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Summary

1. Our understanding of a biological population can be greatly enhanced bymodelling their distribution in space

and as a function of environmental covariates. Such models can be used to investigate the relationships between

distribution and environmental covariates as well as reliably estimate abundances and create maps of animal/

plant distribution.

2. Density surface models consist of a spatial model of the abundance of a biological population which has been

corrected for uncertain detection via distance samplingmethods.

3. We review recent developments in the field and consider the likely directions of future research before focus-

sing on a popular approach based on generalized additive models. In particular, we consider spatial modelling

techniques that may be advantageous to applied ecologists such as quantification of uncertainty in a two-stage

model and smoothing in areas with complex boundaries.

4. The methods discussed are available in an R package developed by the authors (dsm) and are largely imple-

mented in the popularWindows softwareDistance.

Key-words: abundance estimation, Distance software, generalized additive models, line transect

sampling, point transect sampling, population density, spatial modelling, wildlife surveys

Introduction

When surveying biological populations, it is increasingly

common to record spatially referenced data, for example

coordinates of observations, habitat type, elevation or (if at

sea) bathymetry. Spatial models allow for vast databases of

spatially referenced data (e.g. OBIS-SEAMAP, Halpin et al.

2009) to be harnessed, enabling investigation of interactions

between environmental covariates and population densities.

Mapping the spatial distribution of a population can be

extremely useful, especially when communicating results to

non-experts. Recent advances in both methodology and

software have made spatial modelling readily available to

the non-specialist (e.g., Wood 2006; Rue et al. 2009). Here,

we use ‘spatial model’ to refer to any model that includes

any spatially referenced covariates, not only those models

that include explicit location terms. This article is concerned

with combining spatial modelling techniques with distance

sampling (Buckland et al. 2001, 2004).

Distance sampling extends plot sampling to the case where

detection is not certain. Observers move along lines or visit

points and record the distance from the line or point to the

object of interest (y). These distances are used to estimate the

detection function, g(y) (e.g., Fig. 1), by modelling the decrease

in detectability with increasing distance from the line or point

(conventional distance sampling, CDS). The detection func-

tion may also include covariates (multiple covariate distance

sampling, MCDS; Marques et al. 2007) that affect the scale of

the detection function. From the fitted detection function, the

average probability of detection can be estimated by integrat-

ing out distance. The estimated average probability that an ani-

mal is detected given that it is in the area covered by the survey,

p̂i, can then be used to estimate abundance as

N̂ ¼ A

a

Xn
i¼1

si
p̂i
; eqn 1

whereA is the area of the study region, a is the area covered by

the survey (i.e. the sum of the areas of all of the strips/circles)

and the summation takes place over the n observed clusters,

each of size si (if individuals are observed, si ¼ 18 i) (Buck-
land et al. 2001, Chapter 3). Often up to half the observations

in a plot sampling data set are discarded to ensure the assump-

tion of certain detection is met. In contrast, distance sampling

uses observations that would have been discarded to model

detection (although typically some detections are discarded

beyond a given truncation distance during analysis).

Estimators such as eqn 1 rely on the design of the study to

ensure that abundance estimates over the whole study area

(scaling up from the covered region) are valid. This article

focusses on model-based inference to extrapolate to a larger

study area. Specifically, we consider the use of spatially explicit

models to investigate the response of biological populations to*Correspondence author. E-mail: dave@ninepointeightone.net
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biotic and abiotic covariates that vary over the study region. A

spatially explicit model can explain the between-transect varia-

tion (which is often a large component of the variance in

design-based estimates), and so using a model-based approach

can lead to smaller variance in estimates of abundance than

design-based estimates. Model-based inference also enables

the use of data from opportunistic surveys, for example inci-

dental data arising from ‘ecotourism’ cruises (Williams et al.

2006).

Our aims in creating a spatial model of a biological popu-

lation are usually twofold: (i) estimating overall abundance

and (ii) investigating the relationship between abundance

and environmental covariates. As with any predictions that

are outside the range of the data, one should heed the usual

warnings regarding extrapolation. For example, if a model

contains elevation as a covariate, predictions at high, unsam-

pled elevations are unlikely to be reliable. Frequently, maps

of abundance or density are required and any spurious

predictions can be visually assessed, as well as by plotting a

histogram of the predicted values. A sensible definition of

the region of interest avoids prediction outside the range of

the data.

In this article, we review the current state of spatial model-

ling of detection-corrected count data, illustrating some recent

developments useful to applied ecologists. The methods dis-

cussed have been available inDistance software (Thomas et al.

2010) for some time, but the recent advances covered here have

been implemented in a newR package, dsm (Miller et al. 2013)

and are to be incorporated intoDistance.

Throughout this article, amotivating data set is used to illus-

trate themethods. These data are sightings of pantropical spot-

ted dolphins (Stenella attenuata) duringApril andMay of 1996

in the Gulf of Mexico. Observers aboard the NOAA vessel

Oregon II recorded sightings and environmental covariates

(see http://seamap.env.duke.edu/dataset/25 for survey details).

A complete example analysis is provided in Appendix S1. The

data used in the analysis are available as part of the dsm pack-

age andDistance.

The rest of the article reviews approaches for the spatial

modelling of distance sampling data before focussing on the

density surface modelling approach of Hedley & Buckland

(2004) to estimate abundance and uncertainty. We then

describe recent advances and provide practical advice regard-

ing model fitting, formulation and checking. Finally, we

discuss future directions for research in spatially modelling

detection-corrected count data.

Approaches to spatialmodelling of distance
sampling data

Modelling of spatially referenced distance sampling data is

equivalent to modelling spatially referenced count data, with

the additional information provided by collecting distances to

account for imperfect detection. We review recent efforts to

model such data; some consist of two steps (correction for

imperfect detection, then spatial modelling), whilst others

jointly estimate the relevant parameters.

TWO-STAGE APPROACHES

The focus of this article is the ‘count model’ of Hedley &

Buckland (2004); we will henceforth refer to this approach as

density surface modelling (DSM). Modelling proceeds in two

steps: a detection function is fitted to the distance data to

obtain detection probabilities for clusters (flocks, pods, etc.) or

individuals. Counts are then summarized per segment (contig-

uous transect section). A generalized additive model (GAM;

e.g. Wood 2006) is then constructed with the per-segment

counts as the response with either counts or segment areas cor-

rected for detectability (see Density surface modelling, below).

GAMs provide a flexible class of models that include general-

ized linear models (GLMs; McCullagh & Nelder 1989) but

extend them with the possible addition of splines to create

smooth functions of covariates, random effects terms or corre-

lation structures. We cover advances using this approach in

Recent developments.

As with the DSM approach, Niemi & Fern�andez (2010)

used a two-step procedure: first fitting a detection function,

then using a Bayesian point process to model spatial pattern

(fitted using MCMC). Object density was described by an

intensity function, which included spatially referenced covari-

ates. A possible disadvantage of their approach was that the

distance function was assumed fixed once its parameters are

estimated, and thus, uncertainty may not be correctly propa-

gated into final abundance estimates.

Ver Hoef et al. (2013) also included separate density and

detection models for seals in the Bering Sea. However, they

were able to separate the detection process into three compo-

nents: (i) incomplete detection on the transect line, (ii) declining

detection probability as a function of distance and (iii) avail-

ability bias (as seals could only be observedwhen hauled out on

ice flows). After correcting counts for uncertain detection, they

used a hierarchical, zero-inflated spatial regression model to
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Fig. 1. Estimated detection function for pantropical dolphin clusters

overlaid onto the scaled histogram of observed distances. Distances are

recorded inmetres.

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution

2 D. L. Miller et al.



estimate abundance, propagating variance associated with

each stage ofmodelling into final estimates. The analysis shows

thatwhen extra information is available (such as telemetry data

for the haul-out process), additional insight can be derived.

We note that there are many approaches to modelling spa-

tially referenced count data (Oppel et al. 2012, provides an

overview of such methods for marine bird modelling). Also

worthy of note is the approach of Barry & Welsh (2002) who

used a two-stage approach to model presence/absence then

spatial distribution (each via a separate GAM) to account for

zero inflation.

ONE-STAGE APPROACHES

Rather than fitting two separate models, some authors have

estimated parameters of the detection and spatial models

simultaneously. Perhaps the first such example was Royle

et al. (2004), who considered an integrated likelihood model

for point and line transects. The approach views abundance as

a nuisance variable which was integrated out of the likelihood,

but inferences may still be made about factors affecting under-

lying density (including covariate effects). This approach was

originally developed for binned distance data, but was

extended by Chelgren et al. (2011) for continuous distance

data.

Both Schmidt et al. (2011) and Conn et al. (2012) took data

augmentation approaches to add unobserved clusters within

their hierarchical Bayesian models. Schmidt et al. (2011) used

a presence-/absence-type model and a super-population

approach (as in Royle & Dorazio 2008). Conn et al. (2012)

augmented observations only within the sampled transects

using RJMCMC. Looking at the problem at a coarser spatial

resolution (stratum-level), Moore & Barlow (2011) separated

the problem into observation and process components using a

state-space model. The process component described the

underlying population density as it changed over time and

space, which was linked to the data via the detection function.

Another point process-based approach is that of Johnson

et al. (2010), who used a Poisson process to model the

locations of individuals in the survey area. Unlike Niemi &

Fern�andez (2010), parameters of the intensity function were

estimated jointly with detection function parameters via stan-

dard maximum likelihood methods for point processes

(Baddeley & Turner 2000) (allowing uncertainty from both the

spatial pattern and detection function to be included in vari-

ance estimates). A post hoc correction factor was used to

address overdispersion unmodelled by spatial covariates (i.e.

counts that do not follow a Poisson mean–variance relation-

ship).

ONE- VS. TWO-STAGE APPROACHES

Generally, very little information is lost by taking a two-stage

approach. This is because transects are typically very narrow

compared with the width of the study area so, provided no

significant density variation takes place ‘across’ the width of

the lines or within the point, there is no information in the

distances about the spatial distribution of animals (this is an

assumption of two-stage approaches).

Two-stage approaches are effectively ‘divide and conquer’

techniques: concentrating on the detection function first, and

then, given the detection function, fitting the spatial model.

One-stagemodels are more difficult to both estimate and check

as both steps occur at once; models are potentially simpler

from the perspective of the user and perhaps more mathemati-

cally elegant.

Two-stage models have the disadvantage that to accurately

quantify model uncertainty one must appropriately combine

uncertainty from the detection function and spatial models.

This can be challenging; however, the alternative of ignoring

uncertainty from the detection process (e.g. Niemi & Fern�an-

dez 2010) can produce confidence or credible intervals for

abundance estimates that have coverage below the nominal

level. More information regarding how variance estimation is

addressed forDSMs is given inRecent developments.

Density surfacemodelling

This section focuses on modelling the density/abundance esti-

mation stage of the DSM approach introduced previously.

Both line and point transects can be used, but if lines are used,

then they are split into contiguous segments (indexed by j),

which are of length lj. Segments should be small enough such

that neither density of objects nor covariate values vary appre-

ciably within a segment (making the segments approximately

square is usually sufficient; 2w 9 2w, where w is the truncation

distance). The area of each segment enters the model as (or as

part of) an offset: the area of segment j is Aj ¼ 2wlj and for

point j isAj ¼ pw2.

Count or estimated abundance (per segment or point) is

then modelled as a sum of smooth functions of covariates (zjk
with k indexing the covariates, for example location, sea sur-

face temperature, weather conditions, measured at the seg-

ment/point level) using a generalized additive model. Smooth

functions are modelled as splines, providing flexible unidimen-

sional (and higher-dimensional) curves (and surfaces, etc.) that

describe the relationship between the covariates and response.

Wood (2006) and Ruppert et al. (2003) provide more in-depth

introductions to smoothing and generalized additivemodels.

We begin by describing a formulation where only covariates

measured per-segment (e.g. habitat, Beaufort sea state) are

included in the detection function. We later expand this simple

formulation to include observation level covariates (e.g. cluster

size, species)

COUNT AS RESPONSE

Themodel for the count per segment is:

EðnjÞ ¼ p̂jAjexp b0 þ
X
k

fk zjk
� �" #

;

where the fks are smooth functions of the covariates and b0 is
an intercept term. Multiplying the segment area (Aj) by the
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probability of detection (p̂j) gives the effective area for segment

j. If there are no covariates other than distance in the detection

function, then the probability of detection is constant for all

segments (i.e. p̂j ¼ p̂, ∀j). The distribution of nj can be mod-

elled as an overdispersed Poisson, negative binomial or Twee-

die distribution (seeRecent developments).

Fig. 2 shows the raw observations of the dolphin data, along

with the transect lines, overlaid on the depth data. A half-nor-

mal detection function was fitted to the distances and is shown

in Fig. 1. Figure 3 shows aDSMfitted to the dolphin data. The

top panel shows predictions from amodel where depth was the

only covariate, and the bottom panel shows predictions where

a (bivariate) smooth of spatial location was also included.

Comparing the models using GCV score, the latter had a con-

siderably lower score (39.12 vs. 48.46) and sowould be selected

as our preferredmodel.

In addition to simply calculating abundance estimates, rela-

tionships between covariates and abundance can be illustrated

via plots of marginal smooths. The effect of depth on abun-

dance (on the scale of the link function) for the dolphin data

can be seen in Fig. 4.

An alternative to modelling counts is to use the per-

segment/circle abundance using distance sampling estimates as

the response. In this case, we replace nj by:
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Fig. 2. The region, transect centrelines and location of detected pantropical dolphin clusters, where size of circle corresponds to the cluster size,

overlaid onto depth data.
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location (bottom).
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N̂j ¼
XRj

r¼1

sjr
p̂j
;

where Rj is the number observations in segment j and sjr is

the size of the rth cluster in segment j (if the animals occur

individually, then sjr ¼ 1, ∀j,r).
The followingmodel is then fitted:

EðN̂jÞ ¼ Ajexp b0 þ
X
k

fk zjk
� �" #

;

where N̂j, as with nj, is assumed to follow an overdispersed

Poisson, negative binomial or Tweedie distribution (seeRecent

developments, below). Note that the offset (Aj) is now the area

of segment/point rather than effective area of the segment/

point. Although N̂j can always be modelled instead of nj, it

seems preferable to use nj when possible, as one is then model-

ling actual (integer) counts as the response rather than

estimates. Note that although N̂j may take non-integer values,

this does not present an estimation problem for the response

distributions covered here.

DSMwith covariates at the observation level

The above models consider the case where the covariates are

measured at the segment/point level. Often covariates (zij,

for individual/cluster i and segment/point j) are collected on

the level of observations, for example sex or cluster size of the

observed object or identity of the observer. In this case,

the probability of detection is a function of the object (individ-

ual or cluster) level covariates p̂ðziÞ. Object level covariates can

be incorporated into the model by adopting the following

estimator of the per-segment/point abundance:

N̂j ¼
XRj

r¼1

sjr
p̂ðzrjÞ :

Density, rather than abundance, can be modelled by exclud-

ing the offset and instead dividing the count (or estimated

abundance) by the area of the segment/point (and weighting

observations by the segment/point areas). We concentrate on

abundance here; see Hedley & Buckland (2004) for further

details onmodelling density.

PREDICTION

ADSM can be used to predict abundance over a larger/differ-

ent area than was originally surveyed. In that case, the investi-

gator must create a series of prediction cells over the prediction

region. For each cell, the covariates included in the DSMmust

be available; the area of each cell is also required. Havingmade

predictions for each cell, these can be plotted as an abundance

map (as in Fig. 3) and, by summing over cells, an overall

estimate of abundance can be calculated. It is worth noting

that using prediction grid cells that are smaller than the

resolution of the spatially referenced data has no effect on

abundance/density estimates.

VARIANCE ESTIMATION

Estimating the variance of abundances calculated using a

DSM is not straightforward: uncertainty from the estimated

parameters of the detection functionmust be incorporated into

the spatial model. A second consideration is that in a line

transect survey, abundances in adjacent segments are likely to

be correlated; failure to account for this spatial autocorrelation

will lead to artificially low variance estimates and hence

misleadingly narrow confidence intervals.

Hedley & Buckland (2004) describe a method of calculating

the variance in the abundance estimates using a parametric

bootstrap, resampling from the residuals of the fitted model.

The bootstrap procedure is as follows.

Denote the fitted values for the model to be ĝ. For b = 1,…,

B (whereB is the number of resamples required).

1. Resample (with replacement) the per-segment/point residu-

als, storethe values in rb.

2. Refit themodel but with the response set to ĝ þ rb (where ĝ
are the fitted values from the original model).

3. Take the predicted values for the new model and store

them.

From the predicted values stored in the last step, the vari-

ance originating in the spatial part of the model can be calcu-

lated. The total variance of the abundance estimate (over the

whole region of interest or subareas) can then be found by

combining the variance estimate from the bootstrap procedure

with the variance of the probability of detection from the

detection function model using the delta method (which

assumes that the two components of the variance are indepen-

dent; VerHoef 2012).
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the model with both depth and location smooths). Note that it is possi-
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500 m. The rug ticks at the bottom of the plot indicate we have good

coverage of the range of depth values in the survey area. Note that the y

axis in such plots is on the scale of the link function (log in this case),

so care should be taken in their interpretation.
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The above procedure assumes that there is no correlation in

space between segments, which are usually contiguous along

transects. If many animals are observed in a particular seg-

ment, then we might expect there to be high numbers in the

adjacent segments. A moving block bootstrap (MBB; Efron &

Tibshirani 1993, Section 8.6) can account for some of this spa-

tial autocorrelation in the variance estimation. The segments

are grouped together into overlapping blocks (so if the block

size is 5, block one is segments 1,…,5, block two is segments 2,

…,6, and so on). Then, at step (2) above, resamples are taken

at the block level (rather than individual segments within a

transect). UsingMBB will account for correlation between the

segments at scales smaller than the block size, inflating the vari-

ances accordingly. Block size can be selected by plotting an

autocorrelogram of the residuals from theDSM.

Both bootstrap procedures can also be modified to take

detection function uncertainty into account. Distances are sim-

ulated from the fitted detection function, and then the offset is

re-calculated by fitting a detection function to the simulated

distances.

Uncertainty can be estimated for a given prediction region

by calculating the appropriate quantiles of the resulting abun-

dance estimates (outlier removal may be required before quan-

tile calculation). DSM uncertainty can be visualized via a plot

of per-cell coefficient of variation obtained by dividing the

standard error for each cell by its predicted abundance (as in

Fig. 5).

Recent developments

GAM UNCERTAINTY AND VARIANCE PROPAGATION

Rather than using a bootstrap, one can use GAM theory to

construct uncertainty estimates forDSMabundance estimates.

This requires that we use the distribution of the parameters in

the GAM to simulate model coefficients, using them to gener-

ate replicate abundance estimates (further information can

found in Wood 2006, p. 245). Such an approach removes the

need to refit the model many times, making variance estima-

tionmuch faster.

Williams et al. (2011) go a step further and incorporate the

uncertainty in the estimation of the detection function into the

variance of the spatial model, albeit only when segment level

covariates are in the DSM. Their procedure is to fit the density

surfacemodel with an additional random effect term that char-

acterizes the uncertainty in the estimation of the detection

function (via the derivatives of the probability of detection, p̂,

with respect to their parameters). Variance estimates of the

abundance calculated using standardGAM theory will include

uncertainty from the estimation of the detection function. A

more complete mathematical explanation of this result is given

inAppendix S2.

We consider that propagating the uncertainty in thismanner

to be preferable to the MBB because it is more computation-

ally efficient meaning investigators can easily and quickly esti-

mate variances of complex models. The confidence intervals

produced via variance propagation appear comparable (if not

narrower) than their bootstrap equivalents, whilst maintaining

good coverage (results of a small simulation study are given in

Appendix S3).

Figure 5 shows a map of the coefficient of variation for the

model which includes both location and depth covariates. Var-

iance has been calculated using the variance propagation

method.

Edge effects

Previous work (Ramsay 2002; Wang & Ranalli 2007; Wood

et al. 2008; Scott-Hayward et al. 2013; Miller 2012) has high-

lighted the need to take care when smoothing over areas with

complicated boundaries, for example, those with rivers, pen-

insulae or islands. If two parts of the study area (either side of a

river or inlet, say) are inappropriately linked by the model (i.e.

if the distance between the points is measured as a straight line,

rather than taking into account obstacles), then the boundary

feature (river, etc.) can be ‘smoothed across’ so positive abun-

dances are predicted in areas where animals could not possibly

occur. Ensuring that a realistic spatial model has been fitted to

the data is essential for valid inference. The soap film smoother

of Wood et al. (2008) is an appealing solution: a bivariate
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smooth function of location that can be included in any GAM

but that allows for boundary conditions to be estimated and

obeyed for a complex study area. Such an approach can be

helpful when uncertainty is estimated via a bootstrap as edge

effects can also cause large, unrealistic predictions which can

plague other smoothers (Bravington&Hedley 2009).

Even if the study area does not have a complicated bound-

ary, edge effects can still be problematic. Miller (2012) notes

that some smoothers have plane components that tend to

cause the fitted surface to increase unrealistically as predictions

are made further away from the locations of survey effort. This

problem can be alleviated using a different type of smoother

(e.g. a generalization of thin plate regression splines called

Duchon splines).

Tweedie distribution

The Tweedie distribution offers a flexible alternative to the

quasi-Poisson and negative binomial distributions as a

response distribution when modelling count data (Candy

2004). In particular, it is useful when there are a high propor-

tion of zeros in the data (Shono 2008; Peel et al. 2012) and

avoids multiple-stage modelling of zero-inflated data (as in

Barry&Welsh 2002).

The distribution has three parameters: a mean, dispersion

and a third power parameter, which leads to additional flexibil-

ity. The distribution does not change appreciably when the

power parameter is changed by less than 0.1, and therefore, a

simple line search over the possible values for the power

parameter is usually a reasonable approach to estimating the

parameter. M. Bravington (pers. comm.) suggested plotting

the square root of the absolute value of the residuals against fit-

ted values; a ‘flatter’ plot (points forming a horizontal line)

gives an indication of a ‘good’ value. We additionally suggest

using the metrics described in the next section for model

selection.

Appendix S4 gives further details about the Tweedie distri-

bution (including its probability density function and further

references).

Practical advice

Aflow diagram of the modelling process for creating aDSM is

shown in Fig. 6. The diagram shows which methods are com-

patible with each other and what the options are for modelling

a particular data set.

In our experience, it is sensible to obtain a detection func-

tion that fits the data as well as possible and only begin spa-

tial modelling after a satisfactory detection function has been

obtained. Model selection for the detection function can be

performed using AIC and model checking using goodness-

of-fit tests given in the study by Burnham et al. (2004)

Section 11.11). If animals occur in clusters rather than indi-

vidually, bias can be incurred due to the higher visibility of

larger clusters. It may then be necessary to include size as a

covariate in the detection function (see Buckland et al. 2001,

Section 4.8.2.4). For some species, cluster size may change
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according to location; Ferguson et al. (2006) use two GAMs

(one to model observed clusters and one to model the cluster

size) to deal with spatially varying cluster size amongst del-

phinids, although the authors do not present the variance of

the resulting predictions.

Smooth terms can be selected using (approximate) p-values

(Wood 2006, Section 4.8.5). An additional useful technique for

covariate selection is to use an extra penalty for each term in

the GAM allowing smooth terms to be removed from the

model during fitting (illustrated in Appendix S1; Wood 2011).

Smoothness selection is performed by generalized cross-valida-

tion (GCV) score, unbiased risk estimator (UBRE) or

restricted maximum likelihood (REML) score. When model

covariates are effectively functions of one another (e.g. depth

could be written as a function of location), GCV and UBRE

can suffer from optimization problems (Wood 2006, Section

4.5.3), which can lead to unstable models (Wood 2011).

REML provides a fitting criteria with a more pronounced

optima which avoids some problems with parameter estima-

tion, although caution should always be taken when dealing

with highly correlated covariates. A significant drawback of

REML is that scores cannot be used to compare models with

different linear terms or offsets (Wood 2011), although the

p-value and additional penalty techniques described above can

be used to select model terms.We highly recommend the use of

standard GAM diagnostic plots; Wood (2006) provides

further practical information on GAM model selection and

fitting.

In the analysis of the dolphin data, we included a smooth of

location that nearly doubles the percentage deviance explained

(27.3–52.7%). One can see this when comparing the two plots

in Fig. 3 and the plot of the depth (Fig. 2), the plot of themodel

containing only a smooth of depth looks very similar to the

raw plot of the depth data. Using a smooth of location can be

a primitive way to account for spatial autocorrelation and/or

as a proxy for other spatially varying covariates that are

unavailable.

A more sophisticated way to account for spatial autocor-

relation between segments (within transects) is to use an

autocorrelation structure within the DSM (e.g. autoregres-

sive models). Appendix S1 shows an example using general-

ized additive mixed model (GAMMs; Wood 2006, Section

6.6, see Appendix S1 for an example) to construct an autore-

gressive (lag 1) correlation structure.

In the analysis presented here, spatial location has been

transformed from latitude and longitude to kilometres north

and east of the centre of the survey region at

ð27:01�;�88:3�Þ. This is because the bivariate smoother used

(the thin plate spline; Wood 2003) is isotropic: there is only

one parameter controlling the smoothness in both directions.

Moving one degree in latitude is not the same as moving

one degree in longitude, and so using kilometres from the

centre of the study region makes the covariates isotropic.

Using metric units rather than non-standard units of

measure such as degrees or feet throughout makes analysis

much easier.

A smooth of an environment-level covariate such as depth

can be very useful for assessing the relationships between abun-

dance and the covariate (as in Fig. 4). Caution should be

employed when interpreting smooth relationships and abun-

dance estimates, especially if there are gaps over the range of

covariate values. Large counts may occur at large values of

depth, but if no further observations occur at such a large

value, then investigators should be sceptical of any relation-

ship.

Discussion

The use of model-based inference for determining abundance

and spatial distribution from distance sampling data presents

new opportunities in the field of population assessment. Spa-

tial models can be particularly useful when it comes to pre-

diction: making predictions for some subset of the study area

relies on stratification in design-based methods and as such

can be rather limited. Our models also allow inference from

a sample of sightings to a population in a study area without

depending upon a random sample design, and therefore, data

collected from ’platforms of opportunity’ (Williams et al.

2006) can be used (although a well-designed survey is always

preferable).

Unbiased estimates are dependent upon either (i) distribu-

tion of sampling effort being random throughout the study

area (for design-based inference) or (ii) model correctness (for

model-based inference). It is easier to have confidence in the

former rather than in the latter because our models are always

wrong. Nevertheless, model-based inference will play an

increasing role in population assessment as the availability of

spatially referenced data increases.

The field is quickly evolving to allow modelling of more

complex data building on the basic ideas of density surface

modelling. We expect to see large advances in temporal infer-

ences and the handling of zero-inflated data and spatial corre-

lation. These should become more mainstream as modern

spatio-temporal modelling techniques are adopted. Petersen

et al. (2011) provided a very basic framework for temporal

modelling; their model included ‘before’ and ‘after’ smooth

terms to quantify the impact of the construction of an offshore

windfarm. Zero inflation in count data may be problematic,

and two-stage approaches such as Barry & Welsh (2002) as

well as more flexible response distributions made possible by

Rigby&Stasinopoulos (2005) have yet to be exploited by those

using distance sampling data. Spatial autocorrelation can be

accounted for via approaches that explicitly introduce correla-

tions such as generalized estimating equations (GEEs; Hardin

& Hilbe 2003) or generalized additive mixed models or via

mechanisms such as that of Skaug (2006), which allow obser-

vations to cluster according to one of several states (such as

high vs low density patches, possibly in response to temporary

agglomerations of prey, although the mechanism is unimpor-

tant). These advances should assist both modellers and wildlife

managers tomake optimal conservation decisions.

Advances in Bayesian computation (INLA; Rue et al. 2009)

make one-step, Bayesian, density surfacemodels computation-

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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ally feasible (as INLA is an alternative toMCMC). An impor-

tant step towards such models will be incorporation of detec-

tion function estimation into the spatial model. We anticipate

that such a direct modelling technique will dominate future

developments in the field.

Density surface modelling allows wildlife managers to make

best use of the available spatial data to understand patterns of

abundance and hence make better conservation decisions (e.g.

about reserve or development placement). The recent advances

mentioned here increase the reliability of the outputs from a

modelling exercise and hence the ‘efficacy of these decisions.

Density surface modelling from survey data is an active area of

research, and we look forward to further improvements and

extensions in the near future.
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