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Abstract

In conservation ecology, abundance estimates ama@ortant factor from which management decisiaes a
based. Methods to estimate abundance of cetaceansvisual detections are largely developed, wierea
parallel methods based on passive acoustic datsciie still in their infancy. To estimate the athamce of
cetacean species using acoustic detection dagfiist necessary to correctly identify the spedieat are
detected. The current automatic PAMGUARD WhistlegSifier used to automatically identify whistle
detection of cetacean species is modified with dbgective to facilitate the use of these detectitms
estimate cetacean abundance. Given the varialolitcetacean sounds within and between species,
developing an automated species classifier witB@d correct classification probability for any siescis
unfeasible. However, through the examples of tweecstudies it is shown that large and high quality
datasets with which to develop these automaticsifleass increase the probability of creating reléab
classifiers with low and precise misclassificatpobability.

Given that misclassification is unavoidable, ihecessary to consider the effect of misclassifiet@ations

on the number of observed acoustic calls deteatddttaus on abundance estimates, and to develostrobu
methods to cope with these misclassifications. i@ho both heuristic and Bayesian approaches it is
demonstrated that if misclassification probabisitiare known or estimated precisely, it is possible
estimate the true number of detected calls acdyrated precisely. However, misclassification and
uncertainty increase the variance of the estimdteke true numbers of detections from differepeces

are similar, then a small amount of misclassifaratbetween species and a small amount of uncertaint
the probabilities of misclassification does not éa detrimental effect on the overall variance biad of

the estimate. However, if there is a differencéh@ encounter rate between species calls assoaiatiec
large amount of uncertainty in the probabilities roisclassification, then the variance of the estéma
becomes larger and the bias increases; this innreticreases the variance and the bias of the final
abundance estimate. This study despite not bringiedect results highlights for the first time the
importance of dealing with the problem of specieschassification for cetacean if acoustic deteiare to

be used to estimate abundance of cetaceans.
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Chapter 1: General Introduction

Chapter 1: General Introduction

1.1. Background

The viability of many populations in all taxonongeoups is threatened by anthropogenic
disturbances, such as habitat loss and degradatiangesting (for hunting or gathering for
food, medicine, fuel and material), diseases, &etal mortalities due to interaction with
human activities, pollution and/or climate chan§eHhipper et al., 2008; Stuart et al., 2004).
To protect them, environmental managers and paoliakers have the responsibility to seek
advice and gather information from scientists teate policies and to organise management
actions which will hopefully help the preservati@amnd conservation of these natural
ecosystems. Ecosystems are complex, non-lineairdio@énced by stochasticity, it is thus
difficult for scientists who try to understand theto predict their natural dynamism
accurately. Anthropogenic disturbances and cumesmagement strategies add other levels
of complexity; and given this complexity the outarof scientific analysis and advice
contains numerous sources of uncertainty that enmental managers and policy makers
need to consider when they make decisions. By iigerd the origin of these uncertainties,
characterising them, quantifying them and finallydarstanding their impact on particular
management actions scientists will help decisiokerato make cost-effective decisions to
minimise potential risks to the environment. Foourges of uncertainty are commonly
recognised (Akcakaya et al., 2000; Boyd et al. ®2®Harwood and Stokes, 2003):

Natural uncertainty: This uncertainty is a consequence of the natdemhographic and
environmental stochasticity (Ak¢akaya et al., 2088rwood and Stokes, 2003).

Measurement error: This uncertainty is a consequence of inaccuracyimprecision during
data collection or in the estimation of the paranetf interest. Most of the time only a
sample of the observations of interest is collectéa: choice of the sampling strategy or the
method of statistical inference used to estimate parameter of interest from the
observations generates this uncertainty.

Model error: Models are regularly used to describe complexunahtprocesses, to better
understand their mechanism and/or to predict haw sistem will change in the future.
Given the complexity of natural processes, modats anly be an approximation of reality
and thus they provide an incomplete representatidine reality. Model errors come from the
differences between the model and the reality.\{idad and Stokes, 2003).
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Implementation errors:. These errors are a consequence of errors in thagearent strategy,
for example these could arise from delays in thabéishment of protected areas, inadequate
protection within them, imperfect policy implemetida and/or unpredicted changes which
generate a failure to reach the management obgsctislison, 1996).

Given these uncertainties, risk assessment frankswoave been defined to help in the
decision process. A risk is the probability thahazardous outcome will happen and risk
assessment is the quantification of this probgbiRowe, 1977). If there was no uncertainty
then a scientist would be certain about the outcantethere would be no risk. The role of
conservation scientists is to use robust methodse@sure the probability of an outcome that
will characterise and incorporate all these ungares. The role of environmental managers
and policy makers in view of the uncertain outcaméo decide if the risk is acceptable or
not, and if it is not, to propose new managemematesgies which will minimise the risk and
optimise the balance between social, economic aolbgical objectives.

Complex mathematical models, often called “opetdtimodels, have been developed for
this purpose (Harwood and Stokes, 2003). These Imade a combination of three types of
models: aprocess model, describing the underlying biological process widctors
influencing this process, asbservation model, illustrating the data collection and analysis,
and finally amanagement model, simulating the effect of management decisions len t
biological model (Harwood and Stokes, 2003). Thaséels are used to test the performance
of different management options.

Either a frequentist or a Bayesian statistical #amrk can be used to develop such models.
However the interpretation of the result will b&elient depending on the statistical approach
used. To illustrate these differences, consideroaehM describing a system of interest.
Conventional frequentist statisticians will establwhether the null hypothesidy(: data x
come from the modeW) is rejected or failed to be rejectedaatevel of significance. This
framework does not give information about the dcprabability of obtaining the model
given the datdM|x) (Ellison, 1996). A Bayesian framework, based on Bayes’ theorem
(Bayes and Price, 1763)(Eql-1) estimates this fmtitya

P(M|x) « P(x|M).P(M) (1-1)
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Where P(x|M) is the likelihood function describing the datd(M|x) is the posterior
distribution representing the probability of obiam the model given the data and current
information about the model MP(M)).

The Bayesian framework provides decision-makersabgbility of the outcome. In this
particular example, the outcome is the probabithigt the model describes the system given
the data and prior knowledge of the mobel It is then the responsibility of the decision
makers to interpret this outcome (probability) witha risk assessment framework to
determine if the risk of damage or disturbanceors high, and that potential irreversible
damage will occur to the system. It is the preseoicéhe prior distribution that makes
Bayesian inference a good tool to be used duriagigk assessment procedure. The choice
of the prior distribution variance for a given paeter generates its level of uncertainty.
Running a sensitivity analysis comparing the outearhsimilar models with different prior
variances will help in evaluating the consequeradggrameter uncertainty, and to select the
model generating the lowest acceptable risk. If e®adre sensitive to the prior, then every
effort should be made to collect more informati@anreduce the variance of the priors
(Harwood and Stokes, 2003).

1.2. Abundance estimation a tool for management strategy

1.2.1. Generalities

Article 1.a of the European Habitats Directive def conservation as “a series of measures
required to maintain or restore the natural habitatd the populations of species of wild
fauna and flora at a favourable status”. The notbta favourable status” for a species is
defined in Article 1.i and refers to the idea ahdintaining a population or species on a long-
term basis as a viable component of its naturait&izt, neither reducing nor likely to reduce
their habitat range and ensuring there is andowititinue “to be a sufficiently large habitat to
maintain its population on a long-term basis” (Fgan Union, 1992). Risk assessment
methods such as Population Viability Analysis (@iland Soulé, 1986) used to predict the
probability of extinction within a particular inteal of time, and Management Strategy
Evaluation (Punt, 1992) used in fisheries managérmeavaluate the expected performance
of harvest strategies, are frequently used in aoatien biology to achieve the Habitats
Directive objectives.

Maintaining, and/or restoring a population, predgt a probability of extinction or

measuring the impact of harvesting strategiegegllire knowledge of the size of the current
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population. Conservation strategies consist of mm@ag trends in population size, and
considering if this size is large enough to insilme existence of the population in the long
term.

Ideally to measure the exact population size gbecies it would be necessary to detect all
the animals within the population. In practice dogefor example, the behaviour, the habitat
or the distribution range of species, it is rarpbssible to do so. Thus, abundance must be
estimated from a sample of the population. Oncentlmeber of animals has been counted and
identified, it is then necessary to extrapolates¢heounts to estimate the abundance of the
species. Given that in the majority of the courdsall animals can be detected, an intuitive
estimator of abundancd], assuming the entire habitat range of the spéasissirveyed, is

given by:

N =

| S

wheren is the number of animals detected @hdepresents the estimated probability of
detecting an animal (Buckland et al., 2001). Depsmndn the approaches used to detect and
count individualsP can be estimated by different methods (Borcheed.e2004; Buckland

et al., 2001). One common method used to estirRais the distance sampling theory
described in detail by (Buckland et al., 2001, 2004is theory is based on the principle that
the probability of detecting an animal decreasdh thie distance between the animal and the
observer. This method consists of surveying rangloplaced transects (line transect
sampling) or randomly placed points (point transsampling) (Borchers et al., 2004;
Buckland et al.,, 2001) and counting the number wimals detected along them, and
measuring the distance between the animal anditieedr point. The basic formula to

estimate abundance becomes:

i = ;l_gl (1-2)
with n being the number of detected animalss the surveyed area (area of all the transects),
Ais the total area of interest and finaRyis the mean probability of detecting an animal. In
this formula onlyP, is unknown. In the simplest model, the only faatdtuencing P, is
assumed to be distance from transect or sampld, p&ng(x) being a function linking the
probability of detecting an animal to its distarican the line or point. This basic theory is

based on four key assumptions (Buckland et al. 2001
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1. all animals directly on the transect line or at fzmple point are certain to be
detected (g(0)=1;

2. animals do not move before detection in reactioth&® observer or observation
platform;

3. the distance of a detected animal from the trangesample point is measured
accurately;

4. detections are independent events.

1.2.2. Abundance estimation of cetaceans
Depending on the species for which this abundastmation method is being used, some or
all these assumptions can be violated. With cetaspacies, the four key assumptions of the

distance sampling theory are violated.

Marine mammals and particularly cetaceans spenitheill time in the water and most of the
time underwater (Boyd et al., 2010). They can Isually detected when they come to the
surface to breath. However, during their underwtitee some species are extremely vocal
(Richardson et al., 1995). Odontocete species pdocalisations generally grouped into
three categories: whistles (frequency modulatech@®wvhich vary with time), clicks (very
short broad band sounds), and long pulsed soursis raferred to as burst pulse calls
(Richardson et al 1995). Depending on species thesalisations can be detected up to few
tens of kilometres. Baleen whale species producmds (moans, calls) detectable up to
several hundreds of kilometres (Sirovic et al., 200

Violation of assumption 1

Cetaceans that are on the transect line or atahwlig point may be missed because of
availability bias or perception bias:

- Availability bias happens when the animal is nated&gble. With visual detections,
the situation happens when cetaceans are undewdtex. For acoustic detections,
availability bias occurs if the species does natalise or chooses not to vocalise, for
example sperm whales and beaked whales vocalisntedly during their dive
(Barlow and Taylor, 2005; Johnson et al., 2006) hiampback whale, males vocalise
mainly during breeding season whereas female \s&abry rarely (Vu et al., 2012).

- Perception bias occurs when the animal is detextaltl missed by the observer. With

visual detection this situation happens when thmals are at the surface but are not
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detected by observers. With acoustic detectiorsstyipie of bias occurs when animals
are vocalising but are not detected (acoustic rdiggtection). Acoustically, a missed
detection can arise if the vocalisation is not lerbugh to be detected, or if the
vocalisation is very directional and the animal nst pointing the hydrophone
(Zimmer et al., 2008).
Violation of assumption 2
This assumption is regularly violated as many @dacspecies have been observed avoiding
the survey platform (Au and Perryman, 1982; Barl@@g8) or are attracted to it (Buckland
and Turnock, 1992). These behaviours have consegsefor both visual and acoustic
detections.
Violation of assumption 3
The accuracy of the distance measurement is depeadehe reliability of the method used
to estimate the distance. It will nearly alwaysalpeestimate as it is difficult at sea to have an
exact measurement (Gillespie et al., 2010; Leajpak,£2010).
Violation of assumption 4
This assumption is violated in situation where, égample, species live in groups. Thus, if
one animal is detected then the probability of cletg other individuals within the group
may rise after the first detection because it fBadilt for the observer not to look harder in

the area of the first detection.

1.2.2.a Abundance estimation from visual detections

Nevertheless, distance sampling theory is oneefribst common methods used to estimate
abundance of cetaceans (Boyd et al., 2010). Thiessible because a lot of work has been
carried out to make distance sampling methods taiouthese violations when being used

with visual detections.

Line transect sampling has been combined with captcapture theory to estimate g(0)
despite the perception bias of the observers (Bwosckt al., 2004; Borchers and Samara,
2007; Buckland et al., 2004; Skaug and Schwede®9)19In this approach, different
observers survey the same area from two indepemiiiidrms. Each observer records their
detections, and detections from all observers la@a tompared. Detections that have been
made by both observers are recorded as duplicatescorrespond to recaptures in capture-
recapture theory (e.g Canadas et al., 2005; Hibdyrlammond, 1989; Hiby, 1999).
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Other methods have been developed to deal witlpriblelem of availability bias for visual
detections. For cetaceans this availability biasfien dependent on the surfacing behaviour
of the species. If the animals become availableafolinstant only, then it is necessary to
account for this in the abundance estimation foarhy adding a component modelling the
probability of being available while within a detasle range (Buckland et al., 2004; Skaug
and Schweder, 1999). If the animal is available d@tection for some time and its
availability changes when it is within detectaldage (for example a sperm whale can stay at
the surface for up to 10 minutes before diving geriods of 50 minutes or more) then its
availability is classified as ‘intermittent’ (Buakhd et al., 2004). In this situation the
component of the abundance estimation function tindeavailability should model the
process of becoming available and the durationvaflability. Borchers and Samara (2007)
developed a line transect sampling method usingddeh Markov model to deal with
intermittent availability. Their method modelledettprobability of detecting an animal
available at time, as a function of its probability of being avalkalat timet-1.

Buckland and Turnock (1992) developed a surveyaar to accommodate violations of the
second and third assumptions. Using their appraaai independent platforms, the tracker
and primary platforms, survey different areas ahaefathe vessel to account for responsive
movements by the animals to the approaching supl&yorm. The tracker platform uses
high power binoculars (Big Eyes) to survey an anedl ahead of the vessel with the
objective of detecting animals before they respionithe boat (Buckland and Turnock, 1992;
Hedley et al., 1999). This estimation method deddk the responsive and/or random animal
movement and reduces the dependence between detedtich can rise from un-modelled
variables such as animal surfacing behaviour (He@e00).

The violation of the fourth assumption is not intaot in practice as robust methods have
been developed to deal with it (Buckland et al1®0

1.2.2.b Abundance estimation from passive acoustic detections

1.2.2.b.i Visual versus Acoustic detections

For some species, detecting cetaceans by the stegproduce is often a more efficient
method than detecting them visually, and practcalioffers many advantages over visual
methods. Acoustic detections are independent ofighdyand they are less dependent on
environmental conditions (visual detections areethelent on distance of visibility, sun glare,

sea state) (Palka, 1996). Another advantage idhlatcoustic detection process can be fully
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automated (Baumgartner et al., 2008; Gillespie @hdppell, 2002; Mellinger and Clark,
1997; Mellinger et al., 2011) while automated detecand species recognition form visual
recordings is in its infancy. However, in practité only in the last decade or two, with the
improvement of underwater recording systems andpcen technology that the interest in
using acoustics to detect cetaceans has rapidiyngrBassive acoustic monitoring (PAM),
the recording and analysis of sounds emitted byispeis more widely used than active
acoustics to detect cetaceans. Passive acoustitodsetmay use stationary hydrophones
(autonomous or cabled) (Mellinger and Clark, 198@usa-Lima et al., 2013), which can
record what is happening in a specific area oviemger period of time and at a relatively
low cost, or towed hydrophones, which allow a widpatial coverage and can be used in

association with visual observations.

1.2.2.b.ii Abundance estimation from fixed hydrophones: cue counting

methods
Using acoustics to detect cetaceans is a relativetgnt innovation and consequently
estimating abundance from acoustic detections i#sinnfancy (Marques et al., 2013).
Currently most of the methods used to estimate @dmuce of cetaceans from acoustic
detections are based on distance sampling theay fos visual detections. This method
needs to be modified before it can be properly wsild the acoustic detections. Indeed the
basic formula 1-2 in distance sampling is basethemumber of animais visually detected.
With acoustic detections, one animal can produeeeanaus vocalisations in a short period of
time. Animal abundance can be estimated usoogs, where cues are defined as
instantaneous availability events (Buckland et 2004). Acoustic detections, particularly
vocalisations from cetaceans, can thus easily Wmetkas cues when estimating animal
abundance because they are not produced contiyuolist description of a cue can be
species dependent; for example a blue whaéaénoptera musculus) call is considered a
cue (Moore et al., 1998), whereas for humpback em#llegaptera novaeangliae) a song
unit is considered a cue (Swartz et al., 2003).détiolocating species, one click of a beaked
whale is considered as a cue by Marques et al9j20Bereas Kyhn et al. (2012) used a click
train from a harbour porpoise as a cue. For whigtfipecies a cue could be considered to be
one whistle (Ansmann et al., 2007). However withaceans a cue does not have to be
necessary the vocalisation produced by the aninvisetti et al. (2010) used the acoustic

component at the beginning of a Beaked whale ds/e @ue whereas for example Hiby
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(1985) used the surface behaviour of great whalesstimate their abundances. From these
cues, Hiby (1985) developed a cue counting themignprove the detection of whales during
line transect surveys. This theory is derived frdistance sampling theory and is often
referred to as the cue-counting distance sampliathod (Buckland et al., 2001; Marques et
al., 2011). If only cues are used in the abunda&stenation formula then it is the abundance
of cues, that will be estimated and not the abuoelaf the population. To overcome this
issue several approaches have been proposed fonagsy abundance from acoustic
detections / acoustic cues. These approachesntalltivo broad categories; firstly, those
dealing with acoustic cues from stationary hydrog® and secondly those dealing with

detections from towed hydrophones.

Marques et al (2011) proposed a method based ooaturding theory to estimate the density
of right whales [Eubalaena japonica) in the Bering Sea detected by stationary hydropblon
5 _m(1-4) 1-3)
a.PT+
wheren, was the number of detected right whales call$ hours within the covered area
a., 7 represented the call rate per individuglthe detection probability withie, andfp
corresponded to the estimated proportion of falssitpe detections. In this formula

ny(1-fp)

n,(1— f,) corresponded to the true number of calls deteatet] measured the

number of individuah of the abundance estimation equation 1-2 withalisetections.

The density estimatio (and consequently the abundance estimation) wasndent on the
estimation of three parameterB, (¢ and f;,) which required independent analysis to be
obtained.

To estimate the detection functiénit is necessary to estimate the distance of tlualiging
animal to the hydrophones. In this paper they ws@dedictive acoustic propagation model
from a single hydrophone to estimate the dista@iber authors have used a variety of
physical or mathematical models to estimate théadée of the vocalising animal from a
single hydrophone (McDonald and Fox, 1999) or aoflgydrophones (Harris, 2012; Thode
et al., 2012); these include hyperbolic techniquesyeguide models (Wiggins et al., 2004)
and multipath propagation models (Tiemann et 8042.

Marques et al., (2013), in a review of passive atioudensity estimation methods,

recommended that cue rates should be estimatdakeisurvey area, while the survey was
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being conducted, and over a large and random saofiieimals. Indeed acoustic cue rates
have been shown to vary as a function of time of dRoisseau et al., 2008; Gordon et al.,
2000; Matthews et al., 2001), group size (Ansmanrale 2007), and behaviour. These
sources of variation make cue rate a difficult pagter to estimate accurately.

In equation 1-3fp is a parameter estimating the probability of fapsesitive detections.
Detections are classified as false positives whely have been identified by the detector as
vocalisations made by the species of interest,ibueality these sounds were not. A false
detection is generally generated by the preseneesoiind with characteristics similar to the
sound of interest such that the detector canndérdiftiate themThese sounds could be
either other biological sounds made by anotherispaxr associated with the environment or
it could be anthropogenic sounds such as boat heieetrical noise, sonars, or echo
sounders. If false positive detections are not tiled and removed, the number of

vocalisations from the species of interest willdver-estimated.

1.2.2.b.iii Abundance estimation from towed hydrophones

Abundance of cetaceans estimated from towed hydrogghhas been estimated principally
for sperm whales (Barlow and Taylor, 2005; Borchetrsl., 2007; Lewis et al., 2007) and
porpoise species (Gerrodette et al., 2011; Gileespial., 2005). For both species the method
used was the same as used for visual line tratfseaty and visual detections. These species
have some of the most distinctive vocalisationalbthe cetacean species making them easy
to detect automatically with low false positive eldton rates. Similarly their vocalisation
rates are very predictable.

Sperm whales produce clicks almost continuouslyndutheir dive with a constant inter-click
interval. This regularity makes it is easy for anmal operator to identify individuals in the
same way as a visual operator does with a surfaamignal. This regularity also allows
measurements of the bearing (angle between theplydnes and the vocalising animal) to
be estimated by measuring the time delay betwetsttitens at a pair of hydrophones. The
intersection point of consecutive bearings is thead to estimate the distance between the
animal and the track line (Leaper et al., 2000)wker this distance could be a source of
bias when used in distance sampling theory. Indeleglly the distance needed to have a
robust abundance estimate is the horizontal distgmojected to the surface and not the

perpendicular distance to the transect lines. Taiokhorizontal distance the depth of the

10
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animal needs to be known. In the current litergtarest of the abundance estimation studies
(Leaper et al., 2000; Lewis et al., 2007) usingadwydrophones ignored this factor whereas
some authors demonstrate that in their study tleeage distance between the animal and the
hydrophones is such that the difference in sladtt@rizontal distance is small enough to be
ignored (Barlow and Taylor, 2005).

Porpoises do not produce regular clicks but do wedrequent sequences of clicks (click
trains) (Linnenschmidt et al., 2013). It is genlgraksy for an operator looking at a display of
bearing versus time to identify click trains andughindividuals. However, there are
difficulties in estimating the number of individsahccurately, particularly when there is a
group of several animals. In this case the deteciitt can be a group and a new parameter
needs to be added to Eq. 1-3 specifying the aveyeme size. To the best of my knowledge
no abundance estimate of species other than sphalesvor porpoises have been made using
data from towed hydrophones only. A current studyranke whale is ongoing (Norris et al.,
2010).

1.2.2.b.iv Classifiers

As well as modifying visual distance sampling theastimating abundance from acoustic
detections also requires improvements in the methsed to detect and identify (classify)
sounds. Visual detection and identification is dejsnt on environmental conditions, species
behaviour and observer competence. Although, feliabd consistent automatic detection
systems have been developed for marine mammalisatahs (Baumgartner et al., 2008;
Gillespie and Chappell, 2002; Mellinger and Clatk97; Mellinger et al., 2011), that are
largely unaffected by most environmental conditiotieese detectors lack the ability to
immediately identify the vocalising species. Whsleme species produce easily identifiable
vocalisations, e.g. sperm whale, harbour porptismpback whaleblue whale, the majority
do not, and produce vocalisations that are diffi¢al differentiate (Oswald et al., 2003;
Rendell et al., 1999).

In the early days of passive acoustic detectioecisg were identified by listening and
observing the spectrogram of their recorded so@@tsk et al., 1996; Thomas et al., 1986).
This process is time consuming and only possibkbef observer is very familiar with the
entire vocal repertoire of each species, or ifgbecies has very specific vocal characteristics.

With the improvement of passive acoustic monitorsygtems, it is now common to record

11



Chapter 1: General Introduction

terabytes of acoustic data after only a few wedksaording. With such large data volumes,
manual identification and classification of indiua cues is not practical or feasible. Over
the last two decades classifiers (Gillespie andll&ai2008; Gillespie et al., 2013;
Nanayakkara et al., 2007; Oswald et al., 2007; Ratchl., 2007) have been developed to
automatically identify species from their vocal dderistics. One advantage of these
automatic classifiers is their ability to classgigabytes of data in few hours. On the other
hand, they may not be as accurate as a human operae accuracy of identification is a
species specific problem, and some sounds are diffireult to identify than others, for
example, whistles from pelagic delphenid speciesvaore difficult to identify to species than

blue whale calls.

Among the current classifiers developed it is dassio identify three common stages for the
creation of these classifiers. For each stagerdiftemethods specific to the classifiers can be
used:

1. Featureor variable extraction: For each species to be identified / discriminasedne
physical characteristics are extracted from voatibss recorded concurrently as an
observer was visually identifying the species. élak vocalisations these parameters
can be peak frequency (maximum frequency), cligkgtle, frequency bandwidth
(Gillespie and Caillat, 2008; Soldevilla et al.,03). For whistle vocalisations, peak
frequency, number of inflexion points within the iathe, start and end frequency are
commonly used (Oswald et al., 2003; Rendell et1#99). Parameter extraction can
be done manually (Oswald et al., 2003) or autoralyi¢Gillespie et al., 2013)

2. Satistical selection of the most appropriate classification algorithm: Once these
variables are extracted a statistical method isl usefind the best algorithm which
will identify each species. Some of the most usesthds are linear discriminate
function analysis (Gillespie et al., 2013; Oswatichle, 2003), neural network process
(Mellinger, 2008; Potter and Mellinger, 1993; Thod¢ al., 2012) and tree
classification (Gillespie and Caillat, 2008; Oswatdl., 2003).

3. Efficiency testing: Finally, this algorithm is tested with data whehe species has
previously been reliably identified, to measure aegort the efficiency of the
classifier. When only two species are classifiegs efficiency can be represented by
a curve called Receiver Operating Characterist@GIR(Fawcett, 2006), representing
the false negative versus the false positive ratéisen more than two species are

classified, the accuracy of the classification dam illustrated by the correct
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classification probability of each sound only (&dpie and Caillat, 2008; Roch et al.,
2007; Soldevilla et al., 2008) or it can be expedssn a matrix calledconfusion
matrix. This confusion matrix has the useful advantagexgressing both correct
classification probabilities and misclassificatiprobabilities. In a square confusion
matrix of dimensionn X m, mrepresenting the number of classification grougseh
the number of species to discriminate, and eachmezie of the matrixp; is the
probability of classifying species (column) as species (rows). In particular, the
entries fori=) represent the probabilities of correctly classifyia species (success)
and the off-diagonalsi#j) are probabilities of incorrectly classifying spesj as
speciesi (failures or misclassification) A small pj, V i#, means a low
misclassification probability of specigsis species while a largep;, vV i#, means a
high misclassification probability. On the othembaa small;, V i=j, means a low
correct classification probability of specigsand vice versa for a high;, Vv i=j,

Hence, the confusion matrix is given as

P11 p}f " Pim
c=|pPa ~ Pj - Pim
Pm1 - Pmj Pmm

where };p;; = 1v1 < j <m. The confusion matrix quantifying the misclassifion
between species is a precious tool to be able tasume the false positive detection
probabilities for each species.

Once created a classifier is used to associateewo atoustic detections a species of the

classification group of the classifier.

1.3. Thesis outline

The aim of this PhD is to modify current methodsdiassifying whistle vocalisations and to
develop new methods for estimating the correct remobwhistle vocalisations detected by a
hydrophone, with an objective of using these de&iastto estimate animal abundance.
Several studies have previously estimated abundaincetacean species from clicks or calls
(e.g. Gerrodette et al., 2011; Gillespie et algQ®2Marques et al., 2011, 2009; McDonald and
Fox, 1999), but to the best my knowledge this lagenbeen done using whistles.

13
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Most of the odontocete cetaceans produce whistdsstles are a frequency modulated
signal emitted mainly for communication. These stsuare highly variable within (Rendell

et al., 1999) and between species (Rendell e1999; Steiner, 1981). So the first challenge
in using whistles to estimate abundance is to iflethe species producing the detected
whistles. In the first part of this PhD (chapterto2) whistle classifiers are developed. The
objective of these chapters was not to develo@gether whistle classifier technique, but to
identify those parameters influencing the qualityhe classifier, and to establish a method to
guantify the uncertainty of the classification pabbities due to measurement error. In
chapter 2, the current PAMGUARD Whistle Classifi¢http://www.pamguard.org/)

developed by Gillespie et al. (2013) is modifieddevelop a new method to quantify the
uncertainty of the classification probabilities. dhapters 3 and 4 this modified classifier is
applied to data to identify which features of amustic dataset are important to obtain a
reliable classifier. The datasets in chapters 23ameere compiled from data recorded from
towed hydrophones towed by several small survetfgotas operating around the coast of
Scotland with the specific objective of developiagclassifier to identify the presence of
bottlenose dolphinTursiops truncatus) (a protected species in European waters) in some
potential wind farm sites. The dataset for chagtevas collected from towed hydrophones
during a large scale survey organised to assessripact of bycatch on some cetacean
species with a view of providing recommendationssafe bycatch limits for the common
dolphin Oelphinus delphis) (CODA, 2009). Chapter 5 is a general discussiaurad the

previous three chapters.

From the literature a summary of the vocalisati@yfiency range of all the species classified
within these three chapters are presented in Thldle Papers of data collected from wild
animals and in the North Atlantic and preferablgsel to the British isles were preferred
when possible. When no reference was found witkettaiteria then references from data
collected in other oceans are used. All the refestadies used different type of hydrophones
with the maximum frequency detected specified i tdible. This table highlights the large

overlap of the whistle frequency ranges betweentispe

The nature and the variety of whistles, meansdtrfect classifier will never exist, and that
a confusion matrix of a classifier will always hawesclassification probabilities greater than
zero (non-diagonal elements0). The consequence of such classification proladslis that

the observed number of detections for a spacder classification is the sum of detections
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correctly identified plus detections of other spsanisidentified as speciesSo the observed
number of detections of speciess a biased estimate of the actual number of tetecof
that species and should then not be used directgtimate abundance. So the second part of
this PhD (chapters 6 and 8) proposes three metinalsated on simulated data (chapters 6
and 7) and then applied to real data (chapter 8&stinate the true number of detections for
each species from the observed detections aftssifiation. The principal objective of these
chapters was to investigate the impact of differargclassification probabilities and varying
amounts of uncertainty within the confusion matrog the reliability and precision of
estimated true number of detections. In chaptarabytical and heuristic methods are used to
conduct this investigation whereas a Bayesian fraonieis used in chapter 7. Finally chapter
8 applies these methods to some of the data usgthpters 3 and 4.

Chapter 9 summarised the results of the three elgph a general discussion about the

impact of misclassification and concludes this ihes
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Table 1-1: Whistle frequency ranges for the speciassed in this thesis, with the location of recordigs, the
frequency limit of the recording system and the redrences.

Whistles Recorder
frequency frequency Location References
range (kHz) limit (kHz)
Bottlenose dolphin
7.3-16.2 20 North Atlantic (Steiner, 1981)
Tursiop truncatus
Common dolphin
3.56-23.51 48 British Isles (Ansm;‘ggf)t al.
Delphinus delphis
Striped dolphin 8.1-14.8 22 Tropical East (Oswald et al.,
Senella coeruleoalba Pacific 2003)
Short finned pilot whale
) . (Rendell et al.,
Globicephala 6.32-8.69 15 Caribbean 1999)
macr or hynchus
Long finned pilot whale 4.15-8.86 15 Mediterranean (Rendleggeg;[)al.,
Globicephala melas 2.821-4.72 20 Atlantic (Steiner, 1981)
White beaked dolphin
i (Rasmussen and
Lagenorhynchus 3-35 a4 Iceland Miller, 2002)
albirogtris
White sided dolphin
8.21-12.14 20 Atlantic (Steiner, 1981)
Lagenorhynchus acutus
Risso’s dolphin
6.63-13.41 15 Azores (Re”dleggeg)a"'
Grampus griseus
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1.4. Overview of Bayesian theory

1.4.1. Introduction

The objective of the second part of this thesisoisstimate the true number of whistle
detections for several species from the numberstved whistle detections, an unknown
number of which are misclassified. For a fixed syrperiod, the true number of acoustic
detections is mainly dependent on three parametieesnumber of individuals producing
sounds, the call rate of the species and the datgotobability of the whistle detector. Some
prior knowledge about these different parametersasetimes available from previous
surveys or analysis. Although this prior knowledgan occasionally be very accurate, it is
most of the time very vague. As explained abovseiction 1.1, Bayesian methods provide a
well-adapted framework to analyse the impact ofeutaenty of model parameters on the
precision of the outcome variables. This sectionviples a detailed description of the

principles of Bayesian theory.

1.4.2. Bayes’ theorem

The Bayesian approach was first introduced at thd ef the eighteen century by
mathematicians, such as Bernoulli, Bayes and Laegleienberg, 1992).

Bayesian statistics make inference about a pararfiatenditioned on the observed data
and on some knowledge aba@vhich is assumed to be gained prior to the observaf the
data (Gelman et al., 2004). The data are seerxed &nd the inference @his based on the
posterior distribution,m(8|X), which is the conditional probability of given X. This
posterior distribution comes from the applicatidntiee Bayes’ Theorem (Bayes and Price,
1763).

f(X16)p(6) (1-4)
f&x 7

where f(X|0) is the likelihood (as it is used in classicalgfrentist statistics)p(8)

m(0|X) =

represents the prior distribution afdX) is the function of the data, independent 6f
Because the data are considered as fig€kl) can be considered as constant and Eq 1-4 can

be formulated as (Gelman et al., 2004)

m(0]X) o< f(X160)p(0)
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1.4.3. Elements of Bayesian analysis

1.4.3.a Prior distribution

The prior distributionp(@), represents the initial knowledge that we haveuahibe
parameter of interest, before the data are obseiwethe absence of prior knowledge, an
uninformative or “vague” prior is used. Uninformagipriors are selected such that they have
a suitable large variance (Gelman et al., 2004)hik case, the inference on the paraméter
depends mainly on the data. However, when infomnaaboutd that has been gained
independently of the data (for example, from exgeopinion and/or previous studies) is
available, the prior distribution can be choserhsihat it is ‘informative’_ in other words, a
suitable prior probability distribution is selectdtht expresses the available information as
accurately as possible. The data, via the likekhdonction, will help refine the prior
distribution to obtain the posterior distributidfi.the data are sufficiently informative, the
actual choice of the prior should have little iihce on the posterior distribution that is
derived in the end.

When the posterior distribution is of the same faraf probability distribution as the prior,
then the prior is called eonjugate prior for the likelihood. The Dirichlet distriban is an
example of a conjugate prior for the multinomi&klihood (Gelman et al., 2004). Conjugate
priors are a useful tool in Bayesian analysis ay facilitate the use of a Gibbs sampler (see

section 1.4.3.c.ii).

It is possible to conduct a prior sensitivity arsadyto assess the sensitivity of the outcome of
the Bayesian analysis, e.g. the mean of the postdistribution(s) or some other summary
statistic, with respect to the choice of the pdtribution. A simple prior sensitivity analysis
consists of varying the parameters of the priotrithgtion, for example by systematically
increasing or decreasing its variance. Subsequéehgydifferences observed to the posterior
distribution of the parameter of interest are idtroed by these different variances (King et
al., 2010). Prior sensitivity is not regarded gg@blem in itself, but it may indicate problems
such as parameter redundancy (over-parameterisatitine model, so it is not possible to
estimate all the parameters in the model) or ovedyrictive prior assumptions (King et al.,
2010).
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1.4.3.b Posterior distribution

The posterior distribution incorporates all theommhation about the parameter of interest.
When the model contains more than 2 or 3 paramttergosterior distribution becomes very
complex (King et al., 2010). As a consequence, itiffermation regarding one single
parameter is obtained from the marginal posteristridution of this individual parameter
rather than the joint distribution. The marginasfaior is derived by integrating over the rest
of the parameters (“integrating out”). For examjfle®® = {6, ..., 6, }, the posterior marginal

distribution off, is given by (Gelman et al., 2004):

7(6,]X) = f 7(6]X)d#, ...d6,,.

This integration is often complex and difficult riiot impossible to derive explicitly. The
introduction of the Markov chain Monte Carlo (MCM@jtegration methods (Smith and
Gelfand, 1992) made it possible to obtain an es&noé this marginal posterior distribution

without too much difficulty.

1.4.3.c Bayesian computation: Markov Chain Monte Carlo

MCMC methods are a combination of Markov chain thg@silks et al., 1995) and Monte
Carlo integration (Morgan, 1984). They are basedhenidea of constructing a sequence of
values (a Markov chain) whose distribution convergmevards the posterior distribution, if
the chain is run for long enough and if the cowaisi of aperiodicity and irreducibility are
met (King et al., 2010). The characteristic of Markov chain is that the distribution of a
given value 8¢, depends only on the previous val@g;!. Thus, if there is a sequend¥,
with t = 1,2,3 .., starting at9° then, for each, 8:~T,(8¢|8¢™1), with T, being a transition
distribution that depends on the iteratibnA key element is to define an appropriate
transition distribution such that the Markov chatonverges to a unique stationary
distribution, namely the posterior distributiontbé parametef (Gelman et al., 2004).

Once it has converged to the stationary distrilbytibe sequence of values can be used to
obtain empirical (Monte Carlo) estimates of thetpoer distribution o9 (King et al., 2010).

In this thesis, two types of MCMC algorithms areedisto sample from the posterior
distribution: the Metropolis-Hasting algorithm (Hiags, 1970; Metropolis et al., 1953) and
the Gibbs Sampler (Geman and Geman, 1984).
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1.4.3.c.i The Metropolis-Hasting (MH) algorithm
The MH algorithm involves three main steps:

1. selection of initial parameter valu@$ with t=0. This could be done either from a
starting distributiorp,(6) or from a set of starting values dispersed arcarmiude
approximate of the estimate (Gelman et al., 2004);

2. generation, at iteratioh, of a candidate valu@* via a specified proposal density
distributionq(6* |0* );

3. determination of whether or not the new candidatdses are accepted ag™a+1

element of the chain, through the use of an acneptlunction (8¢, 8°):

m(61x)q(6°16")
"m(6*1x)q(6*16%)

Then either the candidate val@géis accepted with a probability(6t,0") and set

ot*tl = 9*, or it is rejected andt*! = g¢,

a(6%,6%) = min(1 )

Block updates

With the MH algorithm it is possible to update eittone parameter at a time using the single
update Metropolis-Hasting algorithm or to do a rnrpérameter update called a block
parameter update. This last method is often usemhliere is high correlation between some
parameters which can generate slow converging (Knha@l., 2010), although it can be
difficult to specify a suitable multi-dimensionaigposal distribution. Due to the nature of the
Bayesian models developed in this thesis, somenpess are highly correlated and those

parameters are updated in a block.

1.4.3.c.i The Gibbs Sampler
The Gibbs sampler algorithm is a particular case ®iH algorithm where the acceptance
probability is always 1. The proposal distributifor a given parameter is the conditional
posterior distribution of that parameter (King dt, 2010). Gibbs samplers are easily
implemented when conjugate priors are adopted enntledel, as the posterior conditional
distributions with such priors are of standard form
For a vector of parameté = (6,, ...,6,) at a state of the Markov chain iteration, eaét
in turn is sampled from the conditional distributsoas follows (Gelman et al., 2004).

05 ~1(04]0% 4, x),

Whered! ; represents all the componentoexceptd,, at their current valuds
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Chapter 1: General Introduction

1.4.4. Mixing

The proposal distribution is one of the factord tietermine the mixing speed of a chain. If
the candidate parameter value drawn for the prémstibution is too far from the current
values (large step) the acceptance rate of camdiddtie will be low, resulting in a chain that
frequently fails to move and thus poor mixing, iththus take longer to reach the stationary
distribution. On the other hand, if the step betwte current draw and the candidate is too
small, the acceptance rate is going to be highitbwtll take a long time to move over the
parameter space and so for the chain to reachahersry distribution (King et al., 2010).
Observation of time-series trace plots represeritiegparameter values for each iteration are
a good indicator of the mixing speed (Figure 1ALjgrassy” plot is sign of good mixing plot

(Figure 1-1.a) whereas a plot where a “plateau” lmarmbserved (Figure 1-1.b) is a sign of

slow mixing.
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Figure 1-1: Trace plots representing a good (a) and slow (b) mixing of the MCMC chains. These plots

were extracted from (King et al., 2010, p131).

1.4.5. Burn-in and convergence

To be sure that the sample used to obtain infereardbe parameter of interest rises from the
posterior distribution, the chain needs to havechied convergence to the stationary
distribution. In practice this means that obseoraifrom the start of the chain are discarded,
to use only observations once the chain as conggig@ag et al., 2010). This initial part of

the chain discarded is called burn-in period.
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Numerous diagnostic methods have been developedttd convergence is reached (Cowles
and Carlin, 1996). The Brooks-Gelman-Rubin (BGR)rofiks and Gelman, 1998),
convergence diagnostic is one of the most poputar ill be used in this thesis. Their
diagnostic is based on performing an analysis ofmae between different chains starting
from different over-dispersed starting points. THegked at the ratio of the within-chain
over the between-chain variance and defined a tisfufactorR,. If this factor is close to 1
it can be said that the chain has converged (BraoklsGelman, 1998). However a reduction
factor greater than 1.2, means the chains havedféal converge (Gelman et al., 2004). This
diagnostic test only gives an indication if the ich&as converged toward a common
distribution; they do not indicate if they have werged toward the correct stationary

distribution (and indeed no test can do this).

1.4.6. Parameter inferences

Once the chains have converged then it is poss$tblebtain empirical estimate of any
posterior summaries of interest. When data are rg&g from simulation point summary
statistic such as the mean, median, mode can k¥ tseneasure the error between the
posterior point estimate and the expected paranreievalue. But a point estimate by itself
is not very meaningful: information on the uncenrtgiof the point estimate is very important.
In this thesis the coefficient of variation (CV)tlse statistic used to measure the uncertainty
of the point estimate. Coefficient of variation reeees the standard deviation of the posterior

samples relatively to the mean of the samples.
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Part I. Classification
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Chapter 2:  Measuring the variability of an automatic whistle

classifier

2.1. Introduction

Whistles produced by odontocete cetaceans areyhiginlable between and within species.
Comparative analyses of whistle characteristiceehghown that factors such as taxonomy,
morphology and natural selection pressure can gxptame of the variation between species
(Rendell et al., 1999; Steiner, 1981), whereasatian within species is correlated with
population structure, environmental heterogeneitgl/a behaviour (Rendell et al., 1999).
The variability in whistles can be useful to idéntodontocete species as some whistle
features are characteristic to each species.

To identify species by their whistles, whistle sifiers have been developed (chapter 1
2.2.b.iv,Classifier p11). These classifiers are created using datelicch species’ identities
are known (training data) and the performance ef thassifier is presented by ma x

m confusion matrix with each elemepf giving the probability of classifying speci¢sas
speciesi (see chapter 1 p13). Once created, these classified their trained species
categories are subsequently used to identify vésst new acoustic data.

2.1.1. Misclassification

For species living in the same type of environnar/or being closely related to each other,
the confusion matrix is expected to have misclasgdibn probabilities higher than 0 because
the similarity in vocalizations between species esak difficult to tell them correctly apart
(Steiner, 1981). In reality none of the whistle ssifiers developed to date (Datta and
Sturtivant, 2002; Gillespie et al., 2013; Oswald adt, 2007) are able to identify any
odontocete species perfectly. A consequence oflassification is that the observed number

of detections as identified by the classifier facle speciesp = (n4, ..., n;, ..., n,,), contains

(after classification) correctly identified detexts as well as misidentified detections.
Chapters 6 and 7 demonstrate that it is possibéstiinate the true number of detections of
each species from the observations, if it is assuthat there is no uncertainty on the
classification probabilitiegs;. However if the classification probabilities havacartainty
attached to them, chapter 7 of this thesis dematesthat estimating the true number of
detections for each species becomes much moreenbaly and estimates can be very
imprecise, even if the variance of the classifmarobabilities is small.

24



Part | Classification Chapter 2: Measuring thealality of an automatic whistle classifier

The most common method to estimate abundance feconstic data is based on cue counting
theory according to which the number of countedsdugs to be multiplied by some factors
such as cue probabilities, to estimate the numbeandividuals (chapter 1: 2.2.b.ii,8p.
Clearly, if the number of counted cues is biaseshtthe final abundance estimate will be
biased as well. Furthermore, if the number of cedrues contains uncertainty then the final
abundance estimate will also contain this uncemaift is important for management
decisions to know the precision of the abundantenates, so understanding and measuring
the uncertainty of the observed number of cuese(ldetected whistles), and consequently
uncertainty of the true number of cues, is esseniiae uncertainty of the number of
observed cues comes in part from uncertainty in dlassification probabilities of the

classifiers.

2.1.2. Uncertainty in the estimates of classification probability

Given the method used to develop a classifier (@ndap2.2.b.iv pl1l1), the classification
probabilities of the confusion matrix are only esdtes of the true classification probabilities.
Indeed conceptually, the classification probaleitp;; are estimated from two sampling
processes both of which generate uncertainty irestienation of;:

Uncertainty from the training process. The vocalisations used as training data to crémste
classifier are a sample of the entire set of vea#ibns that could be used to train the
classifier — i.e., the vocalisations across all plopulations for which the classifier can be
used to produce an acoustic abundance estimatseQaently, there is uncertainty as to the
performance of the classification algorithm thases from this sampling process.

Uncertainty from the testing process: An additional source of uncertainty arises when
attempting to measure the performance of the fiassiegardless of how it was trained. To
exactly evaluate performance, the classifier wowdde to be tested on the entire set of
possible vocalisations. However this is clearly possible in practice, and a small set of
testing data is used, which can be regarded asyplsdrom the entire set. Hence additional

uncertainty about the classifier performance atfis@a this sampling process.
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2.1.3. PAMGUARD Whistle Classifier

The PAMGAURD whistle classifier (PWC) developed Billespie et al. (2013) is the only
whistle classifier to my knowledge that measures timcertainty in the classification
probabilities. Their classification process is anigad in six main stagestp vi) and tries to
classify groups of whistle contours organised iwtisa rather than individual whistle
contour. A whistle contour being a representationtime and frequency of the whistle
detected (Fig3.1). The details of the process serilged in Gillespie et al., (2013), Figure 2-1
and the following lines give only a summary of thain stages of this process. Kor each
species, detected whistle contours are divideddntall units (called fragments). For each of
this fragment 3 parameters are extracted: the rfregiency; the slope of the frequency
change over time and the curvature of the fragm@ht-or each species a separate random
start is taken within the fragments; 2/3 of thegimeents read consecutively from that point
are used to train the classifier whereas the remeairs used for testingiii) Within the
training and testing dataset, fragments are groupidconsecutive sections, containing a
number of fragments ordered by date and time. Whiedistribution of the three primary
parameters extracted for each fragment overlagellabetween species, they also have a
markedly different shapes (Gillespie et al 2013)erEfor by accumulating these fragments in
section it is possible to build a distribution dfose primary parameters from which a
secondary set of parameters, being the mean, dinéastd deviation and the skew, of each
distribution of the primary parameters is calculatgiving a final of 9 parameters extracted
for each section.i) A Linear Discriminate function Analysis (LDA) usl those 9
parameters is applied to the training data (madseofions from each species); the output of
this method is a linear combination of the secBoparameters.v) Based on this linear
combination, for each section in the test dataglative probability is assigned to each
classification group (each species of the trairdatp) of the classifier such that the sum of
the probabilities across the classification groapone. The classification of the section
corresponds to the classification group with thghbr probability. {i) The outcome of this
classification is compared with the test data regméng the truth and as a result of this
comparison a confusion matri€)is derived.

Gillespie et al. (2013) repeats stageytp (vi) B times. For each repetition a new random
selection of training and testing dataset is gardraAfter theB bootstraps are done, the final
LDA algorithm is calculated using the entire tramidataset (Figure 2-2). It is thus not
possible to derive the confusion matrix from trastlrun. This last run is done to create a

classifier algorithm with the maximum data possible
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i) Contour data for each species divided in fragments

SPj1 | : |
Spj:ml I

ii) Random split of the data in a training and testing dataset

SPj=1 [ Testdata | | Train data |

Spj:”‘l Train data | [Testdata |

i) Organise data in sections
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iv) Linear Discriminate .
) v) Test Classifier
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vi) Result / [T 11
Confusion

Matrix

Figure 2-1: Schematic diagram of the PAMGUARD Whisle classifier training process during the B

bootstraps.

The final confusion matrices shown in Gillespieakf (2013) are each an average overBhe

confusion matrices created and the variability ssineated by measuring the standard
deviation over theB bootstraps of thg;. This estimate of the variability contains several
sources of uncertainty in one measurement: unogythiom the training process, uncertainty
from the testing process and uncertainty from thetéirap method used, which is close to a
moving-block bootstrap method. Ideally when deviigpa classifier one should try to

minimize uncertainty. To do so, the first stagéoisdentify and quantify as many sources of

uncertainty as possible.
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i) Contour data for each species divided in fragments
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Figure 2-2: Last run of the PAMGUARD Whistle classfier training process.

As explained in the description of the PWC, to teeaclassifier one part of the training data
is used to train the classification algorithm ahed second part is used to test this algorithm.
Given that the quantity of uncertainty (from thaiting and testing process) is linked to the
sample size of the data, a trade-off between tbpqgstion of the training data used to train
and test the algorithm needs to be found. A langggrtion of the data used to train the
classifier will decrease the training uncertaintit mcrease the testing uncertainty and vice
versa when a small proportion of the data is ugedrdin the classifier. The optimum
classifier should be obtained when all the trainitaga are only used to train the classifier
algorithm (it is what is done with the PWC durirge tlast run of the PWC process). In this
configuration the testing process uncertainty isiaeed and the training uncertainty is

minimized.

In this chapter, the uncertainty of the traininggass is described using Nonlinear Least
Square models which are used to predict the finaetainty when all the data have been
used for training. To do so a modification of thR&® is proposed that enables us to measure
independently the two sources of uncertainty (tgséind training) generated by the sampling

process.
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2.2. Methods

2.2.1. Data

Whistle contours used in this chapter were extthdig the PAMGUARD Whistle and
Moans detector (Gillespie et al. 2013) from datahef MORL_BOWL project presented in
detail in chapter 3. The MORL_BOWL dataset consgigstewhistle detections from 5 species
(Bottlenose dolphin,Tursiops truncatus, Common dolphinsDelphinus delphis, Risso’s
dolphin, Grampus griseus, White beaked dolphingagenorhynchus albirostris, and Stripped
dolphins,Senella coeruleoalba) recorded along the Scottish coasts. Each acoestarding

was associated with a visual detection confirmhegdpecies identification.

2.2.2. PAMGUARD Whistle Classifier modifications

The PWC was modified such that it was possible teasuare the training variability
independently of the testing variability. In the BVidescribed by Gillespie et al., (2013), the
data are divided in one training and one testingsd. In this improved method, the PWC
was modified to divide the data in one training &nd test datasets (Figure 2-3). Despite this
difference, the classification process was exaittyy same, divided into 6 main stages as
outlined above.

With a=two test datasets per bootstrap replicate it wassiple to measure the variance
between each bootstrap replicate (between variaarudXhe variance within each bootstrap
replicate (within variance). The between compor@ntariance should capture the training
uncertainty generated by the different trainingadaged at each bootstrap replicate whereas
the within component of variance should capture tdeting uncertainty generated by the
different test data used in each bootstrap reglicat

Following the idea that the variance decreases wihensample size increases, three
differently sized subsets of data were used to ttaé classifier: half, a quarter and an eighth
of the sections were used to train the classifieos.each classifieB=100 bootstraps were
run with random start point but with the same prtipa of training data. The output of each
bootstrap was two confusion matric€g, with classification probabilitiegij,a. For each
classifier the between variance of eggb (Vj;) was estimated by using the formula for the

between variance of a standard analysis of varighi®©VA):
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B A.. — _.. 2
var(p;) = vy = szl(glli - Pij)

Finally models were fitted to these between vamanwith the objective of being able to

predict what the between variance be if all thadetre used to train the classifier.

i) Contour data for each species divided in fragments
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Figure 2-3: Training process of the modified PAMGUARD Whistle classifier. Note the testing dataset has

been divided in two so it is possible to measurebetween and within variance.

2.2.3.

2.2.3.a Underlying framework

Models

It was assumed that, within the columns of C, ghdollowed a Dirichlet distribution with

distribution. A Dirichlet distribution (Royle anddpazio, 2008) is a continuous multivariate

distribution with concentration parameters; ¢,

[Ol 1] 1

O(m), Xi (S

myx =1andE[x;] = o—

i=1 i
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Since inC, YL, p;; = 1, this distribution seems a reasonable assumpflonsequently, we
have

B A
Yp=1Dijp _  @ij

E[pl]] = B - T g

Then in theory, the variancg; for eachE|[p;;]should be described by the variance of a

Dirichlet distribution:

a;j(ao — a;j) (2-1)

var(p’\ij) =Vy= ap?(ag + 1)

wherea, = Y1, a;;

For real data, however, the variability was susggebtd be different than for a true Dirichlet
distribution due to the presence of the other ssiaf variability. Hence it was assumed that
Vij was proportional to the expression on the rightchaide of Eq.2-1 To include these
variance factors, two unknown paramet@isand 5, were multiplied and added to the

baseline Dirichlet variance formula:

“ij(“o - “ij)
ao?(ap + 1)

(2-2)

Vii=5B1 + B

Equation 2-2 for the variance suggested that thetioaship between the concentration
parameters (and indirectly thi) and theV; was not linear but quadratic. For this reason
non-linear least square (NLS) models (Bates andtd/Va088) of the form of Eq.2-2 (see
below) were fitted to th®;;. The models were fitted using the ‘nis’ libraryai®Bs and Watts,
1988) implemented in the statistical softwareRRDgvelopment Core Team, 2012).

2.2.3.b Models tested

From this underlying model, three different formistile concentration parameters of the
Dirichlet distribution were tested as a functiontbé cell-wisep;;’'s and the sample size

(number of section for each species used for tig)nio find which form fit best the data and
thus will predict best the variance when all théadare used to train the classifier. The first
form of the concentration parameters (Modell) watected such that there was no

dependency to the sampling size but only on theaaalassification probabilities. For the
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second (Model2 ) and third (Model 3) form, the camtcation parameters were selected such

that they were proportional to the sample size @lag to the classification probability.

Model1: Sample size independent EqQ.2-3
In the simplest case, the concentration paramedsronly dependent on thg: a; = p;.

5,(1 — py; 2-3
p,(2p1)+ﬁ2 (2-3)

Vii=p
Model2: Species sample size dependent EqQ. 2-4
With acoustic data, there are different numberdeatéctions for each species in the training
dataset, resulting in different numbers of secti@hsfor each species, with for some species
a large sample size (large number of training sagtnd for other a very small sample size.
The parameters;;in this model were choosen such as they were ptiopaf to bothp;; and
the sample size per specis a ; = Sip ;.
Thel?ij were then inversely proportional $for each species.

j* (1 =)

7 _p LD (2-4)
Vy=ho s

+ 52

Consequently only 5 classification probabilitiesrev@ssociated with each sample s&e
Due to this small sample size, the result of thel@hditting process has limited validity and

needed to be treated with caution.

Model 3: All species sample size dependent EQ.2.5

In model 2 only 5 classification probabilities (& classifier discriminate 5 species) were
available for each sample size. Being aware thiat dmall humber of data can generate
unreliable results, it was decided to explore wivauld be the consequences of having

concentration parameters dependent on the totabeuwf sections for the 5 species =

Sp;, withS § =%;S; ), being the total number of sections for the &csgs of the classifier.

pi; (1 — D) (2-5)

Vii=p ) + -
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Models comparison

Between these three modelling options, the modil thie smallest AIC (Akaike, 1974) was
selected. Predictions for when all the data werdusvere derived from this model. To
predictV;, the averag@; over the 3 classifiers (from using half, a quaged an eighth of

the original data for training) was used.

2.3. Results

2.3.1. Data description

The total number of sections used in the trainiataset was unequal between species (Table
2-1). The majority of whistle contours in the datame from bottlenose and common
dolphins. The number of sections for both Risso@ @hite beaked dolphin was very small:
e.g., only four and 3 sections respectively whely an eighth of the sections were used to

train the classifiers.

Table 2-1: Number of sectionsS for each species used to train the classifier. Theumber of sections is
dependent on the proportion of the data used to tia the classifier. The first classifier used half ball the
sections, the second a quarter and the third an digh, whereas for the prediction, 100% of the sectits

are used to train the classifier.

S

E’r’;’iﬁi‘?‘rgosg&‘;ons 50% 25% 12.5% 100%
Bottlenose dolphin 422 211 105 844
Common dolphin 595 297 148 1190

Risso’s dolphin 17 8 4 34

White beaked dolphin 15 7 3 30
White sided dolphin 55 27 13 110

TOTAL 1104 550 273 2208

The variance of a Dirichlet distribution followsball shape curve moving from 0 to 1 with a

maximum wherE[p;;| = 0.5 (Figure 2-4). The observed variances when haifater and
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an eight of the data section are used to traircldmesifier followed the same bell curve shape
but with smaller values than the theoretical Diletivariances (Figure 2-4).
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Figure 2-4: Variances of the classification probaliities (V;) for a given classification probabilities pj)
and a training sampling size (S). S is the propomin of the sections used to train the classifier: tiaof the
sections used to train the classifier (black openircles), a quarter of the sections (red triangle) ad an
eighth of the sections (blue cross). Symbolised Wwita black cross are the variances as function of
probabilities obtained from a Dirichlet distributio n directly.

2.3.2. Model selection
Model 3 (variance dependent on the total numbeseofion for all specie$§) was the model
with the smallest AIC and residual sum of squarggTable 2-2). In this model the unknown
parameterf, was not significantly different to zer@x0.05) whereag’; was positively
correlated to th¥j's.

pi;(1—9y)

0.01
S+1 *
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Table 2-2: A AIC, AIC and residual sum of squares for the threemodels

Model AAIC AlC r2
Model 1 18.38 -475.50 7.2x10°3
Model 2 51.63 -442.25 11.1x10°7°
Model 3 0 -493.88 5.6x107

Model 2 (for which the concentration parametersensssociated with the number of sections
for each species within the training dataSgtwas the model exhibiting the worst fit.
With Model3, the predictions of the variances i ttlassifier had been trained with all the

sections available ranged from O (wh&r=0) to 710°.
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Figure 2-5 : Observed data (open symbols) versus guicted (lines) and extrapolation (bold black
triangles) with full dataset. Each colour represerg a sampling size as described in previous figure.

2.3.3. Comparison of the variance with the version of the PWC described in

Gillespie et al. (2013)
Standard deviations were measured from these peedi@riances and they were compared
with the standard deviation measured with the pabiPWC (Table 2-3). The standard
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deviation measured with the modified version of wiestle classifier was smaller than with

the original version; the average standard dewviafiio all the confusion matrices was 3.9%

(x3%), whereas the average standard deviation mesuth the PWC of Gillespie et al.,

(2013), was 8.2% (x9%). Only for three classifioatprobabilities the predicted variance is

slightly larger (for white sided dolphin misclassd as bottlenose dolphins, bottlenose

dolphins misclassified as Risso’s dolphin and whaaked dolphins)

Table 2-3 Estimated standard deviation by the leastquares model 3 if 100% of the data were used to

train the classifier. Values in brackets show the easured standard deviation by the PWC of Gillespiet

al., (2013) when 2/3 of the data are used to traitme classifier. BND=Bottlenose dolphin COD=common
dolphin, RSD =Risso’s dolphin, WBD=white beaked dg@hin and WSD= white sided dolphin

True Species

Standard deviationin %4 BND COD RSD WBD WSD
BND 8.6(26.7) | 5.8(9.6) | 2.3(4.5) | 2.8(6.2) 1.8 (1.4)
COD 7.5(18.0) | 8.2(11.9) 0.0 8.7 (27.0) 5.5(15.1)
RSD 2.5(2.2) 0 2.4 (4.5) 0.0 0.0
WBD 3.3(3.1) 5.5 (5.8) 0.0 8.8 (28.6) 3.4(4.1)
WSD 4.7 (11.1) | 4.6(5.0) 0.0 4.3 (8.8) 6.7 (15.8)

In parallel to the least square method used, a IGksed Additive Model (GAM) was fitted

to the data. These models gave a better fit ofiita however the extrapolation to estimate

what would have been the variance if 100% of th& deere used to train the classifier

appeared not to be realistic. For this reason thyresult of non-linear least square models

is presented here.

2.4. Discussion

With the Model 3 depending on the probabilitiesctassification and the total number of

training sections of the classifier, the predictajrthe data was the best obtained and seemed
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reasonable. This model, selected because of itdlesn®C, tended to homogenise the
variance between species. This homogenisation wesnaequence of the denominatr
(total number of training section) of the modelnfre easily defended model is one where
species with less data in the training data geedratore variability. Model 2 should have
captured this factor, because of the denominattinedfnodel being directly dependent on the
number of training section per species. The worke ¥alue for Model2 than Model3 is
perhaps a consequence of the fact that for thiseintbe predictions were based on a small
number of data. For each sample size only five @at@ per species) were available. In
theory, the model with the best diagnostics foidfitonsidered the 'best' statistically (Model
3 in this case) but biologically, another modelttirs case Model 2) may be preferred. In this
specific case the homogenisation of the varianceigeed by Model 3 will make the final
precision of the estimate of the true number oked#ins less sensitive to the amount of
detections for each species. Consequently thegioacof the true number of detections for
rare species will probably be lower and vice vdiggher for the common species than if

Model 2 was used.

In conclusion, this chapter proposed a new appréatty to measure the training variability
of a whistle classifier. Other solutions may exequiring a statistical approach more robust
to small datasets and dealing with the complexitthe bootstrap method used by the PWC
classifier. The following chapters show the impoda of the quantity and quality of the
training dataset to develop a reliable (low ungetyd and accurate (high correct
classification probability) classifier. Then thecerd part of this thesis will demonstrate how
and why estimates of uncertainty in the performasfca whistle classifier should always be
associated with the estimated confusion matrikef &coustic data are to be used to estimate

abundance of species.
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Chapter 3:  Classification of data from a reliable training dataset

3.1. Introduction

In certain circumstances, for example when vocidisacharacteristics are easy to identify, it
is possible to estimate the abundance of cetaqesnes using only passive acoustic devices.
For example, Marques et al. (201dbtained density estimates of the endangered North
Pacific right whale Eubalaena japonica) in the Bering Sea from fixed passive acoustic
devices only. Martin et al. (2012) were able toineste abundance of minke whales
(Balaenoptera acutorostrata) in Hawaiian waters from 14 bottom-mounted hydropés) and

at present the SAMBAH project aims to improve the management strategy tie
conservation of the rare population of Harbour pa@gs Phocoena phocoena) in the Baltic
Sea using acoustic data collected from a largey afaC-POD hydrophones. Using solely
passive acoustic data from fixed devices to vgargsence and estimate abundance of species
is cost-effective in the long term: once the hydirapes are installed the recordings can be
collected remotely or can be retrieved by a smadltlirom the devices. Fixed hydrophones
allow for large temporal coverage (as hydrophorssstay for months or years in the same
place), but spatial coverage depends on the quaatitl spatial extent of the installed
devices. For this reason, environmental and goventah agencies are interested in passive
acoustic methods to monitor and better understa@gtesence of cetacean species at a local
scale.

This chapter presents the results of a study irchvitiwvas necessary to distinguish bottlenose
dolphin (Tursiops truncatus), a protected species under Annex Il of the EU itd&d
Directive, from other species present at two majibishore wind farm sites in the Moray
Firth, called MORE and BOWL (Map 3-1). While mike whale, right whale, harbour
porpoise have very distinctive vocalisations, feottise dolphins vocalisations are similar to
those of the other species (common dolptd@ighinus delphis), white beaked dolphin
(Lagenorhynchus albirostris), white sided dolphin Lagenorhynchus acutus) and Risso’s
dolphin Grampus griseus)) likely to be found in the same area (chaptealletl.1, p16).

Hence, to be able to differentiate whistles fronttlbnose dolphins accurately from those of

! Static Acoustic Monitoring of the Baltic Sea Haubdorpoise. http://www.sambah.org/
2 Moray Offshore Renewables Ltd
% Beatrice Offshore Windfarm Ltd
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other species it is necessary to develop a reliabistle classifier. A prerequisite to create
such a classifier is the collection of data fromeatly identified species (training data).

This chapter describes the development of two ifiass from the same, high-quality
training dataset. The first classifier differengistbottlenose dolphins from the four other
species, where the latter are pooled into one gtowp classification groups). The second
classifier differentiates all five species (fivassification groups). Then these classifiers were
used to identify species within recordings maddhenwind farm sites, for which no visual

data were collected.

© Ear Locations

Map 3-1: Map of the North East coast of Scotland wih the wind farm sites (in color) and the positionof
the EARs deployment (DO1,E21,E17,E16,A20.A22) andhda delimitation of the Special Area of

Conservation (S.A.C) for bottlenose dolphins.
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3.2. Methods

The classifiers in this chapter were created withh RAMGUARD Whistle Classifier (PWC)
modules Gillespie et al. (2013) with the modificatiexplained in the previous chapter
(chapter 2: 2.2 p29). The classification of newadats done using the PWC module in a
configuration to use the classifier to identifystliiata and not to create a classifier (Table 3-
1).

3.2.1. Creation of the classifiers

When a classifier is created, the ultimate objecisvto have a classifier algorithm as efficient
as possible to discriminate the different speciemterest and to create a confusion matrix
illustrating the accuracy and precision of the sifieey.

The creation of the classifiers with the PWC weradm in several steps (Table 3-1 A))

described in the next sections (3.2.1a to 3.2.1.c).

Table 3-1: Main stages to create a whistle classfiand to apply it on new data using the PWC.

A:Creation of a classifier with PWC B: Classification of unidentified data with PWC

Data: time frequency contours from identifiedata: time frequency contours from unidentified@es
species organised in fragments and sections of optimall

length measured in (A.1)

1. Classify sections
1. Selection of optimal fragment and

section lengths (comparing quality

coefficient,Q)

4. Organise sections in encounters and classify
2. Creation of the confusion matrix: encounters (optional)

2. Classification probabilitiegy; 5. When it is possible, compare classification

3. Variance for eacly; results with prior information

3.2.1.a Identified dataset
The identified data were used to create a classfiiable 3-1 A). It was comprised of

bottlenose dolphins, common dolphins, Risso’s dahwhite beaked and white sided
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dolphins recordings collected by different reseagcbups (Table 3-2) on different small
surveys platforms (sailing boat, small motor boatehg the coast of Scotland (Map 3.2).

Training Data Sources
(O Recording Locations

- «. St Andrews
: Bay

Dol

Map 3-2: Locations of the training dataset.

For all different recordings it was possible tortiy the recorded species with high
confidence due to the proximity of the animal te thsual observers.

The following data sources were used: Recordingallathe species, except for bottlenose
dolphins, were collected from the quiet sailing bofthe HWDT during small scale survey
along the West coast of Scotland (Embling et &11,0. Few additional recordings of Risso’s

dolphins came from the North of Scotland. All retiogs of bottlenose dolphins were

* Hebridean Whale and Dolphin Trust
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collected by scientists of the Sea Mammal Resedrahof St Andrews from a small motor

boat in the North and in the East of Scotland fanjgxts aiming to collect vocalisations to
study social interaction or particularities in vbgation patterns; e.g Janik, 2000; Quick et
al., 2008) (Table 3-2). The sampling rates of #mrdings varied from 48 kHz to 500 kHz.

Table 3-2: Training dataset and the general locatio and sources which collected them.

Species Location Sources
Moray firth St Andrews University
Bottlenose dolphin St Andrews Bay St Andrews University
Shetland St Andrews University
Common dolphin West Coast HWDT
White-beaked dolphin West Coast HWDT
White-sided dolphin West Coast HWDT
Risso’s dolphin West Coast HWDT
P Shetland St Andrews University

The first classifier (called2Sp classifier) classified acoustic detections as “BN(or
Bottlenose dolphins) or OTHER (for the four othpeaies) (Table 3-3). The second classifier
(called 5o classifier) distinguished between all five spedieslassification groups called
“BND”, “COD” (common dolphin), “RSD” (Risso’s dolpgh), "WBD” (white Beaked
dolphins) and “WSD” (white side dolphin).

Table 3-3: Groups of species classified for both adsifiers. 2Sp classifier discriminated Bottlenose

dolphins from all other species pooled, wheredsSpclassifier discriminated between all five species.

Species 2Sp 5Sp
Bottlenose dolphin BND BND
Common dolphin OTHER COD

White-beaked dolphin OTHER WBD
White-sided dolphin OTHER WSD
Risso’s dolphin OTHER RSD

To be comparable and usable by the PWC, all therdews were decimated to 48 kHz. Any
sounds over a defined threshold (8dB) were autaaltidetected using the PAMGUARD
Whistle and Moan detection module (Gillespie et aD13). The output of the detector
created a file for each recording, with the timegirency contours of each sound detected

(Figure 3-1). These contour files were then usatienPWC to train the classifier.
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Flo Detecton Dplay User Diplay  Hobp
13 October 2010 20:45:55 GMT
Microsoft Access Database | purs Map | Whistle Classfier | User Display
ke e 0 [ R FFT (Spoctrogram) Engine B
ikefotoes 0 13 ctober 2010 20:45:55 GHMT seconds 13 ctober 2010 20:46:05 GMT
100
)

Whistle and Moan Detector 0.0
Counts In | minutes ?
Single s
events

1.0 20 3.0 4.0 5.0 6.0 7.0 8.0 9.0

18.0

8

Figure 3-1 Example screen grab showing whistle contours extré&&d from recordings of bottlenose
dolphins using the PAMGUARD Whistle and Moan deteadr module. Frequency (kHz) is on the y-axis
and time (10 seconds) is on the x-axis). The diffemt colours show the contours identified by the WMD
(clicks are also visible above 6 kHz). (SMRU Itd «dl., 2011)

3.2.1.b Selection of the optimal parameters

The PAMGUARD Whistle classifier works by comparipgoperties of a group of whistle
contours and does not look at each contour indallgulndeed, the output of the detector is
rarely a full whistle contour but a part of a whestontour. Often, contours break into
segments because of other transient noises masi@nghistle for a very short period of time
or because whistles are intersecting each otheitasdiifficult for the detector to recognise
the full contour. To homogenise these contourde§ie et al., (2013) divided each contour
into smaller uniformly sized units called fragment4any consecutive (in time) fragments
are then regrouped in sections, from which nineupaters are extracted to run the classifier
(Gillespie et al., 2013; chapter 2). These parameatescribed the properties of each section.
The length of these fragments and sections wereote@ to influence the quality of the
classifier. Indeed, short fragments and sectioress more likely to generate unstable
measurement of parameters. Whereas long fragmemssactions require many more

whistles to obtain a classification result (Gillespt al., 2013).
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When a classifier is created, the effect of fragiveerd section lengths on the classification
probabilities needs to be measured to select thienom lengths. To do so, the whistle
classifier process described in the previous chafftgure 2-3,p30) was applied to the

identified data set, using 80% of the sections &megate the training data (of the
classification process). One hundred bootstrap® wen for each possible combination of
fragment lengths ranging from 26ms to 187ms (edeintdo 5 to 35 bins) and section lengths
ranging from 10 to 60 fragments. To select therpin fragment and section length, a
variable was introduced called quality coefficief@). For each specieg and each

combination of fragments and sections lendth,(Eq. 3-1) measured the quality of the
classifier by subtracting the average correct diaation probability ) over the 100

bootstraps to the average false positives r&des (

Q; = Toe1Tjp _ ZpoiFjp (3-1)
J 100 100

A good classifier is characterised by a high cdrotassification probability and a low false

positive classification probability so the higlt@r the better was the classifier.

3.2.1.c Creation of the confusion matrix

These optimal parameters were used to generat@ndieconfusion matrix of both th2Sp
and5Sp classifiers. The classification probabilities bése final confusion matrices were an
average of 100 bootstraps run with the trainingigedeing 80% of the identified data and
with the optimal fragment and section length.

To estimate the variability of the classificatioropabilities, each classifier were trained with
a training dataset made of 12.5%, 25%, 50% and 8D®he identified data. The nonlinear
Least Squares Model 3 of chapter 2 was used tagbithe@ variance if all the identified data

were used to train the classifier.

3.2.2. C(Classification of unidentified data

Once the optimal parameters were selected the furalof the classification process was
made with 100% of the identified data. This finah igenerated the classifier algorithm. Once
generated, this classifier algorithm was used assify new data. If species identities of the

new data are already known, then comparing thesifilzation result with the reality allows
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the user to confirm the reliability of the classifi However, if species of the new data are
unidentified, then only prior information concergithe classification groups (e.g abundance
or density of the species classified) can be usevaluate the reliability of the classifier.

The classification of unidentified data was donseneral steps (Table 3-1B) using the PWC

module to identify new data.

3.2.2.a Origin of the unidentified data

The unidentified data for this study were recordingllected from five (E16, A20, E17, E21)
autonomous Ecological Acoustic Recorders (EARs, oans et al., 2008) positioned at the
MORL and BOWL sites (Map 3-1) and one (D01) posiéid in-shore within the Moray Firth
Special Area of Conservation (S.A.C), which is of¢he two UK areas of conservation for
bottlenose dolphins (Cheney et al., 2012). The EARsrded broadband sounds at 64 kHz
sample rate discontinuously (30 minutes recordiolipwed by 30 minutes off) for periods
ranging from 1 day to 25 days between July and lazct@010 (Table 3-4).

To be used with theSp and5Fp classifiers the recordings were decimated to 48 kHd
processed with the PAMGUARD whistle and Moan deteptior to the classification.

Table 3-4: Details of EAR deployments from (SMRU i et al., 2011)

Site Site Deployment Date Recovery # Days
E16 MORL 22/09/2010 16/10/2010 24
A20 MORL 25/07/2010 15/08/2010 21
A22 MORL 22/09/2010 23/09/2010 1
E17 BOWL 24/07/2010 11/08/2010 18
E21 BOWL 16/08/2010 09/09/2010 24
D01 Sutors 07/10/2010 01/11/2010 25

3.2.2.b Classification process of the unidentified data
The PWC module used to identify new data workseal time or can process archived data.
The recordings were processed with both the whattector and PWC modules activated.

Each time a sound was detected, the sound frequeamtgurs were divided in fragments of
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the same length as used to create the classifieiselfragments were accumulated in sections
until there was the same number of fragments dkdrsection used to create the classifier.
The 9 parameters used in the PWC algorithm werne ¢lxeracted and the classifier estimated
the probability of the section to be one of thessification groups (chapterl, p26, stage
The observed identification of the section wasdpecies corresponding to the classification
group with the larger probability. Then all thegnaents were cleared and the PWC started
accumulating new fragments. If there was less tinan fragments within 10 minutes of
recording then whatever the number of fragmenthiwithe section, this one was identified
and a new section started when new fragments vegeetgd. With this system some sections

were classified despite not having the optimal neinds fragments within it.

3.2.2.c Organisation of the sections in encounters

Only sections with the optimal length were usedurtalyse the classification result and short
sections were discarded. When animals are passmsg to hydrophones it is usual to get
many whistles detected, as they are often traygitirgroup, prior to a gap without detections
when the animals are too far to be detected. Téig@ of high detections are commonly
calledencounters. By observing the classification result an enceumtill be a period of time
with many sections followed by a gap without sewtioGrouping the sections in encounters
and classifying these encounters allowed to be raocerate and to decrease the chance of
misclassification. The identification of an encamwas the classification group with the
higher average classification probability amongla#i complete sections of the encounter.

In this chapter given that recordings were madeotisnuously every other 30 minutes, an
encounter was defined by a succession of sectighsaess than 30 minutes between each of

them.

3.2.2.d Analysis of the classification results

A manual verification was conducted by going thitougl the encounters to determine
whether the contour classified were from dolphinsvere false positive detections due to
other noises. Classification results were then @egh with data from previous visual
studies.
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3.3. Results

3.3.1. Training dataset

The number of whistle contours per species preddantéhe training is summarised in Table
3-5. Two species, bottlenose and common dolphind hmre data than the others.
Nevertheless, a reasonable amount of data wasableifor the other species that were

included in the classifier.

Table 3-5: Number of whistle contours extracted foreach species in the training data set.

Species Number of whistle contours extracted
Bottlenose dolphin 61934
Common dolphin 69761
White-beaked dolphin 2554
White-sided dolphin 5505
Risso’s dolphin 6358

3.3.2. Selection of the optimal fragment and section length

For both classifiers, the quality coefficigQtincreased with fragment and section length and
it reached a plateau at a fragment length of 25 ¥ih29 s) and a section length off 50

fragments (Figure 3-2,Figure 3-3). These parameters close to the fragment lengths of 30

bins and section of 60 fragments measured in @ikest al. (2013).
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Figure 3-2: Quality coefficientQ of the 2Spclassifier for varying fragment lengths (averagedver section
lengths between 10 and 60 fragments) and varying &®n lengths (averaged over fragment lengths

between 5 and 39 bins).
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Figure 3-3: Quality coefficientQ of the 5Spclassifier for varying fragment lengths (averagedver section
lengths between 10 and 60 fragments) and varying &®n lengths (averaged over fragment lengths

between 5 and 39 bins).
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3.3.3. Training of the classifiers

3.3.3.a 2Sp classifier

The confusion matrix representing the classificatprobabilities of the 2Sp classifier is
shown in Table 3-6. A t.test with an alternativepbhesis that the correct classification
probabilities is not smaller than a random clasatfon (>50%) proved that for both
classification groups the null hypothesis failecbt accepted with a probability lower than
5%. For bottlenose dolphins, detections were ctyretassified at 90.7% whereas ‘Other’
detections were correctly classified at 93.7%. fe&e positive classification probability was
slightly higher for the ‘Other’ group (9.0%) thaorfthe bottlenose dolphin group (6.5%).

Table 3-6: Confusion matrix of the 2Sp classifierThe classification probabilities are the probabiliies
observed when 80% of the training data are used ttrain the classifier. The standard deviation (in %,
within the brackets) is an estimation if 100% of tle data were used to train the classifier. BND=bo#hose
dolphins, Other=all other speciesp being the p-value of a t.test with the alternativéhypothesis being the

true difference in mean is not smaller than by chace.

True Species

Classified as % BND Other False Positive Classifit@ns (%) p
BND 90.7(3.3) | 6.3(3.0) 6.5 <2.10%
Other 9.3(3.3) | 93.7(3.0) 9 <2.10"

3.3.3.b 5Sp classifier

The confusion matrix of the 5SP classifier is showiTable 3-7. A similar t.test to the one
applied on the 2Sp classifier, with a probabilifyoeing classified by chance of 20%, proved
that the correct classification probabilities wesegnificantly greater than a random
classification and for four of the five specieswiais higher than 75%. Risso’s dolphin’s
vocalisations seemed to be very distinctive froroséhof the other species with a correct
classification probability close to 100% and boflajse positive and false negative
classification probability being very low, 1.6% af&b, respectively. Bottlenose dolphin
were still very well identified with a correct ckfication probability slightly smaller than

with the2Sp classifier.
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At the opposite end, white beaked dolphin was tpecies with the smallest correct

classification probability of 59.8%, and classifioa events for this species were

misclassified mostly (35.8%) as those of commoipkiol.

The standard deviation of the correct classificapoobabilities for the five species was low,

close to 10% of the correct classification prokabs. The standard deviations of the

misclassification probabilities were often highatele to the estimated misclassification

probabilities themselves.

Table 3-7: Confusion matrix for the 5Sp classifier.The classification probabilities were the probabities

observed when 80% of the training data were used ttyain the classifier. The standard deviation (in %

within bracket) was an estimation if 100% of the d#a were used to train the classifier. BND=bottlenas

dolphins, COD=common dolphins, RSD=Rissos’ dolphinsWBD=white beaked dolphins, WSD= white

side dolphins.p being the p-value of a t.test with the alternativehypothesis being the true difference in

mean is not smaller than by chance.

True Species

False Positive

ws BND COD RSD WBD WSD p
— Classifications(%)
BND 86.6(7.6) 3.3(6.3) 0.0(6.0) 2.0(303) 0.0(5.8) 5.8 <2.10%°
COD 85(6.9) 77.3(80) 0.0(58) 358(24.2) 18.6(7.6) 44.9 <2.10"
RSD 1.6(6.1) 0.0(5.8) 100(5.9) 0.0(5.8)  0.0(5.8) 1.6 <2.10"
WBD 2.7(6.2) 13.0(7.2) 0.0(58) 59.8(8.7) 4.1(6.4) 24.9 <2.10"
WSD 06(6.00 6.4(6.7) 00(58)  25(63) 77.3(7.9) 11.0 <2.10"
False Negative
13.4 22.7 0.0 40.2 22.7

Classifications
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3.3.3.c Classification of the EARs data with the 2Sp classifier

3.3.3.c.i Analysis of false detections

For all encounters, the spectrogram were inveglihdly eye to determine whether the
encounter was correctly classified as dolphins loettver there had been any false detections
(FD) due to artificial noise. An encounter was sled as FD if only all the contours within
it were re classified as false detections. The nitgjof sounds identified as false detections
were mechanical ‘rubbing’ sounds, potentially assed with a swivel on the mooring of the
EARs deployment. These sounds generated an upswedpnal sound with several
harmonics between 1.5-24KHz. (Figure 3-4).

On the 93 encounters detected from the EARs depatsn 40 were rejected as being false
detections (Appendix A for details). The majoritiythem (80%) were detected at the E16
and A20 sites. Sites E17 and DO1 did not have alsg fdetection and site E16 had only FD,
so it was ignored for the rest of the analysis (&&s8).
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Figure 3-4: Screen capture from PWC of a “rubbing” false detection. Frequency is on the y-axis (0 te}2

kHz) and time (5.58seconds) is on the x-axis. Théfférent colours show the contours generated by the
PAMGAURD whistle detector. (SMRU Itd et al., 2011)
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3.3.3.c.ii Analysis of the classification encounters

The summary of the classification by the 2Sp cfeegss shown in Table 3-8 and in Map 3-3
(see Appendix A, Table A.1 for the full detailstbe classification). With th8Sp classifier,

32 encounters were identified as bottlenose dofpliith as ‘Other’. For the deployments E21
and E17 at the BOWL site, all the encounters natlassified as FD (5) were classified as
‘Other’.

At the MORL site, no detections were observed atAB2 deployment and seven encounters
were classified as ‘Other’ at the A20 site. The Edéployment at DO1 site was the only site

with encounters (32) classified as BND, nine weassified as ‘Other’.
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Map 3-3 : Results of the classification of the EARdeployment using the 2Sp whistle classifier. Eadbar
represents the numbers of encounters classified abottlenose dolphins (BND) (white); ‘other’ dolphirs

species (OTHER, light grey); or as false detectiofD, dark grey).

3.3.3.d Classification of the EARs data according to the 5Sp classifier

The four EARs deployments (E21, E17, A20, DO1)vidgrich some encounters have been
classified as BND or ‘Other’ by the 2Sp classifiegre subsequently classified using the 5Sp
classifier. The summary of the classification resué show in Table 3-8 and Map 3-4, and
the full detail are in the Appendix A, Table A.2orRhe deployment at the wind farm sites

(A20, E17, E21) no encounters were classified aB BINd events classified as ‘Other’(12 in

total) were classified as COD (11) and WBD (1) peedively. As with the2Sp classifier the
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encounters of the DO1 deployment were mostly diassas BND. One encounter classified
as BND by the2Sp classifier was classified as RSD by &f# classifier. Three encounters
classified as ‘Other’ by th2S classifier were now classified as BND by &fg classifier.
The remaining ‘Other’ encounters were classifie€@b, RSD and WBD .

Table 3-8: Comparison of the EARs recording clasdifation by the 2Sp and 5Sp classifier. Only EARs

deployments with dolphins encounters have been pressed with the 5Sp classifier.

2Spclassifier 5Spclassifier
Site No. Nbs of FD | BND OTHER | BND COD RSD WBD WSD
Encounters
E16 19 19 0 0 0 0 0 0 0
A20 20 13 0 7 0 7 0 0 0
A22 0 0 0 0 0 0 0 0 0
E17 4 0 0 4 0 4 0 0 0
E21 9 8 0 1 0 0 0 1 0
DO1 41 0 32 9 34 3 2 2 0
TOTAL 93 40 35 21 34 14 2 3 0
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Map 3-4: Results of the classification of the EARdeployment using the 5Sp whistle classifier. Eachab

represents the numbers of encounters classified abkottlenose dolphins (BND) (white); ‘other’ dolphirs

species (OTHER, light grey); false detection (FD,atk grey); common dolphins (COD); Risso’s dolphins
(RSD); white beaked dolphins (WBD); white sided dghins (WSD).

3.4. Discussion

Regular visual aerial surveys have been conductede inner and outer Moray Firth since
2004. During these surveys common dolphins, whitgkbd dolphins and Risso’s dolphins
were regularly sighted at the wind farm sites (Mofffshore Renewables Itd, 2010) In
contrast, in the S.A.C area (Map 3-1), the larggonty of visual detections were of
bottlenose dolphins, with very few reports of sighs of common dolphins and white beaked
dolphins. The classification result supported thésdings, at least during the sampling
period of the study (July-October). None of theefkARs deployment within the wind farm
areas recorded whistles encounters that couldtbbuted to bottlenose dolphins. However,
encounters were classified as common dolphins,oRistolphins or white beaked dolphins
by the5p classifier which is consistent with the visualvay data. The EAR deployment
within the S.A.C was the deployment with most & thetections (41% of all the encounters)

54



Part | Classification Chapter 3: Classificatiordata from a reliable training dataset

and the only deployment with detections of bottendolphins. Seventy eight per cent (78
%) of these detections were classified as bottiendslphins. The classification results
estimated that three (7.3%) encounters of commdphdoand two (4.8%) of white beaked
dolphin occurred in a 25 days period of time. Etfewugh it is possible to observe common
dolphin and white beaked dolphins within this afe@ray Offshore Renewables Itd, 2010),
these encounters should be rare. Furthermor&3helassifier predicted that 8.5% and 2.8%
of bottlenose dolphin encounters should be misifledsas common and white beaked
dolphin respectively. Hence, it is probable tha 3(7.3%) encounters classified as common
dolphin and the 2 (4.8%) of white beaked dolphinaemters were misclassifications by the
5 classifier.

Rissos’ dolphins have never been observed in theCS.so these classifications were
probably the result of misclassification by thessifier. The5Sp classifier predicted that on
average 1.6% (sd=6.1) of the classification eveors bottlenose dolphins should be
misclassified as Rissos’ dolphin. In the DO1 deplent the Risso’s encounter represented
4.8% of all the encounters that is within the stadd deviation of the expected
misclassification probability.

The five species classified in this study havergdaverlap in the frequency range of their
sounds (chapterl tablel.1) given that one thirth@fwhistle classifier parameters depends on
the mean frequency, it is difficult to find an atglbm which will discriminate these species
better using the mean frequency parameter. Incrgaie amount of training data may
improve the classifier by reducing the misclasaiien probabilities.

In this study the main objective was only to detiet presence of the bottlenose dolphins.
Given the result and the clear difference in numlaéroccurrence of classification events of
bottlenose dolphins between the wind farm site tedS.A.C site, we can be confident that
bottlenose dolphins were not frequent at the MORd BOWL sites, at least between July
and October 2010.

It is impossible to make a more accurate stateroerihe presence or absence of bottlenose
dolphins in the area. Some missed-detections afgetexpected due to the fact that the
recordings are not continuous (30 minutes of raogrdollowed by 30 min off) and because
of whistle rates being low or quiet whistles noaaleing the detection threshold. Another
important source of misclassification and/or misdetection is the presence of high ambient
noise. Depending on its frequency range, ambiersencan mask parts of or the totality of

the signal of interest. The whistle detector ismthet able to detect the whistles themselves.
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For three of the five deployments at the wind faites, on average 91.3% of the encounters
were false detections, and so irrelevant for thessification, because of the mooring
structures (e.g. swivels, loose chains etc..). With 25 classifier, all of these false
detections were misclassified as bottlenose dofphivhereas with th&Jp classifier they
were mainly classified as Risso’s dolphins. In ttese of this study, a control for
misclassifications caused by noise was possiblerm of a manual operator analysing all the
classification events. However, for a bigger data during real time classification, this
may not be feasible. Nevertheless, it may stilbbssible to re-analyse a sample of the data
manually to detect any recurrent noise generatirsglassifications and to set up some filters
to remove these signals if they are outside thguieacy range of the species of interest. For
common noise sounds the classifier could be traméu this noise incorporated as an extra

species.

Because this project focused on coastal speciegadtrelatively easy to build the training
dataset of good/high quality based on local coastaleys. This is not always possible.
Next chapter illustrates one possible way of dgvelp a similar automatic classifier from

acoustic data collected during a large scale oftskarvey.
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Chapter 4:  Classification of data from a less reliable training

dataset

4.1. Introduction

Large scale cetaceans surveys such as the NoghttlSightings Surveys (NASS) (Lockyer
and Pike, 2009), the Southern Ocean Whale and EmysyResearch Programme (SOWER)
(Ensor et al., 2010) or the Small Cetaceans inEilm®pean Atlantic and North Sea survey
(SCAN's), (SCANS-II, 2008), are encouraged by goweental and non-governmental
agencies to estimate abundance of species andtdot ddanges in the distribution of the
species. The information collected during thesevestgs are used to make management
decisions.

These surveys often use a standardised surveycptoaoross several vessels and a large
geographic area (Ensor et al., 2008; SCANS-II, 2088d both visual and acoustic detection
systems are commonly used to detect marine mamifalbe able to use the acoustic data,
reliable classifier need to be developed to idgritie species detected. As explained in the
previous two chapters the classifier performancdependent on the training dataset. An
ideal training data set would consist of acoustordings made in the presence of visually
identified species. These data could have beeratell in a previous survey (as in chapter 3)
or during the survey itself. Where the degree thispecies variation in whistles is high, the
classifier performs better if trained with dataleoted in the same area as the survey. The
offshore location, cost and geographic scale ofes@urveys often make it difficult and
costly to organise pre-surveys with the sole objeadf collecting an acoustic training data
set. When the classifier training data set is ctdlé at the same time as the survey it is
necessary to associate visual detections (sightwgh acoustic detections to be able to
assign species identity to acoustic recordings.eCnclassifier is created, it can be used to
identify detections made during the survey thatrmteassociated with visual detections.

It is often the case that during combined visuall @toustics surveys, e.g. SCANS-II,
CODA, hydrophone arrays are towed a few hundredersebehind the visual survey
platform. This makes the task of associating vistedections with acoustic detections
challenging, and requires numerous assumptions g¢omade. However, without the
development of automated acoustic classifiers, sttwata from most cetacean species

cannot be used in any further analyses. Currently those species with very distinctive
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vocalisations such as the sperm whalbygeter macrocephalus) (Wahlberg, 2002), harbour
porpoise Phocoena phocoena) (Goodson and Sturtivant, 1996) and some spedibsleen
whale (Gillespie, 2004; Mellinger and Clark, 192&n be reliably detected and classified to
species, and it is for these species that it isiplesto estimate animal abundance using
acoustic detection only (Barlow and Taylor, 200®r@dette et al., 2011; Kyhn et al., 2012;
Marques et al., 2011).

In July 2007 a large scale survey, Cetacean Ofgslimstribution and Abundance in the
European Atlantic (CODA) involving several vesselss organised ifEuropean Atlantic
waters beyond the continental shelthe principal aims of this cooperative Europeaojgrt
were to “(1) estimate the abundance of common dolgbe phinus delphis) and other
cetacean species in offshore European Atlanticreaf8) to assess the impact of by catch,
and finally (3) to recommend safe by catch liniiisthe common dolphin” (CODA, 2009).

During this survey both acoustic and visual dateeveellected.

This chapter presents a method to create a ckassifiining dataset from the CODA visual
and acoustic detections, and uses the classifigtetttify acoustic detections not associated
with a visual detection. Then the results are awlyto identify which parameters influence
the quality of the classifier. The challenge okthhapter, contrary to the previous one, was
that the acoustic data used to train the classiftame from the survey itself and they were
collected independently to the visual detectiortse Tirst part of this chapter describes the
creation of a training dataset when acoustic detestwere not identified in real time. This
was done by relating visual identifications of $eyh species to acoustic detections. Two
training dataset were created, with data recordedifferent area of the survey. Once the
training datasets were created, the second pactides the creation of a classifier for each
dataset with a similar approach than in the previchapter. Each classifier was tested on the
dataset not used to create it. Finally in a last, ghese classifiers were used to identify
acoustic detections for which no species identificawas possible from the visual data. To
evaluate the quality of the classifiers, these w@mtified acoustic data were classified with a
classifier created from a good training dataseepsihdent of the CODA survey data. The
classifiers were created using the same PAMGUARIXtehclassifier module (Gillespie et

al., 2013), as used in the previous chapters.
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4.2. Datasets

During the CODA survey, five ships surveyed fousbbre survey blocks that extended from
the Faroe Islands in the North to the Portuguesg iBBhe South (Map 4-1). Each vessel
sailed pre-designed transects and surveys werniedamut using visual and acoustic methods.
Data from four ships cruising in the blocks 2 tavdre used for this analysis (two French
vessels : A634 Rari and F735 Germinal, two Spamessels :RV. Investigador and RV.
Cornide de Saavedra), data from the fifth ship (Nif&rs Chaser) surveying in block 1 was
excluded from the analysis due to high levels ofs@ in the acoustic data. For clarity in this
chapter data collected in block 2 are referredsttha French dataset while data collected in

blocks 3 and 4 are referred to as the Spanishetatas

4.2.1. Visual survey

Visual surveys were conducted using the surveyhaust developed and employed
during the SCANS-II project (SCANS-II, 2008). A dua platform of observers was used,
with a “Primary” and a “Tracker” observer teams.eTHrimary” team consisted of two
observers searching with naked eyes an area ahdaat alose distance to the vessel (out to
500m). The “Tracker” team was composed of two olsrpositioned on a second, higher,
platform to scan an area far away from the shipgubig eyes (10x25) or 7*50 binoculars
(CODA, 2009). For each sighting (visual detectiomformation including the vessel's
position, species identification, confidence leweélthis identification, radial distance and
sighting angle relative to the vessel's headingdoh group, behaviours and cues were

recorded.
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Map 4-1: CODA survey area and survey blocks (CODA2009). Block 2 was surveyed by French vessels in
this chapter they are referred to the “French datast”. Blocks 3 and 4 were surveyed by Spanish vessel

and they are referred to the “Spanish dataset”.

4.2.2. Acoustic survey

4.2.2.a Description of the recording systems

The aim of the acoustic survey was to detect asyrodontocete species as possible with a
focus on sperm whales, beaked whales, oceanic idsl@nd harbour porpoises (CODA,
2009). Two automated detection systems were useectod the wide range of frequencies
emitted by these species:
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1. A high frequency (sampling rate of 500 kHz) autamatick detector designed to

detect harbour porpoise.

2. The second system recorded continuously at 192 dgiMing an effective system
bandwidth of 2 kHz to 90 kHz making it sensitive &b other odontocete species
(CODA, 2009).

A hydrophone array with two sensor sections wastbbehind each survey vessel. The first
sensor section consisted of 2 hydrophones at ZLBM2espectively from the dry end of the
cable, while the second sensor section consistedre¢ 3 hydrophones at 400, 400.25 and
403m. Distance between elements was optimisechélocalisation of harbour porpoise and
sperm whale clicks. Hydrophone elements in the rets@nsor section were towed further
behind the vessel to minimise the impact of thesekeroise on recordings. Only recordings
coming from hydrophones in last sensor section wesed for this analysis. Data were
collected automatically during the day, using IFANogger 2000- software (Gillespie et al.,
2010) until it was switched off in the evening ottilit crashed. The automatic recording
system recorded continuously to hard disk using *te&av format and recording were
ranging from 1 seconds to 647 seconds with an geerecording length of 427 seconds.

On shore each recording was re-processed withAMGUARD Whistle and Moan detector
(Gillespie et al., 2013) using a high pass filte/5(KHz) to remove low frequency sounds
generated by ambient noiseor each recording a “contour file” containing #lle time

frequency contours detected was created.

4.2.2.b False positive analysis

The automatic whistle and moan detector is noteperdnd there are numerous sources of
noise (electric, mechanical, sonar, echo soundetbat)can create false positive detections.
These false positive contours can generate a ngligide bias in the quality of the
classifier. The main characteristic differenceswaein a whistle contour and another non
biological noise contour are the length and theulsgy of occurrence of these noises. A
false positive analysis was conducted to minimiee delection of these contours before the

training process.

A false positive analysis consists on randomly gglg acoustic detection contours and
checking visually on the spectrogram if the conteas made from a dolphin or not. Given

the amount of acoustic data, to optimise the randelection of the contours, every recording
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with acoustic detections was divided into one nmenhbins. The Total Contour Length per
minute (Ln) was calculated by summing the length of all thastle contours within the

minute.

Sixty per cent and 80% (Figure 4-1) of the Wwere less than four seconds long for the French

and Spanish dataset respectively.
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Figure 4-1: Total Contour Length per minutes for A) the French dataset and B) the Spanish data set.
Figures on the right are zoomed to 40 s with the vical line being placed at 4 s of contour lengttper

minute.

From these results, theylwas organised into seven categories. Because rigéhlef false
positive contours was expected to be small, categaeflect this expectation and smaller
lengths were oversampled. The seven categoriesnafrm less than 0.1 second to more
than four seconds were such:

1) Lm=<0.1s

2) 0.1s<Ly<0.5s

3) 0.5s<Ly<ls

4) 1s<lLny<2s

5) 2s<Ln<3s

6) 3s<Ln<4s

7) Lm>4s
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For each dataset and each of the seven categonegximum of 100 minutes were randomly
selected. For categories with less than 100 miranadable, all the minutes were analysed.
The spectrogram of each selected minute was wsuapected and each detected contour
was classified as either false positive or whistatour For 98% of the minutes all the
contours within the minute were either false pwsitr whistle contours, so the minutes were
categorized as false detections (FD) contours avhastle contours (W) otherwise. The 2%
remaining minutes contained both false positive @htstle contours, the proportion of false
positive contours was measured if this proporti@s \greater than 50% then the minute and
so the contours within it were categorized as Rizwise they were categorized as W.

Then the contour lengths of the contours within Bi2 minutes were compared with the
contour lengths of the contours within the W misuéad the optimal contour length which
discarded most of the FD contour in the same tim&eping most of the W contours was
selected as a threshold. All the contours withngtle under this threshold were discarded the

longer contours were used for the rest of the amaly

4.3. Methods

4.3.1. Creation of the training datasets

The inputs of the PWC are the time frequency carfites (one for each recording) extracted
by the automatic whistle and moan detector. Tanttlae classifier each recording needed to
be associated with one visually identified specidss was done by linking recordings to
sightings. This selection process was done in ségéages described in a schematic diagram
(Figure 4-2i to v) and in the following paragraphs. The main stagege to () select the
visual detections of interestii)( extract the acoustic data of interest) (link visual and
acoustic detectionsi\) train the classifier, and/Y test it. This process was done individually
for both the French and Spanish dataset.

4.3.1.a Selection of visual detections

During the survey seven whistling species were aligudetected: bottlenose dolphin
(Tursiops truncatus), common dolphin(Delphinus delphis), striped dolphin $enella
coeruleoalba), killer whales Qrcinus orca), long finned pilot whaleGlobicephala. melas),

short finned pilot whale G. macrorhynchus), and Risso’s dolphin Grampus griseus).
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Common and striped dolphin were often observedtiagen large mixed groups, and in this
situation the visual observer identified the groapcommon and striped (C&S) .

The CODA visual survey protocol required obsertergive the degree of confidence (High,
Medium, Low) of species identification for eachhgigg (CODA, 2009) For quality assurance
purpose, all primary and tracker sightings withrhag assumed high (blank in the database)

identification confidence were select¢bigure 4-2i.a).

4.3.1.b Link between visual and acoustic detection

4.3.1.b.i Time at hydrophones (Figure 4-2 iii.a)

As mentioned in the description of the data, trsaiai observers looked for animals ahead of
the vessel, whereas the hydrophones, from whichsticodata were extracted, were towed
up to 400m behind the vessel. Due to the distaeteden the visual platform and acoustic
platform, the probability of simultaneously detegtithe same animal both visually and

acoustically was not optimal. Thus the followingthw was adopted for linking visual and

acoustic detections; For each visual detection,tithe when the hydrophones were at the
perpendicular distance of the sighting (this vdaabill be called “abeam time T, ) was

estimated using the formula below

cos(A)R + 400 (4-1)
Tap = t 14 + 1y

where A was the angle between the bearing of the vessethenanimal, radial distance (R)
estimated by the visual observer. Then the distdmeteveen the visual team and the
hydrophone was added (400m). This total distancediged by the vessel speed 5.14 meters
per seconds and added to the time of visual obsenv@\).

It was assumed thahe animal did not move significantly between thsual detection and

the time the hydrophones were abeam of the animals.

4.3.1.b.ii Acoustic selection (Figure 4-2 iii.b)
Each visual detection (Primary and Tracker) of sggmeof interest with a high confidence
level of identification was associated with the @i recordings corresponding to the

“abeam time” of detection. To be sure not to misg @ocalisations, while at the same time
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ensuring not to select recordings with two différepecies several rules were applied to be

conservative on the choice of recordings:

4.3.2.

immediate recordings before and after the “abeame’ticorresponding to the visual
detection were selected,;

if within a selected recording more than one spewias observed the recording was
not selected for the analysis;

if an adjacent recording contained a visual detectof a different species these
adjacent recordings were not selected;

the last two rules were not applied to the comm@®D), striped (STD) and
common/striped (C&S) detections. Indeed, duringuiseal survey an initial sighting
would be made and then consecutive re-sightingse weade during which the
confidence of species identification went up. Command striped dolphin were
regularly observed in large mixed groups (C&S, canmND striped), within these
mixed groups smaller, single species subgroups waleserved (common OR striped;
so that consecutive re-sightings separated by Sutesnor less would alternate
between groups consisting entirely of common dolphand groups consisting
entirely of striped dolphins. For this reason ifyaf these three groups (C&S, COD
or STD) were sighted within the same or adjaceobndings, these recordings were
selected and identified as CSD detections.

Creation of the classifiers

Four classifiers were trained and tested usingQ@®®A data; two with the French dataset

and two with the Spanish dataset. For each datadest classifier, called2Sp French
classifier andSp Spanish classifier were trained with all the detectionsir€OD, STD and

C&S pooled in one unique classification group (CSDhis setup was a conservative

approach which matched with the misidentificatibthese species by the visual teams. Then

each dataset was used to train a classifier with @OD, STD and C&S detections

representing a classification group each. They veatked 4 French classifier and5Sp

Spanish classifier.

Finally a last classifier, called thidorth Atlantic classifier, has been trained using the data of

Gillespie et al., (2013). This classifier was teinwith the same species group as 38e

classifier and with the optimal fragment and sections leng@msured by Gillespie et al.
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(2013). This classifier was made using data reabrdalifferent areas of the North Atlantic
ocean generally from a small sailing research Vvesdbe vicinity of groups of dolphins or

made while underway with dolphins close to the gk&Sillespie et al., 2013)

The training was done following the method devetbpethe previous chapter (chapter 3 2.1
p 43). To identify the optimal fragment and sectiength, the quality coefficientQ) was
calculated on the pooled French and Spanish dataBeagments and sections ranging
respectively from 5 to 15 bins (27ms to 80ms) abdiol30 fragments were tested.

Each classifier was represented by its confusiotrixnahen 80% of the training data were
used to train the classifier. To estimate the greni of the classification probabilities if
100% of the training data were used to train ighealassifier was trained with different
proportions of training data as described in (cba@). However the final algorithm of the

classifier which was used to classify new data evaated using 100% of the training data.

4.3.3. C(Classification of new data

To analyse the potential effect of acoustic diffees between cetacean populations and the
sensitivity of the classifier to the data, the atmudetections of the French dataset were
classified using the SpanisBY and5Sp) classifier algorithms and the Spanish dataseéwer
classified using French2$ and 4p) classifier algorithms. Then both datasets were
classified with théNorth Atlantic classifier.

Finally recordings without visual identificationsere classified using the classifiers trained
with data from the same detection area andNibréh Atlantic classifier.

The results of these classifications were preseintédo different ways. First, as a confusion
matrix, similar to the output from PAMGUARD, foralSpanish and French training data,

secondly, as in the previous chapter, sections yergped in encounters. In this chapter the
definition of an encounter is slightly differenbfn the previous chapter 3. This difference is
due to the type of hydrophones used and the rewpruiattern. In the previous chapter the
hydrophones were bottom mounted with a discontisuegording pattern, and the animals
moved relative to them, whereas in this chapterhydrophones recorded continuously and
moved with the vessel, and the animals were assumée stationary with respect to the

hydrophones; i.e. tow speed >> swim speed. Sorteaction time between animals and
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hydrophones were likely to have been shorter duting survey. For this reason and the
observations of all the classification events, p ga10 minutes without any classification
event was selected to define two encounters. Thatification of an encounter was the
classification group with the higher average classion probability among all the sections
on the encounter (chapter 2:2PAMGUARD whistle classifier stage vp2.1).

i CODA visual database ii. CODA acoustic recordings

l ii.a Whistles contour detection
High Confidence sighting selection ! lu I

l ii-b False positive analysis

iii. Link visual detections to acoustic recordings

|

iii.a Estimate time abeam of hydrophones

iii.b Recordings selection
iv Training of the classifier
_ v
Iv.a Parameterisation
iv.b Train classifier
v
V. Test of the classifier

}

vi. Classification of unidentified data

Figure 4-2: Schematic diagram of the data selectioand decision process. (i) Selection of visual dateith
a high confidence of species identification. (ii) &ection and selection of whistles contour and diacd of
the false positive contours. (iii) Creation of theraining dataset by assigning sightings to recordigs. (iv)
Training of the classifiers with the datasets. (vlesting of the classifiers on identified data.(viuse of the

classifier to identify new data.
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4.4, Results

4.4.1. Visual detection selection

Of the 1257 (782 for the Spanish data and 475heiRrench data) primary and tracker visual
detections between the four vessels, 443 (35.2%¢ wightings of whistling species with
353 of this sightings identified with a high or as®ed high confidents level and used in this

chapter.

Eighty per cent of the selected sightings wereashimon and striped dolphin (CSD) species
individually or together (Table 4-1). The other wtling species identified with confidence
were bottlenose dolphin, pilot whale (both longnéd pilot and short finned pilot whales)
and Risso’s dolphin.

More sightings, but fewer species were reportedhen Spanish data set (five species for

seven in the French dataset) (Table 4-1).

Table 4-1: Numbers of visual detections with a higor assumed high confidence level on the French dn

Spanish vessels.

Species French data Spanish data TOTAL
Bottlenose dolphin 20 9 29
Common dolphin 37 119 156
Striped dolphin 10 39 49
Common and Striped dolphin 3 72 75

Long or short finned pilot whale 1 0 1

Long finned pilot whale 23 19 42
Risso’s dolphin 1 0 1

TOTAL 95 258 353

4.4.2. Acoustic Data

4.4.2.a Quantitative description

The French and the Spanish acoustic datasets wate af 1367 (223.43.77 hours) and 2086
(250 hours) recordings respectively. Among them Sff%he French recordings and 92.3%
of the Spanish recordings contained acoustic detect
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Table 4-2: Summary of the numbers if) of recordings in total, with all the acoustic detctions and when
the false positive detections (FD) have been remaleAlso summary of the total number of acoustic
detections contours as well as the number of acoistontours used for the rest of the analysis whethe

false positive detections were removed.

French Spanish
n Recordings n Contours| n Recordings n Contours
TOTAL 1367 2086
With all Detections 697 92666 1925 77821
Without FD 102 23074 451 31676
With visual detections 34 135
Without visual detections 68 316

4.4.2.b False detection removal

Four hundred and seventy two (472) minutes andndib8tes were analysed from the French
and Spanish datasets respectively. For all minuisa total contour length greater than 0.1
seconds the contour lengths from the FD minuteferéidl significantly from the contour
lengths from the W minutes. The average contougtlem the FD minutes was 0.07 seconds

whereas the average contour length in the W minuéss0.14 seconds (Figure 4-3).
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Figure 4-3: Distribution of the false positive detetions (FD ) and whistle (W) contour lengths for eeh
category of L, The * indicates if the mean difference between the falsdetection contours and whistle

contours was significant with a probability (p)<0.(%.

The optimum contour length to discard the maximdralse positive meanwhile keeping the
maximum number of whistle contours was 0.10 secowth a contour length of 0.10 s for
both datasets 96% of the false detection contoer® wemoved whereas 79% and 84% of

respectively the French and Spanish whistle costaare kept (Table 4-3).
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Table 4-3: Proportion (%) of detection contour lenghs within the false detections (FD) and whistles/)

minutes below the contour length for each dataset.

Contour length (s)

Contour class| <0.07 <0.08 <0.09 <0.10 <0.11
FD 43% 76% 89% 96% 97%
French
w 7% 11% 17% 21% 26%
FD 47% 73% 90% 96% 98%
Spanish
w 4% 4% 9% 16% 25%

Once the false positive detection contours wereoket only 40% and 25% of, respectively,
the totality of the French and Spanish detectiontmars remained (Table 4-2) to be

associated with the sightings of whistling species.

4.4.3. Link between Acoustic and Visual observations

The next stage in the creation of the classifiantng dataset was to associate the 353
sightings (Table 4-1) of whistling species, for aihthe observer was highly confident on the

species identification, to the 553 recordings VBih750 whistle contours (Table 4-2).

In the French dataset 32% of the false detectiea fecordings were associated with at least
one visual detection, and in the Spanish datagét &hese recordings were associated with

at least one visual detection.

Finally Table 4-4 summarises the number of contagggned to each species used to train
the whistle classifiers. These contours have amum length of 0.10 seconds and a range in
frequency from 1500Hz to 48000Hz. Contours abov@088Hz were not selected as they
may have contained other non-biological soundsthadrequency range for the species of

interest was not higher than 24 kHz (chapter letall).
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Table 4-4: Numbers of whistles contours used in thehistle classifier for each species and datasets.

Species Abbreviation French dataset Spanish dataset TOTAL
Bottlenose BND 2 53 55
dolphin
Common dolphin COD 2164 18618 20782
Striped dolphin STD 247 973 1220
Common/Striped Cc&s 110 2017 3027
dolphin
_Long or short FPW 842 17 859
finned pilot whale
Risso’s dolphin RSD 3 0 3
TOTAL 3368 22578 25946

4.4.4. Parameter optimisation

The averag&) over species angection length showed that a fragment length ofirisL{69
ms) gave the best classification result (Figure).4tincreased slightly when the section
length increased from 10 to 25 fragments per secikor some species not enough data were
available to generate sections of 30 fragmentslaoll5 bins long. This lack of data could
explain the decrease of the averggacross all fragments when the section length exh&80
fragments. Even for sections of 25 fragments wihenfiagments length was of 13 or 15 bins

some species did not have enough data to be pt¢ afassifier.

So to insure to have enough data to train andthestlassifiers for each species the optimal
fragments length of 11 bins and section length ®ffragments were selected to train the
classifiers with the different datasets. While tesy short fragment and section length (they
were of respectively 25 and 60 in the previous téragnd in Gillespie et al., 2013), the very
small number of contours assigned to Risso’s dakpimade them unusable as it would not
be possible to create a training and a testingaecFor the same reason the bottlenose
dolphin contours were excluded from the French tislassifier while they were used in

the Spanish whistle classifier. However, there wast¢ enough pilot whale contours in the

Spanish dataset to create at least one traininga@desting section in the classifier.
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Figure 4-4: Quality coefficientQ for varying fragment lengths (averaged over sectiolengths between 10
and 30 fragments); and varying section lengths (avaged over fragment lengths between 5 and 15 bins)
used to classify five groups of species (bottlenodelphins, common dolphins, common/striped dolphins

pilot whales and striped dolphins) from both the Fench and Spanish datasets.

4.4.5. C(Classifier Training

4.4.5.a French classifiers

The 2 French classifier classified the CSD detectiorttebéhan by chance (p<0.001) with
a correct classification probability of 65% (Talflé), however the pilot whale detections
were classified at the same rate as if it wasratom (p=0.89) (Table 4-5).

With the 4 French classifier correct classification probdieié were low for all species

with a maximum correct classification probability51% for the C&S group. Adding to this

low correct classification probability the falsesitve misclassification probabilities were
high for all species with a minimum of 55% for thiéot whale group. The STD detections
were not classified better than by chance alon8.(64)

Forty five per cent, 37% and 66% of the COD, C&SJ &TD classification groups

respectively were misclassified as one of thesapggo
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Table 4-5: 2SpFrench classifier with the classification probabiities when the classifier was trained with
80% of the French dataset. Standard deviations (%are within the brackets. Species codes are the same
as in table 1-4, with CSD = COD +STD + C&S pooled? = p-value of a one-tailed t-test to test, the nlul

hypothesis that the results were obtained purely bghance,H, = 50%

Classified as % False Positives (%) p
CSD FPW
CSD 64.9 (11.9 50.3 43.7 <0.001
FPW 35.0 49.7(19.7) 41.3 0.89

Table 4-6: 4Sp French classifier confusion matrix: Classificationprobabilities of the classifiers trained
with 80% proportion of the French dataset. Standarddeviations are within the brackets. p-value of ame-

tailed t-test to test the null hypothesis that theesults were obtained purely by chancell, = 25%

False
Classified as % True Species Positives p
(%)
COD C&S FPW STD
COD 34.0(13.9 8.8 23.2 34.6 66.2 <0.001
C&S 18.7 51.3 (13.3 23.0 30.9 58.6 <0.001
FPW 21.4 11.7 37.5(13.3) 13.9 55.6 <0.001
STD 25.9 28.2 16.5 20.6 (13.3 77.4 0.004
False negatives 66 48.7 62.5 79.6

4.4.5.b Spanish classifiers

With the 3% Spanish classifier, both the BND and CSD classiion groups were very well
identified, with a correct classification probatyligreater than 90%. The false positive
misclassification of BND was small (14%) whereaéched 49% for the CSD classification
group. This high rate was directly linked to thgtimisclassification of FPW detection as
CSD (83%) consequently FPW detections were podalgsdied with a correct classification
probability of 6% different (p<0.001) and lower thlay chance alone.

When the CSD classification group was divided ie¢hgroups (COD,C&S and STD) in the

5Sp Spanish classifier, BND whistles contours werdl sery well discriminated (92%
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correct classification probability) with a relatlyelow false positive misclassification
probability of 20%. COD and STD had a probabilifyb®@ing correctly classified close to
40% with high false positive misclassification pabidities (70%). This high rate was largely
due to the fact that 75% of both the FPW and Cé&t8almns were classified as COD or STD
(Table 4-8). Both the C&S and FPW detections wertectassified better than by chance.
The confusion matrix of this Spanish classifierfeded significantly to the4Sp French

confusion matrix for three (C&S, FPW, STD) of tloeif species in common.

Table 4-7:3Sp Spanish classifier confusion matrix with the clasfication probabilities when the classifier
was trained with 70% of the Spanish dataset. Standd deviations (%) are within the brackets. Species
codes are the same as in table 1-4, with CSD = COISTD + C&S pooled. P = p-value of a one-tailed t-

test to test the null hypothesis that the results @re obtained purely by chanceH, = 33%

Classified as % False Positives (%) p
BND CSD FPW
BND 91.5 (13.6) 2.9 11.5 13.6 <0.001
CSD 5.8 91.1(13.4) 83.0 49.4 <0.001
FPW 2.8 5.9 5.5(13.1) 61.3 <0.001
False Negatives 8.5 8.9 94.5
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Table 4-8: 5Sp Spanish confusion matrix with the classifiers traned with 70%n of the Spanish dataset.

Standard deviations are within the brackets. P = pralue of a one-tailed t-test to test the null hypdiesis

that the results were obtained purely by chancel, = 20%.

False
Classified as % True Species Positives p
(%)
BND COD C&S FPW STD
BND 91.5(11.4) 3.1 1.7 12.0 4.4 18.9 <0.001
COD 1.0 40.8 (12.4) 39.1 44.0 24.3 72.7 <0.001
C&S 1.2 23.1 17.0 (11.9) 7.0 26.2 77.2 0.004
FPW 3.8 5.0 6.3 6.0(11.0) 4.8 76.8 <0.001°
STD 2.5 28.0 35.9 31.0 40.3(12.5) 70.7 <0.001
False Negatives 8.5 59.2 83 94 59.7

4.4.5.c North Atlantic classifier

From Gillespie et al., (2013), the optimal fragnseahd section length measured with their

data were respectively 30 bins (160ms) and 60 fesgsnper section. The classification

probabilities were high with the correct classifioa probabilities, greater than by chance for

the three classification groups, ranging from 70%689% and a low false positive rates

ranging between 4% to 28%.

Table 4-9: North Atlantic classifier confusion matiix with the classifiers trained with 80% of the datset.

Standard deviations are within the brackets. p = pralue of a one-tailed t-test to test the null hypbiesis

that the results were obtained purely by chancel, = 33%.

Classified as % False Positives (%) p
BND CSD FPW
BND 70.3 (10.8) 10.7 8.0 21 <0.001
CSD 26.9 88.8 (10.3) 5.7 27.5 <0.001
FPW 2.8 0.5 86.4 (10.2) 3.7 <0.001
False Negatives  29.7 11.2 13.7
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4.4.6. Classification of new data with the classifiers
4.4.6.a French dataset

4.4.6.a.i Classified with Spanish and North Atlantic classifiers

With the North Atlantic classifier, fewer sections were created and dladsas the fragment
and section length parameters were longer thameifrtench and Spanish classifiers.

As expected from th&Sp Spanish classifier confusion matrix both common atriped
dolphin sections were correctly identified at arelose to 40% (40% for COD and 32%. for
STD) (Table 4-10). C&S dolphin sections were cli@esdiat a rate very different to the
expected correct classification probability of thpanish confusion matrix; 67% versus the
17% expected. The pilot whale sections were vergrlgoidentified with the Spanish
classifier with only 3% of the sections correciientified whereas they were expected to be
correctly identified at 38% with thdSp French classifier.

Once classified with th83 Spanish classifier (Table 4-10), the identificatiof the CSD
sections were much higher than the prediction whin French classifier and in the same
order as the predictions of the Span3® classifier. The proportion of pilot whales
detections correctly identified was better thanested from the confusion matrix of the
Spanish classifier.

Finally classification of these data with therth Atlantic classifier (Table 4-10) gave on
average a better correct classification probaéditiThe main improvement was seen in the
classification of FPW detections, but the propaertad FPW section correctly identified was
still low at 34%.

Organising the sections into encounters reduced ahmunt of data available for

classification. The 876 sections classified formkE8l encounters (Table 4-11) with a
maximum of 403 sections per encounter for the comuhalphin classification group (see
Appendix B, Table B.1). Nevertheless the propodiohencounters correctly classified were
slightly better than when the results were companedections. COD and C&S classification
groups had a better classification probability whieey were organised into encounters with
up to 100% of correct classification when tB®o classifier was used. However the four
encounters of STD detections were never correddntified with thesSp classifier and they

were misclassified as BND, COD or C&S. With Bf¢p classifier three of them (75%) were
correctly identified. Even if this classificatiomgiability was lower than the 91% observed
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in the confusion matrix (Table 4-7), only one enuewn out of a total of four was

misclassified. However, having the results orgahisgo encounters did not improved the

identification of the French FPW sections, withtb&panish classifiers all FPW encounters

were misidentified.

Table 4-10: Classification result of the French datset classified with the Spanish and North Atlantic

classifiers.
True Species
Classifier Classifiedas %  COD C&S FPW STD

BND 2 0 30 3

COD 40 27 23 30

5Sp C&S 31 67 23 32
FPW 2 0 3 3

STD 25 7 22 32

BND 3 0 28 5

2Sp CsD 95 100 67 95
FPW 2 0 5 0

BND 13 0 5 0

North Atlantic CSD 87 100 61 100
FPW 0 0 34 0

Because of the bigger fragment and section lenggles in theNorth Atlantic classifier the

French data were organised into only 11 encourfi@able 4-12, Appendix B, Table B.3).

Only one of these encounters was misidentified (FRWtounter misclassified as

common/striped).
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Table 4-11: Encounters classification of the Frenchcoustic dataset classified with the Spanish clafier.

True Species

Number of Encounters
COD C&S FPW STD
Classified as
BND 0 0 2 1
COD 4 0 0 1
5Sp C&S 1 1 1 2
FPW 1 0 0
STD 2 0 0
BD 0 0 2 1
3Sp CSD 8 1 1 3
PW 0 0 0 0
TOTAL 8 1 3 4
Mean (sd)
74(132) 150) 7861) 99
number of sections/encounters

Table 4-12: Encounters classification of the Frenclacoustic dataset classified with the North Atlant

classifier (N.Atlantic)

COD C&S FPW STD

BND 0 0 0 0

N. Atlantic CSD 5 1 1 2
FPW 0 0 2 0

Number of Encounters 5 1 3 2

Mean (sd) of
number of 27.283.0) | 2(0) | 14.6713.6) | 3(1.41)
sections/encounters
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4.4.6.a.ii Unidentified dataset classified with French classifier

Fifty recordings, out of a total of the 68 selecteatordings without visual detections,
contained identified sections. These sections vggoaiped into 25 encounters with the
French classifier and 8 with tidorth Atlantic classifier (Table 4-13, see Appendix B, Table
B.3, for details). With thdSpFrench classifier 5 (20%) of the encounters wéasstfied as
STD, 11 (44%) as COD, one (4%) as C&S and seveth) 28 FPW. One encounter had an
equal probability to be classified as COD or STOth¥he 25 French classifier, 17 (68%)
encounters were classified as CSD dolphins, 71% e were in common with th4Sp
French classifier. However only 3 of the 7 encounterssifzed as FPW were classified by
the 43 French classifier as FPW as well. Five encounters (62%) generatethéilorth
Atlantic classifier were identified as CSD like they were with @@pFrench classifier.

These encounters were compared with the efforh@fvisual teams (see Appendix B, B.3).
For 64% of these encounters the visual team wasffufft. The remaining encounters were
detected when the visual team was on effort. For & these encounters no sightings of a
whistling species was detected within 10 minutethefwhistles detections, for the remaining

five, a visual detection of a whistling species wesorded.
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Table 4-13: Encounter identification of the Frenchacoustic detection, not associated with a visual
detection, using the French and North Atlantic clasifiers. COD=Common dolphin, C&S=Common and
Striped dolphin, FPW=Pilot whale, STD=Striped dolphn, unidentified=when a section contain the same

maximum classification probabilities between sevelapecies.

French Classifiers North Atla_n_tic
classifier
COD 11
C&S 1
4Sp FPW 7
STD 5
Unidentified 1
BD 1
CS 17 7
2Sp
PW 7
Unidentified 1
TOTAL 25 8
4.4.6.b Spanish dataset
4.4.6.b.i Training dataset classified with French and North Atlantic classifiers

The Spanish data classified with tH&p French classifier were on average correctly
identified with almost the same probability as estpd with the Spanish classifier itself
(Table 4-14, and Appendix B, B2 for details). ST@rev slightly better identified with the
French classifier (53.6% versus 40.3 with the 58an&h classifier) while COD detections
were better identified with the Spanish classi{#d.8%) than with the French one (32.4%).
C&S detections were largely misidentified as STBe texpected correct classification
probability of this group with thdSp French classifier was 51.3% and only 16.4 % of the
Spanish C&S detections have been correctly idedttifilhe Spanish data contained only one

section of FPW detections which was misclassife@€®D (Appendix B, B2).
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The classification results with tf#3 French classifier (Table 4-14, and Appendix B, Tbale
B3) were worse than what was expected from theusomfi matrix. None of the three
classification groups were correctly identifiedaatate greater than 50%. The BND sections
were not classified as the French classifiers ditlhave a bottlenose classification group
(Table 4-4).

However, theNorth Atlantic classifier identified the COD, C&S and STD sectiaorrectly
more than 90% of the time (Table 4-14). But theyadction of BND was misidentified as

FPW and there were not enough sections of FPWnergee at least one section.

Table 4-14: Spanish data classified with the8Sp 2Sp French classifiers and by theNorth Atlantic
classifiers. CD=Common dolphin, CS=Common and Strigd dolphin, PW=Pilot whale, SD=Striped
dolphin.

True Species
Classifier Classified as % BND COD C&S FPW STD
COD 0.0 324 24.7 100 28.0
C&S 0.0 15.2 16.4 0.0 11.9
4Sp
FPW 0.0 15.4 13.2 0.0 6.5
STD 0.0 37.0 46.1 0.0 53.6
CSD 0.0 49 39 100 38
2Sp
FPW 0.0 51 61 0 62
BOD 0.0 10 10 0.0 0.0
North Atlantic CsD 0.0 90 90 0.0 100
FPW 100 0.0 0.0 0.0 0.0

The 4602 sections of the Spanish data formed 48ueners; 18 COD, 19 C&S, 1 FPW and
10 STD (Table 4-15, and Appendix B, Table B.2 fetails). These encounters were made of
1 to 448 sections. Encounters of COD contained meotions (average of 216 sections per
encounters), whereas the encounter of FPW was ofagldy one section. COD encounters

were mostly (>50%) correctly classified by bothssifiers. Encounters of other species were
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largely misclassified as STD or COD when classifigth the 4Sp classifier and as FPW
when classified with the French classifier. Fifiy per cent (56%) of the encounters were

identified as the same species by the two classifie

Table 4-15: Encounters of the Spanish data classfil with the 3Sp 2SpFrench classifiers.

Number of enco:gters classified COD C&S EPW sSTD
COD 10 4 1 4
C&S 0 0 0 0
4Sp FPW 1 2 0 1
STD 5 12 0 5
Unidentified 2 1 0 0
CSD 12 6 1 4
2Sp FPW 5 12 0 5
Unidentified 1 1 0 1
Total number of encounters 18 19 1 10
Mean (sd)
216@73) 2862)  1(0) 17¢3)
number of sections/encounters

With theNorth Atlantic classifier 97% of the 36 encounters were corregdtgsified, only the
BND encounter, made up of a unique section, waslassified as FPW (Table 4-16).
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Table 4-16: Encounters of the Spanish data classfil with the North Atlantic classifier

BND COD C&S FPW STD
Number of Encounters

1 17 13 0 5

Classified as

Mean (sd) of

1 42(74.12) 7(13.6) 0 6(5.5)
number of sections/encounters

BD 0 0 0 0
N.Atlantic CS 17 13 0 5
PW 1 0 0 0 0

4.4.6.b.ii Unidentified dataset classified with Spanish classifier

These detections were grouped into 62 encountede k& 1 to 370 sections (Appendix B.
Table B.4 for details). The classification groupsitaining COD had a much higher number
of sections per encounter (Table 4-17). Only ormenter of FPW was identified with only
1 section in it.

When this unknown dataset was classified with 88 classifier, 51 encounters were
classified as COD, C&S and STD. With tB&o classifier 54 were identified as CSD and
only two of them were identified differently witthe 55 classifier. With the 5Sp classifier
eight encounters were identified as BND seven efrithvere identified similarly with th&p
classifier. The remaining BND encounter was clasgifs CSD with a probability just over
the average (52%). The encounter identified as MW the 55 classifier was classified as
CSD with the3S classifier. With théNorth Atlantic classifier, 37 encounters were generated,
with 32 of them being identified as CSD a similamber to the8Sp French classifier. Two
were identified as FPW and one as BND.

The spectrograms of all the encounters were examitsmially to detect any false positive
detections (Appendix B, Table B.4). Eleven encotsn{#8%) were false positives detections,
three were due to the presence of a sonar, praglcidiscontinuous long signal in the
frequency range of the species of interest, ant eigntained numerous electric noises.
Twenty seven (43%) encounters were detected whewitual team was off effort. For 19

encounters (31%) the visual team was on effortdiditnot detect any animal and for the
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remaining five encounters (8%) a visual detectiapgden 10 minutes before or after the

encounter time. Each of these encounter have lksmified with the same species as the

visual observations (Appendix B, Table B.4).

Table 4-17: Classification result of the Spanish awstic dataset classified using the Spanish and Nabr

Atlantic classifiers. Number of sections classifiedwith the corresponding classification probability
(%).CD=Common dolphin, CS=Common and Striped dolphh, PW=Pilot whale, SD=Striped dolphin.

The number in bracket is the number of sections cksified similarly by the Spanish and the North

Atlantic classifiers.

Spanish Classifier

North Atlantic

Classifier
BD 8
CD 26
CS 11
5Sp
PW 1
SD 14
Unidentified 2
BD 7 1
CS 54 33 (32)
3Sp
PW 0 2
Unidentified 1 1
TOTAL 62 37

85



Part | Classification Chapter 4: Classificatiordata from a less reliable training dataset

4.5. Discussion

4.5.1. Parameters influencing the performance of a classifier

In this chapter, two sets of classifiers have beesated using data collected during the
CODA large scale survey. One of the main objectizéhe CODA project was to estimate
the common dolphin abundance, and if possible then@ance of other cetaceans species.
Visually Common and striped dolphins are hard tbapart at large distances or are often
found in mixed groups, hence the need for a C&SigrdVith the acoustic classifier the same
result was achieved, indeed when these two spe@espooled in one group, they were very
well discriminated from bottlenose dolphin and pilwhale. However, like with visual
detection, it was more challenging to tell apaduwstically common to striped dolphin. The
results of this chapter were in accordance witlviptesly published results (Gillespie et. al.,
2013, Oswald, 2007) showing important misclasdiiica between common dolphin and
striped dolphins. The misclassification betweers¢htvo species observed in those papers
was smaller than the one observed in this thesis difference may be explained by the
smaller size and the less accurate species idatidn of the training data which generated a
new source of misclassification due to misclasatfan within the training dataset itself

4.5.2. Consequences of a lack of training data

The very large proportion of false positive detesi (almost 80% between both datasets)
reduced the amount of data available to build stalold reliable classifiers. The differences
observed in the pilot whale correct classificatiprobabilities between the French and
Spanish classifiers (40% and only 5% respectivelgy be explained by the lack of data in
the Spanish dataset. Only 17 pilot whale contouesewavailable to train the Spanish
classifiers whereas 842 were available in the iingidata of the French classifiers. With this
guantity of data it was difficult to create a stablassifier. This low ability to identify pilot
whale detections explained the poor classificatibthe French pilot whale detections by the
Spanish classifiers (maximum correct classificatfmobability being 5%). Even so the
French training dataset contained more pilot wicalgours, the identification of pilot whale
by the2$ French classifier was not better than by chance. Howewethe North Atlantic
classifier, for which 20 times more data were used for tlpscges, the expected correct
classification probability reached 86%. So the sifasation probability observed for tH#2sp
French classifier may as well be due to a lackathdEven if the French and Spanish pilot

whale data classified with thidorth Atlantic classifier were not correctly identified with such
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success (34%), of the five classifiers tested itegthe most accurate classification. This
smaller correct classification probability relatiteethe expected one may be due to another
source of misclassification; the difference of M@zion characteristics between population
or strongly related species. Indeed, the pilot whadgtections of the French, Spanish and
North Atlantic training data were a combinationboth the long finned and short finned pilot
whale species. Gillespie et al., (2013) shown tinase two species can be discriminated well
with a small misclassification probability betwetiem (between 6 to 12%). In this chapter,
the French pilot whale detections were in majoitiogm long finned pilot whale whereas the
majority of the pilot whale detections of the NoAHantic classifier were from short finned

pilot whales (Gillespie et al., 2013).

4.5.3. Consequences of a lack of the accuracy of species identification

In this analysis, the species identification wasalby associating a species sighted several
hundred meters in front of the acoustic detectigstesn. Given this distance, the method
chosen to link the visual to the acoustic detectionld be at the origin of a wrong species
identification. The low classification probabiligf the C&S group within th&S Spanish
classifier, despite being the group with the sectargest number of contours, can be
explained by the selection process for this groDpring the selection only adjacent
recordings with one species were selected. Howavegxception was made for COD, STD
and C&S groups (see section 3.1.b.ii for explamytibhe Spanish CSD data contained more
recordings associated with COD and STD sightings tine French CSD data. Maybe some
assumptions were wrong and some significant difiege were to be expected between these
three groups. Each time the large CSD classifinagi@up was involved in the classification
(either to train the classifier or when it is clfissl with the French classifier) the
classification probability was low.

The difference between the correct classificatimbabilities for the STD group between the
French and Spanish classifiers was less expectdtelFrench classifier the striped dolphin
detections were classified randomly with an eveasciassification between COD and C&S
which means that the classification of the Spasigped dolphin by thdSp French classifier
were similar to a random classification and so oarre considered as reliable. When this
source of mistake was removed by pooling the thlassification groups as a unique one the
confusion matrix for these classifiers showed agraye correct classification probability of

60% versus the 38% when the three groups werendependently.
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Finally theNorth Atlantic classifier which combined good large training dataset anidlykd
species identification for the training data ansbabne common group for the common and
striped detections gave the best classificationlt®$or all the datasets.

4.5.4. Advantages of acoustic detections over visual detections

This chapter showed how difficult it is, using #h@rent methodology to make a reliable link
between visual and acoustic detections with sumeyhod similar to the one used in the
CODA survey. The main difficulty highlighted wasethability to create a large enough
acoustic dataset despite weeks of acoustic suleypresence of non-dolphin noise with the
disproportionately high number of false positivaedtions, stems from the use of noisy
survey platforms. Although it was possible to removost false positive detections from the
dataset, those that could not be removed sharedathastics similar to those of the whistles
that were attempting to be classified.

The distance between the visual team and the acaletection was also a problem as it
increased the chance of mistakes in the associafiagightings to an acoustic detection.
There is no doubt that acoustic detections are itappto detect animals missed-detected
visually (Table 4-18); the 61% of the classifie¢@unters not associated to a visual detection
proved it. Half of the encounters (50%) not asdediavith a visual detection were made
when the observers were off effort. For the othaf bither no sighting was recorded or a
sighting was recorded within 10 minutes but it was$ selected due to the selection criteria
used in the method of this analysis. However, i current survey method and with the
method used in this analysis, the classificaticults of the encounters not associated with a

visual detection were not very reliable.

With some modification in the survey method it wibbk possible to create a training dataset
of quality from the survey data themselves. Sirylao the selection of well trained and
highly qualified visual observer to optimise theaohe of getting reliable identifications, a
good classifier training data will optimise the oha of getting reliable acoustic
identification. The better classification resultghnthe North Atlantic classifier illustrated
this point. But given the observations of differemthistles characteristics between

populations, an ideal training dataset should béentd data collected in the same area of the
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survey, which is not always possible. Nonethelesres modification of the survey actual
method similar to what is regularly done by the tBaest Fisheries Science centre in the
United State (Barlow and Forney, 2007) would beefieral for both the visual and the
acoustic detections. They are using a closing npodeedure during the survey that consisted
of breaking the transect line to go closer to sigs. They can then, verify their species
identification and group size estimates. This veatfon can be used to measure their
probability of correct identification from the treect line. This method will be also beneficial
for the acoustic detections as it will generate esamcordings directly associated with a
species. These recordings can then be used tatiatiassifier or to verify the quality of the
classifier.

Table 4-18: Summary of the numbers of encounter ctsified per species for the training dataset and ¢

number of encounters classified by the classifierdt for which the species identification was not knan.

| On effort
n d\éltseléz?ilons n encounters| Off Effort No visual Visual detec.
detec.
BND 29 0
COD 156 26
C&S 75 20
FPW 43 4
STD 49 14
RSD 1 0
No Id 87 43 28 11

If the closing mode is not possible then allowing $ome visual detection when the animals
pass abeam of the hydrophones and monitor thendestisom the hydrophones should help
also in the creation of a more reliable acousti@loise of sound from which the species is
identified.

In conclusion this chapter highlighted the needntprove and/or generalise the used of
methods such as close up mode to accumulate alestraining dataset to be used during the

creation of an acoustic classifier. By developingrencost-effective methods to select a good
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training dataset, it can be hoped that the partthef misclassification generated by
misclassification within the training dataset vii# diminished and only the misclassification
generated by similarity between species will stayrthermore this misclassification can be
decreased by grouping similar species as a uniassification group
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Chapter 5: Classification: General Discussion

5.1. Introduction

One of the difficulties with acoustic data from atans is correct identification of the
detected sounds. Several classifiers (Datta andivgtat, 2002; Gillespie et al., 2013, 2011,
Nanayakkara et al., 2007; Oswald et al., 2003; Salla et al., 2008) have been developed
based on different methods. With the exception dlegpie et al., (2013), the confusion
matrix is the only quantitative description for $keclassifiers. Gillespie et al. (2013)
presented for the first time a measure of uncdstahthe confusion matrix by associating
the standard deviation of the correct classificapoobabilities in the confusion matrix.

The objective of the first part of this thesis wa to develop yet another whistle classifier
method but to determine the factors influencing thelity of acoustic classifiers. The
analysis in these chapters were based on two tagiesof surveys, which were organised to
get more information about the distribution of cei@n species for conservation and
management decisions. The prime objective of tts¢ fiase study (MORL_BOWL, chapter
3) was to develop a classifier to discriminate leatise dolphin from other species present in
the area of interest. This case study is simildhéonumerous papers describing classifiers, in
the respect that data to train the classifier hbgen carefully selected to optimise the
classification result. The main objective of the@® case study (CODA, chapter 4) was to
detect the presence of cetacean species with gartiocus on common dolphin species. For
this case study the main analysis was done by ahservations but an acoustic detection
system was added in the process to complemenighal\survey. Classifiers were developed
with the data collected during the survey itself.

5.2. Parameters influencing on the quality of the classifier

These two chapters demonstrated the importancheofaality of the dataset used to train
classifiers. The quality of the training dataseswiafined by the amount of data available to
train the classifier, the reliability of the idefitation of species and the presence of false
positive detections in the data.
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5.2.1. Size of the training dataset

Both, the MORL-BOWL (chapter 3) and the North Atiar(chapter 4) classifier were trained
with data collected from quiet platforms with acatier visual confirmation of the recorded
species. The average number of contours per spadies training dataset was 29222 for the
MORL-BOWL classifier and 37000 for the North Atlantlassifier. Classifiers trained with
these data were able to identify on average 83%1@&¥%) of the detections correctly.
However, the French and Spanish classifiers fro;mmGWDA data were trained with data
containing an average of 2680 contours per specidghe species identification relied on a
less accurate method than for the previous datksetthese classifiers the average correct

classification probability was 46% (sd=30%).

5.2.1. Reliability of the visual observation

An important assumption made in chapter 3 was tge bonfidence in the species visual
identification of the acoustic detections usedhim training dataset. At the opposite in chapter
4 it was suggested that one of the reason of the gassification result was perhaps due to
errors in the identification of the recordings oty close to a visual detection. These
possible wrong associations between visual andsticodetections generated the creation of
training datasets less reliable than for the previchapter. This point highlights the problem
of the accuracy of visual detection and its consaqa during the classification process
necessary to use most of the cetacean acoustic Datang the selection process of the
training data in chapter 3, some of the initialadavailable from the west coast of Scotland
were discarded due to misidentification of the gmeby the visual observer. While initially
these data were included in the training datasebttiput of the classifier was not good and
raised suspicion. After a direct observation oktheecording spectrograms it was clear that
these acoustic detections were not from the spedetified by the visual observer. They
were then discarded form the training dataset dmd dlassification result was largely
improved. It was not possible to tell if the misgtakome from a misidentification from the
observer or from an error during the data transiomnpon the database.

This example illustrates perfectly a major problemcountered with cetacean visual
detection which is the reliability and the lackmé&thod to detect these misidentifications. At
the opposite of acoustic detections, visual detastiare most of the time not recorded such
that a double verification is possible after thevey and so as soon as the animal is not

visible any more the only information availablethe species identification recorded by the
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observer associate with its level of confidencee fiethod of double observer widely used in
visual survey can help in dealing with this issudaé animals are detected by both observers.
For terrestrial survey and mainly avian and anwgpecies the problem of misidentification,
generating false positive detections, and its negmiconsequences in abundance estimation
is now recognise and analytical method are deeelap correct it (McClintock et al., 2010a,
2010Db).

5.2.2. Characteristics of the classification groups

The accuracy of the classifiers was dependent enntimber and characteristics of the
species groups used for classification. The highclassification probabilities of théSp
French and 5§ Spanish classifiers were explained by the similarity betwecommon
dolphins and striped dolphins. When these speciese woooled the average correct
classification probability of the classifiers inased. In contrast, the good result of the
MORL-BOWL classifier was partly due to the largeesof the dataset and partly due to two
species, white side and white beaked dolphins, lwlace relatively easy to tell apart
(Gillespie et al., 2013) from the other classificat groups. Increasing the number of
classification groups in the MORL-BOWL dataset Istly decreased the correct
classification probability of the bottlenose dolphichapter 3).

5.2.3. False positive detections

The presence of false positive detections in taaitig data can be responsible for a bad
classification result. Frequently in underwater st surveys, there are numerous sources
of noise with similar characteristics as the soohdnterest. A high amount of broadband,
short noises such as shrimp clicks, very shorttetenoises and echo sounders can easily
been missed - detected as cetacean clicks. Othsesnguch as sonars, more persistent
electric noises, and rubbing noises from mooriray easily produce sounds with the same
frequency range and length as whistles. Being ablelevelop a perfect detector that
recognises all these natural and anthropogeniccesuof noise will never be possible.
However, a false positive analysis on the traindlaga prior to training the classifier can
reduce the impact of such false detections. Bec#useCODA data were known to be
collected from noisy ships, a false positive detectanalysis was conducted before training
the classifier. Such an analysis permitted to iflerst single parameter (contour length)
which led to the removal of 80% of all the deteatiqof electric noise in the majority of

these cases) leaving 20% good ones. It seems abthatiif these contours were used for the
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classification, the classification results wouldvéabeen worse despite being based on a
larger dataset. This false positive detection aislprior to training the classifier was not
conducted on MORL-BOWL dataset because this datasae from quiet platforms where
operators were being more careful about the quafitye data that they were recording and

hence the amount of noise was negligible.

5.3. Defining the robustness of a classifier

In addition to comparing the classification proliéies as a function of the quality of the
training dataset, chapter 2 highlights the notiboreertainty within the confusion matrix of
a classifier. As explained in chapter 2 and in l@aét al., (2013), whistles are highly variable
within and between species, and hence the probaloh obtaining exactly the same
confusion matrix from two different samples of hiag data is very low. Due to this high
variability, a classifier should be presented w#h measure of uncertainty for each
classification probability. In chapter 2 a methodswproposed to measure and predict the
variability of the classifier, along with a discums of the limits of this method. However, by
drawing a parallel between the measured variahilitthe classifiers in chapters 3 and 4, it
can once again be seen that classifiers with a gf@aining dataset contain less uncertainty:
the average coefficient of variation of the corretassification probabilities for the
MORL_BOWL and North Atlantic classifier was 10% Wéhit was between 40% and 180%
for some correct classification probabilities of thrench and Spanish classifiers. This result

will be essential for further analysis (Part II).

5.4. Specificity of the PAMGUARD Whistle Classifier

All the classifiers generated in this thesis weasda on the automatic PAMGUARD Whistle
Classifier and the whistle contours were detectethb automatic PAMGUARD Whistle and
Moan detector. A disadvantage of such an autonwddissifier is that it is more likely to
include contours of false positive detections ia thassification process than a classifier that
is based on the selection of the whistles contbyren operator. A specific feature of the
PAMGUARD Whistle classifier is the division of whiis contours into smaller parts. One
can argue that by doing so, information on the aVehape of the contours is ignored and
that classical parameters used to discriminateiespesuch as end frequency, start frequency,
number of inflections, cannot be used. Consequeimiyortant characteristics of the whistles

are not taken into account. However, the good teduhe identification of the EARs data in
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chapter 3 showed that, with a good training ddtis, ¢lassifier correctly identifies unknown
data. The advantage of automated classificatiothenother hand is the ability to process
quickly a large amount of data from detection tasslfication and it is probably more
consistent than a human operator.

To further improve our knowledge on the potentiaihis classifier it would be interesting to
study its quality for a small, but accurate dataset to analyse which of the nine parameters

used in the discriminate function are the mostuldef the classification.

5.5. Recommendations of creating a good whistle classifier

In conclusion, developing a classifier is a taskichrequires a training dataset of high
quality to obtain accurate and good classificatmmobabilities. In the case of marine

mammals, it is often difficult and time consumimgget large training datasets. However, it
is still possible to improve the methodology andb® rigorous in the collection of small

datasets to assure their quality. For acoustic, dais now relatively easy to collect a large
amount of them (due to increase in computer storegeacity and improvement of

technology), but if the operators are not carehdwd assuring the quality of the recordings,
large datasets quickly become useless.

My recommendations to develop a classifier woulddoe

1. ensure correct identification of species within tla¢a used to train the classifier (see
suggestion of methods in 4.5.4);

2. ensure that the training data does not contaie fadsitive detections;

3. ensure that there is enough data for each speniéisef classifier to be reliable;

4. be careful about the selection of species to dlgssi particular by selecting only
species which are present in the area of inteféss. avoids having too many species
in the classifier which increase the probabilitynuéclassification;

5. run a false positive detection analysis on a suptaof the data after classification;

6. measure the variability of the classification proibtes that is due to the sampling
process;

Nevertheless, given the high variability of the sil@s even with a perfect protocol, a very
good data set and quiet acoustic system, the charmreate a classifier able to discriminate
each species without misclassification is not gmssilt is then important to find some

methods which from the observed classification ltesalculate the true number of acoustic
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detections for each species. The second part stllesis demonstrates one method to solve

this problem.
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Part II. Misclassification
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Chapter 6: A heuristic method to estimate the number of

acoustic detections in the presence of species misclassification.>

6.1. Introduction

Over the last two decades, researchers and manamerdecome increasingly aware of the
advantages of using passive acoustic monitoring wigeal cues to detect marine mammals
and so to potentially estimate their abundance.yMsuadies, in particular those processing
large datasets from long-term fixed hydrophone a@pknts, rely on automatic detectors and
species classifiers to decrease the time and tastabysis. In the previous part of this thesis,
it was demonstrated the importance of a good qudhtaset to develop a reliable whistle
classifier. It was also admitted than it will neuss possible to develop a classifier able to
discriminate species perfectly; hence there willagls remain misclassification between
species. However, in any management strategy, aecwand precise quantification of

population size (“abundance”) is crucial to deved@propriate management actions.

A standard method for estimating abundance basegicoustic detections is cue counting,
where the cues are the vocalisations detected (Marcet al., 2011, 2009 and chapter

1.2.2.b.ii p9). The general formula to estimatpecges’ abundance from cues is given by

n(l—3¢)A

— 6-1
aT Pt (6-1)

N =
where n is the number of detected cuésjs the estimated proportion of false positives
detected (calls classified as the species of istemich originated from other species or
other sources of noise,is the area in which cues can be deted?ed,the estimated average
probability of a cue being detected within thisaadeiring recording tim&, 7 is the estimated
cue production rate andl is the total study area (Marques et al., 2009arAfrom the fact
that this formula requires knowledge of the cuedpmation (i.e., vocalization) rate, which is
unknown for many species, the abundance estimdte.i6-1 only considers the presence of

one species at a time in the area of interest.

® A slightly modified version of this chapter hasheccepted in J. Acoust. Soc. Am. : Caillat, Mofhas, L.,
Gillespie, D. (2013) The effects of acoustic misslfication on cetacean species abundance estimatio
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In this part of the thesis (chapter 6 to 8), oslsuies on determining the true number of calls

v, which is equivalent tov =n(l-c) of Eq. 6-1, are addressed. Marques et al. (2009)

estimated the proportion of false positive detexdj@d, by visually examining 30 periods of
10 minutes from 6 days of recordings, a processhvielied heavily on a human operator
being able to distinguish between the sounds efést and a range of other sound sources.
If the main source of false positive detectionshis presence of other species with similar
vocalisations in the study area, then the rateatdef positive detections will be strongly
related to the relative call densities from thded#nt species. For example, if it is known that
species A and B are often confused by the classified that species B is much more
common or more vocal than species A, then a higbepeage of the detections attributed by
the classifier to species A will in fact be falsespiive detections resulting from the presence
of species B. If on the other hand, species B veateemely rare or very silent, then there
would be few misclassifications assigned to spe&id®m species B.

Since the interest is in estimating the densitynoftiple species within a given study area, it

becomes necessary to replace thec) term with the more general equation
v=M(n) (6-2)

Where v and nare now vectors representing the true numbers Itsf @ad the numbers of
calls counted for each species after misclassifinatespectively, antl is a more general

misclassification operator.

As described in the previous chapters, the levehistlassification between species can be
described in terms of a confusion matrix formuld @.g. chapters 3 and 4, Gillespie et al.,
2013; Oswald et al., 2007), which summarises tldatrilities for correct, false positive and

false negative classifications of all species aber@d (Part 1.1.2.2.b.iypl11).

Pu o PY T Pm (6-3)
c=|Pa = Py - Pim
Pm1 Pmj - pmm/

where};p;; =1Vl <j<m.
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The expected number of detected cdig)for each species following misclassification is

therefore given by
E(n)=C.v

and it follows that the true number of detectiomsdach species can be estimated using
D=C"1ln (6-4)

whereC ! is the inverse of the confusion matéix

Species classification is a stochastic processavbach classification may be considered as
an independent random event. In addition, it cafeoassumed that the confusion matrix is
known precisely since it is typically derived fraanfinite sample of real data (chapter 2).
Gillespie et al. (2013) and chapters 3 and 4 shawmertainties, expressed as a measure of
standard deviation, ranging from 0.04 to 0.48 fog probabilities of a typical confusion
matrix. The stochastic nature of the classificatimocess combined with the imperfect
knowledge of the confusion matrix add to the uraiety of any estimate of the true number
of detected cue®j and consequently, to the uncertainty of estimageties abundance if

misclassification is taken into account.

With this in mind, this chapter examines the biad grecision of the estimates of the true
number of detected calls from multiple species Wladse from the stochastic nature of the
confusion process, as well as the uncertainty withé confusion matrix. This is achieved by
looking at hypothetical confusion matrices and dated data. After a brief description of the
classification process in mathematical terms, whilslo serves as an introduction of notation,
a simple model containing only the stochasticityhw the classification process is analysed.

This analysis is then extended by incorporatingeuiainty in the rates of misclassification.

6.2. The classification process

Classification events are assumed independentabf @her. Thus the classification for each
speciesj can be described as the outcome of a multinomiatgss, where the vector of
probabilities of the corresponding multinomial distition is given by the probabilities of the

jth column of the confusion matrix. The numbers dl#iin these multinomial distributions
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are the true number of detectionsi.e., v; is the number of trials, or the true number of

detections for specigs

The expectesbserved number of vocalisations of speci€s) is equal to the number of
vocalisations of speciescorrectly classified as specieplus the false positive classifications

when vocalisations of another speciegi are misclassified as species
Correct  Misclassified

Classified species

E[n] = m + Z DijVj (6-5)

j#i

The following interpretation is useful when simigats are considered later on; since each
column is identified with the probability vector afmultinomial distribution, it follows from
Eqg. 6-5 that the observed data for speci€s) are the sum of the output values of tfe

components ofn multinomial distributions, i.e.,

j=1

with the number of trials being the true numberdeftectionsv; and the multinomial
probability for speciefbeing thg™ columnp ; of the confusion matrix, e.gy is the sum of

the ' realized values ah multinomial distributions.

6.3. Methods
For this study, the effects of animal encountee @t have not been considered, which can
be an important source of uncertainty on animahdbuace estimates, but would detract from
the primary purpose of this chapter which was taneixe the effects of misclassification.
Therefore only the following two sources of uncertiawere considered:

1. the stochastic nature of the classification process

2. Imperfect classifier performance (i.e., uncertaiotythe values of the elements of

the confusion matrix).
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6.3.1. Models tested

First, only the stochastic nature of the classifocaprocess was considered, by assuming that
the confusion matrix was known (i.e., no uncertginin a second step, additional uncertainty
in the values of the confusion matrix itself wasluded.

The bias and variance on the estimates of thertmeber of detected calls was assessed
using five different confusion matrices (Table 6widh increasing levels of misclassification.
These included the identity matrix (i.e., no missification) and four others containing both
low (Scenarios b or ¢) and high (Scenarios d orat¢s of misclassification with the
misclassification being either the same (Scenabiosr d) or differing for each species
(Scenarios ¢ and e). For each confusion matrixothe and variance using both equal data
(i.e., same number of calls for each species, $ierda and unequal data (i.e. differing
numbers of calls per species, Scenario 2) wereuated. All models were developed with
four species. For equal data, the true number ltf was exactly 3000 for each species. For
unequal data, values of 8000, 3000, 950 and 58, a&spectively were selected. Thus the
total number of calls was the same as the equal @at with a 160-fold difference in the

number of vocalisations between the most and @& EEbundant species.

The ten different scenarios (five confusion masix@ith equal and unequal data) are

summarised in Table 6-2.

Table 6-1: The five different confusion matrixes (a- €) used during the simulation studies. Confusion
matrix a is the identity matrix (no misclassificaton), b and ¢ both have a high correct classificatio
probabilities, but differ in that the misclassification probabilities of b are equal between speciesyhereas
they are different in c. Confusion matrices d and éoth have low rates of correct classification andgain

differ in that misclassification is equal betweengecies in d, but varies in e.

a) b) c)

True species True species True species

SpA | SpB| SpC| SpO SpA SpB SpC SpD SpA SpB S$pC Hpb

SPA| 1| 0| o o 0.85| 0.05] 0.09 0.05 | 0.85| 0.08] 0.02 0.0]
Predicted SPB| 0| 1| 0 0 0.0§ 085 005 005 0.0 0/85 0.03 0.09
SPECIES 'Spc 0 | o | 1| o 0.05 005 085 0.05] 003 005 d.85 0.05
SsD| 0| 0] 0] 1 0.0§ 005 005 085 0p2 002 d.10 (.85
Scenario x.a Scenario x.b Scenario x.c
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d) e)

True species True species
SpA | SpB| SpC| SpDb SpASpB | SpC| SpD
SpA| 052 0.16/ 0.16 0.16 0.52| 0.04| 0.20| 0.20
Predicted SpB| 0.16| 0.52 0.16 0.1p 0.19.52| 0.13| 0.05
Species "goc T 0.16] 0.16 052 0.1p 0.10.14| 0.52| 0.23
SpD| 0.16] 0.1 0.16 0.52 0.28®.30| 0.15| 0.52

Scenario x.d Scenario x.e

Table 6-2Summary of the scenarios tested in the simulatiortiedy; similar misclassification probabilities
means that elements of the confusion matrix outsidéne diagonal are the same between species (scenari

x.b and scenarios x.d), whereas for different misaksifications rates, they are different between spes
(scenarios x.c and scenarios x.e).

Equal Data Unequal Data
No misclassification Scenario 1.a Scenario 2.a
Similar misclassification Scenario 1.b Scenario 2.b
- e probabilities ' :
Low misclassification
probabilities - - —
Different mlsc'lglssﬁlcatlon Scenario 1.c Scenario 2.c
probabilities
Similar misclassification Scenario 1.d Scenario 2.d
- - P probabilities ' :
High misclassification
probabilities - - ——
Different mISC'|?..SSIfI0atI0n Scenario 1.e Scenario 2.e
probabilities

6.3.2. Analytical approach

For the simple case, in which the variance witlia values of the confusion matrix was
assumed zero, an analytical solution for the bnas\eariance on the true number of detected
calls (Appendix C.1) was derived. However, whenantanty was added to the confusion

matrix, the analytical approach became more comptex bias and variance through
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simulation were also explored. When variabilitytie values of the confusion matrix was

added to the model, bias and precision were med$umen simulation only.

6.3.3. Data simulation

6.3.3.a Stochastic nature of classification only

For each simulationbf, the numbers of misclassified, or observed, aallsvere generated
from the sum of four multinomial distributions witharameterss, representing the true
number of calls angd’s being the confusion matrix probabilities (Eg6)6-The estimated true
number of call®,, was then estimated by multiplying the inversehef tonfusion matrix by

the number of misclassified (observed) calls (Ed).6
ﬁb = C_lnb (6'7)

For each scenario, this process was repeated 1Qifd@8 and the mean (Equation C.4 in

Appendix C.1) and variance (Equation C.10 in Apper@il) of the estimated calculated.

6.3.3.b Presence of uncertainty in the confusion matrix

When uncertainty in the confusion matrix was coesd, the probabilitieg; of the j™

column of the confusion matrix were viewed as szdions of a probability distribution. To
meet the requirement that columns have to sum ¢g s distribution was chosen to be a
Dirichlet distribution (Part 1.2.2.3.a,p 30)

For each of the 10 000 simulation trials, new valfgr the confusion matrix probabilitigg
were generated from a Dirichlet distribution; thegere then used in the same multinomial
misclassification process as for the simpler situatThe true number of cal® was again
estimated using the inverse of the mean of theusoori matrix used to simulate the observed
data (Eq.6-7). Simulations were run with two lev@tsv and high) of uncertainty on the
confusion matrix. In both situations, the alphaapagters of the Dirichlet distribution were
selected such that the means of the parameters agual to the confusion matrix
probabilities of the different scenarios (Table )6-8o generate low uncertainty in the
confusion matrix, the parameters were selectecht@ la variance equal to 0.01 on average.
The parameters for the high level of uncertaintyevselected to match a variance of 0.1

observed with real data in Gillespie et al. (2013).
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Table 6-3: Examples of Dirichleta parameters used for species A for each scenarioofFthe remaining

species parametersx were the same but in different order to match theonfusion matrices.

a for Sc.x.a Sc.x.b Sc.x.c Sc.x.d Sc.x.e
Low 100,0,0,| 85,5,5,5 85,10,3,2 52,16,16,16 52,15,10,23
uncert 0
ainty

High 0.1,0,0,0f 0.85,5,5} 0.85,0.1,0.03,0.0 0.52,0.16,0.16,0.1 0.52,0.15,0.1,0.4

uncert 5 2 6 3
ainty

6.4. Results
Through this study the precision of the estimates wepresented by the coefficient of
variation (CV), which is the standard deviation tbé estimate divided by the estimate,

generally reported in per cent.

6.4.1. No uncertainty in the confusion matrix

When there was no uncertainty in the element of dbefusion matrix, the analytical
approach demonstrated that the meansvofwere an unbiased estimate of the tru), (
(Appendix C, Table C.1). The simulations verifidustresult (Appendix C, Table C.2); no
significant difference between means and variargadsulated analytically and estimated
through simulation was observed.

As expected, without misclassification and desihitelevel of uncertainty, the estimates were
unbiased and precise (CV=0). A decrease in theafatmrrect classifications (scenarios b
and c versus d and e) did not affect#hestimate’aneans but it did significantly increase the

variance and so the CV of these estimates (Figure 6
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Figure 6-1: Expected true number of detections foreach species, from simulation without uncertainty
within the confusion matrix: for equal data scenaros Scla to Scle (A) and for unequal data scenarios
Sc2.a to Sc2.e (B). Solid bars show the standard viltion and the dotted line the true number of

detections.

Where there were different numbers of calls froen fibur species, unbiased estimates of the
true numbers of calls were again obtained. The @Vhe estimates of numbers of the more
common species decreased (due to lower variancengdmm misclassifications of the rarer
species) but the CV of the estimates of the numbgkrare species calls rose significantly,

reaching over 200% with confusion matrixes c arfBigure 6-2 and Table C.1 & Table C.2).

6.4.2. Uncertainty in the confusion matrix

When uncertainty in the confusion matrix was ineldd the simulations again showed
unbiased estimation af for all the misclassification scenarios (Appen@ixTable C.3 and
Table C.4). However, adding uncertainty to the aseitin matrix generated a large increase in
the CV due to an increase of the variance (Figu89. 8Vith equal data the CV, across all
scenarios, increased on average from 2% withougrtaiaty to 11.7% with low uncertainty
and to 87.7% with high uncertainty (Figure 6-3A).
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Figure 6-2: CV of the expected true number of detewns for unequal data for each scenario (Sc2b to

Sc2e), with different misclassification probabilites and no uncertainty in the confusion matrix. The axis
is on the log10 scale.
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Figure 6-3: Mean of the CV of the expected true nuiver of detections across the ten scenarios Scla to
Scle (A) and Sc2a to Sc2e (B) for each species aath level of uncertainty of the confusion matrix

values, no uncertainty, low uncertainty and high unertainty. The y axis is on the log10 scale.
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With the unequal data the average CV across atlesies for the common species (species A
and B) increased on average from 1.4% without daitgy to 9% with low uncertainty to
69% with high uncertainty in the confusion matrbor the rare species (species D) the
average CV across the five scenarios was at 125#outi uncertainty rising to 1 009% with
a low level of uncertainty and 7 030% with a higkdl of uncertainty (Figure 6-3 B). With
the high variability in the confusion matrix sont&ividual simulation results gave some
negative estimates @, which is clearly not possible with real data.

The presence of uncertainties in the confusionimdid not alter the fact that a confusion
matrix with low misclassification will give a moggrecise estimation dd than a confusion

matrix with high misclassification probabilities gpendix C, Tables C.3 and C.4).

6.5. Discussion

The results showed that it was possible to deriMeiased estimates of the true number of
detections of each species from data containinglassified acoustic detections. However
the precision of the estimates was strongly rel&etthe degree of misclassification (Figure
6-1) and the degree of uncertainty within the ceitfm matrix (Figure 6-3).

A low CV (<10%) on the estimated numbers of cadla be achieved in some situations, such
as when there were similar numbers of calls betwseecies, a low misclassification
probability, and low uncertainty within the confosimatrix. In cases where there were large
differences in the numbers of detected calls batwsgecies (scenarios 2.x), the CV was
much higher on the estimates of the number of datlsn the rarer species. In the more
optimistic scenarios (low misclassification probdpi and low uncertainty within the
confusion matrix), the CV for the common speciear B varied between 0.55% to almost
9%. However, the CV increased close to 100% fos lesmmon species (species C) in
scenarios with a high rate of misclassification dod uncertainty for the values of the
confusion matrix. For species with a very low enteu rate (Species D), even with a small
level of uncertainty and low misclassification pabidity, the CV was higher than 400%,
reaching the value of 2500% with a high misclasation probability. With uncertainties in

the confusion matrix similar to those observedaal data (Gillespie et al., 2013), the CV
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was higher than 50%, even for common species, dmd estimate became totally

uninformative for the rare species (CV>10000%).

For the rare species, some estimates of the trod@uof detections were not biologically
possible as they were negatives. These negatidichons were a result of the mathematical
characteristics of the inverse confusion matricestgaining negative values) associated with
the stochastic process between the inverse ofdhfugion matrix and the observed number
of detections. The inverse of all the confusionras used contained large negatives values.
To obtain the true number of detections these se/anatrices were multiplied by a vector of
observed data containing only positive values dnidined from a stochastic process from
the confusion matrices (sum of multinomial disttibns). Consequently some outputs could
be negatives. For example if only 2 species A arardBconsidered with few detections of
species A (10) observed and much more of speci@)Band species B is 40% of the time
misclassified as species A then mathematicallyriliee number of detections will be negative
(see Box 1 for demonstration). However the averddbe estimates was always positive and

was unbiased.

0.8 04

Confusion matrix for species A and B 02 06

Observed number of detections of species A and ég

True number of detections for species A and :Ii

Then:
08xa+04xb=10
02Xa+0.6x%xb=60
Sa
a=—45
b =115

Box 1. Demonstration that in some situation it is possie to obtain negativ
estimates of the true number of detectiona and b for respectively species
and B.

From the results it appeared that uncertainty m ¢bnfusion matrix was the parameter

responsible of most of the variance of the estimaledeed the average CV, across all
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species and all misclassification probabilities,swd times higher when a high level of
uncertainty (average CV across 4 species = 1885)assumed for the confusion matrix than
where there was no uncertainty in the confusionriméiverage CV across 4 species = 27).
Whereas the average variance, across all specteslatevels of uncertainty within the
confusion matrix, was only 29 times higher for medaith a high misclassification
probability (mean CV=13211) that for models wittkoa misclassification probability (mean
CV=450).

A CV of 10% on a density estimate is consideredaay good, a CV of 20% as reasonable
and a CV of 100% near useless (Thomas and Mar@04&). Particularly for rare species,
CV’s are often high, generally due to a low enceumate. For example, Hammond et al.
(2002) used visual line transect distance samphethods to estimate the abundance of the
relatively common European harbour porpoRlegcoena phocoena, with a CV of 14%, but
the abundance of the rarer common doldbehphinus delphis from the same survey, had a
CV of 67%. (Gerrodette et al., 2011) estimatedahendance of the extremely rare Vaquita

Phocoena sinus in the Gulf of California with a CV of 73%.

In this chapter, only uncertainty in estimates bé ttrue number of detections due to
misclassification has been considered. In practioayever, significant contributions to the
overall CV can be expected from the estimate oéatein range, the encounter rate, and the
estimate of vocalisation (cue) rate which is unkndar many species. Thomas and Marques
(2013) outline a number of methods for estimatinthldetection range and cue rate and the
method chosen will be dependent on both the spacidghe study area. If we consider the
species for which the true number of detectionsismeated with a CV lower than 50% (for
example, common species A and B), we can hope thasspite unavoidable
misclassifications, acoustic detections providefulseaformation. However for the rare
species, a small amount of misclassification fréw@ more common species can render the

acoustic data useless for all practical purposes.

Since the uncertainty on the estimate of each spasihighly dependent on the presence of
other species, incorporating information on thellkabundance of calls from other species
will hopefully lead to more robust estimates. There the next chapter presents the
development of a Bayesian model which incorporgiger information on the relative
abundance of calls from different species (basegdremious survey work and information on

call rates) as well as the uncertainty on the \almethe confusion matrix. The Bayesian
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approach will also resolve the problem encountdrgd/our analytical method which can
(incorrectly) produce point estimates that are tiegathe Bayesian estimation has the

stochastic nature of the observations built in.
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Chapter 7: A Bayesian method to estimate the number of

acoustic detections in the presence of species misclassification.

7.1. Introduction

The previous chapter proposed a non-Bayesian metihoelstimate the true number of
acoustic detections, for several species at thes dane, from simulated observed acoustic
detections misclassified by an automatic classifidre influence of the misclassification
probabilities and of the uncertainty within the figion matrix on the bias and precision of
the estimates were compared. For all classificasoanarios (Table 6-2,p103) the true
number of acoustic detections could be estimatddowt bias. However, the precision of the
estimates varied from a CV of few per cent to a @\ore than 1000% depending on the
classification probabilities, the uncertainty witithe confusion matrix and the encounter rate
of a species. The method used in chapter 6 hadrtamo limitations. It sometimes generated
negative estimates (see Figure 6.1, Species Dihwdiearly would not be found in real data
in the given context. In addition, a reliable measof the precision of the estimates could
only be obtained with a sufficiently large sampiees In practical applications, it may be
unrealistic to collect data with a sufficiently d@ sample size to quantify the precision of the

estimates.

However, for some acoustic detection studies the trumber of detections and the amount
of uncertainty in the confusion matrix might be iéalale from prior surveys or analyses.
Indeed the true number of detections depends maimlthe number of animals within the
acoustic detection range, on the call rate andhendetection rate. If the PAMGUARD
Whistle Classifier (PWC) is used to identify theesies, then the true number of detections
also depends on the fragment and section lengththeofwhistle contours (see Part I).
Previous surveys and also prior knowledge from rosloeirces might be used to obtain some
of this information. Given the development processhe PWC (chapter 2 and 3), it is
possible to obtain measurements of the confusiotrixnancertainty when it is used for
classification.

In this chapter it was assumed that such prior kedge is often available. In the analysis of
ecological data a Bayesian approach is frequerggdwsince it allows us to include prior
knowledge in the model (Eguchi and Gerrodette, 280®g et al., 2010; Taylor et al., 1996;
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Wade, 2000). In addition, it is possible to asgbssimpact of the precision of the prior
knowledge on the final estimate by extracting sumymatatistics of the posterior
distributions. Another advantage of the Bayesiam@work is that prior distribution for the
parameters may be chosen such that the estimateawe only positive values.

Similar to the previous chapter, this chapter dises a simulation study. Here the
performance of the estimation of the true numbeaicafustic detections for four species in a
Bayesian framework is assessed. The same modalseasin the previous chapter with
different misclassification probabilities (Tablel§-amount of uncertainty in the confusion

matrix and level of knowledge about the true nuntdfetetections are considered.

7.2. Methods

7.2.1. Data
For each model a dataset was simulated for fouwriepeaising the method described in the
previous chapter (Part 11.6.3.3.b, p104) wheredatefusion matrix and the (true) number of

detections were the same as in the different smenbsted in Table (Table 6-2, p103).

113



Part Il Misclassification Chapter 7: A Bayesianthwel to estimate the number of acoustic
detections in the presence of species misclassfica

7.2.2. Overview
A summary of the notation that was already usethénprevious chapter and is again needed

for this chapter is provided in Table 7-1.

Table 7-1: Summary of the notation used in previoushapter.

Vector containing the number of observed detectdnspeciesi with
n
n=mqy, .. nj., Ny Vi=1.,m
Vector containing the true number of detections:= (v, ..., v, ..., V)
v
with vj=1,...,m
A Estimated classification probabilities: Estimatadbability of classifying
p. .
Y specieg as speciesfrom PAMGUARD Whistle classifier
Vij Number of acoustic detections classified as spe@ad made by specigs
C Confusion matrixm X m matrix (6.2, pp100)
f Likelihood functions
20 Prior distribution functions
) Posterior density functions

The Bayesian models used in the chapter are basédeomodel described in the previous
chapter

E[?] = E[C]E[n].
The parameters to estimate were the true numbdgtettions; (Table 7-1) for each species
j=1,..,4. The simulated datap, consisted of realisations from a stochastic pecthat
depended on the classification probabilipgsin the confusion matrixC and on the vectoar,

which contained the true number of detections (Hg.7

114



Part Il Misclassification Chapter 7: A Bayesianthwel to estimate the number of acoustic
detections in the presence of species misclassfica

Ny~ z Muiti(v;, p,)[i] (7-1)
=1

As described in the classification process (PaBt2] p100) the observed data for species
(n) was the sum of thé' realized values of the vector of, multinomial distributions (thé"
realized values is symbolised by thi¢in Eq. 7-1) where the number of trials being thet

number of detections; and the multinomial probabilities for specjés given by thg™ row

p j of the confusion matrix. ij; were the realized values of tfemultinomial then

m

j=1
According to Bayes’ theorem and assumingnd p are independent, the joint posterior

distribution forv is:

n(vln,p) « f(n|p,v)p(W)p(P), (7-3)

wheref (n|p,v) is the likelihood angh(v) andp(p) are the prior distributions far andp,
respectively. These prior distributions denote fiebability of obtaining the acoustic
detectionw and the classification probabilitipsoefore the data have been observed.and
p are independent, as the classification probadsliin the confusion matrix are obtained

independently o¥. For more details of Bayesian theory, see se@®am1.1.4 (p17).

7.2.3. Likelihood functions
The simulated data derived as the sum of unobseraeaimetery (Eq.7-2) hence

faipw) = | [ ropv)
j=1

with the likelihood being a product of multinomdiktributions

L
Vj: Yij YVij  Ymj
L y] [P1j Py Pmj

fjlp,v) =
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7.2.4. Prior distributions

7.2.4.a Prior distributions for the true number of detections v

The following was based in the assumption that spn@ knowledge about some of the
parameters (i.e r,P, see equation 6.1) drivingnilmmber of detections was available from
previous studies. Indeed, depending on speciesCthef the abundance estimates may be
very different. However, for whistling species, ¥ of the abundance estimates frequently
ranges from 20% to 60% (Barlow and Forney, 2007D&02009). For most species, the
call rates are either completely unknown or knowa Wwith information on precision not
available. Indeed call rates are dependent asaifparameter that depends on various factors
such as group size or behaviour (Buckastaff, 2@@4ick and Janik, 2008) hence they are
difficult to measure. Hence the CV for this para@netvas expected to be high. Finally, for
the detection probability, two parameters are comlgnomeasured to establish the
performance of a detector, the precision, estirgatite rate of correct detections, and the

recall, measuring the detection efficiency(Gilleset al., 2013).

To model these priors knowledge’s, the prior disttion on the number of detections was
assumed to follow a negative binomial distribut{&uy. 7-4) with parametens (mean) and
o ?(variance)to account for over dispersion in the data. Coriveatly the parameters of a

negative binomial function are the number of trialand the probability of success for each

trial p, respectively

T(U- + n)
2 ] n Vi
o) =D Ty (4)
p(vjlu, a?) T(n)v;! p*(1-p)
) 2 n
withn = P andp = o

A prior sensitivity analysis was carried out witiréde different sets of priors (Table 7-2) and
their impact on the estimate of true number of ceias for each species was analysed. Each
set of priors contained four prior distributionsedor each species in the classifier:

Prior V1: This set of prior parameters was chosen so liga€Cl of the prior distribution was
equal to 40% (a common CV value found for abundasstanates of cetacean populations
(Barlow and Forney, 2007; CODA, 2009; Forney etE95)).
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Prior V2. The second set of prior parameters, on the dihad, was selected to mimic a
situation where the true number of detections vaadyfwell-known with a CV of 10%. In
practice, such a situation is rather unrealisspeeially if the parameter depends on other
highly variable parameters such as the call ragspide the fact that this it is a rare situation,
this CV was simulated to better understand thdivelatrength of the parameters’ influence
on the precision of an estimate. It is importanidentify the main source(s) of uncertainty to
target these specifically if one seeks to redua@edainty in the estimates of the true number
of detections.

Prior V3: Since the previous chapter has indicated thatspecies tend to be more sensitive
to misclassification than common species, this t@rapvestigated the consequences of a
prior with a large CV on rare species (as foundhi literature (Gerrodette et al., 2011))
along with a small CV on the more common speciesMoich more prior information are
available as they are easier to detect. As a coeseg, this last set of prior parameters was
used only with unequal data (scenarios 2.x) andr mtistribution parameters were chosen
such as the CV’s of the distribution were differéat each species (Table 7-2). These
parameters were chosen such as the CV for thet rapesies (species D) was 60% for
Models A (see section 7.2.4.b), but 40% for modelsecause a lack of convergence of the

algorithm was noted when 60% was used.

Table 7-2: Prior parameters of the negative binomibprior distribution V1,V2 and V3.

Scenarios 1.x Scenarios 2.X

All Species SpA SpB SpC SpD

Prior V1 mean 3000 8000 3000 950 50
CV=10% variance 1.8x10 1.25x16 1.8x16 | 1.8x1d 51

Prior V2 mean 3000 8000 3000 950 50
CV=40% variance 1.4x10 10.2x16 1.4x16 | 1.44x10 400

Prior V3 (Models A) mean 8000 3000 950 50
CV=10%,20%,40%,60% variance 1.25x10 | 3.6x10 | 1.44x10 900
Prior V3 (Models B) mean 8000 3000 950 50
CV=10%,20%,40%,40% variance 1.25x16 | 3.6x10 | 1.44x10 400
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7.2.4.b Prior distributions for the classification probabilities p ;

In chapters 3 and 4 and also in Gillespie et @18 the classification probabilities in the
confusion matrix of each generated classifier wessociated with a standard error. This
variability was caused primarily by the samplingpgess used to develop the classifiers
(chapter 2). The previous chapter (chapter 6) lmmsotistrated that uncertainty within the
confusion matrix had more impact on the precisibrihe estimate of the true number of
detections than the actual misclassification praibieis.

In the Bayesian model described previously, therpdistribution p(p ;) reflects this
uncertainty.Following the same reasoning as in the previouptenathis prior followed a
Dirichlet distribution, which took on similar valsego mirror the entries of the confusion
matrix (in particular the requirement that probiies in each column of the confusion matrix
have to sum to 1 (chapter6 Eq.6-3, p99) used indtfierent scenarios. Furthermore, the
Dirichlet distribution is the conjugate prior distion of a multinomial distribution (Gelman
et al. 2004). The Dirichlet distribution is definbd a vector parametess= (ay, ... @;, ... &)

with a,,, > 0 (Gelman et al., 2004) as

7-5
p(p]|a], ...,aij,...,amj) ( )

(e +tay + "‘“mj)p a1
= »
F(alj) F(al]) F(am]) J

ajj—1

D1

amj—l

With pyj, . Dijs oo Pmj = 0; X121 pij = Liag = Y24 y;

The results in chapter 6, showed that classificagwobabilities with high uncertainty
reduced the precision of the estimate of the tumbrer of detections. The consequences of
different level of uncertainty on the classificatiprobabilities are investigated in this chapter
by a sensitivity analysis with four different Dinlet parameters for each misclassification
scenario (for the exact values of the parametesee Appendix D, Table D.1) and for each

of the prior assumed for the parameters of theritueber of detections.

Models A: PO
A first series of models were tested assuming tlassdication probabilities were not
estimates but known values. These models (ModelsEé,/-6) did not have a prior

distribution (PO) on the parameters.
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n(v|n, P) o f(n|P, v)p(v) (7-6)

Models B
Three sets of priors on the parametpra/ere tested, with each set containing four prior

distributions on the parameteps for each species. The parametersof the Dirichlet

distributions were chosen such tfgé.%= E[p;;] and such that the CV’s of the correct
0

classification probabilitiesp(;) were different between the priors tested. Compaitie CV

of the confusion matrices generated in chapterd 3nd Gillespie et al (2013), it was
observed that the CVs of the correct classificapoobabilities of a confusion matrix were
influenced by the quality of the training data.clmapter 4 the quality of the training dataset
was low and the CV of the correct classificatioohabilities ranged from 15% to 57%. In
chapter 3 where the confusion matrix was obtainitd avbetter data set the CVs ranged from
3.6% to 23%. Finally in Gillespie et al (2013) fohich a very good quality training dataset
was used to train the classifier the CVs of theeamrclassification probabilities ranged from
0.2% to 54%. The choice of the parameters of thielet distribution for each set of prior
was made such that these ranges of CVs were repedse

Prior P1 was an informative prior with the parameterselected for each species such that

%Epgi) = 0.01 to simulate a CV of 1% for the correct classifioatiprobabilities, with
ii
E[ﬁij] being the classification probabilities of the amibn matrix used in Scenarios .x .
Prior P2: The second prior was less informative with acfgparameters selected such the
CV of the correct classification probabilities wagual to 40% and Witlﬁ'[ﬁi]-] being the

classification probabilities of the confusion matused in Scenarios .x.

Prior P3: The third prior was selected to simulate a caofusmatrix with random
classification and hence all parametersvere equal to 1. With such parametEv{ﬁU] =

0.25 and the CV=77% for the correct classification @oibties.
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7.2.5. Investigated scenarios
A total of 85 models were tested (Table 7-3) onutated data.

7.2.5.a Models A: known p;;

Twenty-five models were tested with a prior on thparameters and no prioP) on the
classification probabilities. The same confusiontribes as in the previous chapter
(Scenario.a to Scenario.e) were used. Each of tinsecenarios was associated with two

(for equal data) and three (for unequal data) proor thev parameters (Table 7-3).

7.2.5.b Models B: including prior on p;; (P1 to P3)

Given the properties of the Dirichlet distributidnis not possible to choose parameters
such thatE[p;;] = 1 andvar(p;;) # 0, consequently Scenario.a have not been tested with
Models B. So Models B corresponded to 20 ModelsoAvfhich priors on the;;'s were
added to each model. The priét$, P2 andP3 described in Section (7.2.4.b) were tested on

each of the 20 models.

Table 7-3: Summary of all the investigated Bayesiamodels. Sc1.x and Sc2.x correspond to the scenario
of misclassification (Scx.a ,Scx.b, Scx.c, Scx.d;x3E) described in chapter 6. The prior parametersvere
described in the section 7.2.4. MH (Metropolis Hastgs) and GS (Gibbs sampler) are the MCMC

alogithms used in the models

v priors MCMC
V1 V2 V3 Algorithms
PO Scl.x Scl.x
MH
Sc2.x Sc2.X Sc2.X
Scl.x Scl.x
" P1
g Sc2.x Sc2.x Sc2.x MH
o
= Scl.x Scl.x +
P2
Sc2.x Sc2.x Sc2.x GS
Scl.x Scl.x
P3
Sc2.x Sc2.x Sc2.x
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7.2.6. Posterior inference

To obtain posterior inference on the parameigra Markov chain Monte Carle algortyhm
was used (Part 1.1.4.3.c, pl19). For Models A, thes implemented using a Metropolis-
Hastings (MH) sampling algorithm; for Models B ab@$ sampling algorithm was added to
update the parameters (see below for details in both cases). All the athms were
implemented in the statistical softwafe@evelopment Core Team, 2012)

7.2.6.a Metropolis-Hasting (MH) algorithm: the proposal density function

The MH (Hastings, 1970) algorithm was used to updla¢ parametessandv.

Because the data were derived as a sum of'tleéements ofn multinomial distributions
(Eq.7-2) the parameters were updated by blocksngdarameters. The proposal density

function was a multinomial distribution such that:

Vi. = ni! ( leil >Yi1 < UJPU >Yij
Yy e Y \ 2T vy T\XTL VP

Once a block of y;;'s was updated, the; were also updated (Eq. 7-7) and the current

parameter values were accepted following the aaoeptrules described in the introduction
(Part 1.1.4.3.cpl19).

m

7-7

v = Zyl'j (-7
i=1

7.2.6.b Gibbs sampler

The Dirichlet distribution is the conjugate prioorfthe probability parameters of the
multinomial distribution. Thus the conditional pesor distribution of the probabilitp; of
observingy ; was a Dirichlet distribution with parameteis, & y,, ..., @;; + Yij, ..., @m; +

¥ymj) (Gelman et al., 2004)

7.2.6.c Convergence, burn-in and thinning

For each model, three MCMC chains (Part 1.1.4.819) with different initial values were
run for up to 800 000 iterations. The initial vaduef one chain were the true values. The
initial values of the two other chains were simedhtfrom the prior distributions of the

models and values at least 20% away from the taleeg were selected. For successive
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sections of 10% of the iterations a convergencgmdistic was applied to detect the section in
which the Markov chain had converged. Trace platgp-correlation plots (acf plot) and a
BGR (Part 1.1.4.5, p21) convergence test were tseatktermine if the model had reached
convergence within this section. The section forclwhhe convergence reduction factor was
lower than 1.2 (Part 1.1.4.5, p21) for theparameters for each species was then identified as
the section of convergence. The iterations beforevergence were discarded as a burn-in. If
convergence was not reached after 800 000 itesgtiansecond set of three chains was
generated with one chain starting from the truaieakhile the starting values of the two
remaining chains were simulated similarly as infis& run, but with values being selected
around 10% away from the true values. The sameergence diagnostic was applied. If
after this second MCMC run, the chains still did oonverge, the corresponding model was
declared as non-converging and no further analyasdone for this model. Each converging
model was replicated=300 times. For all the replicates the initial \edwf the parameters

have been chosen to be the true values used tdasinte data.

Due to high serial auto-correlation in the chaordy one in every four iterations (“thinning”
(King et al., 2010)) were kept after burn in to gderfrom the posterior distributions of the
parameters. Summary statistics (mean and standasndtidn) were extracted from these
posterior distributions.

7.2.6.d Model performance and summary statistics

To analyse the impact of the different priors awmafasion matrices on the estimates the
relative errors (where “relative error” is definad the difference between the mean of the
posterior distribution and the expected true valueded by the expected true value) and
posterior distribution coefficient of variation (§¥or each species were measured for each
replicate. Based on the relative errors the redabiases (mean of relative errors) between
models were compared to analyse the impact of tiog pariances on the accuracy of the
estimates. The means of the CVs for each model e@mpared to analyse the impact of the

prior variances on the precision of the estimates.
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7.2.7. Statistical versus biological significance

To compare the bias and precision between modeSWNwas used. In this thesis the null
hypothesis compared if the relative bias or preaisif the estimates of the true number of
detections were significantly different between pmers used in the model. While most of
the tests were statistically significant, the gioestof whether this marks a biologically
significant difference has to be considered sephrathe decision about whether or not such
a difference is biologically significant has to ¢alkito account the specific context of the data.
For example a difference of 50 detections betwaendstimates of a species for which the
average number of detection is 3000 is not the ssvadifference of 50 detections when the
average number of detection for a species is 1@€ctiens. In density estimation a CV of
10% of a density estimate is considered as verglgadCV of 20% is reasonable whereas a
CV of 100% is nearly useless (Thomas and Marqu&E2 )2 Given that this study was carried
out within the larger picture of the whole abundamstimation process in mind, a relative
bias or difference in CV that is lower than 10% lwibt be considered as biologically
different in this discussion. A difference betweé&f to 40% will be considered as

biologically significant and one that is greateariid0% as highly significant.

7.3. Results

7.3.1.a Convergence and sensitivity with respect to the starting values

For Models A with known classification probabilgieand equal data, convergence was
always reached (Appendix D table D-2) after 30 @6fations. The MCMC chain showed
good mixing (Figure 7-1) and a relatively rapid &se in auto-correlation (Figure 7-2).
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Figure 7-1: Trace plots showing MCMC sample value$or parameters v (y-axis) vs. sample iteration (x-

axis, after thinning), obtained with classificationscenario Scl.b and prioiV1.
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Figure 7-2: Auto-correlation plots of the posteriordistributions of parameters v; obtained from the model

with classification scenario Scl.b and priorV1l. Note that samples were thinned, so that a lag df

corresponds to 4 MCMC sample iterations.

Nonetheless for models simulated with a CV of 4086 the prior distribution on the

parametersv (prior V2) and high misclassification probabilgie(Scl.d and Scl.e),

convergence depended on the Markov chains’ in@lies. When these values were more

than 20% away from the true values, despite apfggrgaod mixing within each chain, the

multiple chains did not converge (Figure 7-3, ApiignD Table D-2). Convergence was

achieved for all models if the initial values wesglected within 10% of the expected true

values.
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Figure 7-3: Trace plots for each chain obtaine inhte analysis of model with scenario Sc.e and prior2/for

each species. Within-chain mixing is good but thehains arere not converging towards the same values.

In models were the true number of detections diffebetween species (classification
scenarios Sc2.x), all models with a CV of 40% foe prior distribution of the parametars
(V2) were sensitive to the initial values of therkiav chain independent of the classification
scenarios (Appendix D Table D-2). When the prior @&s different between species (V3),
only models with high misclassification probabddi were sensitive to the initial values.
However, it was not possible to estimégg for the rare species (Species D) in these models:
after few iterations the chain stopped updating mmchew parameter values were accepted.
In these cases, more iterations (60 000) were sape$o achieve convergencevrior the
other species.

Models B were also sensitive to the initial valeéshe Markov chains. An increase in the
variability of the prior distributions as well as ihe misclassification probabilities made the
Markov chains more sensitive to the initials val@@ppendix D Table D-3). The issue was
aggravated with unequal data. With initial valusund 10% of the true values, as described

for Models A convergence was reached for all modttr up to 480 000 iterations.
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7.3.1.b Sensitivity analysis and posterior inferences

Across all tested models, the Markov chain stoppathting for 0.02% and 4% of replicates
of Models A and Models B, respectively. This comesl essentially estimates for species D.
When the models were run with no misclassificatithresestimates for all species were equal
to the expected true values for each replicate.

7.3.1.b.i Bias in the estimated number of detections by species

Impact of the proportion of true number of detecsithetween species

The accuracy of the estimates was influenced byr#tie in true numbers of detections

between species. For each scenario with an equeahtimber of detections between species,
the?; estimates for each species were unbiased ( Tadbléigure 7-4).

For scenarios with unequal data between speciestellative bias was higher 0.3% and -
3.51% in Models A and Models B respectively (Figurel). Furthermore the standard

deviations of the mean bias were higher than wgtimédata (Table 7-4).

Table 7-4 : Mean and standard deviation (in bracket) of the relative bias across all Models A and all
Models B when the same number of detections for daspecies was simulated (Scl,equal data) and when

different number of detections between species westmulated (Sc2, unequal data).

Models A Models B

Scl: Equal data 0% (0.06) 0% (0.1)

Sc2.: Unequal data] 0.31% (4.6) | -3.6% (14.9)
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Figure 7-4: Relative bias (beanplots) and mean refize bias (bold lines) for each species for modelghere
p is assumed known (Models A) or is estimated (ModeB), and for models with equal and unequal data.
The thin lines crossing the entire plot (close toezo) are the mean across the four species. For MddeA
and equal data each beanplot is computed from 10 ltges (the relative bias for 5 scenarios times 2 mis
on v), for unequal data each beanplot is computeddm 15 values (the relative bias for 5 scenariosrties 2
priors on v). For models B each bean plot is compatl from 24 and 36 values from equal and unequal

data, respectively (relative bias for 4 scenariosrmes 3 priors on p times 2 or 3 prios on v, respdgtly).

Unequal data in Models A

In models A with unequal data, the impact of thiempvariances and of the misclassification
probabilities was different depending on the speci®lonetheless, decreasing the
informativeness of the prior (by increasing itsi@ace) onv increased the absolute values in
the relative bias statistically significantly forl aspecies (p<0.001) (Figure 7-5) but

biologically insignificantly for all species excegppecies D. For this rare species, this increase
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was the most pronounced. On average across allasssiication scenarios the relative bias
for species D ranged from -0.63 for V1 to 9.63 f@B. More precisely at a low
misclassification probability level this bias readnl5% and 28% (Figure 7-5,) with prior V3
and misclassifications scenario b and ¢ (not na degre available for scenario Sc2.d and e).
For the other species the maximum bias differereeeiwved between V1 to V3 was for
Species C with a relative bias ranging from -0.43142 whereas the maximum range of
relative bias observed for the three other waspacies C with a relative bias ranging from -
1.63% to 0.88%.

20 30

Relative Bias %
10

-10

V1.SpA V2.5pA V3SpA V1SpB V2.SpB V3.SpB V1.5pC V2.8pC V3.SpC V1.SpD V2.SpD V3.5pD

Figure 7-5: Beanplots of the relative bias of thestimates as function of the priors on the parameterv
(V1 to V3) and species. The bold lines are the meaelative bias for each beanplot whereas the dottelihe

is the mean across all beanplots.

Increasing the misclassification probabilities eased the relative bias for all species. The
standard deviations of the mean relative bias acps®rs onv increased when changing
from low to high misclassification probabilitiesrfepecies A to C whereas it decreased for
species D (Table 7-2).
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Table 7-5: Mean relative bias (%) and their standad deviation in brackets across the priors o for each
species. The different colours represent the diffent level of misclassification: No misclassificatio

(white), low misclassification (light grey) and hidp misclassification (dark grey).

SpA SpB SpC SpD
Sc2.a 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
Sc2.b 0.07 (0.5) 0.14 (1.18) 0.14 (3.32) 1.87 (27.01)
Sc2.c 0.03 (0.58) -0.00 (1.55) 0.19 (2.91) 2.39 (25.11)

Unequal data in Models B

For Models A the Markov chains stopped updating $mpecies D in models with
classification scenarios Sc2.d and Sc2.e and withn 3. For Models B this occurred for all
four species but not for all replicates. In V1 a@dy the models 30% of the replicates did
not converge whereas in models with classificaioenarios Sc2.e and prior P1 and 66% of
the replicates did not converddese replicates were not used in the rest ofriagysis.

When the parameters were estimated, rather than assumed known (i.edeld B), the
estimates ob for all the species were significantly (p<0.004fjuenced by the classification
scenario, however with differences between theigpd&igure 7-6). For species A and B,
the largest bias occurred in scenario Sc2.e, whéthhigh misclassification and asymmetric
misclassification between species. The mean reldiias for species A for Sc2b,c,d together
and Sc2.e was -1.30 (sd=0.71) and -16.0 (sd=6d&3})ectively. For species B it was 1.95
(sd=1.25) versus -31.29 (sd=25.3) for Sc2.b,c,dt@ether and Sc2.e respectively. For
species C and D differences between scenarios high and low misclassification

probabilities were less pronounced (Figure 7-6).

129



Part Il Misclassification Chapter 7: A Bayesianthwel to estimate the number of acoustic
detections in the presence of species misclassfica

Species A Species B
=
(o]
= = o
= @
o @ &
[+ @€
= = o=
= 5 7
k] L]
o o
D
=
oo
| | | | : | | | |
Sc2b Sc2c Sc2.d Sc2e Sc2b ScZc Sc2d Sc2e
Species C Species D
o ]
({e]
o
(=3 -:r (=}
£ =
w - _| w
= o @
o | T - 0]
@ - — Lol = a
= =
B o Q_? - "
= O i
o= o
(o= ]
2

I I I | I I I I I
Sc2b Sc2.c Sc2.d Sc2e Sc2.b Sc2c Sc2d Sc2e

Figure 7-6: Beanplots of the relative bias for eachpecies as function of the classification scenasiosed in
the Models B with unequal data. The bold lines arghe mean of the relative bias for classification
scenarios and the dotted lines are the average réle bias across the four classification scenariogach

beanplot is computed from 9 values (three priors op X three priors onv)

When Sc2.e was kept in the sensitivity analysisclear pattern was observable between
species and the different priors (Appendix D figlp-However, once this scenario was
removed, it was easier to detect the statisticallynificant (p<0.001) impact of the
differences in prior variability on the accuracytbé estimate$; for each specieRelative
bias of thed; appeared to be affected differently by the variptisr variances, depending on
the species (Figure 7-7). for species A to C, diormative prior on the classification
probabilities (P1) decreased the effect of therpramv, while for species D, the relative bias
decreased with the informativeness of the priorvdrmom -0.82% to -7.50% with V1 and

V2/V3 respectively independently of the informatess of prior on the classification
probabilities (P1).
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When the priors on the parametersvere less informative (P2), the relative bias éased
for species A to C and was influenced by to theavae of the prior on. For species C the
relative bias increased greatly and biologicalgngicantly from -0.65% on average with P1
to 24% with P2, whereas for species D a less indtitra prior onp decreased slightly from -
5% to -4% the overall relative bias between P1RRAdespectively.

Finally with the vague prior P3, for species A tdhe relative bias decreased in comparison
to models with prior P2 and was sensitive to tharior variability, whereas for the rarest
species the relative bias doubled between modalpvior P2 and models with prior P3.
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Figure 7-7: Beanplots of the relative bias distribtions for Models B without classification scenarios$Sc2.e
with unequal data as a function of thev and p priors for each species. Each beanplot is made from
values (4 classification scenarios), the bold lingeing the mean relative bias of the bean plot. Thdotted

lines are the mean across all the prior combinatios
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7.3.1.b.ii

The precision of the estimates was analysed by adngp the mean CV of the posterior

Precision of the estimated number of detections by species

distributions across replicate between models.

Equal data
The sensitivity analysis showed a statisticallyngigant (p<0.001) impact of the degree of

informativeness of the prior distributions on thregision of the estimates. For models with
equal data and knowp (Models A) or very informative prior op (Models B, P1),
statistically significant (p<0.001) but biologicallinsignificant differences (absolute
difference of <2%), were observed between the no¢dine CVs of models with informative
(V1) or uninformative (V2) prior o and between models with low or high misclassifarat
probabilities (Table 7-6). When the variance of gher onp increased (P2 and P3), the
difference between models with informative (V1) aadinformative priors orv (V2)
increased by a factor of 4. The difference betwdam and high misclassification
probabilities were of a factor 8 for P2, whereasHR8 no difference were observed anymore
between the mean CVs for the four classificatieenacios (Table 7-6).

Table 7-6: Mean CV for models with scenarios Scl..0 Scle with equal data priors V1 and V2 and
Models A and Models B.

Scl.a Scl.b Scl.c Scld Scle

Vi v2 | V1 V2 Vil V2 Val V2 vi V2
ModelsA:Po | O O | 1.06% 1.06%| 1.05% 1.05% 3.13% 3.34% 3.015%18%
m P1 0 0 |189% 193% 1.87% 1.92% 3.76% 4.14% 3.58%95%
ﬁ P2 0 0 | 116% 4.64% 1.45% 4.57% 8.72% 30.28% 8.7289-93%
= P3 0 0 |875% 32.10% 8.73% 32.01% 8.77% 32.24% 8.76%°0%

Unequal data:
For unequal data, the same relationship was olddrgveen the different priors and their

effect on the CV of the estiamtes, but with theohlte values of the CVs being higher (23%
versus 9% for equal data). The overall imprecisibthe estimate$; increased from 5.6%
for Models A (PO) to 26% for Models B with P3. Theecision was noticeably affected by
the informativeness of the priors (Table 7-7). Tiigerences on the mean CV between V1
and V2/V3 were <10% when no priors, prior P1 oropriP2 with low misclassification
probabilities were used in the models. When thergrin the models were either P2 together

with high misclassification probability or P3 thediferences were greater than 20%.
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The difference in mean CV between classificatioenscios was small, when there was no
prior on thep parameters (Models A) or prior P1 in Models B avas amplified with prior
P2. Similar to the scenarios with equal data, thiE$erences disappeared when prior P3 was
included in the models (Table 7-7).

Table 7-7: Mean CV for unequal data for the four sgcies for the different classification scenarios (2.b

to Sc2.c), priors on parametersy (V1 to V3) and no priors (Models A PO) or priors @ parameters p
(Models B P1 to P3).

Sc2.b Sc2.c
V1 V2 V3 V1 V2 V3
Models A: PO | 4.42% 8.66% 7.06% 4.22% 7.45% 6.00%
P1 5.72% 12.25% 11.88% 5.61% 10.93% 10.98%
P2 10.09% 17.97% 16.51% 11.44% 15.60% 17.78%
P3 11.98% 36.64% 28.11% 12.11% 36.69% 34.58%
Sc2.d Sc2.e
Models A: PO | 6.70% 13.07% 4.53% 6.20% 12.52% 3.679
P1 7.45% 13.90% 13.74% 2.24% 3.27% 11.77%
P2 11.65% 32.83% 27.23% 11.64% 32.48% 24.83%
P3 11.78%  39.52% 27.51% 12.01% 34.41% 26.57%
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Comparing results across species, precision oéstienates was the lowest (higher CV) for

species D, for all models (Figure 7-8).
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Figure 7-8: Bean plots of mean CV for all models as function of species identities. The Y axis is
displayed on the log scale.

7.4. Discussion

In this chapter, a Bayesian framework was develofgedstimate the true number of

detections from observed misclassified detectidhg. results showed that it was possible to
estimate the true number of detections for eaclsiespeand that bias and precision of the
estimates depended on the prior information that wsed to feed the models. This chapter
highlighted that the uncertainty on the classifmatprobability was the factor that generates

most of the variability.

7.4.1. Consequences of unequal number of detections between species

This study showed that having an unequal numbetetéctions between species generated
bias and reduced the precision of the estimates. eBtimates for species where less data
were available were more sensitive to the prioriavedes and to the number of

misclassifications.
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7.4.2. Results of the prior sensitivity analysis

Different sources of variability were included irhet models, namely different
misclassification probabilities, uncertainty in theaisclassification probabilities and
uncertainty in the true number of detections betwspecies. The sensitivity analysis
demonstrated that among these different sourcesrdbility, when each of them varied
within the ranges observed with the real data aptérs 3 and 4, uncertainty within the
classification probabilities was the most sensipagameter. In the model without a prior for
the parameterp (Models A) or when a very informative prior (PDrfp was chosen, the
differences in the relative bias and in the meanb@Wveen the two (for equal data) or three
(for unequal data) priors on the parametersvere not biologically significant (Figure
7-5,Figure 7-7). However, if the prior variance thie p parameters was increased, the prior
variance of ther parameters had a greater impact on the relativedrid the precision of the
estimates. Models with prior V1 had a smaller alssotelative bias in comparison to models
with V2 and V3. Model with prior V3 on the parammste had a smaller absolute relative bias
than models with prior V2. This result was unsisinig since in models with prior V3, the
CV of the prior distributions were chosen to bded#nt between species such that the total
variance across the four species was smaller trapriors V2. The mean CV followed the
same pattern.

The results for the relative bias of models wittopP3 on the parametepswere surprising.
Estimates obtained with P3 were not the most biadespite prior P3 being the less
informative prior. The parameters of this prior eesuch that the average classification
probabilities were 25% for all species. The simitdassification and misclassification
probabilities explained why no differences in me@V were observed between the

classification scenarios, the source of variabigyng the same between species.

7.4.3. Impact of classification scenarios

The different classification scenarios had an impac the relative bias of the estimates.
However this overall result was most pronouncedclassification scenario Sc.e which
showed a large bias for all species, except sp&i€bigure 7-6). This scenario simulated a
confusion matrix with high and asymmetric misclsation probabilities. It is unclear why

the relative bias and CV were so important for theenario. Furthermore, more of the

Markov chains for the replicates generated by thmdets under this scenario stopped
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converging after several thousands of iteratioas tlnder other scenarios. To overcome this,
a modification of the Metropolis Hasting algoritimthe analysis was introduced to try to
propose new values for the Markov chain when ipgéal converging. This modification did
not solve the problem.

7.4.4. Rare species

Among the four species that were considered insiheulations, particular results were
always derived for the rarest species D. The radatias for the estimates of this species was
more sensitive to the prior variances on the patarse independent of the prior on tipe
parameters (Figure 7-7). The results for this gseaiere also the most sensitive to the choice
of the classification scenario (Table 7-5). Usuadlyrare species will be difficult to observe
and hence the prior knowledge on this specieskéylito be vague (i.e. an uninformative
prior should be chosen). Models A with prior V3 sleal that when the prior CV was very
high (60%) in addition to a high misclassificatiprobability , it was not possible to derive an
estimate with this Bayesian method as the chainverged towards zero and stopped
updating. When the CV was reduced to 40% (Modelg3, this problem was not observed.
Nonetheless, for 30% of the replicates for thiscegse the Markov chains stopped

converging.

7.4.5. Criticism of the model and conclusion

Overall, the results were highly sensitive to th#ial values of the parameters and when
these initial values were just over 20% away fréva truth the models did not converge for
some scenarios. This sensitivity can be explainethé fact that with this misclassification
problem no unique set of solution exist. If thexenot enough constraint on the priors and the
initial values are far from the truth then the MCMt@ight converge but towards an estimate
different to the reality (see next chapter). Witkcls constraints it will not be possible to
estimate the true number of detections if priooinfation on the true number of detections is
totally absent and the prior on the classificatiate is vague. This situation has more chance
to happen for rare species for which it is diffictd collect any information. As the results
shown, an important parameter which help in havirge accurate and less bias results are
the uncertainties around each classification rétese measurements are mainly dependent
on the data used to create the classifier and @stttistical methods used to measure them

during the creation of the classifier and not andbundance of the number of detections.
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Finally, the parameters in this chapter were deditedy chosen with the specific intention to
test the models under some extreme classificattemagio or for cases of extreme prior
variances. As such, they were not necessarily dlmsealistic values. Indeed, a CV of 40%
was never observed in the classifiers developéddrprevious chapter as long as the correct
classification probability was sufficiently highn the next chapter, the heuristic method of
chapter 6 and the method of this chapter are usedtimate the true number of detections

for the real data which is described in the filgttf this thesis.
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Chapter 8:  Methods to estimate the number of acoustic
detections in the presence of species misclassification applied

to real data

8.1. Introduction

The output of the PAMGUARD whistle classifiers (PW@sed to identify the species in
chapters 3 and 4 was a classification of acougtieations organised in sections containing
fragments of whistle contours. Due to the imperfecof the classifiers, some of the sections
were misclassified. This chapter provide a dematistn of the three methods developed in
chapters 6 and 7 with simulated data, and sumntaiis€able 8-1, with a selected subset of
the real datasets and classifiers used in chaBteasd 4 to estimate the true number of
sections detected for each species.

Table 8-1: Summary of the methods used to estimatbe true number of sections. For each method the
type of confusion matrix (C) used in the models is described: PAMG. mean iséhmean confusion matrix
given by the PWC at the end of a classification paess whereas PAMG. samples is the confusion matrice
of each bootstrap of the classification process, ighlet dist. is the confusion matrices generatedrém a
Dirichlet distribution. Initial values indicates whether the initial values are needed (Y) or not (Njor the
method. prior on parametersv and p describe the parameters needed for the prior distbutions onv and

p in the Bayesian models.

Method Method Initial prior on prior on
C
name description values parametersv parametersp
Heuristic,
H1 PAMG. mean N
knownp
Heuristic,
H2 PAMG. samples N
estimate
Bayesian Mean,
Models A PAMG. mean Y
knownp variance
Bayesian, Mean, Alpha
Models B Dirichlet dist. Y
estimated variance parameters
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Among the five datasets of chapters 3 and 4, ftagsdied with two classifiers are selected
and analysed in this chapter

The first dataset is the French training datasebduced in chapter 4. Since the data were
used for classifier training, the true number aft®ms for each species is known and can be
compared with the estimates provided by the hecréstd Bayesian methods. The second
dataset is the MOR_BOWL training data introducedhapter 3, which was used to identify
the presence of bottlenose dolphins within windnfaites. Similarly to the previous dataset,
the true number of sections detected for each epeésiknown (Table 4-472), and it can be
compared with the estimated true number of sectiahsulated with the different heuristic
and Bayesian methods.

The third and fourth datasets are the EARs dataiatsoduced in chapter 3, for which the
species emitting the sounds detected is not kndWwase datasets were from the Moray Firth,
which has been extensively surveyed for bottlertmdghins (and other species). This meant
that good information on the presence or absentleeotlassified species is known and thus
could be used in the Bayesian models. Thereformn #wugh the results from these datasets
could not be compared with truth, these datasétsvahe consequences of misclassifying
sections as species known to be rarely presefieirstudy area to be investigated. Hap
classifier, introduced in chapter 3, was used teegate the observed number of sections from

these datasets.

The method section describes in detail the paraseteded for each of the four methods
and the prior information available for each dataBetimates of the true number of sections
are then obtained with the four methods, and aiteatysanalysis is conducted on the prior
distributions of the true number of sections.

8.2. Methods
8.2.1. Heuristic methods

8.2.1.a Known classification probabilities (H1 method)

When the classification probabilities were knowine tinputs needed to estimate the true
number of section® = (y, ..., D;, ... 0, ) for each speciegwere the observed number of
sectionsn = (nl, e T, ...nm) for each speciesand the mean confusion matri®)(of the

classifier used to identify the sections:
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D = C n (chapter 6, Eq. 6-4, p100)

The confusion matrices used were the final confusiatrices given by the PWC (Table 8-9,
Table 8-10).

8.2.1.b Estimated classification probabilities (H.2 method)

With the second heuristic model the classificapoobabilities were assumed to be estimated
with some uncertainty. The inputs needed for thethod were the observed number of
sectionan for each specigsand several samples of the confusion matrix ottassifier used

to identify the sections. In chapter 6, the cordosimatrix samples were generated from a
Dirichlet distribution. In this chapter, the datene classified with classifiers created with the
PWC, so that at each bootstiapf the classification process two confusion masioeere
created (see chapter 2 for details of the bootspraygedure). Each mean of these two
confusion matrices(,) were used as a confusion matrix sample. The esgirof the true
number of sections was thus obtained by calculativgy average of the observed data
multiplied by the confusion matrix of bootstrapC, *:

Zg=1 Uy _ Zg=1 Eb_ln
B B

D=

8.2.2. Bayesian methods
The parameters required to run both Bayesian metivade as follows.
1. observed number of sections for each species;
2. initial values of the Markov chains for all the nebgparameters;
3. parameters (mean and variance) for the prior Higions on the true number of
sectionsy,
4. parameters (alpha) for the prior distributions be ¢tlassification probabilitigs (for
Models B only).

8.2.2.a Selection of initial values
Chapter 7 showed that the Bayesian models develapeel sensitive to the initial values of
the Markov chains. It was thus necessary to sele@ppropriate approach to generate these

values such that they were not too far from theseter true values.
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The initial values of the parameterdor Models A were obtained from the true number of
sections estimated with the heuristic 2 method. éi@x, the H2 method generated some
negative estimates and it was thus not possiblsédsthem as initial values. In this situation,
the initial values of the species with negativeinestes were set to the minimum value
possible 1. The initial values of the parametelis Models B were estimates of the true
number of sections obtained with the Models A méthHeor Models B, the initial values of
the parameterp were the classification probabilities of the caifuin matrix of the classifier
used to process the data.

8.2.2.b Parameters for the prior distribution on the v parameters

Given the real data used in this thesis, obtairmprigr information on the expected true

number of detected sections was difficult. Theogedly, the number of sections is dependent
on the fragment and section length parameterseo€ldssifier, on the average contour length
and number of whistles per section, on the deteatade of the whistle detector, on the

vocalisation rate and, finally, on the number oin@als. For this chapter, different methods

were used to give a value to the prior mean optrameters.

The prior means on the parameterswere estimated from prior knowledge obtained
independently of the acoustic survey. Prior vamsnevere then selected such that the
coefficients of variation (CV) of the prior disttibons were 40% and 10% similarly to the
values used in chapter 7. The prior distributionstiie Bayesian models were negative
binomial distributions, consequently when the pnogan was small it was not possible to
select a variance that allowed a corresponding Caitber 40% or 10%. When this situation
happened, the variance of the prior distributios w@lected such that the CV was the closest
as possible to the desired CV. The sections bekseribe each dataset used in this chapter

and how the prior means and variances have beeciaeg!

8.2.2.b.i Data 1: French training dataset

For this dataset collected during the CODA suntbg, abundances of all species identified
by the classifier were estimated from visual devest (Table 8-2). From these estimated
abundances the means of a first set of prior Hidions for each species come from the
proportion that each species contributed to theadlvanimal abundance. It was assumed that

each species had similar vocalisation and detectitas.
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Table 8-2: Abundances estimation from the CODA visal survey (CODA, 2009) for each species (BND
(bottlenose dolphin), COD (common dolphin), C&S (common and stripped dolphin), STD (stripped
dolphin), FPW (long and short finned pilot whale), and each classification group. The encounter
proportion for each classification group is the abaudance for that classification group as a proportia of

the total abundance of the 5 species.

BND COD C&S STD FPW | TOTAL

Abundance for each specipd41536| 56638 115398 33254 4857 84823

Abundance for each

. 11536 68430 4857 84823
classification group

Encounter proportion 14% 80% 69 100%

This data set was also used to train the Frenchtleralassifiers (chapter 4) so the number of
contours for each species before classification kmasvn (Table 8-3). A second set of prior
distributions were derived from these known numlzgrsontours. The number of contours
for each species was converted to a proportiohetdtal of contours across all species, and
these figures were applied to the observed numisszation and they were used as the means

of the prior distributions.

Table 8-3: Number of contours classified for eachpgcies and each classification group. The contour
proprotion is the proportion of contours for a classification group relatively to the total number of
contours of the 5 species.

BND COD C&S STD FPW | TOTAL
Contoursfor each species 2 2164 110 247 842 3365
Number of contours for
each classification 2 2521 842 3365
group
Contour proportion 0.1% 74.9% 25.0% 100%

Then for each set of priors, two variance paramset@re chosen such that the CV of the
prior distribution was equal to 40% and to 10%. Thner parameters for these two set of

prior distributions are summarised in Table 8-4.
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Table 8-4: Mean and variance parameters (with ass@ted CV in parentheses) of the prior distributions
on parametersv for each species or classification group (CSD isommon and striped dolphins). The
number of observed sectionsn and the parameters a of the Dirichlet distribution for the prior

distribution on the p parameters are also summarised.

BND CSD FPW
Observed sections 83 772 25
mean 123 704 53

prior from survey Variance (40% CV)| 2420.64 79298.56 432.64

Variance (10% CV)] 151.29 4956.16 27.04
mean 1 659 220

prior from contour Variance (40% CV) 1.01 69696 7744
Variance (10% CV) 1.01 4356 484
2.93 0.10 0.115
Dirichlet parameters 0.18 3.18 0.830
0.09 0.21 0.055

8.2.2.b.ii Dataset 2: MORL_BOWL training data (chapter 3)

The training dataset of tfeSpclassifier of chapter 3 was a concatenation afndings made
around the coast of Scotland during different irtefent surveys, so they were not
associated with abundance estimates from visuattlehs. However, in chapter 3, the exact
number of whistle contours for each species wassared. The number of contours for each
species was converted to a proportion of the tmiatours across all species (Table 8-6), and
these figures applied to the total number of olegtisections were used as the means of the
prior distributions (Table 8-5).
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Table 8-5: Number of contoursn classified for each classification group (bottlerge dolphin (BND),
common dolphin (COD), Risso’s dolphin (RSD), whitdbeaked dolphin (WBD), white side dolphin (WSD).
The contour rate is the proportion of contours fora classification group relatively to the total numier of

contours of the 5 species.

BND COD RSD WBD WSD  TOTAL

n of whistles contours | 61934 69761 2554 5505 63584 146112

Contour proportion 42% 48% 2% 4% 4% 100%

Then for each set of priors, two variance paramset@re chosen such that the CV of the
prior distribution was equal to 40% and to 10% (€a36).

Table 8-6: Mean and variance parameters (with ass@ted CV in parentheses) of the prior distributions
for each classification group (classification abbréiation similar to previous table) . Number of obseved
sections and the parameterst of the Dirichlet distribution for the prior distri bution on the p parameters

are also summarised.

BND COD RSD WBD WSD
Observedn
415 877 9 143 153
sections
mean 671 766 32 64 64
prior
Variance (40%CV) 72038 93881 164 655 655
parameters
Variance (10%CV]) 4502 5867 32.01 64.01 64.01
16.53 0.87 2.510° 0.62 0
1.62 20.42 2510° | 11.01 5.04
Dirichlet
0.31 0.00 0.99 0.00 0.00
parameters
0.52 3.43 2510° | 18.40 1.11
0.12 1.69 2.510° 0.77 20.96
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8.2.2.b.iii = Dataset 3: Data recorded from the DO1 EAR in the Moray Firth S.A.C.

The DO1 deployment was in an area frequently viguglrveyed to estimate abundance of
bottlenose dolphins, harbour porpoises and harbowommon seals. Abundance estimates
were available for these species. However, no amnoel estimates were available for the
other species used in the classifier. Only relaiii®rmation such as the frequency of
observations (i.e., seasonal, frequent or rareg \&eailable (Moray Offshore Renewables Itd,
2010; Reid et al., 2003; Thompson et al., 2010 ptor distribution means were selected
such that these observation frequencies were m@pexs quantitatively. Within the S.A.C,
bottlenose dolphins are common all year around r@dsesightings of common dolphins and
white beaked dolphins are seasonal, and sightiigahite sided dolphins and Risso’s
dolphins are rare (Hastie et al., 2003; Moray GifshRenewables Itd, 2010). To match these
observations, it was decided from the total nunthebserved sections that 90% of observed
sections were bottlenose dolphins, 4% were commaphds, 4% were white beaked
dolphins, 1.5% were Risso’s dolphins and 0.5% wehite sided dolphins. These values
were used as the means of the prior distributionseéch of the species and two variance
parameters were selected such that the CV of thase distributions were as close as
possible to 40% for one set of priors and as chsspossible to 10% for the other set (Table
8-7).

Table 8-7: Number of observed sections detected lige DO1 deployment in the S.A.C, as well as the
mean and variance parameters (with associated CV imparentheses) of the prior distributions on

parametersv for each classification group (classification abbreiation similar to previous table).

BND COD RSD WBD WSD
Observed
94 15 5 16 1
sections
mean 118 5 5 2 1
prior
Variance (40%CV) 2227.84 5.01 5.01 2.01 1.01
parameters
Variance (10%CV) 139.24 5.01 5.01 2.01 1.01
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8.2.2.b.iv Dataset 4: Data recorded from EARs (E17,A20,A21) deployed in the
MORL-BOWL wind farm sites
This dataset combined all the sections identifisdvacalisations from dolphin species
detected at the three EAR deployments E17, A20A21 In contrast to the Moray Firth
S.A.C., bottlenose dolphins were rarely observethenMORL_BOWL site whereas white
beaked and common dolphins were the more frequeetties visually detected. To match
these observations, it was decided from the tatahber of observed sections that 0.5% of
observed sections were bottlenose dolphins, 46% wemmon dolphins, 50% were white
beaked dolphins, 2% were Risso’s dolphins and 1v&&te white sided dolphins. These
values were used as the mean of the prior distobufTable 8-8) for each species,
respectively. Two variance parameters were selesteth that the CV of these prior
distributions were as close as possible to 40%her set of priors and as close as possible to
10% for the other set.

Table 8-8: Number of observed sections detected ltie EARs deployed in the MORL_BOWL sites, as
well as the mean and variance parameters (with assiated CV in parentheses) of the prior distributiors

on the parametersv for each classification group (classification abbreation similar to previous table).

BND COD RSD WBD WSD
Observed 15 351 1 72 35
sections
mean 2 218 9 237 8
prior
paramet Variance (40%CV) 2.01 7603.84 12.96 8987.04 10.24
ers
Variance (10%CV)| 2.01 475.24 9.01 561.69 8.01

8.2.2.c Parameters for the prior distribution on the parameters p

When all the datasets described above were usédtivétModels B method, the parameters
of the prior distribution onp were selected such that they matched the claassific
probabilities and standard deviations of the canfusnatrices from the given classifier used
to classify the sections. For the first dataseB®eSpanish classifier was used to classify the

French sections. The confusion matrix of the cfesss given in Table 8-9.
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Table 8-9:3SpSpanish confusion matrix, with the classificatiorprobabilities and their standard deviation
(in brackets), discriminating bottlenose dolphins BND), common and striped dolphins (CSD) and long
and short finned pilot whales (FPW.)

True Species

Classified as % BND CSD FPW
BND 91.5 (13.6) 2.9 11.5
CSD 5.8 91.1(13.4) 83.0
FPW 2.8 5.9 5.5(13.1)

For the remaining three datasets 88p classifier of chapter 3 (Table 8-10) was used to

classify the sections.

Table 8-10: Confusion matrix, with the classificatbn probabilities and their standard deviation (in
brackets), of the5Spclassifier discriminating bottlenose dolphin (BND),common dolphin (COD), Risso’s
dolphin (RSD), white beaked dolphin (WBD) and whitesided dolphin (WSD).

True Species

Classified as % BND COD RSD WBD WSD
BND 86.6 (7.6) 3.3 0.0 2.0 0.0
COD 8.5 77.3 (8.0) 0.0 35.8 18.6
RSD 1.6 0.0 100 (5.9) 0.0 0.0
WBD 2.7 13.0 0.0 59.8 (8.7) 4.1
WSD 0.6 6.4 0.0 2.5 77.3(7.9)

The alpha parameters of the prior Dirichlet disttibn are in Table 8-4 and Table 8-6 for the

3Sp classifier and 5Sp classifier, respectively.

8.2.3. Description of the results
For each dataset, the following information is mgd in a single table: (1) estimates of the

true number of sections per species obtained waith enethod; (2) the prior parameters used,;
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(3) the mean and the CV of the estimates for theistec models; (4) the posterior means,
CVs and 95% credible intervals for the Bayesian efmd

8.3. Results

8.3.1. Dataset 1: French training dataset classified with the 3Sp Spanish
classifier
With the French dataset classified with 8f@p Spanish classifier, the first heuristic method
(H1), estimated a very large number of sectionsFHBY and very large negative value for
the other species (Table 8-11). By contrast, themid®hod estimates were all positive and
relatively close to the truth (Table 8-11).
When the prior distribution means were chosen danation of the species abundance
estimated from visual surveys, the absolute redagiror between the Bayesian estimates and
the true number of sections ranged from 20% (foDC® more than 1000% (for BND). For
these models, the presence of the prior distribationp increased the CV of the estimates
from 12.5 % to 13.5 % (Table 8-11). However, whes prior distribution means were based
on the total number of contours, the absolute iveagrror for the estimates for each species
decreased substantially, particularly for Modelswth an absolute relative error ranging
from 0% for BND to 7% for FPW sections (Table 8-1¥}hen no uncertainty in the
confusion matrix was considered (Models A), thenested number of sections attributed to
CSD and FPW were significantly different (p<0.08xeeen prior distributions with a CV of
40% and a CV of 10%. In Models B, the 95% credibterval for the estimates overlapped
between the two types of prior but the CV of thénestes was higher when the prior
distribution CV was 40%.
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Table 8-11: Mean, CV and 95% credible interval (Cl)of the estimated true number of sections for the
three species classified with the heuristic method$i1l and H2) and with the Bayesian Models A (A) and
Models B (B), with priors on parametersv estimated from the visual survey (p. f.surv) or fom the

proportion of whistle contours per species (p. f. ant) with variance parameters such that the CV was
40% or 10%. The observed number of sections fromhe classifier results (Observed) and the true

number of sections (Truth) from the training datase are also reported for each species.

BND CSD FPW
mean CV% Cl mean CV% Cl mean CV% Cl
Truth 0 644 236
Observed 83 772 25
H1 2144 -19824 22848
H2 32 5339 623  75.6 225 2255
p. f surv.
A 60 8.7 50-70| 773 2.4 730 - 803 47 424 16-94
40%
p. f surv.
A 71 6.3 62-80] 759 1.0 743 -774 50 142  37-65
10%
p. f surv.
B 89 21.0 52-131 741 3.5 684 - 785 50.0 381 20-9%
40%
p. f surv.
B 115 9.6 96-139 712 1.8 685 - 735 53 129 40-6]
10%
A | Pfcont 0 303  16.8 204 - 403 576 8.8 477 -6]6
40%
A | Ppfcont 0 589 3.5 547 — 630 201 72  250-3B3
10%
g | Pfeont | g 668 118  480-787 | 212 371  93-399
40%
p.f cont _ i
B 0% 0 0 660 3.0 619 — 697 220 9.1 1832T1
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8.3.2. Dataset 2: Training data of 5Sp classifier

The estimates of the true number of sections ferfive species with all the methods and
models are summarised in Table 8-12. With the Bganmethods the estimate of the number
of sections for the white beaked dolphin was negati

With the Bayesian approach, when no uncertainty eaasidered in the confusion matrix
(Models A), the true number of section estimatesewdose to the truth with an absolute
relative error ranging from 0% to 2% for the speaith most observed sections (BND and
COD). However, for the rarest species, when theaCYhe prior distributions was 40%, O
sections of RSD and WBD were estimated and the Madkain stopped updating (both ClI
and CV equalled 0). When the prior distribution wasre informative, the number of
estimated sections for RSD and WBD were 6 and §3aaively.

When uncertainty in the confusion matrix was coesed (Models B) and with the less
informative prior (CV = 40%), the estimates of thee number of sections had a higher CV
and absolute relative error values than the reéudte Models A. For all species, when the
CV of the prior distribution was close to 10%, tdarkov chains stopped updating after a
few iterations. However, the mean of the postedistributions for the two more common

species (BND and COD) were very close to the tbatfore the chains stopped updating.
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Table 8-12: Mean, CV and 95% credible interval (Cl)of the estimated true number of sections for the

three species classified with the heuristic method$i1l and H2) and with the Bayesian Models A (A) and

Models B (B), with priors variance on parametersv such that the CV was 40% or 10%. The observed

number of sections from the classifier results (Olesved) and the true number of sections (Truth) from

the training dataset are also reported for each smpées

BND COD RSD WBD WSD
mean CV% Cl mean CV% Cl mean CV% Cl |mean CV% CI |mean CV% CI
Truth 442 1031 4 22 98
Observed| 415 877 9 143 153
H1 439 1069 2 -19 106
H2 443 11.9 1105 23.3 1 6.0 -66 -3.5 114 76.4
Prior 0
A 442 2.2 423 -4611053 1.3 1025-1089 O 0 102 9.7 83-12
CV 40
Prior
A| CV | 442 2.2 424-461011 1.3 985-1037 6 21.0 4-8|53 12.8 40-66] 85 7.8 72-9§
10%
Prior
B| CV |452 13.1343-5821004 6.9 860-1133 9 63.4 0-2859 39.2 22-114 72 38.226-133
40%
Prior
B| CV | 445 0 445-44p1031 0 1031-1031 6 54 82
10%
8.3.3. Dataset 3: Data recorded from the DO1 EAR deployment in the Moray

Firth S.A.C

The estimates of the true number of sections ferfitte species of this dataset with all the

methods and models are summarised in Table 8-13.
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With the heuristic methods, the estimates for Rsssehite beaked and white sided dolphins
were very imprecise with CVs ranging from 70% t@l @i

The Bayesian Models A estimated that 123 sectimramed BND contours and the 8
remaining sections contained WBD contours. Witls thodel, no other species were selected
in the classification process. With the Bayesiarnd®le B, all the sections were estimated to
contain BND contours and, after moving from thdiahivalues, the Markov chains stopped

updating.

Table 8-13: Mean, CV and 95% credible interval (Cl)of the estimated true number of sections detected
by the DO1 deployment, for the three species claisd with the heuristic methods (H1 and H2) and wth
the Bayesian Models A (A) and Models B (B), with pors variance on parametersy such that the CV was
40% or 10%. The observed number of sections fromhe classifier results (Observed) and the true

number of sections (Truth) from the training datase are also reported for each species

BND coD RSD WBD WSD
mean CV% Cl mean CV% CIl |mean CV% Cl|mean CV% ClI |mean CV% Cl
Truth Unknown Unknown Unknown Unknown Unknown
Observed 94 15 5 16 1
H1 108 3 3 23 0
H2 110 101 9 716 3 704 | 10 590 2 614
Al ProrCVotios 16 119-126 0 00| o 00l 8 229 51} 0 0-0
40%
Al ProrCVotia; o 131413 0 00| o 00l 9 222 51} 0 0-0
10%
g| PiorCVili41 o 131-13) 0 00| o 00l o 0-0] o 0-0
40%
g| PiorCVili41 o 131-13) 0 00| o 00l o 0-0] o 0-0
10%
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8.3.4. Dataset 4: Data recorded from EARs (E17,A20,A21) deployed in the MORL-
BOWL wind farm sites

The estimates of the true number of sections ferfitte species of this dataset with all the

methods and models are summarised in Table 8-14.

With this dataset, the H2 method estimated a nmegatumber of sections for the WBD

species only, but the CVs for BND and WSD were Jagh due to numerous estimates with

negatives values for these species as well.

With the Bayesian Models A, no sections were egtohdo contain contours from BND,

RSD or WSD. The estimates of the number of sectattrsbuted to the remaining two

species were significantly different (p<0.01) betweModels A with a prior CV of 40% and

Models A with a prior CV of 10%.

When a prior on the parametgrsvas added to the models (Models B), the estimhtaeo

number of sections containing contours from RSDgeanbetween 1 and 13. Similarly to

Models A, there was a significant difference betw#ee estimates of the number of sections

using priors orv with CV of 10% and CV of 40% for section attributedboth COD and

WBD. For all Bayesian models, when the mean of the postdistributions was zero, the

Markov chain stopped updating.
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Table 8-14: Mean, CV and 95% credible interval (Cl) of the estimated true number of sections detected
by the EARs deployed in the MORL_BOWL sites,
methods (H1 and H2) and with the Bayesian Models AA) and Models B (B), with priors variance on

for he three species classified with the heuristic

parametersv such that the CV was 40% or 10%. The observed nuber of sections from the classifier

results (Observed) and the true number of section@ruth) from the training dataset are also reportedfor

each species

BND coD RSD WBD WSD
mean CV% Cl|mean CV% Cl mean CV% CIl |mean CV% CI mean CV% CI
Truth Unknown Unknown Unknown Unknown Unknown
Observed 15 351 1 72 35
H1 0 441 1 25 8
H2 1 1795 483 315 1 403 -15-948.6 3 1048
A P“OLO%CV 0 0-0|435 2.4 414-a54 0 00 | 39 262 2064 O 0-0
A Pnorlo%cv 0 0-0|353 2.7 334-3730 0-0 | 121 8.0 102-14p 0 0-0
B P“OLO% Vo 0-0|368 7.4 310-4182 1249 1-10 | 104 26.1 54-164 0 0-0
B Pnorlo%cv 0 0-0|258 62 227-2904 991 1-13 | 212 7.6 180-24k 0O 0-0
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8.4. Discussion

Applied to real data, the limitations of the heticisnethods were clearly demonstrated with
negative estimates and/or unrealistic estimates 22848 sections were predicted for pilot
whales in the French dataset, although only 88licsexcwere classified in total (Table 8-11).
However, with the H2 method, when the estimatesewet negative, they were relatively
close to the truth. Of all the species classifi@ckdss the two classifiers) for which the truth
was known, six had a relative error smaller thaft16vo had a high relative error due to
either a small estimate (RSD) or because the tumeber of sections was zero (BND in
French data) and so relative error was not meakurAb shown in the previous chapter, the
Bayesian models were sensitive to the choice ofirit@al values of the Markov chains.
When the initial values were too far from the trutihe Markov chains did not converge.

Therefore, the decision of using the estimates fileerH2 method was reasonable.

The results showed a clear negative impact ondhimates of a wrong or too uninformative
prior. With the French dataset, the true numbeseations estimated when the prior means
were based on the abundance estimates of indigduad far from the truth. This difference
mainly affected the estimates for bottlenose daiphin reality, no sections were from
bottlenose dolphins but the Bayesian models estdn#tat between 60 (Models A, CV:
40%) and 115 (Models B, CV: 10%) sections werdhatted to this species. On the other
hand, when the prior means were based on the giopaf contours detected, the estimates
of the true number of sections were closer to th#h twhen the uncertainty of the confusion
matrix was included in the models (Models B). Amplexation for the poor estimation using
the first set of priors (based on abundance) isuheealistic assumptions were made in order
to link the number of individuals to the number aintours i,e., same vocalisation and
detection rates between species were assumed.ribhar@ans were probably too far from
the truth to be able to give accurate estimateth®ftrue number of sections. For the data
from which the truth was known, the estimates gateer by Models B were slightly less

biased and also less precise than the estimatesaged by Models A.

For the last two datasets for which the truth wa&nown, the estimates reflected the
expectation, modelled by the selection of the pnmans, of the presence and absence of
some species in the monitored area. Indeed, ir5tAeC. where the DO1 recording device
was deployed, bottlenose dolphins were expectedetothe predominant species. The
Bayesian Models A estimated that few sections @evattributed to white beaked dolphins,
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which were occasionally observed in the area. Rerthree other Bayesian models, the
estimates predicted that all the sections detegtzd attributed to bottlenose dolphins.

In contrast, at the wind farm site, bottlenose Hwlp were expected to be rare and none of
the Bayesian models estimated that any sectiorpveakiced by this species.

With regards to the results for the datasets wtratk was known, it can be assumed that the
estimates from Models B with a CV prior of 10% werebably the best estimates. However,
it is important to keep in mind that these resalts reliable only if the prior means on the

parameters were estimated accurately.

For all datasets, it was observed that each tireepthsterior mean was zero, the Markov
chains stopped updating. This phenomenon was élsereed in two other situations: under
the Models B with the second dataset where the Cpfior distribution onv was close to
40%, and with the third dataset each time the @s&émof the BND sections reached the true
values. The stopping movement within the Markovitha&as a consequence of the
multinomial function used to update the paramatethe Metropolis Hasting (MH) function.
The probability parameters of th® multinomial update function at iteratidrof a Markov
chainswere dependent to the’'s parameters (Part 11.7.2.6.a, p121, Eq 7-7)efitiont-1. If

at iterationt-1 one of they;’s parameters was zero, consequently the probalafitthe
multinomial distribution corresponding to thig; become also zero and so it can only
propose new zero values at iteratioiihe stopping of updating when the posterior meas
not zero was due to a very slow mixing, which candue to an inappropriate proposal
function. One potential solution is to use anotr@posal distribution such as a random walk
when slow mixing was detected. Initially a randomalkwvwas used, but once priors on

parameterp were added, the models were not updating.

The real data highlighted a limitation of the négabinomial distribution for the prior on the
v parameters. When the true number of detectiorss wedicted to be small, the variance
needed to reach the CV wanted was smaller tham#an and so not possible to use it with
the negative binomial prior. The implementatiorao€onway-Maxwell-Poisson distribution
(Conway and Maxwell, 1961) which allows for bothden and over-dispersed data would

have allowed to solve this issue.
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In conclusion, this chapter demonstrated that tageBian models used to estimate the true
number of sections were reliable when appropriater gistribution means of the model
parameters were used. Having an informative pnmaroved the precision of the estimates in
comparison with the use of an uninformative priost, if the mean distribution of the prior
on the true number of detections was completelppnapriate, the estimates of the true
number of sections or detections will be unreliableen with an informative prior. This
chapter shows that even if there is no prior infation on the absolute abundance, relative
abundance between species present in the aredecdsnand used in the classifier is good
enough to be able to estimate the true number teictiens which will can then be used to
estimate absolute abundance when other parametensas cue rates, detection rates will
become available.
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Chapter 9:  Dealing with species misclassification: General

discussion

It will never be possible to create the perfecssifier with the ability to identify whistles

without error, so the next logical step is to depelnethods able to estimate from the
misclassified observations the true number of Wdistetections for each species. The
objectives of the last three chapters (6 to 8) veré€l) find a reliable method to estimate this
true number of detections in the presence of nastdiaation and (2) to identify those factors

that most influenced the accuracy and precisidhege estimates generated.

The heuristic methods used in chapter 6 were simptaitive but probably not optimal
whereas the Bayesian methods of chapter 7 were difficilt to implement, less intuitive
but gave better results. For these two chapterslaktee were simulated whereas in chapter 8
these two methods were applied to real data. Wighhieuristic methods, some estimates of
the true number of detections for both the simdlaied the real data were negative. Negative
values are obviously not possible when trying targity a number of detections.

Both methods identified that the proportion of détns by species, the misclassification
probabilities and the uncertainty of these misdi@ssion probabilities had the greatest
influence on the accuracy and precision of thevegs. However, the relative importance of

these factors varied between methods.

9.1. Equal versus unequal detections between species

When the number of detections was high (3000) andas between species (equal data) no
bias was observed between the expected true nuwofbeetections and the estimated
numbers, whatever the statistical approach andpénameters used in the models. In the
heuristic models when the true number of detectivas different between species (unequal
data), no bias was observed between the estimatetha truth. However, in the Bayesian
models relative biases ranging from 0.1% to 40%ewarserved when uncertainty in the

confusion matrix was associated to unequal data.

With equal or unequal data the variance of themedts was affected by the classification

probabilities, uncertainty of the classificationopabilities for all methods and prior

158



Part Il Misclassification Chapter 9: Dealing wipecies misclassification: General
discussion

knowledge of the true number of detections for Bagesian method. With the heuristic
method, the CV of the estimates reached unreasphait values (>400%) for rare species
even with a low misclassification probability angdraall uncertainty in the confusion matrix,
whereas in the Bayesian model the highest CV obsdefor an estimate was 70% when a

high misclassification probability and high levélumcertainty were simulated.

9.2. Prior sensitivity

In the Bayesian models, there were two random biasa(the true number of detections
and the classification probabilitigy that required prior distributions. In general #gstimates

of the true number of detections were sensitivithéoprior variances. When these variances
increased, the precision of the estimates decre&seexample with both the simulated data
(chapter 7) and the real data (chapter 8) the CM@#®estimates were for the most part lower
when the parameters of the prior distribution o plarameters were such that the CV was
10% instead of 40%. In the scenario with low missification probabilities and with equal
numbers of detections between species, both papnances o andv had a similar impact
on the CV of the estimates. However when more @ms$sification was added to the models,
and the number of detections between species wergual, increasing the variance of the

prior of p had a bigger impact that increasing the priorarare ofv (Table 7-4, p126 ).

The prior variance on the parametaffected also the accuracy of the estimates. Whisn t
variance was equal to zero or small such that tlee @V was 10%, the bias for all species
was zero (with heuristic methods) or small (Bayesmethod) and insignificant for all
practical purposes. The example of the French idathapter 8 when the prior means were
based on the abundance of a species showed thabhdhe of the prior was also a very
important parameter to obtain unbiased estimatéth e simulated data the scenario where
the prior means were intentionally different to tingth was not tested. However with the
simulated data the situation where the prior mezEnthe parameterp were far from the
expected truth was tested. The results showed fireéss had an impact on the accuracy of
the estimates (Table 8.11).

9.3. Misclassification probabilities
Similarly to the influence of the prior on the parameters, when the classification

probabilities were considered as known (heuristid Models A) or with small uncertainty
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(Models B with prior P1) the different misclass#tmn probabilities had no impact on the
relative bias of the estimates (Figure 6-1 and ieigi+7). On the other hand when larger
uncertainty on the classification probabilities wasmulated, then increasing the
misclassification probabilities decreased the amoyrand precision of the estimates.
Particularly high misclassification associated wdkymmetric misclassifications (Sc2.e)

between species generated the largest bias obsefiraédnodes.

9.4. Grouping species, an alternative to decrease misclassification rates

Given the general availability of cetacean spearas the cost and time necessary to obtain
data, obtaining more precise information regardiregtrue number of detections can quickly
become challenging and costly. Chapter 8 showed tiseng information of relative
abundance is a good alternative to obtain reliabtenates of the true number of detections.
However, improving the output of the classifierdgcreasing the misclassification rates and
their associated uncertainties depends on tharicagataset quality and also on the method
used to develop the classifier. As shown in chapdeaind 4 grouping different species in one
classification group can improve the general cfacsgion rates. Such grouping systems need
to be used suitably and generally to answer a namagt or conservation concern. In
chapter 3, species were grouped to answer a maeaggroblem question which was to
identify the protected bottlenose dolphins fromth# other species encountered in the same
area. By grouping the species in two groups thesdiaation results were greatly improved.
Differently in chapter 3, common dolphin and spott®lphins were grouped because of their
very close acoustic characteristics generatinggha hevel of misclassification between this
two species. Given the objective of the CODA surgeyuping these two species was not a

problem and it decreased the level of misclasgiioan the classifier.

9.5. Rare species

For all methods and models, the estimates of thelated rare species had a larger CV and a
larger bias (with Bayesian models) than the otpec®s. The data were simulated in such a
way that it was not possible within the scope ©f thesis to determine if these results were
an artefact of unequal detections or just a coraaopliof a small number of detections. To

distinguish between these hypotheses, models dmutésted with 50 detections per species
rather than the 3000 used here. However, it is membstic to expect, in the real world, to

encounter a situation similar to that simulatedhis thesis. Given the results of these three
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chapters, the benefice of using acoustic survey tneevisual survey, for rare species will be
mainly dependent on the vocal characteristics audlsation rates of the species. Indeed if
the rare species vocalise regularly and can belglé@criminated acoustically, such that it is
possible to develop a reliable classifier with av lmisclassification probability for this
species then, it can be hoped that using acoustections will improve the accuracy of the
abundance estimate for this species. On the othed lif the rare species is difficult to
discriminate acoustically, as well as difficultdetect visually, then using acoustic detection
may not be useful to improve its abundance estonatifhe problem of rare species is
recurrent for all detections method used. In sé\attalies (McClintock et al., 2010a; Miller
et al.,, 2011; Royle and Link, 2006) which tried deal with species misidentification, a
common conclusion was that when species misideatifin is considered in the model the

largest bias on the abundance estimate occurred thbeoccupancy probability is low.

9.6. Limitations of the methods

Both approaches showed their limits when the nunobetetections was small for a given
species: with the heuristic method unrealisticneates were predicted and with the Bayesian
method the MCMC frequently stopped updating when @éktimates of the true number of
detections were zero. Furthermore the values ofctrdusion matrices had been selected
such that it was possible to analyse the impacthef misclassifications rates and their
uncertainty independently. The confusion matricethe classifier created in the first part of
this thesis as well as the confusion matrix of &3itlie et al., (2013), never had a high correct
classification probability associated with a CV4&R6 as it was simulated. In a further work,
confusion matrices with different correct classfion probabilities between species
associated with a low CV for a high correct clasation probability, and a high CV for a
low correct classification probabilities can betées Given all the observed results more
accurate and precise results are to be expected@pecies with high correct classification
probability and vice-versa.

Finally, estimating the true number of detectiorenT misidentified data is not a problem
specific to unidentified cetacean acoustic cue® pitoblem of species identification is also
present with visual detections and with speciesrothan cetaceans (McClintock et al.,
2010b; Miller et al., 2011). Species misidentifioat(from visual survey) or misclassification

(when identification via a classifier) generatelsdapositive detections. In occupancy and
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abundance estimation model the impact of falseatig errors has been widely analysed
and method to decrease the bias it can generatheofiinal estimate have been largely
developed (Buckland et al., 2004; MacKenzie et 2002). However the problem of false
positive detections due to misidentification haserbegnored for a long time, despite
demonstration that such errors occurred even witfegmented observers (McClintock et
al., 2010b; Simons et al., 2007). In their studidsClintock et al., (2010a), Miller et al.,
(2011), Royle and Link (2006) have demonstrated fhise positives detections rapidly lead
to misleading inferences. With cetacean surveylse fpositive detection errors caused by
misidentification from visual observations have @& been ignored. Generally with
cetacean acoustic, a parameter within the abund&wrreula includes false positives
detections rates ((Marques et al., 2009; Thomadveardques, 2012). To refer to the equation
in this thesis, the misclassification parameter vakedc in equation (6-1 (p98). Nonetheless
this parameter is general and represents the piibp#hat the detections are misclassified as
another sound not species specific. It does nknaeledge the misclassification between
species and its consequences on the misleadingvebsagata. In anuran studies for which it
is easier to detect false positive detections @reydeveloping methods to measure the bias
generated by such species misidentification orfitfak abundance estimation (McClintock et
al., 2010a; Miller et al., 2011; Royle and Link Q00®). These studies focus either on
misidentification between two species only or thegre done in a very controlled system.
The conclusions of this PhD with the consequendesisclassification with more than 2
species and a less controlled system are similéindaconclusions of the anurans studies.
These similar conclusions being that the level mfeutainty of the species identification as
well as the level of species concurrency playedihgr role on the bias and accuracy of the

estimates.

9.7. Abundance estimation using misclassified observed detections

It is important to keep in mind that the true numbkdetections is only one variable in the
process of estimating abundance from acoustic tiets¢ and consequently it is not the only
parameter responsible for the accuracy and precisio the abundance estimates. As
expressed in Eq 9.1, at least two other paramatetse abundance equation need to be

estimated: the cue rat®)and the detection probabilitp).
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Both these parameters are species dependent andecarhallenging to estimate. As
mentioned several times in this thesis, the cue mtlargely unknown for most of the
whistling species and it is likely to be highly \adle. The average probability of detection in
itself is also dependent on numerous factors (sashdistance from the hydrophone,
directionality of the call, ambient noise, and dé&be performance).
If all these estimates are considered as indepertdien the precision of the abundance
estimate ﬁj) can be calculated by using the delta method (@@ette et al., 2011; Seber,
1982).

CVZ(N;) = CV3(9;) + CV3(P) + CV2(Ry)
The CV of the true number of detections estimatdhlus only one element of the overall CV
of the abundance estimate. Its influence on thal fbundance estimate can only be
considered relative to the CV of the other estimatedeed if for example the CV of the
estimated true number of detections is 70% (adidjeest CV observed with simulated data
in chapter 7) and the CVs of the cue rates andctieteprobability are 10% then the CV of
the abundance estimate will be mainly influencedvpyTo improve these estimates this
thesis showed that one solution is to improve thssification process, so that as the correct
classification probability increases and the uraiety around this rate decreases. Another
solution is to have a robust method to estimatetriliee number of detections. While, if the
contribution of the true number of detections CVnist important relative to the other
parameters then more effort should be taken inawipg the estimation of the cue rates and
detection probabilities. However having biasednestes of the true number of detections is a
more important problem than imprecise estimates #sis situation the abundance estimate
will also be biased and that can lead for exampi® iinappropriate management,
conservation decisions.
One advantage of the Bayesian framework developedis thesis is that it was possible to
guantify how much bias and variance the parametsed in the Bayesian models generated
on the estimates. By incorporating the other patarseof the abundance equation in a
Bayesian framework we can hope that it will be pmssto identify for future surveys or

projects those parameters of the abundance equttaingenerate most of the bias and
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uncertainty, and once identified it will be easiegr find solutions to improve the
measurement. The Bayesian method developed irthbsss is a first approach and has its
limitations. A priority will be to improve the matkd such that the Markov chains become
less dependent on the initial values and the isslaek of convergence should be solved.

9.8. Conclusion

In summary and conclusion this thesis highlightemterguestions and problems to be solved
than bringing complete solutions to estimate abooeaof cetaceans solely from acoustic
detections. Through the comparisons of the resitllthapter 3 and 4 and from the results of
the second part it is possible to suggest someadstivhich should help in the process of
obtaining reliable abundance of cetacean using #ueiustic signatures. A critical point is the
correct identification of the sound detected whseln be done by an automatic classifier. The
creation of a reliable classifier with the quawafion of the uncertainty for each
classification rate has been shown to be very itapbr Box 3 summarises the important
steps associated with some applied methods to the&chbjective. The most important step
is the availability of a reliable training dataseeally without any misclassification. Using
survey methods which allow a close interaction leetwthe hydrophones, the animals and
the observer should help to accumulate such aeatat@isen to be able to use the classifier
outputs, having a measure of the uncertainty of thitput is indispensable to be able to
measure the bias and precision of the estimatheofrtie number of detections. Including in
the classifier only species present in the aremtafrest and/or grouping, when possible,
species with a high chance of misclassificatioth® same classification group will help to
decrease the overall misclassification rate.

Nonetheless before being able to estimate abundaacameters such as the cue rates and
the cue detection rates needed to be estimatedcUdeate particularly is very difficult to
obtain due to its high variability within and be®veindividuals. Consequently a large sample
size covering numerous different individuals andgnetwous behaviours is needed to obtain a
reliable cue rate estimate. Cue detection ratesbeaastimated using propagation models,
once the frequency and the source level of the dowame known, associated with false

positive detection analysis.
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A. Developing areliable classifier
1. Identify species present inthe area of interest
2. ldentify species of interest
3. Createa reliable acoustic training database:
1. Identify accurately species detected
visually (close up survey method)
2. Allow for a close interaction between
hydrophones and identified species
3. Insure quality and quantity of recordings
(several 100’s of whistles should be
recorded for each species) /V

Reliable estimate of cue rates for each species:
> Large sample of individuals and behavioural
M(n)A situation needed to be collected.

aT??

B. Measure uncertainty on the classification rates

C. Estimate the true number of detections for each
species: . .

* Using areliable method to define the Abundance estimation Estimating cue detection rates:
misclassification operator which will estimate the formula e Bydoing some work on the false
true number of detections from the numbers n detection rate sof the detector
observed. e Estimating the distance at which sounds

¢ [fitis the method used in this chapter prior / can be detected (propagation models)
information of the relative abundance for the ¢ Doing some signal to noise ratio analysis
species of interest are needed from previous to identify the impact of noise on the
surveys. detection rate

Box 2: Summary of the different parameters neededot estimate abundance form acoustic detection with

suggestion of some method to obtain them.

Having uncertain estimates in itself is not a peablas given the complexity of biological
models it will never be possible to have modelseasenting a biological system without
uncertainty. So ecologists often confront uncetyaiand must try hard to identify the
sources of uncertainty, how to quantify it and wéia the consequences on the output of the
model. Policy makers or environmental managersare totally aware that it is impossible
to ask for certain output, estimates and predistituarge management programs such as the
Revised Management Procedure (RMP) of the IWC Hmeen developed to establish catch
limit quotas to protect the stock of some speciéan{ and Donovan, 2007). In this
management procedure measurement of uncertaipgri®f the models used to simulate the
impact of the management decisions on the spetiek sf interest. More generally once
uncertainty is identified and most importantly gtiféd, appropriate management options or
policies can been established with more confiddAseough 1l et al., 2008; Harwood and

Stokes, 2003). The managers or policy makers wiklble to quantify the risk their decisions
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create in a given situation and consequently to ifnatieir strategy if this risk is not
acceptable.

In the model used to estimate abundance from acadestections, this thesis only identifies
and quantifies which parameters in the speciedifttion process are responsible for most
of the uncertainty of the estimate. These findimged to be implemented in the more
complete and complex model of abundance estimation.

Finally, although this thesis focused only on wimgtspecies, the problem can be easily
extended for all species for which acoustic sunargsused to estimate abundance or for any

problem of misclassification/ misidentification seien species.
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Appendices

Appendix A. Appendix for chapter 3

Table A-1 Classification result of the EAR data clasified with the2Spclassifier: Encounters time: time of
the first section of the encounter. n= total numbes of sections within each encounters of bottlenose
dolphins (nNBND) and other dolphins (hOTHER). p is he average probability of a section to be classifie
as bottlenose dolphins (pBND) or as other dolphin@OTHER). Classified as: final classification of tle
encounter after observation by the manual observed/Vhen all the contours within an encounter are fals

detections then the encounters was classified asadse detection (FD) encounters.

EAR: E21
n P
Encounters time n Classified as
BND OTHER BND OTHER
18/08/2010 02:20:20 4 4 0 1.00 0.00 FD
18/08/2010 12:08:15 12 12 0 0.98 0.02 FD
20/08/2010 14:27:00 1 1 0 0.98 0.02 FD
20/08/2010 15:28:53 3 3 0 0.99 0.01 FD
22/08/2010 03:23:08 5 1 4 0.20 0.80 OTHER
22/08/2010 03:53:08 1 0 1 0.20 0.80 OTHER
24/08/2010 06:34:35 1 1 0 1.00 0.00 FD
05/09/2010 08:30:47 1 1 0 1.00 0.00 FD
07/09/2010 07:30:45 1 1 0 0.99 0.01 FD
07/09/2010 08:00:45 2 2 0 0.99 0.01 FD
07/09/2010 09:36:18 1 1 0 0.99 0.01 FD
EAR: 17
n P
Encounters time n Classified as
BND OTHER BND OTHER
29/07/2010 09:22:19 15 0 15 0.09 0.91 OTHER
29/07/2010 13:22:47 40 0 40 0.12 0.88 OTHER
01/08/2010 23:31:19 57 0 57 0.05 0.95 OTHER
04/08/2010 21:26:29 8 0 8 0.08 0.92 OTHER
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EAR: A20
n P
Encounters time n Classified as
BND OTHER BND OTHER
22/07/2010 17:14:28 2 2 0 0.97 0.03 FD
24/07/2010 17:05:17 1 1 0 0.94 0.06 FD
26/07/2010 09:23:41 89 2 87 0.13 0.87 OTHER
26/07/2010 09:23:41 89 2 87 0.13 0.87 OTHER
29/07/2010 10:05:45 92 1 91 0.09 0.91 OTHER
29/07/2010 11:20:32 2 0 2 0.19 0.81 OTHER
29/07/2010 13:02:22 120 0 120 0.08 0.92 OTHER
31/07/2010 18:25:49 1 0 1 0.30 0.70 OTHER
01/08/2010 23:01:27 43 43 0.02 0.98 OTHER
03/08/2010 09:02:24 12 12 0 0.99 0.01 FD
04/08/2010 18:20:35 2 1 1 0.82 0.18 FD
04/08/2010 19:08:06 3 3 0 0.82 0.18 FD
05/08/2010 00:17:59 1 1 0 1.00 0.00 FD
06/08/2010 15:29:15 1 1 0 0.83 0.17 FD
07/08/2010 18:29:57 1 0 1 0.08 0.92 FD
09/08/2010 22:12:21 1 0 1 0.01 0.99 OTHER
11/08/2010 01:05:04 3 2 1 0.70 0.30 FD
12/08/2010 14:24:44 1 1 0 0.67 0.33 FD
13/08/2010 11:12:10 1 0 1 0.00 1.00 FD
13/08/2010 15:09:06 1 1 0 0.95 0.05 FD
13/08/2010 23:18:38 1 0 1 0.00 1.00 FD
14/08/2010 02:20:56 1 0 1 0.16 0.84 FD
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EAR: E16
n P
Encounters time n Classified as
BND OTHER BND OTHER
22/09/2010 23:23:22 1 1 0.83 0.17 FD
23/09/2010 10:19:58 1 1 0.91 0.09 FD
23/09/2010 19:25:05 2 2 0.72 0.28 FD
24/09/2010 10:21:22 2 2 0.76 0.24 FD
24/09/2010 13:16:04 1 1 0.8 0.2 FD
25/09/2010 10:16:34 1 1 0.84 0.16 FD
25/09/2010 12:03:50 2 2 0.78 0.22 FD
25/09/2010 23:16:22 2 2 0.91 0.09 FD
28/09/2010 08:11:12 2 2 0.09 0.91 FD
01/10/2010 15:23:38 2 2 0.25 0.75 FD
01/10/2010 17:22:16 2 2 0.34 0.66 FD
03/10/2010 16:13:02 1 1 0.99 0.01 FD
05/10/2010 05:24:23 1 1 0.59 0.41 FD
07/10/2010 12:14:32 1 1 0.99 0.01 FD
08/10/2010 13:03:57 2 2 1 0 FD
10/10/2010 06:24:58 1 1 0 1 FD
13/10/2010 06:20:44 87 87 0.98 0.02 FD
13/10/2010 15:14:31 1 1 0.99 0.01 FD
14/10/2010 22:12:31 1 1 1 0 FD
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EAR: D01
n P
Encounters time n Classified as
BND OTHER BND OTHER
08/10/2010 17:27:22 5 3 2 0.68 0.32 BND
09/10/2010 07:47:14 5 0 5 0.27 0.73 OTHER
09/10/2010 19:37:12 1 1 0 0.7 0.3 BND
09/10/2010 21:54:32 1 1 0 0.98 0.02 BND
09/10/2010 22:46:05 1 1 0 0.55 0.45 BND
10/10/2010 03:46:59 2 2 0 0.69 0.31 BND
10/10/2010 23:38:13 3 3 0 0.7 0.3 BND
11/10/2010 04:39:10 1 0 1 0.19 0.81 OTHER
11/10/2010 20:26:07 4 4 0.86 0.14 BND
11/10/2010 22:34:32 2 2 0.96 0.04 BND
12/10/2010 06:37:49 3 3 0.92 0.08 BND
12/10/2010 15:35:37 1 1 0.89 0.11 BND
13/10/2010 20:45:44 20 20 0.92 0.08 BND
14/10/2010 12:25:38 1 1 0.24 0.76 OTHER
14/10/2010 17:51:26 1 1 0.8 0.2 BND
15/10/2010 07:33:37 1 1 0.71 0.29 BND
15/10/2010 09:47:13 1 1 0.92 0.08 BND
15/10/2010 13:42:35 2 2 0 1 OTHER
15/10/2010 16:50:54 2 2 0.97 0.03 BND
16/10/2010 09:27:20 1 1 1 0 BND
16/10/2010 19:49:24 2 2 0.82 0.18 BND
18/10/2010 01:39:38 4 4 0.94 0.06 BND
20/10/2010 19:31:34 2 1 1 0.48 0.52 OTHER
20/10/2010 21:42:10 2 2 0 0.84 0.16 BND
20/10/2010 22:28:17 4 0 4 0.36 0.64 OTHER
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EAR: DO1

Encounters time n Classified as
BND OTHER BND OTHER
21/10/2010 21:32:55 6 6 0.88 0.12 BND
21/10/2010 22:26:48 1 1 0.81 0.19 BND
22/10/2010 04:28:38 1 1 0.45 0.55 OTHER
22/10/2010 16:29:21 4 2 2 0.55 0.45 BND
22/10/2010 17:45:04 4 1 3 0.46 0.54 OTHER
22/10/2010 23:36:16 6 6 0.83 0.17 BND
23/10/2010 10:32:47 2 2 0.9 0.1 BND
23/10/2010 22:29:53 4 4 1 0 BND
24/10/2010 18:27:55 4 3 1 0.67 0.33 BND
24/10/2010 22:44:01 1 1 0.94 0.06 BND
25/10/2010 01:35:00 5 4 1 0.82 0.18 BND
25/10/2010 18:34:00 1 1 0.8 0.2 BND
25/10/2010 20:42:13 2 2 0 0.72 0.28 BND
26/10/2010 00:41:54 2 2 0.88 0.12 BND
27/10/2010 15:33:06 2 2 0.12 0.88 OTHER
28/10/2010 12:30:46 10 7 3 0.66 0.34 BND
30/10/2010 11:54:16 3 3 0 1 0 BND

A-5



Appendices

Table A.2: Classification result of the EAR data dssified with the 5Sp classifier. The column headings are similar to therevious table with more species:

COD=common dolphin, RSD=Risso’s dolphin, WBD=whitebeaked dolphin, WSD=white sided dolphin5Sp class as= classification result by the 5Sp clagsif in

comparison to the classification result by th&Spclassifier 2Spclass as) after the manual check of the spectrogres.

EAR: E21
Encounters time n o] 5Sp 2Sp
" BND COD RSD WBD WSD BND CcoD RSD WBD WSD Class as Class. as
18/08/2010 02:20:20 4 4 0 0.00 0.00 1.00 0.00 0.00 RSD FD
18/08/2010 12:08:15 12 12 0 0.00 0.00 1.00 0.00 0.00 RSD FD
20/08/2010 14:27:00 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
20/08/2010 15:28:53 3 3 0 0.00 0.00 1.00 0.00 0.00 RSD FD
22/08/2010 03:23:08 6 1 2 0 3 0 0.16 0.37 0.00 0.46 0.00 WBD OTHER
24/08/2010 06:34:35 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
05/09/2010 08:30:47 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
07/09/2010 07:30:45 3 3 0 0.00 0.00 1.00 0.00 0.00 RSD FD
07/09/2010 09:36:18 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
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EAR: E17
Encounters time n p 5Sp 2Sp
" BND COD RSD WBD WSD BND COD RSD WBD WSD Classas Class. as
29/07/2010 09:22:19 15 14 1 0 0.07 0.73 0.00 0.15 0.05 CcoD OTHER
29/07/2010 13:22:47 40 1 25 14 0 0.07 0.57 0.00 0.33 0.03 CcoD OTHER
01/08/2010 23:31:19 57 0 32 1 21 3 0.04 0.47 0.00 037 0.12 CcoD OTHER
04/08/2010 21:26:29 8 6 2 0 0.04 0.67 0.00 0.23 0.06 CoD OTHER
EAR: A20
Encounters time n o] 5Sp 2Sp
n Class Class. as
BND COD RSD WBD WsD BND coD RSD WBD WSD
as
22/07/2010 17:14:28 2 2 0 1.00 RSD FD
24/07/2010 17:05:17 1 1 0 1.00 RSD FD
26/07/2010 09:23:41 89 7 68 0 12 2 0.13 0.64 0.00 0.18 0.05 CcoD OTHER
29/07/2010 10:05:45 92 2 66 0 13 11 0.07 0.57 0.00 0.22 0.14 CcoD OTHER
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EAR: A20
Encounters time n ¢] 5Sp 2Sp
n Class Class. as
BND CoD RSD WBD WSD BND CoD RSD WBD WSD
as
29/07/2010 11:20:32 2 2 0 0.28 0.52 0.19 0.00 0.01 CcoD OTHER
29/07/2010 13:02:22 120 4 112 4 0 0.08 0.75 0.00 0.10 0.07 CcoD OTHER
31/07/2010 18:25:49 1 1 0 0.10 0.82 0.00 0.00 0.08 CcoD OTHER
01/08/2010 23:01:27 43 0 21 0 2 20 0.03 0.45 0.00 0.11 0.41 CcoD OTHER
03/08/2010 09:02:24 12 0 0 12 0 0 0.00 0.00 1.00 0.00 0.00 RSD FD
04/08/2010 18:20:35 5 1 1 3 0 0 0.21 0.08 0.62 0.08 0.01 RSD FD
05/08/2010 00:17:59 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
06/08/2010 15:29:15 1 1 0 0.16 0.01 0.08 0.75 0.00 WBD FD
07/08/2010 18:29:57 1 1 0 0.02 0.29 0.00 0.68 0.00 WBD FD
09/08/2010 22:12:21 1 1 0 0.00 0.53 0.00 0.47 0.00 CcoD OTHER
11/08/2010 01:05:04 3 2 1 0 0.00 0.67 0.33 0.00 0.00 RSD FD
12/08/2010 14:24:44 1 1 WBD 0.09 0.01 0.02 0.87 0.00 WBD FD
13/08/2010 11:12:10 1 1 coD 0.03 0.90 0.00 0.00 0.06 CcoD FD
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EAR: A20
Encounters time ¢] 5Sp 2Sp
WSD BND coD RSD WBD WSD Classas Class. as
13/08/2010 15:09:06 RSD 0.00 0.00 1.00 0.00 0.00 RSD FD
13/08/2010 23:18:38 RSD 0.00 0.02 0.98 0.00 0.00 RSD FD
14/08/2010 02:20:56 WBD 0.00 0.01 0.00 0.99 0.00 WBD FD
EAR: E16
Encounters time p 5Sp 2Sp
WSD BND CcoD RSD WBD WSD Class as Class. as
22/09/2010 23:23:22 0 0.00 0.00 0.00 1.00 0.00 WBD FD
23/09/2010 10:19:58 0 1.00 0.00 RSD FD
23/09/2010 19:25:05 0 1.00 0.00 RSD FD
24/09/2010 10:21:22 0 0.03 0.00 0.72 0.24 0.01 RSD FD
24/09/2010 13:16:04 0 0.10 0.00 0.09 0.80 0.00 WBD FD
25/09/2010 10:16:34 0 0.34 0.01 0.05 0.60 0.00 WBD FD
25/09/2010 12:03:50 0 0.00 0.00 1.00 0.00 0.00 RSD FD
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EAR: E16
Encounters time ¢] 5Sp 2Sp
" BND COD RSD WSD BND cobD RSD WBD WsSD Classas Class. as

25/09/2010 23:16:22 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
26/09/2010 00:14:41 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
28/09/2010 07:27:28 2 1 0 0.06 0.06 0.50 0.38 0.00 RSD FD
01/10/2010 15:23:38 2 1 0 0.00 0.03 0.50 0.46 0.01 RSD FD
01/10/2010 17:22:16 2 0 0.04 0.04 0.01 0.91 0.00 WBD FD
03/10/2010 16:13:02 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
05/10/2010 05:24:23 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
07/10/2010 12:14:32 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
08/10/2010 13:03:57 2 2 0 0.00 0.00 1.00 0.00 0.00 RSD FD
13/10/2010 06:20:44 87 87 0 0.00 0.00 1.00 0.00 0.00 RSD FD
13/10/2010 15:14:31 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
14/10/2010 22:12:31 1 1 0 0.00 0.00 1.00 0.00 0.00 RSD FD
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EAR: DO1
Encounters time n ¢] 5Sp 2Sp
" BND COD RSD WBD WSD BND coD RSD WBD WSD Classas  Class. as
08/10/2010 17:27:22 5 3 1 1 0 0.62 0.11 0.01 0.25 0.01 BND BND
09/10/2010 07:47:14 5 2 3 0 0.11 0.29 0.00 0.59 0.01 WBD OTHER
09/10/2010 19:37:12 1 1 0 0.79 0.20 0.00 0.02 0.00 BND BND
09/10/2010 21:54:32 2 2 0 0.74 0.10 0.00 0.16 0.00 BND BND
10/10/2010 03:46:59 2 2 0 0.64 0.18 0.00 0.18 0.00 BND BND
10/10/2010 23:38:13 3 1 2 0 0.45 0.11 0.00 0.44 0.00 BND BND
11/10/2010 04:39:10 1 1 0 0.30 0.64 0.00 0.06 0.00 CcoD OTHER
11/10/2010 20:26:07 4 3 1 0 0.76 0.07 0.00 0.17 0.00 BND BND
11/10/2010 22:34:32 2 2 0 0.94 0.06 0.00 0.00 0.00 BND BND
12/10/2010 06:37:49 3 3 0 0.98 0.02 0.00 0.00 0.00 BND BND
12/10/2010 15:35:37 1 1 0 0.95 0.04 0.00 0.01 0.00 BND BND
13/10/2010 20:45:44 20 17 1 2 0 0.85 0.02 0.04 0.09 0.00 BND BND
14/10/2010 12:25:38 1 1 0 0.56 0.44 0.00 0.00 0.00 BND OTHER
14/10/2010 17:51:26 1 1 0 0.82 0.10 0.00 0.09 0.00 BND BND
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EAR: DO1
Encounters time n ¢] 5Sp 2Sp
BND COD RSD WBD WSD BND coD RSD WBD WSD Classas  Class. as
15/10/2010 07:33:37 1 0 0.85 0.15 0.00 0.00 0.00 BND BND
15/10/2010 09:47:13 1 0 0.98 0.02 0.01 0.00 0.00 BND BND
15/10/2010 13:42:35 1 0 1 0.00 0.14 0.64 0.00 0.22 WSD OTHER
15/10/2010 16:50:54 2 0 0.96 0.04 0.00 0.00 0.00 BND BND
16/10/2010 09:27:20 1 0 1.00 0.00 0.00 0.00 0.00 BND BND
16/10/2010 19:49:24 1 1 0 0.45 0.00 0.55 0.00 0.00 RSD BND
18/10/2010 01:39:38 4 0 0.94 0.06 0.00 0.00 0.00 BND BND
20/10/2010 19:31:34 1 1 0 0.46 0.41 0.00 0.12 0.01 BND OTHER
20/10/2010 21:42:10 2 0 0.95 0.05 0.00 0.00 0.00 BND BND
20/10/2010 22:28:17 4 0 0.06 0.73 0.00 0.13 0.08 CcoD OTHER
21/10/2010 21:32:55 6 0 0.92 0.07 0.00 0.01 0.00 BND BND
21/10/2010 22:26:48 1 0 0.64 0.21 0.00 0.15 0.00 BND BND
22/10/2010 04:28:38 1 0 0.28 0.56 0.00 0.15 0.01 CcoD OTHER
22/10/2010 16:29:21 2 2 0 0.60 0.32 0.00 0.08 0.00 BND BND
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EAR: DO1

Encounters time n ¢] 5Sp 2Sp

" BND COD RSD WBD WSD BND coD RSD WBD WSD Classas  Class. as

22/10/2010 17:45:04 4 2 1 1 0 0.41 0.11 0.25 0.23 0.00 BND OTHER
22/10/2010 23:36:16 6 4 1 1 0 0.66 0.02 0.16 0.15 0.01 BND BND
23/10/2010 10:32:47 2 1 1 0 0.73 0.02 0.00 0.25 0.00 BND BND
23/10/2010 22:29:53 4 3 1 0 0.78 0.04 0.00 0.18 0.00 BND BND
24/10/2010 18:27:55 4 3 1 0 0.71 0.26 0.00 0.03 0.00 BND BND
24/10/2010 22:44:01 1 1 0 0.98 0.02 0.00 0.01 0.00 BND BND
25/10/2010 01:35:00 5 4 1 0 0.84 0.11 0.05 0.00 0.00 BND BND
25/10/2010 18:34:00 1 1 0 0.88 0.10 0.00 0.02 0.00 BND BND
25/10/2010 20:42:13 2 1 1 0 0.51 0.04 0.00 0.45 0.00 BND BND
26/10/2010 00:41:54 2 2 0 0.94 0.04 0.00 0.01 0.01 BND BND

27/10/2010 15:33:06 2 2 1 0 0.26 0.21 0.00 0.53 0.00 WBD OTHER
28/10/2010 12:30:46 10 9 1 0 0.76 0.17 0.00 0.04 0.03 BND BND
30/10/2010 11:54:16 3 3 0 1.00 0.00 0.00 0.00 0.00 BND BND
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Appendix B. = Appendix for chapter 4

Table B-1: Classification result of the French dataclassified with the 5Sp and 3Sp Spanish classifeer BND=bottlenose dolphins, COD=common dolphins,

C&S=common/striped dolphins, FPW=pilot whales, STDStriped dolphins, n=number of sections per encounte p= classification probabilities per classificaton

group. Class as= classification result by the 5Spassifier in comparison to the classification restilby the 3Sp classifier

Truth: CD 5SP Spanish Classifier 3SP Spanish classifier
. n P n P
Encounter Time n Class as Class as
BND COD C&S FPW STD BND COD C&S FPW STD BND CSD FPW BND CSD FPW
17/07/2007 15:53 26 0 11 6 0 9 0.02 0.39 0.28 0 0.31 CcD 0 26 0 0.04 0.96 0 CS
20/07/2007 07:11 1 0 0 0 0 1 0.01 0.14 0.39 0 0.46 SD 0 1 0 0.06 0.94 0 CS
21/07/2007 15:21 143 3 45 51 1 43 0.02 0.32 0.34 0 0.32 CS 3 139 1 0.04 0.96 0 CS
21/07/2007 17:35 4 0 4 0 0 0 0.02 0.49 0.25 0 0.24 CcD 0 4 0 0.04 0.93 0 CS
21/07/2007 18:55 3 0 0 1 2 0 0.01 0.12 0.16 0.57 0.14 PW 1 2 0 0.32 0.68 0 CS
24/07/2007 05:35 403 11 168 122 11 91 0.03 0.34 0.31 0.02 0.29 CcD 12 379 12 0.06 0.91 0 CS
24/07/2007 07:32 4 0 0 1 0 3 0 0.28 0.33 0 0.39 SD 0 4 0 1 0 CS
25/07/2007 06:16 5 0 5 0 0 0 0 0.72 0.13 0.01 0.13 CcD 0 5 0 0.01 0.98 0 CS
Truth: CSD 5SP Spanish Classifier 3SP Spanish classifier
. n p n p
Encounter Time n Class as Class as
BND COD C&S FPW STD BND COD C&S FPW STD BND CSD FPW BND CSD FPW
09/07/2007 09:53 15 0 4 10 0 1 0.02 0.31 0.39 0 0.27 CS 0 15 0 0.05 0.94 0 CS
Truth: FPW 5SP Spanish Classifier 3SP Spanish classifier
. n p n p
Encounter Time n Class as Class as
BND COD C&S FPW STD BND COD C&S FPW STD BND CSD FPW BND CSD FPW
18/07/2007 05:34 11 10 0 0 1 0 0.9 0 0 0.09 0 BD 9 0 2 0.82 0 0 BD
19/07/2007 10:23 66 57 3 1 4 1 086 0.04 0.03 0.05 0.02 BD 53 4 9 0.8 0.07 0 BD
21/07/2007 15:21 158 3 50 54 1 50 0.02 0.32 0.34 0 0.32 CS 3 154 1 0.03 0.96 0 CS
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Truth: STD 5SP Spanish Classifier 3SP Spanish classifier
. n P n Y
Encounter Time n Class as Class as
BND COD C&S FPW STD BND COD C&S FPW STD BND CSD FPW BND CSD FPW
08/07/2007 11:30 24 0 5 9 0 10 0 03 035 0 0.34 CS 0 24 0 0.01 0.99 0 CS
09/07/2007 09:48 6 0 1 3 0 2 001 028 037 0 034 CS 0 6 0 0.02 0.98 0 CS
21/07/2007 17:35 4 0 4 0 0 0O 0.02 049 025 0 0.24 CcD 0 4 0 0.04 0.93 0 CS
24/07/2007 12:20 3 1 1 0 1 0 0.28 0.22 0.16 0.26 0.09 BD 2 1 0 053 044 O BD
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Table B-2: Classification results of the Spanish da classified with the 4Sp and 2Sp French classife with n, nCOD, nC&S, nFPW, nSTD, nCSD being

respectively the total number of sections per encoters for all species and the number of section forommon dolphins, common/stripped dolphins, pilot Wwales,

striped dolphins and commons and striped togethepCOD, pC&D, pFPW, pSTD, pCSD being the classificatin probabilities per classification group and Classs

is the classification result per encounter.

True Species : COD

4Sp French classifier

2Sp French Classifier

EncounterTime n n P Class as P Class as
coD C&S FPW STD coD CSD FPW STD coD FPW CcsD FPW

05/07/2007 10:22 233 83 27 17 106 0.34 0.18 0.14 0.34 2 110 123 0.49 0.51 PW
06/07/2007 08:20 167 54 20 19 74 0.31 0.18 0.19 0.32 SD 74 93 0.51 0.49 Cs
06/07/2007 11:20 46 25 13 2 0.41 0.14 0.27 0.18 CD 34 12 0.6 0.4 CS
07/07/2007 15:43 15 6 1 2 6 0.34 0.16 0.23 0.27 CD 8 7 0.53 0.47 CS
11/07/2007 05:28 43 16 1 23 0.31 0.15 0.17 0.37 SD 22 21 0.51 0.49 Cs
11/07/2007 06:11 290 120 35 35 100 0.34 0.18 0.2 0.28 CD 162 128 0.53 0.47 CS
11/07/2007 08:47 428 123 74 63 168 0.3 0.19 0.2 0.31 SD 194 234 0.49 0.51 PW
11/07/2007 09:56 226 86 37 31 72 0.32 0.2 0.21 0.27 CD 132 94 0.53 0.47 CS
12/07/2007 12:46 448 125 100 85 138 0.29 0.22 0.22 0.28 CD 224 224 0.51 0.49 Cs
12/07/2007 13:04 32 12 6 4 10 0.32 0.21 0.17 0.29 CD 18 14 0.53 0.47 CS
12/07/2007 14:49 162 47 32 45 38 0.3 0.22 0.24 0.24 CD 96 66 0.53 0.47 CS
12/07/2007 18:37 2 0 0 0 2 0.32 0.22 0.07 0.4 SD 1 1 0.45 0.55 PW
14/07/2007 07:26 100 44 16 5 35 0.33 0.21 0.16 0.3 CD 39 61 0.48 0.52 PW
14/07/2007 08:00 124 483 229 272 658 0.3 0.18 0.21 0.3 2 765 877 0.5 0.5 2

18/07/2007 12:06 4 1 0 1 2 0.23 0.11 0.2 0.46 SD 3 1 0.54 0.46 CS
18/07/2007 13:46 41 31 3 1 6 0.48 0.18 0.08 0.26 CD 37 4 0.66 0.34 Cs
18/07/2007 17:16 4 2 1 0 1 0.4 0.18 0.14 0.28 CD 3 1 0.53 0.47 CS
28/07/2007 17:29 12 3 3 5 1 0.27 0.26 0.32 0.15 PW 4 8 0.48 0.52 PW
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True Species: CSD 4Sp French classifier 2Sp French Classifier
. n P n Y
EncounterTime n Class as Class as
coD C&S FPW STD coD C&S FPW STD csD FPW CsD FPW
06/07/2007 12:56 45 14 11 3 17 0.26 0.27 0.14 0.32 SD 20 25 0.480 0.520 PW
07/07/2007 07:14 4 2 1 0 1 0.38 0.14 0.19 0.28 CD 3 1 0.570 0.430 (o
07/07/2007 09:58 1 0 0 0 1 0.06 0 0 0.94 SD 0 1 0.370  0.630 PW
11/07/2007 08:39 2 0 0 0 2 0.26 0.13 0.17 0.43 SD 0 2 0.300 0.700 PW
11/07/2007 12:32 1 0 0 0 1 0.15 0.17 0.3 0.38 SD 0 1 0.400 0.600 PW
11/07/2007 16:08 9 1 0 2 6 0.25 0.17 0.21 0.38 SD 4 5 0.470 0.530 PW
11/07/2007 16:32 271 55 52 37 127 0.27 0.22 0.19 0.31 SD 88 183 0.460 0.540 PW
12/07/2007 07:57 19 5 4 3 7 0.29 0.2 0.2 0.31 SD 10 9 0.510 0.490 CS
13/07/2007 06:09 3 0 0 4 0.4 0.11 0.09 0.4 2 3 4 0.490 0.510 PW
13/07/2007 14:54 1 0 0 1 0 0.17 0.13 0.38 0.32 PW 0 1 0.410 0.590 PW
13/07/2007 15:44 14 7 1 0 6 0.45 0.15 0.09 0.31 CD 6 8 0.480 0.520 PW
14/07/2007 07:20 6 1 0 0 5 0.26 0.14 0.13 0.46 SD 1 5 0.400 0.600 PW
14/07/2007 07:48 18 2 2 2 12 0.27 0.15 0.2 0.38 SD 5 13 0.450 0.550 PW

14/07/2007 08:54 109 32 13 14 50 0.3 0.19 0.19 0.32 SD 49 60 0.490 0.510 PW

18/07/2007 09:56 1 0 0 1 0 0.3 0.08 0.4 0.23 PW 1 0 0.680 0.320 ()
18/07/2007 11:58 12 6 0 2 4 0.36 0.14 0.21 0.29 CD 8 4 0.610 0.390 ()
18/07/2007 16:26 13 5 1 5 2 0.29 0.22 0.27 0.22 CD 7 6 0.500 0.500 2
20/07/2007 07:10 5 0 2 1 2 0.21 0.25 0.18 0.36 SD 3 2 0.540 0.460 ()
20/07/2007 08:04 0 0 1 0 1 0.25 0.23 0.13 0.39 SD 1 1 0.550 0.450 ()
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2Sp French Classifier

Encounter Time n n Class as n P Class as
CcoD C&S FPW STD CcoD C&S FPW STD CSD FPW CcsD FPW
08/07/2007 15:41 1 1 0 0 0 0.4 0.09 0.3 0.2 CD 1 0 0.67 0.33 CS
True species : STD 4Sp French classifier 2Sp French Classifier
. n n P
Encounter Time n Class as Class as
CcoD C&S FPW STD CcoD C&S FPW STD CsD FPW CcsD FPW
06/07/2007 12:01 32 11 6 3 12 0.29 0.2 0.19 0.32 SD 15 17 0.49 0.51 PW
07/07/2007 08:17 21 9 5 2 5 0.34 0.22 0.18 0.26 CD 15 6 0.53 0.47 CS
08/07/2007 08:43 3 0 1 0 0.24 0.23 0.09 0.44 SD 0 3 0.39 0.61 PW
11/07/2007 16:38 76 12 7 0 57 0.28 0.16 0.15 0.41 SD 12 64 0.41 0.59 PW
12/07/2007 11:33 1 1 0 0 0 0.38 0.25 0.06 0.32 CD 1 0 0.67 0.33 CS
12/07/2007 14:57 1 1 0 0 0 0.44 0.06 0.13 0.37 CD 1 0 0.51 0.49 CS
13/07/2007 08:04 5 0 0 3 2 0.2 0.12 0.39 0.29 PW 2 3 0.46 0.54 PW
20/07/2007 07:56 3 0 0 0 3 0.28 0.19 0.17 0.36 SD 1 2 0.5 0.50 2
20/07/2007 12:38 1 0 0 0 1 0.14 0.36 0.13 0.37 SD 0 1 0.38 0.62 PW
27/07/2007 08:46 25 13 1 3 8 0.34 0.15 0.19 0.31 CD 17 8 0.55 0.45 CS
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Table B-3: Classification of the French encountersnot associated with visual detections, with theSp French classifier and the North Atlantic classier. n=number
of sections per encounter in total (n) and per cla#fication groups (nCSD,nFPW etc..). p=classificatn probability per classification groups
(pCSD,pFPW...).VisualDet=statute of the visual tearduring the encounters: On effort=visual team was m effort but they did not detect the animals, Off &ort=the
visual team was Off effort, sonar or electric = dagiption of the sound generating false detectionspecies name at time=when a species has been obsérby the

visual team close to the encounter time.

2Sp French classifier North Atlantic classifier
Encounter Time n n p Class n n p Class  VisualDet
CSD FPW (CSD FPW as BND csD FPW BND CSD FPW as

08/07/2007 11:34 2 0 2 0.4 0.58 LF 3 0 3 0 0.2 0.8 0 CS Off effort
08/07/2007 12:37 15 5 10 0.5 0.55 LF 6 0 6 0 0.03 0.97 0 CS Off effort
10/07/2007 18:03 39 21 18 0.5 0.48 CS Off effort
11/07/2007 06:33 245 152 93 05 047 CS 48 6 42 0 0.11 0.89 0 CS Off effort
17/07/2007 06:25 3 3 0 0.8 0.25 CS Off effort
17/07/2007 07:18 2 2 0 06 04 CS Off effort
17/07/2007 19:17 2 2 0 0.6 04 CS BND
18/07/2007 04:46 1 0 1 0.5 0.54 LF Off effort
19/07/2007 13:06 11 6 5 0.5 0.47 CS 2 0 1 0 0.18 0.45 0.38 CS On effort
19/07/2007 15:04 3 1 2 0.5 0.49 CS Off effort
20/07/2007 04:43 39 23 16 0.5 0.49 CS 7 4 2 0 0.62 0.22 0.16 BD Off effort
20/07/2007 05:00 3 1 2 0.5 0.5 2 Off effort
20/07/2007 06:00 1 0 1 0.5 0.55 LF On effort
20/07/2007 19:44 3 3 0 0.6 0.36 CS BND
21/07/2007 19:07 4 4 0 0.7 0.33 CS BND/COD
23/07/2007 06:27 4 4 0 0.7 0.32 CS coD
23/07/2007 07:28 5 5 0 0.6 0.42 CS CS
23/07/2007 07:45 12 8 4 0.6 0.39 CS 1 0 1 0 0 1 0 (o CS
23/07/2007 09:08 6 2 0.6 04 CS 1 0 1 0 0 1 0 CS On effort
23/07/2007 10:32 1 0 0.6 0.45 CS Off effort

B-19



Appendices

2Sp French classifier North Atlantic classifier
Encounter Time n n p Class n n p Class  VisualDet
CSD FPW CSD FPW as BND CSD FPW BND CSD FPW as
23/07/2007 10:58 2 1 1 0.5 0.55 LF Off effort
23/07/2007 14:07 3 1 2 0.4 0.63 LF Off effort
23/07/2007 14:29 2 2 0 0.5 0.6 CS Off effort
23/07/2007 14:42 1 0 1 0.4 0.6 LF Off effort
24/07/2007 09:13 9 9 0 0.6 0.37 CS 1 0 1 0 0.04 0.95 0 Cs Off effort

Table B-4: Classification of the Spanish encountergnot associated with visual detections) with the S Spanish classifier and the North Atlantic clasfier.
n=number of sections per encounter in total (n) andper classification groups (nBND,nCSD etc..). p=ctsification probability per classification groups
(pPBND,pC&S...). VisualDet=statute of the visual teamduring the encounters: On effort=visual team was oreffort but they did not detect the animals, Off
effort=the visual team was Off effort, sonar or eletric = description of the sound generating false etections, species name at (time)=when a species limen

observed by the visual team close to the encountiéme.

3Sp Spanish classifier North Atlantic classifier
Encounter Time n n p Classas | n n p Class as VisualDet
BND CSD FPW BND CSD FPW BND CSD FPW BND CSD FPW

30/06/2007 15:37 5 5 0 0 1 0 0 BD Off effort
02/07/2007 15:24 2 2 0 0 0.76 0.04 0.2 BD Off effort
04/07/2007 05:12 1 0 1 0 0 1 0 CS Off effort
04/07/2007 05:29 1 0 1 0 0.1 0.9 0 CS Off effort
04/07/2007 07:30 2 0 2 0 0 1 0 CS On effort
04/07/2007 12:29 3 0 3 0 0 1 0 CS On effort
05/07/2007 06:35 4 0 4 0 0.12 0.88 0 CS 1 0 1 0 0.01 0.99 0 CS On effort
05/07/2007 07:27 5 4 1 0 0.7 0.2 0.1 BD 1 0 0 0 0 0 1 PL sonar
05/07/2007 08:01 4 4 0 0 1 0 0 BD sonar
05/07/2007 08:31 7 7 0 0 0.93 0.01 0.05 BD 1 0 0 0 0 0 1 PL sonar
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Encounter Time n n p Classas | n n p Class as VisualDet
BND CSD FPW BND CSD FPW BND CSD FPW BND CSD FPW

05/07/2007 09:33 1 1 0 0 0.98 0 0.02 BD sonar
06/07/2007 07:26 27 1 26 0 0.05 0.95 0 CS 7 0 7 0 0 1 0 CS On effort
06/07/2007 08:09 2 0 2 0 0.22 0.78 0 CS 1 0 1 0 0 1 0 CS On effort
06/07/2007 09:30 2 1 1 0 0.28 0.72 0 CS 1 0 1 0 0 1 0 CS CD at 8:27
06/07/2007 10:47 12 0 12 0 0 1 0 CS 1 0 1 0 0.24 0.76 0 CS On effort
06/07/2007 11:45 1 1 0 0 0.5 0.5 0 2 On effort
06/07/2007 12:19 231 8 217 6 0.06 09 0.03 CS 39 11 28 0 0.34 0.66 0 CS SD at 12:10
07/07/2007 12:39 6 0 6 0 0 1 0 CS 1 0 1 0 0 1 0 CS On effort
08/07/2007 07:21 1 0 1 0 0.07 0.93 0 CS On effort
08/07/2007 09:48 1 0 1 0 0 1 0 CS Off effort
08/07/2007 10:43 49 0 49 0 0.03 0.97 0 CS 7 0 7 0 0.05 0.95 0 CS On effort
10/07/2007 06:02 1 0 1 0 0.12 0.8 0.07 CS On effort
10/07/2007 10:57 12 0 12 0 0 1 0 CS 2 2 0 0 0.9 0.1 0 BD Off effort
10/07/2007 11:30 4 2 2 0 0.48 0.52 0 CS 1 0 1 0 0 1 0 CS Off effort
10/07/2007 11:59 205 17 185 3 0.14 0.85 0.02 CS 36 3 33 0 0.11 0.88 0.01 CS Off effort
10/07/2007 16:57 370 9 360 1 0.07 0.93 0 CS 68 2 66 0 0.08 0.92 0 CS Off effort
11/07/2007 05:23 3 0 3 0 0.05 0.95 0 CS Off effort
11/07/2007 06:09 4 0 4 0 0.09 0.91 0 CS 1 0 1 0 0 1 0 CS CD at6:21
11/07/2007 06:51 3 0 3 0 0.01 0.99 0 CS On effort
11/07/2007 07:50 2 0 2 0 029 0.71 0 CS On effort
11/07/2007 08:11 27 0 27 0 0.02 0.98 0 CS 9 0 9 0 0 0 CS On effort
11/07/2007 09:14 4 0 4 0 0.04 0.96 0 CS 1 0 1 0 0 0 CS CDat9:24
11/07/2007 15:05 2 0 2 0 0.02 0.98 0 CS BND/FPW
11/07/2007 19:40 9 0 9 0 0 1 0 CS 2 0 2 0 0 1 0 CS Off effort
12/07/2007 17:47 27 1 26 0 0.07 0.93 0 CS 5 0 5 0 0.08 0.92 0 CS On effort
12/07/2007 19:30 5 0 5 0 0 1 0 CS 1 0 1 0 0 1 0 CS Off effort
13/07/2007 13:24 4 0 4 0 0 1 0 CS On effort
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Encounter Time n n p Classas | n n p Class as VisualDet
BND CSD FPW BND CSD FPW BND CSD FPW BND CSD FPW

13/07/2007 17:02 9 0 9 0 0.02 0.98 0 CS 2 0 2 0 0 1 0 CS Off effort
13/07/2007 17:22 8 0 8 0 0 1 0 CS 1 0 1 0 0.16 0.84 0 CS Off effort
13/07/2007 18:05 189 6 182 1 0.05 0.94 0.01 CS 33 2 31 0 0.05 0.95 0 CS Off effort
13/07/2007 19:30 12 3 7 2 0.27 0.61 0.12 CS 2 1 0 0 05 0.01 05 2 Off effort
14/07/2007 12:14 68 4 60 4 0.09 0.84 0.07 CS 10 0 10 0 0.06 0.94 0 CS Off effort
14/07/2007 17:17 2 0 2 0 0.01 0.99 0 CS Off effort
14/07/2007 18:40 8 0 8 0 0.01 0.99 0 CS 1 0 1 0 0 1 0 CS Off effort
18/07/2007 06:59 12 0 12 0 0.01 0.98 0.02 CS 2 1 1 0 0.36 0.64 0 CS Off effort
18/07/2007 07:46 178 0 123 55 0 0.7 0.29 CS 3 0 0 0 1 0 CS Electric
18/07/2007 08:06 11 0 11 0 0 0 CS Electric
18/07/2007 09:21 8 0 8 0 0 0 CS Electric
18/07/2007 19:01 1 0 1 0 0 1 0 CS Off effort
20/07/2007 09:57 1 0 1 0 0 1 0 CS Off effort
20/07/2007 17:15 1 0 1 0 0 1 0 CS On effort
20/07/2007 17:41 2 0 2 0 0 1 0 CS On effort
20/07/2007 19:11 1 1 0 0 0.84 0.04 0.13 BD Off effort
21/07/2007 09:53 3 0 3 0 0 1 0 CS Off effort
21/07/2007 13:59 9 0 9 0 0 1 0 CS 1 0 1 0 0 1 0 CS On effort
25/07/2007 06:40 1 0 1 0 0 1 0 CS On effort
25/07/2007 18:10 1 0 1 0 0.01 0.99 0 CS Off effort
26/07/2007 14:44 6 0 6 0 0 1 0 CS 1 0 1 0 0 1 0 CS On effort
27/07/2007 07:07 8 0 8 0 0.01 0.99 0 CS 1 0 1 0 0 1 0 CS On effort
27/07/2007 09:39 1 0 1 0 0 1 0 CS 8 0 8 0 0 1 0 CS On effort
27/07/2007 18:09 57 0 57 0 0 1 0 CS 1 0 1 0 0 1 0 CS Off effort
28/07/2007 06:06 5 0 5 0 0 1 0 CS 1 0 1 0 0 1 0 CS On effort
28/07/2007 06:41 11 0 10 1 0.02 0.94 0.05 CS 1 0 1 0 0 1 0 CS On effort
29/07/2007 19:07 2 0 2 0 0 1 0 CS Off effort
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Appendix C. Appendix for chapter 6.

C.1 Analytic estimate of the bias and variance of the true number of detected calls
when there is no uncertainty in the values of the confusion matrix.

The notations used in this Appendix are the sambeasotations defined in the main body of
the text in chapter 6.

The mean of a multinomially distributed random abte y~Multinom(v,p) is (Royle and
Dorazio, 2008).

E[yj] = Vp; C.1l

with v being the numbers of trials apdhe event probabilities.
The expected value of a sum is equal to the suttmeoéxpected values

EY v =) B C.2
=1 =1

In the following, these two expressions (C.1 an#) @re used to derive the expected values
of D.

The model can be described as

E[?] = E[C .n] C3

With v being the true number of detectiospeing a constant confusion matrix amdhe
observed detections.

Sincen is a sum of several multinomial elements thestat given by:
Ny =Yi1+Yie tYViz + Yia
With y ;~Multinom;(v;, p ;) C.4
E[n;] = Z;‘n=1E(}’ij) = Z;n=1 UjDij

The variance and covariance of a multinomial dsttion are (Royle and Dorazio 2008):
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Var(yj) =vp;(1—pj) C5
cov(yl-,yj) = —Up;p; C.6

In general, the variance/covariance of a matrixtiplying an uncorrelated random variable

Zis:
cov(CZ) = C.cov(Z).CT C.7

With the model from equation C.3:

cov(v) = cov(C™1.n)

C.8
= clcov(n)Cc Y
Again identifyingn as the sum of multinomial random variables:
cov(n) C.9
[ var(nl) cov(nm, nm) o cov(ng, )|
| “ :
=| COV(nun1) var(nj) o cov(ng,ny) |
lcov(nm, ny) cov(nm, n) - var(n,,) J
with
var(n;) = 1var(yl]) X1 vipii(1 — pij) C.10
and
cov(ng,ng) =X cov(yij, yij) = — X VjDijP; C.1l1
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C.2: Tables

Table C-1: Analytically derived mean of the expected truenumber of calls, E[¢], and coefficient of

variation (CV, expressed as a percentage).

Scenario 1 (equal data)

Scenario 2 (unequal data)

Confusion
Matrix — ——g58 SpB SpC SpD | SpA| SpB]  SpC SpD
3000 3000 3000  3000| 8000 3000 950 50
: (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%)
3000 3000 3000  3000| 8000 3000 950 50
’ (L19%)  (L19%)  (119%)  (L19%) | (0.54%) (1.19%) (334%)  (59.9%)
3000 3000 3000  3000| 8000 3000 950 50
’ (112%)  (L36%) (L14%) (L17%) | (057%) (148%) (2.91%)  (43.85%)
3000 3000 3000 3000 | 8000 3000 950 50
’ (410%)  (410%)  (410%)  (410%) | (L75%) (4.10%) (12.13%) (22351%)
3000 3000 3000 3000 | 8000 3000 950 50
e
(398%)  (300%) (AO7%)  (4.96%) | (L59%) (329%) (10.66%) (299.92%)
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Table C-2: Simulation result, without uncertainty in the confusion matrix, of the mean of the estimates of

the true number of calls H¥] , and coefficient of variation (CV, expressed as jpercentage).

Scenario 1. Scenario 2.
SpA SpB SpC SpD SpA SpB SpC SpD
Scenario 3000 3000 3000 3000 8000 3000 950 50
x4 ) 0% 0% (0% | )  ©0% (0% (0%)
Scenario| 2999.93 3000.12 3000.01 2999.94 8000.37 2999.47 .1950 50.02
x.b (118%)  (1.18%) (1.19%) (1.18%) | (0.55%) (1.19%) (3.67%)  (59.89%)
Scenario| 3000.69 2998.99 3000.14 3000.18 7999.46 3000.40 .9949 50.19
X.C (1.12%)  (1.36%) (1.15%) (L17%) | (0.56%) (L.49%) (2.94%)  (43.7%)
Scenario| 2999.87 3001.49 2998.55 3000.09| 8000.74 3000.72 949.64 48.9(
x.d (4.09%) (4.14%) (4.08%) (4.12%) | (L75%) (4.08%) (12.14%) (229.82%)
Scenario| 2997.28 3002.00 3000.30 3000.41 7999.63 3000.88 948.58 50.92
x.e (4.03%) (2.98%) (4.07%) (4.92%) | (1.59%) (3.27%) (10.69%) (295.94%)
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Table C-3: Simulation result, with a low level of uncertanty in the confusion matrix, of the mean of the

estimates of the true number of call€[¥], and coefficient of variation (CV, expressed as percentage).

Scenario 1. Scenario 2.
SpA SpB SpC SpD SpA SpB SpC SpD
3000 3000 3000 3000 8000 3000 950 50
Sc x.a
(0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%)
3000.11 3000.58 2999.38 2999.92 8000.48 2999.24 9849 50.30
Scx.b (467.87%
(651%)  (6.58%)  (6.61%)  (6.54%) | (4.60%) (8.57%)  (24.85%)
2999.72 2999.89 3000.13 3000.25 7999.70 3000.05 .1¥50 50.07
Sc x.c
(6.68%)  (6.54%)  (6.57%)  (6.61%) | (4.60%) (8.58%)  (25.19%) (471.00%
3002.12 2996.36 3001.90 2999.35 7998.41 3000.28 .7950 50.60
Sc x.d
(22.90%) (22.77%) 22.25 22.81 14.47 30.81 92.89 1722.71
2999.25 2999.79 2999.06 3001.90 8001.65 2999.24 7850 48.32
Sc x.e
(21.00%) (17.48%) (21.97%) (28.79%) | (13.42%) (19.90%) (105.79%) 2578.82%
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Table C-4: Simulation result, with a high level of uncertanty in the confusion matrix, of the means of the

estimates of the true number of call€[¥], and coefficient of variation (CV, expressed as percentage).

Scenario 1. Scenario 2.

SpA SpB SpC SpD SpA SpB SpC SpD

3000 3000 3000 3000 8000 3000 950 50
Sc x.a

(0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%)

2999.94 3000.14 3000.02 2999.90 8000.04 3000.03 .9949 49.94
Sc x.b

(61.89%) (61.28%) (62.65%) (61.70%) | (42.64%) (80.85%) (226.46%) 4485.69%

2999.96 3000.00 3000.06 2999.98 7999.79 3000.11 .0950 50.08
Sc x.c

(62.53%)  (60.69%) (65.51%) (62.27%) | (44.42%) (83.19%) (236.21%)  4490.55%

3000.26 2999.97 2999.84 2999.94 8000.43 2999.42 .6949 50.53
Sc x.d

(214.59%) 217.66% 212.69% 218.69% | 101.44%  214.96% 646.61% 12788.65%

2999.66 2999.97 3000.15 3000.22 8000.13 2999.67 .8949 50.37
Sc x.e

195.02% 164.58% 200.83%  274.79% 93.18% 138.27% 751.36% 16944.28%
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Table D-1: Values of the parametersx for the Dirichlet prior distributions, for each species, each scenario and each set of priors for phe parametersa were

selected such that: the CV of the correct classifition probabilities (diagonal element) was equal td%, 40% and 77% and the means of the prior distrilution were

equal to the classification probabilities of the senarios for P1 and P2 whereas for prior P3, the merdistribution was equal to 0.25 for each species.

Scenarios Prior P1 Prior P2 Prior P3
Scx.b ay 1499.15 88.19  88.19  88.1¢ 0.088 0.005 0.005 0.4os
a, 88.19 1499.15 88.19  88.1¢ 0.005 0088 0005 0.4os
O3 88.19  88.19 1499.15  88.1¢ 0.005 0005 0.08  0.4os
o4 88.19 88.19 8819 1499.45 0.005 0.005 0.005  0.089 1
Scx.c 0y 1499.15 141.10 3527  17.64 8.8%0 4.10° 01.10° 5.10° 1
0y 176.4  1499.15 5291 158.7B 5710 8.810° 1.5.10° 4.5.10 1
s 5291  88.19 1499.15 8819 1590 0.005 8818 0.005 1
a4 3527  35.27 176.4  1499.45 1.10° 1.10* 5.10* 8.81C 1
Scx.d 0y 4799.48 1476.76 1476.76 1476.f6 2.48 0.76 0.76 0.76 1
Uy 1476.76 4799.48 1476.76 1476.f6 0.76 2.48 0.76 0.76 1
s 1476.76 1476.76 4799.48 1476.f6 0.76 0.76 2.48 0.76 1
N 1476.76 1476.76 1476.76 4799.J18 0.76 0.76 0.76 2.48 1
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Scx.e

a1

az

a3

04

4799.48

1384.5

923

2122.9

369.2

4799.48

1292.2

2769.0

1846.0

119.9

1846,

461.1

4799.48 2122.3

1384.5

D 2.48

0.71

9 0.48

4799 .4

18 1.1

0.19

2.48

0.67

1.43

0.95

0.62

2.48

0.71

11

2.48
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Table D-2: Convergence test results for each modé&l and species. Y indicates that the chains for the
corresponding species converged. The 0 value in S#2and Sc2.e with prior V3 indicates that the
posterior distribution for species D had stopped aaverging and the mean of this posterior distribution

was 0. Grey cells indicate models that were fountb be sensitive to the initial values of the Markov

chains.
Prior V1 V2 V3
Species ABCD ABCD ABCD
Scl.a YYYY YYYY
‘é’ Scl.b YYYY YYYY
:3‘; SCi.c YYYY YYYY
. Sci.d YYYY YYYY
Scl.e YYYY YYYY
Sc2.a YYYY YYYY YYYY
gf Sc2.b YYYY YYYY YYYY
% Sc2.c YYYY YYYY YYYY
= Sc2.d YYYY YYYY YYYO
Sc2.e YYYY YYYY YYYO

D-31



Appendices

Table D-3: Summary of the convergence test resulf®r the Posterior distribution of the parameters v
and p for all models B. Y indicates that the chains foithe corresponding species converged whereas N
indicates they did not converged.Sc=Scenario for the different confusion matrices (& a to Scx e) and
for the equal(Scl.) and unequal dataset Sc2. Theay cells indicate models sensitive to the initialalues of

the Markov chains.

Prior onv V1 V2 V3
Prior onp P1 P2 P3 PL P2 P3| P1 P2 P3
Parameters vp vp vp VP Vp Vp| Vvp Vvp vp
Scl.a

© Scl.b YY YY YY |YY YY YY

<

o

[ Scl.c YY YY YY |YY YY YY

O

LLl
Scl.d YY YY YY YY YY YY
Scl.e YY YY YY YY YN YN
Sc2.a

g Sc2.b YY YY YY | YY YN YY | YY YY YY

©

g Sc2.c YY YY YY | YY YY YY|YY YY YY

()

[

- Sc2.d YY YY YY | YY YY YY|YY YY YY
Sc2.e YY YY YY | YY YY YY|YY YY YY
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Species A Species B

Relative Bias %

Relative Bias %

ViP1 V2P1 V3Pl ViP2 V2P2 V3P2 VIiP3 V2P3 V3P3 VIP1 VZ2P1 V3P{ VIP2 V2P2 V3P2 VIP3 V2P3 V3P3

Species C Species D

60

20 40

Relative Bias %
1}
Relative Bias %

-40 20

-60

V1P1 V2.P1 V3P1 V1P2 V2P2 VIP2 VI1P3 VZP3 V3P3

V1.P1 V2P1 V3P1 V1P2 V2P2 V3iP2 V1P3 VZP3 V3P3

Figure D-1 : Beanplots of the estimates relative Bb as a function of the priors orv and p in the models

for each species. The bold lines are the mean reilla bias for each beanplot whereas the dotted linese
the mean of the relative bias across all models fame species.

D-33



Appendices

Appendix E. R Codes for models A without uncertainty on the classification rates:
library(MCMCpack)

H

ke

#Equal Data priors and confusion matrices

#H

T

#Prior parameters

prior.n1<- matrix(c(3000,90000,3000,90000,3000,908000,90000),2,4)#variance such as CV =10%
prior.n2<-matrix(c(3000,1.3e6,3000,1.3e6,3000,13e®0,1.3e6),2,4)#variance such as CV=40%
#Confusion matrices

CMO <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1)4,

CM1 <- matrix(c(0.85,0.05,0.05,0.05,0.05,0.85,0008,0.05,0.05,0.85,0.05,0.05,0.05,0.05,0.85),4,4)
aCM1<- matrix(c(0.85,0.10,0.03,0.02,0.08,0.85,M0%,0.02,0.03,0.85,0.10,0.01,0.09,0.05,0.85),4,4)
CM2 <- matrix(c(0.52,0.16,0.16,0.16,0.16,0.52,00185,0.16,0.16,0.52,0.16,0.16,0.16,0.16,0.52),4,4)
aCM2 <- matrix(c(0.52,0.15,0.10,0.23,0.04,0.52,M13D,0.20,0.13,0.52,0.15,0.20,0.05,0.23,0.52),4,4

#CMO

#initial parameters :

initparamY.SCO0.1<- matrix(c(3000,1,1,1,3003,1,300D0,3003,1,1,3000,1,3003,1,1,1,3000,3003),5,4)
initparamY.SCO0.2<-
matrix(c(900,550,140,350,1940,400,1025,540,825,28WM450,2000,200,3100,200,200,200,2700,3300),5,4)
#models :

NoD_Sc0_1<- MH.Obs(c(3000,3000,3000,3000),CMO0,500000,50000,initparamY.SCO0.1,prior.n2,prior.n1)
#CM1

#initial parameters :

initparamY.SC1.1<-
matrix(c(2550,150,150,150,3000,150,2550,150,15@ 3, 150,2550,150,3000,150,150,150,2550,3000),5,4)
initparamY.SC1.2<-
matrix(c(900,550,140,350,1940,400,1025,540,825,281450,2000,200,3100,200,200,200,2700,3300),5,4)
#models :

NoD_Scl 1<-
MH.Obs(c(3000,3000,3000,3000),CM1,500,200000,1000B0aramY.SC1.1,initparamY.SC1.2,prior.n2)
#aCM1

#initial parameters :

initparamY.SC2.1<-
matrix(c(2550,300,90,60,3000,240,2550,150,60,3@0(52550,310,3000,30,270,150,2550,3000),5,4)
initparamY.SC2.2<-

matrix(c(2500,350,150,200,3200,400,1900,300,20@ Z8W,100,2600,400,3400,280,320,470,1630,2700),5,4)
#models :

D-34



Appendices

NoD_Sc2_1 <-
MH.Obs(c(3000,3000,3000,3000),aCM1,500,200000,10Mi@paramY.SC2.1,initparamY.SC2.2,prior.n2)
#CM2

#initial parameters :

initparamY.SC3.1<-

matrix(c(1560,480,480,480,3000,480,1560,480,48® 31&D,480,1560,480,3000,480,480,480,1560,3000),5,4)
initparamY.SC3.2<-
matrix(c(1900,650,40,350,2940,400,1025,540,825,281450,2000,200,3100,200,200,200,2700,3300),5,4)
#models :

NoD_Sc3 1<-
MH.Obs(c(3000,3000,3000,3000),CM2,500,200000,1000BBaramY.SC3.1,initparamY.SC3.2,prior.n2)
#aCM2

# initial parameters :

initparamY.SC4.1<-
matrix(c(2550,300,90,60,3000,240,2550,150,60,3@)0(52550,300,3000,30,270,150,2550,3000),5,4)
initparamY.SC4.2<-

matrix(c(2500,350,150,200,3200,400,1900,300,20® 28W,100,2600,200,3200,280,320,470,1630,2700),5,4)
# models :

NoD _Sc4 1 <-
MH.Obs(c(3000,3000,3000,3000),aCM2,500,200000,1000i@paramY.SC4.1,initparamY.SC4.2,prior.n2)

H
H

#Unequal Data priors and confusion matrices

#H

ke

#Priors on the true number of detections:

prior.unBnl<- matrix(c(8000,1.25*1076,3000,1.8*1(0850,1.8*10"4,50,51),2,4)#var CV14% as if 10% for
speccies D var<mean and not possible with negbialomi

prior.unBn2<- matrix(c(8000,9.2*10"6,3000,1.3*10260,1.31*1075,50,361),2,4)#var CV40%
prior.unBn3<- matrix(c(8000,6.4*10"5,3000,3.6*10250,1.31*10"5,50,900),2,4)#CV variable with
10%,20%,40% and 60% from common to rare species

prior.unBn4<- matrix(c(8000,6.4*10"5,3000,3.6*10250,1.31*10"5,50,361),2,4)#CV variable with
10%,20%,40% and 40% from common to rare species

#CMO
#initial parameters :

initparamY.SC5.1<- matrix(c(8000,1,1,1,8003,1,300D,3003,1,1,950,1,953,1,1,1,50,53),5,4)
initparamY.SC5.2<- matrix(c(7800,50,50,100,800©900,175,135,3000,50,25,800,75,950,8,7,5,30,50),5,4
#Model :

NoD_Sc5_1<-
MH.Obs(c(8000,3000,950,50),CM0,500,100000,5000pamamY.SC5.2,initparamY.SC5.1,prior.unBn2)
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#CM1

#initial parameters :

initparamY.SC6.1<-
matrix(c(6800,400,400,400,8000,2550,150,150,15@30048,807,48,950,2,3,2,43,50),5,4)
initparamY.SC6.2<-
matrix(c(6900,580,340,380,8200,400,1025,540,8295M125,800,75,1050,4,6,9,41,60),5,4)

#Model :

NoD_Sc6_1<-
MH.Obs(c(8000,3000,950,50),CM1,500,100000,5000pamamY.SC6.2,initparamY.SC6.1,prior.unBn2)
#aCM1

#initial parameters :

initparamY.SC7.1<- matrix(c(6800,800,240,160,8080,2550,150,60,3000,19,28,808,95,950,1,4,2,43,30),5
initparamY.SC7.2<-
matrix(c(6500,900,340,260,8000,210,2500,250,40,3m68,700,162,950,0,10,15,25,50),5,4)

#Model :

NoD_Sc7_1<-
MH.Obs(c(8000,3000,950,50),aCM1,500,100000,500@pdaremY.SC7.2,initparamY.SC7.1,prior.unBn2)
#CM2

#initial parameters :

initparamY.SC8.1<-
matrix(c(4160,1280,1280,1280,8000,480,1560,480308M,152,152,494,152,950,8,8,8,26,50),5,4)
initparamY.SC8.2<-
matrix(c(3900,1650,1100,1350,8000,610,1025,54031%%),125,50,675,100,950,3,4,1,42,50),5,4)
#Models :

NoD_Sc8 1<-
MH.Obs(c(8000,3000,950,50),CM2,500,100000,5000#@mamY.SC8.2,initparamY.SC8.1,prior.unBn2)
#aCM2

#initial parameters :

initparamY.SC9.1<-
matrix(c(4160,1200,800,1840,8000,240,2550,150,8M3®0,123,494,143,950,10,2,12,26,50),5,4)
initparamY.SC9.2<-
matrix(c(4500,1150,950,1400,8000,400,2000,400,20m,210,100,500,140,950,4,6,10,30,50),5,4)
#Models :

NoD_Sc9 1<-
MH.Obs(c(8000,3000,950,50),aCM2,500,100000,5008pdramY.SC9.2,initparamY.SC9.1,prior.unBn2)

H

ke

#FUNCTIONS

#

T

#Routine to run Metropolis Hasting model

MH.Obs <- function(n.simul,#true number of detectionsdaich species used to generate the data used
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CM,#CM use to simulate data

data.its,# number of "bootstrap"

nits,# number of iteration ik tlMCMC

nburn,#burn in size

init.paraml #initial values fdrainl for parameters y's
init.param?2 #initial values fdrain 2 for parameters y's

prior.param #prior parametensyfs parameters

library(MCMCpack)

library(coda)

Allmean <- Allmean2 <- array(NA,c(data.its,4 #tgble to save the mean of the parameters for &adins
Allsd <- Allsd2<- array(NA,c(data.its,4,4))

AllIAR <- AlIAR2 <- matrix(NA,data.its,ncol(init.aram1)) #contains all Acceptance Rate for eachsbiagt
colnames(Allmean)<-colnames(Allmean2)<-c("Mea8y","95Low","95High")

printseq<-seq(1,data.its,100)

if(data.its==1)
{data.yest<-matrix(round(rowMeans(data.sim(n.di&@@00,CM)[[1]])),(length(n.simul)),1)}
else {data.yest<-data.sim(n.simul,data.its, CM}}[1

#data.yest$Y<-round(apply(data.yest$Y,1,meanp#ois when only 1 simulation

for (z in 1:data.its){ #for eahc simulated datase
Result <- met.hasObs (nits,data.yest[,z],nlpuior,.param, init.param1,CM )
Result2 <- met.hasObs (nits,data.yest[,z],njpuior.param, init.param2,CM )
ndrawl <- memc(t(Result[[1]][(length(n.simul)}.1))
ndraw2 <- memc(t(Result2[[1]][(length(n.simul)},]))

Allmean [z,1:2,] <- t(summary(ndrawl)$statisfid:2])
Allmean [z,3:4,] <- t(summary(ndrawl)$quantile€l,5)])
AllAR[z,] <- Result[[2]]

Allmean2 [z,1:2,] <- t(summary(ndraw2)$statisfi1:2])

Allmean2 [z,3:4,] <- t(summary(ndraw2)$quardjle(1,5)])

AllIAR2[z,] <- Result2[[2]]

#print(date())

print(z)

return(list(PostMeans = Allmean,PostMeans2 im&an2, AccepRate = AlIAR, AccepRate2 = AllIAR2,
initialValues = init.paraml,priorParam = c(priom@m),CM = CM))

}
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#Function to simulate the data

data.sim<-function(n,#number of detection for each species

nits,#how many replicate of tza

CM#confusion matrix

#simulate data (y's) from confusion matrix angetnumber of data (n's)

s =dim(CM)[1]
cont.n <- array(0,c(s))
y.unknown <- array(0,c(s,nits,s))
Y <- array(0,c(s,nits))
nest.mean = array(0,c(s))
for(j in 1:s){
prob <- CM[1:s,j]
y.unknownl,,j]J<-rmultinom(nits,n[j],prob)
}
for (jin 1:s)
{for (i in 1:nits)
{Y[j,i] <- sum(y.unknown([j,i,1:s])
}

}
return(list(Y=Y,n=n))

library(msm)

#Function to run each iteration of the MCMC

met.hasObs<- function(nits,# number of iteration in the MCMC

simul.y,#simulated true data

nburn,#burn in size

prior.param,#prior paramsti@r param y's

param,#initila value of attgan for y's parems

CM #p's values from CM usedimulate data

)

nSp <-ncol(param)
Data = simul.y

samples <-array(0,c(dim(param),nits))

#Calculate likelihood or log(likelihood)
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likhood <- CalcObs(param,CM)

##measure the acceptance rate

AcceRate <- matrix(,nits,nSp)

#MCMC update
for (tin L:nits){
#Update the parameters in the model using fmm¢tpdateparam"
output <- updateparamObs(nSp,param,CM,Datatillprior.param)
AcceRatelt,] <- t(output$accep.rate)
param<-t(output$param)
likhood <- output$likhood[1]
samples [,,t] <- param

}

#calculate the mean and standart deviation of énarpeters following burn-in:
subsample<-samples|,,(nburn+1):nits]

AcceptanceRate <- colMeans(AcceRate)

return(list(subsample,AcceptanceRate))

}

#function to calculate likelihood
CalcObs<- function(param,CM){
nsp<-ncol(param)
PartialLik <- numeric(nsp)
for (sp in L:nsp){
PartialLik[sp] <- dmultinom(param[1:nsp,sp],pan{(nsp+1),sp],CM[,sp],log=TRUE)
}
likhood <- sum(PartialLik)
return(likhood)

#Function to update the parameters in the MCMC
updateparamObs<-function(nSp,# nbs of species
param,#inital values floe y's param
CM, #p values from CM dge simulate data
Data,#true data
likhood,#likelhood estitaa with ald param

prior.param# prior paraens for the y's param
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i
oldparam <- matrix(,2,nSp)

accep.rate <-matrix(0,nSp,1)

for (i in 1:nSp){
#conserve old parameters
oldparam[1,] <- param[i,]
oldparam[2,] <- param[(nSp+1),]
#Propose new parameters
paramli,]J<-(rmultinom(1,Data[i],(param[nSp+1M[i,])/sum(param[nSp+1,]*CM][i,])))
if(sum(param[1:nSp,nSp])==0){param[i,nSp=1]}
param[(nSp+1),] <- colSums(param[1:nSp,])

#Calculate the new likelihood value for thegweed moved:

newlikelihood<-CalcObs(param,CM)
if(newlikelihood==0 || is.na(newlikelihood)==TH){print(param)
print("Log lik not valid")}

#Include the likelihood term in the acceptapogbability

num <- newlikelihood +
npriorObs(nSp,param[(nSp+1),],prior.param)+dmuitifoldparam[1,],prob=((oldparam[2,]*CM[i,])/sum(oldp
aram[2,]*CM[i,])),log=TRUE)

den <- likhood +
npriorObs(nSp,oldparam[2,],prior.param)+dmultinoargm(i,],prob=((param[nSp+1,]*CM[i,])/sum(param[nS
p+1,]*CM[i,])),log=TRUE)

#Acceptance probability:

A<-min(1,exp(num-den))#if the difference is ftive the min will be 1 so we will accept the movkthe
difference is negative, the min will be exp(num-dsom the move will be accepted in function of tim&arm
distribution below.

accep.rate[i,1]<-A

# Simulate a random number in [0,1] and acoepte with probability A;

# else reject move and return parameter valgpedvious value

u <- runif(1)
if (u <= A) { likhood <- newlikelihood
}

else { param|i,] <- oldparam[1,]
param[(nSp+1),] <- oldparam[2,]
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}

#set the values to be outputted from the fundiiolpe the

#set of parameter values and log)likelihood) galu

output <- list(param=t(param),likhood=likhood,apaate=accep.rate)
#output the parameter values:

output

#Function to generate prior on the true number of @tections
npriorObs <- function(nSp,nparam,prior.param){
#neg binomial prior
prior <- numeric(nSp)
for (min 1:nSp){
#prior[m] <- log((prior.param[1,m]+nparam[m]ggram[m]) + nparam[m] * log(1/(prior.param[2,m]+1))
alpha<-(prior.param[1,m])*2/(prior.param[2,mjey.param[1,m])
pparam<-alpha/(alpha+prior.param[1,m])
# prior[m] <- log(factorial(alpha+nparam[m]-1pg(factorial(nparam[m]) + nparam[m] * log(1-ppany)
prior[m]<-dnbinom(nparam[m],size=alpha,mu=pnm@ram[1,m],log=TRUE)
}
prior = sum(prior)

return(prior)
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Appendix F. R Codes for models B with uncertainty on the classification rates:

library(MCMCpack)
Hommmmmmm - EQUAL DATA
#Prior on true number of detections

prior.n1<- matrix(c(3000,90000,3000,90000,3000,908000,90000),2,4)#variance such as CV =10%
prior.n2<-matrix(c(3000,1.3e6,3000,1.3e6,3000,1,38®0,1.3e6),2,4)#variance such as CV=40%
#Priors on classification rates for each confusiomatrices

CMO <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1)4,

Sca.prior.p1 <- matrix(c(1,0,0,0,0,1,0,0,0,0,100,1),4,4)

initparamP.0<-CMO #initial parameters

CM1 <- matrix(c(0.85,0.05,0.05,0.05,0.05,0.85,0008,0.05,0.05,0.85,0.05,0.05,0.05,0.05,0.85),4,4)
Schb.prior.pl <-
matrix(c(1499.15,88.19,88.19,88.19,88.19,1499.15%88.19,88.19,88.19,1499.15,88.19,88.19,88.19988.
499.15),4,4) #CV 1% for Correct classification Rate

Schb.prior.p2 <- matrix(c(85,5,5,5,5,85,5,5,5,5,85,5,5,85),4,4)#CV=4%

Scb.prior.p3 <-
matrix(c(0.088,0.005,0.005,0.005,0.005,0.088,0@085,0.005,0.005,0.088,0.005,0.005,0.005,0.0055),8,
A4)#CV 40% for correct classification rates

Scb.prior.p4<- matrix(c(2,1,1,1,1,1,1,1,1,1,1,1,1, 1),4,4)

initparamP.1<-CM1

aCM1<- matrix(c(0.85,0.10,0.03,0.02,0.08,0.85,M0%2,0.02,0.03,0.85,0.10,0.01,0.09,0.05,0.85),4,4)
Scc.prior.pl <-
matrix(c(1499.15,176.37,52.91,35.27,141.1,14998.3%35.27,35.27,52.91,1499.15,176.37,17.64,1 58378,
9,1499.15),4,4)#CV 1% for Correct classificatiortd®a

Scc.prior.p2 <- matrix(c(85,10,3,2,8,85,5,2,2,31851,9,5,85),4,4)#CV=4%

Scc.prior.p3 <-
matrix(c(0.088,0.01,0.003,0.002,0.008,0.088,0.0092,0.002,0.003,0.088,0.01,0.001,0.009,0.005,0,088
#CV 40% for correct classification rates

Scc.prior.p4<- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1),4,4)

initparamP.al<-aCM1

CM2<-matrix(c(0.52,0.16,0.16,0.16,0.16,0.52,0.18%(0.16,0.16,0.52,0.16,0.16,0.16,0.16,0.52),4,4)
Scd.prior.pl <-
matrix(c(4799.48,1476.76,1476.76,1476.76,1476.80418,1476.76,1476.76,1476.76,1476.76,4799.48,1476.
6,1476.76,1476.76,1476.76,4799.48),4,4)#CV 1% furét classification Rates

Scd.prior.p2 <- matrix(c(52,16,16,16,16,52,16,16,662,16,16,16,16,52),4,4)#CV=4%
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Scd.prior.p3 <-

matrix(c(2.48,0.76,0.76,0.76,0.76,2.48,0.76,0. 750.76,2.48,0.76,0.76,0.76,0.76,2.48),4,4)#CV 4080
correct classification rates

Scd.prior.p4<- matrix(c(21,1,1,1,1,1,1,1,1,1,1,1,1, 1),4,4)

initparamP.2<-CM2

aCM2<-matrix(c(0.52,0.15,0.10,0.23,0.04,0.52,0.130(®.20,0.13,0.52,0.15,0.20,0.05,0.23,0.52),4,4)
Sce.prior.pl <-
matrix(c(4799.48,1385.81,923.88,2124.92,369.55,4/99293.43,2271.63,1847.75,1201.04,4799.48,1385.81
1847.75,461.94,2124.92,4799.48),4,4)#CV 1% for €xirclassification Rates

Sce.prior.p2 <- matrix(c(52,15,10,23,4,52,14,30,2(52,15,20,5,23,52),4,4)#CV=4%

Sce.prior.p3 <-
matrix(c(2.48,0.71,0.48,1.09,0.19,2.48,0.67,1.45.62,2.48,0.71,0.95,0.24,1.09,2.48),4,4)#CV 4000
correct classification rates

Sce.prior.p4<- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1),4,4)

initparamP.a2<-aCM2

#initial parameters on the true number of detectios

initparamY.1<-
matrix(c(2550,150,150,150,3000,150,2550,150,15@ 3D, 150,2550,150,3000,150,150,150,2550,3000),5,4)
initparamY.2<-

matrix(c(1900,550,140,350,2940,400,1025,540,82%) 289,450,1700,500,3100,200,200,200,2700,3300),5,4)
initparamY.3<-
matrix(c(800,50,40,50,940,1400,1525,540,825,429489,1700,500,3100,1200,700,700,1700,4300),5,4)

##RUN MODELS and play with different priors#####
#CMO
D_ScO0 _nP <-
MH.ObsDir(c(3000,3000,3000,3000),CM0,300,300000QDinitparamY.1,initparamP.0,prior.n1,Sca.prior.p1
)
#CM1
D_Scl nP1<-

MH.ObsDir(c(3000,3000,3000,3000),CM1,300,300000Q0& initparamY.1,initparamP.1,prior.n1,Sch.prior.p
1)
#aCM1
D_Sc2 nP1 <-
MH.ObsDir(c(3000,3000,3000,3000),aCM1,300,300000008,initparamY.1,initparamP.al,prior.n1,Scc.prior.
pl)
#CM2
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D_Sc3 nP1<-

MH.ObsDir(c(3000,3000,3000,3000),CM2,300,300000QM& initparamY.1,initparamP.2,prior.n1,Scd.prior.p
1)
##aCM2
D_Sc4 nP1 <-
MH.ObsDir(c(3000,3000,3000,3000),aCM2,300,300000008,initparamY.1,initparamP.a2,prior.n1,Sce.prior.
pl)

H
H

#UNBALANCED DATA

#H

T

##priors on the true number of detections

prior.unBnl<- matrix(c(8000,1.25*10"6,3000,1.8*1(0850,1.8*10"4,50,51),2,4)#var CV14% as if 10% for
speccies D var<mean and not possible with negbialomi

prior.unBn2<- matrix(c(8000,9.2*10"6,3000,1.3*10260,1.31*10"5,50,361),2,4)#var CV40%
prior.unBn3<- matrix(c(8000,6.4*10"5,3000,3.6*10250,1.31*10"5,50,361),2,4)#CV variable with
10%,20%,40% and 40% from common to rare species

##lnitial parameters on the true number of detectios

initparamY.SC6.1<-
matrix(c(6800,400,400,400,8000,2550,150,150,15®31048,807,48,950,2,3,2,43,50),5,4)
initparamY.SC6.2<-

matrix(c(6900,580,340,380,8200,400,1025,540,82%) 5(9125,800,75,1050,4,6,9,41,60),5,4)

#CMO
D_Sc5 _nP <-
MH.ObsDir(c(8000,3000,950,50),CM0,300,300000,15Q0@ParamY.SC6.1,initparamP.0,prior.unBnl,Sca.pr
ior.p1)

#CM1
D_Sc6 _nP1 <-
MH.ObsDir(c(8000,3000,950,50),CM1,300,300000,15Q@ParamY.SC6.1,initparamP.1,prior.unBnl,Scb.pr
ior.p1)
#aCM1
D_Sc7_nP1 <-
MH.ObsDir(c(8000,3000,950,50),aCM1,300,300000,180@@paramY.SC6.1,initparamP.al,prior.unBnl,Scc.
prior.pl)

#CM2
D_Sc8 nP1 <-
MH.ObsDir(c(8000,3000,950,50),CM2,300,300000,150@ParamY.SC6.1,initparamP.2,prior.unBnl,Scd.pr
ior.p1)
#aCM2
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D_Sc9 nl1P1<-
MH.ObsDir(c(8000,3000,950,50),aCM2,1,300000,2950@paramY.SC6.1,initparamP.a2,prior.unBnl,Sce.pri
or.pl)

FUNCTIONS

#Routine to run Metropolis Hasting model
MH.ObsDir <- function(n.simul,#true number of detection éach species used to generate the data used in
the MH

CM,#CM use to simulate data

data.its,# number of "boaptr

nits,# number of iteratiortire MCMC

nburn,#burn in size

init.paraml #initial valuew thainl for parameters y's

init.pparam1l, #initial valules parameters p's (only 1 chain)

prior.param,#prior paramefersy's parameters

pprior.param# prior parameter p's parameters

)

library(MCMCpack)
library(coda)

Allmean_n <- array(NA,c(data.its,5,4))#table &vs the mean of the parameters for eahc chains
Allmean_p <- array(NA,c(data.its,5,4))

AlIAR <-matrix(NA,data.its,length(n.simul)) #caihs all Acceptance Rate for each bootstrap
colnames(Allmean_n)<-c("Mean","Sd","95Low","Medla'95High")

printseq<-seq(1l,data.its,5)
#simulate Y data
if(data.its==1)
{data.yest<-matrix(round(rowMeans(data.sirsifnul, 1000,CM)[[1]])),(Iength(n.simul)),1)}
else {data.yest<-data.sim(n.simul,data.its)[CM}

for (z in 1:data.its){

Result <- met.hasObsDir (nits,data.yestjim}rn,prior.param ,pprior.param, init.paraml pparaml)
#Result2 <- met.hasObsDir (nits,data.yestfpurn,prior.param2 ,pprior.param, init.paramtpparam3i)
#Result3 <- met.hasObsDir (nits,data.yestfpurn,prior.param3 ,pprior.param, init.paramitpparam3l)

#Extract inference from MCMC
ndrawl <- mcmc(t(Result[[1]][(length(n.sinwl),,]),thin=100)
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#ndraw2 <- mecmc(t(Result2[[1]][(length(n.sif+1),,]),thin=100)
#ndraw3 <- mcmc(t(Result3[[1]][(length(n.sify+1),,]),thin=100)
pdrawl <- memc(t(Result[[2]][1,,]),thin=1P0

#pdraw2 <- mecmc(t(Result2[[2]][1,,]),thin&Q)

#pdraw3 <- mecmc(t(Result3[[2]][1,.]),thin&Q)

Allmean_n [z,1:2,]<- t(summary(ndrawl)$&thts[,1:2])
Allmean_n [z,3:5,]<-t(summary(ndrawl)$qukes{,c(1,3,5)])
AllAR[z,]<-Result[[3]]

Allmean_p [z,1:2,]<- t(summary(pdrawl)$istt¢s[,1:2])
Allmean_p [z,3:5,]<-t(summary(pdrawl)$qukes{,c(1,3,5)])

if(length(which(printseq==z))==1)X
windows()
plot(ndrawl,main="n Post (Chainl)")
windows()
par(mfrow=c(2,4))
autocorr.plot(ndrawl,main="n AutoCorr 8ad")
}
if(z==1 ||z==100 || z==200 || z==250) {
print(date())
print(z)}
}

return(list(PostMeansN = Allmean_n,PostMeansP mAHln_p,AccepRate = AllAR,priorParam =
list(prior.param),pprior.param=pprior.param))

}

#MCMC function

met.hasObsDir<- function(nits,# number of iteration in the MCMC
simul.y,#simulated trusta
nburn,#burn in size
prior.param, #prior paraens for param y's
pprior.param,#prior paeders of the p's paremeters
param,#initila value afeochian for y's parems

pparam#initial values fbe p's param

)

nSp <-ncol(param)
# Data from simulation function

Data = simul.y
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samples <-array(0,c(dim(param),nits))

psamples <-array(0,c(dim(pparam),nits))

#Calculate likelihood or log(likelihood)

likhood <- CalcObsDir(param,pparam)

#measure the acceptance rate

AcceRate <- matrix(,hits,nSp)

#MCMC update

for (t in 1:nits){

#Update the parameters in the model using func¢tipdateparam”
output <- updateparamObsDir(nSp,param,pparam,liXwaod,prior.param)
AcceRatelt,] <- t(output$accep.rate)

param<-t(output$param)

likhood <- output$likhood[1]

for (nin 1:nSp){
pparam(,n] <- rdirichlet(1,c(param[1:nSp;pprior.param[1:nSp,n]))
}
samples [,,t] <- param
psamples],,t]<-pparam
}
#calculate the mean and standart deviation opénameters following burn-in:
subsample<-samples],,seq((nburn+1),nits,4)]

psubsample<-psamples[,,seq((nburn+1),nits,4)]

AcceptanceRate <- colMeans(AcceRate)

return(list(subsample,psubsample,AcceptancgRate
}

#Function to update parameters

updateparamObsDir <-function(nSp,# nbs of species
param,#inital values the y's param
pparam,#initial valdes the p's parem
Data,#true data
likhood,#likelhood shted with ald param

prior.param# prior paueters for the y's param

It

oldparam <- matrix(,2,nSp)

accep.rate <-matrix(0,nSp,1)
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for (i in 1:nSp){
oldparam[1,] <- param([i,]
oldparam[2,] <- param[(nSp+1),]
param[i,]<-(rmultinom(1,Datali],(paran$p+1,]*pparam[i,])/sum(param[nSp+1,]*pparamli,])))
param[(nSp+1),] <- colSums(param[1:fSp,

#Calculate the new likelihood value Ofor freposed moved:
newlikelihood <-CalcObsDir(param,ppaja
if(is.na(newlikelihood)==TRUE){print(jpam)
print(ppen)
print("Log lik isufi")}

#Include the likelihood term in the acceptapeoobability
num <- newlikelihood +
npriorObs(nSp,param[(nSp+1),],prior.param)+dmultifoldparam[1,],prob=((oldparam[2,]*pparam([i,])/sum(
Idparam[2,]*pparam]i,])),log=TRUE)
den <- likhood +
npriorObs(nSp,oldparam[2,],prior.param)+dmultinoargm(i,],prob=((param[nSp+1,]*pparam[i,])/sum(pafam
nSp+1,]*pparamli,])),log=TRUE)
#Acceptance probability:
A<-min(1,exp(num-den))#if the differenis positive the min will be 1 so we will accelpe tmove. If
the difference is negative, the min will be exp(ndem) so the move will be accepted in functionhaf iniform

distribution below.

# Simulate a random number in [0,1] and acoepe with probability A;
# else reject move and return parameter \alpeevious value
u <- runif(1)
# print(newlikelihood)
if (u <= A) { likhood <- newlikelihod
accep.rate[i,1] <-1
}
else { param([i,] <- oldparanj[1,
param[(nSp+1),] <- oldpafarh
accep.rate[i,1]<- 0
}
}

output <- list(param=t(param),likhood=likhood,acgafe=accep.rate)

}
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#Function to calculate model likelihood
CalcObsDir <- function(param,pparam){
PartialLik <-vector(length=ncol(param))
for (sp in 1:ncol(param)){
PartialLik[sp] <- dmultinom(param[(1:ncol(pargnsp],param[(ncol(param)+1),sp],pparam[,sp],log+JH

}
likhood <- sum(PartialLik)

}
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