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ABSTRACT

In this thesis we prove the following:

• The semigroup which is a disjoint union of two or three copies of a group
is a Clifford semigroup, Rees matrix semigroup or a combination between
a Rees matrix semigroup and a group. Furthermore, the semigroup which
is a disjoint union of finitely many copies of a finitely presented (residually
finite) group is finitely presented (residually finite) semigroup.

• The constructions of the semigroup which is a disjoint union of two copies of
the free monogenic semigroup are parallel to the constructions of the semi-
group which is a disjoint union of two copies of a group, i.e. such a semi-
group is Clifford (strong semilattice of groups) or Rees matrix semigroup.
However, the semigroup which is a disjoint union of three copies of the free
monogenic semigroup is not just a strong semillatice of semigroups, Rees
matrix semigroup or combination between a Rees matrix semigroup and a
semigroup, but there are two more semigroups which do not arise from the
constructions of the semigroup which is a disjoint union of three copies of
a group. We also classify semigroups which are disjoint unions of two or
three copies of the free monogenic semigroup. There are three types of semi-
groups which are unions of two copies of the free monogenic semigroup and
nine types of semigroups which are unions of three copies of the free mono-
genic semigroup. For each type of such semigroups we exhibit a presentation
defining semigroups of this type.

• The semigroup which is a disjoint union of finitely many copies of the free
monogenic semigroup is finitely presented, residually finite, hopfian, has sol-
uble word problem and has soluble subsemigroup membership problem.
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PREFACE

Unlike the ’classical’ algebraic structures, such as groups and rings, it is well-
known that a semigroup may decompose into a disjoint union of subsemigroups.
Indeed many structural theories of semigroups have such decompositions at their
core. For example:

• Every completely simple semigroup is isomorphic to a Rees matrix semi-
group over a group G, and is thus a disjoint union of copies of G; see Theorem
1.5.4.

• Every Clifford semigroup is isomorphic to a strong semilattice of groups, and
is thus a disjoint union of its maximal subgroups; see Theorem 1.5.6.

• Every commutative semigroup is a disjoint union (indeed a semilattice) of
archimedean commutative semigroups; see ([Gri95], Theorem 4.2.2).

It is therefore natural to ask how properties of a semigroup S which can be de-
composed into a disjoint union of subsemigroups S = T1 t · · · t Tn depend on
properties of the Ti. For instance, it is obvious that if all Ti are finitely generated
then so is S (Proposition 1.2.1). Araujo et al. [ABF+01] discuss finite presentabil-
ity in this context, and show that there exists a non-finitely presented semigroup
which is a disjoint union of two finitely presented subsemigroups. On the other
hand, it can be shown that in many special instances finite presentability of the
Ti implies finite presentability of S. For example, this is the case when all Ti are
groups (i.e. when S is a completely regular semigroup with finitely many idem-
potents; see Corollary 1.5.3; this follows from ([Rus99],Theorem 4.1). Further such
instances are discussed in [ABF+01].
Turning to the finiteness condition of residual finiteness, we have a similar land-
scape. It is easy to construct a non-residually finite semigroup which is a disjoint
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union of two residually finite subsemigroups. One such example, consisting of a
free group and a zero semigroup, can be found in ([GR10], Example 5.6).
On the other hand, it follows from Golubov [Gol75] that if all Ti are residually fi-
nite groups then S is residually finite as well.

The thesis is divided into two parts. The finiteness conditions as finite pre-
sentability and residual finiteness for the semigroup which can be decomposed
into small numbers (two or three) copies of a (semi)group, and the constructions
of such semigroups, are considered in the first part. The finiteness conditions as
finite presentability, residual finiteness, word problem, membership problem and
hopficity for the semigroup which can be decomposed into any number of copies
of the free monogenic semigroup, are considered in the second part.

Preliminary and basic materials are presented in the next chapter. The first
two results are given in Chapter 2, which play a significant role in proving some
theorems about rectangular band semigroups in Chapter 7. Chapter 2 has many
counterexamples of some provided questions related to finite presentability. The
ideas of these examples are based on finding a semigroup which is a direct product
of a finite semigroup and an infinite finitely presented semigroup as in [AR00] and
[RRW98].

Semigroups which are disjoint unions of groups are considered in Chapter 3.
Working on such semigroups is more flexible than disjoint unions of semigroups
since we have well-known theorems in [How95] and [CP61] which provide us with
some constructions as Clifford and Rees matrix semigroups. We initially start with
the semigroup which is a disjoint union of two copies of a group which implies
that such a semigroup is completely regular since every element in the semigroup
lies in a subgroup, so by knowing the size of the semilattice, we can classify this
semigroup as in Theorem 3.2.2. Analogously, we classify the semigroups which
are disjoint unions of three copies of a group as in Theorem 3.3.2. After classifying
these semigroups we simply prove the finite presentability and residual finiteness
for these semigroups in Section 3.4 by [Rus99] and [Gol75].

In Chapter 4 we study the semigroups which are disjoint unions of two copies
of the free monogenic semigroup. We find interestingly that such semigroups be-
have in parallel with the semigroups which are disjoint unions of two copies of
the infinite cyclic group and it has three constructions, strong semilattice of semi-
groups and Rees matrix semigroup of two types (Theorem 4.3.1) which is the same
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constructions that have been obtained in the group case (Theorem 3.2.2).
The semigroups which are disjoint unions of three copies of the free mono-

genic semigroup is the subject of Chapter 5. After classifying these semigroups
and proving that there are just nine types, each type of such a semigroup is defined
by a certain presentation see Table 5.1, we end up with a result which says that the
construction of such semigroups is not just a strong semillatice of semigroups, Rees
matrix semigroup or a combination between a Rees matrix semigroup and a semi-
group -the constructions of three copies of the infinite cyclic group- but there are
some others which do not lie under any of the mentioned constructions (Remark
5.4.1). Chapters 4 and 5 have been submitted to publication [AGMRed]

The last type of semigroups in this thesis which are disjoint unions of small
number (two copies) of a semigroup are presented in Chapter 6. We classify -after
some long proofs- balanced semigroups which are disjoint unions of two copies of
the free semigroup of rank two. Although, a strong condition is provided on these
semigroups, they are quite tricky to be classified. The main theorem in this chapter
is Theorem 6.4.2 which states clearly that there are just six balanced semigroups,
each of which has a certain finite presentation. This implies that every balanced
semigroup is finitely presented. In Section 6.5, we prove that such semigroups are
residually finite since the relations in each presentation preserve length and this is
the end of Part I.

In Part II of the thesis we consider semigroups which are disjoint unions of
finitely many copies of the free monogenic semigroup (i.e. natural numbers under
addition). We show that even though there is no general structural theory for such
semigroups, which would yield positive results of the above type ‘for free’, they
nonetheless display the same behaviour as unions of groups.

We start Part II with a rectangular bands of finitely presented semigroups,
which is a nice case of disjoint unions of semigroups. A general result of finite
presentability is provided by Theorem 2.3.1 as we have mentioned before. In ad-
dition, there is a theorem for residual finiteness but in the case that the rectangular
band is just blocks of copies of the free monogenic semigroup.

The strongest results of this thesis are in Chapters 8 and 9 which have ap-
peared in the work of Abu-Ghazalh and Ruškuc ([AGR13], [AGRin]). There are
6 open problems which have been proved in these two chapters. and it has a
strong result on finite presentability. The finiteness conditions theorems for the
semigroup which is a disjoint union of finitely many copies of the free monogenic
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semigroup are Theorems (8.2.1, 8.3.4, 8.4.2, 9.2.2, 9.3.9) which state respectively
that every semigroup which is a disjoint union of finitely many copies of the free
monogenic semigroup is finitely presented, residually finite, hopfian, has a soluble
word problem and has a soluble subsemigroup membership problem. Moreover,
we have Theorem 8.5.2 on commutative semigroups which are disjoint unions of
finitely many copies of the free monogenic semigroup, says that every commuta-
tive semigroup is a finite disjoint union of copies of the free monogenic semigroup
if and only if it is a strong semilattice of copies of the free monogenic semigroup.
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CHAPTER

ONE

SEMIGROUP THEORY PRELIMINARIES

1.1 Introduction

In this chapter all the basic semigroup theory needed to understand the results of
the thesis are covered and mostly taken from [Hig92], [How95], [Rus95], [Har96],
[RT98] and [Gal05]. For further background information on semigroup theory see
[CP61], [Lal79], [Hig92], [Gri95] or [How95].

1.2 Basics and monogenic semigroups

A semigroup is a set S equipped with an associative binary operation, usually
called multiplication, which means (xy)z = x(yz) for all x, y, z ∈ S. For instance,
the set of natural number N forms a semigroup under addition.

A subsemigroup of S is a subset T ⊆ S which is closed under the same mul-
tiplication, that is, if (∀x, y ∈ T) xy ∈ T. We abbreviate T is a subsemigroup of S
as T ≤ S. A proper subsemigroup of S is a subsemigroup which is not equal to S.
Suppose that S is a semigroup and Ti ≤ S for all i ∈ I. Then

∩i∈ITi 6= ∅ =⇒ ∩i∈ITi ≤ S.

Let A be a non-empty subset of S. The intersection of all the subsemigroups of S
that contain A is non-empty and is a subsemigroup of S. We use 〈A〉 to denote this
subsemigroup and call it the subsemigroup of S generated by the set A. Equiva-
lently, the subsemigroup 〈A〉 can also be described as the set of all elements in S
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that can be written as finite products of elements of A.

Proposition 1.2.1 ([ABF+01], Proposition 3.1). Let S be a semigroup which is a disjoint
union of a family (Si)i∈I of its subsemigroups. If each Si is generated by a set Xi (i ∈ I),
then S is generated by ti∈IXi.

If A = {a1, a2, . . . , an} then we shall write 〈A〉 as 〈a1, a2, . . . , an〉 and if A =

{a}, a singleton set, and 〈a〉 = {a, a2, a3, . . . }, then we refer to 〈a〉 as the monogenic
subsemigroup of S generated by the element a. The order of the element a is de-
fined, as in group theory, as the order of the subsemigroup 〈a〉. If S is a semigroup
in which there exists an element a such that S = 〈a〉, then S is said to be a monogenic
semigroup as in [How95] and a cyclic semigroup as in [CP61].

Assume that a is an element of a semigroup S and 〈a〉 = {a, a2, a3 . . . }, if there
is no repetition in the list a, a2, a3, . . . , which means

am = an ⇒ m = n,

then the semigroup 〈a〉 is isomorphic to the semigroup N (natural numbers with
respect to addition). Note that we use the notations N and N to mean, respec-
tively, the monogenic semigroup and the natural number semigroup throughout
the thesis and N0 = N∪ {0}.

We say that e ∈ S is an identity element (or identity, usually denoted 1) of S
if es = se = s for all s ∈ S. If e ∈ S then S is a monoid and e is the only identity
in S. For any semigroup S we may form a monoid S1 as follows. If S is not a
monoid then, we adjoin the symbol 1 to S, we let S1 = S ∪ {1} and we extend the
multiplication on S by defining 1s = s1 = s for all s ∈ S1. If S is a monoid then
S1 = S.

1.3 Relations, congruences and homomorphisms

Let X and Y be two non-empty sets. Then the set X×Y is defined as

{(x, y) : x ∈ X, y ∈ Y}.

A binary relation on X is a subset R ⊆ X× X. We call the relation

1X = {(x, x) : x ∈ X}
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the diagonal relation on X and

R−1 = {(x, y) ∈ X× X : (y, x) ∈ R}

the converse of R. If R and Q are two binary relations on X then we may define the
composition R ◦Q as

{(x, z) : (∃y ∈ X)((x, y) ∈ R, (y, z) ∈ Q)}.

Let R be a binary relation on X. Then, R is reflexive if xRx, for all x ∈ X. R
is symmetric if xRy implies yRx, for all x, y ∈ X. R is anti-symmetric if xRy and
yRx implies that x = y. R is transitive if xRy and yRz implies xRz. If R is reflexive,
anti-symmetric and transitive then it is an order relation. If R is reflexive, symmetric
and transitive then it is an equivalence relation.

Let R be a reflexive relation on X. Then we have

R ⊆ R ◦ R ⊆ R ◦ R ◦ R ⊆ · · · ,

which we can write in simpler notation as

R ⊆ R2 ⊆ R3 ⊆ · · ·

The relation
R∞ =

⋃
{Rn : n ≥ 1} (1.1)

is called the transitive closure of the relation R.

Lemma 1.3.1 ([How95], Lemma 1.4.8). For every reflixive relation R on a set X, the
relation R∞ defined by (1.1) is the smallest transitive relation on X containing R.

Now we can introduce the relation Re which is the smallest equivalence on X
containing R and it is defined as

Re = [R ∪ R−1 ∪ 1X]
∞.

The number of the equivalence classes is called the index of R in X and is denoted
by [X : R]. An equivalence relation R on a semigroup S is a right congruence if xRy
implies xzRyz for all x, y, z ∈ S. Left congruences are defined analogously and a
relation is a congruence if it is both a left congruence and a right congruence. For
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an arbitrary relation R on a semigroup S we define

Rc = {(xay, xby) : x, y ∈ S1, (a, b) ∈ R}.

Thus, the smallest congruence generated by R is (Rc)e, see ([How95], Proposition
1.5.8).

Let S and T be semigroups. A homomorphism from S into T is a mapping
φ : S→ T which satisfies φ(s1s2) = φ(s1)φ(s2) for all s1, s2 ∈ S. An epimorphism is
a surjective homomorphism, a monomorphism is an injective homomorphism and
an isomorphism is a bijective homomorphism. We say that T is a homomorphic
image of S if there is an epimorphism φ : S→ T. If φ : S→ T is a homomorphism
then the kernel

ker(φ) = {(s1, s2) | s1, s2 ∈ S, φ(s1) = φ(s2)}

of φ is a congruence on S and S/ker(φ) ∼= Imφ. We say that S and T are isomorphic
if there is an isomorphism φ : S→ T.

Theorem 1.3.2 ([How95], Theorem 1.5.3). Let ρ be a congruence on a semigroup S,
and let φ : S → T be a homomorphism such that ρ ⊆ kerφ. Then there is a unique
homomorphism β : S/ρ→ T such that imβ =imφ.

An anti-homomorphism from the semigroup S into the semigroup T is a map-
ping φ : S → T which satisfies φ(s1s2) = φ(s2)φ(s1) for all s1, s2 ∈ S. An anti-
isomorphism is a bijective anti-homomorphism. We say S is anti-isomorphic to T if φ

is anti-isomorphism.
An endomorphism is a homomorphism S → S and an automorphism is an

isomorphism S→ S.
Let S be a semigroup, and let T is a subsemigroup of S. Let π be the relation

(T × T) ∪
(
(S\T)× (S\T)

)
.

Let Σr(π), Σl(π), respectively, be the largest right congruence and largest left con-
gruence contained in π as follows:

Σr(π) = {(x, y) ∈ S× S : (xs, ys) ∈ π for all s ∈ S1},

Σl(π) = {(x, y) ∈ S× S : (sx, sy) ∈ π for all s ∈ S1}.
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And then the largest congruence which contained in π is

Σ(π) = {(x, y) ∈ S× S : (s1xs2, s1ys2) ∈ π for all s1, s2 ∈ S1}.

Notice that
Σr(Σl(π)) = Σl(Σr(π)) = Σ(π).

We shall call Σr(π), Σl(π), respectively, the right, left syntactic congruence, and Σ(π)

the syntactic congruence.

Theorem 1.3.3 ([RT98], Theorem 2.4). Let S be a semigroup. If ρ is a right congruence
of finite index in S, then the congruence Σ(ρ) also has finite index in S. In particular, for
any equivalence relation π on S, [S : Σr(π)] is finite if and only if [S : Σ(π)] is finite if
and only if [S : Σl(π)] is finite.

1.4 Ideals and Green relations

A right ideal R of a semigroup S is a non-empty subset of S such that r ∈ R and
s ∈ S imply rs ∈ R. Equivalently, RS ⊆ R. Analogously, a left ideal of S is a non-
empty subset L satisfying SL ⊆ L. A two sided ideal I is a subset which is both a left
and right ideal. It satisfies IS ∪ SI ⊆ I. Any of these sets is called proper if it does
not equal to S.

We say that a (left, right, two-sided) ideal I of a semigroup S is minimal if it
contains no other (left, right, two-sided) ideal of S. The existence of a minimal (left,
right) ideal is not necessary, we may find a semigroup with no minimal (left, right)
ideal and a semigroup with several minimal left and right ideals or with several
minimal left (right) ideals. However, there is no semigroup with more than one
minimal two-sided ideal because if I1 and I2 are minimal two-sided ideals in S
then I1 I2 ⊆ I1 ∩ I2. Notice that I1 I2 is an ideal that would otherwisw be strictly
contained in each of the (distinct) ideals I1 and I2.

Let S be a semigroup. Define the following relations on S:

xLy ⇐⇒ ∃ s, s′ ∈ S1 : x = sy and y = s′x,

xRy ⇐⇒ ∃ s, s′ ∈ S1 : x = ys and y = xs′,

xJ y ⇐⇒ ∃ s, s′, t, t′ ∈ S1 : x = sys′ and y = txt′.

The relations L, R and J are equivalence relations and furthermore the relations
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L and R are respectively a right congruence and a left congruence. The relations
L and R commute i.e: L ◦ R = R ◦ L and then we have the equivalence relation
D = L ◦ R. D is the smallest equivalence relation on S which contains both L
and R. Let H = L ∩ R and then H is the largest equivalence relation of S that
is contained in both of L and R. The inclusion diagram of the Greens relations is
given below.

J

D

L R

H

Figure 1.1: Inclusion diagram of the Green’s relations

1.5 Classes and constructions

We say that the semigroup S is commutative if for every a, b ∈ S : ab = ba.
The element e ∈ S is idempotent if e2 = e. A semigroup where all elements are
idempotents is called a band.

Let E be a semigroup of idempotents. We define a relation ≤ on E by

(∀x, y ∈ E) x ≤ y ⇐⇒ xy = yx = x.

It is an easy exercise to show that ≤ is a partial order (reflexive, anti-symmetric
and transitive) relation on E. If x ≤ y in S we say x is under y and y is over x. We
say the element b of a partially ordered set X is a lower bound of a subset Y of X if
b ≤ y for every y in Y. The lower bound b of Y is called a greatest lower bound or
meet of Y if b ≥ c for every lower bound c in Y. Upper bound and least upper bound
or join are defined analogously.
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If S is a commutative semigroup and all its elements are idempotents, then S
is called a semilattice. Hence, in this case, for all x, y ∈ S : x2 = x and xy = yx.

The element x ∈ S is regular if there exists y ∈ S such that xyx = x. We say that
S is a regular semigroup if all of its elements are regular and we say that S is simple
if it has no proper ideals. The semigroup S is completely simple if it is simple and
contains a primitive idempotent (that is, an idempotent which is minimal within
the set of all idempotents of S).

Theorem 1.5.1 ([How95], Theorem 3.3.2). Let S be a simple semigroup (without zero).
Then S is completely simple if and only if S contains at least one minimal left ideal and at
least one minimal right ideal.

Lemma 1.5.2 ([CP67], Lemma 8.13). let S be a simple semigroup containing a minimal
left (right) ideal. Then S is the disjoint union of its minimal left (right ) ideals.

We say that S is completely regular if for every x ∈ S there exists y ∈ S such that
xyx = x and xy = yx.

Corollary 1.5.3 ([How95], Corollary 2.2.6). If e is an idempotent in a semigroup S, then
He is a subgroup of S. NoH−class in S can contain more than one idempotent.

Let G be a group and let I and Λ be non-empty sets. Let P be a matrix, indexed
by Λ and I, respectively, with entries from G. We denote this by P = (pλi)λ∈Λ,i∈I .
Let S be the semigroup with elements (I × G × Λ) and multiplication defined as
(i, g, λ)(j, h, µ) = (i, gpλjh, µ) for all i, j ∈ I, g, h ∈ G and λ, µ ∈ Λ. Then S is a
Rees matrix semigroup of the type |Λ| × |I| with respect to G, I, Λ and P. We write
S = M[G; I, Λ; P]. The Rees matrix construction M[S; I, Λ; P] works even if S is
just a semigroup.

The near Rees matrix semigroup (NRMS) construction is defined as follows, at
first we have a semigroup S, and then we adjoin the identity element to form S1

and we have the |Λ| × |I|matrix P with the identity entries. Thus if

S̄ =M
[
S1; I, Λ; P

]
and

S = {(i, s, λ) : s 6= 0, s ∈ S} ≤ S̄

then S is a NRMS and we will call it briefly Rees matrix semigroup of the type
|Λ| × |I| .
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Theorem 1.5.4 ([Lal79], Theorem 2.7). A semigroup S is completely simple if and only
if it is isomorphic to a Rees matrix semigroupM[G; I; Λ; P] where the matrix P is normal,
i.e pi1 = p1λ = 1G for all i ∈ I and all λ ∈ Λ.

A semigroup S is said to be a semilattice of semigroups Tα, α ∈ Y if Y is a semilat-
tice, S=tα∈YTα with multiplication defined naturally within each Tα and globally
obeying the rule TαTβ ⊆ Tαβ. The set of natural numbers N forms a semilattice un-
der the natural partial order ≤. Strong semilattices of semigroups Tα if, in addition,
there is a family of homomorphisms {φα,β : α, β ∈ Y, α ≥ β}where each φα,β maps
from Tα to Tβ, φα,α is the identity mapping on Tα and φα,βφβ,γ = φα,γ. The semi-
group has elements tα∈YTα and multiplication is defined, for x ∈ Tα and y ∈ Tβ,
as xy = φα,αβ(x)φβ,αβ(y). We denote this semigroup as

S
[
Y; {Tα : α ∈ Y}; {φα,β : α, β ∈ Y, α ≥ β}

]
.

For instance, if Y is small, e.g Y = {0, 1}, we may write S as S
[
Y; {T0, T1}; {φ1,0}

]
.

Theorem 1.5.5 ([How95], Theorem 4.1.3). Every completely regular semigroup is a
semilattice of completely simple semigroups.

A Clifford semigroup is defined as a completely regular semigroup in which
the idempotents are central (c is central if cs = cs ∀s ∈ S). Strong semilattices of
semigroups provide one of the main tools for the structure theory of semigroups
as in the following theorem.

Theorem 1.5.6 ([How95], Theorem 4.2.1). Let S be a semigroup with set E of idempo-
tents. Then the following statements are equivalent:

(1) S is a Clifford semigroup;

(2) S is a semilattice of groups;

(3) S is a strong semilattice of groups;

(4) S is regular, and the idempotents of S are central.
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1.6 Free semigroups and presentations

An alphabet A is a non-empty, but finite, set of symbols or letters. Any finite se-
quence of letters is a word (or a string) over A. The set of all words over A, with
at least one letter, is denoted by A+. For clarity, we shall often write u ≡ v, if
the words u and v are the same (letter by letter). The set A+ is a semigroup, the
word semigroup over A, when the product is defined as the concatenation of words,
that is, the product of the words w1 ≡ a1a2 · · · an, w2 ≡ b1b2 · · · bm(ai, bi ∈ A) is
the word w1.w2 = w1w2 ≡ a1a2 · · · anb1b2 · · · bm. When we join the empty word
1 (which has no letters) to A+, we have the word monoid A∗, A∗ = A+ ∪ {1}.
Clearly, 1.w = w = w.1 for all words w ∈ A∗. For example, let A = {a, b}
be a binary alphabet. Then a, b, aa, ab, ba, bb, aaa, aab, · · · are words in A+. Now,
ab.bab ≡ abbab. As usual, wk means the concatenation of w with itself k times and
so for instance, v ≡ ab3(ba)2 ≡ abbbbaba ≡ ab4aba.

Let S be a semigroup. A subset A ⊆ S generates S freely, if S = 〈A〉 and every
mapping ψ : A → P (where P is any semigroup) can be extended to a unique
homomorphism φ : S→ P such that φ �A= ψ. Here we say that φ is a homomorphic
extension of the mapping ψ. If S is freely generated by some subset, then S is a free
semigroup.
Example. (N,+) is free since the generating set is A = {1} and if ψ : A → P is a
homomorphism, and we define φ : N→ P by φ(n) = ψ(1)n. Now φ �A= ψ and φ

is a homomorphism:

φ(n + m) = ψ(1)n+m = ψ(1)n . ψ(1)m = φ(n) . φ(m).

Proposition 1.6.1 ([Rus95], Proposition 1.1). Let A be a set, and let S be any semigroup.
Then any mapping ψ : A → S can be extended in a unique way to a homomorphism
φ : A+ → S, and A+ is determined up to isomorphism by these properties.

Thus, for any alphabet A, A+ is a free semigroup, and it is freely generated by A.

Proposition 1.6.2 ([Rus95], Proposition 2.1). Let 〈A| R〉 be a presentation, let S be the
semigroup defined by this presentation, and let T be a semigroup satisfying R. Then T is a
natural homomorphic image of S.

Since A is a generating set for S, the identity mapping on A induces an epi-
morphism π : A+ → S. The kernel ker(π) is a congruence on S; if R ⊆ A+× A+ is
a generating set for this congruence we say that 〈A|R〉 is a presentation for S. We
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say that S satisfies a relation (u, v) ∈ A+× A+ if π(u) = π(v); we write u = v in this
case. Suppose we are given a set R ⊆ A+ × A+ and two words u, v ∈ A+. We say
that the relation u = v is a consequence of R if there exist words w1, · · · , wk (k ≥ 1)
such that for each i = 1, · · · , k − 1 we can write wi ≡ αiuiβi and wi+1 ≡ αiviβi

where (ui, vi) ∈ R or (vi, ui) ∈ R.
It is well known that the following are equivalent:

(P1) 〈A | R〉 is a presentation for S.

(P2) S satisfies all relations from R, and every relation that S satisfies is a conse-
quence of R.

(P3) There exists a set W ⊆ A+ such that π maps W bijectively onto S, and for
every u ∈ A+ there exists w ∈W such that u = w is a consequence of R.

(P1)⇔(P2) is ([Lal79], Proposition 1.4.2). (P2)⇒(P3) is proved by choosing a single
preimage for every s ∈ S, and letting the resulting set be W. (P3)⇒(P2) is obvious.
The set W in (P3) is referred to as a set of normal forms for elements of S. We say that
S is finitely presented if A and R were chosen to be finite. For further information
see [Rus95].

1.7 Residual finiteness

A semigroup S is said to be residually finite if for any two distinct elements s, t ∈ S
there exists a homomorphism φ from S into a finite semigroup such that φ(s) 6=
φ(t). It is well-known that the following are equivalent:

(RF1) S is residually finite.

(RF2) There exists a congruence ρ of finite index (i.e. with only finitely many equiv-
alence classes) such that (s, t) 6∈ ρ.

(RF3) There exists a right congruence ρ of finite index such that (s, t) 6∈ ρ.

(RF1)⇔(RF2) is an immediate consequence of the connection between homomor-
phisms and congruences via kernels. (RF2)⇒(RF3) is trivial. (RF3)⇒(RF2) follows
from the fact that for a right congruence ρ of finite index, the largest two-sided
congruence contained in ρ also has finite index; see Theorem 1.3.3, it is sufficient
to prove residual finiteness by the existence of a right congruence of finite index
(RF3).
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Residual finiteness is one of the more important finiteness conditions (the
properties of semigroups which all finite semigroups have). Every finitely pre-
sented residually finite semigroup has solvable word problem ([Eva69], Theorem
2) and so it is closely connected with algorithmic problems.
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CHAPTER

TWO

GENERAL DISJOINT UNIONS OF TWO SEMIGROUPS

2.1 Introduction

In this chapter, most of the examples are based on the paper [AR00], Araújo and
Ruškuc investigated finite generation and finite presentability of the direct product
S × T of a finite semigroup S and an infinite semigroup T. So first we introduce
the necessary definitions and theorems. We use Gap in this Chapter and Chapter
5 to prove that the given set which defined by a multiplication table is basically a
semigroup.

Definition 2.1.1. A (finite) semigroup S preserves finite generation (resp., finite pre-
sentability) in direct products if it satisfies the following property: for every infi-
nite semigroup T, the direct product S× T is finitely generated (resp., finitely pre-
sented) if and only if T is finitely generated (resp., finitely presented). Also, we say
that S destroys finite generation (resp., finite presentability) in direct products if S× T
is not finitely generated (resp., finitely presented) for some infinite semigroup T.

In addition, two relations ≺r and ≺l have been defined on an arbitrary semigroup
S as follows:

t ≺r s ⇐⇒ s = t or (∃x ∈ S)(sx = t),

t ≺l s ⇐⇒ s = t or (∃x ∈ S)(xs = t).

These relations are pre-orders (reflexive and transitive). And then the sets of all
maximal elements with respect to ≺r and ≺l were denoted by

<(S) = {s ∈ S : (∀t ∈ S)(s ≺r t⇒ t ≺r s},
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L(S) = {s ∈ S : (∀t ∈ S)(s ≺l t⇒ t ≺l s}.

For an arbitrary s ∈ S, defined a graph Γ(s) as follows. The set of vertices is

{(α, µ, ω) : α ∈ <(S), µ ∈ S, ω ∈ L(S), αµω = s}.

Two vertices (α1, µ1, ω1) and (α2, µ2, ω2) are joined by an edge if

(α1 = α2 & µ1ω1 = µ2ω2) or (α1µ1 = α2µ2 & ω1 = ω2).

We say that an element e ∈ S is a relative left (resp., right) identity for an element
s ∈ S if es = s (resp., se = s). If e is a relative left (resp., right) identity for every s ∈ S
we say that e is a left (resp,. right) identity.

Theorem 2.1.2 ([AR00], Theorem 1.2). The following two conditions are equivalent for
a finite semigroup S:

(i) S preserves finite presentability in direct products.

(ii) S2 = S and all the graphs Γ(s) (s ∈ S) are connected.

Corollary 2.1.3 ([AR00]). If S satisfies one of the following conditions:

(i) Every element of S has a relative left identity and a relative right identity,

(ii) S has a left identity or a right identity,

then S preserves finite presentability in direct products.

We address the following question when we start to look at the semigroups
which can be decomposed into two subsemigroups. Let S be a semigroup which is
a disjoint union of two subsemigroups A, B, where A and B are finitely presented.
Is S finitely presented? The answer to this question is negative by the following
counterexample.
Example([ABF+01], Example 3.4). Let T be the semigroup defined by the following
multiplication table:

a b c 0

a a a c 0
b b b c 0
c 0 0 0 0
0 0 0 0 0
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and let U be any finitely presented infinite semigroup. Then we have the semi-
group S = T×U and the two subsemigroups S1 = {a}×U and S2 = {b, c, 0}×U.
It is clear that S = S1 t S2. The semigroup S1 is finitely presented since it is isomor-
phic to U, and S2 is finitely presented because the subsemigroup Q = {b, c, 0} of
T has a left identity b and then by Corollary 2.1.3, Q preserves finite presentability
in S2. However, S is not finitely presented since

Γ(c) = {(a, a, c), (a, b, c), (b, a, c), (b, b, c)},

and the two vertices (a, b, c), (b, a, c) are not connected since c = c and ab 6= ba.

Consequently, we try to add some conditions to these subsemigroups to obtain
a finitely presented semigroup. For instance, if we define a syntactic congruence on
S and each class of this congruence is finitely presented, does this lead to a positive
answer (S is finitely presented)? or, if we add another condition that is related to
(left,right) ideals, is this enough for S to be finitely presented? The answer to all
these questions is in the following two sections.

2.2 Syntactic congruence condition

Question. Suppose that S is a semigroup which is a disjoint union of two sub-
semigroups A, B and let π be the relation (A × A) ∪ (B × B). Let Σr(π), Σl(π),
respectively, be the right syntactic congruence and left syntactic congruence con-
tained in π as follows:

Σr(π) = {(x, y) ∈ S× S : (xs, ys) ∈ π for all s ∈ S1},

Σl(π) = {(x, y) ∈ S× S : (sx, sy) ∈ π for all s ∈ S1}.

And then the the syntactic congruence which contained in π is

Σ(π) = {(x, y) ∈ S× S : (s1xs2, s1ys2) ∈ π for all s1, s2 ∈ S1},

where
Σr(Σl(π)) = Σl(Σr(π)) = Σ(π).

i) Are the Σ−classes necessarily subsemigroups?
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ii) If all the Σ−classes were finitely presented subsemigroups, is S necessarily
finitely presented semigroup?

The answer to these two questions is negative by the following counterexamples.
Counterexample to i. Let S be the semigroup defined by the following multiplica-
tion table:

0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 2 0 0 5
3 0 3 4 3 4 3
4 0 4 4 0 0 3
5 0 5 2 5 2 5

Hence the semigroup S = A t B where A = {0, 3, 4} and B = {1, 2, 5}. Then

π = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 3), (3, 0), (0, 4), (4, 0), (3, 4), (4, 3),
(1, 2), (2, 1), (1, 5), (5, 1), (2, 5), (5, 2)},

Σr(π) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 3), (3, 0), (0, 4), (4, 0), (3, 4),
(4, 3), (1, 2), (2, 1)},

ΣlΣr(π) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},

and thus 4/ΣlΣr = {4} which is not a semigroup.

Counterexample to ii. Let T be the semigroup defined by the following multipli-
cation table:

a b c d
a a a a d
b a b a d
c a a c d
d d d d d

and let U be any finitely presented infinite semigroup. Then we have the semi-
group S = T×U and the two subsemigroups S1 = {a, b, c}×U and S2 = {d}×U.
It is clear that S = S1 t S2. Now we define the relation π = (S1 × S1) ∪ (S2 × S2)
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and then we have the following:

π = Σr(π) = Σl(Σr(π)) =
⋃

ui,uj∈U

{(
(a, ui), (a, uj)

)
,
(
(b, ui), (b, uj)

)
,
(
(c, ui), (c, uj)

)
,(

(d, ui), (d, uj)
)
,
(
(a, ui), (b, uj)

)
,
(
(b, ui), (a, uj)

)
,(

(a, ui), (c, uj)
)
,
(
(c, ui), (a, uj)

)
,
(
(b, ui), (c, uj)

)
,(

(c, ui), (b, uj)
)
}.

Now we have precisely two classes

(a, ui)/ΣlΣr =
⋃

ui,uj∈U
{(a, ui, ), (b, uj), (c, uj)} ∼= {a, b, c} ×U,

(d, ui)/ΣlΣr =
⋃

ui∈U
{(d, ui)} ∼= {d} ×U.

It follows that (a, ui)/ΣlΣr = S1 and (d, ui)/ΣlΣr = S2 are finitely presented since
every element in the subsemigroup Q = {a, b, c} of T, has a relative left identity
and a relative right identity and by Corollary 2.1.3, Q preserves finite presentability
in S1, and S2 is isomorphic to U. However S is not finitely presented because of
the following, <(S) = {b, c} = L(S) and then

Γ(a) = {(b, a, b), (b, a, c), (b, b, c), (b, c, b), (b, c, c), (c, a, b), (c, a, c), (c, b, b), (c, b, c),
(c, c, b)},

but there is no edge which joins the two vertices (b, c, b), (b, c, c) where b = b, cb 6=
c2. Therefore, Γ(a) is not connected and hence T destroys finite presentability in S.

2.3 (Left,Right) ideals conditions

Now we list the ideals cases and there are four cases two of which give us inter-
esting theorems. We start with the cases which give us negative results. So the
question is as follows:
Question. If the semigroup S is a disjoint union of the two finitely presented sub-
semigroups A, B and one of the following holds,

i) A is a left ideal and B is a right ideal in S.

ii) A is a left (right) ideal in S and no assumption on B.

iii) A and B are left (right) ideals in S.
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iv) A is an ideal in S.

then is S finitely presented?
Firstly, notice that in (i) we have BA ⊆ A as A is a left ideal and BA ⊆ B as B
is a right ideal. Therefore, A ∩ B 6= ∅ which is not our case. In (ii) the answer
is negative by the following counterexample ([AR00], Example 3.2). Let T be the
semigroup defined by the following multiplication table:

a b c 0

a 0 0 0 0
b a b b 0
c a c c 0
0 0 0 0 0

and let U be any finitely presented infinite semigroup. Then we have the semi-
group S = T ×U and the two subsemigroups of S, S1 = {a, c, 0} ×U and S2 =

{b} × U. Notice that S1 is a right ideal in S (S1S2 ⊆ S1). It follows that S1 and
S2 are finitely presented since in S1 we have the subsemigroup Q = {a, c, 0} of T,
which has a left identity c and by Corollary 2.1.3, Q preserves finite presentability.
Also S2 is isomorphic to U. However S is not finitely presented because of the
following, <(S) = {b, c} and L(S) = {a, b, c} and then

Γ(a) = {(b, b, a), (b, c, a), (c, b, a), (c, c, a)},

but there is no edge which joins the two vertices (b, c, a) and (c, b, a) where a =

a, bc 6= cb. Therefore, Γ(a) is not connected and hence T destroys finite presentabil-
ity. Analogously if S1 is a left ideal.

Now the answer to (iii), (iv) is in the two following theorems which prove
some other theorems about rectangular band semigroups in Chapter 7.

Theorem 2.3.1. Suppose that S is a semigroup which is the disjoint union of two sub-
semigroups A, B. Assume that A, B are finitely presented left (right) ideals in S. Then S is
finitely presented.

PROOF. Suppose that A and B are defined by the presentations 〈X, R〉 and 〈Y, Q〉
respectively and they are left ideals in S. S is generated by the set X ∪Y by Propo-
sition 1.2.1. For every x ∈ X, y ∈ Y the product yx ∈ A and the product xy ∈ B.
Therefore, there exist words βxy ∈ Y+, γyx ∈ X+ such that xy = βxy, yx = γyx

hold in S. Now we claim that S has the presentation

〈X ∪Y|R, Q, xy = βxy , yx = γyx〉. (2.1)
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It is obvious that S satisfies all the relations in the presentation (2.1). Let u, v be two
words in (X ∪ Y)+ such that u = v holds in S. We want to show that u = v can be
deduced from the relations in the presentation (2.1). First notice that u = v holds in
A or B. Suppose that u = v holds in A. Notice that there is no word in A that ends
with y ∈ Y because A is a left ideal in S. If u, v do not have any letters from Y, then
u, v ∈ X+ and so u = v holds in A. Thus u = v is a consequence of R. Now if u, v
have letters from Y then we use the relation yx = γyx to eliminate all occurrences
of letters of Y from u, v. We get two words ū, v̄ ∈ X+ such that u = ū, v = v̄
are consequences of our presentations (2.1) and ū, v̄ represent the same element
from A. Thus ū = v̄ is a consequence of R. Hence u = v is a consequence of our
presentation. Analogously if u = v holds in B. Similarly, if A and B are right ideals
in S.

Theorem 2.3.2. Suppose that S is a semigroup which is the disjoint union of two sub-
semigroups A, B. Assume that A, B are finitely presented and A is an ideal in S. Then S
is finitely presented.

PROOF. Suppose that A and B are defined by the presentations 〈X, R〉 and 〈Y, Q〉
respectively. S is generated by the set X ∪ Y by Proposition 1.2.1. For every x ∈
X, y ∈ Y the products xy, yx ∈ A. Therefore, there exist words βxy, βyx ∈ X+ such
that xy = βxy, yx = βyx hold in S. Now we claim that S has the presentation

〈X ∪Y|R, Q, xy = βxy , yx = βyx〉. (2.2)

It is obvious that S satisfies all the relations in the presentation (2.2). Let u, v be
two words in (X ∪ Y)+ such that u = v holds in S. We want to show that u = v
can be deduced from the relations in the presentation (2.2). First notice that u = v
holds in A or B. Firstly suppose that u = v holds in B. Then u, v ∈ Y+ since A
is an ideal. Hence u = v is a consequence of Q. Secondly suppose that u = v
holds in A. If u, v do not have any letters from Y then u = v is a consequence from
R. Now if u, v have letters from Y then we use the relations xy = βxy, yx = βyx to
eliminate all occurrences of letters of Y from u, v. We get two words ū, v̄ ∈ X+ such
that u = ū, v = v̄ are consequences of the presentations (2.2) and ū, v̄ represent
the same element from A. Thus ū = v̄ is a consequence of R. Hence u = v is a
consequence of the presentation (2.2).
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After the two previous theorems we came across the following question, which
is a weaker condition than Theorem 2.3.1 but with a negative result. Let S be a
semigroup which is the disjoint union of two subsemigroups A, B and let ABA ⊆
A, BAB ⊆ B. If A, B are finitely presented, is S finitely presented? The answer is
negative by the following counterexample.
Counterexample. Let T be the semigroup defined by the following multiplication
table:

a b c d e f g h
a a a a a a a a a
b a a a a a b c d
c a b c d d d d d
d d d d d d d d d
e e e e e e e e e
f e e e e e f g h
g e f g h h h h h
h h h h h h h h h

and let U be any finitely presented infinite semigroup. Then we have the semi-
group S = T × U and the two subsemigroups S1 = {a, b, c, d} × U and S2 =

{e, f , g, h} ×U. It is clear that S = S1 t S2. It follows that S1 and S2 are finitely
presented since the subsemigroup Q1 = {a, b, c, d} of T, has a left identity c and
the subsemigroup Q2 = {e, f , g, h} of T, has a left identity f and by Corollary 2.1.3,
Q1, Q2 preserve finite presentability in S1, S2 respectively. Notice that S1S2S1 ⊆ S1

and S2S1S2 ⊆ S2. In spite of all this, S is not finitely presented because of the fol-
lowing:

<(S) = {b, c, f , g} = L(S),

and the graph Γ(a) has the two non-connected vertices (b, f , b), (b, a, c) where b =

b, f b 6= ac. Therefore, Γ(a) is not connected and hence T destroys finite presentabil-
ity.
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CHAPTER

THREE

CLASSIFICATION OF DISJOINT UNIONS OF TWO

AND THREE COPIES OF A GROUP

3.1 Introduction

In this chapter we consider semigroups which can be decomposed into two or
three groups G. Notice that dealing with disjoint unions of groups is much easier
than disjoint unions of semigroups since in this case we have well-known theorems
[CP61] and [How95] which help to classify such semigroups. For instance every
completely regular semigroup is a semilattice of completely simple semigroups
(Theorem 1.5.5), and if the semigroup S is a finite disjoint union of copies of a
group, then S is a completely regular semigroup. So by knowing the size of the
semilattice, we can classify S and study the finiteness conditions such as finite
presentability and residual finiteness for S. We use the notation t to indicate to
disjoint union of (semi)groups.

3.2 Unions of two copies of a group

Theorem 3.2.1. Let Sα and Sβ be two copies of a group. For every semigroup S, which is
a disjoint union of Sα and Sβ, one of the following cases must hold:

i) One of Sα or Sβ is an ideal in S.

ii) Each Sα and Sβ is a left ideal in S.

iii) Each Sα and Sβ is a right ideal in S.
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PROOF. Since S is a completely regular semigroup, S is a semilattice Y of completely
simple semigroups by Theorem 1.5.5. Furthermore, S is a disjoint union of just two
groups. Thus, the semilattice Y must have at most two elements. Therefore, we
have the following two cases:
Case1: Y has two elements α, β, that means αβ = βα = β and that leads us to
SαSβ = SβSα ⊆ Sβ. Hence, Sβ is an ideal in S.
Case2: Y has just one element, that means S is a completely simple semigroup and
it has minimal left (right) ideals by Theorem 1.5.1. Then by Lemma 1.5.2, S is a
disjoint union of all minimal left (right) ideals which are Sα and Sβ.

Theorem 3.2.2. Every semigroup which is a disjoint union of two copies of a group has
one of the following forms:

i) Clifford semigroup (Strong semilattice of groups).

ii) Rees matrix semigroup over a group of the type 1× 2.

iii) Rees matrix semigroup over a group of the type 2× 1.

PROOF. We consider the two cases of the proof of Theorem 3.2.1.
In case 1, in which the semilattice |Y| = 2, S is a semilattice of two groups and this
implies that S is a Clifford semigroup S [Y; {Sα, Sβ}; φα,β] by Theorem 1.5.6. In case
2, in which the semilattice |Y| = 1, S is a completely simple semigroup and that
means S is isomorphic to a Rees matrix semigroup M

[
G; I, Λ; P

]
of a particular

shape by Theorem 1.5.4. Now, we have G ∼= Sα
∼= Sβ and |I| · |Λ| copies of G. So,

|I| · |Λ| = 2. In addition, P is a |Λ| × |I|matrix and then it consists of one row and

two columns as P = [1 1] or two rows and one column as P =

[
1
1

]
and then we

have Rees matrix semigroups of types 1× 2 and 2× 1.

3.3 Unions of three copies of a group

Theorem 3.3.1. Let Sα, Sβ and Sγ be three copies of a group. For every semigroup S,
which is a disjoint union of Sα, Sβ and Sγ, one of the following cases must hold (up to a
permutation of Sα, Sβ and Sγ ):

i) Sα is an ideal in S and SβSγ, SγSβ ⊆ Sα.

ii) Sα is an ideal in S, Sβ t Sγ ≤ S and Sβ is an ideal in Sβ t Sγ.
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iii) Sα is an ideal in S, Sβ t Sγ ≤ S and Sβ, Sγ are left ideals in Sβ t Sγ.

iv) Sα is an ideal in S, Sβ t Sγ ≤ S and Sβ, Sγ are right ideals in Sβ t Sγ

v) Sβ t Sγ is an ideal in S and Sβ, Sγ are left ideals in Sβ t Sγ.

vi) Sβ t Sγ is an ideal in S and Sβ, Sγ are right ideals in Sβ t Sγ.

vii) Sα, Sβ and Sγ are left ideals in S.

viii) Sα, Sβ and Sγ are right ideals in S.

PROOF. The proof is similar to the proof of Theorem 3.2.1. Since S is a completely
regular semigroup, S is a semilattice Y of completely simple semigroups by Theo-
rem 1.5.5. Furthermore, S is a disjoint union of just three groups. Thus, the semilat-
tice Y must have at most three elements. Therefore, we have three cases as follows:
Case 1: Y has just one element. Then S is a completely simple semigroup and it has
minimal left (right) ideals by Theorem 1.5.1. Then by Lemma 1.5.2, S is a disjoint
union of all minimal left (right) ideals which are Sα, Sβ and Sγ, which gives cases
(vii), (viii).
Case 2: Y has two elements. We split this case into four cases as follows:

1) Sα is an ideal in S where Sβ, Sγ are left ideals in Sβ t Sγ.

2) Sα is an ideal in S where Sβ, Sγ are right ideals in Sβ t Sγ.

3) Sβ t Sγ is an ideal in S where Sβ, Sγ are left ideals (three cases).

4) Sβ t Sγ is an ideal in S where Sβ, Sγ are right ideals (three cases), and this proves
(iii), (iv), (v), (vi).

Case 3: Y has three elements α, β and γ. It follows that

1) αβ = αγ = βγ = α which means β ≥ α, γ ≥ α. Thus Sα is an ideal in
Sα t Sβ t Sγ. This proves (i).

2) αβ = βα = α, βγ = γβ = β, αγ = γα = α which means γ ≥ β ≥ α. Thus Sβ is
an ideal in Sβ t Sγ and Sα is an ideal in Sα t Sβ t Sγ. This proves (ii).

Now we present some methods of constructions of semigroups which are dis-
joint unions of three copies of a group, by using the structure theory of Clifford
semigroups and Rees matrix semigroups. Let V denote the partial order with ele-
ments {α, β, γ} defined by {(α, β), (α, γ)} ∪ ∆ where ∆ is the diagonal relation on
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{α, β, γ}. Let I denote the linear order with three elements {α, β, γ} defined by
{(α, β), (α, γ), (β, γ)}. Let > and ⊥ denote the linear orderers with two elements
as it is shown below.

Constructions:

1. Clifford semigroup of the type V. For this type we have the following:

i) Three groups Gα, Gβ, Gγ.

ii) Two homomorphisms φβ,α : Gβ → Gα, φγ,α : Gγ → Gα.

The semigroup is then constructed as C
[
V; {Gα, Gβ, Gγ}; {φβ,α, φγ,α}

]
.

2. Clifford semigroup of the type I. For this type we have the following:

i) Three groups Gα, Gβ, Gγ.

ii) Three homomorphisms φγ,α : Gγ → Gα, φγ,β : Gγ → Gβ, φβ,α : Gβ → Gα.

The semigroup is then constructed as C
[
I; {Gα, Gβ, Gγ}; {φγ,α, φγ,β, φβ,α}

]
.

3. Combination semigroup S of the type >. For this type we have the following:

i) A group G.

ii) A Rees matrix semigroup R of the type 2× 1 over G
(
M
[
G; I, Λ; P]

)
where

P =

[
1
1

]
.

iii) A homomorphism φ from R into G with φ(1, x, 1) = φ(1, x, 2) = ϕ(x)
where ϕ is a homomorphism from G into G.

The semigroup is then constructed as C[>; {R, G}; φR,G].

4. Combination semigroup S of the type ⊥. For this type we have the following:

i) A group G.

ii) A Rees matrix semigroup R of the type 2× 1 over G
(
M
[
G; I, Λ; P

])
where

P =

[
1
1

]
and R is an ideal in S.

The semigroup is then a semilattice of a group G and a Rees matrix semigroup
R. Furthermore, there is a special case of this type and in this case we have the
following:
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i) A group G.

ii) A Rees matrix semigroup R of the type 2× 1 over G
(
M
[
G; I, Λ; P]

)
where

P =

[
1
1

]
and R is an ideal in S.

iii) A homomorphism φ from G into R with φ(g) = (1, ϕ(g), 1) where ϕ is a
homomorphism from G into G .

The semigroup is then a strong semilattice of a group G and a Rees matrix semi-
group R which is constructed as C[⊥; {G, R}; φG,R].

5. Combination semigroup of types ` and a.
These two combination semigroups of types ` and a are anti-isomorphic to
the combination semigroups of types > and ⊥ respectively, by taking the Rees
matrix semigroup of the type 1× 2 over G

(
M
[
G; I, Λ; [1 1]

])
.

Theorem 3.3.2. Every semigroup which is a disjoint union of three copies of a group is
one of the following types:
Type 1: Rees matrix semigroup construction.

i) Rees matrix semigroup of the type 1× 3.

ii) Rees matrix semigroup of the type 3× 1.

Type 2: Combination semigroup construction.

i) Combination semigroup of the type > .

ii) Combination semigroup of the type ⊥ .

iii) Combination semigroup of the type ` .

iv) Combination semigroup of the type a .

Type 3: Clifford semigroup construction.

i) Clifford semigroup of the type V.

ii) Clifford semigroup of the type I

PROOF. Consider the three cases in the proof of Theorem 3.3.1. In case 1, in which
the semilattice |Y| = 1, S is a completely simple semigroup and that means S
is isomorphic to a Rees matrix semigroup M

[
G; I, Λ; P

]
of a particular shape by
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Theorem 1.5.4. Now, we have G ∼= Sα
∼= Sβ

∼= Sγ and |I| · |Λ| copies of G. So,
|I| · |Λ| = 3. In addition, P is a |Λ| × |I| matrix and so it consists of one row and

three columns as P = [1 1 1] or three rows and one column as P =

 1
1
1

. Thus we

have Rees matrix semigroups of types 1× 3 or 3× 1.
In case 2, in which the semilattice |Y| = 2, S is a semilattice of a Rees matrix

semigroup Sδ = Sβ t Sγ and a group Sα and then we have the semilattice Y =

{α, δ}. As a consequence of this semilattice, we have four cases. Case 21 is when
αδ = δα = α, which means that Sα is an ideal in S and Sδ is a Rees matrix semigroup
of the type 2× 1. Case 22 is the same of case 21 but the Rees matrix semigroup Sδ is
of the type 1× 2. Case 23 is when αδ = δα = δ, which means that the Rees matrix
semigroup Sδ of the type 2× 1 is an ideal in S. Case 24 is the same of case 23 but
the Rees matrix semigroup Sδ is of the type 1× 2. We will prove the theorem for
case 21 and case 23 and the proof of case 22 and case 24 is analogous. In case 21 we
have a homomorphism φ from the Rees matrix semigroup Sβ t Sγ into the group
Sα. Let ϕ1 and ϕ2 be two homomorphisms from Sα to Sα with

φ(1, x, 1) = ϕ1(x), φ(1, x, 2) = ϕ2(x)

and then
φ(1, x, 1)φ(1, x−1, 2) = ϕ1(x)ϕ2(x−1)

and
φ(1, 1, 2) = ϕ2(1) = 1.

So
ϕ1(x)ϕ2(x−1) = 1

and similarly ϕ2(x−1)ϕ1(x) = 1. Hence, ϕ1(x) = ϕ2(x). Thus S is a combination
semigroup of the type >. In case 23 we have a Rees matrix semigroup of the type
2 × 1 which is an ideal in S and we have a group Sα. Notice that in this type,
either the group acts on the block of the Rees matrix semigroup by swopping them
around, for more details see Section 5.6 case 6, or there exists a homomorphism
φ from Sα into Sβ t Sγ and because of the fact that the homomorphic image of a
group is a group. Then φ must map Sα into one of the two groups Sβ or Sγ. Hence,
S is a combination semigroup of the type ⊥.
In case 3, in which the semilattice |Y| = 3, S is a strong semilattice of three groups
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Sα, Sβ and Sγ and that implies S is a Clifford semigroup of two types V and I by
Theorem 1.5.6.

3.4 Finiteness conditions for disjoint unions of groups

Corollary 3.4.1. Every semigroup which is a disjoint union of finitely many finitely pre-
sented groups is finitely presented.

PROOF. The semigroup S which is a disjoint union of groups is regular with finitely
manyH−classes (the subgroups themselves) by Corollary 1.5.3. Thus S has finitely
many R−classes and L−classes and the result follows from ( [Rus99], Theorem
4.1).

Corollary 3.4.2. Every semigroup which is a disjoint union of finitely many residually
finite groups is residually finite.

PROOF. Since S is regular and all subgroups are residually finite and the set of
idempotents of each principal factor of S is finite, S is residually finite by [Gol75].
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CHAPTER

FOUR

CLASSIFICATION OF DISJOINT UNIONS OF TWO

COPIES OF THE FREE MONOGENIC SEMIGROUP

4.1 Introduction

Let S be a semigroup which is a disjoint union of two copies of the free monogenic
semigroup A and B in which A, B are generated by a and b respectively. That
means all elements in S are of the form ai or bj where i, j ∈ N. Hence, the product
of any two elements in S is again a power of a or b, and because of the disjointness,
we have a crucial property which is ai 6= bj for every i, j ∈ N. Using this property
together with the fact that S is associative and does not have an element of finite
order, will play a significant role in some of our proofs. Notice that this observation
applies to every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup.

In this chapter we start with a description of S and then we provide some
properties of this semigroup, we prove that there are an infinite number of such
semigroups, and then we give a construction based on Clifford and Rees matrix
semigroups see [CP61] and [How95].

Lemma 4.1.1. Let A be a set. Let < be a set of relations on A+. Let ρ be the smallest
congruence on A+ generated by <. Let ϕ : A→N0 be a mapping and let ψ : A+ →N0

be the unique homomorphism determined by ϕ. If ρ ⊆ ker ψ and a ∈ A such that ϕ(a) 6=
0 then 〈a/ρ〉 is an infinite subsemigroup of A+/ρ.

PROOF. Since ρ ⊆ ker ψ we have that the mapping ψ : A+/ρ → N0 defined by
ψ(w/ρ) = ψ(w) is a homomorphism by Theorem 1.3.2. Since a homomorphism
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maps elements of finite order to elements of finite order, and since 0 is the only
element of finite order in N0, it follows from ψ(a/ρ) = ψ(a) = φ(a) 6= 0 that a/ρ

must have infinite order in A+/ρ.

Lemma 4.1.2. Suppose that S′ is a semigroup which is a disjoint union of n copies of
the free monogenic semigroup Ai = 〈ai〉; i = {1, 2, . . . , n} and S′ is defined by the
presentation

〈a1, a2, . . . , an | aiaj = al
k〉, (4.1)

where i, j, k ∈ {1, 2, . . . , n}. Then if S is a semigroup which is a disjoint union of n copies
of the free monogenic semigroup and S is satisfied relations in the presentation (4.1) then
S ∼= S′.

PROOF. If S is satisfied relations in the presentation then S is a homomorphic im-
age of S′ by Proposition 1.6.2. If it is a proper homomorphic image then there is
without loss of generality ak

i and al
i or ak

i and al
j in S′ such that ak

i = al
i or ak

i = al
j

which contradicts with the fact that there is no element in Ai is of finite order or
contradicts with Ai ∩ Aj = ∅. Thus S′ ∼= S.

4.2 Classification of semigroups which are disjoint unions

of two copies of the free monogenic semigroup

Lemma 4.2.1. Let A and B be free monogenic semigroups generated by a and b respec-
tively. Suppose that S is a semigroup which is a disjoint union of A and B. Then:

i) If ab = ak and ba = al in S, then we must have l = k.

ii) If ab = ak and ba = bl in S, then we must have l = k = 2.

PROOF. (i) We start with aba and note that:

a(ba) = aal = al+1

and also
(ab)a = aka = ak+1.

Thus, since we have an associative operation, l = k.

Corollary 4.2.2. Let A and B be free monogenic semigroups generated by a and b respec-
tively. Suppose that S is a semigroup which is a disjoint union of A and B. Then A is an
ideal in S or A and B are left(right) ideals in S.
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PROOF. Directly by Lemma 4.2.1.

Now we prove the second case (ii), we start with aba as well. Thus we have

a(ba) = abl = akbl−1 = ak−1 · · · ak−1︸ ︷︷ ︸
l−1

ak = a(k−1)(l−1)ak = al(k−1)+1

and
(ab)a = aka = ak+1.

Thus ak+1 must be equal to al(k−1)+1. That implies k = l(k− 1) and then the only
values that satisfy this is when k = l = 2.

Lemma 4.2.1 gives us the necessary conditions to obtain a semigroup which is a
disjoint union of two copies of the free monogenic semigroup, and this leads us to
the following classification.

Theorem 4.2.3. Every semigroup S is a disjoint union of two copies of the free monogenic
semigroup 〈c〉 and 〈d〉 if and only if S is isomorphic to the semigroup which is defined by
one of the following presentations:

i) 〈a, b | ab = ba = ak, k ≥ 1〉;

ii) 〈a, b | ab = a2, ba = b2〉;

iii) 〈a, b | ab = b2, ba = a2〉.

PROOF. We divide the proof into two parts. . In the first part we show that each
semigroup S which is a disjoint union of two copies of the free monogenic semi-
group is actually defined by one of these presentations. In the second part we show
that each semigroup S′ which is defined by one of the presentations i, ii, or iii, is a
disjoint union of two copies of the free monogenic semigroup
Part 1. (⇒) Since S is a disjoint union of two copies of the free monogenic semi-
group 〈c〉, 〈d〉, S satisfies one of the relations in Theorem 4.2.3. Then S is a homo-
morphic image of S′ by Proposition 1.6.2. Hence S ∼= S′ by Lemma 4.1.2.
Part 2. (⇐) Firstly, any element of the semigroup S′ with the presentation (i)

〈a, b|ab = ak, ba = ak, k ≥ 1〉

is a power of a, b or a product of a’s and b’s but if there was at least one a in the
product then this product will be a power of a. Thus,

〈a, b|ab = ak, ba = ak, k ≥ 1〉 = A ∪ B,
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where A = {ai : i ∈N} and B = {bj : j ∈N}. Since there is no relation which can
be applied to a power of b, we have A∩ B = ∅ and B is infinite. We now prove that
A is infinite. Let ϕ : {a, b} →N0 be a mapping with ϕ(a) = 1, ϕ(b) = k− 1 where
k ∈ N and then there exists a homomorphism ψ : {a, b}+ → N0 since {a, b}+

is the free semigroup on {a, b} and ψ uniquely determined by the images of the
generators a and b by Proposition 1.6.1. Observe that

ψ(ab) = ψ(a) + ψ(b) = 1 + k− 1 = k = ψ(ak),

and similarly ψ(ba) = ψ(ak), from which we deduce that

< = {ab = ba = ak} ⊆ ker ψ.

Hence, by Lemma 4.1.1 all elements of the semigroup S′ are distinct and then
S′ = A t B as required.

Secondly, any element of the semigroup S′ with the presentation (ii)

〈a, b|ab = a2, ba = b2〉

is a power of a, b or a product of a’s and b’s but observe that any word starts with
a will be a power of a and any word starts with b will be a power of b. That implies
any word in A must start with a and any word in B must start with b. Thus,

〈a, b|ab = a2, ba = b2〉 = A ∪ B,

where A = {ai : i ∈ N} and B = {bj : j ∈ N} and A ∩ B = ∅. Then the proof
is similar to the proof of (i) but the difference is in the definition of the mapping
ϕ since we define ϕ : {a, b} → N as ϕ(a) = 2 and ϕ(b) = 2 and then there exists
a homomorphism ψ : {a, b}+ → N since {a, b}+ is the free semigroup on {a, b}
and ψ uniquely determined by the images of the generators a and b by Proposition
1.6.1. Observe that

ψ(ab) = ψ(a) + ψ(b) = 2 + 2 = 4 = ψ(a2),

and similarly ψ(ba) = ψ(b2), from which we deduce that

< = {ab = a2, ba = b2} ⊆ ker ψ.
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Hence, by Lemma 4.1.1 all elements of the semigroup A t B are distinct and then
S′ = A t B as required. Similarly with the semigroup S′ which is defined by the
presentation (iii).

Now, we have an infinite number of such semigroups which are defined by
the presentations 〈a, b | ab = ba = ak, k ≥ 1〉. Hence, the next step is to prove that
all of these semigroups are non-isomorphic.

Lemma 4.2.4. Suppose that S1 = A t B and S2 = A t B. Suppose that S1
∼= S2 via the

isomorphism ϕ : S1 → S2. Then

i) If ϕ(a) = at where t ∈N then we must have t = 1.

ii) If ϕ(a) = bt where t ∈N then ϕ(b) = au and t = u = 1.

PROOF. Let ϕ−1 : S2 → S1 be the inverse of ϕ. (i) First note that ϕ−1(a) = au

where u ∈N because if we say that ϕ−1(a) = bu then

a = ϕ−1
(

ϕ(a)
)
= ϕ−1(at) =

(
ϕ−1(a)

)t
= but,

a contradiction. So, a = ϕ−1
(

ϕ(a)
)
= ϕ−1(at) = aut and that implies ut = 1. Thus

both of u and t are equal to 1.
(ii) Now if ϕ(a) = bt and ϕ(b) = bu then from (i), u = 1 and then a =

ϕ−1(bt) = bt, a contradiction. Thus ϕ(b) = au, suppose that t > 1 or u > 1 and
then there is no x ∈ S1 such that ϕ(x) = bt−1 or bu−1, a contradiction. Therefore
t = u = 1.

Proposition 4.2.5. All semigroups which are defined by presentations

〈a, b | ab = ba = ak, k ≥ 1〉

are non-isomorphic.

PROOF. For k ≥ 1, let Sk = At B such that ab = ba = ak. Thus Sk is the semigroup
which is defined by the presentation

〈a, b | ab = ba = ak, k ≥ 1〉,

by Theorem 4.2.3. Suppose Sk
∼= Sl for some k, l with k 6= l. So there is an isomor-

phism ϕ : Sk → Sl. Clearly, A is the only ideal which is isomorphic to N in both
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of Sk and Sl because the presentation says that any word which has a letter a will
be in A and hence each ideal must consist of elements from just A or from A and
B, but the latter has at least two generators which implies that it is not isomorphic
to N. Consequently, ϕ(a) = au and by Lemma 4.2.4 we must have u = 1. Thus
ϕ(b) = bt and by Lemma 4.2.4 we must have t = 1. But ϕ(ab) = ϕ(ak) = ak and
ϕ(a)ϕ(b) = ab = al which contradicts the assumption.

4.3 Constructions

Corollary 4.2.2 says that, in order to construct a semigroup which is a disjoint union
of two copies of the free monogenic semigroup, we must have one of three cases.
The first case is when one of the two copies is an ideal in S, the second case is when
the two copies are left ideals in S and the last case is when the two copies are right
ideals in S. This leads us to well-known constructions in semigroup theory which
are Clifford and Rees matrix semigroups. This is explained in the next theorem.

Theorem 4.3.1. Every semigroup which is a disjoint union of two copies of the free mono-
genic semigroup has one of the following forms:

i) Strong semilattice of free monogenic semigroups;

ii) Rees matrix semigroup over a free monogenic semigroup of the type 1× 2;

iii) Rees matrix semigroup over a free monogenic semigroup of the type 2× 1.

PROOF. Let S be a semigroup that is a disjoint union of two copies of the free mono-
genic semigroup Sα = 〈a〉 and Sβ = 〈b〉. Then we have two cases. The first case
is when one of the two copies is an ideal in S (Theorem 4.2.3(i)). Suppose that
Sα is an ideal in Sα t Sβ with ab = ba = ai (i ∈ N). So, there is a semilattice
Y = {α, β} where to each element α ∈ Y we assign a semigroup Sα such that
αβ = α if SαSβ ⊆ Sα and to a pair of elements α, β we assign a map φα,β of Sα into
Sβ with φβ,α(b) = ai−1. Also there are two identity maps, φα,α on Sα and φβ,β on Sβ.
Clearly, φα,βφβ,β = φα,β if α ≥ β and φα,αφα,β = φα,β if α ≥ β. Now, notice that

axby = ax−1aiby−1

= ax−1ai−1aiby−2

= ax−1a(y−2)(i−1)aiby−(y−1)

= ax−1a(y−2)(i−1)ai−1ai

= aiy−y+x,
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and

φα,α(ax)φβ,α(by) = axay(i−1) = aiy−y+x = axby.

And similarly with bxay. Thus, we can define a multiplication on S by

axby = φα,α(ax)φβ,α(by),

and then we get a semigroup S which is a strong semilattice of free monogenic
semigroups. The above argument works for every i > 1 and a small modification
is needed for the case i = 1. This based on the same idea as near Rees matrix
semigroup, but this time for strong semilattice of semigroups. More precisely, we
adjoin the identity 1β to Sβ and let S̄ = Sα t S

1β

β . Next define φα,β(a) = 1β to form
S̄ into a strong semilattice of semigroups with multiplication ab = ba = b. Finally
let S = Sα t Sβ ≤ S̄.

There are infinite number of these homomorphisms where each i indicates to
a certain semigroup but surely all these kind of semigroups are non-isomorphic by
Proposition 4.2.5.

The second case is if Sα and Sβ were left ideals (Theorem 4.2.3 (iii)). Now we
want to construct all potential Rees matrix semigroups over S1α

α . Therefore, we can

choose I = {1}, Λ = {1, 2} and P to be the |Λ| × |I|matrix over S1α
α as P =

[
1α

1α

]
.

Thus, S̄ ∼= M
[
S1α

α ; {1}, {1, 2}; P
]

is a semigroup. Now, it is clear for us that S is
isomorphic to {(i, at, λ) : t 6= 0} ≤ S̄, because there exists a mapping ψ from S into
{(i, at, λ) : t 6= 0} with ψ(a) = (1, a, 1), ψ(b) = (1, a, 2). Obviously, ψ is injective
and surjective, so it remains to verify that ψ is a homomorphism as follows:

ψ(ab) = ψ(b2) = (1, a2, 2) , ψ(a)ψ(b) = (1, a, 1)(1, a, 2) = (1, a2, 2).

Hence,
S ∼= {(i, at, λ) : t 6= 0} ∼= {(i, bt, λ) : t 6= 0}.

Analogously, if Sα and Sβ are right ideals (Theorem 4.2.3 (ii)) then

S̄ ∼=M
[
S1α

α ; {1, 2}, {1}; [1α 1α]
] ∼=M[

S
1β

β ; {1, 2}, {1}; [1β 1β]
]
.

As required.
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4.4 Comparison between disjoint unions of two copies

of the free monogenic semigroup and two copies

of the infinite cyclic group

Consider the semigroup S = Sα t Sβ where Sα = 〈a, a−1|aa−1 = a−1a = 1α〉 and
Sβ = 〈b, b−1|bb−1 = b−1b = 1β〉 are two copies of the infinite cyclic group. By
Theorems 3.2.1, 3.2.2, we have two cases. The first case is when Sβ is an ideal
in S. Then we have two groups Sα , Sβ with ab = bi = ba and that because if
ba = bj then b(ab) = bi+1 and (ba)b = bj+1 which implies that i = j. Similarly
a−1b−1 = bj = b−1a−1, ab−1 = bk = b−1a, a−1b = bl = ba−1. Thus, there is a
semilattice Y = {α, β}where to each element α ∈ Y we assign a group Sα such that
αβ = βα = β if SαSβ ⊆ Sβ , SβSα ⊆ Sβ. There is also a pair of elements α, β in
which we assign a map φα,β from Sα into Sβ with φα,β(a) = bi−1, φα,β. Also there
are two identity maps φα,α, φβ,β on Sα and Sβ respectively. Clearly, φα,αφα,β = φα,β

if α ≥ β, φα,βφβ,β = φα,β if α ≥ β. Now we consider i as a positive number and if i
is a negative number then it is proved similarly. Notice that

axby = ax−1biby−1 = bx(i−1)+y , φα,β(ax)φβ,β(by) = bx(i−1)+y.

Analogously with the relation byax, a−xb−y, b−ya−x, axb−y, b−yax, a−xby, bya−x.
Thus S is a strong semilattice of groups and so S is a Clifford semigroup by Theo-
rem 1.5.6.

The second case is when Sα, Sβ are left ideals in S. Then S = Sα t Sβ is a
completely simple semigroup and that means S is isomorphic to a Rees matrix
semigroup of a particular shape by Theorem 1.5.4. Now we want to construct all
such Rees matrix semigroups. In fact, we have two left ideals Sα, Sβ. So,

Sα = L1 = S1α, Sβ = L2 = S1β and R1 = 1αS = 1βS = S.

Clearly, L1, L2 are L−classes and R1 is R−class. Hence I = {1}, Λ = {1, 2} and

since P is a |Λ| × |I| matrix, it consists of two rows and one column as P =

[
1
1

]
.

Observe that R1 ∩ L1 = H11, R1 ∩ L2 = H12. Therefore,

H11 = L1 = Sα,
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H12 = L2 = Sβ,

and so
S = M

[
Sα; {1}, {1, 2}; P

]
or S = M

[
Sβ; {1}, {1, 2}; P

]
.

Notice that the two Rees matrix semigroups are isomorphic and that because both
of them have the same sets I, Λ and the two semigroups Sα, Sβ are isomorphic.
Analogously, if Sα, Sβ are right ideals.

Remark 4.4.1. Clearly, in each of the above constructions we can substitute the free
cyclic group by the free monogenic semigroup, to obtain unions of two copies of
the free monogenic semigroup of these two types. In a different way, applying
all the above constructions on a free monogenic semigroup, we get a collection of
semigroups which are disjoint unions of two copies of the free monogenic semi-
group. We can show this directly by a comparison between these constructions
and Theorem 4.3.1.
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CHAPTER

FIVE

CLASSIFICATION OF DISJOINT UNIONS OF THREE

COPIES OF THE FREE MONOGENIC SEMIGROUP

5.1 Introduction

Let S be a semigroup such that S = At BtC where A, B and C are free monogenic
semigroups generated by a, b and c respectively with

ab = ti
1, ba = tj

2, ac = tk
3, ca = tl

4, bc = tp
5 , cb = tq

6,

where t1, t2, t3, t4, t5, t6 ∈ {a, b, c} and i, j, k, l, p, q ∈ N. Then we say S is of the
type (t1, t2, t3, t4, t5, t6). Use ∗ to indicate to ti where i ∈ {1, 2, 3, 4, 5, 6}. Therefore,
potentially there are 729 types, but in this chapter we will see that this number
can be reduced to 9. For each of these types we exhibit a presentation defining
semigroups of this type, see Main Theorem and Table 5.1. We use this to make
the following interesting observation. We saw in Theorem 4.3.1 that the disjoint
union of two copies of the free monogenic semigroup is either a strong semilattice
of semigroups or a Rees matrix semigroup, and this parallels the case when S is a
disjoint union of two copies of a group. But for three copies of the free monogenic
semigroup we show that there are not only strong semilattices of semigroups, Rees
matrix semigroups and a combination of these two constructions paralleling with
the group case, but also we have some other semigroups which do not arise from
any of these constructions.
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Main Theorem. Up to isomorphism and anti-isomorphism, every semigroup S is a dis-
joint union of three copies of the free monogenic semigroup D = 〈d〉, G = 〈g〉 and
H = 〈h〉 if and only if S is isomorphic to the semigroup which is defined by one of the
following presentations:

(1) 〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = ap, cb = ap〉,
where i + k− p = 2 and i, k, p ∈N.

(2) 〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = bp, cb = bp〉,
where i + k + p− ip = 2 and i, k, p ∈N.

(3) 〈a, b, c|ab = ai, ba = ai, ac = ai, ca = ai, bc = c2, cb = b2〉,
where i ∈N.

(4) 〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ai〉,
where i ∈N.

(5) 〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ci〉,
where i ∈N.

(6) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = b2〉,

(7) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = b2, bc = c2, cb = a2〉,

(8) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = a2〉,

(9) 〈a, b, c|ab = b2, ba = a2, ac = bi, ca = ai, bc = ai, cb = bi〉,
where i ∈N.

This entire chapter is devoted to proving this theorem. We proceed as follows. We
have 6 products ab, ba, ac, ca, bc, cb. So firstly, we consider the different possibilities
for the first two products, ab and ba. We start with ab = ai and ba = aj, and
then we figure out what all the possible semigroups that can be obtained from this
possibility. We do the same with the possibility

ab = bi, ba = aj,

and these two possibilities, up to isomorphism and anti-isomorphism, cover all the
cases as we show in this chapter.
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Now we summarize the results of this chapter in the following table:

2-letter prefix Types Semigroups

(a, a, ∗, ∗, ∗, ∗)

(a, a, a, a, a, a) 〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = ap, cb = ap〉
(a, a, a, a, b, b) 〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = bp, cb = bp

(a, a, a, a, c, b) 〈a, b, c|ab = ai, ba = ai, ac = ai, ca = ai, bc = c2, cb = b2〉
(a, a, c, a, c, a) 〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ai〉
(a, a, c, a, c, c) 〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ci〉

(b, a, ∗, ∗, ∗, ∗)
(b, a, c, a, c, b) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = b2〉
(b, a, c, b, c, a) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = b2, bc = c2, cb = a2〉
(b, a, c, a, c, a) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = a2〉
(b, a, b, a, a, b) 〈a, b, c|ab = b2, ba = a2, ac = bi, ca = ai, bc = ai, cb = bi〉

Table 5.1: The nine types of semigroups which are disjoint unions of three copies
of the free monogenic semigroup (up to isomorphism and anti-isomorphism)

Lemma 5.1.1. Suppose S is a semigroup generated by the set A, and suppose that for every
x, y ∈ A, i ∈N there exist z ∈ A and j ∈N such that xiy = zj. Then for every w ∈ A+

there exist t ∈ A and l ∈N such that w = tl.

PROOF. Suppose that the word w ∈ A+ is of length n and we want to show that w
is a power of a generator. We prove this by induction on n. It is obvious that the
statement holds if n = 1. Assume that the statement holds for every k ≤ n. Now
if n = k + 1 we have w = w′x where |w′| = k and by the inductive hypothesis
w′ = tl and then tlx = rp by the assumption. Thus

w = w′x = tlx = rp,

where r ∈ A, p ∈N as required.

Definition 5.1.2. We say that the type (x1, x2, x3, x4, x5, x6) is (anti)isomorphic to
the type (y1, y2, y3, y4, y5, y6) if and only if every semigroup of the type (x1, x2, x3, x4, x5, x6)

is (anti)isomorphic to a semigroup of the type (y1, y2, y3, y4, y5, y6) and vice versa.

Lemma 5.1.3. If S is a semigroup which is a disjoint union of three copies of the free
monogenic semigroup A = 〈a〉, B = 〈b〉 and C = 〈c〉 then one of A t B, A t C, B t C is
a subemigroup of S.
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PROOF. Suppose that none of the mentioned sets is a subsemigroup of S. Thus ab
or ba is in C and ac or ca is in B and bc or cb is in A. This gives us the following 8
types:

(c, ∗, b, ∗, a, ∗), (c, ∗, ∗, b, a, ∗), (c, ∗, ∗, b, ∗, a), (c, ∗, b, ∗, ∗, a), (∗, c, b, ∗, a, ∗),

(∗, c, ∗, b, a, ∗), (∗, c, ∗, b, ∗, a), (∗, c, b, ∗, ∗, a).

It suffices to show, in each of these 8 cases that some power of a, say, equals a
power of b or c and this appears clearly in the following table:

i (c, ∗, b, ∗, a, ∗) a(bc) = aap = ap+1 (ab)c = cic = ci+1

ii (c, ∗, ∗, b, a, ∗) c(ab) = cci = ci+1 = (ca)b = blb = bl+1

iii (c, ∗, ∗, b, ∗, a) c(ab) = cci = ci+1 = (ca)b = blb = bl+1

iv (c, ∗, b, ∗, ∗, a) a(cb) = aaq = aq+1 (ac)b = bkb = bk+1

v (∗, c, b, ∗, a, ∗) b(ac) = bbk = bk+1 (ba)c = cjc = cj+1

vi (∗, c, ∗, b, a, ∗) b(ca) = bbl = bl+1 (bc)a = apa = ap+1

vii (∗, c, ∗, b, ∗, a) c(ba) = ccj = cj+1 (cb)a = aqa = aq+1

viii (∗, c, b, ∗, ∗, a) b(ac) = bbk = bk+1 (ba)c = cjc = cj+1

Table 5.2: General forbidden types

which contradicts with the fact that S is a semigroup.

Lemma 5.1.4. There is no semigroup of the type (b, a, b, c, a, c).

PROOF. Assume that S is a semigroup of the type (b, a, b, c, a, c). Then as we know
i = j = 2 by Lemma 4.2.1 and we have

c(ab) = cb2 = cqb = cq−1cq = c2q−1,

(ca)b = clb = cl−1cq = cq+l−1.

Thus, 2q− 1 = q + l − 1 and then q = l. Also we have

c(bc) = cap = clap−1 = cl−1clap−2 = clp−p+1,

(cb)c = cqc = cq+1.
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Hence, q = p(l − 1) = l and then p = l = 2. Furthermore,

c(ac) = cbk = cqbk−1 = cq−1cqbk−2 = cqk−k+1,

(ca)c = clc = cl+1.

Then we have l = k(q− 1) = q and thus k = q = 2. Eventually, we have i = j =
k = l = p = q = 2 but this contradicts with

a(cb) = ac2 = b2c = ba2 = a2a = a3,

(ac)b = b2b = b3.

Therefore, there is no semigroup of the type (b, a, b, c, a, c).

5.2 Classification of semigroups which are disjoint unions

of three copies of the free monogenic semigroup

Theorem 5.2.1. Up to isomorphism and anti-isomorphism, every semigroup S is a disjoint
union of three copies of the free monogenic semigroup D = 〈d〉, G = 〈g〉 and H = 〈h〉
if and only if S is isomorphic to the semigroup which is defined by one of the following
presentations:

(1) 〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = ap, cb = ap〉,
where i + k− p = 2 and i, k, p ∈N.

(2) 〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = bp, cb = bp〉,
where i + k + p− ip = 2 and i, k, p ∈N.

(3) 〈a, b, c|ab = ai, ba = ai, ac = ai, ca = ai, bc = c2, cb = b2〉,
where i ∈N.

(4) 〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ai〉,
where i ∈N.

(5) 〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ci〉,
where i ∈N.

(6) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = b2〉,

(7) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = b2, bc = c2, cb = a2〉,
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(8) 〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = a2〉,

(9) 〈a, b, c|ab = b2, ba = a2, ac = bi, ca = ai, bc = ai, cb = bi〉,
where i ∈N.

PROOF. We devide the proof into three parts. In part 1 we show that that there
are just nine possible types. In part 2 we show that each semigroup S which is a
disjoint union of three copies of the free monogenic semigroup is actually defined
by one of these presentations. In part 3 we show that each semigroup S′ which
is defined by one of the presentations in the theorem, is a disjoint union of three
copies of the free monogenic semigroup.

Part 1. It follows by Lemma 5.1.3, we may assume without loss of generality A t
B is a subsemigroup of S. Hence we only need to consider tuples of the form
(a, a, ∗, ∗, ∗, ∗) and (b, a, ∗, ∗, ∗, ∗). We show that the tuples, up to isomorphism
and anti-isomorphism, (a, a, a, a, a, a), (a, a, a, a, b, b), (a, a, a, a, c, b), (a, a, c, a, c, a),
(a, a, c, a, c, c), (b, a, c, a, c, b), (b, a, c, b, c, a), (b, a, c, a, c, a), (b, a, b, a, a, b) are the only
9 possible tuples.
The following table shows the forbidden types in the family (a, a, ∗, ∗, ∗, ∗):
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i (a, a, ∗, b, a, ∗) b(ca) = bbl = bl+1 (bc)a = apa = ap+1

ii (a, a, b, ∗, ∗, ∗) b(ac) = bbk = bk+1 (ba)c = ajc = aj−1bk =

aj−2aibk−1 = aj−2+i+(i−1)(k−1)

= aik−k+j−1

iii (a, a, ∗, b, ∗, ∗) c(ab) = cai = (ca)b = blb = bl+1

blai−1 = bl−1ajai−2 =

al j−l+i−1

iv (a, a, c, ∗, a, ∗) a(bc) = aap = ap+1 (ab)c = aic = ai−1ck =

ai−2ckck−1 = cki−i+1

v (a, a, ∗, a, a, c) c(bc) = cap = (cb)c = cqc = cq+1

alap−1 = al+p−1

vi (a, a, ∗, c, b, ∗) b(ca) = bcl = bpcl−1 = (bc)a = bpa = bp−1aj =

bp−1bpcl−2 = bpl−l+1 bp−2ajaj−1 = ajp−p+1

vii (a, a, a, ∗, c, a) c(bc) = ccp = cp+1 (cb)c = aqc =
aq−1ak = aq+k−1

viii (a, a, c, ∗, ∗, b) a(cb) = abq = aibq−1 = (ac)b = ckb = ck−1bq =

ai−1aibq−2 = aiq−q+1 ck−2bqbq−1 = bkq−k+1

ix (a, a, ∗, ∗, a, b) b(cb) = bbq = bq+1 (bc)b = apb =

ap−1ai = ai+p−1

x (a, a, ∗, ∗, b, a) b(cb) = baq = (bc)b = bpb = bp+1

ajaq−1 = aj+q−1

xi (a, a, ∗, c, ∗, b) c(ab) = cai = clai−1 = (ca)b = clb =

cl−1clai−2 = cli−i+1 cl−1bq = bql−l+1

xii∗ (a, a, ∗, c, c, a) b(cb) = baq = (bc)b = cpb =

ajaq−1 = aj+q−1 cp−1aq = cp−2claq−1 =

cp−2+l+(l−1)(q−1) = cp+lq−q−1

xiii (a, a, a, c, a, a) c(bc) = cap = clap−1 = (cb)c = aqc =
cl−1clap−2 = clp−p+1 aq−1ak = aq+k−1

xiv (a, a, b, c, a, a) c(bc) = cap = clap−1 = (cb)c = aqc = aq−1bk =

cl−1clap−1 = clp−p+1 aq−2aibk−1 = aki−k+q−1

xv (a, a, c, ∗, b, ∗) b(ac) = bck = bpck−1 = (ba)c = ajc = aj−1ck =

bp−1bpck−2 = bpk−k+1 aj−2ckck−1 = ckj−j+1

Table 5.3: Forbidden types in the family (a, a, ∗, ∗, ∗, ∗)
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Notice that in (xii∗) if p = 1 then q = j + q − 1 and thus j = 1. So we have
ba = a, ca = cl, bc = c, cb = aq. But c(ba) = ca = cl and (cb)a = aqa = aq+1, a
contradiction.

Now suppose that S is a semigroup of type (a, a, t3, t4, t5, t6). Clearly, t4 6= b by
Table 5.3(iii) and then t4 = a or c, if t4 = c then we have the type (a, a, t3, c, t5, t6)

and thus t6 6= b by Table 5.3(xi). So t6 could be equal to a and hence we have the
type (a, a, t3, c, t5, a) in which t5 6= b nor c by Table 5.3(x, xii) respectively and also
if t5 = a then t3 6= a, b nor c by Table 5.3(xiii, ii, iv) respectively and that implies
t6 = c. Therefore, we reached the type (a, a, t3, c, t5, c) where t3 6= b by Table 5.3(ii)
Thus, if t3 = c then t5 = c by Table 5.3(iv, vi) and if t3 = a then we have the type
(a, a, a, c, t5, c). In this type t5 = a or c by Table 5.3(vi). Now, if t4 = a then t3 = a
or c by Table 5.3(ii). So if t3 = a then we have the type (a, a, a, a, t5, t6). Here we
need to add another relation. So if t5 = a then t6 = a by Table 5.3(ix, v) and if
t5 = b then t6 = b or c by Table 5.3(x) also if t5 = c then t6 ∈ {c, b} by Table 5.3(vii).
Eventually, if t3 = c then we have the type (a, a, c, a, t5, t6). So t5 6= a nor b by
Table 5.3(iv, xv). So t5 = c and then t6 = c or a by Table 5.3(viii). Thus we have
ten types (a, a, a, a, a, a), (a, a, a, a, b, b), (a, a, a, a, c, c), (a, a, a, a, b, c), (a, a, a, a, c, b),
(a, a, c, c, c, c), (a, a, c, a, c, a), (a, a, c, a, c, c), (a, a, a, c, a, c), (a, a, a, c, c, c). But there
are just five types up to isomorphism and anti-isomorphism since we can just re-
place a, say, by b or c. And they are (a, a, a, a, a, a), (a, a, a, a, b, b), (a, a, a, a, c, b),
(a, a, c, a, c, a), (a, a, c, a, c, c).

Now we show the forbidden types in the family (b, a, ∗, ∗, ∗, ∗) in the following
table:
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i (b, a, a, ∗, ∗, c) a(cb) = acq = akcq−1 = (ac)b = akb =

ak+(k−1)(q−1) = akq−q+1 ak−1bi = bik−k+1

ii (b, a, a, ∗, ∗, a) a(cb) = aaq = aq+1 (ac)b = akb =

ak−1bi = bik−k+1

iii (b, a, b, ∗, ∗, a) a(cb) = aaq = aq+1 (ac)b = bkb = bk+1

iv (b, a, ∗, c, b, ∗) b(ca) = bcl = bpcl−1 = (bc)a = bpa = bp−1aj =

bp+(p−1)(l−1) = bpl−l+1 bp−2ajaj−1 = ajp−p+1

v∗ (b, a, ∗, c, ∗, a) c(ab) = cbi = aqbi−1 = (ca)b = clb = cl−1aq =

aq−1bibi−2 = biq−q+i−1 cl−2claq−1 = clq−q+l−1

vi (b, a, ∗, c, ∗, b) c(ba) = caj = (cb)a = bqa = bq−1aj =

claj−1 = cl j−j+1 aj+(j−1)(q−1) = ajq−q+1

vii (b, a, c, ∗, b, ∗) b(ac) = bck = bpck−1 = (ba)c = ajc = aj−1ck =

bp−1bpck−2 = bpk−k+1 aj−2ckck−1 = ckj−j+1

viii (b, a, ∗, a, ∗, c) c(ab) = cbi = cqbi−1 = (ca)b = alb = al−1bi =

cq−1cqbi−2 = cqi−i+1 al−2bibi−1 = bil−l+1

ix∗ (b, a, ∗, b, ∗, c) c(ba) = caj = blaj−1 = (cb)a = cqa = cq−1bl =

bl−1ajaj−2 = ajl−l+j−1 cq−2cqbl−1 = cql−l+q−1

x (b, a, b, b, ∗, ∗) a(ca) = abl = (ac)a = bka = bk−1aj =

bibl−1 = bi+l−1 bk−2ajaj−1 = ajk−k+1

xi (b, a, b, c, c, ∗) a(ca) = acl = bkcl−1 = (ac)a = bka = bk−1aj =

bk−1cpcl−2 = cpk−k+l−1 bk−2ajaj−1 = ajk−k+1

xii (b, a, ∗, ∗, a, a) b(cb) = baq = (bc)b = apb = ap−1bi =

ajaq−1 = aq+j−1 ap−2bibi−1 = bip−p+1

xiii (b, a, a, b, t5, t6) a(ca) = abl = bibl−1 (ac)a = aka = ak+1

= bi+l−1

xiv (b, a, c, c, a, t6) b(ca) = bcl = apcl−1 = (bc)a = apa = ap+1

ap−1ckcl−2 = ckp+l−p−1

xv (b, t2, a, t4, c, t6) a(bc) = acp = akcp−1 = (ab)c = bic = bi−1cp =

ak−1akcp−2 = akp−p+1 bi−2cpcp−1 = cpi−i+1

xvi (b, a, ∗, b, a, ∗) b(ca) = bbl = bl+1 (bc)a = apa = ap+1

xvii (b, a, b, c, a, c) see Lemma 5.1.4

Table 5.4: Forbidden types in the family (b, a, ∗, ∗, ∗, ∗)
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Notice that in (v∗) if i = l = 1 then we have so far ab = b, ca = c, cb = aq and
then

ba = aj ⇒ a(ba) 6= (ab)a;

ba = bj ⇒ c(ba) 6= (cb)a;

ba = cj ⇒ b(ab) 6= (ba)b.

Similarly, in (ix∗) if j = q = 1 then we have so far ba = a, ca = bl cb = c and then

ab = ai ⇒ i = 1 by the associativity on aba⇒ c(ab) 6= (ca)b;

ab = bi ⇒ b(ab) 6= b(ab);

ab = ci ⇒ a(ba) 6= (ab)a.

Suppose that S is a semigroup of the type (b, a, t3, t4, t5, t6). Firstly, let t3 = a. Then
t4 6= b by Table 5.4(xiii). Also if t4 = c then we cannot decide whether the operation
is associative or not. So we assume that t6 = a, b or c but all of these values are
rejected by Table 5.4(v, vi, i) respectively and thus t4 6= c. So surely t4 = a. Now
we have the type (b, a, a, a, t5, t6) but t6 6= a nor c by Table 5.4(ii, i) respectively and
hence t6 = b. Then t5 = a or b by Table 5.4(xv).

Secondly, let t3 = b and then we have the type
(b, a, b, t4, t5, t6). Here if t4 = c then t5 6= c by Table 5.4(xi). Thus if t5 = a then
t6 6∈ {a, b, c} by Table 5.4(iii, vi, xvii) respectively, that implies that t5 = b. Now
we have the type (b, a, b, c, b, t6) which is rejected by Table 5.4(iv) and thus t4 must
be equal to a or b. Let t4 = b. Then we have the type (b, a, b, b, t5, t6) which is
rejected by Table 5.4(x) and hence t4 = a and then we have the type (b, a, b, a, t5, t6).
However t6 6∈ {a, c} by Table 5.4(iii, viii) respectively. So we reached the type
(b, a, b, a, t5, b) where t5 ∈ {a, b, c}.

Thirdly, if t3 = c and if t4 = c then t5 6= a nor b by Table 5.4(xiv, iv) respec-
tively. Thus t5 = c. So we have the type (b, a, c, c, c, t6) and by Table 5.4(v, vi),
t6 6= a nor b. So t6 = c. Now if we have t4 = a then t5 6= b by Table 5.4(vii).
Thus t5 = a or c. If t5 = a then we have the type (b, a, c, a, a, t6), here t6 6= a nor
c by Table 5.4(xii, viii) and hence t6 = b. Now if t5 = c then we have the type
(b, a, c, a, c, t6) where t6 6= c by Table 5.4(viii). Thus t6 ∈ {a, b}. If t4 = b then we
have the type (b, a, c, b, t5, t6), here t5 6= b nor a by Table 5.4(vii, xvi) respectively
that implies t5 = c and then we have the type (b, a, c, b, c, t6) where t6 6= c by Table
5.4(ix) and then t6 ∈ {a, b}.
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Consequently, we have eleven types (b, a, a, a, a, b), (b, a, a, a, b, b), (b, a, b, a, a, b),
(b, a, b, a, b, b), (b, a, b, a, c, b), (b, a, c, a, a, b), (b, a, c, a, c, b), (b, a, c, b, c, b), (b, a, c, c, c, c),
(b, a, c, a, c, a), (b, a, c, b, c, a). But there are just four types up to isomorphism and
anti-isomorphism and they are (b, a, c, a, c, b), (b, a, c, b, c, a), (b, a, c, a, c, a), (b, a, b, a, a, b).

So in total we just have nine types (a, a, a, a, a, a), (a, a, a, a, b, b), (a, a, a, a, c, b),
(a, a, c, a, c, a), (a, a, c, a, c, c) (b, a, c, a, c, b), (b, a, c, b, c, a), (b, a, c, a, c, a), (b, a, b, a, a, b)
in corresponding to the two families (a, a, ∗, ∗, ∗, ∗) and (b, a, ∗, ∗, ∗, ∗).

Part 2. Suppose that S is a semigroup which is a disjoint union of three copies of
the free monogenic semigroup 〈d〉, 〈g〉 and 〈h〉. Thus S is a type of the nine types
which are (d, d, d, d, d, d), (d, d, d, d, g, g), (d, d, d, d, h, g), (d, d, h, d, h, d), (d, d, h, d, h, h),
(g, d, h, d, h, g), (g, d, h, g, h, d), (g, d, h, d, h, d), (g, d, g, d, d, g). Therefore, if S of the
type (d, d, d, d, d, d) then S has the relations

dg = di, gd = dj, dh = dk, hd = dl, gh = dp, hg = dq

and then i = j and k = l by Lemma 4.2.1. Since S is a semigroup, the operation
must be associative. Thus we have

g(hg) = gdq = djdq−1 = dj+q−1,

(gh)g = dpg = dp−1di = di+p−1.

And this clearly implies that p = q. Furthermore,

d(gh) = ddp = dp+1,

(dg)h = dih = di−1dk = di+k−1.

So i + k− 1 = p + 1 and hence i + k− p = 2.

If S is of the type (d, d, d, d, g, g) then S has the relations

dg = di, gd = dj, dh = dk, hd = dl, gh = gp, hg = gq,

and then i = j, k = l, p = q by Lemma 4.2.1. Since S is a semigroup, the operation
must be associative.

d(gh) = dgp = digp−1 = di−1digp−2 = dip−p+1,
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(dg)h = dih = di−1dk = dk+i−1.

Then k+ i− 1 = ip− p+ 1 which implies k+ p− ip+ i = 2. Thus i = j, k = l, p = q
with k + p− ip + i = 2.

If S is of the type (d, d, d, d, h, g) then S has the relations

dg = di, gd = dj, dh = dk, hd = dl, gh = hp, hg = gq

and then i = j, k = l and p = q = 2 by Lemma 4.2.1. Since S is a semigroup,

h(gd) = hdj = dldj−1 = dl+j−1,

(hg)d = g2d = gdj = djdj−1 = d2j−1.

Then l + j− 1 = 2j− 1. Thus l = j and then i = j = k = l and p = q = 2.

If S is of the type (d, d, h, d, h, d) then S has the relations

dg = di, gd = dj, dh = hk, hd = dl, gh = hp, hg = dq,

then i = j and k = l = 2 by Lemma 4.2.1. Since S is a semigroup, the operation
must be associative. We have

g(hg) = gdq = didq−1 = di+q−1,

(gh)g = hpg = hp−1dq = dp+q−1.

Thus, i + q− 1 = p + q− 1 which implies i = p. Also,

h(gh) = hhp = hp+1,

(hg)h = dqh = hq+1.

Thus, p = q. Thus i = j = p = q and k = l = 2.

If S is of the type (d, d, h, d, h, h) then S has the relations

dg = di, gd = dj, dh = hk, hd = dl, gh = hp, hg = hq
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then i = j, k = l = 2 and p = q by Lemma 4.2.1. Since S is a semigroup then the
operation must be associative. We have

g(hd) = gd2 = did = di+1,

(gh)d = hpd = hp−1d2 = hp+1.

Thus, i + 1 = p + 1 and then i = p. Hence, i = j = p = q and k = l = 2.

If S is of the type (g, d, h, d, h, g) then S has the relations

dg = gi, gd = dj, dh = hk, hd = dl, gh = hp, hg = gq

then i = j = k = l = p = q = 2 by Lemma 4.2.1.

If S is of the type (g, d, h, g, h, d) then S has the relations

dg = gi, gd = dj, dh = hk, hd = gl, gh = hp, hg = dq

then i = j = 2 by Lemma 4.2.1. Since S is a semigroup, the operation must be
associative. We have

h(dh) = hhk = hk+1,

(hd)h = glh = gl−1hp = hpl−l+1

and then k + 1 = pl − l + 1 and thus k = pl − l. Also

h(gh) = hhp = hp+1,

(hg)h = dqh = dq−1hk = hkq−q+1.

Then p + 1 = kp− q + 1. Hence, p = kp− q. And

d(gh) = dhp = hkhp−1 = hk+p−1,

(dg)h = g2h = ghp = hphp−1 = h2p−1.

Therefore, 2p − 1 = k + p − 1 and then we get k = p. Now by using the same
process on h(dg), h(gd) and g(dh) we obtain that l = q, k = p. Hence

p = l(p− 1) =⇒ p = l = 2
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then we have i = j = k = l = p = q = 2.

If S is of the type (g, d, h, d, h, d) then S has the relations

dg = gi, gd = dj, dh = hk, hd = dl, gh = hp, hg = dq

then i = j = k = l = 2 by Lemma 4.2.1. Since S is a semigroup, the operation must
be associative. We have

g(hg) = gdq = dq+1,

(gh)g = hpg = hp−1dq = dp+q−1.

So it is easy to see q + 1 = p + q− 1 and then p = 2. And also

h(gh) = hh2 = h3,

(hg)h = dqh = hq+1

which implies q + 1 = 3 and then q = 2. Thus i = j = k = l = p = q = 2.

If S is of the type (g, d, g, d, d, g) then S has the relations

dg = gi, gd = dj, dh = gk, hd = dl, gh = dp, hg = gq

then i = j = 2 by Lemma 4.2.1. Since S is a semigroup, the operation must be
associative. We have

h(dh) = hgk = gqgk−1 = gq+k−1,

(hd)h = dlh = dl−1gk = gk+l−1.

And then q + k− 1 = k + l − 1 which implies q = l. Also

d(hd) = ddl = dl+1,

(dh)d = gkd = dk+1.

Then k = l. In addition
g(hg) = ggq = gq+1,

(gh)g = dpg = gp+1.
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Hence p = q. Thus k = l = p = q and i = j = 2.

Therefore, S satisfies the relations in one of the presentations in the theorem
and by Lemma 4.1.2, S is isomorphic to S′ where S′ is a semigroup which is defined
by one of the presentations in the theorem.

Part 3. We start with the semigroup S′ which is defined by the presentation (1)

〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = ap, cb = ap〉.

Each element of this semigroup is either a power of a, b, c or a product of them,
but by the relations mentioned above, the product of any two different kind of
elements gives ai. So these elements are definitely of the form ai. Thus

〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = ap, cb = ap〉 =

{ai : i ∈N} ∪ {bi : i ∈N} ∪ {ci : i ∈N} =

A ∪ B ∪ C.

Now as a consequence of not having a relation which can be applied to a power of
b or c, A∩ B=A∩C = B∩C = ∅ and thus A, B and C are pairwise disjoint and B, C
are infinite but in A we have to prove that, since there is a possibility of repetitions.
Let ϕ : {a, b, c} → N0 be a mapping with ϕ(a) = 1, ϕ(b) = i − 1, ϕ(c) = k − 1
where i, k ∈ N and then there exists a homomorphism ψ : {a, b, c}+ → N0 such
that ψ �{a,b,c}= ϕ by Proposition 1.6.1. Thus

ψ(ab) = ψ(a) + ψ(b) = 1 + i− 1 = i = ψ(ai),

ψ(ac) = ψ(a) + ψ(c) = 1 + k− 1 = k = ψ(ak),

ψ(bc) = ψ(b) + ψ(c) = i− 1 + k− 1 = i + k− 2 = p = ψ(ap).

And similarly ψ(ba), ψ(ca), ψ(cb). That implies

< = {ab = ba = ai, ac = ca = ak, bc = cb = ap} ⊆ ker ψ.

Hence, by Lemma 4.1.1 all elements of this semigroup are distinct and and then
S′ with presentation (1) is a disjoint union of three copies of the free monogenic
semigroup.
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The semigroup S′ which is defined by the presentation (2)

〈a, b, c|ab = ai, ba = ai, ac = ak, ca = ak, bc = bp, cb = bp〉

is a disjoint union of three copies of the free monogenic semigroup A = 〈a〉, B =

〈b〉, C = 〈c〉 because each of A ∪ B, B ∪ C, A ∪ C is a subsemigroup of S′ which is
defined by one of the presentations in the Theorem 4.2.3. Thus S′ = A t B t C.

Similarly the semigroup S′ which is defined by the presentation (3)

〈a, b, c|ab = ai, ba = ai, ac = ai, ca = ai, bc = c2, cb = b2〉

is a disjoint union of three copies of the free monogenic semigroup A = 〈a〉, B =

〈b〉, C = 〈c〉 because each of A ∪ B, B ∪ C, A ∪ C is a subsemigroup of S′ which is
defined by one of the presentations in the Theorem 4.2.3. Thus S′ = A t B t C.

The semigroup S′ which is defined by the presentation (4)

〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ai〉,

is a disjoint union of three copies of the free monogenic semigroup because of the
following:
Firstly we show that xjy = zk where x, y, z are in {a, b, c} in the following table:
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x y xjy
a a aj+1

b a bj−1ai = bj−2aiai−1 = · · · = aij−j+1

c a cj−1a2 = · · · = aj+1

a b aj−1ai = ai+j−1

b b bj+1

c b cj−1ai = · · · = ai+j−1

a c aj−1c2 = · · · = cj+1

b c bj−1ci = bj−2cici−1 = · · · = cij−j+1

c c cj+1

Table 5.5: The multiplication of xj and y where x, y ∈ {a, b, c} in the presentation
〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ai〉

So by the above table and Lemma 5.1.1, each element of our presentation is of the
form ai, bi or ci. Thus

〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ai〉 =

{ai : i ∈N} ∪ {bi : i ∈N} ∪ {ci : i ∈N} =

A ∪ B ∪ C.

Now we want to prove that A, B and C are pairwise disjoint. Let T be the semi-
group with multiplication table:

e f g
e e e g
f e f g
g e e g

We define a mapping ϕ : {a, b, c} → T with ϕ(a) = e, ϕ(b) = f , ϕ(c) = g. Thus,
there exists a homomorphism ψ : {a, b, c}+ → T. It is obvious that ψ preserves our
relation as follows:

ψ(ab) = ψ(a)ψ(b) = e f = e = ψ(ai),

ψ(ba) = ψ(b)ψ(a) = f e = e = ψ(ai),

ψ(ac) = ψ(a)ψ(c) = eg = g = ψ(c2),
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ψ(ca) = ψ(c)ψ(a) = ge = e = ψ(a2),

ψ(bc) = ψ(b)ψ(c) = f g = g = ψ(ci),

ψ(cb) = ψ(c)ψ(b) = g f = e = ψ(ai).

Thus, ψ is a homomorphism from S into T and therefore A∩ B = A∩C = B∩C =

∅. So A, B and C are a pairwise disjoint. The next step is to prove that A, B
and C are infinite. Define a mapping ϕ : {a, b, c} → N0 with ϕ(a) = 1, ϕ(b) =

i − 1 and ϕ(c) = 1. Then there exists a homomorphism ψ : {a, b, c}+ → N0 in
which {a, b, c}+ is the free semigroup on {a, b, c} and ψ uniquely determined by
the images of the generators a, b and c by Proposition 1.6.1. It is obvious that ψ

preserves the all above relations and based on this we deduce that

< = {ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ai} ⊆ ker ψ.

Hence, by Lemma 4.1.1 all elements of semigroup A t B t C are distinct as re-
quired.

The semigroup S′ which is defined by the presentation (5)

〈a, b, c|ab = ai, ba = ai, ac = c2, ca = a2, bc = ci, cb = ci〉,

is a disjoint union of three copies of the free monogenic semigroup A = 〈a〉, B =

〈b〉, C = 〈c〉 because each of A ∪ B, B ∪ C, A ∪ C is a subsemigroup of S′ which is
defined by one of the presentations in the Theorem 4.2.3. Thus S′ = A t B t C.

Analogously, the semigroup S′ which is defined by the presentation (6)

〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = b2〉,

is a disjoint union of three copies of the free monogenic semigroup A = 〈a〉, B =

〈b〉, C = 〈c〉 because each of A ∪ B, B ∪ C, A ∪ C is a subsemigroup of S′ which is
defined by one of the presentations in the Theorem 4.2.3. Thus S′ = A t B t C.

The semigroup S′ which is defined by the presentation (7)

〈a, b, c|ab = b2, ba = a2, ac = c2, ca = b2, bc = c2, cb = a2〉,
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is a disjoint union of three copies of the free monogenic semigroup because of the
following:
We show that xiy = zj where x, y, z are in {a, b, c} in the following table:

x y xiy
a a ai+1

b a bi−1c2 = bi−2a2c = · · · = ci+1

c a ci−1b2 = ci−2a2b = ci−2b3 = · · · = bi+1

a b ai−1b2 = · · · = bi+1

b b bi+1

c b ci−1a2 = ci−2b2a = ci−2a3 = · · · = ai+1

a c ai−1c2 = · · · = ci+1

b c bi−1c2 = ci+1

c c ci+1

Table 5.6: The multiplication of xi and y where x, y ∈ {a, b, c} in the presentation
〈a, b, c|ab = b2, ba = a2, ac = c2, ca = b2, bc = c2, cb = a2〉

So by the above table and Lemma 5.1.1, each element of our presentation is of the
form ai, bi or ci. Thus

〈a, b, c|ab = b2, ba = a2, ac = c2, ca = b2, bc = c2, cb = a2〉 =

{ai : i ∈N} ∪ {bi : i ∈N} ∪ {ci : i ∈N} =

A ∪ B ∪ C.

Now we show that A, B and C are pairwise disjoint. Let w ∈ A. Then we have

w = ai = ai−2a2 = ai−2cb = ai−3c2b,

or
w = ai = ai−2a2 = ai−2ba = ai−3b2a.

So we obtain a word that ends with aa, cb or ba. So we want to prove that if w is a
word ending in aa, cb or ba and w = v in S then v ends in aa, cb or ba.
First we start with w ends in aa. Let w = w′aa. Then if we apply a single relation to
w′, this does not change our claim. If we apply a relation to aa we get cb or ba which
is the same of our claim. Now if we apply a relation in the interface of w′ and aa,
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we have w′aa = w′′aaa or w′aa = w′′baa = w′′aaa or w′aa = w′′caa = w′′b2a.
Now if w ends with cb. Let w = w′cb. Then if we apply a single relation to w′, this
does not change our claim. If we apply a relation to cb we get aa which is the same
of our claim. Now if we apply a relation in the interface of w′ and cb, we have
w′cb = w′′acb = w′′ccb or w′cb = w′′bcb = w′′ccb or w′cb = w′′ccb.
If w ends with ba. Let w = w′ba. Then if we apply a single relation to w′ that does
not change our claim. If we apply a relation to ba we get aa which is the same
of our claim. Now if we apply a relation in the interface of w′ and ba, we have
w′ba = w′′aba = w′′bba or w′ba = w′′bba or w′bc = w′′cba = w′′bba. Thus each
word in A ends with aa, cb or ba. Similarly by the same argument, if w ∈ B then

w = bi = bi−2b2 = bi−2ab = bi−3a2b,

or
w = bi = bi−2b2 = bi−2ca = bi−3c2a.

So we can notice that each word in B ends with b2, ca, ab and based on this A∩ B =

∅. Moreover, if w ∈ C then

w = ci = ci−2c2 = ci−2ac = ci−3b2c,

or
w = ci = ci−2c2 = ci−2bc = ci−3a2c,

thus each word in C ends with c and then B ∩ C = ∅ because there is no word
in B which ends with c. Also A ∩ C = ∅ because the end of each word in A
differs from the end of each word in C. The last step we show that A, B and C
are infinite. By considering the mapping ϕ from {a, b, c} to N0 with ϕ(a) = 1,
ϕ(b) = 1, ϕ(c) = 1, there exists a homomorphism ψ : {a, b, c}+ → N0 such that
ψ �{a,b,c}= ϕ by Proposition 1.6.1. It is obvious that ψ preserves the all above
relations and based on this we deduce that

< = {ab = b2, ba = a2, ac = c2, ca = b2, bc = c2, cb = a2} ⊆ ker ψ.

The semigroup S′ which is defined by the presentation (8)

〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = a2〉,

70



is a disjoint union of three copies of the free monogenic semigroup because of the
following:
We show that xiy = zj where x, y, z are in {a, b, c} in the following table:

x y xiy
a a ai+1

b a bi−1a2 = · · · = ai+1

c a ci−1a2 = · · · = ai+1

a b ai−1b2 = · · · = bi+1

b b bi+1

c b ci−1a2 = · · · = ai+1

a c ai−1c2 = · · · = ci+1

b c bi−1c2 = · · · = ci+1

c c ci+1

Table 5.7: The multiplication of xi and y where x, y ∈ {a, b, c} in the presentation
〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = a2〉

So by the above table and Lemma 5.1.1, each element of our presentation is of the
form ai, bi or ci. Thus

〈a, b, c|ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = a2〉 =

{ai : i ∈N} ∪ {bi : i ∈N} ∪ {ci : i ∈N} =

A ∪ B ∪ C.

Now we show that A, B and C are pairwise disjoint. Let w ∈ A and hence

w = ai = ai−2a2 = ai−2cb = ai−3c2b,

or
w = ai = ai−2a2 = ai−2ca = ai−3c2a,

or
w = ai = ai−2a2 = ai−2ba = ai−3b2a,

so we want to prove that if w is a word ending in aa, cb, ca or ba and w = v in S
then v ends in aa, cb, ca or ba. First we start with w ends in aa. Let w = w′aa. Then
if we apply a single relation to w′ that does not change our claim. If we apply a
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relation to aa we get cb, ca or ba which is the same of our claim. Now if we apply
a relation in the interface of w′ and aa, we have w′aa = w′′aaa or w′aa = w′′baa =

w′′a2a or w′aa = w′′caa = w′′a2a. If w ends with cb. Let w = w′cb then if we apply
a single relation to w′ that does not change our claim. If we apply a relation to
cb we get aa which is the same of our claim. Now if we apply a relation in the
interface of w′ and cb, we have w′cb = w′′acb = w′′aab or w′cb = w′′bcb = w′′ccb
or w′cb = w′′ccb. Similarly, if w ends with ca or ba. Thus each word in A ends with
aa, cb, ca or ba. Analogously, if w ∈ B then

w = bi = bi−2b2 = bi−2ab = bi−3a2b.

Hence each word in B ends with bb or ab by the same previous arguments. Thus
A ∩ B = ∅. Besides if w ∈ C then

w = ci = ci−2c2 = ci−1bc = ci−2a2c

or
w = ci = ci−2c2 = ci−2ac = ci−3a2c.

Therefore each word in C ends with cc, ac or bc by the same previous argument.
So no word ends with b and hence B ∩ C = ∅. Now it is clear that A ∩ C =

∅ and therefore A, B and C are a pairwise disjoint. The last step we show that
A, B and C are infinite. Let ϕ : {a, b, c} → N0 be a mapping with ϕ(a) = 1,
ϕ(b) = 1 and ϕ(c) = 1. Then there exists a homomorphism ψ : {a, b, c}+ → N0

by Proposition 1.6.1, in which {a, b, c}+ is the free semigroup on {a, b, c} and ψ

uniquely determined by the images of the generators a, b and c. It is obvious that
ψ preserves all the above relations and based on this we deduce that

< = {ab = b2, ba = a2, ac = c2, ca = a2, bc = c2, cb = a2} ⊆ ker ψ.

Hence, ρ ⊆ ker ψ. Therefore, by Lemma 4.1.1 all elements of the semigroup
A t B t C are distinct as required.

The semigroup S′ which is defined by the presentation (9)

〈a, b, c|ab = b2, ba = a2, ac = bi, ca = ai, bc = ai, cb = bi〉,

is a disjoint union of three copies of the free monogenic semigroup because of the
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following:
We show that xjy = zk where x, y, z are in {a, b, c} in the following table:

x y xjy
a a aj+1

b a bj−1a2 = · · · = aj+1

c a cj−1ai = aj−2aiai−1 = · · · = aij−j+1

a b aj−1b2 = · · · = bj+1

b b bj+1

c b cj−1bi = · · · = bij−j+1

a c aj−1bi = · · · = bi+j−1

b c bj−1ai = · · · = ai+j−1

c c cj+1

Table 5.8: The multiplication of xj and y where x, y ∈ {a, b, c} in the presentation
〈a, b, c|ab = b2, ba = a2, ac = bi, ca = ai, bc = ai, cb = bi〉

So by the above table and Lemma 5.1.1, each element of our presentation is of the
form ai, bi or ci. Thus

〈a, b, c|ab = b2, ba = a2, ac = bi, ca = ai, bc = ai, cb = bi〉 =

{ai : i ∈N} ∪ {bi : i ∈N} ∪ {ci : i ∈N} =

A ∪ B ∪ C.

Now we show that A, B and C are pairwise disjoint. Let T be the semigroup with
multiplication table:

1 e f g
1 1 e f g
e e e f f
f f e f e
g g e f 1

We define a mapping ϕ : {a, b, c} → T with ϕ(a) = e, ϕ(b) = f , ϕ(c) = g. Then
there exists a homomorphism ψ : {a, b, c}+ → T. It is obvious that ψ preserves our
relation as follows:

ψ(ab) = ψ(a)ψ(b) = e f = f = ψ(b2),
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ψ(ba) = ψ(b)ψ(a) = f e = e = ψ(a2),

ψ(ac) = ψ(a)ψ(c) = eg = f = ψ(bi),

ψ(ca) = ψ(c)ψ(a) = ge = e = ψ(ai),

ψ(bc) = ψ(b)ψ(c) = f g = e = ψ(ai),

ψ(cb) = ψ(c)ψ(b) = g f = f = ψ(bi).

Therefore, ψ is a homomorphism from S into T and therefore A ∩ B = A ∩ C =

B∩C = ∅. So A, B and C are a pairwise disjoint. The last step is th show that A, B
and C are infinite. Define a mapping ϕ : {a, b, c} → N0 with ϕ(a) = 1, ϕ(b) = 1
and ϕ(c) = i − 1. Then there exists a homomorphism ψ : {a, b, c}+ → N0 in
which {a, b, c}+ is the free semigroup on {a, b, c} and ψ uniquely determined by
the images of the generators a, b and c by Proposition 1.6.1. It is obvious that ψ

preserves the all above relations and based on this we deduce that

< = {ab = b2, ba = a2, ac = bi, ca = ai, bc = ai, cb = bi} ⊆ ker ψ.

Hence, ρ ⊆ ker ψ. Therefore, by Lemma 4.1.1 all elements of the semigroup A t
B t C are distinct as required.

5.3 Semigroups of the same type

Theorem 5.3.1. All semigroups of one of the following types

(a, a, a, a, a, a), (a, a, a, a, b, b), (a, a, a, a, c, b), (a, a, c, a, c, a), (a, a, c, a, c, c), (b, a, b, a, a, b)

are non-isomorphic.

PROOF. We show now that all semigroups of the type (a, a, a, a, a, a) are non-isomorphic.
For k ≥ 1, let Si,j,k = A t B t C be a semigroup of the type (a, a, a, a, a, a) with
ab = ai, ba = ai, ac = aj, ca = aj, bc = ak, cb = ak. Suppose that Si,j,k

∼= Sl,m,n for
some i, j, k, l, m, n ∈ N with (i, j, k) 6= (l, m, n) that means there is an isomorphism
ϕ : Si,j,k → Sl,m,n. Clearly, A is the only ideal which is isomorphic to N in both of
Si,j,k and Sl,m,n, because the presentation says that any word which has a letter a
will be in A and hence each ideal must consist of elements from just A or from A
and B or C, or from A and B and C but each of the last two cases has at least two
generators which implies that it is not isomorphic to N. Consequently, ϕ(a) = at
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where t ∈N and hence ϕ(a) = a by Lemma 4.2.4. Now if ϕ(b) = bt, ϕ(c) = cu then
ϕ(b) = b, ϕ(c) = c by Lemma 4.2.4 with ϕ(a) = a and hence we get an identity
map with ϕ(bc) 6= ϕ(b)ϕ(c). Similarly, if ϕ(b) = ct then ϕ(c) = bu and t = u = 1

by Lemma 4.2.4, with ϕ(a) = a. However, ϕ(bc) = ϕ(ai) =
(

ϕ(a)
)i

= ai,

ϕ(b)ϕ(c) = cb = al and that implies ϕ(bc) 6= ϕ(b)ϕ(c) by (i 6= l).

We show that all semigroups of the type (a, a, a, a, b, b) are non-isomorphic.
For i, k, p ≥ 1, let Si,k,p = A t B t C be a semigroup of the type (a, a, a, a, b, b) with
ab = ai, ba = ai, ac = ak, ca = ak, bc = bp, cb = bp. Suppose Si,k,p

∼= Sj,l,q via an
isomorphism ϕ : Si,k,p → Sj,l,q with (i, k, p) 6= (j, l, q). Clearly A is the only ideal
which is isomorphic to N in both of Si,k,p and Sj,l,q because the presentation says
that any word which has a letter a will be in A and hence each ideal must consist of
elements from just A or from A and B or C, or from A and B and C, but the last two
possibilities have at least two generators which implies that it is not isomorphic to
N. Consequently, ϕ(a) = at for some t in N and hence t = 1 by Lemma 4.2.4. Now,
since B or subsemigroup of B is the only ideal, which is isomorphic to N, in both
of the two subsemigroups BtC in Si,k,p and Sj,l,q. So ϕ(b) = bt for some t ∈N and
hence ϕ(b) = b by Lemma 4.2.4. Thus ϕ(c) = ct and analogously t = 1 and then
we obtain the identity mapping with ϕ(a)ϕ(b) 6= ϕ(ab), a contradiction.

We show that all semigroups of the type (a, a, a, a, c, b) are non-isomorphic.
For k ≥ 1, let Sk = A t B t C be a semigroup of the type (a, a, a, a, c, b) with
ab = ai, ba = ai, ac = ai, ca = ai, bc = c2, cb = b2 and Si

∼= Sj via an isomor-
phism ϕ : Si → Sj with i 6= j. Clearly, A is the only ideal which is isomorphic to
N in both of Si and Sj because the presentation says that any word which has a
letter a will be in A and hence each ideal must consist of elements from just A or
from A and B or C, or from A and B and C, but the last two possibilities have at
least two generators which implies that it is not isomorphic to N. Consequently,
ϕ(a) = at for some t in N and hence t = 1 by Lemma 4.2.4. Now If ϕ(b) = ct and
thus ϕ(c) = bu and u = t = 1 by Lemma 4.2.4. Hence, ϕ(c) = b and ϕ(b) = c
but ϕ(ca) = ϕ(ai) = ai and ϕ(c)ϕ(a) = ba = aj. So ϕ(ca) 6= ϕ(c)ϕ(a) by i 6= j.
Therefore, ϕ(b) = b, ϕ(c) = c by Lemma 4.2.4 which is the identity mapping with
ϕ(ac) 6= ϕ(a)ϕ(c) since i 6= j, a contradiction.

We show that all semigroups of the type (a, a, c, a, c, a) are non-isomorphic.
For i ≥ 1, let Si = A t B t C be a semigroup of the type (a, a, c, a, c, a) with ab = ai,
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ba = ai, ac = c2, ca = a2, bc = ci, cb = ai. Suppose Si
∼= Sj for some i, j ∈ N

via the isomorphism ϕ : Si → Sj with i 6= j. The only subsemigroup in both of
Si and Sj, which is a disjoint union of two left ideals free monogenic semigroups
is A t C, or a subsemigroup of A t C. Thus ϕ(b) = b by Lemma 4.2.4. Now if
ϕ(a) = ct, ϕ(c) = au then t = u = 1 by Lemma 4.2.4. Thus ϕ(ba) = ϕ(ai) = ci and
ϕ(b)ϕ(a) = bc = cj, a contradiction. Thus, ϕ(a) = at, ϕ(c) = cu and then t = u = 1
by Lemma 4.2.4. So we have the identity mapping with ϕ(a)ϕ(b) 6= ϕ(ab) by i 6= j,
a contradiction.

We show that all semigroups of the type (a, a, c, a, c, c) are non-isomorphic. For
k ≥ 1, let Sk = A t B t C be a semigroup of the type (a, a, c, a, c, c) with ab = ai,
ba = ai, ac = c2, ca = a2, bc = ci, cb = ci. Suppose that Si

∼= Sj via an iso-
morphism ϕ : Si → Sj with i 6= j. The only subsemigroup in both of Si and Sj,
which is a disjoint union of two left ideals free monogenic semigroups is A t C, or
a subsemigroup of A t C. Thus, ϕ(b) = bt for some t in N and hence t = 1 by
Lemma 4.2.4. Now If ϕ(a) = ct and thus ϕ(c) = au and u = t = 1 by Lemma 4.2.4.
Hence ϕ(a) = c and ϕ(c) = a, but ϕ(ab) = ϕ(ai) = ci and ϕ(a)ϕ(b) = cb = cj. So
ϕ(ab) 6= ϕ(a)ϕ(b) by i 6= j. Therefore, ϕ(a) = a, ϕ(b) = b by Lemma 4.2.4 which
is the identity mapping with ϕ(a)ϕ(b) 6= ϕ(ab) by i 6= j, a contradiction.

We show that all semigroups of the type (b, a, b, a, a, b) are non-isomorphic.
For i ≥ 1, let Si = A t B t C be the semigroup of the type (b, a, b, a, a, b) with
ab = b2, ba = a2, ac = bi, ca = ai, bc = ai, cb = bi. Suppose Si

∼= Sj for some
i, j ∈ N which means there is an isomorphism ϕ : Si → Sj with i 6= j. The only
subsemigroup in both of Si and Sj, which is a disjoint union of two left ideals free
monogenic semigroups is At B, or a subsemigroup of At B. Hence, ϕ(c) = ct for
some t in N and hence t = 1 by Lemma 4.2.4. Now if ϕ(a) = bt, ϕ(b) = au then
t = u = 1 by Lemma 4.2.4. Thus, ϕ(ac) = ϕ(bi) = ai and ϕ(a)ϕ(c) = bc = aj, a
contradiction. Thus ϕ(a) = at, ϕ(b) = bu and then t = u = 1 by Lemma 4.2.4. So
we have the identity mapping with ϕ(a)ϕ(c) 6= ϕ(ac) by i 6= j, a contradiction.
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5.4 Comparison between disjoint unions of three copies

of the free monogenic semigroup and three copies

of the infinite cyclic group

In Chapter 3 we classified the semigroups which are disjoint unions of two or three
copies of a group and this appears clearly in Theorems (3.2.1, 3.2.2, 3.3.1, 3.3.2). In
Chapter 2 we proved that if we substituted the two copies of the infinite cyclic
group by the free monogenic semigroup we obtain parallel results. In this section
we take an infinite cyclic group as an example and we show the two theorems
(3.3.1, 3.3.2) on an infinite cyclic group in details to see how we define homomor-
phisms between these three groups to get Clifford semigroups, Rees matrix semi-
groups and combination semigroups and then we compare these semigroups with
the semigroups which are disjoint unions of three copies of the free monogenic
semigroup. We will see two more types as disjoint unions of three copies of the
free monogenic semigroup which do not exist as disjoint unions of three copies of
the infinite cyclic group.

Consider the semigroup S = Sα t Sβ t Sγ where Sα = 〈a, a−1|aa−1 = a−1a =

1α〉, Sβ = 〈b, b−1|bb−1 = b−1b = 1β〉 and Sγ = 〈c, c−1|cc−1 = c−1 = 1γ〉 three
copies of the infinite cyclic group. Then by Theorem 3.3.1 and Theorem 3.3.2 we
have the following seven cases:
Case 1. Sγ is an ideal in S and SαSβ ⊆ Sγ , SβSα ⊆ Sγ. Then we have three groups
Sα , Sβ and Sγ with

ac = ca = ci , bc = cb = cj , ab = ba = ck,

where k = i + j− 2 and the reason for this is, Sγ is an ideal in S, and the associa-
tivity on c(ac), c(bc), a(ba), c(ba). Analogously, with the remaining relations:

a−1c−1 = c−1a−1 = cl , b−1c−1 = c−1b−1 = cp , a−1b−1 = b−1a−1 = cq,

a−1c = ca−1 = cr, b−1c = cb−1 = cs, a−1b = ba−1 = ct,

ac−1 = c−1a = cu, bc−1 = c−1b = cv, ab−1 = b−1a = cw.

Thus, there is a semilattice Y = {α, β, γ} where to each element α ∈ Y we assign
a group Sα such that αβ = βα = γ , αγ = γα = γ , γβ = βγ = γ if SαSβ ⊆
Sγ , SβSα ⊆ Sγ , SαSγ ⊆ Sγ , SγSα ⊆ Sγ and SβSγ ⊆ Sγ , SγSβ ⊆ Sγ. There
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is also two pairs of elements α, γ in which we assign a map φα,γ of Sα into Sγ

with φα,γ(a) = ci−1 and β, γ in which we assign a map φβ,γ of Sβ into Sγ with
φβ,γ(b) = cj−1. Also there are three identity maps φα,α, φβ,β, φγ,γ on Sα, Sβ and
Sγ respectively. Clearly, φα,αφα,γ = φα,γ if α ≥ α ≥ γ, φα,γφγ,γ = φα,γ if α ≥ γ,
φβ,γφγ,γ = φβ,γ if β ≥ γ and finally φβ,βφβ,γ = φβ,γ if β ≥ γ. Now, notice that

axcy = ax−1cicy−1

= ax−2cici−1cy−1

= ax−(x−1)cic(i−1)(x−2)cy−1

= cici−1c(i−1)(x−2)cy−1

= cx(i−1)+y,

and

φα,γ(ax)φγ,γ(cy) = cx(i−1)cy = cx(i−1)+y = axcy.

Also

axby = ax−1ckby−1

= ax−2cick−1by−1

= ci+(i−1)(x−3)+k−1by−1

= ci+i−1+ix−3i−x+3+k−1by−1

= c−i+ix−x+k+1by−1

= c−i+ix−x+kcjby−2

= c−i+ix−x+kcj−1cjby−3

= c−i+ix−x+kc(j−1)(y−3)+2j−1

= c−i+ix−x+kcjy−3j−y+3+2j−1

= cx(i−1)+y(j−1)+k−i−j+2

= cx(i−1)+y(j−1) (by k = i + j− 2),

besides

φα,γ(ax)φγ,γ(by) = cx(i−1)cy(j−1) = axby.

Analogously with the negative values of the powers i, j, k. The remaining relations
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follow similarly. Thus, S is a strong semilattice of groups and then S is a Clifford
semigroup of type V.

Case2. Sγ is an ideal in S and Sβ is an ideal in Sα t Sβ. Then we have three groups
Sα , Sβ and Sγ with

ac = ca = ci , bc = cb = cj , ab = ba = bk,

and this because Sγ is an ideal in S and Sβ is an ideal in Sα t Sβ and the associativity
on c(ac), c(bc), b(ab). Similarly, with the remaining relations:

a−1c−1 = c−1a−1 = cl , b−1c−1 = c−1b−1 = cp , a−1b−1 = b−1a−1 = bq,

a−1c = ca−1 = cr, b−1c = cb−1 = cs, a−1b = ba−1 = bt,

ac−1 = c−1a = cu, bc−1 = c−1b = cr, ab−1 = b−1a = bw.

Thus, there is a semilattice Y = {α, β, γ} where to each element α ∈ Y we assign
a group Sα such that αβ = βα = β , αγ = γα = γ , γβ = βγ = γ if SαSβ ⊆
Sβ , SβSα ⊆ Sβ , SαSγ ⊆ Sγ , SγSα ⊆ Sγ and SβSγ ⊆ Sγ , SγSβ ⊆ Sγ. There is
also three pairs of elements α, β in which we assign a map φα,β of Sα into Sβ with
φα,β(a) = bk−1 and β, γ in which we assign a map φβ,γ of Sβ into Sγ with φβ,γ(b) =
cj−1 and α, γ in which we assign a map φα,γ of Sα into Sγ with φα,γ(a) = ci−1.
Also there are three identity maps φα,α, φβ,β, φγ,γ on Sα, Sβ and Sγ respectively.
Clearly, φα,αφα,γ = φα,γ if α ≥ γ, φα,γφγ,γ = φα,γ if α ≥ γ, φβ,γφγ,γ = φβ,γ if β ≥ γ

, φβ,βφβ,γ = φβ,γ if β ≥ γ , φα,βφβ,β = φα,β if α ≥ β ,φα,αφα,β = φα,β if α ≥ β and
eventually φα,βφβ,γ = φα,γ if α ≥ β ≥ γ. Now, notice that

axby = ax−1bkby−1 = bx(k−1)+y , φα,β(ax)φβ,β(by) = bx(k−1)+y.

And

bxcy = bx−1cjcy−1 = cx(j−1)+y , φβ,γ(bx)φγ,γ(cy) = cx(j−1)+y.

Besides

axcy = ax−1cicy = cx(i−1)+y , φα,γ(ax)φγ,γ(cy) = cx(i−1)cy = cx(i−1)+y.
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Analogously, if i, j, k are negative. Similarly with the remaining relations. Thus, S
is a strong semilattice of groups and then S is a Clifford semigroup of type I.

Case 3. Sγ is an ideal in S and Sα , Sβ are left ideals in Sα t Sβ. Then we have a
group Sγ and a Rees matrix semigroup Sα t Sβ with

ac = ca = ci , bc = cb = cj , ab = bk , ba = al,

and this because, as we have mentioned before, of the associativity on c(ac), c(bc).
Similarly with the remaining relations:

a−1c−1 = c−1a−1 = cp , b−1c−1 = c−1b−1 = cq , a−1b−1 = br , b−1a−1 = as,

a−1c = ca−1 = ct, b−1c = cb−1 = cu, a−1b = bv , ba−1 = aw,

ac−1 = c−1a = ce, bc−1 = c−1b = c f , ab−1 = bg , b−1a = ah.

Thus, there is a semilattice Y = {γ, δ} where to each γ ∈ Y we assign a group
Sγ such that Sδ = Sα t Sβ where γδ = δγ = γ if SδSγ ⊆ Sγ , SγSδ ⊆ Sγ. There
is also a pair of elements δ, γ in which we assign a map φδ,γ of Sδ into Sγ with
φδ,γ(a) = ci−1, and φδ,γ(b) = cj−1. Furthermore, there are two identity maps
φδ,δ, φγ,γ on Sδ and Sγ respectively. Clearly, φδ,δφδ,γ = φδ,γ if δ ≥ γ, φδ,γφγ,γ = φδ,γ

if δ ≥ γ. Now, notice that

axcy = ax−1cicy−1 = cx(i−1)+y,

φδ,γ(ax)φγ,γ(cy) = cx(i−1)cy = axcy.

Also

bxcy = bx−1cjcy−1 = cx(j−1)+y,

φδ,γ(bx)φγ,γ(cy) = cx(j−1)cy = bxcy.

Analogously with the negative powers. Remaining relations follow similarly. Thus
S is a combination semigroup of the type >. Similarly, if Sα , Sβ are right ideals in
Sα t Sβ.
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Case 4. Sα t Sβ is an ideal in S and Sα, Sβ are left ideals in Sα t Sβ. Then we have
one group Sγ and a semigroup Sα t Sβ with the relations

ac = ca = ai , bc = cb = bi , ab = b2 , ba = a2,

and this because of the associativity on c(ac), c(bc), a(ba), a(bc). Similarly with the
remaining relations:

a−1c−1 = c−1a−1 = ap , b−1c−1 = c−1b−1 = bq , a−1b−1 = br , b−1a−1 = ar′ ,

a−1c = ca−1 = as, b−1c = cb−1 = bt, a−1b = bu , ba−1 = av,

ac−1 = c−1a = aw, bc−1 = c−1b = be, ab−1 = b f , b−1a = ah.

In addition, there exists a semilattice Y = {γ, δ} where to each γ ∈ Y we assign a
group Sγ such that Sδ = Sα t Sβ where γδ = δγ = δ if SγSδ ⊆ Sδ and to each pair of
elements γ, δ we assign a map φγ,δ of Sγ into Sδ with φγ,δ(c) = ai−1, φγ,δ(c−1) =

ap−1. Also there are two identity maps φγ,γ and φδ,δ on Sγ and Sδ respectively.
Clearly, φγ,γφγ,δ = φγ,δ if γ ≥ δ and φγ,δφδ,δ = φγ,δ if γ ≥ δ. Now notice that

cxay = cx−1aiay−1 = ax(i−1)+y , φγ,δ(cx)φγ,δ(ay) = ax(i−1)+y.

And

cxby = cx−1biby−1 = bx(i−1)+y, φγ,δ(cx)φδ,δ(by) = ax(i−1)by = bx(i−1)+y.

The remaining relations follow similarly and the argument works with the nega-
tive powers as well. So, we come to the conclusion that S is a strong semilattice of
two semigroups one is a group and the other is a Rees matrix semigroup. Thus S is
a combination between a Clifford semigroup and a Rees matrix semigroup of the
type ⊥. Similarly, if Sα , Sβ are right ideals in Sα t Sβ.

Case 5. Sα t Sβ is an ideal in S and Sα, Sβ are left ideals in Sα t Sβ. Then we have
one group Sγ and a semigroup Sα t Sβ with the relations

ac = bi , ca = ai , bc = cb = bi , ab = b2 , ba = a2,
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and this because of the associativity on a(ca), b(cb), a(ba), a(bc). Similarly, with
the relations

a−1c−1 = bq , c−1a−1 = ar , b−1c−1 = c−1b−1 = bs , a−1b−1 = bt , b−1a−1 = at′ ,

a−1c = bu , ca−1 = av, b−1c = cb−1 = bw, a−1b = be , ba−1 = a f ,

ac−1 = bg , c−1a = ah, bc−1 = c−1b = bd, ab−1 = bd′ , b−1a = ad′′ .

In addition, there exists a semilattice Y = {γ, δ} where to each element γ ∈ Y we
assign a group Sγ such that Sδ = Sα t Sβ where γδ = δγ = δ if SγSδ ⊆ Sδ and to
each pair of elements γ, δ we assign a map φγ,δ of Sγ into Sδ with φγ,δ(c) = bi−1.
Also there are two identity maps φγ,γ and φδ,δ on Sγ and Sδ respectively. Clearly,
φγ,γφγ,δ = φγ,δ if γ ≥ δ and φγ,δφδ,δ = φγ,δ if γ ≥ δ. Now notice that

cxay = cx−1aiay−1 = ax(i−1)+y,

and

φγ,δ(cx)φδ,δ(ay) = bx(i−1)ay = bxi−x−1a2ay−1

= bxi−x−2a3ay−1

= bxi−x−(xi−x−1)axi−xay−1

= a2+xi−x−1+y−1

= ax(i−1)+y.

Also we have

cxby = cx−1biby−1 = bx(i−1)+y , φγ,δ(cx)φδ,δ(by) = bx(i−1)+y.
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And finally

axcy = ax−1bicy−1

= ax−2b2bi−1cy−1

= ax−3b3bi−1cy−1

= abx−1bi−1cy−1

= b2+x−1+i−2cy−1

= bx+i−2bicy−2

= bx+i−2b(i−1)(y−3)bi−1bi

= bx+y(i−1)+i−i

= bx+y(i−1),

φδ,δ(ax)φγ,δ(cy) = axby(i−1)

= ax−1b2byi−y−1

= ax−2b3byi−y−1

= abxbyi−y−1

= b2bx−1byi−y−1

= bx+y(i−1).

Similarly with the remaining relations. Thus, S is a strong semilattice of a group
and a Rees matrix semigroup. Thus S is a combination semigroup of the type ⊥.
Similarly, if Sα , Sβ are right ideals in Sα t Sβ.

Case 6. Sα t Sβ is an ideal in S and Sα, Sβ are left ideals in Sα t Sβ. Then we have
one group Sγ and a semigroup Sα t Sβ with the relations

ac = bi , ca = ai′ , bc = aj , cb = bj′ , ab = bk , ba = ak′ ,

a−1c−1 = bl , c−1a−1 = al′ , b−1c−1 = ap , c−1b−1 = bp′ , a−1b−1 = bq , b−1a−1 = aq′ ,

a−1c = br , ca−1 = ar′ , b−1c = as , cb−1 = bs′ , a−1b = bt , ba−1 = at′ ,

ac−1 = bu , c−1a = au′ , bc−1 = av , c−1b = bv′ , ab−1 = bw , b−1a = aw′ .

In addition, there exists a semilattice Y = {γ, δ} where to each element γ ∈ Y we
assign a group Sγ such that Sδ = Sα t Sβ where γδ = δγ = δ if SγSδ ⊆ Sδ. So S
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is a semilattice of a group and a Rees matrix semigroup. Thus S is a combination
semigroup of the type ⊥. Similarly, if Sα and Sβ are right ideal in Sδ.

Case 7. Sα, Sβ and Sγ are left ideals in S. Then Sα t Sβ t Sγ is a completely simple
semigroup and that means S is isomorphic to a Rees matrix semigroup of a partic-
ular shape by Theorem 1.5.4. Now we want to construct all potential Rees matrix
semigroups. In fact, we have three left ideals Sα, Sβ and Sγ. So,

Sα = L1 = S1α, Sβ = L2 = S1β, Sγ = L3 = S1γ

and
R1 = 1αS = 1βS = 1γS = S

Clearly, L1, L2, L3 are L−classes and R1 is R−class. Hence I = {1}, Λ = {1, 2, 3}
and since P is a |Λ| × |I| matrix then it consists of one column and three rows as

P =

 1
1
1

. Observe that R1 ∩ L1 = H11, R1 ∩ L2 = H12 and R1 ∩ L3 = H13.

Therefore, H11 = L1 = Sα, H12 = L2 = Sβ, H13 = L3 = Sγ and then S =

M
[
Sα, {1}, {1, 2, 3}, P

]
or S =M

[
Sβ, {1}, {1, 2, 3}, P

]
or S =M

[
Sγ, {1}, {1, 2, 3}, P

]
but simply we can notice that the three Rees matrix semigroups are isomorphic and
that because all of them have the same sets I, Λ and the three semigroups Sα, Sβ,
Sγ are isomorphic. Analogously, if Sα, Sβ and Sγ are right ideals in S.

Remark 5.4.1. Consider the previous cases. Clearly, in each of the above construc-
tions we can substitute the free cyclic group by the free monogenic semigroup, to
obtain unions of three copies of the free monogenic semigroup of these 7 types.
In a different way, applying all the above constructions on a free monogenic semi-
group, we get a collection of semigroups which are disjoint union of three copies
of the free monogenic semigroup and we can show this directly by a comparison
between these constructions and Theorem 5.2.1, as these cases 1,2,3,4,5,6,7 are, re-
spectively, have the same constructions of the semigroups which defined by the
presentations 1,2,3,5,4,9,7 in Theorem 5.2.1.

Remark 5.4.2. The semigroups which have arisen under these constructions in Re-
mark 5.4.1 are not all semigroups which are disjoint unions of three copies of the
free monogenic semigroup. There are two more types which are not strong semi-
lattices of semigroups, Rees matrix semigroups nor combination semigroups and
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they are

1) The semigroup with presentation 〈a, b, c| ab = b2, ba = a2, ac = c2, ca = a2,
bc = c2, cb = a2〉 (Theorem 5.2.1)(8).

2) The semigroup with presentation 〈a, b, c| ab = b2, ba = a2, ac = c2, ca = b2,
bc = c2, cb = a2〉(Theorem 5.2.1)(7).

5.5 Disjoint union of an infinite cyclic group and a

free monogenic semigroup

So far we looked at unions of a small number of copies of a group and copies
of a semigroup and then we want to know what happen if we mixed them, for
instance the semigroup which is a disjoint union of an infinite cyclic group and a
free monogenic semigroup. Interestingly, we find in this section that the number
of such semigroups decreases remarkably, because of not having the Rees matrix
semigroups as they are not compatible with each other.

Theorem 5.5.1. Let Sα = 〈a, a−1|aa−1 = a−1a = 1α〉, Sβ = 〈c〉. Suppose that S is a
semigroup which is a disjoint union of Sα and Sβ. Then one of the following must hold:

i) ac = ca = ai, a−1c = ca−1 = ai−2; or

ii) ac = ca = ca−1 = a−1c = c.

PROOF. Now we have ac, ca, a−1c, ca−1 ∈ {ai : i ∈ Z} ∪ {ci : i ∈ N}. We
distinguish the following cases.
Case 1. ac = ai. Then a−1(ac) = a−1ai = ai−1, (a−1a)c = 1αc and then 1αc = ai−1.
Thus a−11αc = a−1ai−1 = ai−2. So we have so far a−1c = ai−2.
Subcase 1a. ca = aj that implies a(ca) = aj+1, (ac)a = ai+1. Thus i = j and then
(ca)a−1 = aia−1 = ai−1 = c(aa−1) = c1α. Thus c1αa−1 = ai−1a−1 = ai−2. So,
ac = ca = ai, a−1c = ca−1 = ai−2.
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Subcase 1b. ca = cj and we already have a−1c = ai−2. Then

a−1(ca) = a−1cj

= ai−2cj−1

= ai−3aicj−2

= ai−3ai−1aicj−3

= ai−3aia(i−1)(j−2)

= aij−j−1,

and
(a−1c)a = ai−2a = ai−1.

Thus, j(i− 1) = i, it follows that i = j = 2 and then a−1c = 1α. If ca−1 = at then
a−1(ca−1) = at−1, (a−1c)a−1 = a−1. Thus, t = 0 and then ca−1 = 1α and we have
a−1c = 1α. Hence, c(1αc) = ca = c2, (c1α)c = ac = a2, a contradiction. And if
ca−1 = ct then a(ca−1) = act = a2ct−1 = at+1 and (ac)a−1 = a2a−1 = a. Hence
t = 0, a contradiction with t ∈ N. Hence if ac = ai then ac = ca = ai, a−1c =

ca−1 = ai−2.
Case 2. ac = ci.
Subcase 2a. ca = aj and then (ca)a−1 = aja−1 = aj−1, c(aa−1) = c1α. Thus,
c1α = aj−1 and then ca−1 = aj−2. Then

(ac)a−1 = cia−1

= ci−1aj−2

= ci−2ajaj−3

= ci−3ajaj−1aj−3

= ajaj−1a(j−1)(i−3)aj−3

= aij−i−1,

and
a(ca−1) = aaj−2 = aj−1.

Thus, ij − i − 1 = j − 1 and then i = j = 2 and then ca−1 = 1α. If a−1c = at

then a−1(ca−1) = a−1, (a−1c)a−1 = at−1. Thus, t = 0 and then a−1c = ca−1 = 1α.
Hence, c(1αc) = ca = a2, (c1α)c = ac = c2, a contradiction. And if a−1c = ct then
a−1(ca) = a−1a2 = a and (a−1c)a = cta = at+1. Hence t = 0, a contradiction with
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t ∈N.
Subcase 2b. ca = cj. If a−1c = ak then 1αc = ak+1 and then ac = ak+2, a con-
tradiction with the assumption. Now if a−1c = ck then i = j by the associativity
on c(ac). We also have that 1αc = ci+k−1 by the associativity on (aa−1)c and thus
ac = c2i+k−2. Hence, i = 2i+ k− 2, which implies i = k = 1 because i, k ∈N. Since
ca = c, c1α = ca−1 and then ca = ca−1a = c1α = c and then ca−1 = c. Therefore,
ac = ca = a−1c = ca−1 = c.

Lemma 5.5.2. Let Sα be an infinite cyclic group and Sβ a free monogenic semigroup. For
every semigroup S, which is a disjoint union of Sα and Sβ, one of the following cases must
hold.

i) Sα is an ideal in S; or

ii) Sβ is an ideal in S.

PROOF. Directly by Theorem 5.5.1.

Theorem 5.5.3. Let Sα = 〈a, a−1|aa−1 = a−1a = 1α〉 be an infinite cyclic group and let
Sβ = 〈c〉 be a free monogenic semigroup. Every semigroup S, which is a disjoint union of
Sα, Sβ, and Sα is an ideal in S, is a strong semilattice of semigroups.

PROOF. In this case we have a semilattice Y = {α, β} where αβ = βα = α when
SαSβ ⊆ Sα and SβSα ⊆ Sα. We define a homomorphism ψβ,α from the semigroup
Sβ to the group Sα by ψ(c) = ai−1 such that ψα,α and ψβ,β are the identity maps on
Sα and Sβ respectively. Also ψβ,αψα,α = ψβ,α if β ≥ α, ψβ,βψβ,α = ψβ,α if β ≥ α. Now
we have the following:

axcy = ax−1aicy−1

= ax−1ai−1aicy−2

= ax−1a(i−1)(y−1)ai

= ax−1+iy−i−y+1+i

= ay(i−1)+x

and
ψα,α(ax)ψβ,α(cy) = axay(i−1) = ay(i−1)+x.

Thus, axcy in S is equal to ψα,α(ax)ψβ,α(cy) in the semilattice S [Y; {Sα, Sβ}; ψβ,α].
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Analogously,

(a−1)xcy = (a−1)x−1ai−2cy−1

= (a−1)x−1ai−3aicy−2

= (a−1)x−1ai−3aia(i−1)(y−2)

= (a−1)x−1ay(i−1)−1

= (a−1)x−1a−1ay(i−1)

= (a−1)xay(i−1),

and
ψα,α((a−1)x)ψβ,α(cy) = (a−1)xay(i−1).

Thus, (a−1)xcy in S is equal to ψα,α((a−1)x)ψβ,α(cy) in the semilattice S [Y; {Sα, Sβ}; ψβ,α].
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CHAPTER

SIX

CLASSIFICATION OF DISJOINT UNIONS OF TWO

COPIES OF THE FREE SEMIGROUP OF RANK TWO

6.1 Introduction

In Chapters 3, 4, 5, we have described the semigroups which are disjoint unions of
a small number of copies of a group or free monogenic semigroup, we have tried
also to undertake such a classification with free semigroups of higher ranks, but at
present it seems a very hard problem. So in this chapter we restrict our attention
to a special case as follows.

Definition 6.1.1. A balanced semigroup is a semigroup defined by a presentation
of the following form:

〈a, b, c, d | ac = wac, ca = wca, bc = wbc, cb = wcb, ad = wad, da = wda,
bd = wbd, db = wdb 〉

where wx,y ∈ {a, b, c, d}+, |wxy| = 2.

The main topic of this chapter is to describe all possible balanced semigroups
which are disjoint unions of two copies of the free semigroup of rank two, Sα =

〈a, b | 〉 and Sβ = 〈c, d | 〉, but the situation is still quite complicated. However,
we remark that the problem becomes significantly easier if we ask about unions of
free monoids, Sα = 〈a, b | 〉, Sβ = 〈c, d | 〉 and Sα is an ideal. Firstly, notice that
1αwβ = wβ1α where wβ is an arbitrary word in Sβ. Indeed, if 1αwβ = w1, wβ1α = w2

where w1, w2 ∈ Sα, then 1α(wβ1α) = 1αw2 = w2 and (1αwβ)1α = w11α = w1. Thus
w1 = w2 which implies that 1αwβ = wβ1α.
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Now we have a homomorphism ψ from Sβ to Sα with ψ(wβ) = wβ1α because

ψ(wβ1)ψ(wβ2) = wβ11αwβ21α = wβ1wβ21α1α = wβ1wβ21α = ψ(wβ1wβ2),

with two identity maps ψα,α and ψβ,β on Sα and Sβ respectively. Also ψβ,αψα,α =

ψβ,α if β ≥ α ≥ α, ψβ,βψβ,α = ψβ,α if β ≥ β ≥ α. Now clearly

ψβ,α(wβ)ψα,α(wα) = wβ1αwα = wβwα.

Thus S is a semilattice S [Y; {Sα, Sβ}; ψβ,α].

Main Thoerem. Up to isomorphism, every balanced semigroup S is a disjoint union of
two copies of the free semigroup of rank two Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 if and only
if S is isomorphic to the semigroup which is defined by one of the following presentations:

(1)
〈p, q, r, s| pr = r2, rp = r2, qr = sr, rq = rs, ps = rs, sp = sr, qs = s2,

sq = s2 〉.

(2)
〈p, q, r, s| pr = r2, rp = r2, qr = r2, rq = r2, ps = rs, sp = sr, qs = rs,

sq = sr 〉.

(3)
〈p, q, r, s| pr = r2, rp = p2, qr = sr, rq = pq, ps = rs, sp = qp, qs = s2,

sq = q2 〉.

(4)
〈p, q, r, s| pr = s2, rp = q2, qr = rs, rq = qp, ps = sr, sp = pq, qs = r2,

sq = p2 〉.

(5)
〈p, q, r, s| pr = p2, rp = r2, qr = qp, rq = rs, ps = pq, sp = sr, qs = q2,

sq = s2 〉.

(6)
〈p, q, r, s| pr = q2, rp = s2, qr = pq, rq = sr, ps = qp, sp = rs, qs = p2,

sq = r2 〉.

This Chapter is devoted to proving this Theorem. Firstly, we classify all bal-
anced semigroups which are disjoint unions of two copies of the free semigroup
of rank two, and then we find - after some long proofs - that there are just six such
balanced semigroups. In two of these semigroups Sα is an ideal in S. In two of
these semigroups Sα, Sβ are left ideals in S and in two of these semigroups Sα, Sβ

are right ideals in S.
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Lemma 6.1.2. Let A = {a, b, c, d} be a set. Let < be a set of relations on A+. Let ρ be the
smallest congruence on A+ generated by <. Let ϕ : A → T be a mapping where T is a
free semigroup of rank two and let ψ : A+ → T be the unique homomorphism determined
by ϕ. If ρ ⊆ ker ψ then 〈a/ρ〉 ∪ 〈b/ρ〉 is an infinite subsemigroup of A+/ρ.

PROOF. Since ρ ⊆ ker ψ we have that the mapping ψ : A+/ρ → T defined by
ψ(w/ρ) = ψ(w) is a homomorphism by Theorem 1.3.2. Since a homomorphism
maps elements of finite order to elements of finite order and there is no element of
finite order in T, it follows that 〈a/ρ〉 ∪ 〈b/ρ〉must have infinite order in A+/ρ.

Lemma 6.1.3. Suppose that S′ is a semigroup which is a disjoint union of two copies of
the free semigroup of rank two 〈a, b| 〉, 〈c, d| 〉 and S′ is defined by the presentation

〈a, b, c, d| xy = zi〉

where x, y, z ∈ {a, b, c, d}, i ∈ N. Then if S is a semigroup which is a disjoint union of
two copies of the free monogenic semigroup and S is satisfied relations in the presentation
then S′ ∼= S.

PROOF. Since S is satisfied relations in the presentation then S is a homomorphic
image of S′ by Proposition 1.6.2. If it is a proper homomorphic image then there
is without loss of generality u1 and u2 ∈ 〈a, b| 〉 or u and v in 〈a, b| 〉 and 〈c, d| 〉
respectively such that u1 = u2 or u = v which contradicts with the fact that there is
no element in the free semigroup of rank two is of finite order or contradicts with
〈a, b| 〉 ∩ 〈c, d| 〉 = ∅. Thus S′ ∼= S.

6.2 Six balanced semigroups

Theorem 6.2.1. Let S′ be a semigroup which is defined by the presentation

〈a, b, c, d | ac = c2, ca = c2, bc = dc, cb = cd, ad = cd, da = dc, bd = d2, db = d2 〉.

Let S be a semigroup which is a homomorphic image of S′. Then S is a disjoint union of
two copies of the free semigroup of rank two, 〈p, q | 〉 and 〈r, s | 〉 if and only if S ∼= S′.

PROOF. (⇒) Since S is a homomorphic image of S′, S ∼= S′ by Lemma 6.1.3.
(⇐) Suppose that S ∼= S′ and we want to show that S′ is a disjoint union of two
copies of the free semigroup of rank two. Let w be a word in S′. Then, if w does
not have any letter from 〈c, d| 〉 then w will be a word in 〈a, b| 〉 and if w has at
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least one letter from 〈c, d| 〉 then w will be in 〈c, d| 〉, which means that each word
in the semigroup S′ consists of a’s and b’s or c’s and d’s. Thus

〈a, b, c, d | ac = c2, ca = c2, bc = dc, cb = cd, ad = cd, da = dc, bd = d2, db = d2 〉

{wi : wi word in a′s and b′s} ∪ {wi : wi word in c′s and d′s} = Sα ∪ Sβ.

Secondly, as a result of not having a relation which can be applied to a word
from {a, b}+, we have Sα ∩ Sβ = ∅ and Sα is free.

Thirdly, we show that Sβ is free as well. Let ϕ be a mapping from {a, b, c, d}
to the free semigroup T generated by f and g with ϕ(a) = f , ϕ(b) = g, ϕ(c) =

f , ϕ(d) = g and then there exists a homomorphism ψ : {a, b, c, d}+ → T since
{a, b, c, d}+ is the free semigroup on {a, b, c, d} and ψ uniquely determined by the
images of the generators a, b, c, d by Proposition 1.6.1. Observe that

ψ(ac) = ψ(a)ψ(c) = f f = f 2 = ψ(c2),

and similarly with ca, bc, cb, ad, da, bd, db, from which we deduce that

< = {ac = ca = c2, bc = dc, cb = cd, ad = cd, da = dc, bd = db = d2} ⊆ kerψ.

Hence, ρ ⊆ kerψ where ρ is the smallest congruence generated by <. Therefore, by
Lemma 6.1.2 all elements of semigroup Sα t Sβ are distinct as required.

Corollary 6.2.2. The semigroup S which is a disjoint union of two copies of the free semi-
group of rank two, Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 with

ac = dc, ca = cd, bc = c2, cb = c2, ad = d2, da = d2, bd = cd, db = dc,

is isomorphic to the semigroup which is defined in Theorem 6.2.1.

PROOF. The semigroup S1 which is defined in Theorem 6.2.1 has the relations

ac = c2, ca = c2, bc = dc, cb = cd, ad = cd, da = dc, bd = d2, db = d2,

and the semigroup S2 which is defined in the Corollary 6.2.2 has the relations

ac = dc, ca = cd, bc = c2, cb = c2, ad = d2, da = d2, bd = cd, db = dc.

The proof is straightforward by just replacing c by d and d by c in S1.Thus the
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semigroup S1 is isomorphic to the semigroup S2.

Theorem 6.2.3. Let S′ be a semigroup which is defined by the presentation

〈a, b, c, d | ac = ca = bc = cb = c2, ad = cd, da = dc, bd = cd, db = dc〉.

Let S be a semigroup which is a homomorphic image of S′. Then S is a disjoint union of
two copies of the free semigroup of rank two, 〈p, q | 〉 and 〈r, s | 〉 if and only if S ∼= S′.

PROOF. Similarly to the proof of Theorem 6.2.1 we can prove that

〈a, b, c, d | ac = ca = bc = cb = c2, ad = cd, da = dc, bd = cd, db = dc 〉

= {wi : wi word in a′s and b′s} ∪ {wi : wi word in c′s and d′s} = Sα ∪ Sβ

and Sα ∩ Sβ = ∅ and Sα is free. The last step is the same as the last step in the
same proof but we define the mapping from {a, b, c, d} to the free semigroup T
generated by f and g with ϕ(a) = f , ϕ(b) = f , ϕ(c) = f , ϕ(d) = g.

Corollary 6.2.4. The semigroup S which is a disjoint union of two copies of the free semi-
group of rank two, Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 with

ac = dc, ca = cd, bc = dc, cb = cd, ad = da = bd = db = d2,

is isomorphic to the semigroup which is defined in Theorem 6.2.3.

PROOF. The semigroup S1 which is defined in Theorem 6.2.3 has the relations

ac = ca = bc = cb = c2, ad = cd, da = dc, bd = cd, db = dc,

and the semigroup S2 which is defined in the Corollary 6.2.4 has the relations

ac = dc, ca = cd, bc = dc, cb = cd, ad = da = bd = db = d2.

The proof is just by replacing c by d and d by c in S1. Thus the semigroup S1 is
isomorphic to the semigroup S2.

Theorem 6.2.5. Let S′ be a semigroup which is defined by the presentation

〈a, b, c, d | ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2 〉.
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Let S be a semigroup which is a homomorphic image of S′. Then S is a disjoint union of
two copies of the free semigroup of rank two, 〈p, q | 〉 and 〈r, s | 〉 if and only if S ∼= S′.

PROOF. (⇒) Since S is a homomorphic image of S′, S ∼= S′ by Lemma 6.1.3.
(⇐) Suppose that S ∼= S′ and we want to show that S′ is a disjoint union of two
copies of the free semigroup of rank two. Firstly, we want to show that xiyj = w
where x, y are in {a, b, c, d} and w is a word in Sα or Sβ.

x y xiyj

a a ai+j

b a biaj

c a ciaj = ai+j

d a diaj = di−1baaj−1 = di−1baj = · · · = biaj

a b aibj

b b bi+j

c b cibj = ci−1abbj−1 = · · · = aibj

d b dibj = bi+j

a c aicj = ci+j

b c bicj = bi−1dccj−1 = · · · = dicj

c c ci+j

d c dicj

a d aidj = ai−1cddj−1 = · · · = cidj

b d bidj = di+j

c d cidj

d d di+j

Table 6.1: The multiplication of xi and yj where x, y ∈ {a, b, c, d} in the presentation
〈a, b, c, d | ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2 〉

Claim: For every word w ∈ {a, b}+, we have wc = w′ ∈ {c, d}+ and wd = w′′ ∈
{c, d}+.
Proof: We prove the claim by induction on |w|. So if |w| = 1 then it is obvious.
Assume that the statement holds for every k ≤ n. Thus if |w| = k + 1 and w = ua
then

uac = uc2 = (uc)c = u′c ∈ {c, d}+ and uad = ucd = (uc)d = u′′d ∈ {c, d}+,
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this is when w ends with a and similarly when w ends with b. Analogously, when
w ∈ {c, d}+. So each word of our presentation is entirely in Sα or Sβ as required.

Secondly, each word in Sα ends with a or b and each word in Sβ ends with c
or d. So once you have a word in Sα ends with a then all words which equal to
this word will have the same end a by the presentation. Similarly if the word ends
with b. Analogously if the word is in Sβ and then Sα ∩ Sβ = ∅.

Thirdly, analogous to the proof of the third part of Theorem 6.2.1, we define
the mapping from {a, b, c, d} to the free semigroup T generated by f and g with
ϕ(a) = f , ϕ(b) = g, ϕ(c) = f , ϕ(d) = g which shows that all elements of Sα t Sβ

are distinct.

Corollary 6.2.6. The semigroup S which is a disjoint union of two copies of the free semi-
group of rank two, Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 with

ac = dc, ca = ba, bc = c2, cb = b2, ad = d2, da = a2, bd = cd, db = ab,

is isomorphic to the semigroup which is defined in Theorem 6.2.5.

PROOF. The semigroup S1 which is defined in Theorem 6.2.5 has the relations

ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2,

and the semigroup S2 which is defined in the Corollary 6.2.6 has the relations

ac = dc, ca = ba, bc = c2, cb = b2, ad = d2, da = a2, bd = cd, db = ab.

Now just by replacing c by d and d by c in S1 we have that the semigroup S1 is
isomorphic to the semigroup S2.

Theorem 6.2.7. Let S′ be a semigroup which is defined by the presentation

〈a, b, c, d | ac = d2, ca = b2, bc = cd, cb = ba, ad = dc, da = ab, bd = c2, db = a2 〉.

Let S be a semigroup which is a homomorphic image of S′. Then S is a disjoint union of
two copies of the free semigroup of rank two, 〈p, q | 〉 and 〈r, s | 〉 if and only if S ∼= S′.

PROOF. (⇒) Since S is a homomorphic image of S′, S ∼= S′ by Lemma 6.1.3.
(⇐) Suppose that S ∼= S′ and we want to show that S′ is a disjoint union of two
copies of the free semigroup of rank two. Firstly, we want to show that xiyj = w
where x, y are in {a, b, c, d} and w is a word in Sα or Sβ.
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x y xiyj

a a ai+j

b a biaj

c a ciaj = ci−1b2aj−1 = ci−2babaj−1 = · · · = bai−1baj−1 = w ∈ Sα

d a diaj = di−1abaj−1 = di−2abbaj−1 = · · · = abiaj−1 = w ∈ Sα

a b aibj

b b bi+j

c b cibj = ci−1babj−1 = ci−2baabj−1 = · · · = baibj−1 = w ∈ Sα

d b dibj = di−1a2bj−1 = di−2ababj−1 = · · · = abi−1abj−1 = w ∈ Sα

a c aicj = ai−1d2cj−1 = ai−2dcdcj−1 = · · · = dci−1dcj−1 = w ∈ Sβ

b c bicj = bi−1cdcj−1 = bi−2cddcj−1 = · · · = cdicj−1 = w ∈ Sβ

c c ci+j

d c dicj

a d aidj = ai−1dcdj−1 = ai−2dccdj−1 = · · · = dcidj−1 = w ∈ Sβ

b d bidj = bi−1c2dj−1 = bi−2cdcdj−1 = · · · = cdi−1cdj−1 = w ∈ Sβ

c d cidj

d d di+j

Table 6.2: The multiplication of xi and yj where x, y ∈ {a, b, c, d} in the presentation
〈a, b, c, d | ac = d2, ca = b2, bc = cd, cb = ba, ad = dc, da = ab, bd = c2, db = a2 〉

Claim: For every word w ∈ {a, b}+, we have wc = w′ ∈ {c, d}+ and wd = w′′ ∈
{c, d}+.
Proof: We prove the claim by induction on |w|. So if |w| = 1 then it is obvious.
Assume that the statement holds for every k ≤ n. Thus if |w| = k + 1 and w = ua
then

uac = ud2 = (ud)d = u′d ∈ {c, d}+ and uad = udc = (ud)c = u′′c ∈ {c, d}+,

this is when w ends with a and similarly when w ends with b. Analogously when
w ∈ {c, d}+. So each word of our presentation is entirely in Sα or Sβ as required.

Secondly, each word in Sα ends with a or b and each word in Sβ ends with c or
d as we have explained this previously, and then Sα ∩ Sβ = ∅.

Now we want to show that all elements of Sα t Sβ are distinct. In this semi-
group we could not follow the same technique of the previous theorems.
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So we let W = {a, b}+ ∪ {c, d}+, define mappings τa, τb, τc, τd on W as follows:

τa(w) =


aw if w ∈ {a, b}+;
d2w′ if w = cw′ ∈ {c, d}+;
dcw′ if w = dw′ ∈ {c, d}+.

, τb(w) =


bw if w ∈ {a, b}+;
cdw′ if w = cw′ ∈ {c, d}+;
c2w′ if w = dw′ ∈ {c, d}+.

τc(w) =


b2w′ if w = aw′ ∈ {a, b}+;
baw′ if w = bw′ ∈ {a, b}+;
cw if w ∈ {c, d}+.

, τd(w) =


abw′ if w = aw′ ∈ {a, b}+;
a2w′ if w = bw′ ∈ {a, b}+;
dw if w ∈ {c, d}+.

We will abbreviate the above information by means of arrays: aw
d2w′

dcw′

 ,

 bw
cdw′

c2w′

 ,

b2w′

baw′

cw

 ,

abw′

a2w′

dw

 .

Now we show that all the compositions of all these mappings satisfy our relations
in the presentation. So we have to check eight relations,
τaτc = τdτd, τcτa = τbτb, τbτc = τcτd, τcτb = τbτa, τaτd = τdτc, τdτa = τaτb,
τbτd = τcτc, τdτb = τaτa. I explain the first relation in detail and the same with
remaining relations.

τaτc(w) = τa

b2w′

baw′

cw

 .

Then by the definition of τa we replace each w ∈ {a, b}+ by aw and each w ∈
{c, d}+ starts with c by d2w′ or starts with d by dcw′ as

τa(b2w′) = ab2w′, τa(baw′) = abaw′, τa(cw) = d2w,

and then we put these values in an array as

ab2w′

abaw′

d2w

 . Similarly

τdτd(w) = τd

abw′

a2w′

dw

 =

ab2w′

abaw′

d2w

 .
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τcτa(w) = τc

 aw
d2w′

dcw′

 =

 b2w
cd2w′

cdcw′

 = τb

 bw
cdw′

c2w′

 = τbτb(w).

τbτc(w) = τb

b2w′

baw′

cw

 =

 b3w′

b2aw′

cdw

 = τc

abw′

a2w′

dw

 = τcτd(w).

τcτb(w) = τc

 bw
cdw′

c2w′

 =

 baw
c2dw′

c3w′

 = τb

 aw
d2w′

dcw′

 = τbτa(w).

τaτd(w) = τa

abw′

a2w′

dw

 =

a2bw′

a3w′

dcw

 = τd

b2w′

baw′

cw

 = τdτc(w).

τdτa(w) = τd

 aw
d2w′

dcw′

 =

 abw
d3w′

d2cw′

 = τa

 bw
cdw′

c2w′

 = τaτb(w).

τbτd(w) = τb

abw′

a2w′

dw

 =

babw′

ba2w′

c2w

 = τc

b2w′

baw′

cw

 = τcτc(w).

τdτb(w) = τd

 bw
cdw′

c2w′

 =

 a2w
dcdw′

dc2w′

 = τa

 aw
d2w′

dcw′

 = τaτa(w).

Therefore we can define a homomorphism φ from S to the semigroup 〈τa, τb, τc, τd〉
as φ(a) = τa, φ(b) = τb, φ(c) = τc, φ(d) = τd and hence if u, v, w ∈ {a, b}+

then τu(w) = uw and τv(w) = vw. Thus τu(w) 6= τv(w) which implies τu 6= τv.
Therefore u 6= v for every u, v ∈ {a, b}+. Similarly for every u, v ∈ {c, d}+.

Corollary 6.2.8. The semigroup S which is a disjoint union of two copies of the free semi-
group of rank two, Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 with

ac = cd, ca = ab, bc = d2, cb = a2, ad = c2, da = b2, bd = dc, db = ba,

is isomorphic to the semigroup which is defined in Theorem 6.2.7.
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PROOF. The semigroup S1 which is defined in Theorem 6.2.7 has the relations

ac = d2, ca = b2, bc = cd, cb = ba, ad = dc, da = ab, bd = c2, db = a2,

and the semigroup S2 which is defined in the Corollary 6.2.8 has the relations

ac = cd, ca = ab, bc = d2, cb = a2, ad = c2, da = b2, bd = dc, db = ba.

Thus by replacing c by d and d by c in S1 the semigroup S1 is isomorphic to the
semigroup S2.

Notice that in the two Theorems (6.2.5, 6.2.7) , Sα and Sβ are left ideals. In the two
following theorems Sα and Sβ are right ideals.

Theorem 6.2.9. Let S′ be a semigroup which is defined by the presentation

〈a, b, c, d | ac = a2, ca = c2, bc = ba, cb = cd, ad = ab, da = dc, bd = b2, db = d2 〉.

Let S be a semigroup which is a homomorphic image of S′. Then S is a disjoint union of
two copies of the free semigroup of rank two, 〈p, q | 〉 and 〈r, s | 〉 if and only if S ∼= S′.

PROOF. The proof is similar to the proof of Theorem 6.2.5.

Corollary 6.2.10. The semigroup S which is a disjoint union of two copies of the free
semigroup of rank two, Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 with

ac = ab, ca = cd, bc = b2, cb = c2, ad = a2, da = d2, bd = ba, db = dc,

is isomorphic to the semigroup which is defined in Theorem 6.2.9.

PROOF. Analogously to the proof of Corollary 6.2.6.

Theorem 6.2.11. Let S′ be a semigroup which is defined by the presentation

〈a, b, c, d | ac = b2, ca = d2, bc = ab, cb = dc, ad = ba, da = cd, bd = a2, db = c2 〉.

Let S be a semigroup which is a homomorphic image of S′. Then S is a disjoint union of
two copies of the free semigroup of rank two, 〈p, q | 〉 and 〈r, s | 〉 if and only if S ∼= S′.

PROOF. Similarly to the proof of Theorem 6.2.7.
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Corollary 6.2.12. The semigroup S which is a disjoint union of two copies of the free
semigroup of rank two, Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 with

ac = ba, ca = dc, bc = a2, cb = d2, ad = b2, da = c2, bd = ab, db = cd,

is isomorphic to the semigroup which is defined in Theorem 6.2.11.

PROOF. Analogously to the proof of Corollary 6.2.8.

6.3 Preliminary, technical results

Lemma 6.3.1. Suppose that S is a balanced semigroup generated by {a, b, c, d}. If we have
either of the following:

i) xy = y′y, x′y′ = x′x; or

ii) xy = y′y, x′y′ = x2, xy′ = x′x;

for some x, x′ ∈ {a, b} and y, y′ ∈ {c, d} where (x, y) 6= (x′, y′), then S is not a disjoint
union of Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉.

PROOF. Notice that the only words equal to the word x′y′y are x′xy, x2y, xy′y. Nei-
ther of them belongs to Sα t Sβ.

Now we introduce the basic theorem in this chapter which enables us to clas-
sify the balanced semigroups under consideration.

Theorem 6.3.2. Suppose that Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 are two copies of the free
semigroup of rank two. Suppose that S is a balanced semigroup which is a disjoint union
of Sα and Sβ. Then

i) If ac = c2 then ca = a2 or c2 and the two products bc, ad belong to Sβ.

ii) If ac = dc then ca = ba or cd and the two products bc, ad belong to Sβ.

iii) If ac = d2 then ca = b2 and the two products bc, ad belong to Sβ.

iv) If ac = cd then ca = ab and the two products bc, ad belong to Sβ.

PROOF. Before starting the proof notice that when we say S is not a disjoint union
of Sα and Sβ we mean this by using Lemma 6.3.1. We firstly divide (i) into three
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parts and prove each part separately.
Part 1: If ac = c2 then ca = a2 or c2.
Suppose that ac = c2. Then ca ∈ {ab, ba, b2, a2, c2} because c(ac) = c3 and by asso-
ciativity, (ca)c must be c3, which means that ca /∈ {d2, dc, cd}. So, ca ∈ {ab, ba, b2, a2, c2}.
Case 1: ca = ab. Then a(ca) = aab = a2b and (ac)a = c2a = cab = ab2. Thus
a(ca) 6= (ac)a and then ca 6= ab.
Case 2: ca = ba. Then (ca)c = bac = bc2 and then bc /∈ {d2, cd, dc} by the fact that
c(ac) = c3. Thus bc ∈ {b2, ab, ba, a2, c2}.
Subcase 2a. bc = b2. Then b2c = b3 and then bc2 = b3, a contradiction.
Subcase 2b. bc = ab. Then bc2 = abc = a2b, a contradiction.
Subcase 2c. bc = ba. Then bac = bc2 = bac. Hence S is not a disjoint union of Sα

and Sβ.
Subcase 2d. bc = a2. Then b(ca) = b2a and (bc)a = a2a = a3, a contradiction.
Subcase 2e. bc = c2. Then we have b(ca) = b2a and (bc)a = c2a = (cb)a. To get
that b(ca) = (bc)a, cb /∈ {a2, ab, ba} and in addition cb 6= c2 because if this hap-
pened we get (cb)a = c2a = cba = c2a which implies that S is not a disjoint union
of Sα and Sβ, a contradiction. That means cb ∈ {b2, d2, cd, dc} but this impossible
because if cb = b2 then a(ca) = aba and (ac)a = c2a = cba = b2a. So, a(ca) 6= (ac)a.
Similarly, if cb ∈ {d2, cd, dc} then c(bc) = c3 and (cb)c = d2c, cdc, dc2 respectively,
which implies that c(bc) 6= (cb)c.
Case 3: ca = b2. Then a(ca) = ab2 and (ac)a = c2a = cb2 = (cb)b. Therefore,
cb /∈ {a2, b2, ba, c2, dc}. There remains three possible values for cb and they are
{ab, d2, cd}.
Subcase 3a. cb = ab. Then a(cb) = a2b and (ac)b = c2b = cab = b3 and then
a(cb) 6= (ac)b.
Subcase 3b. cb ∈ {d2, cd}. Then c(ac) = c3 and (ca)c = b2c = b(bc). Hence,
bc /∈ {a2, b2, ab, ba, cd} because b(bc) ∈ {ba2, b3, bab, b2a, cd2} respectively. That im-
plies bc ∈ {dc, d2, c2} and then c(bc) ∈ {cdc, cd2, c3} respectively but we know that
cb ∈ {d2, cd} and then (cb)c ∈ {d2c, cdc} respectively. Therefore, cb = cd, bc =

dc. Then a(ca) = ab2 and (ac)a = c2a = cb2 = cdb which implies that db /∈
{a2, ab, c2, d2, cd, dc} because cdb ∈ {b2a, b3, c3, cd2, c2d, cdc} respectively, a contra-
diction with a(ca) = ab2. In addition, if db = b2 then cdb = cb2 = cdb which means
that S is not a disjoint union of Sα and Sβ, a contradiction. The last potential value
for db is ba but even this, is impossible because b(ca) = b3 and (bc)a = dca =

db2 = bab it follows that b(ca) 6= (bc)a. Finally, ca /∈ {b2, ab, ba, d2, dc, cd}. There-
fore, ca = a2 or ca = c2.
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Part 2: If ac = c2 then bc ∈ Sβ in the two cases.
Case 1: ac = c2, ca = c2. Suppose that bc is a word in Sα and then we get a
contradiction by the following:

bc = a2 =⇒ b(ca) = bc2 = a2c = ac2 = c3, (bc)a = a3,

bc = b2 =⇒ b(ca) = bc2 = b2c = b3, (bc)a = b2a,

bc = ab =⇒ b(ca) = bc2 = abc = a2b, (bc)a = aba,

bc = ba =⇒ b(ca) = bc2 = bac = bc2 = bac, (bc)a = ba2.

Thus bc ∈ Sβ.
Case 2: ac = c2, ca = a2. Suppose that bc is a word in Sα then b(ca) = ba2 and by
the associativity on (bc)a, bc = ba but b(ac) = bc2 = (ba)c and so S is not a disjoint
union of Sα and Sβ. It follows that bc /∈ Sα and hence bc ∈ Sβ.

Part 3: If ac = c2 then ad ∈ Sβ in the two cases.
Case 1: ac = c2, ca = c2. Suppose that ad ∈ Sα. We have already proved that bc ∈
Sβ and by symmetry, the word cb is in Sβ as well. So that means bc = wc,d, cb = w′c,d
and then c(bc) = cwc,d, (cb)c = w′c,dc. Thus, wc,d ends with the letter c and w′c,d
starts with the letter c and hence we have two possibilities here, bc = cb = c2

or bc = dc, cb = cd. However, in the first possibility we have (ca)d = c2d and
c(ad) = c3 for every ad ∈ {a2, b2, ab, ba}, a contradiction. In the second possibility
we have (ca)d = c2d and c(ad) = c3 where ad = a2, a contradiction. Hence, if
ad = ab then we have adc = abc = adc which implies that S is not a disjoint union
of Sα and Sβ. Therefore, ad ∈ {b2, ba} and then (ad)a ∈ {b2a, ba2} respectively.
Thus, by the associativity on a(da), we have da /∈ {a2, b2, ab, ba, c2, cd}, that means
da must start with d. So da ∈ {d2, dc}. At this stage we have so far the following
relations:

ac = ca = c2, bc = dc, cb = cd, ad ∈ {ba, b2}, da ∈ {d2, dc}.

Subcase 1a. ad = ba, da = d2. Then (ad)a = ba2, a(da) = ad2 = bad = b2a, a
contradiction.
Subcase 1b. ad = ba, da = dc. Then (ad)a = ba2, a(da) = adc = bac = bc2 = dc2, a
contradiction. Thus, ad 6= ba.
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Subcase 1c. ad = b2, da = d2. Then (ad)a = b2a, a(da) = ad2 = b2d and bd = ba be-
cause if bd ∈ {a2, b2, ab, c2, cd, d2, dc} then (ad)a 6= a(da), but (bd)a = ba2, b(da) =
bd2 = bad = b3, a contradiction.
Subcase 1d. ad = b2, da = dc. Then (ad)b = b3 and by the associativity on a(db),
we have db /∈ Sα ∪ {c2, cd} and hence db ∈ {d2, dc}. If db = d2 then by Theorem
6.3.2(i), bd = b2 or d2 but if bd = b2 then b2c = bdc = b2c then S is not a disjoint
union of Sα and Sβ and if bd = d2 then a(db) = ad2 = b2d = bd2 = d3, (ad)b = b3,
a contradiction in the both cases. Therefore, the last potential possible is db = dc
and then we have (ad)b = b3, a(db) = adc = b2c = bdc, that means bd /∈ Sβ and

bd = a2 =⇒ bdc = a2c = ac2 = c3,

bd = b2 =⇒ bdc = b2c = bdc = b2c,

bd = ab =⇒ bdc = abc = adc = b2c = bdc,

bd = ba =⇒ bdc = bac = bc2 = dc2,

a contradiction in each case. Thus the word ad ∈ Sβ as required.

Case 2: ac = c2, ca = a2. By the same technique, we start by assuming that ad ∈ Sα,
which means ad ∈ {a2, ba, b2, ab} and then by Theorem 6.3.2(i) and symmetry,
bc ∈ Sβ and cb ∈ Sα.
Subcase 2a. ad = a2, it follows that da = a2 or d2 by Theorem 6.3.2(i). Hence,
d(ac) = dc2, (da)c ∈ {c3, d2c} respectively, a contradiction. Therefore, ad 6= a2.
Subcase 2b. ad = ba. Then (ca)d = a2d = aba, c(ad) = cba and thus cb = ab
where cb ∈ Sα. So,

bc = c2 =⇒ b(cb) = bab, (bc)b = c2b = cab = a2b,

bc = d2 =⇒ c(bc) = cd2, (cb)c = abc = ad2 = bad = b2a,

bc = dc =⇒ c(bc) = cdc, (cb)c = abc = adc = bac = bc2 = dc2,

a contradiction in each case and also we have

bc = cd =⇒ b(cb) = bab, (bc)b = cdb =⇒ db /∈ Sβ =⇒ db ∈ Sα,

but (ad)b = bab and by a(db) we must have db /∈ Sα, a contradiction. Thus ad 6= ba.
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Subcase 2c. ad = b2. Then (ca)d = a2d = ab2, c(ad) = cb2 = (cb)b =⇒ cb = ab.

bc = c2 =⇒ b(cb) = bab, (bc)b = c2b = cab = a2b,

a contradiction.

bc = cd =⇒ b(cb) = bab, (bc)b = cdb =⇒ db ∈ Sα,

but (ad)b = b3 and by a(db) we must have db /∈ Sα, a contradiction.

Also if bc = dc then (ad)a = b2a but by a(da) we have da ∈ Sβ and since d(ac) =
dc2, and by (da)c, we have da = dc. In addition

(ad)a = b2a, a(da) = adc = b2c = bdc =⇒ bd ∈ Sα.

So
bd = a2 =⇒ bdc = a2c = ac2 = c3 =⇒ (ad)a 6= a(da),

bd = b2 =⇒ bdc = b2c = bdc =⇒ S is not a disjoint union of Sα and Sβ,

bd = ab =⇒ bdc = abc = adc = b2c = bdc =⇒ S is not a disjoint union of Sα and Sβ,

bd = ba =⇒ bdc = bac = bc2 = dc2 =⇒ (ad)a 6= a(da),

a contradiction.

The last possibility is bc = d2. Then

b(cb) = bab, (bc)b = d2b = d(db) =⇒ db ∈ Sα,

but (ad)b = b3 and by a(db) we have db /∈ Sα, a contradiction. Therefore, ad 6= b2.
Subcase 2d. ad = ab. Then

ad = ab =⇒ (ad)b = ab2, and by a(db), db ∈ {b2} ∪ Sβ.

Then
db = c2 =⇒ a(db) = ac2 = c3,

db = cd =⇒ a(db) = acd = c2d,

a contradiction. Now if db = d2 then by Theorem 6.3.2(i), bd ∈ {b2, d2} and then
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(db)c = d2c and by d(bc) we have bc = dc. Thus (ad)b = ab2 and a(db) = ad2 =

abd = ab2 or ad2 = abd = ad2 in which the latter means that S is not a disjoint union
of Sα and Sβ which implies that bd = b2 and this contradicts with b2c = bdc = b2c.
Therefore, db 6= d2.

If db = dc then we have (db)c = dc2 and by d(bc) we have bc = c2 but (ad)b = ab2

and a(db) = adc = abc = ac2 = c3, a contradiction. Hence, bd 6= dc.

If db = b2 then by Theorem 6.3.2(i), bd ∈ {b2, d2} but the possibility of bd = d2 is
rejected because a(bd) = ad2 = abd and then S is not a disjoint union of Sα and Sβ.
Thus bd = b2. However, d(bc) = dwc,d and (db)c = b2c = bwc,d. Thus,

bc = c2 =⇒ b2c = bc2 = c3,

bc = cd =⇒ b2c = bcd = cd2,

bc = d2 =⇒ b2c = bd2 = b2d = b3,

bc = dc =⇒ b2c = bdc = b2c,

a contradiction in each case. Therefore, db 6= b2 and hence ad 6= ab. So ad ∈ Sβ.
ii, iii, iv are proved analogously.

6.4 Classification of balanced semigroups

Corollary 6.4.1. Suppose that Sα, Sβ are two copies of the free semigroup of rank two. For
every balanced semigroup S, which is a disjoint union of Sα and Sβ, one of the following
must hold:

i) Sβ is an ideal in S.

ii) Sα and Sβ are left ideals.

iii) Sα and Sβ are right ideals.

PROOF. Directly by Theorem 6.3.2.

Theorem 6.4.2. Up to isomorphism, every balanced semigroup S is a disjoint union of
two copies of the free semigroup of rank two Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 if and only
if S is isomorphic to the semigroup which is defined by one of the following presentations:
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(1)
〈p, q, r, s| pr = r2, rp = r2, qr = sr, rq = rs, ps = rs, sp = sr, qs = s2,

sq = s2 〉.

(2)
〈p, q, r, s| pr = r2, rp = r2, qr = r2, rq = r2, ps = rs, sp = sr, qs = rs,

sq = sr 〉.

(3)
〈p, q, r, s| pr = r2, rp = p2, qr = sr, rq = pq, ps = rs, sp = qp, qs = s2,

sq = q2 〉.

(4)
〈p, q, r, s| pr = s2, rp = q2, qr = rs, rq = qp, ps = sr, sp = pq, qs = r2,

sq = p2 〉.

(5)
〈p, q, r, s| pr = p2, rp = r2, qr = qp, rq = rs, ps = pq, sp = sr, qs = q2,

sq = s2 〉.

(6)
〈p, q, r, s| pr = q2, rp = s2, qr = pq, rq = sr, ps = qp, sp = rs, qs = p2,

sq = r2 〉.

PROOF. (⇒) Let S be a semigroup which is a disjoint union of Sα, Sβ. Firstly, by
Corollary 6.4.1 we start with the ideal case. So let Sβ be an ideal in S. If ac = c2

then ca = c2 and then all the words bc, cb, ad, da, bd, db are in Sβ by Theorem 6.3.2.
Then c(ad) = cwad, (ca)d = c2d and that implies wad = ad = cd by associativity.
Hence da = dc by Theorem 6.3.2. Also, d(bc) = dwbc and (db)c = wdbc, which
means that the word wbc ends with the letter c and the word wdb starts with the
letter d. So there are two possibilities, wbc = c2 or dc and wdb = d2 or dc and then
if wbc = c2 that gives us wdb = dc by associativity, and if wbc = dc that implies
wdb = d2 and after that we can continue to get cb and bd. So when wbc = c2 that
means cb = c2 and bd = cd and when wbc = dc that means cb = cd and bd = d2 by
Theorem 6.3.2. So we have two types of semigroups when Sβ is an ideal. The first
type is the semigroup S with relations

ac = ca = c2, bc = cb = c2, ad = cd, da = dc, bd = cd, db = dc,

and this type of S is defined by the presentation

〈a, b, c, d |ac = ca = c2, bc = cb = c2, ad = cd, da = dc, bd = cd, db = dc〉

by Theorem 6.2.3 . The second type is the semigroup S with the relations

ac = ca = c2, bc = dc, cb = cd, ad = cd, da = dc, bd = d2, db = d2,
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and this type is defined by the presentation

〈a, b, c, d |ac = ca = c2, bc = dc, cb = cd, ad = cd, da = dc, bd = db = d2〉

by Theorem 6.2.1 . If ac = dc then see Remark 6.4.3 below. This proves (1) and (2).

Secondly, the left ideal case. So let Sα and Sβ be left ideals in S. If ac = c2 then
ca = a2 and the words bc, ad, bd are in Sβ, cb, da, db are in Sα by Theorem 6.3.2.
Now by b(ca) = ba2, (bc)a = wbca, wbc must be equal to one of cd, dc, or d2. But if
bc = cd then cb = ba by Theorem 6.3.2, and this contradicts with the associativity
on c(bc). Similarly if bc = d2 then cb = a2 and then c(bc) 6= (cb)c. Thus bc must be
equal to dc and hence cb = ab by Theorem 6.3.2, and then da = ba because b(cb) =
bab, (bc)b = dcb = dab and as a result of da ∈ Sα, da = ba. So ad = cd by Theorem
6.3.2. Finally, d(bc) = d2c, (db)c = wdbc and db ∈ Sα. So db ∈ {ab, ba, a2, b2} but
if db ∈ {ab, ba, a2} then we have d(bc) 6= (db)c. Thus db = b2 and that implies
bd = d2 by Theorem 6.3.2. Therefore we have the semigroup which is defined by
the presentation

〈a, b, c, d | ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2 〉

by Theorem 6.2.5. This proves (3).
If ac = cd then ca = ab and the words bc, ad, bd ∈ Sβ, cb, da, db ∈ Sα by

Theorem 6.3.2. Now by d(ac) = dcd, (da)c = wdac, da ∈ {ab, ba, b2}. So we study
each case separately. Starting with da = ab and then ad = dc by Theorem 6.3.2, but
a(da) = a2b, (ad)a = dca = dab = ab2 and so a(da) 6= (ad)a. And if da = ba then
ad = cd by Theorem 6.3.2, but a(da) = aba, (ad)a = cda = cba and then cb = ab
and that implies bc = dc by Theorem 6.3.2, but by a(ca) = a2b, (ac)a = cda =

cba = aba. Then a(ca) 6= (ac)a. Therefore, it just remains for us da = b2 and then
ad = c2 by Theorem 6.3.2. So c(ad) = c3, (ca)d = abd and bd is a word in Sβ. If
bd = c2 that implies (ca)d = abd = ac2 = cdc which contradicts with c(ad). If
bd = d2 then (ca)d = abd = ad2 = c2d which contradicts with c(ad) = c3 as well.
Similarly, if bd = cd then (ca)d = abd = acd = cd2 6= c(ad). Thus bd must be equal
to dc and then db = ba by Theorem 6.3.2, and by d(bd) = d2c, (db)d = bad = bc2

but bc is in Sβ. So bc = d2 and then cb = a2 by Theorem 6.3.2. Hence we have the
semigroup which is defined by the presentation

〈a, b, c, d | ac = cd, ca = ab, bc = d2, cb = a2, ad = c2, da = b2, bd = dc, db = ba 〉,
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and this semigroup is isomorphic to the semigroup which is defined by the pre-
sentation

〈a, b, c, d | ac = d2, ca = b2, bc = cd, cb = ba, ad = dc, da = ab, bd = c2, db = a2 〉

by Corollary 6.2.8. This proves (4). Similarly if Sα and Sβ are right ideals in S,
which proves (5), (6).

(⇐) Let S′ be a semigroup which is defined by one of the presentations in the
theorem. Then S′ is a disjoint union of two copies of the free semigroup of rank
two by Theorems 6.2.1, 6.2.3, 6.2.5, 6.2.7, 6.2.9 and 6.2.11. Thus S′ ∼= S. .

Remark 6.4.3. Analogously,

i) If ac = dc in the ideal case then we can construct two semigroups one of which
is defined by the presentation

〈a, b, c, d | ac = dc, ca = cd, bc = dc, cb = cd, ad = d2, da = d2, bd = d2, db = d2 〉,

which is isomorphic to the semigroup which defined by the presentation

〈a, b, c, d | ac = ca = bc = cb = c2, ad = cd, da = dc, bd = cd, db = dc 〉

by Corollary 6.2.4. The other semigroup is the semigroup which is defined by
the presentation

〈a, b, c, d | ac = dc, ca = cd, bc = cb = c2, ad = da = d2, bd = cd, db = dc 〉,

which is isomorphic to the semigroup which is defined by the presentation

〈a, b, c, d | ac = ca = c2, bc = dc, cb = cd, ad = cd, da = dc, bd = db = d2〉

by Corollary 6.2.2.

ii) If ac = dc in the left ideals case then we can construct the semigroup which
defined by the presentation

〈a, b, c, d | ac = dc, ca = ba, bc = c2, cb = b2, ad = d2, da = a2, bd = cd, db = ab〉,

108



which is isomorphic to the semigroup which defined by the presentation

〈a, b, c, d | ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2〉

by Corollary 6.2.6.

iii) If ac = d2 in the left ideals case then we can construct the semigroup which is
defined by the presentation

〈a, b, c, d | ac = d2, ca = b2, bc = cd, cb = ba, ad = dc, da = ab, bd = c2, db = a2〉,

which is isomorphic to the semigroup with the presentation

〈a, b, c, d | ac = cd, ca = ab, bc = d2, cb = a2, ad = c2, da = b2, bd = dc, db = ba

by Corollary 6.2.8.

Remark 6.4.4. There is no balanced semigroup S which is a disjoint union of two
copies of the free semigroup of rank two Sα = 〈a, b | 〉, Sβ = 〈c, d | 〉 if Sβ is ideal
in S and ac = d2 or ac = cd see Theorem 6.3.2.

The next step is to show that if we add the identity to the free semigroup of
rank two and define it as in Theorem 6.2.5 we obtain a Rees matrix semigroup over
a free monoid of rank two.

Theorem 6.4.5. Suppose P =

[
t
z

]
is a 2× 1 matrix over the free monoid Sβ in two gen-

erators and S is a Rees matrix semigroup over Sβ of type 2× 1 (S =M
[
Sβ; {1}, {1, 2}; P

]
).

Then S is the union of two copies of the free monoid in two generators if and only if
t = z = 1.

PROOF. (⇒) Suppose that S = Sα t Sβ where Sα = 〈a, b | 〉, Sβ = 〈c, d | 〉 and we
want to show that t = z = 1. Suppose that t = w∗1 , z = w∗2 where w∗1 , w∗2 are two
words in Sβ. Since S =M

[
Sβ; {1}, {1, 2}; P

]
, there is an isomorphism ψ from S

intoM
[
Sβ; {1}, {1, 2}; P

]
with

ψ(a) = (1, w1, 1), ψ(b) = (1, w2, 1), ψ(c) = (1, w1, 2), ψ(d) = (1, w2, 2).

However, the element (1, w1w2, 1) which is in M
[
Sβ; {1}, {1, 2}; P

]
does not

have an original w∗ in S such that ψ(w∗) = (1, w1w2, 1) because one of the two
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words w∗1 , w∗2 or both of them will appear in the product of any two elements in
M
[
Sβ; {1}, {1, 2}; P

]
, for instance

ψ(a)ψ(b) = (1, w1, 1)(1, w2, 1) = (1, w1w∗1w2, 1).

Thus ψ is not surjective, a contradiction.
(⇐) Suppose that t = z = 1 and we want to show that S is a disjoint union

of Sα and Sβ. Since the isomorphism ψ is defined as above, we obtain the relations
ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2. So we
have the semigroup S with the presentation
〈a, b, c, d |ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2〉
which is Sα t Sβ (Theorem 6.2.5).

Theorem 6.4.6. Suppose that Sα = 〈a, b | 〉 and Sβ = 〈c, d | 〉 are two copies of the free
semigroup of rank two. Suppose that S is a balanced semigroup which is a disjoint union
of Sα and Sβ and is defined by the presentation

〈a, b, c, d | ac = c2, ca = a2, bc = dc, cb = ab, ad = cd, da = ba, bd = d2, db = b2 〉.

Then S is a Rees matrix semigroup of the type 2× 1.

PROOF. First we adjoin the identity to Sβ and then we can choose I = {1}, Λ =

{1, 2} and P to be the |Λ| × |I|matrix over S1
β as P =

[
1
1

]
. Thus,

S̄ ∼=M
[
S1

β, {1}, {1, 2}, P
]

is a semigroup. Now, S is isomorphic to

{(i, ct, λ), (i, dt, λ) : t 6= 0} ≤ S̄,

because there exists a mapping ψ from S into {(i, ct, λ), (i, dt, λ) : t 6= 0} with

ψ(a) = (1, c, 1), ψ(b) = (1, d, 1), ψ(c) = (1, c, 2), ψ(d) = (1, d, 2).

Obviously, ψ is injective and surjective, so it remains to verify that ψ is a homo-
morphism as follows:

110



ψ(a)ψ(c) = (1, c, 1)(1, c, 2) = (1, c2, 2) = ψ(c2) = ψ(ac),

ψ(c)ψ(a) = (1, c, 2)(1, c, 1) = (1, c2, 1) = ψ(a2) = ψ(ca),

ψ(b)ψ(c) = (1, d, 1)(1, c, 2) = (1, dc, 2) = ψ(dc) = ψ(bc),

ψ(c)ψ(b) = (1, c, 2)(1, d, 1) = (1, cd, 1) = ψ(ab) = ψ(cb),

ψ(a)ψ(d) = (1, c, 1)(1, d, 2) = (1, cd, 2) = ψ(cd) = ψ(ad),

ψ(d)ψ(a) = (1, d, 2)(1, c, 1) = (1, dc, 1) = ψ(ba) = ψ(da),

ψ(b)ψ(d) = (1, d, 1)(1, d, 2) = (1, d2, 2) = ψ(d2) = ψ(bd),

ψ(d)ψ(b) = (1, d, 2)(1, d, 1) = (1, d2, 1) = ψ(b2) = ψ(db).

Hence,

S ∼= {(i, ct, λ), (i, dt, λ) : t 6= 0} ∼= {(i, at, λ), (i, bt, λ) : t 6= 0}.

Thus S is a Rees matrix semigroup of the type 2× 1.

6.5 Residual finiteness

Since in this chapter we consider balanced semigroups which are defined by a
presentation where the relations preserve length, we introduce the following defi-
nition.

Definition 6.5.1. A presentation 〈A | R〉 is balanced if for every relation u = v from
R we have |u| = |v|.

Theorem 6.5.2. Every semigroup S which is defined by a balanced presentation is residu-
ally finite.

PROOF. Let k ∈N and let the set Tk consists of all the words of length l where l ≥ k.
Thus Tk is an ideal in S of finite index. Now we define a relation ρk on S as follows:

xρky ⇐⇒ either x = y or x, y ∈ Tk.

It is clear that ρk is an equivalence relation on S. Furthermore, ρk is a congruence
of finite index because Tk is an ideal of finite index. Now if we take arbitrary
elements x, y ∈ S and (x, y) 6∈ ρk then we are done. If (x, y) ∈ ρk we choose
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k = max(m, n) + 1 where m, n are the length of x, y respectively and hence (x, y) 6∈
ρk.

Corollary 6.5.3. Every balanced semigroup is residually finite.

PROOF. The proof follows immediately by Theorem 6.5.2.
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DISJOINT UNIONS OF ANY
NUMBER OF COPIES OF THE FREE
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CHAPTER

SEVEN

RECTANGULAR BANDS OF FINITELY MANY COPIES

OF THE FREE MONOGENIC SEMIGROUP

7.1 Introduction

A rectangular band semigroup is a band S which satisfies xyx = x for every x, y ∈
S and equivalently xyz = xz. For instance, given arbitrary non-empty sets I, J, we
can define a semigroup operation on I × J by (i, j)(k, l) = (i, l). This means that
the I × J rectangular band S is a disjoint union of subsemigroups Pij (i ∈ I, j ∈ J)
and PijPkl ⊆ Pil. This can be visualized by means of the following diagram:

P11 P12 . . . P1j

P21 P22 . . . P2j
...

... . . . ...

Pi1 Pi2 . . . Pij

Table 7.1: The multiplication of a rectangular band

Thus S is a special ”nice” case of disjoint unions of semigroups. In this chapter we
have a general theorem on finite presentability and a theorem on residual finiteness
in the special case in which each block is a free monogenic semigroup.
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7.2 Finite presentability

Theorem 7.2.1. Every rectangular band of finitely many finitely presented semigroups is
finitely presented.

PROOF. Consider the rectangular band S =
n⊔

i=1
Si. We prove the theorem by induc-

tion on n. Now if n = 1 then it is clear that S is finitely presented. Suppose that the
statement holds for every k ≤ n. Thus S is a p× q rectangular band where p 6= 1

or q 6= 1. Since S =
k+1⊔
i=1

Si then we have the following:

S1 S2 . . . Si
...

... . . . Sj

Sj+1
... . . . Sh

Sh+1 . . . . . . Sk+1

Table 7.2: The rectangular band semigroup
k+1⊔
i=1

Si

and then we split S to the two following diagrams

S1 S2 . . . Si
...

... . . . Sj

Sj+1 . . . . . . Sh

Sh+1 . . . . . . Sk+1

Table 7.3: A split of the semigroup
k+1⊔
i=1

Si to
h⊔

i=1
Si and

k+1⊔
i=h+1

Si

Thus S = A t B where A =
h⊔

i=1
Si and B =

k+1⊔
i=h+1

Si. Notice that A, B are subsemi-

groups by the definition of the rectangular band and they are finitely presented
by the inductive hypothesis. Furthermore, they are right ideals in S. Hence S is
finitely presented by Theorem 2.3.1. Notice that if S is a 1× q rectangular band.
Then we have the following:
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S1 S2 . . . . . . Sk Sk+1

Table 7.4: The one row rectangular band semigroup
k+1⊔
i=1

Si

and then we split S to the two following diagrams

S1 S2 . . . . . . Sk Sk+1

Table 7.5: A split of the one row semigroup
k+1⊔
i=1

Si to
k⊔

i=1
Si and Sk+1

Thus S = A t B where A =
k⊔

i=1
Si and B = Sk+1. Notice that A, B are subsemi-

groups by the definition of the rectangular band and they are finitely presented by
the inductive hypothesis. Furthermore, they are left ideals in S. Hence S is finitely
presented by Theorem 2.3.1. Similarlly if S is a p× 1 rectangular band.

The proof of this theorem actually gives us a presentation for S as in the following
corollary.

Corollary 7.2.2. Every semigroup S which is a rectangular band of finitely many finitely
presented semigroups defined by presentations

〈
Aij
∣∣Rij

〉
, has a presentation of the form:〈 ⊔

(i,j)∈I×J

Aij |
⊔

(i,j)∈I×J

Rij, aijakl = β(aij, akl)
〉

where aij ∈ Aij, akl ∈ Akl and β(aij, akl) is a word in Ail
+.

PROOF. Follows immediately by Theorem 2.3.1 and the definition of the rectangular
band. To clarify this, we prove it on the 2× 2 rectangular band and this will do for
all. Thus we have 4 finitely presented semigroups, A11, A12, A21, A22. By the
definition of the rectangular band, we have two left ideals in S,

S1 = A11 t A21 and S2 = A12 t A22.

If u, v were two words in {A11, A12, A21, A22}+ and u = v holds in S then u = v
holds in S1 or S2. So let u = v holds in S1. Each word in S1 ends with w11 or w21

where w11, w21 ∈ {A11, A21}+ because S1 and S2 are left ideals in S. Now if u, v
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don’t have any letter from S2 then u = v holds in A11 or A21. Suppose that u = v
holds in A11. Then as each word in A11 starts with w′11 ∈ A+

11 because A11 and
A21 are right ideals in S1, we eliminate all occurrences of letters of A21 from u, v by
the relation a11a21 = β(a11, a21) and then we obtain two words ū, v̄ ∈ A+

11. Thus
ū = v̄ is a consequence of R11. Hence u = v is a consequence of the relations in the
presentation. Analogously if u = v holds in A21. Now if u, v have letters from S2

then we apply the relations

a12a11 = β(a12, a11), a12a21 = β(a12, a21), a22a11 = β(a22, a11), a22a21 = β(a22, a21),

to eliminate all occurrences of letters of S2 from u, v. We get two words ū and v̄ with
ū = v̄ holds in S1 with no letters from S2 and then we repeat the same argument.
Thus we have u = ū = ¯̄u and v = v̄ = ¯̄v and then u = v is a consequence of the
relations in the presentation. Similarly, if u = v holds in S2.

Corollary 7.2.3. Every rectangular band of finitely many copies of the free monogenic
semigroup is finitely presented.

PROOF. Directly by Theorem 7.2.1.

7.3 Special example

Let P be the semigroup free product of two trivial semigroups as follows:

P = 〈h, t|h2 = h, t2 = t〉. (7.1)

Every element of P is equal to a unique alternating product of the form htht . . . or
thth . . . . Let SP4 = P \ {h, t}. Thus SP4 is a subsemigroup and is a rectangular band
of four copies of the free monogenic semigroup as follows:
SP4 = {(th)n : n ∈ N} ∪ {(th)nt : n ∈ N} ∪ {(ht)nh : n ∈ N} ∪ {(ht)n : n ∈
N}. Thus we can respectively notate this as SP4 = Na t Nb t Nc t Nd with the
multiplication table:

Na Nb

Nc Nd

Table 7.6: The multiplication on the subsemigroup SP4 of the semigroup free prod-
uct of two trivial semigroups
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where Ni is a free monogenic semigroup generated by i for every i ∈ {a, b, c, d}.
Therefore SP4 is defined by the presentation

〈
a, b, c, d | ab = b2, ac = a2, ad = b,

ba = a2, bc = a3, bd = b2,
ca = c2, cb = d3, cd = d2,
da = c, db = d2, dc = c2〉.

First notice that ab = bi by the definition of the rectangular band. Hence i = 2 by
Theorem 4.2.1. Similarly,

ba = a2, ac = a2, ca = c2, dc = c2, cd = d2, bd = b2, db = d2.

We also have
ad = (th)(ht) = th2t = tht = b,

da = (ht)(th) = hth = c,

cb = (hth)(tht) = (ht)(ht)(ht) = (ht)3 = d3,

bc = (tht)(hth) = (th)3 = a3.

Therefore, SP4 satisfies the relation in the presentation.
Now we want to prove that each relation in SP4 is a consequence of the rela-

tions in the presentation and this follows from Corollary 7.2.2.

7.4 Residual finiteness

We started working on the residual finiteness for a rectangular band S of finitely
many copies of the free monogenic semigroup by trying to find a homomorphism
φ from S to a finite semigroup H such that for every s 6= t ∈ S : φ(s) 6= φ(t). We
found that in order to obtain such a homomorphism, H must be defined by the
multiplication of either the Rees matrix semigroup or SP4 (see Section 7.3).

Theorem 7.4.1. Every semigroup S which is a rectangular band of four copies of the free
monogenic semigroup is either a Rees matrix semigroup or SP4 .

PROOF. We prove the theorem by taking four copies of N, they are Na, Nb, Nc, Nd.
So the multiplication is defined by the following table:
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Na Nb

Nc Nd

Table 7.7: Rectangular band of four copies of the free monogenic semigroup

Hence, by Theorem 4.2.1, we have the following

ab = b2, ba = a2, ac = a2, ca = c2, bd = b2, db = d2, cd = d2, dc = c2.

Since S is a rectangular band, ad = bi, da = cj, bc = ak, cb = dl and by

(ad)a = bia = ai+1, a(da) = acj = aj+1,

i = j. Analogously k = l. Furthermore,

a(dc) = ac2 = a3, (ad)c = bic = bi−1ak = ak+i−1

and thus k + i = 4 which implies that i = j = k = l = 2 or k = l = 1, i = j = 3 or
k = l = 3, i = j = 1. Thus we have the following three types of semigroups:
Type 1. A rectangular band S of four copies of the free monogenic semigroup with
the relations ab = b2, ba = a2, ac = a2, ca = c2, bd = b2, db = d2, cd = d2, dc =

c2, ad = b2, da = c2, bc = a2, cb = d2.
Now, as we have done before, we adjoin the identity N1

a and we have the 2× 2
matrix P with identity entries. Thus we get the semigroup S̄ = M

[
N1

a ; I, Λ; P
]
.

It is clear that S is isomorphic to {(i, at, λ) : t 6= 0} ≤ S̄, because there exists a
mapping ψ from S into {(i, at, λ) : t 6= 0} with

ψ(a) = (1, a, 1), ψ(b) = (1, a, 2), ψ(c) = (2, a, 1), ψ(d) = (2, a, 2).

Obviously, ψ is injective and surjective, so it remains to verify that ψ is a homo-
morphism as follows:

ψ(a)ψ(b) = (1, a, 1)(1, a, 2) = (1, a2, 2) = ψ(b2) = ψ(ab),

ψ(b)ψ(a) = (1, a, 2)(1, a, 1) = (1, a2, 1) = ψ(a2) = ψ(ba),

ψ(a)ψ(c) = (1, a, 1)(2, a, 1) = (1, a2, 1) = ψ(a2) = ψ(ac),

ψ(c)ψ(a) = (2, a, 1)(1, a, 1) = (2, a2, 1) = ψ(c2) = ψ(ca),
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ψ(b)ψ(d) = (1, a, 2)(2, a, 2) = (1, a2, 2) = ψ(b2) = ψ(bd),

ψ(d)ψ(b) = (2, a, 2)(1, a, 2) = (2, a2, 2) = ψ(d2) = ψ(db),

Hence,
S ∼= {(i, at, λ) : t 6= 0}.

Thus S is a Rees matrix semigroup of the type 2× 2.
Type 2. A rectangular band S of four copies of the free monogenic semigroup with
the relations ab = b2, ba = a2, ac = a2, ca = c2, bd = b2, db = d2, cd = d2, dc =

c2, ad = b, da = c, bc = a3, cb = d3.
So we can define an isomorphism φ from this semigroup to SP4 by φ(a) = th, φ(b) =
tht, φ(c) = hth, φ(d) = ht.
Type 3. A rectangular band S of four copies of the free monogenic semigroup with
the relations ab = b2, ba = a2, ac = a2, ca = c2, bd = b2, db = d2, cd = d2, dc =

c2, ad = b3, da = c3, bc = a, cb = d.
This semigroup is isomorphic to the semigroup of Type 2. Therefore, S is a Rees
matrix semigroup or SP4 .

Lemma 7.4.2. Suppose S is a semigroup which is a rectangular band of four copies of the
free monogenic semigroup. If aibj = ck holds in S for some a, b, c in the generating set
A, i, j, k ∈N then i, j ≤ k .

PROOF. By Theorem 7.4.1, S is a Rees matrix semigroup or SP4 . If S is a Rees matrix
semigroup then k = i + j. If S is SP4 then k ∈ {i + j, i + j − 1, i + j + 1}. Thus
i, j ≤ k.

Theorem 7.4.3. Every semigroup S which is a rectangular band of finitely many copies of
the free monogenic semigroup is residually finite.

PROOF. First we define a relation ρk, k ∈N on S as follows:

(x, y) ∈ ρk ⇐⇒ either x = y or x = ai, y = aj for some a ∈ A and i, j ≥ k.

It is clear that ρk is an equivalence relation on S. Moreover, ρk is a congruence
by Lemma 7.4.2 and the fact that NaNb ⊆ Nc. Notice that |Na/ρk| = k and then
there are nk equivalence classes where n is the number of the copies that we have.
Therefore ρk is of finite index. Now take any two ai, aj ∈ Na. Let

k = max(i, j) + 1.
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Then (ai, aj) 6∈ ρk. Notice that if we take two elements ai and bj from different
copies, then they are in separate classes because of the definition of the congruence.
Hence ρk is a congruence on S of finite index which separates each two elements
in S.
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CHAPTER

EIGHT

FINITENESS CONDITIONS FOR DISJOINT UNIONS

OF FINITELY MANY COPIES OF THE FREE

MONOGENIC SEMIGROUP

8.1 Preliminaries: multiplication and arithmetic pro-

gressions

Let S be a semigroup which is a disjoint union of n copies of the free monogenic
semigroup:

S =
⊔

a∈A
Na,

where A is a finite set and Na = 〈a〉 for a ∈ A. In this section we gather some
background facts about S. The common feature is that they all elucidate a strong
regularity with which elements of S multiply. We begin with two preliminary lem-
mas.

Lemma 8.1.1. Let a ∈ A and q ∈ N be fixed. There can be only finitely many elements
x ∈ S such that apx = ap+q for some p ∈N.

PROOF. Suppose to the contrary that there are infinitely many such x. Two of these
elements must belong to the same block Nc. Suppose these elements are cr and cs

for r 6= s, and suppose we have ap1cr = ap1+q and ap2cs = ap2+q. Note that these
equalities imply apcr = ap+q for all p ≥ p1, and apcs = ap+q for all p ≥ p2. Let

122



p = max(p1, p2), and evaluate the element apcrs twice:

apcrs = ap(cr)s = ap cr . . . cr︸ ︷︷ ︸
s

= ap+q cr . . . cr︸ ︷︷ ︸
s−1

= · · · = ap+sq,

and, similarly,
apcrs = ap(cs)r = ap+rq.

But from r 6= s it follows that ap+sq 6= ap+rq, a contradiction.

Lemma 8.1.2. If apbq = ar holds in S for some a, b ∈ A and p, q, r ∈N then p ≤ r.

PROOF. Suppose to the contrary that r = p− s < p. Note that for every t ≥ p we
have

at · asbq = at+sbq = at+s−papbq = at+s−par = at+s−p+p−s = at.

Hence, for every u ≥ 1 we have

at(asbq)uas = atas = at+s.

By Lemma 8.1.1 we must have

(asbq)uas = (asbq)vas

for some distinct u, v ∈N. Post-multiplying by bq we obtain

(asbq)u+1 = (asbq)v+1.

This means that the element asbq ∈ S has finite order, a contradiction.

The next result shows that multiplication by x ∈ S cannot ’reverse’ the order of
elements from the copies of N.

Lemma 8.1.3. If a, b ∈ A and x ∈ S are such that

apx = br, ap+qx = bs

for some p, q, r, s ∈N, then r ≤ s.

PROOF. The assertion follows from

aqbr = aqapx = ap+qx = bs,
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and (the dual of) Lemma 8.1.2.

The next lemma is absolutely pivotal for proofs of both finite presentability and
residual finiteness.

Lemma 8.1.4. If
apx = br, ap+qx = br+s (8.1)

for some a, b ∈ A, x ∈ S, p, q, r ∈N, s ∈N0, then

ap+qtx = br+st

for all t ∈N0.

PROOF. First note that from (9.2) we have

br+s = ap+qx = aqapx = aqbr. (8.2)

We now prove the lemma by induction on t. For t = 0 we get the first relation in
(9.2). Assume the statement holds for some t. Then, by induction and (9.3),

ap+q(t+1)x = aqap+qtx = aqbr+st = aqbrbst = br+sbst = br+s(t+1),

proving the lemma.

Motivated by Lemma 8.1.4 we introduce the sets

T(a, x, b) = {y ∈ Na : yx ∈ Nb} (a, b ∈ A, x ∈ S).

The following is immediate.

Lemma 8.1.5. For any a ∈ A and x ∈ S we have

Na =
⊔

b∈A

T(a, x, b).

By Lemmas 8.1.3, 8.1.4, if a set T(a, x, b) contains more than one element, then it
contains an arithmetic progression, and hence is infinite. In fact, if T(a, x, b) is
infinite then it actually stabilizes into an arithmetic progression.

Lemma 8.1.6. If T = T(a, x, b) is infinite then there exist sets F = F(a, x, b), P =

P(a, x, b) such that the following hold:
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(i) T = F t P;

(ii) P = {ap+qt : t ∈N0} for some p = p(a, x, b), q = q(a, x, b) ∈N and ap−q 6∈ T;

(iii) F ⊆ {a, . . . , ap−1} is a finite set.

PROOF. Let q ∈ N be the smallest number such that ap, ap+q ∈ T for some p ∈ N.
Furthermore, let p be the smallest such; in particular ap−q 6∈ T. Let {ap+qt : t ∈
N0}. By Lemmas 8.1.3, 8.1.4 we have P ⊆ T, and by minimality of q we have
ap+tq+r 6∈ T for any t ∈ N0 and any r ∈ {1, . . . , q − 1}. Hence F = T \ P ⊆
{a, . . . , ap−1}, and the lemma is proved.

The next lemma discusses the values in the set T(a, x, b) · x.

Lemma 8.1.7. For T = T(a, x, b) we either have |Tx| ≤ 1 or else yx 6= zx for all distinct
y, z ∈ T.

PROOF. Suppose that for some p, q, r, s ∈N we have

apx = br, ap+qx = br+s, (8.3)

while for some u, v, w ∈N we have

aux = bw, au+v = bw. (8.4)

From (8.3), (8.4) and Lemma 8.1.4 we have:

ap+qtx = br+st (t ∈N), (8.5)

au+vtx = bw (t ∈N). (8.6)

Let t1 ∈N be such that
r + st1 > w, (8.7)

and let t2 ∈N be such that
u + vt2 > p + qt1. (8.8)

The inequalities (8.7), (8.8) and relations (8.5), (8.6) with t = t1 and t = t2 respec-
tively contradict Lemma 8.1.3.

The rest of this section will be devoted to proving that there are only finitely many
distinct sets T(a, x, b), a fact that will be crucial in Section 8.3. We accomplish this
(in Lemma 8.1.13) by proving that there are only finitely many distinct numbers
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q(a, x, b) (Lemma 8.1.9), finitely many distinct numbers p(a, x, b) (Lemma 8.1.10),
and finitely many distinct sets F(a, x, b) (Lemma 8.1.12). We begin, however, with
an elementary observation, which must be well-known, but we prove it for com-
pleteness.

Lemma 8.1.8. For every n ∈N and every r ∈ Q+ the set

{
(m1, . . . , mn) ∈Nn :

1
m1

+ · · ·+ 1
mn

= r
}

is finite.

PROOF. Prove the assertion by induction on n, the case n = 1 being obvious. Let
n > 1, and assume the assertion is true for n− 1. Consider an n-tuple (m1, . . . , mn) ∈
Nn such that

1
m1

+ · · ·+ 1
mn

= r.

Without loss of generality assume m1 ≥ · · · ≥ mn. Then we must have 1/mn ≥
r/n, and so mn ≤ n/r. Thus there are only finitely many possible values for mn.
For each of them, the remaining n− 1 numbers satisfy

1
m1

+ · · ·+ 1
mn−1

= r− 1
mn

,

and by induction there are only finitely many such (n− 1)-tuples.

Lemma 8.1.9. The set
{q(a, x, b) : a, b ∈ A, x ∈ S}

is finite.

PROOF. Fix a ∈ A, x ∈ S, and notice that at least one of the sets T(a, x, b) (b ∈ A)
is infinite by Lemma 8.1.5. Let

m = lcm{q(a, x, b) : b ∈ A, |T(a, x, b)| = ∞}.

Recall that all the sets F(a, x, b) are finite, and let r ∈N be such that

r > max
⋃

b∈A

F(a, x, b).

Let I = {ar, ar+1, . . . , ar+m−1}, an ‘interval’ of size m. From Lemma 8.1.6 (iii) we
have I ∩ F(a, x, b) = ∅ for all b ∈ A, so Lemma 8.1.5 implies that I is the disjoint
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union of sets I ∩ P(a, x, b) (b ∈ A). Since for every b ∈ A with P(a, x, b) 6= ∅ we
have q(a, x, b) | m, the set I contains precisely m/q(a, x, b) elements from P(a, x, b).
It follows that

∑
b∈A

m
q(a, x, b)

= m,

and hence

∑
b∈A

1
q(a, x, b)

= 1.

The assertion now follows from Lemma 8.1.8.

Lemma 8.1.10. The set
{p(a, x, b) : a, b ∈ A, x ∈ S}

is finite.

PROOF. Fix a, b ∈ A, x ∈ S, and for brevity write p = p(a, x, b), q = q(a, x, b). Re-
call that p has been chosen to be the smallest possible with respect to the condition
that

p + qt ∈ T(a, x, b) (t ∈N0). (8.9)

Recalling Lemma 8.1.9, let

Q = max{q(c, y, d) : c, d ∈ A, y ∈ S}.

Assume, aiming for contradiction, that

p > 2nQ.

Since Q ≥ q we have that p− 2nq > 0. Consider the n pairs

{ap−(2t−1)q, ap−2tq} (t = 1, . . . , n).

By Lemmas 8.1.3, 8.1.4 and minimality of p we cannot have both members of one
of these pairs belong to T(a, x, b). Hence at least one member in each pairs belongs
to some T(a, x, c) with c 6= b. By the pigeonhole principle two of these must belong
to the same T(a, x, c), say

ap−uq, ap−vq ∈ T(a, x, c)
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for some 1 ≤ v < u ≤ 2n. Again by Lemmas 8.1.3, 8.1.4 we have that

ap−uq+(u−v)qt ∈ T(a, x, c)

for all t ∈N0. On the other hand for t sufficiently large (e.g. t ≥ u) we have

p− uq + (u− v)qt ≥ p,

so that
p− uq + (u− v)qt = p + wq

for some w ∈N0, and so from (8.9) we have

ap−uq+(u−v)qt ∈ T(a, x, b) 6= T(a, x, c),

a contradiction. We conclude that p(a, x, b) ≤ 2nQ for all a, b ∈ A, x ∈ S, where
the right hand side does not depend on a, b or x.

In order to prove our final ingredient, that there are only finitely many distinct sets
F(a, x, b), we require one more elementary fact.

Lemma 8.1.11. Consider a finite collection of arithmetic progressions:

Ri = {pi + tqi : t ∈N0} (i = 1, . . . , n).

If there exists p ∈N such that

[p, ∞) ⊆
n⋃

i=1

Ri,

then

[p′, ∞) ⊆
n⋃

i=1

Ri,

where p′ = max{p1, . . . , pn}.

PROOF. If p ≤ p′ there is nothing to prove. Otherwise the assertion follows from
the fact that for every m ≥ p′ and every i = 1, . . . , n we have m ∈ Ri if and only if
m + qi ∈ Ri.

Lemma 8.1.12. The set
{F(a, x, b) : a, b ∈ A, x ∈ S}

is finite.
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PROOF. Fix a ∈ A, x ∈ S. Finitely many arithmetic progressions P(a, x, b) (b ∈ A,
|T(a, x, b)| = ∞) eventually cover the block Na by Lemmas 8.1.5, 8.1.6. Hence, by
Lemma 8.1.11, they contain all elements at with

t ≥ M = max{p(a, x, b) : b ∈ A}.

Hence every F(a, x, b) (b ∈ A) is contained in {a, . . . , aM−1}. Since the numbers
p(a, x, b) are uniformly bounded by Lemma 8.1.10 the assertion follows.

Lemma 8.1.13. The set

{T(a, x, b) : a, b ∈ A, x ∈ S}

is finite.

PROOF. follows from Lemmas 8.1.6, 8.1.9, 8.1.10, 8.1.12.

8.2 Finite presentability

Theorem 8.2.1. Every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup is finitely presented.

PROOF. Continue using notation from Section 8.1. Thus S =
⊔

a∈A
Na, and Na = 〈a〉.

The set
W = {ak : a ∈ A, k ∈N}

is a set of normal forms for S. Hence for any a, b ∈ A and k, l ∈ N there exist
unique α(a, k, b, l) ∈ A and κ(a, k, b, l) ∈N such that

akbl = [α(a, k, b, l)]κ(a,k,b,l). (8.10)

It is easy to see that generators A and relations (8.10) provide an (infinite) presen-
tation for S; for instance, condition (P3) is clearly satisfied.
Now we claim that the (still infinite) presentation with generators A and relations

akb = [α(a, k, b, 1)]κ(a,k,b,1), (a, b ∈ A, k ∈N) (8.11)

also defines S. Indeed, the above set of relations is contained in (8.10), and so S
satisfies (9.1). We now show that a general relation from (8.10) is a consequence
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of (9.1). We do this by induction on l. For l = 1 we actually have a relation from
(9.1), and there is nothing to prove. Assume the assertion holds for some l. Then
we have

akbl+1 ≡ akblb
= [α(a, k, b, l)]κ(a,k,b,l)b (by induction)
= [α(α(a, k, b, l), κ(a, k, b, l), b, 1)]κ(α(a,k,b,l),κ(a,k,b,l),b,1)

(by (9.1))
≡ [α(a, k, b, l + 1)]κ(a,k,b,l+1). (by uniqueness of normal forms)

Therefore, every relation (8.10) is a consequence of (9.1). Since (8.10) is a presenta-
tion for S, so is (9.1).
For any a, b, c ∈ A consider the set T(a, b, c). Note that for every ai ∈ T(a, b, c) there
exists a unique j ∈ N such that aib = cj. Let Ra,b,c be the set of all these relations;
clearly |Ra,b,c| = |T(a, b, c)|.
Next we claim that for any a, b, c ∈ A there exists a finite set of relations R◦a,b,c ⊆
Ra,b,c such that all relations in Ra,b,c are consequences of R◦a,b,c. Indeed, if T(a, b, c)
is finite (i.e. |T(a, b, c)| ≤ 1) the assertion is obvious. So suppose that T(a, b, c) is
infinite. By Lemma 8.1.6 we have

T(a, b, c) = F ∪ P,

where P = {ap+tq : t ∈N0} and F ⊆ {a, . . . , ap−1}. Now, if

apb = cr, ap+qb = cr+s, (8.12)

then by Lemma 8.1.4 we have

ap+tqb = cr+ts (t ∈N0). (8.13)

A closer inspection of the proof of Lemma 8.1.4 shows that in fact relations (8.13)
are consequences of (8.12), in the technical sense above. On the other hand, rela-
tions (8.13) are precisely all the relations aib = cj with ai ∈ P. There remain finitely
many relations with ai ∈ F, and the claim follows.
To complete the proof of the theorem, note that the set of defining relations (9.1) is
the union

⋃
a,b,c∈A Ra,b,c. Hence all these relations are consequences of

⋃
a,b,c R◦a,b,c,

which is a finite set because A and all R◦a,b,c are finite.
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8.3 Residual finiteness

Let S be such a semigroup, and let all the notation be as in Section 8.1. Define a
relation ρ on S as follows:

(x, y) ∈ ρ⇔ (∀z ∈ S1)(∃a ∈ A)(xz, yz ∈ Na).

Intuitively, two elements (x, y) of S are ρ-related if every pair of translates by the
same element of S1 belongs to a single block. In particular, if (x, y) ∈ ρ then x and
y are powers of the same generator a ∈ A, i.e.

ρ ⊆
⋃

a∈A
Na × Na. (8.14)

The following is obvious from the definition.

Lemma 8.3.1. ρ is a right congruence.

An alternative description of ρ is provided by:

(ai, aj) ∈ ρ⇔ (∀x ∈ S)(∃b ∈ A)(ai, aj ∈ T(a, x, b)); (8.15)

the proof is obvious. This description enables us to prove:

Lemma 8.3.2. ρ has finite index.

PROOF. From (8.15) it follows that the ρ-class of an element ai ∈ S is

ai/ρ =
⋂
{T(a, x, b) : x ∈ S, b ∈ A, aix ∈ Nb}. (8.16)

By Lemma 8.1.13 there are only finitely many distinct sets T(a, x, b). Hence there
are only finitely many intersections (8.16), and the assertion follows.

For each a ∈ A, consider the restriction

ρa = ρ �Na .

From Lemmas 8.3.1, 8.3.2 it follows that ρa is a right congruence of finite index
on Na. But Na, being free monogenic, is commutative, and so ρa is actually a
congruence. Furthermore, congruences on a free monogenic semigroup are well
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understood, and we have that

ρa = {(ai, aj) : i = j or (i, j ≥ pa & i ≡ j (mod qa))},

for some pa, qa ∈N; see [How95, Section 1.2].
Motivated by this, for any pair (x, y) ∈ ρ we define their distance as

d(x, y) =
|i− j|

qa
if x = ai, y = aj.

Lemma 8.3.3. If x, y, z ∈ S are such that (x, y) ∈ ρ and x 6= y then

d(x, y) | d(xz, yz).

PROOF. Since ρ is a right congruence we have (xz, yz) ∈ ρ, and so d(xz, yz) is
defined. If xz = yz there is nothing to prove, so suppose xz 6= yz. Write

x = ar, y = as,

where r, s ≥ pa, r ≡ s (mod qa), r 6= s. Without loss of generality assume s > r so
that s = r + tqa for some t ∈ N. Notice that (ar, ar+qa) ∈ ρ; furthermore we must
have arz 6= ar+qa z by Lemma 8.1.7. Therefore

arz = bu, ar+qa z = bv, (8.17)

for some u, v ≥ pb, u ≡ v (mod qb), u < v. Write v = u + wqb, w ∈ N. Equalities
(8.17) become

arz = bu, ar+qa z = bu+wqb ,

and Lemma 8.1.4 yields
ar+tqa z = bu+twqb .

Therefore

d(xz, yz) = d(arz, ar+tqa z) = d(bu, bu+twqb) = tw = wd(ar, ar+tqa) = wd(x, y),

as required.

We are now ready to prove:
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Theorem 8.3.4. Every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup is residually finite.

PROOF. Let S be such a semigroup, with all the foregoing notation remaining in
force. Let x, y ∈ S be two arbitrary distinct elements. By (RF3) it is sufficient to
prove that x and y are separated by a right congruence of finite index. If (x, y) 6∈ ρ

then ρ is such a congruence by Lemmas 8.3.1, 8.3.2. So suppose (x, y) ∈ ρ, say with
x, y ∈ Nb, and let

d(x, y) = d > 0.

Let σ be the right congruence on S generated by the set

G = {(apa , apa+2dqa) : a ∈ A}.

Clearly σ is a refinement of ρ (i.e. σ ⊆ ρ). Notice that G contains one pair of distinct
elements from each block Na. Hence the restriction of σ to each Na is a non-trivial
congruence, and so has finite index. Therefore σ itself has finite index too.
We claim that (x, y) 6∈ σ. Suppose otherwise; this means that there is a sequence

x = u1, u2, . . . , um = y

of elements of S, such that for each i = 1, . . . , m− 1 we can write

ui = vizi, ui+1 = wizi,

for some vi, wi ∈ S, zi ∈ S1, satisfying (vi, wi) ∈ G or (wi, vi) ∈ G. (This is a
well-known general fact; see for example [How95, Section 8.1] .) Without loss of
generality we may assume that all ui are distinct. From σ ⊆ ρ it follows that all ui

belong to the block Nb, say

ui = bsi (i = 1, . . . , m).

By definition of G and Lemma 8.3.3 we have that 2d | d(ui, ui+1) for all i =

1, . . . , m− 1. This is equivalent to

si ≡ si+1 (mod 2qbd) (i = 1, . . . , m− 1),

from which it follows that s1
∼= sm (mod 2qbd), and hence 2d | d(x, y) = d, a

contradiction.
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8.4 Hopficity

We say that a semigroup S is hopfian if it is not isomorphic to any of its proper
homomorphic images. Equivalently, any surjective endomorphism of S is injective
and thus an automorphism. Also, we say that a semigroup S is co-hopfian if it is
not isomorphic to any of its subsemigroups. Equivalently, any injective endomor-
phism of S is surjective and thus an automorphism. For further information see
[VRed].

Proposition 8.4.1. Let S be a semigroup which is a disjoint union of finitely many copies
of the free monogenic semigroup. Let φ be an endomorphism on S. Then

i) φ(Na) ⊆ Nb where a, b ∈ A.

ii) If φ is surjective then

1) φ(Ni) ⊆ Nj, φ(Nk) ⊆ Nl =⇒ j 6= l.

2) φ(ai) = bj =⇒ i = j.

PROOF. (i) If φ(a) = bj then φ(ai) = bij for every i ∈N. Thus φ(Na) ⊆ Nb.
(ii) it is clear because if we assume the opposite in both of (1) and (2) we get a
contradiction with the fact that φ is a surjective endomorphism .

Theorem 8.4.2. Every semigroup S which is a disjoint union of finitely many copies of
the free monogenic semigroup is hopfian.

PROOF. It is well-known that every finitely generated residually finite group or
semigroup is hopfian by [Mal40] and as we know that S is finitely generated and
residually finite by Theorem 8.3.4 and then S is hopfian. Additionally, we can
prove it easily by Proposition 8.4.1.

Remark 8.4.3. Notice that S is not co-hopfian because there is a subsemigroup T of
S where T ∼= S. For instance the semigroup of even numbers 2N is a subsemigroup
of N and 2N ∼= N.

8.5 Commutative semigroups

A semigroup S is rational if, for each a, b ∈ S, there exist integers m, n such that
am = bn. This semigroup has also been called power joined see [Lev68]. Archimedean
semigroup is a semigroup with the property that for every a, b ∈ S there is n ∈ N
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such that a|bn, which means that each element in S divides a power of another
element.

Theorem 8.5.1 ([MO70], Theorem 3.4). A finitely generated Archimedean semigroup
without idempotents is a rational semigroup.

Theorem 8.5.2. A commutative semigroup S is a finite disjoint union of copies of the free
monogenic semigroup if and only if it is a strong semilattice of copies of the free monogenic
semigroup.

PROOF. (⇒) Suppose that S is a disjoint union of n copies of the free monogenic
semigroup. Since S is commutative , S is a semilattice of commutative Archimedean
semigroups see ([Gri95], Theorem 4.2.2). Thus each component of the semilattice
is a finitely generated semigroup without idempotents. Therefore, by Theorem
8.5.1, each component is a rational semigroup which implies that each component
must have only one copy of the free monogenic semigroup. Hence the semilattice
is of order n. So we have a semilattice Y = {α1, α2, . . . , αn} where each element
of Y we assign a semigroup Nαi such that αiαj = αj if Nαi Nαj ⊆ Nαj (notice that
ab = bk, a ∈ Nαi , b ∈ Nαj , k ∈ N) and to each pair of elements αi, αj we assign
a map φαi,αj of Nαi into Nαj with φαi,αj(a) = bk−1. Also there is an identity map
φαi,αi on Nαi for every i ∈ {1, 2, . . . , n}. Clearly, φαi,αj φαj,αj = φαi,αj if αi ≥ αj and
φαi,αi φαi,αj = φαi,αj if αi ≥ αj. Now, notice that

axby = ax−1bkby−1

= ax−2bkbk−1by−1

= ax−(x−1)bkb(k−1)(x−2)by−1

= bkbk−1b(k−1)(x−2)by−1

= bkx−x+y

and

φα,β(ax)φβ,β(by) = bx(k−1)by = bkx−x+y = axby.

The above argument works for every k > 1 and a small modification is needed for
the case k = 1 as we have mentioned in the proof of Theorem 4.3.1. This based on
the same idea as near Rees matrix semigroup, but this time for strong semilattices

of semigroups. More precisely, we adjoin the identity to Nαj and let S̄ = Nαi tN
1αj
αj .

Next define φαi,αj(a) = 1αj to form S̄ into a strong semillatice of semigroups with
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multiplication ab = ba = b. Finally let S = Nαi t Nαj ≤ S̄. Therefore

S = S
[
Y; {Nαi : αi ∈ Y}; {φαi,αj : αi, αj ∈ Y, αi ≥ αj}

]
.

Thus S is a strong semilattice of n copies of the free monogenic semigroup.
(⇐) Obvious by the definition of the strong semilattice of semigroups.
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CHAPTER

NINE

DECIDABILITY FOR DISJOINT UNIONS OF FINITELY

MANY COPIES OF THE FREE MONOGENIC

SEMIGROUP

9.1 Introduction

In this chapter we prove that any semigroup S which is a disjoint union of finitely
many copies of the free monogenic semigroup N has decidable word problem.
Furthermore, our proof of finite presentability for S provides an explicit solution to
the word problem as is shown in the second section of this chapter. In addition we
look at the subsemigroup of S and itself is a finite disjoint union of subsemigroups
of the free monogenic semigroups as well. Subsemigroups of the free monogenic
semigroups, and in particular the so called numerical semigroups (subsemigroups
of finite complement) have been subject to extensive investigation over the years;
see [RGS09] for a comprehensive introduction. We take a complementary view-
point, instead of looking at subsemigroups of N, we investigate semigroups which
are ’composed’ of finitely many subsemigroups of the free monogenic semigroup
N. Now we introduce necessary well-known theorems about subsemigroups of
the natural number semigroup N. We will use these theorems to devise an algo-
rithm to solve the subsemigroups membership problem in the third section of this
chapter.
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9.2 Word problem

A semigroup S generated by a finite set A, has a soluble word problem (with re-
spect to A) if there exists an algorithm which, for any two words u, v ∈ A+, decides
whether the relation u = v holds in S or not. For finitely generated semigroups it
is easy to see that solubility of the word problem does not depend on the choice of
(finite) generating set for S.

In order to prove that the semigroup S which is a disjoint union of finitely
many copies of the free monogenic semigroup, has a soluble word problem, we
need some additional information about the presentation in Section 8.2. In [AGR13]
we proved that the semigroup S has the finite presentation

〈
A| akb = [α(a, k, b, 1)]κ(a,k,b,1), (a, b ∈ A, k ∈ {1, 2, . . . , j} ⊆N)

〉
(9.1)

Now we introduce the necessary Lemmas from Chapter 8 to add more informa-
tions to the presentation (9.1). In Chapter 8 we have introduced the set

T(a, x, b) = {y ∈ Na : yx ∈ Nb} (a, b ∈ A, x ∈ S),

which played a significant role in the proofs. By Lemma 8.1.5 we have

Na =
⊔

b∈A

T(a, x, b),

for any a ∈ A and x ∈ S. Lemma 8.1.6 describes the set T(a, x, b) as follows:
If T = T(a, x, b) is infinite then there exist sets F = F(a, x, b), P = P(a, x, b) such
that the following hold:

(i) T = F t P;

(ii) P = {ap+qt : t ∈ N0} for some p = p(a, x, b), q = q(a, x, b) ∈ N and
ap−q 6∈ T;

(iii) F ⊆ {a, . . . , ap−1} is a finite set.

And then by Lemmas (8.1.9, 8.1.10, 8.1.12) we proved that The sets

{q(a, x, b) : a, b ∈ A, x ∈ S}, {p(a, x, b) : a, b ∈ A, x ∈ S}, {F(a, x, b) : a, b ∈ A, x ∈ S},

are finite. After this we proved that the set
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{T(a, x, b) : a, b ∈ A, x ∈ S}

is finite by Lemma 8.1.13.
Now we specify the presentation (9.1) as follows. Since there are finitely many
differences q in S by Lemma 8.1.9, take the the least common multiple (LCM) of all
these differences D. Thus

R′a,b =
⋃ {

aib = cτ(a,i,b)
α(a,i,b) : i = 1, . . . , r(a, b)

}
,

Ra,b =
⋃ {

akb = cτ(a,k,b)
k , ak+Db = cτ(a,k+D,b)

k : r(a, b) + 1 ≤ k ≤ r(a, b) + D
}

,
(9.2)

and then we get the required presentation as

R =
⋃

a,b∈A

(R′a,b ∪ Ra,b),

where k = lD, l ≥ 1. Notice that from (9.2) we have

ak+Db = aDcτ(a,k,b)
k = cτ(a,k+D,b)

k (9.3)

So within T(a, b, c) we have finitely many arithmetic progressions Pt by Lemma
8.1.10, where t is the remainder of division of r(a, b) + q by D for every q ∈
{1, 2, · · · , D} as follows:

P0 = {ar(a,b)+1, ar(a,b)+1+D, ar(a,b)+1+2D, . . . },

P1 = {ar(a,b)+2, ar(a,b)+2+D, ar(a,b)+2+2D, . . . },
...

PD−1 = {ar(a,b)+D, ar(a,b)+2D, ar(a,b)+3D, . . . }.

Lemma 9.2.1. In S, if we had asb = cj then we can determine j in a finite number of steps.

PROOF. If the relation asb = cj belongs to R, we are done. Now, suppose that the
given relation does not appear in R, that means s > k where k = lD for some l
and then s = hD + t where 0 ≤ t < D and thus as ∈ Pt. Notice that Pt starts
with the two elements ar(a,b)+(t+1), ar(a,b)+(t+1+D) and by doing some calculations
as follows:
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First we know that
s = hD + t,

and
s− r(a, b)− t− 1 = hD + t− r(a, b)− t− 1 = f D

for some f . Thus,
hD = f D + r(a, b) + 1.

So,
s = r(a, b) + t + 1 + f D,

which means that as is in the f position. Hence,

asb = a f D+r(a,b)+t+1b

≡ aDaD · · · aD︸ ︷︷ ︸
f

ar(a,b)+t+1b

= aDaD · · · aD︸ ︷︷ ︸
f

c
τ
(

a,r(a,b)+t+1,b
)

r(a,b)+t+1 (by (9.2))

= aD · · · aD︸ ︷︷ ︸
f−1

c
τ
(

a,r(a,b)+t+1+D,b
)

r(a,b)+t+1 (by (9.3))

...

= c
τ
(

a,r(a,b)+t+1+ f D,b
)

r(a,b)+t+1

Therefore, we can obtain j in finitely many steps.

Theorem 9.2.2. Every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup has soluble word problem.

PROOF. Let S =
⊔

a∈A Na, and Na = 〈a〉. Thus the Algorithm is as follows:
Input: u, v ∈ A+ and u = xi1

1 xi2
2 · · · x

im
m and v = yj1

1 yj2
2 · · · y

in
n , where xk, yl ∈ A for

every 1 ≤ k ≤ m and 1 ≤ l ≤ n.

Output: u = v or u 6= v.

Step 1. Take D = LCM of all differences.

Step 2. Put k = Dl for some l ≥ 1.
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Step 3. Specify the presentation (9.1) as follows:

R′a,b =
⋃ {

aib = cτ(a,i,b)
α(a,i,b) : i = 1, . . . , r(a, b)

}
,

Ra,b =
⋃ {

akb = cτ(a,k,b)
k , ak+Db = cτ(a,k+D,b)

k : k = r(a, b)+ 1, . . . , r(a, b)+D
}

,

and then the required presentation is

R =
⋃

a,b∈A

(R′a,b ∪ Ra,b).

Step 4. For every T(a, b, ck) in S arrange the arithmetic progressions as follows:

Pt = {ar(a,b)+t+1, ar(a,b)+t+1+D, ar(a,b)+t+1+2D, . . . },

where t ∈ {0, 1, · · · , D− 1}.

Step 5. Transfer u to its normal form as follows:

u ≡ xi1
1 xi2

2 · · · x
im
m

≡ (xi1
1 x2)xi2−1

2 · · · xim
m

= xi12
i12

xi2−1
2 · · · xim

m (by Lemma 9.2.1)

≡ (xi12
i12

x2)xi2−2
2 · · · xim

m .

So, by taking the first power xi1
1 with the next first element x2 in i2 time, we

get rid of xi2
2 and using the same process with all xi3

3 , xi4
4 , · · · , xim

m , we ends
with xIM

I after i2 + i3 + · · ·+ im step. So we have u = xIM
I .

Step 6. Transfer v to its normal form x JN
J analogously to step 5 .

Step 7. If I = J and IM = JN then u = v, otherwise u 6= v.

Therefore, S has soluble word problem.

9.3 Subsemigroup membership problem

A finitely generated semigroup S has a soluble subsemigroup membership prob-
lem if there exists an algorithm which for any x ∈ S, decides whether x ∈ T or not
where T is a finitely generated subsemigroup of S.
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Now we introduce necessary well-known theorems about subsemigroups of
the natural number semigroup N. We will use these theorems to devise an algo-
rithm to solve the subsemigroups membership problem for the semigroup under
consideration.

Corollary 9.3.1. Every subsemigroup of N is finitely generated.

PROOF. This corollary is well known and the proof is not hard as follows. Sup-
pose that S is a subsemigroup of N and the greatest common divisor of S is 1.
Thus the generating set for S is S ∩ {1, 2, . . . , 2k} where k ∈ N such that for
every n ≥ k : n ∈ S and this because if m > 2k then m = qk + f . Thus
m = (q− 1)k + k + f where k + f ∈ S ∩ {1, 2, . . . , 2k}.

Fact: If S is a subsemigroup of N then the greatest common divisor (g.c.d) of S is
the g.c.d of the generator set of S.

Theorem 9.3.2 ([Hig72], Theorem 1). Let S be a subsemigroup of N, then

i) There is s ∈N such that for n ≥ s, n ∈ S, or

ii) There is n ∈N, n > 1 such that n is a factor of all s ∈ S.

We prove this theorem as the proof itself leads us to Corollary 9.3.5.
PROOF. Assume that there exist s1, s2, . . . , sm ∈ S such that the g.c.d of the collection
(s1, s2, . . . , sm) is 1. Let S′ be the subsemigroup of N generated by {s1, s2, . . . , sm},
notice that S′ ⊆ S. Let s = 2s1s2 . . . sm and for b > s, since the g.c.d of (s1, s2, . . . , sm)

is 1, we may find integers α1, α2, . . . , αm such that α1s1 + · · ·+ αmsm = b.
Hence there exist integers qi and ri such that αi = qis1 . . . si−1si+1 . . . sm + ri where
0 < ri ≤ s1 . . . si−1si+1 . . . sm (i = 2, 3, . . . , m). Now put

β1 = α1 + (q2 + · · ·+ qm)s2s3 . . . sm, βi = ri, (i = 2, 3, . . . , m).

Thus b = β1s1 + β2s2 + · · ·+ βmsm. Note that βi > 0 for i = 2, 3 . . . , m. But since

β2s2 + · · ·+ βmsm = r2s2 + · · ·+ rmsm ≤ 2s1s2 . . . sm < b,

clearly β1 > 0.

Thus there are two types of subsemigroups of N. The first type contains all
natural numbers greater than some fixed natural number, and will be called rela-
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tively prime subsemigroups of N. The second type is a fixed integral multiple of a
relatively prime subsemigroup.

Corollary 9.3.3. Every subsemigroup of N has the form

F ∪ DN ,d,

where F is a finite set and DN ,d = {da : a ≥ N}.

Definition 9.3.4. Suppose that the semigroup S is generated by {n1, n2, · · · , nk}. If
there exist two elements d,N ∈ S and a set F ⊆ S such that

F = S ∩ {1, 2, · · · ,N − 1};

S ∩ {N ,N + 1, · · · } = {dk : k ∈N, dk ≥ N},

then we say that S is defined by the triple [d,N , F].

Corollary 9.3.5. Suppose that S is a subsemigroup of the natural number semigroup N.
Suppose that S is generated by n1, n2, · · · , nk. Then S is defined by the triple [d,N , F]
where d is the greatest common divisor of {n1, n2, · · · , nk},

N = 2dn1n2 · · · nk,

and
F ⊆ {1, 2, · · · ,N − 1}.

PROOF. Follows immediately from Theorem 9.3.2 and Corollary 9.3.1.

Corollary 9.3.6. Suppose that S is a subsemigroup of the free monogenic semigroup N.
Suppose that S is generated by an1 , an2 , · · · , ank . Then S is defined by the triple [d,N , F]
where d is the greatest common divisor of {an1 , an2 , · · · , ank},

N = a2dan1 an2 · · · ank ,

and
F ⊆ {a, a2, · · · , aN−1}.

PROOF. Directly by Corollary 9.3.5.
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After understanding how subsemigroups of N behaves we are ready to start
designing the algorithm. Since

S = N1 t N2 t · · · t Nn,

and T is a subsemigroup of S, then

T = T1 t T2 t · · · t Tm,

where Ti ≤ Ni for every i ∈ {1, 2, · · · , m}. Consequently, the generator set for T is

AT =
⋃

i∈{1,2,··· ,m}
ATi ,

where ATi is the generator set of Ti for every i ∈ {1, 2, · · · , m}. Thus T is finitely
generated ([ABF+01], Proposition 3.1).

Lemma 9.3.7. Suppose that the subsemigroup Uj = 〈Nj ∩ AT〉 is defined by the triple[
dj,Nj, Fj

]
. Then there is an algorithm which takes arbitrary Ui, Uj and b ∈ AT and test

whether
Uib ∩ Nj ⊆ Uj

or not.

PROOF. Let ar
j ∈ Uib ∩ Nj. Then

ar
j ∈ Uj ⇐⇒ ar

j ∈ Fj or ar
j = a

djhj
j for some djhj ≥ djtj where djtj = Nj,

by Corollary 9.3.5.

Remark 9.3.8. We use the phrase ” description (U1, · · · , Uk)” by which we mean
”U1 ∪ · · · ∪Uk.”

Theorem 9.3.9. Every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup has a soluble subsemigroup membership problem.

PROOF. Let S be such a semigroup, with all the foregoing notation remaining in
force. Then the Algorithm is as follows:
Input. T = 〈AT〉 and T ≤ S, x ∈ S.

Output. x ∈ T or not.
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Step 1. Define each Uj = 〈Nj ∩ AT〉 by the triple
[
dj,Nj, Fj

]
, for every 1 ≤ j ≤ m.

Step 2. Check if
(U1, U2, · · · , Um) = T,

which means check whether

Uix ⊆
m⋃

i=1

Ui for every i ∈ {1, 2, · · · , m} and for every x ∈ AT,

by Lemma 9.3.7. If yes then go to step 5. If there was ari
i x = a

rj
j and a

rj
j 6∈ Uj

then go to step 2.

Step 3. Add the missing element a
rj
j to Uj and then we have

U(+1)
j = 〈AUj ∪ a

rj
j 〉,

and then we have the new description

(
U1, U2, · · · , Uj−1, U(+1)

j , Uj+1, · · · , Um
)
, (9.4)

Step 4. We start again with the new description (9.4) and we keep adding these
missing elements with all i ∈ {1, 2, · · · , m}.

Step 5. We reach to the final description

(
U(+s1)

1 , U(+s2)
2 , · · · , U

(+sj)

j , · · · , U(+sm)
m

)
= T.

Which means that U
(+sj)

j b ⊆
m⋃

i=1
U(+si)

i for every b ∈ AT and for every j ∈

{1, 2, · · · , m} and that because as we explained before each Uj is defined
by the triple

[
dj,Nj, Fj

]
. So if we add an element a

rj
j to Uj that means, by

Corollary 9.3.3, we reduce the gaps in Fj and they are finite, or we reduce
the difference dj and we can do this just finitely often. Thus we add finitely
many elements in each Uj, which implies that this process terminates. So

now each U
(+sj)

j is defined by the triple

[
d
(+sj)

j ,N|
(+sj)

j , F
(+sj)

j
]
.
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Step 6. If we were given x = arh
h ∈ S and we want to see if x ∈ T or not then we

just take this element and see in U(+sh)
h if

arh
h ∈ F(+sh)

h ,

or

rh = d(+sh)
h k for some d(+sh)

h k ≥ d(+sh)
h t where d(+sh)

h t = N (+sh)
h ,

then x ∈ T otherwise x 6∈ T.

Remark 9.3.10. Since residual finiteness is preserved under taking substructures,
the subsemigroup of the semigroup which is a disjoint union of finitely many
copies of the free monogenic semigroup is residually finite by Theorem 8.3.4.
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CHAPTER

TEN

CONCLUDING REMARKS AND CONJECTURES

Arguably, the free monogenic semigroup N is the most fundamental commutative
semigroup. It is well-known that all finitely generated commutative semigroups
are finitely presented and residually finite. Finite presentability was first proved
by Rédei [Réd65]; see also [Gri95, Section 9]. Residual finiteness was proved by
Malcev [Mal83]; see also [Car01] and [Lal71]. In this thesis we have shown that
disjoint unions of copies of N (which, of course, need not be commutative) in this
respect behave like commutative semigroups. It would be interesting to know if
this generalises to unions of commutative semigroups.

Question 1. Is it true that every semigroup which is a finite disjoint union of finitely gen-
erated commutative semigroups is necessarily: (a) finitely presented; (b) residually finite?

By way of contrast, there is no reason to believe that our results would generalize
to disjoint unions of copies of a free (non-commutative) semigroup of rank > 1.
We proved in Chapter 6 that every balanced semigroup which is a disjoint union
of two copies of the free semigroup of rank two is finitely presented and residually
finite and this because we put a condition which is the product of any two gener-
ators preserves length. So what if we removed this condition, is it still the same
result?

Question 2. Does there exist a semigroup S which is a disjoint union of two copies of a
free semigroup of rank two which is not: (a) finitely presented; (b) residually finite?

We proved in Chapter 7 that every rectangular band of finitely presented semi-
groups is finitely presented (Theorem 7.2.1), and we proved the same theorem
about residual finiteness but in the free monogenic semigroups case (Theorem
7.4.3). We therefore pose the following question.
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Question 3. Is every semigroup which is a rectangular band of residually finite semi-
groups residually finite?

Finally, we investigated in Chapter 9 how the subsemigroups of disjoint unions of
finitely many copies of the free monogenic semigroup behave and we show that
such semigroups are finitely generated and residually finite by the facts that each
subsemigroup of N is finitely generated, and residual finiteness is preserved under
taking substructures.

Conjecture 4. Every subsemigroup of every semigroup which is a disjoint union of finitely
many copies of the free monogenic semigroup is finitely presented.

We have thought about this conjecture and we tried to follow the same technique,
which we believe in the rightness of it, in the proof of the Theorem 8.2.1 but we
faced some complicated notations that prohibited us from continuing the proof as
it follows:
We have S =

⊔
a∈A

Na, T ≤ S and T =
⊔

i∈{1,...,m}
N′i where N′i ≤ Ni for every i ∈

{1, . . . , m}. Also T is generated by the set AT. Thus the set

W = {(ai)m, (ai)m(aj)n : ai, aj ∈ AT, m, n ∈N},

is the set of normal forms for T. Hence for any m, m′, n, n′ ∈N0, there exist unique
α(ai, m, aj, m′, bk, n, bl, n′) ∈ AT and κ(ai, m, aj, m′, bk, n, bl, n′) ∈N such that

(ai)m(aj)m′(bk)n(bl)n′ = [α(ai, m, aj, m′, bk, n, bl, n′)]
κ(ai,m,aj,m′,bk,n,bl ,n′)

. (10.1)

So the generators AT and relations (10.1) provide an infinite presentation for T.
Now the difficulty appears when we want to prove that the relations (10.1) are
consequences of the relations

(ai)m(aj)(bk)n(bl) = [α(ai, m, aj, bk, n, bl)]
κ(ai,m,aj,bk,n,bl)

, (10.2)

and as far as we are concerned, such a notation is not ”nice” to complete the proof
although it is doable.

Now we will list some open questions which are related to some finiteness condi-
tions for the semigroup which is a disjoint union of finitely many copies of the free
monogenic semigroup.
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Question 5. Does every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup have a finite complete rewriting system?

Question 6. Is every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup automatic?

Question 7. Is every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup FA-presentable?

Question 8. Is every semigroup which is a disjoint union of finitely many copies of N
unary FA-presentable?

For the background of the last 4 questions see [BO93], [CRRT01, HT03], [CORT09],
[CRT12], respectively.
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