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Abstract

This thesis examines the structure, stability and interaction of geophysical

vortices. We do so by restricting our attention to relative vortex equilibria,

or states which appear stationary in a co-rotating frame of reference. We ap-

proach the problem from three different perspectives, namely by first studying

the single-vortex, quasi-geostrophic shallow-water problem, next by generalising

it to an (asymmetric) two-vortex problem, and finally by re-visiting the single-

vortex problem, making use of the more realistic, although more complicated,

shallow-water model.

We find that in all of the systems studied, small vortices (compared to the

Rossby deformation length) are more likely to be unstable than large ones. For

the single-vortex problem, this means that large vortices can sustain much greater

deformations before destabilising than small vortices, and for the two-vortex prob-

lem this means that vortices are able to come closer together before destabilising.

Additionally, we find that for large vortices, the degree of asymmetry of a vortex

pair does not affect its stability, although it does affect the underlying steady

state into which an unstable state transitions. Lastly, by carefully defining the

“equivalence” between cyclones and anticyclones which appear in the shallow-

water system, we find that cyclones are more stable than anticyclones. This is

contrary to what is generally reported in the literature.
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Chapter 1

Introduction

Human beings have been observing the skies and oceans since the beginning

of time. They have been doing so in awe of their incredible, ever-changing beauty,

but also for more practical reasons, for example to predict if a storm is approach-

ing, or to try to map out sea currents for ocean voyages. What is probably masked

from the average day-dreamer who gazes at clouds trying to find shapes in them,

or who listens to the lulling sounds of waves at the beach, is that because both

the Earth’s ocean and atmosphere, indeed, also the atmospheres of other plan-

ets, are made of fluid (water and air, respectively), and because both are affected

by planetary rotation and stratification, once certain approximations have been

made, their dynamics are governed by the same equations. As a result, although

certain restrictions do exist, both can be studied simultaneously.

Over the centuries, we have gained much understanding about how planetary

systems work, but as our knowledge has been increasing, so has our awareness

of how much more we have to learn. With the onset of the “digital age” and

the increased accessibility to fast and reliable computing power, the study of

geophysical motions, including also their numerical study, has been able to move

quickly forward, and over recent years much progress has been made. There have
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been two main approaches to modelling such motions. The first is to include as

many components of the flow as possible, and to see how it evolves. This is espe-

cially beneficial for areas like numerical weather prediction or climate modelling,

which aim to forecast the evolution of a system from a given initial configuration.

However, this approach often masks the roles which individual components, and

their interactions, play in such evolutions, and thus a second approach may be

adopted. Here, only very simple flows are considered and studied, and once their

fundamental features have been understood, complexity is added. In this the-

sis, we follow this approach and start out with one of the simplest, “balanced”

models of geophysical fluid dynamics, the quasi-geostrophic shallow-water model,

and once we have understood simple single-vortex equilibrium configurations, we

add complexity by first studying the two-vortex problem, and next by revisit-

ing the single-vortex problem, but this time using a richer model which allows

“unbalanced” motions.

The first step towards obtaining a simplified flow, which is still complex

enough to provide insight into phenomena of interest, is to filter out motions

which do not play a significant role in its evolution. Fully three-dimensional

geophysical flows are composed of a range of motions at different spatial and

temporal scales. They range from small-scale occurrences such as the motion of

fluid generated by a fish swimming in the ocean, to the large-scale oceanic cir-

culation; from the displacement of air as you fan yourself on a hot summer day,

to a hurricane such as Hurricane Katrina of 2005, which claimed over 1500 lives

and caused billions of dollars worth of damage in the United States of Amer-

ica. Since, generally, small-scale phenomena tend not to influence those at large

scales (simply imagining that the flutter of the wings of a butterfly could affect

the progression of a storm seems ridiculous, despite the popular myth), we can

filter them out from the flows we consider, and instead focus on the then less

noisy large-scale motions. To do this, we define the dimensionless Rossby num-
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ber, R = ζ/f , which measures how important the relative vorticity ζ of a flow

is compared to the planetary rotation embodied by f , the Coriolis frequency.

Phenomena with R . 1 are slow, whereas those with R & 1 are fast and may

be neglected as they generally do not play an important role in the evolution of

the flow. Note that the Rossby number measures the role of the Earth’s rotation

on fluid motions, and this often relates to their spatial extent. As an example,

planetary rotation will not affect the trajectory of a ball thrown across a room,

but the trajectory will become curved if the same ball is thrown from Scotland

to California. Vallis (2006) points out that the Rossby number can be viewed

in terms of measuring time-scales, where “short” phenomena, such as individual

clouds or a tornado, are unaffected by the Earth’s rotation, and thus have large

values of the Rossby number.

Through a scale analysis, Pedlosky (1979) shows that typical values of mid-

latitude R are about 0.1 in the atmosphere and an order of magnitude smaller,

0.01, in the oceans.

1.1 The concept of balance

Having chosen the appropriate range of scales of motion, we next decompose

the flow into a form which is easier to understand. As mentioned previously,

the complete, turbulent geophysical systems are highly-nonlinear and exceedingly

complex. It is therefore beneficial to view them through the concept of “balance”,

which decomposes a flow into two parts. The first, “balanced”, part consists of

low-frequency, slow motions which dominate the flow evolution. This component

relates to vortical motions, which arise naturally as a result of the planetary rota-

tion, and are commonly-occurring dynamical features of the Earth’s oceans and

atmosphere, and of the atmospheres of the planets. The second, “unbalanced”

part consists of high-frequency, short-lived motions, which relate to the propaga-
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Figure 1.1: Examples of the two different types of motion present in geophys-
ical flows. On the left we see an example of the balanced component: two
cyclones formed in tandem over Iceland and Scotland in November 2006 (im-
age source: http://www.nasa.gov/multimedia/imagegallery/image feature 735.
html). On the right we see an example of the unbalanced component: an inertia-
gravity wave “ripple” over the Indian Ocean in October 2003 (image source: http:
//eosweb.larc.nasa.gov/HPDOCS/misr/misr html/cloud gravity waves.html).

tion of inertia-gravity waves (IGWs). Figure 1.1 shows atmospheric examples of

both of these types of motion. The left-hand panel of the figure shows “balanced”

motion in the form of two cyclones, whereas in the right-hand panel we see an

example of IGWs. In the cases shown, the two types of motion are visualised

thanks to the presence of clouds, however it should be noted that they may not

always be visible to the naked eye.

Vortex motions are ubiquitous in geophysical flows. It has been estimated

that in the surface layers of the North Atlantic alone there are over 10,000 vor-

tices (Ebbesmeyer et al., 1986). Examples of terrestrial vortices include struc-

tures like the atmospheric “polar vortex”, which dominates the extratropical

winter stratosphere (Norton, 1994), and oceanic Gulf-stream rings, which de-

tach themselves from the current and, while retaining many of its properties,

may have life-times of up to four years (Carton, 2001). The Great Red Spot on

Jupiter is perhaps the most famous such structure occurring outside the Earth

and has persisted for at least 500 years. Numerical simulations of weakly-forced

and damped geophysical flows over the past three decades indicate that vortices
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emerge spontaneously from incoherent motions and subsequently dominate the

“turbulent” flow evolution (cf. McWilliams, 1984, and many others since), at

least under conditions when large-scale planetary vorticity gradients may be ne-

glected. Two-dimensional turbulence, especially at late times, is dominated by

widely-separated vortex structures within a sea of filamentary debris (see e.g.

Fornberg, 1977; Santangelo et al., 1989; Dritschel et al., 2008, and references

therein).

It is beneficial to view vortices as local concentrations of potential vorticity

(PV), a scalar, which in the absence of viscous and diabatic effects is materially

conserved by fluid particles. The importance of its role as a scalar tracer for

rotating, stratified flows was first noted by Carl-Gustaf Rossby in the 1930s, and

later, in a more general form, it was defined by Hans Ertel in 1942 to be

Π =
ωa

ρ
· ∇θ,

where ωa is the absolute vorticity (including the Earth’s background rotation),

ρ the fluid density, and θ the potential temperature, or the temperature a fluid

particle at pressure p would acquire if it was adiabatically brought down to some

reference pressure p0. We have its material conservation, or

DΠ

Dt
=
∂Π

∂t
+ v · ∇Π = 0,

where v is the velocity.

In addition to being materially conserved, the special thing about PV is that,

given its instantaneous distribution, through what is known as the “invertibility

principle” (Hoskins et al., 1985) all other dynamical fields, like the velocity and

pressure, may be determined often to an astonishing degree of accuracy. In a flow

in which the presence of the unbalanced component is not permitted, doing so
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exactly is possible1, but in more complex flows which are not free of ageostrophic

and unbalanced motions, this inversion process is less straightforward and non-

unique (see McIntyre and Norton, 2000; Mohebalhojeh and Dritschel, 2000; Mo-

hebalhojeh, 2002; Dritschel and Viúdez, 2003; McKiver and Dritschel, 2008, and

others). Ford et al. (2000) have shown that in such flows, the “slow manifold”

completely devoid of IGWs does not exist. However, viewing a flow through the

concept of “balance” still provides valuable insight into its nature, and so it can

be decomposed into a “minimally unbalanced” part, which nevertheless contains

some degree of unbalanced wave activity, and an “unbalanced” one, composed

of all the residual motions. There are various more-or-less accurate methods for

performing this decomposition, though a unique form of these “minimally unbal-

anced” fields does not exist. It is useful however to regard PV as being entirely

free of IGWs, so that IGWs cannot generate PV (they can only add to its ad-

vection). It should be noted though that the breaking of IGWs may lead to PV

generation (Bühler, 2010).

In this thesis, two different models of geophysical fluid dynamics are used. The

first, the quasi-geostrophic shallow-water model (QGSW), also known as the one-

and-a-half layer model or the equivalent barotropic model, is a fully (geostroph-

ically) balanced model, in which the unbalanced and ageostrophic components

have been completely filtered out. It is perhaps the most popular model to date

for the study of fundamental aspects of atmospheric and oceanic flows (Vallis,

2006). The QGSW model is, despite its simplicity, nonlinear and parameter

rich. Its simplifying feature is that in addition to the non-divergent flow field

u = (u, v) being two dimensional, the evolution of the system is governed by

the material advection of a single scalar, namely the quasi-geostrophic potential

vorticity (QGPV), and it is possible to invert the QGPV exactly to obtain all of

1In quasi-geostrophic flows, this “inversion” amounts to inverting a generalised Laplace or
Helmholtz operator to obtain a streamfunction, from which the velocity and temperature can
be recovered by differentiation; these ideas date back to Charney (1948).
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the dynamical fields. The QGSW model is versatile and embodies key elements

of geophysical flows: vortices, fronts, jets and turbulence.

The second model used is the shallow-water (SW) model, which describes

the motion of an incompressible fluid subject to planetary rotation and grav-

ity effects. It is the simplest model which permits “balanced” vortical motions,

ageostrophic effects, and “unbalanced” inertia-gravity waves (IGWs). Here, un-

like in geostrophically balanced systems, the symmetry between anticyclonic and

cyclonic motions, or motions in opposite directions (in the northern hemisphere,

the clockwise and counter-clockwise directions, respectively), is broken. This

further allows insight into the well-known asymmetry which exists in both re-

alistic geophysical flows (McWilliams, 1985) and in their numerical simulations

(Cushman-Roisin and Tang, 1990; Arai and Yamagata, 1994; Polvani et al., 1994,

and others), as well as insight into the role of the unbalanced component in the

flow evolution (Mohebalhojeh and Dritschel, 2001). However, in SW it is no

longer possible to invert PV exactly to obtain the relevant dynamical fields, al-

though state-of-the-art numerical methods exist for obtaining very accurate ap-

proximations of them. Additionally, a SW flow can be initialised in a way to

contain minimal amounts of imbalance, so that any IGWs produced may be in-

terpreted as a result of the flow evolution, rather than a numerical artefact (see

chapter 4 for details). This allows for a quantitative study of the role of the

unbalanced component. A higher-order (than QGSW) balanced model could be

used to examine ageostrophic effects, however the choice of the order of balance

to use is arbitrary, and so here we turn to the SW model which allows all orders

of balance, at the cost of also including the unbalanced component.
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1.2 Vortex equilibria

By employing the QGSW and SW models described above, in this thesis we

study relative vortex equilibria (or just “equilibria”); these are vortices which

do not change in shape in an appropriately chosen frame of reference. This

is of interested as it provides insight into the nature of the long-lived vortices

which are found not only in the oceans (Olson, 1991; Carton, 2001) and the

Earth’s and planetary atmospheres (Waugh and Polvani, 2010; Garate-Lopez

et al., 2013), but also in simulations of turbulent geophysical flows (McWilliams,

1984; Polvani et al., 1994). These structures remain relatively unchanged by

external factors, and often dominate the flow evolution. Additionally, the theory

of “adiabatic steadiness” (see Legras et al., 2001, and references) states that

widely separated vortices evolve through a series of near-equilibrium states in

between strong interactions. These states are determined by the instantaneous

local straining flow exerted by the surrounding vortices, and an adiabatic, quasi-

steady evolution takes place until an unstable equilibrium state is reached, after

which rapid, unsteady motion of the vortices ensues. Hence, understanding the

solutions and stability of the equilibrium states allows predictions as to the nature

of vortex interactions.

The study of vortex equilibria dates back to Deem and Zabusky (1978a,b),

who studied single (simply-connected) rotating vortex equilibria and two-vortex

(doubly-connected) translating equilibria. Since then, various other studies have

examined the problem, including: Saffman and Szeto (1980), who found steady

solutions for symmetric co-rotating states, Pierrehumbert (1980), who did the

same for symmetric translating states, Dritschel (1985, 1995) who examined 2 to

8 like-signed vortex equilibria and asymmetric like- and opposite-signed vortices,

respectively, Makarov and Kizner (2011) who studied two-vortex equilibria of un-

equal sizes and vorticities, and Luzzatto-Fegiz and Williamson (2010, 2011) who
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used an energy-based argument following Kelvin’s variational principle (Thom-

son, 1875) to find equilibria solutions bifurcating from the Kirchhoff elliptical

solution branch.

A limitation of the aforementioned studies is that they deal exclusively with

two-dimensional (or “barotropic”) systems, while in realistic geophysical flows

stratification also plays an important dynamical role. As a midpoint between the

two-dimensional and the more complex three-dimensional systems, the QGSW

approximation may be used. Through the introduction of a new length scale, the

Rossby deformation length LD, a link can be made between the effects of strat-

ification and planetary rotation in a succinct way. Fluid motions having scales

much smaller than LD behave in the classical two-dimensional manner, whereas

motions at scales larger than LD become confined to fronts or jets of width O(LD)

and are strongly affected by free-surface or layer-thickness deformations. Note

that in shallow-water LD = c/f , where c is the short-scale gravity wave speed,

representing the effects of stratification, and f is the Coriolis frequency, repre-

senting planetary rotation. In QGSW, in which unbalanced motions have been

filtered out, c is infinite, and so here LD is simply a parameter.

Only a few studies have examined the effects of a finite Rossby deformation

length on vortex equilibria. Yet, both experimental (Griffiths and Hopfinger,

1986, 1987) and numerical studies have found qualitative changes in the behaviour

of the system. Polvani (1988) and Polvani et al. (1989) studied equilibrium forms

of simply-connected and doubly-connected states. Waugh (1992) examined the

effects of LD on symmetric vortex merger, and Yasuda (1995) showed that the

QGSW model better represents realistic oceanic vortices. These studies have

found that larger vortices are able to sustain greater deformations and get closer

together before the onset of instability than smaller ones, and that at large-scales

(larger than LD) there is a roll-up of filaments of vorticity and a suppression

of filamentation. Makarov et al. (2012) examined the effects of LD on the form
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and stability of a pair of steadily translating, doubly-symmetric vortex patches,

where each patch was located in a different layer of a two-layer rotating fluid.

They found that increasing the size of this two-vortex structure relative to LD

destabilises it, although for large enough vortices the conditions necessary for

stability become LD-independent. Other studies, including Waugh and Dritschel

(1991) who studied generalised geophysical models of vortex dynamics, further

elaborate the differences between the large- and small-LD regimes.

The study of vortex equilibria in an ageostrophic context is significantly more

difficult. A higher-order balanced model, incorporating ageostrophic effects can

be used for this, however the choice of the order of balance used is arbitrary.

Instead, as a stepping stone to the highly complex, three-dimensional system,

the two-dimensional shallow-water (SW) model may be considered, which con-

tains all orders of balance at the cost of also including IGWs. Despite being the

simplest unbalanced model, the SW model still presents significant challenges for

both analytical and numerical study. As a result, to date, only a few studies

have examined SW equilibria. In fact, due to the spontaneous emission of IGWs,

shallow-water equilibria are not strictly steady, but radiate such weak IGWs that

they may be deemed steady for all practical purposes. Cushman-Roisin et al.

(1985) found exact analytical solutions for time-dependent cyclonic elliptical SW

vortices, Cushman-Roisin (1987) did the same for anticyclonic ones, and Ripa

(1987) developed a stability criterion for SW equilibria. However, this criterion

is not applicable to isolated vortices. Stegner and Dritschel (2000) numerically

investigated the effects of size, the steepness of the vorticity profile, and strength

(Rossby number) on the stability of both cyclonic and anticyclonic isolated cir-

cular vortices. In the limit when the Rossby deformation length is large, Ford

(1994) found peanut-shaped equilibria analogous to those found in the QGSW

context by Polvani et al. (1989). Kizner et al. (2002) numerically constructed

barotropic dipole equilibria, while Kizner et al. (2008) found exact, analytic solu-
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tions for steadily translating dipolar structures. Notwithstanding, to date there

has been no comprehensive examination of SW equilibria and their stability.

1.3 Overview of thesis

This thesis is organised as follows. In chapter 2 we study the equilibrium

form, properties, stability and nonlinear evolution of steadily-rotating simply-

connected vortex patches in the single-layer f -plane quasi-geostrophic shallow-

water (QGSW) model of geophysical fluid dynamics. Here, we also provide an

overview of the QGSW model and discuss our results.

By noting that after instability, many of the initially simply-connected states

evolve into two co-rotating vortices which seem to have near-equilibrium forms,

in chapter 3 we examine doubly-connected (two-vortex) equilibria. Specifically,

we study their form, properties, stability and evolution, again in the single-layer

f -plane QGSW model. We concentrate on states in which the two vortices are

of equal strength, but have an asymmetry in size.

In chapter 4 we revisit the simply-connected vortex-patch problem, however

this time using the richer shallow-water model. Having understood the forms of

the equilibria in a balanced model in chapter 2, we aim to see how a departure

from balance affects their properties, form, and stability, and to examine the role

of the ageostrophic component and the significance of inertia-gravity waves.

We finally end with a summary and several suggestions for further work in

chapter 5.
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Chapter 2

Quasi-geostrophic shallow-water

simply-connected equilibria

The following chapter consists of a study, P lotka and Dritschel (2012), pub-

lished in the journal Geophysical & Astrophysical Fluid Dynamics and the work

is reproduced here with minor modifications.

2.1 Introduction

As mentioned in chapter 1, vortices are an omnipresent feature of the Earth’s

oceans and atmosphere, and of the planetary atmospheres. A special case of vor-

tices are dumbbell-shaped ones, as shown in figures 2.1 and 2.2. These occur both

in experimental studies (Meunier and Leweke, 2001; Cerretelli and Williamson,

2003b) and in simulations of turbulent flows. Figure 2.1 shows such a vortex

which forms from an initially turbulent field in a numerical simulation and per-

sists for many rotation periods. Additionally, dumbbell-shaped structures may

also be found in the Earth’s atmosphere. For example, during the “sudden strato-

spheric warming” phenomenon, a dumbbell structure appears and lasts a few days

12



Figure 2.1: An example of the formation of dumbbell-shaped vortices in two-
dimensional quasi-geostrophic turbulence (simulated using the CLAM method
(Dritschel and Fontane, 2010) at an effective resolution of 40962). Here, the do-
main has dimensions 2π by 2π, and we have the Rossby deformation wavenumber
kD = 1/LD = 10 and L ≈ 0.071 (calculated from the area of the dumbbell-shaped
vortex in the right-hand panel), giving L/LD ≈ 7. Starting from a random-phased
PV field peaked at wavenumber k0 = 20 (shown on the left at T = 100 in units
of T = LD/urms(0)), we let the field decay freely for 20000 time units. Halfway
through the simulation, at roughly T = 10750, a dumbbell-shaped state forms,
which persists until the end of simulation (for almost 10000 time units). This is
shown at time T = 15000 on the right.

before breaking up (Rosier et al., 1994). Furthermore, given the variety of differ-

ent structures found in the ocean, it is also likely that oceanic dumbbell-shaped

vortices exist.

Vortices occur over a vast range of spatial and temporal scales, and their

interactions can be exceedingly complex (cf. Dritschel and Scott, 2009). To be

able to better understand their fundamental properties, idealisations need to be

made. Here, following many previous studies, we focus on one of the simplest

geophysical fluid dynamical models, namely the quasi-geostrophic shallow water

model (Polvani et al., 1989; Waugh and Dritschel, 1991). The key feature of this

model is the Rossby deformation length LD, embodying the effects of rotation
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and stratification in a succinct way. The importance of the Rossby deformation

radius, in QGSW simply a parameter, is that fluid motions at scales L � LD

behave in the classical two-dimensional (2D) manner, with negligible free-surface

deformations (as in the 2D Euler equations), while on the other hand, motions

at scales L� LD are strongly affected by free-surface deformations, and become

confined to fronts or jets of width O(LD). In the oceans, typical LD values range

from 25 to 100km, values comparable to the radius of many ocean eddies such as

Gulf Stream “rings” or “meddies” (Carton, 2001). In the Earth’s atmosphere at

mid-latitudes and poleward, typical LD values are an order of magnitude larger,

ranging from 1000 to 1500km (Charney and Flierl, 1981; Juckes and McIntyre,

1987). In Jupiter’s atmosphere, indirect modelling estimates suggest LD is 1/40th

of the planet’s radius (Cho et al., 2001).

In this chapter, we investigate how the ratio γ = L/LD affects the dynamics

of a flow in an especially simple context, namely in the equilibrium shape and

stability of an isolated, two-fold symmetric patch of uniform PV. Note that our

γ−2 is equivalent to the Burger number. The barotropic case γ = 0 is well un-

derstood; in this case, the flow is described by the 2D Euler equations, and the

equilibria take the form of ellipses, x2/a2 + y2/b2 = 1 (Kirchhoff, 1876). These

(relative) equilibria rotate at a constant rate Ω which depends only on the aspect

ratio λ = b/a and the uniform PV q0 (here simply vorticity): Ω = q0λ/(1 + λ)2.

In 1893 Love showed that these equilibria are linearly unstable if λ < 1/3, with

the first mode of instability having an asymmetric wave-3 form (in elliptic coordi-

nates). This instability has since been confirmed in the fully nonlinear equations

(see, e.g. Dritschel, 1986), and extensive studies examining the evolution of unsta-

ble elliptical vortices have been done (see, e.g. Polvani and Flierl, 1986; Mitchell

and Rossi, 2008, and others).

Much less is known when γ > 0. Polvani et al. (1989) developed a numerical

procedure to compute two-fold symmetric equilibria for a selected set of param-
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eters, specifically λ = 0.6, 0.4, and 0.286, each for 21 γ values equally spaced

on a logarithmic scale between 10−2 and 102. They found that the finite-LD

(γ > 0) equilibria are qualitatively different from ellipses, with these differences

becoming more pronounced at smaller aspect ratios λ, where the vortices be-

come dumbbell-shaped. Our purpose here is to extend their work first by a more

comprehensive coverage of parameter space, and then by studying the linear and

nonlinear stability of the equilibria (it turns out that most instabilities occur for

λ < 0.286). High-resolution nonlinear simulations permit us to examine the fate

of instabilities, and provide a deeper understanding of the effects of finite LD.

This chapter is organised as follows. In §2.2 we first review the physical

system, present the numerical method used to find the equilibria, and then discuss

the shapes and properties of the equilibria. This is followed by a linear stability

analysis in §2.3 and by nonlinear numerical simulations in §2.4. We conclude in

§2.5 with a summary of the main findings. Information on supplementary movies

is given in §2.6.

2.2 The flow model and vortex-patch equilibria

2.2.1 Quasi-geostrophic flow

The quasi-geostrophic shallow-water (QGSW) model is perhaps the most pop-

ular model to date for the study of fundamental aspects of atmospheric and

oceanic (geophysical) flows (Vallis, 2006). This is due to the model’s great sim-

plicity: two-dimensional, no gravity waves (“balanced”), versatility. Yet, the

QGSW model embodies key elements of geophysical flows: potential-vorticity,

vortices, fronts, jets and turbulence. Here, we examine this model in its simplest

form: no forcing, no damping, no topography, and constant planetary vorticity

f . The corresponding QGSW model consists of a single “prognostic” equation
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for the material (conservative) advection of quasi-geostrophic potential vorticity

“QGPV” q,
Dq

Dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0, (2.1)

and a Helmholtz-type “inversion relation” providing the (non-divergent) flow field

u = (u, v) from q,

(∇2 − L−2D )ψ = q , u = −∂ψ
∂y

, v =
∂ψ

∂x
, (2.2)

where ψ is the streamfunction.

2.2.2 The vortex-patch model

We consider the simplest form of a vortex, namely a patch of uniform (QG)PV,

q = q0, in an unbounded domain with q = 0 outside the vortex. The vortex is

entirely prescribed by its boundary shape, and we seek the shapes which are pre-

served under the dynamical evolution, i.e. that steadily rotate. (Note, these are

often referred to as “relative equilibria”, but here we will simply call them “equi-

libria”.) Many possible shapes are likely to exist, depending on the symmetry

imposed (or not). Here, we seek two-fold symmetric simply-connected shapes,

analogous to the elliptical vortices found in the barotropic limit γ = L/LD = 0.

An example is given in figure 2.2.

The simplicity of a vortex-patch carries over to the calculation of its induced

velocity field. As shown by Deem and Zabusky (1978a,b), the dynamics of a

vortex-patch depends only on the shape of its bounding contour, a property

coined “contour dynamics”. Using Stokes’ theorem, one can reduce the double

integral involved in inverting the operator ∇2 − L−2D to a single contour integral,

resulting in
dx

dt
= u(x) =

q0
2π

∮
C

K0(|x− x′|/LD)dx′, (2.3)
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q1 = 0
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b

q0 = 1

λ =
b

a

Figure 2.2: Schematic diagram of a vortex-patch equilibrium.

where K0 is the modified Bessel function of zeroth order, C is the bounding

contour, drawn in a right-handed sense, and x′ ∈ C. When x ∈ C also, this

equation fully describes the motion of C. It may be generalised to any number of

contours C by simple linear superposition (Dritschel, 1989).

The equilibria are generated following the iterative numerical procedure dis-

cussed in Dritschel (1995). Without loss of generality, the PV inside the vortex

is set to q0 = 1, and the area of the vortex is set to A = π (the latter implies

that the characteristic length scale L = 1). Then, starting from a circular patch,

which is a known equilibrium for any value of γ = L/LD, we slightly decrease the

aspect ratio λ by ∆λ = 0.001, and find a new equilibrium. We do this by itera-

tion, at each step calculating the constant value of the streamfunction ψ on the

boundary of the vortex and the correction Ω′ to the guess for Ω of the previous

iteration. Our convergence criterion is met when the maximum normal variation

of the contour shape is less than 10−9. We use cubic-spline interpolation and

two-point Gaussian quadrature (see Appendix A of Polvani and Dritschel, 1993,

for details) to calculate ψ and Ω′. Once our convergence criterion is met, we then

reduce λ further and repeat the procedure until the method no longer converges
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(this normally occurs for very small λ between 0.003 and 0.007, depending on

γ). This generates a family of equilibria varying with λ for a fixed value of γ.

Note that we generate both stable and unstable steady states. To start the pro-

cedure, we need a guess for the rotation rate Ω relevant to a near circular vortex

(1− λ� 1). From a linear stability analysis (see Appendix A), it can be shown

that for an m-fold symmetric wave Ω = I1(γ)K1(γ)− Im(γ)Km(γ), where Im and

Km are the modified Bessel functions of the mth order. Note that we confine our

attention to m = 2.

Typically, 400 nodes are used to represent the vortex boundary C. These are

connected together by local cubic splines to achieve high accuracy, and are dis-

tributed proportionally to the square root of of the local curvature, as discussed

in Dritschel (1988). 800 nodes are used when γ > 1, in part to accurately cap-

ture the weak instability occurring for very small λ (when the vortex is strongly

distorted), and in part for long-time accuracy in the nonlinear simulations (the

evolution slows down markedly as γ increases beyond 1, see below). The differ-

ence in the vortex shape between 400 and 800 nodes, however, is much smaller

than the line width plotted in figure 2.2.

We generate families of equilibria for γ = 0.02, 0.25, 0.5 and thereafter in

increments of ∆γ = 0.5 to γ = 10 (22 families in total). This range more than

sufficiently encompasses the range of values thought to characterise vortices in

the oceans, the atmosphere and in other planetary atmospheres. Note that the

barotropic case corresponds to γ = 0.

2.2.3 Properties of the equilibria

A few examples of the equilibrium contour shapes are presented for three

different values of γ in figure 2.3, which is complemented by supplementary movie

1. In each frame, we illustrate three different aspect ratios: λ = 0.5, the aspect
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Figure 2.3: Selected equilibrium contour shapes for γ = 0.5 (left), 3.0 (middle),
and 8.0 (right). In each frame, we show the equilibrium contours for λ = 0.5, for
the smallest stable aspect ratio λc, and for the smallest aspect ratio attainable
λf . The plot window is the square |x|, |y| ≤ 2.2. See also supplementary movie
1.

ratio at marginal stability λc (see §2.3), and the smallest aspect ratio for which

we achieve convergence λf . Here, and for all γ investigated, the shape deforms

into a dumbbell shape, nearly pinching off as λ→ 0. Note that the corner formed

as λ→ 0 is infinitesimally-small-scale, and is controlled by local dynamics. Non-

zero γ states therefore have the same behaviour as the barotropic γ = 0 case,

i.e. a right-angle corner is formed; this is studied in detail by Overman II (1986).

It is likely that the limiting form for λ = 0 is a pair of vortices touching at the

origin (see Polvani et al. (1989) for comparable examples of doubly-connected

equilibria). Note that at large γ, the equilibria become less elongated in x with

decreasing λ. This is due to the shortening interaction range, proportional to

LD, as γ increases. As γ → ∞, the limiting form for λ → 0 is likely to be two

circular patches joined by a bridge at a distance r = O(LD) from the origin.

There is a gradual transition from quasi-elliptical equilibria with λ close to

1 to dumbbell-shaped equilibria for small λ. This is quantified in figure 2.4

by comparing λ with the elliptical aspect ratio λe obtained from the second-

order spatial moments of the vortex-patch. For the barotropic Kirchhoff family

of equilibria at γ = 0, each member is an ellipse, hence λ = λe. As γ in-

creases, λe peels away from this line at progressively larger λ: this indicates
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Figure 2.4: Comparison of the aspect ratio λ and the elliptical aspect ratio
λe, obtained from the second spatial moments,

∫∫
x2dxdy and

∫∫
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vortex-patch. The equilibrium families γ = 1, 2, 5 and 10 are shown by thin lines,
the family γ = 0.02 by a bold line, and the barotropic Kirchhoff family γ = 0 by
the dashed line. The curve for γ = 10 displays the most distortion for small λ.
On the left we see a zoom of the figure on the right.



that the vortex is becoming dumbbell-shaped. The family for γ = 0.02, which

is close to barotropic, evidently exhibits a bifurcation around λ = 0.21. For

λ > 0.21, the equilibria are very close to elliptical in shape, but for λ < 0.21,

they become dumbbell shaped, like all the other non-zero γ families. This bifur-

cation is associated with a known bifurcation occurring in the barotropic family

at λ = λ4 = 21/2 + 1− 2(21/2 + 1)
1/2

= 0.216845.... This point coincides with the

margin of stability for a wave-4 disturbance, see Love (1893) and Dritschel (1986).

Moreover, Kamm (1987); Cerretelli and Williamson (2003a) and Luzzatto-Fegiz

and Williamson (2010) have shown that there are two new branches of equilibria

splitting off from the elliptical branch at λ = λ4. One branch is dumbbell-shaped,

while the other is eye-shaped (more pointed at the extremities). For non-zero γ,

only the dumbbell-shaped equilibria are connected by continuous deformations

to circular equilibria at λ = 1. The eye-shaped equilibria presumably still exist,

at least for small γ, but they lie on an isolated branch in the parameter space,

and so cannot by accessed by the numerical method used in this study. Ellipti-

cal equilibria, if they exist for λ < 0.21 for non-zero γ, also cannot by accessed

by continuous deformations from circular shapes. The apparent bifurcation oc-

curring at small γ near λ = λ4 is clearly visible in the particle rotation rate

Ωp = 2π/T , where T =
∮
C ds/|u| and s is arc length (Ωp is the average rate at

which fluid particles circulate around the boundary), shown in figure 2.5 for the

four smallest values of γ examined in this chapter. For γ = 0.02, we see that Ωp

strongly dips toward λ = λ4, while as γ increases, Ωp flattens and there is less

sign of the bifurcation. Similar sensitivity is seen in the linear stability of the

equilibria, discussed below in §2.3.2.

Further properties of the equilibria are shown in figure 2.6 as a function of γ

and λ. In 2.6(a) we have the angular impulse J = q0
∫∫
D(x2+y2)dxdy, where D is

the region inside the vortex-patch, in (b) the total energy E = −(q0/2)
∫∫
D ψ dxdy

(see Appendix B), in (c) the rotation rate Ω, and in (d) the particle rotation rate
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Ωp. Note that the barotropic Kirchhoff family is not represented at γ = 0;

rather we use the numerically generated family for γ = 0.02, which at small λ is

dumbbell-shaped like all other families. Turning first to the angular impulse J

and energy E, for every γ considered we find that J exhibits a maximum at the

same point λ where E exhibits a minimum (this is marked by the dashed line in

2.6(a) and 2.6(b)). By contrast, J and E are monotonic in λ for the barotropic

Kirchhoff family.

If we plot E as a function of J , we generally find two branches of solutions

joined at a cusp, as illustrated in figure 2.7 for the γ = 4 family (all other families

are qualitatively similar). Saffman and Szeto (1980) and Saffman (1992) argued

that, under these circumstances, the upper branch is linearly stable while the

lower branch is unstable (see Dritschel, 1985, for why this argument is incom-

plete). Saffman and Szeto (1980) studied the γ = 0 case, but their results are also

valid for γ 6= 0. The joint extremum of J and E at λ = λc thus coincides with

the margin of stability. Dritschel (1995) has shown that for a pair of liked-signed,

unequal-sized barotropic vortices, the joint extremum of J and E does indeed

coincide with the margin of stability. On the other hand, it does not when the

vortices are opposite-signed. Notably, at marginal stability λ = λc, the linear

eigenmode has exactly zero frequency (and growth rate), indicating the existence

of multiple branches of equilibria. Here, consistent with this picture, there are

two branches, a lower and an upper one stemming from a cusp in the E(J) dia-

gram. The same situation occurs for like-signed barotropic vortices, discussed in

Dritschel (1995).

The linear stability analysis for QGSW vortex-patches below confirms this

behaviour, albeit for only one of the two modes of instability found. This mode

has the same symmetry as the equilibria found here, but it is not the first to

become unstable for γ . 3. Moreover, this mode does not exist for γ = 0;

then the angular impulse varies monotonically with λ (for further discussion, see
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Dritschel, 1995, and Luzzatto-Fegiz and Williamson, 2010).

The rotation rate Ω of the vortex and the particle rotation rate Ωp around

its boundary in figures 2.6(c) and (d) both strongly decrease with increasing γ

and, to a lesser extent, decrease with decreasing λ. Note that Ωp � Ω for large

γ. In this part of parameter space, the fluid velocity induced by the vortex is

confined to a narrow belt of O(LD) width, and to leading order the velocity on

the contour is ∼ q0LD/2 (Nycander et al., 1993). This implies Ωp ∼ q0LD/2P ,

where P is the arc length (a circular patch has P = 2π), a relationship which

holds to within 3% for γ = 10. On the other hand, the equilibrium rotation rate

Ω depends on exponentially-small long-range interactions, and is therefore much

smaller in magnitude. If we regard the equilibrium as a solitary wave solution

with maximum curvature κ then, following Nycander et al. (1993), the predicted

value of Ω is q0(κLD)3/32. Figure 2.8 shows Ωγ3 versus γ for λ = 0.5 (note

q0 = L = 1). For this aspect ratio, the equilibria are nearly elliptical, so we can

estimate κ ≈ λ−3/2 = 2
√

2. This implies Ωγ3 → 1/
√

2 ≈ 0.7071 as γ → ∞,

which appears to be a plausible estimate.

2.3 Linear stability

We next examine the linear stability to normal-mode disturbances of the

vortex-patch equilibria presented in §2.2. We briefly review the method used in

§2.3.1, and then discuss our findings in §2.3.2.

2.3.1 Method

We next perform a linear stability analysis of the families of equilibria de-

scribed above using a method first used by Dritschel and Legras (1991) and fully

described in Dritschel (1995). In this method, we displace the equilibrium PV

26



3 4 5 6 7 8 9 10

0
.5

0
0
.5

5
0
.6

0
0

.6
5

γ

Ω
γ3

Figure 2.8: The scaled equilibrium rotation rate Ωγ3 versus γ for γ = 3–10, at
λ = 0.5.

contour by arbitrarily infinitesimal amounts which are normal to the contour, i.e.

x(φ, t) = xe(φ) + η(φ, t)
{dye/dφ,−dxe/dφ}

(dxe/dφ)2 + (dye/dφ)2
,

where the quantities with and without the subscript e refer to the equilibrium

and disturbed quantities, respectively. The “disturbance function” η is consid-

ered small compared to xe and so we can linearise the equations of motion.

Disturbances having the above form preserve area, but not necessarily the an-

gular impulse J , and can arise under the external action of a weak irrotational

field, which may for example result from some distance vortices. In the above,

φ can be any parametrisation of the contour. Here, for simplicity, we choose it

to be proportional to the travel time t of a particle moving around the contour,

φ = Ωp,kt, where Ωp,k is the particle rotation rate on the kth contour. We thus
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obtain the evolution of ηk(φk, t) of the kth contour:

∂ηk
∂t

+ Ωek
∂ηk
∂φk

=
∂Fk
∂φk

,

where

Fk(φk) ≡ −
n∑
j=1

ω̃j
2π

∫ 2π

0

ηj(φj, t)K0

(
xek(φk)− xej(φj)

LD

)
dφj,

and where n is the total number of contours (here n = 1) and ω̃j is the inward

vorticity jump across the jth contour (here 1).

The disturbances are expanded in a truncated Fourier series involving cosmφ

and sinmφ, where we retain only wavenumbers m ≤ M = 50. We thus solve a

2nM × 2nM matrix eigenvalue problem for the eigenvalue σ at each λ for fixed

γ. We have verified that our results change insignificantly when doubling M , and

the results presented below are accurate to within the plotted line width.

2.3.2 Results

The results of the linear stability analysis are presented in figure 2.9, which

shows the growth rates σr of the two most unstable modes found for the full range

of γ considered and for λ ≤ 0.35 (stability is found for all λ > 1/3, the boundary

of stability of barotropic Kirchhoff vortices, Love, 1893). The two modes can

be broadly identified as a large-LD mode (γ . 3) found on barotropic Kirchhoff

vortices, and a distinct small-LD mode (dominant for γ & 3). The margin of

stability λc falls at the σr = 0 contour in the figure. We see that the margin

of stability of the small-LD mode coincides with the maximum of the angular

impulse J and the minimum of energy E (cf. figure 2.6(a) and (b)). Here, both

the growth rate σr and the frequency σi are zero, a so-called “exchange-type”

instability (see §2 for discussion). On the other hand, the margin of stability of
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the large-LD mode does not coincide with either the maximum of the angular

impulse J or the minimum of the energy E. This is despite the fact that both σr

and σi are zero at λ = λc. Here, it is likely that an additional branch of equilibria

without two-fold symmetry splits off from the main solution branch, as found in

the analogous barotropic Kirchhoff case (Luzzatto-Fegiz and Williamson, 2010).

Near the barotropic limit γ � 1, we again see evidence of the bifurcation

occurring for γ = 0 at λ = λ4 in the growth rates of the unstable modes, see figure

2.10. Until roughly λ = 0.22, the smallest γ = 0.02 curve hugs the barotropic

one, after which it breaks away (the vortex-patch rapidly changes shape through

λ = λ4, cf. figure 2.4). As γ increases, there is a more gradual transition around

λ = λ4.

Figure 2.11 shows the growth rates as a function of λ for three distinct γ values
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corresponding to those illustrated in figure 2.3. These γ values are characteristic

representatives of large-LD behaviour (γ = 0.5 in the figure), small-LD behaviour

(γ = 8) and the boundary between the two (γ = 3). For large LD or small γ

(on the left), instability emerges at moderate λ, then plateaus and finally slightly

decreases as λ→ 0. At small λ, a second stronger mode emerges and dominates

at very small λ. For intermediate LD (in the middle), two modes erupt at nearly

the same (small) aspect ratio. The first is the large-LD mode, but this is quickly

overwhelmed by the small-LD mode at smaller λ. For small LD (on the right),

only the small-LD mode is seen. However, the instability is substantially weaker

than in the other two cases. Again, this is due to the weakening of long-range

interactions as LD decreases.

Finally, it is noteworthy that only two modes of instability occur throughout

the entire parameter space (with an exceptional third for very small λ and for

some γ values)1. This stands in sharp contrast to the barotropic Kirchhoff case,

where there is an infinite sequence of instability modes (at λ = 1/3, 0.2168...,

etc...) occurring for decreasing λ (Love, 1893; Dritschel, 1986). These modes

correspond to wave 3, 4, etc... disturbances, but are evidently not found for

γ > 0, at least for the families of equilibria deformable from circular shapes.

The deformation into dumbbell-shaped vortices appears to limit the number of

unstable modes (in effect offering greater stability). This appears to explain why

we see only the wave-3 instability for small γ near λ = 1/3, something akin to

the wave-4 instability for smaller λ when vortices are dumbbell-shaped, and no

other instabilities.

In summary, smaller γ equilibria lose stability at higher λ and have higher

growth rates than larger γ equilibria. This means that smaller vortices, for fixed

deformation length LD, destabilise more readily than larger ones.

1These modes, which are much weaker than the primary mode of instability, may be as-
sociated with additional turning points in the E(J) diagram, as found by Luzzatto-Fegiz and
Williamson (2011) in the barotropic context.
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2.4 Nonlinear evolution

We next explore the nonlinear evolution of unstable vortex-patches near the

marginal stability boundary found in §2.3. The numerical method is first dis-

cussed in §2.4.1, and then various forms of nonlinear evolution are illustrated

and mapped in the γ − λ parameter plane in §2.4.2.

2.4.1 Method

We use the contour surgery algorithm (Dritschel, 1988, 1989) to study the

evolution of the boundary of the vortex-patch, including complex processes such

as splitting and filamentation. The algorithm solves equation 2.3 numerically by

discretising contours into a finite, variable number of nodes, connected together

by local cubic splines. The contour integrations are performed semi-analytically

for the singular logarithmic part of the K0 Green function, and by two-point

Gaussian quadrature for the non-singular remainder (Dritschel, 1989). Nodes

are added, removed and shifted in response to changes in contour curvature. A

fourth-order Runge-Kutta time integration method is used with a fixed, standard

time step of ∆t = 0.025.
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Initially, we start with an equilibrium vortex-patch which is slightly dis-

turbed by randomly displacing the x and y coordinates of each node by 1%

of ∆θ = 2π/n0, where n0 is the initial number of nodes (400 for γ ≤ 1 and

800 for γ > 1). This is done so as not to bias the evolution towards either the

symmetric or the asymmetric modes. Thereafter, every 8 times steps, the nodes

are redistributed using a dimensionless node separation parameter µ = 0.2 and a

large-scale length Lc = P/(µn0), where P is the equilibrium arc length. During

the evolution (also every 8 time steps), if the distance between two parts of the

contour (or between two distinct contours) becomes less than the “cut-off scale”

dc = µ2Lc/4, contour surgery is performed (Dritschel, 1988). This either splits

a contour into two parts or joins two contours together. The settings for µ, dc

and the frequency of surgery and node redistribution are now standard, and a

comprehensive discussion may be found in Fontane and Dritschel (2009), which

also generalise to the pure contour dynamics simulations of this study.

We evolve the equilibria typically for 100 particle rotation periods Tp = 2π/Ωp

(based on the equilibrium value of Ωp, see figure 2.6(d)). A few cases were evolved

for longer times (for as long as 500Tp), and no qualitative differences were found.

No vortex splitting occurred later than 91Tp, with splitting times being highest

for γ = 2 and 3, which were both evolved for at least 200Tp. Due to computational

costs, we examine a subset of equilibria having γ = 0.25, 0.5, 1, 1.5 and 2 to 10

in increments of unity (13 cases in total). We examine the small γ cases more

closely, as there is a steep decrease in λc for these values (cf. figure 2.9).

2.4.2 Results

Dritschel (1986) and Tang (1987) found that, for the barotropic case, linear

stability of an equilibrium implies nonlinear stability (which, unlike the converse

of the statement, is not generally true). For γ > 0, we find that this statement
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Figure 2.12: Fractional area loss δA (left) and area ratio A2/A1 of the second
largest to largest patches (right) at the end of the simulation. For each γ, only
results for the weakest linear instability near marginal stability (λ . λc) are
shown.

remains true, within ∆λ = 0.001 in almost all cases. The only exception is the

γ = 4 case, where the stability boundary occurs at an aspect ratio smaller by

0.004 than predicted. This may be due to weak vacillations occurring near the

margin of stability in this case, as such vacillations are noticeable for γ = 5 and

6 (see below).

In almost all cases, these weak linear instabilities near λc nevertheless lead

to major structural changes in the vortex shape, from filamentation to splitting.

Different types of evolution accompany the two main linear modes discussed

above, and there are significant variations in these types. In addition to a visual

examination, we quantify area changes at late times to better distinguish these

types. The first diagnostic is the fractional change in the total area occupied by

the largest one or two vortex patches at the end of the simulation,

δA = 1−
∑2

i=1Ai
A0

, (2.4)

where A1 is the area of the largest vortex-patch and A2 is the area of the second
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t = 20.93Tp t = 21.57Tp t = 24.65Tp t = 50.75Tp

Figure 2.13: Type 2 instability, filamentation. Here we illustrate the case for
γ = 0.5 and λc = 0.296. Note that |x|, |y| ≤ 3.3, and that we are viewing the
state in a reference frame co-rotating with the undisturbed configuration in this
and subsequent figures. See also supplementary movie 2.

largest one (if present; otherwise A2 = 0). Here, A0 = π is the area of the original

vortex-patch. We thus do not include any filamentary debris or smaller vortex

patches left over at late times. The second diagnostic is the ratio of vortex areas,

A2/A1 ≤ 1, at the end of the simulation.

Three types of instability can be identified by looking at δA and A2/A1 in fig-

ure 2.12. The first, which we call “type 2” (see below for the “type 1” instability),

occurs for states with γ < 1. Here, we see a peak in δA, and a gradual increase

in A2/A1 from 0 as γ increases. Visual examination indicates that the vortex

destabilises asymmetrically, shedding a large filament which may subsequently

roll up into a series of smaller vortices. This behaviour was found previously in

the barotropic case (Dritschel, 1986), apart from the vortex roll up, and is directly

associated with the instability of a wave-3 disturbance in this case. An example

of this evolution, now for γ = 0.5 and λ = λc = 0.296, is illustrated in figure 2.13.

(Note that figures 2.13–2.16 are complemented by supplementary movies 2–5).

At late times, a single quasi-elliptical vortex-patch remains, whose final aspect

ratio is approximately λ = 0.435 (based on the second-order spatial moments of

the patch). This is well within the stable part of the parameter space.

A second type of instability, which we label “type 3i”, is apparent for 1 ≤ γ < 4:

here the vortex splits asymmetrically with little filamentary debris. An example
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t = 0 t = 80.40Tp t = 80.90Tp

t = 81.16Tp t = 82.42Tp t = 107.81Tp

Figure 2.14: Type 3i instability, asymmetric split. Here we illustrate the case
for γ = 2 and λc = 0.091. See also supplementary movie 3.

is illustrated in figure 2.14 for γ = 2 and λ = λc = 0.091. In fact, there is a

smooth transition from type 2 to type 3i, accompanied by a significant growth

in the area ratio A2/A1 and a decay in the area loss δA, as shown in figure 2.12.

As γ increases, the initial filament shed from the vortex increases in size, and

has a greater tendency to roll up into a single vortex with little debris. This

type of instability reflects a competition between the asymmetric small-LD linear

instability mode, and the symmetric large-LD mode (cf. figure 2.9).

Finally, as γ increases further, the vortex splits almost perfectly into two

identical halves, with negligible filaments. This instability, referred to as “type

3ii”, is illustrated in figure 2.15 for γ = 10 and λ = λc = 0.024. Such symmetric

evolution occurs for γ ≥ 4, and appears directly associated with the symmetric

large-LD linear instability mode. Notice the very slow evolution of the flow, in

particular the slow propagation of waves around each vortex boundary (the waves
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t = 0 t = 45.98Tp t = 46.07Tp

t = 46.10Tp t = 46.15Tp t = 46.26Tp

Figure 2.15: Type 3ii instability, symmetric split. Here we illustrate the case
for γ = 10 and λ = 0.024. See also supplementary movie 4.

in fact obey a modified Korteweg-de Vries equation to leading order in LD, as

explained in Nycander et al., 1993).

After careful scrutiny, we uncovered an additional type of linear instability

which is not apparent from figure 2.12. In a small range of aspect ratios near

marginal stability for γ = 5 and 6 only, we observe a vacillating state, an example

of weakly nonlinear instability. This instability, here called “type 1” as it is

the weakest of all, is illustrated in figure 2.16 for γ = 5 and λ = 0.024. We

note that λc attains a maximum near γ = 5 for the small-LD linear instability

mode (see figure 2.9), but we are unsure of the significance of this for nonlinear

vacillation. Vortices exhibiting type 1 instability begin by tilting, similar to that

seen at t = 45.98Tp in figure 2.15), but recover stability by increasing their

aspect ratio or widening the bridge between the two halves of the vortex (see

t = 23.76Tp). By angular momentum conservation, this requires the vortex to
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t = 0 t = 23.76Tp t = 31.15Tp

Figure 2.16: Type 1 instability, vacillation. Here we illustrate the case for γ = 5
and λ = 0.024. See also supplementary movie 5.

become more extended. Thereafter, the evolution reverses and the initial vortex

shape is recovered by t = 31.15Tp. The whole process then repeats itself.

A summary of the types of instability occurring near marginal stability is

presented in figure 2.17. Note the different scales for λ in the three panels shown.

The barotropic case with γ = 0 is also shown, following Dritschel (1986) who

found the type 2 instability for λ ≤ 1/3. The large-LD mode found in figure 2.9

is characterised by the type 2 and 3i instabilities, in which filaments are shed

by the equilibrium as it loses stability. The small-LD mode, on the other hand,

has little or no filamentation and results in a split of the equilibrium into two

symmetric vortex-patches. The transition from one mode to the other is smooth;

each consecutive case with larger γ having the type 3i instability produces a

decreasing amount of filaments and two increasingly symmetric vortex patches.

There is a division between the types of instabilities which produce filaments

and those which do not. Dritschel (1986) found filamentation for the barotropic

case, which agrees with our findings for the large-LD cases. Polvani et al. (1989)

observed a suppression of filamentation for large γ in the case of the merger of two

nearby patches of equal PV. For γ = 1 they observed a “roll-up” of the filaments,

similar to the formation of a small vortex-patch observed here at the same value of

γ (cf. figure 2.12). For γ = 3 they noted a complete suppression of filamentation
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Figure 2.17: Overview of the simulations carried out. The symbols denote
the following: ◦ stable; • type 1 instability, vacillation; 4 type 2 instability,
filamentation (with A2/A1 < 0.1); + type 3i instability, asymmetric split (with
0.1 ≤ A2/A1 < 0.99); ∗ type 3ii instability, symmetric split (with A2/A1 ≥ 0.99).

– this is close to the transition from type 3i to type 3ii instabilities observed

here (at γ = 3, we have δA = 0.007 and A2/A1 ≈ 0.93, together with some

weak filamentation, but this is much weaker than at γ = 2, for which we have

δA = 0.017 and A2/A1 ≈ 0.4). For yet larger γ, Polvani et al. (1989) observed

large-amplitude non-breaking nonlinear waves propagating on the boundary of

the vortex, which also closely parallels our observations following a vortex split.

Note that there is a continuous transition between vacillating and unstable states

at γ = 5 and 6. We believe this can be attributed to the sensitivity on λ of the

large-amplitude waves travelling on the vortex boundary. When the phases of

the waves are slightly out of synch, vacillations, rather than breaking, occurs.
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2.5 Conclusions

This chapter has examined the form, stability and long-time nonlinear evolu-

tion of two-fold symmetric vortex-patch equilibria in a single-layer quasi-geostrophic

shallow-water model. The equilibria depend on two parameters: the ratio γ of

the mean vortex radius L to the intrinsic Rossby deformation length LD, and

the ratio λ of the minimum to the maximum width of the vortex. The uniform

potential vorticity within the vortex may be taken to be unity, as the induced

flow is linearly related to potential vorticity.

We have covered a wide range of the γ−λ parameter space in detail, extending

a previous study by Polvani et al. (1989). We have furthermore carried out a

linear stability analysis to locate the margin of stability to within ∆λ = 10−3

over a wide range of γ values. Finally, we have examined the nonlinear evolution

of marginally unstable vortex equilibria, and associated the types of evolution

with the principal modes of linear stability.

There are two principal modes, one occurring for small γ which has its origin

in the barotropic problem, when γ = 0, and another occurring mainly at inter-

mediate to large γ, which appears to be unrelated to the barotropic problem.

The first “large-LD” mode is asymmetric (at least near the margin of stability),

and results in the ejection of a large filament in the nonlinear evolution. The

second “small-LD” mode is symmetric, and results in a symmetric split of the

vortex patch into two, with negligible filamentary debris. The nonlinear problem

proves even richer, as there is mode competition, leading to asymmetric vortex

splits for moderate γ, specifically 1 ≤ γ < 4. Furthermore, we have found a weak

nonlinear instability, vacillation, for some aspect ratio values near the margin of

stability when 5 . γ . 6 (these uncertainties arise because we have performed

simulations only for integer values of γ for γ ≥ 1). This weak instability results

in variations of the vortex shape only, with the initial shape recurring from time
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to time.

Both modes of linear stability exhibit an “exchange-type” instability where

both the real and imaginary parts of the eigenfrequency are simultaneously zero

at marginal stability. Saffman (1992) argued that such an instability occurs at

an extremum of total energy, and Dritschel (1985, 1995) showed that this occurs

at joint extrema of both angular impulse and energy (here for fixed γ) as a

function of λ. This we have verified for the second small-LD mode, but not for

the first large-LD mode. Notably, the small-LD mode has the same symmetry

as the equilibrium, while the large-LD mode does not. (There are symmetric

modes of instability in the barotropic problem at smaller λ, the first occurring

at λ = 0.2168..., that exhibit an “exchange-type” instability yet the angular

momentum and energy are monotonic functions of λ in this case. For further

elaboration, see Dritschel, 1995 and Luzzatto-Fegiz and Williamson, 2010.)

By way of summary, we have found that for a fixed vortex aspect ratio λ

and Rossby deformation length LD, small vortices are likely to be more unstable

than large vortices. Put another way, large vortices can sustain much greater

deformations before destabilising than small vortices.

2.6 Supplementary movies

Supplementary movies are available on the compact disc attached to this

thesis in the folder SC, with movie captions available in Appendix C.1.
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Chapter 3

Quasi-geostrophic shallow-water

doubly-connected equilibria

The following chapter consists of a study, P lotka and Dritschel (2013), pub-

lished in the Journal of Fluid Mechanics and the work is reproduced here with

minor modifications.

3.1 Introduction

The study of two-dimensional vortex dynamics has received considerable at-

tention over the past few decades, largely because of its relevance to geophysical

flows. It has been approached from two different perspectives, the first of which

has been to directly examine the vortex-dominated processes in realistic geophys-

ical phenomena (e.g. Hoskins et al., 1985; McIntyre, 1993; Carton, 2001). The

second has arisen from the study of two-dimensional turbulence which, especially

at late times, is dominated by widely-separated vortex structures within a sea of

filamentary debris (see e.g. Fornberg, 1977; McWilliams, 1984; Santangelo et al.,

1989; Dritschel et al., 2008, and references therein).
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Understanding vortex interactions both qualitatively and quantitatively is

key in both of these approaches. The majority of studies performed to date

have concentrated on vortices of equal size and strength (Zabusky et al., 1979;

Saffman and Szeto, 1980; Polvani et al., 1989; Waugh, 1992; Dritschel, 1986, to

name a few). However, exact symmetry is rare in realistic flows, and even slight

departures from it have been shown to change the nature of the vortex interactions

(see §5.1 of Dritschel, 1995). A few studies have examined the asymmetry in

size (Melander et al., 1987; Dritschel and Waugh, 1992; Dritschel, 1995; Mitchell

and Driscoll, 1996), strength (Yasuda and Flierl, 1995), or both (Trieling et al.,

2005; Makarov and Kizner, 2011), and, in short, the variety of different forms of

behaviour is remarkably rich.

The goal of the present chapter is to extend the work of Dritschel (1995) and

Polvani et al. (1989). The former studied two-dimensional asymmetric doubly-

connected equilibria, and examined their linear and nonlinear stability. The

latter examined the form of symmetric doubly-connected states at finite LD and

found the critical distance between the two vortices for merger to occur. We go

further and examine the effects of finite LD on the form, properties, linear and

nonlinear stability of doubly-connected co-rotating vortex equilibria, aiming also

to quantify and describe their nonlinear interactions.

The chapter is organised as follows. In §3.2 we present the theoretical and

numerical framework for generating the equilibria, and discuss their form and

properties; in §3.3 we perform a full linear stability analysis of the equilibria, and

in §3.4 we examine their nonlinear stability and evolution. In §3.5 we examine

the transitions between simply- and doubly-connected equilibria, and finally we

draw some conclusions in §3.6. Note that information on supplementary movies

may be found in §3.7.
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Figure 3.1: Schematic diagram of the doubly-connected equilibria.

3.2 Flow model and properties of the equilibria

3.2.1 Quasi-geostrophic shallow-water flow and the vortex-

patch model

The quasi-geostrophic shallow-water model (cf. Pedlosky, 1979) has been

widely applied to study fundamental features of atmospheric and oceanic dy-

namics. We refer the reader to §2.2.1 for full details of it, and here describe its

specific application in this chapter.

By considering the single-layer form of the model on the f -plane, we look for

equilibrium solutions of two vortex patches of uniform and equal PV q1 = q2 = q0

in an unbounded domain having q = 0, as shown in figure 3.1. Although very sim-

ple in form, vortex patches are a good approximation of realistic high-Reynolds-

number flows, as these commonly exhibit vortices with steep PV gradients on

their boundaries, having near-uniform values of PV within their core (see e.g.

Melander et al., 1987; Legras and Dritschel, 1993; Dritschel, 1993). By employ-

ing a formulation now termed “contour dynamics”, Deem and Zabusky (1978a,b)
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showed that the dynamics of vortex patches, which can be determined from the

superposition of their induced velocities, is determined wholly by the shape of

their bounding contours. For k regions of constant potential vorticity in irrota-

tional flow, the velocity field is determined from the contour integral

dx

dt
= u(x) =

∑
k

qk
2π

∮
Ck

K0(|x− xk|/LD)dxk, (3.1)

where K0 is the modified Bessel function of zeroth order, Ck is the bounding

contour of each patch k, drawn in a right-handed sense, qk is the inward jump

of PV across Ck, and xk ∈ Ck, as generalised to multiple contours by Dritschel

(1989). This is obtained by using Stokes’ theorem on the double integral involved

in inverting ∇2 − L−2D in equation 2.2. When x ∈ Cj also, this equation fully

describes the motion of each contour Cj.

We set k = 2 in equation 3.1 and seek families of asymmetric doubly-connected

equilibria. In this configuration, the families are completely spanned by three

dimensionless parameters: (1) their size relative to the Rossby deformation length

γ = L/LD, (2) the ratio between the areas of the smaller and the larger vortex

0 < α = A2/A1 ≤ 1, and (3) the distance δmin between the innermost edges of

the vortices.

Using a modification (Dritschel, 1985, 1995) of the iterative scheme first used

by Pierrehumbert (1980), we generate asymmetric doubly-connected co-rotating

vortex equilibria. Without loss of generality, we set q0 = 1 (giving q1 = q2 = 1)

and A = A1 +A2 = π, where A1 ≥ A2. This prescribes the areas A1 = π/(1 +α)

and A2 = απ/(1 + α) of each of the vortices in terms of the area ratio between

them. Throughout this chapter the sub- and superscripts 1 and 2 will be used

to distinguish between the larger and smaller vortices, which, without loss of

generality, in equilibrium we set to be on the left-hand and right-hand side of the

state, respectively (cf. figure 3.1).

45



For each α, we begin the iterative procedure with a first guess for the equi-

librium shapes, namely two circular vortices at a sufficiently large distance δmin

apart, proportional to 2/γ. For this guess we approximate the rotation rate of the

equilibrium to be that of two point vortices located at the centre of each patch,

namely Ω = γK1(γd)/2d, where K1 is the modified Bessel function of the first

order and d = δmin + r1 + r2 is the distance between the centroids of the vortices.

We then progressively decrease the distance δmin by ∆δmin = 0.001, at each step

finding a solution for the boundaries of the vortices and the rotation rate Ω until

convergence, here when the maximum normal variation of the contour shapes

is less than 10−7. At each step of the iterative procedure, we use cubic-spline

interpolation and two-point Gaussian quadrature to calculate the constant value

of the streamfunction on the boundary of each of the vortices and the correction

Ω′ to the rotation rate Ω (full details of how these are calculated may be found in

the appendix of Polvani and Dritschel, 1993). We continue this procedure until

we reach a final distance δf after which we either fail to obtain convergence, or a

numerical artefact in the form of a “spike” appears (see Wu et al., 1984, for more

details on this). The value of δf is dependent on both γ and α: as an example,

for α = 0.2 for various γ, we find 0.013 ≤ δf ≤ 0.647 (with δf decreasing as γ

increases), while for α = 1.0, we find δf = 0.001 for all γ.

To obtain the high levels of accuracy in the equilibrium shapes necessary for

solving the linear stability problem (see §3.3), we use 200 nodes to represent

half of the boundary of each of the vortices, distributed proportionally to the

square root of the local curvature. Note that the iterative scheme fixes the global

centroid of the equilibria at (x, y) = (0, 0), and enforces symmetry about the

x-axis, so that we have to compute only half of the boundary of each vortex.

We seek families of doubly-connected equilibria for a range of α and γ. We

generate barotropic-like families with small γ = 0.02, 0.25, and 0.5, and families

which increasingly depart from barotropy, γ = 0, with γ = 1 − 3.5 at ∆γ = 0.5
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γ = 0.02, α = 0.2 γ = 0.02, α = 0.6 γ = 0.02, α = 1.0

γ = 3, α = 0.2 γ = 3, α = 0.6 γ = 3, α = 1.0

γ = 10, α = 0.2 γ = 10, α = 0.6 γ = 10, α = 1.0

Figure 3.2: Examples of doubly-connected vortex equilibria. For each case we
show the distances δmin = 0.8 (dashed line), the critical distance δmin = δc (bold
line), and the smallest distance attained δmin = δf (thin line). Note, |x| ≤ 2.7,
|y| ≤ 1.2. In these and subsequent figures we are in a frame of reference rotating
with the equilibria. See also supplementary movie 1 for the case α = 0.2.

and γ = 4−10 at ∆γ = 1. A denser range of families is necessary at smaller γ, as

the equilibria depart from barotropy quickly, but once a critical value of γ ≈ 3 is

reached, differences between them are small. The range of γ examined provides a

good description of the variety of motions found in geophysical contexts (Charney

and Flierl, 1981; Carton, 2001; Scott and Polvani, 2008). For each γ, we examine

α = 0.1− 1.0 at ∆α = 0.1. Note that Dritschel (1995) has studied in detail the

case γ = 0, which is omitted in this chapter (we instead examine γ = 0.02 for

comparison), for a range of α, while Polvani et al. (1989) examined families of

equilibria for a range of γ at α = 1.0, but did not address the problem of their

stability.

3.2.2 Properties of the equilibria

Several examples of how equilibrium contour shapes change with γ and α are

shown in figure 3.2 (and in supplementary movie 1). For each value of γ (0.02,

3, and 10), we show three different α: a highly-asymmetric state with α = 0.2, a
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moderately-asymmetric state with α = 0.6, and a symmetric state with α = 1.0.

For each (γ, α), we show three distances: a “large” distance δmin = 0.8, the

critical distance δmin = δc at the boundary of stability (see §3.3), and the smallest

distance δmin = δf attained. We see that as the distance decreases, the vortices

become increasingly deformed, until either one or both of them develop a sharp

corner. For fixed γ, as α increases, the vortices are able to move closer and

closer together before either δc or δf is reached. Also, the smaller vortex tends

to be more deformed than the larger one, with this most pronounced for small

α. Deformations of equal-sized vortices are symmetric. As γ increases both δc

and δf decrease, and so despite the weakening of long-range interactions, even for

small α the shapes of both of the vortices are affected by each others’ presence.

Across all α, we see that when δmin = 0.8, the vortices are nearly unaffected by

each other for γ = 3 and 10, in contrast to what is seen from the elongated form

of the vortex at γ = 0.02. For the γ = 10 equilibria, even at δmin = δc the shape

of each vortex is hardly changed from a circular form. At δmin = δf , despite

having moved closer together at a single point, the larger vortex appears to push

the smaller one away, while at the same time deforming considerably. Note that

it is the local dynamics which control the corner formed in the limiting (small

δmin) states, and so the γ = 0 results of Overman II (1986), who found that a

right angle corner is formed, apply to the γ 6= 0 states.

Further properties of the equilibria are exhibited in figure 3.3 for each of

the five area ratios, α = 0.2, 0.4, 0.6, 0.8, and 1.0 (rows 1–5 of the figure,

respectively) in the γ−δmin parameter plane. In column (1) we show the angular

impulse J = q0
∫∫
D(x2 + y2)dxdy, where D is the region inside the vortex patches,

in (2) the total energy E = −(q0/2)
∫∫
D ψ dxdy, with ψ the streamfunction, and

in (3) the rotation rate Ω. Note that the barotropic families of equilibria are not

included, and instead the nearly barotropic case γ = 0.02 is used.

We first examine J and E. For each γ considered we find that there is a
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Figure 3.3: Various properties of the equilibria in the γ − δmin parameter plane plane
for five different area ratios α = 0.2, 0.4, 0.6, 0.8, and 1.0 (rows 1–5, respectively): angular
impulse J (column 1, contour interval 0.05 for rows 1–2 and 0.1 for rows 3–5), energy E
(column 2, loge scaling, contour interval 0.2), and rotation rate Ω (column 3, loge scaling,
contour interval 0.5). The bold dashed line corresponds to the boundary of linear stability
(with instability below, see §3.3; note that this very closely coincides with the boundary
of nonlinear stability, see §3.4.2) and the bold line marks the extrema of J or E with
respect to δmin for each γ. Here, and in figures 3.8, 3.17 and 3.19 the black area is the
region for which no states have been generated.



distance for which J exhibits a minimum, and an almost identical distance at

which E exhibits a maximum, marked by the bold lines in the figure. The biggest

difference between the two extrema ranges between 0.009–0.012, depending on α.

As shown by Luzzatto-Fegiz and Williamson (2012), the location of the extrema

of J and E must be the same, and we expect it to coincide with the location of

the boundary of stability (see discussion below). In this chapter, the difference

in δmin at which the extrema occur is due to the fact that the function of E(δmin)

is very flat (cf. column 2 of figure 3.3), implying that it is very sensitive to

finding the exact location of the maximum. On the other hand, the location of

the minimum of J is better defined, and thus provides a more trustworthy value

for the boundary of stability (cf. figure 3.4). Figure 3.4 shows how J changes

with α for γ = 0.02, 0.5, 1, 2, 4 and 10. It can be seen that as γ increases, the

location of the minimum of J (indicated by a dashed line in the figure) becomes

independent of α, and the minimum itself becomes more obvious. It appears that

the numerical method fails to converge at the point when J starts levelling off

after its minimum for small δmin. This is not only more pronounced for larger

γ, but as γ increases also occurs at smaller distances for small α. The angular

impulse increases with α, most strongly for small γ. However, the degree of

asymmetry (given by α) does not affect J linearly; in fact, regardless of γ, states

with α = 0.8 and 1.0 have very similar values of J , while there is a considerable

discrepancy between the values of J for α = 0.2− 0.6.

Saffman and Szeto (1980) and Saffman (1992), whose results are valid for both

γ = 0 and γ 6= 0, argued that when the plot of E(J) has the form of two branches

of solutions joined at a cusp (i.e. when there exist simultaneous extrema of J

and E), the lower branch is unstable whereas the upper one is linearly stable.

Dritschel (1985) showed that this argument is not complete, and Dritschel (1995)

demonstrated that the joint extremum of J and E coincides with the boundary

of stability only for like-signed pairs of barotropic, i.e. γ = 0, vortices of equal
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Figure 3.4: The angular impulse J against distance for various γ. The dashed
line connects the minima of J , and the symbols on each line represent different
area ratios: 2 α = 0.2; ◦ α = 0.4; 4 α = 0.6; � α = 0.8; ∗ α = 1.0.
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Figure 3.5: The energy E as a function of angular impulse J at γ = 2 for three
different α.

or unequal size. Figure 3.5 shows a plot of E as a function of J for the γ = 2,

α = 0.2, 0.6, 1.0 families of equilibria (all other families are qualitatively similar,

with the length of the lower branch increasing with γ). We see that the plots

have the form described above. The linear stability analysis below confirms the

coincidence of the boundary of linear stability with extrema of J and E also when

γ 6= 0 (see §3.3, and the bold dashed line in figure 3.3). The nonlinear stability

analysis (see §3.4) also finds the boundary of nonlinear stability to fall at this

location.

Figure 3.6 shows how the particle rotation rates Ωp,i = 2π/Ti, where

Ti =
∮
Ci ds/|u| and s is arc length, change with γ and α for each of the vor-

tices. We examine the same families of equilibria as those shown in figure 3.4,

namely the cases with γ = 0.02, 0.5, 1, 2, 4 and 10. We see that both Ωp,1 and

Ωp,2 decrease strongly as γ increases, and to a lesser extent as δmin decreases.

The sharp decrease of Ωp,2 for small δmin at small γ suggests that the decrease in

Ωp with δmin results from the presence of a stagnation point near the corner. At

smaller γ, Ωp,1 of the larger vortex (solid line in figure 3.6) is bigger than Ωp,2 of

the smaller vortex (dashed line in the figure), with this being most pronounced at

small distances. As γ increases, so does Ωp,2 relative to Ωp,1, and it goes through

a transition where Ωp,2 > Ωp,1 at large distances and Ωp,2 < Ωp,1 at small ones,
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Figure 3.6: The particle frequency Ωp against distance for various γ. The
solid and dashed lines are Ωp for the larger and smaller vortices, respectively.
The symbols on each line represent different area ratios: 2 α = 0.2; ◦ α = 0.4;
4 α = 0.6; � α = 0.8; ∗ α = 1.0.

until at large γ, we find Ωp,2 > Ωp,1 for all distances. For large γ, Ωp,1 and Ωp,2

become distance-independent, as discussed below.

By comparing column 3 of figure 3.3 with figure 3.6, we see that like the

particle rotation rates, the rotation rate Ω also decreases strongly with γ, and

to a lesser extent with δmin. We further note that for large γ, we have Ωp � Ω.

Here, the fluid velocity induced by each of the vortices is confined to a belt

of O(LD) width, where the leading-order velocity on each contour is ∼ q0LD/2

(Nycander et al., 1993). This in turn implies that Ωp,i ∼ q0LD/2Pi, where Pi is

the arc length of vortex i. This relationship holds within 10% for both vortices

across all α at γ = 10. In general, the relationship is more accurate for the larger

vortex at small α, and for the smaller vortex at large α. The equilibrium rotation

rate Ω, on the other hand, is much smaller in magnitude because it arises from
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weak long-range interactions associated with the Green function. If following

Nycander et al. (1993) we view the deformations of each contour as long waves,

then it follows that they must rotate at a frequency proportional to γ3. For the

equilibrium to be steady, therefore, the frame of reference must also rotate at this

rate: Ω ≈ aγ3. Figure 3.7 verifies that this scaling holds closely for δmin = 0.700,

with a varying only slightly from 0.0757 (at large α) to 0.0774 (at small α).

Note that our results for the symmetric case α = 1.0 agree with those found

by Polvani et al. (1989).
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3.3 Linear stability analysis

We next perform a linear stability analysis of the families of equilibria de-

scribed above by using the method described in §2.3.1. Here, we have two con-

tours and so n = 2. We solve the arising 2nM × 2nM matrix eigenvalue problem

(with M = 50) at each δmin for fixed γ and α. We have verified that doubling the

number of retained wavenumbers to M = 100 insignificantly affects our results.

The growth rates σr of the most unstable mode, being the real part of the

solution σ of the eigenvalue problem, are presented in figure 3.8 in the γ − δmin
parameter plane for each α. The “waviness” of the contours arises from a com-

petition between a variety of different modes of instability; however, we are still

able to distinguish a small-γ and a large-γ regime. At small γ, the contours of

σr are steep and growth rates rapidly decrease with γ. This is most apparent

in the smaller α cases, with the boundary between the steep and flat contours

being at γ ≈ 2. As α increases, not only does this boundary fall at smaller

γ, but also states with progressively smaller δmin become stable across all γ.

Note that as in §3.2.2, we do not show the γ = 0 case, and instead use equilib-

ria having γ = 0.02; nevertheless our results converge to the barotropic results

(Dritschel, 1995). Note that Dritschel (1985) examined various modes of instabil-

ity of symmetric barotropic vortices and found that there are many possible mode

combinations, and that there is a tendency for vortices to merge. The eigenstruc-

ture pushes two vortices together (at some angle), causing them to deform and

eventually overlap (merge).

Near the margin of stability, the growth rates turn out to be sensitive to the

number of points np chosen to discretise half of the boundary of each vortex.

Figure 3.9 shows σr for np = 200 (the value used in this chapter), 400, and 800.

We see that as γ increases, the results become less sensitive to the number of

points. The fact that the extrema of energy E and angular impulse J , marked by

55



56

γ

δ
m

in

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

α = 0.2

−4

γ
δ

m
in

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

α = 0.4

−4

γ

δ
m

in

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

α = 0.6

−4

γ

δ
m

in

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

α = 0.8

−4

γ

δ
m

in

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

α = 1.0

−4

Figure 3.8: Logarithmically (loge) scaled growth rates σr of the most unstable
mode in the γ− δmin parameter plane. The contour interval is 0.5. The bold line
corresponds to when σr = 0, while the dashed line corresponds to the boundary
of nonlinear stability. Note that these two lines practically coincide.



the vertical lines in the figure, do not converge may be attributed to how “flat”

the function of E(δmin) is (see discussion in the previous section).

Dritschel (1995) found that for the γ = 0 case, instability erupts via an “ex-

change of stability”, where the real and imaginary parts of σ are both identically

zero at the margin of stability δmin = δc. Moreover this corresponds to simul-

taneous extrema of J and E. We recover this result for our γ 6= 0 equilibria,

pointing towards the possible existence of additional branches of families of equi-

libria (which are likely to be unstable, as we have found no evidence for them

in our nonlinear simulations). As can be seen from figure 3.9, we do not have

σr = σi = 0 exactly at δmin = δc, but the falling values of the lower branch of

σi as np increases indicates that this result is likely to be recovered for infinite

resolution.

To summarise, doubly-connected equilibria having large γ tend to be stable

at smaller distances than those having small γ. This is most notable at small

α. Additionally, the boundary of stability becomes independent of α for large γ,

especially for γ & 2 and α > 0.2. Note that Makarov et al. (2012) found that

two-vortex heton equilibria (a heton is a vortex structure where the vortices are

located in different layers) are less stable at large γ. However, these differences

in the effects of γ can be attributed to the fact that the dynamics of a two-layer

quasi-geostrophic system are very different when the lower layer is of finite depth

(it is infinite in QGSW), as pointed out and discussed by Polvani et al. (1989).

3.4 Nonlinear evolution

We next examine the nonlinear stability of the equilibria, and by finding their

margin of nonlinear stability, we aim to relate it to that of the linear problem.

We also endeavour to give an overview of the general features which characterise

the evolution of marginally unstable states, and how these change with γ and
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α. We first present the numerical framework for examining the evolution of the

states in §3.4.1 and then present our results in §3.4.2.

3.4.1 Method

We examine the nonlinear evolution of equilibria by exploiting the natural

“contour dynamics” formalism, as discussed in §3.2.1. As we only need to keep

track of the boundaries of the vortex-patch equilibria, we discretise the bound-

ary of each vortex by a self-adapting number of nodes connected by local cubic

splines, and numerically solve equation 3.1 using the “contour surgery” algorithm

(Dritschel, 1988, 1989). The algorithm, also used in chapter 2, splits the singular

modified Bessel function K0 appearing in equation 3.1 into a logarithmic part,

log |x− xk|, which is integrated explicitly, and a non-singular remainder part,

which is numerically integrated by two-point Gaussian quadrature. A fourth-

order Runge-Kutta time integration method is used with a fixed, standard time

step of ∆t = 0.025.

The number of nodes adjusts in response to dynamic changes in the contour

curvature. We initially start with a slightly disturbed doubly-connected equilib-

rium, where each vortex patch is represented by an initial n = n0 = 400 number

of nodes. In order to avoid biasing the evolution towards any particular instabil-

ity mode, we randomly perturb the x and y coordinates of each node by up to 1%

of ∆θ = 2π/ni, where ni=1,2 = n0 is the initial number of nodes used to represent

each contour. Throughout the evolution, the nodes are redistributed every 8 time

steps, using a dimensionless node separation parameter µ = 0.2 and a large-scale

length Lc = P/(µn0), where P = P1+P2 is the sum of the arc lengths of the equi-

librium contours. Contour surgery, which either splits a contour into two parts

or joins two contours together, is performed with the same frequency whenever

the distance between two contours or two parts of the same contour decreases
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below the “cut-off” scale dc = µ2Lc/4. This allows the representation of many

complex phenomena which typify vortex-patch dynamics, such as filamentation

and splitting. The numerical details of the procedure, along with a full discussion

of the now standard settings of the control parameters µ, dc and the frequency

of the surgery and node redistribution can be found in Fontane and Dritschel

(2009), which also generalise to the pure contour dynamics simulations of this

study..

We consider five different area ratios α = 0.2 − 1.0 at ∆α = 0.2, as well as

γ = 0.02, 0.25, γ = 0.5 − 3.5 at ∆γ = 0.5, and γ = 4 − 10 at ∆γ = 1 (16 γ

cases in total). The small-γ states are examined more closely as in this regime

there is a steep decrease in the growth rates, as seen in figure 3.8. We evolve the

equilibria for at least 200 particle rotation periods Tp = 2π/min Ωp,1,Ωp,2 of the

smaller vortex. One Tp is equivalent to the amount of time it takes for a particle

to complete a circuit of the vortex boundary. Based on the time scales which

typify the oceans, this was deemed sufficiently long to assess nonlinear stability.

3.4.2 Results

In general, unlike the reverse of the statement, linear stability does not imply

nonlinear stability. However, we find that the boundaries of linear and nonlinear

stability coincide to within ∆δmin = 0.008, as shown by the dashed and bold lines

in figure 3.8. The accuracy of this coincidence increases with γ. We expect that

with increasing resolution, these discrepancies would reduce to zero.

The unstable evolution of vortices having δmin < δc near the margin of stability

reveals a surprisingly rich set of behaviours. We follow Dritschel and Waugh

(1992), and classify them based on the change in the area of the two largest PV

patches in the domain: Ar1 = Af1/A
i
1 and Ar2 = Af2/A

i
2, where the superscripts

i and f indicate the initial and final states (the Afj are calculated as a time-
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t = 97.91Tp t = 99.39Tp t = 100.27Tp

t = 101.75Tp t = 103.22Tp t = 106.91Tp

Figure 3.10: An example of the evolution of a state undergoing partial straining
out PSOb. We show the case γ = 1, α = 0.4, and δmin = 0.339. The plotted
domain has |x|, |y| ≤ 3.3. See also supplementary movie 2.
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t = 161.84Tp t = 163.45Tp t = 164.15Tp

t = 166.46Tp t = 168.54Tp t = 168.77Tp

t = 169.47Tp t = 171.08Tp t = 221.95Tp

Figure 3.11: An example of the evolution of a state undergoing partial merger
PM. We show the case γ = 2, α = 0.6, and δmin = 0.270. Here, |x|, |y| ≤ 3.3.
See also supplementary movie 3.



t = 123.05Tp t = 123.16Tp t = 123.21Tp

t = 123.27Tp t = 123.86Tp t = 184.71Tp

Figure 3.12: An example of the evolution of a state having large γ which under-
goes complete merger CM. We show the case γ = 10, α = 0.2, and δmin = 0.268.
Here, |x|, |y| ≤ 3.3. See also supplementary movie 4.

average once an instability has taken place). Four regimes have been identified,

two of which are further divided into two categories. The first is the elastic

interactions regime, in which the states do not change in area, i.e. Ar1 = Ar2 = 1.

Based on a visual examination of the evolution of the states, this regime may be

further subdivided into stable states (EIs), which do not change in shape, and

vacillating states (EIv). The vacillating states undergo a cycle of approaching

and moving away from each other, adjusting their shapes as the distance between

them changes, but not changing in area. The second regime is partial straining

out (PSO), where the areas of either one Ar1 = 1, 0 < Ar2 < 1 (PSOo) or both

0 < Ar1 < 1, 0 < Ar2 < 1 (PSOb) of the vortices decreases. The third and

fourth regimes are those where the larger vortex grows in size, by either partially

destroying the smaller one Ar1 > 1, 0 < Ar2 < 1 in partial merger (PM) or wholly

absorbing it in complete merger Ar1 > 1, Ar2 = 0 (CM).
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Figure 3.10 shows an example of the PSOb regime, with γ = 1, α = 0.4, and

δmin = 0.339. (Note that figures 3.10–3.13 are complemented by supplementary

movies 2–5). The smaller vortex (V2) undergoes a wave-3 disturbance and sheds a

filament which wraps around the larger vortex (V1). Fine-scale structures develop

on the boundary of V1, which then get partly transferred also onto the boundary

of V2. Figure 3.14 shows how the area of V1 (bold line), V2 (thin line), and

their sum (dashed line) changes with time. We see that soon after the onset of

instability both of the vortices reach constant areas which do not change, even

though some small-scale structures still exist on their boundaries (this is shown

in the last panel of figure 3.10). In the case shown in figure 3.10, the small-scale

filamentary debris become so small that they eventually get dissipated away, and

we are left with two asymmetric vortices. However, the filaments may also roll up

to form small satellite vortices (much smaller than the two dominant vortices).

Additionally, the filament shed by V2 is not always transferred back onto the

boundary of V2. The PSOo regime is qualitatively similar to PSOb, but V1

does not increase in area. However, as can be seen from the plots in figure 3.14

corresponding to the PSOo and PSOb regimes, the decrease in area of V1 is not

large. In fact, at most it decreases by 2.5%. We say a state falls into the PSOb

regime if the area of V1 changes by more than 1%, and so the division between

the PSOo and PSOb regimes is arbitrary. However, the visual examination of the

equilibria shows that there is significantly more interaction of the filament shed

by the smaller vortex with the boundary of the larger vortex in the PSOb regime.

Figure 3.11 shows an example of the partial merger regime, with γ = 2,

α = 0.6, and δmin = 0.270. The vortices merge, but after only about 3Tp the

resulting vortex splits, shedding some filamentary debris. After another 5Tp it re-

connects for 2Tp before splitting again and shedding more debris. As can be seen

from the PM plot (top right) of figure 3.14, the size of V1 does not change after

the second split, unlike that of V2, which sheds a few small filaments, until it too
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t = 58.95Tp t = 60.29Tp t = 61.30Tp

t = 61.97Tp t = 63.64Tp t = 65.32Tp

t = 66.99Tp t = 77.04Tp t = 83.74Tp

Figure 3.13: An example of the evolution of a state having small γ which
undergoes complete merger CM. We show the case γ = 0.02, α = 1.0, and
δmin = 0.266. Here, |x|, |y| ≤ 3.8. See also supplementary movie 5.



reaches a size which does not change (shown at t = 221.95Tp in figure 3.11). The

final area ratio between the two vortices gets halved to αf ≈ 0.27, and despite the

shedding of filaments during the splitting process, only about 2.4% of the total

area of the two vortices is lost. This series of merging and splitting events, some-

times occurring multiple times, is typical of the PM regime. The amount of area

lost to filaments varies with γ, and is maximum at 26.4% for γ = 0.25, α = 1.0,

and δmin = 0.266, where there is considerable filamentation and interaction of

the filaments with the boundaries of both V1 and V2. For unstable equilibria

with γ > 1, no more than 5% of the total area is lost, and states having γ = 4

(the largest γ in the PM regime) have the smallest area loss of � 1%, despite

repeating the merging and splitting process up to five times before reaching a

quasi-equilibrium state. For the large-γ cases, it appears that when the state

merges, it attempts to reach a quasi-steady simply-connected state by shedding

small filaments, but it is not able to do so and eventually splits. Note that in re-

alistic geophysical flows, in which vortices are often subjected to a straining flow

from e.g. the presence of other vortices in their proximity, the effects of “vortex

stripping” (vorticity being torn away from the vortex periphery) and diffusion (if

additionally viscous effects were present) would affect the evolutionary path of

unstable vortices (Legras and Dritschel, 1993; Mariotti et al., 1994). This might

be expected to affect both the PSO and PM regimes of instability, as the strain

would prevent filaments from rolling up to form smaller vortices.

When merger occurs at large γ, large-amplitude waves obeying the modified

Korteweg-de Vries equation to leading order in LD (see Nycander et al., 1993)

propagate on the vortex boundary, and are responsible for the splitting of the

vortex. As γ increases the splitting no longer takes place, or, as in the cases of

γ . 5 having α ≥ 0.8 and 4 . γ . 6 having α . 0.4, a near-instantaneous

split lasting much less than one Tp occurs and the vortices immediately recon-

nect. In figure 3.12 we see an example of a case having γ = 10, α = 0.2, and
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Figure 3.14: The fractional change in area δA = A/Ai − 1 of the vortex with
largest area (bold line), second largest area (thin line), and in the total area of
the two largest patches of vorticity (dotted line). We see the cases corresponding
to figures 3.10–3.13, i.e. γ = 1, α = 0.4, δmin = 0.339 for PSOb (top left); γ = 2,
α = 0.2, δmin = 0.285 for PSOo (top right); γ = 2, α = 0.6, δmin = 0.270 for PM
(middle left); and γ = 10, α = 0.2, δmin = 0.268 (middle right) and γ = 0.02,
α = 1.0, δmin = 0.266 (bottom left) for CM.



δmin = 0.268 which undergoes complete merger. The waves propagating slowly

along the merged boundary are obvious immediately after merger. Note that al-

though the merged state is only quasi-steady, it nevertheless periodically repeats

regular shapes, as shown at times t = 123.27Tp and t = 184.71Tp in figure 3.12.

The asymmetry of the recurring dumbbell-shape is dependent on the initial α

of the doubly-connected state – as α grows, the dumbbell becomes increasingly

symmetric. As can be seen from the dashed line in figure 3.14 (bottom left),

essentially no area is lost to filamentation during or after merger. Apart from

special cases having γ = 0.02 and α = 1.0 (see below), the CM regime occurs

only for large-γ states having γ ≥ 2. In this regime, states having small α ≤ 0.4

and γ ≤ 4 produce the most filamentation, losing 2.7% of the total area. The

behaviour of these states is similar to those in the PM regime, where merged

simply-connected states shed PV while trying to recover a quasi-steady state. In

the CM regime, such a quasi-steady state is reached quickly, and no further split-

ting occurs. States having large α, and larger γ shed essentially no PV during or

after merger.

As mentioned above, cases having γ = 0.02 and α = 1.0 exhibit atypical

behaviour for the small-γ regime, as shown for δmin = 0.266 in figure 3.13. The

state merges, and then by a wave-4 disturbance sheds filaments from both tips

(in general, such a state loses about 23% of its total area, see figure 3.14). These

filaments then interact with the vortex boundary in a very complex way, un-

til a quasi-steady elliptical vortex surrounded by a sea of filamentary debris is

formed. These filaments tend not to roll up into small vortices, unlike what is

sometimes seen in the PSOo and PSOb regimes for sufficiently thick filaments (for

an explanation of this behaviour, see Waugh and Dritschel, 1991). This type of

evolution has been previously described in the barotropic case by Dritschel (1995),

who showed that even slight departures from the initially symmetric state, e.g.

α = 0.99, causes the vortex to instead exhibit a wave-3 instability after merger.
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Figure 3.15: An overview of the simulations carried out for states with α = 0.4.
The symbols denote the following: “•” stable state; “⊕” vacillations; “4” PSOb;
“+” PM; and “×” CM. The dashed line shows the margin of linear stability
(note that if it is not present, the margin lies outside the plotted region).



We obtain similar results for γ = 0.02. However, for vortices with γ & 0.5 we

find that such a small departure from symmetry does not affect the nature of

the nonlinear evolution. Note that we do not find complete merger for any other

cases with 0.02 < γ < 2.

An overview of the simulations carried out for states with α = 0.4 is shown in

figure 3.15. As can be seen from the figure (the other α examined produce simi-

larly complex results), there may be a variety of different behaviours occurring at

a fixed γ (and α) near λc. As an example, at γ = 4 near the margin of stability we

see instabilities having the form of vacillations and partial and complete merger.

For γ & 3 we see that there is a continuous transition from vacillating to unstable

states. As in the previous chapter, we attribute this behaviour to the sensitiv-

ity (now on δmin) of the phases of the large-amplitude waves travelling on the

boundary of the vortices. Despite the complexity of different types of behaviours

occurring, below we attempt to divide up the parameter space considered based

on the type of instability it experience, also tying this in with the results of the

linear stability analysis. For α = 0.2 − 0.6 at small γ . 0.5 − 2 there are only

PSO evolutions (the lower γ values correspond to higher α). The location of

this boundary roughly corresponds to the boundary between the steep and flat

contours in figure 3.8. The PSO regime is absent for α ≥ 0.8, where instead the

small γ . 2 states fall into the PM regime. For α = 0.2−0.6 the PM regime falls

between 1 . γ . 4 (again, the lower γ corresponds to higher α). The PM regime

corresponds to the region of the σr diagrams where there is a transition from

the small-γ to large-γ instability modes. Although larger-α states do not have

a region of steep σr contours nor the PSO regimes of evolution, the transition

region is still present, only for smaller γ than in the lower-α states. The region

of flat σr contours at large γ corresponds to the CM regime for all α. Note that

both at the boundary of the PM and CM regimes, and in the CM regime itself,

we also have vacillations (see supplementary movie 6 for an example of this).
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Lastly, we find that the final vortex area ratio αf is always less than the initial

one αi (henceforth we omit the superscript i for ease of notation). This is shown

in figure 3.16, which shows αf for each δmin considered and for the five different

α examined. The area of V2 never increases, but that of V1 may for all α. For

low α . 0.6 the highest αf are obtained in the PSO regime; on the other hand

for α & 0.6, this regime of evolution is absent. Note that for the barotropic case,

Dritschel (1995) has also found that V2 never increased its size, and that V1 did,

but only for α & 0.6. Additionally, when γ = 0, αf < 0.5 always, which for γ 6= 0

changes to αf < 0.6.

3.5 Transitions between simply- and doubly-connected

equilibria

In chapter 2, the stability of two-fold symmetric simply-connected (SC) vortex-

patch equilibria was examined. The families of these dumbbell-shaped equilibria

are fully spanned by γ and their aspect ratio λ, which is the ratio of the minor to

major axes of the vortex patch. Similarly to the doubly-connected (DC) states,

their limiting state consists of two vortices joined at a single point. The insta-

bility types of an SC state range from the vortex shedding a single filament —

which as γ is increased may roll up to form a smaller vortex — to a split into two

symmetric vortices. This means that a pair of quasi-steady co-rotating vortices

with area ratio 0 < α ≤ 1 is formed. Conversely, as was seen above, during

instability many DC states, especially those with larger γ, often merge into a

single quasi-steady vortex, with either no, or negligible filamentation. Through

merging and splitting, they may also undergo a transition from one DC state to

another quasi-steady DC state.
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Figure 3.17: J (thin line) and E (dashed line) of DC states in the α − δmin
parameter plane. From left to right, top to bottom, we show γ =0.25, 1, 3, and
10. The contours extracted correspond to states with λ = 0 − 1 at ∆λ = 0.010.
A transition is possible if corresponding E and J contours intersect. A complete
transition into more than one unique DC state is possible, when contours intersect
in more than one place. The intersection point(s) are indicated by the black
dot(s), and the corresponding contours are bold.



Cerretelli and Williamson (2003a) studied families of barotropic equilibria,

starting from a DC state and transitioning into an SC one. Experimental stud-

ies (Meunier and Leweke, 2001; Cerretelli and Williamson, 2003b) have shown

that prior to merger, symmetric barotropic vortices may diffusively merge into a

dumbbell-shaped vortex. Below we examine both the complete and dissipative

transitions between DC and SC states, and between two DC states.

Dritschel (1985, 1986) examined transitions between barotropic SC and DC

states having identical circulation, angular impulse, centroid location, energy,

area and vorticity. Waugh (1992) performed a similar analysis for transitions

between a single and two barotropic elliptical vortices. They found that such

transitions are possible, even if they occur between two unstable states, and thus

the resulting states are short-lived.

We say that a transition between two equilibrium states is complete if the

quantities mentioned above are conserved. The statement of their conservation

is equivalent to the conservation of J , E and area (for fixed γ). By finding two (or

more) states with identical (J,E) at a fixed γ, we identify complete transitions

between SC and DC states, and between two DC states (note that we keep the

total area A = π in all cases). We concentrate on complete transitions from an

unstable to a stable state, as these are the most likely to occur and last long times,

even though complete transitions between two stable and two unstable states also

exist. Based on the results found here and in chapter 2, many transitions between

distinct equilibrium states appear possible. Numerous instances have been found

where vortices merge or split with virtually no filamentation or loss of area,

especially at large γ, thus conserving total area, J and E.

We first examine the effects of non-zero γ on complete transitions between

SC and DC equilibria. For a complete transition to be possible, the angular

impulse and energy of an SC state must be equal to that of a DC state, i.e.

(J,E)SC ≡ (J,E)DC. Figure 3.17 shows J (thin line) and E (dashed line) of
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Figure 3.18: A summary of complete transitions possible between SC and DC
states. In columns 1 to 4 we show γ =0.25, 1, 3, and 10. The symbols indicate
the stability regimes of (SC,DC): ◦ (stable, stable), 4 (unstable, stable), and ∗
(unstable, unstable).



DC states in the α − δmin parameter plane for γ = 0.25, 1, 3 and 10. The

contour levels shown correspond to (J,E)SC at the same γ and for aspect ratios

0 < λ < 1, with ∆λ = 0.010. The intersection points of a pair of contours

associated with the same λ (for illustration, marked by a black dot on one contour

pair in the figure) correspond to a possible complete transition between two states.

To determine a range of possible complete transitions, at a fixed γ we look at

contour levels corresponding to SC states with a finer division ∆λ = 0.001, and

locate intersection points of (J,E) in the α− δmin parameter plane. Figure 3.18

shows a summary of these complete transitions for α (row 1) and δmin (row 2) as

a function of λ. We find that complete transitions are possible between a stable

SC to stable DC state, an unstable SC to unstable DC state, and an unstable

SC and stable DC state, as indicated by the different symbols in the figure. Note

that we do not find transitions between a stable SC and an unstable DC state.

We see that for γ . 1, complete transitions are possible between a stable or

unstable DC state and an unstable SC state. These complete transitions are not

unique, and for SC states with larger λ, both a stable and unstable DC state with

the same energetics exists. The difference in α of the two possible DC states is

small, as opposed to the difference in the distance between each of the vortices

in the corresponding states. In contrast, for γ > 1, we find that only complete

transitions between stable SC and DC states are possible for the sampling of the

parameter space examined, and that these complete transitions are unique.

We next examine complete transitions between two DC states, denoted a and

b, so that (J,E)aDC ≡ (J,E)bDC. Figure 3.19 shows J and E of a DCb state in the

α − δmin parameter plane. The contour levels shown correspond to (J,E)aDC at

a fixed γ and (α, δmin) with α in the range 0.1–1 at ∆α = 0.1 and δmin = 0.500.

Similarly as for complete transitions between SC and DC states, given (α, δmin)a

of DCa, we find the corresponding (α, δmin)b of DCb by looking for intersection

points between the J and E contours (for illustration, these are marked by the
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Figure 3.19: J (thin line) and E (dashed line) of DC states in the α − δmin
parameter plane. From left to right, top to bottom, we show γ =0.25, 1, 3, and
10. The contours extracted (some of which may be close together) correspond
to states with fixed (α, δmin), where α=0.1–1.0 at ∆α = 0.1 and δmin = 0.500.
States below the bold dashed line are unstable, and above – stable. The black
dots mark the intersection points between the J and E contours corresponding to
the same state, marking a possible complete transition from a pre-selected DCa

state. A complete transition into more than one unique DCb state is possible
when multiple black dots (i.e. multiple intersections) are present.



black dots in the figure for a given contour level). We find that complete tran-

sitions between two stable, two unstable, and an unstable and stable state are

possible. However, as complete transitions between two stable states are unlikely

to occur in real flows, and complete transitions between two unstable states would

be short-lived, we only present results for complete transitions between unstable

and stable states. Figure 3.20 shows these complete transitions in the α − δmin
parameter plane. Possible complete transitions are connected by a grey line.

Note that states below the bold dashed line are unstable, and those above are

stable.

From figure 3.20 we see that states with small γ, and also ones with small α

regardless of γ, undergo complete transitions in which α remains approximately

unchanged, and only δmin changes. As γ is increased, complete transitions which

change both α and δmin are possible for increasingly small α. In fact, when the

maximum change in α is examined at each γ, we find that it increases almost

perfectly linearly with γ, having a slope close to 0.057. At γ = 0.25 this maximum

difference is 0.044, while at γ = 10 it is 0.591. Additionally, we see that for γ . 1

the change in δmin between states is fairly uniform especially at a fixed α (with

the standard deviation from the average being around 0.15), while for γ > 1

the complete transitions are more varied, with complete transitions having both

small and large changes in δmin (here, the standard deviation is around 0.21).

A final point to note is that for larger γ, there exist more possible complete

transitions than for smaller γ, for the discrete sampling chosen. Note that in fact

a continuum of transitions are possible.

As shown above, complete transitions from one equilibrium state to another

are possible. However, they do not appear to be preferred. We have induced

small perturbations (as in §3.4) on unstable equilibria for which inviscid tran-

sitions to a stable equilibrium are known to exist to see if such a predicted

complete transition would occur. We find that for transitions from unstable
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Figure 3.20: A summary of complete transitions, connected by the grey lines,
possible between two DC states. From left to right, top to bottom, we show
γ =0.25, 1, 3, and 10. States below the bold dashed line are unstable. We only
show complete transitions between unstable and stable states. Note the different
scales on the y-axis between the figures.



SC states to stable DC states there is always loss of J and E (recall that such

complete transitions are only possible for small-γ states and note that we do not

find complete transitions between an unstable DC state and a stable SC state,

cf. figure 3.18). The same is true for transitions between two DC states at both

small γ, and at large γ for small α . 0.4. At large γ and large α & 0.4, we find

that J and E are conserved, but rather than undergoing the complete transition

into a DC state predicted by the above analysis, the state either exhibits vac-

illations around a stable steady state or complete merger, and thus transitions

to an SC state. At large γ, all of the complete transitions between SC and DC

states have been found to be between two stable states. The newly formed SC

state has waves travelling on its boundary, and thus cannot be considered to be

in equilibrium, as discussed below. This in turn implies that even at large γ and

large α, inviscid transitions do not occur.

Although generally we do not find evidence for inviscid transitions, we ob-

serve that near the boundary of stability both small- and large-γ states which

undergo unstable evolution reach unsteady end states with waves travelling on

their boundary, as seen in the previous section. The long-time persistence of

these newly formed states points towards their oscillation around an underlying

equilibrium state, albeit with energetics different from those of the initial steady

state. However, determining the underlying equilibrium from energetics is not

possible, as the waves, which occur on the vortex boundary where most of the

kinetic energy of the state is present, carry (negative) energy. This makes the

total energy of the system lower than that of the underlying equilibrium state.

Damping the waves during the unstable evolution, while at the same time pre-

serving area in order to be able to find the underlying equilibrium could be done,

but is ad hoc. Additionally, as the waves also carry J , determining δmin or λ

of the newly formed state (even from time-averaged values) is not meaningful

despite the final αf of the newly formed state being known. There is thus no
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straightforward procedure to determine the underlying equilibrium states, even

though they are likely to exist.

3.6 Conclusions

We have examined the form, properties and stability of asymmetric single-

layer quasi-geostrophic shallow-water doubly-connected rotating equilibria. In

this framework, the equilibria depend on three parameters: the ratio γ between

the mean horizontal size of the vortices L and the Rossby deformation length

LD, the ratio α between the areas of the smaller and the larger vortices, and the

minimum distance δmin between the two vortices. Extending the work of Polvani

et al. (1989) and Dritschel (1995) we have explored the γ − α − δmin parameter

space, and for each (γ, α) we have found the margin of stability δmin = δc, correct

to within ∆δmin = 10−3.

By both performing a linear stability analysis and examining the nonlinear

evolution of the equilibria, we have related the principal modes of linear stability

to different types of evolution. We have found two principal modes of linear

stability, occurring for small γ and large γ, with a transition region between them.

The small-γ mode, absent for states with α & 0.6, is associated with either one, or

both of the vortices getting smaller through an asymmetric instability where the

smaller vortex sheds a filament from one of its tips. The large-γ mode, present for

all α when γ & 3, is associated with a suppression of filamentation and with the

merger of the two vortices. The transition zone between the two (also present for

α & 0.6, but for small γ . 2) is characterised by a series of merging and splitting

events, with the state losing area in the process, as it tries to reach a quasi-steady

simply-connected state, but is unable to do so.

The effects of non-zero γ cause the behaviour of the vortices to become

α-independent. For γ & 2, the critical distance δc between the vortices is almost
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identical for all α (with it being slightly larger for α = 0.2). As γ is decreased to

the barotropic case γ = 0, the effects of α become increasingly pronounced, with

more asymmetric states being unstable for larger δmin than symmetric ones.

Noting the fast return of the flow to a quasi-steady state after an insta-

bility has taken place, we have examined possible inviscid transitions between

two doubly-connected states or, using the results found in chapter 2, between

a doubly-connected and a simply-connected state (which is described by γ and

its aspect ratio λ). We find that although inviscid transitions are possible, they

are not the preferred path of evolution. Small-γ states preserve neither angular

impulse nor energy during unstable evolution, and a dissipative transition rather

than an inviscid one is favoured in this regime. Large-γ states, which preserve

both energy and angular impulse, favour merger rather than the predicted invis-

cid transitions into other doubly-connected states, despite the fact that inviscid

transitions between an unstable doubly-connected state and a steady simply-

connected state have not been predicted to occur. We believe this is a result of

the unsteadiness induced by the instability. We find that the simply-connected

state formed does split (instantaneously) at late times, but the existence of large-

amplitude waves on its boundary prevents the split from being permanent.

To summarise, we have found that the stability of a vortex pair is not affected

by the degree of its asymmetry for large vortices (L � LD), although it does

affect the underlying steady state into which an unstable state transitions. We

have also found that for a fixed α and δmin, smaller vortices are more likely to

be unstable than larger ones, meaning that large vortices can sustain greater

deformations induced by the flow of another vortex than smaller ones.
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3.7 Supplementary movies

Supplementary movies are available on the compact disc attached to this

thesis in the folder DC, with movie captions available in Appendix C.2. They

are also available online at http://dx.doi.org/10.1017/jfm.2013.104.
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Chapter 4

Shallow-water simply-connected

quasi-equilibria

The following chapter consists of a study submitted to the Journal of Fluid

Mechanics and the work is reproduced here with minor modifications.

4.1 Introduction

In chapter 2 we extend the work of Polvani et al. (1989), who studied dumbbell-

shaped quasi-geostrophic shallow-water (QGSW) vortex-patch relative equilibria,

which bifurcate from the Kirchhoff elliptical vortex (Kirchhoff, 1876) at finite

Rossby deformation lengths. In QGSW, the families of these states are com-

pletely spanned by two parameters: their aspect ratio λ, namely the ratio be-

tween their minor to major axes, and their horizontal size L relative to the Rossby

deformation length, γ = L/LD. Note that our γ−2 is equivalent to the Burger

number. In this chapter, we extend this work into shallow-water (SW), the sim-

plest model which permits “balanced” vortical motions, ageostrophic effects, and

“unbalanced” inertia-gravity waves (IGWs). A higher-order balanced model in
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which the unbalanced component has been filtered out could be used to study

ageostrophic effects. However, the choice of the order of balance to resolve is

arbitrary, and so the SW model, which includes all orders of balance is used. As

a result of the presence of ageostrophic motions, the symmetry which exists in

geostrophically balanced models between motions spinning in opposite directions

is broken. This allows us to study differences between cyclones, which spin in the

same direction as the Coriolis frequency f (twice the background rotation rate

Ω), and anticyclones, which spin in the opposite direction to f (in the northern

hemisphere, the counter-clockwise and clockwise directions, respectively).

Only one additional parameter, the Rossby number R, is required for the

study of vortex-patch equilibria of chapter 2 in shallow-water. The Rossby num-

ber is a dimensionless measure of the strength of a vortex, defined as the ra-

tio between the relative vorticity ζ and the Coriolis frequency, R = ζ/f . In

geostrophically balanced systems where the motions are symmetric, R ≡ 0; for

cyclones R > 0, whereas anticyclones have R < 0. Our aim is to see to what ex-

tent the known QGSW equilibria are steady when extended into the SW context.

Note that in shallow-water, due to spontaneous emission of IGWs, any equilibria

generated are not strictly steady, but radiate such weak gravity waves that they

may be deemed steady for all practical purposes. We further aim to determine

how the stability of shallow-water equilibria is affected by their size and strength,

and to classify the types of instabilities near the boundary of stability. Finally

we wish to explore what role the unbalanced component of the flow plays during

instability.

This chapter is organised as follows. In §4.2 we describe the model formulation

used and provide an overview of the numerical method and the flow initialisation

procedure. In §4.3 we discuss how we quantify the degree of steadiness, while in

§4.4 we present the extent to which the stability of the equilibria is affected by

vortex size and strength, and in so doing address the cyclone-anticyclone asym-
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metry. Examples of the types of unstable evolution we find near the boundary of

stability for various γ and R are shown in §4.5, and in §4.6 we quantify imbalance

in both stable and unstable states. We end with some conclusions in §4.7, and

provide information on supplementary movies in §4.8.

4.2 Model formulation

Below, in §4.2.1, we start by describing the theoretical framework used in

this chapter — the shallow-water model. In §4.2.2 we discuss how we set up the

flow in this system, providing details about the initial conditions used. Then, in

§4.2.3 we give an overview of the Contour Advective Semi-Lagrangian (CASL)

numerical algorithm used for evolving the flow.

4.2.1 The shallow-water model and the concept of balance

In this chapter, we use the full shallow-water (SW) model (see e.g. Pedlosky,

1979), which describes the motion of an incompressible fluid subject to planetary

rotation and gravity effects. We use the single-layer, constant density form of the

model on the f -plane, which is expressed by the shallow-water equations

Du

Dt
− fv = −c2∂h

∂x
, (4.1)

Dv

Dt
+ fu = −c2∂h

∂y
, (4.2)

∂h

∂t
+∇ · (uh) = 0, (4.3)

where u = (u(x, y, t), v(x, y, t)) is the (horizontal) velocity, h(x, y, t) is the fluid

depth (or height) scaled on the mean fluid depth H, and c =
√
gH is the short-

scale gravity wave speed, with g being the gravity. The operator for the material

derivative acting on a scalar a is defined to be Da/Dt = ∂a/∂t+ u ·∇a.
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The flow described by the SW equations may be decomposed into two parts:

the dominant, low frequency “balanced” component relating to vortical mo-

tions, and a faster, relatively short-lived “unbalanced” component consisting

of ageostrophic motions and inertia-gravity waves. It is beneficial to view the

balanced, vortical motions as local concentrations of potential vorticity (PV), a

scalar, which in the absence of viscous and diabatic effects is materially conserved

by fluid particles. In shallow-water, the PV q is defined to be

q =
ζ + f

h
, (4.4)

where ζ = ∂v/∂x− ∂u/∂y is the vertical component of vorticity. The statement

of conservation of PV, Dq/Dt = 0, is a direct result of equations (4.1)–(4.3),

and can also be made for its anomaly relative to a constant background value,

q′ = q − f . In QGSW, in which the unbalanced component has been completely

filtered out, it is possible to determine exactly all dynamical fields from the

instantaneous distribution of (QG)PV. In SW, the exact separation of a flow

into a balanced and an unbalanced component is not possible for unsteady flow,

as the “slow manifold” completely devoid of IGWs does not exist (Ford et al.,

2000). Instead it makes sense to speak of “minimally unbalanced” flows, which

are set up in a way to contain as little inertia-gravity waves as possible. For such

a “minimally unbalanced” flow it is no longer possible to determine exactly the

dynamical fields from the distribution of PV. Nevertheless, through what is known

as the “invertibility principle” (Hoskins et al., 1985) various, sometimes very

accurate, methods for approximating them do exist (McIntyre and Norton, 2000;

Mohebalhojeh and Dritschel, 2000; Mohebalhojeh, 2002; Dritschel and Viúdez,

2003; McKiver and Dritschel, 2008, and others). These enable one to estimate

the ageostrophic part of the flow arising from PV, as well as the proportion of

IGWs in a flow.
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Figure 4.1: PV contours of states with γ = 1 and λ = 0.400 at time
t = ∆τ = 10Tip at the end of the ramping period. We show equilibria with
three different R: the initial QGSW state with R = 0 (grey line), a cyclonic
state with R = 0.5 (dashed black line), and an anticyclonic state with R = −0.5
(solid black line). Note that the cyclonic and anticyclonic states have been ro-
tated to be aligned with the x-axis.

4.2.2 Flow initialisation

The solutions of the SW equations can describe a variety of realistic geophys-

ical motions. Here, we seek those which represent relative vortex equilibria (re-

ferred to as just “equilibria”), or states which appear stationary in a co-rotating

frame of reference. We do this by making use of the simply-connected two-fold

symmetric relative equilibria generated by Polvani et al. (1989) and in chapter

2. In the QGSW model of the aforementioned studies, these states consist of a

patch of constant QGPV in a background of zero PV, and are fully described

by two parameters: their size relative to the Rossby deformation length, γ, and

their aspect ratio, λ. In shallow-water, only one additional parameter is neces-

sary to describe the vortex-patch equilibria – the Rossby number, R, measuring

the strength of the vortex relative to the background rotation. The PV anomaly

inside the vortex patch is then defined in terms of the Rossby number by q′ = Rf .
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We generate shallow-water equilibria from QGSW ones (formally atR = 0) by

using a modification of the “optimal PV balance” (OPV) procedure of Viúdez and

Dritschel (2004b). The OPV procedure starts with a flow at rest, and artificially

ramps up the PV anomaly of each fluid particle by multiplying it by a ramp

function T (τ) = 1
2
[1− cos(πτ/∆τ )], which varies smoothly between 0 and 1 from

the beginning (τ = 0) to the end (τ = ∆τ ) of the ramping period. Apart from

the ramping of PV, the full SW equations are solved. The “target configuration”,

having only minimal amounts of imbalance if a sufficiently long ∆τ is considered

(in practice, exceeding 3 inertial time periods Tip = 2π/f), is determined through

a series of backward and forward iterations, where τ plays the role of the iteration

parameter. The procedure does not enforce any specific balance conditions (such

as e.g. geostrophic balance), but does depend on the choice of ∆τ . Because of

the sometimes very large q′ considered in this chapter, convergence to the target

configuration for long enough ∆τ to truly minimise the presence of IGWs is not

possible. Therefore, instead of performing a series of iterations until the target

configuration in which we specify how close the “balanced” PV contours and those

of the target configuration need to be, we remove the condition on the closeness

of the two solutions. We perform only one forward iteration, allowing the initial

contours to adjust to the flow, even if it means that they differ significantly from

the “balanced” ones. This allows us to consider ∆τ = 10Tip, which is sufficiently

long for the generation of IGWs to be kept to a minimum while the flow adjusts

itself around the PV anomaly. Once the prescribed PV anomaly is reached,

the PV is thereafter conserved and allowed to evolve freely. The minimally-

unbalanced flows initialised in this way allow for the study of equilibria, and any

destructive effects of artificially generated IGWs are attenuated.

Figure 4.1 shows the original contours of PV for a QGSW state (the grey

line in the figure) and those of a cyclonic (dashed black line) and anticyclonic

one (solid black line) with (γ, |R|) = (1, 0.5) and λ = 0.400 at t = ∆τ at the
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end of the ramping period. During the ramp, the SW states undergo rotation

and are here shown rotated back to be aligned with the x-axis. For clarity, in

the figure we only show the form of the contours in the first quadrant. We do

not impose any symmetry on the PV contour during the ramp and so the effects

of the doubly-period domain may lead to an asymmetry of the contour in dif-

ferent quadrants. However, the nearly-zero slope of the contours at x = 0 and

the nearly-infinite one at x ≈ π/2 are indicative of symmetry, and the remaining

quadrants are qualitatively similar to the one shown. From figure 4.1 we see

that at the end of the ramping period, despite being allowed to evolve freely,

the SW contours still closely resemble the QGSW one. This is especially so for

the cyclonic state. Despite over-estimating the locations of the extrema of the

contour, the anticyclonic state is still remarkably close to the QGSW one. This

is especially astonishing since we are considering R = −0.5, where a considerable

free-surface deformation (of over 15% of the fluid depth) has taken place. There-

fore, we henceforth approximate that the QGSW value of λ is the same as the

SW one at the end of the ramping period.

Note that as mentioned in the introduction, there is always a small amount of

IGW radiation from SW vortices (see Ford et al., 2000, and references therein for

a brief review of the topic of spontaneous gravity wave emission), so the states

we generate are not strictly equilibria, but rather quasi-equilibria. However, as

discussed in the next sections, by initialising the flow with only minimal amounts

of imbalance, it is still useful to view the states through the concept of equilibrium.

Here, we call our states “equilibria” in order to avoid the more cumbersome

“quasi-equilibria” term.

In order to provide an overview of the parameter space of realistic flows, we

generate equilibria for both small and large γ, namely for γ = 0.25, 1, 2, 3, 4 and 6

(this gives a range of Burger numbers between 16 and 0.028). We examine both

cyclonic (R > 0) and anticyclonic (R < 0) states with Rossby numbers |R| ≤ 1.0
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Figure 4.2: The particle rotation rate Ωp (contour interval 0.005) of QGSW
equilibria in the γ − λ parameter plane. This figure is reproduced from figure
2.6(d) found in chapter 2.

at ∆R = 0.1.

4.2.3 Flow evolution

Having generated equilibria with non-zero R, we solve the SW equations

using the Contour Advective Semi-Lagrangian (CASL) algorithm (Dritschel and

Ambaum, 1997; Dritschel et al., 1999). The algorithm keeps track of PV contours

(across which q jumps by a prescribed increment ∆q), and of the velocity and

height field on a grid. Note that here we have only one contour defining the

boundary of the equilibrium, with the jump ∆q = q′ = Rf . To improve the

accuracy of simulating both the balanced and unbalanced components of the flow,

a variable transformation is made from the standard set (u, v, h) to (q, δ, χ), where

δ and χ are the divergence of the velocity and acceleration, respectively. Note that

on the f -plane, χ/f is the ageostrophic vorticity. The primitive variables are then

recovered from (q, δ, χ) via an inversion procedure so that PV contours can be

advected, and the field tendencies calculated. The variable transformation results

in a demonstrably more accurate representation of IGWs and vortical motions
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(Mohebalhojeh and Dritschel, 2000; Smith and Dritschel, 2006). We evolve q

using contour advection, while δ and χ are evolved using standard pseudo-spectral

methods in a square doubly-periodic domain of side length 2π at a resolution

of 2562. The time stepping is carried out using a fourth-order Runge-Kutta

scheme, with a time step chosen to marginally resolve the fastest gravity wave,

i.e. ∆t = ∆x/c, where ∆x is the grid spacing.

We use the CASL algorithm to evolve members of the families of equilibria

for a range of γ and R. At a fixed (γ,R), by examining equilibria at different λ,

by trial and error, we aim to determine the critical aspect ratio λc = λc(γ,R) at

which the equilibria cease to be stable, and to describe their unstable evolution

near the boundary of stability. As a first guess for λc at |R| = 0.1, we use the

known QGSW value of λc(γ, 0) determined in chapter 2. Increasing the Rossby

number by a small amount only slightly modifies the form of the equilibria, and

so too (it is found) the location of the boundary of stability. Once we determine

λc(γ, |R| = 0.1), we continue to seek equilibria for progressively larger |R|, using

λ = λc(γ,R−0.1) (for cyclones) or λ = λc(γ,R+0.1) (for anticyclones) as a guess

for λc(γ,R). We determine the location of λc within an accuracy of ∆λ = 0.005.

We evolve each steady state for at least 100 particle rotation periods Tp after

the ramping of the PV anomaly has been completed. One Tp is the amount of time

taken by a fluid particle to circuit the boundary of the equilibrium. In QGSW,

TQGSWp = 2π/Ωp, where Ωp is the particle rotation rate of the equilibrium, the

values of which are shown in figure 4.2 in the γ−λ parameter plane, as calculated

in chapter 2. In SW, increasing the Rossby number increases particle velocities,

and so we scale Tp accordingly by setting Tp = TQGSWp /R.
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Figure 4.3: PV contours (black) and contours of the Bernoulli pressure func-
tion (grey) in the x-y plane. We see a stable state with (γ,R) = (3, 0.1) at
t = 53.08Tp (left; contour interval 0.1) and an unstable state with (γ,R) = (1, 0.3)
at t = 25.97Tp (right; contour interval 0.5), both near λ = λc.

4.3 Quantifying the degree of steadiness

The long-time persistence of the shallow-water equilibria we generate testifies

to their steadiness, and thus their stability. However, we seek a more quantitative

measure to verify this, and begin by noting that the Bernoulli pressure B and

the PV are both functions of the streamfunction for steady (or steadily rotating)

solutions of the SW equations (Malanotte-Rizzoli, 1982; Kizner et al., 2008).

This means that in a steady flow, B is a constant on contours of PV, for an

appropriately chosen frame of reference. In rotating shallow-water, the Bernoulli

pressure function takes the form

B = hc2 +
1

2
|u′|2 − 1

2
Ωf(x2 + y2), (4.5)

with the velocity in the rotating reference frame u′ = (u+ Ωy, v−Ωx) and Ω the

rotation rate. Note that the rotation rate can be calculated following Dritschel

(1995) by minimising the variance of the normal velocity along the PV contour.
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Figure 4.4: The value of εb as a function of time. Here, we show γ = 0.25 (black)
and γ = 6 (grey) for R = −0.1 (thin lines) and R = −0.5 (bold lines) near the
boundary of stability for steady, stable states (left) and unstable ones (right).
Note that the two grey lines in the left panel are practically indistinguishable.
We show how the flow develops for 100Tp once the ramping period has been
completed, so “t = 0” occurs at the end of the ramping period, of duration 10Tip.

Figure 4.3 shows an example of the extent to which the contours of constant B

(shown in grey) and PV (shown in black) are aligned for a steady, stable state

(left-hand panel of the figure) and an unstable one (right-hand panel) near λ = λc.

We see that for the stable state, the contours closely correspond, while crossing

is apparent in the unstable one.

We check how close we are to a steady solution of equations (4.1)–(4.3) by

defining the non-dimensional steadiness parameter εb, which measures how closely

aligned the contours of PV and B are in a reference frame rotating with the

equilibrium:

εb =

√
1
P

∮
C (B − B̄)2 ds

B̄
, (4.6)

where P =
∮
C ds is the arc length of the PV contour C, and B̄ = (1/P )

∮
C B ds

is the mean Bernoulli pressure around the PV contour. Figure 4.4 shows how

εb changes through time for both stable, anticyclonic states (left-hand panel of

the figure) and unstable ones (right-hand panel) near the boundary of stability.
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In each panel of the figure, we show how γ and R affect the value of εb by

showing it for states having γ = 0.25 at R = −0.1 and −0.5 with black thin and

bold lines, respectively, and for states having γ = 6 at the same R with grey

thin and bold lines. We see that εb values are consistently small for the stable

states, but also initially for the unstable states. Additionally, for the stable

states, changing the Rossby number does not significantly affect the values of

the steadiness parameter at γ = 6, whereas even though εb remains small for

all time, the effects of increasing |R| are noticeable at γ = 0.25 (we return to

this point in §4.4). On the other hand, the effects of |R| are not visible in the

unstable states, where the value of εb seems to instead depend on γ, with small-γ

vortices having larger εb values than large-γ ones. This mainly results from the

difference in the types of unstable evolution small and large vortices undergo (see

§4.5). After an instability has taken place, the flow returns to a quasi-steady

state, with the value of εb falling again. This return to steadiness is quicker and

more pronounced at small γ, but a downward trend is also visible for states at

higher γ. We additionally note that for the stable states, the value of εb has

quasi-periodic behaviour, and we re-examine this point in §4.6, linking it to the

presence of the unbalanced component of the flow.

Throughout this chapter we refer to states which are “steady”, and ones which

are “stable” and “unstable”. After the initial PV ramping procedure is completed,

the values of εb for all of the states considered in this chapter are low. This is

true for both the “stable” and “unstable” states (cf. figure 4.4, especially at early

times for the unstable states). For the “stable” ones, εb stays small for the entire

duration of the simulation, while for the “unstable” states there is a sudden spike

in εb at some time t = tc, during which the vortex undergoes unstable evolution.

We do not attempt to perform a formal linear stability analysis of our equilibria,

as doing so in SW is extremely difficult. However, we do determine a boundary

of “stability” at λ = λc, such that for λ > λc, if left undisturbed, the vortex
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Figure 4.5: A schematic showing the location of λc (solid line), λv (dashed
line) and λs (circles) as a function of R for a fixed γ. The region denoted by
“US” indicates the unstable regime, by “V” the vacillating regime, and by “S”
the stable regime. Note that for some Rossby numbers, only one of λc or λv may
exists.

persists for long times without change in shape, and for λ < λc it undergoes

unstable evolution. Hence when “stable” states are referred to in this chapter,

these are states which do not change in shape throughout the (sufficiently long)

duration of the simulation, while “unstable” states are ones which do change in

shape significantly.

The steadiness parameter εb is a good measure for determining the critical

aspect ratio λc at which there is a very sharp spike in εb. However, for states

with γ > 1, through a visual examination of the equilibria, we find weakly-

unstable states for which εb has low values for all time. Unlike the states having

λ < λc, these states do not undergo major changes in shape, and instead exhibit

quasi-steady vacillations, during which their aspect ratio goes through cycles of

increasing and decreasing its value. This process is sufficiently slow that the

Bernoulli pressure B is able to adjust itself about the vortex, and no signal of the
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weak instability is apparent in εb. We introduce the vacillating aspect ratio λv,

such that for any λc < λ < λv the state undergoes vacillations, while for λ ≥ λv

it is stable. Determining the exact location of λv is difficult, as for λ ranging from

λc to λv the change in aspect ratio during one vacillation cycle, ∆λcyc, decreases.

We define λv to be the smallest aspect ratio at which, for an appropriate choice

of b, ¯∆λcyc/λi < b, where λi is the initial aspect ratio of the state. We take the

average of ∆λcyc throughout the simulation, ¯∆λcyc, and scale it by λi to account

for the wide range of λi considered. We set b = 0.05 since in shallow-water even

balanced, steady states generate a small amount of IGWs, and hence there is

always some deformation to the shape (and mass) of the state. We have deemed

that a change of less than 5% in the initial aspect ratio is sufficiently small for a

state to be termed steady. Additionally, as λv only exists for states with γ > 1,

we introduce the steady aspect ratio λs such that all states with λ > λs are

steady; then λs = λc when vacillations do not occur, and λs = λv when they do.

Figure 4.5 shows a schematic of the of locations of λc, λv and λs, along with the

stability regions they bound. The location of λc and λv in the parameter space

considered is discussed in detail in §4.4, of which a summary is presented in figure

4.8. However, before discussing the stability of the equilibria, we first examine a

few of their properties.

At a fixed (γ,R), figure 4.6 shows ε̄b, the time average of εb (over the duration

of a simulation) for the stable states near λs. We see that in general, at a fixed γ,

states with smaller |R| have lower values of ε̄b than do states with larger |R|. This

is to be expected, as the amplitude of the free-surface deformations caused by the

vortex increases with |R|. The cyclone-anticyclone asymmetry is also apparent

from the figure, where for all γ, at a fixed |R|, cyclones have lower values of ε̄b

than anticyclones. This asymmetry is strongest for small-γ states, and weakens

as γ increases. Additionally, we see that for large-γ cyclonic states, the value of ε̄b

becomesR-independent, while for anticyclones there is a strong variation withR.
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Figure 4.6: The time-average (over the duration of the simulation) of the steadi-
ness parameter, ε̄b, at a fixed (γ,R) for the range of γ and R considered. Here,
we show the average of ε̄b for stable states with λ− λs < 0.020.

Finally, we note that as the QGSW (R = 0) states are balanced, then ε̄b ≡ 0. We

see that for small-γ states, we do get convergence towards this limit. However,

for large-γ states there is a discontinuity occurring at R = 0. We readdress this

issue in §4.4.

In figure 4.7 we show the mass M , i.e.

M =

∫∫
D

(H + h′)dxdy, (4.7)

of the equilibria at the end of the ramping period (at time t = 10Tip) as a function

of R for the range of γ considered near λ = λs. Here, H = 1 is the mean fluid

depth, h′ is the depth anomaly, and the integration is performed over the region

inside the vortex D, defined by the PV contour. For simplicity, we only describe

the anticyclonic case, though the same arguments can be made for cyclones which

have a negative, rather than positive, depth anomaly h′, and at small |R| are anti-

98



symmetric to the anticyclonic states. We see that for the anticyclonic states, as

|R| increases, so does the amount of mass contained within the vortex, as h′ also

increases. Additionally, at a fixed R, vortices with larger γ contain greater mass.

Larger vortices (with larger γ) also feel the effects of increasing |R| more. The

mass contained by the γ = 0.25 equilibria at R = −0.1 and R = −0.6 differs by

around 1%, whereas for the γ = 6 equilibria this difference is about 36%.

We note that for both cyclones and anticyclones, at small |R|, there appears

to be a linear relationship between M and R. We attempt to explain this as

follows. It is known that in shallow-water, near the quasi-geostrophic limit (for

small |R|), the mass anomaly scales like m′ ∼ F2/R (see e.g. Vallis, 2006),

where F = U/c is the Froude number. This can be shown by performing a scale

analysis of the permissible free surface deformations η in geostrophic balance

η ∼ fUL/g = Rγ = Fr2/R (these deformations are proportional to mass when,

as here, the density of the fluid is constant). For large γ, the maximum speed

on the vortex edge scales like U ∼ RfLD (Nycander et al., 1993). Hence, since

c = fLD, F ∼ R which implies m′ ∼ R as observed. We find in fact that this

scaling holds for all of the γ considered (including γ < 1), and for values of |R|

up to 0.4. The departures from this linear relationship are less than 0.07 at large

γ and up to two orders of magnitude smaller at small γ. Note that the amount

of mass added (subtracted) by anticyclones (cyclones) is not symmetric, and at

a fixed |R|, anticyclones contain more mass than cyclones are able to displace.

Finally, we note that as we are in fact considering quasi-equilibria which are not

strictly steady, small fluctuations in mass do occur for the stable states. However,

these are � 1% of the total mass for states with γ . 3 and no more than 2.4%

for large-γ states.
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Figure 4.7: The mass M of the equilibrium at the end of the ramping period,
shown as a function of R for the steady states near λ = λs. The filled in point
indicates the QGSW mass M = π.
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Figure 4.8: The location of λc (filled-in circles) and λv (circles) as a function of
R for various γ, as labelled. The triangle in each plot shows the location of the
QGSW λc, and the asterisk indicates a vacillating state with the smallest λ we
have been able to generate, which is weakly-unstable. Note the range in λ varies
with γ, and that we determine λc and λv to within ∆λ = 0.005.



4.4 Stability

We next discuss how the stability of the equilibria discussed above varies with

γ and R, and thus study the naturally-occurring asymmetry between cyclonic

and anticyclonic vortices. We say that a vortex is stable (sometimes also weakly

unstable) when it undergoes no major structural changes for at least 100Tp after

the end of the ramping period. We measure this via the steadiness parameter

εb, in which a clear jump is visible during the onset of instability (cf. figure 4.4)

providing us with the location of the critical aspect ratio λc(γ,R). Additionally,

for larger γ, we find the location of the vacillating aspect ratio λv(γ,R), and thus

find λs(γ,R), such that at a fixed (γ,R), all states having λ ≥ λs are stable (see

figure 4.5 for a visual representation of λc, λv, and λs). The different types of

unstable behaviour are discussed in the next section, and here we focus on the

location of the boundary of stability λs(γ,R). Note that at some (γ,R) only one

of λc or λv may exist.

Figure 4.8 shows the location of λc (marked by filled-in circles in the figure)

and λv (marked by circles) as a function of R for various γ. We also indicate

states for which we do not find λc (marked by asterisks). These results offer the

clearest picture of the cyclone-anticyclone asymmetry. Cyclones are generally

more stable in that they remain stable for smaller λ than anticyclones. The

difference is immediate even at small R.

For γ . 2, λc varies nearly linearly with R, and includes the QGSW limit

λc(γ, 0). For larger γ however, the QGSW limit value appears to depart from the

collection of nearby points with R 6= 0. That is, the QGSW state at R = 0 can

become noticeably more deformed before losing stability than nearby small |R|

states. Recall that in §4.3, for large-γ states, we noted a similar discontinuity at

R = 0 in ε̄b (cf. figure 4.6). A complexity of behaviours is observed for large γ

with R close to QG. We believe that this may happen because at large γ motions
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are slow, and so the phase of a vacillation cycle may be comparable to the length

of the ramping period ∆τ . For a long enough ramping period it is plausible that

the results will converge to the QGSW values. Given the range of parameters

considered in this study, due to computational costs it was deemed impractical

to do so in the present study. From figure 4.8 we also see that at large γ there

is a change in slope in the line fitted through the values of λc for anticyclonic

states, where it is shallower for small |R|, and steeper for large |R|. For example,

at γ = 4, the slope of the line predicting the location of λc for |R| . 0.5 is −0.11,

while for |R| & 0.5 it is −0.29. For larger γ, this change occurs at higher |R|: at

γ = 3, it happens at R ≈ −0.5, while for γ = 6, at R ≈ −0.9. If we once again

compare this behaviour to the results presented in figure 4.6, we see that at large

γ, for states with R . −0.5 the slope of the line fitted through the ε̄b values

steepens compared to the slope of the line fitted through values with R & −0.5.

Higher values of ε̄b mean that states become less steady, which is consistent with

the steepening of the slope of the line through λc. We do not see this behaviour

in cyclonic states, where the slope of the line fitted through ε̄b values does not

change. However, for large-γ cyclones, at large R, strong instabilities cease to

occur. The value of R at which this happens increases with γ.

For small-γ states, the location of λc coincides with the location λs, in contrast

to large-γ states (γ & 1), where a region of weakly unstable states occurs. For

γ = 2, vacillations only occur for cyclonic states, and although variations in the

exact location of λv at different R are small, it appears that states with R . 0.6

need to increase their aspect ratios for stability, and states with R & 0.6 can

once again decrease it while retaining their stability. As γ increases, vacillations

occur not only for smaller values of R, but also for a wider range of λ. In fact,

for γ ≥ 2, at large R > 0.4 this is the only type of instability which occurs. For

cyclones, across all γ, the vacillating region expands as R increases, and states

need to be less deformed in order to be stable. The same is true for anticyclones
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Figure 4.9: The location of λc (left) and λs (right) as a function of γ for the
range of R considered. The bold line indicates the QGSW case R = 0. Note
that at certain γ and R, λc does not exist, so lines may be cut off.

at small |R|, but as |R| increases, for large enough λc no vacillations occur. This

is most visible for γ = 3, where for −0.5 ≤ R ≤ −0.3 the vacillating aspect ratio

λv ≈ 0.130, and as |R| increases it converges to λc. Similarly as with λc, at large

γ, the location of λv appears to be converging towards λc(γ, 0) in a nonlinear

way. Note that apart from at certain λ values at γ = 5 and 6, in chapter 2 we

found no evidence for vacillations in QGSW.

Figure 4.9 shows the locations of λc (left panel of the figure) and λs (right

panel) as a function of γ for the range of R considered. We see that regardless

of R, large-scale effects tend to stabilise states, especially strongly cyclonic ones,

as seen by the decrease in the location of λc and λs as γ increases. Additionally,

we see that for large-γ states, the location of λs becomes γ-independent.

The determination of λs for anticyclonic states at γ = 0.25 has proved dif-

ficult, as in addition to being affected by an elliptical wavenumber-3 instability

(hereafter the wave-3 instability, see Dritschel, 1986) which leads to the state

shedding a filament from one of its tips, small-scale disturbances may develop on

the vortex boundary, which grow in time and eventually lead to the state becom-

ing unstable. The form of εb(t) is very different for such states, as shown in figure
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Figure 4.10: The steadiness parameter εb as a function of time for the case
(γ,R) = (0.25,−0.1) near λ = λc. We see: an unstable state at λ = 0.315 (thin
line), a stable state with a weak instability at λ = 0.325 (bold line), and a state
stable for all time at λ = 0.340 (grey line). The times at which the first filament
is shed are indicated with the two dashed lines.

4.10. As seen from the thin line in the figure, unstable states have a very sharp,

clearly defined jump in εb, while weakly-unstable states exhibit a slow growth of

εb up to and after the time the first filament is shed, which is marked by the thin

and bold dashed vertical lines. A jump in εb may occur in the weakly-unstable

state once the small-scale filaments shed by the vortex have interacted with its

boundary to such an extent that a larger filament is shed. For comparison, in

the figure we also show εb for a state which is stable for all time (grey line), and

we see that the weakly-unstable state very gradually begins to depart from these

values before a filament is shed. We find this type of “weak” instability occurring

even at large aspect ratios, and it may be surrounded by extensive regions of

stable aspect ratios. We therefore classify these weakly-unstable states as stable.

A clear difference in the stability of cyclones and anticyclones is visible in both

figures 4.8 and 4.9. Many previous studies have examined the cyclone-anticyclone

asymmetry, and in general it has been reported that in decaying shallow-water

turbulence and in more realistic oceanic flows, large anticyclonic structures are

more prevalent than their cyclonic counterparts (Olson, 1991; Arai and Yama-
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gata, 1994; Polvani et al., 1994). Furthermore, cyclones are generally found to

be more deformed than anticyclones (Aristegui et al., 1994). By analysing a

large oceanic dataset, Olson (1991) showed that although anticyclones appear

to be more long-lived, there is no evident asymmetry between the distribution

of cyclones and anticyclones. The results of our study confirm the above re-

sults. Across all γ, we find that cyclones are able to sustain greater deformations

than anticyclones while remaining stable. Anticyclones are in general believed

to be more “stable” than cyclones, see e.g. Stegner and Dritschel (2000). We

find the opposite – ageostrophic effects tend to stabilise cyclones and destabilise

anticyclones. However, it is important to keep in mind that when comparing

cyclonic and anticyclonic motions, it is necessary to define what is meant by two

states which are “equivalent”, as cyclones and anticyclones cannot simultane-

ously have identical (but oppositely-signed) velocities, PV and height anomalies.

Here, we say two states are “equivalent” when they have the same magnitude

of Rossby number |R| (which defines the PV anomaly), size γ relative to the

Rossby deformation length, and aspect ratio λ. Stegner and Dritschel (2000)

studied circular, isolated, distributed shallow-water vortices, and chose to exam-

ine “equivalent” vortices which shared the Burger number (recall that this is our

γ−2) and (oppositely-signed) relative vorticity profiles, hence the differences in

their conclusions. To our knowledge, a careful study of the cyclone-anticyclone

asymmetry, which spans a wide parameter space and where the “equivalence”

between two states is clearly defined has not been previously performed. We

find that cyclones are stable for a wider range of the parameter regime than an-

ticyclones, and that large-scale effects tend to stabilise them more easily than

anticyclones (cf. the steeper slopes of lines corresponding to states with R > 0 in

figure 4.9). We also find that for cyclones, a strong instability which results in the

break-up of the vortex may not exist at all, and instead only a weak instability

in the form of vacillations occurs. Anticyclones on the other hand are stable for

a smaller portion of the parameter space, and, especially at large |R|, are less
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Figure 4.11: An example of a vacillating state having (γ,R, λ) = (6, 0.8, 0.005).
We see time t = 0.84Tp after the ramping period has finished (left), and times
t = 19.49Tp and t = 22.85Tp when the state reaches a maximum (middle) and
minimum (right) aspect ratio during a vacillation cycle. Here and in subsequent
figures we see contours of the PV anomaly q′, with |x|, |y| ≤ π.

likely to experience vacillations.

4.5 Types of evolution

Below, we describe the types of unstable evolution that vortices exhibit near

λc, and where they occur in the γ − R parameter space. We find four distinct

types of instability regimes, which, following the classification made in chapter 2

in QGSW, we call type 1 instability for vacillating states, type 2 instability for

states which shed a filament, and type 3i and 3ii instabilities, for states which

split into two vortices of unequal or equal size, respectively.

We first show a few examples of the evolution of each of the types of instability.

In figure 4.11 an example of the type 1 instability is shown – a weakly unstable,

vacillating state having (γ,R) = (6, 0.8) at λ = 0.005, the smallest aspect ratio

examined. As time progresses, we see that the state increases its initial aspect

ratio λi (shown in the left panel of the figure) until some maximum value of a

vacillation cycle λcycmax (middle panel), before decreasing it again to λcycmin (right

panel). After the first few vacillation cycles where it is comparable to λi, λ
cyc
min
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Figure 4.12: An example of a state having (γ,R, λ) = (0.25, 0.7, 0.310), which
sheds a filament. We see the state, from left to right and top to bottom, at times
t = 21.22Tp, t = 21.73Tp, t = 22.24Tp, t = 22.50Tp, t = 23.52Tp, and t = 30.68Tp.



settles down to a constant value which is greater than λi, while the value of

λcycmax has similar values for the entire duration of the simulation. As visible in

the middle panel of the figure, there are large-amplitude waves travelling on the

boundary of the equilibrium, which obey a modified Korteweg-de Vries equation

to leading order in LD (Nycander et al., 1993). The behaviour described above

is typical of all vacillating states, although as λi increases towards λs, both the

amplitude of the vacillation and that of the waves travelling on the equilibrium

boundary decreases. As seen in figure 4.8 in the previous section, this sort of

instability occurs only in states having γ > 1.

Figure 4.12 shows an example of the type 2 instability – for a state having

(γ,R) = (0.25, 0.7) at λ = λc = 0.310, which sheds a filament in a wave-3

instability. As seen from the left and middle panels of the bottom row of the

figure, further interactions between the original state and the filamentary debris

can occur after the filament has been shed. The state eventually evolves towards

a quasi-steady time-dependent state with λ = 0.461, which is well within the

stable parameter regime (this λ is based on the second-order spatial moments of

the patch). The state also has small values of εb, albeit larger ones than initially,

as discussed in §4.3. As is visible in the bottom-right panel of the figure, parts of

the filament may roll up to form small satellite vortices. For states with γ = 0.25,

these satellite vortices are negligible in size and make up less than 0.3% of the

total mass held by vortices in the domain. At higher γ where this instability

occurs, the largest of the small vortices can hold up to 2.8% of the mass, and

the state resembles a state having undergone the type 3i instability. There is a

smooth transition between the different types of instabilities occurring, as seen

in figure 4.15 showing that more than one type of instability may occur at a fixed

(γ,R) at different nearby λ (this is discussed further below). Additionally, our

results are consistent with those of Waugh and Dritschel (1991), who found that

strips of PV are more likely to roll-up to form vortices as the interaction range
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Figure 4.13: An example of a state having (γ,R, λ) = (4,−0.8, 0.150), which
undergoes a split into two asymmetric vortices. We see the state right before the
split at t = 22.93Tp (left), during the split at t = 23.07Tp (middle), and what the
state looks like at a late time t = 54.93Tp (right).

decreases, i.e. for increasing γ.

In figure 4.13 we show an example of the type 3i instability for an anticyclonic

state having (γ,R) = (4,−0.8) at λ = λc = 0.150, which splits into two vortices

of unequal size. During the onset of instability, the state exhibits behaviour

similar to that of the type 2 instability, where it looks like it is about to shed a

filament. There is a competition between the wave-3 and wave-4 instabilities, and

the state pinches off a small vortex, which, especially for 1 ≤ γ < 3, may further

interact with the larger vortex before reaching a final quasi-steady state in which

the two vortices corotate. Although not occurring in the case shown in the figure,

as in the type 2 instability regime, small satellite vortices may roll up from the

filaments shed during the split. Apart from the case (γ,R, λ) = (1,−0.1, 0.230)

where the largest satellite vortex contains 3.5% of the total mass held by the

vortices in the domain (this compares to 5% of the mass held by the second-

largest vortex in the domain), satellite vortices normally contain less than 0.6%

of the mass.

Finally, in figure 4.14 we show an example of a state having (γ,R) = (4,−0.2)

at λ = λc = 0.065, which splits into two vortices of equal size. The state rapidly

decreases its aspect ratio and splits, shedding tiny filaments which, as seen in the
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Figure 4.14: An example of a state having (γ,R, λ) = (4,−0.2, 0.065), which
undergoes a split into two symmetric vortices. We see two times right before the
split, t = 2.15Tp (left) and t = 2.28Tp (middle), and what the state looks like at
a late time t = 38.50Tp (right).

rightmost panel of the figure, roll up into very small vortices containing� 1% of

the total mass held by vortices. Because of its resemblance to type 3i instability,

we call this type 3ii instability.

We next present a quantitative measure for dividing unstable vortex behaviour

into the four instability regimes described above. In §4.3 we have already dis-

cussed how we determine if a state is vacillating, and here we instead focus on the

evolution types of states which undergo break-up. As the end state is generally

composed of two larger vortices, we perform the classification based on the ratio

of the masses of the two largest patches of PV in the domain at the end of the

simulation, Mr = M2/M1, where the subscripts 1 and 2 denote the largest and

second-largest vortices in the domain, respectively. We say that a state undergoes

type 2 instability, filamentation, when Mr < 0.03. The type 3i and 3ii instability

regimes, asymmetric and symmetric splitting, occur if 0.03 ≤ Mr < 0.99 and

Mr ≥ 0.99, respectively.

Figure 4.15 shows a summary of where the different instabilities occur in

the γ − R parameter plane, with type 1 instability marked by asterisks, type

2 instability by circles, and types 3i and 3ii by squares and filled-in squares,

respectively. Note, several types of instability can occur at the same (γ,R) value;
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Figure 4.15: A summary of the instability types at each γ classified by their
end mass shown as a function of R for aspect ratios near λc. The instability types
shown are: type 1, vacillations (asterisks); type 2, filamentation with Mr < 0.03
(circles); type 3i, asymmetric split with 0.03 ≤ Mr < 0.99 (squares); and type
3ii, symmetric split with Mr ≥ 0.99 (filled-in squares). Note that we also show
the R = 0 results, as found in chapter 2.



these instabilities occur on vortices with different λ near λc. We see that for states

with γ < 1, the type 2 instability is the only one occurring, while at large γ > 2

it is completely absent. In the intermediate vortex-size range 1 ≤ γ ≤ 2, this

type of instability only occurs in anticyclones, and only for increasingly large |R|

as γ increases. Type 1 and 3 instabilities are typical of the large-γ states. Type

3i instability occurs at smaller γ, where it is more common in cyclones, but as γ

increases, it starts affecting a narrower range of increasingly small R: at γ = 6 it

only affects states with −1 ≤ R ≤ −0.8, whereas at γ = 1 it affects states with

−0.5 ≤ R ≤ 1. Type 3ii instability occurs only for large γ ≥ 3, and similarly to

type 3i instability, at smaller γ it occurs mainly in states with small |R|. As γ

increases it begins to affect states with larger |R|. This is also true of the type

1 instability, which, as γ increases, begins to affect a wider range of R. Both

the type 1 and type 3ii instabilities involve a wave-4 disturbance. However, as

in chapter 2, whether a strong (vortex breakup) or weak (vacillations) instability

occurs is highly sensitive to the choice of λ. We believe this can be attributed

to the sensitivity on λ of the large-amplitude waves travelling on the vortex

boundary. When the phases of the waves are slightly out of synch, vacillations,

rather than breaking, occurs.

As mentioned above, as γ increases, there is a smooth transition from the type

2 to type 3i instabilities, with the filaments shed rolling up to form increasingly

large vortices, and from the type 3i to 3ii instabilities, with the smaller vortex

gradually becoming larger until the wave-4 instability, resulting in a symmetric

split of the state, dominates over the wave-3 one which causes a filament to be

shed from one of the tips of the vortex.

Finally, we note that the total mass held by all of the vortices in the domain

at the end of the simulation is generally not the same as the mass held by the

vortex initially. In fact, mass conservation only occurs for large-γ states which

undergo symmetric or near-symmetric splitting. Most states which undergo type
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3 instabilities lose no more than 5% of their mass in the process. States experi-

encing types 2 and 3i instabilities (only anticyclones for the latter) may lose up

to 14% of their mass in the process.

4.6 Quantification of imbalance

In this section we aim to quantify the unbalanced component of the flows

considered in this chapter, and to show how it develops as a function of time.

We do this by first calculating the minimally-unbalanced fields, which we then

subtract from the full fields. This provides us with an approximation of the

amount of imbalance. In §4.2.2 we discussed how the OPV procedure can be

used for initialising the flow. In fact, given a distribution of PV, OPV can

be used for calculating the minimally-unbalanced fields at any time during the

simulation. However, using this method requires a change of the length of the

ramp period ∆τ at different times of the simulation (we fail to obtain convergence

if ∆τ is too short in some cases, and in others, PV contours get convoluted for ∆τ

too long). As the amount of imbalance in the calculated fields is dependent on

the choice of ∆τ (recall that we do not impose any specific balance conditions),

comparisons at different stages of a simulation cannot be made. To avoid this

problem, we instead use the “dynamic PV initialisation” (PVI) procedure of

Viúdez and Dritschel (2004a). Similarly as in OPV, we start this procedure with

a flow at rest and, by using the same smooth ramping function, grow the PV

anomaly of each fluid particle to a prescribed value, while integrating the full

equations. The difference between the two procedures comes from the fact that

unlike in OPV which allows the contours of PV to evolve freely during a series

of forwards and backwards integrations, in PVI we perform only one forward

integration while holding the contours of PV fixed in space. Although not as

accurate as OPV, PVI still provides us with a good approximation of the fields

114



which are surprisingly close to the minimally-unbalanced ones obtained by OPV,

see e.g. figure 9 of McKiver and Dritschel (2008) who found that there are only

very minor differences in the minimally-unbalanced fields calculated using OPV

and a “nonlinear quasi-geostrophic balancing” (NQG) procedure. Their NQG

procedure used in the non-hydrostatic Boussinesq context is equivalent to a first

order balance condition in SW, in which δt = χt = 0.

In figures 4.16 and 4.18–4.20 below, we show the root mean square (over the

entire domain) of the balanced (in black) and unbalanced (in grey) components

of three fields, namely that of the height anomaly h′ (the top panel of each of the

figures), of u′, the x-component of velocity in a frame rotating with the equilib-

rium vortex (the middle panel), and of the divergence δ (the bottom panel). The

subscripts “b” and “i” are used to distinguish between the “balanced” and “un-

balanced” part of the fields (“balance” and “imbalance”), respectively. Note that

the full fields are recovered from the sum of the two components. In the figures,

we show how the flow develops from the start to the end of the ramping period

of length ∆τ , and then for 100Tp once the ramping period has been completed.

We thus have a rapid initial growth of the fields during the ramp.

In figure 4.16 we show an example of the decomposition of the flow at

(γ,R) = (6, 0.5) for aspect ratios corresponding to three different flow regimes,

namely a stable state with λ = λs = 0.120 (dotted lines in the figure), a vacillating

state (dashed lines), and an unstable state (solid lines) both near λ = λc = 0.020.

We see that the form of both the balanced and unbalanced parts of h′ are almost

identical for all the cases, with perhaps a very small jump at the time of instabil-

ity t = 6.96T ′p in the unbalanced fields of the unstable state. The x-component

of velocity u′ also has similar values for all three cases, with oscillations being

visible for all three cases in u′b, as the state adjusts itself to the flow around it

(v′, the y-component of the velocity in a frame rotating with the equilibrium, is

similar both quantitatively and qualitatively). Note that the point at which the
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Figure 4.16: The balanced (black) and unbalanced (grey) fields for a stable (dot-
ted; λ = 0.120), vacillating (dashed; λ = 0.020) and unstable (solid; λ = 0.015)
state having (γ,R) = (6, 0.5). Here, and in figures 4.18–4.20, in rows 1 to 3 we
see the root mean square (over the entire domain) of: h′, the anomaly in height;
u′, the x-component of the horizontal velocity in a frame rotating with the equi-
librium vortex; and of the divergence δ. Note that “t = 0” occurs at the end of
the ramping period, of duration 10Tip.



0 5 10 15 20

0
.0

0
2

0
0

.0
0

3
0

0
.0

0
4

0

Tp

ε
b
, 
1

0
0

δ
b

Figure 4.17: The evolution of the the balanced component of divergence δb,
scaled by a factor of 100 (bold line), superimposed on top of the steadiness
parameter εb(t) (thin line) for the stable state (γ,R) = (0.25,−0.1) near λ = λs.
Note that we only show t = 0 − 20Tp, but similar behaviour is obtained for all
time.

instability occurs is not apparent in either h′b,i or u′b,i. The divergence δ, espe-

cially its balanced part, δb, is most sensitive to detecting the regime of stability

of the flow. We see that the stable state has consistently low levels of δb over the

entire duration of the simulation; the amplitude of δb in the vacillating state, like

the aspect ratio λ, goes through cycles of increasing and decreasing. The point

of instability is clearly marked in δb for the unstable state, where it suddenly

spikes, before beginning to slowly fall again after the instability as the newly

formed quasi-steady state adjusts itself. Although δi > δb in all of the three cases

shown, both δi and δb are still very small (compared to the root mean square

vorticity), even during instability. Note that no wave damping is present in the

numerical code used, hence there is a gradual growth of δi as time progresses, as

waves are continually generated by the state in all three cases.

As noted above, the divergence is the field which is most sensitive to detecting

instability. The significance of δ is that geostrophically balanced motions are

non-divergent, and if higher-order balance conditions are accounted for in δb, we

can view δi as a means of measuring inertia-gravity wave activity. However, our

“balanced” fields do contain a minimal amount of imbalance, and so they may
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still contain a signal of wave activity. We illustrate this in figure 4.17, which

shows the evolution of δb, scaled up by a factor of 100, superimposed on top

of the steadiness parameter εb(t) for a stable state with (γ,R) = (0.25,−0.1)

near λ = λs. As mentioned in §4.3, even though εb remains small for all times

for stable states, oscillations are still present. In the figure, we see that there is

a strong anti-correlation between εb and δb: for low values of εb (i.e. increased

steadiness of the state), there are bursts of activity in δb, while when εb is higher,

there seems to be no activity in δb. We interpret this as follows. The bursts of

activity correspond to the generation of higher-order (inR) inertia-gravity waves,

which have not been detected in full by our PVI balancing procedure, and are

therefore included in δb instead. When the equilibrium reaches some “maximally

unsteady” form (i.e. when εb has a local maximum), it adjusts itself by emitting

waves, which propagate away from the vortex boundary, contributing towards the

total amount of imbalance in the domain, but not directly affecting the vortex

itself; a signal of this emission is present in δb. This emission of waves allows the

state to become more steady (and corresponds to a local minimum of εb). The

whole procedure then repeats itself for the entire duration of the simulation. It

appears that δb is composed of two main parts, the first corresponding to the

balanced dynamics, apparent when there are no bursts of wave activity, and the

second corresponding to the emission of gravity waves.

As seen in figure 4.16 for three different aspect ratios at (γ,R) = (6, 0.5), both

the balanced and unbalanced components of h′, u′ and δ have similar values for

all cases over the entire duration of the simulation, and so apart from affecting

the stability regime of the flow, the aspect ratio λ does not seem to have a large

effect on the values of these fields. We henceforth concentrate on examining

the unstable states near λ = λc, as this allows us to see how the unbalanced

component of each of the fields is affected by instability, especially if δ is examined.

We next illustrate how the decomposition of h′, u′, and δ is affected by the sign of
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Figure 4.18: The balanced (black) and unbalanced (grey) fields for cyclonic
(dashed) and anticyclonic (solid) unstable states near λ = λc at (γ, |R|) = (1, 0.8).



the Rossby number. Figure 4.18 shows the state (γ, |R|) = (1, 0.8) near λ = λc,

with fields corresponding to the cyclone shown with a dashed line, and those

representing the anticyclone shown with a solid line. We see that for all of the

fields, both the balanced and unbalanced components are smaller for the cyclone

than for the anticyclone, and that this is more pronounced in the unbalanced

fields. As mentioned previously, this is not a result of the difference in the location

of λc for cyclones and anticyclones (recall that cyclones are stable for smaller

aspect ratios than anticyclones), but rather arises from a difference in the nature

of the two types of flows. From figure 4.18 we also note that the signature of the

instability in δb is more visible in cyclones than in anticyclones, but the reverse

is true for δi. We once again note the very low values of the unbalanced fields for

h′, u′, and δ, in comparison to the balanced ones for h′ and u′, and to root mean

square vorticity for δ.

In figure 4.19 we illustrate the effects of increasing |R| in examples of unstable

anticyclonic states with γ = 6 near λ = λc. We once again show the balanced

and unbalanced fields, this time for a state with R = −0.1 (solid lines in the

figure), R = −0.5 (dashed lines), and R = −0.8 (dotted lines). While the

form of the balanced and unbalanced components of all of the fields does not

change qualitatively with R, it does seem to scale with |R|, with higher-|R|

states having larger values of both components of the fields. Additionally, we see

that the signature of the instability in δb is more apparent for the small-|R| state,

although the post-instability adjustment period is longer and more extreme in

large-|R| states. Here, bursts of activity of comparable magnitude to those during

the instability itself take place. Once again though, even for large-|R| states, the

magnitude of the unbalanced fields is small (compared to the balanced fields for

h′ and u′, and to root mean square vorticity for δ), and moreover the signature

of the instability is not readily visible in them.

Finally, in figure 4.20 we examine the role large-scale effects play in determin-
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Figure 4.19: The balanced (black) and unbalanced (grey) fields for anticyclonic
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ing the magnitudes of the balanced and unbalanced components of the flow. We

show three γ values: a small-γ state with γ = 0.25 (solid lines in the figure), an

intermediate-γ state with γ = 1 (dashed lines), and a large-γ state with γ = 6

(dotted lines). We see that large-scale effects cause an increase in both h′b and

h′i, which is not surprising since the large-γ states are affected by larger surface

deformations than small-γ ones (cf. figure 4.7). For the other fields examined, the

effect of increasing the size of the vortex (or γ) is less obvious. The magnitude

of u′i increases with γ, although the differences between states with different γ

are small. This is in contrast to u′b, where the differences between states with

different γ are not only much more pronounced, but also have higher values at

small γ. This is not surprising either: as γ increases, motions become slower,

and so the velocity decreases in the rotating frame of reference; u′i retains similar

values for all γ, but its role becomes more important in large-γ states as the ratio

u′i/u
′
b grows with γ. The large-scale effects in δ show a difference in behaviour

for the large-γ and small-γ regimes discussed in the previous sections. For all

states, as γ increases, so does the value of δi. However, δb only increases with γ

for small-γ states; for the large-γ state shown, δb has lower values than in the

intermediate-γ state. This means that large-γ states are more affected by the

unbalanced component of the flow than small-γ ones. Lastly, the signature of the

instability becomes more apparent in δb as γ increases.

As noted above, the flow (at rest) is initially balanced, but during the initial

PV ramping inertia-gravity wave activity is inevitably excited. We illustrate

this process by examining how the curvature κ of the PV contour develops with

time. The curvature is highly sensitive to any irregularities in the smoothness

of the contour, and hence is able to pick up signals of what we believe to be

waves of very small amplitude, not visible otherwise. Figure 4.21, complemented

by supplementary movie 1, shows κ(θ, t) for the state (γ,R, λ) = (1, 0.1, 0.400)

as a function of the tangent angle θ at time t = 0 before the start of the PV
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Figure 4.20: The balanced (black) and unbalanced (grey) fields for cyclonic
states near λ = λc at R = 0.5 and γ = 0.25 (solid), 1 (dashed), and 6 (dotted).



ramp (grey line in the figure), and at times t = 2Tip and t = 4Tip during the

ramp (black lines in the figure). We have taken great care in calculating the

curvature by using global cubic splines to ensure continuity of the tangent and

curvature (Dritschel and Scott, 2013, personal communication). We see that

initially, when the state is balanced, the curvature is smooth and contains no

sign of irregularities. As time grows, it becomes increasingly rugged, and the

irregularities appear to be propagating away from regions in which they first

appear (this is especially clear in the supplementary movie). The irregularities

are initially most pronounced in areas of low curvature, which are also regions

of high velocities, and hence correspond to regions having maximal local Froude

number, F = U/c. Numerous studies have shown that flows with high F are

more likely to generate waves than low-F ones. These includes works by Ford

(1994) who analytically examined the γ → 0 case, Dritschel and Vanneste (2006)

who examined a straight PV front with γ = 1, and others (including Spall and

McWilliams, 1992; Polvani et al., 1994). Additionally, results suggest that the

curved shapes of vortices are more likely to generate gravity-wave instabilities

than fronts with no curvature, hence irregularities also form initially in areas of

high curvature. We therefore believe that the signal present in κ corresponds to

inertia-gravity waves, which are not visible otherwise (cf. figure 4.1 in which, for

(γ, |R|, λ) = (1, 0.5, 0.400) at t = 10Tip, the contours of PV look smooth).

In summary, we find that even for unstable states, the amount of imbalance

generated by the quasi-equilibria studied is very low. The amount of imbalance

produced increases with |R|, and is higher in anticyclones than in cyclones. Ad-

ditionally, we find a difference of behaviour in small- and large-γ states, where

large-scale effects often result in greater amounts of imbalance.
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PV contour. See also supplementary movie 1.

4.7 Conclusions

We have examined the form and stability of vortex-patch relative quasi-

equilibria in the single-layer f -plane shallow-water model of geophysical fluid

dynamics. These states depend on three parameters: the ratio γ between their

mean radius L and the Rossby deformation length LD, their aspect ratio λ, and

their strength relative to the background rotation, measured by the Rossby num-

ber R.

The states we generate in this model problem are not strictly in equilibrium,

since in shallow-water, even in initially well-balanced flows, there is always some

degree of inertia-gravity wave generation. By defining a “steadiness” parameter,

which measures how closely aligned the contours of potential vorticity (defining

the boundary of the vortex) and those of the Bernoulli pressure function are,

we show that both the stable and unstable states generated are steady, which is
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further confirmed by the long times for which the stable states remain unchanged

in shape; indeed, they have less than a 5% average variation in λ over the duration

of the simulation. For simplicity, we refer to the quasi-equilibria as just equilibria.

We find the stable aspect ratio λs, which depends on both γ and R, at which

equilibria cease to be steady. The instability can either be weak, occurring at

λs = λv, where the state vacillates around the steady state by going through

cycles of increasing and decreasing its aspect ratio, or strong, at λs = λc, where

the vortex undergoes a drastic change in shape, often involving a break-up into

two or more parts. For both the weakly-unstable vacillating states, and for the

strongly unstable ones after they have settled down after instability, the flow is

often close to equilibrium. Families of equilibria for which vacillations occur and

so λs = λv may still contain members having λ = λc such that for any λ < λc the

vortex experiences a strong instability. Multiple forms of instability may occur

for nearby values of λ.

Large-scale effects (large γ values) stabilise vortices, regardless of their strengths

(R). These large-scale stabilising effects are most pronounced for large-R states,

where the location of λs for states with γ & 1 becomes γ- and R-independent.

We find that for states with γ & 3 and R & −0.6, the location of λs becomes γ-

independent, and for R & 0.8 also R-independent (see figure 4.9). This difference

in behaviour between small-γ and large-γ states is also visible in the types of un-

stable evolution they undergo near λc: small-γ states are affected by the wave-3

instability, which causes them to shed a filament from one of its tips, whereas for

large-γ states the most unstable mode is wave-4, which causes a nearly-symmetric

split of the vortex. In the intermediate-γ range there is a competition between

the two modes, resulting in a split of the vortex into two parts of unequal size.

By calling two states which share γ, |R|, and λ “equivalent”, we find a clear

asymmetry in the stability of cyclonic (R > 0) and anticyclonic (R < 0) equi-

libria. Cyclones can sustain greater deformations than anticyclones before expe-
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riencing an instability. In fact, for large enough γ and R (i.e. γ & 2, R & 0.5)

they may not experience a “strong” instability at all, even for λ close to 0. They

rather undergo a weak instability, vacillating around an underlying equilibrium

state. In general, cyclones are more prone to experiencing such a weak instabil-

ity, with it being completely absent for anticyclones with large enough |R| at γ

between 2 and 4. In short, ageostrophic motions stabilise cyclones and destabilise

anticyclones. This is true even if vacillations are regarded as a strong, rather than

weak instability. Both types of vortices undergo the same main types of unsta-

ble evolution, although the wave-4 instability dominates over the wave-3 one in

cyclones at smaller γ than in anticyclones. This cyclone-anticyclone asymmetry

is the opposite of what is generally reported in the literature. This, we believe,

is due to the difficulty in defining “equivalent” cyclones and anticyclones.

We decompose the full flow into a “balanced” and “unbalanced” component

in order to measure inertia-gravity wave generation by the equilibria. We find

that even during and in the aftermath of instability, the flow remains very close to

balance. We see that examining just the “unbalanced” component does not reveal

the regime of stability that the state is in, and only when the “balanced” com-

ponent, which contains high-order (in R) amounts of imbalance, is also viewed

can we say something more about the nature of the flow. Despite the fact that

we find that levels of imbalance are consistently low for all cases studied, we see

that the amount of imbalance increases with |R| and γ, and that anticyclones

are more unbalanced than cyclones.

4.8 Supplementary movies

Supplementary movies are available on the compact disc attached to this

thesis in the folder SW, with movie captions available in Appendix C.3. They

will also be available in a forthcoming paper.
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Chapter 5

Summary and Outlook

In this chapter we provide a brief summary and discussion of the main results

of this thesis. We also provide a link between the individual chapters, and outline

potential extensions to this work.

This thesis has examined the structure, stability and interaction of geophysi-

cal vortices. Geophysical flows are under the influence of planetary rotation and

stratification, and, in a simplified context, this study examined what effect these

two components have on balanced, vortical structures. In both simulations of

geophysical flows and in observational data long-lived, unchanging (to a certain

degree) vortices are common, and so we have restricted our attention to exam-

ining relative vortex equilibria. These are states which in a co-rotating frame of

reference appear stationary. Understanding their properties allows insight into

more complicated vortex-interaction problems.

We have approached the problem from three different perspectives, corre-

sponding to each of the three main chapters of this thesis. Namely, in chapter

2 we have studied the single-vortex, quasi-geostrophic shallow-water (QGSW)

problem; in chapter 3 we generalised this to an (asymmetric) two-vortex prob-

lem; lastly, in chapter 4 we re-visited the single-vortex problem, by making use
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of the more realistic, albeit also more complicated, shallow-water (SW) model.

Full details of the findings of each of the sub-studies may be found in the

Conclusions section of each of the chapters. Here, we provide a summary of their

main findings.

In chapter 2 we have examined the form, stability and nonlinear evolution

of two-fold symmetric vortex-patch relative equilibria in the single-layer quasi-

geostrophic shallow-water model. The families of these equilibria are described by

two parameters: the ratio γ of the mean vortex radius L to the intrinsic Rossby

deformation length LD, and the ratio λ of the minimum to the maximum width

of the vortex. We find two principal modes of linear stability, both of which

exhibit an “exchange-type” instability, where both the real and imaginary parts

of the eigenfrequency are simultaneously zero at marginal stability. The first

mode occurs mainly in small-γ states, and near the margin of stability the mode

is asymmetric. It results in the ejection of a filament in the nonlinear evolution

of the state. The second, symmetric mode occurs in large-γ states and results in

a symmetric split of the state. A competition between the two modes is found

to occur in states with intermediate γ, leading to asymmetric splits of the states.

Lastly, at certain large-γ values, we find a weak nonlinear instability, vacillation,

occurring at certain λ near the margin of stability, as a result of which variations

of the shape of the equilibrium occur, but the state itself is not destroyed.

In chapter 3 we have examined the form, properties and stability of asymmet-

ric single-layer quasi-geostrophic shallow-water doubly-connected relative equilib-

ria. In addition to γ, two other parameters are needed to describe the families of

these equilibria: the ratio α between the areas of the smaller and the larger vor-

tices, and the minimum distance δmin between the two vortices. By performing a

linear stability analysis and examining the nonlinear evolution of the equilibria,

we have related the two principal modes of linear stability that we find to differ-

ent types of evolution. Once again, each of these modes occurs at either small
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or large γ, with a transition region between them. The small-γ mode (absent in

states with α & 0.6) is again, as in the single-vortex case, asymmetric, resulting

in either one, or both of the vortices getting smaller through the shedding of

filaments. The large-γ mode results in the merger of the two vortices, and the

transition zone is characterised by a series of merging and splitting events, the

end result of which are two vortices of unequal size. In chapter 3 we have also

examined possible inviscid transitions between doubly-connected states and the

simply-connected states of chapter 2, and found that although inviscid transitions

are possible, they are not the preferred path of evolution.

In chapter 4 we have examined the form and stability of vortex-patch relative

quasi-equilibria in the single-layer f -plane shallow-water model. These states,

similarly to the simply-connected QGSW states of chapter 2, depend on γ and

the aspect ratio λ, and only one additional parameter is necessary to describe

them in SW, namely the Rossby number R, which gives their strength relative to

the background rotation. By defining an appropriate “steadiness” parameter, we

have shown that despite the fact that in SW there is always some degree of inertia-

gravity wave generation, it is still useful to view the states through the concept

of equilibrium. We evolved the “equilibria” for sufficiently long times, and thus

determined their boundary of stability λ = λs. We found that the instability at

λs can either be weak, having the form of vacillations, or strong, with a break-up

of the vortex. Additionally, large-scale effects (large γ values) stabilise vortices,

regardless of their strength (R), and we have found that although the levels of

inertia-gravity wave activity increase with |R| and γ, they remain small even for

unstable states.

One of the more significant findings of chapter 4 is that ageostrophic motions

stabilise cyclones and destabilise anticyclones. Both types of vortices undergo the

same main types of unstable evolution, although the symmetric instability mode

dominates over the asymmetric one in cyclones at smaller γ than in anticyclones.
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This cyclone-anticyclone asymmetry is the opposite of what is generally reported

in the literature. This, we believe, is due to the difficulty in defining “equivalent”

cyclones and anticyclones. Here, we have defined this “equivalence” in terms of

γ, |R|, and λ.

To summarise, we have found that in all of the systems studied, large vortices

(L � LD) are more likely to be stable than small ones. For the single-vortex

problem, this means that large vortices can sustain much greater deformations be-

fore destabilising than small vortices, and for the two-vortex problem this means

that vortices are able to come closer together before destabilising. Addition-

ally, we found that for large vortices the stability of a vortex pair is not affected

by the degree of its asymmetry, although it does affect the underlying steady

state into which an unstable state transitions. Lastly, by carefully defining the

“equivalence” between cyclones and anticyclones which appear in the SW system,

contrarily to what is commonly believed, we found that cyclones are more stable

than anticyclones.

There are a few possible routes for further investigation of geophysical vortex

equilibria, both within the quasi-geostrophic shallow-water and in the shallow-

water frameworks. One possibility would be to revisit the two-layer quasi-geostrophic

(QG) problem studied by Polvani et al. (1989). This thesis has focused on sys-

tems in which the lower layer is infinitely deep, i.e. D = H1/H2 → 0, where H1

and H2 are the depths (“heights”) of the upper and lower layers, respectively.

However, for most oceanic and atmospheric systems the lower layer has finite

depth D = O(1), and so considering a two-layer system would be more realistic.

Polvani et al. (1989) have argued that, in contrast to the QGSW problem, the

dynamics of the two-layer system in the large-γ limit are expected to be similar to

the barotropic case (when γ = 0), only with a rescaling of time (the “baroclinic”,

vertically-varying mode becomes weak compared to the barotropic, vertically-

integrated mode when D is not small). Hence the large-γ results presented here
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need to be interpreted with care. Polvani (1991), who examined two-layer QG

equilibria, showed that, indeed, equilibria which do not overlap (vertically) be-

have similarly to the (scaled) barotropic ones, but overlapping equilibria do not.

Essentially, baroclinic effects become important at short range, i.e. where vor-

tices overlap. The vertical PV structure is also expected to play a major role;

this is expected to strongly affect the relative importance of baroclinic effects,

but to our knowledge has yet to be investigated in this context. Examining the

two-layer system would additionally allow the study of the competition between

the barotropic and baroclinic modes, and the energy transfer from the baroclinic

to the barotropic mode in a very simple framework. This in itself is an interesting

problem, especially in the oceanographic context (Ghil et al., 2002). It would also

be of interest to understand how the conclusions of the aforementioned studies

are affected in a model which allows ageostrophic motions.

More remains to be done in the two-vortex system of chapter 3, with a few

possible extensions arising. In addition to examining the problem in a two-

layer QG context, it would be interesting to further investigate the effects of

asymmetry on the equilibria, this time including asymmetry in strength. Two

patches of unequal PV have received little attention, except in the barotropic case

(see Yasuda and Flierl, 1995; Trieling et al., 2005; Makarov and Kizner, 2011, and

references therein). Furthermore, extending this study to the full shallow-water

equations, as was done in chapter 4 with single-vortex equilibria, would permit

one to study new effects such as spontaneous gravity-wave emission, ageostrophic

effects, and the associated cyclone-anticyclone asymmetry. As with the single-

vortex system, to our knowledge a careful study of the parameter space, consisting

of the Rossby number in addition to (γ, α, δmin), has not been performed, and

the cyclone-anticyclone asymmetry is not well understood. This would also allow

us to gain insight into the nature of the quasi-steady two-vortex states formed

in chapter 4 as a result of instability, and to explore possible transitions between
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SW equilibrium solutions.

Lastly, as seen in each of the chapters 2–4, the long-time persistence of the

states formed after instability suggests that they oscillate around an underlying

equilibrium. However, as discussed in the QGSW system in chapter 3, as a

result of waves propagating on their boundary, it is difficult to determine these

equilibria. Additionally, since we have found that there exist many robust time-

dependent states especially at large γ (which are hard to quantify), it appears that

examining vortices through the concept of equilibrium is not complete. This is

an important conclusion from this thesis, suggesting a new paradigm. Studying

an initially circular QGSW vortex, for example, with a fixed area and γ, in a

random (in both phase and amplitude) irrotational straining flow would provide

further insight into the impact of strain on the robustness of vortices.

In short, there remain a number of open, fundamental problems in equilibrium

vortex dynamics whose study would help us better comprehend the complex,

multi-faceted behaviour of vortices in the atmosphere and oceans.
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Appendix A

Derivation of the linear

dispersion relation for small

amplitude waves

The following result may be deduced from Waugh and Dritschel (1991).

Consider a circular vortex of radius r = 1. The streamfunction is determined

from

1

r

d

dr

(
r

dψ̄

dr

)
− γ2ψ̄ =

 1 , r < 1

0 , r > 1,
(A.1)

and matching ψ̄ and ūθ = ψ̄r at r = 1, we find

ψ̄ =

 −γ−2 + K1(γ)I0(γr)/γ , r < 1

−I1(γ)K0(γr)/γ , r > 1
(A.2)

and

ūθ = ψ̄r =

 K1(γ)I1(γr) , r < 1

I1(γ)K1(γr) , r > 1.
(A.3)

Next, consider an m-fold symmetric perturbation to this basic state, having the
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form

ψ′ = ψ̂(r)ei(mθ−σt) , r′ = r̂ei(mθ−σt), (A.4)

with ψ = ψ̄ + ψ′ and r = r̄ + r′, where r̄ = 1 and both ψ′ and r′ are suitably

small. Note that the perturbation satisfies the Helmholtz equation on both sides

of the jump since q′ = 0 there,

(∇2 − γ2)ψ′ = 0, (A.5)

whose solutions are the modified Bessel functions of order m:

ψ̂ =

 aKm(γ)Im(γr) , r < 1

aIm(γ)Km(γr) , r > 1.
(A.6)

Since the vortex boundary moves as a material curve, its radial displacement

satisfies
Dη

Dt
= ur(1 + r′, θ, t) = −1

r

∂ψ′

∂θ
, (A.7)

which, when linearised, gives simply

r̂(mΩ̄ − σ) = −mψ̂(1), (A.8)

where Ω̄ = ūθ(1) = K1(γ)I1(γ).

Using the continuity of radial and tangential velocities ur = u′r and uθ = ūθ+u
′
θ,

respectively, gives r̂ = −a, and using ψ̂(1) = aIm(γ)Km(γ) gives, after some re-

arrangement
σ

m
= I1(γ)K1(γ)− Im(γ)Km(γ). (A.9)
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Appendix B

Contour-integral form of the

energy for quasi-geostrophic

vortex patches

The total energy, kinetic plus potential, of a spatially compact distribution of

PV in a single-layer QG flow is given by

E =
1

2

∫ ∫
(u2 + v2 + ψ2/L2

D) dxdy = −1

2

∫ ∫
qψ dxdy (B.1)

after integrating by parts and using the fact that all fields decay exponentially

fast as |x| and |y| → ∞. For a single vortex patch, of uniform PV q0 in a region

D bounded by a contour C outside of which q = 0, we have

E = −q0
2

∫ ∫
D
ψ dxdy , (B.2)

where the streamfunction is itself obtained by an integration over the QG Green

function:

ψ = − q0
2π

∫ ∫
D

K0(γr) dx′dy′ (B.3)
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where r = |x′ − x| and γ = 1/LD henceforth. The purpose of this appendix is

to show that the calculation of E can be reduced to a pair of contour integrals,

which proves convenient for its numerical evaluation in the paper.

The starting point is Stokes’ theorem written in polar coordinates:

∫ ∫
D

[
1

r

∂(rP )

∂r
− 1

r

∂Q

∂θ

]
rdrdθ =

∮
C
Prdθ +Qdr . (B.4)

To use this, in ψ we place x at the origin of our (polar) coordinate system, so

that x′ − x = r cos θ and y′ − y = r sin θ. Then ψ is given by the integral

ψ = − q0
2π

∫ ∫
D

K0(γr) rdrdθ . (B.5)

This can be reduced to a contour integral by choosing Q = 0 and

P = (K1(γr) + B/r)/γ, for an arbitrary constant B, since then

r−1d(rP )/dr = −K0(γr). However, to avoid a singularity in the contour in-

tegral (and in ψ), we must take B = −1/γ since K1(z) ∼ 1/z as z → 0. Then,

noting that r2dθ = (x′ − x)dy′ − (y′ − y)dx′, and defining the function

H(z) =
(
zK1(z)− 1

)/
z2 , (B.6)

we obtain

ψ =
q0
2π

∮
C
H(γr)[(x′ − x)dy′ − (y′ − y)dx′] . (B.7)

Next, we tackle the double integral over ψ needed to calculate the energy E:

E = − q
2
0

4π

∮
C

∫ ∫
D
H(γr)[(x′ − x)dy′ − (y′ − y)dx′] dxdy . (B.8)

This time, we use polar coordinates relative to a fixed point x′ in the outer

contour integral, that is x − x′ = r cos θ and y − y′ = r sin θ (re-defining the
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symbol θ). Then, we may write

E = +
q20
4π

∮
C

∫ ∫
D
H(γr)[r cos θdy′ − r sin θdx′] rdrdθ . (B.9)

This time in Stokes’ theorem, we take P = 0 and chooseQ either to beH(γr)r2 sin θ

or H(γr)r2 cos θ, as appropriate. This leads to

E = − q
2
0

4π

∮
C

∮
C
H(γr)r2[sin θdy′ + cos θdx′]dr . (B.10)

Then, using r cos θ = x − x′, r sin θ = y − y′ and rdr = (x − x′)dx + (y − y′)dy,

we arrive at the final form for E:

E = − q
2
0

4π

∮
C

∮
C
H(γr)[(x′ − x) · dx′][(x′ − x) · dx] . (B.11)

This can be easily extended to multiple patches by summing over all pairs of

associated contour integrals and PV jumps (cf. Dritschel, 1985).

It has been verified that this expression gives the correct energy for a circular

vortex patch of unit radius, E = πq20[1/2−I1(γ)K1(γ)]/γ2, which can be evaluated

directly from the form of ψ given in Appendix A. Note that E > 0 for all γ and

monotonically decreases to 0 as γ → ∞. As γ → 0, however, E → ∞. This

is perhaps not the result one would expect in this limit, in which the flow is

governed by the 2D Euler equations. But energy cannot be defined in this limit,

only “excess energy”, by removing a divergent part (see Dritschel, 1985). Here,

using the asymptotic properties of modified Bessel functions (cf. Watson, 1966),

one can show that H(γr) → (1/4)(ln r2 − 1) + C + O(γ) as γ → 0, where

C = [ln(γ/2) + γe]/2 and γe = 0.57721566... is Euler’s constant. The leading

function of r is exactly that used to compute the excess energy for the 2D Euler

equations (Dritschel, 1985). The constant C contributes −Γ 2C/2π to E, where

Γ = q0A and A is the area of the vortex patch. Hence, E+Γ 2C/2π — the excess
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energy — is expected to be finite as γ → 0. For a circular patch of unit radius,

Γ = q0π, and E + Γ 2C/2π reduces to πq20/16, which is the correct value of the

excess energy.

Finally, (B.11) can be generalised to any Green function of the form G(r).

Then, the function H is determined from r−1d(r2H)/dr = G(r) subject to

limr→0 r
2H = 0. The final expression is the same as in (B.11), omitting the

leading 2π factor (4π is replaced by 2).
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Appendix C

Supplementary movie captions

C.1 Movies of quasi-geostrophic shallow-water

simply-connected equilibria

Supplementary movies are available on the compact disc attached to this

thesis in the folder SC.

MOVIE SC1. Examples of simply-connected vortex equilibria for γ=0.5, 3,

and 8. For each case we begin at the aspect ratio λ = 1, and end at the smallest

aspect ratio attained, λ = λf . Here, |x|, |y| ≤ 2.3. In this and subsequent movies

we are in a frame of reference rotating with the equilibria.

MOVIE SC2. An example of type 2 instability, filamentation. We show the

case γ = 0.5 and λc = 0.296, for times between 18.12Tp and 45.31Tp. Note that

|x|, |y| ≤ 3.3 in this and subsequent movies.

MOVIE SC3. An example of type 3i instability, asymmetric split. We show

the case γ = 2 and λc = 0.091, for times between 74.78Tp and 100.04Tp.

MOVIE SC4. An example of type 3ii instability, symmetric split. We show

the case γ = 10 and λ = 0.024, for times between 43.50Tp and 50.00Tp.
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MOVIE SC5. An example of type 1 instability, vacillation. We show the

case γ = 5 and λ = 0.024, for times between 0 and 40.02Tp.

C.2 Movies of quasi-geostrophic shallow-water

doubly-connected equilibria

Supplementary movies are available on the compact disc attached to this

thesis in the folder DC. They are also available online, hosted on the Journal of

Fluid Mechanics website at http://dx.doi.org/10.1017/jfm.2013.104.

MOVIE DC1. Examples of doubly-connected vortex equilibria for γ=0.02,

3, and 10 at α = 0.2. For each case we begin at the distance δmin = 0.8, and end

at the smallest distance attained, δmin = δf (γ), at which a sharp corner develops

on the boundary of one of the vortices. The smallest distance decreases with γ.

In this and subsequent movies we are in a frame of reference rotating with the

equilibria, and |x|, |y| ≤ 3.

MOVIE DC2. An example of the evolution of a state undergoing partial

straining out PSOb. We show the case γ = 1, α = 0.4, and δmin = 0.339, for

times between 88.47Tp and 132.71Tp.

MOVIE DC3. An example of the evolution of a state undergoing partial

merger PM. We show the case γ = 2, α = 0.6, and δmin = 0.270, for times

between 150.28Tp and 254.31Tp.

MOVIE DC4. An example of the evolution of a state having large γ which

undergoes complete merger CM. We show the case γ = 10, α = 0.2, and

δmin = 0.268, for times between 121.70Tp and 135.22Tp.

MOVIE DC5. An example of the evolution of a state having small γ which

undergoes complete merger CM. We show the case γ = 0.02, α = 1.0, and
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δmin = 0.266, for times between 33.50Tp and 100.49Tp.

MOVIE DC6. An example of the evolution of a state undergoing vacilla-

tions. We show the case γ = 10, α = 0.4, and δmin = 0.200, for times between 0

and 115.68Tp. Note, the boundary of stability occurs at δmin = δc = 0.265.

C.3 Movies of shallow-water simply-connected

quasi-equilibria

Supplementary movies are available on the compact disc attached to this

thesis in the folder SW. They will also be available in a forthcoming paper.

MOVIE SW1. The curvature κ as a function of θ for the state (γ,R) = (1, 0.1)

at λ = 0.400, for times between 0 and 11Tip (recall, the ramp period has length

∆τ = 10Tip). Here, θ = 2πξ(s)/ξ(P ), where P is the arc length of the PV con-

tour, s is the distance along the PV contour and ξ(s) =
∫ s
0
|κ|ds′. When κ > 0,

θ is the tangent angle. The shift along the x-axis arises from differences in what

the numerical method specifies as the “first” point on each PV contour. Note

that here the contour is discretised by 1200 points on a grid having a resolution

of 10242.
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