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INTRODUCTION
The confi gurations of the supercontinents of 

Gondwana and Pangea are relatively well con-
strained (Veevers, 2004), whereas those of older 
supercontinents are debated; competing models 
have been proposed (e.g., Li et al., 2008; Zhang 
et al., 2012; Zhao et al., 2002). This is particu-
larly the case with the end-Mesoproterozoic 
supercontinent of Rodinia, the confi guration of 
which remains controversial (e.g., Evans, 2009; 
Li et al., 2008). At the heart of the controversy 
is the position of South China craton in Rodinia; 
the consensus model proposes that it occupied 
an intracratonic position between Laurentia 
and Australia (Li et al., 2008, and references 
therein), whereas other models argue that it was 
either on the margin of Rodinia near Australia 
(Zhao and Cawood, 1999; Zhou et al., 2002) or 
occupied a position external to the superconti-
nent (Yang et al., 2004). The consensus model 
assumes that the pre–850 Ma rocks in the South 
China craton formed in a collisional orogen 
(termed the Sibao or Jiangnan orogen), coinci-
dent with the assembly of the Rodinia. Younger 
830–750 Ma igneous rocks in South China are 
considered the products of anorogenic mag-
matism in intracontinental rift basins related 
to mantle plume activity during the breakup of 
Rodinia. In contrast, other models argued that 
early to middle Neoproterozoic igneous rock 
assemblages exposed along the margins of 
the craton developed in arc systems (Zhao et 

al., 2011; Zhou et al., 2002). Uncertainties in 
paleogeographic reconstructions such as those 
proposed for South China in Rodinia refl ect the 
incomplete nature of available data sets, result-
ing in signifi cant gaps in the geologic record and 
allowing for multiple nonunique interpretations. 
Thus, limiting the position of even one block 
with respect to another in supercontinent recon-
structions is signifi cant, because changes in the 
history of one segment must be accommodated 
in the arrangement of others, and will ultimately 
limit possible interrelationships between all 
other blocks. In this paper we summarize geo-
logical, geochronological, geochemical, and 
detrital zircon isotopic data for the Neoprotero-
zoic and Paleozoic rock units from the South 
China craton. We show that throughout this time 
frame it was fi rst assembled on, and then was 
adjacent to, the Western Australia and northern 
India margins of both Rodinia and Gondwana, 
prior to rifting off Pangea and fi nally colliding 
with Asia to achieve its current position.

SETTING OF SOUTH CHINA
The South China craton consists of the 

Yangtze block to the northwest and the Cathay-
sia block to the southeast (Fig. 1; Zhao and 
Cawood, 2012). The Yangtze block consists of 
Archean–Paleoproterozoic crystalline base-
ment surrounded by late Mesoproterozoic to 
early Neoproterozoic folded belts, which are 
locally unconformably overlain by weakly 

metamorphosed Neoproterozoic strata and 
unmetamorphosed Sinian cover (Fig. 1; Zhao 
and Cawood, 2012). The Cathaysia block is com-
posed predominantly of Neoproterozoic meta-
morphic rocks, with minor Paleoproterozoic and 
Mesoproterozoic lithologies. Archean basement 
is poorly exposed and largely inferred from the 
presence of minor inherited and/or xenocrys-
tic zircons in younger rocks (Fig. 1; Zhao and 
Cawood, 2012). One marked difference between 
the Cathaysia and Yangtze blocks is that the for-
mer underwent a tectonothermal event in the 
early Paleozoic (460–420 Ma), which resulted in 
an angular unconformity between post-Silurian 
cover and metamorphosed pre-Devonian strata 
with granites emplaced in Cathaysia and adja-
cent areas in the Yangtze block (Huang, 1977; 
Wang et al., 2013a). This led some research-
ers to regard the Cathaysia block as an early 
Paleozoic folded belt bordering the southeast-
ern margin of the Yangtze block (Huang, 1977), 
although most researchers favor models that 
regard Cathaysia as a discrete continental block 
that amalgamated with the Yangtze block in the 
early Neoproterozoic (see Zhao and Cawood, 
2012, and references therein). In addition, some 
of the Precambrian to early Paleozoic rocks in 
the Cathaysia block were strongly reworked by 
a Late Permian–Early Triassic event, but its tec-
tonic nature remains unknown or controversial 
(Zhao and Cawood, 2012).

Yangtze-Cathaysia Boundary and Relation 
to Rodinia

Establishing the nature and age of the bound-
ary between the constituent Yangtze and Cathay-
sia blocks, generally considered to be delin-
eated by the Sibao (or Jiangnan) orogen (Fig. 1; 
e.g., Li et al., 2008; Zhao and Cawood, 1999), 
is critical to understanding the setting of the 
South China craton. Recent work has shown 
that rather than a single boundary, the eastern 
portion of the craton can be subdivided into 
a series of structural blocks: eastern Cathay-
sia, western Cathaysia, and eastern Yangtze, 
which are bounded on their western sides by 
the Zhenghe-Dapu-Gaoyao-Huilai fault system, 
the Jiangshan-Shaoxing fault system, and the 
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suprasubduction zone magmatic arc-backarc assemblages in the craton range in age from ca. 
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in progressive northwestward accretion onto the periphery of an already assembled Rodinia. 
Siliciclastic units within an early Paleozoic succession that transgresses across the craton were 
derived from the southeast and include detritus from beyond the current limits of the cra-
ton. Detrital zircon age spectra require an East Gondwana source and are very similar to 
the Tethyan Himalaya and younger Paleozoic successions from Western Australia, suggesting 
derivation from a common source and by inference accumulation in linked basins along the 
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craton in the late Paleozoic.

GEOLOGY, August 2013; v. 41; no. 8; p. 1–4; Data Repository item 2013248 doi:10.1130/G34395.1 | Published online XX Month 2013

© 2013 Geological Society of America. Gold Open Access: This paper is published under the terms of the CC-BY license. 

 as doi:10.1130/G34395.1Geology, published online on 6 June 2013



2 www.gsapubs.org | August 2013 | GEOLOGY

Jingdezhen-Yifeng-Wanzhai-Anhua-Luochheng 
fault system, respectively (Fig. 1; Wang et al., 
2013a, 2013b; Xu et al., 2007). Immediately 
west of each of these faults is a series of dis-
rupted Proterozoic metamorphic domains, from 
east to west the Wuyi-Yunkai, Shuangxiwu, and 
Jiangnan domains (Fig. 1).

The Proterozoic domains consist of mainly 
mafi c-ultramafi c rocks with localized occur-
rences of felsic igneous rock, notably in the 
Jiangnan domain, and metamorphosed volca-
niclastic sedimentary rocks (Shu, 2006). These 
rock sequences were considered to be Paleo-
proterozoic and end Mesoproterozoic to earli-
est Neoproterozoic in age. However, all avail-
able geochronological dating has shown that 
Mesoproterozoic rocks are essentially absent 
and the units are dominantly early Neoprotero-
zoic (Wang et al., 2013a, 2013b, and references 
therein). Elemental compositions and isotopic 
systematics of igneous rocks within all three 
domains suggest input from a depleted mantle 
source modifi ed by subduction-derived melts 
and fl uids in a series of arc-backarc systems (a 
complete list of analytical data used to construct 
geochemical and geochronological plots and 

sources of the data is provided in the GSA Data 
Repository1 (Fig. 2; Shu, 2006; Wang et al., 
2013b, and references therein). Mafi c rocks with 
mid-oceanic-ridge basalt geochemical affi nities 
from the Wuki-Yunkai, Shuangxiwu, and Jiang-
nan domains have εNd(t) of 3.5–7.0, 3.2–8.7, and 
3.6–9.4, respectively, indicating input from a 
juvenile source and consistent with an accre-
tionary orogen setting. The age range of igne-
ous activity within the domains, in particular the 
age of termination of arc magmatism, displays 
an overall decrease from southeast to northwest. 
The Wuyi-Yunkai arc system ranges from ca. 
1000 Ma to 900 Ma with the end of arc magma-
tism marked by emplacement of peraluminous 
(S-type) granites (our data). The Shuangxiwu 
and Jiangnan domains range from ca. 970–880 
Ma and 870–820 Ma, respectively (Li et al., 
2009; Wang et al., 2008; Wang et al., 2013b). 
Formation and closure of these arc-backarc 

systems resulted in progressive northwestward 
amalgamation of the various pieces of Yangtze 
and Cathaysia to create the South China cra-
ton. Furthermore, their Neoproterozoic age and 
convergent plate margin setting indicate that the 
craton could not have occupied an intracratonic 
position during the end Mesoproterozoic col-
lisional assembly of Rodinia, but rather must 
have been on the periphery of the superconti-
nent. Synchronous with this phase of assembly 
of the craton, subduction-related magmatism 
developed along the western and northern 
margins of the Yangtze block, along the Panxi-
Hannan fold belt that was active from 1000 to 
750 Ma (Dong et al., 2012), although Li et al. 

1GSA Data Repository item 2013248, a list of 
data and data sources, is available online at www.
geosociety.org/pubs/ft2013.htm, or on request from 
editing@geosociety.org or Documents Secretary, 
GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Kunming 

Hong Kong 

Shanghai 

Early Neoproterozoic (850-825 Ma) metamorphosed volcanic-sedimentary units (Sibao Group and equivalents) in Jiangnan belt  

Archean basement in Yangtze block

North China  Craton 

Central &
West Yangtze 

Songpan-Ganzi 

Indochina 

A
ila

o
sh

a
n
 

Songma  Fault

Kangding 

Kongling 

Qinling-Dabie 

30 ° N 

20 ° N 

30 ° N 

100 °E 110 °E 

100 °E 

Hannan 

Yunkai 

Nanling 

0 360  km 

Wuyi 

Bikou 

Lo
ng

m
en

sh
an

  F
au

lt

Mesoproterozoic and Neoproterozoic 

strata in Yangtze block
Paleoproterozoic basement in Yangtze block

Late Neoproterozoic (750-542 Ma) unmetamorphosed cover in Yangtze block and Jiangnan belt

Middle Neoproterozoic (825-750 Ma) weakly metamorphosed cover (Banxi Group and equivalents) in Jiangnan belt   

Neoproterozoic (970-750 Ma arc- and/or rift-related plutonic complexes and supracrustal rocks in Panxi-Hannan and Jiangnam belts

Late Neoproterozoic to early Paleozoic volcanic-sedimentary units metamorphosed during early Paleozoic orogenesis (460-420 Ma) in Cathaysia block

Hainan 

825-800 Ma granite in Jiangnan belt

Pa
cif

ic 
Oce

an
 

Z
he

ng
he

-D
ap

u 
 F

au
lt 

Shuan
gxi

w
u

Jia
ngsh

an-S
haoxin

g  F
au

lt 
Hidden early Paleozoic fold belt, Cathaysia block

110 °E 120 °E 

A
n
h
u
a
-L

u
o
ch

e
n
g
 F

a
u
lt

 F
a
u
lt 

Paleoproterozoic basement, Cathaysia block reworked in Triassic (250-230 Ma) 

Meso-Neoproterozoic basement, Cathaysia block (Baoban Group, Hainan Island) 

Gaoyao-Huilai

Yifeng-W
anzhai

Ji
ng

de
zh

en
 F

au
lt

J
ia

n
g
n
a
n

Jiangnan

C
h
e
n
zh

o
u
-L

in
w

u
 

Shanghai

North China 

Yangtze

Cathaysia
Prev

iously
-defi

ned Sibao O
rogen

NE Jiangxi Province

    Jiangnan  Domain

Middle Neoproterozoic (820-750 Ma) Banxi Group and equivalents reworked by early Paleozoic ogogeny (460-420 Ma) in Jiangnan belt   

Early Neoproterozoic (860-820 Ma) volcanic-sedimentary units reworked in early Paleozoic (460-420 Ma) in Cathaysia block and Jiangnan belt

West
Cathaysia 

Ea
st

 C
at

ha
ys

ia 

Ea
st

 Y
an

gt
ze

Panxi-H
annan fo

ld belt

E-MORB and OIB

N-MORB 

Arc volcanic rocks or 

crustal contamination

1

10

0.1 1.0

N
b
/T

h

La/Nb

C

10

E-MORB

A

B

Hf/3

Th Nb/16

WPAB

N
-M

O
R

B

IA
T

Depleted mantle
+slab-derived fluid

Nb/Y

ε N
d
(t

) 
( 

M
a
)

South China
sediment

-12.0

-8.0

-4.0

0.0

4.0

8.0

0.01 0.1 1.0 10.0

C
A

B

Jiangnan
Shuangxiwu

Wuyi-Yunkai

Figure 2. Geochemical plots for mafi c rocks 
along Wuyi-Yunkai, Shuangxiwu, and Jiang-
nan domains in eastern South China craton. 
A: Hf/3–Th–Nb/16. B: Nb/Th versus La/Nb. C: 
εNd(t) versus Nb/Y. (Complete list of data and 
data sources is given in the Data Reposi-
tory; see footnote 1.) IAT—island-arc tho-
leiite; CAB—island-arc calc-alkaline basalt; 
N-MORB—normal mid-oceanic-ridge basalt; 
E-MORB—enriched mid-oceanic-ridge ba-
salt; WPAB—within-plate alkali basalt; OIB—
ocean island basalt.

Figure 1. Map of south China (after Zhao and Cawood, 2012) with inset showing Sibao oro-
gen (after Li et al., 2002).
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(2002, 2008) proposed that the 830–750 Ma 
magmatism along these margins resulted from a 
mantle plume that led to the breakup of Rodinia.

Provenance of Paleozoic Strata and Relation 
to Gondwana

Early Paleozoic strata extend across the 
South China craton (Fig. 1). Facies relations 
for Cambrian and Ordovician strata range from 
siliciclastic-dominated, shallow-marine succes-
sions in the Cathaysia block to time-equivalent 
carbonate-dominated successions in the central 
Yangtze block, with a deeper water, mixed silic-
iclastic-carbonate succession in the interven-
ing eastern Yangtze block. Silurian siliciclastic 
strata overlie the carbonate succession in the 
central Yangtze block (Wang et al., 2010).

U-Pb analyses of detrital zircon grains from 
the early Paleozoic siliciclastic strata indicate 
a range in age from ca. 3350 Ma to 460 Ma; 
one grain yielded a Hadean age of ca. 4100 Ma 
(Fig. 3; Wang et al., 2010; our data). All samples 
contain end Mesoproterozoic and Neoprotero-
zoic detrital zircon ages, a characteristic feature 
of detritus derived from a Gondwana source 
(e.g., Cawood and Nemchin, 2000; Myrow et 
al., 2010). Paleocurrent data indicate deriva-
tion of siliciclastic strata from the southeast, 
and the detrital zircon age signature includes 

components derived from beyond the current 
limits of the craton (Wang et al., 2010). The 
end Mesoproterozoic to earliest Neoproterozoic 
age peak that dominates the sandstone samples, 
along with Hf isotope data from grains of this 
age, matches source regions in the Wilkes-
Albany-Fraser belt between southwest Australia 
and Antarctica and the Rayner–Eastern Ghats 
belt between India and Antarctica (our data). 
Zircon grains with ages (ca. 490 Ma) close to 
the depositional age of the samples were present 
in the Ordovician and Silurian successions with 
source regions ascribed to igneous activity in the 
North India and Terra Australis orogens (Wang 
et al., 2010). Furthermore, the overall age spec-
trum is very similar to those of time-equivalent 
material from the Tethyan Himalayan and to a 
lesser extent younger Paleozoic successions 
from Western Australia, suggesting derivation 
from a common source and by inference accu-
mulation in linked basins (Fig. 3). These pro-
posed East Gondwana orogenic source regions 
along with their bounding cratons also provide 
a likely source for Hadean, Neoarchean, earli-
est Paleoproterozoic, late Paleoproterozoic, and 
Neoproterozoic detritus within the early Paleo-
zoic sandstones. Thus, in the early Paleozoic 
the South China craton was likely located at the 
nexus between India, Antarctica, and Australia, 
along the northern margin of East Gondwana.

Paleomagnetic records for Neoproterozoic 
and early Paleozoic strata from the South China 
craton suggest, on the basis of comparison with 
data from Gondwana, that the craton occupied a 
location adjacent to the west coast of Australia 
(Macouin et al., 2004; Yang et al., 2004). These 
paleomagnetic constraints, although limited, are 
consistent with faunal data that suggest a close 
link in the early to middle Paleozoic, including 
the affi nity of Early Devonian freshwater fi sh in 
south China, Vietnam, and the Canning Basin of 
Western Australia (Burrett et al., 1990).

Geologic, paleomagnetic, and faunal data 
suggest that South China rifted from Gondwana 
in the Late Devonian to early Carboniferous 
before drifting across the Tethys Ocean, and was 
fi nally accreted to Asia (north China) along the 
Qinling-Dabie suture in Permian–Triassic time 
(Metcalfe, 2011).

CONCLUSIONS
A self-consistent set of geologic, geochemi-

cal, geochronological, paleomagnetic, and fau-
nal data indicates that the South China craton 
was assembled and then maintained a position 
off Western Australia and northeast India from 
the beginning of the Neoproterozoic to the end 
of the Paleozoic, along the periphery of both 
the Rodinian and Gondwanan supercontinents 
(Fig. 4). Neoproterozoic igneous rocks adja-
cent to a series of sutures that transgress the 
craton formed in a succession of suprasubduc-
tion zone arc-backarc systems over ~180 m.y. 

from 1000 to 820 Ma. Their Neoproterozoic 
age and convergent plate margin setting argue 
against the craton occupying an intracratonic 
setting between Australia and Laurentia during 
collisional assembly of Rodinia at the end of the 
Mesoproterozoic. Subduction on the margin of 
an already assembled Rodinia, as represented by 
the South China craton arc systems, may have 
developed in response to the loss of convergent 
plate margins following collisional suturing of 
the constituent blocks of Rodinia (Cawood and 
Buchan, 2007). Furthermore, the presence of 
multiple arc systems indicates that the Cathay-
sia and Yangtze blocks of the South China cra-
ton did not constitute two preformed, separate 
entities that subsequently assembled along a 
single suture zone (Sibao or Jiangnan orogen), 
but rather represent a series of discrete lithotec-
tonic units (terranes) accreted onto the margin 
of an already formed Rodinia (Fig. 4A). The 
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Figure 3. Detrital zircon age distributions for 
sedimentary rocks from south China, West-
ern (W.) Australia, and Tethyan Himalaya. 
(Complete list of data and data sources is 
given in the Data Repository; see footnote 
1.) Age peaks important in comparing data 
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Figure 4. Series of schematic paleogeo-
graphic reconstructions showing position 
of South (Sth; Nth—North) China craton. 
A: Rodinia ca. 900 Ma. Mad—Madagascar; 
Kal—Kalahari; Ant—Antarctica; C—Cathay-
sia. B: Gondwana ca. 500–450 Ma. IC—In-
dochina. C: Pangea ca. 300 Ma. Gondwana 
reconstruction is adapted from Cawood and 
Buchan (2007), and Pangea reconstruction 
is adapted from Metcalfe (2011). Y—Yangtze.
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termination of convergent plate margin activity 
in the South China craton in the mid-Neopro-
terozoic corresponds with a change to regional 
extension (e.g., Nanhua rift) and the breakup of 
Rodinia, perhaps refl ecting a global adjustment 
to plate kinematics. Siliciclastic units within 
an early Paleozoic succession that transgresses 
across the craton were derived from the south-
east and include detritus from beyond the cur-
rent limits of the craton. Detrital zircon age 
spectra from sandstone units indicate an East 
Gondwana source that included Western Aus-
tralia–Antarctica and northeastern Indian rock 
units (Fig. 4B). The link to Gondwana argues 
against any models invoking the South China 
craton as occupying a separate plate that rifted 
off the supercontinent or formed part of Lauren-
tia. The inferred location of South China at the 
nexus between Western Australia and northern 
India means that it was along strike from, and 
could thus represent a preserved fragment of, 
greater India lithosphere, which elsewhere has 
been lost due to India-Asia collision. Its pres-
ervation refl ects separation from Pangea in the 
late Paleozoic and drifting across the Tethys 
Ocean prior to accretion onto the North China 
craton and establishment near its current loca-
tion within Asia (Fig. 4C).
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