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The molecular structures of the Si2HX, Si2Li2, SiGeHLi and C2H2 species (where X= H,

Li, F and Cl) were studied. All of these species have more than one isomeric form. The

critical points on the potential energy surfaces of the Si2HX, Si2Li2 and C2H2 species and

the minima on the SiGeHLi surface were located. The full six-dimensional potential

energy surface (PES) of the Si2Li2 molecule was calculated (for the first time) using the

CCSD(T)-F12a/cc-pVTZ-F12 level of theory.

The core-valence, zero-point energy and relativistic corrections for the Si2HLi and

Si2Li2 species were calculated. Additionally, the electron affinity and Li+/H+ binding

energies for the Si2HLi and Si2Li2 structures were investigated. Furthermore, the

anharmonic vibrational-rotational properties for the Si2HLi and Si2Li2 structures were

calculated using second-order perturbation theory.

The recently developed CCSD(T)-F12a method with the cc-pVTZ-F12 basis set was

employed to obtain geometries and relative energies (for the Si2HLi, Si2HF, Si2HCl and

Si2Li2 structures) and vibrational frequencies (for the Si2H2 and Si2Li2 structures). The

CCSD(T) method with the cc-pVXZ, aug-cc-pVXZ and aug-cc-pV(X+d)Z basis sets,

CCSD(T)-F12a/cc-pVXZ (where X=2-4) and the B3LYP/6-311+G(d) levels of theory

were also used. Comparison was made of the geometric properties and vibrational

frequencies calculated at the different levels of theory.

The calculated geometric properties for all the studied species and vibrational

frequencies (for the Si2H2 structures) show good agreement with the experimental and

theoretical literature.

The PES of Si2Li2 was used to perform large scale variational vibrational calculations

using the WAVR4 program. The first 2400 totally symmetric energy levels were

calculated. The low-lying energy levels were qualitatively correct. Conclusive

assignments of the vibrational modes of the Si2Li2 structures were made for the eleven

lowest lying energy levels.
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The aim of the following work is extended investigations of the physical-chemical

properties of substituted disilynes, which include: bonding properties, vibrational

frequencies, electron affinities, proton binding energies and isomerisation properties.

Also a full six-dimensional potential energy surface (PES) with additional variational-

vibrational energies will be calculated for the most interesting substituted disilyne

species.

Silicon is the second most abundant element in the earth’s crust, and thus silicon

chemistry can be very interesting to study and investigate. Silicon in various forms such

as silicon dioxide (silica) or silicates has been an inherent companion during the long

history of human civilization and technology, starting as a main part of brick, cement or

porcelain and is currently used as the principal component for semiconductors, batteries

and diagnostic industry domains [1]. Applications of silicon have large impact on the

modern world economy, so any new knowledge or more accurate physical-chemical

properties would be very beneficial.

Silicon is also an essential element in biology, such as a trace element in plants, but

mostly employed by various sea species [2]. For instance sea sponges need silicon in

order to have structure and other biological forms use silicon to build the striking array

of protective shells [3].

Silicon compounds also occur as candidates for interstellar molecules [4-6]. For

instance the ab initio calculation of IR bands done by Osamura and Kaiser on the Si2Hx

(where x=1-6) species was used to search for these molecules in the circumstellar

envelope of carbon star IRC+10216 [4, 6]. The silicon abundance in the atmosphere of

the He-weak star HD 21699 was investigated recently by Pavlenko et al. [7].

One of the reasons for the many occurrences of silicon compounds in various aspects of

the surrounding world is the unusual physical-chemical properties of silicon.
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There is interest in the unusual chemical bonding properties of silicon, specially the

formation of multiple bonds, which in compounds of elements heavier than carbon (Si,

Ge, Sn and Pb) was for a long time doubted because of the considerable Pauli repulsion

between the electrons of the inner shells [8-10]. Silicon compounds belong to the

carbon group in the periodic table (group 14), so they may have similar physical and

chemical properties as carbon compounds and can create similar compounds. However,

it was noticed in the early 1980’s that heavier elements than carbon can exhibit unusual

geometries [11-13], such as dibridged and monobridged structures. Also, the absence of

a linear structure as a minimum on the potential energy surface of Si2H2 was a big

surprise. Explanations of these properties have been reported before [14-17]. Lein et al.

investigated the interactions between the EH moieties in E2H2 molecules (where E = C,

Si, Ge, Sn and Pb). They showed that the bonding between the EH moieties for the

E=Si–Pb species (which differ from C) is more favorable in the (X2∏) ground state than 

in the (e4∑−) exited state as the excitation energy of EH (where E = Si–Pb) is higher

than for CH [14]. Furthermore bridged structures of E2H2 can be created, because both

the doubly- and singly-bridged structures possess three bonding orbital contributions:

one σ bond and two E−H donor-acceptor bonds in the dibridged structure, and one π 

bond, one E−H donor-acceptor bond and one lone-pair donor-acceptor bond in the 

monobridged isomers [14]. In addition, MRCI-SD/aug-cc-pVQZ calculations of Si2H2

structures showed that the triplet species have higher energy than the singlet structures

[14].

A comparison of silicon hydrides with carbon analogues can lead to a better

understanding of silicon’s bonding properties. A full-dimensional quantum study of

acetylene/vinylidene isomerisation was done by Zou and Bowman [18]. The global

minimum structure is the triply-bonded acetylene form (linear form) followed by a

transition state (TS) and doubly-bonded vinylidene (as a second minimum). The heat of

isomerisation between acetylene and vinylidene has been studied by Lineberger and co-

workers using ultraviolet photoelectron spectroscopy showing a value of 46.4 ± 5.5

kcal/mol [19]. An ab initio investigation of the isomerisation reported the energy of

reaction to be 43.91±0.5 kcal/mol (CBS-QCI/APNO model of Petersson [20]) or 45.18

kcal/mol (CCSD(TQ)/CBS by Chang, Shen and Yu [21]). One of the most interesting
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classes of silicon species is silicon hydrides in terms of bonding, energetic and

structural properties. Comparing the Si2H2 isomers to their carbon analogues led to

remarkable observations and conclusions. For many years, many theoreticians tried to

find the best structure and energetic properties of the Si2H2 species. For instance, the

earliest calculations by Wirsam [22] showed the acetylene-type form as the minimum,

however, a later study disproved this (having two imaginary frequencies [23]) in favour

of the vinylidene form. A few years later the global minimum structure corresponding

to the dibridged form was found by Lischka and Köhler [12].

Coupled-cluster theory investigations of the Si2H2 isomers were performed by Grev and

Schaefer [24] and the isomers obtained are as follows with relative energies in

parentheses: dibridged (0 kcal/mol), monobridged (8.7 kcal/mol), vinylidene (11.6

kcal/mol) and trans (16.3 kcal/mol). The Si(H)2Si (dibridged C2) and HSi(H)Si

(monobridged Cs) isomers were observed experimentally (by microwave and IR

spectroscopy [25, 26]). A schematic plot of the Si2H2 isomers is shown in Figure 4.1-1

(page 57). The experiments verified the earlier theoretical predictions of Lischka and

Köhler [12] and Grev and Schaefer [24].

An effort to find experimentally linear triple bonded Si−Si species has remained a 

challenge. However, Sekiguchi and co-workers synthesised 1,1,4,4-tetrakis

[bis(trimethylsilyl)methyl]-1,4-diisopropyl-2-tetrasilyne, a stable compound with a

Si−Si triple bond [27], the picture of the compund can be seen below: 

X-ray crystallographic analysis confirmed the triple bond as trans-bent with a bond

angle of 137.44o, bond length of 2.062 Å and with the four Si atoms coplanar [27]. The

structure is very similar to (tBu3Si)2MeSiSi≡SiSiMe(SitBu3)2, where tBu is tert-butyl,

calculated using DFT methods [28]. The natural bond order (NBO) analysis done by

Sekiguchi shows electron occupation of the two  orbitals (1.934 and 1.897 electrons)
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[27]. The bond order (Wiberg bond index) of Si≡Si is 2.618, indicating a genuine Si 

triple bond, but the value is still less than 3 (the value calculated for acetylene) [27].

Compounds containing mixtures of Si and C elements were investigated as well in

addition to Si2H2 and C2H2. The Si2H2 and SiCH2 molecules were studied theoretically

by Frenking et al. [29] using the MP2 and CCSD(T) levels of theory. They showed that

the SiCH2 species differ from the Si2H2 structures. The global minimum of the SiCH2

structures is the vinylidene form (hydrogens connected to the carbon atom) followed by

trans (34 kcal/mol above) and another vinylidene form (hydrogens connected to the

silicon atom) which is 84 kcal/mol less stable than the global minimum. A bridged

structure was not found. What is really interesting is that the linear form of SiCH2 is a

higher-order saddle point on the PES. Thus, the substitution of a silicon by a carbon

atom in C2H2 changed the properties of the PES. The geometries represent different

stationary points on the PESs. The question should be asked then, what if we substituted

one or two hydrogens in Si2H2 by other elements such as F, Cl or Li? What properties

are we able to find and how do they change our understanding of the small cluster

species of the group 14 elements?

We are aware of theoretical work on the Si2HY and Si2Y2 structures (where Y=F, Cl, Br

and Li) done by Bei and Feng [30]. It appears that the Si2HY and Si2Y2 structures were

optimized using the RHF/6-31G** level of theory. Thus, the results calculated here will

not be compared with such a low-level (uncorrelated) calculation.

Plasmas of silicon are used for chemical vapor deposition (CVD) in the

microelectronics industry. Also in the etching of metal surfaces halogenated silanes

(SiF4 and SiCl4) were found on surfaces such as copper [31, 32]. Moreover many of the

reactive silanes produced in such processes were studied experimentally [33], however,

other silicon compounds can occur in this type of plasma but because of their transient

nature and short lifetime, it is only possible to study them theoretically [34].

Fluorides and chlorides of silicon were investigated both experimentally and

theoretically. Experimental thermodynamic studies were done by Walsh [35]. Ignacio

and Schlegel investigated theoretically numerous fluorine and chlorine silicon
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compounds [36, 37]. An extensive coupled cluster study was performed on a set of

mixed silicon hydrides and halides (SiHnXm-n where X=F, Cl; m=1-4; and n=0-m) by

Wilson et al. [34]. The work presented theoretical and experimental results such as the

geometric properties, atomization energies and enthalpies of formation.

Alkali-silicon species are used as power resource materials or emitters and can also

serve as promoters in catalysts [38, 39] . We are aware of the growing importance of

lithium and its connection with the silicon atom in modern industry, for example silicon

lithium-ion batteries. Thus, any investigation of electronic and bonding properties

(vibrations, rotations, anharmonic constants) for small molecules containing Si and Li

atoms can enhance the known knowledge of such structures.

The classical and inverted structures of SiH3Li and SiH3Na were studied before, both

experimentally and theoretically [40, 41]. Small clusters of the SinLix type (where n=2–

10 and x=0–2) were investigated theoretically [42-45]. The theoretical studies of mixed

silicon-lithium clusters SinLip
(+) (where n= 1–6 and p= 1–2) and SinMp clusters (where

M=Li, Na and K, n≤6 and p≤6) performed by Aubert-Frecon et al. are significant, as a 

part of the investigation concerned the Si2Li2 and Si2Li2
(+) species. They found that the

global minimum is a dibridged structure followed (in the Si2Li2
(+) case) by trans (0.266

eV) and dibridged-planar (1.273 eV) structures. The trans structure in neutral Si2Li2

clusters is not a minimum, however, and the dibridged structure is still the global

minimum, followed by dibridged-planar (1.420 eV) and monobridged (1.673 eV). Note,

that the investigation by Aubert-Frecon et al. did not contain identification of minima

and transition states of Si2Li2 which will be provided here. Both the SiLi and Si2Li2

species were studied experimentally in the gas phase by mass spectrometry by Ihle et al.

[46]. Unfortunately, the work was published in a conference proceeding in a limited

edition in the 1970’s and it is not accessible to us.

PES calculations are very helpful to model chemical reactions including isomerisation

processes. Furthermore, ro-vibrational calculations can be performed if a full-

dimensional PES is known, which makes spectroscopic astrophysical or molecular

identifications easier. However, full-dimensional PES calculations require the
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calculation of energies of at least several thousand different configurations of the

molecular system. Also the requirement of multidimensional fitting functions during

hypersurface construction only increases the complexity of such studies.

The calculation of the critical points on the PES of the Si2H2 species was done using

DFT and ab initio calculations by Jursic [47, 48]. Furthermore, extensive potential

energy hypersurface calculations of the SiH2 system were carried out by Gordon et al.

[49] and the potential energy and dipole moment surface of the SiHCl3 species was

investigated by He et al. [50]. Moreover the PES of hydrogen abstraction on the Si(100)

surface was done by Nakmura [51]. An extended PES calculation of the Si2H2 structures

was performed by Law et al. [52]. Nevertheless full six-dimensional potential energy

surfaces of 4-atom species containing silicon atoms are quite rare in the literature.

Thus, any new potential energy surface investigations of small silicon clusters will

enhance our understanding and knowledge of molecular dynamics and ro-vibration

properties of such systems.

Various energy units were used to simplify comparison of the calculated results with the

literature; thus the energy conversion table below was prepared to help the reader. The

table is taken from Ref. [53].

Energy Conversion Table

Hartree eV cm−1 kcal/mol kJ/mol

Hartree 1 27.2107 219474.63 627.509 2625.5
eV 0.0367502 1 8065.73 23.069 96.4869

cm–1
4.55633 x 10-6 1.23981 x 10-4 1 0.0028591 0.011963

kcal/mol 0.00159362 0.0433634 349.757 1 4.184
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In this thesis I used quantum chemical methods to study the geometric and bonding

properties of substituted disilynes. The methods used in the present work will be briefly

explained below.
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1 Ab initio and DFT methods.

1.1 Born-Oppenheimer approximation.

The time-independent Schrödinger equation ( , where is the Hamiltonian

operator, is the wave function and E is the total energy of the given wavefunction)

can be solved exactly only for the H2
+ molecule and very similar one electron systems.

One year after the great achievement of Schrödinger, Born and his PhD student

Oppenheimer proposed a “way” to make it possible to compute the wavefunction in

practical approximations. The Born-Oppenheimer (BO) approximation is the

assumption that the wavefunction ψ of a molecule can be separated into its electronic 

and nuclear (vibrational, rotational) components [54]:

. 1.1-1

This considers the nuclei as stationary, which is a reasonable approximation, as the

nuclei are very heavy in comparison to the electrons. The Hamiltonian operator can be

written as:

, 1.1-2

where, ୒ , ,ୣ ୣୣ , ୒୒ and ୒ୣ represent the nuclear and electron kinetic energy

operators and electron-electron nuclear-nuclear and electron-nuclear interaction

potential operators, respectively. The quantity “r” stands for all electronic coordinates

and “R” for all nuclear coordinates.

According to the assumption that nuclear kinetic energy can be neglected, the operator

୒ (consisting of the kinetic energy operators for each nucleus in the system) can be

removed from the total Hamiltonian. Thus, the electronic Schrödinger equation can be

expressed as:

. 1.1-3

In the remaining electronic Hamiltonian ( ୣ ୣ ୣୣ ୒ୣ ), the nuclear

positions are frozen, and the eigenfunctions, and eigenvalue e depend

parametrically on the nuclear positions. Moreover, for each solution of equation 1.1-3

the nuclear eigenvalue equation is:
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. 1.1-4

The ୬ (electronic energy eigenvalue) allows us to construct the static (time-

invariant) electronic potential energy if the nuclear positions remain fixed. Furthermore,

repeated calculations at different nuclear positions generate a potential energy surface

(PES). The addition of the ୒୒ to the ୬ represents the full internuclear potential

energy surface and is the nuclear wave function. The eigenvalue is the total

energy of the molecule.

The Born-Oppenheimer approximation is usually a reasonable approximation, but

breaks down when two solutions to the electronic Schrödinger equation come close

together energetically. The LiF molecule is a good example [55].
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1.2 Hartree–Fock method.

We can consider several methods to solve the Schrödinger equation that include the

Born-Oppenheimer approximation.

Hartree with contributions from Slater and Fock formulated the Hartree-Fock method in

the 1930’s. Slater introduced exponential functions (Slater Type Orbitals), which

describe atomic orbitals and express the antisymmetric wave function of fermions in the

form of determinants. Fock derived the Fock state and Fock space, which are used to

describe the quantum state with a variable or unknown number of particles.

The wavefunction Ψ is expressed as a combination of molecular orbitals ୧. As a

consequence of the Pauli principle the wavefunction must be antisymmetric with respect

to interchange of any two electron positions [55]. Therefore, to achieve the

antisymmetry requirement the Slater determinant (SD) is used. Furthermore the

wavefunction is described by a single Slater determinant of N spin-orbitals. Single-

electron wave functions (orbitals) are represented in columns while the rows represent

the coordinates of space and spin. A two-particle system (x1 and x2) the SD can be

written as:

. 1.2-1

Each unknown Hartree-Fock orbital ୧ can be expressed as a linear expansion of a set

of known (normalized) basis functions χ, (conventionally called atomic orbitals):

ౘ౗౩౟౩ , 1.2-2

where Mbasis is the number of basis functions and ஑୧is the molecular orbital expansion

coefficient. To solve for the set of molecular orbital expansion coefficients ஑୧ the

variational principle is used, which allows to find the set of coefficients that minimize

the energy of the resultant wavefunction [56]. The variation principle states that the

energy of an approximate wavefunction is above or the same as the exact energy. The

eigenvalue equations for each spinorbital can be then written then as:

, 1.2-3

where ୧�are a set of molecular orbitals, called Hartree-Fock molecular orbitals and is
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the Fock operator [55]. It describes the kinetic energy of the electron, its attraction to

the nuclei and its repulsion from a mean field of the other electrons in the atomic or

molecular system.

The matrix form of equation 1.2-2 is non-linear and must be solved iteratively: this

procedure is usually called the "self-consistent field method."

Basis sets

There are two types of normalized basis functions χ (shown in equation 1.2-2), which 

are used in electronic structure calculations: Slater Type Orbitals (STO) and Gaussian

Type Orbitals (GTO). Slater Type Orbitals can be expressed as:

౮, ౯, ౰
౮ ౯ ౰ . 1.2-4

While Gaussian Type Orbitals can be written as:

౮, ౯, ౰
౮ ౯ ౰

మ
. 1.2-5

N is a normalization constant and the sum of lx, ly and lz determines the type of orbitals

(for example: lx+ly+lz=1 represents a p-orbital) [55] and  (zeta) controls the width of

the orbital (large  gives a tight function, small  gives a diffuse function). STO’s are

more accurate than GTO’s, however the GTO’s are much easier in computations

because of the Gaussian product theorem which states that the product of two arbitrary

Gaussian functions on different centers A and B is a single Gaussian located between

the two original Gaussians.

All basis sets (no matter what type) vary mostly by the number of functions used. The

smallest number of basis functions needed for an atom is called a minimal basis set. For

example: for H: 1s and for C: 1s, 2s, 2px, 2py, 2pz. Minimal basis sets use fixed-size

atomic-type orbitals. However, the minimal basis set is not accurate enough to correctly

describe molecular properties, for example bonding. Thus, to improve the basis set the

number of basis functions per atom can be increased [56]. If the number of basis

functions are doubled (or tripled etc.), this produces a Double Zeta (Triple Zeta etc.)

type basis. Now in Double Zeta for H: 1s, 1sʹ and for C: 1s, is', 2s, 2sʹ, 2px, 2py, 2pz,

2pxʹ, 2pyʹ, 2pzʹ. The primed and unprimed orbitals differ in size and allow for different 
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bonding in different directions [55]. The above improvement allows orbitals to change

size but not to change shape. Thus, polarized basis sets are introduced to remove this

limitation [56]. Polarized basis sets are constructed by addition of orbitals with higher

angular momentum. For example, polarized basis sets add p or higher functions to

hydrogen atoms and d or higher functions to carbon atoms. This approach improves the

description of molecular bonds [55]. To describe properly anionic molecules or systems

with lone-pairs, diffuse functions are needed. Diffuse functions are larger-sized versions

of s- and p- type functions [56] and have small  exponents (electrons are found far

away from the nucleus).

There are many different types of basis sets like Pople style basis sets or correlation

consistent basis sets.

The Pople style basis sets were developed by Pople (Nobel Laureate) [57]. STO-3G is a

minimal basis set, in which Slater type orbitals are approximated by three Gaussians

(3G). Pople’s split-valence basis sets are called 3-21G, 6-31G or 6-311G. For example

in 6-31G the core orbital is a contracted-GTO, which is a fixed linear combination of

six Gaussians, and the valence shell is represented by two orbitals: one contracted-GTO

made of three Gaussians and one single Gaussian. Diffuse functions (denoted by +) and

polarization functions (denoted by s, p or d labels) can be added to each of the Pople

style basis sets.

Correlation consistent basis sets were developed by Dunning [58]. These basis sets are

designed to recover the correlation energy of the valence electrons [55] and are mostly

used in post-Hartree-Fock methods (discussed below). Correlation consistent split-

valence basis sets are known by the acronym cc-pVXZ, which means correlation

consistent polarized Valence X-zeta basis (where X=2-10). The correlation consistent

basis sets can be augmented by diffuse functions (denoted by prefix “aug-“) or

additional tight functions. There are also basis sets specially developed to recovery the

core-core and core-valence electron correlation (cc-pCVXZ), calculate relativistic

corrections (cc-pVXZ-DK) or even designed for specific methods such as the F12

method (cc-pVXZ-F12).
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Different sizes of basis sets or different types of basis sets can calculate the molecular

energy, geometric properties or vibrational frequencies with a different accuracy and so

the performance of different types of basis sets will be studied here.
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1.3 MP2 method.

The motion of the electrons is correlated, a phenomenon that is not described by the

Hartree-Fock method. On average, electrons are further apart than described by the

Hartree-Fock method. The energy difference between the Hartree-Fock energy and

exact energy (for a given basis set) is called the electron correlation energy. The neglect

of electron correlation in the Hartree-Fock method can lead to unphysical results in

comparison to experiment. A number of approaches to this weakness, usually called

post-Hartree-Fock methods, have been formulated. These methods include electron

correlation in the multi-electron wave function. One of these approaches, Møller–

Plesset (MP) perturbation theory, treats correlation as a perturbation of the Fock

operator [59].

Møller–Plesset perturbation theory can be expressed mathematically by employing

Rayleigh–Schrödinger perturbation theory (RS-PT), which treats the exact Hamiltonian

as a sum of the unperturbed Hamiltonian H0 and a small (external) perturbation Hʹ [59]:  

, 1.3-1

where the is a parameter determining the strength of the perturbation [55]. The energy

and wavefunction can then be written as a Taylor expansion:

, 1.3-2

, 1.3-3

where Ψn is the n-th order correction of the wave function. The n-th order energy or

wavefunction is a sum of all terms up to order n if the λ parameter is equal to 1 [55]. 

Thus we can collect all terms with the same power of λ and get:     

1.3-4

.

The zero-order wavefunction is the Hartree-Fock determinant, and the zero-order

energy is just a sum of MO energies [55], thus:
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1.3-5

, 1.3-6

. 1.3-7

It is seen that the first-order energy is exactly the HF energy.

Note that the electron correlation energy starts at second order [55].

In order to obtain the MP2 formula for a closed-shell molecule, the second-order RS-PT

formula involves a sum over doubly-excited determinants. (Singly-excited Slater

determinants do not contribute because of the Brillouin theorem [55]). This is obtained

by promoting two electrons from occupied orbitals i and j to virtual orbitals a and b.

The difference in the total energy of two Slater determinants is a difference in MO

energies, and the second-order Møller–Plesset correction can be written explicitly as:

౟ ౠ ౗ ౘ ౟ ౠ ౘ ౗
మ

i j a b
1.3-8

Note that eq. 1.3-5 is presented in the Dirac notation, which is also used in the other

theoretical chapters. The Dirac "bracket (or bracket)" notation defines the "ket" as the

vector denoted by , and the "bra" as the vector denoted by The "bra" is the

conjugated transpose of the "ket" and the "bracket" is then defined by which can

be mathematically expressed as:

. 1.3-9

More details can be found in Ref. [60].
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1.4 Coupled Cluster method.

The theoretical background of Coupled Cluster (CC) theory was formed in the 60’s by

Čížek [61]. Generally it starts from the Hartree-Fock method and adds all types of 

corrections, single, double, triple etc (S, D, T etc), to the reference wave function [55].

The coupled-cluster wavefunction can be written as an exponential Ansatz [62]:

, 1.4-1

where ଴ is a reference HF wavefunction and the cluster operator is written as

. 1.4-2

ଵ is the operator of all single excitations; ଶ is the operator of all double excitations

and so forth. These excitation operators are expressed as:

1.4-3

1.4-4

The unknown coefficients i
a and ij

ab need to be found to obtain the approximate

solution . In equation 1.4-3 and 1.4-4 i, j stand for occupied and a, b for unoccupied

orbitals. The i
a and ij

ab terms represent single and double excitations from occupied

orbitals (a, b) to unoccupied orbitals (i, j), respectively. Taking into consideration the

structure of , the exponential operator ୘෡can be expanded into a Taylor series:

1.4-5

The ଵ operator generates all singly-excited states. The first term in brackets generates

all doubly-excited states: the connected ଶ excitations (which correspond to two

electrons interacting simultaneously) or disconnected ଵ
ଶ excitations (which correspond

to one non-interacting pair of interacting electrons) [55]. The second term in brackets

groups all triply-excited states (“true” ଷ or “product” triples ଶ ଵ and ଵ
ଷ) [55].

The CC and MP methods are closely connected. At fourth order (singles, doubles,

triples, and quadruples) in Møller–Plesset perturbation theory (indicated as MP4) the

quadruples correspond to the disconnected ଶ
ଶ term in CC language and the triples

corresponds to ଷ. The perturbation theory suggests that the most important term is ଷ

followed by ଷ. If we assume that the perturbation series is well converged at fourth
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order, the CCD energy is equivalent to MP4(DQ) and CCSD corresponds to

MP4(SDQ). We can therefore obtain MP2, MP3 and MP4(SDQ) in the first iterations of

CCSD. The CCSDT method includes also connected triples but is a very expensive

method. A hybrid method has been constructed where the triples term arises from fifth-

order perturbation theory. This method is labelled CCSD(T) [55]. CCSD(T) is often

called "the gold standard of quantum chemistry" for its excellent compromise between

accuracy and computational cost [62].

The ଵ diagnostic can be used to detemine the quality of the coupled cluster method.

The ଵ diagnostic is the norm of the vector of the T1 amplitudes scaled by the number

of correlated electrons N: ଵ
|୘భ|

√୒
. Lee et al. [63] suggested that if ଵ is greater that

0.02 then the wavefunction of the system might have significant multiconfigurational

character. Nevetheless, Martin et al. and Cai et al. [64, 65], showed that CCSD(T) gives

reasonable results for ଵdiagnostic values as high as 0.08. Thus, this value will be taken

as the upper limit in the coupled cluster calculations performed here.
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1.5 Explicitly correlated method-CCSD(T)-F12a/b.

The excellent accuracy of the CCSD(T) method is generally known but the CCSD(T)

method suffers from two major problems: O(N7) scaling of computational cost with

increasing molecular size and slow convergence of the correlation energy with

increasing basis set size [66]. To obtain very good and fast convergence it is necessary

to use large basis sets. Electron correlation is important for the potential energy surface

[67]. The explanation of slow convergence of the correlation energy is that the shape of

the wavefunction cusp (where two electrons approach each other) for small to

intermediate values of interelectronic distances r12 is not well described by expansion in

products of one-electron functions (orbitals) [68].

Hylleraas in his work in 1929 on the He atom [69] noticed that the wavefunction is

linear in the cusp region so he introduced the new idea where the wavefunction Ansatz

is augmented with one extra two-electron function r12 [68]. The new approach was

called the explicitly correlated method R12. The R12 method was implemented by

Kutzelnigg and Klopper for MP2 [70] and also extended to coupled cluster [71, 72] and

MRCI [73]. The early explicitly correlated methods had problems due to the occurrence

of many-electron integrals in the R12 formalism. The three-electron and four-electron

integrals are extremely difficult to calculate.

To improve efficiency and other problems many different approximations and new

ideas were proposed:

 The resolution of the identity (RI) approximation proposed by Kutzelnigg [74].

The many-electron integrals are expressed in terms of sums of products of

simpler two-electron integrals [66, 68].

Mathematically (where “I” is the identity operator and is a

orthonormal basis) [75]. In the case of the R12/F12 methods the RI is used to

approximate the integrals in the projector ଵଶ: ଵଶ ଵଶ [76]. More

detailed explanations can be found in Ref. [74, 75].

 Fixed-amplitude Ansätze and an alternative Ansatz for MP2-R12 [68]. The

alternative Ansatz has been used to avoid numerical problems in the optimized
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wavefunction in large molecules, and fixed amplitude Ansätze have been used to

avoid geminal basis set superposition errors. The advantages and disadvantages

of these approaches have been discussed in references [68, 76].

 Dealing with the four-electron integrals by using the weak orthogonality

functional of Szalewicz (the weak orthogonality functional is a name for the

variational functional introduced by Szalewicz and co-workers [77]).

 The density fitting (DF) approximation was introduced by Ten-no and Manby

[78] and is used to rearrange the three-electron integrals before using the

resolution of the identity to decompose them into expressions involving only

two-electron integrals [78].

 Complementary auxiliary basis sets (CABSs). The resolution of identity uses

auxiliary basis sets (ABS) to deal with the many-electron integrals but this

approach gives large RI errors so Valeev proposed an approximation that

involves expansion in the orthogonal complement of the orbital basis set (OBS)

[79]. The new formulation is labelled the complementary auxiliary basis set

(CABS) approach [79]. The CABS approach is found to be more numerically

robust than the ABS counterpart.

It turned out, however, that even using the above approximations and concepts the

accuracy of the correlation energies was still unsatisfactory when small or medium-size

basis sets were used [80]. This was solved using a non-linear short-range correlation

factor, such as a Slater-type function ଵଶ ଵଶ . This was proposed by Ten-no

[81] and implemented in MP2-F12 by May and Manby [82]. F12 methods use a non-

linear short-range correlation factor F12 rather than the linear correlation factor r12 in the

R12 methods [80].

Later many extensions to coupled-cluster theory (CCSD-F12) were introduced [71, 72,

83, 84].

In this work I focus only on the CCSD(T)F12a/b methods developed by Werner and co-

workers and implemented in the MOLPRO quantum calculation package [85]. In these
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methods the only additional effort as compared to standard CCSD(T) is an initial MP2-

F12 calculation [80]. I will introduce this method in more detail below.

In the following i, j, k, l, m, n will denote occupied orbitals; a, b, c, d will denote virtual

orbitals; r, s, t, u will denote any orbitals representable in the AO basis;  will denote

the orbitals of a formally complete virtual space and x, y will denote CABS.

The CCSD-F12 wavefunction has the form:

భ మ , 1.5-1

where is the Hartree-Fock reference function.

, 1.5-2

, 1.5-3

where ୧
஑ and ୧୨

஑ஒ
are the usual spin-free one- and two-electron excitation operators and

ୟ
୧ are expansion coefficients.

The ଵ�and ଶ are single and double excitation cluster operators. ଵ and the first part of

ଶ (including the ୧
ୟ and ୧୨

ୟୠ operators for excitations into the standard virtual orbitals a

and b) are the same as in standard CCSD, while the new additional term ஑ஒ
୧୨

adds the

explicitly correlated contributions:

1.5-4

The ଵଶ operator is a short-range correlation factor. The projector ଵଶ is needed to

make the F12 configurations ( ୧୨
୫ ୬

஑ஒ
୫ ୬

୧୨
஑ஒ

) orthogonal

If we want to describe the wavefunction cusp for ଵଶ over the whole range of

interelectronic distances correctly we need to use different Slater-type functions. Ten-no

showed [81] that the Slater-type function ଵଶ ଵଶ has better basis set

convergence and numerical stability than the linear factor r12. At the same time May and

Manby [82] developed the MP2-F12 method where F12 is approximated by the frozen

linear combination of Gaussians:

. 1.5-5

We can get a simple explicitly correlated form of the CCSD equations by inserting the

wavefunction of eq. 1.5-1 into the time-independent Schrodinger equation to get:
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, 1.5-6

1.5-7

The energy and the singles and doubles residuals (residual is mathematical terminology

to deal with integrals or differentials where we look for the approximation with small

residual (error) [86, 87]) are:

1.5-8

1.5-9

. 1.5-10

Werner and co-workers noticed that the dependence on the energy in the residual

equations (1.5-9 and 1.5-10) cancels out automatically [68]. The equations (1.5-9 and

1.5-10) contain additionally the explicitly correlated terms but the number of equations

is the same as in conventional CCSD.

We can write the CCSD-F12 doubles residual (eq.1.5-10) in matrix form:

. 1.5-11

The general form of this expression and the explanation of each term is given in [88],

except that the Fock-operator terms in the MP2 residual are included in the matrices ௜௝

[68].

The first term is the MP2-F12 residual:

1.5-12

Only the last term ୫ ୬
୫ ୬
୧୨

is different from conventional MP2 residuals. The coupling

matrices ୧୨are defined as (using approximation 3C and CABS) [68]:

1.5-13

The integrals that are needed in MP2-F12 are evaluated using the DF (density fitting)

approximation (density fitting is a way to approximate the usual two-electron integrals)

[78].
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The next two important terms in େୌୈି୊ଵଶ
୧୨

are ୧୨ and ୧୨ . ୧୨ is an

external exchange operator and includes all contractions of the doubles amplitudes with

integrals involving three or four virtual orbitals and has the form [68]:

1.5-14

The ୧୨ term describes corrections of the external exchange operators due to the

explicitly correlated terms:

1.5-15

୫ ୬
୧୨

is nonlinear and so leads to multiple RI expansions and also we need to deal with

additional integrals over three or four external orbitals [68]. To evaluate the ௜௝

matrices in eq. 1.5-11 a projector is used which is very difficult to approximate

accurately in this case and a large basis set is needed to do so.

Werner et al. [66, 68] proposed the new CCSD-F12a approximation to deal with the

above problems. They neglected all contributions of the explicitly correlated

configurations to the doubles residual but left ୧୨ and ୟୠ
୧୨

in MP2-

F12. The new residual can be written as:

, 1.5-16

where projector in Vmn is approximated as then ୰ୱ
୫ ୬

୰ୱ
୫ ୬ ୫ ୬

୰ୱ

and:

, 1.5-17

, 1.5-18

and ୫ ୬ has the same form as in eq. 1.5-13.

We note that ୫ ୬ and ୧୨ have the same form so the total residual (in matrix

form) can be written as:

, 1.5-19
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where ୰ୱ
୧୨

୰ୱ
୫ ୬

୫ ୬
୧୨

and ୰ୱ
୧୨ ୧୨are defined in the same way. We need to remember

that the fixed amplitude Ansatz (needed in the 3C approximation) is defined as:

୰ୱ
୧୨ ଷ

଼ ୰ୱ
୧୨ ଵ

଼ ୱ୰
୧୨

.

The operator ୧୨ ୧୨ can be computed from integrals in the AO basis and ୫ ୬ ,

୫ ୬ and ୫ ୬ are needed in the MP2-F12 part so the computational effort (when the

amplitude Ansatz is fixed) scales only as O(N5) [68, 80].

The energy expression of the approximations CCSD-F12a and CCSD-F12b can be

written in more detail as:

, 1.5-20

, 1.5-21

where ୰ୱ
୧୨

is the residual of MP2 defined in eq. 1.5-12.

There is no direct F12 correction to the triples, and therefore the basis set error of the

triples is not affected by the F12 method [89]. We can get the triples energy by scaling

the triples energy contribution:

ౙ౥౨౨
౉ ౌమషూభమ

ౙ౥౨౨
౉ ౌమ 1.5-22

The study done by Werner and co-workers of the CCSD(T)-F12 method [66, 68] found

that the CCSD(T)-F12a level is the better choice if we use basis sets up to triple zeta,

because the CCSD(T)-F12a level with larger basis sets can underestimate the basis set

limit and lead to worse convergence. The CCSD(T)-F12b level is better for basis sets

above triple zeta [66, 68].
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1.6 Density functional theory – DFT.

The ab initio methods described in the previous sub-chapters have limitations, in

particular in the case when we would like to perform accurate calculations on molecules

with many atoms and electrons. Density functional theory (DFT) can be an alternative

to ab initio calculations. The main concept of DFT is that the energy of an electronic

system can be expressed in terms of the electron probability density, [90]. The energy

functional of the electron density (E ) represents the electronic energy E of the

system.

As discussed in the Born-Oppenheimer approximation section (1.1), nuclei have much

bigger masses than electrons, therefore nuclei move much slower than electrons. Thus,

electrons can be considered as moving in the field of fixed nuclei. Following this, the

energy functional (E ) can be divided into three parts: the kinetic energy of the

electrons , attraction between the nuclei and electrons ୬ୣ , and electron-electron

repulsion ୣୣ . The ୣୣ term can be divided into a Coulomb and an Exchange part,

and , respectively [55]. The ୬ୣ and are given by:

౗

౗
, 1.6-1

1.6-2

Note that nuclear coordinates are represented by “R” and subscript “n” and electron

coordinates by “r” and subscript “e”. “Z” denotes the effective nuclear charge.

If a non-interacting uniform electron gas is considered, then and can be

written as:

,

, 1.6-4

where,

, 1.6-5

. 1.6-6
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The energy functional can then be expressed as ୘୊ ୘୊ ୬ୣ and is

known as Thomas-Fermi (TF) theory [91]. When the ୈ exchange part is included, it

is known as Thomas-Fermi-Dirac (TFD) [55, 92].

The Thomas-Fermi-Dirac model represents the kinetic energy very poorly and TFD (or

TF) does not predict bonding and therefore molecules do not exist [55].

To fix those issues Kohn and Sham [93] introduced orbitals and they split the kinetic

energy functional into two parts: a small correction term and a term which can be

calculated exactly [55]. Using this approach a Hamiltonian operator with

can be written as:

, 1.6-7

where ୶ୣ୲ is the external potential operator and is equal to ୬ୣ for . [55]

However, for =0, the exact solution of the Schrödinger equation is approximated by as

a Slater determinant which consists of molecular orbitals ୧, and therefore the kinetic

energy functional is given as:

. 1.6-8

is nabla symbol and represents the differential vector operator. Equation 1.6-8 is the

kinetic energy calculated from the Slater determinant and is only an approximation to

the real kinetic energy (improved upon TF and TFD).

Moreover the density is approximately expressed in terms of auxiliary one-electron

functions (a set of orbitals):

1.6-9

Where denotes the total electron density at a particular point r in space. It can be

noticed that a significant component of the electron-electron interaction will be the

classical Coulomb interaction as presented in eq.1.6-2. The energy functional can be

rewritten as:

, 1.6-10

Where the exchange-correlation functional Exc is given by:

1.6-11

The first term in parentheses in eq. 1.6-11 is the kinetic correlation energy, while the

second one contains both exchange and potential correlation energy.
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The exchange and correlation energies in DFT are only short range (in terms of the

distance between two electrons) and depend on the density at a given point [55].

The strength of DFT is that only the total density needs to be considered in order to

calculate the kinetic energy with good accuracy. The Kohn-Sham [93] (KS) approach

was a major breakthrough in this area. They constructed non-interacting electrons with

the same density as the physical system. The major advantage of the KS equation over

the Thomas-Fermi theory is that the kinetic energy is treated exactly.

The Kohn-Sham equation is given by:

, 1.6-12

where the effective potential Veff can be written as:

. 1.6-13

However, the major problem in DFT is to find suitable and efficient formulas for the

exchange-correlation term and this is the main difference between DFT methods:

expression of the functional form of the exchange-correlation energy.

The first approach is named the Local Density Approximation (LDA). In the LDA, the

density is treated locally as a uniform electron gas, and the exchange correlation energy

depends only on the value of the electronic density at each point in space. When we use

the Dirac formula (eq. 1.6-5 to 1.6-6) the exchange energy and exchange functional of a

uniform electron gas can be written:

, 1.6-14

. 1.6-15

The correlation functional is uknown and needs to be fitted to the ground-state

energy of a homogeneous electron gas calculated using for example quantum Monte

Carlo simulations [94]. An example of a functional that uses the LDA is the functional

constructed by Vosko, Wilk and Nusair (VWN) [95].
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Improvement on the LDA can be made when the gradient of the electron density is

considered. This approach is called Generalized Gradient Approximation (GGA) and

can be written:

1.6-16

This can lead to a significant improvement over the LDA results with accuracy

approaching that of correlated wavefunction methods such as MP2 and in some cases

surpassing these [96]. A commonly-used GGA functional is the PW91 functional, due

to Perdew and Wang [97].

Becke in 1993 [98] introduced an approximation where a functional is a hybrid of exact

(Hartree-Fock) exchange with local and gradient-corrected exchange and correlation

terms. This approach is often called a hybrid method. A hybrid exchange-correlation

functional can be represented as a linear combination of the Hartree-Fock exact

exchange functional ଡ଼
ୌ୊ and any combination of exchange and correlation density

functionals. The most popular hybrid method is B3LYP [99] and the B3LYP exchange-

correlation functional can be written as:

1.6-17

The parameters a, b and c are determined by fitting the functional’s predictions to

experimental or accurately calculated thermochemical data. Typical values are a = 0.20,

b = 0.72 and c = 0.81 [100].
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1.7 Other theoretical methods and concepts employed here.

NBO-Natural Bond Orbital method

In this work the Natural Bond Orbital (NBO) method was employed to determine the

Lewis structures and understand the bonding properties of the molecules studied. NBO

analysis is a technique for studying hybridization and covalency in polyatomic wave

functions. The natural “orbitals” were introduced by Löwdin [101] and described as the

unique set of orthonormal one-electron functions. Mathematically the one-electron

functions are represented as eigenorbitals of the first-order reduced density operator

[102]. Thus, according to Weinhold et al. [102] "... natural bond orbitals (NBOs)

provide the most accurate possible 'natural Lewis structure' picture of the wavefunction

ψ, because all orbital details (polarization coefficients, atomic hybrid compositions, 

etc.) are mathematically chosen to include the highest possible percentage of the

electron density".

A bonding NBO ୅୆ between atoms A and B is constructed from directed orthonormal

hybrids hA, hB (Natural Hybrid Orbitals or NHO's) with corresponding polarization

coefficients cA, cB [102, 103]:

, 1.7-1

where ୅୆ is a filled NBO. These NBOs are able to describe covalency effects in

molecules. The hybrids hA and hB are formed from a set of effective valence-shell

atomic orbitals (Natural Atomic Orbitals or NAOs) optimized for the wave function

used [103]. NBO transformed wavefunctions give good agreement with concepts such

as Lewis structures and covalency in molecules. However, the general transformation to

NBOs also yields unoccupied orbitals, which can be employed to describe non-covalent

effects [103]. The most important ones are the antibonding AB
* which are given by:

. 1.7-2

The natural hybrids, hA and hB are the same valence-shell hybrids that formed the bond

function AB. The energy associated with antibonding orbitals can be obtained by
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deleting these orbitals from the basis set and recalculating the total energy [103]. The

total energy E can then be written as:

, 1.7-3

where E =ELewis and E* =Enon-Lewis are the covalent and non-covalent contributions,

respectively. Enon-Lewis is typically much less than 1% of ELewis [102].

The interaction between a filled orbital  and an unfilled orbital * gives rise to a

stabilisation energy which can be approximated by second order perturbation theory:

∗ మ

ಚ∗ ಚ
, 1.7-4

where is the Fock operator and ஢∗ ஢ are NBO orbital energies. These interactions

between filled orbitals  and unfilled orbitals * can be described as “donor-acceptor

interactions” or “charge transfer” [103].

Relativistic corrections

Relativistic effects are important for calculations that require high accuracy results even

for light atoms like hydrogen. The relativistic effect can be determined as the difference

between electronic properties obtained from calculations that take into account the true

velocity of light and electronic properties that assume that the velocity of light is

infinite, as done in traditional treatments of quantum chemistry [104].

The Schrödinger equation does not contains relativistic information and the unification

of quantum mechanics with special relativity was accomplished by Dirac in 1928 [105].

The Dirac free particle equation is:

, 1.7-5

where m is the rest mass of the electron, is the momentum operator, c is the speed of

light, and  and  are vector operators. The Dirac equation is computationally more

difficult to solve than the Schrödinger equation and because the negative part of the

spectrum (the positronic part with the energy eigenvalues less than or equal to -mc2)

cannot be treated variationally. Moreover the Dirac equation can be solved only for one-

electron systems, thus a generalization of the Dirac equation is necessary to construct

the N-particle Hamiltonian. This Hamiltonian is called the Dirac-Coulomb-Breit

Hamiltonian which is applied using a four-component spinor formalism [104] and
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represents the full-relativistic approach. This approach was used to develop the Dirac-

Hartree-Fock (DHF) theory. Unfortunately, a DHF calculation is 64 times more

expensive than a corresponding non-relativistic Hartree-Fock calculation. Thus,

additional approximations are necessary to calculate relativistic effects for heavy atoms

and systems containing a large number of electrons. The expensive four-component

spinor part can be transformed into a two-component form [104, 106], and the resulting

equations are usually used in first-order perturbation theory [104] which gives the Pauli

Hamiltonian:

, 1.7-6

where ଴ is the non-relativistic Coulomb Hamiltonian, ୑ ୚ is the mass-velocity

operator, ୈଵାଶ is the one- and two-electron Darwin operator and ୗ୓ is the spin-orbit

operator. For light atoms, the spin-orbit interactions and the two-electron Darwin term

are not so important and can be neglected [106]. Cowan and Griffin showed that the

resulting one-electron mass-velocity-Darwin (MVD) Hamiltonian can be used to

calculate the relativistic corrections in a good agreement with the DHF method [107].

The mass velocity (MV) term, which describes the energy correction EMV to the kinetic

energy of the electrons is always negative [106]. In contrast, the energy corrections of

one-electron term ED1 are always positive. The D1 term describes the correction to the

distance between the electrons and the nuclei [106]. The Cowan-Griffin approach [107]

will be used here as the method to calculate the relativistic corrections.
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2 Molecular vibrations

2.1 Theoretical introduction.

Classical approach

In the limit of infinitely small amplitudes the vibration of a molecule can be represented

mathematically by classical expressions for the kinetic and potential energies of the

molecule. Initially a molecule is treated as N coupled masses and analyzed in terms of

vibration, rotation and translation motion. The simple form of the kinetic energy (as

seen in eq. 2.1-1) employs the Cartesian coordinates xi, yi and zi, which are

displacements from the equilibrium position of the point mass i,

, 2.1-1

and where mi is the atomic mass. A dot over a symbol means the time derivative. The

equation can be rewritten in a compact form where for simplicity the coordinates xi, yi

and zi are replaced by a new set of coordinates gi, where ଵ ଵ ଵ ଶ ଵ ଵ

ଷ ଵ ଵ, ସ ଶ ଶ etc. (mass-weighted Cartesian displacement coordinates)

[108]. Then the equation is:

. 2.1-2

For small amplitudes of vibration the equation of the potential energy is:

. 2.1-3

The terms fij in eq. 2.1-3 are the “force constants”.

It is now possible to write Newton’s equations of motion, since we have obtained T and

V. V is a function of the displacements and T is a function of the velocities only, so the

equation of motion is [108]:

, i = 1,2, ... , 3N 2.1-4

The solution of this set of 3n simultaneous second-order differential equations, are the

well known harmonic oscillator equations [109]:

, 2.1-5
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where ௜ is the vibrational “frequency” (in cm−1), is a phase factor and Ai is the

amplitude of the motion of the atom. If we substitute equations 2.1-5 into the

differential equations, then we can obtain the expression:

2.1-6

where λ=4π2ω2c2
 and δij is the Kronecker delta.

Equation 2.1-5 shows that each atom is oscillating near its equilibrium position with a

simple harmonic motion [108]. In a polyatomic nonlinear molecule with N atoms 3N-6

normal modes can be found which are commonly known as the normal modes of

vibration or fundamental frequencies of the molecule. A normal mode is a motion of all

atoms in the molecule: the motion of each atom is described by three Cartesian

displacements (along the x, y and z direction) [110]. We can find translational and

rotational modes in a molecule. The translational modes refer to the modes where all the

atoms are moving in the same direction. The rotational modes refer to the change of the

orientation of the molecule (rotations). Three harmonic frequencies corresponding to

translational modes and three harmonic frequencies corresponding to rotational modes

(of the molecule as a whole) are zero in a nonlinear molecule. In a linear molecule three

harmonic frequencies corresponding to translational modes and two harmonic

frequencies corresponding to rotational modes (of the molecule as a whole) are zero, as

rotation around its molecular axis does not exist. Thus, a nonlinear molecule with N

atoms has 3N – 6 while a linear molecule has 3N – 5 normal modes of vibration.

Normal coordinates

In order to solve the Schrödinger equation for the harmonic oscillator, the kinetic and

potential energies need to be present as a sum of separate terms. Thus, the Cartesian

coordinates need to be replaced by a new coordinate system. The conventional “normal

coordinates” Q will be used [108]. The “normal coordinates” are the displacement of

atoms from their equilibrium positions, and correspond to a normal mode vibration. The

“normal coordinates” (Qk) can be defined in terms of the mass-weighted Cartesian

coordinates gi:
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, where k=1, 2… 3n. 2.1-7

In terms of the new coordinates, we can express the kinetic and potential energies in

diagonal form as:

and . 2.1-8

where λk=4π2ωk
2c2

.

Quantum mechanical approach

To a reasonable approximation the rotational and vibrational parts of the Hamiltonian

can be treated separately in the wave mechanics approach [108]. Thus the vibrational

wavefunction ψv and rotational wavefunction ψr combine as a product to give the total

wavefunction ψ, and can be written as:  

2.1-9

ψr is a function of the rotational coordinates and ψv is a function of the vibrational

coordinates.

The vibrational Hamiltonian in terms of the normal coordinates Qk can be obtained from

the classical approach as a vibrational wave equation:

మ

మ

మ
౬

ౡ
మ , 2.1-10

Where h is Planck’s constant and Ev is the vibrational energy.

Equation 2.1-10 can be written as 3N–6 independent equations one for each Qk since

, 2.1-11

and the vibrational energy Ev can be expressed as the sum of 3N–6 terms

Ev=E1+E2+E3+…+E3N–6 2.1-12

Thus, it is possible to express the equations 2.1-10 and 2.1-11 as 3N–6 independent

equations each in one variable for k=1 to 3N-6,

మ

మ

మ
ౡ

ౡ
మ . 2.1-13

Eq. 2.1-13 is the well-known harmonic oscillator, in terms of the normal coordinates Qk.

Thus, the solution ୴ of the vibrational problem can be expressed as a product of
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harmonic oscillator functions ୩ [108] and the total vibrational energy can be

expressed as the sum of the energies of 3N–6 harmonic oscillators.

The energy levels for a harmonic oscillator are

೔
, 2.1-14

where “vi” is the vibrational quantum number vi = 0,1,2, … . Thus a molecule vibrates

even at 0 K and occupies the lowest energy level of the potential energy surface.

Anharmonicity

The harmonic vibrations discussed above are very useful for describing small

displacements from equilibrium at the bottom of the potential energy well. However, in

reality the molecular vibrations are more complex. When higher vibrational excitations

of a molecule need to be considered anharmonic vibrations are important for a proper

description of the potential energy curve. Higher terms such as cubic and quartic terms

of the potential function need to be taken into account [109].

Nielsen [109, 111] used the perturbation method to obtain a general form of the

anharmonic oscillator. Thus, when normal coordinates “qi” ( ୧ ୧

ଵ
ଶൗ

୧ ) are used to

express the harmonic and anharmonic terms in the same units (cm-1), the potential

energy equation is written

2.1-15

Unfortunately an exact solution for the Schrödinger equation cannot be obtained if the

above equation is introduced. Nevertheless, it was noticed that the quadratic part of the

potential energy is much larger than the cubic part for small but finite displacements of

the nuclei. Thus perturbation theory can be used to calculate corrections to the

vibrational energy for higher-order parts of the vibrational Hamiltonian [109]. The first

and second-order corrections to the energy for a non-degenerate system can be

evaluated quite easily, so the potential and the total energies can be written in the form:

2.1-16
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, 2.1-17

where

2.1-18

2.1-19

hc , 2.1-20

and (ଵ) (ଶ) are the first and second-order corrections [109]. Thus, the energy equation

can be rewritten in the form

2.1-21

where ୧୨and ୧୧are the anharmonic constants and the mathematical forms of these can

be found in [109].
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2.2 Variational method

The variational method is the other main approach used to compute vibrational quantum

state energies and wave functions and can be used instead of perturbation theory. In fact

a variational approach is essential when large amplitude motions are involved:

perturbation theory breaks down when the assumption of small amplitude vibrations is

not justified. The idea of the variational method is to choose a "trial" wavefunction for

the problem, which must have adjustable parameters. These parameters are varied until

the energy of the wavefunction is minimized. The resulting wavefunction and its

corresponding energy are the variational approximations to the exact wavefunction and

energy. The variational approach has been generalised to give upper bounds to each of

the lowest n energy levels of a system [112].

To perform a variational calculation we need to have [112]:

 a potential energy surface for the molecular system;

 a coordinate system to describe all relevant molecular geometries;

 basis functions which will be combined to give the trial wavefunction.

Basis functions for each coordinate (r1, r2, θ1, θ2 etc.) for a many-atomic problem can be

represented as: Qm(r1), Rn(r2), Pi(θ1), Pj(θ2) etc, where the angular functions (of θ) could 

be Legendre polynomials and the stretching functions could be Morse or harmonic

oscillator functions for example [112]. An alternative to this finite basis representation

(FBR) is the discrete variable representation (DVR) which considers the wavefunction

at fixed values of the vibrational coordinates [113].

The computational approach then includes the following steps:

 The chosen basis set is used to compute the elements of the Hamiltonian matrix.

 The Hamiltonian matrix is constructed from the matrix elements prepared above.

The Hamiltonian matrix can be written as: ୱୱᇲ ୧ ୨ ୫ ୧ᇲ ୨ᇲ ୫ ᇲ ,

where s is a compound index running over the basis functions, is the

Hamiltonian operator, Qm, Rn,Pi, Pj are the functions dependent on the

vibrational coordinates (r1, r2, θ1, θ2) and the integration runs over all of these
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coordinates [112]. The large number of basis functions allows one to obtain

vibrational energies close to the true ones. To be sure that the calculated energy

is reliable, the convergence needs to be demonstrated, and this can be checked

by systematically increasing the basis set size.

 The last step is diagonalization of the Hamiltonian matrix. This step is often the

longest in the whole calculation. To speed up the diagonalization an iterative

procedure [112], or a diagonalization-truncation method [114] can be employed

instead of direct-diagonalization [115].

In the following studies I will use the WAVR4 program [116] which combines DVR and

FBR basis sets and use a diagonalization-truncation method. The FBR is used for the

angular coordinates while the DVR is used for radial coordinates and is obtained as a

transformation from a corresponding FBR [112, 117]. A more detailed explanation can

be found in Ref. [116, 117].
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“The most exciting phrase to hear in science, the one that heralds the most

discoveries, is not "Eureka!" but "That's funny..."

Isaac Asimov
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3 Acetylene/vinylidene

3.1 The C2H2 isomers.

Silicon belongs to the carbon group (group 14) in the periodic table; therefore it may

have similar physical and chemical properties as carbon and can form similar

compounds. A comparison of the acetylene/vinylidene isomers with substituted silicon

structures is an interesting topic in the context of bonding properties.

Computational methods

The acetylene/vinylidene isomers have been studied by Zou and Bowman [118]. They

performed full-dimensional quantum-chemical calculations of acetylene/vinylidene

isomerisation. First, we attempted to reproduce the results achieved by Zou and

Bowman. Coupled–cluster level of theory including the single and double excitations

with perturbative treatment of triple contributions – CCSD(T) [61] and Dunning’s

correlation consistent basis set of triple–quality with diffuse functions (aug-cc-pVTZ)

were applied [58, 119]. The same level of theory was used by Zou and Bowman. All

computations were performed with MOLPRO version 2006.1 [120]. The MP2 [121] and

HF [122] levels of theory (with the same basis set) were used to compare with the

CCSD(T) method. The results obtained are listed in Table 3.1-1.
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Table 3.1-1. Geometric properties of the acetylene/vinylidene isomers with the
corresponding picture of the structure. Bond distances are listed in ångström and angles
in degrees. The aug-cc-pVTZ basis set was used.

Vinylidene lies 15406.9 cm−1 above acetylene, whereas the transition state linking these

minima (TS1) lies 16407.8 cm−1 above acetylene (at the CCSD(T) level of theory). The

calculated bond distances, angles and energies agree with those obtained by Zou and

Bowman as shown in Table 3.1-1.

The geometric properties obtained with the MP2 and HF methods are similar to those

calculated by CCSD(T) except for the TS1 structure (at the MP2 level). The MP2

method underestimates the H2C2 bond distance by about 0.1532 Å (in comparison to

Acetylene HCCH

CCSD(T) MP2 HF Literature b

H1C1 1.0639 1.0617 1.0625 1.0640

C-C 1.2102 1.2121 1.1921 1.2102

Vinylidene HHCC

CCSD(T) MP2 HF Literature b

H1C2 b 1.0872 1.0845 1.0836 1.0872

C–C 1.3069 1.2993 1.2979 1.3068

CCH1 120.12 119.66 119.70 120.10

energy [cm−1] a 15407 18158 12340 15407
a energy relative to the HCCH minimum.
b C2-refer to the carbon atom connected to terminal hydrogens

TS1 HCHC

CCSD(T) MP2 HF Literature b

H1C1 c 1.0732 1.0706 1.0693 1.0733

H2C1 c 1.3910 1.2378 1.3276 1.3910

C–C 1.2604 1.2669 1.2549 1.2604

CCH1 178.55 179.21 178.14 178.50

 CCH2 53.70 58.31 56.05 53.70

energy [cm−1] a 16408 17131 20085 16408
a energy relative to the HCCH minimum
b values calculated at CCSD(T) were taken from reference [118]
c C1-refer to the carbon atom connected to terminal hydrogen (H1)
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the CCSD(T) level) and overestimates the CCH2 angle by about 4.6°. The MP2 TS1

energy (17131.0 cm−1) is smaller than the corresponding vinylidene energy (18158.1

cm−1), which is unexpected as a transition state should have larger energy than both

minima connected by the transition state. It could mean that TS1 calculated at the MP2

level of theory is not the real TS1 structure but a new critical point. Thus, additional

minimization and frequency calculations at the CCSD(T)/aug-cc-pVTZ level were

employed to investigate this issue.

During the above studies a third minimum was found (no imaginary frequencies) with

an energy 15969.9 cm−1 larger than that of acetylene (at the CCSD(T)/aug-cc-pVTZ

level). The third minimum represents a monobridged structure reported previously by

Chesnut and others [123-125]. Figure 3.1-1 shows the structure of this monobridged

minimum.

Figure 3.1-1. Monobridged isomer obtained at the CCSD(T)/aug-cc-pVTZ level (the
structure is planar).

A comparison of the geometries of the monobridged and TS1 isomers shows that the A1

angle in the monobridged isomer (CCH2 in Table 3.1-1) is about 15° larger than in TS1;

however, the A2 angle (CCH1 in Table 3.1-1) is about 6° smaller. The C–C distance in

the monobridged minimum is 0.0133 Å longer than in TS1, however, the H2C2 distance

(3H2C in Figure 3.1-1) is 0.2063 Å shorter.

1.1847 Å

1.0725 Å
1.2737 Å

A1=69.14°

A2=121.45°
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We used the Quadratic Steepest Descent (QSD) reaction path method implemented in

MOLPRO to obtain the whole reaction path from acetylene through TS1, monobridged,

and TS2 (a new transition state between the monobridged and vinylidene isomers, see

below) to vinylidene. The QSD algorithm was formulated by Sun and Ruedenberg

[126]. The reaction path is obtained from serial exact steepest–descent lines of local

quadratic approximations to the potential energy surface [126].

This achieves a good accuracy and more efficiently evaluates the energy–gradient–

Hessian set (where the Hessian is calculated exactly) and no additional corrective

optimizations off the steepest–descent line are required [126]. All the QSD reaction path

method calculations were done with CCSD(T)/aug-cc-pVTZ.

The energy is plotted as a function of the A1 angle (see Figure 3.1-1) for several points

obtained by the QSD reaction path method. The whole reaction path is presented in

Figure 3.1-2. The QSD reaction path calculation reveals a second transition state, TS2,

which connects the monobridged and vinylidene minima.

Figure 3.1-2 does not show clearly all information such as the exact position of the new

transition state (TS2), which lies between the monobridged and the vinylidene isomers.

An expanded view of the part between the TS1 and vinylidene is therefore presented in

Figure 3.1-3. It can be clearly seen that the TS2 structure occurs at 79.2°. The energy

difference between the monobridged and the TS2 structures is very small (0.11

kcal/mol) and the energy difference between vinylidene and TS2 is 1.72 kcal/mol. The

energy difference between TS1 and vinylidene is 2.86 kcal/mol and between

monobridged and vinylidene 1.61 kcal/mol.
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Figure 3.1-2. Variation of energy along the reaction path between the acetylene and
vinylidene isomers. The calculations were done at the CCSD(T)/aug-cc-pVTZ level.

The C2H2 isomers were re-optimized with CCSD(T) in conjunction with the family of

Dunning’s correlation–consistent basis set augmented with diffuse functions aug-cc-

pVXZ (with cardinal numbers X=2 5) [58, 119]. The aug-cc-pVXZ basis set will be

abbreviated as AVXZ (where X=2-5), respectively. The minimization method

(Quadratic Steepest Descent) implemented in MOLPRO was used in all calculations.

The convergence comparisons of all minimum structures obtained with increasing basis

set size are shown below in Figure 3.1-4 to Figure 3.1-5.
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Figure 3.1-3. Extended view of the energy along the reaction path between the acetylene and vinylidene isomers. The calculations were
done at the CCSD(T)/aug-cc-pVTZ level.
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Note that the monobridged structure was not found with the aug-cc-pVDZ basis set.

CCSD(T)/aug-cc-pVDZ optimization starting from the monobridged structure led to the

vinylidene form. However, all three isomers were found with the aug-cc-pVXZ (X=3–

5) basis sets.

The experimental (obtained using microwave spectroscopy) acetylene C–C bond length

is 1.202 Å (re equilibrium internuclear distance) [127] and 1.208 Å (r0 effective

internuclear distance) [127]. The C–C bond lengths obtained with the aug-cc-pV5Z

(1.2059 Å), aug-cc-pVQZ (1.2069 Å) and aug-cc-pVTZ (1.2103 Å) basis sets agree

very well with the experimental data but the aug-cc-pVDZ basis set appears to

overestimate the bond length (CCSD(T)/aug-cc-pVDZ value: 1.2301 Å).

It can be seen that the bond lengths differences have a similar pattern for C–C and H–C

distances: a larger difference is found between the results obtained with the aug-cc-

pVDZ/aug-cc-pVTZ than with the aug-cc-pVTZ/aug-cc-pVQZ basis sets and aug-cc-

pVQZ/aug-cc-pV5Z basis sets. Only small changes can be seen with increasing basis set

size beyond aug-cc-pVTZ.

We also considered the energy difference between the global minimum (acetylene) and

the local minima (monobridged and vinylidene), which is shown in Figure 3.1-6. The

known experimental energy difference between acetylene and vinylidene is 46.4 ± 5.5

kcal/mol [19]. The aug-cc-pVXZ (X=3-5) basis sets give energy results close to the

experimental data, whereas aug-cc-pVDZ underestimates the experimental value.
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Figure 3.1-4. Variation of the C–C distance with increasing basis set at the CCSD(T) level of theory.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z

Vinylidene 1.3273 1.3069 1.3030 1.3018

Monobridged 1.2737 1.2691 1.2678

Acetylene 1.2301 1.2103 1.2069 1.2059
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Figure 3.1-5. Variation of the H1−C1 distance with increasing basis set at the CCSD(T) level of theory. 

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z

Vinylidene 1.0999 1.0872 1.0862 1.0859

Monobridged 1.1847 1.1890 1.1895

Acetylene 1.0787 1.0640 1.0636 1.0631
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Figure 3.1-6. Energy difference between the acetylene, vinylidene and monobridged isomers at the CCSD(T) level.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z

acetylene-vinylidene 39.52 44.05 44.76 44.95

acetylene-monobridged 45.66 46.16 46.32
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Figure 3.1-2 shows that there is only a small energy difference between TS2 and the

monobridged isomer. Table 3.1-2 shows the energy difference as a function of basis set

size and with zero-point-energy (ZPE) correction included.

Table 3.1-2. Relative energy of the monobridged and TS2 structures, calculated with
CCSD(T)/aug-cc-pVXZ (X=3-5). The calculations include ZPE corrections.

monobridged-TS2 aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z

E [kcal/mol] 0.1657 0.1512 0.1625

It can be seen that the energy difference remains, even when using the large aug-cc-

pV5Z basis set (0.1625 kcal/mol).

Conclusions

Our calculated geometries are in good agreement with those of Zou and Bowman [118]

and the experimental values [127]. Zou and Bowman [118], however, did not present

the monobridged structure that exists on the C2H2 PES. The monobridged isomer has

however been reported in the literature before by Bittner and Köppel, Palaudoux and

Hochlaf and others [124, 125, 128, 129]. In the most of these publications the titles and

abstracts did not refer to the monobridged structure with the result that the existence of

the monobridged structure on the C2H2 PES is not commonly known. The CCSD(T)/

aug-cc-pV5Z level used here to calculate the geometric and isomerisation properties for

the monobridged and TS2 structures is higher than that used by Bittner and Köppel

(CCSD(T)/aug-cc-pVTZ), Palaudoux and Hochlaf (CCSD(T)/cc-pVQZ) but lower than

used by Joseph and Varandas (CCSD(T)-F12a/aug-cc-pVQZ) and Boyé-Péronne,

Gauyacq, and Liévin (MRCI/aug-cc-pVQZ).

A comparison of the bonding properties of the C2H2, Si2H2, Si2HLi and Si2Li2 structures

will be done at the end of Chapter 4.
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4 The Si2HX and Si2Li2 critical points (where X=H, Li, F and Cl).

The Si2HX and Si2Li2 systems (where X= H, Li, F and Cl) exhibit unusual structural

isomerism, and this aspect in particular has attracted the interest of both

experimentalists and theoreticians. Our computational studies of the Si2HX and Si2Li2

structures can provide extensive knowledge of their physicochemical properties. The

Si2H2 structures were studied theoretically and experimentally before [24, 43, 52]. The

Si2HX and Si2Li2 structures (where X= Li, F and Cl) were studied in Ref. [24, 43] and

using a low level of theory in Ref. [30]. However, these structures will be studied for

the first time here using the recently developed CCSD(T)-F12a method [66, 68].

Additionally the transition states and reaction paths between the minima for the Si2HX

and Si2Li2 systems (where X= Li, F and Cl) will be also studied for the first time here.

4.1 The Si2H2 isomers.

Silicon-containing species are of vital importance in many high technology industries,

and the Si2H2 system is particularly fascinating. It is an interesting molecule to compare

with its carbon analogue, acetylene. Electronic structure calculations have shown that

the ground-state electronic structure of Si2H2 is different from C2H2. The most

influential work on Si2H2 was done by Grev and Schaefer [24]. They performed

coupled–cluster theory investigations and the isomers obtained are as follows: dibridged

(C2), monobridged (Cs), disilavinylidene (C2) and trans (C2h). The dibridged and

monobridged isomers have been observed experimentally by microwave and IR

spectroscopy [25, 26].
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Figure 4.1-1.The structures optimized by Grev and Schaefer [24] which were used as

starting points for the optimizations performed here.

Computational methods

Initially all the Si2H2 isomers were optimized with the CCSD(T)/AVXZ, CCSD(T)-

F12a/VXZ-F12 (see later for details), B3LYP/6-311+G(d) and MP2/6-31G(d) level of

theories (where X=2–4). The Si2H2 structures optimized by Grev and Schaefer [24]

were taken as the starting geometries (Figure 4.1-1).

Harmonic vibrational frequency computations were performed for the optimized

structures to characterise these as minima or transition states (TS). The frequency

calculations were also done at the CCSD(T)-F12a/VXZ-F12 and B3LYP/6-311+G(d)

level of theory. The frequency values calculated at the CCSD(T)/aug-cc-pVTZ level

were taken from Ref. [52]. Note, that the B3LYP/6-311G(d) level does not contains

polarization functions for the H atom which might introduce some inaccuracies for the

bridged structures.

trans

monobridged
disilavinylidene

dibridged
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The HSiSiH, HSiHSi, HHSiSi and SiHHSi formulae refer, respectively, to the trans,

monobridged, vinylidene and dibridged isomers. The DM_TS, MV_TS and MT_TS

formulae represent the transition states on the paths between the dibridged and

monobridged structures, monobridged and vinylidene and between the monobridged

and trans structures, respectively. The optimized structures of the isomers and transition

states of Si2H2 are depicted in Figure 4.1-2. The energies relative to the dibridged

isomer (the global minimum) are listed at the bottom of Figure 4.1-2. The reaction paths

between the critical points are represented schematically by lines. The pictures in Figure

4.1-2 show (multiple) bond properties obtained from Natural Bond Orbital (NBO) [102,

103] calculations. The NBO calculations were performed at the CCSD/cc-pV(T+d)Z

level of theory using the Gaussian 98 [130] software package. We use the $CHOOSE

keylist in the NBO program to specify alternative bonding patterns for the Si2H2

species. This procedure allows us to verify that the NBO program has not inadvertently

missed the "true" multiply-bonded structure. More details about this procedure can be

found in Ref. [115, 130]. The results of these calculations correspond well with those

by Chesnut and Jursic [47, 123], who suggested that the Si2H2 isomers contain the same

multi or single bonds as our analysis. The same procedure of obtaining the multiple

bonded properties will be employed in the following sub-chapters.

The calculated geometric parameters for the minima and saddle points are given in

Table 4.1-1 and Table 4.1-2, respectively. Note that in the monobridged structure values

of bond distance and angle of a bridged atom will be present as Si2H1 and Si1Si2H1,

respectively, where Si2 represents the silicon connected to the terminal hydrogen atom.

Similar approach will be employed in the next sub-chapters.

It can be seen that the shortest Si–Si bond length occurs in the triply-bonded trans

structure (2.1231 Å) followed by the doubly-bonded monobridged (2.1352 Å) and the

doubly-bonded vinylidene (2.2201 Å) isomers. The singly-bonded dibridged isomer

contains the longest Si-Si bond length (2.2281 Å).
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Figure 4.1-2. The optimized structures of the Si2H2 isomers and transition states with energies relative to the global minimum (the

dibridged isomer). The calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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Table 4.1-1. Geometric properties of the Si2H2 minima calculated at the CCSD(T)/ aug-
cc-pVTZ level.

HHSiSi, C2v HSiSiH, C2h SiHHSi, C2v HSiHSi, Cs

Si2H1 a 1.6416

SiSi a 2.2201 2.1231 2.2281 2.1352

H2Si2 a 1.4865 1.4922 1.6762 1.4910

 HSiSiH b 180.00 180.00 104.59 0.00

 Si1Si2H1 b 52.29

 Si1Si2H2 b 123.81 124.90 48.35 159.22

a ångström
b degrees

Table 4.1-2. Geometric properties of the Si2H2 transition states calculated at the

CCSD(T)/ aug-cc-pVTZ level.

DM–TS, C1 MV–TS, Cs MT–TS, Cs

Si2H1 a
1.7071 1.5244 1.5386

SiSi a
2.2250 2.1625 1.1412

H2Si1 a
1.5169 1.4817 1.4979

 HSiSiH b
82.54 180.00 180.00

 Si1Si2H1 b
48.18 82.03 80.18

 Si1Si2H2 b
95.91 164.18 165.4

a ångström
b degrees

The dibridged form has the lowest energy followed by the monobridged form with E=

10.04 kcal/mol, then vinylidene with E=12.51 kcal/mol and the trans isomer with E=

17.83 kcal/mol. Coupled–cluster theory investigations of the Si2H2 isomers performed

by Grev and Schaefer [24] showed the energies relative to the dibridged isomer as

follows: monobridged (8.7 kcal/mol), vinylidene (11.6 kcal/mol) and trans (16.3

kcal/mol). The relative energies calculated here are about 1.3 kcal/mol higher than those

obtained by Grev and Schaefer. However, note that the basis sets employed are

different. Grev and Schaefer used TZ2P/TZ2df, whereas we employed aug-cc-pVTZ. A

more detailed comparison of the relative energies will be done later in this sub–chapter.
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CCSD(T)- F12 calculations

The performance of the recently developed CCSD(T)-F12 method [66, 68] (referred to

as F12 in this thesis), as implemented in MOLPRO version 2010.1 [85], was studied for

the Si2H2 system. According to the literature [66, 68, 132], the F12 method has faster

convergence properties and gives more accurate results than CCSD(T) calculations with

similar basis set size. They even suggested that CCSD(T)/aug-cc-pV5Z quality results

can be achieved with CCSD(T)-F12 using the aug-cc-pVTZ basis. A detailed

explanation of the CCSD(T)-F12a method can be found in Chapter 1.5. We were

interested in the accuracy of the geometric properties, relative energies and harmonic

vibration frequencies when the F12 method was employed. Comparison of the

calculated results with the experimental values can be helpful to estimate the most

effective level of theory. The chosen level of theory will be used to compute the

energies required for constructing the Si2Li2 potential energy surface (PES) (Chapter

7.2).

In the first step the geometric properties were investigated with increasing basis set size.

The CCSD(T)-F12a method in conjunction with the specially developed basis sets

denoted as cc-pVXZ-F12 (X= 2–4) [133] was employed. In the following, these basis

sets will be further abbreviated as VXZ-F12. The VXZ-F12 orbital basis set was

combined with the OptRI auxiliar basis set [134], which is necessary for the CABS

resolution of the identity step [79]. The cc-pVXZ/JKFIT (X= 2–4) [135] basis set of

Weigend was used for density fitting of the Fock and exchange matrices, while the

density fitting of the remaining integral quantities employed the aug-cc-pVXZ/MP2FIT

(X= 2–4) basis sets of Weigend et al. [136]. The approximation 3C(FIX) [66, 68, 81],

which is the default in MOLPRO 2010.1, was employed in the preliminary density-

fitting MP2-F12 computations. The Geminal Slater Exponent value of=1 for the cc-

VXZ-F12 (X=2-4) basis sets was employed here. The triples energy was automatically

scaled, see equation 1.5-22, as suggested in the MOLPRO manual in all calculations

performed here. The F12 approach described above will be also used in the other (F12)

calculations done here.
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The geometric properties for the Si2H2 minima calculated at different levels of theory

are shown in Table 4.1-3.

Table 4.1-3. Geometric properties of the Si2H2 isomers at the CCSD(T)-F12a/cc-pVXZ-

F12 (X=2-4) level of theory.

HSiHSi SiHHSi
VDZ-
F12

VTZ-
F12

VQZ-
F12

VDZ-
F12

VTZ-
F12

VQZ-
F12

Si2H1 a
1.6315 1.6334 1.6332

SiSi a
2.1217 2.1182 2.1170 SiSi a 2.2104 2.2073 2.2061

H2Si2 a
1.4876 1.4976 1.4872 HSi a 1.6650 1.6675 1.6679

 HSiSiH b
0.00 0.00 0.00  HSiSiH b 104.35 104.15 104.06

 Si1Si2H1 b
52.11 52.31 52.38

 Si1Si2H2 b
158.53 159.26 159.45  SiSiH b 48.41 48.56 48.60

a ångström
b degrees

HHSiSi HSiSiH
VDZ-
F12

VTZ-
F12

VQZ-
F12

VDZ-
F12

VTZ-
F12

VQZ-
F12

SiSi a
2.2094 2.2056 2.2047 SiSi a 2.1116 2.1073 2.1064

HSi a
1.4816 1.4822 1.4818 HSi a 1.4868 1.4872 1.4870

 HSiSiH b
180.00 180.00 180.00  HSiSiH b 180.00 180.00 180.00

 SiSiH b
123.55 123.58 123.57  SiSiH b 124.44 124.79 124.82

a ångström
b degrees

Upon basis set extension in the VXZ-F12 (X=2–4) series, all Si–Si bond lengths are

reduced, but the amount of the reduction depends on the type of structure considered.

The difference (from X=2 to 4) is 0.0047 Å for the monobridged and vinylidene, 0.0043

Å for the dibridged and 0.0052 Å for the trans structure. There is no similar pattern in

the Si–H bond length and angles. The Si–H bond lengths increased or decreased (upon

basis set extension); the same situation can be seen with the angles.

To investigate the convergence properties of the CCSD(T)/aug-cc-pVXZ and CCSD(T)-

F12a/cc-pVXZ-F12 methods (where X=2–4), a comparison of the energies relative to
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the global minimum was made. The CCSD(T)/aug-cc-pVXZ and CCSD(T)-F12a/cc-

pVXZ-F12 levels of theory will be abbreviated as AVXZ and VXZ-F12, respectively.

The results can be seen in Figure 4.1-3 to Figure 4.1-5.

Figure 4.1-3. Energy of the HSiHSi isomer (relative to the dibridged isomer) as function

of VXZ-F12 and AVXZ basis set size.
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Figure 4.1-4. Energy of the HHSiSi isomer (relative to the dibridged isomer) as function

of VXZ-F12 and AVXZ basis set size.

Figure 4.1-5. Energy of the HSiSiH isomer (relative to the dibridged isomer) as function

of VXZ-F12 and AVXZ basis set size.
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of theory. The largest difference for the AVXZ level is 1.57 kcal/mol (between double

and triple−); this is reduced with further basis set extension by 0.16 kcal/mol (both

differences for the vinyl isomer). In the VXZ-F12 calculations the largest difference

between double and triple−is 0.43 kcal/mol then a further 0.09 kcal/mol from VTZ-

F12 to VQZ-F12 (both differences for the vinyl isomer). Thus, a larger change can be

seen upon basis set extension from the VDZ to VTZ level, than from the VTZ to VQZ

level. This pattern exists in all of the studied Si2H2 isomers, and shows that the

isomerisation energies are converging with increasing basis set size.

Comparisons of the Si–Si bond distances of the calculated isomers with respect to

increasing basis set size were made. The CCSD(T)/AVXZ and CCSD(T)-F12a/VXZ-

F12 (where X=2–4) levels of theory were employed. Note, that the Si–Si distance

values calculated at the AVQZ level were taken from reference [52]; the rest of the

calculations were performed here. The results are shown in Figure 4.1-6 to Figure 4.1-9.

The CCSD(T)-F12 method gives shorter Si–Si distances than conventional CCSD(T),

and the distances vary less with basis set size. The AVQZ result is achieved already by

the VDZ-F12 level in all of the isomers. This confirms the statement by Werner et al.

[66], who suggested that CCSD(T)-F12 calculations are usually more accurate and

convergence is reached faster, as compared to CCSD(T) calculations with the same

basis set limit (the standard Dunning’s types of basis sets). The largest difference

between distances calculated with basis sets of double and triple− quality is 0.0043 Å

(in the trans isomer) for the VXZ-F12 level and 0.0362 Å (in the dibridged isomer) for

the AVXZ level. Moreover, the largest difference when the basis set is increased from

triple to quadruple– quality is 0.0012 Å (in the dibridged isomer) for the VXZ-F12

level and 0.0135 Å (in the dibridged isomer) for the AVXZ level. It is likely that the

complete basis set (CBS) limit has been nearly achieved at the VQZ-F12 level.

The geometric properties were calculated using different ab initio and DFT methods

with various levels of basis set. The equilibrium semi-experimental values of the

dibridged geometric properties were taken from reference [52]. The semi-experimental

results presented here were produced by applying anharmonic corrections to the

experimental rotational constants [137] of the dibridged and monobridged spiecies. The
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anharmonic corrections were calculated using second order perturbation theory from the

CCSD(T)/cc-pV(Q+d)Z potential energy surface of Law et al. [52]. More details can be

found in Ref [52]. Thus, the geometric properties and harmonic vibration frequencies

used as references here are semi-experimental. Below CCSD(T)/V(6+d)Z is used as an

abbreviation for the CCSD(T)/cc-pV(6+d)Z calculations performed by the authors of

Ref. [52]. In the following discussion the B3LYP/6-311+G(d), MP2/6-31G(d),

CCSD(T)/AVTZ and CCSD(T)-F12a/VTZ-F12 methods will be abbreviated as B3LYP,

MP2, CCSD(T) and F12, respectively. The results are shown in Table 4.1-4.

The calculated Si–Si distance agrees well with the semi-experimental value for all

theoretical methods used here. The largest difference can be seen for CCSD(T)/AVTZ

(0.0291 Å) and the smallest for the MP2/6-31G(d) level (0.0065 Å). The

CCSD(T)/V(6+d)Z level and the MP2/6-31G(d) method reproduced the semi-

experimental Si–H value to 0.0037 Å and 0.0059 Å, respectively. The AVTZ and

B3LYP methods give larger errors for the Si–H distance. The HSiSiH dihedral angle

values computed with the CCSD(T) and CCSD(T)/V(6+d)Z levels agree well with the

semi-experimental HSiSiH dihedral angle value; the error is only 0.53° and 0.07°,

respectively. However, it can be seen that the MP2 method overestimates the dihedral

angle by 6.33° while the B3LYP method underestimates by 1.45°. Both the F12

methods employed here (VDZ-F12 and VTZ-F12) reproduce well the semi-

experimental values (distances and angles). Whereas, VTZ-F12 gives a more accurate

angle. Note, that by using the VTZ-F12 level we are able to reproduce with good

accuracy the results calculated at the CCSD(T)/V(6+d)Z level.
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Figure 4.1-6. Si−Si bond length variation with increasing basis set size for the SiHHSi 

isomer.

Figure 4.1-7. Si−Si bond length variation with increasing basis set size for the HSiHSi 

isomer.
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Figure 4.1-8. Si−Si bond length variation with increasing basis set size for the HHSiSi 

isomer.

Figure 4.1-9. Si−Si bond length variation with increasing basis set size for the HSiSiH 

isomer.
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Table 4.1-4. Comparison of the calculated geometric properties of the dibridged isomer
with the semi-experimental values.

SiSi a HSi a
 HSiSiH b

B3LYP/6-311+G(d) 2.1896 1.6877 102.61

MP2/6-31G(d) 2.2055 1.6696 110.39

CCSD(T)/AVTZ 2.2281 1.6762 104.59

CCSD(T)/V(6+d)Z * 2.2067 1.6674 104.13

CCSD(T)-F12a/VDZ-F12 2.2104 1.6650 104.35

CCSD(T)-F12a/VTZ-F12 2.2073 1.6675 104.15

Semi-Expt. * 2.1990 1.6637 104.06
a ångström
b degrees
* taken from reference [52]

The ground-state values (r0) of the geometric properties of the monobridged isomer

were taken from Ref. [25, 26]. A comparison of the CCSD(T)-F12a/VXZ-F12 results

with available literature values is shown in Table 4.1-5.

Table 4.1-5. Comparison of the calculated geometric properties of the monobridged

isomer with literature values.

monobridged

CCSD(T)-F12a/ CCSD(T)-F12a/ Semi-
Experimental *VDZ-F12 VTZ-F12

SiSi a
2.1217 2.1182 2.119

Si2H1 a
1.6315 1.6334 1.629

2HSi2 a
1.4876 1.4976 1.474

 Si1Si2H1 b 52.11 52.31 52.50

 Si1Si2H2 b 158.53 159.26 157.50
a ångström
b degrees

* taken from reference [26]. Note that the experimental geometry was obtained
by fixing the Si1Si2H1 angle to its CISD/TZ2P value of 52.5 degrees. These are
“r0” values.

Both F12 levels (VDZ-F12 and VTZ-F12) reproduce well the semi-experimental values

(distances and angle). However, the VTZ-F12 level gives slightly better results (for both
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distances and angles) for the bridged hydrogen atom and for the Si–Si bond length,

whereas VDZ-F12 gives better values for the terminal hydrogen atom (both distances

and angles). Note, that the semi-empirical values are ground-state values (r0), while the

values calculated here are equilibrium ones. Thus, the calculated and semi-empirical

values are not exactly comparable.

A comparison of the relative energies for the Si2H2 minima using the popular DFT

B3LYP/6-311+G(d), standard CCSD(T)/AVTZ and the F12 (CCSD(T)-F12a/VTZ-F12)

methods is shown in Table 4.1-6.

Table 4.1-6. Relative energy (kcal/mol) of the Si2H2 isomers computed at different

levels of theory.

dibridged monobridged disilavinylidene trans

CCSD(T)/AVTZ 0.00 10.57 13.34 18.35

CCSD(T)-F12a/VTZ-F12 0.00 10.22 12.91 18.06

B3LYP/6-311+G(d) 0.00 9.54 8.34 16.68

The work of Grev and Schaefer [24] shows that the relative energy (at the

CCSD(T)/TZ2df/TZ2p level of theory) of the monobridged isomer relative to the

dibridged global minimum is 10.0 kcal/mol. The vinyl isomer lies 12.2 kcal/mol above

the dibridged isomer and the trans isomer lies 17.3 kcal/mol above the global minimum.

Both ab initio methods used here agree well with the results of Grev and Schaefer.

However, the DFT method underestimates all values computed by Grev and Schaefer

(with an average absolute difference is 1.7 kcal/mol). Moreover, according to the DFT

method the vinyl isomer is more stable than the monobridged structure. Thus, the DFT

method does not reproduce the order of stability of the Si2H2 isomers properly in

comparison with the CCSD(T) results by Grev and Schaefer and the ab initio

calculations done here.
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Frequencies

Harmonic frequencies were computed for the optimized structures using various DFT

and ab initio methods. We used the same methods as employed for calculating the

relative energies (Table 4.1-6). In the following discussion the B3LYP/6-311+G(d),

CCSD(T)/AVTZ and CCSD(T)-F12a/VTZ-F12 methods will be abbreviated as B3LYP,

CCSD(T) and F12 respectively. The calculated harmonic frequencies are listed in Table

4.1-7.

The frequencies will be discussed separately for each isomer.

In the dibridged structure both the ab initio (CCSD(T) and F12) sets of vibrational

frequency values are similar: the largest difference between the results calculated with

the two different methods is 19 cm−1 (for the highest frequency vibration mode). A

comparison of the frequencies calculated with the B3LYP level with the ab initio

results shows large underestimations using B3LYP for the vibrational frequencies,

especially for the higher frequency modes: for the first to fourth modes the average

difference is 89 cm−1. However, the fifth vibration is overestimated (average difference

between B3LYP and ab initio) by about 69 cm−1. All these methods calculated similar

values for the lowest frequency (sixth) vibrational mode. The average absolute

difference between the frequencies calculated with B3LYP and the ab initio (CCSD(T)

and F12) methods is 72 cm−1.
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Table 4.1-7. Harmonic frequencies for the Si2H2 isomers calculated at different levels of
theory; the results are listed in descending order of wavenumber (cm−1) units.

Si2H2

CCSD(T)/ CCSD(T)-F12a/ B3LYP/
AVTZ a VTZ-F12 6-311+G(d)

dibridged

1631 1650 1592 SiH sym. str.

1544 1562 1500 SiH antisym. str.

1221 1236 1119 SiH antisym. str.

1152 1167 1013 SiH antisym. str.

909 921 985 Butterfly

515 529 522 SiSi str.

monobridged

2186 2195 2172 SiHt str.

1644 1664 1620 Si2Hb sym. str.

1136 1163 997 Si2Hb antisym. str.

602 611 610 SiSi str.

454 460 446 HbSiHt scissors

159 153 41 out of plane

vinyl

2235 2247 2220 SiH antisym. str.

2207 2221 2193 SiH sym str.

887 895 895 SiH2 scissors

517 523 520 SiSi str.

334 337 334 SiH2 wag

263 270 268 SiH2 rock

trans

2192 2210 2171 SiH antisym. str.

2187 2201 2165 SiH sym. str.

609 603 626 SiH sym. bend

561 568 561 SiSi str.

287 265 225 SiH antisym. bend

242 211 204 HSiSiH torsion
a taken from reference [51]

For the monobridged isomer, the CCSD(T) and F12 levels of theory give similar

frequency values; the average difference is 12 cm−1. The largest difference (26 cm−1) is

found for the third mode. The B3LYP frequencies show better agreement with the



73

corresponding ab initio results than for the dibridged isomer, except the third and last

vibrations which are hugely underestimated (more than 100 cm−1); however, the

average difference (55 cm−1) is lower than that of the dibridged isomer.

All methods give similar frequency results for the vinyl structure. The average

difference is between 8.5 cm−1 (from CCSD(T) to F12) and 10 cm−1 (from B3LYP to

F12).

Five of the calculated vibration frequencies for the trans isomer (the first four and the

last mode) have similar values, for all three methods. The average difference is between

15 cm−1 (from CCSD(T) to F12) and 26 cm−1 (from B3LYP to F12). However,

significant differences in the fifth vibration can be seen. The B3LYP method

overestimates the fifth vibration frequency by 62 cm−1 compared to the CCSD(T) level.

We compared our results with the values presented in two papers from the literature: the

very recent paper by Law et al. [52] and the paper by Grev and Schaefer [24]. We chose

the CCSD(T)/cc-pCV(T+d)Z method (Law et al.) and CCSD(T)/TZ2df/TZ2p (Grev and

Schaefer) as references. CCSD(T)/cc-pCV(T+d)Z will be abbreviated as CVTZd and

CCSD(T)/TZ2df/TZ2p as TZ2df.

The CCSD(T) results obtained here agree perfectly with the CCSD(T)/AVTZ results

from Law et al. [52] (as they of course should). The average absolute difference for the

frequencies of all isomers calculated with F12 and CVTZd is 9 cm−1 and the average

absolute difference between the F12 and TZ2df results is 23 cm−1. A similar difference

with comparison to the CVTZd calculation (10 cm−1) can be seen for the CCSD(T)

level. From all methods considered here, DFT showed the largest differences: 44 cm−1

(between B3LYP and CVTZd) and 28 cm−1 (between B3LYP and TZ2df).

The semi-experimental values of the dibridged harmonic frequencies were taken from

[52]. Calculations of harmonic frequencies using different ab initio and DFT methods

with various sizes of basis sets were performed. The CCSD(T)/cc-pV(Q+d)Z method

will be abbreviated by VQZd. The B3LYP/6-311+G(d), CCSD(T)/aug-cc-pVTZ and
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CCSD(T)-F12a/cc-pVTZ-F12 abbreviations remain the same as in the previous

paragraphs. A comparison of the calculated harmonic frequencies with the semi-

experimental values can be seen in Table 4.1-8.

Table 4.1-8. Comparison of calculated harmonic frequencies with literature values.

The B3LYP method gives the largest error (average absolute difference of 74 cm−1)

especially for the fourth vibration mode. All the ab initio methods reproduced the semi-

experimental values with similar accuracy. The average absolute error for AVTZ is 7

cm−1, for F12 9 cm−1 and for VQZd 8 cm−1. Moreover, for the highest vibration modes

the F12 level reproduced the semi-experimental values with the best accuracy (with an

average error of 7 cm−1), whereas for the AVTZ and VQZd levels the average error is

10 cm−1. Thus, we can conclude that the ab initio methods employed here reproduced

the literature frequency values well and it is hard to determine the most accurate

method.

Dibridged
B3LYP/

6-311+G(d)
CCSD(T)/

AVTZ
CCSD(T)-F12a/

VTZ-F12
CCSD(T)/
V(Q+d)Z * Semi-Expt. *

522 529 514 528

985 921 909 918 922

1013 1167 1152 1170

1119 1236 1221 1239 1226

1500 1562 1543 1560 1552

1592 1650 1631 1649

* values taken from reference [52]
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4.2 The Si2HF isomers.

The next studied structures are compounds similar to the Si2H2 species; however, a

hydrogen atom will be substituted by a fluorine atom. The Si2H2 isomers of Grev and

Schaefer [24] will be taken as starting geometries. Two different monobridged

structures (one with a hydrogen as a bridged atom, the second one with a bridged

fluorine) were considered. Average literature (theoretical) values of the Si−F bond 

distances were used in the fluorine substituted starting geometries.

Computational methods

The structures were optimized again with the CCSD(T)/aug-cc-pVXZ, CCSD(T)-

F12a/cc-pVTZ-F12 and B3LYP/6-311+G(d) levels of theory (where X=2-4). All ab

initio calculations were performed using MOLPRO versions 2006.1-2010.1 [85, 120]

software packages whereas the DFT calculations were done using Gaussian 03 [138].

Harmonic vibrational frequency computations were done at the optimized structures to

characterise these as minima or transition states (TS). The frequency calculations were

done at the CCSD(T)/aug-cc-pVTZ and B3LYP/6-311+G(d) levels of theory.

The HSiSiF, FSiHSi, HFSiSi and SiHFSi formulae refer to, respectively, the trans,

monobridged, vinylidene and dibridged isomers, respectively. The VD_TS, MV_TS and

MT_TS symbols represent the transition states on the paths between the vinyl and

dibridged structures (surprisingly), between the monobridged and vinylidene structures

and between the monobridged and trans structures, respectively. Note, that in the

following discussion all the correlation consistent basis sets employed here (such as

aug-cc-pVXZ (where X=2–4)) will be abbreviated as AVXZ, and the methods such as:

CCSD(T)/aug-cc-pVTZ, CCSD(T)-F12a/cc-pVTZ-F12 and B3LYP/6-311+G(d) will be

abbreviated as CCSD(T), F12 and B3LYP, respectively. We used the NBO [102, 103]

method to establish the (multiple) bonded properties (only for the minima) as presented

in the previous Si2H2 sub–chapter (4.1). The CCSD/cc-pV(T+d)Z level of theory
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utilizing the Gaussian 03 software package was employed. The isomers and transition

states obtained are listed in Table 4.2-1 and Table 4.2-2.

All the calculated isomers of Si2HF and transition states are depicted in Figure 4.2-1.

The energies relative to the monobridged structure (global minimum) are listed at the

bottom of Figure 4.2-1. The reaction paths between the critical points are represented

schematically by lines.

Table 4.2-1. Geometric properties of the calculated Si2HF minima.

CCSD(T)/AVTZ

HFSiSi, CS HSiSiF, CS SiHFSi, CS FSiHSi, CS

SiF a 1.6163 1.6049 1.9003 1.6069

SiSi a 2.2348 2.1546 2.2696 2.1395

HSi a 1.4855 1.5100 1.7108 1.7002 c

 HSiSiF b 180.00 180.00 106.60 0.00

 SiSiF b 126.16 142.46 53.34 160.83

SiSiH b 126.03 95.95 48.45 50.27 c

a ångström
b degrees
c The Si2H and Si1Si2H values between the silicon (connected to the
terminal fluorine atom) and the bridged hydrogen atom.

Table 4.2-2. Geometric properties of the calculated Si2HF transition states.

CCSD(T)/AVTZ

VD_TS, C1 MV_TS, CS MT_TS, CS

SiF a 1.8033 1.6056 1.6039
SiSi a 2.2314 2.1584 2.1519

HSi a 1.4931 1.5286 1.5274

 HSiSiF b 84.10 180.00 180.00

 SiSiF b 60.94 165.73 154.55

 SiSiH b 126.9 81.91 82.80
a ångström
b degrees
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Figure 4.2-1. The optimized structures of the Si2HF isomers and transition states with energies relative to the global minimum

(monobridged). The calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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Note that the F–bridged starting structure (HSiFSi) converged to the vinylidene form, so

apparently there is no fluorine-bridged structure as a minimum.

The shortest Si–Si bond length occurs in the the doubly-bonded monobridged structure

(2.1395 Å) followed by the triply-bonded trans structure (2.1546 Å), the doubly-bonded

vinylidene structure (2.2348 Å) and then the singly-bonded dibridged structure (2.2696

Å). Note, that it is unusual that a doubly-bonded structure has a shorter Si–Si bond

length than a triply-bonded structure. It is not clear why this issue occurs here.

Additional studies are necessary to explain this issue. The calculation shows that the Si–

F distances have a length of around 1.6 Å, except that of the dibridged structure, which

is 1.90 Å (the bridged atoms usually have longer bond lengths). The Si–H distances in

the vinylidene and the trans isomers have a length around 1.5 Å whereas the bridged

structures (monobridged and dibridged) show Si–H distances of around 1.71 Å. All the

isomers except the dibridged structure are planar.

The monobridged form has the lowest energy followed by the vinylidene form with

E= 3.59 kcal/mol, then the trans form with E=7.30 kcal/mol and the dibridged form

with E= 7.53 kcal/mol. On the reaction paths between the minima three transition

states were found: MV_TS is the transition state between the monobridged and

vinylidene structures (7.80 kcal/mol above the global minimum), MT_TS is the

transition state between the monobridged and trans structures (7.41 kcal/mol above the

global minimum) and VD_TS is the transition state between the vinyl and dibridged

structures (19.86 kcal/mol above the global minimum).

A comparison of the geometric properties calculated with increasing basis set level was

performed. The calculated geometric properties at the CCSD(T)/AVXZ (where X=2–4)

levels of theory are listed in Table 4.2-3. The “Si2” in the table represents the silicon

connected to the terminal fluorine atom.
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Table 4.2-3. Geometric properties of the Si2HF isomers calculated at the

CCSD(T)/AVXZ (X=2–4) level of theory.

HFSiSi FSiHSi

AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ

SiF a 1.6618 1.6163 1.6055 Si2F a 1.6533 1.6069 1.5967

SiSi a 2.2613 2.2348 2.2244 SiSi a 2.1783 2.1395 2.1281

HSi a 1.4956 1.4855 1.4826 HSi2 a 1.7173 1.7002 1.6920

 HSiSiF b 180.00 180.00 180.00  HSiSiF b 0.00 0.00 0.00

 SiSiF b 124.24 126.16 125.62  Si1Si2F b 158.64 160.83 160.59

 SiSiH b 128.20 126.03 126.28  Si1Si2H b 49.73 50.27 50.32

a ångström

b degrees

HSiSiF SiHFSi

AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ

SiF a 1.6510 1.6049 1.5946 SiF a 1.9338 1.9003 1.8857

SiSi a 2.1856 2.1546 2.1437 SiSi a 2.3111 2.2696 2.2549

HSi a 1.5187 1.5100 1.5043 HSi a 1.7255 1.7108 1.7051

 HSiSiF b 180.00 180.00 180.00  HSiSiF b 106.30 106.60 106.80

 SiSiF b 138.57 142.46 140.49  SiSiF b 53.45 53.33 53.28

 SiSiH b 99.45 95.95 97.69  SiSiH b 48.02 48.44 48.61

a ångström
b degrees

The change in the bond lengths (Si–Si, Si–H and Si–F) is larger from AVDZ to AVTZ

than from AVTZ to AVQZ. This indicates that the bond lengths are converging with

increasing basis set size. The Si–Si distance and the relative energy are shown in Figure

4.2-2 and Figure 4.2-3.
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Figure 4.2-2. Si−Si bond length variation with increasing basis set size for the Si2HF
isomers.

Figure 4.2-3. Relative energy of the Si2HF isomers (relative to the monobridged isomer)

as a function of AVXZ basis set size.
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The Si–Si distance appears to converge with increasing basis set size for all four

isomers which is clearly illustrated in Figure 4.2-2. Figure 4.2-3 shows a picture of the

dependence of the isomerisation energy on basis set size; a significantly large

improvement for the AVDZ to AVTZ basis set extension can be seen for the dibridged

structure (5.43 kcal/mol) with a smaller increase (0.60 kcal/mol), when extension from

the AVTZ to AVQZ level was performed. The vinyl and trans structures also show

significant improvement for the AVDZ to AVTZ basis set extension; however, the

change is not as large as for the dibridged isomer (1.62 kcal/mol and 1.19 kcal/mol,

respectively). The very small change (actually a decrease) of the isomerisation energies

from the AVTZ to AVQZ basis set shows that the vinyl and trans isomers have nearly

reached convergence. Whereas, the AVDZ basis set gives the wrong isomerization

energies and different minima ordering. It can be concluded then that AVDZ basis set is

too small to properly calculate isomerization energies of the Si2HF species.

CCSD(T)- F12 calculations

In addition to CCSD(T)-F12a/cc-pVTZ-F12, the CCSD(T)/cc-pVTZ and B3LYP/6-

311+G(d) levels of theory were also employed for comparison. We used MOLPRO

2010.1 [85] and Gaussian 09 [138, 139]. Note, that in the following discussion the

CCSD(T)/cc-pVTZ level will be abbreviated as CCSD(T), the CCSD(T)-F12a/cc-

pVTZ-F12 level as F12 and the B3LYP/6-311+G(d) level of theory as B3LYP. The

“Si2” in table represents the silicon connected to the terminal fluorine atom.
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Table 4.2-4. Geometric properties computed at various levels of theory.

Si2HF
CCSD(T)/

AVTZ
CCSD(T)-F12a/

VTZ-F12
B3LYP/

6-311+G(d)

dibridged

SiF a 1.9003 1.8812 1.9292

SiSi a 2.2696 2.2477 2.2763

HSi a 1.7108 1.7026 1.7212

 HSiSiF b 106.60 106.74 105.42

 SiSiF b 53.33 53.31 53.85

 SiSiH b 48.44 48.70 48.61

monobridged

Si2F a 1.6069 1.5911 1.6249

SiSi a 2.1395 2.1213 2.1228

HSi2 a 1.7002 1.6892 1.7173

 HSiSiF b 0.00 0.00 0.00

 Si1Si2F b 160.83 160.91 160.95

 Si1Si2H b 50.27 50.41 50.91

vinyl

SiF a 1.6163 1.5997 1.6356

SiSi a 2.2348 2.2195 2.2299

HSi a 1.4855 1.4816 1.4868

 HSiSiF b 180.00 180.00 180.00

 SiSiF b 126.16 125.34 125.33

 SiSiH b 126.03 126.40 126.83

trans

SiF a 1.6049 1.5892 1.6222

SiSi a 2.1546 2.1379 2.1435

HSi a 1.5100 1.5030 1.5145

 HSiSiF b 180.00 180.00 180.00

 SiSiF b 142.46 140.61 146.07

 SiSiH b 95.95 97.42 92.67
a ångström
b degrees

The good general agreement in the bond lengths for all the methods used here can be

seen in Table 4.2-4. However, it was shown in the Si2H2 Chapter 4.1 that the F12



83

method gives the most accurate result with comparison to the experimental values, and

thus, this method will be taken as a reference. The largest average absolute difference is

0.033 Å (for the dibridged structure between the B3LYP and F12 methods) and the

smallest is 0.008 Å (for the vinyl structure between the AVTZ and F12 methods). For

the first three isomers the angle values obtained by the F12 method are reproduced (by

the B3LYP and CCSD(T) methods) with an average accuracy of 0.41° however, in the

trans structure a different picture can be seen. The B3LYP method shows a difference as

large as 5.5° for the SiSiF angle and the CCSD(T) as small as 1.5° for the SiSiH angle.

Nevertheless the average absolute difference is 3.4° (when the differences between the

F12 and the B3LYP and CCSD(T) methods are considered).

A comparison of the relative energies for the Si2HF minima calculated using the DFT

(B3LYP/6-311+G(d)) method, the CCSD(T)/AVTZ and F12 (CCSD(T)-F12a/VTZ-

F12) methods was made and is shown in Table 4.2-5.

Table 4.2-5. Relative energies (kcal/mol) of the Si2HF isomers calculated by various
methods.

dibridged monobridged vinyl trans

CCSD(T)/AVTZ 7.53 0.00 3.59 7.30

CCSD(T)-F12a/VTZ-F12 8.71 0.00 3.72 7.37

B3LYP/6-311+G(d) 2.29 0.34 0.00 5.64

Both ab initio methods show similar values of the relative energy except for the

dibridged structure. The CCSD(T) level underestimates the relative energy (with

comparison to the F12 method) by around 1.2 kcal/mol (dibridged). The DFT method

underestimates all of the relative energies. Moreover, the DFT method shows that the

global minimum is the vinyl structure followed by the monobridged, dibridged and trans

structures. Thus, the DFT method does not reproduce the isomerisation energies

properly with comparison to the ab initio calculations.
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Frequencies

Harmonic vibrational frequencies were calculated at the B3LYP/6-311+G(d) level in

addition to the CCSD(T)/AVTZ level of theory. The calculated results are listed in

Table 4.2-6.

Table 4.2-6. Harmonic frequencies for the Si2HF isomers calculated at different levels
of theory; the results are listed in descending order of wavenumber (cm−1) units.

Si2HF
CCSD(T)/

AVTZ
B3LYP/

6-311+G(d)

dibridged

1473.6 1432.4 SiH sym. str.

969.8 877.3 SiH antisym. str.

839.9 854.0 butterfly

570.3 548.0 SiSi/SiF in-phase str.

448.5 444.1 SiSi/SiF out-of-phase str.

166.6 144.3 HF antisym. twist

monobridged

1628.2 1602.1 SiH sym. str.

1053.0 940.3 SiH antisym. str.

920.2 888.5 SiSi/SiF out-of-phase str.

481.7 477.4 SiSi/SiF in-phase str.

193.6 191.8 SiSiF in-plane bend

118.7 35.5 out-of-plane

vinyl

2222.3 2202.8 SiH str.

880.1 850.5 SiF str.

778.7 773.4 SiSiH bend

472.4 466.1 SiSi str.

302.3 293.3 out-of-plane

136.7 137.2 SiHF rock

trans

2108.8 2072.3 SiH str.

908.1 877.9 SiF str.

503.6 518.2 SiSi str./H in-plane-bend

423.6 431.6 H in-plane-bend

124.8 65.4 out-of-plane

93.4 58.7 SiSiF/SiSiH out-of-phase bend
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In the dibridged isomer the B3LYP method reproduced the CCSD(T) results quite well

only for the fifth vibration mode: with a difference of 4.3 cm-1. However, the rest of the

vibration frequencies calculated by the B3LYP method have larger differences: for

example the first vibration is underestimated by 41.2 cm−1 and the second vibration by

92.5 cm−1. Nevertheless, the average absolute difference is only 32.8 cm−1 when all

vibration modes are considered.

The monobridged isomer is a bizarre example of reproduction of harmonic frequencies

by the B3LYP method. Firstly we have the fourth and fifth vibrations reproduced with

an average difference of only 3.0 cm−1 and secondly, the second and last vibration

modes have large differences of 112.7 cm−1 and 83.2 cm−1, respectively. The average

absolute difference for all vibrations is 43.3 cm−1, which is the largest difference of all

the Si2HF isomers.

The B3LYP method gives the smallest difference for the vinyl isomer; the average

difference for all vibrations is only 11.7 cm−1. The best accuracy occurs for the last

vibration mode (0.6 cm−1) and the worst for the second vibration (29.6 cm−1).

The third and fourth vibration modes in the trans isomer are reproduced with an average

accuracy of about 11 cm−1. Nevertheless a large difference (59.4 cm−1) can be seen for

the fifth vibration and the average absolute difference (when all the vibrations modes

are considered) is 30.6 cm−1.

Comparison of calculated geometries with the literature

As was mentioned in the Introduction chapter the Si2HF structures calculated by Bei

and Feng [30] were obtained with too low-level of theory to do reliable comparison

with the results calculated here. To the author’s knowledge no other literature results

(spectroscopic or theoretical) exist for the Si2HF species. Experimental studies of

similar compounds such as SiH2F2 [140] or SiF3 [141] can be found in the literature

since the late 50’s; however, the recent paper by Wilson et al. [34] on the SiHxCly and

SiHxFy (where x=0–3 and y=1–3) compounds is the most useful for our purpose as their
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studies contain both experimental and theoretical values. The SiF2, SiHF and SiH3F

species from this publication were chosen for comparison. The calculated Si–F

distances in the above species (computed at the CCSD(T)/aug-cc-pV(Q+d)Z level of

theory) are: 1.598 Å, 1.611 Å and 1.599 Å respectively and the experimental

(equilibrium) Si–F bond lengths are 1.591 Å, 1.603 Å and 1.5945 Å respectively. Our

calculated Si–F values are in the range 1.5892 Å (in the trans isomer for F12) to 1.6356

Å (in the vinyl isomers for the B3LYP method). The calculated Si–H distances in the

above (SiHF and SiH3F) species (computed at the CCSD(T)/aug-cc-pV(Q+d)Z level of

theory) are: 1.528 Å and 1.475 Å respectively and the experimental (equilibrium) Si–H

bond lengths are: 1.529 Å and 1.4761 Å respectively. Our calculated Si–H values are in

the range: 1.4816 Å (in the vinyl isomer for AVTZ) to 1.5145 Å (in the trans isomers

for the F12 method). Note, that we consider here only the values of terminal atoms as

the bond distances for bridged atoms are generally longer. It can be seen that our

calculated results are in good agreement with the literature.
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4.3 The Si2HCl isomers.

The procedure of calculations of the Si2HCl structures is the same as for Si2HF. Initially

the Si2H2 structures optimized by Grev and Schaefer [24] were used but with one

hydrogen atom substituted by a chlorine atom. Two different monobridged structures

(one with a hydrogen as a bridged atom, the second one with a bridged chlorine) were

considered. Average literature (theoretical) values of the Si−Cl bond distances were 

used in substituted-chlorine starting geometries.

Computational methods

Initially we were interested in the isomerisation properties of structures and relative

energies calculated with the CCSD(T)/aug-cc-pVXZ, CCSD(T)-F12a/cc-pVTZ-F12 and

B3LYP/6-311+G(d) levels of theory (where X=2–4). All the ab initio calculations were

performed using MOLPRO versions 2006.1-2010.1 [85, 120] whereas the DFT

calculations were performed with Gaussian 03 and 09 [138, 139]. The minimization and

transition state (TS) searching was performed by using the quadratic steepest descend

algorithm implemented in the MOLPRO computational programs. Harmonic

frequencies were done at the optimized structures at the CCSD(T)/aug-cc-pVTZ, and

B3LYP/6-311+G(d) levels of theory, and the structures were verified as minima or

transition states by the absence or presence of imaginary vibrational frequencies. As in

the previous chapter, the correlation consistent basis sets used (aug-cc-pVXZ (where

X=2–4)) will be abbreviated as AVXZ, and the methods such as: CCSD(T)-F12a/cc-

pVTZ-F12 will be abbreviated as F12, CCSD(T)/AVTZ as CCSD(T) and B3LYP/6-

311+G(d) as B3LYP. The NBO [102, 103] calculations were performed at the

CCSD/cc-pV(T+d)Z level of theory using the Gaussian 03 software package. The NBO

calculations of the optimized minima were done to establish (multiple) bonded

properties as presented in the earlier Si2H2 sub–chapter (4.1). The calculated geometric

properties using the CCSD(T)/AVTZ method are listed in Table 4.3-1 and Table 4.3-2.
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Table 4.3-1. Geometric properties of calculated Si2HCl minima.

CCSD(T)/AVTZ

SiHClSi, CS ClSiHSi, CS HClSiSi, CS HSiSiCl, CS

SiCl a 2.3392 2.0613 2.0750 2.0567

SiSi a 2.2880 2.1398 2.2306 2.1512

HSi a 1.7120 1.6857 c 1.4844 1.5040

 HSiSiCl b 101.62 0.00 180.00 180.00

 SiSiCl b 60.72 160.65 122.28 137.66

 SiSiH b 48.07 50.61 c 128.47 104.56
a ångström
b degrees
c The Si2H and Si1Si2H values between the silicon (connected to the
terminal chlorine atom) and the bridged hydrogen atom.

Table 4.3-2. Geometric properties of calculated Si2HCl transition states.

DM_TS, C1 DV_TS, CS MT_TS, CS

SiCl a 2.2299 2.0556 2.0543

SiSi a 2.1798 2.1626 2.1515

HSi a 1.4848 1.5257 1.5322

 HSiSiCl b 54.90 180.00 180.00

 SiSiCl b 70.84 164.49 158.76

 SiSiH b 173.02 82.66 81.46
a ångström
b degrees

The HSiSiCl, ClSiHSi, HClSiSi and SiHClSi formulae refer to: the trans, monobridged,

vinylidene and dibridged isomers, respectively. The DM_TS, DV_TS and MT_TS

formulae represent the transition states on the paths between: the dibridged and

monobridged structures, dibridged and vinyl and between the monobridged and trans

structures, respectively.

The same structure types as found in the Si2H2 system were obtained. The calculation

were done at the CCSD(T)/AVTZ level of theory. The Si2HCl system possesses four

minima. The global minimum is the Si−Si singly-bonded dibridged structure and 4.38 

kcal/mol above lies the Si−Si doubly-bonded monobridged structure. The energy 

relative to the global minimum of the Si−Si doubly-bonded vinyl structure is 8.01 
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kcal/mol and the relative energy of the Si−Si triply-bonded trans structure is 11.79 

kcal/mol. Three transition states were found, the first one lies on the reaction path

between the dibridged and monobridged isomers. Two further transition states connect

the dibridged isomer with the vinyl and monobridged with trans isomers, respectively.

The reaction path showing relative energies and pictures of the calculated structures can

be seen in Figure 4.3-1.

A comparison of the geometric properties of the four isomers calculated with CCSD(T)

and increasing basis set level (AVXZ where X=2–4) is shown in Table 4.3-3. The “Si2”

in table represents the silicon connected to the terminal chlorine atom.

Table 4.3-3. Geometric properties of the Si2HCl isomers calculated with

CCSD(T)/AVXZ (where X=2–4) level of theory.

SiHClSi ClSiHSi

AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ

SiCl a
2.3979 2.3392 2.3239 Si2Cl a

2.1000 2.0613 2.0496

SiSi a
2.3279 2.2880 2.2746 SiSi a

2.1740 2.1398 2.1278

HSi a
1.7267 1.7120 1.7057 HSi2 a

1.7004 1.6857 1.6790

 HSiSiCl b 101.18 101.62 101.65  HSiSiCl b 0.00 0.00 0.00

 SiSiCl b 60.96 60.72 60.70  Si1Si2Cl b 159.76 160.65 160.66

 SiSiH b 47.62 48.07 48.18  Si1Si2H b 50.30 50.61 50.63
a ångström
b degrees

HClSiSi HSiSiCl

AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ

SiCl a
2.1135 2.0750 2.0620 SiCl a

2.0944 2.0567 2.0447

SiSi a
2.2558 2.2306 2.2201 SiSi a

2.1779 2.1512 2.1399

HSi a
1.4939 1.4844 1.4811 HSi a

1.5143 1.5040 1.4992

 HSiSiCl b 180.00 180.00 180.00  HSiSiCl b 180.00 180.00 180.00

 SiSiCl b 120.78 122.28 122.37  SiSiCl b 136.17 137.66 136.95

 SiSiH b 130.21 128.47 128.06  SiSiH b 105.45 104.56 105.18
a ångström
b degrees
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Figure 4.3-1. The optimized structures of the Si2HCl isomers and transitions states with energies relative to the global minimum

(dibridged). The calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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The variations of the relative energies and Si–Si bond distance with increasing basis set

size are shown in Figure 4.3-2 and Figure 4.3-3, respectively.

Both figures show the same convergence pattern. The largest change occurs from

AVDZ to AVTZ, whereas only a small change happens upon further basis set

improvement. This shows that the results are converging.

Figure 4.3-2. Si−Si bond length variation with increasing basis sets size for the Si2HCl

isomers.
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Figure 4.3-3. Relative energy of the Si2HCl isomers (relative to the dibridged isomer) as

a function of AVXZ basis set size.

CCSD(T)- F12 calculations
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distances (when differences between the F12 and the CCSD(T) and B3LYP methods are

considered) is 0.0115 Å and the average absolute difference for the calculated Si–H

distance is 0.0084 Å.

Table 4.3-4. Geometric properties computed at various levels of theory.

Si2HCl
CCSD(T)/

AVTZ
CCSD(T)-F12a/

VTZ-F12
B3LYP/

6-311+G(d)

dibridged

SiCl a 2.3392 2.3124 2.3747

SiSi a 2.2880 2.2673 2.2876

HSi a 1.7120 1.7035 1.7187

 HSiSiCl b 101.62 101.74 101.38

 SiSiCl b 60.72 60.64 61.21

 SiSiH b 48.07 48.28 48.29

monobridged

Si2Cl a 2.0613 2.0422 2.0720

SiSi a 2.1398 2.1220 2.1248

HSi2 a 1.6857 1.6751 1.6941

 HSiSiCl b 0.00 0.00 0.00

 Si1Si2Cl b 160.65 160.79 161.33

 Si1Si2H b 50.61 50.73 51.28

vinyl

SiCl a 2.0750 2.0544 2.0846

SiSi a 2.2306 2.2159 2.2234

HSi a 1.4844 1.4800 1.4852

 HSiSiCl b 180.00 180.00 180.00

 SiSiCl b 122.28 122.57 122.98

 SiSiH b 128.47 127.67 127.86

trans

SiCl a 2.0567 2.0372 2.0648

SiSi a 2.1512 2.1350 2.1430

HSi a 1.5040 1.4979 1.5091

 HSiSiCl b 180.00 180.00 180.00

 SiSiCl b 137.66 137.14 141.57

 SiSiH b 104.56 104.94 99.94
a ångström
b degrees
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The CCSD(T) and B3LYP methods reproduced the angles obtained by the F12 method

(in the dibridged, monobridged and vinyl isomers) well. The average absolute

difference is 0.40°, however, in the trans isomer the B3LYP method fails. The angles

computed at this level are underestimated (SiSiH) by about 5.0° or overestimated

(SiSiCl) by about 4.4°, whereas the CCSD(T) method reproduced the angles with

average absolute error around 0.45°. A similar situation was seen for the Si2HF species

where the B3LYP method reproduced the angle values with an average absolute error

around 4°. Thus, we can conclude that the B3LYP method employed here is not

accurate enough in calculation of the trans species.

A comparison of the relative energies for the Si2HCl minima using the B3LYP/6-

311+G(d) method, the CCSD(T)/AVTZ method and the F12 (CCSD(T)-F12a/VTZ-

F12) method was made and is shown in Table 4.3-5.

Table 4.3-5. Relative energies (kcal/mol) of the Si2HCl isomers calculated by various
methods.

dibridged monobridged vinyl trans

CCSD(T)/AVTZ 0.00 4.38 8.01 11.79

CCSD(T)-F12a/VTZ-F12 0.00 4.31 8.12 11.79

B3LYP/6-311+G(d) 0.00 5.46 5.32 10.99

Both ab initio methods show similar values of the relative energy. However, the DFT

method underestimates the relative energy. Moreover, the DFT method shows that the

vinyl structure is the second minimum above the global minimum (dibridged) instead of

the monobridged structure. Thus, the DFT method does not reproduce the isomerisation

energies properly in comparison to the ab initio calculations.

Frequencies

The harmonic frequencies were calculated using the CCSD(T)/AVTZ and B3LYP/6-

311+G(d) methods. The results are listed in Table 4.3-6.
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Table 4.3-6. Calculated harmonic frequencies for the Si2HCl isomers computed at

different levels of theory; the results are listed in descending order in wavenumber

(cm−1) units.

Si2HCl

CCSD(T)/
AVTZ

B3LYP/
6-311+G(d)

dibridged

1440.7 1421.8 SiH sym. str.

951.3 876.6 SiH antisym. str.

828.3 844.6 Butterfly

501.9 491.5 SiSi str.

353.0 333.3 SiCl sym. str.

217.7 192.5 HCl antisym. twist

monobridged

1624.0 1604.1 SiH sym. str.

1067.2 935.7 SiH antisym. str.

686.0 671.5 SiSi/SiCl in-phase str.

389.3 379.0 SiSi/SiCl out-of-phase str.

153.8 155.4 ClSiH bend

97.0 44.3 out-of-plane

vinyl

2224.1 2203.4 SiH str.

730.8 741.9 SiSiH bend

583.9 565.8 SiSi/SiCl in-phase str.

441.6 432.0 SiSi/SiCl out-of-phase str.

278.2 270.0 out-of-plane

88.8 92.9 SiSiCl rock

Trans

2132.0 2098.2 SiH str.

647.5 631.2 SiSi/SiCl out-of-phase str.

472.9 491.7 H in-plane bend

396.0 383.0 SiSi/SiCl in-phase str.

90.5 74.8 SiSiH/SiSiCl out-of-phase bend

49.4 73.3 out-of-plane

In the dibridged isomer the B3LYP method reproduced the CCSD(T) frequencies for

the first, and third to fifth vibrations quite well, with an average absolute difference of

16 cm−1. However, the second vibrational frequency calculated by the B3LYP method

has an error of 75 cm−1 and the last vibration frequency has an error of 25 cm−1 
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(compared to the CCSD(T) value). Nevertheless, the average absolute difference is only

27 cm−1 when all vibration modes are considered.

The monobridged isomer is another bizarre example of reproduction of harmonic

frequencies by the B3LYP method. Firstly we have the fifth vibration with an error of

only 1.5 cm−1 and secondly, the second vibration mode with a difference of 131.5 cm−1

and the last vibration frequency with a difference of 53 cm−1. The worst agreement (for

all the Si2HCl isomers) can be seen for the monobridged structure, for which the

average absolute difference is 38 cm−1.

The vinyl isomer shows an entirely different picture. The B3LYP method gives the

smallest differences compared with CCSD(T); the average absolute difference is 12

cm−1. The best accuracy occurs for the last vibration mode (4.1 cm−1) and the worst for

first vibration (21 cm−1).

From the second to the fifth vibration mode in the trans isomer, the B3LYP method

reproduced the CCSD(T) results with an agreement of 16 cm−1. Nevertheless, the largest

error (34 cm−1) can be seen for the first vibration and the average absolute difference

(when all the vibrational modes are considered) is 20 cm−1.

It was noticed that the B3LYP method reproduced poorly the frequencies assigned as

the SiH antisymmetric stretch and out-of-plane vibration in the H-bridged and dibridged

structures. This pattern was also seen in the Si2H2 and Si2HF species and will be seen in

the subsequent Si2HLi and Si2Li2 sub-chapters. Furthermore, a similar situation where

the B3LYP method reproduced poorly the frequencies assigned as out-of-plane can be

seen in the trans structures in the Si2HF and Si2HCl species.

Comparison of calculated values with literature

As was mentioned in the Introduction chapter the Si2HCl structures calculated by Bei

and Feng [30] were obtained with too low a level of theory to do a reliable comparison

with the results calculated here. Nevertheless, although no structural and frequency
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information is available for Si2HCl from either experiment or theory (except the above

one), we will compare with similar structures such as SiH3Cl, SiHCl3 or SiCl3.

Experimental work on the SiH3Cl and SiCl3 molecules has been done since 1956 [35,

142, 143] . The theoretical work of Wilson et al. [34] is the most useful. They showed

theoretical results and experimental results (done by [35]) of the SiHmClm-n (where

m=1–4 and n=0–m) molecules such as the SiCl, SiCl4, SiHCl3 SiH3Cl or SiH2Cl2

species. The calculated (CCSD(T)/aug-cc-pV(Q+d)Z level of theory) Si–Cl bond

distances range from 2.069 Å (SiCl) to 2.021 Å (SiCl4). For the experimental results,

the distances range from 2.020 Å (SiH3Cl) to 2.057 Å (SiCl). The next most important

work was done by Ding and Zhu [50]. They calculated a potential energy surface (PES)

which they used to study Si–H stretching-bending overtones in SiHCl3. The calculated

Si–Cl equilibrium distance is 2.0306 Å. The Si–Cl distances calculated here range from

2.1135 Å (the vinyl isomers calculated with the CCSD(T)/AVDZ level) to 2.0372 Å

(the trans isomer at the CCSD(T)-F12a/VTZ-F12 level). Comparison of the Si-H

distances calculated here with the theoretical work of Wilson et al. [34] follows. The

calculated Si–H distances in the SiHCl3, SiH3Cl and SiH2Cl2 species (computed at the

CCSD(T)/aug-cc-pV(Q+d)Z level of theory) are: 1.462 Å, 1.474 Å and 1.468 Å

respectively and the experimental (equilibrium) Si–H bond lengths are: 1.464 Å, 1.4749

Å and 1.4671 Å respectively. Our calculated Si–H values are in the range 1.4800 Å (in

the vinyl isomer for AVTZ) to 1.5091 Å (in the trans isomers for the F12 method).

Note, that we did not consider the dibridged structure in this comparison as the bridged

atoms generally have longer bond distances. It can be seen that our calculated results are

in good agreement with the experimental and theoretical literature for similar molecules.
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4.4 The Si2HLi isomers.

Substituted silicon hydride isomers are very interesting from a technological point of

view, especially when the substituted atom is lithium. This is because of the growing

importance of lithium and its connection with the silicon atom in modern industry, such

as the development of silicon lithium-ion batteries. However, a lithium-ion battery has

limitations: it is less reversible than carbon-lithium batteries at room temperature [144-

146] and fading of capacity was observed [147]. An investigation of electronic and

bonding properties for small molecules consisting of Li and Si atoms can be very

valuable and helpful to solve the overwhelming problems occurring now and in the

future in research involving compounds containing Si and Li atoms.

Computational methods

The calculations were carried out with MOLPRO versions 2006.1-2010.1 and Gaussian

versions 98-03 [120, 130, 138]. The Si2H2 structures optimized by Grev and Schaefer

[24] were taken as the starting geometries, where one of the H atoms was replaced by

the Li atom. We explored two different monobridged structures: with Li as the bridging

atom and with H as the bridging atom. Average literature (theoretical) values of the

Si−Li bond distances were used in the substituted-lithium starting geometries. All 

geometry optimization calculations were performed at the CCSD(T)-F12a/cc-pVTZ-

F12 [133, 134, 148] and B3LYP/6-311+G(d) levels of theory and with CCSD(T) with

the aug-cc-pVXZ, cc-pVXZ and aug-cc-pV(X+d)Z basis sets (where X=2–4) [58, 149,

150]. The vibrational frequency calculations were performed at the CCSD(T)/aug-cc-

pVXZ and B3LYP/6-311+G(d) levels of theory. The frequencies were used for the

identification of transition states (TS) and minima. The correlation consistent basis sets

used here, aug-cc-pVXZ cc-pVXZ and aug-cc-pV(X+d)Z will be abbreviated as AVXZ,

VXZ and AV(X+d)Z (where X=2–4). The methods such as: CCSD(T)-F12a/cc-pVTZ-

F12 will be abbreviated as F12, CCSD(T)/AVTZ as CCSD(T) and B3LYP/6-311+G(d)

as B3LYP respectively. Natural Bond Order (NBO) calculations were done at the

CCSD/aug-cc-pV(T+d)Z level of theory using Gaussian 98 with NBO 3.1 implemented.
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The LiSiHSi, HSiLiSi and SiHLiSi formulae refer to the H–bridged, Li–bridged and

dibridged isomers, respectively. The D-LiM_TS, LiM-HM_TS formulae refer to the

transition states on the paths between the dibridged and Li–bridged structures, and the

Li–bridged and H–bridged structures, respectively.

The optimized structures of the Si2HLi isomers and transition states are depicted in

Figure 4.4-1. The pictures show the multiple-bonding properties of the optimized

isomers obtained from the NBO calculations. The energies relative to the dibridged

structure (global minimum) are listed at the bottom of Figure 4.4-1. The reaction paths

between critical points are represented schematically by lines.

Figure 4.4-1 shows the optimized isomers with the bonding properties taken from NBO

calculations. All the isomers are bridged structures. The global minimum is a dibridged

(SiHLiSi) form and Li–bridged (HSiLiSi) and H–bridged (LiSiHSi) local minima were

found. The energy differences between the global minimum and the local minima are

4.12 kcal/mol and 8.91 kcal/mol for the Li-bridged and H-bridged structures,

respectively. The Li- and H-bridged isomers contain a double Si=Si bond, whereas the

dibridged isomer is a single-bonded structure. In all the isomers lone pairs can be found

on one or two silicon atoms. We also investigated cis and linear forms but they were

found to be higher–order transition states.
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Table 4.4-1. Geometric properties of the calculated Si2HLi minima.

CCSD(T)/AVTZ

SiHLiSi, CS HSiLiSi, CS LiSiHSi, CS

SiLi a 2.6291 2.5306 c 2.4349

SiSi a 2.1994 2.1188 2.1582

HSi a 1.6800 1.4954 1.6383 d

 HSiSiLi b 86.73 180.00 0.00

 SiSiLi b 65.28 68.48 c 156.49

 SiSiH b 49.11 168.75 51.47 d

a ångström
b degrees
c The Si1Li and Si2Si1Li values between the silicon and the bridged
lithium atom.
d The Si2H and Si1Si2H values between the silicon (connected to the
terminal lithium atom) and the bridged hydrogen atom.

Table 4.4-2. Geometric properties of the calculated Si2HLi transition states

CCSD(T)/AVTZ
D–LiM_TS, C1 LiM–HM_TS, Cs

SiLi a 2.5851 2.4245

SiSi a 2.2055 2.1987

HSi a 1.5354 1.5167

 HSiSiLi b 84.75 0.00

 SiSiLi b 67.75 137.40

 SiSiH b 91.80 97.50
a ångström
b degrees
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Figure 4.4-1. The optimized structures of the Si2HLi isomers and transition states with energies relative to the global minimum (dibridged).
The calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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Table 4.4-1 presents the geometric properties of the structures optimised at the

CCSD(T)/aug-cc-pVTZ level of theory. The “Si2” or “Si1” in table represents the

silicon connected or not connected to the terminal atom.

We see that the shortest Si–Si bond occurs in the Li-bridged structure (2.1188 Å),

followed by the H-bridged (2.1582 Å) and the di-bridged (2.1994 Å) structures. In the

previous sub-chapters it was found that the bridged atom has longer bond lengths. This

is also found here: the calculated Si–Li and Si–H bonds in the bridged isomers have

lengths of 2.6291 Å (SiHLiSi), 2.5306 Å (HSiLiSi), 1.6800 Å (SiHLiSi) and 1.6383 Å

(LiSiHSi). The Si–Li and Si–H bond lengths of the terminal atoms are shorter: 2.4349 Å

and 1.4954 Å for LiSiHSi and HSiLiSi, respectively. All isomers except the dibridged

structure are planar.

We also performed a more extended investigation of disilynes substituted by Li atoms

in comparison to the Si2HF and Si2HCl structures, as these are particularly interesting

for the high-tech industry as shown in the Introduction chapter.

We performed calculations with several series of basis sets to choose the most effective

basis set. The performance of the AVXZ and VXZ basis sets was first assessed,

followed by a comparison of the results obtained with the AVXZ and AV(X+d)Z basis

sets (where X=2–4). The CCSD(T) method was employed in all of the calculations. The

CBS limit has also been evaluated using the model proposed by Halkier et al [151].

Details of this model will be discussed later.

The comparison of the results obtained with the AVXZ and VXZ basis sets aims to

investigate the importance of the inclusion of diffuse functions in the basis sets. The

geometric properties calculated with the VXZ basis sets can be found in Table 4.4-3 to

Table 4.4-5. The relative energies calculated with these basis sets are presented in the

form of graphs (Figure 4.4-2 and Figure 4.4-3). The “Si2” or “Si1” in table represents

the silicon connected or not connected to the terminal atom.
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Table 4.4-3. Geometric properties of the SiHLiSi isomer at the CCSD(T)/AVXZ and

CCSD(T)/VXZ (where X=2–4) levels of theory.

SiHLiSi

AVDZ AVTZ AVQZ VDZ VTZ VQZ

SiLi a 2.6633 2.6291 2.6235 2.6505 2.6257 2.6228

SiSi a 2.2306 2.1994 2.1866 2.2272 2.1989 2.1858

HSi a 1.6957 1.6800 1.6738 1.6965 1.6802 1.6729

 HSiSiLi b 88.40 86.73 87.30 84.73 85.80 86.79

 SiSiLi b 65.24 65.28 65.37 65.16 65.23 65.37

 SiSiH b 48.87 49.11 49.22 48.97 49.13 49.21

a ångström
b degrees

Table 4.4-4. Geometric properties of the LiSiHSi isomer at the CCSD(T)/AVXZ and

CCSD(T)/VXZ (where X=2–4) levels of theory.

LiSiHSi

AVDZ AVTZ AVQZ VDZ VTZ VQZ

Si2Li a 2.4563 2.4349 2.4350 2.4518 2.4320 2.4337

SiSi a 2.1873 2.1582 2.1471 2.1820 2.1571 2.1466

HSi2 a 1.6612 1.6383 1.6421 1.6588 1.6470 1.6415

 HSiSiLi b 0.00 0.00 0.00 0.00 0.00 0.00

 Si1Si2Li b 155.01 156.49 155.56 155.25 156.27 155.97

 Si1Si2H b 51.36 51.47 51.45 51.42 51.43 51.45
a ångström
b degrees



104

Table 4.4-5. Geometric properties of the HSiLiSi isomer at the CCSD(T)/AVXZ and
CCSD(T)/VXZ (where X=2–4) levels of theory.

HSiLiSi

AVDZ AVTZ AVQZ VDZ VTZ VQZ

Si1Li a 2.5702 2.5306 2.5245 2.5620 2.5281 2.5234

SiSi a 2.1483 2.1188 2.1079 2.1460 2.1187 2.1075

HSi2 a 1.5070 1.4954 1.4930 1.5053 1.4952 1.4928

 HSiSiLi b 180.00 180.00 180.00 180.00 180.00 180.00

 Si2Si1Li b 68.17 68.48 68.62 68.15 68.45 68.63

 Si1Si2H b 167.84 168.75 168.08 168.14 168.39 167.86
a ångström
b degrees

Figure 4.4-2. Energy of the HSiLiSi isomer (relative to the dibridged isomer) as a
function of VXZ and AVXZ basis set size.
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Figure 4.4-3. Energy of the LiSiHSi isomer (relative to the dibridged isomer) as a
function of VXZ and AVXZ basis set size.
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calculations were performed using the CCSD(T) method. The calculated geometric

properties of the Si2HLi isomers are listed in Table 4.4-6 to Table 4.4-8. The “Si2” or

“Si1” in table represents the silicon connected or not connected to the terminal atom.

Table 4.4-6. Geometric properties of the SiHLiSi isomer at the CCSD(T)/AVXZ and
CCSD(T)/AV(X+d)Z (where X=2–4) levels of theory.

SiHLiSi

AVDZ AVTZ AVQZ AV(D+d)Z AV(T+d)Z AV(Q+d)Z

SiLi a 2.6633 2.6291 2.6235 2.6597 2.6270 2.6232

SiSi a 2.2306 2.1994 2.1866 2.2166 2.1933 2.1827

HSi a 1.6957 1.6800 1.6738 1.6841 1.6753 1.6711

 HSiSiLi b 88.40 86.73 87.30 88.40 86.76 86.92

 SiSiLi b 65.24 65.28 65.37 65.37 65.32 65.41

 SiSiH b 48.87 49.11 49.22 48.84 49.11 49.22
a ångström
b degrees

Table 4.4-7. Geometric properties of the LiSiHSi isomer at the CCSD(T)/AVXZ and
CCSD(T)/AV(X+d)Z (where X=2–4) levels of theory.

LiSiHSi

AVDZ AVTZ AVQZ AV(D+d)Z AV(T+d)Z AV(Q+d)Z

Si2Li a 2.4563 2.4349 2.4350 2.4559 2.4361 2.4333

SiSi a 2.1873 2.1582 2.1471 2.1756 2.1530 2.1452

HSi2 a 1.6612 1.6383 1.6421 1.6518 1.6439 1.6402

 HSiSiLi b 0.00 0.00 0.00 0.00 0.00 0.00

 Si1Si2Li b 155.01 156.49 155.56 154.37 156.03 154.76

 Si1Si2H b 51.36 51.47 51.45 51.19 51.40 51.41
a ångström
b degrees

The results listed in Table 4.4-6 to Table 4.4-8 showed that the bond lengths (Si-Si H-Si

and Si-Li) decrease upon increasing basis set size for both the AVXZ and AV(X+d)Z

basis set series. In contrast, there is no clear pattern for the angles; the results fluctuate

upon increasing basis set size. The variations in the Si–Si bond lengths upon increasing

AVXZ and AV(X+d)Z basis set size are shown in Figure 4.1-6 to Figure 4.1-9.
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Table 4.4-8. Geometric properties of the HSiLiSi isomer at the CCSD(T)/AVXZ and
CCSD(T)/AV(X+d)Z (where X=2–4) levels of theory.

HSiLiSi

AVDZ AVTZ AVQZ AV(D+d)Z AV(T+d)Z AV(Q+d)Z

Si1Li a 2.5702 2.5306 2.5245 2.5653 2.5287 2.5236

SiSi a 2.1483 2.1188 2.1079 2.1382 2.1144 2.1057

HSi2 a 1.5070 1.4954 1.4930 1.5021 1.4934 1.4921

 HSiSiLi b 180.00 180.00 180.00 180.00 180.00 180.00

 Si2Si1Li b 68.17 68.48 68.62 68.27 68.51 68.70

 Si1Si2H b 167.84 168.75 168.08 167.40 168.66 167.96
a ångström
b degrees

The variations in the isomerisation energies and Si–Si bond lengths upon increasing

AVXZ and AV(X+d)Z basis set size are shown in Figure 4.4-4 and Figure 4.4-5.

The change in the HSiLiSi isomerisation energy with increasing basis set size from

double to triple– is larger for the AV(X+d)Z than for the AVXZ the basis set (0.34

kcal/mol for AV(X+d)Z and 0.07 kcal/mol for AVXZ). However, when increasing the

size of the basis set from triple to quadruple– the conclusions are opposite: the

difference is larger for the AVXZ basis set (0.2 kcal/mol) than for the AV(X+d)Z basis

set (0.10 kcal/mol).

The AVXZ basis sets show larger changes in the LiSiHSi isomerisation energy than the

AV(X+d)Z basis sets over the whole range of basis set sizes. The energy changes by

0.13 kcal/mol from AVDZ to AVTZ and by 0.16 kcal/mol from AVTZ to AVQZ.

However, for the AV(X+d)Z basis set series the same changes of the basis set size

(from DZ to TZ and TZ to QZ) give energy differences of only 0.01 kcal/mol and 0.10

kcal/mol, respectively.
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Figure 4.4-4. Energy of the HSiLiSi isomer (relative to the dibridged isomer) as a
function of AVXZ and AV(X+d)Z basis set size.

Figure 4.4-5. Energy of the LiSiHSi isomer (relative to the dibridged isomer) as a
function of AVXZ and AV(X+d)Z basis set size.
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Figure 4.4-6. Si–Si bond length variation with increasing basis set size for the HSiLiSi
isomer.

Figure 4.4-6 to Figure 4.4-8 show the variation of Si-Si bond distance with increasing

basis set size (employing the AVXZ and AV(X+d)Z basis set families) for the three

minimum-energy structures. A smooth convergence pattern is observed for all three

isomers and for both basis set series. Note also that the difference between the results

obtained with the AVQZ and AV(Q+d)Z basis sets is quite small: from 0.0019 Å (for

LiSiHSi) to 0.0039 Å (for SiHLiSi). It can be seen that the addition of tight d functions

to the heavy atoms does not significantly improve the geometric properties when basis

sets as large as quadruple–are employed.
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Figure 4.4-7. The Si–Si bond length variation with increasing basis set size for the
LiSiHSi isomer.

Figure 4.4-8. The Si–Si bond length variation with increasing basis set size for the
SiHLiSi isomer.
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Complete Basis Set (CBS) limit

Knowledge of the Complete Basis Set (CBS) limit provides insight into the basis set

error of a computational method. The CBS limits were estimated by extrapolating the

AVTZ–AVQZ and AV(T+d)Z–AV(Q+d)Z correlation energies using the extrapolation

model proposed by Halkier et al. [151]. Equation 4.4-1 shows the CBS model by

Halkier et al., where EX represents the correlation energy calculated with the X basis set

and EX-1 represents the correlation energy calculated with the X–1 basis set. The

correlation energies were obtained as a difference between the HF energy and the

CCSD(T) (total) energy at the X or X-1 basis set level. The extrapolated ECBS energy

was then added to the HF energy at the X basis set level to obtain the CBS limit. More

details can be found in Ref. [151]. Figure 4.4-9 and Figure 4.4-10 show the calculated

CBS limits (using the highest QZ level employed in this work) compared with the

AVXZ and AV(X+d)Z relative energies for the isomers that lie above the global

minimum.

య

య య

య

య య
4.4-1

It can be seen that the AVXZ calculations are quite far away from the CBS limit, even

for the quadruple–basis set; the error is 0.18 kcal/mol for LiSiHSi and 0.17 kcal/mol

for HSiLiSi. This suggests that calculations with larger basis sets, such as AV5Z or

AV6Z are required to yield results close to the CBS limit.

Figure 4.4-9 and Figure 4.4-10 show that the AV(X+d)Z results are much closer to the

CBS limit than the AVXZ results. The error is 0.05 (HSiLiSi) kcal/mol and 0.10

kcal/mol (LiSiHSi), so it is possible to achieve results close to the CBS limit using the

AV(Q+d)Z basis set.
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Figure 4.4-9. Energies of LiSiHSi (relative to the dibridged isomer) calculated with the
AVXZ and AV(X+d)Z basis sets. The CBS limit obtained by extrapolation of the
AVTZ/AVQZ and AV(T+d)Z/AV(Q+d)Z results is shown as well.

Figure 4.4-10. Energies of HSiLiSi (relative to the dibridged isomer) calculated with the
AVXZ and AV(X+d)Z basis sets. The CBS limit obtained by extrapolation of the
AVTZ/AVQZ and AV(T+d)Z/AV(Q+d)Z results is shown as well.
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CCSD(T)- F12 calculations

We performed calculations using the recently developed CCSD(T)-F12a method.

Note, that in the following discussion the CCSD(T)/cc-pVTZ level will be abbreviated

as CCSD(T), the CCSD(T)-F12a/cc-pVTZ-F12 level as F12 and the B3LYP/6-

311+G(d) level of theory as B3LYP, respectively. The geometric properties calculated

by the above methods can be found in Table 4.4-9. The “Si2” or “Si1” in table

represents the silicon connected or not connected to the terminal atom.

Table 4.4-9 shows that all three methods give similar results for the Si–Si, Si–Li and Si–

H bond distances. However, the F12 method will be taken as a reference here. The

difference between the results obtained with the F12 and CCSD(T) methods ranges

from 0.0005 Å (H-bridged structure) to 0.0195 Å (dibridged structure). The results

obtained with the F12 and B3LYP methods range from 0.0031 Å (H-bridged structure)

to 0.0215 Å (dibridged structure). The average absolute difference is 0.0127 Å when the

difference between F12 and CCSD(T)-B3LYP methods and bond distances are

considered. For the dibridged and Li–bridged structures The CCSD(T) and B3LYP

methods reproduced the angles obtained by the F12 method well; the average absolute

difference is no higher than 0.97° (difference between the F12 and B3LYP methods in

the dibridged structure), whereas it is only 0.41° in the Li–bridged structure. However,

in the H-bridged structure the B3LYP method fails to accurately reproduce the SiSiLi

angle obtained by the F12 method. The B3LYP method overestimates this angle by

5.56° while the difference between the F12 and CCSD(T) results is only 1.15°. The

SiSiH angle predicted by the B3LYP method in the H–bridged structure has an average

absolute difference of 2.2°.
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Table 4.4-9. Geometric properties computed at various levels of theory.

Si2HLi
CCSD(T)/

AVTZ
CCSD(T)-F12a/

VTZ-F12
B3LYP/

6-311+G(d)

dibridged

SiLi a 2.6291 2.6214 2.6043

SiSi a 2.1994 2.1798 2.1854

HSi a 1.6800 1.6704 1.6919

 HSiSiLi b 86.73 86.95 84.77

 SiSiLi b 65.28 65.43 65.19

 SiSiH b 49.11 49.27 49.77

Li–bridged

Si1Li a 2.5306 2.5224 2.5055

SiSi a 2.1188 2.1027 2.0961

HSi2 a 1.4954 1.4924 1.4958

 HSiSiLi b 180.00 180.00 180.00

 Si2Si1Li b 68.48 68.70 68.52

 Si1Si2H b 168.75 167.99 167.35

H–bridged

Si2Li a 2.4349 2.4344 2.4130

SiSi a 2.1582 2.1417 2.1448

HSi2 a 1.6383 1.6399 1.6542

 HSiSiLi b 0.00 0.00 0.00

 Si1Si2Li b 156.49 155.34 160.90

 Si1Si2H b 51.47 51.45 52.53
a ångström
b degrees

A comparison of the relative energies for the Si2H2 minima computed using the DFT

(B3LYP/6-311+G(d)) method, the CCSD(T)/AVTZ and F12 (CCSD(T)-F12a/VTZ-

F12) methods is shown in Table 4.4-10.
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Table 4.4-10. Relative energy (kcal/mol) comparison of the Si2HLi isomers calculate by
various methods.

dibridged Li-bridged H-bridged

CCSD(T)/AVTZ 0.00 4.12 8.91

CCSD(T)-F12a/VTZ-F12 0.00 4.40 9.23

B3LYP/6-311+G(d) 0.00 3.22 8.66

The two ab initio methods show similar values of the relative energies. On the other

hand, the DFT method underestimates the relative energies (by about 0.9 kcal/mol

average in both of the cases).

Frequencies

Harmonic vibrational frequencies were calculated at the B3LYP/6-311+G(d) level as

well as the CCSD(T)/AVTZ level of theory. The calculated results are listed in Table

4.4-11.

The discussion on the frequencies will be presented in the same manner as in the

previous sub-chapters.

The B3LYP method reproduced the third, fourth and fifth vibration frequencies in the

dibridged structure calculated with CCSD(T) with an average absolute difference of 2.9

cm−1; however, the second and last vibrations are underestimated by 114.4 cm−1 and

113.6 cm−1, respectively. Nevertheless, the average absolute difference for the B3LYP

method is only 44.5 cm−1 if we consider all calculated vibrational frequencies.

The B3LYP frequency values of the Li-bridged structure show the best agreements with

the corresponding CCSD(T) results; the average absolute difference (when all vibrations

are considered) is only 9.6 cm−1 and is the lowest of all the Si2HLi isomers.
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Table 4.4-11. Harmonic frequencies for the Si2HLi isomers calculated at different levels
of theory; the results are listed in descending order of wavenumber (cm−1).

Si2HLi

CCSD(T)/AVTZ B3LYP/6-311+G(d)

dibridged

1496.9 1466.7 SiH sym. str.

1182.5 1068.1 SiH antisym. str.

540.3 546.2 SiSi/SiH out-of-phase str.

392.8 394.9 SiLi/SiH in-phase str.

319.5 320.2 Butterfly

170.4 56.8 HLi twist

Li–bridged

2156.9 2143.6 SiH str.

592.8 610.8 SiSi/SiH out-of-phase str.

415.6 414.2 SiLi/SiH in-phase str.

362.7 369.9 H in-plane bend

238.3 222.3 out-of-plane

223.5 221.5 LiH bend

H–bridged

1563.0 1531.8 SiH sym. str.

1119.9 975.6 SiH antisym. str.

606.9 614.6 SiSi/SiLi out-of-phase. str.

415.5 415.3 SiSi/SiLi in-phase str.

85.6 97.9 LiH bend

39.5 62.2 out-of-plane

The H-bridged structure shows a similar picture as in the dibridged structure; the third,

fourth and fifth frequencies are reproduced by the B3LYP method with an average

absolute difference of only 6.7 cm−1, whereas the second vibration is significantly

underestimated compared to the CCSD(T) value by 144.2 cm−1. The average absolute

difference, 36.4 cm−1 (when all vibration frequencies are considered) is however,

smaller than in the dibridged structure.



117

Anharmonicity

Anharmonic properties were calculated using second order perturbation theory. The

MP2/aug-cc-pVTZ level of theory was employed (the Gaussian 09 software package).

The calculated rotational constants, anharmonic constants and dipole moments are given

in Table 4.4-12. The harmonic and fundamental vibration frequencies are listed in Table

4.4-13.

The Ae–Ce rotational constants show that all the Si2HLi isomers are asymmetric top

molecules, however, the LiSiHSi isomer is a nearly-symmetric top molecule as the Be

and Ce rotational constant are almost the same.

The symbol in Table 4.5-10 represents the difference between harmonic and

fundamental vibrations (n=n–n). In general, anharmonic effects decrease the

frequencies. However, negative values n can be seen in the HSiLiSi and SiHLiSi

isomers. Negative values of are unusual but examples of such vibrational modes are

known in the literature [152, 153].
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Table 4.4-12. Calculated rotational and anharmonic constants of the Si2HLi isomers.

HSiLiSi LiSiHSi SiHLiSi

Dipole  [D] 5.7191 9.0900 6.2548

Rotational Constants (cm−1)
Ae 0.487003 3.151909 0.452632
Be 0.241140 0.124859 0.244121
Ce 0.161282 0.120102 0.163333
A0 0.483976 3.020182 0.451167
B0 0.241048 0.126223 0.243649
C0 0.160389 0.120481 0.162358

Anharmonic Constants (cm−1)

 −36.11 −24.77 −16.26

 −1.04 −23.12 −40.76

 −1.75 −4.62 −5.58

 −5.02 −1.06 −0.16

 −0.83 −1.02 −7.79

 −3.37 −13.80 5.16

 −2.25 −54.28 −53.03

 −0.13 5.39 3.94

 −0.94 −0.03 0.18

 0.02 −0.93 −11.70

 3.25 6.91 −7.28

 −1.59 −2.53 −2.28

 −3.58 −3.02 −0.99

 −16.39 −2.73 −1.28

 1.50 −0.29 0.86

 −1.62 −1.62 −1.62

 −4.79 1.10 −2.44

 2.14 4.28 18.92

 −1.73 −2.26 0.78

 −0.21 −46.62 −0.41

 2.66 3.52 −1.72
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Table 4.4-13. Calculated harmonic and fundamental frequencies at the MP2/ aug-cc-

pVTZ level.  is the difference between the fundamental and harmonic frequencies.

HSiLiSi LiSiHSi SiHLiSi
Harmonic vibration frequencies (cm−1)

 2200.71 1629.64 1545.35

 589.89 1248.63 1312.39

 424.11 602.69 539.39

 398.75 409.33 391.13

 323.48 77.30 324.39

 224.24 60.50 173.23
Fundamentals vibration frequencies (cm−1)

 2122.50 1558.29 1488.26

 585.98 1134.17 1178.52

 398.71 595.01 533.32

 389.42 406.72 403.57

 330.45 42.79 314.14

 209.67 37.47 178.42

cm−1) 

 78.22 71.35 57.09

 3.92 114.46 133.86

 25.40 7.68 6.08

 9.33 2.61 −12.43

 −6.97 34.51 10.25

 14.57 23.04 −5.19
(n=n−n)

Corrections

In this section, we investigate how core-valence contributions, zero-point vibrational

motion and relativistic corrections affect the Si2HLi isomerisation energy.

Most calculations focus on correlating only the valence electrons as these dominate the

properties of atoms and molecules. However, correlation effects involving the electrons

in low–lying core orbitals may be important if the goal of a calculation is to achieve

chemically accurate isomerization energies or thermochemical properties (with errors

less than 1 kcal/mol). The structures optimized at the CCSD(T)-F12a/VTZ-F12 level of

theory were taken as starting structures.
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To calculate core-valence interactions the CCSD(T) method was employed with the

aug-cc-pCVXZ (where X=2–3) basis sets [154, 155], which were specifically designed

to recover core-core and core-valence electron correlation. The CCSD(T)/aug-cc-

pCVXZ (where X=2–3) basis sets will be abbreviated as ACVXZ. An appended label

“fc” or “cc” indicates frozen-core or correlated-core. The core-valence correlation

contribution (Ecore_ACVXZ) was obtained as the energy difference between frozen-core

ACVXZ-fc and correlated-core ACVXZ-cc (Si 2s, 2p and Li 1s orbitals correlated)

calculations. The differences were then added to the energies calculated at the

CCSD(T)-F12a/VTZ-F12 level. This allowed the evaluation of relative energies of the

Si2HLi isomers that include core-valence correlation contributions. The calculated

CCSD(T)/ACVDZ and CCSD(T)/ACVTZ results are compared to CCSD(T)-F12/VTZ-

F12 relative energies in Table 4.4-14.

Table 4.4-14. Comparison of the relative energies computed at the VTZ-F12 level and
the ACVXZ relative energies (where X=2-3) with core-valence contributions. Energies
in kcal/mol.

HSiLiSi LiSiHSi SiHLiSi

ACVDZ 4.521 9.432 0.000

ACVTZ 4.658 9.451 0.000

VTZ-F12 4.400 9.231 0.000

The differences between the ACVTZ and VTZ-F12 relative energies are 0.258 and

0.220 kcal/mol for HSiLiSi and LiSiHSi, respectively, whereas the differences between

the ACVDZ and VTZ-F12 relative energies are 0.121 and 0.201 kcal/mol for HSiLiSi

and LiSiHSi, respectively.

The neglect of relativistic corrections can lead to an incorrect prediction of the

isomerisation energy. Recently even the potential energy surface calculation of light

molecules such as ଷ
ା included relativistic corrections; for ଷ

ା an overall 9-figure

accuracy was achieved [156]. The work of Tarczay et al. [106] shows the effect of the

relativistic contribution to the SiH3
– inversion barrier and on the isomerisation barriers

of (H, C and N) systems, so we were eager to calculate such corrections in our work.
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The relativistic correction was evaluated (at the CCSD(T) level) as the sum of the

expectation values for the mass-velocity and the one-electron Darwin terms. This type

of relativistic correction is suggested by Tarczay et al. [106] as fast and effective for

small molecules. Thiel et al. [157] used this approach as the relativistic correction in

their NH3 6D-PES calculations (employing the CCSD(T)/AVTZ-fc level of theory). The

AVTZ-DK basis set [58, 149, 158], which is specially designed for relativistic

corrections and the standard AVTZ basis set were employed. A comparison of the

CCSD(T)/AVTZ-DK (Erel_DK), CCSD(T)/AVTZ (Erel_AVTZ) and CCSD(T)-F12/VTZ-

F12 results can be found in Table 4.4-15. However, Tarczay et al. suggested that the

correlation-consistent basis sets of Dunning may not yield converged results for either

the relativistic HF energies or the related correlation contribution for the mass-velocity

and Darwin energy corrections [106]. The calculated relativistic contributions were

added to the energies calculated at the CCSD(T)-F12a/VTZ-F12 level. This allowed the

evaluation of relative energies of the Si2HLi isomers that include relativistic effects.

Table 4.4-15. Comparison of the relative energies at the VTZ-F12 levels with the
corrected energies: Erel_AVTZ and Erel_DK. Energies in kcal/mol.

HSiLiSi LiSiHSi SiHLiSi

AVTZ-DK 4.661 9.222 0.000

AVTZ 4.629 9.467 0.000

VTZ-F12 4.400 9.231 0.000

For HSiLiSi, the relative energies with the relativistic contributions are larger than the

corresponding uncorrected results (0.229 and 0.261 kcal/mol). However, for LiSiHSi,

the corrected relative energies are smaller for the AVTZ-DK level (by 0.009 kcal/mol)

but larger for the AVTZ level (by 0.236 kcal/mol) compared to the uncorrected results.

The relative energies computed with the AVTZ-DK and AVTZ relativistic corrections

differ from each other; slightly for the HSiLiSi isomers (0.032 kcal/mol) and

significantly for the LiSiHSi isomer (0.245 kcal/mol). We assume that the relativistic

effects calculated at the AVTZ-DK level are more accurate, as the AVTZ-DK basis set

is designed for use with Douglas-Kroll-Hess Hamiltonians [159].
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The zero-point vibrational correction (Ezpe) was obtained from calculations performed at

the MP2/aug-pVTZ level of theory. The Ezpe includes anharmonic corrections.

All the corrections are added to the energies calculated at the VTZ-F12 level (E in

Hartree). The final corrected energies are given by Ecorr_DK=E+Ecore+Erel_DK+Ezpe or

Ecorr_AVTZ=E+Ecore+Erel_AVTZ+Ezpe. These results are compared to the isomerisation

energies obtained at the CCSD(T)-F12/VTZ-F12 and CCSD(T)/AV(Q+d)Z levels of

theory (see Table 4.4-16).

Table 4.4-16. Comparison of the relative energies at the AV(Q+d)Z, and VTZ-F12
levels with the corrected energies: Ecorr_AVTZ and Ecorr_DK. Energies in kcal/mol.

AV(Q+d)Z VTZ-F12 E_corr_AVTZ E_corr_DK

HSiLiSi 4.469 4.400 4.612 4.765

LiSiHSI 9.135 9.231 9.105 9.061

The corrected relative energies of the HSiLiSi species are larger than the corresponding

uncorrected results. However, the corrected relative energies of the LiSiHSi species are

smaller when compared to the uncorrected results. The isomerization energies computed

with the AVTZ-DK and AVTZ relativistic corrections differ significantly from each

other. The AVTZ-DK correction gives larger relative energies (by 0.153 kcal/mol) for

the HSiLiSi species, whereas lower relative energies (by 0.044 kcal/mol) are obtained

for the LiSiHSi species compared to the AVTZ correction. Note, that we did not

encounter convergence problems for the AVTZ basis set during the calculations as

suggested by Tarczay et al [106]. It is assumed that the AVTZ-DK basis set gives more

accurate results. However, to say this conclusively comparison with experimental

results is necessary.

Comparison of calculated geometries with the literature

As was mentioned in the Introduction chapter, the Si2HLi structures calculated by Bei

and Feng [30] were obtained at a too low a level of theory to do reliable comparison

with the results calculated here. There are no other experimental or theoretical data

available for Si2HLi. On the other hand, experimental data exist for bigger molecules

containing Si–Li bonds. Many of these were synthesized by Sekiguchi’s research group
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[160-162] but the Si or Li atoms are usually connected to big bulky groups like tBu. We

took a number of crystallographic data of XSi–Li bond distances (as close to our

structures as possible where X=H or Si) as a reference for comparison to our

calculations. These works show the range of Si–Li distances (Li in bridged position)

from 2.645 Å to 2.657 Å [163] and where Li is in a terminal position of 2.580 Å and

2.531 Å [164, 165]. Thus, our calculations are in good agreement with experimental

data.
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4.5 The Si2Li2 isomers.

Computational methods

The Si2H2 structures optimized by Grev and Schaefer [24] were taken as the starting

geometries, where both of the H-atoms were replaced by Li-atoms. Average literature

(theoretical) values of the Si−Li bond distances were used in the substituted-lithium 

starting geometries. The these structures were optimized with the CCSD(T)/aug-cc-

pVXZ, CCSD(T)-F12a/cc-pVTZ-F12 and B3LYP/6-311+G(d) methods (where X=2–

4).

Harmonic vibrational frequency computations were performed for the optimized

structures to characterise these as minima or transition states (TS). The frequency

calculations were also done at the CCSD(T)/aug-cc-pVTZ, CCSD(T)-F12a/cc-pVTZ-

F12 and B3LYP/6-311+G(d) levels of theory.

All the calculated isomers and transition states are depicted in Figure 4.5-1. The

LiSiLiSi and SiLiLiSi formulae refer to the monobridged and dibridged isomers,

respectively. The D–PL_TS and DM_TS abbreviations represent the transition states on

the paths between the dibridged and dibridged-planar structures and between the

dibridged and monobridged structures, respectively. The energies relative to the

dibridged structure (global minimum) are listed at the bottom of Figure 4.5-1. The

reaction paths between critical points are represented schematically by lines. The

pictures in Figure 4.5-1 show (multiple) bonded properties (minima and TS) obtained

from Natural Bond Orbital (NBO) calculations [102, 103]. The NBO calculations were

performed at the CCSD/cc-pV(T+d)Z level of theory using the Gaussian 98 [138]

software package.

Note, that in the following discussion all the employed correlation consistence basis sets

(such as aug-cc-pVXZ (where X=2–4)) will be abbreviated as AVXZ, and the methods

such as: CCSD(T)-F12a/cc-pVTZ-F12 and B3LYP/6-311+G(d) will be abbreviated as

F12 and B3LYP, respectively.
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Figure 4.5-1. The optimized structures of the Si2Li2 isomers and transition states with energies relative to the global minimum (dibridged). The
calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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Two minima and two transition states (TS) were found on the Si2Li2 potential energy

surface (PES). The global minimum is the singly-bonded dibridged structure and above

with an energy difference of 10.28 kcal/mol lies the Li–bridged structure. Figure 4.5-1

shows two TS; DM_TS connects the dibridged and monobridged structures. D–PL_TS

is a transition state on the reaction path where the non-planar structure (dibridged)

becomes planar (D–PL_TS) and then turns in to a symmetrically equivalent (dibridged)

structure. Similar “flip over” motions can be found on the PESs of the Si2H2 species or

the NH3 species [24, 157].

The geometric properties of the optimized structures are listed in Table 4.5-1.

Table 4.5-1. Geometric properties of the calculated Si2Li2 structures. The calulations

were done at the CCSD(T)/aug-cc-pVTZ level of theory.

SiLiLiSi, C2v LiSiLiSi, CS D_PL_TS, C2h DM_TS, C1

Si2Li2 a 2.5616 2.5738 2.5286 2.5671

SiSi a 2.1848 2.1494 2.1812 2.1541

Li1Si2 a 2.4105 2.4028

 LiSiSiLi b 101.85 180.00 180.00 118.24

 Si1Si2Li1 b 165.90 140.56

 Si1Si2Li2 b 64.76 63.90 64.44 64.36
a ångström

b degrees

Table 4.5-1 shows that the shortest Si–Si bond length is found in the Li–bridged

structure (2.1494) followed by DM_TS (2.1541 Å), D–PL_TS (2.1812 Å) and the

dibridged structure (2.1848 Å). The Si–Li bond distances in the dibridged structures

(the SiLiLiSi and D_PL_TS structures) are equal as the structures are symmetrical. The

bridged Li atoms in both monobridged structures (the Li–bridged and DM_TS

structures) have longer bond distances (2.5738–2.5671 Å, respectively) than the

terminal Li atoms (2.4105–2.4028 Å, respectively), which was seen before in the

previous sub-chapter (4.4).
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Table 4.5-2. Geometric properties of the Si2Li2 isomers calculated at the
CCSD(T)/AVXZ (X=2–4) level of theory.

SiLiLiSi LiSiLiSi

AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ

Si2Li2 a 2.5950 2.5616 2.5553 Si2Li2 a 2.6003 2.5738 2.5718

SiSi a 2.2133 2.1848 2.1713 SiSi a 2.1763 2.1494 2.1383

Li1Si2 a Li1Si2 a 2.4315 2.4105 2.4100

 HSiSiLi b 100.27 101.85 102.47  HSiSiLi b 180.00 180.00 180.00

 SiSiLi1 b  Si1Si2Li1 b 166.38 165.92 164.59

 SiSiLi2 b 64.76 64.76 64.86  Si1Si2Li2 b 64.30 63.90 63.87

a ångström

b degrees

Figure 4.5-2 and Figure 4.5-3 show the variations in the isomerisation energies and Si–

Si bond lengths upon increasing AVXZ basis set size.

Figure 4.5-2 shows that the largest change occurs from AVDZ to AVTZ, whereas only

a small change happens upon further basis set improvement. In contrast, the Figure

4.5-3 shows the opposite picture the smallest change occurs from AVDZ to AVTZ,

whereas a large change happens upon further basis set improvement. Thus, larger basis

sets are required to achieve convergence.
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Figure 4.5-2. Si–Si bond length variation with increasing basis set size for the Si2Li2

isomers.

Figure 4.5-3. Energy of the LiSiLiSi isomer (relative to the dibridged isomer) as a
function of AVXZ basis set size.
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CCSD(T)- F12 calculations

A comparison of the results obtained with the CCSD(T)/AVTZ method, the recently

developed CCSD(T)-F12a/VTZ-F12 method and the B3LYP/6-311+G(d)) method is

shown in Table 4.5-3.

Table 4.5-3. Comparison of geometric properties calculated by various methods.

Si2Li2

CCSD(T)/ CCSD(T)-F12a/ B3LYP/

AVTZ VTZ-F12 6-311+G(d)

dibridged

Si2Li2 a 2.5616 2.5524 2.5363

SiSi a 2.1848 2.1660 2.1635

 LiSiSiLi b 101.85 102.58 98.76

 SiSiLi2 b 64.76 64.90 64.75

monobridged

Si2Li2 a 2.5738 2.5697 2.5671

SiSi a 2.1494 2.1335 2.1291

Li1Si2 a 2.4105 2.4098 2.3915

 LiSiSiLi b 180.00 180.00 180.00

 Si1Si2Li1 b 165.92 164.22 165.78

 Si1Si2Li2 b 63.90 63.85 64.36
a ångström
b degrees

The three methods produce bond distance values in the dibridged structure with good

agreement to each other. However, assuming the F12 method presumably gives the

most accurate results, these will be taken as a reference. The calculated bond distance

differences vary from 0.0025 Å (Si–Si bond length difference between the B3LYP and

F12 methods) to 0.0188 Å (Si–Si length difference between the CCSD(T) and F12

methods). The average absolute difference of the calculated bond distances is 0.014 Å

(difference between the CCSD(T) and F12 methods) and 0.0093 Å (difference between

the B3LYP and F12 methods), respectively. The SiSiLi angles are reproduced with
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good agreement as well. The larges difference is 0.15° (difference between the B3LYP

and F12 results and between the CCSD(T) and F12 results), and the smallest is found

for the F12 and CCSD(T) methods (0.14°). However, it can be seen that the B3LYP

method underestimates the dihedral angle by 3.82° (compared with F12) while, the

CCSD(T) method gives a difference of 0.73°.

The bond distances for the monobridged structure are reproduced by the methods

employed with good agreement to each other. Once again the F12 method will be taken

as a reference. The smallest calculated difference is 0.0007 Å (Li1–Si2 lengths between

the CCSD(T) and F12 methods) and the largest is 0.0183 Å (Li1–Si2 lengths between

the B3LYP and F12 methods). The average absolute difference of the calculated bond

distances is 0.0069 Å (difference between the CCSD(T) and F12 methods) and 0.0084

Å (difference between the B3LYP and F12 methods), respectively. Both methods

overestimate the SiSiLi1 angle by about 1.72° (for the CCSD(T) method) and about

1.58° (for the B3LYP method) with comparison to the F12 method. The SiSiLi2 angle

is reproduced by the employed methods with good agreement to each other; the largest

difference is 0.05° (between the CCSD(T) and F12 methods) and the smallest is 0.51°

(between the B3LYP and F12 methods).

A comparison of the relative energies of the Si2Li2 minima calculated using the DFT

(B3LYP/6-311+G(d)) method, CCSD(T)/AVTZ and F12 (CCSD(T)-F12a/VTZ-F12)

methods is shown in Table 4.5-4.

Table 4.5-4. Relative energy (kcal/mol) comparison of the Si2Li2 isomers calculated by
various methods.

dibridged Li-bridged

CCSD(T)/AVTZ 0.00 10.03

CCSD(T)-F12a/VTZ-F12 0.00 10.45

B3LYP/6-311+G(d) 0.00 9.19

The ab initio methods show similar values of the relative energy. On the other hand the

DFT method underestimates the relative energy by 1.26 kcal/mol.
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Frequencies

The same methods as in the previous paragraphs were employed to compare calculated

harmonic frequencies. The results can be found in Table 4.5-5. The results are listed in

descending order in wavenumber units (cm-1).

Table 4.5-5. Calculated harmonic frequencies for the Si2Li2 isomers calculated at
different levels of theory; the results are listed in descending order in wavenumber units
(cm-1).

Si2Li2

CCSD(T)/
AVTZ

CCSD(T)-F12/
VTZ-F12

B3LYP/
6-311+G(d)

dibridged

543.4 553.9 556.0 SiSi str.

420.2 423.8 415.8 SiLi antisym. str.

406.5 408.9 403.0 SiLi sym. str.

197.1 196.6 184.0 SiLi antisym. str.

189.4 191.0 178.7 SiLi antisym. str.

113.2 106.6 116.8 butterfly

monobridged

610.6 617.0 623.1 SiSi/SiLit in-phase str.

420.9 425.1 422.6 SiLi/SiLi antisym. str.

420.4 423.6 416.9 SiLi/SiLi sym. str.

210.0 212.7 203.5 SiSiLib bend

60.1 60.2 65.8 LiSiLi bend

38.6 39.8 50.8 out-of-plane

In the dibridged structure both ab initio (CCSD(T) and F12) methods give similar

vibration wavenumber values: the largest difference is 10 cm−1 (the first vibrational

mode). The average absolute difference between the CCSD(T) and F12, B3LYP and

CCSD(T) and B3LYP and F12 methods is 4.2 cm−1, 7.9 cm−1 and 8.5 cm−1,

respectively.

For the monobridged isomer the CCSD(T) and F12 levels of theory give similar

frequency values, the average absolute difference is only 2.9 cm−1. The largest
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difference (6 cm−1) can be seen for the first vibration mode and the smallest difference

(0.1 cm−1) for the fifth vibration mode. The B3LYP frequency calculations show

slightly better agreement with the two ab initio methods than in the dibridged structure

except the first and last vibrations (12.5 cm−1 and 12.2 cm−1) for the difference between

the B3LYP and CCSD(T) methods and the last vibration (11 cm−1) for the difference

between the B3LYP and F12 methods. However the average absolute differences (7

cm−1 and 8 cm−1) between the B3LYP and ab initio results are lower than in the

dibridged case.

Anharmonicity

Anharmonic properties were calculated using perturbation theory. The MP2/aug-cc-

pVTZ level of theory and the Gaussian 09 software package were used. The calculated

rotational constants, anharmonic constants and dipole moments are given in Table

4.5-5. The harmonic and fundamental vibrations are listed in Table 4.5-6.

The Ae–Ce rotational constants show that all the Si2Li2 isomers are asymmetric top

molecules. Note the presence of large positive values for the anharmonic constants 

and in Table 4.5-6. This will be discussed in more detail in Chapter

The cm-1) symbol in Table 4.5-7 represents the difference between the harmonic and

fundamental vibrations nnn). In general, anharmonic effects decrease the

frequencies. However, negative values n can be seen for the SiLiLiSi isomers.

Negative values of are unusual but examples of such vibrational modes are known in

the literature [152, 153].
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Table 4.5-6. Calculated rotational and anharmonic constants of the Si2Li2 isomers.

LiSiLiSi SiLiLiSi

Dipole  [D] 8.70 6.29

Rotational Constants (cm−1)

Ae= 0.4910 0.2432

Be= 0.1187 0.1880

Ce= 0.0956 0.1505

A0= 0.4880 0.2421

B0= 0.1193 0.1883

C0= 0.0957 0.1490

Anharmonic Constants (cm−1)

 −2.03 −2.23

 −0.76 −1.25

 −3.40 0.80

 0.81 0.20

 −1.25 −0.78

 −0.33 0.49

 −1.77 −0.83

 −0.41 30.16

 0.55 −0.89

 −0.01 −3.32

 −1.01 20.69

 −1.74 −0.69

 −0.32 −0.73

 0.90 0.28

 1.55 −4.04

 −2.02 −2.63

 −0.19 0.44

 −0.16 −1.24

 −0.75 −1.06

 0.05 0.79

 −2.31 −1.19
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Table 4.5-7. Calculated harmonic and fundamental frequencies.  is the difference
between the fundamental and harmonic frequencies.

LiSiLiSi SiLiLiSi

Harmonic vibration frequencies (cm−1)

 610.03 548.39

 424.53 422.22

 416.39 408.37

 216.03 196.36

 57.96 193.51

 40.33 104.06

Fundamental vibration frequencies (cm−1)

 603.50 543.65

 400.75 433.85

 412.06 442.40

 212.34 208.21

 56.21 199.47

 35.75 97.69

cm−1) 

 6.52 4.74

 23.78 −11.63

 4.32 −34.04

 3.68 −11.86

 1.76 −5.96

 4.58 6.37

(n=n−n)

Corrections

We investigated the same set of corrections as in the Si2HLi sub-chapter: core-valence

interactions, zero-point vibrational corrections and relativistic corrections.

The CCSD(T)-F12a method and the specially designed cc-pCVTZ-F12 basis set [166]

was employed to calculate the core-valence interactions. An appended label “fc” or “cc”

indicates the frozen-core or correlated-core approximation. The core-valence correlation

contribution (Ecore) was obtained as the energy difference between frozen-core CVTZ-

F12-fc and correlated-core CVTZ-F12-cc (Si 2s, 2p and Li 1s orbitals correlated)

calculations. The differences were then added to the energies calculated at the
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CCSD(T)-F12a/VTZ-F12 level. This allowed the evaluation of relative energies of the

Si2Li2 isomers that include core-valence correlation contributions. The calculated results

are compared to VTZ-F12 relative energies in Table 4.5-8.

Table 4.5-8. Comparison of the relative energies computed at the VTZ-F12 level and
the CVTZ-F12 relative energies with core-valence contributions. Energies in kcal/mol.

LiSiLiSi

CCSD(T)-F12a

CVTZ-F12 10.9515

VTZ-F12 10.4472

Table 4.5-9 shows a difference of 0.5 kcal/mol between the CVTZ-F12 and VTZ-F12

relative energies. The difference is larger than in the Si2HLi case by about 0.25

kcal/mol.

The relativistic correction was evaluated at the CCSD(T) level as the sum of the

expectation values for the mass-velocity and the one-electron Darwin terms. The

specially designed AVTZ-DK basis set and the ordinary Dunning’s AVTZ basis set

were employed and a comparison of the results obtained with these two basis sets and

the effects of these on the isomerisation energies was made. A comparison of the

CCSD(T)/AVTZ-DK (Erel_DK), CCSD(T)/AVTZ (Erel_AVTZ) and CCSD(T)-F12/VTZ-

F12 results can be found in Table 4.5-9. The calculated relativistic contributions were

added to the energies calculated at the CCSD(T)-F12a/VTZ-F12 level. This allowed the

evaluation of relative energies of the Si2Li2 isomers that include relativistic effects.

Table 4.5-9. Calculated relativistic correction for the Si2Li2 isomers at the CCSD(T)
/AVTZ-DK and CCSD(T)/AVTZ level. The results are listed in kcal/mol.

LiSiLiSi

AVTZ-DK 10.403

AVTZ 10.477

VTZ-F12 10.447

For LiSiLiSi, the relative energies with the relativistic contributions are larger by 0.044

kcal/mol (for AVTZ) but smaller by 0.03 kcal/mol (for AVTZ-DK), compared to the
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uncorrected results. The relative energies computed with the AVTZ-DK and AVTZ

relativistic corrections differ from each other (by 0.074 kcal/mol) for the LiSiLiSi

isomer. Again, we assume that the relativistic effects calculated at the AVTZ-DK level

are more accurate, as the AVTZ-DK basis set is designed for use with Douglas-Kroll-

Hess Hamiltonians.

It can be seen that for both Si2HLi and Si2Li2 the biggest changes in relative energies are

when core-valence contributions are added, whereas the relativistic effects corrections

only slightly change the relative energies. Thus, it can be concluded that for the Si2XLi

species (where X=H or Li) core-valence contributions are more important than

relativistic effects.

The zero-point vibrational corrections (Ezpe) were obtained from anharmonic

calculations performed at the MP2/aug-pVTZ level of theory. The Ezpe includes

anharmonic corrections.

All the corrections are added to the energies calculated at the CCSD(T)-F12a/VTZ-F12

level of theory (E in Hartree). The final corrected energy is given by Ecorr-

DK=E+Ecore+Erel_DK+Ezpe or Ecorr-AVTZ=E+Ecore+Erel_AVTZ+Ezpe.

A comparison of the uncorrected energies with the corrected energies calculated at the

different levels of theory is listed Table 4.5-10.

Table 4.5-10. Comparison of the relative energies of the LiSiLiSi isomer at the
CCSD(T)/AVQZ and CCSD(T)-F12/VTZ-F12 level with the corrected energies:
Ecorr_AVTZ and Ecorr_DK. Energies listed in kcal/mol.

AVQZ VTZ-F12 Ecorr_AVTZ Ecorr_DK

LiSiLiSi 10.283 10.447 10.846 10.920

The corrected energies Ecorr_AVTZ and Ecorr_DK show an increase in the relative energy , in

comparison to AVQZ, of 0.563 kcal/mol and 0.637 kcal/mol, respectively and, in

comparison to, of VTZ-F12 0.399 kcal/mol and 0.473 kcal/mol, respectively. The basis

sets employed (AVTZ-DK and AVTZ) yield different isomerization energies. The
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AVTZ-DK basis set gives a relative energy (for the LiSiLiSi species) that is larger by

0.074 kcal/mol than the results obtained with AVTZ basis set. However, the difference

between the two basis sets is smaller than that obtained in the Si2HLi sub-chapter. Also

convergence problems have not been seen during the AVTZ calculations as suggested

by Tarczay et al. [106]. In this case the relative energy difference between the AVTZ

and AVTZ-DK is less than 0.1 kcal/mol.

Comparison of calculated geometries with literature

Both SiLi and Si2Li2 were studied in the gas phase by mass–spectrometry [46, 103,

167]. Unfortunately, we could not access the paper, as it was published in a limited

conference edition. There are no other experimental results on Si2Li2 structures known

to the author. However, (as was shown in the Si2HLi sub–chapter) experimental results

can be found for bigger molecules that contain Si or Li atoms connected to bulky groups

like tBu. The crystallographic data of Si–Li bond distances of these structures

synthesized by several research groups [163, 165] were taken as the experimental

reference. These works show the range of the Si–Li distances (Li in bridged position)

from 2.645 Å to 2.657 Å [163] and where Li is in a terminal position from 2.531 Å to

2.580 Å [164, 165]. Our calculated Si–Li distances are in the range of 2.3915 Å (the

B3LYP method) to 2.4315 Å (CCSD(T)/AVDZ) for terminal Li atoms. The range of the

Si–Li distances for the bridged Li atom is from 2.5009 Å (the B3LYP method) to

2.5951 Å (CCSD(T)/AVDZ). Thus, our calculations are in good agreement with the

experimental data.

As was mentioned in the Introduction chapter the Si2Li2 structures calculated by Bei and

Feng [30] were obtained with a too low a level of theory to allow a meaningful

comparison with the results calculated here. Nevertheless, theoretical work on the SixLiy

structures (where x=1–6 and y=1–2) done by others can be found [42-45]. The most

important is the series of articles by Rabilloud et al. [43]. These studies are mostly

focused on electron affinity, charge transfer, dipole moment and Li–binding energies of

the SixLiy clusters rather than geometric or vibrational properties. Nevertheless the

articles report the dibridged structure (SiLiLiSi) as the global minimum followed by the
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dibridged planar structure (11.23 kcal/mol above the global minimum) and Li–bridged

structure (29.93 kcal/mol above the global minimum) [43]. Rabilloud et al. reported the

dibridged planar structure as an isomer (minimum) but our work shows that this is a

transition state. The reported Si–Li bond distance (calculated at the B3LYP/6-31G(d)

level of theory) of the dibridged structure is 2.53 Å and angle (LiSiLi) is 46.5° [43]. It

can be seen that our calculated Si–Li bond distances agree well with the literature

however, the (LiSiLi) angle (obtained by Rabilloud et al.) is around 43° too small with

comparison to our calculations.
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4.6 Discussions and conclusions for the Si2HX and Si2Li2 systems

(where X= H, Li, F and Cl) and comparison with the C2H2 species.

The Si−Si bond distances calculated at the CCSD(T)-F12a/VTZ-F12 level of theory will 

be taken as reference in the comparisons below. The multiply-bonding properties in the

Si2HX and Si2Li2 structures studied here (where X= H, Li, F and Cl) were obtained

from NBO analyses. The NBO procedure is explained in Chapters 1.7 and 4.1.

Vinyl

There are similar bonding properties in the HHSiSi, HClSiSi and HFSiSi vinylidene-

like structures. All structures have nominally doubly-bonded Si−Si bond. The shortest 

Si−Si bond is found in the HHSiSi structure (2.2056 Å) and the longest one in the 

HFSiSi structure (2.2195 Å). There is no vinylidene form in the Si2Li2 and Si2HLi

cases.

Trans

A triply-bonded trans structure is found in the HSiSiH, ClSiSiH and FSiSiH cases. The

shortest Si−Si bond is found in the HSiSiH structure (2.1073 Å) and the longest one in 

the FSiSiH structure (2.1379 Å). There is no trans form for Si2Li2 and Si2HLi.

The trans structure is nominally triply-bonded between the Si atoms but the bonding

interaction is rather weaker than a full triple bond. This will be explained in more detail

below.

Dibridged

The dibridged form occurs in all Si2HX and Si2Li2 systems (where X= H, Li, F and Cl).

These structures contain nominally a singly-bonded Si−Si bond. The longest Si−Si bond 

occurs in SiClHSi (2.2673 Å) and the shortest one in SiLiLiSi (2.1660 Å).

The Si−Si bond in the dibridged structure actually has between singly- and doubly-

bonding character as the bonding interaction is rather stronger than a full single bond.

This will be explained in more detail below.
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Li-bridged

Li-bridged structures occur in the Si2HLi and Si2Li2 cases. Both Li-bridged forms are

Si–Si doubly-bonded and the shortest Si−Si bond (2.1027 Å) occurs in HSiLiSi 

followed by LiSiLiSi (2.1335 Å). Additionally the Si−Si bond in the HSiLiSi structure 

is the shortest from all Si2HX and Si2Li2 molecules (where X= H, Li, F and Cl).

H-bridged

All H-bridged structures have a doubly-bonded Si−Si. The shortest Si−Si bond occurs in 

the HSiHSi structure (2.1182 Å) and the longest one in the LiSiHSi structure (2.1417

Å). The H-bridged structure is found in all cases except the Si2Li2 species.

The Si−Si bond in the H- or Li-bridged structure has between doubly- and triply-

bonding character as the bonding interaction is rather stronger than a full double bond.

This will be explained in more detail below.

Bonding properties of the Si2HX and Si2Li2 molecules (where X= H, Li, F and Cl)

Lein et al. [14] discussed the bonding in Si2H2 in terms of bond formation between two

SiH moieties. We will use the results of Lein et al. to help us attempt an explanation for

the bonding properties of the Si2HX and Si2Li2 molecules (where X= H, Li, F and Cl).

The pictures shown here will be presented in a similar manner to those presented in

reference [14].

In the vinyl structures we have one σ-type and one π-type Si−Si bond that create a 

doubly-bonded structure; the terminal Si atom has also one lone-pair. The vinyl

structures found here are not significantly different from the other vinylidene-type

structures found in the literature [11, 14, 168]. It is not clear why there is no vinyl form

for Si2Li2 and Si2HLi.

In the dibridged structures empty p(π) orbitals interact with the Si−H/Si−X bond and 

with the electron lone-pair of the other Si−H/Si−X bond as shown in Figure 4.6-1. The 

stabilization of the bridged structure comes from the donor-acceptor interactions as
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Si−H → p(π) is stronger than the electron lone-pair → p(π) orbital. The Si−H/Si−X 

bonds are also better donors than the lone-pairs as the lone-pairs are built from s type

orbitals and H, Cl and F have higher electronegativities than Si [14]. Thus, in the

dibridged structures the Si−H/Si−X bonds are tilted toward the empty p(π) orbitals of 

the other SiH/SiX moiety; this leads to the butterfly type of structure. Folding of the

Si−H/Si−X bonds along the Si−Si bond is presumably reducing repulsion between the 

hydrogen and silicon valence s orbitals [11].

Figure 4.6-1. Qualitative model for the orbital interactions between two SiH−SiX 
moieties in the dibridged orientation. Si−H/Si−X Don. represents the Si−H/Si−X donor 
to the empty p orbital interaction; overlap of unpaired electrons yields a σ bond.  

NBO analyses also showed that in the lithium substituted dibridged structures both Si

lone-pairs interact strongly with the SiLiSi bridged parts. This can explain the shorter

Si−Si bond distance in the lithium substituted dibridged structures than in the Cl-, F- 

and H-substituted dibridged structures.

In the monobridged structures a lone-pair on the second of the SiH/SiX (right-side lone-

pair on both (a) and (b) in Figure 4.6-2) moieties creates a σ type bond with the empty p 

orbital of the first SiH/SiX moiety. Additionally we have a Si-Si π bond, as shown in 

Figure 4.6-2. Besides the above bonding interactions we have also the lone-pair from

the first SiH/SiLi moiety (left-side lone-pair on both (a) and (b) in Figure 4.6-2) which

can interact partially as a lone-pair donor to the empty p orbital of the second SiH/SiX

moiety. This interaction does not create a bond but might be responsible for some

bonding properties in the monobridged structures and is presented in Figure 4.6-2 as a

dotted arrow. Similar interactions were seen during NBO calculations in the LiSiHSi as
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well as HSiLiSi structures. The charge transfer (donor-acceptor) energy between the

lone-pair of Si (as shown in Figure 4.6-2-(a)/(b)) and the antibond of SiH/SiLi is 23.7

kcal/mol (HSiLiSi), and 2.9 kcal/mol (LiSiHSi). The energy differences between H-

bridged and Li-bridged shown above can be explained by the higher electronegativity of

hydrogen (2.20) compared with lithium (0.98). The higher electronegativity makes the

interacting Si-H and empty p orbital twist toward each other. The tilting of the empty p

orbitals of the acceptor SiX moiety moves the terminal Li, Cl or F atom towards the

bridging H atom. In the Li-bridged structures this tilting movement was not found

because of the lower electronegativity of lithium. The lack of the twisting of the

SiH/SiLi moieties in the Li-bridged structures makes the distances between the lone-

pair of the SiLi moiety and the empty p orbital of the SiH/SiLi moiety and between the

π bond (connecting both moieties) shorter which gives a higher interaction energy. 

These stronger interactions, combined with the higher electronegativity of the H moiety

compared with the Li moiety (right-part of Figure 4.6-2-(b)), reduce the Si−Si bond 

distance in HSiLiSi and may explain why this Si−Si bond distance is the shortest from 

all of the Si2HX and Si2Li2 structures (where X= Li, F and Cl).

In the trans structures the lone-pair (SiH/SiX) → π (SiH/SiX) donation is enhanced by 

outwardly tilting the Si−H/Si−X bond which leads to the trans-bent form [14] as shown 

in Figure 4.6-3.

The above analyses explain why the bond lengths in the monobridged isomers are

shorter or slightly longer (Si2H2) than in the triply-bonded trans isomers, as in the trans

structures the SiH/SiX moieties are too far away to interact as strongly as in the

monobridged structures.
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Figure 4.6-2. Qualitative model for the orbital interactions between two SiH-SiX
moieties in (a) H-bridged and (b) Li-bridged orientations. Si-H/Si-X Don. represents the
Si-H/Si-X donor → empty p orbital interaction; overlap of the unpaired electrons yields 
a π bond and LP Don. represents lone-pair donor to the empty p orbital interaction. 
Explanation of the dotted arrows can be found in the text above.

H

X

Si-H
Don.

LP Don.

Li

H/Li

Si-Li Don.

LP Don.

Figure 4.6-3. Qualitative model for the orbital interactions between two SiH-SiX
moieties in the trans orientation. LP Don. represents the lone-pair donor to the empty p
orbital interaction and the overlap of the unpaired electrons yields a π bond.  

Comparison of the C2H2, Si2H2, Si2HLi and Si2Li2 structures

The bonding differences between C2H2 and Si2H2 have been discussed in the literature

before [11, 14, 168] and so we have not attempted to explain this in detail again. The

bonding differences between the Si2HX and Si2Li2 (where X= H, Li, F and Cl)

structures were discussed above. Comparison of the C2H2, Si2H2, Si2HLi and Si2Li2

structures shows that the disilynes (Si2H2, Si2HLi and Si2Li2) have significantly

different isomerisation properties than the C2H2 species: the global minimum is

(a) (b)
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dibridged (in all the disilynes) instead of a linear acetylene structure (which is the global

minimum for C2H2), followed by the monobridged isomer (in all cases) and vinyl

isomer (in the C2H2 and Si2H2 species). The trans-bent structure exists only in the Si2H2

case. Monobridged structures (with hydrogen or lithium as the bridged atom) occur in

all cases. However, the monobridged structures in the C2H2 and Si2Li2 species lie in

shallow potential energy wells on the respective potential energy surfaces. The energy

differences between the transition state and monobridged structure are 0.16 kcal/mol

(C2H2; CCSD(T)/AV5Z) and 0.06 kcal/mol (Si2Li2; CCSD(T)-F12a/VTZ-F12). Thus, it

is unlikely that these monobridged structures can be observed experimentally.

Differences in the vibrational frequencies of the different species are also observed. In

the Si2H2 and Si2HLi structures the Si−H stretches have the highest frequency values 

(between 1500-2200 cm−1), while in the Si2Li2 structures the Si−Si stretches have the 

highest frequency values (between 500-620 cm−1). Most of the Si−Li vibration motions 

lie below 500 cm−1, except the Si−Li stretches in LiSiHSi (606 cm−1) and LiSiLiSi (617

cm-1). These can be partially explained by the higher atomic mass of the Li atom than

the H atom. It is not clear why the presence of the Li atom in the disilynes (Si2HLi and

Si2Li2) decreases the number of isomers found and we have not attempted to explain

this issue in detail. Nevertheless, it was noticed during our calculations that the trans

and vinyl structures occurred only as higher-order transition states on the Si2Li2 and

Si2HLi potential energy surfaces.

The comparisons of the different level of theories used to study the Si2HX and Si2Li2

species (where X= H, Li, F and Cl) calculations tell us that diffuse function are not

essential when we used the level CCSD(T)/VQZ and above. Moreover, the results

calculated at the CCSD(T)/AV(Q+d)Z level with the additional thigh d functions were

shown to be very close to the CBS limit. The CCSD(T)/VDZ and B3LYP/6-311G(d)

levels of theory are in some cases not accurate enough to describe the isomerization

energies, geometric properties or harmonic vibrations. Note, that the B3LYP/6-311G(d)

level does not contains polarization functions for the H atom which might give wrong

results for the bridged structures. The CCSD(T)-F12/VTZ-F12 level of theory yielded

an accuracy comparable to CCSD(T)/V(6+d)Z for geometric properties and to



145

CCSD(T)/V(Q+d)Z for harmonic vibration frequencies as shown in chapter 4.1. Thus, I

recommend this level of theory as the most accurate in calculations of small silicon

clusters. The CCSD(T)-F12/VTZ-F12 level of theory will be used in subsequent full-

dimensional potential energy surface calculations.
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5 Electron affinity and Li+ and H+ binding energy.

5.1 Electron affinity.

The electron affinity is a very important physical-chemical property used, for instance,

in thermochemical cycles to determine molecular bond energy or electron detachment

energy which can be used in the advanced electronics industry. Electron affinity also

plays a role in silicon and quantum dot (nanocrystal) semiconductor chemistry [169],

molecular clusters [170] and flat panel displays [171].

In general electron affinity can be described as the energy difference between an

uncharged atomic or molecular species and its negative ion [172]. A clear definition of

electron affinity was provided in review work by Hotop and Lineberger [173, 174]:

“The electron affinity, EA, of an atom A is the difference between the total energies

(Etot) of the ground state of A and its negative ion A– ” and is expressed by the equation:

EA(A) = Etot (A) – Etot (A–). 5.1-1

Thus, for example, when the neutral atom lies energetically above the anion then

electron affinity is positive [172]. Anions of atoms with positive electron affinities exist

long enough to be studied experimentally, whereas anions of atoms with negative

electron affinities exist only for a few picoseconds and so, are of less interest to

chemists [172]. The electron affinity usually depends on the nuclear charge, electronic

configuration and size of the atom.

Atomic and molecular electron affinities can also be described as the binding energy of

an electron to the atom or molecule [172]. Molecular systems (and atoms) can have

positive as well as negative electron affinities. For instance, benzene has a negative

electron affinity, whereas anthracene and pyrene have positive electron affinities [172].

Interestingly, diamond and diamond–like carbon materials have a negative electron

affinity and thus, can be used as electron field emitters [175, 176].

To measure molecular or atomic electron affinities experimentally photo-detachment

spectroscopy is used. This technique uses the photoelectric effect and gives electron
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affinity results with an accuracy of around 0.25 kcal/mol [172]. However, sometimes it

is hard to find the electron affinity using experimental methods, and then computational

methods can be very helpful.

Several levels of theory were proposed in the literature for the calculation of electron

affinities. The first method used to get electron affinities with good accuracy is the

Gaussian-2 (G2) method [177]. G2 theory is a technique which consists of a sequence

of well-defined ab initio calculations to obtain a total energy of a given molecular

species [178]. Geometries are optimized using second–order Møller–Plesset

perturbation theory. For the energy, correlation level calculations are done using

Møller–Plesset perturbation theory up to fourth-order and with quadratic configuration

interaction. The G2 method uses large basis sets, including multiple sets of polarization

functions in the correlation calculations.

Other authors suggest that ab initio methods such as CI and CC are the best tool for the

calculation of electron affinities [172, 179]. However, to obtain good accuracy, one

needs to use basis sets that are close to the CBS limit.

Pople and co-workers presented a comparison between electron affinities calculated

with the G2 method and several DFT methods [177]. The paper shows that DFT

methods are quite good in comparison with the G2 level, which is still the most

accurate, but also computationally more expensive. Schaefer considers the DFT

methods as efficient for the calculation of electron affinities, as they are fast and still

yield good accuracy [172]. Jensen compared four methods for calculation of electron

affinities: HF, BHHLYP, B3LYP and BLYP with the aug-pc-2 basis set (though similar

results can be obtained using the 6-311+G(d) basis set) [180]. Jensen claims that

B3LYP gives an accuracy with comparison to experimental values of ≈1 kcal/mol. 

To choose the most effective method and basis set, benchmark tests were performed on

the Si–Si molecule and the Li atom, and the results were compared with experimental

electron affinities. The following three methods were used: MP2/aug-cc-pVTZ, M06-

2X/6-311+G(d) and B3LYP/6-311+G(d). Unrestricted reference wavefunctions were

used in all calculations done here. We also used the MP2/aug-cc-pVDZ and MP2/aug-

cc-pVQZ methods. However, we encountered convergence difficulties during the
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optimization calculations, and this issue will be discussed later. All calculations were

performed with the Gaussian 09 program [139].

The adiabatic EA is defined as:

EA= E(optimized neutral system) – E(optimized anion system) 5.1-2

In both types of calculations (except those on the Li atom) the zero point energy (ZPE)

was included.

Table 5.1-1. Electron affinity of the Si2 molecule.

MP2/
AVTZ

B3LYP/
6-311+G(d)

M06-2X/
6-311+G(d) Exp.a Exp.b

EA [eV] 2.27 2.16 2.15 2.199(0.012) 2.176(0.002)
a value taken from reference [181]
b value taken from reference [182]

Table 5.1-2. Electron affinity of the Li atom.

MP2/
AVTZ

B3LYP/
6-311+G(d)

M062X/
6-311+G(d) Exp.a

EA [eV] 0.35 0.56 0.52 0.62
a value taken from reference [172]

The B3LYP/6-311+G(d) level of theory gives electron affinities that are closest to the

experimental values for the Si2 and Li species. The difference between the calculated

and experimental values is only 0.039 eV or 0.016 eV (for Si2) and 0.06 eV (for Li).

M06-2X/6-311+G(d) gives slightly worse results with the differences between the

calculated and experimental results being around 0.049 or 0.026 eV (for Si2) and 0.10

eV (for Li). The MP2/aug-cc-pVTZ results are worse than the DFT results: the

differences between the experimental and computational results are 0.071 or 0.094 eV

(for the Si2 molecule) and 0.27 eV (for the Li atom). The calculated B3LYP/6-311+G(d)

Li electron affinity showed a difference of 0.002 eV compared with the result obtained

by Jensen at the B3LYP/aug-pc-2 level of theory [180]. However, the MP2/aug-cc-

pVTZ and M06-2X/6-311+G(d) levels of theory give differences of 0.21 eV and 0.037

eV, respectively.
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Electron affinities of the Si2HLi isomers

To calculate the electron affinities for the Si2HLi minima the same methods were used

as in the previous section.

Table 5.1-3. Electron affinities of the Si2HLi isomers.

MP2/
AVTZ

B3LYP/
6-311+G(d)

M06-2X/
6-311+G(d)

HSiLiSi

EA [eV] 0.59 1.01 0.88

LiSiHSi

EA [eV] 0.64 1.05 0.90

SiHLiSi

EA [eV] 0.66 0.74 0.58

If we consider only the DFT methods, we can see that the two monobridged structures,

HSiLiSi and LiSiHSi, have electron affinities of ≈ 0.9-1.0 eV, whereas the SiHLiSi 

electron affinity is smaller (≈ 0.58-0.74 eV). It was noticed during the DFT calculations 

(B3LYP/6-311+G(d) and M06-2X/6-311+G(d)) that electron attachment changed the

nature of the global minimum. The global minimum of the Si2HLi– species is the Li-

bridged structure followed by the dibridged (relative energies of 3.07 kcal/mol and 0.55

kcal/mol for B3LYP and M06-2X, respectively) and H-bridged (3.62 kcal/mol and 2.85

kcal/mol, respectively) structures, respectively. The MP2 method shows a different

pattern: the HSiLiSi structure has a smaller electron affinity in comparison with

LiSiHSi and SiHLiSi. The electron affinities computed with MP2 have very similar

magnitudes for all three isomers.

We investigated this issue in more detail. The investigation showed that the MP2/aug-

cc-pVXZ calculations (where X=2-4) fail for the anionic HSiLiSi structure. The

MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ calculations optimized to different local

minima and the optimization calculation at the MP2/aug-cc-pVQZ level was not

successful (calculations crashed several times). The SiSiH angle in the anionic structure

optimized at the MP2/AVDZ level is 180° (linear), whereas the MP2/AVTZ level gives

a SiSiH angle of 139° (bent). It was seen in chapter 4 that the AVDZ basis set is not
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accurate enough for obtaining reliable geometric properties, and thus, only the

MP2/AVTZ results are listed in Table 5.1-3. It was also noticed, that calculations at the

MP2/AVDZ and MP2/AVQZ levels suffered from convergence problems. Trying to

overcome this issue, we calculated the force constants at the start of the geometry

optimization, used tight convergence criteria and different optimization algorithms

(Newton-Raphson, GDIIS and quadratic convergent SCF). HF/aug-cc-pVXZ (where X=

2 and 4) with the stable=opt keyword was used to ensure that the calculated structure

was a minimum. Additionally an initial guess was read using the Guess=Read keyword

at the start of the MP2/aug-cc-pVXZ calculation (where X= 2 and 4) in an effort to

determine a real minimum. All the endeavours failed.

To avoid further convergence problems we decided to just use the B3LYP method for

the electron affinity calculations for Si2Li2, as this method gave results that were closest

to the experimental values (for Si2 and Li).

Electron affinities of the Si2Li2 isomers

In sub-chapter (4.5) it was mentioned that the Si2Li2 PES contains two minima: a

dibridged isomer (SiLiLiSi), which is the global minimum and a monobridged isomer

(LiSiLiSi) which lies 0.43 eV (10.037 kcal/mol) above the global minimum.

Table 5.1-4. Electron affinities of the Si2Li2 isomers.

B3LYP/
6-311+G(d)

LiSiLiSi

eV 0.98

SiLiLiSi

eV 0.70

The calculated EA values show a similar pattern as for the Si2HLi isomers: the electron

affinity for the monobridged structure (LiSiLiSi) is much larger than that of the

dibridged structure (SiLiLiSi): 0.98 eV and 0.70 eV, respectively. The attachment of an

electron does not change the nature of the global minimum for the Si2Li2 species.
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Discussion – comparison of calculated values with literature and conclusions

There are a number of previous papers on electron affinities, which can be used for

comparison. The work of Schaefer et al. [183] on the Si2H/Si2H
– structures used many

different computational methods, however, we only take the CCSD(T)/AVTZ results as

the most relevant to our studies. The Si2H electron affinity computed with the

CCSD(T)/AVTZ level is 2.30 eV which is very close to the experimental value (2.31

eV) [183]. Note that the calculated electron affinities for the Si2HLi isomers are about 1

eV smaller. The same issue holds for Si2Li2. Yang and co-workers [45] calculated the

electron affinity for SinLi molecules (where n=2–8) using G3 and MP2(full)/6-31G(d).

The calculated electron affinity of the Si2Li is 1.87 eV and 1.88 eV for G3 and

MP2(full)/6-31G(d), respectively. Our calculated electron affinity for Si2Li2 is between

0.70 eV and 0.98 eV. It is not clear why the electron affinities calculated here are

around 1 eV smaller than those computed for Si2H and Si2Li. Clearly, for the Si2H
− and

Si2Li− systems the detachment of an electron requires more energy than for the Si2HLi−

and Si2Li2
− systems. We have not attempted to explain this in detail.

We can conclude that the B3LYP/6-311+G(d) method gives the most accurate electron

affinity results of all the methods employed here in comparison to experimental and

high-quality literature results. It is probably possible to get more accurate electron

affinity results than those obtained with B3LYP/6-311+G(d) by using the G2 or G3

methods, however, these methods are more demanding of CPU time.
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5.2 Li+ binding energy.

The mechanism of lithium storage in silicon type materials has been studied for many

years as these materials are important in developing high–density Li rechargeable

batteries. Li+ can be adsorbed on, or inserted into, different types of layered Si

structures or Si surfaces. Our calculations on small Si-containing molecules can provide

new insight into the Li+ binding. The Li+ binding energy can be defined as:

Eb= – [E(Si2HLi) – E(Si2H
–) – E(Li+)]. 5.2-1

The Li+ binding energy in the Si2HLi structures was calculated as shown in eq. 5.2-1.

The Si2HLi and Si2H
– structures were optimized and the ZPEs were included. The

geometry optimisation of Si2H
– yielded bent and bridged structures. The calculations

were performed at the CCSD(T)/aug-cc-pVTZ and B3LYP/6-311+G(d) levels of theory

but counterpoise corrections were not included here. The unrestricted reference

wavefunctions were used for the ionic species. The computed Li+ binding energies for

the Si2HLi structures are listed in Table 5.2-1.

Table 5.2-1. Li+ binding energies of the Si2HLi isomers.

CCSD(T)/
AVTZ

B3LYP/
6-311+G(d)

HSiLiSi

eV 2.54 2.68

LiSiHSi

eV 2.03 1.79

SiHLiSi

eV 2.39 2.15

Table 5.2-1 shows that the Li+ binding energy is larger for the HSiLiSi and SiHLiSi

isomers (Li-as the bridged atom) than for the LiSiHSi isomer (Li-as the terminal atom).

The B3LYP/6-311+G(d) method gives Li+ binding energies of 2.68 eV, 2.15 eV and

1.79 eV for HSiLiSi, LiSiHSi and SiHLiSi, respectively, whereas the CCSD(T)/aug-cc-

pVTZ level of theory gives binding energies of 2.54 eV, 2.39 eV and 2.03 eV,

respectively.



153

Note that the Li+ binding energies were not corrected for BSSE. BSSE tends to be very

small in DFT calculations. CCSD(T) is however much more sensitive to BSSE, and

whereas we use a relatively large basis set in the CCSD(T) calculations (aug-cc-pVTZ),

the BSSE may still be sufficiently large to affect the Li+ binding energies. For

comparison, CCSD(T)/cc-pVTZ calculations on N2 yielded a BSSE value of about 0.08

eV [184], of similar magnitude as the differences between the B3LYP and CCSD(T) Li+

binding energies. Thus, it may be that the CCSD(T) binding energies are slightly

overestimated.

The calculations of the Li+ binding energy were done for the Si2Li2 structures using the

same levels of theory as employed for Si2HLi. The Si2Li2 and Si2Li– structures were

optimized and the ZPEs were included but the counterpoise corrections were not

included. Equation 5.2-2 was used to calculate the Li+ binding energies of the Si2Li2

structures. To avoid optimization of Si2Li– towards the bridged (SiLiSi–) structure,

which is unwanted for the bridged Li binding energy of the LiSiLiSi isomer, the

terminal Li angle (LiSiSi-bent) was frozen (at 165.0°). The calculated Li+ binding

energy results are listed in Table 5.2-2.

Eb= – [E(Si2Li2) – E(Si2Li–) – E(Li+)] 5.2-2

Table 5.2-2. Li+ binding energy of the Si2Li2 isomers

CCSD(T)/
AVTZ

B3LYP/
6-311+G(d)

LiSiLiSi
a

eV 2.31 1.48

LiSiLiSi
b

eV 1.62 0.84

SiLiLiSi

eV 2.05 1.24
a Li+ - SiLiSi-bridged
b Li+ - LiSiSi-bent

The same pattern can be seen as was observed for Si2HLi: the B3LYP/6-311+G(d)

method yields larger binding energies for the LiSiLiSi and SiLiLiSi isomers (SiLiSi-
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bridged) than the LiSiLiSi isomer (LiSiSi-bent), 1.48 eV, 1.24 eV and 0.84 eV,

respectively. The CCSD(T)/aug-cc-pVTZ method gives binding energies of 2.31 eV,

2.05 eV and 1.62 eV, respectively. Thus, the B3LYP/6-311+G(d) results are smaller

than the CCSD(T)/aug-cc-pVTZ results by about 0.72-0.83 eV. It therefore appears that

B3LYP underestimates the Li+ binding energies.
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5.3 H+ binding energy.

The H+ binding energy was also investigated for the Si2HLi isomers. The equation to

calculate the H+ binding energy is similar to that for the Li+ binding energy and can be

written as shown in equation 5.3-1.

Eb= – [E(Si2HLi) – E(Si2Li–) ] 5.3-1

Obviously there is no H+ in this equation because the electronic energy of H+ is 0. The

Si2HLi and Si2Li– structures were optimized and the ZPEs were included. The geometry

optimisation of Si2Li- yielded a bent and bridged structures similar to the Si2H
- case.

The calculated H+ binding energy results are listed in Table 5.3-1.

Table 5.3-1. H+ binding energy of the Si2HLi isomers

CCSD(T)/
AVTZ

B3LYP/
6-311+G(d)

LiSiHSi

eV 12.48 15.35

HSiLiSi

eV 11.60 14.49

SiHLiSi

eV 11.96 14.86

It can be seen that there is a large difference between the CCSD(T)/aug-cc-pVTZ and

B3LYP/6-311+G(d) results (about 3 eV), but once again the pattern is the same as for

the Si2HLi and Si2Li2 isomers: the H+ binding energy is larger for the LiSiHSi and

SiHLiSi isomers (H-as the bridged atom), than for the HSiLiSi isomers (H-as the

terminal atom). It therefore appears that B3LYP overestimates the proton affinities.
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5.4 Comparison of calculated values with literature and conclusions

The smaller binding energy for terminal atoms (in LiSiHSi, LiSiLiSi and HSiLiSi) can

be explained by the weaker connection between the Si and X atoms (where X=Li or H)

as compared to the bridged structures for which the stabilization energy of the SiXSi 3-

centre-2-electron bond is larger. Furthermore, two bonds need to be broken to detach a

bridged atom instead of one for the terminal atom. Nevertheless, it is not clear why the

binding energy of the monobridged structures is larger (by about 0.25–0.50 eV) than

that of the dibridged structure. Note, that we tried to calculate the Li+ and H+ binding

energies using a larger basis set (aug-cc-pVQZ) for the CCSD(T) method but we

encountered convergence problems during the Si2H
– and Si2Li– optimization

calculations which could not be solved.

The calculated Li+ binding energy is similar in magnitude to those of typical Li

substituted hydrocarbon structures reported in the literature [185, 186]. Unfortunately,

there are no experimental or calculated results for the Li+ binding energy for Si

structures but there are some for carbon structures. For example, Yang and co-workers

[186] have done experimental and theoretical work on lithium complexes of polycyclic

aromatic hydrocarbons. They used ZEKE (zero-electron-kinetic-energy) spectroscopy

[186] and the B3LYP/6-311+G(d,p) method. They obtained Li+ binding energies of 1.7

eV (experimental) and 1.59 eV (computational) for the Li-naphthalene species and 2.16

eV (experimental) and 1.93 eV (calculated) for the Li-perylene species. Decouzon et al.

[187] used the B3LYP/6-311+G(3df,2dp) level of theory to calculate the Li+ binding

energy for alkylo–benzene derivatives. The calculated Li+ binding energies are in the

1.8–1.9 eV range.

Kramer and van Santen [188] showed that the H+ binding energy for zeolite structures

ranges between 14.63–12.49 eV [188]. Iton and co-workers [189] used the G1 and G2

methods to calculate the H+ binding energy of Si−H for H3SiO– and H3SiO3H, and

calculated values of 15.44 eV and 7.7 eV, respectively. Our calculated values (for Si−H) 

are about 12 eV for CCSD(T)/aug-cc-pVTZ and about 15 eV for B3LYP/6-311+G(d).
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We can conclude that calculated H+ and Li+ binding energy results obtained by the

CCSD(T)/AVTZ level of theory give reasonable values which are in good agreement

with those in the literature. The B3LYP/6-311+G(d) method in some cases

underestimates or overestimates the H+ and Li+ binding energy. Thus, B3LYP is not

reliable for calculating the H+ and Li+ binding energy in small silicon clusters.
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6 SiGeHLi

6.1 The SiGeHLi isomers.

The next element below silicon in group 14 of the periodic table is germanium. The

Ge2H2 structures were studied extensively in the 1990’s by Schaefer and co-workers

[168, 190, 191]. Their work shows that germanium compounds (such as Ge2H2) possess

similar properties as the corresponding Si2H2 structures. We are interested in Si–Ge

compounds as the superlattices are quite important in the atomically controlled

semiconductor hetero-structures [192]. In particular we consider SiGeHLi.

Computational methods

The Si2H2 structures optimized by Grev and Schaefer [24] were used as starting

structures for the geometry optimizations. One Si atom was substituted by a Ge atom

and one H atom by a Li atom. Average literature (theoretical) values of the Si−Li and 

Si−Ge bond distances were used in the starting geometries. 

Nine starting geometries were prepared: two H–bridged structures (where the Li atom is

terminal to the Ge or Si atom), two Li–bridged structures (where the H atom is terminal

to the Ge or Si atom), two vinyl structures (where the Li and H atoms are both

connected to the Ge or the Si atom and the H atom is connected to the other atom), two

trans structures (where the Li atom is connected to the Ge or the Si atom) and one

dibridged structure. These structures were optimized at the B3LYP/6-311+G(d) level of

theory. Harmonic vibrational frequencies were computed from the optimized structures

at the B3LYP/6-311+G(d) level, which were verified as minima or transition states by

the absence or presence of imaginary vibrational frequencies. It is known from Chapter

4 that the B3LYP/6-311+G(d) level of theory can give imprecise geometric and

energetic properties and vibrational frequencies. However, this method is fast and

accurate enough to perform the preliminary calculations. A higher level of theory will

be employed in the future if necessary.

We located a dibridged, two Li-bridged and one H-bridged structure (see Figure 6.1-1).

The energies relative to the dibridged structure (the global minimum) are listed at the
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bottom of Figure 6.1-1. The calculated geometric properties of the SiGeHLi structures

are given in Table 6.1-1.

The HSiLiGe, SiLiGeH, LiSiHGe and LiSiGeH formulae refer to, respectively, the Li-

bridged_1, Li–bridged_2, H–bridged and dibridged isomers, respectively.

The dibridged form has the lowest energy followed by the Li–bridged_1 form with E=

5.60 kcal/mol, then the Li–bridged_2 form with E=7.75 kcal/mol and the H–bridged

form with E= 9.51 kcal/mol. The geometric properties calculated at the B3LYP/6-

311+G(d) level of theory are listed in Table 6.1-1.

Table 6.1-1. Geometric properties of the SiGeHLi isomers at the B3LYP/6-311+G(d)

level of theory.

B3LYP/6-311+G(d)

LiSiGeH HSiLiGe LiSiHGe

SiLi a 2.58 2.62 2.41

SiGe a 2.24 2.14 2.20

HSi a 1.66 1.49 1.62

b HSiGeLi b 75.9 180.0 0.0

a SiGeLi b 67.0 64.4 163.0

a SiGeH b 47.0 166.3 45.9

SiLiGeH

SiLi a 2.52

SiGe a 2.13

HGe a 1.55

b HSiGeLi b 180.0

a SiGeLi b 69.3

a SiGeH b 169.8
a Ångström
b degrees
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Figure 6.1-1. The SiGeHLi isomers located by B3LYP/6-311+G(d) with energies relative to the global minimum (dibridged).
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It can be seen that the shortest Si–Ge bond length occurs in the SiLiGeH structure (2.13

Å) followed by the HSiLiGe structure (2.14 Å), the LiSiHGe structure (2.20 Å) and the

LiSiGeH structure (2.24 Å). The two Li–bridged structures differ in the connection of

the H atom. It is interesting, that simple geometric difference significantly affect the

isomerization energy significantly. This should be investigated in more detail.

The results show that the Si–Li distances vary from 2.41 Å (LiSiHGe) to 2.62 Å

(HSiLiGe). The shortest Ge–H bond distance is found in the SiLiGeH structure (1.55

Å). The smallest Si–H bond distance is found in the HSiLiGe structure (1.49 Å)

followed by the LiSiHGe structure (1.62 Å) and the LiSiGeH isomers (1.66 Å). All of

the isomers except SiLiHGe are planar.

Harmonic vibrational frequencies were calculated at the B3LYP/6-311+G(d) level. The

results are listed in Table 6.1-2 below.
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Table 6.1-2. Calculated harmonic frequencies for the SiGeHLi isomers at B3LYP/6-
311+G(d) level of theory; the results are listed in descending order in wavenumber
(cm−1) units.

B3LYP/
6-311+G(d)

dibridged

1492.9 SiH sym. str.

947.0 SiH antisym. str.

453.7 GeSi/SiH/SiLi str.

389.9 SiLi/SiH str.

196.4 butterfly

150.2 SiLi/GeLi out of phase str./butterfly

Li_bridged_1

2142.0 SiH str.

521.7 GeSi/SiH in-phase str.

401.4 SiLi str.

275.9 H in-plane bend

203.6 SiHLi bend

105.9 out-of-plane

Li_bridged_2

2074.8 GeH str.

515.8 HGeSi bend/GeSi str.

404.6 SiLi str.

354.8 H in-plane bend

229.7 out-of-plane

205.0 GeHLi bend

H_bridged

1592.2 SiH sym. str.

820.7 SiH antisym. str.

554.8 GeSi/SiLi/SiH str.

382.7 SiH/SiLi str.

78.7 SiHLi bend

58.3 out-of-plane
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Comparison of calculated values with literature and conclusion

To the best of our knowledge no literature results (spectroscopic or theoretical) exist for

the SiGeHLi species. However, data for similar molecules, such as Ge2H2 or SiGeH6

exist in the literature [190, 191]. The most relevant work done by Leszczynski et al.

[190] was taken as reference. The work of Leszczynski et al. contains both theoretical

and experimental results (using microwave spectroscopy) of the SiGeH6 structure. The

Si–Ge, Si–H and Ge–H bond distances calculated at the CCSD(T)/TZP level of theory

are 2.385 Å, 1.478 Å and 1.531 Å, respectively, whereas the experimental bond

distances are 2.358(3) Å, 1.494(6) Å and 1.538(3) Å, respectively. The Si–Ge bond

distances calculated in this chapter for SiGeLiH isomers range from 2.13 Å to 2.24 Å.

While the Si–H and Ge–H bond distances are; 1.49 Å and 1.55 Å, respectively. We used

only the bond distances of terminal H atoms in this comparison, as the bond distances

for bridged atoms are generally longer. It can be seen that our calculated results are in

good agreement with the literature values.

A comparison of the Si2HLi and SiGeHLi structures shows significant geometric and

energetic similarities: the global minimum is the dibridged structure followed by the Li-

bridged and H-bridged structures in the two (Si2HLi and SiGeHLi) species. A

comparison of the B3LYP/6-311+G(d) results for the Si-Li bond distances and the

XSiLi and XSiH (where X=Si or Ge) angles in the two (Si2HLi and SiGeHLi) species

shows significant similarities too. The harmonic frequency values for the Si-H stretch in

the two species are also similar. However, in the SiGeHLi species the harmonic

frequency values are generally lower which may be explained by weaker bonding in the

Ge containing compound and because of the higher mass of Ge. The bonding properties

of the SiGeHLi structures are similar to the Si2HLi structures and these are explained in

the conclusions section at the end of Chapter 4.
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7 Si2Li2 beyond the critical points – constructing and fitting the

potential energy surface.

7.1 Theoretical introduction.

The potential energy surface (PES) is a concept that uses the Born–Oppenheimer

approximation to represent the relationship between the energy of a molecule and its

geometry [110]. In the Born–Oppenheimer approximation the solution of the nuclear

Schrödinger equation can be presented as movement of the nuclei on the potential

energy surface. Also the PES is independent of the nuclear masses [55].

The “ball and spring model” is used in the following discussion. If we start to stretch or

compress the spring (bond) of our model then the potential energy will increase and this

behaviour can be plotted as a curve as shown in Figure 7.1-1. There is no distortion of

the bond length at the qe point, which is the equilibrium bond length. Real molecules

behave similarly to the ball and spring model; however, they constantly vibrate even at

0 K. As a result of this a molecule never stays at the bottom of the curve, but rather

occupies one of the vibrational levels [110] as shown in Figure 7.1-1. Near the

equilibrium bond length (qe), the bottom of the curve is described well by a quadratic

equation (corresponding to a simple harmonic oscillator). However, when we move

away from qe the potential energy deviates from the quadratic curve due to

anharmonicity [110].
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Figure 7.1-1. Model of a potential energy surface. The horizontal lines represent the
vibrational levels. More detailed explanation of the figure can be found in the text.

Figure 7.1-1 shows a curved (one-dimensional) representation of a PES suitable for a

diatomic molecule. However, if the molecule is constructed from more than two atoms

then additional dimensions appear. For example a triatomic molecule has three

geometric parameters; two bond lengths (q1 and q2) and one angle (q3). Thus, a

triatomic PES is a 3–D “surface” and is called a potential energy hypersurface. An n–

dimensional hypersurface can be defined as E=f(q1, q2,…qi), where f is the function that

describes how the energy varies with qi [110].

If the first derivatives (gradient) of a point on the potential energy surface is zero then

this point is a stationary point. A stationary point can be described as a point where a

marble placed on the surface would remain balanced. A stationary point can be

described mathematically as shown in eq. 7.1-1.

భ మ
7.1-1

Consider a 2–D hypersurface (two geometric parameters q1 and q2) of a reaction

including one reactant and one product as depicted in Figure 7.1-2. This visualisation of

the PES can be helpful to describe various types of stationary points. Locally the

lowest-energy points of the surface are energy minima and any small changes of one of

the geometric parameters (q1 or q2) increases the energy. The global minimum (here

minimum for reactants) has the lowest energy on the whole PES. The pathway

connecting the two lowest energy points through a saddle-shaped surface is called a

reaction path. The “centre” of the saddle-shaped region is called a transition state

bond length, q
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(Transition Structure in Figure 7.1-2) or saddle point and is also a stationary point

[110]. A minimum and transition state can be mathematically distinguished by

calculating the second derivatives of the energy. A transition state has one negative

second derivative, whereas for a minimum all second derivatives are positive. When

more than one of the second derivatives are negative, the stationary point is called a

higher-order saddle point. For example, a second-order saddle point corresponds to the

maximum along two paths connecting stationary points [110].

Figure 7.1-2. 3D model of a potential energy surface generated using the Mathematica
program [193] (function V=q1*sin(q1)*cos(q1+q2)).

It can be said that the essence of chemistry is the study of the stationary points on the

potential energy surface and the reaction paths between them.
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The concept of the chemical potential energy surface was introduced by the dissertation

of Marcelin [194] before groundwork of the transition state by Eyring [195]. The first

PES of the H3
+ species was calculated by Eyring and Polanyi in 1931 [196] .

Even for a simple three-atom system at least several thousand single-point calculations

are needed to construct a reasonable potential energy surface. To accurately

approximate the shape of a potential energy surface from the calculated points,

commonly these points are fitted numerically to a multidimensional function. This

function has the form of a mathematical equation, and evaluation of the equation can be

used to establish any stationary points on the potential energy surface.

The easiest way to describe a simple two-body potential is by the following

equation:
ଵ

ଶ ଶ ୣ
ଶ where r is the internuclear distance between the two atoms,

re is the equilibrium bond distance and k is a constant. When anharmonic motions are

included the equation can be rewritten as:

ଵ

ଶ ଶ ୣ
ଶ ଵ

଺ ଷ ୣ
ଷ . 7.1-2

The above equation is written in the form of a Taylor series. However, to describe a real

PES curve the equation needs to contain an large number of terms, thus, from a practical

point of view this approach is inefficient and the Morse potential [197] is commonly

used instead. Nevertheless, these approaches are true only for two-body systems, thus,

other mathematical concepts are necessary to describe a many-body PES. For example:

Collins et al. [198] represent the PES as a weighted sum of force fields, which are

represented by Taylor series and centred at numerous reference geometries [199].

Meyer et al. [200] used an n-mode representation of the PES in their Multiconfiguration

Time Dependent Hartree (MCTDH) quantum calculations [201]. A many-body PES can

also be described: using the Morse-spline [202], Shepard interpolation [203], pot-fit

[204] or interpolated moving least squares (IMLS) methods [205]. On the other hand,

Carrington et al. [206] showed that an artificial Neural Network tool can be used to fit

any function. Thus, the Neural Network concept is very useful as a potential energy

surface least squares fitting tool and will be used here. A more detailed explanation can

be found below.
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Neural Network (NN)

The artificial Neural Network concept developed in the 90’s [207, 208] has recently

become very popular as it gives efficient and effective fits.

The learning ability of a brain inspired scientists to create artificial Neural Networks

(ANNs) which are represented by a mathematical model.

A simple mathematical implementation can be seen in eq. 7.1-3. Figure 7.1-3 is

basically a graphical representation of equation 7.1-3.

7.1-3

Equation 7.1-3 and Figure 7.1-3 can be explained as follows: x is a neuron with i inputs

(x0…xi) and one output y. The input is weighted (w0…wi) and f is a transfer function

that determines the output [209].

Figure 7.1-3. Simple representation of a Neural Network. The xi represent inputs, wi

weights, y output and f(x) a transfer function, respectively.

The most effective and popular transfer function is a sigmoid function. There are two

types of sigmoid functions employed; logsig and tansig, which differ in their output

range. The logsig output is in the range from 0 to 1 and tansig is from –1 to +1. The

logsig function can be described mathematically as: f
ଵ

ଵା ୶ୣ୮�(ି୶)
and the

tansig is represented as f
ଶ

ଵା ୶ୣ୮�(ିଶ୶)
. A graphical representation of

the sigmoid functions can be seen in Figure 7.1-4.

X1

X2

y

w1

w2

f(x)
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Figure 7.1-4. The figure on the left represents the logsig function and the one on the
right the tansig function. The figure was generated using the Mathematica program
[193].

For computational purposes the feed-forward Neural Network (FNN) is commonly

used. The FNN is composed of layers of neurons. The artificial neurons in the FNN are

organized as layers of nonlinear “nodes”. The signal from the inputs travels only

forward to the outputs. There is no feedback so the layers of the “nodes” do not affect

each other [209]. For a given node each of the inputs (xi) is weighted (wi), then the sum

of the weighted inputs and the bias (b) is passed through the transfer function (f), which

produces the corresponding scalar output. The final network output is a linear

combination of the node scalar outputs.

A graphical representation of the FNN can be seen in Figure 7.1-5 and the

corresponding mathematical equation is including the tansig transfer function:

షమ൫౭ሬሬሬ⃗౦∙౮ሬሬ⃗శౘ౦൯
. 7.1-4

The is a vector representation of coordinates and ୮ is the corresponding vector of

weights.

Equation 7.1-4 and Figure 7.1-5 represent the type of the Neural Network employed

here.
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Figure 7.1-5. Graphical representation of the feed–forward Neural Network (FNN).

In NN terminology the “a”, “Cp” and “wp” are all “weights” and the “bp” are biases. The

xi represent the internal coordinates of the system. The neurons are functions of linear

combinations of the coordinate (input) values. The output of the FNN is a linear

combination of the chosen sigmoid functions [206]. In this work the chosen sigmoid

functions are tansig.

Carrington et al. [206] presented a series of NN least squares fits of the H2O, HOOH

and H2CO PESs with comparisons to the literature. They showed that the fits obtained

by the Neural Network approach give more accurate results than fits obtained by other

potential functions [206]. Eq. 7.1-4 is highly nonlinear in the parameters “wp” and “bp”

so, Carrington et al. suggested (after several tests) the Levenberg–Marquardt (LM)

algorithm [210] as the most accurate training algorithm. The same Levenberg–

Marquardt training algorithm will be used here.

Outputs

X1

X2

X3

X4
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7.2 Potential energy surface of the Si2Li2 molecule.

The Si2Li2 molecule was chosen for extensive full-dimensional potential energy surface

(PES) studies. The PES is very interesting from a dynamical point of view, as it displays

shallow potential well between the monobridged minimum and the corresponding

transition state. In addition, the dibridged and monobridged isomers are close in energy

with a low energetic barrier for interconversion. These features could lead to interesting

vibrational dynamics such as wide-amplitude vibrational motions with relatively low

energies. Additionally, the molecule was experimentally studied using mass

spectrometry in the 1970's [46]. The PES calculations done here could be helpful for

further insightful experimental studies like microwave or infrared spectroscopy. A

similar approach has been seen in the Si2H2 case where the critical point calculations of

Grev and Schaefer [24] were used as the starting point for experimental studies of

Destombes et al. [25, 26] which ended up with successful detection of two Si2H2

isomers.

All the single-point calculations were performed at the CCSD(T)-F12a/cc-pVTZ-F12

level of theory using the MOLPRO version 2010.1 computational package. The

CCSD(T)-F12a/cc-pVTZ-F12 method will be abbreviated as F12 below. The ground

state (singlet) surface only was considered. Extrapolation to the CBS limit was not

attempted here; however, the discussion presented in Chapter 4.1 illustrated that the F12

method allows achieving the same level of accuracy as the CCSD(T)/cc-pV(6+d)Z level

used for example in the work of Law et al. [52]. Discussion in the previous chapters for

Si2H2, Si2HLi and Si2Li2 showed that the F12 method gives results with good agreement

to experimental values and convergence with increasing basis set size is faster than for

ordinary CCSD(T) calculations. Relativistic, core-valence and higher-order electron

correlation corrections were not included here. The cc-pVTZ-F12 basis set contains

7s7p4d2f basis functions for each Si atom and 6s6p3d2f basis functions for each Li

atom. The average time of a single-point calculation for C1 symmetry on one node of

the new EastChem computational cluster (12-core Westmere nodes - 2.93 GHz for each

core) at the University of St Andrews was around 400 s.
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Energies for 45501 geometries were calculated at the F12 level. 18829 points were used

in the final least-squares fit. Of these 720 points were calculated on a local grid, 17387

points were generated by the diffusion Monte Carlo (DMC) method (see below) and

722 points were calculated on a wider grid. The PES includes the two known minima

(dibridged and monobridged) and the two transition states (dibridged-planar and

dibridged–monobridged). These critical points will be abbreviated as SiLiLiSi,

LiSiLiSi, D–PL_TS and DM_TS, respectively.

The procedure for generation of the PES contains the following steps:

Initially 244 geometries were calculated near each critical point. These points were

generated as displacements (as shown in Table 7.2-1) from the critical points. The bond

length-bond angle coordinate system was used at this stage. 268 points from a total of

988 were excluded in the final fit as (by symmetry) they duplicated geometries. The

PES is invariant to permutation of the atoms that lead to equivalent geometries and

identical energies.

Table 7.2-1. Displacement steps (middle column), used in first step of sampling.

Step unit
SiSi 0.01 Å
SiLi 0.0225 Å
SiLi 0.0225 Å
SiSiLi 1 degrees
SiSiLi 1 degrees
LiSiSiLi 5 degrees

These 720 points were used to fit an initial potential energy surface. The initial PES was

used to sample further geometries near each of the critical points by taking the random

positions of the walkers in vibrational quantum diffusion Monte Carlo (DMC)

calculations. The simple diffusion Monte Carlo method developed by Anderson [211]

was employed. A key aspect of the concept is the similarity between the Schrödinger

equation and the diffusion equation [211]. The diffusion Monte Carlo method involves

the random movement of imaginary particles (psi–particles). This random walk method

allows the calculation of the ground state energy of a system [211]. The distribution of
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psi-particles is connected to the ground state wave-function. When a DMC calculation

is repeated for example with artificially low atomic masses then the distribution of psi-

particles will be much further from the equilibrium geometry. Separate DMC

calculations at different atomic masses (4m, 2m, m, and m/4) were performed. The “m”

represents the masses of 28Si and 7Li. This approach helps to sample the geometries over

a wider range. Each batch of the calculated points (sampled by the DMC method) was

refitted before preparation of a new batch. 17387 points were calculated at this stage.

The DMC software was written by Law et al. [212].

The DMC calculations were performed using 1000 iterations with 1000 of the psi–

particles. Initially a value of 10−16 s was used as the time step and then reduced to 10−17

s during the calculation.

The procedure of wider sampling of geometries in the final step was as follows. The fit

of the 18107 points calculated at the previous sampling steps was used in an initial

sampling procedure. Satellite coordinates were used at this stage, as illustrated in Figure

7.2-1. M is the centre of the mass of the two silicon atoms, Si1MLi1 and Si1MLi2 are

the vector angles and  is the angle between the SiSiLi1 and SiSiLi2 planes.
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Figure 7.2-1. Graphical representation of the satellite coordinates. The Sii and Lii

symbols represent silicon and lithium atoms. M is the centre of the mass of the two
silicons.

Only geometries with energies predicted to be below 50000 cm−1 (relative to the

dibridged structure) were selected for the ab initio calculations in both the DMC and

wider grid procedure.

Two sampling grids were used as the first grid sampling approach showed huge

inefficiency. The radial coordinate ranges for these sampling grids are given in Table

7.2-2. Only 900 points were useful from the first batch of 6000 points. These 900 points

match our criteria: the ଵ diagnostic was below 0.08 and the energy below 50000 cm−1

(relative to the dibridged isomer). The ଵ threshold value employed (0.08) was

suggested by papers of Martin et al. and Cai et al. [64, 65], who suggested that

CCSD(T) gives reasonable results for ଵ diagnostic values as high as 0.08. Note, that

most points experienced convergence problems as they sample the surface at extreme

geometries. For example the Si–Si bond length was very short or very long (below 1.5

Å or above 3.5 Å), the same situation was observed for the Si–Li and Li–Li distances.

To overcome these problems the second coordinates range (as seen in Table 7.2-2) was

implemented. A total of 27126 points were calculated for both wide grid sampling

approaches. 16699 points converged and 9067 of these were below 50000 cm−1. 8575

points (from a total of 27126) had a ଵ diagnostic above 0.08 and 2597 of them

converged. Thus, these 2597 points contain considerable multireference character.
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Table 7.2-2. Coordinates sampling ranges.

first grid second grid

SiSi a 1.2 – 4.2 1.5 – 3.9

MLi1 a 1.45 – 3.95 1.75 – 3.5

MLi2 a 1.7 – 3.2 1.9 – 2.9

 SiMLi1 b 10 – 100 10 – 100

 SiMLi2 b 20 – 170 20 – 170


b 0 – 180 0 – 180

a ångström
b degrees

The ranges of ଵ diagnostic values obtained during the PES calculations are listed in

Table 7.2-3 for geometries around the four critical points considered here.

Table 7.2-3. ଵ diagnostic of the Si2Li2 structures.

ଵ diagnostic

Range from min to max values

SiLiLiSi 0.0163–0.0324

LiSiLiSi 0.0182–0.0412

D_PL_TS 0.0162–0.0292

DM_TS 0.0182–0.0700

The ଵ diagnostic values around most of the critical points are below 0.042. However, a

few points with ଵ diagnostic above 0.055 were found near the DM_TS structure.

Fitting procedure

The Neural Network method, described above was used in the fitting procedure.

To construct a PES precisely, it must be invariant with respect to all permutations of

identical atoms [213]. The concept of polynomial invariants developed by Bowman

[213] was used here. The polynomial invariant approach is constructed from basis

functions which contain the internuclear distances Ri. These functions are invariant with

respect to permutations of like atoms and can be obtained in terms of primary and

secondary polynomials [213]. If the atoms of the Si2Li2 species are labeled as Si(1),
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Si(2), Li(3) and Li(4), respectively, and six internuclear distances represent the

distances between these atoms (shown in

Table 7.2-4), then auxiliary variables are given as:

e0 = (R2+R5)/2,

e1 = (R1+R4)/2,

f0 = (R2+R4)/2,

f1 = (R1+R5)/2,

The degree-1 invariant polynomial can be written as:

P1 = (R5+R2+R1+R4)/4,

The three degree–2 primary invariant polynomials are given below:

P2 = (e0
2+e1

2)/2,

P4 = (f0
2+f1

2)/2,

P5 = (R3
2+R2

2+R4
2+R5

2)/4,

and degree–3 invariant polynomials:

P7 = (R1
3+R2

3+R4
3+R5

3)/4

We have also polynomials which are equal to the Si–Si and Li–Li internuclear

distances.

P3 = R3,

P6 = R6,

Table 7.2-4. Internuclear distances R1–R6 of the Si2Li2 structures.

Ri

Internuclear
distances

R1 Si(2)–Li(3)
R2 Si(1)–Li(3)
R3 Si(1)–Si(2)
R4 Si(2)–Li(4)
R5 Si(1)–Li(4)
R6 Li(3)–Li(4)

The potential energy surface was determined using the Neural Network toolbox

implemented in MATLAB 2009 [214] provided by the University of Aberdeen. The

default feed forward Neural Network code (implemented in MATLAB) was modified

for our purpose and can be found in Appendix. Equation 7.1-4 is the functional form
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used to fit the ab initio points. This functional form is a sum of tan-sigmoid functions.

The wp, Cp etc. parameters were defined earlier. The x represents the vector of internal

coordinates. The coordinates were automatically scaled to (–1, +1) by the MATLAB

program. The Cartesian coordinates (DMC), the bond length and angle coordinates

(local grid) and the satellite coordinates (wider grid) were transformed firstly to the six

internuclear distances then to the seven polynomial invariants. This was done by a

FORTRAN subroutine program which can be found in Appendix. These polynomial

invariants were used in each fitting process.

The Neural Network toolbox divided the sampled data into three subsets: a training set,

a validation set and a test set. The main subset is the training set. At this stage the

gradient of the performance function is computed and used for updating the network

weights and biases. The validation set measures network generalization and is used to

stop training when generalization is not improving. The test set provides an independent

measure of training performance and has no effect on the training procedure. The points

used in the fitting procedure (training, validation and test) are randomly divided in the

Neural Network tool box according to the percentage of points defined for each subset.

To construct the most accurate fit (according to the number of points used in each

subset), benchmark tests were performed. The benchmark showed that 80% of the

points used in the training, 10% in the validation and 10% in the test set, gives the most

accurate and smooth fits. The influence of the number of neurons used during the

training process on the accuracy of fits was also studied. It was found that 96 neurons

gave the best results. In the Neural Network procedure the geometry of each point was

represented by the values of the seven invariant polynomials and the energy was fitted.

Initially three fits were performed: for the points with relative energies below 50000

cm−1, 35000 cm−1 and 30000 cm−1, respectively. 27174 points were used in the 50000

cm−1 fit, 24530 points in the 35000 cm−1 fit and 23668 points in the 30000 cm−1 fit.

Unfortunately these fits showed bad training performance as the best root mean square

error achieved was 408.6 cm−1. It was noticed that our wider grid sampling approach did

not properly cover the surface above relative energy of 16000 cm−1. Thus, we did not

get enough points (on the surface above 16000 cm−1) to provide a reasonable fit. Note
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that 16000 cm−1 is the maximum energy achieved by the DMC sampling process. To

overcome this issue another four fits were performed, with relative energy cut-offs at

6000 cm−1, 12000 cm−1 15000 cm−1 and 20000 cm−1, respectively. 18277 points were

used in the 6000 cm−1 fit, 18829 points in the 12000 cm−1 fit, 19522 points in the 15000

cm−1 fit and 21055 points in the 20000 cm−1 fit.

The 6000 cm−1 fit showed the best training performance with root mean square error of

11.7 cm−1. However, this fit did not cover the part of the surface which contains the

vinyl and trans type geometries and these are crucial for the ro-vibrational calculations.

Thus, the fit of 12000 cm−1 in the order of the next best performance was chosen. The

12000 cm−1 fit has a performance of 33.7 cm−1 (root mean square error). This fit covers

the whole surface needed for further calculations. The NN outputs on the 12000 cm−1 fit

are given in Figure 7.2-2. The plot includes all of the training, validation and test data

sets. The root mean square error for the validation and test sets (combined) is 53.5 cm-1.

As expected this is larger than the corresponding value for the training set but still

reasonable. It was noticed that several dozen points are outliers. Moreover, for the

points in the range 0-4000 cm−1 the maximum difference (between calculated and fitted

energies) is 822 cm−1, for the points between 4000-8000 cm−1 the maximum difference

is 2058 cm−1, and for the points in range 8000-12000 cm−1 the maximum difference is

2707 cm−1. However, the average absolute difference between calculated and fitted

energies for the points up to 4000 cm−1 is 1.29 cm−1and 91.65 cm−1 for the points

between 4000 cm−1 and 8000 cm−1. The average absolute difference for points above

8000 cm−1 is 322.25 cm−1. The outlier points were generated by the wider grid sampling

procedures, for which the sampling was quite sparse. Thus, the Neural Network toolbox

had not enough points in those regions to achieve much better fitting. Nevertheless the

12000 cm−1 fit is sufficiently accurate to be used for reasonable vibration-rotation

calculations using the WAVR4 program [215] (but see comment below about a “hole”).
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Figure 7.2-2. Relationship between the outputs of the network and the targets (input
energies). R is the regression value between outputs and targets. The circles represent
the data. The numbers on the x and y axes are in cm−1. The plot includes all of the
training, validation and test data sets.

The fit reproduced the calculated geometric properties well as seen in Table 7.2-5. The

differences in bond distances obtained by the fit with comparison to those calculated at

the F12 level are in the range of 0.0005 Å (for the LiSiLiSi isomer) to 0.0024 Å (for the

D_PL_TS structure). The angles are reproduced in the range of 0.01° to 0.7° (both in

the LiSiLiSi isomer).
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Table 7.2-5. Geometric properties of the Si2Li2 isomers on the fitted potential and
optimized at the CCSD(T)-F12a/VTZ-F12 level of theory.

Si2Li2

Fit CCSD(T)-F12a/

VTZ-F12

SiLiLiSi

SiLi a
2.5538 2.5524

SiSi a
2.1680 2.1660

 SiSiLi b 64.95 64.90

 LiSiSiLi b
102.60 102.58

LiSiLiSi

Si1Li2 a 2.5136 2.5141

Li1Si2 a 2.4082 2.4098

SiSi a 2.1330 2.1335

 Si1Si2Li1 b 163.50 164.22

 Si2Si1Li2 b 66.08 65.58

 LiSiSiLi b 180.00 180.00

D_PL_TS

SiLi a 2.5228 2.5217

SiSi a 2.1603 2.1627

 SiSiLi b 64.63 64.62

 LiSiSiLi b 180.00 180.00

DM_TS

Si1Li2 a 2.5265 2.5249

Li1Si2 a 2.3998 2.4017

SiSi a 2.1354 2.1372

 Si1Si2Li1 b 141.88 142.49

 Si2Si1Li2 b 65.75 66.15

 LiSiSiLi b 122.75 123.38
a ångström
b degrees

The contour plot depicted in Figure 7.2-3 represents the final fitted PES. The arrowed

line shows the reaction path between the SiLiLiSi and the LiSiLiSi isomers.
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Figure 7.2-3. A two-dimensional cut through the six-dimensional potential energy
surface using the bond-length, bond-angles coordinate system.

Discussion and Conclusions

The DMC calculations for the critical points did not show any holes in the PES.

However, with the addition of a correction term to avoid unphysically low energies at

phi angles below 60°, the calculated full-dimensional potential energy surface was of

sufficient quality to perform variational-vibrational calculations using the WAVR4

program. This issue will be discussed in more detail in the next chapter.

A1 SiSiLi

60 80 100 120 140 160 180

D
ih

e
d
ra

lL
iS

iS
iL

i

80

100

120

140

160

180

LiSiLiSi

SiLiLiSi

DM_TS

D_PL_TS



182

8 Vibrational properties of the Si2Li2 isomers.

8.1 Vibrational calculations.

The perturbation theory discussed in section 2.1 (theoretical introduction to molecular

vibrations) is used to approximate diagonalization of the Hamiltonian matrix, and solve

the Schrödinger equation in a fast and efficient way. However, if more accurate results

are required, other methods should be employed. Thus, the variational method of

diagonalization of the Hamiltonian matrix, which allows solving the Schrödinger

equation “exactly”, can be used instead of perturbation theory. The WAVR4 program

[215], which is based on the variational method, will be used here to calculate

vibrational spectra for the Si2Li2 potential energy surface.

The WAVR4 program employs primitive basis set functions which are composed of the

following: a bending basis set defined by jmax, lmax and kmax and a radial basis set defined

by n1, n2 and n3 for the M–Li stretches and Si–Si stretch where M is the orthogonal

canonical point, see Figure 8.1-1. M is close to the centre-of-mass of the molecule. The

radial functions employ the discrete variables representation (DVR) [117, 215]

approach. A product of either Morse-oscillator or spherical oscillator functions is used

for the radial coordinates. Morse-oscillator functions will be used here for all the radial

coordinates. The angular basis for the bending-rotation functions is a non–direct–

product finite basis representation (FBR) [117, 215]. An explicit sequential-

diagonalisation and truncation approach and the mixed FBR–DVR basis representation

are used in the WAVR4 program. The sequential-diagonalisation and truncation method

is employed to avoid problems caused by large Hamiltonian matrices, which can arise

during the calculations. If the primitive basis set is large enough for convergence then it

is possible to calculate accurate wavefunctions and eigenvalues for the Schrödinger

equation [117, 215].

To avoid large changes in the radial coordinates, including those involving the Li atoms,

orthogonal satellite coordinates were employed here. Orthogonal satellite coordinates

were developed by Mladenovic [216] and are shown in Figure 8.1-1. These coordinates

are very useful to study isomerising systems.
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Figure 8.1-1. Graphical representation of the orthogonal satellite coordinates for Si2Li2,
where M is the orthogonal canonical point.

All calculations were performed using the 12000 cm−1 potential energy surface

calculated previously at the CCSD(T)-F12a/cc-pVTZ-F12 level of the theory. All

calculations were carried out on the new EastChem Research Computing Facility,

which provides access to a 2376-core Intel Xeon cluster hosted by the School of

Mathematics and Statistics at the University of St Andrews.

It was shown in the previous chapter that the 12000 cm−1 potential energy surface (PES)

contains a region of unphysical low (negative) potential energy. This issue was also

noticed during the ro-vibrational calculations as the ZPE of the global minimum was

found to be negative, because the wavefunction is localized at the negative region. This

can be explained by the sparse sampling for Si2Li2 geometries with phi (dihedral) angles

below 60°. Thus, a correction term was implemented to the program code to avoid the

appearance of the negative potential energy region on the surface during vibrational

calculations.

The term 2106e–0.11x where x is the phi angle value was added to the potential energy as

a function of the phi angle as seen in Figure 8.1-2.
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Table 8.1-1. Difference between values calculated with CCSD(T)-F12/VTZ-F12 and the
surface with the correction term added as well as the original fitted surface.

phi angle a

Differences between
CCSD(T)-F12/VTZ-F12
energy and the potential

augmented with the
correction term b

Differences between CCSD(T)-
F12/VTZ-F12 energy and the

original fitted potential b

36.00 −4414.7 33711.7

41.14 2343.4 23997.4

46.29 4062.4 16360.8

51.43 3547.0 10531.9

56.57 2326.5 6293.7

61.71 1157.0 3410.2

66.86 337.7 1617.4

72.00 −85.0 641.8
a degrees
b cm−1

It can be seen that after introduction of the correction term to the potential the

appearance of the negative well is avoided. However, the potential energy rises too

steeply, so the vibrational energies calculated here will be too high.

The primitive vibrational basis sets were modified to achieve approximate convergence,

in particular so that the calculated ZPE value was close to the value obtained by a

second-order perturbation theory anharmonicity calculation done at the MP2/aug-cc-

pVTZ level of theory which is 943.02 cm−1. Table 8.1-2 shows the ZPE calculated with

different sizes of the radial and angular basis sets. It can be seen the large changes in the

ZPE occurred when the angular basis was increased. The same pattern was observed

when higher energy levels were analysed. For instance, when the radial basis n1, n2 and

n3 (5, 5, 5) and angular basis jmax, lmax and kmax (10, 10, 8) were employed the first

calculated energy level above the ground state was 306.1 cm−1 and the eighth one was

964.9 cm−1, whereas with the radial basis n1, n2 and n3 (5, 5, 5) and angular basis jmax,

lmax and kmax (20, 20, 14), the first calculated energy level above the ground state

dropped to 130.6 cm−1 and the eighth one went to 626.5 cm−1.
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Table 8.1-2. ZPE calculated with different sizes of the radial and angular basis sets.

ZPE a radial basis b angular basis c cpu time [s]

1781.8 4, 4, 4 8 , 8, 7 3

1710.4 5, 5, 5 8, 8, 7 6

1411.9 5, 5, 5 10, 10, 8 54

1131.2 5, 5, 5 14, 14, 10 888

1022 5, 5, 5 18, 18, 12 12030

992 5, 5, 5 20, 20, 14 43323

972.7 6, 6, 5 21, 21, 15 141017

966.2 6, 6, 6 22, 22, 15 396958
a cm−1

b basis defined by n1, n2 and n3 the first two correspond to the M–Li stretches
and the last one to the Si–Si stretch

c basis defined by jmax, lmax and kmax

Approximate convergence was achieved when 6 radial basis functions each for all three

stretches were used and angular basis jmax, lmax and kmax (22, 22, 15) values for the

bending basis where employed. The zero point energy calculated at this level was 966

cm−1, 23 cm−1 higher than that calculated by the MP2/aug-cc-pVTZ second-order

perturbation theory calculations. It was not possible to achieve more accurate zero-point

energies, as the variational vibrational calculations are very CPU-time demanding and

the final calculation already took several days.

We investigated the changes in the calculated energy levels above the ground state with

respect to increasing size of the radial and angular basis sets. The comparison can be

seen in Table 8.1-3. Only the lowest 2400 totally symmetric energy levels (vibrational

states of A1 symmetry) were calculated.

The first six and 8th-9th energy levels show small differences with respect to the

increasing size of the radial and angular basis sets, however, for the 7th and 10th-12th

energy levels the differences are significantly larger. A similar picture can be seen for

the higher (above 12th) energy levels as well. The average difference for the first 35

totally symmetric energy levels is 14.5 cm−1. Thus, we decided to assign only the lower

reasonably converged energy levels. Additionally the 1000th energy level has energy

3143.9 cm−1, and the 2400th energy level has energy 4121.9 cm−1. The differences with
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respect to the increasing size of the radial and angular basis sets for these levels are:

76.7 cm−1 and 152.9 cm−1, respectively.

The identification of the energy levels was difficult as the vibrational levels were very

close to each other as seen in Table 8.1-3. To solve this issue, a program developed by

Kozin et al. [217] was used. The program analyses the wave functions calculated by

WAVR4 and produces probability densities with respect to the phi or theta angles which

are very helpful to assign an energy level. The information provided by the MP2

anharmonicity calculations were also used as additional references and can be seen in

Table 8.1-4.
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Table 8.1-3. Energy levels calculated using two different combinations of the radial and
angular basis sets

ZPE
angular
basis

radial
basis ZPE

angular
basis

radial
basis

966.2 6, 6, 6 22, 22, 15 972.7 6, 6, 5 21, 21, 15 difference
[cm−1]energy lvl. energy [cm−1] energy lvl. energy [cm−1]

1 0.00 1 0.00
2 102.96 2 106.40 −3.44

3 249.71 3 252.59 −2.88

4 289.18 4 290.98 −1.80

5 412.10 5 413.43 −1.32

6 457.66 6 462.77 −5.11

7 491.79 7 518.13 −26.34

8 523.67 8 528.33 −4.66

9 554.14 9 554.85 −0.70

10 571.64 10 609.62 −37.97

11 631.45 11 646.63 −15.18

12 641.85 12 659.95 −18.10

13 657.25 13 663.60 −6.35

14 661.77 14 668.74 −6.97

15 708.38 15 718.49 −10.12

16 716.66 16 760.97 −44.31

17 768.51 17 771.61 −3.10

18 777.37 18 774.32 3.06

19 782.10 19 811.37 −29.27

20 810.62 20 824.76 −14.14

21 836.07 21 839.35 −3.28

22 838.26 22 847.42 −9.16

23 846.37 23 861.11 −14.74

24 853.90 24 894.55 −40.65

25 882.62 25 899.93 −17.32

26 898.40 26 918.82 −20.42

27 912.81 27 925.41 −12.61

28 918.93 28 947.32 −28.39

29 926.29 29 956.91 −30.62

30 958.02 30 962.13 −4.11

31 967.88 31 969.43 −1.55

32 970.55 32 1020.17 −49.62

33 999.41 33 1021.60 −22.19

34 1017.55 34 1027.23 −9.68

35 1021.64 35 1038.07 −16.43
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Table 8.1-4. Vibrational information on the dibridged Si2Li2 isomer provided by
anharmonicity calculations at the MP2/aug-cc-pVTZ level of theory and second order
perturbation theory.

MP2/AVTZ

mode Symmetry
anharmonic

vibration
wavenumber [cm−1]

harmonic vibration
wavenumber [cm−1]

vibrational motion
descriptions

 A1 543 548 SiSi str.

 B2 433 422 SiLi antisym. str.

 A1 442 408 SiLi sym. str.

 A2 208 196 SiLi antisym. str.

 B1 199 193 SiLi antisym. str.

 A1 97 104 Butterfly

Note, that the anharmonic vibration levels for the and  vibration modes have

higher energies than their corresponding harmonic vibration levels. This effect could be

caused by Fermi resonances (for the  and vibration modes) which

can be responsible for the breakdown of the second order perturbation theory (which

assumes weak interactions between vibrations) in the calculation of the anharmonic

corrections (for the  and 6 vibration modes). Fermi resonances could also

explain the presence of large positive values for anharmonic constants:  and 

shown in Table 4.5-6 (Chapter 4.5).
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Table 8.1-5. The assigned energy levels of the Si2Li2 dibridged structure calculated

using the WAVR4 program.

energy levels energy cm−1 mode a mode b

1 0.00 Ground state

2 102.96 

3 249.71 

4 289.18 

5 412.10 

6 457.66 

7 491.79 

8 523.67 

9 554.14 

10 571.64 

11 631.45 
a conclusive assignment of modes
b not easy to define mixture of modes

The wave function analysis allowed us to assign the first 11 energy levels which are all

vibrational levels of the dibridged structure. The results are shown in Table 8.1-5. Note

that all of the states can be only approximately assigned. Thus, the higher vibrations are

a mixture of the states shown in last column of the table. Nevertheless, the

wavefunction analysis allows us to identify with reasonable accuracy these low-lying

energy levels of the dibridged structure.

We had to limit our analysis to the vibration levels of the dibridged isomer only, as the

PES contains holes even after the correction term and this prohibited us doing

vibrational calculations that cover the monobridged vibrational states (higher than 4200

cm-1). However, it gave us an opportunity to locate the regions with sparse sampling on

the PES which could be fixed by introducing a wider grid sampling procedure.

The program developed by Kozin et al. [217] used in the above assignment process

gives us an opportunity to create probability-density plots for the phi, MSiLi1 and

MSiLi2 angles. The MSiLi1 and MSiLi2 angles will be abbreviated as theta1 and

theta2, respectively. The probability-density plots were created for the 3rd, 7th, 8th and

10th energy levels and can be seen in Figure 8.1-3 to Figure 8.1-6. We have a conclusive

assignment of the modes for the 3rd and 8th energy levels. However, the 7th and 10th
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energy levels are composed from a mixture of states, and thus, the assignment of the

modes is not straightforward. The plots below can help a reader to understand the issues

we were struggling with during the process of assignment of the modes.

Figure 8.1-3 shows no quantum excitation for the theta1 and theta2 angles however, a

two-quantum excitation can be found for the phi angle. These give conclusive

assignment of mode as . A similar picture can be found for the 8th energy level

(Figure 8.1-5). There is no quantum excitation for the theta1 and theta2 angles however,

a one-quantum excitation is observed for the phi angle including one quantum of

excitation in . These is consistent with the .
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Figure 8.1-3. Probability densities for the phi, theta1 and theta2 angles of the 3rd energy level.
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Figure 8.1-4. Probability densities for the phi, theta1 and theta2 angles of the 7th energy level.
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Figure 8.1-5. Probability densities for the phi, theta1 and theta2 angles of the 8th energy level.
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Figure 8.1-6. Probability densities for the phi, theta1 and theta2 angles of the 10th energy level.
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Figure 8.1-4 shows a one-quantum excitation for the theta1 angle and a one-quantum

excitation for the theta2 angle, whereas no quantum excitation was observed for the phi

angle. Thus, these can be assigned as a mixture of two states and (which involve

respectively antisymmetric and symmetric distortions of the theta1 and theta2 angles).

A similar picture is observed for the 10th energy level (Figure 8.1-6): a one-quantum

excitation for the theta1 angle, a one-excitation for the theta2 angle, and no quantum

excitation for the phi angle. Thus, these can be also assigned as a mixture of the states

and .

Discussion and conclusions:

The calculated full-dimensional potential energy surface was used to perform

varational-vibrational calculations using the WAVR4 program. We are aware of a hole

in the PES for phi values below 60°, however, the implementation of the additional term

of 2106e–0.11x to the potential allowed us to calculate successfully the lowest 2400

energy levels of the Si2Li2 structure. The low-lying energy levels are qualitatively

corrected.

The hole in the potential energy surface prevented us from performing successful

variational-vibrational calculations for energy levels above 4200 cm−1 which would

cover the monobridged isomer. A potential energy surface accurate over a wider range

is required to do so.
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9 Conclusions

Calculations of the Si2HX and Si2Li2 systems (where X= H, Li, F and Cl) showed that

bridged minima occur in all cases while trans and vinyl minima can be found only in the

X=H, F and Cl systems. The bridged structures (monobridged or dibridged) are global

minima in all cases. The disilynes have significantly different isomerisation properties

compared with the C2H2 species. The CCSD(T)-F12a/cc-pVTZ-F12 level of theory

showed accuracy comparable to the CCSD(T)/cc-pV(6+d)Z level for geometric

properties and to the CCSD(T)/cc-pV(Q+d)Z level for harmonic vibrational

frequencies. Thus, I recommend the CCSD(T)-F12a/cc-pVTZ-F12 level of theory as the

most accurate for calculation on small silicon systems including full dimensional

potential energy surface calculations. It was concluded that core-valence contributions

are more important than relativistic corrections for Si2XLi structures (where X=H or

Li). The B3LYP/6-311+G(d) method gives the most accurate electron affinity results.

However, the B3LYP/6-311+G(d) method is not reliable for calculating the H+ and Li+

binding energies.

The Neural Network approach proved to be an effective and fast potential energy

surface fitting tool. The DMC sampling procedure employed here was successful.

However, the coordinate sampling ranges used in the wider grid sampling procedure

were too ambitious and many calculated points were found in regions with energies

above 50000 cm−1. Thus, not enough points were available to fit the potential energy

surface above 12000 cm−1. Additional calculations using smaller coordinate sampling

ranges will be required to obtain more accurate results. The calculated full-dimensional

potential energy surface was of sufficient quality to perform variational-vibrational

calculations using the WAVR4 program. The Si2Li2 system possesses a high density of

vibrational energy levels, which makes identification of the vibrational modes difficult.

Nevertheless, conclusive assignments of the vibrational modes of Si2Li2 were made for

the eleven lowest-lying energy levels.
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10 Publication and presentations resulting from this thesis

10.1 Publication

"Theoretical studies of bridging structures and isomerism in substituted disilynes"

Lukasz M. Serafin, Tanja van Mourik and Mark M. Law

Manuscript in preparation (for submission to Organometallics)

10.2 Presentations and posters

13th May 2009, ScotCHEM Computational Chemistry Symposium, Heriot-Watt

University Edinburgh – POSTER

8th April 2010, ScotCHEM Computational Chemistry Symposium, University of

Strathclyde – POSTER

6th July 2010, RSC Theoretical Chemistry Group Conference, University of Nottingham

– POSTER

14th-18th February 2011, Workshop on Theoretical Chemistry – Explicitly correlated

methods, Mariapfarr, Austria – TALK

7th June 2011, ScotCHEM Computational Chemistry Symposium, University of

Edinburgh – TALK

27th-29th June 2011, RSC Theoretical Chemistry Group Conference, University of

Nottingham – TALK

26th January 2012, University of St Andrews – TALK
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12 Appendix

Fortran subroutine programs and MATLAB script written by Lukasz M. Serafin for the

work described in this thesis:

12.1 The Neural Network MATLAB script.

function net = mine_new(PES,energy)
% CREATE_FIT_NET Creates and trains a fitting neural network.
%
% NET = CREATE_FIT_NET(PES(inputs),energy(targets) takes these arguments:
% PES - RxQ matrix of Q R-element input samples
% energy - SxQ matrix of Q S-element associated target samples
% arranged as columns, and returns these results:
% NET - The trained neural network
%
% net = mine(PES,energy);

net.numInputs=7; % input of each NN is a combination of i variables
net.input{1}.size=7;
net.numLayers=2;
net.layers{1}.size=7;
net.layers{2}.size=10;
net.inputConnect(1)=1; % connect the input to the input layer
net.layerConnect(2,1)=1;
net.outputConnect(2)=1;

% Transfer Functions
net.layers{1}.transferFcn='tansig'; % Transfer function of 1st layer
net.layers{2}.transferFcn='purelin'; % Transfer function of 2nd layer

% weights biases
net.biasConnect=[1;1];

net.initFcn='initlay';
net.layers{1}.initFcn='initnw';
net.layers{2}.initFcn='initnw';

% Create Network
numHiddenNeurons = 96; % Adjust numer of neurons as desired
net = newfit(PES,energy,numHiddenNeurons);
net.divideParam.trainRatio = 80/100; % Adjust a trainning ratio as desired
net.divideParam.valRatio = 10/100; % Adjust a validation ratio as desired
net.divideParam.testRatio = 10/100; % Adjust a test ratio as desired
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net.trainFcn = 'trainlm'; % Training function Levenberg-Marquardt

% For a list of all training functions type: help nntrain
% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mae'; % Mean absolute error

% Train and Apply Network
[net,tr] = train(net,PES,energy);
outputs = sim(net,PES);

bias1=net.b{1}
bias2=net.b{2}
iweight=net.IW{1,1}
lweight=net.LW{2,1}

% write down out's into a *.dat file

dlmwrite('outbw.dat', bias1,'-append','delimiter', '\t', 'precision', '%.6f');
dlmwrite('outbw.dat', bias2,'-append','delimiter', '\t', 'precision', '%.6f');
dlmwrite('outbw.dat', iweight,'-append','delimiter', '\t', 'precision', '%.6f');
dlmwrite('outbw.dat', lweight,'-append','delimiter', '\n', 'precision', '%.6f');

% max and min for all input data
dlmwrite('outbw.dat',min(PES,[],2),'-append','delimiter', '\t', 'precision', '%.6f');
dlmwrite('outbw.dat',max(PES,[],2),'-append','delimiter', '\t', 'precision', '%.6f');
dlmwrite('outbw.dat',min(energy,[],2),'-append','delimiter', '\t', 'precision', '%.6f');
dlmwrite('outbw.dat',max(energy,[],2),'-append','delimiter', '\t', 'precision', '%.6f');

% output energy after fitting
dlmwrite('out_ene.dat', outputs,'-append','delimiter', '\t', 'precision', '%.6f');

% Plot
plotperf(tr)
plotregression(energy,outputs)
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12.2 Fortran programs.

Program to transform the Cartesians to the polynomials coordinates and create inputs

files, which will be used in MATLAB NEURAL NETWORK tool box.

PROGRAM READER

!

IMPLICIT NONE

DOUBLE PRECISION

::T1,AX1,AY1,AZ1,AX2,AY2,AZ2,AX3,AY3,AZ3,AX4,AY4,AZ4,SCF,ENERGY,BOHR,C

M,MINIMUM_F12,MINIMUM_SCF

CHARACTER(LEN=*), PARAMETER :: FMT1 =

"(T1,F10.8,1X,F7.4,1X,F7.4,1X,F7.4,1X,F6.2,1X,F6.2,1X,F7.2,1X,F13.6,1X,F13.6)"

CHARACTER(LEN=*), PARAMETER :: FMT2 = "(/)"

PARAMETER (MINIMUM_F12= -593.0647637D0)

PARAMETER (MINIMUM_SCF= -592.7489725D0)

PARAMETER (BOHR=0.0174532925D0)

PARAMETER (CM = 219474.63D0)

!

INTEGER :: nDATA,i

!

OPEN (unit=5,FILE='print.temp2')

OPEN (unit=9,FILE='in_atom.dat')

OPEN (unit=10,FILE='poly.dat')

OPEN (unit=11,FILE='target.dat')

!

WRITE (6,*) MINIMUM_F12,CM

!

READ (5,*) nDATA

!

DO i=1,nDATA

READ(5,*) T1,AX1,AY1,AZ1,AX2,AY2,AZ2,AX3,AY3,AZ3,AX4,AY4,AZ4,SCF,ENERGY

IF (T1.GT.0.0500) THEN

WRITE (6,*) 'WARNING !!!! T1 DIAGNOSTIC TO HIGH!!!'

END IF
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IF (T1.GT.1.0D-6) THEN

CALL IN_ATOMICS

CALL TARGET_CM

END IF

END DO

!

CLOSE (5)

CLOSE (9)

CLOSE (10)

CLOSE (11)

!

CONTAINS

!

! Subroutine to calculate inter atomics and transfor them to polynomials

!

SUBROUTINE IN_ATOMICS

!

IMPLICIT NONE

DOUBLE PRECISION R1,R2,R3,R4,R5,R6,BOHR

DOUBLE PRECISION P1,P2,P3,P4,P5,P6,P7,e0,e1,f0,f1

PARAMETER (BOHR=0.0174532925)

!

602 FORMAT (1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12)

!

R1=sqrt((AX1-AX2)**2 +(AY1-AY2)**2+(AZ1-AZ2)**2)

R2=sqrt((AX1-AX3)**2 +(AY1-AY3)**2+(AZ1-AZ3)**2)

R3=sqrt((AX1-AX4)**2 +(AY1-AY4)**2+(AZ1-AZ4)**2)

R4=sqrt((AX2-AX3)**2 +(AY2-AY3)**2+(AZ2-AZ3)**2)

R5=sqrt((AX2-AX4)**2 +(AY2-AY4)**2+(AZ2-AZ4)**2)

R6=sqrt((AX3-AX4)**2 +(AY3-AY4)**2+(AZ3-AZ4)**2)

!

e0=(R2+R5)/2

e1=(R3+R4)/2

f0=(R2+R4)/2

f1=(R3+R5)/2



210

P1=(R5+R2+R3+R4)/4

P2=(e0**2+e1**2)/2

P3=R1

P4=(f0**2+f1**2)/2

P5=(R3**2+R2**2+R4**2+R5**2)/4

P6=R6

P7=(R3**3+R2**3+R4**3+R5**3)/4

!

WRITE (10,602) P1,P2,P3,P4,P5,P6,P7

END SUBROUTINE IN_ATOMICS

!

! Subroutine to get cm-1

!

SUBROUTINE TARGET_CM

IMPLICIT NONE

602 FORMAT (1X,F14.7)

DOUBLE PRECISION F12

!

F12=(ENERGY-MINIMUM_F12)*CM

WRITE (11,602) F12

END SUBROUTINE TARGET_CM

END PROGRAM
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Program to transform the satellite coordinates to the polynomials coordinates and

create inputs files, which will be used in MATLAB NEURAL NETWORK tool box.

PROGRAM READER2

!

IMPLICIT NONE

DOUBLE PRECISION ::Rr2,Rr3,Rr1,A1,A2,D1

CHARACTER(LEN=*), PARAMETER :: FMT1 =

"(T1,F10.8,1X,F7.4,1X,F7.4,1X,F7.4,1X,F6.2,1X,F6.2,1X,F7.2,1X,F13.6,1X,F13.6)"

CHARACTER(LEN=*), PARAMETER :: FMT2 = "(/)"

!PARAMETER (MINIMUM_F12= -593.0647637D0)

!PARAMETER (MINIMUM_SCF= -592.7489725D0)

!PARAMETER (MAX_E= -592.8369477D0) !50k

!PARAMETER (MAX_E= -592.9280736D0) !30k

!PARAMETER (MAX_E= -592.9052920D0) !35k

!PARAMETER (MAX_E= -593.0374257D0) !6k

!PARAMETER (MAX_E= -593.0192003D0) !10k

PARAMETER (MAX_E= -593.0100877D0) !12k

!PARAMETER (MAX_E= -592.9736370D0) !20k

!

INTEGER :: nDATA,i

!

OPEN (unit=5,FILE='satelite.dat')

OPEN (unit=9,FILE='R1-R6.dat')

!

READ (5,*) nDATA

!

DO i=1,nDATA

READ(5,*) Rr1,Rr2,Rr3,A1,A2,D1

!

CALL IN_ATOMICS

! CALL TARGET_CM

END DO

!

CLOSE (5)
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CLOSE (9)

!

CONTAINS

!

! Subroutine to calculate inter atomics and transfor them to polynomials

!

SUBROUTINE IN_ATOMICS

!

IMPLICIT NONE

DOUBLE PRECISION R1,R2,R3,R4,R5,R6,X1,Y1,Z1,Rxy,X2,Y2,Z2,BOHR,PI

DOUBLE PRECISION P1,P2,P3,P4,P5,P6,P7,e0,e1,f0,f1

PARAMETER (BOHR=0.0174532925)

PARAMETER (PI=3.141592654D0)

!

602 FORMAT (1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12,1X,F16.12)

!

R3=Rr3

R1=SQRT((Rr3/2.0D0)**2+Rr1**2-(2*(Rr3/2.0D0)*Rr1*COS(BOHR*A1)))

R2=SQRT((Rr3/2.0D0)**2+Rr2**2-(2*(Rr3/2.0D0)*Rr2*COS(BOHR*(180.0D0-A2))))

R4=SQRT((Rr3/2.0D0)**2+Rr1**2-(2*(Rr3/2.0D0)*Rr1*COS(BOHR*(180.0D0-A1))))

R5=SQRT((Rr3/2.0D0)**2+Rr2**2-(2*(Rr3/2.0D0)*Rr2*COS(BOHR*A2)))

X1=Rr1*SIN((A1)*PI/180.0D0)

Y1=0.0D0

Z1=Rr1*COS((A1)*PI/180.0D0)

X2=Rr2*SIN(A2*PI/180.0D0)*COS(D1*PI/180.0D0)

Y2=Rr2*SIN(A2*PI/180.0D0)*SIN(D1*PI/180.0D0)

Z2=Rr2*COS(A2*PI/180.0D0)

!

R6=DSQRT((X1-X2)**2+(Y1-Y2)**2+(Z1-Z2)**2)

!

WRITE (9,602) R1,R2,R3,R4,R5,R6

!

END SUBROUTINE IN_ATOMICS

! Subroutine to get cm-1 same like in the program above

END PROGRAM
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Example of a print.temp2 input file which is needed for the above Fortran subroutine programs:

T1 D1 Cartesians SCF F12

0.023 0.319 0.0650 -1.1958 0.3647 -0.0455 1.0625 -1.2064 1.9903 -0.1639 -1.2641 -1.8029 -0.0584 -592.7429 -593.0586

0.023 0.339 -0.0185 -1.1264 0.2567 0.0305 1.1338 -1.4013 1.8652 0.1234 -1.1342 -1.8508 0.0911 -592.7429 -593.0592

0.023 0.335 0.0866 -1.1155 0.4139 0.1245 1.1036 -1.4551 1.8298 0.0279 -1.3543 -1.8043 -0.0769 -592.7435 -593.0569

0.023 0.306 -0.0072 -1.0997 0.2928 -0.1194 1.1254 -1.4763 1.7567 -0.0160 -1.4811 -1.8854 -0.0786 -592.7432 -593.0568

0.023 0.198 0.0409 -1.1583 0.2013 -0.0356 1.1193 -1.3495 1.9121 -0.2775 -1.2799 -1.8425 -0.1190 -592.7419 -593.0590

0.022 0.338 0.0792 -1.0185 0.2830 -0.0470 1.2179 -1.3211 1.8268 0.1108 -1.2586 -1.9216 -0.0843 -592.7447 -593.0598

0.023 0.290 -0.0382 -1.2200 0.2820 0.1176 1.0340 -1.2287 1.6580 0.0978 -1.4548 -1.9289 -0.1446 -592.7376 -593.0545

0.023 0.457 0.0212 -1.1128 0.2261 0.0375 1.0915 -1.3519 1.8937 0.0797 -1.5657 -1.6342 -0.0137 -592.7440 -593.0577
.
.
.
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The table can be easily created using the table command in molpro:

table qlabel, ii, ti, di, ax1, ay1, az1, ax2, ay2, az2, ax3, ay3, az3,
ax4, ay4, az4, escf, e
head qlabel, ii, t1, d1, ax1, ay1, az1, ax2, ay2, az2, ax3, ay3, az3,
ax4, ay4, az4, scf, energy

Then by using the "grep" and "cat" UNIX commands:

 grep QQ *.out | grep -v QLABEL > print.temp (>> append)

 cat print.temp | sed 's/[\ ][\ ]*/\t/g' | cut -f4,6-19 > print.temp2


