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Abstract

Modern software systems have increasingly higher expectations on their relia-

bility, in particular if the systems are critical and real-time. The development

of these complex software systems requires strong modelling and analysis meth-

ods including quantitative modelling and formal verification.

Unified Modelling Language (UML) is a widely used and intuitive graphical

modelling language to design complex systems, while formal models provide

a theoretical support to verify system design models. However, UML models

are not sufficient to guarantee correct system designs and formal models, on

the other hand, are often restrictive and complex to use. It is believed that a

combined approach comprising the advantages of both models can offer better

designs for modern complex software development needs.

This thesis focuses on the design and development of a rigorous framework

based on Model Driven Development (MDD) that facilitates transformations

of non-formal models into formal models for design verification. This the-

sis defines and describes the transformation from UML2 sequence diagrams

to coloured Petri nets and proves syntactic and semantic correctness of the

transformation. Additionally, we explore ways of adding information (time,

probability, and hierarchy) to a design and how it can be added onto exten-

sions of a target model. Correctness results are extended in this context.

The approach in this thesis is novel and significant both in how to estab-

lish semantic and syntactic correctness of transformations, and how to explore

semantic variability in the target model for formal analysis. Hence, the motiva-

tion of this thesis establishes: the UML behavioural models can be validated

by correct transformation of them into formal models that can be formally

analysed and verified.
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1 Chapter 1: Introduction

Modern software systems have increasingly higher expectations on their per-

formance, security, availability and/or reliability, specially if the systems are

critical. Therefore, there is a natural need for techniques that can help with

developing systems to be dependable. A software system is dependable if the

services provided by the system can be trusted [Gorton, 2006, Sommerville,

2007,Cohen et al., 1986,Avizienis et al., 2001,Avizienis et al., 2004,Bondavalli

et al., 2005, Abdallah et al., 2005,Meyer, 2006]. The development of these

software systems requires strong modelling and analysis methods including

formal modelling and verification [Garousi, 2010, Naumenko and Wegmann,

2002, Rafe et al., 2009, Emadi and Shams, 2009b, Haugen et al., 2005, Shen

et al., 2008a, Limaa et al., 2009,Cabot et al., 2008,Kounev and Buchmann,

2006, Lakos and Petrucci, 2004,Merseguer and Campos, 2004,Mallet et al.,

2006,Tang et al., 2010].

Consequently, model-based software development, also known as Model

Driven Development (MDD), is becoming a mainstream practice in software

development. The MDD approach focuses on creating models and exploring

their abstract representations towards concrete implementations. Models help

to cope with the large scale and complexity of software systems by specifying

the structural and behavioural aspects of the system and providing a means of

communication between domain experts, analysts, designers and developers.

The use of the object-oriented Unified Modelling Language (UML), al-

though popular in industry and an intuitive mechanism to design complex

systems, is not sufficient to guarantee correct design. If a design can be for-

malised, we can take advantage of the theoretical support available in the

underlying formalism to check system models and guarantee their properties

such as correctness, completeness and performance. However, such practices
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are not often widely used beyond academic research due to the inherent com-

plexity of formal methods. Moreover, formal models and techniques are often

restrictive to use by non-expert users.

Consequently, there is an increasing need to combine the benefits of popular

design approaches and formal models to contribute to better software prod-

ucts. In addition, combining MDD with formal methods also requires model

transformations to be proved correct and complete. This is important to en-

sure that the results of formal analysis will not be invalidated by erroneous

transformations as developers cannot distinguish whether an error is in the

design or in the transformation.

This thesis designs and develops a novel formal model transformation frame-

work that brings formal methods more naturally into MDD. Our model trans-

formation framework consists of a family of transformations from non-formal

UML behavioural models to different formal models, which can be analysed in

various ways to validate the original design models. The framework solution

is convenient and appropriate for efficient system design and analysis, as well

as adaptable and scalable for future system needs.

This chapter is organized into a number of sections. Collectively, these

describe the problem space that the work addresses, the thesis contribution

and a guide to the content of each chapter.

1.1 Motivation and Research Overview

Modern software systems in most domains are complex, large-scale, and often

critical. It is hard to develop such systems when taking into account their real-

time and stochastic requirements. The development of these complex software

systems requires strong modelling and analysis methods.

One possible solution to build systems with complex requirements may be

2



primarily to concentrate efforts on modelling the system design, analyse and

then develop the software system from these models. This implies that we need

formal techniques to guarantee that a system model is complete and correct,

and thus develop a consistent, software system with respect to its specification.

Software development using a MDD approach addresses some of these issues

by providing abstract mechanisms and the infrastructure necessary to develop

these software systems.

Formal modelling is a technique that supports the validation and verifica-

tion of software models in the design stage. Although, UML is a widely used

technique to design structural and behavioural aspects of a software system,

the direct applicability of formal techniques is not possible. The transforma-

tion of non-formal models such as UML to formal models enables possible

formal analysis of the system model, at the design stage. This validates the

original UML models and leads to complete and correct system development.

Different aspects of the system model can be represented using different for-

malisms by defining a precise set of transformation rules. In order to enable

formal analysis, model-to-model (M2M) transformations can be defined where

the target model is the underlying mathematical model used for a particular

analysis approach.

The work done in this thesis borrows ideas from MDD to construct an

environment where system models can be analysed and validated. This thesis

establishes a formal model transformation and integration framework for soft-

ware system design (Figure 1.1). With this framework, it is possible to apply

model transformations and extensions to other formal models, and reuse the

transformations which provide a productive working scenario by saving project

cost and time.

This thesis uses coloured Petri nets (CPNs) as the synthesised formal model
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Figure 1.1: The model transformation framework.

with rich variants, which can produce a useful range of verification options.

CPNs are a well-known formal model with a rich theory and practice, which are

well suited for our approach when transforming object-oriented models. Our

approach applies model transformations from UML sequence diagrams (SDs)

to variants of CPNs, to enable different possible analyses of the model. It

assumes that behavioural aspects of systems are modelled at the design level

using SDs and our approach obtains a formal representation by transform-

ing SDs into variants of CPNs including timed coloured Petri nets (TCPN),

stochastic coloured Petri nets (SCPN) and hierarchical coloured Petri-nets

(HCPN).

The flexibility of this model transformation framework lies in the incremen-

tal nature of the transformations. In particular, given a SD and its correspond-

ing CPN, in case when the SD extends with time and stochastic annotations

the corresponding CPN variants can be generated by incrementally applying

the specific variant rules on the original CPN. Apart from the strongly consis-

tent transformation of UML models into variants of CPN, this thesis considers
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model composition, as part of a general model transformation framework. For

instance, this thesis defines the model composition between SDs with refer-

ence behaviour, SDs and Interaction Overview Diagrams (IODs), and CPNs

of hierarchical nature.

Further, this research proves the syntactical and semantical correctness of

the defined model transformation, elaborates the applicability of the transfor-

mation using example case-studies, and develops a prototype tool, as part of

this research contribution.

1.2 Thesis Objectives and Methodology

The thesis statement of this dissertation is that:

”UML behavioural models can be validated by correct transformation into

formal models that can be formally analysed and verified”.

Given the motivation of developing a framework for M2M transformations,

this research has the following objectives to:

Ob1: Define strongly consistent languages for UML SD and CPN

Ob2: Define formal transformation rules for the mapping of UML2 SDs into

variants of CPNs

Ob3: Define model composition rules between models with reference behaviour

Ob4: Support flexible model transformation framework with an incremental

nature of the transformations that enables the analysis of sub-interactions

Ob5: Prove the correctness and completeness of defined M2M transformations

Ob6: Explore the applicability and the implementation ability of the defined

M2M transformations
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In order to achieve the objectives, this thesis utilises a number of method-

ologies. First a survey of software design models and related formal model

transformation approaches was conducted in order to identify possible models

for M2M transformations. UML 2 sequence diagram ( [Arlow and Neustadt,

2005, Douglass, 2004, OMG, 2011a]) is identified as the non-formal design

model, while CPN models ( [Jensen, 1997a, Kristensen et al., 2004, Jensen

and Kristensen, 2009]) with its variants are chosen as the underlying formal

models for this thesis.

Secondly, formal representations were defined for each identified model in

order to state the meaning of the model unambiguously and to enable formal

verification. Consequently, strongly consistent languages were defined for SD

and CPN that establishes a direct correspondence between the elements.

Thirdly, formal exogenous transformation ( [T.Mens and Grop, 2006]) rules

were defined for the transformations from a SD to a CPN capturing both gen-

eral and complex behaviours. Partial, incremental and parametric transforma-

tions were defined between models considering different regions and variants.

Further, these rules were extended to define model composition and integration

rules.

Fourthly, the defined model transformations were evaluated for their cor-

rectness and completeness using declarative and operational approaches. In

particular, mathematical proof techniques were used to prove the semantic

correctness of the model transformation. Further, example-based case studies

with manual analysis of the synthesised model have been considered to show

the applicability of the defined transformations in practical use.

Finally, a prototype tool was implemented to explore the possibility of de-

veloping a model transformation framework. Meta-models of each model and

the formal transformation rules were incorporated into the core implementa-
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tions. The tool provides a user interface using NetBeans IDE and facilitates

future extensions.

1.3 Thesis Contributions

The contribution of this thesis highlights the successful achievements of the

objectives. We believe this thesis has significantly contributed to uplift M2M

transformation framework, providing valuable outcomes for future research of

MDD and in particular establishing the semantic correctness of model trans-

formation.

Our contributions are of the following major forms:

- Scholarly publications resulting in the timely dissemination of the re-

search findings

- Implementation of a prototype tool aiming for a proof of concept and

prospects for practical tool development

- Development of the model transformation framework that supports and

scaffolds related research contributing significantly to the MDD based

software development.

The primary contribution of this thesis is the formal representations of

UML2 SD, IOD, CPN and its variants taking into account the associated

complex behaviours with time, stochastic and hierarchical variations. As the

major contribution, formal rules were defined for model transformations, com-

positions and integrations while proving the syntactic and semantic correctness

of the transformations. In particular, the flexibility of the model transforma-

tion framework lies in the incremental nature of the transformations. A part

of this framework is implemented in a prototype tool and evaluated using

example case studies.
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Some of the research presented in this thesis has been published in the

following journal and conference papers:

P1: Bowles, J. and Meedeniya, D. (2012). Parametric transformations for

flexible analysis. In Proceedings of the 19th Asia Pacific Software Engi-

neering Conference (APSEC ’12), pages 634-643. IEEE Computer Soci-

ety.

P2: Bowles, J. K. F. and Meedeniya, D. (2012). Strongly consistent trans-

formation of partial scenarios. SIGSOFT Software Engineering Notes

(SEN), 37(4):1-8.

P3: Bowles, J. and Meedeniya, D. (2010). Formal transformation from se-

quence diagrams to coloured petri nets. In Proceedings of the 17th Asia

Pacific Software Engineering Conference (APSEC ’10), pages 216 - 225.

IEEE Computer Society.

Table 1 summarises the contributions for achieving the objectives

Objective Chapter Contribution

Ob1 3, 4, 7 P3

Ob2 5 P3

Ob3 6 P2

Ob4 6 P1, P2

Ob5 7 Thesis

Ob6 7, 8 P1

Table 1: Overview of the research contribution
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1.4 Thesis Structure

This thesis is organised as follows:

Chapter 2 (Research Background) explores software development using

MDD approach and related model transformation literature that are neces-

sary to understand the approach proposed in this thesis.

Chapter 3 (A Design Model: Sequence Diagram) explains the UML SD and

IOD models and gives formal representations of these models with respective

trace-based languages.

Chapter 4 (A Formal Model: Coloured Petri Net) describes CPNs and some

of the variations with time, stochastic and hierarchical notions. This chapter

gives the formal representations and associated languages with each model.

Chapter 5 (Model Transformation: Sequence Diagrams to Coloured Petri

Nets) defines and explains the easily extendable formal rules for the transfor-

mation of main constructs and interaction fragments in a sequence diagram to

a coloured Petri net.

Chapter 6 (Complex Model Transformation) defines rules for partial, in-

cremental, parametric transformations, together with model composition and

integration.

Chapter 7 (Model Transformation Correctness) formally proves the cor-

rectness of the model transformation rules.

Chapter 8 (Support for Automated Model Transformation) explains the

construction of the prototype tool that implements the model transformations.

Also, this chapter shows the applicability of the transformations using example-

based case studies.

Chapter 9 (Discussion and Conclusion) discusses and concludes the thesis

summarising the contributions of this work and suggests ideas for potential

future work.
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2 Research Background

Successful software system development essentially relies on its design models.

Model-based software development, also known as Model Driven Development

(MDD), is OMG’s vision of an evolving approach for software system develop-

ment [Kleppe et al., 2003]. MDD-based software development specifies rather

abstract models of the desired system, and automatically transforms them into

more specific models, resulting in the final system.

Models and model transformations are considered as key concepts in MDD

and the transformations help to improve the quality of models [Gorton, 2006].

There are non-formal or semi-formal design models that are intuitive graph-

ical modelling languages to design complex systems, yet are not sufficient to

guarantee correct system designs. On the other hand, formal design models

provide a theoretical support to verify system design models. However, they

are often restrictive and complex to use. The correct transformation of non-

formal models into formal models comprises the advantages of both models and

will offer better designs for modern complex software development needs, than

practicing the individual approaches alone. Also, software development based

on formal methods enables the design models to be automatically transformed

into execution models and finally to the implementation code.

This chapter provides a review of state-of-the-art techniques for software

development based on a MDD approach. There is a wide range of design

models and theoretical methods available in the literature to design and verify

software models. With an initial overview of MDD, and different model trans-

formation types, this chapter outlines the important literature focusing on

specific research areas associated with software modelling and formal model

transformation of software systems. Here, we focus on UML as a graphical

modelling language and coloured Petri nets as the formal model considered
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in this thesis. We then turn our attention to different model transformation

approaches, in particular related work on transforming UML models into Petri

nets. Next we outline the importance of correct model transformations, related

work on model analysis and the challenges associated with formal modelling

and verification.

2.1 Model Driven Development

Software systems are constantly increasing their complexity with the rapid

growth of the modern computing technology. Theses software systems have

influenced in our daily activities in a scale which makes us ever reliant on their

dependability. The requirement of developing reliable software systems cost

effectively has been the prime motive for the model-based research initiative

and associated theories. As a result, model-based software development, also

known as Model Driven Development (MDD), emerged in early 2000s as an

evolving approach for software system development.

A Model is a physical or abstract representation of a referent. Since, we are

interested in software systems, the referent in this case is a software system.

The model captures details of a system prior to development. Software system

models describe different aspects of a system including the structure of the

computer system that make up the system, and the behaviour of the system

[Ludewig, 2003,OMG, 2011a].

Figure 2.1: The relationship between model-system-language.
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In the context of MDD, a model is a description of a system written in

a well-defined language [Kleppe et al., 2003]. A well-defined language has

a precise syntax that represents the elements and relationships in a model,

and semantics that specifies the meaning of those elements [Douglass, 2004].

Figure 2.1 shows the relationship between a model, the system it describes and

the language that is used to specify the model.

Modelling and abstraction are important aspects in software engineering

when developing complex software systems. Abstraction removes unnecessary

details from a model to simplify and focus the attention to general concepts

that are important for the construction of appropriate models. The intention

of the MDD approach is to increase the level of abstraction in system specifi-

cation through models and increase automation in software development while

maintaining their consistency and completeness.

In general, a single model is not sufficient to have a complete description or

understanding of a system. Indeed, it is the combination of various models with

different views that gives a complete system specification [Kleppe et al., 2003].

For example, Unified Modelling Language (UML), a popular graphical mod-

elling language, contains a series of diagrams and notation to capture structural

aspects (class diagram, component diagram, deployment diagram, etc.) and

behavioural aspects (interaction overview diagrams, sequence diagrams and

communication diagrams, activity diagrams, state diagrams, etc.) [Arlow and

Neustadt, 2005,OMG, 2011a,Douglass, 2004]. Chapter 3 discusses more on

UML.

MDD-based software development supports system design through a set

of models that represent different system views, possibly at different levels of

abstraction. This facilitates the development of correct and well-functioning

software systems [Vale and Hammoudi, 2009]. Therefore, accommodating var-
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ious models as required should be a vital step in the development process of

systems and a way of managing complexity and quality [de Lara and Guerra,

2005,Koch, 2006]. Also, modelling with different levels of abstraction is use-

ful between system architects and developers to clarify system structure and

behaviour.

MDD-based software development facilitates automatic transformation and

integration of system design models, while preserving their traceability, com-

pleteness and consistency [Kleppe et al., 2003]. Model transformations map

a source model to a target model to fine-tune the constructed model into a

more precise model, enable possible analysis or to make it closer to the target

platform. (see Section 2.2 for more details). This approach has a positive

influence on the reliability and efficiency of the software development process

and has recently gained more attention from practitioners and academics in

the software engineering field.

In software development, it is important to model a software system prior

to the implementation for many reasons. A graphical representation of a sys-

tem provides an easily understandable view of the system, which facilitates

communication with the stakeholders and reduces possible misunderstandings

of system requirements. Hence, a system model clarifies system functional and

non-functional requirements to customers and system users.

Moreover, system design models enables the early identification of incom-

pleteness, ambiguities, and inconsistencies in the system specification through

model verification techniques [C.Baier and J.Katoen, 2008]. MDD-based soft-

ware development comprises formal models and techniques that verify software

design models. Formal methods, which we discuss in more detail in Section 2.4,

use mathematical approaches for modelling and formal analysis. Model ver-

ification with formal methods guarantees the correctness and consistency of
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the system before the actual system implementation [C.Baier and J.Katoen,

2008,Katoen, 2008,Grumberg and Long, 1991]. This helps to reduce the as-

sociated development time and cost later on, hence increase the developer

efficiency and productivity [MSDN-library, ].

Further, the software design models that are independent of the implemen-

tation specific details can be reused and transformed into different implemen-

tations as necessary by adding language specific details [Kleppe et al., 2003].

A further advantage of system models without implementation details is the

possibility of sharing and reusing for similar domains by amending existing

models.

2.1.1 Terminology and Approach

Standardisation of models and their specifications is crucial for wide acceptance

and usage of models for system lifecycle activities. OMG is a globally accepted

organization for defining manufacturer-independent standards, to improve the

interoperability (manufacturer independence) and portability (platform inde-

pendence) of software systems [Stahl et al., 2006,Kleppe et al., 2003,OMG,

2003]. In the following we outline some of the key aspects of MDD.

- Model Driven Engineering (MDE): is a software development method-

ology that focuses on the abstract representation of software system

models, rather than on the implementation algorithm. This method

supports software development by promoting communication between

system users, simplifying software design and increasing system compat-

ibility and consequently maximising productivity [OMG, 2003].

- Platform Independent Model (PIM): describes the system structure and

behaviour by concealing the technological details through abstraction

[de Lara and Guerra, 2005,Koch, 2006,Kleppe et al., 2003]. Hence, this
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model representation approach is independent from the underlying pro-

cesses, communication infrastructure, middleware, implementation lan-

guage, etc. [Douglass, 2004].

- Platform Specific Model (PSM): represents a system using the concepts

specific to the relevant platform where the system is being implemented.

Hence, it includes both application semantics and runtime behaviour and

can be considered as a detailed version of PIM with platform specific

elements. A PSM model is usually obtained by applying model transfor-

mations to the PIM while adding technology specific data [de Lara and

Guerra, 2005,Koch, 2006,Kleppe et al., 2003].

- Model Driven Architecture (MDA): is an OMG defined software archi-

tecture framework for the software development based on the MDD ap-

proach through model construction and model transformations [Kleppe

et al., 2003,Arlow and Neustadt, 2005,OMG, 2011a]. MDA refers to the

architecture of the various standards and model forms that serve as the

technology, and not the architecture of the system being modelled. MDA

separates application data from the underlying platform specific details,

realises the PIMs built using OMG modelling standards and supports

the automated transformation from a PIM to a PSM, where the PSM

is used for the system implementation [Kleppe et al., 2003]. Figure 2.2

shows the major steps in MDA.

The main focus of MDA is the modelling of PIM and its transformation

to the PSM, in such a way that, the transformations are defined once and

applied to different software system developments. Consequently, MDD-based

software development increases productivity, portability and interoperability

of a software system, which are essential features in a modern software sys-
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Figure 2.2: Major steps in the MDA.

tem [Gorton, 2006, Kleppe et al., 2003]. With the use of formal modelling,

this approach ensures consistency, while enabling flexibility in model transfor-

mation and integration [Truyen, 2006]. MDA enhances the maintainability of

software systems through well-defined PIMs, architectural separation of con-

cerns and manageability of technological changes [Kleppe et al., 2003, Stahl

et al., 2006]. Also, the MDD approach addresses some of the current issues

in software development such as complexity, interoperability, re-configurability

and adaptability by providing an abstract mechanism that separates the log-

ical solution from the technical solution [de Lara and Guerra, 2005, Koch,

2006,OMG, 2003]. Further modelling components can be shared and reused

by incorporating changes to the existing models. In particular, MDD provides

mechanisms and techniques for creating software tools and the infrastructure

necessary to allow for automated transformations.

2.2 Model Transformations

Model transformation plays an essential role in software development based

on the MDD approach. Model transformation is specified by a set of trans-

formation rules that are described using a model transformation language,

which shows the mapping of the elements from a source model to a target

model [de Lara and Guerra, 2005,OMG, 2003,Ehrig et al., 2008,Mellor et al.,

2004] (see Figure 2.3 ).
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Figure 2.3: The model transformation process.

Kleppe et al. [Kleppe et al., 2003] has stated the following definition of

model transformation. ”A transformation is the automatic generation of a

target model from a source model, according to a transformation definition.

A transformation definition is a set of transformation rules that together de-

scribe how a model in the source language can be transformed into a model

in the target language. A transformation rule is a description of how one or

more constructs in the source language can be transformed into one or more

constructs in the target language”.

Various model transformation classifications are available in the literature

[T.Mens and Grop, 2006,Mens et al., 2005,Cabot et al., 2010c,Boronat et al.,

2009a, Hidaka et al., 2009] that facilitate software developers to decide the

most suitable technique to use for a given model transformation process.

There are two main approaches to M2M transformations: operational and

declarative. Operational M2M transformations are based on rules that explic-

itly describe the creation of the elements in the target model from the elements

in the source model. In other words, this approach specifies the steps that are

required to derive the target model from the source model by focusing on how

and when the transformation has to be performed. Declarative M2M transfor-

mations by contrast are based on graphical or textual pattern for describing the

relation between the source and the target model [Cabot et al., 2010c,Orejas

et al., 2009]. From another point of view, model transformations can be cate-

gorised as syntactic transformation that perform the transformation between
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syntactically well-formed models, and semantic transformation that maps the

behaviour from source to target model [Mens et al., 2005].

Another powerful classification for M2M transformations can be expressed

using endogenous and exogenous transformations [T.Mens and Grop, 2006,

Boronat et al., 2009a]. The transformations between models that are expressed

in the same language and different languages are considered as endogenous

transformations and exogenous transformations, respectively. For example, an

exogenous model transformation is used in the translation of a PIM to a PSM,

where the transformation synthesises a high-level abstract model into a lower-

level concrete model. A well-known example for an endogenous transformation

is model refactoring that aims at improving the operational qualities of the

model while preserving the semantics of the model.

Horizontal and vertical transformations are another classification of model

transformations that perform on the same level of abstraction and across levels

of abstractions, respectively [Mens et al., 2005]. For example, the transforma-

tion from PIM to PSM can be considered as a vertical exogenous model trans-

formation, and the refinement of a design model can be considered as a verti-

cal endogenous model transformation. The flattening of a composite (nested)

model to a model with simple states can be considered as a horizontal endoge-

nous model transformation, whereas the migration from one domain-specific

language to another can be considered as a horizontal exogenous transforma-

tion.

Further, model transformation can be categorised as uni-directional or bidi-

rectional [Koch, 2006,Hidaka et al., 2009]. A uni-directional transformation

always takes the same type of input and produces the same type of output,

whereas in a bidirectional transformation the same type of model can some-

times be the input and other times the output.
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M2M transformations that support a MDD approach should guarantee

some overall characteristics [Kleppe et al., 2003,T.Mens and Grop, 2006,Lano,

2009]. For example, the transformation rules should guarantee model con-

fluence, that is, applying the transformation to a given source model should

always generate a unique target model, in other words, the transformation

is deterministic. Another important characteristic of transformations is ter-

mination, that is, a transformation when applied to a source model always

terminates and generates a valid target model. In general, the language used

to define the transformation rules should be precise, concise and clear such

that the elements of the source model are clearly mapped onto elements in

the target models. Moreover, the transformations should be defined in such a

way that it is easy to add new rules. Finally, rules should be executable and

implementable in an efficient way. By defining transformation rules formally,

the properties associated with the model transformation can be obtained more

directly using available formal analysis techniques [Mallet et al., 2006,Emadi

and Shams, 2009a,Emadi, 2010,Ameedeen et al., 2009,Merseguer and Campos,

2004,Campos and Merseguer, 2006].

2.3 Software Design Models

Modern software systems need to function with great reliability, as software has

become critical to advancement in many areas of human endeavour. Software

systems can be large-scale with complex layers of control such as air traffic

control systems, telecommunication systems or can be small scale and simple,

such as a pocket calculator, a mobile device, etc. These systems are used in

various application domains such as healthcare patients control systems [Abu-

rub et al., 2007], real time embedded systems (elevator systems) [Fernandes

et al., 2007,Radjenovic and Paige, 2010] and computer system networks (cloud
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computing) [web services, ,Microsoft, ]. The development of these software sys-

tems require (or at least benefit from) strong modelling and analysis methods

including quantitative modelling and formal verification.

Modelling a software system is a core area in a software development pro-

cess. Software design models can be mainly categorised into two types: graphi-

cal design models or formal design models (see Section 2.4 for more details). A

graphical design model represents a system using diagrammatic notations. For

example, the Unified Modelling Language (UML) is an industrially well-known

standard, but mostly an informal graphical modelling language for the design

of software systems. Live Sequence Charts (LSC) [Harel et al., 2005,D. Harel,

2003, Harel and Kugler, 2002], and Message Sequence charts (MSC) [ITU,

1999,Alur et al., 2003,Uchitel and Kramer, 2001] can be considered as other

popular design models with scenario-based descriptions. Scenario or interac-

tion is the observable behaviour of information exchange between participating

entities that perform a task. In this section, we describe UML as a graphical

design model.

UML is a widely used object-oriented modelling language in present soft-

ware development. UML has been standardised by the Object Management

Group (OMG) [OMG, 2011a] and incorporates the best practises in modelling

techniques and software engineering. UML modelling can be applied to many

systems in a variety of application domains varying from simple standalone

applications to global enterprise solutions [Bernardi et al., 2002,Gherbi and

Khendek, 2006,Tang et al., 2010,Dinh-Trong et al., 2006,Tran et al., 2006,Hau-

gen et al., 2006,Anda et al., 2009,Haugen et al., 2005,Campos and Merseguer,

2006]. Hence, UML is a general purpose language for system modelling.

This thesis considers UML 2, which was released in 2005. UML 2 facilitates

the design of complete system models with the use of new graphical syntax
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compared to previous UML 1.x versions [Arlow and Neustadt, 2005, OMG,

2011a,Douglass, 2004]. For example, UML 2 contains notations that support

abstraction and real-time features in a system model. Also, UML 2 is featured

with nested classifiers, which are a powerful concept in software modelling that

allows one to model complex behaviours.

Figure 2.4: The structure of UML diagrams (adapted from [Arlow and

Neustadt, 2005]).

A UML model can consist of many diagrams of different types, where each

diagram presents a different view of the system. Figure 2.6 shows the organi-

sation of UML diagrams that can be used to model structural and behavioural

aspects of a software system [Arlow and Neustadt, 2005, OMG, 2011a,Dou-

glass, 2004].

Structure diagrams such as class, object, component, deployment, and

package diagrams depict a structural view of the system including concepts

and properties. Behavioural diagrams such as activity, use case, state machine

and interaction diagrams depict a behavioural views of a system including
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methods, collaborations, activities, and state histories. Interaction diagrams

can be further categorised into sequence diagrams, communication diagrams,

interaction overview diagrams and timing diagrams. We consider sequence di-

agrams as the main design model in this thesis and Chapter 3 describes this

in more detail.

The expressive power of UML 2 models can be enhanced using the con-

structs of the Object Constraint Language (OCL) [Arlow and Neustadt, 2005,

OMG, 2006]. OCL is a widely used constraint language that specifies extra

information on UML models [Cabot et al., 2008,Cabot et al., 2010b,Cavarra

and Filipe, 2004]. These OCL constructs can be directly associated with UML

elements as tagged values or notes. Since OCL is a passive and pure specifi-

cation constraint language, the OCL constructs do not affect the UML model

by changing any value.

Even though the intuitive notations of UML diagrams greatly improve the

communication among developers, the lack of a formal semantics makes it

difficult to automate analysis and verification of the software design models.

Generally, the UML standard [OMG, 2011a] has focused on defining the syntax

of models specifying the valid combination of model elements that are based on

meta-models. The semantics that defines the mapping of the model language

elements into a domain of values has only been defined informally. i.e. UML

models cannot be used directly for formal model analysis and verification of

design models.

Much work has been done or proposed for representing UML semantics in a

formal way in order to enable model validation, model checking and consistency

checking of design models [Harel and Maoz, 2007,Cimatti et al., 2011,Kong

et al., 2009, Straeten et al., 2007, Zhang et al., 2009, Li et al., 2004, Störrle,

2004, Shen et al., 2008a, Lund and Stølen, 2006,Dan et al., 2007, Shen et al.,
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2008b].

There is a range of approaches for defining semantics of UML models. For-

mal representation using denotational semantics is a well-established approach

that maps every syntactic construct to a semantic construct of the model [Harel

and Maoz, 2007,Lano, 2009,Störrle, 2004,Cengarle et al., 2006,Hammal, 2006].

For example, the work done in [Störrle, 2003a,Halvorsen et al., 2007,Haugen

et al., 2006,Haugen et al., 2005,Cengarle and Knapp, 2004] has described deno-

tational trace semantics in order to capture the meaning of sequence diagrams

with time information.

Other widely used formal representations are based on operational [Lund

and Stølen, 2006,Zhang et al., 2009], transformational [Kong et al., 2009], al-

gebraic, axiomatic, and meta-modelling approaches [Lano, 2009]. Algebraic

approaches map the language constructs into a mathematical algebra and

meta-modelling approach uses a subset of UML itself as a semantic domain for

UML.

Axiomatic semantics defines an interpretation of UML into a mathemat-

ical formalism such as first-order set theory. i.e. this technique maps lan-

guage constructs into logical theories, consisting of mathematical structures

together with axioms defining their properties. For example, the work done

in [Cimatti et al., 2011] describes the formal representation of class diagrams,

and combines fragments of first order logic (to describe rich data and relation-

ships between attributes and entities) with temporal operators (to describe

the evolution of the scenarios). A partial order semantics for UML interaction

diagrams is presented in [Störrle, 2003b] and an automata theoretic semantics

for scenario-based descriptions of reactive systems is presented in [Grosu and

Smolka, 2005,Moschoyiannis et al., 2009]. Moreover, logic based semantics

for UML interactions is defined in [Bowles, 2006, Störrle, 2003a,Runde et al.,
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2005].

Operational approaches map a language into structures of an abstract exe-

cution environment. For example, work done in [Zhang et al., 2009] has defined

an operational semantics for real-time state-charts, and work done in [Li et al.,

2004] has presented a formal semantics in abstract syntax form to check the

consistencies among different UML diagrams.

Transformational approaches map a language into another language, which

already has semantics, in order to assign semantics to the source language.

For example, behavioural semantics for statechart diagrams has been specified

using graph transformation techniques in [Kong et al., 2009], and sequence dia-

grams have been formalised using Abstract State Machines (ASMs) in [Cavarra

and Küster-Filipe, 2004].

Different approaches to formal representations have unique advantages and

disadvantages and support different forms of analysis. For example, algebraic

approaches are particularly good for reasoning about the equality of models.

Axiomatic approaches support general reasoning and a comprehensive expres-

sion of language features, but at the cost of using elaborate formalisms for

which the support tools may not exist. Meta-modelling and transformation

approaches require the existence of a language with a well-defined semantics

(for example Petri-nets). Section 2.4 describe this in more detail.

Instead of relying on basic mathematics, related work often have proposed

the use of specialised formalisms such as Z [Spivey, 1992], VDM [Jones, 1990],

B-specification [Idani and Ledru, 2006], Event-B [Mosbahi et al., 2011] and

Object-Z [Derrick and Wehrheim, 2010] and Template semantics [Shen et al.,

2008a].

In this thesis, we avoid the use of more specialised notations when defining

the formal representation of UML sequence diagrams (Chapter 3), as these
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notations are general and not adequate to express all concepts in UML. In

particular, some of these formal notations have preferences such as use with

theorem provers, constraint solvers (Alloy analyser [Nimiya et al., 2010]), time

automata (UPPALL [Firley et al., 1999]) and model checkers (SPIN model

checker [Holzmann, 1997, Amstel et al., 2007, Limaa et al., 2009, Yatake and

Aoki, 2010]) when it comes to model analysis. For example, some of these

techniques lack MDD-based high-level software concepts such as abstraction

and not sufficient for object-oriented modelling [Spivey, 1992, Jones, 1990].

Further, some are capable of modelling and analysis of functional requirements

[Nimiya et al., 2010,Anastasakis et al., 2010]or structural behaviour or untimed

[Limaa et al., 2009] or timed behaviour [Firley et al., 1999], only. We kept the

design model free of this bias to ensure that we obtain a true syntax and

semantics which can be used for formal model transformation that enables

future formal verifications. For these reasons we use only mathematics when

formalising the design models considered in this thesis.

2.4 Formal Models

Formal models are a collection of well-defined mathematically-based tech-

niques. Their theoretical support makes it possible to verify system designs.

A complete definition of a formal modelling language consists of a description

of its well-defined syntax and semantics that enhance the readability and the

expressiveness of the language.

There is a growing acceptance that formal methods form an essential part

of the design of any reliable software system [Ribeiro et al., ,Bowles and Bord-

bar, 2007,Milner, 2009,Hillston and Kloul, 2006,Cimatti et al., 2011,Mosbahi

et al., 2011,Moschoyiannis et al., 2005,Benmerzoug et al., 2008,Y.Yang et al.,

2005,Jensen et al., 2007]. This is because formal methods have the potential to
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eliminate ambiguities, and design faults and thereby avoid the associated sys-

tem failures. In particular, formal model of a system can be used to prove sys-

tem properties such as performance, reachability, consistency and correctness,

mathematically [Gilmore et al., 2003a, Bowles and Kloul, 2010, Hillston and

Kloul, 2006,Hinton et al., 2006,Kwiatkowska et al., 2007,Katoen, 2008,Grum-

berg and Long, 1991]. Moreover, formal models and methods make software

designs more tangible by allowing rigorous validation and verification [Silva

and dos Santos, 2004, Jensen et al., 2007, Jensen and Kristensen, 2009,Cabot

et al., 2008, de Alfaro et al., 1998,Rafe et al., 2009]. Validation provides as-

surance that the design specifies the right system, whereas verification assures

the end system satisfies the specification.

General-purpose formal methods such as Z [Spivey, 1992], and VDM [Jones,

1990] were introduced before the advent of object-oriented modelling. As

a consequence, they do not explicitly consider a semantic notion of object-

orientation or other MDD-based high-level software concepts such as abstrac-

tion. Even though there are object-oriented extensions of such as Object-Z

they are not sufficient for behavioural modelling [Derrick and Wehrheim, 2010].

In order to satisfy modern requirements of distributed and concurrent soft-

ware systems, various formalisms have been developed for modelling and verifi-

cation of such system [Radjenovic and Paige, 2010,Fernández et al., 2011,Dang

et al., 2010, Buyya et al., 2009]. A variety of formal models including Event

structures [Winskel and Nielsen, 1995,Bowles and Bordbar, 2007,Winskel and

Saunders-Evans, 2007,Moschoyiannis et al., 2010], Bi-graph [Milner, 2009],

Petri-nets [Petri, 1962,M. Nielsen, 1980,Orejas et al., 2010,Benmerzoug et al.,

2008], PEPA [Hillston and Kloul, 2006], PEPA-nets [Kloul and Kuster-Filipe,

2006, Gilmore et al., 2003b, Gilmore et al., 2003a, Bowles and Kloul, 2010]

among others are used in software development process.
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Event structures model a system scenario as a set of event occurrences to-

gether with binary relations for expressing causal dependency of events (called

causality) or pair of events that are exclude from occurring in the same execu-

tion (conflict) [Winskel and Nielsen, 1995,Bowles and Bordbar, 2007,Winskel

and Saunders-Evans, 2007]. Other relations can be derived from causality and

conflict, namely concurrency (any pair of events not related by causality or

conflict is necessarily concurrent). Many variations of event structures have

been defined essentially defining different kinds of relations between events.

Prime event structures can be used to provide a semantics to Petri nets and

can be understood as the unfolding of a net in this case.

A Bigraph is a mathematical structure consisting of two graphs, a place

graph and a link graph, intended for modelling applications such as distributed

and mobile systems. The main idea of bigraphs is to treat the placing and

the linking of their nodes as independently as possible. Bigraphs have evolved

from process calculi and are based on standard notions in graph theory [Milner,

2009].

PEPA (Performance Evaluation Process Algebra) is an extension of the

well-known process algebra CCS with stochastic aspects to be able to capture

performance [Hillston and Kloul, 2006]. In order to address mobile systems

PEPA nets [Kloul and Kuster-Filipe, 2006,Gilmore et al., 2003b,Gilmore et al.,

2003a,Bowles and Kloul, 2010] were introduced as a combination of coloured

Petri nets [Vicario et al., 2009] and the stochastic process algebra formalism

PEPA.

Among these, Petri nets have been widely adopted as behavioural models,

because of their powerful representation capabilities, relatively cheap solution

techniques and model verification capabilities [Murata, 1989,Vanit-Anunchai,

2010,Christensen and Petrucci, 2000]. Also there are a variety of Petri nets

28



with the ability of extensions [Billington, 2004] and integration with available

tools [Kounev and Dutz, 2007,TU-Eindhoven, , Jensen et al., 2007,Delatour

and Lamotte, 2003,Kounev et al., 2010] that evaluate system properties. This

section, describes Petri nets, in particular coloured Petri nets in detail, which

is the main formal model used in this thesis.

Petri-nets are a well-established set of formal models used by many re-

searchers [Murata, 1989,Uzam et al., 2009,Vanit-Anunchai, 2010,Christensen

and Petrucci, 2000,Benmerzoug et al., 2008,Bernardi et al., 2002,Kounev et al.,

2006,Hamadi and Benatallah, 2003]. The origin of the Petri-net concept comes

from Carl Adams Petri’s dissertation in 1962 [Petri, 1962]. A Petri-net is a

directed, connected, bipartite graph, where each node is a place or a transi-

tion. A transition is enabled, when there is at least one token in each place

connected to a transition. An enabled transition can fire removing one token

from each input place, and depositing one token in each output place [Murata,

1989,Bobbio, 1990].

Different types of high-level Petri-nets are available to model the event

flow and object flow of diverse behaviours including asynchronous, concurrent,

hierarchical, stochastic and real-time aspects [Murata, 1989,Billington, 2004,

Thomas et al., 1996]. A High level Petri-net permits to follow the behaviour

of a token in the Petri-net, so that any single token can be tracked within the

PN [van der Aals, 1994,Billington, 2004]. These types include Coloured Petri-

nets (CPN) [Jensen, 1981,Jensen et al., 2007,Christensen, 2002], Timed Petri-

nets (TPN) [Vicario et al., 2009,Carnevali et al., 2008, van der Aalst, 1993],

Stochastic Petri-nets (SPN) [Bobbio, 1990,Zimmermann, 2008,Carnevali et al.,

2009,Haas, 2002], Queuing Petri-nets (QPN) [Kounev and Buchmann, 2006],

Hierarchical Petri-nets (HPN) [van der Aals, 1994,Fehling, 1993,Elkoutbi and

Keller, 1998] and Automation Petri-nets (APN) [Thomas et al., 1996,Uzam

29



et al., 2009].

We have used coloured Petri nets (CPNs) as the main synthesised formal

model in this thesis. CPN is a well-known formal model rich in theory and

practice [Jensen, 1990, Jensen et al., 2007,Vanit-Anunchai, 2010,Christensen

and Petrucci, 2000]. CPNs are successfully used to model applications such

as network protocols, security protocols, multi-agent applications, business

processes, railway systems, distributed systems, and many industrial systems

[Jensen, 1998,Kristensen et al., 2004,Benmerzoug et al., 2008,Vanit-Anunchai,

2010].

As described by Jensen [Jensen, 1981], CPN is a formal, graphical, and

executable technique for the specification and analysis of concurrent, discrete

event-based dynamic system. As a Petri net, a CPN too consists of places,

transitions, arcs and coloured tokens. Places describe the state of the system,

whereas the transitions describe the actions of the system. Arcs are used to

connect places and transitions and states are changed when a transition fires.

Tokens are used to fire a transition, and each token has a given type, also

known as token colour. Thus tokens are distinguishable. We describe CPNs

in Chapter 4.

CPNs are suitable for our approach of transforming object-oriented models,

because the colours associated with the model can be used to distinguish be-

tween object types. Moreover, there are several well-established analysis tools

for automatically verifying CPNs including their extensions of timed CPNs or

stochastic CPNs [Benatallah et al., 2003,Kounev and Buchmann, 2006,Kounev

et al., 2010,Vicario et al., 2009]. One such tool is CPNTools [Jensen and Kris-

tensen, 2009] for editing, simulating and analysing CPN models.

In particular, CPNs have been extensively used in several application do-

mains [Jensen et al., 2007,Jensen, 1997b,Jensen, 1998,Vanit-Anunchai, 2010,
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Genrich and Lautenbach, 1981]. In [Jensen et al., 2007,Jensen, 1997b,Jensen,

1998], Jensen has used Petri-nets as a primitive to describe the synchroniza-

tion of concurrent processes in a packet transferring protocol over an unreliable

network. It discusses the Petri-net representation using automation simulation

and model verifying methods such as state space and place invariant. As an

extension for the above work, in [Kristensen et al., 2004], Kristensen et al.

have discussed different case studies on modelling mobility and communica-

tion networks, healthcare systems and state space analysis. They have used

CPN tools to model, analyse and simulate the systems.

Moreover, in [Hamadi and Benatallah, 2003], Hamadi and Benatallah have

expressed a web service based system using Petri-net based algebra, specifying

different types of services such as empty, sequence, parallel, etc. Further-

more, in [Silva and dos Santos, 2004], Silva and Santos have used Petri-nets

as a formal model to represent system behaviour and have performed system

validations using simulations. They have used Petri-nets not only as a case

tool to model and analyse the system but also as a framework to express the

requirements based on system use cases of a banking application.

Petri-nets can be used not only to model system behavioural aspects but

also to ensure system non-functional properties such as liveliness and dead-

lock avoidance [Christensen and Petrucci, 2000,Merseguer and Campos, 2004,

van der Aalst, 1993,Jensen and Kristensen, 2009]. For example, in [Chrzastowski-

Wachtel et al., 2003], Wachtel et al. have introduced refinement rules to avoid

dead-locks in a Petri-net representation. They have proposed rules such as,

parallel split followed by a parallel synchronization. Also they modelled a

top-down work flow using hierarchical Petri nets for a flight ticket booking

application and have used the HiWord tool [Benatallah et al., 2003] as a sup-

porting tool.
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2.5 Formal Model Transformation

Among many related research, this section aims to identify different model

transformation approaches and existing research gaps in this area. For this

purpose, the literature is reviewed in several point of views.

Generally, model transformation approaches can be categorised as sequen-

tial vs. concurrent approaches and algebraic vs. model-based approaches.

Sequential model-based methods include specification languages such as B

[Laleau and Polack, 2008, Idani and Ledru, 2006], Event-B [Mosbahi et al.,

2011] and Object-Z [Derrick and Wehrheim, 2010], while concurrent model-

based methods include CSP (Communicating Sequential Processes) and Petri-

nets [Orejas et al., 2010,Kuster et al., 2004], etc.

Similarly, different formal model transformation techniques are available

including graph transformations [de Lara and Guerra, 2005,Baresi and Pezz,

2005,Kerkouche et al., 2010,Beydeda et al., 2005,Bisztray et al., 2009,Grónmo

and Móller-Pedersen, 2010], algebraic and logical [Boronat et al., 2005,Ehrig

et al., 2008,Cimatti et al., 2011,Goknil et al., 2011,Baresi et al., 2011,Mosbahi

et al., 2011] approaches and model transformation languages such as QVT

[Stevens, 2007, Stevens, 2009, Boronat et al., 2009a,Cabot et al., 2010c] and

ATL (ATLAS Transformation Language) [Cuadrado et al., 2011].

Even though many research studies have been carried out using algebraic

approaches for model transformations, there are boundaries on applying these

methods in practical use. For example, the lack of graphical support makes it

difficult to understand by non-experts.

Several rule-based and relational-based approaches have been widely used

in MDD. Graph Transformation (GT) is a rule-based approach that specifies

the transformation of elements of one model to elements of another model using

a set of transformation rules [Mens et al., 2005]. Graph Grammar, which is
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used as GT rules, facilitates to obtain possible reachable graphs from an initial

graph [Ribeiro et al., ].

Triple-Graph-Grammar (TGG) is a special type of graph transformation

technique [Konigs, 2005,Ehrig et al., 2008,Orejas and Wirsing, 2009,Hermann

et al., 2010,Cabot et al., 2010c]. TGG uses a source graph, target graph and

a correspondence graph that records the information about the mapping be-

tween the nodes in source and target models. Generally, it is difficult to check

consistency between two models when there are two unidirectional transfor-

mations in both ways. TGG supports bidirectional model transformation and

consistency checking with multiple views [de Lara and Guerra, 2005].

Graph transformation is a promising approach for model transformation

with reuse mechanisms. There is a tendency to combine graph transformation

technology with XML and UML by the user community because of their famil-

iarity with these languages. However, various graph transformation approaches

are not always compatible [Mens et al., 2005]. Further, GT is supported by

different tools that are used for model validation, however, often there are

scalability issues [Baresi and Pezz, 2005].

Relational-based model transformation approaches specify changes that oc-

cur in a model due to a transformation [Kuster et al., 2004]. According to the

mathematical nature of relations, they are suitable for multi-directional trans-

formations. However, they are not executable and require additional expression

languages to actually execute a relation-based transformation.

Query-View-Transformation (QVT) is a OMG defined relational model

transformation technique [Stevens, 2009, Boronat et al., 2009a, Cabot et al.,

2010c]. QVT considers model queries and views as special types of model

transformation. QVT supports expressing a transformation so that it can be

read in either direction between the two models; hence transformation con-
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sistency can be ensured [Stevens, 2007]. However, there are limitations on

representing every aspect of model queries, views and transformations. For

example, QVT does not support transformations between textual models, as

each model should confirm to meta-model standards.

Considering the practical aspects of using formalisms, some of these model

transformations have used software systems represented in UML. Here, we are

interested in model transformation from UML diagrams to Petri nets, which

is the core area of this thesis.

Many researchers have highlighted the trade-off between the ease of use of

UML and its lack of precision [Garousi, 2010,Naumenko and Wegmann, 2002].

Thus, many recent efforts have been aimed at transforming UML like scenario-

based languages into formalisms such as temporal logic [Baresi et al., 2011,

Anastasakis et al., 2010], event structures [Bowles, 2006], PEPA nets [Kloul

and Kuster-Filipe, 2005,Bowles and Kloul, 2010], constraint languages [Cabot

et al., 2008], automata [Grosu and Smolka, 2005] and Petri nets [Sgroi et al.,

2004,Khadka and B.Mikolajczak, 2007,Campos and Merseguer, 2006, Emadi

and Shams, 2009b]. However, the automata-based language used to capture

the ordering of actions allowing sequential execution only.

In particular, there are several ways on transforming sequence diagrams

(SDs) into Petri nets (PNs) [Ribeiro and Fernandes, 2006,Emadi and Shams,

2009b,Ameedeen and Bordbar, 2008,Ameedeen et al., 2011,Ouardani et al.,

2006, Kessentini et al., 2010b, Alhroob et al., 2010, Fernandes et al., 2007,

Merseguer and Campos, 2004,Bernardi et al., 2002,Eichner et al., 2005].

In [Bernardi et al., 2002], the authors have used sequence diagrams and

state chart diagrams to represent the system functionalities and used Petri

nets as a validation and performance analysis tool. However, they have con-

sidered only UML 1.x constructs and have not considered complex behaviour
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for transformations.

Formal semantics for most concepts of SDs by means of Petri nets has been

introduced in [Eichner et al., 2005]. The authors have shown the partial or-

dered and concurrent behaviour of the diagrams naturally within the Petri net.

However, the transformations were shown only in a graphical representation.

An interesting work has been done in [Ameedeen and Bordbar, 2008,Ameedeen

et al., 2011] to transform UML 2 sequence diagrams (SDs) into free choice Petri

nets. They proposed that the transformation process should start by decom-

posing a SD into blocks and mapping them into Petri net blocks, each with a

placeholder in which another Petri net block can be substituted. It has defined

the transformations in a diagrammatic way considering only the event flow of

the system. However, they have not considered data flow of the system. They

have proved the correctness of transformation using labelled event structure as

a common semantic domain to capture an identical behaviour in two models

and have performed analysis for liveness, boundedness and reachability. Fur-

ther, in [Ameedeen et al., 2011], they have extended their model with timing

properties that allow performance analysis. However, this work has been done

with conventional Petri-nets and timed Petri nets model and only the event

flow of the system is considered and unable to handle object flow. In our

approach we address this limitation by using CPNs.

Moreover, in [Ameedeen et al., 2009], the authors have extended their work

to facilitate transformation of SDs with time aspects to semantically equiva-

lent PN that preserves the time constraints. They have used the generated

timed PN to analyse performances such as execution time computation and

throughput analysis. The proposed approach has been evaluated with a Per-

sonal Area Network application. Moreover, a similar approach to transform a

SD to a PN has been presented in [Alhroob et al., 2010].
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Ribeiro and Fernandes in [Ribeiro and Fernandes, 2006] have presented an-

other approach to transform SDs into coloured Petri nets (CPNs). The aim of

this work is to construct animation-based CPN that reproduce the expected

scenarios and thus validate them. They have considered the transformation of

different interaction fragments and used a case study to validate the transfor-

mations. However, the defined semantics does not handle the object-oriented

features and have represented only the diagrammatic transformation.

The work done in [Campos and Merseguer, 2006] emphasises the need of

performance analysis in design stage. The authors have used UML models to

gain the annotated design for time aspects and transformed them into stochas-

tic Petri nets. Considering a basic mail client system as a case study they have

analysed the model for properties such as execution times, rates and through-

put. They have used ArgoSPE tool for the analysis, however, some techniques

are more time consuming and require human intervention and expertise.

Most of the research in transforming UML to Petri-nets have not utilised

all the structures associated with UML models [Kessentini et al., 2010b,Emadi

and Shams, 2009b,Emadi and Shams, 2009a,Ouardani et al., 2006]. For exam-

ple, the work done in [Emadi and Shams, 2009b,Emadi and Shams, 2009a] con-

siders only simple structures without a formal description, when transforming

UML models into Petri-nets. Moreover, a meta-model-based transformation

approach from a SD to a PN has been presented in [Ouardani et al., 2006]. The

transformation is limited for the representation of basic constructs including

inter objects communication, hence it is not suitable for our work, as it is.

Further, in [Fernandes et al., 2007] Fernandes et al. have given a non-formal

description that facilitates to transform UML models into CPNs using a case

study on the specification of an elevator controller.
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2.6 Model Transformation Correctness

Correctness of model transformation is essential for the success of MDD ap-

proach. In model transformation, each model can incorporate with details

that are not reflected in the other. In particular, when transforming UML

models into mathematical domains, the results of a formal validation can be

invalidated by erroneous model transformations as the system engineers cannot

distinguish whether an error is in the design or in the transformation, itself.

Generally, the correctness of model transformation concerns properties such

as consistency (a synthesised model is inconsistent if there are contradictions

present in the source model) and completeness (a model synthesised is in-

complete if there are missing elements of the source model). Moreover, the

correctness of model transformations have defined in several notions such as

syntactic and semantic correctness [Lano, 2009,Ehrig and Ermel, 2008,T.Mens

and Grop, 2006]. Syntactical correctness ensures that the transformation al-

ways produces syntactically well-formed target model from valid source models.

Semantic correctness guarantees that the target model satisfies the behavioural

properties that should be preserved in the source model.

There is not much research available in establishing semantic correctness of

transformations particularly for exogenous transformations [Hülsbusch et al.,

2010b,Hülsbusch et al., 2010a,T.Mens and Grop, 2006]. Semantic correction is

crucial for the transformation of behavioural models [Christensen and Petrucci,

2000,Lakos and Petrucci, 2004,Grumberg and Long, 1991]. However, related

literature reports that the semantic correctness of the model transformations

is hard to prove [Orejas and Wirsing, 2009,Greenyer and Kindlev, 2007], in

the case of exogenous transformations, of having to deal with different kinds of

models.. By contrast, several studies have proposed for proving the syntactical

correctness of M2M transformations that have defined in a declarative way
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[Schürr, 1995,Cabot et al., 2010c,Hülsbusch et al., 2010b,Orejas et al., 2009,

Orejas and Wirsing, 2009,Ehrig and Ermel, 2008,Greenyer and Kindlev, 2007,

Dang et al., 2010].

Most of the approaches that check for model transformation correctness

are based on graph transformation techniques. For example, in [Ehrig and Er-

mel, 2008], the authors have specified the graph transformation rules between

the models to prove the semantic correctness and completeness of the rule

transformations. They have used simulation rules to define the operational

behaviours of the model and have considered a case study where the target

model is a Petri-net.

Another approach to verify declarative model transformations based on

TGG is presented in [Cabot et al., 2010c]. They have considered UML class

diagrams and associated OCL invariants, which state the conditions that must

hold between models to satisfy the transformation. They have compared the

expected outcome of the transformation with several scenarios to show the

correctness of transformations.

Moreover, in [Orejas and Wirsing, 2009], the authors have presented an

approach to proving the correctness of transformations using some general pat-

terns that describe a given transformation and a property. In [Boronat et al.,

2009a], Boronat et al. have defined algebraic specifications for meta-models. A

rewriting logic based system (called Maude) was used to verify the reachabil-

ity and model checking of the model. Although they approach the verification

problem, they have not been concerned with whether a given transformation

is correct with respect to the syntax and semantics of the models.

There are approaches that prove the semantic equivalence between the

source and target models using bisimulation [Tarasyuk, 1998]. The work done

by Karsai et al. [Karsai and Narayanan, 2008] has shown by finding bisim-
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ulation that a synthesised model preserves the semantics of an instance of

the source model with respect to a particular property (reachability in this

case). However, this technique does not prove the correctness of the model

transformation rules in general.

Further, in [Kessentini et al., 2010a,Kessentini et al., 2010b], the authors

have aimed at transformation testing. They used a biological immune system

for their validation process to detect transformation errors. They have pre-

sented meta-models for SDs and CPNs and have manipulated test cases based

on each element. However, these meta-models lack elements related to formal

representation and addresses only simple structures of a SD.

Most of the correctness proofs have considered only a general pattern that

describes a given transformation or a property. However, analogously to syn-

tactic and semantic correctness proofs, it is necessary to have a more general

concept for showing correctness and completeness of a model transformation,

independent of concrete source models.

2.7 Model Analysis

In any software system it is significant to verify a system model to reveal how

it performs. Generally, formal verification of a model can be done by different

techniques such as model analysis, automata theory, and simulation. Different

model analysis techniques can be applied for careful monitoring of the sys-

tem behaviour, identifying unreachable states and measuring properties such

as liveness, reliability and performance [Mallet et al., 2006,Emadi and Shams,

2009a,Emadi, 2010,Ameedeen et al., 2009,Merseguer and Campos, 2004,Cam-

pos and Merseguer, 2006]. Also this supports to guarantee the correctness of

model transformations [Hermann et al., 2010]. Moreover, early identification

of flaws in a system facilitates to overcome any complications faced by the
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system flow and avoid unnecessary time and cost associated with erroneous

situations [Merseguer and Campos, 2004].

Different formal analysis approaches are presented in the research literature

[Kwiatkowska et al., 2007,Mallet et al., 2006,Emadi and Shams, 2009a,Emadi,

2010, Ameedeen et al., 2009, van der Aalst, 1993, Christensen and Petrucci,

2000,Lakos and Petrucci, 2004,Grumberg and Long, 1991,Le et al., 2010,Baier

et al., 2007]. These are not extensively explored in this review, since formal

verification is not within the scope of this research. We, however, briefly

present some of the selected formal verification approaches and tools from

literature for an overview. It may help an interesting researcher to see how

our transformation work can fit in for enabling such verifications.

The work presented in [Murata, 1989,Bobbio, 1990] describes system prop-

erties such as reachability, and liveness in a Petri net model and have showed

the analysis of a Petri net. In [Bobbio, 1990], they have showed the stochas-

tic representation of a Petri net with the use of probabilities and the Markov

chain. Ameedeen et al. in [Ameedeen et al., 2009] have shown an approach to

analyse time properties of a Petri net. They have considered a case study to

analyse the throughput using the delay associated with the model. In [Emadi

and Shams, 2009b], a simulation of Petri net has been described to analyse

non-functional requirements of the modelled system. For example, the number

of tokens at the starting nodes is used to denote the number of instances of

the components that play the corresponding role. The movement of tokens

represent the dynamic behaviour of such objects.

Another notable area is the tools that support formal verification [Kounev

and Dutz, 2007,TU-Eindhoven, , Delatour and Lamotte, 2003, Jensen et al.,

2007,Kounev et al., 2010]. CPNTools [Jensen and Kristensen, 2009] supports

to design and simulate the CPN models with a high significance [Jensen et al.,
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2007,Kristensen et al., 2004]. HiWorD is another research based tool for Petri-

nets, to design hierarchical work flow modelling prototype with simulation ca-

pabilities [Benatallah et al., 2003,Chrzastowski-Wachtel et al., 2003]. ExSpect

[TU-Eindhoven, , van der Aals, 1994], ORIS [Vicario et al., 2009, Carnevali

et al., 2009], QPME [Kounev and Buchmann, 2006,Kounev et al., 2010] and

Snoopy [Heiner et al., 2007] are some other research based tools that have been

developed for Petri net analysis.

Further, in [Zimmermann, 2008], an approach to evaluate performance of

a system based on stochastic coloured Petri nets has been described using a

tool (called TimeNet). Also, in [Mallet et al., 2006] a time Petri net analyser

(called Tina) has been used to generate behavioural graphs, in which these

properties can be analysed.

2.8 Challenges of using Formalisms

Although formalisms support consistent and correct software system develop-

ment, barriers exist, which prevent the wide use of formal models and methods

in practice. Formalisms are based on mathematical notations, related theo-

ries and proofs. When modelling a large, complex system, the available pure

mathematical notations may not sufficient or may not fit well to delineate all

the graphical notations and semantics of a given system representation. This

may result in for the development of sufficient amount of formal definitions

and rules in a knowledge base. Also, many users lack the mathematical and

abstraction skills and the required knowledge that needs to understand a sys-

tem represented using formal models [Abdallah et al., 2005]. Therefore formal

models are often less preferred in practice.

The deficiency of clear standards and proper documentation limits the prac-

tical use of formal models in the industry. Also, there are challenges for seam-
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less integration of formal methods with the existing industrial software pro-

cesses. Although formal models are crucial for critical applications, there are

scalability issues when applying for industrial scale applications [Selic, 2003].

Another issue is the lack of formal language based tool support that can be

used in the different phases of software development [France and Rumpe, 2007].

From another perspective, software system modelling and analysis with

formal models and methods may require high initial investment. However,

since these techniques are often used for complex systems, the initial costs are

more tolerable than detecting and resolving system flaws at the later stages

[Abdallah et al., 2005].

Similarly, Software development with the MDD approach may have some

challenges. Even though, the main objective of any software development

process is to obtain software systems with high quality attributes [Gorton,

2006], in MDD, it is a challenge to identify the required model transformations,

which improve the qualities of a model [Saeki and Kaiya, 2007].

Also, it is a challenge to hide the complexity of the synthesised formal

model and tools from the software developer. Software development based

on the MDD approach lacks appropriate tool support and exchange formats,

which are desirable for a seamless implementation of a software system [Koch,

2006]. However, the latter involves automated feedback mechanism, which

will transforms analysis results to a form that utilises concepts in the original

model [France and Rumpe, 2007]. Further, ensuring the correctness of the

transformation is one of the challenges of applying formal model transforma-

tion.

The existing limitations and challenges in model transformations and their

correctness may reflect inadequacies in MDD-based software development. The

development of progressively correct model transformation framework will help
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to move closer to a better approximation of MDD vision.

2.9 Thesis Contribution Compared to Existing Work

The literature and related work provide a strong base for this research. A

summary of comparisons between the thesis contributions and the existing

literature is as follows.

UML standard [OMG, 2011a,Arlow and Neustadt, 2005,OMG, 2011a,Dou-

glass, 2004] has well-defined the model constructs including real-time features,

nested classifiers and complex behaviours. It focuses on defining syntax spec-

ifying the valid combination of model elements, based on meta-models. Thus,

UML lacks formal semantics that defines the mapping of its elements into a

domain of values. This thesis defines a formal representation for UML SD and

IOD considering the syntax and semantics of these models (Chapter 3 for more

details). Moreover, it defines a formal representation for the existing time and

stochastic annotations as an extension of the main SD definition.

The formal model considered for this thesis, i.e. CPN, has a well-defined

theory and supported tools [Jensen, 1990,Jensen et al., 2007,Jensen and Kris-

tensen, 2009]. The definition of a CPN in this thesis deviates slightly from

the original definition and is adaptable for our purpose of modelling inter-

object communication. Moreover, CPN models support real-time behaviour

with the notion of a time stamp attach to tokens and hierarchical structuring

by introducing so-called subnets or modules [Jensen and Kristensen, 2009].

This thesis defines these aspects differently by adding labelling functions as an

extension to the main CPN definition (Chapter 4 for more details). This rep-

resentation fits more naturally to the object-oriented modelling and simplifies

the presentation. Here, a HCPN is defined considering only the inter-model

communication with referencing labelling function that complies with the SD
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decomposition mechanisms.

Different approaches have been used to transform SDs into CPNs [Bernardi

et al., 2002,Ribeiro and Fernandes, 2006,Ameedeen and Bordbar, 2008,Ameedeen

et al., 2011,Ouardani et al., 2006, Eichner et al., 2005]. However, several of

them have considered only basic SD constructs or UML 1.x constructs. An-

other set of researchers have focused on event flow of the system and have

not considered the handling of object-oriented features. Moreover, some have

presented only graphical transformation and do not define the formal rules for

the mapping. Compared to above work, this thesis defines the transformation

of UML 2 sequence diagram with complex behaviours directly to a CPN-based

formal space using formal exogenous transformation rules.

Most of the existing work on model transformation correctness have con-

sidered only syntactical correctness based on meta-model elements and cer-

tain properties of transformations such as confluence and termination [Schürr,

1995, Cabot et al., 2010c, Hülsbusch et al., 2010b,Orejas et al., 2009,Orejas

and Wirsing, 2009,Ehrig and Ermel, 2008,Greenyer and Kindlev, 2007,Dang

et al., 2010]. This thesis proves both syntactic and semantic correctness of the

transformations (Chapter 7 for more details).. Thus the synthesised model

preserves the same behaviour as the source model and free of implied scenar-

ios. Therefore it can be used to analyse accurately and to perform formal

verification on the models.

2.10 Concluding Remarks

This chapter has explored different software system modelling and transfor-

mation approaches that are available in the literature. In particular, UML

2 as a graphical model is used to represent the structural and behavioural

aspects of a system and coloured Petri-nets as a formal model facilitates con-
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current, object-oriented system modelling whilst benefiting from a rich theory

and practical tools.

Even though UML is a widely used model, the expressive power of UML is

not sufficient for model verification capabilities. In contrast, a formal model

with underlying theory enables further analysis and formal verification of sys-

tem models. Much work has been done for transforming UML models into a

formal representation. The adaptation of formalisms in software development

allows early identification and prevention of flaws and consequently avoids un-

necessary cost associated with software development. However, the factors

such as high costs and need of technical expertise when using formal methods

may diminish the effectiveness of such approaches in this context.

This chapter has reviewed several approaches on transformation and vali-

dation of design models. We believe, formal model transformation supports to

bridge the gap between the semi-formal graphical languages that are widely

used in practice and the formal representations that are restrictive to use. This

research focuses on a model-centric approach and borrows the notion of formal

model transformations from MDD to construct a correct model transformation

framework that enables formal verification of models.

The literature described in this chapter shows the feasibility of having fur-

ther research on transforming UML models into formal models, which can

enable model simulation, different forms of analysis and formal verification.
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3 A Design Model: Sequence Diagram

Recent developments in software systems have increased the use of graphical

modelling languages for software design. Also, with the growth of often critical

software systems, it is important to accurately verify and validate software

design models. A formal model representation of software systems facilitates

the ability to ensure that a system model complies with the specification, and

is essential for the construction of correct and consistent systems. One of the

main emphases of this thesis is on the formal representation of software design

models and their transformations to enable different analyses including model

checking or simulation. The focus of in this chapter is given to behavioural

descriptions of systems and in particular system interactions.

The behaviour of an interaction focuses on the observable information ex-

changed between components in a system. Interactions are often used in the

software design to achieve a common understanding of the overall interac-

tions with or within the system. At the design level we use UML2 interaction

diagrams that come in different variants, namely Sequence Diagrams (SD),

Interaction Overview Diagrams (IOD), Communication Diagrams (CD) and

Timing Diagrams [Arlow and Neustadt, 2005,Douglass, 2004,Pilone and Pit-

man, 2005,Lano, 2009,OMG, 2011a]. Generally, SDs and CDs have the same

expressiveness, but with different focus on timeline and structure, respectively.

Timing diagrams fall into a different category and can be seen as an additional

notations for capturing real-time constraints. Therefore, we consider only SDs

and IODs that capture the interaction between instances and the control flow

between the interactions, respectively.

Although several efforts have been made on formal representations of UML

2 SDs (as described in Chapter 2), there can still be a necessity for further re-

search to apply verification and validation techniques in the context of real-time
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and complex software system applications. Therefore, formal representation

of SDs that are used for formal model transformation (as seen in Chapter 5

and 6), is one of the main focuses of this thesis.

We mainly consider denotational trace based semantics of UML2 SDs. Gen-

erally, a trace is a sequence of occurrences ordered by time that corresponds to

a system run. [Micskei and Waeselynck, 2010]. Trace-semantics describe the se-

mantics of interactions (see Section 3.1.8). When formalising a model or a lan-

guage we can opt for an operational or denotational semantics. An operational

semantics specifies a complete set of possible executions of a model [D. Harel,

2003,Grosu and Smolka, 2005,Kong et al., 2009, Zhang et al., 2009, Li et al.,

2004,Lund, 2008]. A denotational semantics by contrast formalise the meaning

of a model by constructing mathematical objects [Harel and Maoz, 2007,Eich-

ner et al., 2005, Störrle, 2004]. Generally, a formal definition of a model de-

scribes every step that can be made in the execution of the model, where the

executions are in conformance with the meaning of the language as defined by a

denotational semantics. Therefore, the denotational approach assigns seman-

tics to a language by focusing on the mapping of the syntactical elements of the

model with a meaningful representation. Moreover, an operational semantics

is often easily understandable to tool developers [Goknil et al., 2011,Boronat

et al., 2009a] and denotational semantics is used for formal processing of the

model [Eichner et al., 2005]. We use a denotational semantics based on traces

of event occurrences for the formal representation of SDs.

Our description of SDs is complete and assumes all usual and special fea-

tures. The latter includes incomplete messages, process creation and termina-

tion, complex behaviours such as interaction fragments and interaction uses,

and extensible features such as time and stochastic artefacts. This chapter

starts with a detailed description of UML2 SD notations and the following
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section describes its formal syntax and semantics. Based on the semantics

this chapter defines the languages (set of legal traces) for a sequence diagram.

Then it describes the extensions of sequence diagrams with time and stochastic

annotations. Section 3.2 describes the notations and formal representation of

an IOD that uses SDs as its nodes.

3.1 A Sequence Diagram

This section gives a detailed description of a SD. The semantics described in

this chapter are in accordance to the standardisation of the UML2 sequence

diagrams [Arlow and Neustadt, 2005,Douglass, 2004,Pilone and Pitman, 2005,

Lano, 2009,OMG, 2011a].

3.1.1 Basic Notations of a Sequence Diagram

A sequence diagram represents the interaction between the objects or compo-

nents in a system for a particular purpose. It can also be used to realise a

use case scenario, where a scenario describes the interactions within a system.

UML2 sequence diagrams have become a widely used modelling language with

many supporting tools for making SD specifications.

Generally, a SD shows a set of partial ordered sequences of messages that

communicate between the instances participating in the interaction, and how

the interaction develops over time along with the corresponding occurrences

on the lifelines. The possible flows of control throughout the interactions in a

SD are described in two dimensions: the horizontal dimension represents the

different instances participating in the interaction, and the vertical dimension

represents time with time progressing from top to bottom. We describe its key

notations in detail first.

A SD is represented within a solid-outline rectangular frame around the
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Figure 3.1: A Graphical Representation of a Sequence Diagram.

diagram that represents the boundary of the specified system. The name of

the diagram following the keyword sd is placed inside a pentagon shaped com-

partment on the upper left corner of the frame. Additionally, the diagram

name may followed by the input and output parameters associated with the

diagram. In general, a SD shows the instances participating in an interaction.

An instance can correspond to a particular object or a role played in an in-

teraction. A role may be a part of a collaboration and/or an internal part

of a structured class, sub-system or component. An instance has a vertical

line called lifeline that represents the existence of the instance at a particular

time. A lifeline shows the participation of an instance in an interaction. An

occurrence is something that happens, which has some consequence within the

system. The order of occurrences along a lifeline is significant for denoting the

order in which these occurrences will occur. However, the absolute distance

between the occurrences on the lifeline is irrelevant semantically. For instance,

Figure 3.1 shows an example of a SD using basic UML 2 constructs. The SD

named A initially contains two object instances a:A and c:C.
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The most visible aspects of an interaction in a SD are the sequence of

messages that are exchanged between the sending and receiving instances,

along with their corresponding occurrence on the lifelines. A message is a

named element that defines a communication between lifelines (instances) of

an interaction or between a lifeline and the environment of the diagram. A

message can cause, for example, an operation to be invoked, a signal to be

raised, and instance to be created or destroyed. When a message represents

an operation call, a message may contain the arguments of the operation,

whereas in the case of a signal, the arguments of the message are the attributes

of the signal. A message specifies the type of communication (synchronous or

asynchronous), and the sender and receiver occurrences associated with it.

A message is represented using an arrow from the sender message end to the

receiver message end. Moreover, a message with the same source and target

lifeline is called as a self-message. In a self-message the sending message event

is ordered before the receiving message event. Messages are mainly divided

into two types: asynchronous and synchronous messages. In asynchronous

messages, the sender sends the message and continues the execution without

waiting for a return from the receiver, whereas in synchronous messages, the

sender waits for the receiver to return from the execution of the message. Here,

the form of the line or arrowhead reflects properties of the message [Arlow and

Neustadt, 2005,OMG, 2011a]. For example, in Figure 3.1 the first message with

an open arrowhead represents an asynchronous call, where the sender sends

the message and continues executing without waiting for a return from the

receiver. A message with a filled arrowhead represent a synchronous call, where

the sender waits for the receiver to return from the executing the message.

Moreover, an open arrow with a dashed line represents a return message, (m3

in the example) that the receiver of an earlier message returns focus of control
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to the sender of that message. The message ordering, data convey via messages

and associated lifelines are important in a sequence diagram, however, a SD

does not focus on the manipulation of data.

Generally, when the source or target of a message is a lifeline, then it

corresponds to an event, whereas when it is a frame, then it corresponds to

a gate. The latter happens when the sender or receiver of the message is

(locally or globally) unspecified. Gates are described in more detail later in

this chapter.

During an interaction it is possible to create and destroy instances. Fig-

ure 3.1 shows an object creation and destruction messages drawn as a dashed

line with an open arrowhead and the stereotype <<create>> and <<destroy>>,

respectively. The creation results in creating an instance of the classifier spec-

ified by the receiver. When an object is destroyed its lifeline stops and no

further occurrences are possible. Destruction is represented by a cross in the

form of a X at the bottom of the lifeline. If it consists of a compound object it

may lead to the subsequent destruction of other objects owned by composition.

Consider the example of a sequence diagram SDA shown in Figure 3.1. The

interactions within the diagram start by instance a receiving an asynchronous

message m0 from a gate (unknown sender). Asynchronous messages are shown

using an open arrowhead and the sender continues executing without waiting

for a return message. Then, instance a sends an object creation message

to create instance b, where the classifier is specified by the receiver. Next

instance b sends a synchronous message m1 to instance c. Next instance c

executes a self-message m2. After that instance c sends a return message m3

to instance b, focusing the control to the sender of an earlier message m1

and it is denoted by a dashed line. This is followed by message m4 sent from

instance b to instance a. Finally, instance a sends an object destroy message
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to destroy instance b and the lifeline of instance b terminates with an X.

UML 2 SDs contain other types of messages such as lost and found messages

[Arlow and Neustadt, 2005,OMG, 2011a]. A lost message is a message that

will never reach its destination, and is represented using a small black circle at

the arrow-end. This type of messages may be used to indicate error conditions

in which messages are lost. On the other hand, for a found message, the sender

is unknown or outside the scope of the interaction and is denoted by a small

black circle at the starting end of the message. These messages can be used to

show message from an unknown sender.

The notion of gate mentioned earlier can simulate the found messages or

lost messages, but are more general. A gate is used to define an unspecified

source or recipient of an interaction, where the corresponding lifeline of the

instance is not a part of the diagram. It is considered as a syntactic interface

of the SD with its environment. A gate has no symbol of its own, and simply

is shown as a message pointing to/from the edge of the frame of the diagram.

A SD may also include local variables that support data flow within the

interactions. These variable definitions may appear near the top of the dia-

gram frame. Further, a SD can be structured further using complex constructs

named interaction fragments and interaction uses. The remaining of this sec-

tion describes these notions in detail.

3.1.2 Interaction Fragments in a Sequence Diagram

A UML 2 SD may contain constructs called interaction fragments denoted by

a solid-outlined rectangle (see Figure 3.2). Interaction fragments are a way to

add some more structure to part of an interaction. An interaction fragment

has one operator, one or more operands and zero or more guard conditions,

which all together help to model an interaction more clearly. Graphically, the
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regions corresponding to the operands are shown by separating the interaction

fragment using dashed horizontal lines [Arlow and Neustadt, 2005,Douglass,

2004,Pilone and Pitman, 2005,Lano, 2009,OMG, 2011a].

Figure 3.2: The interaction fragment behaviour of a sequence diagram.

Graphically, an operator is shown in the upper left corner of the fragment.

The operator determines how its operands are executed and consists of one or

more operands. For example, the UML standard [OMG, 2011a] defines nine

unary operators: opt (optional behaviour), break, loop (iterative behaviour),

critical, neg (forbidden behaviour), assert (mandatory behaviour), ignore, con-

sider and ref (reference to another diagram), and the four operators seq (se-

quential behaviour), alt (alternative behaviour), par (parallel behaviour) and

strict (strict ordering behaviour) that may be viewed as binary or n-ary. We

return to these operators in more detail later.

A guard condition is a Boolean expression that determines whether its

operand executes or not. Graphically, a guard condition is shown in square

brackets covering the lifeline where the first event occurs. The values referred
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in a guard may be local to the lifeline in which it resides or may be global to the

whole interaction. When a condition is associated with an interaction operand,

a valid set of traces can be obtained, only if the guard expression evaluates to

true. Further, an operand may contain another interaction fragment as well,

in the case of nested fragments.

The SD in Figure 3.2 shows an alt interaction fragment behaviour with

two operands. The SD with name B begins its interaction by a message m0

being sent from instance a to instance c. Then instance c makes a choice based

on the guard condition, which evaluates to true and sends the message m1 to

instance b or message m2 to instance a.

The interaction operators defined in UML 2 specification [OMG, 2011a], are

capable of modelling almost every behavioural aspect of a system. Below we

give an informal semantics of interaction operators associated with interaction

fragments. The formal use of these operators is described in Chapter 5, when

defining the transformation of each interaction fragment to the corresponding

CPN.

alt : The alt interaction operator defines an alternative interaction fragment

that represents a choice of behaviour. In this case, at most one operand

is selected to execute based on the guard condition that evaluates to

true at the point of the interaction. Also, the guarded operands may

not lead to deterministic choice. Moreover, an operand may guarded by

an else that represents the negation of all other guards enclosed in the

interaction fragment. So that the set of traces that defines a choice is

the union of the guarded traces of the operands.

opt : The opt interaction operator designates the option behaviour and exe-

cutes only if the guard condition is true. That is it represents a choice of

behaviour where either the (sole) operand happens or nothing happens.
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Conceptually, options are similar to an alt interaction fragment with one

operand.

loop : A loop indicates an iterative behaviour, where the contained event

occurrences are to be repeated for some number of times. The loop may

be infinite or have a specified number of iterations. A guard condition

may include a lower and an upper number of iterations of the loop as

well as a Boolean expression. A guard condition associated with the loop

operand is evaluated each time at the beginning of the loop fragment, and

if the guard is evaluated to true, the scenarios within the loop operand

happen, otherwise the loop terminates. The loop fragment is executed

as long as the guard condition is true.

break : The break operator represents a breaking scenario. A break is nor-

mally used in combination with a loop interaction fragment to force the

exit of the loop under a certain condition or even the whole diagram

depending on the context of the break itself. When the guard expres-

sion within the break operand is evaluated to true, the scenario within

the break operand happens and it ignores the remainder of the enclosing

interaction fragment. When the guard expression is evaluated to false,

the break operand is ignored and the rest of the scenarios within the

enclosing interaction fragment happen.

Figure 3.3 shows an example of a loop interaction fragment with a nested

break. When the loop condition guard 1 is evaluated to true, instance a sends

message m0 to instance c and evaluates the condition in the break interaction

fragment. If guard 2 is true, then m1 occurs and the loop is terminated

without m2 being executed. If guard 2 is evaluated to false, then the break

fragment is ignored and continues with the rest of the interaction within the
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Figure 3.3: An example of a loop and break fragment combined.

loop until the loop condition, guard 1 is false or guard 2 is true at a later

iteration. If the boundary of the break fragment is at the higher interaction

level then its occurrence would lead to the termination of the entire interactions

(i.e. m3 would not occur).

par : The par operator defines parallel or concurrent regions in an interaction

fragment. The event occurrences of different operands can be interleaved

in any way as long as the ordering imposed by each operand is preserved.

critical : The interaction fragment operator critical represents behaviour that

cannot be interleaved with other behaviours in any way. The interactions

within a critical region are treated as atomic and cannot be interrupted.

Normally, a critical interaction fragment is nested within the parallel re-

gions to ensure that a group of interactions cannot be separated. As shown

in Figure 3.4, although the enclosing par interaction fragment implies that
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Figure 3.4: An example of a parallel and critical fragment combined.

some interaction may interleave into the region, the set of traces of enclosing

constructs are restricted by the critical interaction fragment. For example, the

valid traces are m0 ·m1 ·m2 ·m3 ·m4, m0 ·m2 ·m3 ·m1 ·m4, m0 ·m2 ·m3 ·m4 ·m1,

m2 ·m3 ·m4 ·m0 ·m1, m2 ·m3 ·m0 ·m4 ·m1, and m2 ·m3 ·m0 ·m1 ·m4. The

trace m0 ·m2 ·m1 ·m3 ·m4 is an invalid trace, as the interaction with messages

m2 and m3 are in the critical region and are considered as atomic execution

that cannot be interleaved with other interaction occurrences.

This behaviour can be described using a real-world example as shown in

Figure 3.5. The SD named callHandler shows the handling of speed-dial calls

in an interleaved manner. Since the emergency number 999-call is included in

the critical region, it must be executed without interleaving with other calls.

That is, the operator must make sure to forward the 999-call before doing
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Figure 3.5: An example of a parallel and critical fragments.

anything else. The normal calls within the par interaction fragment, however,

can be freely interleaved.

seq : The operator seq designates a weak sequencing between the interac-

tions of the operands. This represents the default behaviour in a SD

that preserves the occurrence order within each of the operand and on

the same lifeline from different operands. This preserves the causality of

messages. However, the occurrence order on different lifelines from dif-

ferent operands may come in any order. Thus weak sequencing reduces

to a parallel merge when the operands are on disjoint sets of participants.

strict : This operator indicates strict sequence where the ordering of the in-

teractions between operands is significant across lifelines, not just within
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the same lifeline as with seq. The operator strict specifies that the mes-

sages in the interaction fragment are totally ordered.

assert : The interaction operator assert designates an assertion, which is

a must behaviour. It represents the interactions that can be consid-

ered as the only valid continuations. This interaction fragments is often

combined with ignore and consider operators, to indicate a compulsory

behaviour at a certain point in the interaction (see below description).

neg : This operator represents interactions that are defined to be invalid or

negative behaviour, meaning the interaction should be disallowed or must

not execute. All interaction fragments that are different from negative

are considered positive meaning that they describe interactions that are

valid and should be possible.

ignore : The interaction operator ignore represents interactions that can be

considered as insignificant and can be ignored if they appear in a cor-

responding execution. These interactions can be intentionally omitted

from the execution. This typically implies that the interactions within

the ignore interaction fragment are irrelevant for the purpose of the di-

agram, however, they may still occur during the actual execution (see

example in Figure 3.6).

consider : The interaction operator consider represents the interactions that

are explicitly relevant and should be considered within the fragment.

This is equivalent to defining every other message to be ignored (see

example in Figure 3.6).

The behaviour of assert, negate, ignore and consider fragments can be de-

scribed using a real-world example (adapted from [Douglass, 2004]) as shown

60



in Figure 3.6. The SD funcElevator shows the functionalities related to open-

ing, closing and moving of an elevator. When a user presses the open button

in the button panel a command is triggered from the button panel to the door

and the door opens.

Figure 3.6: An example of a assert, negate, ignore and consider fragments.

As shown in the diagram, while the door is open, pressing the open button
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(resulting in a CmdOpen message) is ignored. After a user presses the button

to close door, a sequence of interactions is executed for the closing function-

ality of the door and the elevator starts to move. The interactions within

the consider fragment are considered as important. As long as the elevator is

moving the door cannot be opened. Finally, the assert operator nested within

the consider fragment indicates that the stop message must follow the arrived

message from a gate, and directs in opening the door when the elevator reaches

to a floor. Here, the interaction within the assert ensure that the elevator must

stop and open the door once it arrives at a given floor.

We can describe the difference between the behaviour within the neg and

ignore fragment as follows. As described previously, the interactions enclosed

in neg must not happen in the context and all other interactions are valid for

execution. However, within the valid interaction there can be interactions that

might need to be skipped from execution depending on the context. In order

to achieve this behaviour UML standard uses the fragment ignore, where the

enclosed interactions can be omitted from execution. Thus, neg behaviour is

considered as invalid execution. The ignore behaviour is a valid interaction,

yet we do not consider for the execution.

ref : The ref operator references an interaction, which appears in a different

diagram. This fragment is called an interaction use and will describe

later in this section.

When a SD becomes more complex with all these constructs, there may

be a need to split the diagram and show part of the interaction on a separate

diagram. Also, this helps to use part of an interaction in more than one SD.

The decomposition mechanisms supported by UML 2 SDs are described as

follows.
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3.1.3 Decomposition in a Sequence Diagram

Decomposition facilitates the construction and understandability of complex

interactions. In UML 2 it is possible to link SDs by creating references from an

interaction to a separate diagram in two ways: referencing interaction fragment

(called interaction uses) and lifeline decomposition.

Figure 3.7: The decomposition behaviour of a sequence diagram.

Consider the example of a SD using UML 2 constructs with decomposition

behaviour shown in Figure 3.7. The instance a is decomposed in another

diagram named L. The instance a receives a message m0 from a gate and sends

the message m1 to a gate in the interaction use (ref) fragment that refers a

diagram named N. Then the instance a makes a choice between sending the

message m2 to the instance b or sending the message m3 to the instance c.

Decomposition with interaction use (ref interaction fragment) refers to an-

other SD. The reference interaction fragment helps to hide a set of interactions

shown in another diagram. In this case, the referred diagram must contain all

the instances covered by the ref interaction fragment and may contain more
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instances. Here, if the referred interaction contains any incoming parameters

or return values, the ref interaction fragment must also contain corresponding

variables.

Lifeline decomposition indicates that an instance itself is decomposed in

another diagram and is particularly useful when modelling component-based

systems where the internals of a component are intentionally hidden. For

example, in Figure 3.7 the instance a can be replaced by a similar or updated

component, and even if its internal behaviour is quite different, the interaction

in diagram E remains unchanged. The lifeline decomposition allows managing

the complexity of SDs by combining several lifelines into one.

3.1.4 Additional Annotations of a Sequence Diagram

UML 2 sequence diagrams can be extended with variants such as time con-

straints to express real-time behaviours. For example, an interaction may in-

corporate time aspects that indicate the beginning or end time of an interaction

occurrence (event), the duration of an interaction, and so on. UML standards

use the notion of a time value (timestamp) to indicate the time associated with

interactions [Arlow and Neustadt, 2005,OMG, 2005,OMG, 2011a]. The time

associated with an interaction is shown using parameterised message, where

the time value is assigned to the message name or an anonymous attributes of

the message.

Moreover, UML provides a notation to capture a specific time associated

with an event using the notion of a timer or a system clock. Graphically, a

small horizontal line next to an event is placed to capture the time of the

occurrence, or place a timing constraint on it. Typically, a variable is used

to capture a specific instance in time and then represent constraints as offsets

from that time. These time duration constraints are expressed within the curly
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brackets and placed next to the message names or between event occurrences

along a lifeline.

Figure 3.8: A sequence diagram with time constraints.

The SD F in Figure 3.8 shows the incorporation of timed constraints with

the interaction occurrences. The sending and receipt of message m1 is con-

strained to take between 0 and 5 time units. Further, the loop interaction

fragment contains interaction occurrences with time constraints. As the dia-

gram shows, the interval between receiving of m2 and sending of m3 there

can pass at most 3 time units. Here, t is the observed time at receiving of m2

by instance c.

The UML profile has not a given separate annotation to represent the

stochastic aspects associate with the interactions of a SD. However, they have

used the time values to derive probability related data [OMG, 2005]. We will

consider the formal representation of such annotations in Section 3.1.9.
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3.1.5 Formal Model of a Sequence Diagram

The informal semantics of UML2 sequence diagrams allows for many ambi-

guities and different interpretations of the same diagram. Therefore, when a

UML2 SD is used in software system design, it is important to have a common

interpretation of the language among the people who are involved in system

design. Moreover, formal semantics of a model is beneficial in many ways such

as to enable the comparison of specifications at different levels of abstraction

and formal verification and validation of the model.

UML already partially adopts a denotational semantics to describe aspects

of the language. For example, the meta-modelling approach supports the de-

scription of denotational relationships, where model elements can be abstracted

as classes and their relationships can be formalised by associations [OMG,

2011a]. However, UML2 SDs lack precise formal description of semantics,

when they are used in modelling of the interactions between objects, and such

a formal definition would be a major amount of work. The definitions given

here consider a trace based denotational semantics for sequence diagrams. Our

defined semantics complies with the UML standard.

Further, when defining the formal models we have considered both local and

global view of the model. A local view corresponds to an instance view of the

interaction, i.e. we only consider event occurrences along the instance lifeline.

By contrast a global view covers the interactions between several lifelines with

the use of interaction fragments.

Consider the example shown in Figure 3.9 that highlights the notations of

the formal representation given in Definition 3.1. The SD consists of elements

such as name, instances, events, message labels, local transitions, interaction

fragments, and associated functions (see the description later on). This dia-

gram explicitly illustrates the events (represented by circles) and states loca-
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tions (represented by ovals) that belonging to object and environment instances

in a SD. In our formal representation we consider environment instances as the

external instances to the system that are involved in the interaction through

the presence of gates.

Figure 3.9: Illustrating state locations and events.

For the formal representation of sequence diagrams, we define a SD with

name d ∈ N formally as a tuple SDd, and omit d indexes from all sets when

these are clear. Let Ω be a set of interaction operators given Ω = {alt, par,

loop, option, break, critical, assert, neg, strict, seq, consider, ignore, ref},

and Env be a finite set of environment instances.

We define a SD formally as follows.
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Definition 3.1 (A Sequence Diagram) A sequence diagram with name d ∈

N is a tuple SDd = (I, E,<,M, T, F, ref,X,Exp) where

• I is a finite set of object instances, and I+ = I ∪ Env;

• E =
⋃

i∈I+ Ei is a set of events such that for any i 6= j ∈ I+, Ei∩Ej = ∅;

• < is a set of partial orders <i⊆ Ei ×Ei with i ∈ I;

• M is a finite set of message labels;

• T is a set of local transitions such that T ⊆ E × M × E and (1) for

t1, t2 ∈ T if t1 = (e11, m1, e12) 6= t2 = (e21, m2, e22) then e11 6= e12 6=

e21 6= e22, (2) if t = (e1, m, e2) ∈ T then ¬(e1, e2 ∈ Ej) for j ∈ Env;

• F is the set of interaction fragment identifiers in d such that

– f : F → Ω × N is a function that associates an operator and a

natural number (number of operands) to an interaction fragment

identifier;

– g : F × N → 2E is a function that associates a set of events to a

pair (id, n) where id is an interaction fragment identifier and n is

id’s n-th operand. It is only defined if f(id) = (o,m) and n ≤ m.

For arbitrary n 6= k with n, k ≤ m, g(id, n) ∩ g(id, k) = ∅;

– h : F × N → 2F is a function that associates a set of interaction

fragment identifiers to a pair (id, n) where id is an interaction frag-

ment identifier and n is the n-th operand of the fragment. It is

only defined if f(id) = (o,m), o 6= ref and n ≤ m, and further

satisfying the following properties for id1, id2 ∈ F with id1 6= id2,

f(id1) = (o1, n1) and f(id2) = (o2, n2):

1. id1 6∈ h(id1, x) for any x ≤ n1;
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2. if id1 6∈ h(id2, m2) and id2 6∈ h(id1, m1) with arbitrary m1 ≤ n1

and m2 ≤ n2, then g(id1, m1) ∩ g(id2, m2) = ∅

3. if id2 ∈ h(id1, m1) then g(id1, m1) ⊇
⋃

n≤n2
g(id2, n)

– j : N ∪(F×N)→ 2I
+
is a function that associates a set of instances

to a diagram or to a pair (id, n) where id is an interaction fragment

identifier and n is id’s n-th operand. It is only defined if f(id) =

(o,m) and n ≤ m.

• ref : I ∪ F → N \ {d} is a partial function that associates to an object

instance or an interaction fragment identifier a referenced diagram name.

For arbitrary i ∈ I such that ref(i) = n for some n 6= d ∈ N with

SDn = (In, En . . . ), Ei ⊆ En and i 6∈ In, ref is only defined for id ∈ F

iff f(id) = (ref, 1). Furthermore, if ref(id) = n then j(id) ∩ Id ⊆ In.

• X = {Xi}i∈I is an I-indexed family of local variables;

• Exp is a set of expressions such that guard : T → Exp is a partial

function that associates an expression (guard) to a local transition.

A SD has a unique name d. The set I (or more accurately Id) denotes

the set of object instances involved in the interaction described by d whereby

I+ (or I+d ) includes the environment instances Env. Each object instance has

a lifeline and each instance i ∈ I+ has an associated set of events Ei. For

example, in Figure 3.9, there are four instances a, b, c, v1 ∈ I+ involved in the

SDG such that IG = {a, b, c} and EnvG = {v1}.

An event describes an occurrence that has a location in time and space.

That is an event is something that happens on a life of an instance at a point

in time, and has no duration. For object instances, events correspond to:

the sending or receiving a message, the beginning or ending of an interaction
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fragment. Events associated with the environment instances are restricted

to sending or receiving a message. Further, different instances do not share

events. The order of the events along a lifeline is significant denoting, in

general, the order in which these events will occur. The events along a lifeline

(for object instances) are partially ordered, or totally ordered if the lifeline is

not involved in any alt or par interaction fragments (which is described later

in this section). We write e → e
′

for immediately following events, that is,

events with no other event in between: formally, e <i e
′

, e 6= e
′

and for all

e
′′

∈ Ei, if e <i e
′′

<i e
′

then e
′′

= e or e
′′

= e
′

. We cannot determine the

ordering of events for environment instances and the partial order is therefore

only defined over object instance events. When a message is sent between

lifelines, the corresponding event occurrences are independent from each other.

Obviously, the only constraint is that the sending of a message should occur

before the receiving of that message. In Figure 3.9 events are represented from

e1, e2, · · · , e12 and for a given instance the events are partially ordered such

that for a ∈ I: e2 <a e3.

A transition corresponds to a state change as a consequence of an event

occurrence. We introduce the concept of local transitions denoted by set T ,

to represent message passing between two instances. A local transition is rep-

resented by an arrow from the sending instance to the receiving instance. A

local transition t ∈ T is a triple (event1, message, event2) which represents

an interaction between the instances associated with both events, and a self-

interaction if the instances are the same. Events in local transitions are nec-

essarily different, and for a self-transition for instance i, in particular we have

event1 <i event2. SDG shown in Figure 3.9 consists of three local transitions

t0, t1, t2 ∈ T such that t0 = (e1, m1, e2), t1 = (e6, m0, e7) and t2 = (e8, m2, e9).

Sequence diagrams can be structured further using interaction fragments.
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A particular SD may use a (finite) set of interaction fragments, and we assume

that each fragment in the diagram has a unique identifier (an element in the

set F ). Each interaction fragment identifier id ∈ F has an associated operator

(an element in the set Ω). In order to manipulate interaction fragments as

needed we define functions f , g, h, j and characterised as follows.

Function f(id) returns the operator and the number of operands in the

interaction fragment id. For example, as the loop fragments contain only one

operand only, we always have f(id) = (loop, 1). Similarly for the interac-

tion fragments with the operators neg, assert, consider, ignore, critical, opt,

break and ref . In particular, the SD in Figure 3.9 contains an alt interaction

fragment with two operands such that x ∈ F where f(x) = (alt, 2).

Function g associates a subset of events for each operand within an inter-

action fragment. These events cannot be shared by different operands of the

same interaction fragment. We use g : F → 2E to denote the complete set of

events of an interaction fragment (or gi if specifically for instance i). This set

consists of the union of the events associated with each operand and additional

events (two per instance) marking the beginning and ending of the fragment.

Formally,

g(x) =
⋃

n∈N

g(x, n) ∪
⋃

i∈j(x)

{eib, e
i
e}

where eib and eie denote respectively the begin and end events in fragment x

for instance i. We write g(x) to denote the begin and end events only, such

that, g(x)i = {e
i
b, e

i
e}. For example, if id is such that f(id) = (ref, 1) then,

only g(id, 1) is defined and the reference fragments do not contain events other

than gate events (zero or more), otherwise g(id) denotes the gate events and

begin/end events for all instances involved in id. I.e. since a ref interaction

fragment is only a reference to another diagram name, it does not have internal

events belongs to object instances. For example, consider SDM shown in
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Figure 3.10. For the ref interaction fragment y ∈ F where f(y) = (ref, 1),

and for the object instance b ∈ I there are no events associated with the

operand and g(y, 1)b = ∅. However, for the environment instance v1 ∈ Env,

g(y, 1)Env = {e6} and g(y) = {e6, e7, e8}.

For an interaction fragment x ∈ F with an operand n and instance i, we

write mini(g(x, n)) to denote the minimal (first) event inside operand n for

instance i. Similarly, maxi(g(x, n)) to denote the maximal (last) event inside

operand n for instance i. When we omit the instance we refer to the subset

of minimal/maximal events respectively. Consider the interaction fragment x

shown in Figure 3.9 with the associated instances a, b, c ∈ I. Here, g(x, 1) =

{e6, e7}, g(x, 2) = {e8, e9} and g(x) = {e3, . . . , e12}. The events associated

with the beginning and end of the fragment for instance a ∈ I is represented

by g(x)a = {e3, e10}. Also, mina(g(x, 1)) = e6 and mina(g(x, 2)) = e8. Since

each operand contains only one local transition, in this case mina(g(x, 1)) =

maxa(g(x, 1)) and mina(g(x, 2)) = maxa(g(x, 2)).

Moreover, function h(id, n) can be used to determine the set of nested

interaction fragments inside the nth operand of the interaction fragment id.

Given functions f , g and h, we establish a few properties indicating that (1) a

fragment can never be nested in itself (2) two arbitrary (not nested) interaction

fragments do not share events, and (3) the events of an interaction fragment id2

nested inside the nth operand of another interaction fragment id1 are contained

in the set of events of that operand given by g(id1, n).

Function j(id, n) is used to denote the subset of (object and environment)

instances involved in fragment id’s nth operand. In a more general sense, and

similarly to g, j is defined over pairs (id, n) where id is an interaction identifier

and n is a natural number indicating the operand number. We use j(d) to

denote the set of instances associated with the whole diagram d where j(d) ∩
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Env denotes the set of environment instances involved in gates at d level only.

For instance in SDG (Figure 3.9), j(G) = {a, b, c, v1}, where IG = {a, b, c}

and EnvG = {v1}. For the interaction fragment x ∈ F , where f(x) = (alt, 2):

j(x, 1) = {a, b} and j(x, 2) = {a, c}.

Figure 3.10: Different decomposition mechanisms in a sequence diagram.

Further, function ref is used to capture the decomposition of the diagram.

It is defined over object instances to indicate lifeline decomposition and over

fragment identifiers to indicate interaction uses. If ref is defined for an in-

stance i ∈ Id with ref(i) = n then the events in its lifeline denoted by Ei also

belong to the set of events of the sequence diagram SDn, that is, Ei ⊆ En. The

instance i will be decomposed further in n and is therefore not an object in-

stance of diagram n. In particular, all object instances involved in the reference

fragment are instances of that diagram. Formally this means, if ref(id) = n

then j(id) ∩ Id ⊆ In with id ∈ F , n ∈ N .

Consider the examples modelled in Figure 3.10 and Figure 3.11, showing a

SD named M and the two referred diagrams SDN and SDL. Diagram SDM

contains both forms of decomposition mechanisms available in UML2 sequence
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diagrams, namely lifeline decomposition (instance a decomposed in sequence

diagram L) and interaction use (reference to diagram N). The interaction

involving instances a and b starts with message m1 being sent (by the environ-

ment) and received by instance b. This triggers message m2 being sent from

b to a, followed by an interaction use to diagram N (with some input given

by message m3), and so on. The details of diagram N are described in the

separate sequence diagram SDN . To clarify the details of our formal model,

we indicate all events and state locations explicitly along instance lifelines and

frame lines (for gates). The diagram SDM has three gates: the sending of m1,

the receiving of m3 and the receiving of m5.

(a)

(b)

Figure 3.11: The referred sequence diagrams by SDM .

Formally, let Env ⊇ {v1, v2, v3} be the three environment instances in-

volved in the gates of diagram M . SDM is such that IM = {a, b}, (EM ,

<M , MM and TM as shown in the figure), FM = {id} and ref is such that

ref(id) = N and ref(a) = L (and otherwise undefined). Also f(id) = (ref, 1),

g(id, 1) = {e6}, g(id) = {e6, e7, e8}, j(M) = {v1, v3, a, b}, j(id) = {b, v2} and

j(id) ∩ IM = {b} ⊆ IN as expected.
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For the diagram SDN in Figure 3.11 (a), IN = ({b, c}, EN , <N , MN and

TN , FN = ∅), Here, ref not defined for any i ∈ IN , and j(N) = {v
′

, b, c} where

v
′

is the environment instance is involved in the interaction. Similarly, the

elements of SDL can be defined.

Moreover, a UML 2 SD may contain variables and a given variable may be

used several times in the same diagram. Finally, local transitions may have

conditional statements associated with them which are given by the function

guard. For example, when modelling alternative behaviour using an alt in-

teraction fragment, each operand may be given a different condition or guard,

which can be seen as associated with the first local transition in the operand.

A loop interaction fragment also has an iteration condition associated with it.

For example, in Figure 3.9, x is a local variable associate with the alt interac-

tion fragment. In our formal representation, we associate the guard conditions

with the first local transition in each operand of the interaction fragment such

that guard(t1) = [x == 1] and guard(t2) = [x == 2], where t1 = (e6, m1, e7)

and t2 = (e8, m2, e9).

Additionally, we introduce a set of state locations belonging to instances

of a SD in order to represent the state of the instance before and after each

event occurrence. A state location describes a situation during the life of

an object after satisfying some activity or waiting for an event. When the

state location belongs to an object instance, they are placed along a lifeline

and in the case of an environment instance, state locations are places along the

frame of a diagram or an interaction fragment. In our formal representation we

define initial, internal and end state locations for each instance (see description

below). Similarly to events, state locations cannot be shared by different

instances, and are fully determined by functions µ, λ and θ.

The definition of state location considers the complete set of instances I+
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that includes both object and environment instances.

Definition 3.2 (State Location) Let SDd be a sequence diagram for a named

diagram d. Its associated set of state locations is given by the set Sd:

• Sd =
⋃

i∈I+ Si where Si are the state locations for instance i, and Si ∩

Sj = ∅ for arbitrary i 6= j ∈ I+;

• Si = Si
ini ∪ S

i
int ∪ S

i
end is a set of initial, internal and end state locations

for instance i ∈ I+ respectively. Each instance has exactly one initial

and one end state location. For i ∈ Env, Si
int = ∅;

• µi : M × Ei → Si is an I+-indexed function that given a pair (m, e) of

a message m and an event e associates it with a next state location of

instance i. It is only defined if there is a t ∈ T with t = (e,m, e
′

) or

t = (e
′

, m, e);

• λi : F ×N→ 2S
i

is an I+-indexed function that given a pair (id, n) asso-

ciates operand n of fragment id with a set of state locations of instance

i ∈ j(id), indicating all its state locations in the operand;

• θi : F → Si is an I+-indexed function that given an interaction fragment

id returns one state location for instance i ∈ j(id) which is associated

with the end of the fragment.

For a given (object or environment) instance state locations and events are

interleaved, whereby in the case of environment instances (described in the

examples below) for each instance we only need in effect two state locations

and one event. When the state locations belong to object instances the state

locations and events are interleaved along a lifeline, whereby we always start

and end with a state location. For each instance there is always a unique
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start and end state location given by Si
ini and Si

end respectively, and object

instances can furthermore have zero or more internal state locations given by

Si
int. The internal and end state locations are a result of local transitions or

entering/leaving interaction fragments. On the other hand, the environment

instances do not have internal state locations. The Si
ini and Si

end state locations

belong to environment instances are places on the frame of the diagram or the

interaction fragment depend on the situation they are used.

Consider SDN shown in Figure 3.11, where events and state locations are

indicated explicitly. The initial and end state locations for v ∈ Env are S
′

0e

and S
′

1e, respectively. For b ∈ I, S
′

0b is the initial state location and the set

{S
′

1b, S
′

2b, S
′

3b} contains internal state locations.

The effect of a local transition for an instance i is described by µi. That is,

µi associates a unique state location (or an end state location, if the transition

is the last interaction between two instances or i is an environment instance) to

each message and event pair if this pair belongs to an existing local transition.

That is when the µi for an environment instance i associated with a gate

(necessarily involved in a local transition) returns the associated end state

location for the instance. Thus, for each transition t ∈ T with t = (e1, m, e2)

and where e1 ∈ Ei and e2 ∈ Ej we obtain two state locations s1 ∈ Si, s2 ∈

Sj associated with the two events in such a way that, µi(m, e1) = s1 and

µj(m, e2) = s2. For self-transitions we obtain two state locations for each of

the events and these belong to the same instance. For example consider the

local transition t = (e2, m6, e3), t ∈ T in Figure 3.11. The associated state

locations S
′

2b, S
′

1c ∈ S are such that µ(m6, e2) = S
′

2b and µ(m6, e3) = S
′

1c.

The function λi, defined over pairs (id, n) of an interaction fragment iden-

tifier id and operand n, returns a set containing state locations for i. These

state locations correspond to the state locations inside the given operand. It is
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such that for each instance involved in an interaction fragment, each operand

starts and finishes with a state location. In the case of reference fragments

(only one operand) each instance has in fact a unique state location within

that fragment. This applies to both object and environment instances. In

other words, for any instance i ∈ j(id) such that f(id) = (ref, 1), λi(x, 1) is a

singleton indicating the unique state location for i in id. If i ∈ j(id) ∩ Env,

that is, i is an environment instance involved in fragment id, then there must

be a gate event at id and λi returns one state location associated with that

event (function θi returns the other one).

We use min(λi(id, n)) (and similarly max(λi(id, n)) ) to denote the first

(last) state location in operand n of id. Overall, an interaction fragment has

events marking the beginning and end of the fragment, for example e0, e
′

0 ∈

gi(id) for instance i. Function θ is used to determine for each instance the

state location that follows an interaction fragment. That is the function θi

associates the next state location with the end of a fragment.

Recall SDG shown in Figure 3.9 with four instances such that j(G) =

{a, b, c, v1}, where Ig = {a, b, c} and Envg = {v1}. The interaction starts

with message m0 being sent by the environment v1 and received by instance

a in such a way that µ(m0, e1) = S1e and µ(m0, e2) = S1a. This follows by

an interaction fragment F = {id}, with f(id) = (alt, 2) and j(id) = {a, b, c}.

Here, Sa
ini = {S0a}, S

a
end = {S6a}, λa(id, 1) = {S2a, S3a}, λa(id, 2) = {S4a, S5a},

and θa(id) = {S6a}. All non-initial state locations are determined by µi with

i ∈ I+G .

Further, for interaction fragments with multiple operands, the state loca-

tions for a given instance inside an operand is defined, only if there are interac-

tions involved in that instance. Here, we use the function j(id, n) to identify the

instances for a given operand. For example, in Figure 3.9, j(id, 1) = {a, b} and
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j(id, 2) = {a, c}. Therefore, there are no state locations within the operand

2 that belongs to instance b and no state locations within the operand 1 that

belongs to c.

Further, recall SDM shown in Figure 3.10. For the state locations we have

Sb
ini = {S0b}, Sb

end = {S5b}, S
v2
ini = {S2e} and Sv2

end = {S3e}, µb(m1, e2) = S1b,

µv1(m1, e1) = S1e, λb(id, 1) = {S3b}, λv2(id, 1) = {S3e}, θb(id) = S4b and

θv2(id) = {S2e}.

3.1.6 Regions in a Sequence Diagram

The decomposition mechanisms in a SD are particularly useful when modelling

component-based systems. It provides a better structure to larger and complex

interactions and consequently supports partial analysis, model evolution and

incremental development.

Interactions in a SD can decompose and hide a set of interactions from

a diagram with a high-level view. For example, SDM in Figure 3.10 a detail

representation of the interactions associate with instance a (lifeline decomposi-

tion instance) and ref interaction fragment are represented by SDL and SDN

in Figure 3.11, respectively. Here, even the internal behaviour of the referred

diagrams is fairly different, the behaviour in the context of the interaction in

SDM remains unchanged.

Consider SDP shown in Figure 3.12. We may want to analyse a property

of the diagram concerning only the interaction behaviour of instance a1 and

a2 or a subset of interactions. For that, we introduce the notion of a region

that facilitates the partial analysis of this interaction. Here, SDP contains two

regions, the set of interaction concerning the communication between b and

c (region 1) and the interaction isolating instances a1 and a2 (region 2). In

order to illustrate this notion we show it explicitly using a dashed-line around
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the considered sub-interaction. The region contains not only events involved

in the sub interaction but the underlying instances.

Figure 3.12: A sequence diagram with regions.

In particular, these regions can be considered as separate SDs and can thus

be transformed into a CPN for analysis separately. For example, in Figure 3.12,

let the interaction within the region 1 and 2 can be captured by separate

sequence diagrams SDR (Figure 3.13) and SDT (Figure 3.14), respectively.

SDR in Figure 3.13 consists of instances b, c,∈ I and their interactions

represented by the local transitions t1, t2, t3 ∈ T . Here, the source event of t2

is considered as a gate.

SDT in Figure 3.14 shows interactions associate with instances a1 and a2

only. In this example, gates are used to denote the source or target of the

80



interactions, where the associated instance is unspecified within SDT . These

events belong to environment instances such that e1, e6, e10, e12 ∈ EEnv.

Figure 3.13: The region 1 of SDP (Figure 3.12) as a sequence diagram.

Figure 3.14: The region 2 of SDP (Figure 3.12) as a sequence diagram.
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Figure 3.15: Replacing region 1 of SDP (Figure 3.12) by an interaction use.

Moreover, considering regions as SDs can change the representation of the

original SD. I.e. each identified region can be replaced by a ref interaction

fragment or ref function as appropriate. Here, if a region contains the entire

lifeline events of one or more instances, then we use lifeline decomposition.

Otherwise, we consider interaction use. For example, by representing the re-

gion 1 of SDP (Figure 3.12) using SDR (Figure 3.13) we can replace the cor-

responding interaction of the original diagram by an interaction use as shown

in Figure 3.15. Similarly, SDS in Figure 3.16 shows the replacement of region

1 and 2 by interaction use and lifeline decomposition, respectively.
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In order to describe the relationship among these diagrams, consider SDQ

shown in Figure 3.15. The interaction fragment x ∈ F : f(x) = (ref, 1) refers

the diagram SDR in Figure 3.13 such that ref(x) = R. The interaction in SDR

represents the sub-interaction given by region 1 in SDP shown in Figure 3.12.

In SDQ the local transition t = (e7, m2, e8) connects to ref using a gate.

Figure 3.16: Replacing region 1 and 2 of SDP (Figure 3.12)

Similarly, consider SDS shown in Figure 3.16 that replace the region 1 and

2 in SDP shown in Figure 3.12 using interaction use and lifeline decomposition,

respectively. In SDS, the interactions associate with the instance a ∈ I refers

the interaction in SDT (Figure 3.14) such that ref(a) = T . The ref interaction

fragment x ∈ F , refers to the interactions in SDR (Figure 3.13) such that
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ref(x) = R. Consequently, by replacing the referred interactions of SDS by

the diagrams SDR and SDT , we can obtain an interaction behaviour similar

to the original diagram SDP .

In order to extend our approach to deal with partial and modular synthesis,

we formally define a region over a SD as itself a SD and defined as follows.

Definition 3.3 (Region) Let SDd be a sequence diagram. A region over

SDd is a triple R = (Ir, Tr, Fr) of instances, local transitions and interaction

fragment identifiers, such that Ir ⊆ Id, Tr ⊆ Td and Fr ⊆ Fd.

A region over a sequence diagram d as defined above consists of an arbitrary

subset of instances, local transitions and interaction fragments. Consider SDP

shown in Figure 3.12. The region 1 can be formally represented as RR =

(IR, TR, FR) where IR = {b, c}, TR = {t1, t2, t3} and FR = ∅. Similarly, region

2 can be represented as RT (IT , TT , FT ) where IT = {a1, a2}, TT = {t1, · · · , t5}

and FT = {x} : f(x) = (alt, 2).

In order to define a more specific notion, we are interested in regions that

are designate fragment and order-closed. A fragment-closed region means that

a fragment is always completely enclosed in the region. On the other hand,

the order-closed regions are such that if two events of a certain instance belong

to a region, so do all intermediate events. We define a fragment-closed and

order-closed region separately as follows.

Definition 3.4 (Fragment-closed Region) Let SDd be a sequence diagram,

and R = (Ir, Tr, Fr) a region over SDd. R is fragment-closed iff for any id ∈ Fr

and t = (e1, m, e2) ∈ Td with e1, e2 ∈ g(id, n) for some n ∈ N then t ∈ Tr.

For the next definition, assume that a local transition t contains an event

e iff t = (e,m, e1) or t = (e1, m, e). A region R = (Ir, Tr, Fr) has an associated

set of region events Er and region gate events EGr
defined as follows: for
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any e1, e2 ∈ Er with e1, e2 ∈ Edi and i ∈ Ir. For all e3 ∈ Edi such that

e1 <d e3 <d e2 necessarily e3 ∈ Er. When the corresponding instance of a

source or target event of a local transition does not contain in the region, then

the event becomes a gate.

Definition 3.5 ( Region Event) Let SDd be a sequence diagram, and R =

(Ir, Tr, Fr) be a region over SDd. An event e ∈ Ed is a region event for R

iff there is a t ∈ Tr containing e and e ∈ Edi with i ∈ Ir or e ∈ g(id, n) for

some id ∈ Fr and i ∈ Ir. If e is contained in a local transition t ∈ Tr but

e ∈ Edi : i /∈ Ir we call the event a region-gate event. The set of region events

(region-gate events) associated with R is given by Er (EGr
).

Definition 3.6 (Order-closed Region) Let SDd be a sequence diagram, and

R = (Ir, Tr, Fr) be a region over SDd. R is order-closed iff for any t ∈ Tr with

t = (e1, m, e2) where e1 ∈ Edi, e2 ∈ Edj for some i, j ∈ Id then i, j ∈ Ir and

e1 <r e2 ∈ Eri, if e1 <d e <d e2 then e ∈ Eri.

Consider SDP given in Figure 3.17. The regions indicated correspond

to R1 = ({b, c}, {t2, t3, t4}, ∅), and R2 = ({a1, a2}, {t0, t1, t2, t5, t6}, {id}) :

tk = (ei, mk, ej) ∈ Tr).

R1 = ({b, c}, {t2, t3, t4}, where t2 = (e7, m2, e8), t3 = (e5, m3, e6), and t4 =

(e9, m4, e10) is both fragment-closed and order-closed. R1 is trivially fragment-

closed as it does not contain an interaction fragment such that Fr1 = ∅. R1 is

order-closed because Er1 = {e5, e6, e8, e9, e10} and there is no event e in EPb
or

EPc
in between any of the events of Er1 .

Similarly, R2 = ({a1, a2}, {t0, t1, t2, t5, t6}, {id}) is fragment closed by defi-

nition as the region contains all the local transitions within the fragment alt.

Also R2 is order-closed because Er2 = {e1, e2, e3, e4, e7, e11, e12, e15, e17, e19, e20}.

R2 is closed for causality in a1 and a2. Here, EGr2
= {e8, e16, e18} are region-

gate events.
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Figure 3.17: A sequence diagram with fragment-order closed regions.

Fragment and order-closed regions are called closed regions for short. A

closed region over a SD d is itself a SD contained in d with sets and relations.

For example, consider the sequence diagrams SDP and SDR shown in Fig-

ure 3.12 and Figure 3.13, respectively. The region R1 = ({b, c}, {t2, t3, t4}, ∅),

in SDP determines the sequence diagram SDR. Consider the event e7 ∈ EPa2

where a2 /∈ Ir. Here, we consider e7 as a gate event for the local transition

t2 = (e7, m2, e8) in SDP . This reflects in SDR where the corresponding event

e
′

3 belongs to an environment instance.

The notion of a closed region defines as follows.
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Definition 3.7 (Closed Region SD) A closed region R = (Ir, Tr, Fr) over

SDd determines a sequence diagram SDr = (Ir, Er, <r,Mr, Tr, Fr, refr) where

Er = {e1, e2 | t = (e1, m, e2) ∈ Tr} ∪
⋃

f∈Fr,i∈Ir
gi(f) satisfying if e ∈ Er ∩

Edi and i 6∈ Ir then e ∈ Ers for some s ∈ Env, <r⊆<d, Mr = {m | t =

(e1, m, e2) for some t ∈ Tr}, and refr ⊆ refd.

Further, consider a sequence diagram SDR (see Figure 3.13) that is deter-

mined by a closed region R over a sequence diagram SDP (see Figures 3.12).

Here, SDR is the reference in a sequence diagram SDS (see Figure 3.16), where

SDS is behaviourally equivalent to SDP . Generally, the reference is either an

interaction use or a lifeline decomposition. Here, we assume that if a region

is such that it contains all the events for the instances in the region (i.e., for

any i ∈ Ir, Eri = EPi
) then it corresponds to a lifeline decomposition, oth-

erwise it is an interaction use. For interaction use, we add a new interaction

fragment identifier to x ∈ FS such that f(x) = (ref, 1) and ref(x) = R. For

lifeline decomposition, we add a new instance to j ∈ IS such that this instance

has its (internal) behaviour decomposed in a referred diagram ( see SDT in

Figure 3.14) given by refS(j) = T .

3.1.7 Additional Functions in a Sequence Diagram

An additional function useful for defining our transformation rules later on is

next indexed over instances in I+ and defined over events and state locations.

This function returns the next state locations/events (generally a singleton)

for a given event/state location respectively.

Consider SDF with alternative behaviour shown in Figure 3.18. The

next function is defined as follows: nexta(S0a) = {e1}, nexta(e1) = {S1a},

nexta(e3) = {S2a, S5a}, nexta(S4a) = {e11}, etc. Here the next state location

of the event e3 can be S2a or S5a based on the operand guard that evaluates
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to true. Also, for the end state locations, nexta(S7a) = {⊥}. We sometimes

write nexti(e) = s instead of nexti(e) = {s} for simplicity.

We define the next function as follows.

Definition 3.8 (Function: next) Let SD be a sequence diagram with set

of state locations S. We define nexti as an I+-indexed function defined over

state locations and events such that nexti : S
i ∪Ei → 2S

i∪Ei. Let id ∈ F be an

arbitrary interaction fragment in the diagram with f(id) = (o,m), and j be a

natural number ranging 1 ≤ j ≤ m.

nexti(x) =















































































































































































































{min(Ei)} ⇐ x ∈ Si
ini

{µi(m,x)} ⇐ x ∈ Ei and µi(m,x)

defined for some m ∈M

{s1, . . . , sm} ⇐ x ∈ Ei,

x = min(gi(id)) and

sj = min(λi(id, j))

{θi(id)} ⇐ x ∈ Ei,

x = max(gi(id)) and

o 6= break

{max(gi(id))} ⇐ x ∈ Si
int,

x = max(λi(id, j)) and

o 6= {par, loop}

{e
′

} ⇐ x ∈ Si
int, not covered

by the cases above with

µi(m, e) = x for some

m ∈M,e ∈ Ei and

e→ e
′

⊥ ⇐ x ∈ Si
end

For behaviour with par, loop and break interaction fragments we define

nexti as follows:
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nexti(x) =


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
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
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

{e
′

} ∪
⋃

p 6=j g(id, p) ⇐ x ∈ Si
int, x ∈ λi(id, j),

o = par,

x 6= min(λi(id, j)),

µi(m, e) = x for some

m ∈M,e ∈ Ei and

e→ e
′

{min(gi(id)) ∪max(gi(id))} ⇐ x ∈ Si
int,

x = max(λi(id, j)) and

o = loop

{θi(id
′

)} ⇐ x ∈ Ei,

x = max(g(id)i),

o = break,

f(id
′

) = (loop, 1) and

h(id
′

, 1) = id

The definition states that the next state location for an event is generally

given by a singleton containing the state location determined by µ applied to

the event if defined. If µ is not defined then either e is a beginning or an

end event for an interaction fragment. If it is the beginning of an interaction

fragment with m operands then the next state locations are given by the set

of all first state locations for each operand. If it is an end event then the next

state location is determined by θ.

Conversely, the next event for a state location depends on where the state

location is. If it is inside a par fragment (but not the first state location of one

of its operands) then the set of next possible events is more complex and given

by the union of all events in the other fragments plus the next possible event

within the operand. For example, consider the SD with parallel behaviour

shown in Figure 3.21. There are two possible next events for the state location

S3a such that nexta(S3a) = {e7, e9}.
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Figure 3.18: Illustrating the next function.

When the state location is the maximum of a loop fragment, there are

two possible next events given by minimal or maximum event of the fragment

based on the guard of the fragment. Also, when the fragment is a break nested

within a loop fragment, the next state location of the maximum event of the

break fragment is given by the θ of the loop fragment. For example, consider

SD shown in Figure 3.19. Here, nexta(S6a) = {e1, e13) and nexta(e9) = S7a.

In all other cases, there is a unique next event given by: minimal event

(for the initial state location), end event of the fragment (for the last state

location in an operand of a non-par fragment), or the immediate following

event (for all other cases). There is no next event for an end state location and

this is applicable for state locations belong to both object and environment

instances. For example, in Figure 3.21 nexta(S2a) = {e5}, nexta(S5a) = {e9},

nexta(S4a) = {e9, e11}, nexta(S7a) = {⊥} and so on.

Recall SDM shown in Figure 3.20 with reference behaviour. There is a

unique next state location for a given event that belongs to an environment
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Figure 3.19: A sequence diagram with break behaviour.

instance. Such that nextb(S0b) = {e2}, nextb(e2) = {S1b}, nextb(e3) = {S2b},

nextv(e6) = {S3e}, nextv(S3e) = {⊥}, so on for v ∈ Env.

Similarly, we can define a function previousi : S
i ∪ Ei → 2Si∪Ei, to extend

the functions associated with the formal representation of a sequence diagram.

However, we do not describe it in details here as it is not essential for this

formal model. The following definition states the relationship between the

next and previous function.

Definition 3.9 Let f(id) = (o,m), e1, e2 ∈ gi(id, n) be such that e1(e2) is

the minimal (maximal) event in the set of events associated with the operand

n ≤ m of id for instance i, and e0(e
′

0) be the beginning(end) event of id for

instance i, that is e0, e
′

0 ∈ gi(id). We can define the relationship between the

next and previous function as follows:

λi(id, n) =



















{s1, s2} ⇐ nexti(s1) = e1, previousi(s2) = e2,

previousi(s1) = e0, nexti(s2) = e
′

0, n ≤ m

⊥ ⇐ otherwise
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Figure 3.20: A sequence diagram with reference behaviour.

Consider SDM shown in Figure 3.20. The relation between next and

previous can be explained as follows: nextb(S0b) = {e2}, nextb(e2) = {S1b}.

previousb(S1b) = e2 and previousb(e2) = {S0b}.

3.1.8 Trace in a Sequence Diagram

The notion of chains of interleaved state locations and events can be obtained

for each object involved in the interaction and derived from the function next as

expected. Interleaving means the merging of two or more traces such that the

events from different traces may come in any order in the resulting trace, while

events within the same trace retain their order. (Trace is defined later on).

For example, consider SDF in Figure 3.18 with alt behaviour, the instance

a contains two chains S0a · e1 · S1a · e3 · S2a · e5 · S3a · e7 · S4a · e11 · S7a and

S0a · e1 · S1a · e3 · S5a · e9 · S6a · e11 · S7a.

Instead of an alt fragment, the parallel behaviour in Figure 3.21 has differ-
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Figure 3.21: Illustrating chains.

ences in the next definitions. For example nexta(S4a) = {e9, e11}) and we can

derive three chains for instance a given by S0a · e1 · S1a · e3 · S2a · e5 · S3a · e7 ·

S4a · e9 ·S6a · e11 ·S7a, S0a · e1 ·S1a · e3 ·S5a · e9 ·S6a · e5 ·S3a · e7 ·S4a · e11 ·S7a, and

S0a · e1 ·S1a · e3 ·S2a · e5 ·S3a · e9 ·S6a · e7 ·S4a · e11 ·S7a, These examples illustrate

that the initial event of a fragment (here e3) has several next state locations

(S2a and S5a). However the state locations inside a par fragment have several

possible next events. For example nexta(S3a) = {e7, e9}.

In particular, the function next uses to define notions of SD trace and

language. We return to such considerations later and use them to prove the

correctness of model transformations in Chapter 7.

The idea of chains on state locations and events can be used to derive a

notion of trace over message labels. The formal representation of the notion

of a chain can be defined as follows.
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Definition 3.10 (Chain) Given a sequence diagram SD and associated set

of state locations S, a chain c for i ∈ I is a finite sequence of interleaved

state locations and events of i such that c = s0 · e · · · · · sj · e
′

· sk · e
′′

· · · · · sf

where s0 ∈ Si
ini, sf ∈ Si

end, sj, sk ∈ Si
int, e, e

′

, e
′′

∈ Ei, e = min(Ei), e
′

∈

nexti(sj), sk ∈ nexti(e
′

) and e
′′

∈ nexti(sk). Further, for an arbitrary event in

a chain, say e1, if e1 = max(g(id)i) with f(id) = (par,m) then for all events

r ∈ g(id) with r 6= e1, r must occur in the chain before e1.

From a chain a sequence of message labels over M can be obtained as fol-

lows: for every event e ∈ Ei in a chain, if µi(m, e) is defined then take m

and move to the next event, else move to the next event in the chain. Conse-

quently, the chains in Figure 3.18 and Figure 3.21 correspond respectively to

the following sequences of message labels: for the alt case m1 · m2 · m3 and

m1 ·m4, for the par case m1 ·m2 ·m3 ·m4, m1 ·m4 ·m2 ·m3, and m1 ·m2 ·m4 ·m3.

Generally, a trace is a sequence of events ordered by time that can be

partial or total ordered [Micskei and Waeselynck, 2010]. A trace describes the

information about a list of message exchanges corresponding to a system run.

The trace-semantics describe the semantics of interactions.

We define the alphabet L1 of a sequence diagram SD over the set of message

labels M . The associated language L(SD), for a set of legal traces of the SD

is defined as follows.

Definition 3.11 (Trace) A trace of a sequence diagram SD with set of state

locations S is a possibly infinite word w, w = m1 ·m2 ·m3 . . . over the alphabet

L1 iff there exists a chain c of state locations and events for some instance

i ∈ I+. We can derive w from c by considering the message labels associate

with the local transition that corresponds to an event such that m = l(t) where

t = (e,m, e
′

) for e ⊂ c .
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Definition 3.12 (Language) A language of SD is the set L1(SD) of words

over the alphabet L1, where L1(SD) = {W | W is a maximal trace of SD}. A

trace is maximal if it is not a proper prefix of any other trace.

The formal representation for a UML 2 SD described in this chapter is

flexible to extend to other associated formal considerations. This may include

different variants of a SD or different model transformation approaches such as

incremental transformation, parametric transformation, and so on. (described

in Chapter 6). The next sub-section 3.1.9 describes the formal representation

for two variants associated with sequence diagrams.

3.1.9 Variants of a Sequence Diagram

For certain kinds of systems we may want to add (and verify) quantitative tem-

poral constraints over an interaction. This section describes time and stochas-

tic aspects associated with UML2 sequence diagrams and extends the formal

semantics defined in Section 3.1.5 with time and stochastic constraints.

UML 2 standard [Arlow and Neustadt, 2005,Douglass, 2004,OMG, 2011a]

describes time aspects associated with SDs using parameterised messages and

assigning time stamp on event occurrences. Also, there are notion of a timers

and a system clock that can produce interrupt events. Also, there is a textual

language within UML called Object Constraint Language (OCL) that can

be used to capture temporal constrains such as the specification of deadlines,

durations, response times, delays, etc. if extended appropriately. Indeed, there

are real-time extensions of OCL [OMG, 2006,Garousi, 2010,Lano, 2009].

The timing aspects associated with a SD can be used to indicate the start

time, the time taken by an interaction, or the time interval between event

occurrences on lifelines. In a SD, timing constraints bound the occurrence

of (pairs of) events. In this thesis, we only allow two kinds of constraints:
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between events from different lifelines if the events are associated with a local

transition, or between the consecutive events on the same lifeline. For example

consider SDK in Figure 3.22. The constraint {0..2} denotes the duration of

a communication between two instances that bounds the occurrence of the

corresponding send and receive events of the message (t = (e1, m1, e2)). A

further example is a timing constraint {1..3} between events e6, e9 on the

same lifeline which imposes a constraint on the behaviour of the corresponding

instance.

Timing constraints are usually given by a number to indicate a fixed delay

or time intervals (with upper and lower bounds) to indicate an interval delay

[Ameedeen et al., 2011,OMG, 2011a]. Examples of possible notation include

{n} for a fixed delay of n time units, and {n1..n2} for an interval delay between

n1 and n2 time units, where n, n1, n2 ∈ R. Further, the timing constraints

can be specified using both integer and real numbered values. The formal

representation of timing aspect of a SD can be introduced using a labelling

function on events in the diagram. We define timing annotations as follows.

Definition 3.13 Let SDd be a sequence diagram. A timing function over SDd

is given by timeSDd
: E ×E → R

+
0 ×R

+
0 and such that timeSDd

(e1, e2) is only

defined if e1 < e2 ∈ Ei for some i ∈ I+ or there is a local transition t ∈ T such

that t = (e1, m, e2). A set of timing annotations T over SDd is given by T =

{τ | τ = (e1, e2, timeSDd
(e1, e2)) with e1 < e2 ∈ Ei or τ = (t, timeSDd

(e1, e2))

if there is a t = (e1, m, e2) ∈ T}.

Figure 3.22 shows an example of a sequence diagram SDK with two tim-

ing annotations, T = {(t1, [0, 2]), (e6, e9, [1, 3])}. That is the local transition

t1 = (e1, m1, e2) is associated with a timing constraint given by the function

timeSDk
(e1, e2) = [0, 2]. Also, as specified by the diagram, the interval between
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Figure 3.22: A sequence diagram with time and stochastic annotations.

the events e6 and e9 within the loop interaction fragment is specified using the

function timeSDk
(e6, e9) = [1, 3].

In addition, SDs can be modelled with stochastic delays specified by prob-

ability distributions. Such approaches are commonly used for performance

evaluation [Bowles and Kloul, 2010,Emadi and Shams, 2009a,Garousi, 2010,

Merseguer and Campos, 2004]. For most models this corresponds to having

time in the transitions and the enabling time of such transitions specified by

a distribution. The stochastic annotations for a SD considered in this thesis

are given as rates over local transitions. The rate information corresponds to

the movement of an object between two instances and can be used to capture

performance aspects of a system.

A rate can be any positive real number (determining the negative exponen-

tial distribution) or the distinguished symbol > (indicate as unspecified). The

rate is specified as R
+
> for the set of positive real numbers together with the

symbol >. Local transitions denote communication between two instances and
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each instance can constrain the delay of the communication. Local transitions

can therefore be associated with a pair of rates (r1, r2) where r1 corresponds

to the rate associated with the sender and r2 to the receiver. If one of the

rates is >, the corresponding instance is passive, and the rate of the transition

is uniquely determined by the other instance. If both rates are specified, it

is usual to take the minimum of both as the transition rate that gives the

synchronised rate associated with the interaction. This section introduces a

labelling function on a local transition to indicate the rates associated with the

sending and receiving instances. We define stochastic annotations as follows.

Definition 3.14 Let SDd be a sequence diagram. A rate function over SDd

is given by rateSDd
: T → R

+
> × R

+
>. A set of stochastic annotations S over

SDd is given by S = {σ | σ = (t, rateSDd
(t)) with t = (e1, m, e2)}.

Consider the example shown in Figure 3.22, where SDK has stochastic

annotations given by S = {(t3, (r1, r2))}. Here, the local transition t3 =

(e8, m3, e9) is associated with stochastic aspects, where the sending rate is

r1 and the receiving rate is r2, r1, r2 ∈ R
+
>. This is given by the function

rateSDk
(t3) = [r1, r2].

As the formal model of the SD is extended with the time and stochastic

aspects, new syntax and semantics can be added to the model for enhancing

the expressiveness power of the model. The next section describes Interaction

Overview Diagrams that facilitate to represent the hierarchical view of a SD

as a possible extension to the discussed model.
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3.2 Interaction Overview Diagram

Interaction Overview Diagrams (IODs) are introduced in UML 2 to improve

the expressiveness and the structure of a given system design, by visualising

the overall control flow of a system. An IOD provides a high-level structuring

mechanism for the possible interactions in a system by combining sequence

diagrams and activity diagrams (ADs) [Pilone and Pitman, 2005,OMG, 2011a].

IOD is a special and restricted kind of AD. Semantically, however, IODs and

ADs are given different interpretations. IODs follow trace semantics similar

to SDs. However, IODs are used to model the intra-object behaviour and

SDs are used to model the inter-object behaviour. IODs are used to compose

scenarios through sequence, iteration, concurrency or choice without showing

all the detail of the lifelines and messages [Pilone and Pitman, 2005, OMG,

2011a]. Hence, IODs are used to reduce the complexity of a design model and

represent a clear picture of the control flow of the system.

This section briefly describes the annotations and the formal representation

of an IOD that need to define the hierarchical structure of a sequence diagrams

described in Section 3.1. This section does not describe all the features of an

IOD, as they are out of the scope of this thesis and will be left for future work.

3.2.1 Main Notations of an Interaction Overview Diagram

IOD uses activity diagram notations to define the control flow of the inter-

actions, where the activity nodes are either inline interactions (SDs) or inter-

action uses (ref interaction fragments). IOD describes interactions in such a

way that the messages and lifelines are abstracted away. Here, an IOD does

not itself show the involved lifelines or messages even though the lifelines may

occur explicitly within inline interactions in the activity nodes.

The high-level structure of an IOD composes scenarios through mechanisms
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such as sequence, iteration, concurrency or choice. In order to trace these

behaviours, IOD incorporates activity diagram notations such as fork, join,

decision and merge nodes. However, branching and joining of branches in an

IOD must be properly nested, which is more restrictive than in an activity

diagram.

Figure 3.23: An example of an interaction overview diagram.
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The main elements of an IOD are shown in Figure 3.23 and can be de-

scribed as follows. An IOD is represented using a rectangular frame around

the diagram with a name in a compartment in the upper left corner. There

is an entry point and an exit point for an IOD named initial node and final

node, respectively. Generally, an initial node contains tokens that facilitate

the execution between the nodes. (We do not consider tokens in detail in this

thesis). The initial state is shown as a small solid filled circle and the exit point

is shown as a small filled circle within a large circle. An IOD may contain more

than one final node, such that the activity flow stops when it reaches to the

first final node.

The control flow within the diagram is shown using directed arrows between

the nodes. A SD of any kind or an interaction use may appear inline as the

activity nodes of an IOD for activity invocation. When the node is an inline

interaction (see SDB), the behaviour within the interaction will be executed.

When the node is an interaction use (eg. A,C,D,E, F ), the inline interaction

will be replaced by the occurrence specified using the name of the referred

interaction by a replica of the interaction.

An IOD contains a set of control nodes that supports the control flow of

the model (described in Figure 3.23). A fork node is a control node that splits

a flow into multiple concurrent flows. That is, it has a single incoming flow

and two or more outgoing flows, where the incoming tokens are offered to all

outgoing flows (edges). This indication of parallel behaviour is represented by

a solid bar with one incoming edge and two or more outgoing edges.

Conversely, a join node is another type of control node that synchronises

a number of incoming flows into a single outgoing flow. Here, each incoming

control flow must present a token to the join node before the node can offer a

single token to the outgoing flow. This is represented by a solid bar with two
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or more incoming edges and one outgoing edge. Further, this branching and

joining behaviour of and IOD must be properly nested.

A decision node is another control node that represents alternative inter-

action behaviour. This has one incoming flow and two or more outgoing flows.

Here, the outgoing flows are guarded, which gives them a mechanism to accept

or reject a token. The edge that is actually traversed is selected based on the

evaluation of the guards on the outgoing edges. This alternative behaviour

is shown using a diamond shaped symbol and the condition statements are

represented within the notation [ ].

A merge node is another control node that brings together multiple alter-

native flows and it corresponds to a decision node. It is not used to synchronise

concurrent flows, but to accept one among several alternative flows. A merge

node has multiple incoming edges and a single outgoing edge, and represents

using a diamond shape. In an IOD there is a merge node corresponds to each

decision node and they should be properly nested.

Moreover, an IOD may contain constraints expressed within the notation {

} to represent semantics such as the time duration between two nodes [Pilone

and Pitman, 2005,OMG, 2011a].

Consider the IOD represented in Figure 3.23. The execution of the dia-

gram starts with an interaction use that refers the interactions of the sequence

diagram A. This is followed by weak sequencing B with the message m, which

is shown as an inline interaction. The time duration between the end of inter-

action A and the start of interaction B is indicated as {0..2}, where 0 is the

lower bound and 2 is the upper bound. Then there is an alternative behaviour

as we find a decision node with constraints on each outgoing edges.

Here, based on the guard condition that evaluates true, either interaction

C or D is selected for the execution. Then a merge node brings together
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the alternative flows and directed to a fork node. Along that control flow, a

parallel execution happens with the interactions E and F . Finally, the flows

are joined and direct towards the final node.

(a) (b)

Figure 3.24: The nested behaviour of the control nodes (a) correct (b) incor-

rect.

Further, an IOD preserves the nested behaviour of the control nodes within

its control flow. In other words, for each fork node there is a corresponding

join node and for each decision node there is a corresponding merge node.

Figure 3.24 (a) and (b), show a correct and incorrect nested behaviour of

the control fragments, respectively. In Figure (a) the fork and join nodes are

properly nested, whereas in Figure (b) they are not.

3.2.2 Formal Model of an Interaction Overview Diagram

This sub section describes a formal model of an IOD. The definition considers

an IOD with the main elements that we use for the model transformations

defined in Chapter 6.
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We define an IOD as follows:

Definition 3.15 (Interaction Overview Diagram) An Interaction Overview

Diagram I is a structure I = (N,E, t, l, Exp) where

• N is a finite set of nodes with two categories: activity nodes and control

nodes, such that N = Nact ∪Ncnt;

Nact = {R ∪ S} is a disjoint union of set where,

– R is a finite set of nodes representing interaction use;

– S is a finite set of nodes representing inline interaction;

Ncnt = {B ∪ {L ∪ F ∪D}} is a disjoint union of set where,

– B is a singleton that indicates the initial node;

– L is a finite set of final nodes;

– F = {Fbeg, Fend} is a finite set of nodes with parallel behaviour,

where Fbeg is a fork node and Fend is the corresponding join node;

– D = {Dbeg, Dend} is a finite set of nodes with alternative behaviour,

where Dbeg is a decision node and Dend is the corresponding merge

node;

• E is a finite set of directed edges and may contain a constraint;

• t : E → (N ×N) \ {(N ×B) ∪ (L×N)} is a total function that assigns

a pair of nodes (a source and a target node) to a directed edge; t is not

defined for the situations where B becomes the target node and L becomes

the source node;

• l : Nact → N is a labelling function, which associates a SD name for an

activity node;
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• The corresponding nodes in F and D are such that

– min : D → Dbeg;

– max : D → Dend;

– min : F → Fbeg;

– max : F → Fend;

– c : (Fbeg ∪ Dbeg) → 2E is a total function which assigns a set of

outgoing directed edges to a fork node or a decision node, respectively

and c : (Fend∪Dend)→ 2E is a total function which assigns a set of

incoming directed edges to a join node or a merge node, respectively:

for d ∈ Dbeg, d
′

∈ Dend, f ∈ Fbeg, f
′

∈ Fend the corresponding

cardinalities are same such that |c(d) = c(d
′

)| and |c(f) = c(f
′

)| ;

– r : (D ∪ F ) → 2Nact is a function that associates a set of activity

nodes to a alternative or parallel behaviour;

• Exp is a finite set of expressions such that guard : E → Exp is a partial

function that associates an expression to an edge, where t(e) = (d, n) for

e ∈ E, d ∈ Dbeg, n ∈ N \ {B};

An IOD I is described by a set of nodes N and directed edges E that

show the control flow between the nodes. For example, consider the IOD

shown in Figure 3.25. There are mainly two kinds of possible nodes: activity

nodes Nact = {rA, sB, rC , rD, rE, rF} that represent the interactions and

control nodes Ncnt = {b, d, d
′

, f, f
′

, l} that shows the controlling features such

as synchronisation. This distinction can be explicitly referred as N = Nact ∪

Ncnt.

The interaction use nodes rA, rC , rD, rE, rF ∈ R and inline interactions

sB ∈ S, nodes are considered as activity nodes and the nodes fork (f ∈ Fbeg),
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join (f
′

∈ Fend), decision (d ∈ Dbeg), merger (d
′

∈ Dend), initial (b ∈ B) and

final (l ∈ L) are considered as control nodes. The interactions within the IOD

starts with the interaction use rA followed by the inline interaction sB. The

labelling function l gives the name of the SD, which is referred by a given

activity node such that l(rA) = A, l(sB) = B, etc.

Figure 3.25: An example of an interaction overview diagram.
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The directed edges E = {e1, · · · , e13}, link the nodes as defined by the

function t. This function returns the source and the target node pair for a

given edge, to maintain the control flow of the model. Here, the node B never

becomes a target and the node L never becomes a source node. The function

t defines the source and target nodes for each edge such that t(e2) = (rA, sB),

t(e3) = (sB, d), etc.

The function c gives the incoming edges of the join and merge nodes; and

the outgoing edges of the fork and decision nodes. For example, outgoing edges

of the decision node d is given by the function c such that c(d) = {e4, e5}. Since

the control nodes are properly nested, for a given (fork, join) node pair and

for a given (decision, merge) node pair, |c(f) = c(f
′

)| and |c(d) = c(d
′

)|,

respectively for f ∈ Fbeg, f
′

∈ Fend and d ∈ Dbeg, d
′

∈ Dend.

An expression is associated with each outgoing edge of the decision node

given by the function guard in such a way that guard(e4) = [x == 1]. These

branch conditions are used in order to distinguish between different possible

executions. Here, based on the guard condition that evaluates true, the control

flow executes the interaction rC or rD and the merge node d′ brings together

the alternative flows and directs to the fork node f .

The fork operator specifies that the two main paths executed by the system

are in parallel; here a parallel execution happens with the nodes rE and rF .

The join node f
′

synchronises the control flow and directs towards the final

node. Further, for alt ∈ D = (Dbeg, Dend), r(alt) = {rc, rd} and for par ∈

F = (Fbeg, Fend), r(par) = {re, rf}. For an IOD I, we write begin(I) = B and

last(I) = L, which indicates the initial and final node, respectively.

We define an additional function next over nodes and directed edges that

facilitates to define the transformation rules in Chapter 6. This function re-

turns the next edge or node for a given node or edge, respectively.
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Definition 3.16 (Function: next) Let an IOD contains a set of nodes N

and edges E. The function next is defined over nodes and edges such that

next : N ∪ E → 2N∪E.

next(x) =































































































{e
′

} ⇐ x ∈ N = {Nact, B, Fend,Dend}

and e
′

∈ E such that

t(e
′

) = (x, ni) for some ni ∈ N

{e1, . . . , en} ⇐ x ∈ (Fbeg ∪Dbeg), ei ∈ E, i ∈ N

where c(x) = {e1, . . . , en} suchthat

t(ei) = (x, ni) for some ni ∈ N

{n
′

} ⇐ x ∈ E and n
′

∈ N such that

t(x) = (ni, n
′

)for some ni ∈ N

⊥ ⇐ x ∈ L

The definition states that the next node for an edge is generally given by

a singleton containing a node. This node is the target node associated with

the edge and can be determined by applying the function t to the edge. For

example, in Figure 3.25 next(e1) = rA, next(e2) = sB, so on. Also, the next

node of an edge can be determined by its target node such that t(e3) = (sB, d)

and next(e3) = d.

Conversely, the next edge for a node depends on its type, if it is a control

node. When the node is a fork node or a decision node, the set of next possible

edges are given by the union of all outgoing edges such that next(d) = {e4, e5}

and next(f) = {e9, e10}. Here, the set of edges can be determined by applying

the function c to the corresponding node in Fbeg or Dbeg such that c(f) =

{e9, e10}.

When the control node is a final node L, the function next is not defined,

as there are no elements after the final node. For all other nodes, there is a

unique next edge for a given node such that next(b) = e1, next(rA) = e2, so

on.
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Similarly, we can define a function previous : N ∪ E → 2N∪E , to extend

the functions associated with the formal representation of an IOD. Although

the definition is not essential for this formal representation, we include the

definition as follows for the completion of this section.

Definition 3.17 (Function: previous) Let an IOD contains a set of nodes

N and edges E. The function previous is defined over nodes and edges such

that next : N ∪ E → 2N∪E.

previous(x) =































































































{n
′

} ⇐ x ∈ E and n
′

∈ N such that

t(x) = (n
′

, ni) for some ni ∈ N

{e
′

} ⇐ x ∈ N = {Nact, L, Fbeg,Dbeg}

and e
′

∈ E such that

t(e
′

) = (ni, x) for some ni ∈ N

{e1, . . . , en} ⇐ x ∈ (Fend ∪Dend), ei ∈ E, i ∈ N

where c(x) = {e1, . . . , en} suchthat

t(ei) = (ni, x) for some ni ∈ N

⊥ ⇐ x ∈ B

Similar to the function next, the function previous gives the previous node

or edge for a given edge or node, respectively. There is a unique previous

node for a given edge and the node can be determined as the source node,

by applying the function t to the edge. In Figure 3.25, previous(e1) = b and

t(e1) = (b, rA).

When the node is any activity node, a fork node, a decision node or a final

node; the function previous returns a singleton that contains an edge. When

it is a join node or a merge node, there may have one or more associated

previous edges. In this case, the function previous returns the set of previous

edges associated with the node such that previous(d
′

) = {e6, e7}, d
′

∈ Dend.

This can be determined by applying the function c to a join or merge node
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such that c(d
′

) = {e6, e7}. When the node is an initial node, the function

previous is not defined.

The next and previous functions over nodes and edges can be described

as follows. next(b) = {e1}, next(sB) = {e3}, next(d) = {e4, e5}, next(e5) =

{rD}, next(l) = {⊥} etc. Similarly, previous(rC) = {e4}, previous(d
′

) =

{e6, e7}, previous (e8) = {d
′

}, so on.

Further, we can derive chains of interleaved nodes with the use of the

function next. Consider the IOD shown in Figure 3.25 with nodes N = {b,

rA, sB, d, rC , rD, d
′

, f , rE , rF , f
′

, l} and E = {e1, · · · , e13}. Since the node d

and f have more than one next edges, we can derive the valid IOD chains over

nodes such as, b·rA ·sB ·d ·rC ·d
′

·f ·rE ·rF ·f
′

·l, b·rA ·sB ·d ·rD ·d
′

·f ·rE ·rF ·f
′

·l,

so on.

In particular, the function next uses to define notions of the IOD chain as

follows. For every edge ej ∈ E and for every node ni ∈ N in an IOD, since

t(ej) = (n(i−1), ni) and next(ej) = ni are defined, take ni and move to the next

edge, for i ∈ N. When a ni ∈ Fbeg, all the other nodes that execute in parallel

should be taken preserving the order within the chain before the corresponding

join node.

The definition 3.18 describes the idea of chains on nodes.

Definition 3.18 (Chain-IOD) Given an IOD and associated set of nodes

N , a chain c is a finite sequence of interleaved nodes such that c = n0 · · · · ·

nj · nk · · · · · nf where n0 ∈ B, nf ∈ L, nj , nk ∈ {R, S,Dbeg, Dend, Fbeg, Fend} ;

where e ∈ E, t(e) = (ni, n(i+1)) such that next(ni) = e and next(e) = n(i+1).

Further, when nj ∈ Fbeg then for all following nodes that executes in parallel

must occur in the chain before nk ∈ Fend.

In an IOD, the control nodes are a convenience introduced to denote the

synchronisation and control flow of the instances within the IOD. These control
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nodes do not add anything to the actual words defined over the IOD, that is

words are obtained from the activity nodes. Thus, from a chain we can obtain

a sequence of nodes nj over Nact as follows: for every node ni ∈ N , take nj and

move to the next activity node. Hence, the notion of a chain uses to define

the notion of IOD trace. For example in Figure 3.25, rA · sB · rC · rE · rF ,

rA · sB · rD · rF · rE , etc. can be considered as the traces of IODM . We define

a trace of an IOD as follows.

Definition 3.19 (IOD-Trace) A trace of an IOD with set of nodes Nact is a

possibly infinite word w, w = n1 · n2 · n3 . . . over the IOD alphabet L2 iff there

exists a chain c of nodes n
′

1 · n1 · · ·n
′

2 · · ·n2 · · ·n
′

n over N where n
′

i ∈ Ncnt and

ni ∈ Nact such that w can be derived from c by removing the control nodes.

Based on the defined formal representation of the IOD, we can define the

associated language L2(IOD). The legal set of traces in an IOD is defined

by the control flow of the activity nodes in the IOD. We define L2 as the

alphabet of an IOD over the set of activity nodes Nact such that L2 = Nact.

The associated language L2(IOD) is defined over the activity nodes for a set

of legal traces of the IOD follows.

Definition 3.20 (IOD-Language) Let a maximal trace be a trace which is

not a proper prefix of any other trace. A language of IOD is the set L2(IOD)

of words over the alphabet L2, where L2(IOD) = {W | W is a maximal trace

of IOD}.

For the formal representation of the IOD we mainly consider an IOD with

only the interaction use nodes and the control flow between the nodes using

directed edges. For simplicity we do not consider the tokens associate with

the nodes. Further, the defined formal model can be extended with time and

stochastic aspects for the future work. Therefore, we do not consider the detail

formal model for an IOD, as it is out of scope of this thesis.
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3.3 Concluding Remarks

This chapter has given a formal representation for the syntax and semantics

of UML2 sequence diagram and possible extension with time and stochastic

aspects. Our formal definition is based on UML standards [OMG, 2011a]

and we have introduced a number of elements which will facilitate the formal

transformation rules given in Chapter 5. Further, this chapter has described

interaction overview diagrams that uses sequence diagrams as its nodes and

captures the hierarchical view of a set of sequence diagrams.
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4 A Formal Model: Coloured Petri Net

As mentioned previously, formal models are important for the specification and

analysis of systems. A formalised design model such as the one introduced in

Chapter 3 facilitates design specification as its notation is clear, accurate and

unambiguous. Design models with a well-defined semantics can be formally

verified for correctness and consistency, and hence give us an assurance that

the systems we develop behave as expected. For a wide range of systems this

is an essential requirement.

This thesis uses coloured Petri nets (CPNs) as the underlying formal model

associated with UML 2 sequence diagrams described in the previous chapter.

Petri nets (PNs) were first developed by Carl Adam Petri as part of his PhD

in 1962 [Petri, 1962]. Since then, PNs have gained much attention and interest

both in research with several conference series devoted to them, and in practice

with numerous applications. PNs have also been extended in many different

ways to capture different kinds of problems more accurately. Notable exam-

ples include the Coloured Petri Net (CPN) introduced by K. Jensen [Jensen,

1981, Jensen and Kristensen, 2009, Jensen, 1997a, Jensen, 1994] where colours

(essentially denoting types) are assigned to tokens and places, and the Predi-

cate/Transition net introduced by Genrich and Lautenbach [Genrich and Laut-

enbach, 1981] which is a high-level PN with a set of first order places called

predicates. Here, the colours can be used to distinguish between object types

and predicates can be used to capture hierarchical relations.

PNs and their extensions have become popular because they combine sim-

ple graphical representations with powerful primitives to model concurrency,

communication and synchronisation [Hamadi and Benatallah, 2003, Silva and

dos Santos, 2004,Chrzastowski-Wachtel et al., 2003,Murata, 1989,Jensen et al.,

2007,Billington and Reisig, 1996,Kristensen et al., 2004]. Moreover, PNs have
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rich tool support for analysis and simulation [Benatallah et al., 2003,Kristensen

et al., 1998,Kounev et al., 2010,Jensen and Kristensen, 2009]. Although, PNs

are rich in theory and have been used in practice in several application do-

mains, they cannot replace other currently more popular and informal mod-

elling languages such as UML. Instead they can be used behind the scenes

and bring their theoretical results and tools as a supplement to existing mod-

elling languages and methodologies. In other words, we can integrate PNs into

commonly used modelling languages with added benefits. Here, we use CPNs

because their colour extension is very natural for capturing object types as we

will describe in more detail later on.

This chapter describes the syntax and semantics of a CPN in accordance

to [Jensen and Kristensen, 2009]. Section 4.1 describes the notions of a CPN

and Section 4.1.1 explains in some detail why CPNs are well suited for our

needs. Next Section 4.2 presents the theoretical details of a CPN. Section 4.3

describes two possible extensions for the defined CPN model with time and

stochastic aspects that facilitate to model real-time and stochastic behaviour

of a system, respectively. The final section provides the hierarchical constructs

for a CPN that allows composition and decomposition of system models.

4.1 Main Notions of a Coloured Petri Net

A CPN is a directed, connected, bi-partite graph with two node types called

places and transitions. Nodes are connected through directed arcs whereby

arcs can only connect nodes of different types. A CPN model of a system

is both state and action oriented. It describes the sub-states (places) of the

system and the operations (transitions) that can cause the model to change

state. Graphically, places are represented by circles, transitions by rectangles,

and arcs by directed arrows connecting places and transitions or vice versa
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[Jensen, 1981,Jensen and Kristensen, 2009,Jensen, 1997a,Jensen, 1994].

Places may contain zero or more tokens, which are usually shown as black

dots. A token represents a mark assigned to a place. A token is associated

with a data value, which is known as a token colour [Jensen, 1997a,Kristensen

et al., 1998] . The colour sets can be constructed using type constructors

(more details are given in Section 4.2). There are atomic colour sets such as

Boolean, Integer and String, and structured colour sets based on the object

instances. A CPN can use different colour tokens to distinguish, for example

the occurrence of the same set of actions by different users. Moreover, each

place has an associated colour type to determine the kind of data that the

place may contain. The associated initial markings of the places describe the

objects associated with the system flow and define the initial configuration of

the system by indicating how many tokens of different types are available.

Each token carries a data value in a given type that may enable a transition

to fire. A transition is enabled, when all the required tokens are available in

each input place that leads to the transition. When an enabled transition fires,

one token is removed from each input place, and passed onto each output place

associated with the transition [Murata, 1989]. Thus, the firing of a transition

results in a state change for the tokens.

Places and transitions constitute the net structure together with directed

arcs. An arc always connects a place to a transition or a transition to a place.

Since the formal model described in this thesis considers both data and con-

trol flow, there is a corresponding place for each object state in the model.

Therefore, the defined CPN model allows only one token to pass through a

place at a time and does not allow multiple arcs between same pair of nodes,

which used to indicate multiple tokens that consumed or produced. Moreover

this thesis extends the notion of arcs with inhibitor arcs [dos S. Soares and
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Vrancken, 2008,Yang et al., 2010,Heiner et al., 2007]. An inhibitor arc con-

nects a place to a transition, and is represented by an arc terminated with a

small circle (instead of an arrow in an ordinary arc). When an inhibitor arc

connects to a transition, the presence of a token in the input place disables the

firing of the transition. The use of inhibitor arcs are described in Chapter 5

when performing the transformations for the negation operator in a sequence

diagram.

Additionally, a transition or an arc may have an associated guard (a Boolean

expression) to represent system interactions such as the execution of a condi-

tional statement. The guard is required to evaluate true, to enable the binding

and to fire the transition. Further, for a system modelled using a CPN, the

transitions are the active part of the system and the places are the passive

part.

Figure 4.1: An example of a CPN.

Consider the basic CPN shown in Figure 4.1. The CPN named A contains

three colours or object types a, b and c, and one token for each object type
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initially in places s0a, s0b and s0c respectively. Furthermore, each place in the

net has a unique object type and can only contain a token of the same type.

CPNA contains four net transitions t0, t1, t2 and t3. The tokens required

for each of the transitions to fire indicates the object type involved in the

interaction (transition). Directed arcs link the places and transitions to show

the control flow of the modelled system. For instance, transition t1 can only

be enabled after transition t0 has fired as it will move the token of object type

b to place s1b.

4.1.1 Motivation for Coloured Petri Nets

As any Petri net, CPNs form a graphically and mathematically defined mod-

elling language appropriate to capture the behaviour of a wide range of sys-

tems [Jensen, 1998]. In a CPN, each token has a type called the token colour

that allows object types and data manipulations [Jensen, 1997a]. Also, with

CPNs it is possible to make hierarchical descriptions [Billington, 2004]. There-

fore, CPNs combine the capabilities of ordinary Petri nets and high-level fea-

tures when modelling systems. Since, CPNs have a clearly defined syntax and

mathematical semantics, a CPN can be formally verified and checked against

dynamic properties that the system it represents should or should not sat-

isfy [Jensen et al., 2007,Mallet et al., 2006,Uzam, 2004,Bernardi et al., 2002].

Generally, PNs with additional features such as colour, time and stochastic

aspects are called high-level Petri nets [van der Aals, 1994,Billington, 2004].

The notion of a colour in a CPN can be used to distinguish between types

(e.g., object types) of places or tokens. Theoretically, CPNs and PNs have

comparable expressive power and as such there is no considerable gain from

using CPNs instead of PNs. Nonetheless, the added colours in CPNs make

models more natural and better structured [Jensen et al., 2007, Jensen and
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Kristensen, 2009]. Ordinary Petri nets have no colours and no mechanisms

for adding structure or hierarchies to the nets. This means that a PN can be

understood as having only one kind of token and a flat net structure. By con-

trast, CPNs are capable of distinguishing different (variable and object) types

as needed in object-oriented system modelling. The variables in a CPN sup-

port the data manipulation between instances. CPNs combine the strengths of

PNs (i.e., modelling primitives for resource-sharing, concurrency, communica-

tion and synchronisation) with the strengths of programming languages [Kris-

tensen et al., 1998,Jensen, 1994,Jensen and Kristensen, 2009].

Moreover, Petri-nets lack a structuring concept, which makes it difficult to

split large models into parts (using either top-down or bottom-up approaches)

and hard to reuse. CPNs have a hierarchical structuring mechanism [Kris-

tensen et al., 1998, Jensen and Kristensen, 2009], which we describe in more

detail in Section 4.4. Additionally, CPNs can be enriched with timing and

stochastic concepts to represent the time taken to execute events and the rate

associated with executions, respectively. More on such extensions with timed

coloured Petri nets (TCPN) [van der Aalst, 1993,Jensen and Kristensen, 2009]

and stochastic coloured Petri nets (SCPN) [Haas, 2002, Zimmermann, 2008]

will be described in Section 4.3.

CPNs are aimed at a broad range of systems including embedded systems

(to analyse real-time and parallel properties), protocol specification (to con-

gestion control, protocol validation, etc.), manufacturing systems (to analyse

failures), business processes (to analyse functional and time properties), and

railway systems (to prevent train collision) [Jensen et al., 2007, Kristensen

et al., 2004, Vanit-Anunchai, 2010]. Particularly, CPNs can model multiple,

independent and dynamic entities in concurrent systems [Jensen, 1998,Reisig

et al., 1985,Billington and Reisig, 1996].
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As a consequence of a rich and well-defined theory, the token flow within

the CPN can be easily simulated to imitate the dynamic and concurrent opera-

tions of the modelled system. Through simulation we can investigate different

scenarios in a CPN and explore the behaviour of the modelled system by fol-

lowing the behaviour of the tokens across the places in the net when transitions

fire. The simulation of a CPN highlights the states of the system (places) and

the events (transitions) that cause the system to change state. Hence, the sim-

ulation of CPN models can be very effective to analyse system properties such

as reachability and liveness. Also formal verifications can be applied to the

CPN model to check for performance, consistency and correctness [Kristensen

et al., 1998,Jensen and Kristensen, 2009].

4.2 Formal Definition

This section presents a mathematical definition of CPNs in accordance to

[Jensen and Kristensen, 2009]. Our definition of a CPN deviates slightly from

the original definition given in [Jensen, 1994, Jensen and Kristensen, 2009]

and is adaptable for our purpose of modelling inter-object communication.

More details are given later in this section. In the following assume the set

of diagram names N of CPN names, and let E be a finite set of environment

instance types.

Definition 4.1 (CPN Formal Model) A coloured Petri net of name d ∈

N is defined by a tuple CPNd = (Σ, P, Tn,M, l, A, node,m, c,X,Exp, status)

where

• Σ is a finite set of object colours and Σ+ = Σ∪E includes the environment

colours;

• P is a finite set of places:
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• Tn is a finite set of net transitions such that Tn = T l
n ∪ T¬l

n ;

• M is a finite set of labels;

• l : Tn → M is a partial labelling function, which if defined associates a

label from M ;

• A is a finite set of arcs and A+ = A ∪ Ain includes the inhibitor arcs

such that A ⊆ (P × T ) ∪ (T × P ) : P ∩ Tn = P ∩ A = Tn ∩ A = ∅;

• node : A→ (P × Tn) ∪ (Tn × P ) is a node function, which maps an arc

to a pair place-transition or transition-place and node : Ain → (P × Tn);

• m : P → N is the initial marking function associating an initial number

of tokens with each place p ∈ P of the net;

• c : P → Σ+ is a colour function associating a colour to a place in the

net;

• X = {Xs}s∈Σ is an Σ-indexed family of sets of local variables such that

type(x) ⊆ Σ;

• Exp is a set of expressions such that guard : Tn ∪ A→ Exp is a partial

function which associates an expression (guard) to a net transition or an

arc;

• status : P → 2{complete,incomplete,safe,unsafe} is a function associating a sta-

tus to a place in the net. By default ∀p ∈ P , status(p) = {complete, safe};

According to the CPN Definition 4.1, colours, places, transitions, labels,

arcs, variables and expressions indicate the elements in the net, whereas the

labelling, node, marking, colour and status functions denote the associations

and properties of the elements in a CPN. The object or environment types in
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a CPN are determined by a colour set Σ+. Separately, the object colours are

represented by Σ and the environment colours are represented by E . Hence,

each type has at least one element in the colour set Σ+. Here, the colours are

used to distinguish between the (object or environment) instances involved in

the interaction.

A CPN consists of finite sets of places, transitions and arcs, denoted by

sets P , Tn, A, respectively. The sets are pairwise disjoint. There is a colour

in Σ+ for each place used in the CPN determining the underlying instance

associated with the place. The colour function c maps each place p, to a type

c(p). The idea is that each place corresponds to a unique object and thus the

colour of a place can be used to identify the type of the object. In this formal

model, mini(p) denotes the minimal (first) place of the colour i and maxi(p)

to denote the maximal (last) place of colour i inside the CPN. Moreover, the

function status applying on a place gives its status. The default statuses of a

place are complete and safe. The notion of status is useful when performing

analysis over a CPN model.

There are two kinds of possible net transitions: transitions with a label

given by the labelling function l, and transitions without labels. This distinc-

tion is also made explicit by assuming disjoint sets Tn = T l
n ∪ T¬l

n . The usage

of labelled and unlabelled transitions is further explained in Chapter 5, when

defining the transformations from a sequence diagram to a CPN. Generally,

net transitions are labelled by the operation name that corresponds to the

message label in a sequence diagram. Sometimes net transitions are labelled

by diagram names instead. Diagram names are used to introduce structure

into a CPN into what is called a hierarchical CPN (cf. Section 4.4). Transi-

tions without labels are a convenience introduced to impose synchronisation

of object instances within a CPN and this will be described in detail when
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defining transformations in Chapter 5.

Moreover, there are two types of possible arcs: ordinary arcs that pass

tokens between places and transitions, and inhibitor arcs that do not pass

tokens. The function node maps each arc into a pair, where the first element

is the source node and the second is the destination node. The two nodes have

to be different kind such that one must be a place while the other a transition.

That is, the arcs link places to transitions or transitions to places as defined by

the function node and describe the control flow within the CPN. Notice also

that the definition as given here does not allow there to be several arcs between

the same ordered pair of nodes. Hence, the set of arcs can be defined as a subset

of the place-transition ordered pairs, such that A ⊆ (P × T ) ∪ (T × P ).

The function m specifies the initial marking of the places in the net. The

number of tokens associated with each place is given by m(p). The colour of

the tokens that pass through a given place has the same colour of that place,

that is c(p).

Further, transitions and arcs may have guards (Boolean expressions) de-

fined by function guard and the expressions use local variables defined in X .

For each variable used in the CPN, there is an associated type in Σ. Additional

functions, type(x) denotes the type of a variable, val(x) gives the value of the

variable, var(exp) denotes the set of variables in an expression and type(exp)

indicates the Boolean type, which contains the elements {true, false} and hav-

ing standard operations. The implementation describes in Chapter 8 uses these

functions for evaluating an expression exp ∈ Exp, and acquiring the associated

variables x ∈ var(exp) with type(x).

The given Definition 4.1 for the syntax of a CPN differs slightly from the

standard definition [Jensen, 1994,Jensen and Kristensen, 2009]. Our definition

of a CPN has been adapted to consider only what is needed when modelling
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object interactions. Consequently, initialisation function and parallel arcs be-

tween nodes have been removed. Additionally, the colour set extends with

environment colours and arcs extend with inhibitor arcs. Also, the definition

includes a set of labels M , a set of variables X and a set of expressions Exp.

The formal representations given in this definition facilitate to both system

design and analysis phases.

Figure 4.2: A CPN with labelled and unlabelled transitions.

Further, the behaviour underlying a CPN can be obtained from a notion

of chain or sequence of execution. A chain in a CPN shows the control flow of

a model as an interleaved places and net transitions. Interleaving means the

merging of two or more chains such that the occurrences from different chains

may come in any order in the resulting chain, while occurrences within the

same chain retain their order. This can be obtained for each object involved

in the interaction and derived using the function node as expected. If no
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concurrency or alternative behaviour is present, there is only one valid chain

for the CPN model. For example, from the CPN model in Figure 4.1 we

obtain the following sequence of places and net transitions for the object b:

S0b · t0 · S1b · t1 · S2b · t2 · S3b · t3 · S4b.

Similarly, consider Figure 4.2 that represents the alternative behaviour with

conditional expressions. The instance b contains two chains: S0b·t1·S1b·talt−beg ·

S2b · t2 · S3b · talt−end · S6b and S0b · t1 · S1b · talt−beg · S4b · t3 · S5b · talt−end · S6b.

The formalisation of the notion of a chain can be defined as follows.

Definition 4.2 (CPN Chain) Given a CPN model CPN and associated set

of places P , a chain c for i ∈ Σ is a finite sequence of interleaved places and net

transitions where c(p) = i: p ∈ P such that c = p0 · t · · · · · pj · t
′

· pk · t
′′

· · · · · pf

where p0 ∈ mini(P ), pf ∈ maxi(P ), pj, pk ∈ P , t, t
′

, t
′′

∈ Tn, such that

node(a1) = (p0, t), node(ak) = (pj, t
′

), node(ak+1) = (t
′

, pk), so on for ak ∈

A : k ∈ N. Further, for an arbitrary unlabelled net transition in a chain with

parallel behaviour, say tpar−end ∈ T¬l
n , then for all net transition tk ∈ Tn before

tpar−end must occur in the chain before tpar−end.

From a chain we derive the notion of trace as in Definition 4.3. The legal

set of traces in a CPN is defined by the execution order of the message labels

of the labelled net transitions. For example, from the chain in the CPN model

in Figure 4.1 we obtain the following sequence of net transition labels: m0 ·

m1 ·m2 ·m3 where mk = l(tk).

We assume that the alphabet L3 of a CPN is defined over the set of net

transition labels M , that is, L3 = M .

Definition 4.3 (CPN Trace) A trace of a CPN is a possibly infinite word

w, w = m1 ·m2 ·m3 · . . . over the CPN alphabet L3 iff there exists a sequence

of places p1 · p2 · p3 · . . . over P of the same colour c ∈ Σ, a sequence of arcs
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a1 · a
′

1 · a2 · a
′

2 · . . . over A, a sequence of transitions σ = t1 · t2 · t3 · . . . over

Tn, and a sequence of labelled transitions t
′

1 · t
′

2 · t
′

3 · . . . over T l
n obtained from

σ by removing the transitions without labels, such that m(p1) ≥ 1, node(ai) =

(pi, ti), node(a
′

i) = (ti, pi+1), and l(t
′

i) = mi for all i ∈ N.

The notion of a CPN trace ignores the net transitions in the control flow

that have no labels. The transitions without labels are a convenience in-

troduced to denote the synchronisation of object instances and Chapter 5 on

model transformations describes this in more detail. Since unlabelled net tran-

sitions do not add anything to the actual words defined over a CPN they can

be ignored.

Consider the CPN model shown in Figure 4.2 that shows a conditional

behaviour. The model consists of three object instances with colours a, b, c ∈ Σ

and a corresponding set of places for each colour. The labelled net transitions

t2, t3 ∈ Tn are guarded with conditions such that guard(t2) = [x == 1]

and guard(t3) = [x == 2], and the firing transition is selected based on the

condition that evaluates to true. Two traces, m1 ·m2 and m1 ·m3 for mk =

l(tk) ∈ M , over the labelled net transitions can be derived from this figure,

that represents the alternative behaviour. Further, the transitions talt−beg and

talt−end are unlabelled net transitions that are used to synchronise the control

flow of the model.

The associated language L3(CPN) of a CPN is described next.

Definition 4.4 (CPN Language) The language for a CPN is given by the

set L3(CPN) of words over the alphabet L3, where L3(CPN) = {W | W is

a maximal trace of CPN}, where a trace is maximal when it is not a proper

prefix of any other trace.

The notion of traces and languages are used in Chapter 7, when establishing

the semantic correctness of the SD-CPN transformation.
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4.3 Extensions of Coloured Petri Nets

This section describes two important extensions of CPNs to add real-time and

probabilities to a model. The extensions covered here are timed CPN (TCPN)

and stochastic CPN (SCNP).

4.3.1 Timed Coloured Petri Net

Time plays an important role in a range of real-time systems where we need to

be able to add real-time constraints on its temporal behaviour. For example,

the correct functioning of a system may depend on the time taken by certain

activities. CPN models defined in Section 4.2 can be extended with a time

concept by defining a Timed CPN. Time aspects are used to handle quantita-

tive time and can be added to CPN models specifying the delays on places and

the time taken by transitions to fire. Many timed extensions of CPNs have

been proposed including Timed CPNs as in [Jensen and Kristensen, 2009].

One common approach to add time to CPNs is by considering the notion of a

timed stamp or time value associated with tokens. In general, tokens carry a

time stamp supporting a time-driven execution of the model. The time stamp

is used to determine the time that a token can or must be consumed by a tran-

sition for it to fire [Jensen, 1997a, Jensen and Kristensen, 2009]. Also Timed

CPNs, or TCPNs for short, use a global clock where the time values are integer

or real.

Our approach here is different. For a CPN as considered in this thesis there

is a unique correspondence between each place in the net and the colour of the

token allowed in that place. Therefore, instead of attaching timing information

on a token, we can attach it directly to a place or a net transition, which

is more natural and also simplifies the presentation. The time constraints

associated with the places and transitions in a CPN model are used to specify
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the delays on each component. Our Definition 4.5 differs from the standard

TCPN definition [Jensen and Kristensen, 2009].

Usually, the firing of a net transition for a CPN is instantaneous. By

contrast, in a TCPN a transition may be associated with a non-zero time value

representing the time it takes to fire the transition. This is done by preventing

the tokens from being sent to the outgoing arcs, until the associated time has

been reached. When the time is specified in a transition as an interval, the

transition can fire at any time that falls within the specified interval. In any

case, we assume the existence of a global clock.

Definition 4.5 gives the denotational semantics of a timed CPN that directly

extends Definition 4.1 of an untimed CPN with a notion of time over places

and/or transitions.

Definition 4.5 A timed CPN model (TCPN) of name d ∈ N is a CPNd =

(Σ, P, Tn,M, l, A, node,m, c,X,Exp, status) and a partial function timeCPN,d :

P ∪Tn → R+
0 ×R

+
0 that associates a time interval to a place or a net transition.

A TCPN is a CPN where the places and transitions may contain a time

constraint given by the partial function time. In a TCPN, a place with a timed

value is called a timed place, and a place without is called an untimed place.

Similarly, a net transition with a time value is called a timed net transition,

and other net transitions are called untimed net transitions. The time value

is given as a pair of non-negative real numbers and represents a time interval

[i, j] where i ≤ j. Notice that if i = j, the values is an exact time value. When

the time values associated with a transition are based on the global clock, the

timed transition is enabled to fire only when the clock is within the specified

interval.

Figure 4.3 (a) shows a CPN model with both timed and untimed places

and net transitions. The timed places and net transitions are associated with
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a time constraint given by the function time. For example, the net transition

t1 contains a time constraint [0, 2] such that timeCPN,K(t1) = [0, 2]. Similarly,

place S3b contains a time constraint such that timeCPN,K(S3b) = [1, 3]. It

shows that, a token may stay in that place for a duration between 1 and 3

time units determined by the global system clock. Further, this CPN model

shows unlabelled net transitions loop − beg and loop − end that are used to

synchronise the control flow of object instances (cf. Chapter 5 for more details).

Figure 4.3: A timed coloured Petri net.

In this thesis, the time aspects in a CPN are presented using a non-

hierarchical CPN models. However, the definition of timing constructs can

be easily generalised to a timed hierarchical CPNs model in a straightforward

way.

A timed CPN model enforces additional constraints on the execution of the

CPN model compared to the corresponding untimed CPN model. Therefore,

a timed CPN model can always be transformed into an untimed CPN model

by removing the time constraints associated with places and transitions. That
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is, the possible occurrence sequence of a TCPN always form a subset of the

occurrence order of the corresponding untimed CPN, such that TCPN ⊆

CPN .

The notion of occurrence sequence in a TCPN can be adapted to the notion

of CPN chain given in Definition 4.2. Here, we inject the additional time

parameters at different places and net transitions to the sequence of interleaved

places and net transitions. For example, from the TCPN in Figure 4.3 following

chain can be obtained for the object a: S0a · (t1, (0, 2)) · S1a · tloopbeg · S2a · t3 ·

S3a · tloop−end ·S4a. Similarly, for the notion of trace in a TCPN can be derived

by adding additional time parameter to the words in the CPN language. This

changes the underlying alphabet accordingly such that, LTCPN = M ∪ time.

4.3.2 Stochastic Coloured Petri Net

In a software system design, different design decisions may have a signifi-

cant impact on the performance of a system. CPNs can be extended with

stochastic information that makes it possible to capture the rates associated

with activities in the system. Stochastic CPNs can be used for simulation-

based performance analysis to measure different performance metrics [Haas,

2002,Zimmermann, 2008].

The CPN model defined in Definition 4.1 can also be extended with stochas-

tic information. This can be done by associating a rate with a net transition

in a CPN to represent the rate at which the net transition fires. A rate is al-

ways a positive real number determining the negative exponential distribution

governing the delay associated with the transition. In contrast, a rate value of

zero can be used to block the succeeding net transition. For our model we do

not consider such scenarios.

We define a stochastic CPN (SCPN) by introducing a rate labelling function
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Figure 4.4: A stochastic coloured Petri net

that associates a rate with a given net transition as follows.

Definition 4.6 A stochastic CPN model (SCPN) of name d ∈ N is a CPNd =

(Σ, P, Tn,M, l, A, node,m, c,X,Exp, status) and a partial function rateCPN,d :

Tn → R
+ that associates a rate with a net transition. The rate determines

the negative exponential distribution governing the delay associated with the

transition.

A SCPN is a CPN with an additional partial function to add stochastic

information to the net. The rate labelling function rateCPN,d associates a rate

value, which is a positive real number, with a net transition. In a SCPN, net

transitions send the incoming tokens to the outgoing arcs at the rate specified

by the function rate.

For example, consider the CPN model shown in Figure 4.4 with added

stochastic behaviour. The net transition t3 is associated with a rate value

such that rateCPN,K(t3) = min(r1, r2), where r1, r2 ∈ R
+. The usual inter-
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pretation is that the transition t3 fires at a rate that is the minimum of r1 and

r2.

The notion of chain and trace in a SCPN can be adapted to the corre-

sponding notions of a CPN by injecting the additional stochastic parameters

at different net transitions to the respective elements. This changes the un-

derlying alphabet of a SCPN accordingly such that, LTCPN = M ∪ rate. For

example, for the SCPN in Figure 4.4 following trace can be obtained consider-

ing the labelled net transitions for the object a: m1 ·(m3, (r)) where m1 = l(t1)

and m3 = l(t3) and r = min(r1, r2).

A SCPN can always be transformed into a non-stochastic CPN by removing

the rate values from the net transitions. Thus, SCPN ⊆ CPN . Although the

SCPN Definition 4.6 is defined using a non-hierarchical CPN models, these

stochastic constructs can be easily applied to a hierarchical stochastic CPN

model (HSCPN). We treat hierarchical CPNs next.

4.4 Hierarchical Coloured Petri Net

In practice, a large system cannot be adequately represented by a single CPN

model in a way that keeps it is still clear and understandable in overall. These

large complex systems brought the need of more powerful structuring mecha-

nisms to handle larger CPN models and resulted in the concept of hierarchical

nets. Generally, high-level abstraction models are constructed in early stages

of the design phase and are gradually refined to build a detailed design of

the system. This helps to focus on only a few details at a time. In general,

hierarchical modelling supports system analysis at different levels of abstrac-

tion, showing different views of the system and enabling the reuse of system

parts. It makes it easier and more flexible to model a system whilst also mak-

ing it easier to keep system consistency throughout. Generally, a component

131



can be modelled without full details from the beginning and ensure the consis-

tency when moving between different abstract levels [Fehling, 1993]. Moreover,

model analysis with the modular approach often decreases the complexity of

the analysis task. Further, with the use of reusable sub models this can be

a cost-effective way to obtain an executable prototype of a system. Hence,

hierarchical models have more modelling power.

CPN models support a hierarchical structuring mechanism by introducing

so-called subnets or modules [Jensen and Kristensen, 2009]. CPNs with such

a mechanism are known as Hierarchical CPNs (HCPN for short). The idea

behind the HCPN theory is to allow the construction of a large model by using

a number of small CPNs with well-defined interfaces, which are related to each

other using well-defined interactions. A module may have sub-modules, and

the composition of sub-modules form a new module. This notion of a module is

similar to the hierarchical constructs in many graphical description languages

such as data flow diagrams and the module concepts in high-level programming

languages [Jensen, 1998]. Figure 4.5 shows a hierarchical representation of a

set of CPN models, where the sub models are referred by the model in the

preceding level. HCPNs are rich with features that enhance the modularity and

understandability of a design model and have shown to be adequate to support

the modelling of large-scale industrial projects [Benatallah et al., 2003,Thomas

et al., 1996,Y.Yang et al., 2005,Elkoutbi and Keller, 1998].

The modular capabilities of HCPNs enable model construction with both

top-down and bottom-up design approaches. A hierarchical representation of

a system makes it possible to specify a simple description of an operation

without considering its internal details. Full details are given at a lower level,

and a reference is kept to be able to move between levels. Chapter 6 describes

partial and incremental transformation with HCPNs in more detail.
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Figure 4.5: Hierarchical view of a set of models.

In a HCPN, a transition may correspond to a complex behaviour given

by another CPN. In that case, the top level transition can be seen as an

aggregation of places and transitions, which when removed make the HCPN

clearer and giving a broader system view. Our Definition 4.7 of a HCPN

differs from the original definition given in [Jensen and Kristensen, 2009] and

is defined to consider only the inter-model communication with reference and

decomposition behaviours. The following definition summarises the semantic

concept and notations of a hierarchical CPN. In the following recall that N

denotes the set of all CPN names.

Definition 4.7 (Hierarchical Coloured Petri Net) A Hierarchical Coloured

Petri Net (HCPN) of name d ∈ N extends a CPN such that HCPNd =

(Σ, P, Tn,M, l, A, node,m, c,X,Exp, status, r) with functions l and r given by

• l : Tn → M ∪ N \ {d} is a partial labelling function associating a label

from M or N to a net transition; and

• r : Σ → N \ {d} is an object colour reference function, which if defined

associates a name to an object colour.
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A HCPN is an extension of a CPN with elements that represent hierarchical

behaviour. There are two kinds of structuring mechanisms allowed in our

definition. The simplest is given by function l where some of the net transitions

are associated with a CPN name where the underlying CPN encapsulates the

behaviour of that transition at a lower level. A further mechanism is given

by the partial function r, which if defined associates a CPN name with a

colour that represents the object with the hierarchical behaviour. Generally, a

more detailed system can be modelled by substituting a transition or a colour

that associates with the partial function l and r, respectively, that convey the

behaviour of the referenced CPN model. These substitutions do not require

fundamentally new details and only need to define and establish the proper

connections between the relevant nodes in both CPNs. More details on CPN

model composition are discussed in Chapter 6.

Figure 4.6: HCPNA and the referred CPNB where l(t1) = B.

Consider the CPN examples shown in Figure 4.6, Figure 4.7, Figure 4.8

and Figure 4.9. These examples show the construction of the detailed CPN
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Figure 4.7: CPNC referred by HCPNA where r(a) = C.

models (1) CPNAB, using HCPNA and CPNB, (2)CPNABC, by referring to

HCPNA, CPNB and CPNC . The relations between these models are defined

using the partial functions l and r as follows. The net transition t1 in the

model HCPNA has a reference to model CPNB with the labelling function

l(t1) = B. Therefore the transition t1 can be substituted by the model CPNB.

Here, the model CPNB contains a detailed design description of the operation

represented by the corresponding substitution transition t1.

Further, this thesis defines another decomposition mechanism for CPNs

using the object colour reference function. The object a in the model HCPNA

can be decomposed further by associating a CPN model name as a reference

to the colour of the object, in such a way that r(a) = C. The composition

of both CPNB and CPNC with the model HCPNA is shown in CPNABC in

Figure 4.9.

A HCPN can be easily used to construct an equivalent CPN and vice versa.

Both models use the same set of places, net transitions, occurrence sequences

and they are behaviourally equivalent. Similar to the CPN, the notion of a

chain in a HCPN is consist of a set of interleaved places and net transitions.
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Figure 4.8: CPNAB obtained by HCPNA and CPNB.

Additionally, we inject the relevant hierarchical references as parameters at

different net transitions and the considered colours, which can be replaced by

a chain of the referred CPN.

Consider a HCPNA, colour a ∈ Σ and r(a) = C where C is a name of a

CPN. Any chain of places and transitions of colour a are replaced by a more

detailed chain of behaviour of CPNC . Similar procedure is applied for the net

transition t1 ∈ Tn and l(t1) = B where B is a name of a CPN.

Conversely, each CPN name occurrence in a HCPN can be replaced by the

corresponding behaviour of the CPN in such a way that if there are no name

occurrences left we have a CPN as defined in Definition 4.1.

For example, consider HCPNA shown in Figure 4.6. For the colour b

following chain can be obtained: S0b ·t0 ·S1b ·(t1, B)·S2b ·t2 ·S3b ·t3 ·S4b. Since

the net transition t1 has a reference to CPNB, for the colour b in Figure 4.6
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Figure 4.9: CPNABC obtained by HCPNA, CPNB and CPNC .

we can obtain the chain: S0
′

b · t5 · S2
′

b. Now, consider CPNAB in Figure 4.8,

which is obtained by substituting t1 in HCPNA by CPNB. In CPNAB, the

chain of colour b is, S0b · t0 · S1b · t5 · S2b · t2 · S3b · t3 · S4b. Thus, a chain of a

HCPN can be reformed to an equivalent chain of a CPN.

Similarly, the notion of trace in a HCPN can be obtained directly by using

the same alphabet defined over the set of net transition labels l(t): t ∈ Tn

as in CPN. We can define a HCPN trace over L3 as a possibly infinite word

w = m1 ·m2 ·m3 . . . iff there exists a valid chain c of interleaved places and

net transitions for some colour such that we can derive w from c. Here, the

colours with the function r and the net transitions with l(t)→ N \ {d} where

d is the name of the HCPN, can be replaced by the relevant traces of the

corresponding CPNs referred by these functions in order to get more detailed

trace. Thus, an equivalent trace as of a CPN (Definition 4.3) can be derived
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by replacing the words with the referred traces.

Consider Figure 4.6. The trace of colour c in HCPNA is given as B ·m3

where B = l(t1) and m3 = l(t3). Here, B can be replaced by the corresponding

trace of the colour c in CPNB: m4 ·m5 where m4 = l(t4) and m5 = l(t5). The

resulted trace, as in CPNAB in Figure 4.8, can be derived as m4 · m5 · m3.

Thus a trace in a HCPN leads to a trace in a CPN.

4.5 Concluding Remarks

This chapter started with a generic introduction to CPNs, and a motivation as

to why CPNs are useful for our present needs. The described formal representa-

tions for the CPN models are sufficiently complete for the context and the scope

of this thesis. The content of the theoretical concepts defined in this chapter are

partially based on standard theories behind CPN models [Jensen, 1981,Jensen,

1998,Jensen and Kristensen, 2009,Jensen, 1997a,Jensen, 1994,Thomas et al.,

1996, Jensen et al., 2007] and have adapted more closely to our needs in this

thesis.

In addition, we have shown extensions of CPNs for timing and stochastic as-

pects, namely timed CPN (TCPN) and stochastic CPN (SCPN), respectively.

These extensions are important because they enable us to use our framework

for a wider range of systems and address performance analysis. Further, we

described an extension of CPNs with structuring mechanism called hierarchical

CPNs that allows modelling and analysis of large and complex systems.

These CPN variants (TCPN, SCPN, HCPN) constitute high-level Petri

nets [Billington, 2004] and have extended by associating the required parame-

ters. The advantage of this is to have a uniform language structure for all the

variants of CPNs being discussed in this thesis.
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5 Model Transformation: Sequence Diagrams

to Coloured Petri Nets

Model-driven development (MDD) relies on automated model transformations

in the design process [Kleppe et al., 2003,Stahl et al., 2006,Sendall and Koza-

czynski, 2003] to assist the rapid adaptation and evolution of models at various

levels of detail [Kuznetsov, 2007,Cuadrado et al., 2011]. Model transforma-

tions bridge the gap between different models by automating various tasks

that keep models consistent and facilitate techniques such as model simulation

and/or formal verification. Thus, modelling and transformations are elevated

to key artefacts in model-based software development. Hence, there is a de-

mand for researching ways in which model transformation can become more

efficient, complete and consistent in software system development. Our in-

terest in particular concerns the link between model-driven development and

formal methods.

Performing a model transformation requires a clear understanding of the

abstract syntax and semantics of both the source and target models. Chapter 3

has introduced a formal definition and semantics of UML 2 sequence diagrams

(SDs), and Chapter 4 has described coloured Petri nets (CPNs) as needed for

our purposes. This chapter focuses on a definition of a complete and consistent

exogenous model-to-model transformation (also referred to as M2M) from SDs

to CPNs in such a way that the target model can be analysed and the results

of the analysis be lifted back to the source model. All the transformation rules

from a SD to a CPN are presented formally following the operational approach

and illustrated with examples.

This chapter starts by describing the model transformation framework con-

sidered for the thesis. Section 5.2 and Section 5.3 focus on main SD-to-CPN
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transformation by addressing all the main constructs. Section 5.4 describes

different kinds of interaction fragments available in UML2 SDs and how they

are best represented in CPNs.

5.1 Model Transformation Framework

Generally, different views of system models can be transformed to various

formal models, which enable model analyses, by defining a precise set of trans-

formation rules. With a definition of a framework, it is much easier to apply

model transformations, extensions to other formal models, and reuse the trans-

formations [Bowles and Meedeniya, 2010,Bowles and Meedeniya, 2012b,Bowles

and Meedeniya, 2012a].

The work done in this thesis can be seen as part of a more general MDD-

based framework to validate UML models using coloured Petri nets, and hence

exploit existing coloured Petri net analysis and verification tools for UML-

based design. The model transformation framework shown in Figure 5.1 in-

cludes rules that transform: (1) UML2 sequence diagrams (SDs) to CPNs,

(2) time annotations of SDs to TCPNs, (3) stochastic annotations of SDs to

SCPNs, (4) hierarchical annotations of SDs to HCPNs, (5) SDs to IODs, (6)

CPNs to hierarchical CPNs, (7) composition of multiple SDs, and (8) compo-

sition of multiple CPNs. The approach we take is flexible for extensions. For

example, the transformation rules for the main notations can be extended to

consider stochastic and real-time behaviour. The flexibility comes from choos-

ing the transformation and target model depending on the intended analysis

and verifies the original model.
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Figure 5.1: The model transformation framework.

5.2 Main Transformation Rules

This section describes the main rules for transforming the essential elements

and concepts of a UML sequence diagram into a CPN.

A transformation rule consists of a set of named elements of the source and

the target models and a definition of how they are related. Optionally, a rule

may contain transformation parameters and constraints that must hold before

the rule can be applied.

As defined in Chapter 3, Definition 3.1, a sequence diagram with name d

is a tuple SDd = (I, E,<,M, T, F, ref,X,Exp), consisting of a set of object

instances I (with I+ including environment instances), a set of events E, a

partial order over events <, a set of message labels M , a set of local transitions

T , a set of interaction fragment identifiers F , a function ref for interaction

uses (partially defined over object instances and fragment identifiers), a set of

variables X and expressions Exp.
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As described in Chapter 4 Definition 4.1, a CPN of name d is defined by a

tuple CPNd = (Σ, P, Tn,M, l, A, node,m, c,X,Exp, status), consisting of a set

of object colours Σ (with Σ+ including environment colours), a set of places P ,

a set of net transitions Tn, a set of labels M , a labelling function l defined over

net transitions, a set of arcs A and a node function matching arcs to pairs of

places and net transitions, an initial marking for places given by m, a colour

function c over places, a set of variables X , expressions Exp, and the status of

each place.

In the following let SDd be a sequence diagram named d, with associated

set of state locations given by S, and the associated CPNd given by our trans-

formation τ , where (τ(SDd) = CPNd) be a coloured Petri net with name d

(see Figure 5.2). The basic transformation rules for the essential elements of

a SD to a CPN are defined below.

The target CPN has the same name as the source SD.

Rule 5.1 Let SDd be a sequence diagram with name d. The CPN obtained by

transformation τ , τ(SDd) = CPNd has the same name d.

The (object and environment) instances in a SDd are transformed into

matching colours in the corresponding CPNd.

Rule 5.2 For all instances in a SD there exists a corresponding colour in

CPN: ∀i∈I+∃
′

o∈Σ+ where τ(i) = o.

The state locations that belong to an instance are transformed into places

in the CPN, such that the colour of the place matches the instance type.

Rule 5.3 For all state locations of instances in a SD there exists a correspond-

ing place in the CPN with the colour of the underlying instance: ∀s∈Si,i∈I+, ∃p∈P :

τ(s) = p and c(p) = τ(i).
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Notice that in Rule 5.3 above, we do not require a unique correspondence

between state locations and places. Several state locations may be mapped

onto the same place as will be described in Section 5.4.

When transforming state locations into places, only the places correspond-

ing to initial state locations have a defined initial marking. We assume an

initial marking of one token per place, but this could be changed by explicitly

adding an annotation to the SD, which would lead to a new rule (not given

here).

Rule 5.4 For all initial state locations in a SD the corresponding places in the

CPN have a defined initial marking set to 1: ∀s∈Si
ini,i∈I

+ : m(τ(s)) = 1, where

τ(s) ∈ P . Places associated with non-initial state locations have no initial

marking.

(a) (b)

Figure 5.2: A sequence diagram with a local transition (a) and the correspond-

ing CPN (b).

Consider the SD and the corresponding CPN shown in Figure 5.2. The

model CPNA is obtained by applying Rule 5.1 and Rule 5.6 to SDA.

The state locations in the SD (which interleave with the events) have a

direct mapping with the places in the CPN. We use the same alphabet in both

models to make this correspondence obvious. The same applies to instance
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names and colours in the CPN, which are graphically indicated next to the

initial place of that colour.

The execution of a local transition in a SD is represented as the firing of

a net transition in the corresponding CPN. The SD consists of two object

instances a, b ∈ I and the CPN has corresponding colours a, b ∈ Σ. The

initial state locations S0a, S0b ∈ Sini are mapped onto the places S0a, S0b ∈ P :

c(S0a) = a and c(S0b) = b, with initial marking given by m(S0a) = 1 and

m(S0a) = 1. Also t(S1a) = S1a ∈ P and t(S1b) = S1b ∈ P

The next rule states that each local transition in a SD is mapped onto a

corresponding net transition in the CPN. Here the previous and next state

locations of the events for the instances involved in the local transitions are

mapped onto places with corresponding colours in the CPN , besides arcs

link places and the net transition as expected using the function node. The

functions next and µ are used to derive the relationship between the state

location and the associated event for a given instance (cf. Chapter 3). In the

sequel, we omit τ in the expressions provided it is clear from the context what

we mean.

Rule 5.5 Let e ∈ Ei and e
′

∈ Ej with i, j ∈ I, t ∈ T with t = (e,m, e
′

),

e ∈ nexti(s0i), e
′

∈ nextj(s0j), µi(m, e) = s1i and µj(m, e
′

) = s1j. There

is a unique matching of local transitions and net transitions: ∀t∈T∃′t′∈T l
n
, and

∃a0i,a0j ,a1i,a1j∈A: l(t
′

) = m, c(s0i) = c(s1i) = i, c(s0j) = c(s1j) = j, and

node(a0k) = (s0k, t
′

) and node(a1k) = (t
′

, s1k) for k ∈ {i, j} and i, j ∈ I+.

The message names of the interactions in a SD are mapped to the net

transitions labels in the corresponding CPN . In particular, we use the same

set of labels M in both the SD and CPN definitions.
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Rule 5.6 Let m ∈M be a message label associated with a local transition t =

(e,m, e
′

) ∈ T in the SD, then the corresponding net transition τ(t) = t
′

∈ Tn

in the CPN has l(t
′

) = m.

In Figure 5.2, take the local transition t = (e1, m, e2) with µa(m, e1) = S1a,

µb(m, e2) = S1b, nexta(S0a) = {e1} and nextb(S0b) = {e2}. The correspond-

ing CPN contains a matching transition t
′

∈ T l
n with the same label, i.e.,

l(t
′

) = m. The internal state locations given by the function µ are mapped

to places S1a, S1b ∈ P where c(S1a) = a and c(S1b) = b. The associated arcs

a0a, a0b, a1a, a1b ∈ A connect the places and transitions as given by the function

node. I.e. node(a0a) = (S0a, t
′

), node(a0b) = (S0b, t
′

), node(a1a) = (t
′

, S1a),

node(a1b) = (t
′

, S1b).

As seen earlier, the interactions in a SD may involve environment instances

given by the set Env with I+ = I ∪ Env and I ∩ Env = ∅. As described in

Chapter 3, environment instances are involved in interactions through gate

events. In a local transition either the source or the target event may be

associated with an environment instance, but never with both at the same

time. Each environment instance has a unique start and end state location,

but do not have internal state locations.

When transforming a local transition with a gate event at either end, we

impose an equality between the corresponding places of the CPN: i.e. the

places that correspond to the initial and end environment state locations are

matched. Environment instances are reduced to having one place only in a

CPN.

Rule 5.7 Let t ∈ T with a gate event e
′

such that t = (e,m, e
′

) or t =

(e
′

, m, e), where e
′

∈ nextj(s0j), µj(m, e
′

) = s1j, and j ∈ Env. In addition to

Rule 5.5, τ(s0j) = τ(s1j) ∈ P and c(τ(s0j)) = c(τ(s1j)) ∈ E .
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(a) (b)

Figure 5.3: A sequence diagram with an environment instance (a) and the

corresponding CPN (b).

To illustrate the transformation of a local transition with a gate, consider

the SD and the corresponding CPN shown in Figure 5.3. SDb consists of object

instances a, b ∈ I and the environment instance v ∈ Env. The interactions

start with message m1 being sent (by the environment) and being received by

instance a, where the sending of m1 is a gate. This triggers message m2 being

sent from a to b. By applying the basic transformation rules, the corresponding

CPN contains colours a, b ∈ Σ and v ∈ E .

Consider the interaction of the local transition t1 = (e0, m1, e1) associated

with the environment instance. Here, e0 ∈ nextv(S0e) and µv(m1, e0) = S1e.

Consequently, CPNB contains a matching net transition t1 with label l(t1) =

m1, and places S0e = S1e (since v ∈ E), S0a, S1a ∈ P where c(S0e) = c(S1e) = v

and c(S0a)c(S1a) = a. In the CPN representation, there is a unique matching

of the places associated with the environment state locations of t1 determined

by S0e = S1e. The CPN also must contain arcs connecting the places and

the transition as expected, in such a way that, for a0e, a1e, a0a, a1a ∈ A with

node(a0e) = (S0e, t1), node(a0a) = (S0a, t1), node(a1e) = (t1, S1e), node(a1a) =

(t1, S1a).
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(a) (b)

Figure 5.4: A sequence diagram with a self-transition (a) and the corresponding

CPN (b).

Local transitions can have the same sender and receiver in which case they

are known as self-transitions. In a self-transition, the sender and the receiver

events are partially ordered as expected. Rule 5.8 defines the transformation

of a self-transition in a SD, to the corresponding CPN representation.

Rule 5.8 Let t ∈ T be a self-transition for instance i such that t = (en, m, e(n+1)),

where en < e(n+1), for en, e(n+1) ∈ Ei and µi(m, en) = s1i, e(n+1) ∈ nexti(s1i)

and µi(m, e(n+1)) = s2i. There is a unique matching of the places associated

with the state locations of t determined by µ: ∀t∈T , ∃′t′∈Tn
, ∃s1i,s2i∈P , ∃a1i∈A,

: τ(t) = t
′

, l(t
′

) = m, c(s1i) = c(s2i) = i, node(a1i) = (t
′

, s2i) and s1i = s2i.

To illustrate the transformation of a self-transition, consider the SD and the

corresponding CPN shown in Figure 5.4. The instance a ∈ I in SDA is involved

in a self-transition t = (e1, m, e2), where e1 < e2. Here, e1 ∈ nexta(S0a),

µa(m, e1) = S1a and µa(m, e2) = S2a. The corresponding CPNA contains

a colour a ∈ Σ, and a matching net transition t
′

∈ Tn with l(t
′

) = m and

places S0a, S1a, S2a ∈ P . The self-transition is transformed in a way that the

places associated with the state locations given by µ are equivalent, such that
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S1a = S2a.

As explained in this section, when a local transition in a SD is transformed

to a net transition in the CPN, the net transition is labelled by the corre-

sponding message label of the local transition. However, a net transition is

labelled not by a message label but by a diagram name when representing a

reference behaviour (ref). Such situations occur when a net transition is in

effect composite transition that convey the behaviour of a referenced CPN and

will be described in Chapter 6.

Also, there are net transitions without a labelling function and these net

transitions are a convenience introduced to impose synchronisation of object

instances when entering and leaving an interaction fragment in a SD. Section

5.4 explains this behaviour.

(a) (b)

Figure 5.5: A sequence diagram with local variables (a) and the corresponding

CPN (b).

Further, SDs may contain local variables. For example, if a transition car-

ries a return value, that value is saved to a variable in the model. The local

variables and expressions in a SD are transformed into matching variables and

expressions in the corresponding CPN. The following rules define the transfor-

mations of local variables and expressions from a SD to a CPN.
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Rule 5.9 For a variable x1 ∈ XSDd
in a SDd there exists a corresponding vari-

able x
′

1 ∈ XCPNd
and a colour in o ∈ Σ in CPNd obtained by transformation

τ . Here, τ(x1) = x
′

1 and type(x) = o.

Rule 5.10 For all expressions exp ∈ ExpSDd
in a SDd there exists a corre-

sponding expression exp
′

∈ ExpCPNd
, where CPNd obtained by transformation

τ and τ(exp) = exp
′

.

Consider the SD and the corresponding CPN shown in Figure 5.5 with local

variables. The local transition t = (e1, m, e2) in SDA contains local variables p

as a parameter that passes to the receiver and variable r as a return value that

obtains by sending the message m. The corresponding CPNA contains the

matching local variables p
′

, r
′

∈ XCPNA
obtained by τ(p) = p

′

and τ(r) = r
′

.

5.3 Additional Transformation Rules

UML sequence diagrams consist of two main types of interactions: synchronous

and asynchronous communication (cf. Chapter 3). Synchronous communica-

tion implies that the sender and receiver complete the transition together (are

blocked), whereas in the asynchronous case the sender may continue its exe-

cution after sending the message. It is common to assume one or the other

forms of communication only, since they can be used to model one another.

This thesis considers synchronous communication (e.g., Figure 5.2), only. For

completeness we show here how to address asynchronous communication as

well.

Further, the local transitions in a UML2 sequence diagrams can be cate-

gorised into four types, namely create, destroy, lost and found messages. For

completeness, we illustrate the representation for the transformation of these

additional types of local transitions.
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5.3.1 Transformation of Asynchronous Local Transitions

When transforming an asynchronous local transition into a CPN representa-

tion, we use two separate net transitions to denote the sending event and the

receiving event. Additionally, we use an intermediate place in between the

sending and receiving net transitions to denote the queuing state associated

with the entire asynchronous transition [Ouardani et al., 2006, dos S. Soares

and Vrancken, 2008,Yang et al., 2010].

(a) (b)

Figure 5.6: A sequence diagram with an asynchronous communication (a) and

the corresponding CPN (b).

Figure 5.6 shows a SD with asynchronous transition and the corresponding

CPN. The CPN contains two net transitions mS, mR ∈ Tn to denote as sepa-

rate transitions associated with the sender and the receiver, respectively. The

intermediate place has an environment colour and supports the tokens passing

from mS to mR.

Additionally, asynchronous communication can be modelled using syn-

chronous communication by having an intermediate role that denotes the event

queue associated with an asynchronous communication. Figure 5.7 shows a

SD with synchronous transitions representing an asynchronous communica-
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tion, and the corresponding CPN. The instance que ∈ I in SDA plays the

role of a mediator that received data from the sender a and forwards it to b.

Further, by removing the places related to que ∈ Σ in the CPN representation

and having a place of v ∈ E in between mS and mR, we can obtain the CPN

representation of an asynchronous transition (as represented in Figure 5.6 (b)).

(a) (b)

Figure 5.7: A SD with synchronous communication that model asynchronous

behaviour (a) and the corresponding CPN (b).

5.3.2 Transformation of Create and Destroy Transitions

In UML2 sequence diagrams new instances can be created using create mes-

sages. A local transition that denotes the instance creation represents using

a dashed line with an open arrow pointing to the newly created instance (see

Figure 5.8). By convention, the message label is typically named with some

variation of create. The semantics of instance creation is similar to that for

lifelines starting from the beginning. The only difference is that the initiali-

sation of elements occurs when the creation message is received and there is

no initial state location as in other instances. The corresponding CPN repre-

sentation of a create transition can be obtained using the transformation of
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a general local transition, where the newly created instance does not have a

place corresponding to an initial state location.

(a) (b)

Figure 5.8: A sequence diagram with a create transition (a) and corresponding

CPN (b).

The following rule defines the transformation of a create local transition.

Rule 5.11 Let t ∈ T be a create local transition with t = (e,m, e
′

), e ∈

nexti(s0i), µi(m, e) = s1i and µj(m, e
′

) = s1j. There is a unique matching of

local transitions and net transitions such that τ(t) = t
′

∈ T l
n, and ∃a0i,a1i,a1j∈A:

l(t
′

) = m, c(s0i) = c(s1i) = i, c(s1j) = j, and node(a0i) = (s0i, t
′

), node(a1k) =

(t
′

, s1k) for k ∈ {i, j} and i, j ∈ I+.

Consider the SD and the CPN model shown in Figure 5.8. The instance

a in SDA sends a create transition that causes the creation of an instance b.

The corresponding CPN contains colours a, b ∈ Σ, places S0a, S1a, S1b ∈ P ,

t ∈ Tn where l(t) = create and the arcs a0a, a1a, a1b ∈ A links the places and

transitions such that node(a0a) = (S0a, t), node(a1a) = (t, S1a), node(a1b) =

(t, S1b).

Moreover, UML2 sequence diagrams illustrate the destruction of an in-

stance using a destroy local transition and having a large X at the end of

the receiver’s lifeline (see Figure 5.9). The semantics of a destroy transition
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resulting in the deletion of the receiving instance. The corresponding CPN

representation can be obtained by applying the general transformation of a

local transition and by removing the last place of the instance that is deleted.

Hence, the destroyed instance cannot involve in further interactions transition

firing.

The following rule defines the transformation of a destroy local transition.

Rule 5.12 Let t ∈ T with t = (e,m, e
′

), e ∈ nexti(s0i), e
′

∈ nextj(s0j),

and µi(m, e) = s1i. There is a unique matching of local transitions and net

transitions such that τ(t) = t
′

∈ T l
n, and ∃a0i,a1i,a0j∈A: l(t

′

) = m, c(s0i) =

c(s1i) = i, c(s0j) = j, and node(a0k) = (s0k, t
′

), node(a1i) = (t
′

, s1i) for

k ∈ {i, j} and i, j ∈ I+.

(a) (b)

Figure 5.9: A sequence diagram with a destroy transition (a) and the corre-

sponding CPN (b).

Figure 5.9 shows a SD with a destroy transition and the corresponding

CPN. The instance a sends a destroy transition that causes the destruction

of the instance b. The corresponding CPN model is obtained by applying

Rule 5.12. Since there is no place of the colour b after the firing of the net

transition destroy, it does not contain any more tokens of the colour b that

cause further transition firings.
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5.3.3 Transformation of Lost and Found Transitions

UML2 sequence diagrams may define two special types of local transitions:

lost transitions and found transitions. In a lost transition, the sending event

occurrence is known, but the receiving instance is unknown, hence the recep-

tion of the message does not happen. Since the message never reached its

destination, the local transition does not end on a lifeline. This situation is

illustrated by pointing the arrowhead to a filled circle (see Figure 5.10). This

can be considered as a local transitions connected to a gate, i.e. without an

explicitly specified receiver. In the corresponding CPN representation, there

are places correspond to the state locations of the sending instance and a net

transition correspond to the (lost) local transition. Here, the CPN does not

contain a place correspond to the receiving instance. Instead, the net transi-

tion has an arc that connects to a place of the colour environment, representing

the lost token. The following rule defines the transformation of a lost local

transition.

Rule 5.13 Let t ∈ T with a gate event such that t = (e,m, e
′

) where e ∈

nexti(s0i), e
′

∈ ∅ : i ∈ I and µi(m, e) = s1i. There is a unique matching of

local transitions and net transitions: ∀t∈T∃′t′∈T l
n
, and ∃a0i,a1i,a1v∈A: l(t

′

) = m,

c(s0i) = c(s1i) = i, an additional place s0v ∈ P : c(s0v) = E , and node(a0i) =

(s0i, t
′

) and node(a1k) = (t
′

, s1k) for k ∈ {i, v} and i, v ∈ I+.

Figure 5.10 shows a sequence diagram with a lost local transition and the

corresponding CPN. The instance a sends a local transition which gets lost

during the interaction. The corresponding CPN representation contains places

S01, S1a, S0v ∈ P : c(S01) = c(S1a) = a and c(S0v) = E , net transition

t ∈ Tn where l(t) = m, and arcs a0a, a1a, ae ∈ A : node(a0a) = (S0a, t),

node(a1a) = (t, S1a), node(ae) = (t, S0v).
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(a) (b)

Figure 5.10: A sequence diagram with a lost transition (a) and the correspond-

ing CPN (b).

Further, the local transition found is a transition where the receiving event

occurrence is known, but there the sending event occurrence is unknown. Here,

the origin of the transitions is considered outside the scope of the description.

In a complete system design a found transition may considered as a dual of

a lost transition. Thus, having matching message labels, a lost transition

may be used by a found transition’s receiving event resulting in a complete

message transmission. In a SD, a found transition is illustrated as an arrow

coming from a filled circle (see Figure 5.11). Since the sending instance is not

specified, this can be considered as a transition originates from a gate. This

behaviour can be transformed to a CPN representation by having the places

correspond to the receiver, net transition correspond to the local transition,

and additionally a place with a token of the colour environment that connects

to the net transition.

The following rule defines the transformation of a found local transition.

Rule 5.14 Let t ∈ T with a gate event such that t = (e
′

, m, e) where e ∈

nexti(s0i), e
′

∈ ∅ : i ∈ I and µi(m, e) = s1i. There is a unique matching of

local transitions and net transitions: ∀t∈T∃′t′∈T l
n

, and ∃a0i,a1i,a0v∈A: l(t
′

) = m,
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c(s0i) = c(s1i) = i, an additional place s0v ∈ P : c(s0v) = E , and m(s0v) = 1.

Further, node(a0k) = (s0k, t
′

) and node(a1i) = (t
′

, s1i) for k ∈ {i, v} and i, v ∈

I+.

(a) (b)

Figure 5.11: A sequence diagram with a found transition (a) and the corre-

sponding CPN (b).

Consider the SD and the corresponding CPN shown in Figure 5.11. The

instance b in SDA receives a local transition where the sender is unknown. The

corresponding CPN contains a place, S0v where c(S0v) = E , and m(S0v) = 1.

The places correspond to the receiver are linked with the net transition as

expected.

5.4 Transformation of Interaction Fragment Behaviour

UML2 sequence diagrams have an additional high level construct called inter-

action fragments that represent complex interaction behaviour within a system.

Interaction fragments are denoted as frames with an operator in the left upper

corner and the interaction behaviour inside. As described in Chapter 3, an

interaction fragment may be built of different operands and the semantics of

the diagram depends on the operator. This section defines transformations for
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different behavioural types covering different application domains of sequence

diagrams.

(a) (b)

Figure 5.12: A sequence diagram with an interaction fragment (a) and the

corresponding CPN (b).

Entering or leaving an interaction fragment is treated here as an atomic

event. Also, we assume that entering/leaving an interaction fragment is done

synchronously by all the lifelines (instances) involved in the fragment. Con-

sequently our assumed semantics has to be consistent at the CPN level. One

reason for imposing synchronisation comes from the fact that local transitions

may change values used in the conditions of a fragment leading to possibly

unspecified behaviour.

This section starts with defining a general fragment rule, which applies to

an arbitrary fragment and we then give additional rules for each fragment af-

terwards. Generally, net transitions in the CPN match local transitions in a

SD and are labelled by the corresponding message label of the local transition.
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In addition to the net transitions that match local transitions for a sequence

diagram (given by Rule 5.5), a CPN may contain further net transitions asso-

ciated with fragments and used to denote synchronisation of instances before

and after the execution of an interaction fragment. In other words, we are as-

suming a SD semantics where instances can only start (or end) the behaviour

described within a fragment of a SD if all instances involved in the fragment

are ready (or have finished). Thus, net transitions without labels (T¬l
n ) are

a convenience introduced to impose synchronisation of object instances when

entering and leaving an interaction fragment in a sequence diagram (see Fig-

ure 5.12).

Transformation of an interaction fragment from a SD to a CPN requires

instance synchronisation for an arbitrary fragment and this general rule is

given by the Rule 5.15.

Rule 5.15 Let x ∈ F be an interaction fragment in SD with f(x) = (o, n),

and i ∈ j(x, k) be an arbitrary instance involved in the fragment for 1 ≤ k ≤ n.

Let e1, e2 ∈ Ei denote the minimal and maximal event in g(x)i respectively.

Let sk = min(λi(x, k)) and s
′

k = max(λi(x, k)) with e1 ∈ nexti(s), nexti(e2) =

θi(x) = s
′

and nexti(e1) = {s1, . . . , sn}, e2 ∈ nexti(s
′

k).

CPN contains places s, s1, . . . , sn, s
′

1, . . . , s
′

n, s
′

∈ P , transitions to beg, to end ∈

T¬l
n , and arcs ai0, ai1, . . . , ain, a

′

i1, . . . , a
′

in, a
′

i0 ∈ A such that node(ai0) = (s, to beg),

node(aik) = (to beg, sk), node(a
′

ik) = (s
′

k, to end), and node(a
′

i0) = (to end, s
′

).

When transforming an interaction fragments in a SD, there exist two unla-

belled net transitions in the CPN, correspond to the beginning and the end of

the interaction fragment. Also there are relevant places correspond to the state

locations given by min(λ(x, k)) and max(λ(x, k)), for each instance which as-

sociated with each operand. The subset of instances involved in each operand
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of a fragment is given by the function j(x, k) where x is the fragment identifier

and k indicates the operand number.

To illustrate the transformation of a general interaction fragment, consider

the interaction fragment of SDK and the corresponding CPN in Figure 5.12.

The local transitions inside each operand in the SD are represented as a block

for a clear representation. These placeholders will later be substituted with the

actual local transitions inside the fragment. Let x be the interaction fragment

identifier. Let instance b ∈ j(x, 1)∩j(x, 2) in the SD. Note that the instance a /∈

j(x, 1) and c /∈ j(x, 2). For the instance b,min(λb(x, 1)) = S2b,min(λb(x, 2)) =

S4b, max(λb(x, 1)) = S3b, max(λb(x, 2)) = S5b and θb(x) = S6b.

Here, CPNK contains two new net transitions frag − beg, frag − end

∈ T¬l
n to denote the beginning and end of the interaction fragment. The net

transitions inside the fragments are not explicitly specified in this example.

For the colour b, the CPN contains places correspond to the state locations

S0b, S1b, S2b, S3b, S4b, S5b, S6b. The arcs link the places and transition as per

definition, for example, node(a2b) = (S1b, frag − beg), node(a3b) = (frag −

beg, S2b), etc.

The mapping rules defined in the following section are conceptually referred

to the general fragment transformation rule defined above. Thus, complex

transformation rules can be constructed using basic mapping rules.

5.4.1 Transformation of Alternative Behaviour

The semantics of an alt interaction fragment denotes the choice of behaviour

over the semantics of each operand, in which at most one of the operands will

be chosen. Each operand in an alternative fragment has a condition, which

is evaluated when choosing the operand to be executed. Only the interaction

within the operand with a guard condition that evaluates to true is executed.
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Additionally, an operand may be guarded by an else condition (usually the

last operand in the fragment), that is the negation of the disjunction of all

other guards in the enclosing interaction fragment.

The fragment synchronisation Rule 5.15 described how to obtain two net

transitions for the beginning and end of an interaction fragment, and how these

relate to the places derived from the state locations before the fragment, after

the fragment, and within each operand.

When transforming a SD with an alt interaction fragment to a CPN, each

operand in the SD is transformed into a sequential chain. There are many

possible chains for an instance that are related to the number of operands

available. All sequential chains begin in a common input place and end a

common output place. This is represented in the CPN representation by in-

troducing two net transitions, talt−beg and talt−end to represent the entering

and leaving of the interaction fragment, respectively (see Figure 5.13). All

the place and net transition chains within the net transitions alt − beg and

alt− end, describe the same sequence as in the SD.

Since only one of the operands of an alt fragment is executed at a time,

in the CPN representation there is no need to have a set of unique places

correspond to each of the first (min) state locations in each operand. This

is similar to the set of last (max) state locations in each operand. Instead,

we optimise them and have one place to denote the beginning of an arbitrary

alt operand and one place to denote the end of an arbitrary alt operand, for

each instance. For example in Figure 5.13, there is an equality between the

places such that S2b = S4b and S3b = S5b. In fact, more than an optimisation

this is a necessary requirement to preserve the intended behaviour of the alt

interaction fragment in the CPN.

Here, the condition in each operand is transformed into an expression that
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(a) (b)

Figure 5.13: A sequence diagram with alternative behaviour (a) and the cor-

responding CPN (b).

associates with the first net transition of each chain, i.e. the first net transition

within a chain is chosen based on the guard that evaluates to true. For example

in Figure 5.13, guard(t3) = [(x == 2) == T ] and guard(t1) = [(x == 1) ==

T ].

Additionally, when an instance is not involved in all the operands (for

example in Figure 5.13, the instance a is not involved in the first operand with

the guard [x == 1]), and when that instance is not involved in the operand that

is chosen to execute (e.g., when the first operand executes), there should be a

way to pass the control flow of that instance to continue with the transitions

after the net transition talt−end corresponding to the end of the fragment. For

that purpose, we use an arc connecting the net transition talt−beg and the

place corresponds to the maximum state location of that instance. Also, we

use an expression which is the negation of the disjunction of all other guards
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of the operands involving that instance (here, [x! = 2]) and associates with

the newly added arc. Moreover, this can be applied for situations where the

alt interaction fragment does not contain an else operand and none of the

operands is evaluated to true.

This is described in the following rule.

Rule 5.16 (Alt-Rule) Let x ∈ F be an interaction fragment in SD with

f(x) = (alt, n), and i ∈ j(x) be an arbitrary instance involved in the fragment.

According to Rule 5.15 s, s1, . . . , sn, s
′

1 . . . , s
′

n, s
′

∈ Si
int are state locations for

instance i, and the associated CPN contains places s, s1, . . . , sn, s
′

1 . . . , s
′

n, s
′

∈

P , transitions talt−beg, talt−end ∈ Tn, and arcs ai0, ai1, . . . , ain, a
′

i1, . . . , a
′

in, a
′

i0 ∈

A. For an alt-fragment we have the following equalities s1 = · · · = sn, s
′

1 =

· · · = s
′

n, ai1 = · · · = ain, and a
′

i1 = · · · = a
′

in. Further, if nexti(sk) = esk

and esk is involved in a transition tsk ∈ T as a source or target event then

guard(tsk) = [Ck == True] and the corresponding net transition t
′

sk
∈ Tn is

guarded with the same expression (for all 1 ≤ k ≤ n). Further, for an instance

z ∈ j(x)\{∀k≤nj(x, k)}, we use an additional arc a
′′

z ∈ A, such that node(a
′′

z ) =

(talt−beg, s
′

k), where s
′

k = maxz(λi(x, k)), and guarded with the negation of the

disjunction of all other guards such that guard(a
′′

z) = [Ck! = True].

By applying Rule 5.16 to an alt interaction fragment, a CPN model can be

obtained that describes the choice of behaviour in the same way. Consider the

SD with an alt interaction fragment with two operands and the corresponding

CPN shown in Figure 5.13. SDK contains three object instances a, b, c ∈ I.

The interactions start with a local transition t1 followed by an interaction

fragment x such that f(x) = (alt, 2). The state locations in each operand for

the instance b ∈ j(x, 1) ∩ j(x, 2) are given by λb(x, 1) = {S2b, S3b}, λb(x, 2) =

{S4b, S5b}.
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Applying Rule 5.16 the corresponding CPN model contains two new net

transitions, alt− beg, alt− end ∈ T¬l
n , correspond to the begin and end of the

interaction fragment, respectively. Also, for the colour b, CPN contain places:

S2b, S3b, S4b, S5b ∈ P that satisfy the equalities S2b = S4b and S3b = S5b. Similar

equality applies for the arcs that are linked with these plaes. Further, the net

transitions t2, t3 ∈ Tn, correspond to the local transitions in the fragment are

labelled with the message labels such that l(t2) = m2 and l(t3) = m3. These

net transitions correspond to the first local transition in each operand, and are

guarded such that guard(t2) = [(x == 1) = True] and guard(t3) = [(x ==

2) = True].

5.4.2 Transformation of Optional Behaviour

The opt interaction fragment denotes a choice of behaviour where either the

operand happens or not. This optional behaviour can be considered as an

alt interaction fragment with only one operand. The interactions within the

operand execute, if the guard condition is evaluated to true. If the guard

condition is evaluated to false, then the interactions within the opt operand

are ignored, the fragment discarded, and the remainder of the interaction in

the SD are continued with execution.

When transforming a SD with an opt interaction fragment, the correspond-

ing CPN representation contains two net transitions, opt− beg and opt− end

(according to Rule 5.15) to synchronise the behaviour at the beginning and

end of the interaction fragment, respectively. All the places and net transitions

chains within the net transitions opt − beg and opt − end describe the same

sequence as in the SD. The guard condition associates with the opt fragment

is associated with the first net transition after opt − beg. When the guard is

evaluated to true, the behaviour of the CPN is the same as the alt interaction

163



fragment transformation and no further restrictions are necessary.

(a) (b)

Figure 5.14: A sequence diagram with optional behaviour (a) and the corre-

sponding CPN (b).

In this case, when deriving the underlying CPN, as shown in Figure 5.14(b),

a new net transition, no − opt, is defined. The net transition no − opt is

associated with a guard condition that is the negation of the disjunction of the

condition in the enclosing opt interaction fragment. This new net transition is

linked with the places that correspond to the minimum and maximum state

locations within the fragment, of an instance.

Rule 5.15 described how to obtain the two net-transitions for the begin-

ning and end of an interaction fragment, and their connection to the places

derived from the state-locations before and after the fragment, and within each

operand. The following rule describes the transformation of an opt interaction

fragment in a SD to a CPN.
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Rule 5.17 (Opt-Rule) Let x ∈ F be an interaction fragment in SD with

f(x) = (opt, 1), and i ∈ j(x, 1) be an arbitrary instance involved in the frag-

ment. According to Rule 5.15 s, s1, s
′

1, s
′

∈ Si
int are state locations for instance

i, and the associated CPN contains places s, s1, s
′

1, s
′

∈ P , transitions topt−beg,

topt−end ∈ T¬l
n , and arcs ai0, ai1, a

′

i1, a
′

i0 ∈ A.

For an opt fragment we have additionally a new net-transition tno−opt ∈

T¬l
n , and arcs a

′′

i , a
′′′

i ∈ A, such that node(a
′′

i ) = (s1, tno−opt), and node(a
′′′

i ) =

(tno−opt, s
′

1). Further, the opt expression given by guard(x) = [C == True]

is associated with the net transition t ∈ Tn, which corresponds to the first

local transition within the opt fragment: guard(t) = [C == True]. The new

net-transition tno−opt is guarded with the negated disjunction of the expression:

guard(tno−opt) = [C! = True].

In order to explain Rule 5.17, consider the opt interaction fragment in

the SD shown in Figure 5.14. Let x be the identifier of the opt fragment

and consider the instance b involved in the fragment: b ∈ j(x, 1). The state

locations in the operand for the instance b are given by λb(x, 1) = {S2b, S3b}.

Applying Rule 5.17, we derive the CPN with corresponding places S2b, S3b ∈

P of the colour b. Also, we obtain the new net-transition tno−opt ∈ T¬l
n and

the arcs a1, a2 ∈ A link the places with the new net-transition, in such a way

that, node(a1) = (S2b, tno−opt), node(a2) = (tno−opt, S3b). Further, the condition

associated with the fragment x is guarded as expected: guard(t2) = [C ==

True] and guard(tno−opt) = [C! = True], which is the negated disjunction of

the opt guard. So that, when the guard evaluates to true the net transition t2

fires. Conversely, when the guard evaluates to false, the execution flow reaches

to the net transition topt−end via the net transition tno−opt.
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5.4.3 Transformation of Iterative Behaviour

The loop interaction fragment indicates iterative behaviour. The behaviour

specified inside the loop operand executes repeatedly until the loop guard (if

available) evaluates to false. This iterative behaviour is controlled by a guard

or by an expression with minimum and maximum number of iterations. When

the condition is given by two integer parameters 0 ≤ min ≤ max ≤ ∞, the

interaction within the fragment is processed at least min times and at most

max times. The interactions within the fragment can be bypassed if either the

condition of the loop is not satisfied, or min is zero, in which case the loop is

not executed.

When transforming a loop fragment in a SD to an equivalent behaviour in

the CPN, the corresponding CPN model contains net transitions loop − beg

and loop− end to denote the beginning and the end of the loop fragment and

related places inside the operand as given by Rule 5.15.

Consider the CPN shown in Figure 5.15 that guarantee the repetitive be-

haviour. To adapt Rule 5.15 for a loop fragment we impose an equality for the

places correspond to the state location (S1a) before the beginning of the loop

fragment and last state location (S3a) inside the operand, for each instance in-

volved in the fragment. Also, there is a corresponding expression in the CPN

for the guard inside the loop fragment and associate with the beginning of the

loop interaction fragment (evaluating to true), as well as to the net transition

loop− end (evaluating to false).

Here, we associate this expression with the unlabelled net transition loop−

beg that corresponds to the beginning of the fragment. Further, the net-

transition loop−end that corresponds to the end of the interaction fragment is

associated with the negation of the condition, that is, the loop guard evaluated

to false. These expressions are tested on each time the loop iterates and the
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firing net transition is selected based on the satisfied condition. Additionally, to

control the number of iterations, a variable is used as a counter that increments

in each execution of the net transition loop − beg. This variable corresponds

to a variable considered in the expression of the loop fragment and initialised

with the minimum value given by the expression. The net transitions within

loop− beg and loop− end fires only if the guard condition associated with the

loop − beg evaluated to true. The net transition loop − end is enabled when

the negation of the guard condition evaluated to true, i.e. when the guard

condition evaluates to false.

(a) (b)

Figure 5.15: A sequence diagram with iterative behaviour (a) and the corre-

sponding CPN (b).

The transformation of a loop fragment to a CPN is defined in Rule 5.18.
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Rule 5.18 (loop-Rule) Let x ∈ F be an interaction fragment in SD with

f(x) = (loop, n), and i ∈ j(x, 1) be an arbitrary instance involved in the frag-

ment. According to Rule 5.15 s, s1, s
′

1, s
′

∈ Si
int are state locations for in-

stance i, and the associated CPN contains places s, s1, s
′

1, s
′

∈ P , transitions

tloop−beg, tloop−end ∈ T¬l
n , and arcs ai0, ai1, a

′

i1, a
′

i0 ∈ A.

For a loop fragment we have additionally the equality s = s
′

1. Similarly,

the net transition tloop−end is guarded with the negated disjunction of the loop

guard expression: guard(tloop−end) = [C! = True]. Furthermore, let the loop

condition be C = [min ≤ v ≤ max]: with a counter variable v ∈ X, then for

each guard(tloop−beg) = [C == T ], v = v + 1.

Figure 5.15(a) shows a sequence diagram with a loop fragment and Fig-

ure 5.15(b) shows the corresponding CPN model. SDK initiate with a lo-

cal transition t1 = (e1, m1, e2) followed by a loop interaction fragment id :

guard(id) = [C == True], where C = [0 ≤ x ≤ 10], C ∈ Exp and x ∈ X .

Consider the instance b ∈ j(id) that involves in the fragment. The state loca-

tions in the operand for the instance b are given by λb(id, 1) = {S2b, S3b, S4b}.

The corresponding CPN, which is derived by applying Rule 5.18, has places

S2b, S3b, S4b ∈ P of the colour b whereby S1b = S4b. The net-transition

loop − beg ∈ T¬l
n , which corresponds to the beginning of the loop fragment,

is guarded by gaurd(loop− beg) = [C == True]; whereas the net-transition

loop−end ∈ T¬l
n , is guarded by guard(loop−end) = [C! = True]. Furthermore,

the corresponding variable x increments each time when gaurd(loop− beg) =

[C == True]: x = x+1. Hence, the number of possible iterations depends on

the condition associated with the loop operand.
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5.4.4 Transformation of Break Behaviour

The break interaction fragment represents a breaking situation usually within

a loop interaction fragment. The operand in the break fragment is associated

with a guard expression and when the condition is evaluated to true, the inter-

action within the break operand happens and it ignores the remainder of the

enclosing interaction fragment (loop) and continues with the interactions after

the loop fragment. When the guard expression is evaluated to false, the break

operand is ignored and the rest of the scenario within the loop interaction frag-

ment happens. The behaviour is equivalent to that of an alternative fragment

with the contents of the break fragment as one operand and all remaining

elements of the diagram as an else branch.

The transformation of a break fragment nested within a loop fragment, to

a CPN model can be considered in two ways: (1.) when the loop fragment

contains interaction after the break fragment (Figure 5.16(b)) and (2.) when

the loop fragment does not contain any interaction after the break fragment

Figure 5.17(b). In both cases the CPN representation contains break − beg

and break − end net transitions to indicate the beginning and the end of the

break interaction fragment.

Here, the break guard condition is associated with the net transition break−

beg. Additionally we impose an equality between the places correspond to the

state locations after the break fragment and after the loop fragment. Thus,

both net transitions break − end and loop − end connect to the same place.

Hence, when the break fragment executes, it terminates the loop fragment

without firing the rest of the interactions within the loop.

In the former case (1), we associate the negation of the disjunction of the

condition in the enclosing break interaction fragment with the net transition

that corresponds to the first local transition after the break fragment and
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within the loop fragment (here, the net transition t3). Thus based on the

condition that evaluates to true, the firing net transitions can be selected; i.e.

the interaction within the break fragment or the remaining interaction within

the loop fragment.

(a) (b)

Figure 5.16: A sequence diagram with break behaviour: Case II (a) and the

corresponding CPN (b).

In the latter case (2), when the SD does not contain any interactions after

the break fragment within the loop fragment, a new net transition named no−

break is added. The net transition tno−break is associated with a guard condition

that is the negation of the disjunction of the condition in the enclosing break

interaction fragment. This new net transition is connected from the places that

correspond to the state locations before the break fragment and connected to

the places that correspond to the state locations before the loop fragment for

each instance involved in the fragment. Hence, when the break condition is
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not satisfied the execution control returns to the loop fragment.

We define this transformation as follows reusing Rule 5.18.

Rule 5.19 (Break-Rule) Let x, y ∈ F be interaction fragments in SD with

f(y) = (loop, 1), f(x) = (break, 1), such that h(y, 1) = x and i ∈ j(y)∩j(x) be

an arbitrary instance involved in the fragment. Applying Rule 5.15 to the frag-

ment x, s, s1, s
′

1, s
′

∈ Si
int are state locations for instance i, and the correspond-

ing CPN contains places s, s1, s
′

1, s
′

∈ P , and transitions tbreak−beg, tbreak−end ∈

T¬l
n .

Let θi(y) = s
′′

, θi(x) = s
′

∈ Si
int be the state locations after the loop and

break fragments for instance i, respectively, and the associated CPN con-

tains places s
′′

, s
′

∈ P . For the condition associated with the break fragment,

guard(x) = [C == True], the corresponding net transition tbreak−beg is guarded

with the same expression.

Case I: When there are interactions after the break and within the loop

fragment: Let t = (e,m, e
′

) ∈ T be the first local transition in the loop fragment

after the break fragment: (next(s
′

) = e) ∪ (next(s
′

) = e
′

). The corresponding

net transition t
′

∈ Tn is guarded with the negated disjunction of the break

guard expression: guard(t
′

) = [C! = True] and connected from the place s :

node(a0i) = (s, t
′

).

Case II: When there are no interactions after the break and within the loop

fragment: Applying Rule 5.15 to the fragment y, let sloop ∈ Si
int be the state

location before the beginning of the loop for instance i, and the corresponding

CPN contains place sloop ∈ P . In this case, we have additionally a new

net-transition tno−break ∈ T¬l
n , and arcs a

′′

i , a
′′′

i ∈ A, such that node(a
′′

i ) =

(s, tno−break), and node(a
′′′

i ) = (tno−break, sloop). The new net-transition tno−break

is guarded with the negated disjunction of the expression: guard(tno−break) =

[C! = True].
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Additionally, for a break fragment we have additionally the equality between

the places: s
′

= s
′′

.

(a) (b)

Figure 5.17: A sequence diagram with break behaviour: Case I (a) and the

corresponding CPN (b).

To illustrate the transformation of a break fragment nested in a loop frag-

ment, consider the SD and the corresponding CPN shown in Figure 5.16. Let

idl and idb be the fragment identifiers of the loop and the break interaction

fragments, respectively. Here, a ∈ j(idl) ∩ j(idb) is an instance involved in

both fragments. The state locations in the break operand for the instance

a are given by λa(idb, 1) = {S3a, S4a}. The state location before the begin-

ning and after the end of the break fragment are such that nexta(S2a) = e5

and θa(idb) = nexta(e9) = S5a respectively. Similarly, for the loop fragment,

nexta(S0a) = e1 and θa(idl) = nexta(e13) = S7a.
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CPNK is obtained by applying the transformation given by Rule 5.19 and

the corresponding CPN contain places S5a, S7a ∈ P of colour a, where by

S5a = S7a. The break guard condition C = [x == 5] is associated with the net

transition correspond to the beginning of the break fragment : guard(break−

beg) = [C == True]. Further, the negated disjunction of the condition is

associated with the net transition correspond to the first local transition after

the break within the loop fragment such that guard(t3) = [C! = True].

Consider the transformation of case II, where the loop fragment does not

contain any interactions after the break fragment. Figure 5.17 shows a SD

and the corresponding CPN representation with this behaviour. The CPN

contains an additional net transition tno−break ∈ T¬l
n and the arcs a1, a2 ∈ A

link the places with the new net-transition, in such a way that, node(a1) =

(S2a, tno−break), node(a2) = (tno−break, S0a). Further, the negated disjunction of

the break guard condition is associated with this net transition as expected:

guard(tno−break) = [C! = True]. Thus when the break guard condition is not

satisfied the net transition tno−break fires and the execution flow goes back to

the interaction within the loop.

5.4.5 Transformation of Parallel Behaviour

The operator par represents a parallel execution of the behaviours of the

operands. The occurrences of the different operands can be interleaved in

any way, while the execution order of local transitions inside each operand is

preserved. This operator has a natural representation with the CPN model,

which supports the description of concurrency and parallelism.

According to Rule 5.15 , the CPN model corresponding to the behaviour

of the par interaction fragment has two additional transitions to synchronise

the control at the beginning and the end of a par interaction fragment (Fig-
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ure 5.18). The net transition tpar−beg creates branches for each operand, passing

a token into the linked places in each operand (fork operation). This supports

the interleaving between the transitions of each branch. The net transition

tpar−end has to wait for the execution of all branches to complete as it can only

fire when all it’s input places have tokens available (join operation).

(a) (b)

Figure 5.18: A sequence diagram with parallel behaviour (a) and the corre-

sponding CPN (b).

When deriving a CPN, we can obtain a model that describes this concurrent

behaviour in the same way. In fact, previously described Rule 5.15 is all we

need to describe a par fragment and no further restrictions are necessary.

This is illustrated by the example in Figure 5.18. SDK consists of a parallel

fragment x with two operands. The state locations of the instance b in each

operand are given by λb(x, 1) = {S2b, S3b}, λb(x, 2) = {S4b, S5b}. Applying

Rule 5.15, the CPN has places S2b, S3b, S4b, S5b ∈ P of colour b. The net

transitions tpar−beg, tpar−end synchronise the instances involved in the fragment.
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It is straightforward to apply this transformation to more than two parallel

operands by just adding more output places to the fork net transition and,

similarly, more input places to the join net transition.

5.4.6 Transformation of Critical Behaviour

The behaviour of a critical interaction fragment indicates that the given inter-

action within the fragment are treated as an atomic block. Critical fragments

are typically used inside a par interaction fragment to ensure that a group

of interactions cannot be separated or interleaved with other transitions. In

other words, the local transitions given within a critical interaction fragment

must execute atomically without interruption.

(a) (b)

Figure 5.19: A sequence diagram with critical behaviour (a) and the corre-

sponding CPN (b).

In order to represent the behaviour of a critical fragment nested in a par
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interaction fragment in a CPN model, we establish means to exclude the execu-

tion of interleaving transitions in other parallel operands, when the transitions

within the critical behaviour are firing. This is achieved by an additional place

with a token of the colour environment for each net transition that belongs to

the par fragment excluding the critical fragment, and having in/out arcs be-

tween the net transition and the new place. Thus, each concurrent transition

is checked for an existing environment token each time it fires.

Further, we link each of these places with the net transitions that corre-

spond to the beginning and the end of the critical fragments using out arc

and in arc, respectively (Figure 5.19). Hence, the critical section would collect

all such tokens on entering the crucial behaviour, thus stopping all concurrent

net transition executions correspond to the other operands. Since the tokens

are put back to the relevant environment places after the critical section is

completed, the concurrent executions of other net transitions may continue.

Without loss of generality and due to enhanced readability, we introduced

these concepts only for one net transition in another operand.

The following rule describes the transformation of critical behaviour nested

within a par fragment.

Rule 5.20 (Critical-Rule) Let x, y ∈ F be interaction fragments in SD with

f(y) = (par, n), f(x) = (critical, 1), such that h(y, 1) = x and i ∈ j(y)∩j(x) be

an arbitrary instance involved in the fragment. Applying Rule 5.15 to the frag-

ment x, the corresponding CPN contains transitions tcritical−beg, tcritical−end ∈

T¬l
n . Let t

′

∈ Tn be an arbitrary net transition that correspond to a local

transition in SD: t = (e,m, e
′

) ∈ T , where e, e
′

∈ g(y) and e, e
′

/∈ g(x).

Additionally, ∀t
′

we have a new place p ∈ P of the environment colour:

c(p) = E , m(p) = 1 and arcs a1, a2, a3, a4 ∈ A : node(a1) = (p, tcritical−beg),

node(a2) = (tcritical−end, p), node(a3) = (p, t
′

) and node(a4) = (t
′

, p).
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Consider Figure 5.19(a) that shows a critical fragment nested in a par frag-

ment. The local transitions enclosed within the critical interaction fragment

(here, m2 and m3) must execute as a one unit and cannot be interleaved with

other local transitions (here m1). In other words, m1 ·m2 ·m3 and m2 ·m3 ·m1

are valid traces, whereas m2 ·m1 ·m3 is invalid. The corresponding CPN shown

in Figure 5.19(b) can be obtained by applying Rule 5.20.

CPNK contains an additional place S0e for the environment such that

c(S0e) = v, v ∈ E and m(S0e) = 1. Let a1, a2, a3, a4 ∈ A be the addi-

tional arcs that link the environment place with the net transitions such that

node(a1) = (S0e, tcritical−beg), node(a2) = (tcritical−end, S0e), node(a3) = (S0e, t
′

)

and node(a4) = (t
′

, S0e). As can be seen from this example, the token in S0e is

consumed when entering the critical region and only released once the critical

region is completed. The execution of t1 requires a token to be available in

S0e.

5.4.7 Transformation of Sequence Behaviour

The interaction fragment seq represents a weak sequencing of the behaviour of

the operands. The local transitions within each operand, provided they share

a lifeline, are executed in sequence as expected given the order in which they

appear. Similarly, the local transitions from different operands that concern

the same instance (lifeline) are executed in the order shown. That is, an oc-

currence of the first operand comes before one in the second operand, and so

on. When the involving instances are mutually exclusive, the local transitions

may execute in any order. Thus, weak sequencing defines local causality inside

and between operands of an interaction fragment, when they share same in-

stances. This behaviour reduces to strict behaviour when the operands work

on only one participant. Moreover, when the local transitions in operands
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are involved with disjoint set of instances, this behaviour reduces to parallel

behaviour. [OMG, 2011a].

In order to preserve the behaviour of a seq fragment using a CPN model,

we have to establish means to prohibit parallel execution of net transitions in

different operands that share the same instance and preserve the global order-

ing of the net transition firing along a lifeline. This is achieved by having an

additional place of the environment colour, in between the last transition of an

operand and the first transition of the next operand, only if the same instance

involved in the operands. Here, the transitions in the next operand that in-

volve with places of same colour, get tokens to fire only after the transitions

within the current operand are completed. This preserves the seq ordering

along a given colour while stopping parallel executions.

(a) (b)

Figure 5.20: Sequence diagram with sequential behaviour and corresponding

CPN.

The following rule derives a CPN, which describes the weak sequencing

behaviour in the same way.
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Rule 5.21 (Seq-Rule) Let x ∈ F be interaction fragments in SD with f(x) =

(seq, n), and i ∈ j(x, k) ∩ j(x, (k + 1)) for k ∈ N and k < n, be an arbitrary

instance involved in the operand k and (k + 1). Applying Rule 5.15 to the

fragment x, the corresponding CPN contains places, transitions and arcs as

expected.

Let t1 = (e1, m1, e2), t2 = (e3, m2, e4) ∈ T be the maximum and mini-

mum local transitions associate with the shared instance i involved in two

operands, such that e1, e2, e3, e4 ∈ E, where e1 ∪ e2 ∈ max(gi(x, k)), and

e3∪e4 ∈ min(gi(x, (k+1))), and the corresponding net transitions be t
′

1, t
′

2 ∈ Tn.

Additionally, ∀t
′

1 we have a new place p ∈ P of the environment colour:

c(p) = E and arcs a1, a2 ∈ A : node(a1) = (t
′

1, p) and node(a2) = (p, t
′

2).

Consider the example shown in Figure 5.20. SDK contains a interac-

tion fragment f(x) = (seq, 2) with local transitions t1 = (e5, m1, e6), t3 =

(e9, m3, e10) in two operands and sharing the same set of instances a, b. The

local transition t2 = (e7, m2, e8) involving instances c, d are mutually exclu-

sive from the other transitions. Here t1 is the last transition in the operand

1 : e5, e6 ∈ max(g(x, 1)) and t3 is the first transition in the operand 2

w.r.t. the shared instances a and b : e9, e10 ∈ min(g(x, 2)). By apply-

ing Rule 5.21, we derive the CPN in Figure 5.20(b), with net-transitions

strict − beg, strict − end ∈ T¬l
n , to synchronise the behaviour given by the

weak sequencing and the corresponding net transitions t1, t2, t3 ∈ Tn. Further,

there is a new place, S0v ∈ P of the colour environment v ∈ E in between t1

and t3 and arcs a1, a2 ∈ A link the place with the net transitions such that

node(a1) = (t1, S0e) and node(a2) = (S0e, t3). Here, the net transitions t2 may

be interleaved with others in any way.
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5.4.8 Transformation of Strict Behaviour

The seq interaction fragment (or the default interaction behaviour) only im-

poses an execution order on transitions that have a shared instance and com-

pletely independent transitions are interleaved in any way. A more strict order

of execution can be imposed by a strict interaction fragment, which applies

to all instances involved in the interaction fragment. Each operand in a strict

fragment is executed before the next operand, and so on, and imposes a strict

execution order between the behaviour of operands.

(a) (b)

Figure 5.21: A sequence diagram with strict behaviour (a) and the correspond-

ing CPN (b).

In order to preserve the behaviour of a strict fragment using a CPN model,

we have to establish means to prohibit execution of net transitions that are

involved in mutually exclusive instance colours and preserve the total ordering

of the net transition firing. This is achieved by having an additional place of

the environment colour in between the net transitions correspond to the last
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transition of an operand and the first transition of the next operand within

the strict behaviour. So that the net transitions correspond to the local tran-

sitions in the next operand will get tokens to fire only after the net transitions

correspond to the local transitions within the current operand are completed.

This preserves the strict ordering, while stopping parallel executions of the net

transitions that associate with mutual exclusive colours.

The following rule derives a CPN, which describes the strict sequencing

behaviour in the same way.

Rule 5.22 (Strict-Rule) Let x ∈ F be interaction fragments in SD with

f(x) = (strict, n) for n ∈ N. Applying Rule 5.15 to the fragment x, the

corresponding CPN contains places, transitions and arcs as expected. Also,

Applying Rule 5.21 the corresponding CPN gives the seq behaviour.

Additionally, let a, b /∈ j(x, k) ∩ j(x, (k + 1)) for k < n, be mutually ex-

clusive arbitrary instances involved in the operand k and (k + 1). Let t1 =

(e1, m1, e2), t2 = (e3, m2, e4) ∈ T be the maximum and minimum local transi-

tions associate with the mutual exclusive instances a, b involved in two operands,

such that e1, e2, e3, e4 ∈ E, where e1 ∪ e2 ∈ max(ga(x, k)), and e3 ∪ e4 ∈

min(gb(x, (k + 1))), and the corresponding net transitions be t
′

1, t
′

2 ∈ Tn.

Here, ∀t
′

1 we have a new place p ∈ P of the environment colour: c(p) = E

and arcs a1, a2 ∈ A : node(a1) = (t
′

1, p) and node(a2) = (p, t
′

2).

This is explained by the example shown in Figure 5.21. SDK contains

a strict interaction fragment with two local transitions t1 = (e5, m1, e6) and

t2 = (e7, m2, e8) where the involving instances a, b and c, d are mutually ex-

clusive. By applying Rule 5.22, we derive the CPN in Figure 5.21(b), with

net-transitions strict − beg, strict − end ∈ T¬l
n , to synchronise the behaviour

given by the strict sequencing and the net transitions t1, t2 ∈ Tn correspond

to the local transitions within the strict fragment. Further, there is a new
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place, S0e ∈ P of the colour environment v ∈ E in between t1 and t2 and arcs

a1, a2 ∈ A link the place with the net transitions such that node(a1) = (t1, S0e)

and node(a2) = (S0e, t2).

5.4.9 Transformation of Ignore Behaviour

The ignore interaction fragment specifies interactions that are intentionally

disregarded from the present behaviour. These interactions are insignificant

and can be considered as irrelevant for the purpose of the diagram, however,

they may still occur during the actual execution. The overall behaviour of the

system does not change, whether the local transitions within ignore fragments

occur or not. It allows a way of taking a perspective over an interaction.

(a) (b)

Figure 5.22: A sequence diagram with ignorance behaviour (a) and the corre-

sponding CPN (b).

When transforming ignored behaviour of a SD, the corresponding CPN

contains net transitions tignore−beg and tignore−end to synchronise the tokens at

the beginning and the end of the fragment, as given by Rule 5.15. Since the
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firing of the net transitions within the ignore behaviour does not make any

change, we impose an equality between the places correspond to the minimum

and maximum state locations within the fragment for a given instance in the

SD (see Figure 5.22). Thus, the system states at the beginning and the end of

the fragment are equivalent.

The following rule defines the transformation of an ignore fragment to a

CPN representation.

Rule 5.23 (ignore-Rule) Let x ∈ F be an interaction fragment in SD with

f(x) = (ignore, 1), and i ∈ j(x, 1) be an arbitrary instance involved in the

fragment. According to Rule 5.15 s, s1, s
′

1, s
′

∈ Si
int are state locations for in-

stance i, and the associated CPN contains places s, s1, s
′

1, s
′

∈ P , transitions

tignore−beg, tignore−end ∈ T¬l
n , and arcs ai0, ai1, a

′

i1, a
′

i0 ∈ A. For an ignore frag-

ment we have additionally the equality s1 = s
′

1.

Consider the SD with the ignorance behaviour and the corresponding CPN

shown in Figure 5.22. SDK contains a ignore interaction fragment with two

local transitions t1, t2 ∈ T . For the instance b ∈ j(x, 1), the state locations

within the fragment are given by λb(x, 1) = {S1b, S2b, S3b} andminb(λb(x, 1)) =

S1b, maxb(λb(x, 1)) = S3b. By applying Rule 5.23 the corresponding CPN

contains net transitions ignore− beg, ignore− end ∈ T¬l
n and t1, t2 ∈ Tn and

places S1b, S2b, S3b ∈ P of colour b. To indicate the ignorance behaviour of the

transitions t1, t2, we have the equality between the min and max places such

that S1b = S3b.

5.4.10 Transformation of Consider Behaviour

The consider interaction fragment represents the possible behaviour that is

intentionally included in the interaction. As defined by the UML standard

[OMG, 2011a], the local transitions within a consider fragment are designated
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to be relevant. The behaviour of this operator can be considered as similar to

the default behaviour of an interaction and can often be omitted. However,

even the transformation applies, the corresponding CPN for the consider in-

teraction fragment behaviour can be obtained from Rule 5.15 and no further

restrictions are necessary (Figure 5.23.

(a) (b)

Figure 5.23: A sequence diagram with consider behaviour (a) and the corre-

sponding CPN (b).

5.4.11 Transformation of Assertion Behaviour

The assert interaction fragment used in SDs specifies a mandatory interaction

behaviour. The local transitions in an assert fragment indicates the only

valid continuations. Since, the definition of assert is not well defined in the

standard [OMG, 2011a], we assume that an assert fragment specifies the only

valid interaction behaviour, and all the specified behaviour in the fragment

must happen. That is, the interactions indicated by the local transitions within

the fragment are required to execute, and only a part of the interactions is not
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acceptable.

Applying Rule 5.15, an assert interaction fragment is transformed to a

CPN by having tassert−beg and tassert−end net transitions to synchronise the

token flow at the beginning and the end of the fragment. The behaviour of

an assert fragment is represented in CPN by assigning an incomplete status

to the places correspond to the state locations within the fragment, given by

λ function, except the minimum and maximum state locations. A complete

status is reached only when the control flow reaches the places before the net

transition tassert−end, after firing all the net transitions within the assertion

behaviour. That is, we can ensure that all the transitions within the assert

behaviour should happen in order to reach to a place with a complete status.

(a) (b)

Figure 5.24: A sequence diagram with assertion behaviour (a) and the corre-

sponding CPN (b).

The following rule defines the transformation of an assert fragment to a

CPN representation.
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Rule 5.24 (assert-Rule) Let x ∈ F be an interaction fragment in SD with

f(x) = (assert, 1), and i ∈ j(x, 1) be an arbitrary instance involved in the

fragment. The corresponding CPN is obtained according to Rule 5.15. Addi-

tionally, for an assert fragment ∀pk ∈ P that correspond to the state locations

given by λ(x, 1) \ {min(λ(x, 1) ∪ max(λ(x, 1))}, status(pk) = {incomplete},

k ∈ N.

For example consider the SD and the corresponding CPN shown in Fig-

ure 5.24. CPNK contains places S1b, S2b, S3b ∈ P of the colour b ∈ Sigma that

correspond to the state locations λb(x, 1) = {S1b, S2b, S3b} for instance b ∈ I.

By applying Rule 5.24, status(S2b) = {incomplete} and by default all other

places are complete.

The definition indicates that the invalid traces are associated with only

negate fragment, thus not associated with other fragments; and this contradicts

the assert statement.

5.4.12 Transformation of Negative Behaviour

The neg operator is used in SDs, to specify forbidden interactions of a system.

It represents an invalid trace and specifies a behaviour that must not occur.

Thus, the expressive power of the neg interaction fragment supports the safety

and security properties in a system specification.

In order to represent the neg behaviour in a CPN, we use inhibitor arcs to

link the net transition tneg−beg corresponds to the beginning of the fragment,

with the places correspond to the minimum state locations of the fragment

(see Figure 5.25). Thus, tokens will not pass to the net transitions within

the neg behaviour and this will prevent their firing. Additionally, we link the

transition tneg−beg with the place corresponds to the state location outside the

fragment, (given by the θ function). This allow continuing with the transitions
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after the neg behaviour. Further, we assign an unsafe status for all the places

correspond to the state locations within the neg fragment, given by the λ

function.

(a) (b)

Figure 5.25: A sequence diagram with negative behaviour (a) and the corre-

sponding CPN (b).

The following rule defines the transformation of a neg fragment to a CPN

representation.

Rule 5.25 (neg-Rule) Let x ∈ F be an interaction fragment in SD with

f(x) = (neg, 1), and i ∈ j(x, 1) be an arbitrary instance involved in the frag-

ment. According to Rule 5.15 s, s1, s
′

1, s
′

∈ Si
int are state locations for in-

stance i, and the associated CPN contains places s, s1, s
′

1, s
′

∈ P , transitions

tneg−beg, tnege−end ∈ T¬l
n , and arcs ai0, ai1, a

′

i1, a
′

i0 ∈ A. For a neg fragment we

have additionally an inhibitor arc a
′′

i ∈ Ain such that node(a
′′

i ) = (tneg−beg, s1)

and the arc a1i is link such that node(ai1) = (tneg−beg, s
′

). Also, ∀sk ∈ P

that correspond to the state locations given by λ(x, 1), status(sk) = {unsafe},

k ∈ N.
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Figure 5.25 shows a SD with negate behaviour and the corresponding CPN.

Consider the instance a ∈ I in the SD and the corresponding colour a ∈ Sigma

in the CPN. The CPN contain places S1a, S3a ∈ P that correspond to the state

locations such that min(λa(x, 1)) = S1a and θa(x) = S3a, respectively. The

arc a1 ∈ A is linked such that node(a1) = (neg − beg, S3a) and there is an

additional inhibitor arc a2 ∈ Ain such that node(a2) = (neg − beg, S1a). Thus

the token do not pass to the net transitions t1, t2 and the negate behaviour is

preserved.

5.5 Concluding Remarks

This chapter has described the model transformation framework used in this

thesis, and a motivation as to why model transformation is useful from graph-

ical modelling languages to formal models. The model transformation rules

defined in this chapter are exogenous and based on the operational approach.

The defined rules comply with the SD and CPN definitions given in Chapter

3 and Chapter 4, respectively. The defined rules have covered the transfor-

mations of the entire UML 2 SD elements including the behaviour of all the

interaction fragments to the corresponding CPNs.
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6 Complex Model Transformation

In this chapter, we consider ways of understanding the complexity of the in-

teraction models and their transformations.

Software design models are rarely standalone and are generally connected

to and depend upon other models or views of the system. The growth of

large-scale and complex systems has resulted in software design models with

a large number of interactions [Anda et al., 2009, France and Rumpe, 2007].

The development of such systems involves large collections of models for the

same or different system perspectives [Kleppe et al., 2003,Vale and Hammoudi,

2009]. It is a challenge to compose various design models in a way that can

facilitate them to function together as a system and are able to deliver required

functionality. For example, a single model can be generated that gives a unified

understanding about the entire system and enables end-to-end reasoning for

properties that the system must satisfy. Model composition at the design stage

is important to resolve issues that would not otherwise appear until the later

stages of the development and when operationalise the system [Radjenovic and

Paige, 2010].

Additionally, in a complex system there may be situations to check a prop-

erty of the model against only a part of the behaviour. Here, we address this

through the use of partial transformations. Partial transformation is of in-

terest for local analysis and can be used to facilitate the understanding of a

set of sub-interactions in a model [C.Baier and J.Katoen, 2008]. Conversely,

partial transformations also support for the construction of specifications in-

crementally by combining previously developed models with new interactions

that allows model reuse and analysis [Cuadrado et al., 2011].

Further, in model-to-model (M2M) transformation where the target model

has variants, parametric transformation can be used to map the source model
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to an intended target semantic model. We look into parametric transforma-

tions in the context of modelling and analysing systems with real-time and/or

performance requirements.

Finally, we extend the defined transformations to model integration con-

sidering hierarchical aspects.

This chapter starts with addressing model composition between sequence

diagrams (SDs) and coloured Petri nets (CPNs) considering the reference be-

haviour. Section 6.2 shows the applicability of partial and incremental trans-

formations using rules defined in Section 6.1. Additionally, the parametric

transformations that map SDs with timed and stochastic aspects to timed CPN

(TCPN) and stochastic CPN (SCPN) models are described in Section 6.3. Fur-

ther, Section 6.4 gives the model integration rules by considering hierarchical

aspects of models. This includes defining transformation rules between SDs

and (IODs) and between CPNs and hierarchical CPNs (HCPNs).

6.1 Model Composition

When modelling systems with a large number of interactions it is important

to be able to decompose a large SD model into smaller units making use of

an interaction-use (reference behaviour) or lifeline decomposition, so that each

sub-model can be analysed separately. Conversely, it may be necessary to

compose SD models to a single model to have a more global view of a system

model. An important part of the M2M transformations in this thesis is to

describe solutions for automatic model composition.

Sequence diagrams and CPNs allow composition and decomposition of

models. SDs make this possible through interaction-use and lifeline decompo-

sition. This section defines the transformation rules for the reference behaviour

allowing partial synthesis of model transformation from SDs to CPNs. There

190



are several ways to transform complex SDs into CPNs as shown in Figure 6.1.

SDA, SDB

ref rules
//

SD comp

��

unfold rules
Q

Q

Q

Q

Q

((Q
Q

Q

Q

Q

CPNA, CPNB

CPN comp

��

SDA×B
general rules

// CPNA×B

Figure 6.1: The transformation paths for SDs with decomposition mechanisms.

Given a sequence diagram SDA with one or more references to SDB, we

can do one or more of the following:

- Transform both SDs into appropriate CPNs obtaining CPNA and CPNB

where CPNA is a complex CPN with some reference to CPNB. These

CPNs can be analysed directly or if intended, a composite CPN can

be obtained through CPN composition rules (replace the occurrences of

CPNB in CPNA);

- Compose SDA and SDB applying SD composition rules (replace the

occurrences of SDB in SDA) and use basic rules to obtain a composite

CPN;

- Apply the unfolding of SDB in SDA directly obtaining the composite

CPN. A unique (up to bisimulation) CPN model CPNA×B can be ob-

tained from each path of transformations, i.e. the diagram of Figure 6.1

is preserved.

6.1.1 Model Composition with ref Rule

A SD with decomposition mechanism enables to represent a set of interactions

in a separate diagram, allowing interactions to be reused in various ways.

Recalling Chapter 3, Section 3.1.3, UML 2 decomposition mechanisms consist

of interaction-use (ref fragment) and lifeline decomposition.
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Recalling the interaction-use behaviour of a SD, there should be a separate

SD with the same diagram name referred by the ref fragment. When com-

posing the two diagrams, the ref fragment is replaced by the behaviour of the

referred diagram.

In general transformation of a SD to a CPN (defined in Chapter 5), for

each local transition in a SD there is a corresponding net transition in the

CPN. Here, the net transition is labelled by the corresponding message label

of the local transition.

The transformation of an interaction-use (ref fragment) in a SD to the

corresponding CPN is as follows: The CPN includes an additional net transi-

tion to represent the behaviour abstract by the ref fragment, and labels that

net transition by the referred diagram name given by the ref fragment.

(a) (b)

Figure 6.2: The decomposition behaviour of a SD (a) and the corresponding

CPN (b).

Here, the transition is in effect a substitution transition, which conveys the

behaviour of the referenced CPN (Section 6.1.3, Section 6.1.4 and Section 6.4

describes more on this).
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The following rule states the transformation of a ref interaction fragment

in a SD to a CPN .

Rule 6.1 (Interaction-Use-Rule) Let SDA be a sequence diagram where

x ∈ FA is such that f(x) = (ref, 1) and ref(x) = B. For all i ∈ j(x, 1)

instances involved in x let λi(x, 1) = {s1i} and θi(x) = s2i. The corresponding

CPNA is such that i ∈ Σ+, s1i, s2i ∈ PA with c(s1i) = c(s2i) = i and there is an

additional net transition t ∈ TnA such that l(t) = B and there are arcs a1i, a2i ∈

A such that node(a1i) = (s1i, t) and node(a2i) = (t, s2i). If i ∈ j(x, 1)∩IA is an

object instance, then for e = mini(g(x, 1)) with e ∈ nexti(s0i), the matching

places in PA satisfy s0i = s1i ∈ PA.

(a) (b)

Figure 6.3: A referred sequence diagram by interaction-use (Figure 6.2) (a)

and the corresponding CPN (b).

Consider SDM and CPNM shown in Figure 6.2 with an interaction-use

behaviour. The interaction fragment ref in SDM refers to SDN shown in

Figure 6.3. Applying Rule 6.1 to SDM and by looking at the instances

b, v2 ∈ j(x, 1) involved in fragment x with ref(x) = N , we obtain the follow-

ing as described in Chapter 3. For the object instance b ∈ IM , the associated
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state locations are determined by λb(x, 1) = {S1b} and θb(x) = S2b. For the

environment instance v2 ∈ I+M , the associated state locations are determined

by µv2(m3, e6) = S3e, λv2(x, 1) = {S3e} and θv2(x) = S2e.

The CPN representation for an interaction-use is represented by an ad-

ditional net transition tN ∈ Tn and is labelled with the diagram name N :

l(tN ) = N . Thus, when executing the net transition tN , it substitutes the re-

ferred diagram CPNN (Substitution is defined in Section 6.1.3). The colours

and places of the CPN correspond to the instances and state locations of the

SD, as given by the main transformation rules in Chapter 5. According to

Rule 6.1, for the colour b that corresponds to an object instance, we have the

equality of places such that S1b = S0b. Further, there are arcs a1b, a2b ∈ A such

that node(a1b) = (S1b, N) and node(a2b) = (N, S2b).

Consider the Figure 6.2, for the environment instance v2 ∈ IM , CPNM

contains places Se2, Se3 ∈ P correspond to the state locations λv2(x, 1) = {Se3}

and θv2(x) = Se2. These places are link with the net transition tN such that

node(a1v2) = (Se3, N) and node(a2v2) = (N, Se2), where a1v2 , a2v2 ∈ A.

Since, e6 ∈ gv2(x) is a gate event which is associated with the local tran-

sition t2 = (e5, m2, e6), we also have µv2(m1, e6) = Se3 and e6 ∈ nextv2(Se2).

According to Rule 6.1 we have one arc connecting Se2 with the transition t2 and

another arc connecting the transition t2 with Se3. I.e. the arcs a3v2 , a4v2 ∈ A

link the corresponding net transitions t2 ∈ Tn with the places such that

node(a3v2) = (Se2, t2) and node(a4v2) = (t2, Se3).

Lifeline decomposition is another mechanism that enables diagram referenc-

ing. Here, an instance can refer the behaviour of a separate sequence diagram

(e.g. instance a in SDM of Figure 6.2 refers SDL). The transformation of this

behaviour to a CPN hardly affects the visual representation of the CPN model.

The corresponding CPN can be obtained with normal rules adding only the
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information that colour a ∈ Σ is such that r(a) = L, where L is the referred

diagram. When the two diagrams combings, the places and the transitions

that are associated with the colour a are replaced by appropriate behaviour in

the referred diagram L (this substitution is defined in Section 6.1.3).

(a) (b)

Figure 6.4: The referred sequence diagram by lifeline decomposition (Fig-

ure 6.2) (a) and the corresponding CPN (b).

The transformation of lifeline decomposition behaviour to a CPN is defined

in the following rule.

Rule 6.2 (Lifeline-Decomposition-Rule) Let SDA be a sequence diagram

where i ∈ IA is such that ref(i) = B and B ∈ N \ {A}. In the corresponding

CPNA, i ∈ Σ and r(i) = B.

Figure 6.2 shows a SD with lifeline decomposition and the corresponding

CPN. The lifeline decomposition of the instance a ∈ I refers to SDL shown

in Figure 6.4 such that ref(a) = L. By applying Rule 6.2 the corresponding

CPN contains a colour a ∈ Σ with r(a) = L.
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Recalling Figure 6.1, consider the transformation of SDA that has a ref-

erence to SDB. The reference behaviour is also reflects in the corresponding

CPNA that refers to CPNB. So that the transformation with ref rules in this

figure can be obtained by applying Rule 6.1 and Rule 6.2.

6.1.2 Model Composition with unfold Rule

This section describes direct transformation rules to compose a CPN from

SDs with decomposition mechanisms. Here, we define unfold rules shown in

Figure 6.1 considering the two cases: (1) composition with interaction-use and

(2) composition with lifeline decomposition.

(a) (b)

Figure 6.5: A sequence diagram with reference behaviour (a) and the referred

SD with interaction-use (b).

When a SD has a reference to another SD with an interaction-use (ref

interaction fragment), the corresponding CPN that represents the combined

behaviour of two SDs by replacing the interaction-use can be obtained as fol-

lows. Consider Figure 6.5 and Figure 6.6. For all instances (eg. b ∈ I) involved

in the ref fragment in the SD and for the corresponding colours in the CPN,
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we impose an equality between the CPN places that correspond to the state

location before the beginning of the ref fragment and the initial state loca-

tion of the referred SD (S0b = S0b′ ) , for a given instance. Similarly, there is

equality between the places that correspond to the state location after the end

of the ref fragment and the end state location of the referred SD (S2b = S3b′ ),

for all the instances involved in the fragment. Following Rule 6.3 defines this

transformation.

Figure 6.6: The corresponding CPN obtained from SDM × SDN .

Rule 6.3 (Unfold-Rule:1 (with interaction-use)) Let SDA, SDB be two

sequence diagrams where x ∈ FA is such that f(x) = (ref, 1) and ref(x) =

B. For all i ∈ j(x, 1) instances involved in x and by definition necessarily

i ∈ I+B . Let e1, e2 ∈ EA denote the minimal and maximal event in g(x)i, in

SDA respectively, where e1 ∈ nexti(s) and nexti(e2) = θi(x) = s
′

. Also, let

s1 ∈ Si
iniB

and s2 ∈ Si
endB

be the initial and end state locations of the instance

i in the referred diagram SDB.
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The corresponding CPN(AxB) contains i ∈ Σ+, s, s
′

, s1, s2 ∈ P . The un-

folded CPN representation of SDA and SDB is obtained by imposing an equal-

ity between the corresponding places such that s = s1 and s
′

= s2.

Additionally, if ∃v ∈ j(x, 1) ∩Env, there are two corresponding local tran-

sitions in the two SDs that connect with a gate as the source or target event,

respectively. For e, ev ∈ EA, let t ∈ TA such that t = (e,m, ev) or t = (ev, m, e)

where ev = minv(g(x, 1)) and the corresponding local transition t
′

∈ TB:

t
′

= (e
′

v, m, e
′

) or t
′

= (e
′

, m, e
′

v) for e
′

, e
′

v ∈ EB, where e
′

v ∈ nextv(s0v) and

s0v ∈ Sv
iniB

and l(t) = l(t
′

) = m.

Then, there is an equality between the corresponding net transitions t, t
′

∈

Tn such that t = t
′

and the unfolded CPN does not contain a colour for the

corresponding environment instance: v /∈ Σ+ and does not contain the corre-

sponding places for the colour v.

Consider SDM with the interaction-use behaviour that refers to SDN ,

shown in Figure 6.5. Figure 6.6 shows the corresponding CPN for the com-

position of the two SDs obtained by unfolding the SDs. Consider the object

instance b in both diagrams. The state locations before the beginning of the

ref fragment and after the end of the fragment in SDM are given by S0b, S2b

respectively. In SDN , the initial and end state locations for object b are given

by S0b′ and S3b′ , respectively. By applying Rule 6.3, CPNMxN is obtained

with the colours a, b, c ∈ Σ from both diagrams. For the colour b, the CPN has

corresponding places S0b, S2b, S0b
′ , S3b

′ ∈ P , whereby S0b = S0b
′ and S2b = S3b

′ .

Additionally, consider the local transition t2 = (e5, m2, e6) in SDM , that

connects to the ref interaction fragment through a gate, and the corresponding

local transition t2 = (e
′

3, m2, e
′

4) in SDN . There is an equality between the two

net transitions t2, t
′

2 ∈ Tn in CPNMxN , : t2 = t
′

2. Further the CPN does not

contain any place of the colour v ∈ Σ+ that corresponds to the v ∈ Env.
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When a SD refers to another SD using lifeline decomposition, the corre-

sponding CPN for the composition of two SDs can be obtained as follows. The

CPN contains colours and places for all the instances and state locations of

the two SDs, except for the instance with the lifeline decomposition and the

associated state locations. Further the net transitions correspond to the local

transitions that are involved in the lifeline decomposition instance are replaced

by the corresponding net transitions in the referred diagram. Places and net

transitions are linked as expected.

Figure 6.7: The referred SD from the lifeline decomposition of instance a in

Figure 6.5.

Following Rule 6.4 defines the obtaining of a corresponding CPN from two

SDs with a lifeline decomposition relation.

Rule 6.4 (Unfold-Rule:2 (with lifeline decomposition)) Let SDA, SDB

be two sequence diagrams where i ∈ IA is such that ref(i) = B and B ∈

N \ {A}. With the transformation τ , the unfolded CPN contains: colours

j
′

∈ Σ+, j
′

= τ(j) : j ∈ (I+A ∪ I+B ) \ {iA}, places s
′

∈ P : c(s
′

) = j, net

transitions t
′

k ∈ Tn, t
′

k = τ(tk) : tk ∈ TA ∪ TB for k ∈ N.
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Let the source or target event of a local transition t ∈ TA, is involved in

the instance i with the lifeline decomposition such that t = (e1, m, e2), e1 ∈ Ei

and/or e2 ∈ Ei. Then the referred SD also contains a local transitions with

the same label: ∃t
′

∈ TB where l(t) = l(t
′

). The corresponding CPNAxB can

be obtained by imposing an equality between the corresponding net transitions

t, t
′

∈ Tn: t = t
′

.

Here, if the source or target event is involved in an environment instance

v ∈ EnvA, then the associated state locations be s1 ∈ Sv
ini and s2 ∈ Sv

end. The

corresponding state locations of the referred SD be s
′

1, s
′

2 ∈ Sv for v ∈ EnvB.

Then CPNAxB is obtained by imposing an equality between the corresponding

places such that s1 = s
′

1 and s2 = s
′

2.

Figure 6.8: The corresponding CPN obtained from SDM × SDL.

Consider SDL in Figure 6.7 referred from SDM in Figure 6.5 by the life-

line decomposition of instance a such that ref(a) = L. The local transitions

t1 = (e1, m1, e2), t2 = (e5, m2, e6) in SDM are involved with the lifeline decom-

position instance and the corresponding local transitions in SDL are t
′

1, t
′

2 ∈ TL

with l(t
′

1) = m1 and l(t
′

2) = m2.
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By applying Rule 6.4 the corresponding CPN shown in Figure 6.8 can be ob-

tained by unfolding the two SDs. CPNMxL contains colours a1, a2, b, c, v1, v2 ∈

Σ+ and does not contain a ∈ Σ. Also, there is an equality between the corre-

sponding net transitions such that t1 = t
′

1 and t2 = t
′

2.

Further, consider the environment instance v1 ∈ (EnvM ∩ EnvL) and the

associated state locations Se0, Se1 ∈ SM and S
′

e0, S
′

e1 ∈ SL. There is an equality

between the corresponding places in CPNMxL such that Se0 = S
′

e0 and Se1 =

S
′

e1. (In default, for the places of the colour environment Se0 = Se1 by Rule 5.7

for a gate event).

Figure 6.9: The corresponding CPN obtained from SDM × SDN × SDL.

Consider the CPN model shown in Figure 6.9. CPNMxNxL represents the

composition of sequence diagrams SDM , SDN (in Figure 6.5), and SDL (in

Figure 6.7), obtained by applying the unfolded rules, Rule 6.3 and Rule 6.4.

In CPNMxNxL, the interaction-use fragment is replaced by the places and

transitions correspond to SDN . There is an equality between the net transi-

tions correspond to the corresponding local transitions, and ignores the places
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correspond to the environment state locations in between.

When transforming the lifeline decomposition behaviour, the CPN does

not contain a colour a ∈ Σ that correspond to the instance involved in the

lifeline decomposition. During the transformation process, the instance with

the lifeline decomposition and the associated state locations are replaced by

the corresponding instances and state locations of the referred diagram, thus

the places and the net transitions.

6.1.3 Model Composition with CPNcomp Rule

CPNs with reference behaviours can be composed to a separate CPN model

that reflects the same behaviour as the source CPN models. The decomposi-

tion mechanisms associate with CPN models correspond to interaction-useand

lifeline decomposition behaviours represent in SDs.

Figure 6.10: A CPN with reference behaviour.

Here, we address CPN comp transformation rules (as described in Fig-

ure 6.1) that compose a model CPNAxB from the models CPNA and CPNB,

where CPNA has a reference to CPNB, either by colours or net transitions.
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(a) (b)

Figure 6.11: The referred CPNs from CPNM(Figure 6.10) by colour reference

(a) and transition reference (b)

When a colour i ∈ Σ in a model CPNA has a reference to another model

CPNB: r(i) = B, the composition of the two models can be obtained as

follows. CPNAxB model contains colours of the both models, except for the

colour that has a reference to another model : j ∈ (Σ+
A ∪Σ

+
B) \ {iA}. Thus the

composite model does not contain any place of the colour i. Further, the net

transitions linked with the places of the colour i are replaced by the correspond-

ing net transitions and the linked places in the referred model. Additionally, if

the two models contain environment colours, then there is an equality between

the corresponding places of that colour.

Figure 6.10 shows a CPN model with two reference behaviours, (1) CPNM

contains a colour a ∈ Σ that refers to another model such that r(a) = L, and

the corresponding CPNL is shown in Figure 6.11(a), (2) CPNM has a net

transition tr ∈ Tn with a label to another CPN such that l(tr) = N and the

referred model CPNN is shown in Figure 6.11(b).
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Figure 6.12: The composition of CPNM and CPNL.

From CPNM with r(a) = L and CPNL, the composition of the two models

can be obtained, as shown in CPNMxL in Figure 6.12. CPNMxL has object

colours from the union of the colours from the source models, except for the

colour that has a reference to CPNL : a1, a2, b, c ∈ Σ and the places of those

colours and all the net transitions. CPNMxL contains only one net transition

for each corresponding transition by imposing an equality.

Consider the net transitions t1(M)
, t2(M)

∈ TnM
and the corresponding t1(L)

, t2(L)
∈

TnL
and there is an equality : t1(M)

= t1(L)
and t2(M)

= t2(L)
. Additionally, when

the source model (here, CPNM) contains places of the environment colour,

the composite model impose an equality between those places. Consider the

places Se0(M)
∈ PM and Se0(L)

∈ PL. There is an equality between these places

in CPNMxL : Se0(M)
= Se0(L)

. Other places and transitions are linked as given

by the source models.

Rule 6.5 defines this transformation of two CPNs referred by a colour to a

single CPN with the same behaviour.

204



Rule 6.5 (CPN-Composition-Rule:1) Let CPNA, CPNB be two models

with a colour reference: r(i) = B, for i ∈ Σ. Then the compositional model

CPNAxB contain colours j ∈ (Σ+
A ∪ Σ+

B) \ {iA}, places p ∈ PA ∪ PB where

c(p) = j, net transitions t ∈ (TnA
∪ TnB

) and the arcs that link places and net

transitions with the node function as expected.

Additionally, let t1 ∈ TnA
and t2 ∈ TnB

be two corresponding net transitions

in the two models: l(t1) = l(t2) ∈ TnA
∪ TnB

. The composite model CPNAxB

is formed by imposing an equality between the net transitions: t1 = t2.

Similarly, let p1 ∈ PA and p2 ∈ PB be two corresponding places of the colour

environment: c(p1) = c(p2) = v ∈ E , CPNAxB has equality p1 = p2.

Figure 6.13: The composition of CPNM and CPNN .

When a CPN model refers to another CPN by the label of a net transition

(let say, composite net transition), the corresponding compositional model is

obtained as follows: The composite model contains the union of the colours,

places, net transitions correspond to both source CPNs, except for the net

transition with the label to the referred model and the places of the colour

environment that are linked with that transition.
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Further, we impose an equality between the source and the target places

of that composite net transition, with the initial and end places of the referred

model, respectively, for each colour. Additionally, there is an equality between

the net transitions in the two CPNs, that has the same label and connected

with a place of the colour environment.

Consider CPNMxN shown in Figure 6.13. This composite model is obtained

by the source models CPNM (Figure 6.10) and CPNN (Figure 6.11). CPNM

has a net transition tr ∈ TnM
: l(tr) = N . Take a colour b ∈ ΣM ∩ ΣN . The

places S0b, S2b ∈ PM are the source and target places of the net transition

tr. In CPNN the places S0b′ , S3b′ ∈ PN are the initial and end places of the

colour b. Since the net transition tr is replaced by CPNN when obtaining the

composite model, in CPNMxN , tr /∈ Tn(MxN)
and there is an equality between

the places such that S0b = S0b
′ and S2b = S3b

′ .

Additionally, the net transition tr is linked with places Se2, Se3 ∈ PM where

c(Se2) = c(Se3) = v ∈ EM . Also, the net transition t2(M)
∈ TnM

has a con-

nection with tr via the places of the environment. The referred CPNN also

contains corresponding net transition t2(N)
∈ TnN

and the places Se0′ , Se1′ ∈ PM

where c(Se2′ ) = c(Se3′ ) = v ∈ EN .

The composite model CPNMxN does not contain places for the correspond-

ing environment colour : Se2, Se3, Se0
′ , Se1

′ /∈ PMxN , and there is an equality

between the net transition with the same label : t2(M)
= t2(N)

. All other places

and net transitions are linked in the same manner as indicated by the source

models.

Rule 6.6 defines this transformation of two CPNs referred by a net transi-

tion to a single CPN with the same behaviour.

Rule 6.6 (CPN-Composition-Rule:2) Let CPNA, CPNB be two CPNs

where tr ∈ TnA
such that l(tr) = B. In CPNA, for each colours i ∈ Σ
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Figure 6.14: The composition of CPNM , CPNN and CPNL.

involved with the net transition tr let p1, p2 ∈ PA and arcs ai1, ai2 ∈ A such

that node(ai1) = (p1, tr) and node(ai2) = (tr, p2). For the corresponding colour

in CPNB let p
′

1, p
′

2 ∈ PB. The composition of CPN(AxB) can be obtained by

imposing an equality between the places such that p1 = p
′

1 and p2 = p
′

2 has does

not contain the net transition: tr /∈ Tn.

Case I: If tr is linked with a place of the colour environment, then let

t1 ∈ TnA
and pe1, pe2 ∈ PA where c(pe1) = c(pe2) = v ∈ EA, and let t

′

1 ∈ TnB

and p
′

e1 = p
′

e2 ∈ PB where c(p
′

e1) = c(p
′

e2) = v ∈ EB and l(t1) = l(t
′

1). Let these

places and net transitions are link by arcs ae1, ae2, ae3, ae4 ∈ AA and ae5, ae6 ∈

AB such that node(ae1) = (pe1, t1), node(ae2) = (t1, pe2), node(ae3) = (pe2, tr),

node(ae4) = (tr, pe1), node(ae5) = (p
′

e1, t
′

1), node(ae6) = (t
′

1, p
′

e1).

The compositional model CPNAxB contains colours i ∈ Σ+
A∪Σ

+
B \{vA, vB},

places p ∈ PA ∪ PB \ {pe} where c(pe) = v, net transition t ∈ TnA
∪ TnB

\ {tr}

and the arcs given by the node function. Additionally, there is an equality

between the net transitions with the same label: t1 = t
′

1.
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By applying both Rule 6.5 and Rule 6.6 we can obtain the composition

of all three models CPNM , CPNN and CPNL as given by CPNMxNxL in

Figure 6.14. This composite model can be obtained by removing the colours,

net transitions that have a reference to another model and the places of the

environment colour, that link with the removed net transition, and by imposing

an equality between the corresponding net transitions that have the same label.

6.1.4 Model Composition with SDcomp Rule

Sequence diagram composition rules can be defined on a SD with decomposi-

tion mechanisms to obtain a detail SD that shows all the referred interactions.

This section describes rules for the path SD comp shown in Figure 6.1, consider-

ing the two decomposition mechanisms, lifeline decomposition and interaction-

use.

Figure 6.15: A sequence diagram with reference behaviour.

When a SD contains an instance with lifeline decomposition that refers to

another SD, the behaviour of the two models can be composed to a single

SD by detailing the reference behaviour. The transformation of the abstract

SD and the referred SD to a composite SD can be obtained as follows. The
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composite SD contains the union of the elements of the both models, except

for the instance with the lifeline decomposition and all the events and state

locations along that lifeline. Instead the new SD replaces with the elements of

the referred SD.

Further, all the local transitions connected with the events along the re-

moved instance as the source or target event, are substituted by the corre-

sponding local transitions with the same message label, in the referred SD.

Additionally, if there are state locations and events that belong to environ-

ment instances are linked with those common local transitions, then there is

an equality between these state locations and events with the corresponding

state locations and events in the referred SD, respectively.

(a) (b)

Figure 6.16: Referred sequence diagrams with interaction-use (a) lifeline de-

composition (b).

Consider SDML shown in Figure 6.17, which is the composition of the dia-

gram SDM with lifeline decomposition (Figure 6.15) and the referred diagram

SDL (Figure 6.16(b)). The instance a ∈ IM is referred to SDL using life-

line decomposition such that ref(a) = L. Here, for all the local transitions
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t1, t2 ∈ TA associated with the instance a, there are corresponding local tran-

sitions t1, t2 ∈ TB in the referred diagram with the same message label. The

combined diagram SDML contains the union of the elements in the source

diagrams, expect for the instance a and all the associated events and state

locations. Further, there is an equality between the local transitions that are

common to the source diagrams.

Figure 6.17: A sequence diagram obtained from SDM and SDL.

Additionally, SDM contains events e1 ∈ Ev1 , e6 ∈ Ev2 and state locations

Se0, Se1 ∈ Sv1 , Se2, Se3 ∈ Sv2 . SDL contains corresponding events e
′

1 ∈ Ev1 ,

e
′

6 ∈ Ev2 and the associated state locations Se0′ , Se1′ ∈ Sv1, Se2′ , Se3′ ∈ Sv2

that belong to the environment instances v1, v2 ∈ Env. In the composite

model, SDML, there is an equality between the corresponding events and state

locations of the environment type: e1 = e
′

1, e6 = e
′

6, Se0 = Se0′ , Se1 = Se1′ ,

Se2 = Se2′ , Se3 = Se3′ .

Following Rule 6.7 defines the transformation of two SDs referred by a
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lifeline decomposition to a single SD with the same behaviour.

Rule 6.7 (SD-Composition-Rule:1(lifeline decomposition)) Let SDA,

SDB be two sequence diagrams where i ∈ IA is such that ref(i) = B and

B ∈ N\{A}. The composite SDAxB can be obtained by (SDA\{i, si, ei})∪SDB

where si ∈ Si
A, ei ∈ EiA .

For all the local transitions t ∈ TA that are involved with the events involved

with the lifeline decomposition instance i, as the source or target event, the

referred SD contains corresponding local transitions with the same label: ∃t
′

∈

TB where l(t) = l(t
′

) = m. SDAxB can be obtained by imposing an equality

between the local transitions t = t
′

.

Additionally, if SDA contains an environment instance v ∈ EnvA and if

there is an event ev ∈ Ev
A as a source or target event of t: t = (ev, m, e) or

t = (e,m, ev) then the associated state locations sv0, sv1 ∈ Sv
A are such that

µ(m, ev) = sv1 and ev ∈ nextv(sv0). The referred SDB has corresponding

events and state locations e
′

v ∈ Ev
B, s

′

v0, s
′

v1 ∈ Sv
B for v ∈ EnvB. Then the

composite SDAxB is obtained by imposing an equality between the corresponding

events and state locations such that ev = e
′

v, sv0 = s
′

v0 and sv1 = s
′

v1.

When a SD refers a set of interactions within another SD using a ref

interaction fragment, a single composite SD with the entire behaviour of inter-

actions can be obtained as follows. The composite SD contains the union of

the elements from the both, i.e., the SD with the abstract representation and

the SD with the referred behaviour, except for the ref interaction fragment

and the events and state locations involved in the interaction fragment. The

composite SD is obtained by imposing an equality between the state locations

correspond to the state location before the beginning of the ref fragment and

the initial state location of the referred SD, for a given instance involved in

the fragment. Similarly, there is equality between the state locations, which
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correspond to the state location after the end of the ref fragment and the end

state location of the referred SD, for all the instances involved in the fragment.

If a local transition connects to the ref interaction fragment through a gate

event, then the referred SD also contains a corresponding local transition with

the same message label. In this case, the composite SD is obtained by imposing

an equality between these local transitions and removing the associated events

and state locations that belongs to the environment instance.

Figure 6.18: A sequence diagram obtained from SDM and SDN .

Consider, Figure 6.18 that represents the composition of the diagram SDM

with the interaction-use behaviour and the referred diagram SDN that are

shown in Figure 6.15 and Figure 6.16(a), respectively. The ref interaction

fragment x ∈ FM in SDM refers to the diagram SDN such that ref(x) = N ,

f(x) = (ref, 1) and b, c, v ∈ j(x), b, c, v ∈ I+N .

Consider the instance b. In SDM , the state locations before the beginning

of the ref fragment and after the end of the fragment are given by S0b, S2b,

respectively. In SDN , the initial and end state locations for instance b are

given by S0b′ and S3b′ , respectively.

The composite model SDMN can be obtained with the union of the elements
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of the source models, except for the interactions fragment x and the associated

minimum and maximum events and state locations of the fragment. Further,

there is an equality between the state locations S0b, S2b, S0b′ , S3b′ ∈ SMN of

instance b of SDMN such that S0b = S0b′ and S2b = S3b′ .

Additionally, consider the local transition t2 = (e5, m2, e6) ∈ TM connects

to the fragment x via a gate and the associated e6 ∈ Ev and Se2, Se3 ∈ Sv

where v ∈ EnvM . The corresponding local transition t
′

2 = (e3′ , m2, e4′ ) ∈ TN

where e3′ ∈ Ev and Se0
′ , Se1

′ ∈ Sv for v ∈ EnvN . In the composite model

SDMN there is an equality between the local transitions connect via the gate

such that t2 = t
′

2 = (e5, m2, e4′ ) and v /∈ I+MN .

Following Rule 6.8 defines the transformation of two SDs referred by an

interaction-use to a single SD with the same behaviour.

Rule 6.8 (SD-Composition-Rule:2 (interaction-use)) Let SDA, SDB be

two sequence diagrams where x ∈ FA is such that f(x) = (ref, 1) and ref(x) =

B. For all i ∈ j(x, 1) instances involved in x and by definition necessarily

i ∈ I+B . Let e1, e2 ∈ EA denote the minimal and maximal event in g(x)i,

in SDA respectively, where e1 ∈ nexti(s) and nexti(e2) = θi(x) = s
′

. Also,

let s1 ∈ Si
iniB

and s2 ∈ Si
endB

be the initial and end state locations of the in-

stance i in the referred diagram SDB. The composite representation SD(AxB) =

(SDA \ {x, e1, e2}) ∪ SDB and there is an equality between the corresponding

state locations such that s = s1 and s
′

= s2.

Additionally, if ∃v ∈ j(x, 1)∩Env, for ev, e ∈ EA and e
′

v, e
′

∈ Ev
B there are

two corresponding local transitions that connect with a gate as the source or

the target event, in the two SDs, respectively. Let t ∈ TA with the relevant gate

event such that t = (e,m, ev) or t = (ev, m, e) where ev = minv(g(x, 1)) and the

corresponding t
′

∈ TB: t = (e
′

v, m, e
′

) or t = (e
′

, m, e
′

v) where e
′

v ∈ nextv(s0v)

, s0v ∈ Sv
iniB

and l(t) = l(t
′

) = m. Then, there is an equality between the
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corresponding local transitions in SDAxB : t = t
′

and the composite SD does

not contain state locations and events that belongs to the environment instance:

v /∈ Σ+.

Figure 6.19: A sequence diagram combining SDM , SDN and SDL.

The composite diagram SDMNL shown in Figure 6.19 can be obtained

as follows: (1) Applying Rule 6.7 and Rule 6.8 for the diagrams SDM (Fig-

ure 6.15) that refers to both SDL and SDN (Figure 6.16) using lifeline decom-

positionand interaction-use behaviour, respectively. (2) Applying Rule 6.8 for

the diagram SDML in Figure 6.17 that refers SDN using interaction-use. (3)

Applying Rule 6.7 for the diagram SDMN in Figure 6.18 that refers to SDL

using lifeline decomposition.

Further, by considering the traces of the models, we can obtain behaviourally

equivalent models using model composition. For example following diagrams

are behaviourally equivalent: (1) SDM ⊗ SDN = SDMN , (2) SDM ⊗ SDL =

SDML, (3) SDM ⊗ SDN ⊗ SDL = SDMNL, (4) SDMN ⊗ SDL = SDMNL, (5)

SDML⊗ SDN = SDMNL, where a common trace m1 ·m0 ·m3 ·m2 ·m4 can be

obtained from the composition of diagrams that are equivalent to SDMNL.
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6.1.5 Model Composition with general Rules

This section recalls the deriving of a CPN from a SD using general rules defined

in Section 5.2.

Figure 6.20: The corresponding CPN for SDMNL.

For example, consider SDMNL in Figure 6.19 and the corresponding CPN

shown in Figure 6.20. SDMNL contains a1, a2, b, c, v ∈ I+, t1, t0, t3, t2, t4 ∈

T and the associated state locations. CPNMNL with corresponding colours,

places, net transitions and arcs can be obtained by applying the general rules

defined in Section 5.2.

Recall the paths described in Figure 6.1. Here, the composite CPN mod-

els are obtained using the path unfold rules( Rule 6.3 and Rule 6.4 in Sec-

tion 6.1.2) are same as the models obtained following the union of paths ref

rules(Rule 6.1 and Rule 6.2 in Section 6.1.1) and CPN comp( Rule 6.5 and

Rule 6.6 in Section 6.1.3). Also the same set of models can be obtained by the

union of paths SD comp (Rule 6.7 and Rule 6.8 in Section 6.1.4) and general

rules (SD to CPN transformation rules in Section 5.2).
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For example, an identical CPNMNL model can be obtained by the compo-

sition of SDM ⊗ SDN ⊗ SDL following the paths (1) ref rules ∪ CPN comp

(2) SD comp ∪ general rules (3) unfold rules. I.e. a behaviourally equivalent

model can be obtained following either of the path combinations.

Further, Rules described in this section supports for the transformations

with hierarchical aspects of the models. For example, in Figure 6.1, SD comp

rules enable to compose SDMN , SDML and SDMNL using SDM with the

decomposition mechanisms that refers SDN and SDL. Similarly, by applying

CPN comp rules to CPNM with the reference behaviour, together with the

referred models, CPNN and CPNL, the composite models CPNMN , CPNML

and CPNMNL can be obtained. Further, the unfold-rules are used to obtain

the composite CPN models directly from SDM that refers SDN and SDL.

6.2 Partial and Incremental Transformation

When a software system is modelled with a large number of interactions, there

may be situations to analyse a property of the model concerning only a part

of the behaviour. This section presents a formal approach for partial trans-

formation of scenario-based specifications, which is a powerful constructs in

sequence diagrams that enables incremental modular transformation.

Here, partial scenarios are captured as individual SDs and transformed to

the corresponding CPNs. Partial transformation is of interest for local analy-

sis, hence to get a better understanding of the sub model. Also, this supports

an incremental development approach where interaction specifications are built

incrementally and combined with previous iteration models. Figure 6.21 shows

an overview of partial and incremental transformations. This section extends

the described model transformation approach, for partial model transforma-

tion.

216



Figure 6.21: An overview of partial and incremental transformation.

As described in Section 3.1.6, the notion of a region facilitates to separate

a set of interactions using lifeline decomposition and interaction-use with the

ref interaction fragment (see Figure 6.22 and Figure 6.23).

Figure 6.22: A sequence diagram with regions.

By replacing the regions with decomposition, a separate SD can be obtained

for a set of sub-interactions given by the region. Additionally, the synthesised

region model can be reused when generating a SD for entire behaviour.
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Figure 6.23: A sequence diagram with reference behaviour.

(a) (b)

Figure 6.24: The referred SDs with lifeline decomposition (a) and interaction-

use (b) in Figure 6.23.

Consider SDMNL shown in Figure 6.22, where the regions are shown ex-

plicitly using a dashed-line enclosing the set of sub interactions. The interac-

tions in each region with the associated events and underlying instances can

be separated into SDs on their own. For example, consider SDL shown in

Figure 6.24(a) and SDN shown in Figure 6.24(b). The diagram SDL corre-
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sponds to the interactions enclosed by region 1 that isolates the behaviour of

instances a1 and a2, besides the diagram SDN shows the interactions enclosed

by region 2 that communicate between the instances b and the instance c.

Further, the behaviour of SDL and SDN are referred by SDM shown in Fig-

ure 6.23 using lifeline decomposition and interaction-use, respectively. Hence,

the behaviour given by the composition of the diagrams SDM , SDN , and SDL

are similar to the behaviour of SDMNL (Figure 6.22). Consequently, these

individual diagrams can be transformed into corresponding CPNs for analysis

separately, thus facilitates the partial analysis of the sub interactions.

Figure 6.25: A sequence diagram with an interaction-use (ref fragment).

In order to describe the incremental transformations consider the diagrams

SDML in Figure 6.25 that refers SDN using a ref fragment. The CPN rep-

resentation for the referred behaviour, CPNN is shown in Figure 6.26. Here,

the diagram SDMNL can be obtained by the composition SDML ⊗ SDN and

Figure 6.27 shows the corresponding CPNMNL.

Initially, CPNN (Figure 6.26) can be obtained by transforming the be-

haviour given by SDN (Figure 6.24(b)) : CPNN = τ(SDN ). Then, CPNMNL

(Figure 6.27) can be obtained incrementally by combining the previously ob-
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Figure 6.26: The corresponding CPN for the behaviour referred by the frag-

ment ref in SDML.

tained CPNN with SDML as follows:

CPNMNL is obtained by imposing an equality between the places corre-

spond to the state locations S0b, S2b ∈ SbML
with the places S0b′ , S3b′ ∈ PN in

model with the referred behaviour, for the colour b.

Additionally, when there is an environment instance in the SD and a corre-

sponding environment colour in the source CPN, the target CPN ignores the

places involved with that colour environment and imposes equality between

the common net transitions.

For example, consider the local transition t2 = (e
′

5, m2, e
′

6) ∈ TML and the

corresponding net transition t
′

2 ∈ TnN
. The gate event e6′ involves with the

instance v ∈ I+ in SDML and the corresponding colour v ∈ Σ in CPNN . Here,

the target model CPNMNL does not contain a corresponding environment

colour v ∈ Env that is common to both source models. Hence, it ignores

the places correspond to Se2, Se3 ∈ Sv(ML)
and Se0

′ , Se1
′ ∈ PN and imposes

an equality between the corresponding common net transitions: t2 = t
′

2 for

t
′

2, t2 ∈ TnMNL
. Thus shows the incremental transformation. Further, the
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Figure 6.27: The corresponding CPN for SDML ⊗ SDN .

individual model CPNN can be reused in another model with the reference

behaviour.

6.3 Parametric Transformation

Certain software systems with real-time and stochastic behaviours require to

model and verify quantitative temporal constraints over interactions [Bon-

davalli et al., 2005,Kwiatkowska et al., 2007]. Such constraints may include

the specification of deadlines, durations, response times, delays, etc., and are

represented using timed and stochastic data [Aburub et al., 2007]. The mod-

elling constructs of a single language may be not sufficient to describe the entire

requirements of a specific application domain. This may require a modelling

language to customise and adapt semantically for the extensions to incorporate

the new language constructs. In this context, the term semantic variability

describes different views of a system using many variants of a given model

and enables diverse solutions [Cengarle et al., 2009, Gronniger and Rumpe,
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2011,Barbier and Cariou, 2008].

Transformation with parameters can be used to improve new functional-

ities (values, properties, operations) or to change the application behaviour

(activities) or to extend a transformation with new variants, with minimally

invasive changes to the existing transformation rules. Hence, supports for

model reuse, interoperability, adaptability and management of context infor-

mation [Vale and Hammoudi, 2008, Kavimandan and Gray, 2011, Vale and

Hammoudi, 2009,Mens et al., 2005]. The extensibility and reusability features

in Parametric transformation enable to define model transformation rules with

minimum effort and less overhead, hence support to increase the modelling

power and the software quality as well [Kavimandan and Gray, 2011, Kavi-

mandan and Gokhale, 2007].

We use parametric transformation to reflect different concerns in individual

models and to apply model transformation based on parameters (time data,

stochastic data, etc.). I.e. parametric transformation extracts only the rele-

vant data from a model that need for a specific transformation. Therefore a

single source model can be mapped to multiple target models, each represent-

ing a specific concern in the system begin transformed [Vale and Hammoudi,

2008,Kavimandan and Gokhale, 2007]. This supports to explore the semantic

variability in the target model for different forms of flexible formal analysis of

complex systems.

In particular, we assume a language for specifying interactions, which can

capture timeliness, performance and stochastic properties of systems. Such

properties can be captured using SD extensions from real-time UML as in [Dou-

glass, 2004], using annotations provided by the UML profile for modelling and

analysis of real-time embedded systems (MARTE) [OMG, 2011b], or appro-

priate extensions of OCL constraints. As defined in Chapter 3: Section 3.1.9
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these annotations can be kept separate from the design model, and be passed

by a parameter associated with the transformation. In this context, paramet-

ric transformation maps a SD to a CPN with different extensions, timed CPNs

(TCPNs) and stochastic CPNs (SCPNs). Here, we follow the terminology se-

mantic models for the target CPN models (TCPN and SCPN), as suggested

in [Boronat et al., 2009b].

The transformation is parametric on the chosen variant with the core set

of rules defining the transformation from SDs to CPNs. Moreover, the flex-

ibility of the parametric transformation lies in the incremental nature of the

transformation: given a SD (with stochastic and time annotations) and corre-

sponding untimed CPN, other CPN variants can be generated by incrementally

applying the specific variant rules. Here, the previously defined transformation

rules can be extended with a given parameter, hence supports for incremental

transformations. For example the transformation rule for the mapping of a

local-transition to a net transition can be extended with stochastic aspects,

when the transition contains stochastic data. Similarly, the transformation of

a state location can be extended with time data, to obtain the corresponding

place in the CPN with time properties.

par(Ψ)

par(Γ) M2Γ

M2

M2Ψ L(M2Ψ
)

L(M2Γ
)

M1

M2T
L(M2T

)

M2S L(M2S
)

par(S)

...

...

L(M2)L(M1)

par(T )

a(Ψ)

h(Γ)

a(Ψ) h(Ψ)

par()

h(Γ)a(Γ)

h(Ψ)

a(Γ)

Figure 6.28: The relations between models, variants and languages.

Here, each semantic model variant, TCPNs and SCPNs, is obtained by
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passing a parameter in the transformation. It is possible to translate between

variants by hiding or adding specific annotations over the software design

model. Figure 6.28 illustrates the parametric transformation on a software

engineering model M1 considered in this thesis, with separate sets of timing

and stochastic annotations T and S. The target semantic model is the cor-

responding CPN variant: CPN for an empty set of annotations, TCPN for

timing annotations T , and SCPN for stochastic annotations S. Let Γ ⊆ T ,

and Ψ ⊆ S.

Different transformations can be applied to M1, for instance par() (denot-

ing a direct parameterless transformation), par(T ), par(S), par(Γ) or par(Ψ)

with Γ ⊆ T and Ψ ⊆ S. With these transformations, the corresponding se-

mantic model variantM2, M2T , M2S , M2Γ andM2Ψ can be obtained. Switching

between variants is done through transformations a and h, adding or hiding

annotations (not all cases depicted). The flexibility of the approach lies in the

fact that we can analyse the effect of certain annotations on the model and

change these parameters by adding or hiding. The parametric transformations

are partial if some of the details (annotations) of M1 have to be ignored in the

synthesised semantic model.

6.3.1 Transformation of Timed Aspects

As indicated by Ameedeen et al. [Ameedeen et al., 2011], software design

models with the notion of timed data enable the analysis of real-time properties

and performance of a system. As discussed in Chapter 3: Section 3.1.9, UML

sequence diagrams can be extended with a notion of timing aspects to indicate

the start time, the time taken by an interaction, or the time interval between

two consecutive event occurrences. Similarly, Chapter 4: Section 4.3, has

defined the notion of a timed coloured Petri net (TCPN), which is an extension
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of a CPN models with the timed aspects.

Timing constraints are usually given by a number to indicate a fixed delay

or time intervals (with upper and lower bounds) to indicate an interval delay.

Examples of possible notation include {n} for a fixed delay of n time units, and

{n1..n2} for an interval delay between n1 and n2 time units, where n, n1, n2 ∈

R
+
0 .

Recalling Definition 3.13, in a SD the timing constraints bound the occur-

rence of (pairs of) events: timeSD : E × E → R
+
0 × R

+
0 . I.e. time data are

represented between events from different lifelines if the events are associated

with a local transition, or between two consecutive events on the same lifeline.

The timed data in a SD are mapped to a corresponding TCPN by repre-

senting the timing constraints as parameters associated with places and net

transitions (see Figure 6.29). These constraints are assigned using a partial

labelling function: timeCPN : P ∪ Tn → R
+
0 ×R

+
0 (Definition 4.5). These time

parameters are used to specify the delays on each component.

The timed annotations in a SD can be passed to the target semantic model

TCPN by a parameter on the transformation par in Figure 6.28. I.e. TCPN

for timing annotations T can be obtained as a variant of a CPN that derived

using an empty set of annotations: par().

Consider a time annotation shown in Figure 6.29, τ = (t, timeSD(e1, e2))

that specifies a constraint on the duration of an interaction that bounds the

occurrence of the corresponding send and receive events of the local transition

t ∈ T such that, timeSD(e1, e2) = R
+
0 × R

+
0 where t = (e1, m, e2) ∈ T . The

corresponding net transition t ∈ Tn in the TCPN contains timed data with the

mapping timeCPN (t) = timeSD(e1, e2). This is considered as the time taken

to fire that transition.

When there is a time constraint: τ = (e1, e2, timeSD(e1, e2)) along a lifeline
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(a)

(b)

Figure 6.29: A sequence diagram with timed data (a) and the corresponding

TCPN (b).

between two consecutive events such that timeSD(e1, e2) = R
+
0 × R

+
0 with

e1 < e2 ∈ Ei for some i ∈ I+, it is taken as the time spend on the state

location s ∈ S as given by the next function with the first event occurrence:

nexti(e1) = s. In the TCPN representation, the timed data is associated with

the corresponding place s ∈ P such that timeCPN (s) = timeSD(e1, e2). This

time is considered as the waiting time in that place.

The following Rule 6.9 defines the transformation of timed data in a SD to

a TCPN. In the following, let SDd be a sequence diagram, T a set of timing

annotations over SDd and let Γ ⊆ T .

Rule 6.9 (Timing Annotations) The model TCPNd,Γ obtained by trans-

formation par(Γ) from SDd is such that for any τ = (t, timeSDd
(e1, e2)) ∈ Γ

where t = (e1, m, e2) ∈ T , TCPNd,Γ contains t ∈ Tn with timeCPNd
(t) =

timeSDd
(e1, e2), and for τ = (e1, e2, timeSDd

(e1, e2)) ∈ Γ with e1 < e2 ∈ Ei
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for some i ∈ I+, TCPNd,Γ is such that timeCPNd
(s) = timeSDd

(e1, e2) where

nexti(e1) = s.

The diagram SDK and the corresponding TCPNK,T in Figure 6.29 il-

lustrate the timing constraints T associated with the interactions. The SD

contains two timing annotations: on the duration of a local transition and

on (consecutive) events along the lifeline b ∈ I. This is given by the set

T = {(t1, [0, 2]), (e2, e4, [1, 3])}, respectively.

This can be described as τ1 = (t1, [0, 2]) : [0, 2] = timeSDK
(e1, e2) and

τ2 = (e2, e4, [1, 3]) : [1, 3] = timeSDK
(e2, e4), respectively, where τ1, τ2 ∈ T .

Also, the associated state location is S1b ∈ S. By applying Rule 6.9 the

corresponding net transition t1 ∈ Tn and the place S1b ∈ P in TCPN are

mapped with the timed data such that, timeCPNK
(t1) = timeSDd

(e2, e4), and

timeCPNK
(S1b) = timeSDK

(e2, e4). I.e., the semantic model TCPNK,T is ob-

tained by transformation par(T ).

6.3.2 Transformation of Stochastic Aspects

Software design models with the stochastic annotations facilitate to measure

system properties such as performance and mobility [Merseguer and Campos,

2004]. Stochastic data can be represented in sequence diagrams and CPN as

described in Chapter 3: Section 3.1.9 and Chapter 4: Section 4.3, respectively.

Generally, stochastic behaviour of a system is represented by associating a rate

to an interaction (local transition). Here, the rate information corresponds to

the movement of an object between two instances.

Recalling Definition ??, in a sequence diagram a rate value pair annotated

on a local transition represents rate associated with the sending and receiv-

ing events, respectively. This is given by the labelling function such that

rateSD : T → R
+
>×R

+
>, where the value is a positive real number (determining
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the negative exponential distribution) or an unspecified value (distinguished

by the symbol >). The set of positive real numbers together with the unspec-

ified values is specified as R+
>. Similarly, as given by Definition 4.6, a TCPN

has a partial labelling function on a net transition to indicate the rate value

associates with it such that rateCPN : Tn → R
+.

The transformation of stochastic data from a SD to the target semantic

model SCPN, which is a variant of a CPN, can be obtained by the trans-

formation par(S) in Figure 6.28. The parameter S represents the stochastic

annotations.

When mapping the rate value pair associated with a local transition in a

SD to the SCPN, the corresponding net transition is assigned with a synchro-

nised rate that is determined by the minimum of two rates. I.e. a stochastic

annotation S = {σ | σ = (t, rateSD(t))}, for t ∈ T in a SD is mapped to a

SCPN such that rateTCPN(t) = min(rateSD(t)) for t ∈ Tn. Rule 6.10 defines

this transformation.

Rule 6.10 (Stochastic Annotations) Let S indicates the stochastic anno-

tations over SDd and Ψ ⊆ S. The model SCPNd,Ψ obtained by transfor-

mation par(Ψ) from SDd is such that for any σ = (t, rateSDd
(t)) ∈ Ψ with

rateSDd
(t) = (r1, r2) then SCPNd,Ψ contains t ∈ Tn with rateCPNd

(t) =

min(r1, r2), where r1, r2 ∈ R
+
>.

Consider SDK and the semantic model SCPNK,S, shown in Fig. 6.30. The

SCPN is obtained from the SD using the parametric transformation par(S)

where the stochastic annotation over SDK is given by S = {(t3, (5, 8))}. I.e.

the local transition t3 ∈ T is associated with stochastic data, where the value

5 and 8 represent the rate associated with the sender and the receiver, re-

spectively such that rateSDK
(t3) = (5, 8). Here, by applying Rule 6.10 the

corresponding net transition t3 ∈ Tn in the SCPNK,S is assigned with the
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(a)

(b)

Figure 6.30: A sequence diagram with stochastic data (a) and the correspond-

ing SCPN (b).

stochastic data such that rateSCPNK
(t3) = min(5, 8). I.e. the net transition

t3 fires with a rate of value 5.

Similarly, additional rules can be derived from the above to allow the trans-

formations a() and h() from Fig. 6.28 for adding and removing annotations as

desired.

6.4 Hierarchical Transformations

Hierarchical modelling supports for modelling and analysis of the large-scale

software systems by visualising different views in different levels of details

and enabling model reuse [Baresi et al., 2011,Elkoutbi and Keller, 1998]. This

section shows the possibility of transforming different design models with high-

level views into sequence diagrams and CPNs, thus supports the underlying

model transformation framework from SDs to CPNs.
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6.4.1 IOD to Sequence Diagram Transformation

Interaction overview diagrams (IODs) provide an overview for the control flow

of a software system design [OMG, 2011a]. By representing the control flow in

a hierarchical view, IOD supports for reducing the complexity of a large scale

SDs and gives a clear structural understanding among a set of SDs [Kloul

and Kuster-Filipe, 2005]. With this high-level design model, IOD supports for

partial and incremental transformations to SDs, hence enable partial analysis

of a system model.

Figure 6.31: The control behaviours of an IOD.
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As described in Chapter 3: Section 3.2.2, the activity nodes (inline-interactions

or interaction-uses) in an IOD represent the reference behaviours in a SD. The

control nodes that represent the alternative behaviour (decision, merge) and

the parallel behaviour (fork, join) can be transformed into the alt and par

interaction fragments in a SD representation.

Further, these control nodes are properly nested indicating the beginning

and the end of an interaction fragment. For example, consider IODP shown

in Figure 6.31. Here, the activity nodes rA, rC , rD, rE, rF ∈ R indicate the

interaction-use behaviour and sB ∈ S represents the inline-interaction be-

haviour. The control nodes d ∈ Dbeg, d
′

∈ Dend represent the alternative

behaviour and the nodes f ∈ Fbeg, f
′

∈ Fend represent the parallel behaviour.

Thus an IOD can be transformed to a behaviourally equivalent sequence di-

agram, facilitating the underlying model transformation and analysis frame-

work.

By recalling the formal representation of the sequence diagram SDd =

(d, I, E,<,M, T, F, ref,X,Exp) (Definition 3.1) and the IOD I = (N,E, t, l, Exp)

(Definition 3.1), this sub section defines the transformation of the syntax and

semantics of an IOD to a SD. In the following let IODd be an interaction

overview diagram and the associated SDd be a sequence diagram named d

with a set of state locations S. The transformation rules from an IOD to a SD

are as follows.

The name of an IOD is mapped to the name of the corresponding SD.

Rule 6.11 (Name) Let d ∈ N be the name of IODd, then the corresponding

SDd
′ contains the same name such that d = d

′

.

When transforming the basic elements of an IOD, the corresponding SD

contains the union of instances given by the activity nodes of the IOD. Here, the

initial node and the associated edge are mapped to the initial state locations
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Figure 6.32: A graphical Representation of an IOD.

of the SD. Similarly, the final node and the associated edge are mapped to the

end state locations.

Rule 6.12 (IOD initial and final nodes) Let IODa be an interaction overview

diagram and let b ∈ B and l ∈ L be the initial and the final node. The as-

sociated edges e1, e2 ∈ E are such that next(b) = e1 and next(e2) = l. The

corresponding SDa contains instances i ∈ I such that j(a) =
⋃

d j(d) where

d ∈ N for n ∈ Nact and l(n) = d. For each initial node b and the associated

edge e1 in the IOD there is a corresponding initial state location si ∈ Sini in

the SD. Similarly, for each final node l and the associated edge e2, there is a

corresponding end state locations s
′

i ∈ Send in the SD.

232



(a) (b)

Figure 6.33: An IOD representation with initial and final nodes (a) and the

corresponding SD (b).

For example, consider IODR and the corresponding SDR shown in Fig-

ure 6.33. Let the activity nodes in the IOD implicitly contains instances

a, b ∈ I and the corresponding SD contains instances a and b. The initial

node b ∈ B and the associated edge e1 ∈ E are mapped to the initial state

locations and the final node l ∈ L and the associated edge e2 ∈ E are mapped

to the end state locations, such that (b, e1) = {S0i} and (l, e2) = {S1i} where

S0i ∈ Sini and S1i ∈ Send for i = {a, b}.

Consider the transformation of an activity node with an interaction-use

behaviour to a SD. The corresponding SD contains an interaction fragment

ref that refers to another SD given by the label of the activity node. Further,

the incoming edge associated with the node is mapped to the set of state

locations before the ref fragment. Similarly, the outgoing edge associated

with the node is mapped to the set of state locations after the ref fragment

and preserves the interaction execution order.

The following Rule 6.13 defines the transformation of an activity node with

interaction-use to the corresponding SD.

233



Rule 6.13 (IOD interaction-use behaviour)) Let IODa be an interaction

overview diagram and let r ∈ R ⊆ Nact be an activity node that represents

interaction-use behaviour such that l(r) = d that refers a sequence diagram

SDd. The associated edges e1, e2 ∈ E are such that next(e1) = r and next(r) =

e2.

The corresponding SDa contains x ∈ F such that f(x) = (ref, 1) where

ref(x) = d. Let e, e
′

∈ Ei denote the minimal and maximal event in g(x)i

for a given instance respectively. The state locations s, s
′

∈ Sint are such that

e ∈ nexti(s), nexti(e2) = θi(x) = s
′

.

For the edges linked with the activity node of the IOD, there are corre-

sponding state locations in the SD such that, e1 = ∀i{s} and e2 = ∀i{s
′

} ,for

i ∈ I.

(a)
(b)

Figure 6.34: The interaction-use behaviour of an IOD (a) and the correspond-

ing SD (b).

Figure 6.34 shows an IODR with an activity node and the corresponding

SDR. The IOD contains rA ∈ R ⊆ Nact where l(rA) = A that refers to

another SDA (Figure 6.35). Let e1, e2 ∈ E be the incoming and outgoing

edges associated with the activity node, respectively such that next(e1) = rA
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Figure 6.35: The referred sequence diagrams by the IOD in Figure 6.36.

and next(rA) = e2. . The corresponding SD contains an interaction fragment

with reference behaviour: x ∈ F such that f(x) = (ref, 1) where ref(x) = A.

Here, the state locations S0a, S0b ∈ Sint before the fragment and the state

locations S2a, S2b ∈ Sint after the fragment correspond to the edges e1 and e2,

respectively.

(a)

(b)

Figure 6.36: The inline behaviour of an IOD (a) and the corresponding SD

(b).

When transforming an activity node with inline behaviour, the behaviour

within the corresponding SD is same as the interactions within the activity
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node. Additionally, for each incoming and the outgoing edge lined with the

activity node there is a corresponding set of initial and end state locations of

the SD, respectively. Rule 6.14 defines this transformation.

Rule 6.14 (IOD inline-interaction behaviour)) Let IODa be an interac-

tion overview diagram and let s ∈ S ⊆ Nact be an inline activity node such

that l(s) = d that inline with a sequence diagram SDd. Let the initial and end

state locations of SDd be s1 ∈ Sini and s2 ∈ Send for a given instance i ∈ I.

The associated edges e1, e2 ∈ E are such that next(e1) = s and next(s) = e2.

Here, there is an equality between the SD given by the inline activity node

and the target SD : SDa = SDd. Also, the edges linked with the activity

node are mapped to the set of initial and end state locations in SDa such that

e1 = ∀i{s1} and e2 = ∀i{s2}.

Consider IODS and SDS shown in Figure 6.36. The IOD contains an

activity node with inline SD : sA ∈ S such that l(sA) = A where A ∈ N .

Let e1, e2 ∈ E be the incoming and outgoing edges associated with the node,

respectively such that next(e1) = sA and next(sA) = e2.

By applying Rule 6.14, the corresponding SDS contains the same behaviour

as of SDA. Further, the initial state locations S0a, S0b ∈ Sini correspond to the

edge e1 and the end state locations S2a, S2b ∈ Send correspond to the edge e2.

When the activity nodes are linked in a sequential order, the transformation

of the activity nodes are slightly different from Rule 6.13 and Rule 6.14. In this

case to preserve the execution order, the corresponding SD contains a strict

interaction fragment. The number of operands in the fragment is same as the

number of consecutive activity nodes and the corresponding transformation of

each node k is mapped into the kth operand.

Following Rule 6.15 defines the transformation of a set of consecutive ac-

tivity nodes in an IOD to a SD.
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Figure 6.37: The inline behaviour of an IOD.

Rule 6.15 (IOD Sequential behaviour)) Let IODa be an interaction overview

diagram and let n1, n2, · · · , nn ∈ Nact be a set of consecutive activity nodes that

refer SDs such that l(n1) = d1, · · · , l(nn) = dn. Let e1, e2, · · · , e(n+1) ∈ E be

the associate edges such that next(e1) = n1, next(n1) = e2, next(e2) = n2,

· · · , next(nn) = e(n+1).

The corresponding SDa contains a strict interaction fragment x ∈ F , such

that f(x) = (strict, n) and let sk = min(λi(x, k)) and s
′

k = max(λi(x, k))

be the minimum and maximum state locations in each operand, respectively,

for a given instance and 1 ≤ k ≤ n. Further, let ebeg, eend ∈ Ei denote

the minimal and maximal event in g(x)i respectively and let ebeg ∈ nexti(s),

nexti(eend) = θi(x) = s
′

, for i ∈ I.

Here, each activity node nk is transformed into the operand k using Rule 6.13

or Rule 6.14, to represent the strict sequencing behaviour,. Here, the minimal

and maximum state location sets of an operand correspond with the incoming

and outgoing edges that are linked with the corresponding node in the IOD,
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respectively, such that ∀i{sk} = ek and ∀i{s
′

k} = e(k+1).

Further to preserve the flow, the first and last edges of the consecutive set

are mapped to the state location sets before the beginning and the end of the

fragment, respectively, such that e1 =
⋃

i s and e(n+1) =
⋃

i s
′

.

Figure 6.38: The SD for the corresponding IOD with inline behaviours.

For example, consider IODS shown in Figure 6.37 and the corresponding

SDS in Figure 6.38. The IOD contains two consecutive activity nodes sA, rB ∈

Nact where sA ∈ S and rB ∈ R. Let e1, e2, e3 ∈ E be the associated edges such

that next(e1) = sA, next(sA) = e2, next(e2) = rB and next(rB) = e3.
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By applying Rule 6.15, SDS contains a fragment x ∈ F : f(x) = (strict, 2).

The minimum and maximum state locations within the each operand are such

that min(λ(x, 1)) = {S1a, S1b}, min(λ(x, 2)) = {S3b, S1c, S1d}, max(λ(x, 1)) =

{S2a, S2b}, max(λ(x, 2)) = {S5b, S3c, S3d}. The kth activity node in the IOD

is transformed into the kth operand in the strict fragment using Rule 6.13 or

Rule 6.14. Additionally, to preserve the execution flow the edges are mapped

to the state location sets such that e1 = min(λ(x, 1)), e2 = max(λ(x, 1)) =

min(λ(x, 2)) and e3 = max(λ(x, 2)).

Further, considering the first node sA and the last node rB, the associated

first and last edges of the consecutive set of nodes are also mapped to the state

location sets before and after the strict interaction fragment, respectively, such

that e1 = {S0a, S0b, S0c, S0d} and e3 = {S3a, S6b, S4c, S4d}.

Figure 6.39: An alternative behaviour of an IOD.

Consider the transformation of an alternative behaviour associated with

an IOD. For each (decision, merge) pair in an IOD, the corresponding SD

contains an alt interaction fragment (Figure 6.39).

When transforming an IOD with alternative behaviour to a SD, we use

an alt interaction fragment to represent this behaviour (Figure 6.40). Here,

the decision and merge nodes correspond to the beginning and the end of the
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Figure 6.40: The SD for the corresponding IOD with the alternative behaviour.

fragment, respectively. The number of operands in the alt fragment are same

as the number of outgoing edges linked with the decision node. The constraint

associated with each edge of the decision node is mapped to the corresponding

operand in the alt. Additionally, the behaviours of the activity nodes in each

chain within the (decision, merge) pair are transformed into the corresponding

operand using Rule 6.13 or Rule 6.14 or Rule 6.15.

In order to preserve the flow of control within the diagram, the edges of

the IOD are mapped to the set of state locations in the SD as follows. (1)
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The incoming edge of the decision node is mapped to the set of state locations

before the alt fragment. (2) Each outgoing edge of the decision node is mapped

to the set of minimum state locations in the corresponding operand. (3) Each

incoming edge of the merge node is mapped to the set of maximum state

locations in the corresponding operand. (4) The outgoing edge of the merge

node is mapped to the set of state locations after the alt fragment.

The following rule defines this behaviour.

Rule 6.16 (IOD decision behaviour)) Let IODa be an interaction overview

diagram with an alternative behaviour d ∈ D. Let d1 ∈ Dbeg and d2 ∈ Dend be

the decision node and the corresponding merge node, respectively.

Let the outgoing edges, c(d1) = {e1, · · · , ek, · · · , en} ∈ E, and incoming

edges, c(d2) = {e
′

1, · · · , e
′

k, · · · , e
′

n} ∈ E, linked with the decision and merge

node, respectively such that |c(d1)| = |c(d2)| = n, where n ∈ N is the number

of chains within the alternative behaviour.

Further let ed, e
′

d ∈ E be the incoming and outgoing edges associated with

the decision and merge node, respectively, such that next(ed) = d1 and next(d2) =

e
′

d. Let expk ∈ Exp be a constraint associated with an edge ek ⊂ c(d1) such

that guard(ek) = expk for 1 ≤ k ≤ n.

For the alternative behaviour d, the corresponding SDa contains an alt in-

teraction fragment x ∈ F , such that f(x) = (alt, n) and expk ∈ Exp. Further,

let ebeg, eend ∈ Ei denote the minimal and maximal event in g(x)i respectively

and let ebeg ∈ nexti(si), nexti(eend) = θi(x) = s
′

i. The nodes d1 and d2 corre-

spond to the event set min(g(x)) and max(g(x)), respectively.

Here, the corresponding constraint expk in each chain associates with the

first local transition within the operand. Additionally, the behaviour of each

chain k within the alternative behaviour is mapped to the corresponding kth

operand as expected (Rule 6.13 or Rule 6.14 or Rule 6.15.
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In order to preserve the control flow, the minimal and maximum state lo-

cation sets of an operand correspond with the first and last edge of each chain

of the IOD such that min(g(x, k)) = ek and max(g(x, k)) = e
′

k. Further, there

is a correspondence between the state locations and edges such that ∀i{si} = ed

and ∀i{s
′

i} = e
′

d for i ∈ I.

Figure 6.39 shows an IOD with alternative behaviour. IODD has an alter-

native behaviour d ∈ D with a decision node d1 ∈ Dbeg and the corresponding

merge node d2 ∈ Dend. Let the associated edges e1, · · · , e6 ∈ E are the incom-

ing and outgoing edges associated with the decision and merge nodes such that:

next(e1) = d1, next(d1) = {e2, e3}, next(e4) = next(e5) = d2 and next(d2) =

e6. Also, the edges linked to the nodes can be given by c(d1) = {e2, e3} and

c(d2) = {e4, e5}. Thus, the number of chains within the alternative behaviour

is |c(d1)| = |c(d2)| = 2. The constraints associated with each chain can be

indicated as guard(e2) = [x == 1] and guard(e3) = [x == 2]. Additionally

the activity nodes associated with each chain are obtained by r(d, 1) = {rA}

and r(d, 2) = {rB} where rA, rB ∈ Nact.

The corresponding SDD shown in Figure 6.40 can be obtained by applying

Rule 6.16. The SD contains an alternative interaction fragment x ∈ F where

f(x) = (alt, 2). The constraints associated with each alternative chain in the

IOD are mapped to the corresponding operand in the fragment. Also, the

behaviour within each chain is mapped to the corresponding operand using

Rule 6.13 and Rule 6.14.

The edges linked with the nodes d1 and d2 correspond to the state lo-

cation sets such that (1) e1 = {S0a, S0b, S0c, S0d}, (2) e2 = {S1a, S1b}, (3)

e3 = {S4b, S1c, S1d}, (4) e4 = {S3a, S3b}, (5) e5 = {S6b, S3c, S3d}, (6) e6 =

{S4a, S7b, S4c, S4d} to preserve the control flow of the interactions.

The parallel behaviour within an IOD is represented using (fork, join)
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Figure 6.41: A parallel behaviour of an IOD.

nodes pair (Figure 6.41). This behaviour corresponds to the behaviour of a

par interaction fragment in a SD. Here, the fork and join nodes correspond

to the beginning and the end of the fragment, respectively. The number of

parallel execution chains are indicated by the cardinality of the outgoing edges

linked to the fork node: |c(f)| for f ∈ Fbeg and the par fragment contains a

same number of operands. Additionally, the behaviours of the activity nodes in

each chain within the (fork, join) pair are transformed into the corresponding

operand using Rule 6.13 or Rule 6.14 or Rule 6.15.

In order to preserve the flow of control within the diagram, the edges of

the IOD are mapped to the set of state locations in the SD as follows. (1) The

incoming edge of the fork node is mapped to the set of state locations before

the par fragment. (2) Each outgoing edge of the fork node is mapped to the set

of minimum state locations in the corresponding operand. (3) Each incoming

edge of the join node is mapped to the set of maximum state locations in the

corresponding operand. (4) The outgoing edge of the join node is mapped to

the set of state locations after the par fragment. The following rule defines

this behaviour.

243



Figure 6.42: A SD for the corresponding IOD with the parallel behaviour.

Rule 6.17 (IOD parallel behaviour)) Let IODa be an interaction overview

diagram with a parallel behaviour f ∈ F . Let f1 ∈ Fbeg and f2 ∈ Fend be

the fork node and the corresponding join node, respectively. Let the outgo-

ing edges, c(f1) = {e1, · · · , ek, · · · , en} ∈ E, and incoming edges, c(f2) =

{e
′

1, · · · , e
′

k, · · · , e
′

n} ∈ E, linked with the decision and merge node, respectively

such that |c(f1)| = |c(f2)| = n and 1 ≤ k ≤ n, where n ∈ N is the number

of chains within the parallel behaviour. Further let ef , e
′

f ∈ E be the incoming

and outgoing edges associated with the fork and join node, respectively, such
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that next(ef ) = f1 and next(f2) = e
′

f .

For the parallel behaviour f , the corresponding SDa contains x ∈ F such

that f(x) = (par, n). Further, let ebeg, eend ∈ Ei denote the minimal and

maximal event in g(x)i respectively and let ebeg ∈ nexti(si), nexti(eend) =

θi(x) = s
′

i. The nodes f1 and f2 correspond to the event set min(g(x)) and

max(g(x)), respectively.

Additionally, the behaviour of each chain k within the parallel behaviour is

mapped to the corresponding kth operand as expected (Rule 6.13 or Rule 6.14

or Rule 6.15). In order to preserve the control flow, the minimal and maxi-

mum state locations of an operand correspond with the first and last edge of

each chain of the IOD such that min(g(x, k)) = ek and max(g(x, k)) = e
′

k.

Further, there is a correspondence between the state locations and edges such

that ∀i{si} = ef and ∀i{s
′

i} = e
′

f for i ∈ I.

An IOD with parallel behaviour f ∈ F is shown in Figure 6.41. IODF

contains a fork node f1 ∈ Fbeg and the corresponding join node f2 ∈ Fend.

Let the edges e1, · · · , e6 ∈ E are the incoming and outgoing edges associated

with the fork and join nodes such that: next(e1) = f1, next(f1) = {e2, e3},

next(e4) = next(e5) = f2 and next(f2) = e6. Also, the outgoing and incoming

edges linked to the nodes can be obtained by c(f1) = {e2, e3} and c(f2) =

{e4, e5}, respectively. Thus, the number of chains within the parallel behaviour

is |c(f1)| = |c(f2)| = 2. Additionally the activity nodes associated with each

chain are obtained by r(f, 1) = {rA} and r(f, 2) = {rB} where rA, rB ∈ Nact.

Figure 6.42 shows the corresponding SDF for the parallel behaviour of

IODF . By applying Rule 6.17, the SD contains a parallel interaction fragment

x ∈ F where f(x) = (par, 2). The behaviour within each chain is mapped to

the corresponding operand using Rule 6.13 and Rule 6.14. The edges linked

with the nodes f1 and f2 correspond to the state location sets such that (1)
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e1 = {S0a, S0b, S0c, S0d}, (2) e2 = {S1a, S1b}, (3) e3 = {S4b, S1c, S1d}, (4) e4 =

{S3a, S3b}, (5) e5 = {S6b, S3c, S3d}, (6) e6 = {S4a, S7b, S4c, S4d} to preserve the

control flow of the interactions.

6.4.2 Sequence Diagram to IOD Transformation

This section shows the possibility of transformations for the behaviour of a SD

to an IOD representation. It is important to show a high-level view of a system

with many interactions. Here, we consider only the visual transformations, as

the detailed transformation from a SD to an IOD can be generated by reversing

the IOD-to-SD transformation rules (bidirectional transformations).

A SD can be transformed to an IOD by splitting a SD into mutually ex-

clusive regions, creating separate SDs for each regions and building another

SD that refers the newly created SDs using ref fragments. Then the SD with

reference behaviour can be transformed into an IOD consist of interaction-use

nodes.

Figure 6.43: A SD with mutually exclusive regions.

The transformation rules defined in Section 6.4.1 can be applied reversely to

obtain the transformation from a SD to an IOD. When defining a behaviourally
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equivalent IOD from a SD, it is important to satisfy the following two con-

straints.

Figure 6.44: The corresponding SD with an interaction-use behaviour.

- The regions of the SD should be mutually exclusive. I.e. the regions

should not contain overlapping elements and should be disjoint from each

other. Let ri ∈ R ; i ∈ N be a set of regions in a SD. Then r1∩· · ·∩rn = ∅

or
⋂n

i=1 ri = ∅.

- The combination of all regions should form the set of all interactions that

belongs to the entire SD. I.e. there should not be interactions within the

SD that are not belong to any of the region. Formally, let ri ∈ R ; i ∈ N

be a set of regions in a SD. Then r1 ∪ · · · ∩ rn = ε or
⋃n

i=1 ri = ε, where

ε is the universal set that include all the interactions within a sequence

diagram.

Consider SDAB shown in Figure 6.43. The interactions are divided into

two regions and the reference behaviour is shown in SDAB
′ in Figure 6.44.

These ref interaction fragments are mapped to the inteacton − use nodes in

IODAB shown in Figure 6.45. Thus a behaviourally equivalent IOD can be

obtained from a SD representation.
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Figure 6.45: An IOD corresponds to SDAB in Figure 6.44

6.4.3 HCPN to CPN Transformation

A Hierarchical coloured Petri net (HCPN) can be easily used to construct an

equivalent CPN, and vice versa. In a HCPN a net transition or a colour can be

substituted by another CPN, result in multiple layers of details, which brings

more details into the model. The net transitions with a reference in a HCPN,

can represent the a separate CPN with related colours. Thus, HCPs with high-

level abstract representation can be simplified into a CPN that gives a broad

view of a system. In this way, the hierarchical models support for managing

models of large-scale and complex real-world systems.

A HCPN can always be unfolded into an equivalent non-hierarchical CPN

model with the same behaviour. Section 6.1.3 defines the transformation rules

for the composition of CPNs considering the hierarchical view of the model

using reference behaviours. Here, when a net transition or a colour of a HCPN

refers to another CPN (Figure 6.46, the detailed view of the model can be ob-

tained by substituting the referred behaviours. Substitution does not require

adding fundamentally new details, it only needs to define and establish the
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Figure 6.46: A HCPN with a reference behaviour.

proper connections between the relevant places and transitions in both nets.

This only changes the graphical structure of the system model, without chang-

ing its meaning. Thus, rules defined for CPNcomp path in Figure 6.1) can be

applied reversely (as a bidirectional transformation) to realise the transforma-

tions from a HCPN to a CPN.

6.5 Concluding Remarks

Software engineering models for large-scale systems are usually combinations

of models representing different perspectives. This chapter has defined and

described more complex mechanisms for generating interaction models (SDs)

and their transformations. The defined model composition rules enables to

obtain a single model from two or more related models for a unified under-

standing of the entire system. These rules have been extended for partial and

incremental transformations that can apply on a set of sub-interactions in a

model and enable partial analysis of the model. Also, this chapter has showed

the applicability of incremental transformations by reusing models obtained
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using partial transformations.

The parametric transformation defined in this chapter allows the trans-

formation of a SD with time and stochastic annotations to the respective

extension of the CPN model, namely TCPN and SCPN, respectively. These

transformations explore the semantic variability in the target model to analyse

properties in systems with real-time and stochastic behaviour. Thus, applying

formal analysis will be feasible by exploring one class of target models with

rich variants. Further, this chapter has considered the integration of models

considering their hierarchical aspects. These hierarchical modelling and trans-

formation visualise different views in different levels of details and enable reuse

of the modelled system.
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7 Model Transformation Correctness

Most work on model transformations concentrates on methods and tools for

defining and implementing transformations [Whittle and Schumann, 2000,De-

latour and Lamotte, 2003,Eichner et al., 2005,Ribeiro and Fernandes, 2006,Fer-

nandes et al., 2007, Ameedeen et al., 2011, Campos and Merseguer, 2006],

on identifying classes of transformations of interest [de Lara and Guerra,

2005, Ehrig et al., 2008, Kuster et al., 2004,Mens et al., 2005], and in some

cases on proving confluence and termination properties about transforma-

tions [T.Mens and Grop, 2006,Lano, 2009]. Confluence holds if from a given

source model we are always able to obtain a unique target model, and termi-

nation indicates that a model transformation always leads to a result, in other

words, terminates.

However, little attention is usually given to establishing the correctness of

a given transformation, i.e., the transformation produces well-formed target

models from valid source models (syntactical correctness) and preserves the

behaviour of the source model (semantical correctness).

There is not much research available in establishing semantical correctness

of transformations particularly for exogenous transformations, that is transfor-

mations where the source and target models belong to different classes of mod-

els and hence have a different metamodel [Hülsbusch et al., 2010b,Hülsbusch

et al., 2010a,T.Mens and Grop, 2006]. Both syntactical and semantical cor-

rectness of model transformations are important but technically very different

to establish. In the case of transformations of structural models, syntactical

correctness is sufficient and a declarative method for specifying model transfor-

mations common practice [Cabot et al., 2010c,Hülsbusch et al., 2010b,Orejas

et al., 2009,Orejas and Wirsing, 2009,Cabot et al., 2010a, Ehrig and Ermel,

2008, Greenyer and Kindlev, 2007]. By contrast, for transformations of be-
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havioural models, semantical correctness is crucial and we have to be able to

guarantee that any observable property of the source model is preserved in the

target model.

Conversely, a transformation is complete if any observable property of the

target model can be traced back to the source model. This is not the case

if there are more allowed behaviours in the target model than were expected

or specified in the source model. Correctness and completeness for a model

transformation, also known as a strongly consistent model transformation, es-

sentially means that source and target models are in some sense equivalent by

transformation.

In this chapter, we establish that our SD-CPN model transformation is

strongly consistent focusing on semantic correctness and completeness. Our

main contribution is in Section 7.2. In Section 7.1, we briefly describe the

approach generally adopted for (syntactical) correctness of model transforma-

tions using graph-based mechanisms. Our previously formally defined trans-

formation rules can all be given in this alternative way and we just show a

few examples here. The proof of the semantic correctness is given in steps

adding new constructs each time. We reflect on how our proof method can be

generalised. We use several examples throughout for illustration.

7.1 Syntactical Correctness

To establish syntactical correctness of model transformations it is common to

use a declarative approach. In the declarative approach, visual or textual de-

scriptions of the mappings between source and target models are given. This

approach focuses on what needs to be transformed into what by defining a re-

lation between source and target model elements. The representation of each

relationship is defined as a declarative pattern and based on the metamodels
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of the source and target models. From the patterns it is possible to derive op-

erational mechanisms for forward and backward transformation between the

models [Orejas et al., 2009,Cabot et al., 2010a]. Further, these metamodel-

based declarative rules are complemented with additional information to ex-

press relations and constraints between source and target elements.

Syntactical correctness of model transformations is usually based on triple

graphs [Schürr, 1995] and graph transformation techniques where models are

given by graphs [de Lara and Guerra, 2005]. We show how this can be done for

our SD-to-CPN transformation by representing some of our rules using tripple

graph grammars (TGGs).

In graph transformation techniques, a transformation rule consists of a

source graph (given at the left and referred to as LHS), a target graph (given

at the right and referred to as RHS), and a middle graph which establishes

the relation. Overall, the model transformation is given by a set of graph

transformation rules. When a rule is fired the LHS graph is replaced by the

RHS graph. Here, metamodels for the source and target models are used to

establish the vocabulary of the LHS and RHS and to ensure that the transfor-

mation produces a well-formed target model. Consequently, graph grammar

can be applied to any source model conforming to the source metamodel and

produce (following the rules of the transformation) a target model conforming

to the target metamodel.

Figure 7.1 and Figure 7.2 show the metamodels for the SD and the CPN

considered in this thesis, respectively. This section describes only the relevant

parts of the metamodel needed for defining transformation rules (shown in

Figure 7.3-Figure 7.9) for the syntax of the models. The complete description

of the SD and CPN metamodels is given in Chapter 8.

The SD metamodel given in Figure 7.1 is consistent with the elements and
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functions defined earlier in the formal representation of SDs given in Chap-

ter 3. Class SD has an attribute name and composite associations with classes

Instance, Event, LocalT ransition, StateLocation and InteractionFragment.

Class Instance has two subclasses ObjectInstance and EnvInstance that rep-

resent object and environment instances respectively. Class Instance has asso-

ciations to classes Event and StateLocation to represent the events and state

locations belonging to an instance respectively. Class StateLocation has three

subclasses to indicate initial, internal and end state locations.

Figure 7.1: SD Metamodel

Class LocalT ransition has an attribute messageLabel and an operation

label() that (re)assigns a message label to a local transition. An instance of

class LocalT ransition has a sender and a receiver event which is given by

the two associations (and corresponding rolenames) from LocalT ransition to

Event. Moreover, Event instances are partially ordered, and are associated
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with one or more instances of class StateLocation (denoting function next). An

Event instance may or may not be associated with a StateLocation instance

through role mu (matching formally defined function µ).

An OCL invariant can be used to indicate that if an event e is involved in

a LocalT ransition then e.mu is defined and in that case the set of next state

locations of event e always includes e.mu.

context e:Event inv:

if e.LocalTransition<>null then e.next->includes(e.mu)

Class InteractionFragment has attributes fName, opNum (number of

operands), and fid (identifier). A qualifier n (indicating an operand number)

is used for associations from this class to Instance, Event, StateLocation and

back to InteractionFragments to denote the formally defined functions j, g,

λ and h respectively. A particular operand may also have an Expression that

contains variables and an operator. An instance of InteractionFragment may

refer to another SD and is given by the association ref to class SD.

Figure 7.2 shows the CPN metamodel that conforms to the CPN Defini-

tion 4.1 in Chapter 3. P lace, NetTransition, Arc, Label and Colour classes

represent the main constructs and are associated with class CPN using com-

position. Similarly to the class Instance in the SD metamodel, there are two

specialisations of class Colour. Class P lace has attributes marking that rep-

resents the initial number of tokens associated with the place, and status that

shows the status of the place (can be complete, safe, etc). Each instance of

class P lace is associated with an instance of class Colour (denoting its colour

or object type). An instance of class NetTransition may have a link to a CPN

as a label, and/or a link with class Label (for usual net transitions the latter

will be the case). Classes NetTransition and Arc may have a guard denoting

an instance of Expression. The class Expression is as defined for the SD
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Figure 7.2: CPN Meta-model

metamodel. Finally, instances of class Arc are associated with one instance of

P lace and NetTransition to reflect the formally defined node function. Note

that the various constraints xor (exclusive or) used in the diagram assure the

proper definition of node and guarantee, for example, that an arc cannot have

a place as both source and target.

Triple graph grammars (TGG) [Schürr, 1995] are a well-known graph trans-

formation approach to define model transformations in a declarative way. The

structure of a model is specified by graph grammars. Here, models are defined

as pairs of source and target graphs which are connected through an inter-

mediate corresponding graph that embeds into the source and target graphs.

Definition 7.1 as given in [Ehrig et al., 2008,Hermann et al., 2010] defines the

main constructs of TGGs.

Definition 7.1 (Triple Graph) A triple graph G = (GS
sG← GC

tG→ GT )

consists of three graphs GS, GC , and GT , called source, correspondence, and
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target graphs, together with two graph morphisms sG : GC → GS and tG :

GC → GT .

A triple graph as defined has a sourceGS, a correspondence GC and a target

GT graphs, where the intermediate graph establishes the mapping between the

other two through the defined morphisms. The TGG rules shown in Figure 7.3-

Figure 7.9 describe visually the structural correspondence of the source and

target graphs with each other (the implicit morphisms). The rules shown only

cover the basic transformation rules described in Chapter 5.

For example, the TGG rules shown in Figure 7.3, Figure 7.4, Figure 7.5,

Figure 7.6, Figure 7.7, Figure 7.8, and Figure 7.9 correspond to the SD-to-

CPN transformations given by Rule 5.1, Rule 5.2, Rule 5.3, Rule 5.5, Rule 5.6,

Rule 5.15, and Rule 5.10, respectively.

Figure 7.3: TGG rule to transform a name of a SD to the corresponding name

of the CPN, and τ(SD) = CPN .

Figure 7.4: TGG rule to transform an instance of a SD to the corresponding

colour of the CPN.
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Figure 7.5: TGG rule to transform a state location of a SD to the corresponding

place of the CPN.

Figure 7.6: TGG rule to transform a local transition of a SD to the corre-

sponding net transition of the CPN.

Figure 7.7: TGG rule to transform a message label of a SD to the corresponding

label of the CPN.

Figure 7.8: TGG rule to transform an interaction fragment of a SD to the

corresponding unlabelled net transitions of the CPN.
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Figure 7.9: TGG rule to transform an expression of a SD to the corresponding

expression of the CPN.

TGG transformation rules are structured in three columns, where source,

correspondence mapping and target graphs are specified in the left, middle and

right columns, respectively. A graph grammar rule is applied by substituting

the left-hand side (LHS) with the right-hand side (RHS), if the structure of

the LHS can be matched to a graph. These rules are based on the elements

of the corresponding metamodels and specify the mapping of the elements

of a source model to the corresponding elements of the target model. For

example in Figure 7.3, the name of the SD corresponds to the name of the

CPN, instances correspond to colours, state locations correspond to places,

and so on. Since TGGs use the metamodels of the corresponding models to

define the transformations, inconsistencies caused by the transformations can

be avoided [Greenyer and Kindlev, 2007]. In actual transformation, the nodes

in the correspondence mapping column are instantiated and keep track of the

corresponding model structure. For simplicity, we have not shown the objects

associated with each instance and the association types between the instances.

From the following theorem and proof given in [Hermann et al., 2010]

(proof not reproduced here), we can state the (syntactical) correctness and

completeness of each model transformation given by the TGG rules as follows.

Theorem 7.1 (Model Transformation Correctness and Completeness)

Let a model transformation MT : MS ⇒ MT be defined by all model trans-
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formation rules (GS, GC , GT ) where GS ∈ MS and GT ∈ MT . Each model

transformation MT is

- correct, if for each model transformation rule (GS, GC , GT ) there is a valid

G = (GS ← GC → GT ), and it is

- complete, if for each GS ∈ MS there is a valid G = (GS ← GC → GT ) with

a model transformation rule (GS, GC, GT ).

A further advantage of using TGGs is that it allows us to represent bidi-

rectional model transformations. The formal theory underlying TGGs can

also be used to explore the coverage of the model transformation to check

whether some of the source elements are not mapped onto target elements,

and conversely whether target elements are not reached by transformation.

One problem of using this approach is that it does not show how to apply the

transformation.

The TGG-based approach offers an implicit interpretation to formulate

the desired specification of a model transformation with a set of underlying

mechanisms. Thus a declarative approach is more concise than a compara-

ble operational approach. However, there is a trade-off between conciseness

and comprehension. For example, when a transformation has too many im-

plicit and complicated concepts, it may be more difficult to understand than

a more explicit, yet verbose, model transformation. Hence, we have used an

operational approach to define our model transformation rules formally (de-

fined in Chapter 5 and 6) for the semantic correctness of the mapping between

the models and the declarative based model transformation rules to show the

syntactical correctness of the model transformations.
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7.2 Semantical Correctness

Semantical correctness is an important requirement of model transformations

to ensure the preservation of the behaviour of the original model by transfor-

mation [Christensen and Petrucci, 2000, Lakos and Petrucci, 2004,Grumberg

and Long, 1991]. Semantical correctness of a model transformation shows that

the behaviour of the generated target model contains (and ideally is equiva-

lent) to the source model. For instance, when transforming UML models into

mathematical models, the results of a formal analysis can be invalidated by

erroneous model transformations as it becomes impossible to know whether an

error is a consequence of bad design or incorrect transformation. Despite its

importance, semantical correctness of model transformations remains hard to

prove [Orejas and Wirsing, 2009,Greenyer and Kindlev, 2007].

Previously, we have defined a formal representation for UML 2 sequence

diagrams with additional notions of traces and language (set of legal traces)

(Chapter 3), a formal representation for CPNs as needed with the notions of

traces and language (Chapter 4), and formal transformation rules to obtain a

CPN from a given UML 2 SD (Chapter 5 and 6). These model transformation

rules are based on an operational model transformation approach that explic-

itly describes the operations needed to create elements in the target model

from elements in the source model [Orejas et al., 2009]. This approach focuses

on how and when the transformation is performed by specifying the required

steps to derive the target model from the source model [T.Mens and Grop,

2006].

Here, we show that the transformation rules defined guarantee a one-to-

one correspondence between the set of legal traces of both models, that is,

the languages are equivalent also known as strongly consistent. In particular,

with the strongly consistent nature of our transformation, we are certain that
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the synthesised model (CPN) does not contain implied behaviours and can be

used for an accurate analysis of the source SD using the existing analysis tools

available for CPNs. Our result proves the semantic correctness of the defined

model transformation.

The following definitions 7.2-7.5 recall the main notions introduced in chap-

ters 3 and 4. Here, the alphabet L of a sequence diagram SD is defined over

the set of messages M and the set of legal traces of a SD determines the lan-

guage of an SD given by L1(SD). Similarly for CPNs the language is given

by L2(CPN) and uses the same alphabet of labels M .

Definition 7.2 (SD Trace) A trace of a sequence diagram SD with set of

state locations S is a possibly infinite word w, w = m1 ·m2 ·m3 . . . over the

alphabet L1 iff there exists a chain c of state locations and events for some

instance i ∈ I such that we can derive w from c.

The main idea of a chain for a given object instance i ∈ I (and we do

not care about environment instances for generating traces), is that it is an

interleaving of state locations and events where each object instance may have

(depending on the interactions it is involved in) more than one chain. A chain

starts at an initial state location (for the object at hand i) and using nexti we

obtain all the following events and state locations. Every time nexti returns

a set of two or more elements rather than a singleton we have a branch. For

a particular chain, for instance, s1 · e1 · s2 · e2 . . . , a trace is derived in such

a way that only events en in the chain involved in a local transition (i.e.,

(en, m, e) ∈ T or (e,mn, en) ∈ T ) are considered and give raise to the trace

m1 · m2 . . . . In other words, if an event denotes the beginning/end of an

interaction fragment they are ignored and do not provide useful information

for the trace. In particular this also means that different chains (derived from
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different SDs for example) can have the same underlying trace. This is related

to a notion of bisimulation of SDs to which we will return later on.

Definition 7.3 (SD Language) The language for an SD is the set L1(SD)

of words over the alphabet L1, where L1(SD) = {W | W is a maximal trace of

SD}. A trace is maximal if it is not a proper prefix of any other trace.

The same notions at the CPN level are recalled below.

Definition 7.4 (CPN Trace) A trace of a CPN is a possibly infinite word

w, w = m1 ·m2 ·m3 · . . . over the CPN alphabet L3 iff there exists a sequence

of places p1 · p2 · p3 · . . . over P of the same colour c ∈ Σ, a sequence of arcs

a1 · a
′

1 · a2 · a
′

2 · . . . over A, a sequence of transitions σ = t1 · t2 · t3 · . . . over

Tn, and a sequence of labelled transitions t
′

1 · t
′

2 · t
′

3 · . . . over T l
n obtained from

σ by removing the transitions without labels, such that m(p1) ≥ 1, node(ai) =

(pi, ti), node(a
′

i) = (ti, pi+1), and l(t
′

i) = mi for all i ∈ N.

As indicated above, transitions without labels (effectively those used for

denoting the beginning/end of fragments) are ignored in the trace.

Definition 7.5 (CPN Language) The language of a CPN is the set L3(CPN)

of words over the alphabet L3, where L3(CPN) = {W | W is a maximal trace

of CPN}, where a trace is maximal when it is not a proper prefix of any other

trace.

7.2.1 Language Equivalence of the Transformations

We defined the model transformations in Chapter 5 and 6 in such a way that

SDs and CPNs use the same alphabet M . For example, consider the SD and

the corresponding CPN shown in Figure 7.10. The alphabet used is M =

{m2, m3, m4}. Notice that for the CPN, we only depict the names of the net
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transitions (here t2, t3, t4 and not their labels l(t2) = m2, l(t3) = m3, and

l(t4) = m4) and do not show the labels to keep the diagrams clearer. We

obtain two traces for SDN over the message labels such that w1 = m3 ·m2 ·m4

for instance b ∈ I and w2 = m3 ·m4 for c ∈ I. Similarly, for CPNN we obtain

(the same) traces over M given by words w1 = m3 ·m2 ·m4 for colour b and

w2 = m3 ·m4 for colour c.

(a) (b)

Figure 7.10: A simple SDN and corresponding CPNN .

As this simple example has shown, all traces for a given instance in a

SD are preserved in the CPN for the matching colour by our SD-to-CPN

transformation. More generally, we prove that the languages associated with

a SD and corresponding CPN obtained by our transformation are equivalent

also known as strongly consistent as follows. This result gives us a proof of the

semantic correctness of our transformation.

Theorem 7.2 Let SD be a sequence diagram and CPN be the corresponding

coloured Petri net obtained following our transformation rules. If L1(SD) is

the set of words defined over the alphabet L1 and L2(CPN) the set of words

defined over alphabet L2. Then
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(1) L1 = L2 and

(2) L1(SD) = L2(CPN).

Proof 7.1 (1) The equality L1 = L2 is true by definition since both models

use the same alphabet of message labels M . (2) To prove language equivalence

L1(SD) = L2(CPN) we show separately (i) L1(SD) ⊆ L2(CPN) and (ii)

L2(CPN) ⊆ L1(SD).

Case (i): We prove this directly, assuming that there is a word w ∈ L1(SD)

and showing that how necessarily w ∈ L2(CPN). Let w = m1 ·m2 ·m3 · . . . .

Since w ∈ L1(SD) there is a chain c for an instance o ∈ I which determines

w in SD. Let the chain be given by c = s1 · e1 · s2 · e2 · · · · · sk · ek · sk+1 . . . .

Through application of our transformation rules to c we obtain a sequence

of places s1 · s2 · . . . sk · sk+1 . . . over P of colour o; and for each event in

the chain ek if µo(mk, ek) is defined then there is a matching net transition

tk ∈ Tn; otherwise the event marks the beginning/end of a fragment and there

is a tk ∈ T¬l
n (given by Rule 5.15 in Chapter 5).

Further we automatically obtain a sequence of transitions σ = t1 · t2 · · · · · tk ·

tk+1 . . . over Tn, and a sequence of labelled transitions t
′

1 ·t
′

2 ·· · ··t
′

k ·t
′

k+1 . . . over

T l
n obtained from σ by removing the transitions without labels. By definition we

also have an automatic sequence of arcs a1·a
′

1·a2·a
′

2·. . . ak·a
′

k·ak+1·a
′

k+1·. . . over

A. Since m(s1) ≥ 1, node(ai) = (si, ti), node(a
′

i) = (ti, si+1), and l(t
′

i) = mi

for all i ∈ N, we actually have a CPN trace obtained from c and by definition

this trace w ∈ L2(CPN).

Case (ii): We prove this by contradiction, that is, we assume that there is

a word w ∈ L2(CPN) such that w /∈ L1(SD) and show how this leads to a

contradiction. Let w = m1 ·m2 ·m3 · . . . . Since w ∈ L2(CPN), by definition

of a CPN trace there exists a sequence of places of the same colour o ∈ Σ,

p1 · p2 · p3 · . . . over P , a sequence of arcs a1 · a
′

1 · a2 · a
′

2 · . . . over A, a sequence
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of transitions σ = t1 · t2 · t3 · . . . over Tn, and a sequence of labelled transitions

t
′

1 · t
′

2 · t
′

3 · . . . over T l
n obtained from σ by removing the transitions without

labels, such that m(p1) ≥ 1, node(ai) = (pi, ti), node(a
′

i) = (ti, pi+1), and

l(t
′

i) = mi for all i ∈ N. Since w /∈ L1(SD) there is no chain (sequence of

state locations and events) for instance o in SD which can lead to the sequence

of places, transitions and arcs in the CPN following our transformation rules.

We define this by induction on the length of the word w. Since initial state

locations map onto places with initial marking, let us assume the problem lies

at length k+1, that is, there is a chain c = p1 ·e1 ·p2 ·e2 · · · ··pk ·ek ·pk+1 ·ek+1 . . .

such that up to length k we would obtain a subword of w in the CPN, but the

chain becomes invalid in step k + 1. That means that pk+1 /∈ nexto(ek) or

ek+1 /∈ nexto(pk+1). The only transformation rules defining net transitions

result from events involved in fragments or in local transitions, so if c is not

a valid chain in SD the transformation from k + 1 will also not be possible in

the CPN which contradicts the assumption. �

The above proof established the semantic correctness of the SD-to-CPN

transformation by proving that the languages (sets of legal traces) associated

with SDs and CPNs are equivalent under the transformation.

7.2.2 Correctness of Transformation Rules

This section proofs the correctness of the individual interaction fragment trans-

formation rules.

Consider the correctness of Rule 5.15 that describes the transformation of

a general interaction fragment.

Figure 7.11 shows the transformation of an arbitrary interaction fragment

to a CPN, that synchronises the instances at the begining and end of the

fragment behaviour.
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(a) (b)

Figure 7.11: A sequence diagram with an interaction fragment (a) and the

corresponding CPN (b).

Lemma 7.3 Transformation rule of an arbitrary interaction fragment is be-

haviourally correct.

Proof 7.2 In the presence of an arbitrary interaction fragment behaviour, the

alphabet of sequence diagrams (and CPNs) is as before over M . All we need to

guarantee that the fragment transformation rule preserves the transformation

of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN).

Consider, x ∈ F be an interaction fragment in SD with f(x) = (o, n), and

i ∈ j(x, k) be an arbitrary instance involved in the fragment for 1 ≤ k ≤ n. Let

e1, e2 ∈ Ei denote the minimal and maximal event in g(x)i respectively. Here,

sk = min(λi(x, k)) and s
′

k = max(λi(x, k)) with e1 ∈ nexti(s), nexti(e2) =

θi(x) = s
′

and nexti(e1) = {s1, . . . , sn}, e2 ∈ nexti(s
′

k). Let each operand k
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contains a set of local transition t1k , t2k , . . . , tnk
.

Considering only the behaviour corresponding to the begining and the end of

the fragment, the associated events do not correspond to a local transition and

consequently do not contribute to the trace. The traces wk ∈ L1(SD) for the

behaviour within each operand can be derived based on different fragment types.

Here, let us assume for an operand k, the default trace is wk = m1k ·m2k . . .mnk
,

where l(tjk) = mjk , 1 ≤ j ≤ n.

Applying Rule 5.15, the corresponding CPN contains places s, s1, . . . , sn, s
′

1,

. . . , s
′

n, s
′

∈ P , transitions to beg, to end ∈ T¬l
n , and arcs ai0, ai1, . . . , ain, a

′

i1,

. . . , a
′

in, a
′

i0 ∈ A such that node(ai0) = (s, to beg), node(aik) = (to beg, sk),

node(a
′

ik) = (s
′

k, to end), and node(a
′

i0) = (to end, s
′

).

Since to beg, to end are unlabelled net transitions, they are not consider for the

CPN word. The traces of the CPN w
′

k ∈ L2(CPN) are based on the behaviour

in the fragments. Here, the corresponding default trace can be derived as,

w
′

k = m1k ·m2k . . .mnk
, where l(tjk) = mjk , 1 ≤ j ≤ n. Here, ∀ tjk ∈ Tn are the

labelled net transitions corresponding to the local transitions in each operand.

These transitions are correctly transformed as the underlying languages are

equivalent. Since wk = w
′

k, Rule 5.15 preserves the same languages in both the

CPN and the SD.

Further, let us assume wk 6= w
′

k and there exists a word w
′

k = m∅, m1k ·

m2k . . .mnk
, m

′

∅, assuming l(to beg) = m∅ and l(to end) = m
′

∅ in the CPN. How-

ever, to beg, to end ∈ T¬l
n and the labelling function l() is not defined on them.

This contradicts the assumption. Therefore, it is proven that Rule 5.15 is

correct. �

Consider the correctness of Rule 5.16 with alternative behaviour.

Consider SDK and CPNK shown in Figure 7.12 with alternative behaviour.

Here, we can derive two traces over message labels such that w1 = m1 ·m2 and
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(a) (b)

Figure 7.12: A sequence diagram with alternative behaviour (a) and the cor-

responding CPN (b).

w2 = m1 ·m3. Similarly, for CPNK we can obtain equivalent traces m1 ·m2

and m1 ·m3 where m1 = l(t1), m2 = l(t2) and m3 = l(t3). Here, the transition

t2 or t3 executes based on the condition that evaluates to true.

Lemma 7.4 Transformation rule of an alternative interaction fragment is be-

haviourally correct.

Proof 7.3 We need to guarantee that the alt rule preserves the transformation

of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN) by applying the

transformation rule with alt behaviour.

Consider, x ∈ F an interaction fragment in SD with f(x) = (alt, n), and

i ∈ j(x) an arbitrary instance involved in the fragment and k is an operand such

that 1 ≤ k ≤ n. As explained in Proof 7.2, let the word wk = m1k ·m2k . . .mnk
,

where l(tjk) = mjk , 1 ≤ j ≤ n, represents a trace within an operand in the

alternative fragment and defined over the SD alphabet such that wk ∈ L1(SD).
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Similarly, the traces within the CPN can be derived as w
′

k = m1k ·m2k . . .mnk
,

where l(tjk) = mjk , 1 ≤ j ≤ n for w
′

k ∈ L2(CPN) and wk = w
′

k.

Additionally, in an alt fragment the traces associated with each operand

are mutually exclusive. i.e. wi ∩ wj = ∅, for 1 ≤ i, j ≤ n. This behaviour is

given by Rule 5.16 indicating transition executions are based on the associated

condition that evaluates to true.

Further, let us assume that wi and wj are not mutually exclusive and there

exist a word w ∈ wi ∩ wj in the CPN. Then it represents a default behaviour

without any alternative behaviour. i.e. for the obtained CPN : CPN = τ(SD)

the corresponding SD does not represent an alternative behaviour, which is a

contradiction. Therefore, it is proven that Rule 5.16 is correct. �

Consider the correctness of Rule 5.17 with optional behaviour.

(a) (b)

Figure 7.13: A sequence diagram with optional behaviour (a) and the corre-

sponding CPN (b).

Consider SDK and CPNK shown in Figure 7.13 with optional behaviour.
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Here, we can derive two traces over message labels such that w1 = m1 ·m2 ·m3

and w2 = m1 · m3. Similarly, for CPNK we can obtain equivalent traces

m1 ·m2 ·m3 and m1 ·m3 where m1 = l(t1), m2 = l(t2) and m3 = l(t3). Here,

the transition t2 executes based on the condition that evaluates to true.

Lemma 7.5 Transformation rule of an option interaction fragment is be-

haviourally correct.

Proof 7.4 We need to guarantee that the opt rule preserves the transformation

of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN) by applying the

transformation rule with opt behaviour.

Consider, x ∈ F an interaction fragment in SD with f(x) = (opt, 1),

and i ∈ j(x) an arbitrary instance involved in the fragment. As explained in

Proof 7.2, let the words w1 = m1 ·m2 . . .mn, where l(tj) = mj, 1 ≤ j ≤ n and

w2 = ∅ represent the trace within the optional behaviour and non-optional be-

haviour, respectively. These are defined over the SD alphabet such that w1, w2 ∈

L1(SD). As given by Rule 5.17, w1 is obtained when guard(x) = [C == True]

and w2 otherwise.

Similarly, considering the optional and non-optional behaviour only, the

traces within the CPN w
′

1, w
′

2 ∈ L2(CPN), can be derived as w
′

1 = m1 ·

m2 . . .mn, where l(tj) = mj, 1 ≤ j ≤ n and w
′

1 = ∅, when guard(tno−opt) =

[C! = True]. Here, w
′

1, w
′

2 ∈ L2(CPN) and wk = w
′

k for k = 1, 2.

Additionally, in an opt fragment the traces associated with optional and

non-optional behaviour are mutually exclusive. i.e. wi 6⊆ wj, for i, j ∈ {1, 2}.

This behaviour is given by Rule 5.17 indicating transition executions are based

on the associated condition that evaluates to true.

Further, let us assume wi and wj are not mutually exclusive and there

exist a word wi ⊆ wj in the CPN. Then it represents a default behaviour

without any optional behaviour. i.e. for the obtained CPN : CPN = τ(SD)
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the corresponding SD does not represent an optional behaviour, which is a

contradiction. Therefore, it is proven that Rule 5.17 is correct. �

Consider the correctness of Rule 5.18 with iterative behaviour.

(a) (b)

Figure 7.14: A sequence diagram with iterative behaviour (a) and the corre-

sponding CPN (b).

Consider SDK and CPNK shown in Figure 7.14 with iterative behaviour.

Here, we can derive a trace over message labels such that w1 = m1 ·{m2 ·m3}∗.

The associated chain is derived using the function next (Definition 3.8), where

nextb(S4b) = e4 and this gives the repetitive behaviour. Similarly, for CPNK

we can obtain equivalent traces m1 · {m2 ·m3}
∗ where m1 = l(t1), m2 = l(t2)

and m3 = l(t3). Here, the transition t2 and t3 execute repeatedly until the

associated condition evaluates to true.

Lemma 7.6 Transformation rule of an iterative interaction fragment is be-

haviourally correct.
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Proof 7.5 We need to guarantee that the loop rule preserves the transforma-

tion of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN) by applying

the transformation rule with loop behaviour.

Consider, x ∈ F an interaction fragment in SD with f(x) = (loop, 1),

and i ∈ j(x) an arbitrary instance involved in the fragment. As explained in

Proof 7.2, let the word w = {m1 · m2 . . .mn}∗, where l(tj) = mj, 1 ≤ j ≤ n

represents the trace within the iterative behaviour. This is defined over the SD

alphabet such that w ∈ L1(SD). Here, ∗ indicates the number of iterations

that the interactions execute such that min ≤ ∗ ≤ max, where c = [min ≤

v ≤ max] for c ∈ guard(x) and v ∈ X.

Similarly, considering the iterative behaviour only, the trace within the CPN

w
′

∈ L2(CPN), can be derived as w
′

= {m1 ·m2 . . .mn}∗, where l(tj) = mj,

1 ≤ j ≤ n for w
′

∈ L2(CPN) and w = w
′

. The behaviour indicates by this

trace, executes repeatedly until the associated condition is false as given by

Rule 5.18, ie. guard(tloop−end) = [C! = True].

Further, let us assume w is not an iterative trace and there exist a word

w = m1 ·m2 . . .mn in the CPN, i.e. v = 1. That indicates all transitions are

executed with default behaviour and there is no iterative behaviour. i.e. for

the obtained CPN : CPN = τ(SD) the corresponding SD does not represent a

loop behaviour, which is a contradiction. Therefore, it is proven that Rule 5.18

is correct. �

Consider the correctness of Rule 5.19 with break behaviour.

Here, two traces over message labels can be derived considering the break

and non-break behaviour. The function next (Definition 3.8) is used to derive

the underlying chain.

Consider SDK and CPNK shown in Figure 7.15 with break fragment that

is nested in a loop fragment. The trace w1 = m1 · m2 · m4 applies when
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(a) (b)

Figure 7.15: A sequence diagram with break behaviour: Case II (a) and the

corresponding CPN (b).

the associated condition within the break fragment evaluates to true during

the first iteration of the loop, and the trace w2 = {m1 ·m3}∗ ·m2 ·m4 applies

whenever the condition evaluates to true during the iteration behaviour. Here,

nextb(e10) = S7b. Similarly, for the break and non-break behaviour in CPNK

equivalent traces m1 ·m2 ·m4 and {m1 ·m3}∗ ·m2 ·m4 where mk = l(tk) for

k = {1, 2, 3, 4} can be obtained. Here, the transition t2, that includes in the

break fragment fires, only when the associated condition evaluates to true:

guard(break − beg) = [C == True]. Otherwise, the transitions within the

break behaviour do not execute.

Lemma 7.7 Transformation rule of a break interaction fragment is behaviourally

correct.
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Proof 7.6 We need to guarantee that the break rule preserves the transforma-

tion of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN) by applying

the transformation rule with break behaviour.

Let x, y ∈ F be interaction fragments in SD with f(y) = (loop, 1), f(x) =

(break, 1), such that h(y, 1) = x and i ∈ j(y) ∩ j(x) an arbitrary instance

involved in the fragment. For the break behaviour next(max(g(x)i)) = θi(y)

(Definition 3.8).

As explained in Proof 7.2, let w1 ∈ L1(SD) : w1 = m1 · m2 . . .mn · m
′

represents a trace within the break behaviour when guard(x) = [C == True].

Here, l(tj) = mj, 1 ≤ j ≤ n and l(t
′

) = m
′

for t
′

= (e1, m
′

, e2) : e1, e2 ∈

next(θi(y)). Otherwise, the trace is same as the underlying loop behaviour and

does not consider the interactions within the break fragment.

As given by Rule 5.19, considering the break and non-break behaviour only,

similar traces can be derived considering the corresponding elements in the

CPN. Here, w
′

1 ∈ L2(CPN), can be derived as w
′

1 = m1 ·m2 . . .mn ·m
′

, where

l(tj) = mj, 1 ≤ j ≤ n when guard(tbreak−beg) = [C = True]. Hence, w1 = w
′

1.

Further, assume there is a local transition after the break fragment and

within the loop fragment : t = (e,m, e
′

) where e, e
′

∈ next(θi(x)). let us assume

there exist a trace w = m1 ·m2 . . .mn ·m for w ∈ L2(CPN). Then it represents

a default behaviour without any break behaviour. i.e. for the obtained CPN :

CPN = τ(SD) the corresponding SD does not represent a break behaviour,

which is a contradiction. Therefore, it is proven that Rule 5.19 is correct. �

Consider the correctness of transformation with parallel behaviour.

The operator par has a natural representation with the CPN model, which

supports parallelism using Rule 5.15. Consider Figure 7.16 with parallel be-

haviour. The traces in SDK can be derived as w1 = m1 · m2 · m3 and

w2 = m1 · m3 · m2. Similarly, for CPNK we can obtain equivalent traces
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(a) (b)

Figure 7.16: A sequence diagram with parallel behaviour (a) and the corre-

sponding CPN (b).

where m1 = l(t1), m2 = l(t2) and m3 = l(t3). i.e. transitions t2 and t3 can be

interleaved in any way.

Lemma 7.8 Transformation rule of a parallel interaction fragment is behaviourally

correct.

Proof 7.7 We need to guarantee that the transformation with parallel be-

haviour preserves the transformation of arbitrary words, i.e., if w ∈ L1(SD)

then w ∈ L2(CPN).

Consider, x ∈ F an interaction fragment in SD with f(x) = (par, n), and

i ∈ j(x) an arbitrary instance involved in the fragment and k is an operand

such that 1 ≤ k < n. Let qk ∈ N be the number of transitions in a given operand

k. A set of chains can be derived from this behaviour using the function next()

in such a way that, event occurrences of different operands can be interleaved

in any way as long as the ordering imposed by each operand is preserved.

276



As explained in Proof 7.2, and considering parallel behaviour only, let there

an arbitrary word w = mk1 . . .mk(j) . . . m(k+1)r . . .mk(j+1)
. . .m(k+1)(r+1)

. . . : ∀k

and j, r < qk. This represents a trace within the par fragment and defined over

the SD alphabet such that w ∈ L1(SD).

Similarly, the traces within the CPN can be derived as w
′

= mk1 . . .mk(j) . . .

m(k+1)r . . .mk(j+1)
. . .m(k+1)(r+1)

. . . : ∀k, j, r < qk, where l(tab) = mab , ∀a ∈ k,

∀b ∈ j, r. Here, w
′

∈ L2(CPN) and w = w
′

.

Hence, the operator par has a natural representation with the CPN model

and proven that the transformation is correct. �

Consider the correctness of Rule 5.20 with critical behaviour.

(a) (b)

Figure 7.17: A sequence diagram with critical behaviour (a) and the corre-

sponding CPN (b).

Consider SDK and CPNK shown in Figure 7.17 with critical fragment that
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is nested in a par fragment. Here, a set of traces over message labels can be

derived considering the critical behaviour, in such a way that the interactions

within the critical behaviour cannot be interleaved with other parallel interac-

tions in any way. Here, we can derive two traces over message labels such that

w1 = m1 ·m2 ·m3 and w2 = m2 ·m3 ·m1, where m2 is always followed by m3.

Equivalent traces can be derived in CPN , where mk = l(tk) for k = {1, 2, 3}.

Lemma 7.9 Transformation rule of a critical interaction fragment is behaviourally

correct.

Proof 7.8 We need to guarantee that the critical rule preserves the transfor-

mation of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN) by applying

the transformation rule with critical behaviour.

Let x, y ∈ F be interaction fragments in SD with f(y) = (par, n), f(x) =

(critical, 1), such that h(y, 1) = x and i ∈ j(y) ∩ j(x) an arbitrary instance

involved in the fragment. As explained in Proof 7.2, let w1 ∈ L1(SD) : w1 =

m1 · m2 . . .mn represents a trace within the critical behaviour. As given by

Rule 5.19, considering the critical behaviour only, a similar trace can be derived

considering the corresponding elements in the CPN. Here, w
′

1 ∈ L2(CPN), can

be derived as w
′

1 = m1 ·m2 . . .mn, where l(tj) = mj, 1 ≤ j ≤ n.

Further, assume there exist a trace w = m1 · m2 . . .m . . .mn · m for w ∈

L2(CPN), where another transition : l(t) = m is interleaved within the trace

of a critical behaviour. Here, the interactions within a critical region are not

treated as atomic and has been interrupted by another interaction. i.e. for

the obtained CPN : CPN = τ(SD) the corresponding SD does not represent

a critical behaviour, which is a contradiction. Therefore, it is proven that

Rule 5.20 is correct. �

Consider the correctness of Rule 5.21 with sequence behaviour.
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(a) (b)

Figure 7.18: Sequence diagram with sequential behaviour and corresponding

CPN.

Consider SDK and CPNK shown in Figure 7.18 with sequence behaviour.

We can derive two traces over message labels such that w1 = m1 · m2 · m3

and w2 = m2 ·m1 ·m3. These traces define local causality inside and between

operands of the fragment, when they share same instances. Similarly, for

CPNK we can obtain equivalent traces where m1 = l(t1), m2 = l(t2) and

m3 = l(t3).

Lemma 7.10 Transformation rule of a sequence interaction fragment is be-

haviourally correct.

Proof 7.9 We need to guarantee that the seq rule preserves the transformation

of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN) by applying the

transformation rule with seq behaviour.

Consider, x ∈ F an interaction fragment in SD with f(x) = (seq, n), and

i ∈ j(x, k) ∩ j(x, (k + 1)) for k ∈ N and k < n, an arbitrary instance involved

in the operand k and (k + 1). Let qk ∈ N be the number of transitions in a
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given operand k that shares the same instances. A set of chains can be derived

from this behaviour in such a way that, event occurrences of different operands

can be interleaved only if the involved instances are mutually exclusive.

As explained in Proof 7.2, let there be an arbitrary word w = mk1 . . .mk(j) . . .

m(k+1)r . . .mk(j+1)
. . .m(k+1)j . . . m(k+1)(j+1)

. . . , ∀k, j, r < qk. Here the asso-

ciated transitions are involved in instances: for tkj = (e1, mkj, e2), tkr =

(e3, mkr, e4) in such a way that e1, e2 ∈ Ea ∪ Eb and e3, e4 ∈ Ec ∪ Ed. This

represents a trace within the seq fragment and defined over the SD alphabet

such that w ∈ L1(SD).

Similarly, the traces within the CPN can be derived as w
′

= mk1 . . .mk(j)

. . .m(k+1)r . . .mk(j+1)
. . .m(k+1)j . . .m(k+1)(j+1)

. . . , ∀k, j, r < qk, where l(tkj) =

mkj and l(tkr) = mkr for w
′

k ∈ L2(CPN) and wk = w
′

k.

Further, let us assume a word in CPN such that w1 = mk1 · · ··mk(j) . . .m(k+1)j

. . .mk(j+1)
. . .m(k+1)(j+1)

. . . , such that the labels that correspond to the transi-

tions between the operands, are interleaved even when they share the same

instances. Then it represents a default behaviour. i.e. for the obtained CPN :

CPN = τ(SD) the corresponding SD does not represent a sequence behaviour,

which is a contradiction. Therefore, it is proven that Rule 5.21 is correct. �

Consider the correctness of Rule 5.22 with strict behaviour.

Consider SDK and CPNK shown in Figure 7.18 with sequence behaviour.

We can derive only one trace over message labels such that w = m1 · m2.

This trace defines a strict execution order between the interactions between

the operands, even the involved instances are mutually exclusive. Similarly,

for CPNK we can obtain equivalent trace where m1 = l(t1) and m2 = l(t2).

Lemma 7.11 Transformation rule of a strict interaction fragment is behaviourally

correct.
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(a) (b)

Figure 7.19: A sequence diagram with strict behaviour (a) and the correspond-

ing CPN (b).

Proof 7.10 We need to guarantee that the strict rule preserves the transfor-

mation of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN) by applying

the transformation rule with strict behaviour.

Consider, x ∈ F an interaction fragment in SD with f(x) = (strict, n),

and k is an operand such that 1 ≤ k ≤ n. Let a, b /∈ j(x, k) ∩ j(x, (k + 1))

for k < n, be mutually exclusive arbitrary instances involved in the operand k

and (k + 1). Let qk ∈ N be the number of transitions in a given operand k. A

chain can be derived from this behaviour in such a way that, event occurrences

in a operand execute before the event occurences in the next operand, and so

on, and imposes a strict execution order between the behaviour of operands.

As explained in Proof 7.2, let there be an arbitrary word w = mk1 . . .mk(j) . . .

mk(j+1)
. . .m(k+1)j . . .m(k+1)(j+1)

. . . , ∀k, j < qk. This represents a trace within

the strict fragment and defined over the SD alphabet such that w ∈ L1(SD).
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Similarly, the traces within the CPN can be derived as w
′

= mk1 . . .mk(j)

. . .mk(j+1)
. . .m(k+1)j . . .m(k+1)(j+1)

. . . , ∀k, j < qk, where l(tkj ) = mkj for

w
′

k ∈ L2(CPN) and wk = w
′

k.

Further, let us assume a word in CPN such that w1 = mk1 · · ··mk(j) . . .m(k+1)j

. . .mk(j+1)
. . .m(k+1)(j+1)

. . . , such that the labels that correspond to the transi-

tions between the operands, are interleaved even when they do not share the

same instances. Here the corresponding transitions are involved in instances:

for tkj = (e1, mkj, e2), t(k+1)r = (e3, m(k+1)r, e4) in such a way that e1∪e2 ∈ Ea

and e3 ∪ e4 ∈ Eb for j, r < qk. Then it represents a default behaviour. i.e.

for the obtained CPN : CPN = τ(SD) the corresponding SD does not repre-

sent a strict behaviour, which is a contradiction. Therefore, it is proven that

Rule 5.22 is correct. �

Consider the correctness of Rule 5.25 with negative behaviour.

(a) (b)

Figure 7.20: A sequence diagram with negative behaviour (a) and the corre-

sponding CPN (b).

Consider SDK and CPNK shown in Figure 7.20 with negative behaviour.
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Since it specifies a behaviour that must not occur, we can derive a trace over

message labels such that w1 = ∅ for the neg fragement. Similarly, for CPNK

we can obtain an equivalent trace ∅.

Lemma 7.12 Transformation rule of a negative interaction fragment is be-

haviourally correct.

Proof 7.11 We need to guarantee that the neg rule preserves the transforma-

tion of arbitrary words, i.e., if w ∈ L1(SD) then w ∈ L2(CPN) by applying

the transformation rule with neg behaviour.

Consider, x ∈ F an interaction fragment in SD with f(x) = (neg, 1).

As explained in Proof 7.2, let the word w = ∅ represents the trace within the

negative behaviour. This is defined over the SD alphabet such that w ∈ L1(SD).

Similarly, considering the negative behaviour only, the trace within the CPN

w
′

∈ L2(CPN), can be derived as w
′

= ∅ for w
′

∈ L2(CPN) and w = w
′

.

Further, let us assume there exist a word w = m1 ·m2 . . .mn in the CPN.

That indicates all transitions are executed with default behaviour and there is

no negative behaviour. i.e. for the obtained CPN : CPN = τ(SD) the corre-

sponding SD does not represent a negative behaviour, which is a contradiction.

Therefore, it is proven that Rule 5.25 is correct. �

The remaining transformations for ignore (Rule 5.23), and assert (Rule 5.24)

behaviours do not affect the traces of the corresponding CPN as they affect

only on the status of the CPN places.

7.2.3 Language Equivalence of the Hierarchical Transformations

We analyse the implications of the decomposition rules on the result of lan-

guage equivalancy proved in Section 7.2.1 as follows.
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(a) (b)

Figure 7.21: A Sequence diagram with reference behaviour and corresponding

CPN.

Theorem 7.13 Adding reference mechanisms to the model transformation,

preserves the equivalence established in Theorem 7.2.

Proof 7.12 In the presence of decomposition mechanisms, the alphabet of se-

quence diagrams (and CPNs) changes and is defined over M ∪N . All we need

to guarantee that the ref rules preserve the transformation of arbitrary words,

i.e., if w ∈ L(SD) then w ∈ L(CPN) by applying the transformation rules

with interaction use behaviour.

Indeed, a word w = m1 · m2 · N · m4 . . . over the SD alphabet belongs to

w ∈ L(CPN) if we have a sequence of transitions σ = t1 · t2 · t3 · t4 . . . where

l(ti) = mi for i = 1, 2, 4 and l(t3) = N . If this were not the case, then the

problem lies in t3 because the remainder transitions are correctly transformed

according to our previous result. However, t3 cannot be a normal labelled net

transition as there is no underlying local transition in the SD which maps

onto it, and hence l(t3) = K. Because SDs and CPNs match diagram names

in the interaction-use rule we consequently have to have K = N , and hence
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w ∈ L(CPN). �

Consider SDM and CPNM shown in Figure 7.21 with reference behaviour.

Here, we can derive a trace over message labels and diagram names such that

m1 ·m2 ·N for instance a ∈ I. Similarly, for CPNM we can obtain an equivalent

trace m1 ·m2 ·N for colour a where m1 = l(t1), m2 = l(t2) and N = l(tN ).

7.2.4 Language Equivalence of the Parametric Transformations

Finally, we can establish the semantic correctness of the parametric M2M

transformations by proving that the languages (sets of legal traces) associated

with SDs and CPNs variants are equivalent under the transformation. Here,

we explore what it means to consider timing or stochastic annotations over a

SD and resulting CPN variants. For our parametric transformations, semantic

correctness is given as follows.

Theorem 7.14 For sets of timing and stochastic annotations T and S defined

over SD, and arbitrary subsets Γ ⊆ T and Ψ ⊆ S. The following strong

consistency or language equality result holds over parametric transformations:

par(Γ)(L(SD)) = L(CPNΓ) and par(Ψ)(L(SD)) = L(CPNΨ).

Proof 7.13 Adding annotations of different kinds to a SD means that each

word in the language w = m1 · m2 · m3 . . . is injected with some additional

parameter at different places determined by the annotations. In other words,

applying the parametric transformation on a SD changes its underlying alpha-

bet accordingly. For instance, LΨ = M ∪ Ψ in the stochastic case. The legal

traces in both SD and CPN variant languages, however, are still in essence

the legal traces from the basic transformation (without parameters: par()) and

consequently the strong consistency result obtained earlier is preserved with the

timing and stochastic rules guaranteeing the correct mapping of annotations

between w ∈ par(Γ)(L(SD)) and w ∈ L(CPNΓ) - similarly for par(Ψ). �
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For SDK in Figure 7.22, a word over LS is given by w = m1 · m2 ·

(m3, (r1, r2)) . . . for instance b ∈ I where r1 = 5 and r2 = 8. Similarly,

considering the labelled net transitions in CPNK we obtain the equivalent

trace w = m1 ·m2 ·m3(5, 8) . . . for colour b where m1 = l(t1), m2 = l(t2) and

m3 = l(t3).

(a)

(b)

Figure 7.22: Sequence diagram with stochastic data and corresponding SCPN

obtained by par(S)

7.2.5 Bisimulation Preservation

We have seen that our model transformation rules reflect a one-to-one corre-

spondence between the elements in the source and target models. Moreover,

and since the theorems above prove that the language associated with a source

model is equivalent to the language of the target model obtained by transfor-

mation, we can also express semantical correctness of model transformations

using bisimulation. Bisimulation is an equivalence relation between two mod-
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els that defines whether two models have the same behaviour. In our case, we

can define a natural notion of SD bisimulation based on traces as follows.

Definition 7.6 (SD Bisimulation) Let SD1 and SD2 be two different se-

quence diagrams with the same set of object instances I and alphabet L. SD1

and SD2 are bisimilar, written SD1 ∼ SD2, iff L1(SD1) = L1(SD2).

Overall, two sequence diagrams are bisimilar if their observable behaviour

is the same regardless of how they were modelled (using interaction fragments,

and so on). The same notion can be stated for CPNs leading to CPN bisim-

ulation. Interestingly, our transformation preserves the notion of bisimulation

from the source model to the target model.

Theorem 7.15 (Bisimulation Preservation) Let SD1 and SD2 be bisim-

ilar sequence diagrams, i.e., SD1 ∼ SD2. The corresponding CPNs obtained

by transformation, CPN1 and CPN2, are bisimilar CPN1 ∼ CPN2.

The proof follows directly from Theorem 7.2 and additional theorems for

language equivalence from above.

7.3 Concluding Remarks

This Chapter has described the significance of having correct model transfor-

mations between models in MDD. The main contribution consists of establish-

ing that our SD-to-CPN model transformation is strongly consistent focusing

on semantic correctness and completeness. We also give a brief description of

the approach generally adopted for showing (syntactical) correctness of model

transformations using graph-based mechanisms. Usually model transforma-

tion rules are defined using Triple Graph Grammars (TGGs) with the added

benefit that graph theoretic results can be explored to prove certain properties
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of the transformation. However, the nature of these transformation rules only

enables syntactical correctness, which is not sufficient for behavioural mod-

els. Our previously formally defined transformation rules are an alternative

description to rules given with TGGs, and in this chapter we only show a few

examples of how our rules can be given in a TGG style.

For behavioural model transformations a proof of semantic correctness is

essential. We go one step further, by proving not only that the behaviour of

the source model is preserved in the target model, but also that there are no

additional behaviours possible in the target model by transformation. In other

words, we establish a one-to-one correspondence between the legal traces of

source and target models. The proof for semantical correctness is given in

steps adding new constructs such as reference and parametric transformation

incrementally. The parametric transformation includes extensions on both

source and target models to address real-time and stochastic behaviour. We

reflect on how a notion of bisimulation for both source and target models is

preserved by transformation with our approach.
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8 Chapter 8 : Support for Automated Model

Transformation

The model transformation defined in this thesis is presented as a set of rules

with a formal syntax and a denotational semantics, which in particular fa-

cilitates its proof of correctness. However, such a representation is not di-

rectly usable by developers, expect an automated model transformation to

be directly embedded into the Integrated Development Environments (IDEs)

and/or Computer-Aided Software Engineering (CASE) tools they are accus-

tomed with. In order to facilitate this we have investigated and partially

developed a prototype tool (SD2CPN tool) for the integrated and automated

model transformation from a SD to a CPN.

In another point of view, a case study is an ideal methodology to examine

a system. In the context of this thesis, case study-based examples enable a

rigorous understanding of the model transformations and aim to generalise

across a larger domain of application.

This chapter starts by explaining the architecture of the SD2CPN tool,

which transforms a SD into an equivalent CPN that can be analysed through

existing CPN tools. Section 8.2 describes the meta-models used for the front-

end and back-end of the prototype tool. This includes the classes and their

relationships that are used to implement the GUI (Graphical User Interface)

of the tool as well as the actual transformation rules from a SD to a CPN.

Section 8.3 explains the GUI of this prototype tool considering the input and

output of the tool in graphical format.

Also we define text-based grammar for SDs and CPNs. Section 8.4 ad-

dressed these grammars based on Backus-Naur Form (BNF) [Reniers, 1998].

The textual input and output of the tool can be used to integrate the trans-
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formations with the existing SD and CPN modelling tools. Moreover, Sec-

tion 8.5 explains the implementation of the transformation rules. Only the

basic transformations were incorporated in this prototype tool with the main

aim of introducing an integrated tool with an IDE for these transformations.

However, the tool architecture supports convenient extensions to include com-

plex transformations and can hence be extended to incorporate all the defined

rules of this thesis.

Further, Section 8.6 validates the applicability of the model transformation

defined in this thesis using examples as case-studies.

8.1 SD2CPN Tool Design

We explore the possibility of developing a prototype tool that supports the

present model-driven transformation framework. The basic theoretical aspects

of the defined transformation rules were implemented in the SD2CPN tool.

This tool inputs a SD and outputs the corresponding CPN, and the both

models can represent graphically and/or in an equivalent textual notation.

The tool can be applied generally to any software system and the textual

notations can be used to integrate our tool more directly with other existing

modelling tools. The main aim of this tool is to show how the transformation

rules can be implemented.

Figure 8.1 shows an overview of the interactions between a user and the

SD2CPN tool. A user can model a SD and the tool converts it to the corre-

sponding CPN using the transformation rules defined. User interaction with

the SD2CPN tool is based on the direct manipulation of either a graphical or

a textual representation of a model. The GUI of the tool supports techniques

such as tool palettes and marking menus. Thus the user is aided with drag

and drop capabilities to model a SD. Alternatively, a user can also represent
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Figure 8.1: An overview of the designer interaction with the tool.

a SD textually using a textual notation (the grammar of the textual notation

is defined in Section 8.4 in BNF format) with the same expressiveness as the

more commonly used graphical notation.

The SD2CPN tool generates a formal representation of a SD according to

the user input and generates the corresponding CPN in both graphical and

textual formats. The synthesised CPN can be used to check system properties

manually or automatically using existing tools and the results of the analysis

returned to the user. When analysing a CPN model, the execution and object

flow of the system can be illustrated by simulating the tokens as they are

passed from a transition to another. Thus, CPN simulation can be shown to

the user in order to reproduce expected scenarios of system behaviour and

hence be used to validate the UML SD model.

At this point we should also add that at present the results returned to

the designer are directly related to the CPN and assume an understanding of

the CPN model and notation by the designer. Ideally this process would be

transparent and the results of the analysis should be given in the context of

the original model. Work on such a tool is however beyond the scope of the

present thesis.
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Figure 8.2: The high level architecture of the SDCPN tool.

Figure 8.2 shows the architecture of the SD2CPN tool. Using a component-

based modular architecture, the tool is designed with two major components:

V iew Component and Process Component. V iew Component constitutes

the front-end of the tool that is visible to the user, and Process Component is

constitutes the back-end of the tool with core transformation implementations.

Given a SD as an input, SD Generator generates an equivalent textual rep-

resentation for the SD model and passes that representation to Transformation

Generator. The underlying theory behind Transformation Generator is

based on the model transformation framework SiTra (Simple Transformer)

[Ameedeen and Bordbar, 2008,Akehurst et al., 2006].

The meta-models of a SD and a CPN (defined in Section 8.2), and the

formal transformation rules (given in Chapter 5) have been considered for the

implementation of Process Ccomponent of the SDCPN tool. A separate class

accessible through a common interface, is implemented for each element of the

meta-models (SD Meta-Classes, CPN Meta-Classes) and for each transforma-

tion rule. The Transformation Rules component contains the Java functions

that map a given meta-class of a SD to the corresponding meta-class of the

CPN. The component Transformation Generator performs the necessary
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mapping operations with the use of the meta-classes and the formal rules.

This architectural framework provides easy route for the implementation

with the capability of accessing the separate classes through a common in-

terface. i.e., the Java class implementations of the model elements and the

rules are independent from the implementation of the transformation process.

Additionally, Transformation Generator keeps track of the partial ordering

among the elements of the models. After that, CPN Generator builds the

corresponding CPN using the outcome of the transformations and passes that

data to CPN presenter in order to represent the resulting CPN graphically

or textually as required by the user.

Figure 8.3 depicts an outline of the model transformation process within

the SD2CPN tool that complies with MDD. The component Transformation

Generator uses the transformation rules to implement how various elements

of the SD meta-model are mapped to the elements of the CPN meta-model.

This is carried out automatically via Transformation Generator and the en-

tire process is commonly referred to as the Model Transformation Framework

(MTF). A typical MTF requires three inputs: a source meta-model, a desti-

nation meta-model and a set of transformation rules. For each instance of the

source meta-model, Transformation Generator executes the rules to create

an instance of the destination meta-model.

The graphical model representations (SD and CPN) shown in the diagram

are the screenshots of the SD2CPN tool which conform to their meta-models.

Further, the text-based BNF model representations can be used for the input

and the output instead of the graphical representations, and can facilitate

possible integrations with existing modelling tools.

This prototype tool is implemented in Java on the NetBeans environment,

version 6.7 of theWindows platform. All GUI based classes in V iew Component
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Figure 8.3: The SD2CPN tool framework complies with MDD.

(front-end) are implemented with the look and feel feature in NetBeans

V isual Library API and Utilities API. The prototype tool is being de-

veloped to satisfy the requirements of optimal model transformations, while

aiming for an enhanced graphical interface. All the other classes in Process

Component are implemented in Java general programming language.
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8.2 SD2CPN Meta-models

Performing a model transformation by taking one or more models as the input

and producing one or more models as the output requires a clear understanding

of the abstract syntax and the semantics of the source and the target models.

Meta-modelling is a key concept in MDA that defines the abstract syntax of

the models and the inter-relationships between the model elements [Kleppe

et al., 2003,Naumenko and Wegmann, 2002]. Tool implementation based on

the meta-models of the graphical modelling languages is beneficial in several

ways [Ouardani et al., 2006, dos S. Soares and Vrancken, 2008, Laleau and

Polack, 2008]. Thus, a precise meta-model is a prerequisite for performing

automated model transformations [T.Mens and Grop, 2006].

The meta-models defined in this section comply with the Meta-Object Fa-

cility (MOF) language in MDA [OMG, 2003,OMG, 2011a]. These meta-models

are represented using class diagrams, where each class in the meta-model de-

scribes a set of objects that share the same specifications of features, con-

straints, and semantics. A class is a classifier whose features are attributes

and operations, where attributes indicate the properties owned by the class

and an operation get invoked on an object and may cause changes to the

values of the attributes. The relationships between the classes are shown us-

ing different association types and a class may play a role in an association.

Further, associations contain multiplicity elements that specify the allowable

cardinalities for an instantiation of an element and embed the lower and the

upper bounds of objects. The following sections describe the meta-models used

for the back-end and the front-end of the SD2CPN tool.
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8.2.1 Back-end Meta-models

This section describes the meta-models used for the back-end of the SD2CPN

prototype tool, including the meta-models for a SD, a CPN and for the trans-

formation process.

UML sequence diagram (SD) is itself a designed and architected system

[OMG, 2011a]. Figure 8.4 shows a meta-model of the model elements and their

relationships in a SD that conform with formal Definition 3.1 and Definition 3.2

defined in Chapter 3. The input model for the SD2CPN tool is an instance of

this SD meta-model.

Figure 8.4: The SD meta-model of the SD2CPN tool.

The SD meta-model shown in Figure 8.4 comprises with the constructs that

show both basic and complex behaviours. The main elements of a SD such

as instances, events, local transitions and interaction fragments are associated

with the class SD using composite relationships. The name of the model is

included as an attribute in the class SD. Class Instance has associations to the
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classes Event and StateLocation to represent the events and state locations

belonging to an instance respectively. There are two specialisations for an

instance, namely object (ObjectInstance) and environment (EnvInstance)

instances.

Additionally, the class StateLocation is specialised into three classes that

represent initial, internal and end state locations. The occurrences of the

class Event are partially ordered and the association next is defined for each

class Event and StateLocation. Also, an Event instance may or may not be

associated to a StateLocation instance through role mu (matching formally

defined function µ). Further, the class LocalT ransition contains an attribute

messageLabel and an operation label() that (re)assigns a message label to

a local transition. An instance of class LocalT ransition has a sender and

a receiver event which is given by the two associations (and corresponding

rolenames) from LocalT ransition to Event.

An interaction fragment in a SD shows a complex behaviour and consists

of one or more operands. The class InteractionFragment contains the name

(fName), number of operands (opNum) and the identifier (fid) of the frag-

ment as its attributes. An operand number in the class InteractionFragment

(indicates by the qualifier n) has associations with the classes Instance, Event,

StateLocation and nested InteractionFragments as indicated by the associ-

ations j, g, lambda and h, respectively. These functions have been formally

defined in Chapter 3.

Also, an operand may associates with Expression that contains variables

and an operator. Further, the interaction reference behaviour that refers to

another SD is given by the association ref and link with the classes, named

InteractionFragment and SD.

Figure 8.5 shows the CPN meta-model used for the SD2CPN prototype
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Figure 8.5: The CPN meta-model of the SD2CPN tool.

tool and it conforms the CPN Definition 4.1 in Chapter 3. The name of the

CPN contains as an attribute of the class CPN . The main classes P lace,

NetTransition, Arc, Label and Colour are associated with CPN using com-

posite relationships. Similarly to the class Instance in the SD meta-model,

there are two specialisations of the class Colour, namely InstanceColour and

EnvColour.

The class P lace links with the class Colour using the association colour

that denotes its colour type. Also it contains attributes marking that repre-

sents the number of tokens associated with the place, and status that shows

the status of the place (can be complete, safe, etc.). The class NetTransition

connects with the class Label with the association label and may link with

the class Expression using the association guard. Further, the class Arc as-

sociates with one instance of the classes P lace and NetTransition using the

node relationship, and there is an xor (exclusive or) constraint to reflect the
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formally defined node function. For example, an arc cannot have a place as

both source and target. The class Expression contains the variables and op-

erators as its attributes. The allowable cardinalities for an instantiation of an

element are shown using the multiplicities on each association.

In this implementation, the SD and the CPN meta-model classes are con-

tained in separate packages (SDMetaModel and CPNMetaModel in Fig-

ure 8.6) and later access by the component TransformGenerator in the

SD2CPN tool. Both of these SD and CPN meta-model do not contain the

variants of the models, including timed and stochastic aspects. However, these

meta-models can be extended with additional behaviours.

Figure 8.6: The meta-model for the Transform Generator of the SD2CPN tool.

Figure 8.6 shows the meta-model used for the transformation process it-

self, which is implemented with Java applications. The class SDGenerator

retrieves the text-based data of the input model from the SD GUI package

that corresponds to the front-end SD GUI represented in Figure 8.7. The
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SDMetaModel and CPNMetaModel packages correspond to the SD and

CPN meta-models described in Figure 8.4 and Figure 8.5, respectively. Each

transformation rule defined in Chapter 5 is implemented as an operation in

the class Rule and made available to the class TransformGenerator.

The class TransformGenerator uses the formalised input model from the

class SDGenerator, meta-model elements from the packages SDMetaModel

and CPNMetaModel, and obtains the transformation rules implemented in

the class Rules in order to perform the runModelT ransformation() opera-

tion. Here, class TransformGenerator uses elements of the SD meta-model

and the CPN meta-model to assign the relevant input and output model data,

respectively. The operation runModelT ransformation() maps a given object

in the SD model to the corresponding object in the CPN model by calling the

relevant transformation rule. This process is applied for each element of the

input SD model and at the completion, the class CPNGenerator generates

the target CPN in a text-based format. Then it uses the CPN GUI package

(in Figure 8.8) to display the CPN model in a visual representation.

8.2.2 Front-end Meta-models

This section explains the meta-model used for the front-end of the SD2CPN

tool including the GUI representation for the SD and CPN models. The meta-

model for the GUI of the SD and the CPN are included in the package SD GUI

and CPN GUI, respectively, and imported by the Transform Generator

meta-model shown in Figure 8.6.

Figure 8.7 shows the meta-model of the GUI that facilitates to draw a

SD. This meta-model is based on the Net Beans Modules, Visual Library

API and Utilities API that supports for palette components with drag and

drop capabilities and scene implementations with action handlers. Here, the

300



Figure 8.7: The meta-model for the Front-end GUI of the SD2CPN tool.

libraries provide a set of reusable widgets that facilitates visualisation and the

pluggable components that are declared as interfaces or abstract classes.

The class ShapeTopComponent is an extension of a TopComponet, which

is a Java Open IDE library that facilitates to display the components in the

GUI. The ShapeTopComponent constructor initialise the components of the

GUI such as JScrollPane and its layout. The class ShapeTopComponent

creates an instance of the class GraphSceneImpl that holds visual data. Then

it assigns the created scene to the view, myV iew, which is a JComponent,

and sets its view to viewpoint.

Here, JComponent is a javax swing library that is used to display com-
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ponents in the GUI. The class ShapeTopComponent also uses PaletteSupport

that facilitates the drag and drop SD components to the drawing area. Fur-

ther, ShapeTopComponent uses a class ResolvableHelper that implements

Serializable, which is a Java input output interface. This facilitates applica-

tion state serialisation at node level. Although, this does not directly relevant

to the SD2CPN tool, it automatically selects the last selected node, in case of

application restart, and included as a user supportive action.

The class PaletteSupport uses the class CategoryChildren to create nodes

of the palette, sets the palette root and handles drag and drop facilities

with lookup components using the class MyDnDHandler. All the other

related classes are designed to increase the level of abstraction of the de-

sign in such a way that the class Category contains the name of the cate-

gory, CategoryChildren contains an array of categories, CategoryNode uses

ShapeChildren that contains an array of items, which includes the path for

each image component of the palette, Shape contains the shape properties, and

ShapeNode is a node with a shape. For this prototype tool, we have included

the SD images for only testing purpose. The associated class MyAction is an

extension of PaletteAction Java class that sets the palette actions to null.

The class GraphSceneImpl is an extension of a class GraphScene, which

is a Java Visual API. This class facilitates functions such as add node widgets

to the layers and perform move and zoom actions on widgets. (widget refers to

constructs of java user interfaces). The method getImageFromTransferable()

is a helper method that supports to retrieve the image from the transferable.

The method attachNodeWidget() defines a new widget and is called automat-

ically by the method accept() when an element from the palette is dropped to

the scene. This method sets the image that is retrieved from the node, con-

tains actions to set and change the label of the widget and implements actions
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to move the widget in the scene.

Finally, the new widget is added to LayerWidget, which is a transparent

pane that facilitates drag and drop functionality and returns the widget to the

scene. Here, Transferable is a Java AWT interface for classes that can be

used to provide data for a transfer operations. The methods isAcceptable()

and accept() are called by the constructor. When a palette element is dragged

over the scene, the method isAcceptable() determines whether the element is

acceptable to the scene. If the method is acceptable, then the method accept()

is called to get the image from the transferable.

Further this class uses the class LabelTextF ieldEditor that implements

TextF ieldInplaceEditor, which is an interface for text-field based in-place

editor in the NetBeans visual API to edit the labels of the images. The class

MyNode contain an image as a node and uses by the class GraphSceneImpl

to make instances of a given image. Finally, GraphSceneImpl facilitates to

retrieve data from the GUI components and uses the class SDFilePass to

write the data to a text file that can be used for further processing based on

the SD model.

The meta-model of the graphical representation for the generated CPN is

shown in Figure 8.8. This meta-model is based on a Java Swing application

and facilitates to display the CPN GUI with look and feel features.

The class CPNDraw facilitates to represent the CPN graphically, based on

the generated CPN by Process Component of the SD2CPN tool. The class

CPNDraw extends a JPanel, which is a java general purpose lightweight

container that is used to hold the widgets of Java Swing. This helps to po-

sition and structure the components based on the code. This class contains

a JFrame as a top-level container and uses the class GraphSceneImpl that

draws the CPN representation.
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Figure 8.8: The meta-model for the Front-end CPN GUI of the SD2CPN tool.

The class GraphSceneImpl extends the class GraphScene (a NetBeans

visual API) that holds and manages graph-oriented models with nodes and

edges. It contains different LayerWidgets (NetBeans visual API class for

a transparent widget), namely main layer, interaction layer and connection

layer. Each layer carries out a different function: main layer for node widgets,

connection layer for edge widgets and interaction layer for temporary widgets

created/used by actions. The class constructor adds the nodes and sets the

preferred locations for the nodes that correspond to the elements of the CPN.

The method attachNodeWidget is responsible for creating the widget, set-

ting an image for it, adding it into the scene and returning it from the method.

Further, the class GraphSceneImpl uses the source and the target widgets in

the class ObjectArray and uses the class MyConnectionProvider to show the

links between the places and the net transitions of the CPN.

The class MyConnectionProvider implements ConnectProvider, which is

a NetBeans Visual API interface to control a connect action. It checks whether
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a specified source or target widget is possible for source or target connection,

respectively and creates a connection between the specified source and target

widget.

8.3 SD2CPN in Operation

A simple scenario is explained below, which represents the runtime behaviour

of the implemented tool.

Consider a simple scenario of an order processing system, which facilitates

ticket reservation. When the ticket is reserved it adds to the order and debits

from the account. For this interaction, the corresponding SD consists of three

instances named Order, T icketDB and Account. First, the instance Order

sends a local transition with a message label reserve to the instance T icketDB.

Then the class T icketDB sends the reply to the class Order with the message

label add. Finally, the class Order sends a local transition with a message

label debit to the class Account.

(a) (b)

Figure 8.9: A SD with three instances (a) and the corresponding CPN (b)

obtained from the SD2CPN tool.
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Figure 8.9(a) shows a captured screenshot of a SD with three instances

and their interactions drawn using the drag and drop facilities given by the

palette GUI. The labels of the diagram elements are typed by the user. Here,

the label of a local transition contains four parameters: the first parameter

indicates whether the transition is inside an interaction fragment or not, the

second and third parameters indicate the identifier of the sending and receiving

instances, respectively, and the fourth parameter designates the message label.

Once the SD is completed user has to press the OK button at the bottom of

the GUI and the tool generates the corresponding formalism for the input SD.

Figure 8.9(b) shows the corresponding CPN representation given by automated

model transformations implemented within the tool. The CPN shows the

places of each colour that correspond to the instances in the SD, net transition

and the arcs that link the places and net transitions. Also, it represents the

tokens associated with the places.

A further complex scenario with an interaction fragment was used and is

explained below, in order to examine the capabilities of the tool to handle

complex transformations. Consider a SD with two instances named Registrar

and SecurityMng, and with an interaction fragment that synchronises the in-

teractions at the beginning and end of the fragment. Let the interactions start

with two local transitions communicate between Registrar and SecurityMng,

followed by an interaction fragment. There are two local transitions within the

fragment and another local transition after the fragment. Figure 8.10(a) illus-

trates a SD with a general interaction fragment and Figure 8.10(b) shows the

corresponding CPN with the synchronisation behaviour.

In the CPN the net transitions beg and end correspond to the beginning

and the end of the interaction fragment. The obtained CPN representations

are intended to support in validating the behaviour given by the SDs; hence
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the shows the possibility of automating the defined transformation rules.

(a)

(b)

Figure 8.10: A SD with an interaction fragment (a) and the corresponding

CPN with the synchronisation behaviour (b) obtained from the SD2CPN tool.
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8.4 SD2CPN Tool with Textual Support

The SD2CPN tool is facilitated with a text-based input and output for in-

tegrating the automated model transformations with the existing tools. The

grammar for the input SD and the output CPN models are given based on

Backus − Naur Form(BNF). BNF is a notation technique that can be used

to describe the syntax of a modelling language. Although many BNF recom-

mendations are available in the literature [Reniers, 1998], we have considered

the symbols that are relevant to define our textual grammar for the models.

The textual grammar for a model representation consists of a header, a

body and an end. The header consists of the name of the diagram and the

body contains a set of statements. A BNF specification is a set of deriva-

tion rules written as <symbol> := expression , where <symbol> is a non-

terminal. The non-terminals are indicated in between < and >; while terminals

are considered as keywords. The symbols of the left are replaced with the

expression on the right and denoted by the symbol :=. In general, statements

with terminals and non-terminals denote concatenation. Here, expression

consists of one or more sequence of symbols and more sequences are separated

by a | that indicates a choice.

This BNF-based grammar uses the symbols [ ], { } to represent optional

and grouping statements, respectively. Further, the symbols |, *, +, "" indicate

alternative, repetition for zero or more, repetition for at least once, and empty

string, respectively. The textual representations described in this section are

reduced for the purpose of a concise description of the syntax and semantics

definitions of the models. The textual representation of the design models are

intended for exchanging these models between computer tools only. Following

sections explain the model representation using BNF with examples in more

detail.
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8.4.1 Text Grammar for a Sequence Diagram

This section defines a BNF-based grammar for a sequence diagram that con-

forms to the SD formal definitions given in Chapter 3, Definition 3.1. The

textual representation of a SD enables further formal processing on the model.

Here, we focus on the event − oriented description for the explanation of the

textual syntax. The list of events corresponds to the order as they are expected

to occur in a trace of the system or as come across while scanning the diagram

from top to bottom. The event − oriented syntax over instance − oriented

form is chosen for many reasons [Reniers, 1998].

(a) (b)

Figure 8.11: A SD with a parallel behaviour (a) and the corresponding textual

representation (b).

Mainly the instance-oriented representation requires many redundant data.

For example, the data relevant to a local transition have to be described for

each instance that they are defined. However, in event-oriented form it is

possible to describe a local transition once for all instances involved. Also,

this form facilitates to represent the local transition execution order while

respecting the event ordering of each instance.
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Figure 8.12: The text grammar for a sequence diagram.
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Figure 8.13: The text grammar for a sequence diagram cont.

Figure 8.11 shows an example of a SD with parallel behaviour and the cor-

responding text-based representation that complies with the SD text grammar

shown in Figure 8.12 and Figure 8.13.

The textual grammar of the SD consists of a <SD head>, <SD body>

and <SD end> (see Figure 8.12). The header consists of the name of the

diagram, preceded by a keyword SD and followed by a keyword begin:. The

SD body contains a set of <Instance declaration>, <Gate statement> if

available and a set of <SD statement> that describe the interactions within
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the diagram.

The declaration of an instance consists of either an instance or a lifeline

decomposition statement followed by the initial state location statement of that

instance. The instance statements state the existence of the object instances

with their identifier and the name. The identifier uniquely distinguishes an

instance and used as a reference to the instance throughout the interactions

of the diagram. The statement <Initial state location statement>

is same as a <state location statement> and it is textually described using

a symbol S, the local order and the instance identifier of that state location.

When a SD becomes complex, gates are used as an interface between the

considered diagram and the environment. In such situations, the local transi-

tions that are sent to and received from the environment are indicated by the

gate identifier, instead of an instance identifier. <Gate Statement> states the

existence of the environment instances with the keyword gate followed by the

identifier and the associated initial state location separated by the symbol :.

Another method to resolve the complexity of a SD and support differ-

ent views of abstraction is lifeline decomposition. <Lifeline Decomposition

statement> includes in the <Instance declaration> statement and speci-

fies the instance statement with the ref keyword followed by the referred SD

name.

The statement <SD statement> describes an occurrences of a local transi-

tion that leads to interactions, an interaction fragment, a reference behaviour,

or a new instance creations within the diagram. Textually a local transition is

described using a keyword transition: followed by a set of identifiers for the

sending instance, message label and the receiving instance, respectively. Here,

the sender and the receiver identifiers can be an <Instance identifier> or

a <Gate identifier> type. Further, this statement is followed by the state
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location statements of the sender and the receiver of the local transition. This

textual syntax helps to distinguish between multiple occurrences of the same

message name.

The text grammar for the behaviour of an interaction fragment is con-

tinued in Figure 8.13. The statement <Interaction fragment statement>

starts with the keyword Beg Frag followed by its identifier, the type (alt, par,

etc.), the associated statements for the operands (<Operand statement>) and

<End Frag statement>. Each of <Operand statement> begins with the key-

word Beg Op, an identifier, an optional conditional statement, involved in-

stance identifiers and the associated state locations given by the min function.

A conditional statement is included when the fragment type is alt, loop,

option, break that restrict the possible continuation of interactions. The

textual grammar for a conditional statement contains the associated instance

identifier, which executes the condition and the conditional expression with

two variable values and an operator.

Further, an operand statement contains a set of <SD statements> that

specifies the behaviour within the operand and ends with <End Op statement>.

The statement <End Op statement>, contains the keyword End Op followed

by the corresponding operand identifier and the associated fragment identifier.

Further, <End Frag statement> consist of the keyword End Frag followed its

identifier, involved instances and the state locations given by the θ function.

The textual grammar given in this section describes the representation of

the elements of the SD and does not describe the behaviour of each fragment

associated with the diagram. This textual grammar includes an extension for

the behaviour of instance creation and can be easily extended for the all other

behaviours in a SD such as instance destruction, lost and found messages, time

and stochastic annotations.
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(a) (b)

Figure 8.14: A SD with an iterative behaviour (a) and the corresponding

textual representation (b).

Consider the examples with the SDs sd B, sd C and sd D and the cor-

responding text grammar shown in Figure 8.14, Figure 8.15 and Figure 8.16

that represent SDs with iterative behaviour, alternative behaviour and refer-

ence behaviour with gate events, respectively.

The diagram sd B consists of three instances a, b and c. The corresponding

textual representation declares an instance with its identifier, name and initial

state location such that instance 1: a : S0a. The textual representa-

tion for the first local transition, transition: a,m1,b : S1a,S1b, specifies

that the transition with the message label m1 is sent from the instance a to b

and the corresponding state locations are S1a and S1b.

The beginning of the fragment is represented by Beg Frag 1: loop

that indicates the fragment identifier and the type. The loop interaction frag-

ment contains only one operand and associates with a constraint that specifies

the loop condition. This is specified as Beg Op 1: 1 [x<10]; and fol-
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lowed by the instance identifiers and minimum state locations involved in the

operand such that a : S2a, b : S2b, c : S1c.

After specifying the interaction within the operand, the end statement of

the operand is specified with the operand identifier and the fragment identifier

such that End Op: 1: 1. When the end of the fragment is reached, the

statement End Frag 1; a:S4a, b:S5b, c:S3c specifies the fragment

end with its identifier, followed by the involved instances and the associated

state locations after the end of the fragment. Finally the keyword SD end.

represents the end of the diagram.

(a) (b)

Figure 8.15: A SD with a parallel behaviour (a) and the corresponding textual

representation (b).

Similarly, the textual representation of the diagram sd C shown in Fig-

ure 8.15 shows the fragment representation with two operands, where each

operand contains a conditional statement. Here, the second operand starts af-

ter the end of first operand and the fragment end reaches after End Op: 2:1

that represents the end of operand 2 in fragment with the identifier 1.
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(a) (b)

Figure 8.16: A SD with gate elements and reference behaviour (a) and the

corresponding textual representation (b)

The diagram sd D in Figure 8.16 shows more complex behaviour of a SD

with lifeline decomposition, reference behaviour and gate events. The textual

representation for a gate event is given by the gate identifier with its initial

state location that belongs to the environment such that gate g1 : Se0.

The lifeline decomposition is specified in the instance declaration such that

instance a: a (ref L) : S0a, where the ref keyword is followed

by the referred SD. The statement <Interaction reference statement>

starts with Beg Frag and ends with End Frag gives the referred diagram

name such that ref N .

8.4.2 Text Grammar for a CPN

This section defines the text grammar for a CPN that complies with the CPN

definition given in Definition 4.1. This event-oriented textual representation

focuses the object control flow with the execution order of the CPN model.

316



Figure 8.17: The text grammar for a CPN.

The text grammar of the CPN is represented based on BNF and includes

a header, a body and an end (see Figure 8.17). The header is specified using

the keyword CPN followed by the diagram name and the keyword begin:. The

body of the text grammar contains the statements <Colour declaration>

and <CPN statement>. The statement <Colour declaration> consists with
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either <Colour statement> with a keyword colour, an identifier and a name,

or <Reference statement> that specifies a colour identifier, name and the

referred diagram name preceded by a keyword ref.

A <CPN statement> describes the existences of a place or an arc or a

net-transitions. The statement <Place statement>, consists of the keyword

place and the name of the place, which is derived from its local order and the

colour identifier. Optionally, a statement of a place may contain the number

of token associated with it. The statement <Net-Transition statement>, is

specified with the keyword transition: followed by <Transition name>,

which consists of a transition identifier and the associated label.

If the net transition is associated with a conditional statement, it is speci-

fied within the symbols [ ], as an optional element. Here, the textual gram-

mar for a conditional statement contains two variable values and an oper-

ator that gives the expression. To specify the link between the places and

net transitions, <Arc statement> is used. The statement <Arc statement>,

is described with the keyword arc: followed by A <source> To <target>,

where <source> and <target> is a <Place name> and a <Transition name>

statement, respectively or vice-versa. Here, the letter A indicates an arc.

Since this text representation of a CPN is generated by transforming a

SD, some of the element identifiers in the CPN text grammar are same as the

identifiers in the SD grammar. For example, the name of the CPN corresponds

to the name of the SD, the statement of a colour corresponds to a statement of

an instance. Further, the label of a transition corresponds to a message label

or to a fragment name followed by the keywords beg or end.

Consider the graphical and the textual representations of a CPN shown in

Figure 8.18. The CPN consists of two colours a, b, two net transitions and the

associated places and arcs. The textual statement place: P0a :1 indi-
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(a) (b)

Figure 8.18: A CPN (a) and the corresponding textual representation (b).

cates that the place P0a contains one token. The initial places are followed by

the arcs that link the initial places with the following net transition with the

label Request. For example, the text representation arc: A P0a To 1:

Request specifies that there is an arc where the source element is the place

P0a and the target element is the net transition 1 : Request. The first tran-

sition is textually represented by transition: 1:Request where Request

is the associated label of the transition. Based on the execution order the

remaining statements are listed and finally the end of the model is specified

using CPN end..

8.5 SD2CPN Tool Implementation

This section describes the implementation procedure of the SD2CPN tool. The

input model for the tool can be given in either graphical or textual format and

the output model can be generated in both graphical or textual notations (Fig-
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ure 8.19). Also, the graphical input can be used to generate the corresponding

textual notations as described in Section 8.4.

Figure 8.19: The input output representations of the SD2CPN tool.

The component SD Presenter in the component V iew Component (Fig-

ure 8.2) inputs the elements and their relationships in a SD using the GUI or

the textual notations in a format that can be easily processed by the compo-

nent Process Component of the tool. When the input is given graphically,

the user enters the label of the message element with four parameters; the first

parameter specifies a reference for a fragment identifier to indicate whether

the local transition is within a fragment or not. The second and third pa-

rameters specify the identifiers for the send and receive instances and the final

parameter indicates the message name.

Figure 8.20 and Figure 8.21 illustrate the execution of the component

Process Component during the transformation of a SD to a CPN considering

the basic and complex elements, respectively. The process starts by getting

the input data of the SD and identifying the instances of elements and their

associations correspond to the SD meta-model. As the first step towards trans-

formations, an object of a SD model is created and the corresponding object

of the CPN is created with the same diagram name. Then it process an ele-

ment by element and while building the formal SD model, it transforms each
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SD element to the corresponding CPN element; thus builds the CPN formal

model.

Figure 8.20: The flow chart for the basic transformations of the SD2CPN tool.
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Figure 8.21: The flow chart for the complex transformations of the SD2CPN

tool.
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For example, consider the flow chart given in Figure 8.20. If the element is

an instance, it is added as an class Instance of the SD meta-model, transformed

it to a class Colour of the CPN meta-model and added as an object of the

class Colour of the CPN model. The process also adds the initial state location

associated with the instance. This object StateLocation is transformed to an

object place with the corresponding colour and marking and added to the CPN

model.

If the element is a local transition that consists of a message label and

two events, the process starts by adding the corresponding object of the class

messageLabel and the objects of the associated classes Event and StateLocation

to the SD model (which is an object of the class SD). Then it adds the object

of the class LocalT ransition to SD. After that each of these objects; i.e. mes-

sage label, local transition and state locations are transformed to the objects

of the classes Label, NetTransition and the P lace, respectively, and added as

the objects of the CPN model. The process retrieves the input places of the

net transition and adds the corresponding objects of the class Arc that link

the newly added net transition and the associated places. Next, the process

updates the status of each object array that used to keep the flow control and

retrieves the next object.

The process given in Figure 8.21 is a continuation with an interaction frag-

ment behaviour. Here, when the element is a fragment the process adds an

object of the class InteractionFragment with the operands. It also adds the

associated objects of the class Event for the beginning of the fragment and the

objects of the class StateLocation of each operand that are given by the min

function. The beginning of the fragment is transformed to an object of the

class NetTransition while the created object of the class StateLocation are

transformed to corresponding object of the class P lace and added to the CPN.
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By linking with the previous places (source place of an arc), the objects of the

class Arc are created between the net transition and the associated places, and

added to the CPN. Additionally, the transformations specific to the fragment

type, such as imposing equality between some given places, are performed.

After the processing of the local transitions within a fragment, and when

it encounters a local transition outside the fragment, the end of the fragment

is processed. Here, the objects of the class Event are associated with the end

of the fragment and the objects of the class StateLocation after the fragment

are added to the SD model and transformed into the corresponding objects

of the classes NetTransition and P lace, respectively. Then, the objects of

the class Arc are added to the CPN model with the use of previous places

data. Additionally, the guard expressions and associated variables can be

incorporated as user inputs to the SD and process as extra tasks. With the

transformations from a SD to a CPN, the number of net transition in the

CPN = number of local transitions + ( 2 × number of fragments). When all

the SD elements are transformed to the corresponding element of the CPN,

it displays the generated CPN by calling the process within the component

V iew Component.

The algorithm of a transformation rule can be specified as follows: each

rule starts with the keyword Transformation and a name that specifies the

source and the target elements. The source and the target languages are ref-

erenced by stating the both model names between brackets, where the first

name indicates the source model and the second indicates the target model,

following the transformation name. The naming complies with the standard

programming qualifiers. The element declarations and the mapping rules are

written within the curly brackets. The mapping rules used in the implementa-

tion are conceptually referred to the transformation rules defined in Chapter
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5. Further, complex transformation rules can be constructed using the basic

mapping rules.

Here, the elements of the source and the target models are written as

variable declarations following the keywords source and target, respectively.

The type of the element is of the type defined in the corresponding meta-model.

The parameters used for the transformation process are listed following the

keyword params. The mapping rules start with the keyword mapping. The

mapping rules are specified using the infix operator (∼) with two operands

and specifies that the transformation will map the operand in the LHS to the

operand in the RHS. Further, in some situations the operand may denote a

set of elements. The details of the mapping rule, such as the equality between

the properties of the elements are listed as given by the transformation rules

in Chapter 5.

e.g. 8.1 Transformation of a state location to a place=2

Transformation StatelocationToPlace (SD, CPN) {

source: StateLocation s;

target: Place p;

params: null;

mapping: s ∼ p;

p.name = s.name;

p.colour = s.instance;

}

Consider the algorithm given in Example 8.1. It states that for each state

location there there is a transformation that maps that state location to a

place. This mapping rule is conformed to Rule 5.3 in Chapter 5. Here, the

source model is a SD and the target model is a CPN. The source element is a
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state location and the target element is a place. This transformation does not

need any additional parameters and the mapping is from a state location to a

place, in such a way that the name and the instance of the state location are

mapped to the name and the colour of the place, respectively.

e.g. 8.2 Transformation of a local transition to a net transition

Transformation LocalTransitionToNetTransition (SD, CPN) {

source: LocalTransition lt;

target: NetTransition nt;

params: prePlace[], postPlace[];

mapping: lt ∼ nt;

nt.label = lt.msgLabel;

foreach prePlace[i] && postPlace[i]

nt.addArc(new Arc(prePlace[i],this));

nt.addArc(new Arc(this,postPlace[i]));

}

The algorithm given in Example 8.2 shows the transformation of a local

transition to a net transition as defined in Rule 5.5. The places that should be

associated with the net transition are passed as parameters of this transforma-

tion. This algorithm maps a local transition to a net transition by assigning

the message label to the net transition label. Additionally, it creates arcs that

link the given places with the net transition. When the net transition links

with the previous and post places, the target element of the arc becomes the

net transition and the place, respectively.

Figure 8.22 shows the implementation tasks for the graphical representation

of the component CPN Presenter in V iew Ccomponent. Here, the procedure

takes the elements of the generated CPN and draws the corresponding icons
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Figure 8.22: The flow chart for the graphical representation of the CPN Pre-

senter.

for the initial places with tokens. Then for each net transition, first it draws

the icon for the net transition and retrieves the associated arcs. For each

associated arc, if the source of the arc is a place then it connects the source

place and the target net transition using an arc. Otherwise, in the case where

the source of the arc is a net transition, the tool draws the relevant place and

then draws an arc connecting the source net transition and the target place.

Similarly, the textual representation the CPN can be generated.
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8.6 Model Transformation using Case-Studies

Generally, the applicability of a model transformation defined as a set of trans-

formation rules can be best investigated through the analysis of case studies

and examples. We have shown that our model transformation as defined is

semantically correct, and in this section we investigate its applicability and

usability in practice.

We validate the applicability of our proposed model transformation using

two different software system examples as case studies. This also helps to

evaluate the practical usefulness of the defined transformation rules. These

examples cover the different levels of system functions and contexts giving a

complete coverage for the expected analysis of the proposed formal transfor-

mations.

The first case study considers how a cloud computing service provision

operates, and shows the applicability of the proposed framework in an increas-

ingly popular domain with many applications. Not only does the case study

shows the transformations within the cloud system context, but also illustrates

the applicability of the rules in the business process. The second case study

is based on an abstract specification of an elevator 1 system which we use

as an example to see how usual operational conditions are transformed from

SD to CPNs. The importance of this example to the thesis is that it gives

an insight into a more refined everyday standalone system, as opposed to the

first case study on high-level virtual services and interactions. Therefore, both

case studies cover different levels of detail, system specification and context,

giving a more complete coverage for the usability and expected analysis of the

proposed formal transformation.

1The word Elevator (Engish-US) is used instead of Lift (English-GB) for clarity
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8.6.1 Example 1: Cloud Service System

The cloud service based example described in this section illustrates the para-

metric transformation technique and the associated transformation rules de-

fined in Chapter 6. The example contains a scenario from cloud computing

with timing and stochastic behaviour of interest, which can be analysed sepa-

rately. A simplified form of this example was given in [Bowles and Meedeniya,

2012a].

Cloud computing is a new paradigm for the dynamic provision of on-

demand computing services that uses the Internet as a platform to share re-

sources [Buyya et al., 2009]. Here we consider an example that explains an

on-demand service hosting and service management environment of a cloud.

Figure 8.23: An overview of a Cloud Computing System.

Figure 8.23 shows an abstract view of a cloud environment.

- Client : is a client (from a group of users) instance that access the cloud

service;

- Cloud API & Gateway : is a virtual instance, which accepts the incoming

HTTP requests from the Clients. Depending on the implementation of

the system architecture, Cloud API & Gateway can be located partially
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inside or outside the cloud. Different clients can initiate their own re-

quests for different services and the Cloud API & Gateway handles these

requests;

- Coloud Worker Role: is a working instance of the cloud resource provi-

sion.

Mainly, a cloud system delivers three types of services: (1) Infrastructure as

a Service (IaaS) that allocates resources such as CPU power, storage, network

for computation, etc., (2) Platform as a Service (PaaS) that virtualises a hard-

ware infrastructure such as OS, application engines, etc., and (3) Software as a

Service (SaaS) that provides utility applications for the clients. These services

are made available as subscription-based services in a pay-as-you-go model to

consumers. This example focuses on resource management in SaaS.

Here, Cloud Worker Role retrieves the job from Cloud API & Gateway and

acquires necessary resources based on the client’s subscription type: single-

tenancy or multi-tenancy. If the subscription type is single-tenancy (a more

secure option) then the dedicated resources are obtained, otherwise shared

resources are used. Cloud Worker Role calls outside services to satisfy the re-

quest and once the completed result is received, this is sent to Client via Cloud

API & Gateway. In this way, Cloud API & Gateway facilitates scalability and

client specific state management. Hence, a client can send multiple requests

to the same Cloud API & Gateway. Here, the session data can be internally

handled to keep track of the status of each task, and to notify when a task is

completed.

We are interested in the behaviour of a scenario concerning a high-level

service request from a cloud system. The model is inspired by a client service

request from a cloud system and the necessary resource management services.

The scenario is described as a set of high-level functional synchronisations
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between Client, Cloud API & Gateway and Cloud Worker Role. It is assumed

that the client has already authenticated.

Figure 8.24: A Cloud System sequence diagram.

Consider the sequence diagram shown in Figure 8.24 with three instances

where events and state locations along instance lifelines are indicated explicitly.

The interaction SDCloudService is initiated by the instance Client sending a

local transition with the message label requestTask() to the instance Cloud

API & Gateway. Cloud API & Gateway then executes a self-transition to get

subscription information for the client (with return value s) and places a new

task on the instance Cloud Worker Role.

This interaction is followed by a ref interaction fragment that illustrates

the reference behaviour. The instance of Cloud Worker Role gets the required

resources by referring another sequence diagram named GetResources(s), which

executes the request and returns the result which is subsequently forwarded
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to the client.

In this high-level design, the client’s subscription type (given by value s)

is passed explicitly to the instance SDGetResources as an argument and used

internally as needed (cf. Figure 8.25). Here, based on the tenancy type, the

instance of Cloud Worker Role requests resources from a Dedicated Resource

or a Shared Resource. An alt interaction fragment is used to select between

single-tenancy (ST) or multi-tenancy (MT) choices depending on the value

of s. That is, guard(t1) = [ST == T ] and guard(t2) = [MT == T ] where

t1 = (e4, RequestDR, e5), t2 = (e6, RequestSR, e7) for t1, t2 ∈ Tn.

Figure 8.25: The GetResource(s) sequence diagram.

The timing and stochastic information associated with the sequence dia-

grams in this example are as follows. In the sequence diagram SDCloudService,

the time constraint on the occurrence of placeTask(s) indicates that a task

has to be committed to the instance of Cloud Worker Role within 5 time

units (in case of multiple client requests this may not be possible). Formally

this is given by timeSDCloudService
(e5, e6) = [0, 5]. Similarly, the time anno-

tation associated with the local transition t = (e11, result, e12) is given by

timeSDCloudService
(e11, e12) = [0, 5]. Furthermore, message execute() has rate r
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and we have the stochastic annotation S = {(execute, (r))}.

The diagram SDGetResources shows a timing annotation given formally by

T = {(RequestSR, [0, 5])}. Further, the stochastic annotations are given by

S = {(RequestDR, (r1, r2)), (RequestSR, (r3, r4))}, where rateSDGetResources
(t1)

= (r1, r2) and rateSDGetResources
(t2) = (r3, r4) for the local transitions t1 =

(e4, RequestDR, e5) and t2 = (e6, RequestSR, e7).

Applying the basic and interaction fragment transformation rules defined in

Chapter 5 and Chapter 6, together with the timing and stochastic annotation

Rule 6.9 and Rule 6.10, the corresponding CPN models for this example can be

obtained. CPNCloudService in Figure 8.26 and CPNGetResources in Figure 8.27

show the corresponding CPN models for SDCloudService and SDGetResources re-

spectively.

Figure 8.26: A Cloud System CPN Model .

The token colours of the model CPNCloudService correspond to the instances
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Figure 8.27: GetResource CPN Model .

in SDCloudService, i.e., Client, Cloud API & Gateway and Cloud Worker Role.

For all the state locations and local transitions in SDCloudService there are

corresponding places and net transitions in CPNCloudService. Here, matching

net transitions are labelled with the message label of the corresponding local

transition. For example, l(t
′

) = requestTask for t
′

∈ Tn and t
′

= t, where t =

(e1, requestTask, e2). The places and net transitions are linked by arrows such

that node(a) = (S0C , requestTask), and so on, for a ∈ A. The interaction use

GetResources(s) is mapped to a net transition tr ∈ Tn by applying Rule 6.1,

such that l(tr) = GetResources(s). The timing and stochastic annotations

are mapped to the CPN such that timeCPN,CloudService(placeTask) = (0, 5),

timeCPN,CloudService(result) = (0, 5) and rateCPN,CloudService(execute) = r.

The model CPNGetResources uses two new net transitions with the labels

alt−beg and alt−end to denote the beginning and the end of the alt interaction

fragment in SDGetResources, and is used in order to synchronise the behaviour

before and after the execution of the interaction fragment. In the diagram
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SDGetResources, since only one operand is selected each time the SD is executed,

we optimise the representation of the corresponding CPN model, by having

one place to denote the beginning of an arbitrary alt operand and one place to

denote the end of an arbitrary alt operand, for a given instance. The condition

associated with each operand in the alt fragment are associated with the net

transition that corresponds to the first local transition in each operand. For

example, guard(tRequestDR) = [s == ST ] and guard(tRequestSR) = [s == MT ].

The timing and stochastic annotations of SDGetResources are mapped to the

corresponding net transitions in CPNGetResources using the functions timeCPN

and rateCPN , respectively. Further, hierarchical transformations can be used

to link the models CPNCloudService and CPNGetResources using the model com-

position Rule 6.6. However this example does not discuss the mapping of

hierarchical behaviour, i.e. combining the two diagrams as a one model.

With cloud computing, users are able to access and deploy applications and

services from anywhere in the world on demand at competitive costs depending

on their QoS (Quality of Service) requirements. To enhance the QoS associ-

ated with cloud computing, it is important to measure, for example, the per-

formance of services. The example considered in this section has specified the

timed and stochastic data associated with functionalities such as placeTask(),

sd GetResources, and execute. The time taken to execute these functionali-

ties and the rate of execution can be analysed separately using existing CPN

analysis tools (eg. SimQPN [Kounev and Buchmann, 2006], QPME [Kounev

and Dutz, 2007], CPN tools [Jensen and Kristensen, 2009]). For example,

applying these tools to the CPN model in Figure 8.27, we can compare the

performance of acquiring resources in single-tenancy and multi-tenancy sce-

narios separately. Further, this real-time and stochastic data can be used to

analyse the throughput and the utilisation of performing a service.
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8.6.2 Example 2: Elevator System

This section describes an example of a real-time software application that

controls an elevator in a building. The scenarios of system are chosen in a

way that can associate the complex behaviours of a sequence diagram and

make use of the transformation rules defined in Chapter 5. The scenario of

moving the elevator between floors and associated control functionalities are as

follows. The present example modifies and extends a similar system as given

in [Douglass, 2004,Fernandes et al., 2007,Radjenovic and Paige, 2010].

We assume that an elevator has an internal display panel with a set of

numbered buttons each with a floor number and another three buttons for the

functions open door, close door and alarm. This scenario is an attempt to

replicate the elevator functions for one user. When a user enters the elevator,

the first thing the elevator control does is to close the door. When at a floor,

this can happen either by pressing the close button of the button panel or

automatically by the elevator control after a timeout.

Once the door is closed, a user selects the floor that he/she wants to go to by

pressing a numbered button on the button panel, and the corresponding floor

number is passed on to the elevator system. The elevator starts to move until

it reaches the corresponding requested floor. While the elevator is moving,

pressing the open door button and associated interactions that cause the door

to open are considered invalid executions and will not be executed. Further,

the number of the passing floor is displayed on the button panel by the elevator.

When the elevator receives an arrival signal from a sensor (here an external

instance) at the requested floor it stops, and the door must open representing a

mandatory behaviour. Once the door opens it remains open for a fixed period

of time. Yet again, the door is closed after the pre-defined time duration has

expired or when the close door button is pressed by a user inside the elevator.

336



Figure 8.28: A SD for an example of an elevator system.
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The interactions for the control functionalities of the elevator system are

shown in the sequence diagram of Figure 8.28. Four instances are involved

in the interaction shown: a user, a buttonPanel, a door and the elevator

(control). The buttonPanel contains the floor numbers, the alarm, and the

open/close buttons.

The diagram assumes that the elevator door is already closed and the user

is inside the elevator. The interaction SDElevatorOperation starts with the user

pressing a floor numbered button on the button panel which is indicated

by the local transition selectF loor(N) where N indicates the selected floor

number. This information is then forwarded to elevator by the local transi-

tion cmdF loor(N). Here, we use the variable R associated with the instance

elevator, to denote the current floor number while elevator is moving.

This is followed by a loop interaction fragment with the condition [N ! =

R] == T (the requested floor is not equal to the current floor), indicating that

the interactions within the fragment are repeated until the requested floor is

reached; i.e. the current floor (value of R) is the same as the requested floor

(value of N). The loop fragment starts with the self-transition move executed

by the instance elevator.

A user is not allowed to open the door while the elevator is moving. Disal-

lowed behaviour can be represented by a neg interaction fragment, where only

the exact sequence of interactions contained in a neg fragment are disallowed.

In our example, a user may press the open button as many times as he/she

wants with no effect. Because the functions for pressing the button, forwarding

the command to the door and opening the door is disallowed.

Further, while moving the elevator always displays the current floor num-

ber for each floor it passes. This is represented using the local transition

displayF loorNo(R) from elevator to buttonPanel. Since the disallowed be-

338



haviour and the floor display can happen in parallel, they are included in

different operands in a par fragment.

The loop fragment includes a nested break fragment that includes the ter-

mination condition associated with loop. Here, the local transition with the

message label arrived sent from a gate event to elevator indicates that the

requested floor has been reached. Thus, when the break condition [N ==

R] evaluates to true, the loop is exited and the remaining interactions in

SDElevatorOperation are carried out.

The loop fragment is followed by an assert fragment that indicates a

mandatory behaviour. I.e., after the requested floor has been reached, the

elevator must stop and open the door. The sequence of local transitions stop,

cmdOpen and open placed inside an assert interaction fragment indicates that

this sequence is compulsory and the only valid continuation. Overall, the di-

agram in Figure 8.28 contains several interaction fragments and is relatively

complex. This diagram can be simplified by grouping sets of interactions into

different diagrams and using ref interaction fragments to refer back to them.

The corresponding CPN model obtained by applying the defined transfor-

mation rules is shown in Figure 8.29. The model CPNElevatorOperation contains

colours, places and net transitions that correspond to the instances, state lo-

cations and local transitions of the diagram SDElevatorOperation, respectively.

The unlabelled net transitions indicate the synchronisation behaviour at

the beginning and the end of each interaction fragment. The places and net

transitions of the CPN in this example are represented using different shades

(colours). This shading is only for the purpose of improving the readability of

the CPN by highlighting and distinguishing the places of different object types

(colours in the CPN terminology) and labelled/unlabelled net transitions. The

colours or shades used in the figure have no semantic meaning.
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Figure 8.29: The corresponding CPN for the example of the elevator system.
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In order to represent the iterative behaviour there is an equality between

the places that correspond to the state location before the beginning of the

loop fragment and the maximum state location within the operand for a given

instance. This is shown by the place equalities S1u = S7u, S2b = S11b and

S0d = S8d. The net transitions tbeg−loop and tend−loop are associated with the

iterative condition (N ! = R), that evaluates to true and false, respectively.

Thus when the condition associated with the net transition tbeg−loop evaluates

to false, the control flow goes to the net transition tend−loop.

Disallowed net transitions, in other words, net transitions that should not

execute within the execution flow of the CPN, are represented within the net

transitions tbeg−neg and tend−neg. Inhibitor arcs (represented by a line with a

small circle at the end) are used to link tbeg−neg and the places that correspond

to the minimum state locations of the neg fragment. For example, the inhibitor

arc for instance u, can be represented as: for a ∈ Ain, node(a) = (tbeg−neg, S4u).

This disables the token flow and the firing of transitions within the negative

behaviour.

Instead, additional arcs are used to link tbeg−neg with the places that cor-

respond to the state locations after the neg fragment (i.e. the state locations

that are given by the function θ ). For example, formally for the colour u,

a1 ∈ A, and node(a1) = (tbeg−neg, S6u). Further, the status of the places within

the negative behaviour is considered as unsafe and these places should not be

reached in this CPN model.

The behaviour of the break fragment nested within the par fragment in the

SD is modelled in the CPN by applying the transformation Rule 5.19. Since

there are no other interactions after break and within the loop, an additional

net transition tno−break is used in the CPN in order to maintain the control flow

within the CPN, when the break condition is false. Thus tno−break is linked
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to the place of the corresponding colour before the unlabelled net transition

tbeg−loop. Here, the condition (N == R) is used to check whether the elevator

has reached the requested floor. The condition evaluating to true is associated

with tbeg−break and the negated disjunction of the expression is associated with

tno−break. Further, there is an equality between the place after tend−break and

tend−loop such that S9e = S11e, in order to represent the termination of the

iterative behaviour after the break.

The mandatory behaviour (i.e., when the elevator stops at the requested

floor the door must open) is represented within the net transitions tbeg−assert

and tend−assert. The status of the places within this assertion behaviour is

incomplete and the next place with status complete is the target of the net

transition tend−assert. This indicates that all transitions within an assertion

are required to fire, and if only a part of the net transitions have fired, the

behaviour of the net remains incomplete. Conversely, we must ensure that

all net transitions within an assert behaviour must be executed in order to

complete the behaviour of the net.

Figure 8.30 shows a sequence diagram SDcloseDoor that represents the in-

teractions associated with a door closing functionality of an elevator. The SD

contains four instances, namely user, buttonPanel, door and elevator. The

two alternative ways for an elevator door to close are represented by the two

operands of an alt interaction fragment. If the time is in between [0, 3] time

units, in the first case, the user presses the close button on the button panel

given by the local transition pressClose, which triggers sendClose to be sent

to door. Alternatively, after 3 time units of inactivity (timeout), the instance

elevator sends a cmdClose message to door. In either way, when door receives

a local transition cmdClose, it executes the local transition t = (e15, close, e16)

that closes the door.
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Figure 8.30: A SD for the door closing function of the elevator system.

The corresponding CPN representation for the interactions associated with

SDcloseDoor is shown in Figure 8.31 and generated using the transformation

rules given in Chapter 5. By applying the general transformation rules, the

CPN contain colours, namely user, buttonPanel, door, elevator, and the cor-

responding identifiers u, b, d, e, respectively. The beginning and the end

of the alt interaction fragment are mapped to the net transitions tbeg−alt

and tend−alt, respectively. The state locations and the local transitions of

the SD are mapped onto the places and net transitions of the CPN respec-

tively, and the arcs link places and net transitions as expected. Applying the

transformation of an alternative behaviour (Rule 5.16), there is an equality

between the places that correspond to the minimum state locations of the

operands for a given instance. The same equality is applied for the maximum

state locations. This is shown by the equalities S1d = S3d and S2d = S4d.
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Figure 8.31: The corresponding CPN for the door closing function of the

elevator system.

Further, the condition of each operand is associated with the net transition

that corresponds to the first local transition with the operand. Formally,

this can be represented as guard(tpressClose) = [(0 < t < 3) == T ] and

guard(tcmdClose) = [(t => 3) == T ].

One of the main advantages of a CPN model is that a CPN model consti-

tutes one single coherent description of the behaviour specified by the sequence

diagram. The execution flow of a CPN shows how objects operate (commu-

nicate) with one another and their order of execution. CPN-based simulation

facilitates the understanding and analysis of the system behaviour [Jensen and

Kristensen, 2009] making it possible to detect obvious deadlocks, reachability
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problems, and so on. It also shows clearly how the markings of places changes,

how transitions become enabled, how tokens flow from a net transition to

another, etc. For example, CPNTools [Jensen et al., 2007, Jensen and Kris-

tensen, 2009], which is a popular CPN software tool, makes it possible to model

and check properties such as boundness (e.g., possible token colours, maximum

number of tokens), liveness (whether transitions become enabled) and reacha-

bility states using simulations and state space analysis techniques [Jensen and

Kristensen, 2009].

The identification of unreachable states (places in CPN) sometimes proves

to be simply superfluous or otherwise signify an error in the design. Whatever

the case, the occurrence of such situations requires design modifications. For

example, in Figure 8.29 the places S3u,S4u,S4b,S5b,S6b,S2d,S3d, S4d, S5d ∈ P

(that correspond to the state locations within neg fragment in Figure 8.28)

should be unsafe and intentionally unreachable. This can be seen through

simulation.

Additionally, CPN models can be used to identify deadlock situations and

the design model can be subsequently modified to avoid such situations. Dead-

lock arises for example when two or more objects are waiting for each other

to release a resource. Analysis methods such as simulation are by their nature

operational. The control flow of the system behaviour can be illustrated by

simulating the tokens as they are passed in the net from transition to tran-

sition. A token is passed only when a net transition can fire (is enabled).

Thus, the CPN model can be shown to the user in order to reproduce the

expected scenarios of the system behaviour and validate the original UML SD

model. I.e. it makes it possible to find out what will happen when a system

is executing. Here, we focus on simulation for the current example. However,

notice that simulation is not exhaustive and may not discover all the problems
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a model has, compared to formal verification by model checking [Nimiya et al.,

2010,Yatake and Aoki, 2010,C.Baier and J.Katoen, 2008,Kwiatkowska et al.,

2007,Grumberg and Long, 1991,Baier et al., 2007].

Here, we show a possible analysis of a SD by using our SD-to-CPN transfor-

mation to generate a CPN that can be simulated and analysed. Here, we show

the execution of a CPN manually, but we note that this can be extended to an

automated CPN analysis in the future. Figure 8.32(a) shows the simulation

report for Figure 8.31 that was generated manually by considering the token

flow and the textual grammar defined for CPNs in Section 8.4.2. This report

shows the transitions that have occurred together with the places and arcs.

Figure 8.32(b) shows the state space report for the CPN model in Figure 8.31

that has been manually generated by observing the behaviour of the CPN.

Since the simulation report is based on the token flow of the model and

the corresponding textual grammar defined for the CPN, the analysis results

comply with the available CPN simulation and analysis reports ( [Jensen and

Kristensen, 2009]). With this analysis it is possible to check properties of the

design model. For example, reachability states can be extracted by referring

to the place list in the simulation report. The liveness can be measured by

considering the net transitions that are enabled. We can thus keep track of the

actions that are executed and the states that are reached in a design model.

Since we consider the token flow of a CPN, it can be shown that the net

transitions associated with an invalid behaviour are not included in the simula-

tion report. For example, if we generate a simulation report for the CPN model

shown in Figure 8.29, the net transitions pressOpen, cmdOpen, and open do

not fire since the tokens do not pass to the specified negative behaviour. Here,

after the net transition beg − neg the next places are S5u, S7b and S6d.

These two reports can be used to locate errors or increase the confidence
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in the correctness of the software system model. Further, these reports show

the possibility of analysing the generated CPN models in a similar way to the

existing CPN simulation and analysis tools.

(a)

(b)

Figure 8.32: The simulation report and the state space report generated from

the CPN model.
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8.7 Concluding Remarks

With the potential impact of model-driven approaches on software develop-

ment practices, better tools are needed to automate the construction and evo-

lution of software models. This chapter has shown that the implementation of

our transformation rules from SDs to CPNs is possible and relatively straight-

forward. A complete implementation is beyond the scope of the present thesis.

Generally, for software tools to become truly useful in aiding developers,

they need to be able to automate the models developed by them directly and

also feed results back at the same level. In other words, users should be able

to carry out the transformation and analysis of their original designs without

expert knowledge of the formal models used underneath for the actually formal

analysis. Therefore this prototype tool could be extended to incorporate such

capabilities by back annotating the analysis results to the source SD model.

Further, with the platform independent core implementations of the SD2CPN

tool, it is possible to develop plugins for existing tools using the extensibility

support of the tool given by the text-based grammar.

Additionally, this chapter has described the applicability of the defined

transformation rules using two examples that covers different levels of system

functionalities. Finally, for the elevator example we have showed the execution

of a CPN manually, which can be extended to automated CPN analysis in

future.
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9 Discussion and Conclusion

The key contribution of this thesis is an approach to the formal representation

of a behavioural parametric model to model transformation with a syntactical

and semantical correctness proof. Two concrete popular models were chosen:

a behavioural UML model and coloured Petri nets (CPNs). Both models have

extensions for real-time and stochastic behaviours, which enhances their appli-

cability. Our framework covers these extensions and extends our correctness

proof accordingly. The benefits of a CPN target model are considerable with

a rich and well-developed theory and a wide range of practical tools.

This chapter starts with a discussion of the motivation behind this thesis,

gives an overview of each chapter and includes a careful evaluation of the

outcomes and challenges for future work.

9.1 Discussion

Modern software systems in most domains are increasingly complex and need

to function with high reliability. In particular, software applications with

critical and real-time behaviours have high requirements on their depend-

ability. The development of these complex software systems requires strong

modelling and analysis methods including formal verification and quantitative

modelling. Software development approaches following a Model Driven Devel-

opment (MDD) perspective have widened the use of software models making

models the core assets of the software development process and using model

transformations to generate new models from the existing ones.

The object-oriented UML is a widely used intuitive but mostly an informal

graphical modelling language for the design of complex systems. By contrast,

formal models provide theoretical support that makes it possible to verify sys-

tem designs. Consequently, formal models are essential to guarantee the cor-
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rectness of systems and increase the trustworthiness of the developed systems

with dependable requirements. Thus, it is immensely beneficial for modern

complex software development needs to combine the benefits of formal and

non-formal models. However, the transformation between those models has

to be seamless with a well-established proof of correctness for the result of a

formal analysis to propagate adequately to the informal design models.

The model transformations defined in this thesis have successfully bridged

the gap between informal notation (UML SD and IOD) and formal notation

(CPN and its variants) used for analysis purposes, with a complete proof of

syntactic and semantic correctness of the transformation. Though the proof

was done in the context of a SD to a CPN transformation, some of its under-

lying principles can be generalised to other behavioural transformations.

9.1.1 Research Summary

This research has been aimed at the development of a rigorous framework

based on MDD that facilitates transformations of design models for verifica-

tion. This thesis has focused on defining model transformation rules from a

UML 2 sequence diagram (SD) to a CPN with the aim of enabling possible

analyses over the CPNs and consequently enabling the formal verification of

the UML design models.

Chapter 2 has described in considerable detail software design models and

related formal model transformation approaches in order to identify a stable

platform of knowledge that was explored and developed in this thesis. Here,

the UML 2 sequence diagram, which is a commonly used diagram for capturing

inter-object behaviour, is identified as the main non-formal design model for

this thesis. CPNs, and its extensions for real-time, stochastic and hierarchical

behaviours are selected as the underlying formal model, because they have a
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rich and well-defined theory and tools, where in particular CPNs offer a natural

support for object-oriented modelling by using colours to distinguish between

object types.

Chapter 3 and 4 have described formal representations of SD and CPN

models as the first step for applying formal processing with model transfor-

mations. These formal definitions incorporate general and complex behaviour

of software systems and have been defined with extensibility and variability in

mind. The formally defined syntax and semantics of SD and CPN models are

loyal to the standardisations of the respective models. In order to model real-

time, probabilities and complex structures, these formal representations were

given a simple, but powerful, extension for the handing of time, stochastic,

and hierarchical aspects, respectively. Here, we explored the flexible ways of

adding these variants to a design and how that design can be added onto the

target model with only minor adjustments. Moreover, we have defined the SDs

with time, stochastic and hierarchical aspects, Interaction overview diagrams

(IODs) and the corresponding formal models SCPN, TCPN and HCPN as the

considered extensions of CPNs.

Additionally, we have defined languages (set of legal traces) of SDs and

CPNs, in a way that the transformation rules can guarantee a direct correspon-

dence between the set of legal traces of both models. That is, the languages

are equivalent also known as strongly consistent. Consequently, we do not get

implied behaviours in the synthesised CPN, which facilitates an accurate anal-

ysis on the given UML design models using any of the existing tools available

for coloured Petri nets.

We are not aware of any other formal semantics for UML2 sequence dia-

grams and CPNs that supports the formal definition of model transformation

rules, with the same strength and generality as of ours. Several other ap-
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proaches exist, that consider the transformation from SD to CPNs, but all

with some shortcomings. The most prominent being the lack of a formal

proof of semantic correctness and a flexible parametric extension for real-time,

stochastic and hierarchical behaviours. This is established in Chapter 7 of this

thesis.

Exogenous M2M transformations are defined in Chapter 5 and 6, where

CPN is the target model that can be used for a particular analysis approach.

Chapter 5 has defined the transformation rules from a SD to a CPN for the

mapping of general and complex behaviours such as alternative, parallel, it-

erative, forbidden, mandatory and critical. The flexible nature of the defined

transformation allows us to extend the rules to different models and domains,

conveniently.

In particular, Chapter 6 has defined partial and incremental transforma-

tion rules to transform a SD with reference behaviour to the corresponding

HCPN. Additionally, model composition rules have been defined to obtain a

single model from two or more related models for a unified understanding of

the entire system. Moreover, given a SD with time and stochastic annota-

tion, parametric transformations have been defined to obtain the correspond-

ing TCPN and SCPN, respectively. Further, hierarchical transformation rules

were defined between the pairs SDs, IOD and CPN, HCPN. These M2M trans-

formations have been defined by creating a one-to-one correspondence between

the elements in the source and target models.

In a model transformation framework, it is important that the transforma-

tion preserves the semantics of the source model. Without this any analysis

result in the target model cannot be translated into the original source model

in a meaningful manner. Chapter 7 has proved the syntactic and semantic

correctness of the defined model transformation rules. The syntactic correct-
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ness is shown using meta-model based graph grammar rules, which show that

the transformation produces a well-formed target model from a valid source

model. More importantly the semantic correctness is shown by proving a one-

to-one correspondence between the legal traces of each model, and hence that

the underlying languages of each model are strongly consistent or equivalent.

This indicates not only that the behaviour of the source model is preserved

in the target model, but also that the target model behaves exactly the same

way as of the source model without additional or unexpected behaviours be-

ing possible in the target model. This result entails the preservation of other

associated model transformation properties such as completeness, soundness,

termination, and bisimulation.

The denotational model transformations defined the chapter 5 and 6 may

not necessarily be appealing and human-friendly to a software developer that

has experience in using IDE and CASE tool support. Chapter 8 has explained

a prototype tool that implements the general transformation rules, in order to

explore the possibility of developing a tool that supports automation of our

model transformations. The backend of the tool is implemented considering

the meta-models and the defined formal transformation rules. The motivation

behind the tool has been to make the formal model transformations easily

available and practical in use. For this reason this tool facilitates a graph-

ical SD editor and a CPN representation that hides the underlying formal

representation. Also, the tool has implemented textual representation for the

considered models in order to integrate with other existing tools in future.

However, this tool is a prototype only and developed as a proof of concept of

our framework and is naturally far from the expected support for industrial

norms.

Further, example-based case studies have been described to show the ap-
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plicability of the defined transformations in practical use. Manual analysis of

the synthesised CPN is used to illustrate the possible analysis over the for-

mal model. Additionally, the manual analysis over the synthesised CPNs is

used to illustrate the possible analysis over the formal model, for identifying

the presence of model properties such as system flaws and reachability states,

hence verifying the UML design models. This has increased the confidence of

the correctness of the defined model transformations.

The work presented in this thesis is unique and new to the best of our

knowledge in which the research findings show significant originality and con-

tribution to the field of correct M2M transformations of behavioural software

design models.

9.1.2 Research Contribution

This research successfully brought together different existing software design

models such as UML 2 SDs and IODs, formal models such CPNs and its

variants such as TCPN, SCPN, HCPN in order to enable different formal

verification of system models in an underlying MDD approach. The main

contributions are the following:

- The defined model transformation framework supports an MDD-based

approach.

The chosen non-formal and formal design models, SDs and CPNs, sup-

port for object-oriented software modelling and are capable of modelling

the behaviour of systems at different levels of abstraction. The defined

exogenous transformations can be reused with simple modifications when

extending for different variants of source and target models. In addition,

the defined framework supports modularity with composition and de-

composition mechanisms. Further, this framework enables to analyse
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the synthesised formal model with existing tools and verifies the system

model before the actual implementation. Hence, the approach described

in this thesis supports MDD.

- The considered models are capable of modelling complex systems with

real-time and stochastic behaviour.

The formal representation of SD defined in this thesis is capable of cap-

turing additional behaviours such as critical, forbidden, stochastic and

real-time. Moreover, we have defined parametric model transformations

to synthesise formal models with time and stochastic behaviours. Fur-

ther, the decomposition mechanisms give a powerful alternative to struc-

turing interactions at different levels of abstraction and help to model

large-scale, complex systems.

- The formal model transformation framework enables to improve the qual-

ity of the software system and avoid excessive costs.

The transformation of non-formal design models into formal models en-

ables formal analysis of the design models, hence increasing the trust-

worthiness of the developed systems by guaranteeing system correctness.

By applying partial and incremental transformations to stepwise develop-

ment allows partial analysis. Thus, early analysis of design models would

identify possible flaws of the system and validate the design model. Con-

sequently, this helps to eliminate excessive flaws, time and cost associated

with the software development and enables quality improvements.

- The model transformation framework is flexible to use in practice, even

for non-experts in formal methods.

The flexible use of a model transformation approach depends on its ap-

pealing to a software developer that has experienced in IDE. The proto-
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type tool has shown the possibility of automating the defined transfor-

mations with IDE support. The generated formal model can be used to

analyse using the existing tools. Thus the users are able to carry out the

transformations without expert knowledge on formal methods.

The overall statement of this thesis in Chapter 1 is that the provision of

the model transformation framework to enable different analysis and validate

the model before the actual implementation, to develop software with less risk

and cost. We have shown the evidence in support of this statement with (1)

theoretical underpinning by theories related to SD and CPN with variations

and model transformations, (2) domain feasibility by performing system mod-

eling on the selected design models, and (3) validity and acceptance with the

mathematical proof strategies, case studies and prototype implementations of

model transformations.

9.1.3 Research Challenges

The work carried out within this thesis had several challenges.

First, it was a challenge to choose a formal model that facilitates the anal-

ysis of a design model and can be used to formally verify the original design

model. We have selected the CPN as the underlying formal model for this

thesis as it is a well-known formal model with rich theory and practical appli-

cations that support for formal analysis of behavioural models. Further, CPNs

offer a natural support for our approach when transforming object-oriented

models, because the colours in CPNs can be used to distinguish between ob-

ject types.

Moreover, some ambiguous and underspecified definitions given in the UML

SD standards made it difficult to formalise the semantics for some interaction

fragment behaviours such as assert and neg. This was addressed by consider-
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ing the intended trace semantics of these behaviours.

When defining the languages associate with each model, it was a challenge

to guarantee the preservation of the same behaviour in the target models as of

the source model, which is essential for establishing the correctness of the model

transformation process. We have shown the syntactic correctness by mapping

an element between the considered meta-models. The semantic correctness

is shown by proving a one-to-one correspondence between valid traces in the

source and target models. Thus, we have shown that the languages are strongly

consistent.

Further, it was a challenge to show the practical applicability of the trans-

formation framework. We have shown the model transformations and manual

analysis for the real world scenarios using example case studies. Additionally,

the implemented prototype tool automates the transformation process and

consists of a GUI that hides the formal details from the user, and the associ-

ated textual representations of models that enable integrations with existing

tools.

9.1.4 Research Limitations

This research is one step towards establishing a MDD-based framework for the

flexible analysis of complex interaction behaviour for software design models.

Some assumptions and limitations are taken into account to narrow the scope

of this thesis, fitting it into the available resources and constraints of the

research.

We have mainly considered the formal representations and transformations

for SD and CPN as well as some of the existing CPN extensions for real-

time, stochastic and hierarchical behaviours. However, more formal model

definitions and transformations can be defined to support a wide variety of
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UML design models that represent different views of a system such as class

diagrams and activity diagrams.

An automated CPN simulation and analysis that facilitates users with the

reproduction of the expected scenarios and analysis of model properties is

beyond the scope of this research. However, the case studies carried out in this

thesis have demonstrated the manual analysis of traces over the synthesised

CPN and the test runs generated by the tool have enabled the analysis of

design properties such as reachability states, firing transitions and liveness.

The correctness proof has established language equivalence for source and

target models. This guarantees the existence of a bidirectional transformation

of our models. Even though, our transformation rules were defined in a SD-

to-CPN way, the results of the formal analysis can be back-annotated to the

UML models. Tool support for implementing this was however, not in the

scope of the present work.

Finally, the prototype tool has implemented only the general transforma-

tion rules from a SD to a CPN and the quality of service requirements such as

performance were not considered at this stage and can be developed further,

as future work.

9.2 Further Work

The formal model transformation framework defined in this thesis brings for-

mal models and techniques more naturally into MDD-based software devel-

opment. This research and its outcomes could guide future researchers for

possible further extensions, and MDD based software development as follows.

The defined MDD-based model transformation in this thesis (for UML

SDs to CPNs with related extensions) is not sufficient for the modelling and

analysis of software systems with different structural and behavioural views.
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The framework can be extended with a family of transformations from non-

formal UML models to different formal models, which can be analysed in

various ways and ultimately validate the original design models.

This work can be extended with defining a repository of formal model

definitions and transformations that support for a wide variety of design models

with possible semantic variations that represents different views of a system

[Cengarle et al., 2009]. For example, UML models can be transformed into

PEPA nets that combine CPNs with the process algebra PEPA for modelling

mobility, and analyse the performance of the designed system model [Gilmore

et al., 2003a,Kloul and Kuster-Filipe, 2005,Bowles and Kloul, 2010,Tribastone

and Gilmore, 2008]. Also, model integration rules can be defined between

formal models, in order to analyse an entire software system with a complete

set of models. This kind of model transformation and analysis framework

would add flexibility to the framework and make it widely applicable for formal

analysis of different models.

Moreover, the defined formal semantics can be used for several purposes

such as a reference manual for the meaning of the model. Moreover, the

formal representations can be used to check the consistency of the standardised

semantics with the functionality offered by existing modelling tools. This

would immensely beneficial for modern complex software development needs.

Another way of increasing the scope of this M2M transformation framework

could be to investigate the applicability of parametric and incremental trans-

formations that are proven to be correct, when there is a large variability in

the target model, or when the semantic variability lies in the source model that

links to research on language variability. The model transformation correct-

ness proofs given in this thesis can be generalised in order to prove correctness

and completeness of related families of transformations and models [Ehrig and
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Ermel, 2008]. Establishing transformation correctness and completeness is

important to ensure the results of formal analysis will not be invalidated by

erroneous transformations as developers cannot distinguish whether an error

is in the design or in the transformation. Also, correct model transformation

enables to highlight the analysis results of the synthesised model back to the

original design model. Back annotation of the analysis results can be performed

using bidirectional transformations, since our result of strongly consistent lan-

guages already proves the existence of the bidirectional transformation rules.

Another consequence of this work is to perform formal analysis of the syn-

thesised models that allows system verification. These techniques could fa-

cilitate to analyse model properties such as reachability of states, liveness,

scalability, performance and to detect and avoid system flaws, hence, verify

the correctness and completeness of the design models. The considered for-

mal models with time and stochastic notion would be good candidates for

implementing and performing analysis on such systems.

Additionally, with a family of transformations, we can explore and compare

the results of different analysis and focus on the performance and scalability of

existing tools [Kounev et al., 2010,Kounev and Buchmann, 2006,Jensen et al.,

2007,Hinton et al., 2006].

From the tool point of view, the SD2CPN tool can be extended with more

functionality that covers all the transformation rules and model analysis. The

tool can be incorporated with extra functionalities such as syntax checking of

the input UML model and feedback mechanism. Also, we could explore the

practical use and quality of service requirements (usability, performance, scal-

ability) of the tool. Further, the interoperability of this tool can be enhanced

by implementing plug-ins that enable integration with existing tools.

Finally, the empirical support for the thesis statement can be strengthen
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by performing model transformation of large real-world systems. Realistic case

studies can be used to show the broad range of properties that can be analysed

by transforming non-formal models into formal models. This will strengthen

the empirical support for the considered model transformation and analysis

framework.

9.3 Concluding Remarks

A significant amount of work has been conducted in this dissertation. A survey

of the existing related work has provided a stable platform of knowledge that

shaped the research towards achieving the objectives of this thesis.

This thesis has defined and described transformations from an informal

graphical model into a formal model, and paved the way towards providing

a correct model transformation framework. We have formalised UML 2 SDs,

CPNs and some of its extensions, and defined formal transformation rules to

obtain an equivalent CPN (or extension) from a given SD. We have proved that

the defined languages of the models are strongly consistent, thus, the synthe-

sised model is free of implied behaviours essential for an accurate analysis.

The defined partial and incremental transformations contribute to a scalable

approach for formal analysis. The parametric transformations help to trans-

form models with real-time or stochastic behaviours. The transformations are

seamless and transparent to software developers with no knowledge of the un-

derlying model, and allow them to explore the benefits of the extensive suite

of tools available for Petri nets.

The formal proofs give us the guarantee of the syntactic and semantic

correctness of the transformations. The case studies were used to show the

applicability of our approach and the transformation in real-world examples.

The key capabilities of the SD2CPN tool have shown the possibility of imple-
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menting the defined transformation using a MDD-based approach that allows

easy extensions of rules to different models.

We believe that our MDD-based approach to behavioural model transfor-

mation is novel both in how to establish semantic correctness for transforma-

tions, and how to explore semantic variability in the target model for flexible

formal analysis.

The thesis has achieved a framework for correct M2M transformations with

semantic variability that enables possible formal analyses at the design level

and thus validates the non-formal models. The transformation framework

is easily extensible thus facilitating the support of specialised diagrams for

different purposes including mobility, performance, real-time behaviour, and

dependability.
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