72 0.28 BND 

26/10/2010 00:41:54 2 2 

 

0.88 0.12 BND 

27/10/2010 15:33:06 2 

 

2 0.12 0.88 OTHER 

28/10/2010 12:30:46 10 7 3 0.66 0.34 BND 

30/10/2010 11:54:16 3 3 0 1 0 BND 
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Table A.2: Classification result of the EAR data classified with the 5Sp classifier. The column headings are similar to the previous table with more species:  

COD=common dolphin, RSD=Risso’s dolphin, WBD=white beaked dolphin, WSD=white sided dolphin. 5Sp class as= classification result by the 5Sp classifier in 

comparison to the classification result by the 2Sp classifier (2Sp class as) after the manual check of the spectrograms. 

EAR: E21      

Encounters time 

n 

n p 5Sp 

Class as 

2Sp 

Class. as BND COD RSD WBD WSD BND COD RSD WBD WSD 

18/08/2010 02:20:20 4   4  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

18/08/2010 12:08:15 12   12  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

20/08/2010 14:27:00 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

20/08/2010 15:28:53 3   3  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

22/08/2010 03:23:08 6 1 2 0 3 0 0.16 0.37 0.00 0.46 0.00 WBD OTHER 

24/08/2010 06:34:35 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

05/09/2010 08:30:47 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

07/09/2010 07:30:45 3   3  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

07/09/2010 09:36:18 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 
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EAR: E17              

Encounters time 

n 

n p 5Sp 

Class as 

2Sp 

Class. as BND COD RSD WBD WSD BND COD RSD WBD WSD 

29/07/2010 09:22:19 15  14  1 0 0.07 0.73 0.00 0.15 0.05 COD OTHER 

29/07/2010 13:22:47 40 1 25  14 0 0.07 0.57 0.00 0.33 0.03 COD OTHER 

01/08/2010 23:31:19 57 0 32 1 21 3 0.04 0.47 0.00 0.37 0.12 COD OTHER 

04/08/2010 21:26:29 8  6  2 0 0.04 0.67 0.00 0.23 0.06 COD OTHER 

              

EAR: A20              

Encounters time 

n 

n p 5Sp 

Class 

as 

2Sp 

Class. as 

BND COD RSD WBD WSD BND COD RSD WBD WSD 

22/07/2010 17:14:28 2   2  0   1.00   RSD FD 

24/07/2010 17:05:17 1   1  0   1.00   RSD FD 

26/07/2010 09:23:41 89 7 68 0 12 2 0.13 0.64 0.00 0.18 0.05 COD OTHER 

29/07/2010 10:05:45 92 2 66 0 13 11 0.07 0.57 0.00 0.22 0.14 COD OTHER 
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EAR: A20              

Encounters time 

n 

n p 5Sp 

Class 

as 

2Sp 

Class. as 

BND COD RSD WBD WSD BND COD RSD WBD WSD 

29/07/2010 11:20:32 2  2   0 0.28 0.52 0.19 0.00 0.01 COD OTHER 

29/07/2010 13:02:22 120 4 112  4 0 0.08 0.75 0.00 0.10 0.07 COD OTHER 

31/07/2010 18:25:49 1  1   0 0.10 0.82 0.00 0.00 0.08 COD OTHER 

01/08/2010 23:01:27 43 0 21 0 2 20 0.03 0.45 0.00 0.11 0.41 COD OTHER 

03/08/2010 09:02:24 12 0 0 12 0 0 0.00 0.00 1.00 0.00 0.00 RSD FD 

04/08/2010 18:20:35 5 1 1 3 0 0 0.21 0.08 0.62 0.08 0.01 RSD FD 

05/08/2010 00:17:59 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

06/08/2010 15:29:15 1    1 0 0.16 0.01 0.08 0.75 0.00 WBD FD 

07/08/2010 18:29:57 1    1 0 0.02 0.29 0.00 0.68 0.00 WBD FD 

09/08/2010 22:12:21 1  1   0 0.00 0.53 0.00 0.47 0.00 COD OTHER 

11/08/2010 01:05:04 3  2  1 0 0.00 0.67 0.33 0.00 0.00 RSD FD 

12/08/2010 14:24:44 1    1 WBD 0.09 0.01 0.02 0.87 0.00 WBD FD 

13/08/2010 11:12:10 1 1    COD 0.03 0.90 0.00 0.00 0.06 COD FD 
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EAR: A20              

Encounters time 

n 

n p 5Sp 

Class as 

2Sp 

Class. as BND COD RSD WBD WSD BND COD RSD WBD WSD 

13/08/2010 15:09:06 1   1  RSD 0.00 0.00 1.00 0.00 0.00 RSD FD 

13/08/2010 23:18:38 1   1  RSD 0.00 0.02 0.98 0.00 0.00 RSD FD 

14/08/2010 02:20:56 1    1 WBD 0.00 0.01 0.00 0.99 0.00 WBD FD 

              

EAR: E16              

Encounters time 

n 

n p 5Sp 

Class as 

2Sp 

Class. as BND COD RSD WBD WSD BND COD RSD WBD WSD 

22/09/2010 23:23:22 1    1 0 0.00 0.00 0.00 1.00 0.00 WBD FD 

23/09/2010 10:19:58 1   1  0   1.00  0.00 RSD FD 

23/09/2010 19:25:05 2   2  0   1.00  0.00 RSD FD 

24/09/2010 10:21:22 2   1 1 0 0.03 0.00 0.72 0.24 0.01 RSD FD 

24/09/2010 13:16:04 1    1 0 0.10 0.00 0.09 0.80 0.00 WBD FD 

25/09/2010 10:16:34 1    1 0 0.34 0.01 0.05 0.60 0.00 WBD FD 

25/09/2010 12:03:50 2   2  0 0.00 0.00 1.00 0.00 0.00 RSD FD 
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EAR: E16              

Encounters time 

n 

n p 5Sp 

Class as 

2Sp 

Class. as BND COD RSD WBD WSD BND COD RSD WBD WSD 

25/09/2010 23:16:22 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

26/09/2010 00:14:41 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

28/09/2010 07:27:28 2   1 1 0 0.06 0.06 0.50 0.38 0.00 RSD FD 

01/10/2010 15:23:38 2   1 1 0 0.00 0.03 0.50 0.46 0.01 RSD FD 

01/10/2010 17:22:16 2    2 0 0.04 0.04 0.01 0.91 0.00 WBD FD 

03/10/2010 16:13:02 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

05/10/2010 05:24:23 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

07/10/2010 12:14:32 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

08/10/2010 13:03:57 2   2  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

13/10/2010 06:20:44 87   87  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

13/10/2010 15:14:31 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 

14/10/2010 22:12:31 1   1  0 0.00 0.00 1.00 0.00 0.00 RSD FD 
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EAR: D01              

Encounters time 

n 

n p 5Sp 

Class as 

2Sp 

Class. as BND COD RSD WBD WSD BND COD RSD WBD WSD 

08/10/2010 17:27:22 5 3 1  1 0 0.62 0.11 0.01 0.25 0.01 BND BND 

09/10/2010 07:47:14 5  2  3 0 0.11 0.29 0.00 0.59 0.01 WBD OTHER 

09/10/2010 19:37:12 1 1    0 0.79 0.20 0.00 0.02 0.00 BND BND 

09/10/2010 21:54:32 2 2    0 0.74 0.10 0.00 0.16 0.00 BND BND 

10/10/2010 03:46:59 2 2    0 0.64 0.18 0.00 0.18 0.00 BND BND 

10/10/2010 23:38:13 3 1   2 0 0.45 0.11 0.00 0.44 0.00 BND BND 

11/10/2010 04:39:10 1  1   0 0.30 0.64 0.00 0.06 0.00 COD OTHER 

11/10/2010 20:26:07 4 3   1 0 0.76 0.07 0.00 0.17 0.00 BND BND 

11/10/2010 22:34:32 2 2    0 0.94 0.06 0.00 0.00 0.00 BND BND 

12/10/2010 06:37:49 3 3    0 0.98 0.02 0.00 0.00 0.00 BND BND 

12/10/2010 15:35:37 1 1    0 0.95 0.04 0.00 0.01 0.00 BND BND 

13/10/2010 20:45:44 20 17  1 2 0 0.85 0.02 0.04 0.09 0.00 BND BND 

14/10/2010 12:25:38 1 1    0 0.56 0.44 0.00 0.00 0.00 BND OTHER 

14/10/2010 17:51:26 1 1    0 0.82 0.10 0.00 0.09 0.00 BND BND 
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EAR: D01              

Encounters time 

n 

n p 5Sp 

Class as 

2Sp 

Class. as BND COD RSD WBD WSD BND COD RSD WBD WSD 

15/10/2010 07:33:37 1 1    0 0.85 0.15 0.00 0.00 0.00 BND BND 

15/10/2010 09:47:13 1 1    0 0.98 0.02 0.01 0.00 0.00 BND BND 

15/10/2010 13:42:35 2   1 0 1 0.00 0.14 0.64 0.00 0.22 WSD OTHER 

15/10/2010 16:50:54 2 2    0 0.96 0.04 0.00 0.00 0.00 BND BND 

16/10/2010 09:27:20 1 1    0 1.00 0.00 0.00 0.00 0.00 BND BND 

16/10/2010 19:49:24 2 1  1  0 0.45 0.00 0.55 0.00 0.00 RSD BND 

18/10/2010 01:39:38 4 4    0 0.94 0.06 0.00 0.00 0.00 BND BND 

20/10/2010 19:31:34 2 1 1   0 0.46 0.41 0.00 0.12 0.01 BND OTHER 

20/10/2010 21:42:10 2 2    0 0.95 0.05 0.00 0.00 0.00 BND BND 

20/10/2010 22:28:17 4  4   0 0.06 0.73 0.00 0.13 0.08 COD OTHER 

21/10/2010 21:32:55 6 6    0 0.92 0.07 0.00 0.01 0.00 BND BND 

21/10/2010 22:26:48 1 1    0 0.64 0.21 0.00 0.15 0.00 BND BND 

22/10/2010 04:28:38 1  1   0 0.28 0.56 0.00 0.15 0.01 COD OTHER 

22/10/2010 16:29:21 4 2 2   0 0.60 0.32 0.00 0.08 0.00 BND BND 
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EAR: D01              

Encounters time 

n 

n p 5Sp 

Class as 

2Sp 

Class. as BND COD RSD WBD WSD BND COD RSD WBD WSD 

22/10/2010 17:45:04 4 2  1 1 0 0.41 0.11 0.25 0.23 0.00 BND OTHER 

22/10/2010 23:36:16 6 4  1 1 0 0.66 0.02 0.16 0.15 0.01 BND BND 

23/10/2010 10:32:47 2 1   1 0 0.73 0.02 0.00 0.25 0.00 BND BND 

23/10/2010 22:29:53 4 3   1 0 0.78 0.04 0.00 0.18 0.00 BND BND 

24/10/2010 18:27:55 4 3 1   0 0.71 0.26 0.00 0.03 0.00 BND BND 

24/10/2010 22:44:01 1 1    0 0.98 0.02 0.00 0.01 0.00 BND BND 

25/10/2010 01:35:00 5 4 1   0 0.84 0.11 0.05 0.00 0.00 BND BND 

25/10/2010 18:34:00 1 1    0 0.88 0.10 0.00 0.02 0.00 BND BND 

25/10/2010 20:42:13 2 1   1 0 0.51 0.04 0.00 0.45 0.00 BND BND 

26/10/2010 00:41:54 2 2    0 0.94 0.04 0.00 0.01 0.01 BND BND 

27/10/2010 15:33:06 2 2   1 0 0.26 0.21 0.00 0.53 0.00 WBD OTHER 

28/10/2010 12:30:46 10 9 1   0 0.76 0.17 0.00 0.04 0.03 BND BND 

30/10/2010 11:54:16 3 3    0 1.00 0.00 0.00 0.00 0.00 BND BND 
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Appendix B. Appendix for chapter 4 

Table B-1: Classification result of the French data classified with the 5Sp and 3Sp Spanish classifiers: BND=bottlenose dolphins, COD=common dolphins, 

C&S=common/striped dolphins, FPW=pilot whales, STD=Striped dolphins, n=number of sections per encounter, p= classification probabilities per classification 

group. Class as= classification result by the 5Sp classifier in comparison to the classification result by the 3Sp classifier 

Truth: CD 
 

5SP Spanish Classifier 3SP Spanish classifier 

Encounter Time n 
n p 

Class as 
n p 

Class as 
BND COD C&S FPW STD BND COD C&S FPW STD BND CSD FPW BND CSD FPW 

17/07/2007 15:53 26 0 11 6 0 9 0.02 0.39 0.28 0 0.31 CD 0 26 0 0.04 0.96 0 CS 

20/07/2007 07:11 1 0 0 0 0 1 0.01 0.14 0.39 0 0.46 SD 0 1 0 0.06 0.94 0 CS 

21/07/2007 15:21 143 3 45 51 1 43 0.02 0.32 0.34 0 0.32 CS 3 139 1 0.04 0.96 0 CS 

21/07/2007 17:35 4 0 4 0 0 0 0.02 0.49 0.25 0 0.24 CD 0 4 0 0.04 0.93 0 CS 

21/07/2007 18:55 3 0 0 1 2 0 0.01 0.12 0.16 0.57 0.14 PW 1 2 0 0.32 0.68 0 CS 

24/07/2007 05:35 403 11 168 122 11 91 0.03 0.34 0.31 0.02 0.29 CD 12 379 12 0.06 0.91 0 CS 

24/07/2007 07:32 4 0 0 1 0 3 0 0.28 0.33 0 0.39 SD 0 4 0 0 1 0 CS 

25/07/2007 06:16 5 0 5 0 0 0 0 0.72 0.13 0.01 0.13 CD 0 5 0 0.01 0.98 0 CS 

                    
Truth: CSD 

 
5SP Spanish Classifier 3SP Spanish classifier 

Encounter Time n 
n p 

Class as 
n p 

Class as 
BND COD C&S FPW STD BND COD C&S FPW STD BND CSD FPW BND CSD FPW 

09/07/2007 09:53 15 0 4 10 0 1 0.02 0.31 0.39 0 0.27 CS 0 15 0 0.05 0.94 0 CS 

             
   

    
Truth: FPW 

 
5SP Spanish Classifier 3SP Spanish classifier 

Encounter Time n 
n p 

Class as 
n p 

Class as 
BND COD C&S FPW STD BND COD C&S FPW STD BND CSD FPW BND CSD FPW 

18/07/2007 05:34 11 10 0 0 1 0 0.9 0 0 0.09 0 BD 9 0 2 0.82 0 0 BD 

19/07/2007 10:23 66 57 3 1 4 1 0.86 0.04 0.03 0.05 0.02 BD 53 4 9 0.8 0.07 0 BD 

21/07/2007 15:21 158 3 50 54 1 50 0.02 0.32 0.34 0 0.32 CS 3 154 1 0.03 0.96 0 CS 
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Truth: STD 
 

5SP Spanish Classifier 3SP Spanish classifier 

Encounter Time n 
n p 

Class as 
n p 

Class as 
BND COD C&S FPW STD BND COD C&S FPW STD BND CSD FPW BND CSD FPW 

08/07/2007 11:30 24 0 5 9 0 10 0 0.3 0.35 0 0.34 CS 0 24 0 0.01 0.99 0 CS 

09/07/2007 09:48 6 0 1 3 0 2 0.01 0.28 0.37 0 0.34 CS 0 6 0 0.02 0.98 0 CS 

21/07/2007 17:35 4 0 4 0 0 0 0.02 0.49 0.25 0 0.24 CD 0 4 0 0.04 0.93 0 CS 

24/07/2007 12:20 3 1 1 0 1 0 0.28 0.22 0.16 0.26 0.09 BD 2 1 0 0.53 0.44 0 BD 
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Table B-2: Classification results of the Spanish data classified with the 4Sp and 2Sp French classifiers with n, nCOD, nC&S, nFPW, nSTD, nCSD being 

respectively the total number of sections per encounters for all species and the number of section for common dolphins, common/stripped dolphins, pilot whales, 

striped dolphins and commons and striped together. pCOD, pC&D, pFPW, pSTD, pCSD being the classification probabilities per classification group and Class as 

is the classification result per encounter. 

True Species : COD 
 

4Sp French classifier 2Sp French Classifier 

EncounterTime n 
n p 

Class as 
n p 

Class as 
COD C&S FPW STD COD CSD FPW STD COD FPW CSD FPW 

05/07/2007 10:22 233 83 27 17 106 0.34 0.18 0.14 0.34 2 110 123 0.49 0.51 PW 

06/07/2007 08:20 167 54 20 19 74 0.31 0.18 0.19 0.32 SD 74 93 0.51 0.49 CS 

06/07/2007 11:20 46 25 6 13 2 0.41 0.14 0.27 0.18 CD 34 12 0.6 0.4 CS 

07/07/2007 15:43 15 6 1 2 6 0.34 0.16 0.23 0.27 CD 8 7 0.53 0.47 CS 

11/07/2007 05:28 43 16 3 1 23 0.31 0.15 0.17 0.37 SD 22 21 0.51 0.49 CS 

11/07/2007 06:11 290 120 35 35 100 0.34 0.18 0.2 0.28 CD 162 128 0.53 0.47 CS 

11/07/2007 08:47 428 123 74 63 168 0.3 0.19 0.2 0.31 SD 194 234 0.49 0.51 PW 

11/07/2007 09:56 226 86 37 31 72 0.32 0.2 0.21 0.27 CD 132 94 0.53 0.47 CS 

12/07/2007 12:46 448 125 100 85 138 0.29 0.22 0.22 0.28 CD 224 224 0.51 0.49 CS 

12/07/2007 13:04 32 12 6 4 10 0.32 0.21 0.17 0.29 CD 18 14 0.53 0.47 CS 

12/07/2007 14:49 162 47 32 45 38 0.3 0.22 0.24 0.24 CD 96 66 0.53 0.47 CS 

12/07/2007 18:37 2 0 0 0 2 0.32 0.22 0.07 0.4 SD 1 1 0.45 0.55 PW 

14/07/2007 07:26 100 44 16 5 35 0.33 0.21 0.16 0.3 CD 39 61 0.48 0.52 PW 

14/07/2007 08:00 
164

2 
483 229 272 658 0.3 0.18 0.21 0.3 2 765 877 0.5 0.5 2 

18/07/2007 12:06 4 1 0 1 2 0.23 0.11 0.2 0.46 SD 3 1 0.54 0.46 CS 

18/07/2007 13:46 41 31 3 1 6 0.48 0.18 0.08 0.26 CD 37 4 0.66 0.34 CS 

18/07/2007 17:16 4 2 1 0 1 0.4 0.18 0.14 0.28 CD 3 1 0.53 0.47 CS 

28/07/2007 17:29 12 3 3 5 1 0.27 0.26 0.32 0.15 PW 4 8 0.48 0.52 PW 
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True Species: CSD 
 

4Sp French classifier 2Sp French Classifier 

EncounterTime n 
n p 

Class as 
n p 

Class as 
COD C&S FPW STD COD C&S FPW STD CSD FPW CSD FPW 

06/07/2007 12:56 45 14 11 3 17 0.26 0.27 0.14 0.32 SD 20 25 0.480 0.520 PW 

07/07/2007 07:14 4 2 1 0 1 0.38 0.14 0.19 0.28 CD 3 1 0.570 0.430 CS 

07/07/2007 09:58 1 0 0 0 1 0.06 0 0 0.94 SD 0 1 0.370 0.630 PW 

11/07/2007 08:39 2 0 0 0 2 0.26 0.13 0.17 0.43 SD 0 2 0.300 0.700 PW 

11/07/2007 12:32 1 0 0 0 1 0.15 0.17 0.3 0.38 SD 0 1 0.400 0.600 PW 

11/07/2007 16:08 9 1 0 2 6 0.25 0.17 0.21 0.38 SD 4 5 0.470 0.530 PW 

11/07/2007 16:32 271 55 52 37 127 0.27 0.22 0.19 0.31 SD 88 183 0.460 0.540 PW 

12/07/2007 07:57 19 5 4 3 7 0.29 0.2 0.2 0.31 SD 10 9 0.510 0.490 CS 

13/07/2007 06:09 7 3 0 0 4 0.4 0.11 0.09 0.4 2 3 4 0.490 0.510 PW 

13/07/2007 14:54 1 0 0 1 0 0.17 0.13 0.38 0.32 PW 0 1 0.410 0.590 PW 

13/07/2007 15:44 14 7 1 0 6 0.45 0.15 0.09 0.31 CD 6 8 0.480 0.520 PW 

14/07/2007 07:20 6 1 0 0 5 0.26 0.14 0.13 0.46 SD 1 5 0.400 0.600 PW 

14/07/2007 07:48 18 2 2 2 12 0.27 0.15 0.2 0.38 SD 5 13 0.450 0.550 PW 

14/07/2007 08:54 109 32 13 14 50 0.3 0.19 0.19 0.32 SD 49 60 0.490 0.510 PW 

18/07/2007 09:56 1 0 0 1 0 0.3 0.08 0.4 0.23 PW 1 0 0.680 0.320 CS 

18/07/2007 11:58 12 6 0 2 4 0.36 0.14 0.21 0.29 CD 8 4 0.610 0.390 CS 

18/07/2007 16:26 13 5 1 5 2 0.29 0.22 0.27 0.22 CD 7 6 0.500 0.500 2 

20/07/2007 07:10 5 0 2 1 2 0.21 0.25 0.18 0.36 SD 3 2 0.540 0.460 CS 

20/07/2007 08:04 0 0 1 0 1 0.25 0.23 0.13 0.39 SD 1 1 0.550 0.450 CS 
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True species: FPW 
 

4Sp French classifier 2Sp French Classifier 

Encounter Time n 
n p 

Class as 
n p 

Class as 
COD C&S FPW STD COD C&S FPW STD CSD FPW CSD FPW 

08/07/2007 15:41 1 1 0 0 0 0.4 0.09 0.3 0.2 CD 1 0 0.67 0.33 CS 

                
True species : STD 

 
4Sp French classifier 2Sp French Classifier 

Encounter Time n 
n p 

Class as 
n p 

Class as 
COD C&S FPW STD COD C&S FPW STD CSD FPW CSD FPW 

06/07/2007 12:01 32 11 6 3 12 0.29 0.2 0.19 0.32 SD 15 17 0.49 0.51 PW 

07/07/2007 08:17 21 9 5 2 5 0.34 0.22 0.18 0.26 CD 15 6 0.53 0.47 CS 

08/07/2007 08:43 3 0 1 0 2 0.24 0.23 0.09 0.44 SD 0 3 0.39 0.61 PW 

11/07/2007 16:38 76 12 7 0 57 0.28 0.16 0.15 0.41 SD 12 64 0.41 0.59 PW 

12/07/2007 11:33 1 1 0 0 0 0.38 0.25 0.06 0.32 CD 1 0 0.67 0.33 CS 

12/07/2007 14:57 1 1 0 0 0 0.44 0.06 0.13 0.37 CD 1 0 0.51 0.49 CS 

13/07/2007 08:04 5 0 0 3 2 0.2 0.12 0.39 0.29 PW 2 3 0.46 0.54 PW 

20/07/2007 07:56 3 0 0 0 3 0.28 0.19 0.17 0.36 SD 1 2 0.5 0.50 2 

20/07/2007 12:38 1 0 0 0 1 0.14 0.36 0.13 0.37 SD 0 1 0.38 0.62 PW 

27/07/2007 08:46 25 13 1 3 8 0.34 0.15 0.19 0.31 CD 17 8 0.55 0.45 CS 
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Table  B-3: Classification of the French encounters, not associated with visual detections, with the 2Sp French classifier and the North Atlantic classifier. n=number 

of sections per encounter in total (n) and per classification groups (nCSD,nFPW etc..). p=classification probability per classification groups 

(pCSD,pFPW...).VisualDet=statute of the visual team during the encounters: On effort=visual team was on effort but they did not detect the animals, Off effort=the 

visual team was Off effort, sonar or electric = description of the sound generating false detections, species name at time=when a species has been observed by the 

visual team close to the encounter time. 

 2Sp French classifier North Atlantic classifier  

Encounter Time n n p Class 

as 

n n p Class 

as 

VisualDet 

CSD FPW CSD FPW BND CSD FPW BND CSD FPW 

08/07/2007 11:34 2 0 2 0.4 0.58 LF 3 0 3 0 0.2 0.8 0 CS Off effort 

08/07/2007 12:37 15 5 10 0.5 0.55 LF 6 0 6 0 0.03 0.97 0 CS Off effort 

10/07/2007 18:03 39 21 18 0.5 0.48 CS         Off effort 

11/07/2007 06:33 245 152 93 0.5 0.47 CS 48 6 42 0 0.11 0.89 0 CS Off effort 

17/07/2007 06:25 3 3 0 0.8 0.25 CS         Off effort 

17/07/2007 07:18 2 2 0 0.6 0.4 CS         Off effort 

17/07/2007 19:17 2 2 0 0.6 0.4 CS         BND 

18/07/2007 04:46 1 0 1 0.5 0.54 LF         Off effort 

19/07/2007 13:06 11 6 5 0.5 0.47 CS 2 0 1 0 0.18 0.45 0.38 CS On effort 

19/07/2007 15:04 3 1 2 0.5 0.49 CS         Off effort 

20/07/2007 04:43 39 23 16 0.5 0.49 CS 7 4 2 0 0.62 0.22 0.16 BD Off effort 

20/07/2007 05:00 3 1 2 0.5 0.5 2         Off effort 

20/07/2007 06:00 1 0 1 0.5 0.55 LF         On effort 

20/07/2007 19:44 3 3 0 0.6 0.36 CS         BND 

21/07/2007 19:07 4 4 0 0.7 0.33 CS         BND/COD 

23/07/2007 06:27 4 4 0 0.7 0.32 CS         COD 

23/07/2007 07:28 5 5 0 0.6 0.42 CS         CS 

23/07/2007 07:45 12 8 4 0.6 0.39 CS 1 0 1 0 0 1 0 CS CS 

23/07/2007 09:08 8 6 2 0.6 0.4 CS 1 0 1 0 0 1 0 CS On effort 

23/07/2007 10:32 1 1 0 0.6 0.45 CS         Off effort 



Appendices 

B-20 

                

 2Sp French classifier North Atlantic classifier  

Encounter Time n n p Class 

as 

n n p Class 

as 

VisualDet 

CSD FPW CSD FPW BND CSD FPW BND CSD FPW 

23/07/2007 10:58 2 1 1 0.5 0.55 LF         Off effort 

23/07/2007 14:07 3 1 2 0.4 0.63 LF         Off effort 

23/07/2007 14:29 2 2 0 0.5 0.46 CS         Off effort 

23/07/2007 14:42 1 0 1 0.4 0.6 LF         Off effort 

24/07/2007 09:13 9 9 0 0.6 0.37 CS 1 0 1 0 0.04 0.95 0 CS Off effort 

Table B-4: Classification of the Spanish encounters (not associated with visual detections) with the 3Sp Spanish classifier and the North Atlantic classifier. 

n=number of sections per encounter in total (n) and per classification groups (nBND,nCSD etc..). p=classification probability per classification groups 

(pBND,pC&S…). VisualDet=statute of the visual team during the encounters: On effort=visual team was on effort but they did not detect the animals, Off 

effort=the visual team was Off effort, sonar or electric = description of the sound generating false detections, species name at (time)=when a species has been 

observed by the visual team close to the encounter time. 

  3Sp Spanish classifier  North Atlantic classifier  

Encounter Time n n p Class as n n p Class as VisualDet 

BND CSD FPW BND CSD FPW BND CSD FPW BND CSD FPW 

30/06/2007 15:37 5 5 0 0 1 0 0 BD         Off effort  

02/07/2007 15:24 2 2 0 0 0.76 0.04 0.2 BD         Off effort 

04/07/2007 05:12 1 0 1 0 0 1 0 CS         Off effort 

04/07/2007 05:29 1 0 1 0 0.1 0.9 0 CS         Off effort 

04/07/2007 07:30 2 0 2 0 0 1 0 CS         On effort 

04/07/2007 12:29 3 0 3 0 0 1 0 CS         On effort 

05/07/2007 06:35 4 0 4 0 0.12 0.88 0 CS 1 0 1 0 0.01 0.99 0 CS On effort 

05/07/2007 07:27 5 4 1 0 0.7 0.2 0.1 BD 1 0 0 0 0 0 1 PL sonar 

05/07/2007 08:01 4 4 0 0 1 0 0 BD         sonar 

05/07/2007 08:31 7 7 0 0 0.93 0.01 0.05 BD 1 0 0 0 0 0 1 PL sonar 
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  3Sp Spanish classifier  North Atlantic classifier  

Encounter Time n n p Class as n n p Class as VisualDet 

BND CSD FPW BND CSD FPW BND CSD FPW BND CSD FPW 

05/07/2007 09:33 1 1 0 0 0.98 0 0.02 BD         sonar 

06/07/2007 07:26 27 1 26 0 0.05 0.95 0 CS 7 0 7 0 0 1 0 CS On effort 

06/07/2007 08:09 2 0 2 0 0.22 0.78 0 CS 1 0 1 0 0 1 0 CS On effort 

06/07/2007 09:30 2 1 1 0 0.28 0.72 0 CS 1 0 1 0 0 1 0 CS CD at 8:27 

06/07/2007 10:47 12 0 12 0 0 1 0 CS 1 0 1 0 0.24 0.76 0 CS On effort 

06/07/2007 11:45 1 1 0 0 0.5 0.5 0 2         On effort 

06/07/2007 12:19 231 8 217 6 0.06 0.9 0.03 CS 39 11 28 0 0.34 0.66 0 CS SD at 12:10 

07/07/2007 12:39 6 0 6 0 0 1 0 CS 1 0 1 0 0 1 0 CS On effort 

08/07/2007 07:21 1 0 1 0 0.07 0.93 0 CS         On effort 

08/07/2007 09:48 1 0 1 0 0 1 0 CS         Off effort 

08/07/2007 10:43 49 0 49 0 0.03 0.97 0 CS 7 0 7 0 0.05 0.95 0 CS On effort 

10/07/2007 06:02 1 0 1 0 0.12 0.8 0.07 CS         On effort 

10/07/2007 10:57 12 0 12 0 0 1 0 CS 2 2 0 0 0.9 0.1 0 BD Off effort 

10/07/2007 11:30 4 2 2 0 0.48 0.52 0 CS 1 0 1 0 0 1 0 CS Off effort 

10/07/2007 11:59 205 17 185 3 0.14 0.85 0.02 CS 36 3 33 0 0.11 0.88 0.01 CS Off effort 

10/07/2007 16:57 370 9 360 1 0.07 0.93 0 CS 68 2 66 0 0.08 0.92 0 CS Off effort 

11/07/2007 05:23 3 0 3 0 0.05 0.95 0 CS         Off effort 

11/07/2007 06:09 4 0 4 0 0.09 0.91 0 CS 1 0 1 0 0 1 0 CS CD at 6:21 

11/07/2007 06:51 3 0 3 0 0.01 0.99 0 CS         On effort 

11/07/2007 07:50 2 0 2 0 0.29 0.71 0 CS         On effort 

11/07/2007 08:11 27 0 27 0 0.02 0.98 0 CS 9 0 9 0 0 1 0 CS On effort 

11/07/2007 09:14 4 0 4 0 0.04 0.96 0 CS 1 0 1 0 0 1 0 CS CD at 9:24 

11/07/2007 15:05 2 0 2 0 0.02 0.98 0 CS         BND/FPW 

11/07/2007 19:40 9 0 9 0 0 1 0 CS 2 0 2 0 0 1 0 CS Off effort 

12/07/2007 17:47 27 1 26 0 0.07 0.93 0 CS 5 0 5 0 0.08 0.92 0 CS On effort 

12/07/2007 19:30 5 0 5 0 0 1 0 CS 1 0 1 0 0 1 0 CS Off effort 

13/07/2007 13:24 4 0 4 0 0 1 0 CS         On effort 
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  3Sp Spanish classifier  North Atlantic classifier  

Encounter Time n n p Class as n n p Class as VisualDet 

BND CSD FPW BND CSD FPW BND CSD FPW BND CSD FPW 

13/07/2007 17:02 9 0 9 0 0.02 0.98 0 CS 2 0 2 0 0 1 0 CS Off effort 

13/07/2007 17:22 8 0 8 0 0 1 0 CS 1 0 1 0 0.16 0.84 0 CS Off effort 

13/07/2007 18:05 189 6 182 1 0.05 0.94 0.01 CS 33 2 31 0 0.05 0.95 0 CS Off effort 

13/07/2007 19:30 12 3 7 2 0.27 0.61 0.12 CS 2 1 0 0 0.5 0.01 0.5 2 Off effort 

14/07/2007 12:14 68 4 60 4 0.09 0.84 0.07 CS 10 0 10 0 0.06 0.94 0 CS Off effort 

14/07/2007 17:17 2 0 2 0 0.01 0.99 0 CS         Off effort 

14/07/2007 18:40 8 0 8 0 0.01 0.99 0 CS 1 0 1 0 0 1 0 CS Off effort 

18/07/2007 06:59 12 0 12 0 0.01 0.98 0.02 CS 2 1 1 0 0.36 0.64 0 CS Off effort 

18/07/2007 07:46 178 0 123 55 0 0.7 0.29 CS 3 0 3 0 0 1 0 CS Electric 

18/07/2007 08:06         11 0 11 0 0 1 0 CS Electric 

18/07/2007 09:21         8 0 8 0 0 1 0 CS Electric 

18/07/2007 19:01 1 0 1 0 0 1 0 CS         Off effort 

20/07/2007 09:57 1 0 1 0 0 1 0 CS         Off effort 

20/07/2007 17:15 1 0 1 0 0 1 0 CS         On effort 

20/07/2007 17:41 2 0 2 0 0 1 0 CS         On effort 

20/07/2007 19:11 1 1 0 0 0.84 0.04 0.13 BD         Off effort 

21/07/2007 09:53 3 0 3 0 0 1 0 CS         Off effort 

21/07/2007 13:59 9 0 9 0 0 1 0 CS 1 0 1 0 0 1 0 CS On effort 

25/07/2007 06:40 1 0 1 0 0 1 0 CS         On effort 

25/07/2007 18:10 1 0 1 0 0.01 0.99 0 CS         Off effort 

26/07/2007 14:44 6 0 6 0 0 1 0 CS 1 0 1 0 0 1 0 CS On effort 

27/07/2007 07:07 8 0 8 0 0.01 0.99 0 CS 1 0 1 0 0 1 0 CS On effort 

27/07/2007 09:39 1 0 1 0 0 1 0 CS 8 0 8 0 0 1 0 CS On effort 

27/07/2007 18:09 57 0 57 0 0 1 0 CS 1 0 1 0 0 1 0 CS Off effort 

28/07/2007 06:06 5 0 5 0 0 1 0 CS 1 0 1 0 0 1 0 CS On effort 

28/07/2007 06:41 11 0 10 1 0.02 0.94 0.05 CS 1 0 1 0 0 1 0 CS On effort 

29/07/2007 19:07 2 0 2 0 0 1 0 CS         Off effort 
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Appendix C. Appendix for chapter 6. 

C.1 Analytic estimate of the bias and variance of the true number of detected calls 

when there is no uncertainty in the values of the confusion matrix. 

The notations used in this Appendix are the same as the notations defined in the main body of 

the text in chapter 6. 

The mean of a multinomially distributed random variable y~Multinom(v,p) is (Royle and 

Dorazio, 2008). 

 {�¦P� = �NP C.1 

 with v being the numbers of trials and p the event probabilities.  

The expected value of a sum is equal to the sum of the expected values 

 { Í� ÎPPx6 Ï = � {�ÎP�Px6  C.2 

In the following, these two expressions (C.1 and C.2) are used to derive the expected values 

of ��. 

The model can be described as  

 {[��] = 	{[�76. n] 
															= C76E[n] 

C.3 

With v being the true number of detections, C being a constant confusion matrix and n the 

observed detections. 

Since n is a sum of several multinomial elements  the latter is given by: 

 

#O = ¦O6 + ¦O_ + ¦OÑ + ¦OÒ 

With ¦.O~���ai#�<P��P , �.I� 

{[#O] = ∑ {*¦OP/ = ∑ �PNOPoPx6oPx6  

          C.4 

The variance and covariance of a multinomial distribution are (Royle and Dorazio 2008): 
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 �&2*¦P/ = �NP�1 − NP�               C.5 

 ���*¦O,¦P/ = −�NONP               C.6 

In general, the variance/covariance of a matrix multiplying an uncorrelated random variable 

Z is: 

 �����Ó� = �. ����Ó�. �:     C.7 

With the model from equation C.3:         

  

������ = 	�����76. n� 

= �76����n��76Ô
 

    C.8 

Again identifying n as the sum of multinomial random variables: 

 ����n�
=

ÕÖ
ÖÖ
× �&2�#O� ⋯ 	⋮ ⋱ 	����#O, #6�⋮����#o, #6�

⋯⋱⋯ 	
����#o, #o� ⋯⋮ ⋱�&2�#P�⋮����#o, #P�

⋯⋱⋯
						

����#6, #o�⋮����#O, #P�⋮�&2�#o� ØÙ
ÙÙ
Ú
 

         C.9 

with  

 �&2�#O� = ∑ �&2*¦OP/ = ∑ �PNOP�1 − NOP�oPx6oPx6      C.10 

and 

  ����nG, nÛ� = ∑ ���*¦OP, ¦ÜP/P = − ∑ �PNOPNÜPP     C.11 
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C.2: Tables 

Table C-1: Analytically derived mean of the expected true number of calls, �[��], and coefficient of 

variation (CV, expressed as a percentage). 

Confusion 

Matrix 

Scenario 1 (equal data) Scenario 2 (unequal data) 

SpA SpB SpC SpD SpA SpB SpC SpD 

a 
3000 3000 3000 3000 8000 3000 950 50 

(0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) 

b 
3000 3000 3000 3000 8000 3000 950 50 

(1.19%) (1.19%) (1.19%) (1.19%) (0.54%) (1.19%) (3.34%) (59.9%) 

c 
3000 3000 3000 3000 8000 3000 950 50 

(1.12%) (1.36%) (1.14%) (1.17%) (0.57%) (1.48%) (2.91%) (43.85%) 

d 
3000 3000 3000 3000 8000 3000 950 50 

(4.10%) (4.10%) (4.10%) (4.10%) (1.75%) (4.10%) (12.13%) (223.51%) 

e 
3000 3000 3000 3000 8000 3000 950 50 

(3.98%) (3.00%) (4.07%) (4.96%) (1.59%) (3.29%) (10.66%) (299.92%) 
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Table C-2:  Simulation result, without uncertainty in the confusion matrix, of the mean of the estimates of 

the true number of calls E[��] , and coefficient of variation (CV, expressed as a percentage). 

 
Scenario 1. Scenario 2. 

SpA SpB SpC SpD SpA SpB SpC SpD 

Scenario 

x.a 

3000 3000 3000 3000 8000 3000 950 50 

(0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) 

Scenario 

x.b 

2999.93 3000.12 3000.01 2999.94 8000.37 2999.47 950.14 50.02 

(1.18%) (1.18%) (1.19%) (1.18%) (0.55%) (1.19%) (3.67%) (59.89%) 

Scenario 

x.c 

3000.69 2998.99 3000.14 3000.18 7999.46 3000.40 949.95 50.19 

(1.12%) (1.36%) (1.15%) (1.17%) (0.56%) (1.49%) (2.94%) (43.7%) 

Scenario 

x.d 

2999.87 3001.49 2998.55 3000.09 8000.74 3000.72 949.64 48.90 

(4.09%) (4.14%) (4.08%) (4.12%) (1.75%) (4.08%) (12.14%) (229.82%) 

Scenario 

x.e 

2997.28 3002.00 3000.30 3000.41 7999.63 3000.88 948.58 50.92 

(4.03%) (2.98%) (4.07%) (4.92%) (1.59%) (3.27%) (10.69%) (295.94%) 
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Table C-3: Simulation result, with a low level of uncertainty in the confusion matrix, of the mean of the 

estimates of the true number of calls �[��], and coefficient of variation (CV, expressed as a percentage). 

 
Scenario 1. Scenario 2. 

SpA SpB SpC SpD SpA SpB SpC SpD 

Sc x.a 
3000 3000 3000 3000 8000 3000 950 50 

(0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) 

Sc x.b 

3000.11 3000.58 2999.38 2999.92 8000.48 2999.24 949.98 50.30 

(6.51%) (6.58%) (6.61%) (6.54%) (4.60%) (8.57%) (24.85%) 
(467.87%

) 

Sc x.c 
2999.72 2999.89 3000.13 3000.25 7999.70 3000.05 950.17 50.07 

(6.68%) (6.54%) (6.57%) (6.61%) (4.60%) (8.58%) (25.19%) (471.00% 

Sc x.d 
3002.12 2996.36 3001.90 2999.35 7998.41 3000.28 950.71 50.60 

(22.90%) (22.77%) 22.25 22.81 14.47 30.81 92.89 1722.71 

Sc x.e 
2999.25 2999.79 2999.06 3001.90 8001.65 2999.24 950.78 48.32 

(21.00%) (17.48%) (21.97%) (28.79%) (13.42%) (19.90%) (105.79%) 2578.82% 
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Table C-4: Simulation result, with a high level of uncertainty in the confusion matrix, of the means of the 

estimates of the true number of calls �[��], and coefficient of variation (CV, expressed as a percentage). 

 
Scenario 1. Scenario 2. 

SpA SpB SpC SpD SpA SpB SpC SpD 

Sc x.a 
3000 3000 3000 3000 8000 3000 950 50 

(0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) 

Sc x.b 
2999.94 3000.14 3000.02 2999.90 8000.04 3000.03 949.97 49.94 

(61.89%) (61.28%) (62.65%) (61.70%) (42.64%) (80.85%) (226.46%) 4485.69% 

Sc x.c 
2999.96 3000.00 3000.06 2999.98 7999.79 3000.11 950.01 50.08 

(62.53%) (60.69%) (65.51%) (62.27%) (44.42%) (83.19%) (236.21%) 4490.55% 

Sc x.d 
3000.26 2999.97 2999.84 2999.94 8000.43 2999.42 949.61 50.53 

(214.59%) 217.66% 212.69% 218.69% 101.44% 214.96% 646.61% 12788.65% 

Sc x.e 
2999.66 2999.97 3000.15 3000.22 8000.13 2999.67 949.83 50.37 

195.02% 164.58% 200.83% 274.79% 93.18% 138.27% 751.36% 16944.28% 
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Appendix D. Appendix for chapter 7 

Table D-1: Values of the parameters � for the Dirichlet prior distributions, for each species, each scenario and each set of priors for p. The parameters � were 

selected such that: the CV of the correct classification probabilities (diagonal element) was equal to 1%, 40% and 77% and the means of the prior distribution were 

equal to the classification probabilities of the scenarios for P1 and P2 whereas for prior P3, the mean distribution was equal to 0.25 for each species. 

Scenarios � Prior P1 Prior P2 Prior P3 

Scx.b α1 1499.15 88.19 88.19 88.19 0.088 0.005 0.005 0.005 1 

α2 88.19 1499.15 88.19 88.19 0.005 0.088 0.005 0.005 1 

α3 88.19 88.19 1499.15 88.19 0.005 0.005 0.088 0.005 1 

α4 88.19 88.19 88.19 1499.15 0.005 0.005 0.005 0.088 1 

Scx.c α1 1499.15 141.10 35.27 17.64 8.8 10-2 4.10-4 01.10-4 5.10-5 1 

α2 176.4 1499.15 52.91 158.73 5.10-4 8.8 10-2 1.5.10-4 4.5.10-4 1 

α3 52.91 88.19 1499.15 88.19 1.510-4 0.005 8.8 10-2 0.005 1 

α4 35.27 35.27 176.4 1499.15 1.10-4 1.10-4 5.10-4 8.8 10-2 1 

Scx.d α1 4799.48 1476.76 1476.76 1476.76 2.48 0.76 0.76 0.76 1 

α2 1476.76 4799.48 1476.76 1476.76 0.76 2.48 0.76 0.76 1 

α3 1476.76 1476.76 4799.48 1476.76 0.76 0.76 2.48 0.76 1 

α4 1476.76 1476.76 1476.76 4799.48 0.76 0.76 0.76 2.48 1 
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Scx.e α1 4799.48 369.2 1846.0 1846.0 2.48 0.19 0.95 0.20 1 

α2 1384.5 4799.48 119.9 461.5 0.71 2.48 0.62 0.24 1 

α3 923 1292.2 4799.48 2122.29 0.48 0.67 2.48 1.1 1 

α4 2122.9 2769.0 1384.5 4799.48 1.1 1.43 0.71 2.48 1 
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Table D-2: Convergence test results for each model A and species. Y indicates that the chains for the 

corresponding species converged. The 0 value in Sc2.d and Sc2.e with prior V3 indicates that the 

posterior distribution for species D had stopped converging and the mean of this posterior distribution 

was  0. Grey cells indicate models that were found to be sensitive to the initial values of the Markov 

chains. 

 

 

Prior 

Species 

V1 

ABCD 

V2 

ABCD 

V3 

ABCD 

E
qu

al
 d

at
a 

Sc1.a YYYY YYYY  

Sc1.b YYYY YYYY  

SC1.c YYYY YYYY  

Sc1.d YYYY YYYY  

Sc1.e YYYY YYYY  

U
ne

qu
al

 d
at

a 

Sc2.a YYYY YYYY YYYY 

Sc2.b YYYY YYYY YYYY 

Sc2.c YYYY YYYY YYYY 

Sc2.d YYYY YYYY YYY0 

Sc2.e YYYY YYYY YYY0 
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Table D-3: Summary of the convergence test results for the Posterior distribution of the parameters v  

and p for all models B. Y indicates that the chains for the corresponding species converged whereas N 

indicates they did not converged.. Sc=Scenario for the different confusion matrices (Scx a to Scx e) and 

for the equal(Sc1.) and unequal dataset Sc2. The grey cells indicate models sensitive to the initial values of 

the Markov chains. 

 Prior on v V1 V2 V3 

 
Prior on p 

Parameters 

P1 

v p 

P2 

v p 

P3 

v p 

P1 

v p 

P2 

v p 

P3 

v p 

P1 

v p 

P2 

v p 

P3 

v p 

E
qu

al
 d

at
a 

Sc1.a       

 

Sc1.b YY YY YY YY YY YY 

Sc1.c YY YY YY YY YY YY 

Sc1.d YY YY YY YY YY YY 

Sc1.e YY YY YY YY YN YN 

U
ne

qu
al

 d
at

a 

Sc2.a          

Sc2.b YY YY YY YY YN YY YY YY YY 

Sc2.c YY YY YY YY YY YY YY YY YY 

Sc2.d YY YY YY YY YY YY YY YY YY 

Sc2.e YY YY YY YY YY YY YY YY YY 
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Figure D-1 : Beanplots of the estimates relative bias as a function of the priors on v and p in the models 

for each species. The bold lines are the mean relative bias for each beanplot whereas the dotted lines are 

the mean of the relative bias across all models for one species. 
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Appendix E. R Codes for models A without uncertainty on the classification rates: 
library(MCMCpack) 

#------------------------------------------------------------------------------------------------------------------------ 

#Equal Data priors and confusion matrices 

#----------------------------------------------------------------------------------------------------------------------- 

#Prior parameters 

prior.n1<- matrix(c(3000,90000,3000,90000,3000,90000,3000,90000),2,4)#variance such as CV =10% 

prior.n2<-matrix(c(3000,1.3e6,3000,1.3e6,3000,1.3e6,3000,1.3e6),2,4)#variance such as CV=40% 

#Confusion matrices 

CM0 <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 

CM1 <- matrix(c(0.85,0.05,0.05,0.05,0.05,0.85,0.05,0.05,0.05,0.05,0.85,0.05,0.05,0.05,0.05,0.85),4,4) 

aCM1<- matrix(c(0.85,0.10,0.03,0.02,0.08,0.85,0.05,0.02,0.02,0.03,0.85,0.10,0.01,0.09,0.05,0.85),4,4) 

CM2 <- matrix(c(0.52,0.16,0.16,0.16,0.16,0.52,0.16,0.16,0.16,0.16,0.52,0.16,0.16,0.16,0.16,0.52),4,4) 

aCM2 <- matrix(c(0.52,0.15,0.10,0.23,0.04,0.52,0.14,0.30,0.20,0.13,0.52,0.15,0.20,0.05,0.23,0.52),4,4 

 

 

#CM0------------------------------------------------------------------------------------------------------------------------------ 

#initial parameters : 

initparamY.SC0.1<- matrix(c(3000,1,1,1,3003,1,3000,1,1,3003,1,1,3000,1,3003,1,1,1,3000,3003),5,4) 

initparamY.SC0.2<- 

matrix(c(900,550,140,350,1940,400,1025,540,825,2790,450,450,2000,200,3100,200,200,200,2700,3300),5,4) 

#models : 

NoD_Sc0_1<- MH.Obs(c(3000,3000,3000,3000),CM0,500,100000,50000,initparamY.SC0.1,prior.n2,prior.n1) 

#CM1------------------------------------------------------------------------------------------------------------------------------ 

#initial parameters : 

initparamY.SC1.1<- 

matrix(c(2550,150,150,150,3000,150,2550,150,150,3000,150,150,2550,150,3000,150,150,150,2550,3000),5,4) 

initparamY.SC1.2<- 

matrix(c(900,550,140,350,1940,400,1025,540,825,2790,450,450,2000,200,3100,200,200,200,2700,3300),5,4) 

#models : 

NoD_Sc1_1<- 

MH.Obs(c(3000,3000,3000,3000),CM1,500,200000,100000,initparamY.SC1.1,initparamY.SC1.2,prior.n2) 

#aCM1------------------------------------------------------------------------------------------------------------------------------ 

#initial parameters : 

initparamY.SC2.1<- 

matrix(c(2550,300,90,60,3000,240,2550,150,60,3000,50,90,2550,310,3000,30,270,150,2550,3000),5,4) 

initparamY.SC2.2<- 

matrix(c(2500,350,150,200,3200,400,1900,300,200,2800,300,100,2600,400,3400,280,320,470,1630,2700),5,4) 

#models : 
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NoD_Sc2_1 <- 

MH.Obs(c(3000,3000,3000,3000),aCM1,500,200000,100000,initparamY.SC2.1,initparamY.SC2.2,prior.n2) 

#CM2------------------------------------------------------------------------------------------------------------------------------ 

#initial parameters : 

initparamY.SC3.1<- 

matrix(c(1560,480,480,480,3000,480,1560,480,480,3000,480,480,1560,480,3000,480,480,480,1560,3000),5,4) 

initparamY.SC3.2<- 

matrix(c(1900,650,40,350,2940,400,1025,540,825,2790,450,450,2000,200,3100,200,200,200,2700,3300),5,4) 

#models : 

NoD_Sc3_1<- 

MH.Obs(c(3000,3000,3000,3000),CM2,500,200000,100000,initparamY.SC3.1,initparamY.SC3.2,prior.n2) 

#aCM2------------------------------------------------------------------------------------------------------------------------------

# initial parameters : 

initparamY.SC4.1<- 

matrix(c(2550,300,90,60,3000,240,2550,150,60,3000,50,90,2550,300,3000,30,270,150,2550,3000),5,4) 

 initparamY.SC4.2<- 

matrix(c(2500,350,150,200,3200,400,1900,300,200,2800,300,100,2600,200,3200,280,320,470,1630,2700),5,4) 

# models : 

NoD_Sc4_1 <- 

MH.Obs(c(3000,3000,3000,3000),aCM2,500,200000,100000,initparamY.SC4.1,initparamY.SC4.2,prior.n2) 

 

#---------------------------------------------------------------------------------------------------- 

#Unequal Data priors and confusion matrices 

#--------------------------------------------------------------------------------------------------- 

#Priors on the true number of detections: 

prior.unBn1<- matrix(c(8000,1.25*10^6,3000,1.8*10^5,950,1.8*10^4,50,51),2,4)#var CV14% as if 10% for 

speccies D var<mean and not possible with negbinomial 

prior.unBn2<- matrix(c(8000,9.2*10^6,3000,1.3*10^6,950,1.31*10^5,50,361),2,4)#var CV40% 

prior.unBn3<- matrix(c(8000,6.4*10^5,3000,3.6*10^5,950,1.31*10^5,50,900),2,4)#CV variable with 

10%,20%,40% and 60% from common to rare species 

prior.unBn4<- matrix(c(8000,6.4*10^5,3000,3.6*10^5,950,1.31*10^5,50,361),2,4)#CV variable with 

10%,20%,40% and 40% from common to rare species 

#CM0------------------------------------------------------------------------------------------------------------------------------ 

#initial parameters : 

initparamY.SC5.1<- matrix(c(8000,1,1,1,8003,1,3000,1,1,3003,1,1,950,1,953,1,1,1,50,53),5,4) 

initparamY.SC5.2<- matrix(c(7800,50,50,100,8000,90,2500,175,135,3000,50,25,800,75,950,8,7,5,30,50),5,4) 

#Model : 

NoD_Sc5_1<- 

MH.Obs(c(8000,3000,950,50),CM0,500,100000,50000,initparamY.SC5.2,initparamY.SC5.1,prior.unBn2) 
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#CM1------------------------------------------------------------------------------------------------------------------------------

#initial parameters : 

initparamY.SC6.1<- 

matrix(c(6800,400,400,400,8000,2550,150,150,150,3000,47,48,807,48,950,2,3,2,43,50),5,4) 

initparamY.SC6.2<- 

matrix(c(6900,580,340,380,8200,400,1025,540,825,2790,50,125,800,75,1050,4,6,9,41,60),5,4) 

#Model : 

NoD_Sc6_1<- 

MH.Obs(c(8000,3000,950,50),CM1,500,100000,50000,initparamY.SC6.2,initparamY.SC6.1,prior.unBn2) 

#aCM1------------------------------------------------------------------------------------------------------------------------------

#initial parameters : 

initparamY.SC7.1<- matrix(c(6800,800,240,160,8000,240,2550,150,60,3000,19,28,808,95,950,1,4,2,43,50),5,4) 

initparamY.SC7.2<- 

matrix(c(6500,900,340,260,8000,210,2500,250,40,3000,30,58,700,162,950,0,10,15,25,50),5,4) 

#Model : 

NoD_Sc7_1<- 

MH.Obs(c(8000,3000,950,50),aCM1,500,100000,50000,initparamY.SC7.2,initparamY.SC7.1,prior.unBn2) 

#CM2------------------------------------------------------------------------------------------------------------------------------

#initial parameters : 

initparamY.SC8.1<- 

matrix(c(4160,1280,1280,1280,8000,480,1560,480,480,3000,152,152,494,152,950,8,8,8,26,50),5,4) 

initparamY.SC8.2<- 

matrix(c(3900,1650,1100,1350,8000,610,1025,540,825,3000,125,50,675,100,950,3,4,1,42,50),5,4) 

#Models : 

NoD_Sc8_1<- 

MH.Obs(c(8000,3000,950,50),CM2,500,100000,50000,initparamY.SC8.2,initparamY.SC8.1,prior.unBn2) 

#aCM2------------------------------------------------------------------------------------------------------------------------------ 

#initial parameters : 

initparamY.SC9.1<- 

matrix(c(4160,1200,800,1840,8000,240,2550,150,60,3000,190,123,494,143,950,10,2,12,26,50),5,4) 

initparamY.SC9.2<- 

matrix(c(4500,1150,950,1400,8000,400,2000,400,200,3000,210,100,500,140,950,4,6,10,30,50),5,4) 

#Models : 

NoD_Sc9_1<- 

MH.Obs(c(8000,3000,950,50),aCM2,500,100000,50000,initparamY.SC9.2,initparamY.SC9.1,prior.unBn2) 

#-------------------------------------------------------------------------------------------------------------------------------------- 

#FUNCTIONS 

#-------------------------------------------------------------------------------------------------------------------------------------- 

#Routine to run Metropolis Hasting model 

MH.Obs <- function(n.simul,#true number of detections for each species used to generate the data used  
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                   CM,#CM use to simulate data 

                   data.its,# number of "bootstrap" 

                   nits,# number of iteration in the MCMC 

                   nburn,#burn in size 

                   init.param1,#initial values for chain1 for parameters y's 

                   init.param2,#initial values for chain 2 for parameters y's 

                   prior.param #prior parameters for y's parameters 

) 

{ 

   library(MCMCpack) 

  library(coda) 

   Allmean <- Allmean2 <- array(NA,c(data.its,4,4))#table to save the mean of the parameters for eahc chains 

  Allsd <- Allsd2<- array(NA,c(data.its,4,4))  

  AllAR <- AllAR2 <- matrix(NA,data.its,ncol(init.param1)) #contains all Acceptance Rate for each bootstrap  

  colnames(Allmean)<-colnames(Allmean2)<-c("Mean","Sd","95Low","95High") 

  printseq<-seq(1,data.its,100) 

   

  if(data.its==1) 

  {data.yest<-matrix(round(rowMeans(data.sim(n.simul,1000,CM)[[1]])),(length(n.simul)),1)} 

  else {data.yest<-data.sim(n.simul,data.its,CM)[[1]]} 

  #data.yest$Y<-round(apply(data.yest$Y,1,mean))#use this when only 1 simulation 

   

  for (z in 1:data.its){ #for eahc simulated dataset 

    Result <- met.hasObs (nits,data.yest[,z],nburn,prior.param, init.param1,CM ) 

    Result2 <- met.hasObs (nits,data.yest[,z],nburn,prior.param, init.param2,CM ) 

    ndraw1 <- mcmc(t(Result[[1]][(length(n.simul)+1),,])) 

    ndraw2 <- mcmc(t(Result2[[1]][(length(n.simul)+1),,])) 

     

    Allmean [z,1:2,] <- t(summary(ndraw1)$statistics[,1:2]) 

    Allmean [z,3:4,] <- t(summary(ndraw1)$quantiles[,c(1,5)]) 

    AllAR[z,] <- Result[[2]] 

     

    Allmean2 [z,1:2,] <- t(summary(ndraw2)$statistics[,1:2]) 

    Allmean2 [z,3:4,] <- t(summary(ndraw2)$quantiles[,c(1,5)]) 

    AllAR2[z,] <- Result2[[2]] 

    #print(date()) 

    print(z) 

    return(list(PostMeans = Allmean,PostMeans2 = Allmean2,  AccepRate = AllAR, AccepRate2 = AllAR2, 

initialValues = init.param1,priorParam = c(prior.param),CM = CM))   

  } 
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} 

 

#Function to simulate the data 

data.sim<-function(n,#number of detection for each species 

                   nits,#how many replicate of the data 

                   CM#confusion matrix 

) 

{ 

  #simulate data (y's) from confusion matrix and true number of data (n's) 

  s = dim(CM)[1] 

  cont.n <- array(0,c(s)) 

  y.unknown <- array(0,c(s,nits,s)) 

  Y <- array(0,c(s,nits)) 

  nest.mean = array(0,c(s))    

  for(j in 1:s){ 

     prob <- CM[1:s,j] 

    y.unknown[,,j]<-rmultinom(nits,n[j],prob) 

  }   

  for (j in 1:s) 

  { for (i in 1:nits) 

    {Y[j,i] <- sum(y.unknown[j,i,1:s]) 

    } 

  }   

  return(list(Y=Y,n=n))   

} 

 

library(msm) 

#Function to run each iteration of the MCMC 

met.hasObs <- function(nits,# number of iteration in the MCMC 

                       simul.y,#simulated true data 

                       nburn,#burn in size 

                       prior.param,#prior parameters for param y's  

                       param,#initila value of one chian for y's parems 

                       CM #p's values from CM used to simulate data 

) { 

  nSp <-ncol(param) 

  Data = simul.y 

  samples <-array(0,c(dim(param),nits)) 

     

  #Calculate likelihood or log(likelihood) 
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  likhood <- CalcObs(param,CM) 

     

  ##measure the acceptance rate 

  AcceRate <- matrix(,nits,nSp)                

   

  #MCMC update  

    for (t in 1:nits){ 

    #Update the parameters in the model using function "updateparam"     

    output <- updateparamObs(nSp,param,CM,Data,likhood,prior.param) 

    AcceRate[t,] <- t(output$accep.rate) 

    param<-t(output$param) 

    likhood <- output$likhood[1]     

    samples [,,t] <- param 

    } 

   

#calculate the mean and standart deviation of the parameters following burn-in: 

  subsample<-samples[,,(nburn+1):nits] 

  AcceptanceRate <- colMeans(AcceRate) 

   

  return(list(subsample,AcceptanceRate))   

} 

 

#function to calculate likelihood 

CalcObs <- function(param,CM){ 

  nsp<-ncol(param) 

  PartialLik <- numeric(nsp) 

  for (sp in 1:nsp){ 

    PartialLik[sp] <- dmultinom(param[1:nsp,sp],param[(nsp+1),sp],CM[,sp],log=TRUE)     

  }  

  likhood <- sum(PartialLik)  

  return(likhood) 

} 

 

#Function to update the parameters in the MCMC 

updateparamObs <-function(nSp,# nbs of species 

                          param,#inital values for the y's param 

                          CM, #p values from CM used to simulate data 

                          Data,#true data 

                          likhood,#likelhood estiamted with ald param 

                          prior.param# prior parameters for the y's param 
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){ 

    oldparam <- matrix(,2,nSp) 

   accep.rate <-matrix(0,nSp,1) 

   

  for (i in 1:nSp){ 

    #conserve old parameters 

    oldparam[1,] <- param[i,] 

    oldparam[2,] <- param[(nSp+1),] 

    #Propose new parameters 

    param[i,]<-(rmultinom(1,Data[i],(param[nSp+1,]*CM[i,])/sum(param[nSp+1,]*CM[i,])))  

    if(sum(param[1:nSp,nSp])==0){param[i,nSp=1]} 

    param[(nSp+1),] <- colSums(param[1:nSp,]) 

     

    #Calculate the new likelihood value for the proposed moved: 

     

    newlikelihood<-CalcObs(param,CM) 

    if(newlikelihood==0 || is.na(newlikelihood)==TRUE){print(param) 

                                                       print("Log lik not valid")} 

    #Include the likelihood term in the acceptance probability 

    num <- newlikelihood + 

npriorObs(nSp,param[(nSp+1),],prior.param)+dmultinom(oldparam[1,],prob=((oldparam[2,]*CM[i,])/sum(oldp

aram[2,]*CM[i,])),log=TRUE) 

    den <- likhood  + 

npriorObs(nSp,oldparam[2,],prior.param)+dmultinom(param[i,],prob=((param[nSp+1,]*CM[i,])/sum(param[nS

p+1,]*CM[i,])),log=TRUE) 

     

    #Acceptance probability: 

    A<-min(1,exp(num-den))#if the difference is positive the min will be 1 so we will accept the move. If the 

difference is negative, the min will be exp(num-den) so the move will be accepted in function of the uniform 

distribution below.    

    accep.rate[i,1]<-A  

     

    # Simulate a random number in [0,1] and accept move with probability A; 

    # else reject move and return parameter value to previous value 

    u <- runif(1) 

    if (u <= A) { likhood <- newlikelihood                               

    } 

    else { param[i,] <- oldparam[1,] 

           param[(nSp+1),] <- oldparam[2,] 

    }    
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  }   

  #set the values to be outputted from the function to be the 

  #set of parameter values and log)likelihood) value: 

  output <- list(param=t(param),likhood=likhood,accep.rate=accep.rate) 

  #output the parameter values: 

  output 

} 

 

#Function to generate prior on the true number of detections 

npriorObs  <- function(nSp,nparam,prior.param){ 

  #neg binomial prior 

  prior <- numeric(nSp) 

  for (m in 1:nSp){ 

    #prior[m] <- log((prior.param[1,m]+nparam[m]-1)param[m]) + nparam[m] * log(1/(prior.param[2,m]+1)) 

    alpha<-(prior.param[1,m])^2/(prior.param[2,m]-prior.param[1,m]) 

    pparam<-alpha/(alpha+prior.param[1,m]) 

    # prior[m] <- log(factorial(alpha+nparam[m]-1))-log(factorial(nparam[m]) + nparam[m] * log(1-pparam)) 

    prior[m]<-dnbinom(nparam[m],size=alpha,mu=prior.param[1,m],log=TRUE) 

  }                                           

  prior = sum(prior) 

  return(prior) 

} 
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Appendix F. R Codes for models B with uncertainty on the classification rates: 
 

library(MCMCpack) 

#----------------EQUAL  DATA------------------------------------------------------------------------------------------------ 

#Prior on true number of detections 

prior.n1<- matrix(c(3000,90000,3000,90000,3000,90000,3000,90000),2,4)#variance such as CV =10% 

prior.n2<-matrix(c(3000,1.3e6,3000,1.3e6,3000,1.3e6,3000,1.3e6),2,4)#variance such as CV=40% 

#Priors on classification rates for each confusion matrices 

CM0 <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 

Sca.prior.p1 <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),4,4) 

initparamP.0<-CM0 #initial parameters 

 

CM1 <- matrix(c(0.85,0.05,0.05,0.05,0.05,0.85,0.05,0.05,0.05,0.05,0.85,0.05,0.05,0.05,0.05,0.85),4,4)  

Scb.prior.p1 <- 

matrix(c(1499.15,88.19,88.19,88.19,88.19,1499.15,88.19,88.19,88.19,88.19,1499.15,88.19,88.19,88.19,88.19,1

499.15),4,4) #CV 1% for Correct classification Rates 

Scb.prior.p2 <- matrix(c(85,5,5,5,5,85,5,5,5,5,85,5,5,5,5,85),4,4)#CV=4% 

Scb.prior.p3 <- 

matrix(c(0.088,0.005,0.005,0.005,0.005,0.088,0.005,0.005,0.005,0.005,0.088,0.005,0.005,0.005,0.005,0.088),4,

4)#CV 40% for correct classification rates 

Scb.prior.p4<- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),4,4) 

initparamP.1<-CM1 

 

aCM1<- matrix(c(0.85,0.10,0.03,0.02,0.08,0.85,0.05,0.02,0.02,0.03,0.85,0.10,0.01,0.09,0.05,0.85),4,4) 

Scc.prior.p1 <- 

matrix(c(1499.15,176.37,52.91,35.27,141.1,1499.15,88.19,35.27,35.27,52.91,1499.15,176.37,17.64,158.73,88.1

9,1499.15),4,4)#CV 1% for Correct classification Rates 

Scc.prior.p2 <- matrix(c(85,10,3,2,8,85,5,2,2,3,85,10,1,9,5,85),4,4)#CV=4% 

Scc.prior.p3 <- 

matrix(c(0.088,0.01,0.003,0.002,0.008,0.088,0.005,0.002,0.002,0.003,0.088,0.01,0.001,0.009,0.005,0.088),4,4)

#CV 40% for correct classification rates 

Scc.prior.p4<- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),4,4) 

initparamP.a1<-aCM1 

 

CM2<-matrix(c(0.52,0.16,0.16,0.16,0.16,0.52,0.16,0.16,0.16,0.16,0.52,0.16,0.16,0.16,0.16,0.52),4,4) 

Scd.prior.p1 <- 

matrix(c(4799.48,1476.76,1476.76,1476.76,1476.76,4799.48,1476.76,1476.76,1476.76,1476.76,4799.48,1476.7

6,1476.76,1476.76,1476.76,4799.48),4,4)#CV 1% for Correct classification Rates 

Scd.prior.p2 <- matrix(c(52,16,16,16,16,52,16,16,16,16,52,16,16,16,16,52),4,4)#CV=4% 
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Scd.prior.p3 <- 

matrix(c(2.48,0.76,0.76,0.76,0.76,2.48,0.76,0.76,0.76,0.76,2.48,0.76,0.76,0.76,0.76,2.48),4,4)#CV 40% for 

correct classification rates 

Scd.prior.p4<- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),4,4) 

initparamP.2<-CM2 

 

aCM2<-matrix(c(0.52,0.15,0.10,0.23,0.04,0.52,0.14,0.30,0.20,0.13,0.52,0.15,0.20,0.05,0.23,0.52),4,4) 

Sce.prior.p1 <- 

matrix(c(4799.48,1385.81,923.88,2124.92,369.55,4799.48,1293.43,2271.63,1847.75,1201.04,4799.48,1385.81,

1847.75,461.94,2124.92,4799.48),4,4)#CV 1% for Correct classification Rates 

Sce.prior.p2 <- matrix(c(52,15,10,23,4,52,14,30,20,13,52,15,20,5,23,52),4,4)#CV=4% 

Sce.prior.p3 <- 

matrix(c(2.48,0.71,0.48,1.09,0.19,2.48,0.67,1.43,0.95,0.62,2.48,0.71,0.95,0.24,1.09,2.48),4,4)#CV 40% for 

correct classification rates 

Sce.prior.p4<- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),4,4) 

initparamP.a2<-aCM2 

 

#initial parameters on the true number of detections 

initparamY.1<- 

matrix(c(2550,150,150,150,3000,150,2550,150,150,3000,150,150,2550,150,3000,150,150,150,2550,3000),5,4) 

initparamY.2<- 

matrix(c(1900,550,140,350,2940,400,1025,540,825,2790,450,450,1700,500,3100,200,200,200,2700,3300),5,4) 

initparamY.3<- 

matrix(c(800,50,40,50,940,1400,1525,540,825,4290,450,450,1700,500,3100,1200,700,700,1700,4300),5,4) 

 

##RUN MODELS and play with different priors##### 

#CM0------------------------------------------------------------------------------------------------------------------------------ 

D_Sc0_nP <- 

MH.ObsDir(c(3000,3000,3000,3000),CM0,300,300000,150000,initparamY.1,initparamP.0,prior.n1,Sca.prior.p1

) 

#CM1------------------------------------------------------------------------------------------------------------------------------ 

D_Sc1_nP1 <- 

MH.ObsDir(c(3000,3000,3000,3000),CM1,300,300000,150000,initparamY.1,initparamP.1,prior.n1,Scb.prior.p

1) 

#aCM1------------------------------------------------------------------------------------------------------------------------------ 

D_Sc2_nP1 <- 

MH.ObsDir(c(3000,3000,3000,3000),aCM1,300,300000,150000,initparamY.1,initparamP.a1,prior.n1,Scc.prior.

p1) 

#CM2------------------------------------------------------------------------------------------------------------------------------ 
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D_Sc3_nP1 <- 

MH.ObsDir(c(3000,3000,3000,3000),CM2,300,300000,150000,initparamY.1,initparamP.2,prior.n1,Scd.prior.p

1) 

##aCM2----------------------------------------------------------------------------------------------------------------------------- 

D_Sc4_nP1 <- 

MH.ObsDir(c(3000,3000,3000,3000),aCM2,300,300000,150000,initparamY.1,initparamP.a2,prior.n1,Sce.prior.

p1) 

#-------------------------------------------------------------------------------------------------------------------------------------- 

#UNBALANCED DATA 

#-------------------------------------------------------------------------------------------------------------------------------------- 

##priors on the true number of detections 

prior.unBn1<- matrix(c(8000,1.25*10^6,3000,1.8*10^5,950,1.8*10^4,50,51),2,4)#var CV14% as if 10% for 

speccies D var<mean and not possible with negbinomial 

prior.unBn2<- matrix(c(8000,9.2*10^6,3000,1.3*10^6,950,1.31*10^5,50,361),2,4)#var CV40% 

prior.unBn3<- matrix(c(8000,6.4*10^5,3000,3.6*10^5,950,1.31*10^5,50,361),2,4)#CV variable with 

10%,20%,40% and 40% from common to rare species 

##Initial parameters on the true number of detections 

initparamY.SC6.1<- 

matrix(c(6800,400,400,400,8000,2550,150,150,150,3000,47,48,807,48,950,2,3,2,43,50),5,4) 

initparamY.SC6.2<- 

matrix(c(6900,580,340,380,8200,400,1025,540,825,2790,50,125,800,75,1050,4,6,9,41,60),5,4) 

 

#CM0------------------------------------------------------------------------------------------------------------------------------- 

D_Sc5_nP <- 

MH.ObsDir(c(8000,3000,950,50),CM0,300,300000,150000,initparamY.SC6.1,initparamP.0,prior.unBn1,Sca.pr

ior.p1) 

#CM1------------------------------------------------------------------------------------------------------------------------------- 

D_Sc6_nP1 <- 

MH.ObsDir(c(8000,3000,950,50),CM1,300,300000,150000,initparamY.SC6.1,initparamP.1,prior.unBn1,Scb.pr

ior.p1) 

#aCM1------------------------------------------------------------------------------------------------------------------------------ 

D_Sc7_nP1 <- 

MH.ObsDir(c(8000,3000,950,50),aCM1,300,300000,150000,initparamY.SC6.1,initparamP.a1,prior.unBn1,Scc.

prior.p1) 

#CM2------------------------------------------------------------------------------------------------------------------------------ 

D_Sc8_nP1 <- 

MH.ObsDir(c(8000,3000,950,50),CM2,300,300000,150000,initparamY.SC6.1,initparamP.2,prior.unBn1,Scd.pr

ior.p1) 

#aCM2------------------------------------------------------------------------------------------------------------------------------ 
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D_Sc9_n1P1 <- 

MH.ObsDir(c(8000,3000,950,50),aCM2,1,300000,295000,initparamY.SC6.1,initparamP.a2,prior.unBn1,Sce.pri

or.p1) 

--------------------------------------------------------------------------------------------------------------------------------------- 

                       FUNCTIONS 

--------------------------------------------------------------------------------------------------------------------------------------- 

#Routine to run Metropolis Hasting model 

MH.ObsDir  <- function(n.simul,#true number of detection for each species used to generate the data used in 

the MH 

                      CM,#CM use to simulate data 

                      data.its,# number of "bootstrap" 

                      nits,# number of iteration in the MCMC 

                      nburn,#burn in size 

                      init.param1,#initial values for chain1 for parameters y's 

                      init.pparam1,#initial values for parameters p's (only 1 chain) 

                      prior.param,#prior parameters for y's parameters 

                      pprior.param# prior parameters for p's parameters 

                      ) 

{ 

   library(MCMCpack) 

   library(coda) 

                          

  Allmean_n <- array(NA,c(data.its,5,4))#table to save the mean of the parameters for eahc chains 

  Allmean_p <- array(NA,c(data.its,5,4))  

  AllAR <-matrix(NA,data.its,length(n.simul)) #contains all Acceptance Rate for each bootstrap  

  colnames(Allmean_n)<-c("Mean","Sd","95Low","Median","95High") 

                                           

  printseq<-seq(1,data.its,5) 

      #simulate Y data 

      if(data.its==1) 

      {data.yest<-matrix(round(rowMeans(data.sim(n.simul,1000,CM)[[1]])),(length(n.simul)),1)} 

      else {data.yest<-data.sim(n.simul,data.its,CM)[[1]]} 

                          

        for (z in 1:data.its){  

        Result <- met.hasObsDir (nits,data.yest[,z],nburn,prior.param ,pprior.param, init.param1,init.pparam1)   

        #Result2 <- met.hasObsDir (nits,data.yest[,z],nburn,prior.param2 ,pprior.param, init.param1,init.pparam1)   

        #Result3 <- met.hasObsDir (nits,data.yest[,z],nburn,prior.param3 ,pprior.param, init.param1,init.pparam1)   

                                        

      #Extract inference from MCMC                      

       ndraw1 <- mcmc(t(Result[[1]][(length(n.simul)+1),,]),thin=100) 
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       #ndraw2 <- mcmc(t(Result2[[1]][(length(n.simul)+1),,]),thin=100) 

       #ndraw3 <- mcmc(t(Result3[[1]][(length(n.simul)+1),,]),thin=100) 

        pdraw1 <- mcmc(t(Result[[2]][1,,]),thin=100) 

        #pdraw2 <- mcmc(t(Result2[[2]][1,,]),thin=100) 

        #pdraw3 <- mcmc(t(Result3[[2]][1,,]),thin=100) 

        Allmean_n [z,1:2,]<- t(summary(ndraw1)$statistics[,1:2]) 

        Allmean_n [z,3:5,]<-t(summary(ndraw1)$quantiles[,c(1,3,5)]) 

        AllAR[z,]<-Result[[3]] 

        Allmean_p [z,1:2,]<- t(summary(pdraw1)$statistics[,1:2]) 

        Allmean_p [z,3:5,]<-t(summary(pdraw1)$quantiles[,c(1,3,5)]) 

         

        if(length(which(printseq==z))==1){ 

          windows() 

          plot(ndraw1,main="n Post (Chain1)") 

          windows() 

          par(mfrow=c(2,4)) 

          autocorr.plot(ndraw1,main="n AutoCorr Param1") 

        } 

          if(z==1 ||z==100 || z==200 || z==250) { 

                print(date()) 

                print(z)} 

                           } 

                   

return(list(PostMeansN = Allmean_n,PostMeansP = Allmean_p,AccepRate = AllAR,priorParam = 

list(prior.param),pprior.param=pprior.param)) 

  } 

                        

#MCMC function                             

met.hasObsDir <- function(nits,# number of iteration in the MCMC 

                          simul.y,#simulated true data 

                          nburn,#burn in size 

                          prior.param,#prior parameters for param y's  

                          pprior.param,#prior parameters of the p's paremeters 

                          param,#initila value of one chian for y's parems 

                          pparam#initial values for the p's param 

                          ) { 

                          

  nSp <-ncol(param) 

  # Data from simulation function 

  Data = simul.y 
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  samples <-array(0,c(dim(param),nits)) 

  psamples <-array(0,c(dim(pparam),nits))                                             

  #Calculate likelihood or log(likelihood) 

  likhood <- CalcObsDir(param,pparam)                         

  #measure the acceptance rate 

  AcceRate <- matrix(,nits,nSp)                                      

  #MCMC update                           

  for (t in 1:nits){ 

  #Update the parameters in the model using function "updateparam" 

  output <- updateparamObsDir(nSp,param,pparam,Data,likhood,prior.param) 

  AcceRate[t,] <- t(output$accep.rate) 

  param<-t(output$param) 

  likhood <- output$likhood[1] 

                            

        for (n in 1:nSp){ 

        pparam[,n] <- rdirichlet(1,c(param[1:nSp,n]+pprior.param[1:nSp,n]))  

                        } 

    samples [,,t] <- param 

    psamples[,,t]<-pparam 

                        }                        

  #calculate the mean and standart deviation of the parameters following burn-in: 

      subsample<-samples[,,seq((nburn+1),nits,4)] 

      psubsample<-psamples[,,seq((nburn+1),nits,4)] 

                                                   

    AcceptanceRate <- colMeans(AcceRate) 

                          

    return(list(subsample,psubsample,AcceptanceRate)) 

                        } 

#Function to update parameters                                        

updateparamObsDir <-function(nSp,# nbs of species 

                             param,#inital values for the y's param 

                             pparam,#initial values for the p's parem 

                             Data,#true data 

                             likhood,#likelhood estiamted with ald param 

                             prior.param# prior parameters for the y's param 

                       ){ 

                          

      oldparam <- matrix(,2,nSp) 

      accep.rate <-matrix(0,nSp,1) 
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          for (i in 1:nSp){ 

            oldparam[1,] <- param[i,] 

            oldparam[2,] <- param[(nSp+1),] 

            param[i,]<-(rmultinom(1,Data[i],(param[nSp+1,]*pparam[i,])/sum(param[nSp+1,]*pparam[i,])))   

            param[(nSp+1),] <- colSums(param[1:nSp,]) 

                                                     

      #Calculate the new likelihood value 0for the proposed moved: 

             newlikelihood <-CalcObsDir(param,pparam) 

            if(is.na(newlikelihood)==TRUE){print(param) 

                                          print(pparam) 

                                print("Log lik is null")} 

                            

      #Include the likelihood term in the acceptance probability 

            num <- newlikelihood + 

npriorObs(nSp,param[(nSp+1),],prior.param)+dmultinom(oldparam[1,],prob=((oldparam[2,]*pparam[i,])/sum(o

ldparam[2,]*pparam[i,])),log=TRUE) 

            den <- likhood  + 

npriorObs(nSp,oldparam[2,],prior.param)+dmultinom(param[i,],prob=((param[nSp+1,]*pparam[i,])/sum(param[

nSp+1,]*pparam[i,])),log=TRUE)        

      #Acceptance probability: 

            A<-min(1,exp(num-den))#if the difference is positive the min will be 1 so we will accept the move. If 

the difference is negative, the min will be exp(num-den) so the move will be accepted in function of the uniform 

distribution below.    

                                                       

      # Simulate a random number in [0,1] and accept move with probability A; 

      # else reject move and return parameter value to previous value 

              u <- runif(1) 

          # print(newlikelihood) 

              if (u <= A) { likhood <- newlikelihood 

                          accep.rate[i,1] <-1 

                           } 

                    else { param[i,] <- oldparam[1,] 

                        param[(nSp+1),] <- oldparam[2,] 

                        accep.rate[i,1] <- 0 

                           } 

                         } 

output <- list(param=t(param),likhood=likhood,accep.rate=accep.rate) 

                       } 
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 #Function to calculate model likelihood                       

CalcObsDir <- function(param,pparam){               

PartialLik <-vector(length=ncol(param))                        

    for (sp in 1:ncol(param)){ 

    PartialLik[sp] <- dmultinom(param[(1:ncol(param)),sp],param[(ncol(param)+1),sp],pparam[,sp],log=TRUE)     

                         } 

  likhood <- sum(PartialLik)  

                       } 

 

 


