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Abstract

The molecular structures of the Si,HX, Si,Li,, SiGeHLi and C,H, species (where X=H,
Li, F and Cl) were studied. All of these species have more than one isomeric form. The
critical points on the potential energy surfaces of the Si,HX, Si,Li,and C,H, species and
the minima on the SiGeHLi surface were located. The full six-dimensional potential
energy surface (PES) of the Si,Li, molecule was calculated (for the first time) using the
CCSD(T)-F12alcc-pVTZ-F12 level of theory.

The core-valence, zero-point energy and relativistic corrections for the Si,HLi and
Si;Li, species were calculated. Additionally, the electron affinity and Li*/H" binding
energies for the SioHLi and SisLi, structures were investigated. Furthermore, the
anharmonic vibrational-rotational properties for the Si;HLiI and Si,Li; structures were
calculated using second-order perturbation theory.

The recently developed CCSD(T)-F12a method with the cc-pVTZ-F12 basis set was
employed to obtain geometries and relative energies (for the Si,HLi, Si,HF, Si,HCI and
SioLi; structures) and vibrational frequencies (for the Si;H, and SioLi, structures). The
CCSD(T) method with the cc-pVXZ, aug-cc-pVXZ and aug-cc-pV (X+d)Z basis sets,
CCSD(T)-F12alcc-pV XZ (where X=2-4) and the B3LY P/6-311+G(d) levels of theory
were also used. Comparison was made of the geometric properties and vibrational
frequencies calculated at the different levels of theory.

The calculated geometric properties for al the studied species and vibrational
frequencies (for the Si;H, structures) show good agreement with the experimental and
theoretical literature.

The PES of Si,Li, was used to perform large scale variational vibrational calculations
using the WAVR4 program. The first 2400 totally symmetric energy levels were
caculated. The low-lying energy levels were qualitatively correct. Conclusive
assignments of the vibrational modes of the Si,Li, structures were made for the eleven

lowest lying energy levels.
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Introduction

The am of the following work is extended investigations of the physical-chemical
properties of substituted disilynes, which include: bonding properties, vibrational
frequencies, electron affinities, proton binding energies and isomerisation properties.
Also afull six-dimensional potential energy surface (PES) with additional variational-
vibrational energies will be calculated for the most interesting substituted disilyne
Species.

Silicon is the second most abundant element in the earth’s crust, and thus silicon
chemistry can be very interesting to study and investigate. Silicon in various forms such
as silicon dioxide (silica) or silicates has been an inherent companion during the long
history of human civilization and technology, starting as a main part of brick, cement or
porcelain and is currently used as the principal component for semiconductors, batteries
and diagnostic industry domains [1]. Applications of silicon have large impact on the
modern world economy, so any new knowledge or more accurate physical-chemical
properties would be very beneficial.

Silicon is aso an essential element in biology, such as a trace element in plants, but
mostly employed by various sea species [2]. For instance sea sponges need silicon in
order to have structure and other biological forms use silicon to build the striking array
of protective shells[3].

Silicon compounds also occur as candidates for interstellar molecules [4-6]. For
instance the ab initio calculation of IR bands done by Osamura and Kaiser on the Si;Hy
(where x=1-6) species was used to search for these molecules in the circumstellar
envelope of carbon star IRC+10216 [4, 6]. The silicon abundance in the atmosphere of
the He-weak star HD 21699 was investigated recently by Pavlienko et al. [7].

One of the reasons for the many occurrences of silicon compounds in various aspects of

the surrounding world is the unusual physical-chemical properties of silicon.



There is interest in the unusual chemical bonding properties of silicon, specialy the
formation of multiple bonds, which in compounds of elements heavier than carbon (Si,
Ge, Sn and Pb) was for along time doubted because of the considerable Pauli repulsion
between the electrons of the inner shells [8-10]. Silicon compounds belong to the
carbon group in the periodic table (group 14), so they may have similar physical and
chemical properties as carbon compounds and can create similar compounds. However,
it was noticed in the early 1980’ s that heavier elements than carbon can exhibit unusual
geometries [11-13], such as dibridged and monobridged structures. Also, the absence of
a linear structure as a minimum on the potential energy surface of Si;H, was a big
surprise. Explanations of these properties have been reported before [14-17]. Lein et al.
investigated the interactions between the EH moieties in E;H, molecules (where E = C,
Si, Ge, Sn and Pb). They showed that the bonding between the EH moieties for the
E=Si—Pb species (which differ from C) is more favorable in the (X?[]) ground state than
in the (e"Y") exited state as the excitation energy of EH (where E = Si—Pb) is higher
than for CH [14]. Furthermore bridged structures of E;H, can be created, because both
the doubly- and singly-bridged structures possess three bonding orbital contributions:
one ¢ bond and two E—H donor-acceptor bonds in the dibridged structure, and one ©
bond, one E—H donor-acceptor bond and one lone-pair donor-acceptor bond in the
monobridged isomers [14]. In addition, MRCI-SD/aug-cc-pVQZ calculations of SioH;
structures showed that the triplet species have higher energy than the singlet structures
[14].

A comparison of slicon hydrides with carbon analogues can lead to a better
understanding of silicon’s bonding properties. A full-dimensional quantum study of
acetylenelvinylidene isomerisation was done by Zou and Bowman [18]. The global
minimum structure is the triply-bonded acetylene form (linear form) followed by a
transition state (TS) and doubly-bonded vinylidene (as a second minimum). The heat of
isomerisation between acetylene and vinylidene has been studied by Lineberger and co-
workers using ultraviolet photoelectron spectroscopy showing a value of 46.4 + 5.5
kcal/mol [19]. An ab initio investigation of the isomerisation reported the energy of
reaction to be 43.91+0.5 kcal/mol (CBS-QCI/APNO model of Petersson [20]) or 45.18
kcal/mol (CCSD(TQ)/CBS by Chang, Shen and Yu [21]). One of the most interesting



classes of glicon species is slicon hydrides in terms of bonding, energetic and
structural properties. Comparing the Si,H, isomers to their carbon analogues led to
remarkable observations and conclusions. For many years, many theoreticians tried to
find the best structure and energetic properties of the Si;H, species. For instance, the
earliest calculations by Wirsam [22] showed the acetylene-type form as the minimum,
however, alater study disproved this (having two imaginary frequencies [23]) in favour
of the vinylidene form. A few years later the global minimum structure corresponding
to the dibridged form was found by Lischka and Kohler [12].

Coupled-cluster theory investigations of the Si,H, isomers were performed by Grev and
Schaefer [24] and the isomers obtained are as follows with relative energies in
parentheses. dibridged (0 kcal/mol), monobridged (8.7 kcal/mol), vinylidene (11.6
kcal/mol) and trans (16.3 kcal/mol). The Si(H),S (dibridged C,,) and HSI(H)S
(monobridged Cg) isomers were observed experimentaly (by microwave and IR
spectroscopy [25, 26]). A schematic plot of the Si,H, isomers is shown in Figure 4.1-1
(page 57). The experiments verified the earlier theoretical predictions of Lischka and
Kohler [12] and Grev and Schaefer [24].

An effort to find experimentally linear triple bonded Si—Si species has remained a
challenge. However, Sekiguchi and co-workers synthesised 1,1,4,4-tetrakis
[bis(trimethylsilyl)methyl]-1,4-diisopropyl-2-tetrasilyne, a stable compound with a
Si—Si triple bond [27], the picture of the compund can be seen below:

(MesSi)HC CH(SIMes),
Pr—8i— Sy g, —Si—Pr

{MesSi)sHC CH(SiMe3)2

X-ray crystalographic analysis confirmed the triple bond as trans-bent with a bond
angle of 137.44°, bond length of 2.062 A and with the four Si atoms coplanar [27]. The
structure is very similar to (‘BusSi).MeSiSi=SiSiMe(Si'Bus)z, where 'Bu is tert-butyl,
calculated using DFT methods [28]. The natural bond order (NBO) analysis done by
Sekiguchi shows electron occupation of the two = orbitals (1.934 and 1.897 electrons)



[27]. The bond order (Wiberg bond index) of Si=Si is 2.618, indicating a genuine Si
triple bond, but the value is still less than 3 (the value calculated for acetylene) [27].

Compounds containing mixtures of Si and C elements were investigated as well in
addition to Si,H, and C,H,. The Si;H, and SICH, molecules were studied theoretically
by Frenking et al. [29] using the MP2 and CCSD(T) levels of theory. They showed that
the SICH, species differ from the Si,H, structures. The global minimum of the SiCH,
structures is the vinylidene form (hydrogens connected to the carbon atom) followed by
trans (34 kcal/mol above) and another vinylidene form (hydrogens connected to the
silicon atom) which is 84 kcal/mol less stable than the global minimum. A bridged
structure was not found. What is really interesting is that the linear form of SiCH, isa
higher-order saddle point on the PES. Thus, the substitution of a silicon by a carbon
atom in C,H, changed the properties of the PES. The geometries represent different
stationary points on the PESs. The question should be asked then, what if we substituted
one or two hydrogens in Si;H, by other elements such as F, Cl or Li? What properties
are we able to find and how do they change our understanding of the small cluster

species of the group 14 elements?

We are aware of theoretical work on the Si,HY and Si,Y, structures (where Y=F, Cl, Br
and Li) done by Bei and Feng [30]. It appears that the Si,HY and Si,Y ; structures were
optimized using the RHF/6-31G** level of theory. Thus, the results calculated here will
not be compared with such alow-level (uncorrelated) calculation.

Plasmas of silicon are used for chemical vapor deposition (CVD) in the
microelectronics industry. Also in the etching of metal surfaces halogenated silanes
(SiF4 and SiCl4) were found on surfaces such as copper [31, 32]. Moreover many of the
reactive silanes produced in such processes were studied experimentally [33], however,
other silicon compounds can occur in this type of plasma but because of their transient

nature and short lifetime, it isonly possible to study them theoretically [34].
Fluorides and chlorides of silicon were investigated both experimentally and

theoretically. Experimental thermodynamic studies were done by Walsh [35]. Ignacio
and Schlegel investigated theoretically numerous fluorine and chlorine silicon
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compounds [36, 37]. An extensive coupled cluster study was performed on a set of
mixed silicon hydrides and halides (SiH X n.n Where X=F, Cl; m=1-4; and n=0-m) by
Wilson et al. [34]. The work presented theoretical and experimental results such as the

geometric properties, atomization energies and enthal pies of formation.

Alkali-silicon species are used as power resource materials or emitters and can also
serve as promoters in catalysts [38, 39] . We are aware of the growing importance of
lithium and its connection with the silicon atom in modern industry, for example silicon
lithium-ion batteries. Thus, any investigation of electronic and bonding properties
(vibrations, rotations, anharmonic constants) for small molecules containing Si and Li

atoms can enhance the known knowledge of such structures.

The classical and inverted structures of SiHsLi and SiH3Na were studied before, both
experimentally and theoretically [40, 41]. Small clusters of the Si,Lix type (Where n=2—
10 and x=0-2) were investigated theoretically [42-45]. The theoretical studies of mixed
silicon-lithium clusters SiyLi," (where n= 1-6 and p= 1-2) and Si,M,, clusters (where
M=Li, Na and K, n<6 and p<6) performed by Aubert-Frecon et al. are significant, as a
part of the investigation concerned the Si,Li, and Si5Li,™ species. They found that the
global minimum is a dibridged structure followed (in the Si-Li,{") case) by trans (0.266
eV) and dibridged-planar (1.273 eV) structures. The trans structure in neutral Si,Li»
clusters is not a minimum, however, and the dibridged structure is still the global
minimum, followed by dibridged-planar (1.420 €V) and monobridged (1.673 €V). Note,
that the investigation by Aubert-Frecon et a. did not contain identification of minima
and transition states of SisLi, which will be provided here. Both the SiLi and Si;Li»
species were studied experimentally in the gas phase by mass spectrometry by Ihle et al.
[46]. Unfortunately, the work was published in a conference proceeding in a limited

edition in the 1970’sand it is not accessible to us.

PES calculations are very helpful to model chemical reactions including isomerisation
processes. Furthermore, ro-vibrational calculations can be performed if a full-
dimensional PES is known, which makes spectroscopic astrophysical or molecular

identifications easier. However, full-dimensiona PES calculations require the

11



calculation of energies of at least severa thousand different configurations of the
molecular system. Also the requirement of multidimensional fitting functions during

hypersurface construction only increases the complexity of such studies.

The calculation of the critical points on the PES of the Si;H, species was done using
DFT and ab initio calculations by Jursic [47, 48]. Furthermore, extensive potential
energy hypersurface calculations of the SiH, system were carried out by Gordon et al.
[49] and the potential energy and dipole moment surface of the SIHCI3 species was
investigated by He et a. [50]. Moreover the PES of hydrogen abstraction on the Si(100)
surface was done by Nakmura [51]. An extended PES calculation of the Si,H, structures
was performed by Law et a. [52]. Nevertheless full six-dimensional potential energy
surfaces of 4-atom species containing silicon atoms are quite rare in the literature.

Thus, any new potential energy surface investigations of small silicon clusters will
enhance our understanding and knowledge of molecular dynamics and ro-vibration

properties of such systems.

Various energy units were used to simplify comparison of the calculated results with the
literature; thus the energy conversion table below was prepared to help the reader. The
table is taken from Ref. [53].

Energy Conversion Table
Hartree eV cm™ kcal/mol | kJ/mol
Hartree 1 27.2107 219474.63 | 627.509 2625.5
eV 0.0367502 1 8065.73 23.069 96.4869
cm™ 455633 x 10° | 1.23981 x 10™ 1 0.0028591 | 0.011963
kcal/mol | 0.00159362 0.0433634 349.757 1 4,184

12



Theory and methods

In this thesis | used guantum chemical methods to study the geometric and bonding
properties of substituted disilynes. The methods used in the present work will be briefly
explained below.
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1 Abinitio and DFT methods.

1.1 Born-Oppenheimer approximation.

The time-independent Schrodinger equation (HY = EW, where H is the Hamiltonian
operator, ¥ is the wave function and E is the total energy of the given wavefunction)
can be solved exactly only for the H," molecule and very similar one electron systems.
One year after the great achievement of Schrédinger, Born and his PhD student
Oppenheimer proposed a “way” to make it possible to compute the wavefunction in
practical approximations. The Born-Oppenheimer (BO) approximation is the
assumption that the wavefunction y of a molecule can be separated into its electronic

and nuclear (vibrational, rotational) components [54]:

L|Jtotal=L|Jelectronic ><'~IJnuclear- 11-1

This considers the nuclei as stationary, which is a reasonable approximation, as the
nuclel are very heavy in comparison to the electrons. The Hamiltonian operator can be
written as:

H=Ty+Te + Ve (1) + Vyn(R) + Von (1, R), 1.1-2

where, Ty.Te, Vee, Vyn and V.y represent the nuclear and electron kinetic energy
operators and electron-electron nuclear-nuclear and electron-nuclear interaction
potential operators, respectively. The quantity “r” stands for all electronic coordinates

and “R” for all nuclear coordinates.

According to the assumption that nuclear kinetic energy can be neglected, the operator
Ty (consisting of the kinetic energy operators for each nucleus in the system) can be
removed from the total Hamiltonian. Thus, the electronic Schrodinger equation can be
expressed as.

H. (R)¥;(r,R)=E;(R)¥;(r,R); i=12,.., . 1.1-3
In the remaining electronic Hamiltonian (H, = T, + V..(r) + V.5 (1, R)), the nuclear
positions are frozen, and the eigenfunctions, ¥(r,R) and eigenvalue E.(R) depend

parametrically on the nuclear positions. Moreover, for each solution of equation 1.1-3
the nuclear eigenvalue equation is:

14



[Tn+Van(R) + £, (R) [x(R)=ExX(R). 11-4

The ¢,(R) (electronic energy eigenvalue) allows us to construct the static (time-
invariant) electronic potential energy if the nuclear positions remain fixed. Furthermore,
repeated calculations at different nuclear positions generate a potential energy surface
(PES). The addition of the Vyyy (R) to the g, (R) represents the full internuclear potential

energy surface and x(R) is the nuclear wave function. The Ex(R) eigenvalue is the total

energy of the molecule.

The Born-Oppenheimer approximation is usually a reasonable approximation, but
breaks down when two solutions to the electronic Schrodinger equation come close
together energetically. The LiF moleculeis a good example [55].

15



1.2 Hartree-Fock method.

We can consider several methods to solve the Schrédinger equation that include the
Born-Oppenheimer approximation.

Hartree with contributions from Slater and Fock formulated the Hartree-Fock method in
the 1930's. Slater introduced exponential functions (Slater Type Orbitals), which
describe atomic orbitals and express the antisymmetric wave function of fermionsin the
form of determinants. Fock derived the Fock state and Fock space, which are used to

describe the quantum state with a variable or unknown number of particles.

The wavefunction ¥ is expressed as a combination of molecular orbitals ¢;. As a
conseguence of the Pauli principle the wavefunction must be antisymmetric with respect
to interchange of any two electron positions [55]. Therefore, to achieve the
antisymmetry requirement the Slater determinant (SD) is used. Furthermore the
wavefunction is described by a single Slater determinant of N spin-orbitals. Single-
electron wave functions (orbitals) are represented in columns while the rows represent
the coordinates of space and spin. A two-particle system (x; and x,) the SD can be

written as:

W(xy, X,) = 1 X1 (%) X2(x1) 191

V2 1 (x2) X2 ()1
Each unknown Hartree-Fock orbital ¢; can be expressed as a linear expansion of a set

of known (normalized) basis functionsy, (conventionally called atomic orbitals):

bi = Tar > CoiXa 12-2
where Mpasis 1S the number of basis functions and c; is the molecular orbital expansion
coefficient. To solve for the set of molecular orbital expansion coefficients c,; the
variational principle is used, which alows to find the set of coefficients that minimize
the energy of the resultant wavefunction [56]. The variation principle states that the
energy of an approximate wavefunction is above or the same as the exact energy. The

eigenvalue equations for each spinorbital can be then written then as:
ﬁiq)i = Eiq)i, 1.2-3

where ¢; are a set of molecular orbitals, called Hartree-Fock molecular orbitals and F is

16



the Fock operator [55]. It describes the kinetic energy of the electron, its attraction to
the nuclel and its repulsion from a mean field of the other electrons in the atomic or

molecular system.

The matrix form of equation 1.2-2 is non-linear and must be solved iteratively: this
procedure is usually called the "self-consistent field method.”

Basis sets

There are two types of normalized basis functions y (shown in equation 1.2-2), which
are used in electronic structure calculations: Slater Type Orbitals (STO) and Gaussian
Type Orbitals (GTO). Slater Type Orbitals can be expressed as:

Xg1,1,1, (%Y, 2) = Nxlxylyzlze=or 124

While Gaussian Type Orbitals can be written as:
( =N Iy ly oz o —r? )
Xl 1,1, (%Y, 2) = Nxxyvzze o, 1.2-5

N is a normalization constant and the sum of |, |, and |, determines the type of orbitals
(for example: I, +ly+l,=1 represents a p-orbital) [55] and ¢ (zeta) controls the width of
the orbital (large ¢ gives a tight function, small ¢ gives a diffuse function). STO’s are
more accurate than GTO’'s, however the GTO's are much easier in computations
because of the Gaussian product theorem which states that the product of two arbitrary
Gaussian functions on different centers A and B is a single Gaussian located between

the two original Gaussians.

All basis sets (no matter what type) vary mostly by the number of functions used. The
smallest number of basis functions needed for an atom is called a minimal basis set. For
example: for H: 1s and for C: 1s, 2s, 2py, 2py, 2p,. Minimal basis sets use fixed-size
atomic-type orbitals. However, the minimal basis set is not accurate enough to correctly
describe molecular properties, for example bonding. Thus, to improve the basis set the
number of basis functions per atom can be increased [56]. If the number of basis
functions are doubled (or tripled etc.), this produces a Double Zeta (Triple Zeta etc.)
type basis. Now in Double Zeta for H: 1s, 1s" and for C: 1s, 1s', 2s, 25/, 2pyx, 2py, 2P,

2p,/, 2py’, 2p7. The primed and unprimed orbitals differ in size and allow for different

17



bonding in different directions [55]. The above improvement allows orbitals to change
size but not to change shape. Thus, polarized basis sets are introduced to remove this
limitation [56]. Polarized basis sets are constructed by addition of orbitals with higher
angular momentum. For example, polarized basis sets add p or higher functions to
hydrogen atoms and d or higher functions to carbon atoms. This approach improves the
description of molecular bonds [55]. To describe properly anionic molecules or systems
with lone-pairs, diffuse functions are needed. Diffuse functions are larger-sized versions
of s and p- type functions [56] and have small { exponents (electrons are found far

away from the nucleus).

There are many different types of basis sets like Pople style basis sets or correlation

consistent basis sets.

The Pople style basis sets were developed by Pople (Nobel Laureate) [57]. STO-3Gisa
minimal basis set, in which Slater type orbitals are approximated by three Gaussians
(3G). Popl€e's split-valence basis sets are called 3-21G, 6-31G or 6-311G. For example
in 6-31G the core orbital is a contracted-GTO, which is a fixed linear combination of
six Gaussians, and the valence shell is represented by two orbitals: one contracted-GTO
made of three Gaussians and one single Gaussian. Diffuse functions (denoted by +) and
polarization functions (denoted by s, p or d labels) can be added to each of the Pople
style basis sets.

Correlation consistent basis sets were developed by Dunning [58]. These basis sets are
designed to recover the correlation energy of the valence electrons [55] and are mostly
used in post-Hartree-Fock methods (discussed below). Correlation consistent split-
valence basis sets are known by the acronym cc-pVXZ, which means correlation
consistent polarized Valence X-zeta basis (where X=2-10). The correlation consistent
basis sets can be augmented by diffuse functions (denoted by prefix “aug-“) or
additional tight functions. There are also basis sets specially developed to recovery the
core-core and core-valence electron correlation (cc-pCVXZ), calculate relativistic
corrections (cc-pVXZ-DK) or even designed for specific methods such as the F12
method (cc-pV XZ-F12).

18



Different sizes of basis sets or different types of basis sets can calculate the molecular
energy, geometric properties or vibrational frequencies with a different accuracy and so

the performance of different types of basis setswill be studied here.
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1.3 MP2 method.

The motion of the electrons is correlated, a phenomenon that is not described by the
Hartree-Fock method. On average, electrons are further apart than described by the
Hartree-Fock method. The energy difference between the Hartree-Fock energy and
exact energy (for agiven basis set) is called the electron correlation energy. The neglect
of electron correlation in the Hartree-Fock method can lead to unphysical results in
comparison to experiment. A number of approaches to this weakness, usually called
post-Hartree-Fock methods, have been formulated. These methods include electron
correlation in the multi-electron wave function. One of these approaches, Maller—
Plesset (MP) perturbation theory, treats correlation as a perturbation of the Fock
operator [59].

Maller—Plesset perturbation theory can be expressed mathematically by employing
Rayleigh—Schrodinger perturbation theory (RS-PT), which treats the exact Hamiltonian
as a sum of the unperturbed Hamiltonian Hp and a small (external) perturbation H' [59]:

H=H,+AH, 131
where the A is a parameter determining the strength of the perturbation [55]. The energy
and wavefunction can then be written as a Taylor expansion:

¥ =2, + AT, + A%, + A3, + - 1.3-2
E =A°Ey + A'E; + A%E, + A3E3 + -+, 1.3-3
where W, is the n-th order correction of the wave function. The n-th order energy or
wavefunction is a sum of all terms up to order n if the A parameter is equal to 1 [55].

Thus we can collect all terms with the same power of A and get:

A%:H,¥, = E ¥,

AL, + A'Y, = W, + E, ¥,

A2 H,W, + AH'Y, = E,¥, + E,¥, + E, ¥, 1.3-4
A HW, + AW, = X0 EWas.

The zero-order wavefunction is the Hartree-Fock determinant, and the zero-order

energy isjust asum of MO energies [55], thus:
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E1=(do|H'| o). 1.3-5
MPO = E(MP0) = YN . ¢, 13-6
MP1 = MP0O + E(MP1) = E(HF). 137

It is seen that the first-order energy is exactly the HF energy.

Note that the electron correlation energy starts at second order [55].

In order to obtain the MP2 formula for a closed-shell molecule, the second-order RS-PT
formula involves a sum over doubly-excited determinants. (Singly-excited Slater
determinants do not contribute because of the Brillouin theorem [55]). This is obtained
by promoting two electrons from occupied orbitalsi and j to virtual orbitalsaand b.
The difference in the total energy of two Slater determinants is a difference in MO

energies, and the second-order M gller—Plesset correction can be written explicitly as:

2

gjtg—g3—¢&p

Note that eq. 1.3-5 is presented in the Dirac notation, which is also used in the other
theoretical chapters. The Dirac "bracket (or bracket)" notation defines the "ket" as the
vector denoted by [y), and the "bra" as the vector denoted by (¢| The "bra" is the
conjugated transpose of the "ket" and the "bracket” is then defined by (¢|) which can
be mathematically expressed as:

(dlY) = [ " ®P(x)dx. 1.3-9

More details can be found in Ref. [60].
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1.4 Coupled Cluster method.

The theoretical background of Coupled Cluster (CC) theory was formed in the 60’ s by
Cizek [61]. Generally it starts from the Hartree-Fock method and adds all types of
corrections, single, double, triple etc (S, D, T etc), to the reference wave function [55].
The coupled-cluster wavefunction can be written as an exponential Ansatz [62]:

y_ =elg,. 141
where ¢, is areference HF wavefunction and the cluster operator is written as
T:T1+T2 +T3+ 1.4-2

T, is the operator of al single excitations; T, is the operator of all double excitations

and so forth. These excitation operators are expressed as.

Tido= 2P X3 ] o, 14-3
Too= X85 XiZp t5° &5 14-4
The unknown coefficients t{ and tf}b need to be found to obtain the approximate
solution ¥ . In equation 1.4-3 and 1.4-4 i, j stand for occupied and a, b for unoccupied
orbitals. The ¢{ and ¢gb terms represent single and double excitations from occupied

orbitals (a, b) to unoccupied orbitals (i, j), respectively. Taking into consideration the
structure of T, the exponential operator eTcan be expanded into a Taylor series:

eT=1+T1+(T2+%T12)+(T3+T2T1+%Tf‘)+... 145
The T, operator generates all singly-excited states. The first term in brackets generates
al doubly-excited states: the connected T, excitations (which correspond to two
electrons interacting simultaneously) or disconnected T? excitations (which correspond
to one non-interacting pair of interacting electrons) [55]. The second term in brackets
groups all triply-excited states (“true”’ T, or “product” triples T,T; and T{) [55].

The CC and MP methods are closely connected. At fourth order (singles, doubles,
triples, and quadruples) in Maller—Plesset perturbation theory (indicated as MP4) the
quadruples correspond to the disconnected T term in CC language and the triples
corresponds to T;. The perturbation theory suggests that the most important term is T;

followed by T;. If we assume that the perturbation series is well converged at fourth

22



order, the CCD energy is equivaent to MP4(DQ) and CCSD corresponds to
MP4(SDQ). We can therefore obtain MP2, MP3 and MP4(SDQ) in the first iterations of
CCSD. The CCSDT method includes also connected triples but is a very expensive
method. A hybrid method has been constructed where the triples term arises from fifth-
order perturbation theory. This method is labelled CCSD(T) [55]. CCSD(T) is often
called "the gold standard of quantum chemistry” for its excellent compromise between

accuracy and computational cost [62].

The 7; diagnostic can be used to detemine the quality of the coupled cluster method.
The 77 diagnostic is the norm of the vector of the T1 amplitudes scaled by the number

of correlated electrons N: 7; = %' Lee et al. [63] suggested that if 7; is greater that

0.02 then the wavefunction of the system might have significant multiconfigurational
character. Nevetheless, Martin et al. and Cai et a. [64, 65], showed that CCSD(T) gives
reasonable results for 7; diagnostic values as high as 0.08. Thus, this value will be taken

as the upper limit in the coupled cluster calculations performed here.
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1.5 Explicitly correlated method-CCSD(T)-F12a/b.

The excellent accuracy of the CCSD(T) method is generally known but the CCSD(T)
method suffers from two major problems: O(N’) scaling of computational cost with
increasing molecular size and slow convergence of the correlation energy with
increasing basis set size [66]. To obtain very good and fast convergence it is necessary
to use large basis sets. Electron correlation is important for the potential energy surface
[67]. The explanation of slow convergence of the correlation energy is that the shape of
the wavefunction cusp (where two electrons approach each other) for small to
intermediate values of interelectronic distances ry, is not well described by expansion in
products of one-electron functions (orbitals) [68].

Hylleraas in his work in 1929 on the He atom [69] noticed that the wavefunction is
linear in the cusp region so he introduced the new idea where the wavefunction Ansatz
is augmented with one extra two-electron function ri, [68]. The new approach was
called the explicitly correlated method R12. The R12 method was implemented by
Kutzelnigg and Klopper for MP2 [70] and also extended to coupled cluster [71, 72] and
MRCI [73]. The early explicitly correlated methods had problems due to the occurrence
of many-electron integrals in the R12 formalism. The three-electron and four-electron
integrals are extremely difficult to calculate.

To improve efficiency and other problems many different approximations and new

ideas were proposed:

e The resolution of the identity (RI) approximation proposed by Kutzelnigg [74].

The many-electron integrals are expressed in terms of sums of products of
simpler two-electron integrals [66, 68].
Mathematically 1 = }|i){i| (where “1” is the identity operator and"(i|" is a
orthonormal basis) [75]. In the case of the R12/F12 methods the RI is used to
approximate the integrals in the projector Qy,: Q1,|aB)aB| = Q12 [76]. More
detailed explanations can be found in Ref. [74, 75].

e Fixed-amplitude Ansédtze and an aternative Ansatz for MP2-R12 [68]. The

alternative Ansatz has been used to avoid numerical problems in the optimized
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wavefunction in large molecules, and fixed amplitude Ansétze have been used to
avoid geminal basis set superposition errors. The advantages and disadvantages

of these approaches have been discussed in references [68, 76].

e Dedling with the four-electron integras by using the weak orthogonality
functional of Szalewicz (the weak orthogonality functional is a name for the

variational functional introduced by Szalewicz and co-workers [77]).

e The density fitting (DF) approximation was introduced by Ten-no and Manby
[78] and is used to rearrange the three-electron integrals before using the
resolution of the identity to decompose them into expressions involving only
two-electron integrals [78].

e Complementary auxiliary basis sets (CABSs). The resolution of identity uses
auxiliary basis sets (ABS) to deal with the many-electron integrals but this
approach gives large Rl errors so Vaeev proposed an approximation that
involves expansion in the orthogonal complement of the orbital basis set (OBYS)
[79]. The new formulation is labelled the complementary auxiliary basis set
(CABS) approach [79]. The CABS approach is found to be more numerically
robust than the ABS counterpart.

It turned out, however, that even using the above approximations and concepts the
accuracy of the correlation energies was still unsatisfactory when small or medium-size
basis sets were used [80]. This was solved using a non-linear short-range correlation
factor, such as a Slater-type function F,, = exp(—yr,,). This was proposed by Ten-no
[81] and implemented in MP2-F12 by May and Manby [82]. F12 methods use a non-
linear short-range correlation factor F;, rather than the linear correlation factor ry, in the
R12 methods [80].

Later many extensions to coupled-cluster theory (CCSD-F12) were introduced [71, 72,
83, 84].

In thiswork | focus only on the CCSD(T)F12a/b methods developed by Werner and co-
workers and implemented in the MOLPRO quantum calculation package [85]. In these
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methods the only additional effort as compared to standard CCSD(T) is an initial MP2-
F12 calculation [80]. | will introduce this method in more detail below.

Inthefollowing i, |, k, I, m, n will denote occupied orbitals; a, b, ¢, d will denote virtual
orbitals; r, s, t, u will denote any orbitals representable in the AO basis; o, B will denote
the orbitals of aformally complete virtual space and x, y will denote CABS.

The CCSD-F12 wavefunction has the form:

— T+T
Weesp-r12 = €17 2YgE 1.5-1

where Yy is the Hartree-Fock reference function.

T, = tLE2, 15-2
o _ Lol mab o 1o o

where E and E;‘B are the usual spin-free one- and two-€electron excitation operators and
tl are expansion coefficients.
The T, and T, are single and double excitation cluster operators. T, and the first part of

T, (including the E? and E3° operators for excitations into the standard virtual orbitals a

and b) are the same as in standard CCSD, while the new additional term To(lé adds the

explicitly correlated contributions:

T(llig = (aB|leF12|mn)T;r]1n 154

The F,, operator is a short-range correlation factor. The projector Q,, is needed to
make the F, configurations (|df™) = TO%“A;.‘BMD) ) orthogonal.

If we want to describe the wavefunction cusp for r;, - 0 over the whole range of
interel ectronic distances correctly we need to use different Slater-type functions. Ten-no
showed [81] that the Slater-type function F,, = exp(—yr;,) has better basis set
convergence and numerical stability than the linear factor ri,. At the same time May and
Manby [82] developed the MP2-F12 method where Fy, is approximated by the frozen
linear combination of Gaussians:

Fi2 = X ciexp(—airs,). 155
We can get a ssmple explicitly correlated form of the CCSD equations by inserting the
wavefunction of eg. 1.5-1 into the time-independent Schrodinger equation to get:
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(BF|Weesp—riz) = th 1.5-6
&, ab ij i

(cbf} |Weesp-raz) = Top + thty . 1.5-7

The energy and the singles and doubles residuals (residual is mathematical terminology

to deal with integrals or differentials where we look for the approximation with small
residual (error) [86, 87]) are:

E = (®|H[¥ccsp-ri2) 15-8
R} = (513{3‘|ﬁ - EquCCSD—Flz) 1.5-9
sz = <$%b|ﬁ - E|LPCCSD—F12>- 1.5-10

Werner and co-workers noticed that the dependence on the energy in the residual
equations (1.5-9 and 1.5-10) cancels out automatically [68]. The equations (1.5-9 and
1.5-10) contain additionally the explicitly correlated terms but the number of equations
isthe same asin conventional CCSD.

We can write the CCSD-F12 doubles residual (eq.1.5-10) in matrix form:

Riécsn—mz = Rilj/IPZ—Flz + K(Dij) + K(Tij) + O‘ij.lekl +

GU + GUT, 15-11
The general form of this expression and the explanation of each term is given in [88],
except that the Fock-operator termsin the MP2 residual are included in the matrices GU
[68].

Thefirst term is the MP2-F12 residual:

RYipy_prp = K + T + THE — £, TN — TikE, 4+ o) 15-12

Only the last term Cm“TIinm is different from conventional MP2 residuals. The coupling
matrices CU are defined as (using approximation 3C and CABS) [68]:

), = (ab|(f; + 12)Qq2F12|ij) = faxFyy + Faxfp - 1513
The integrals that are needed in MP2-F12 are evaluated using the DF (density fitting)

approximation (density fitting is a way to approximate the usual two-electron integrals)
[78].
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The next two important terms in RY.sy_py, are K(D) and K(79). K(DY) is an
external exchange operator and includes all contractions of the doubles amplitudes with

integrals involving three or four virtual orbitals and has the form [68]:
[K(D”)]ab = (ab|r}|rs)D,. . 1.5-14

The K(T ”) term describes corrections of the external exchange operators due to the

explicitly correlated terms:
K@), = VI Ty 1515

Triljln is nonlinear and so leads to multiple Rl expansions and also we need to deal with
additional integrals over three or four external orbitals [68]. To evaluate the GY
matrices in eq. 1.5-11 a projector is used which is very difficult to approximate
accurately in this case and alarge basis set is heeded to do so.

Werner et a. [66, 68] proposed the new CCSD-F12a approximation to deal with the
above problems. They neglected al contributions of the explicitly correlated

N : ij . q
configurations to the doubles residual R¢rcp_pq, BUt l€ft K(71) and C2) in MP2-
F12. The new residual can be written as:

AR] = [v™" 4 C™]T,)

CCSD-F12a mn 15-16

where projector in V™ is approximated as 1 — |rs)(rs| then VI = Win — K(F™1)

and:
Wrr;m = (I‘S|r1_21F12|mn), 1.5-17
K(F™M),s = (rs|riz [tu)Fom, 1.5-18

and C™" hasthe sameform asin eq. 1.5-13.

We note that K(F™) and K(D") have the same form so the total residual (in matrix

form) can be written as:

Ricjcsn—mza = Ril\j/lPZ +CU+ WY+ K(Dij - Fij) T o‘i)'.lekl T
GY + Gt 1.5-19
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where F = FnTY and W, €U are defined in the same way. We need to remember
that the fixed amplitude Ansatz (needed in the 3C approximation) is defined as:
Frs = 2Fps + = FJ.

The operator R(DY — FY) can be computed from integrals in the AO basis and W™ |,
F™™ and C™" are needed in the MP2-F12 part so the computational effort (when the
amplitude Ansatz is fixed) scales only as O(N°) [68, 80].

The energy expression of the approximations CCSD-F12a and CCSD-F12b can be

written in more detail as;

= DJKY, + [Wn — K(F™),, + RJ|T) 1.5-20
€CCSD-F12a = ab'*ab rs rs rs] *mn: .

_ ij
€ccsD-F12b = Eccsp-Fiza T Do [Wie" — K(F™) ], 1.5-21

where RY. isthe residual of MP2 defined in eg. 1.5-12.

There is no direct F12 correction to the triples, and therefore the basis set error of the
triplesis not affected by the F12 method [89]. We can get the triples energy by scaling

the triples energy contribution:
AE(T*) = AE(T) % . 1.5-22

The study done by Werner and co-workers of the CCSD(T)-F12 method [66, 68] found
that the CCSD(T)-F12a level is the better choice if we use basis sets up to triple zeta,
because the CCSD(T)-F12a level with larger basis sets can underestimate the basis set
limit and lead to worse convergence. The CCSD(T)-F12b level is better for basis sets
above triple zeta [66, 68].
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1.6 Density functional theory - DFT.

The ab initio methods described in the previous sub-chapters have limitations, in
particular in the case when we would like to perform accurate cal culations on molecules
with many atoms and electrons. Density functional theory (DFT) can be an alternative
to ab initio calculations. The main concept of DFT is that the energy of an electronic
system can be expressed in terms of the electron probability density, p [90]. The energy
functional of the electron density (E[p]) represents the electronic energy E of the

system.

As discussed in the Born-Oppenheimer approximation section (1.1), nuclei have much
bigger masses than electrons, therefore nuclei move much slower than electrons. Thus,
electrons can be considered as moving in the field of fixed nuclei. Following this, the
energy functional (E[p]) can be divided into three parts. the kinetic energy of the
electrons T[p], attraction between the nuclei and electronsE,.[p], and electron-electron
repulsion E..[p]. The E..[p] term can be divided into a Coulomb and an Exchange part,

J[p] and K[p], respectively [55]. The E,.[p] and ][p] are given by:

Za

Enelpl = 3 lR"frr)l dr, 161
1 pp(r)

o] =5 Jf == drdr”. 1.6-2

Note that nuclear coordinates are represented by “R” and subscript “n” and electron
coordinates by “r” and subscript “€”. “Z” denotes the effective nuclear charge.

If a non-interacting uniform electron gas is considered, then T[p] and K[p] can be

written as:

Trelp] = CFfp5/3(r)dr, 1.6-3
Kplpl = —Cy J p/3 (r)dr, 1.6-4
where,

Cr= 153173, 165
C, = 2(%)1/3. 166
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The energy functional can then be expressed as E1r[p] = Trelp] + Enelp] +Jlp] andis
known as Thomas-Fermi (TF) theory [91]. When the K [p] exchange part is included, it
is known as Thomas-Fermi-Dirac (TFD) [55, 92].

The Thomas-Fermi-Dirac model represents the kinetic energy very poorly and TFD (or
TF) does not predict bonding and therefore molecules do not exist [55].

To fix those issues Kohn and Sham [93] introduced orbitals and they split the kinetic
energy functional into two parts: a small correction term and a term which can be
calculated exactly [55]. Using this approach a Hamiltonian operator with 0 < A <1

can be written as:;
Hy =T+ V(e Q) + 2V, 16-7

where V., is the external potential operator and is equal to V., for A = 1. [55]
However, for A=0, the exact solution of the Schrddinger equation is approximated by as
a Slater determinant which consists of molecular orbitals ¢;, and therefore the kinetic

energy functional is given as:
1
Ts[p] = XL, <<I>i|—5V2|<|>i>- 16-8

V is nabla symbol and represents the differential vector operator. Equation 1.6-8 is the
kinetic energy calculated from the Slater determinant and is only an approximation to
the real kinetic energy (improved upon TF and TFD).

Moreover the density is approximately expressed in terms of auxiliary one-electron
functions (a set of orbitals):

p() = XL, 1di(M)]*. 1.6-9
Where p(r)denotes the total electron density at a particular point r in space. It can be

noticed that a significant component of the electron-electron interaction will be the

classical Coulomb interaction as presented in eq.1.6-2. The energy functional can be

rewritten as:

Eprrlp] = Tslp] + Enelp]l + J[p] + Exclpl, 1.6-10
Where the exchange-correlation functional Exc is given by:

Exclp] = (Tlp] = Ts[p]) + (Eeelp] = JpD. 16-11

The first term in parentheses in eq. 1.6-11 is the kinetic correlation energy, while the

second one contains both exchange and potential correlation energy.
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The exchange and correlation energies in DFT are only short range (in terms of the
distance between two electrons) and depend on the density at a given point [55].

The strength of DFT is that only the total density needs to be considered in order to
calculate the kinetic energy with good accuracy. The Kohn-Sham [93] (KS) approach
was a major breakthrough in this area. They constructed non-interacting electrons with
the same density as the physical system. The major advantage of the KS equation over
the Thomas-Fermi theory is that the kinetic energy is treated exactly.

The Kohn-Sham equation is given by:

1
{— SVi+ Veff} bi = €d; 16-12
where the effective potential V¢ can be written as:
Vegt(r) = Ve (1) + [ oo’ 4 Vi (6) 1613

However, the magjor problem in DFT is to find suitable and efficient formulas for the
exchange-correlation term and this is the main difference between DFT methods:

expression of the functional form of the exchange-correlation energy.

The first approach is named the Local Density Approximation (LDA). In the LDA, the
density is treated locally as a uniform electron gas, and the exchange correlation energy
depends only on the value of the electronic density at each point in space. When we use
the Dirac formula (eg. 1.6-5 to 1.6-6) the exchange energy and exchange functional of a

uniform electron gas can be written:
EXPA[p] = —C, [ p /2(x) dr, 16-14
elPA[p] = —Cep /3. 1615

The correlation functional P4 [p] is uknown and needs to be fitted to the ground-state

energy of a homogeneous electron gas calculated using for example quantum Monte
Carlo simulations [94]. An example of a functional that uses the LDA is the functional
constructed by Vosko, Wilk and Nusair (VWN) [95].

32



Improvement on the LDA can be made when the gradient of the electron density is
considered. This approach is called Generalized Gradient Approximation (GGA) and
can be written:

Exc = Exclp(r), Vp(r)]. 1.6-16
This can lead to a significant improvement over the LDA results with accuracy
approaching that of correlated wavefunction methods such as MP2 and in some cases
surpassing these [96]. A commonly-used GGA functional is the PW91 functional, due
to Perdew and Wang [97].

Becke in 1993 [98] introduced an approximation where a functional is a hybrid of exact
(Hartree-Fock) exchange with local and gradient-corrected exchange and correlation
terms. This approach is often called a hybrid method. A hybrid exchange-correlation
functional can be represented as a linear combination of the Hartree-Fock exact
exchange functional EXF and any combination of exchange and correlation density
functionals. The most popular hybrid method is B3LY P [99] and the B3LY P exchange-

correlation functional can be written as:
EBSLYP = (1 — 2)ELSPA 4 aEHF 4 bAEB®® 4 (1 — )ELSPA +
cE¢YY. 1.6-17

The parameters a, b and care determined by fitting the functional’s predictions to
experimental or accurately calculated thermochemical data. Typical values are a= 0.20,
b=0.72 and c = 0.81 [100].
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1.7 Other theoretical methods and concepts employed here.

NBO-Natural Bond Orbital method

In this work the Natural Bond Orbital (NBO) method was employed to determine the
Lewis structures and understand the bonding properties of the molecules studied. NBO
analysis is a technique for studying hybridization and covalency in polyatomic wave
functions. The natural “orbitals’ were introduced by Lowdin [101] and described as the
unique set of orthonormal one-electron functions. Mathematically the one-electron
functions are represented as eigenorbitals of the first-order reduced density operator
[102]. Thus, according to Weinhold et a. [102] "... natura bond orbitals (NBOs)
provide the most accurate possible 'natural Lewis structure' picture of the wavefunction
vy, because all orbital details (polarization coefficients, atomic hybrid compositions,
etc.) are mathematically chosen to include the highest possible percentage of the

electron density".

A bonding NBO o5 between atoms A and B is constructed from directed orthonormal
hybrids ha, hg (Natural Hybrid Orbitals or NHO's) with corresponding polarization
coefficients ca, cg [102, 103]:

oag = Cahp + cghgp, 1.7-1
where o, IS a filled NBO. These NBOs are able to describe covalency effects in
molecules. The hybrids hy and hg are formed from a set of effective valence-shell
atomic orbitals (Natural Atomic Orbitals or NAOs) optimized for the wave function
used [103]. NBO transformed wavefunctions give good agreement with concepts such
as Lewis structures and covalency in molecules. However, the general transformation to
NBOs aso yields unoccupied orbitals, which can be employed to describe non-covalent

effects [103]. The most important ones are the antibonding o,z Which are given by:
GZBchhA - CAhB' 1.7-2
The natural hybrids, ha and hg are the same valence-shell hybrids that formed the bond

function oag. The energy associated with antibonding orbitals can be obtained by



deleting these orbitals from the basis set and recalculating the total energy [103]. The

total energy E can then be written as:
E= Ess + Egox» 1.7-3

where Egs =E| awis and Ess+ =Enon-Lewis are the covalent and non-covalent contributions,
respectively. Enon-Lewis IS typically much less than 1% of Ej ewis[102].
The interaction between a filled orbital ¢ and an unfilled orbita * gives rise to a

stabilisation energy which can be approximated by second order perturbation theory:

2
AE® = g lolFlo)” 1.7-4

o0*
€c

where F is the Fock operator and ¢, , €, are NBO orbital energies. These interactions
between filled orbitals o and unfilled orbitals o* can be described as “ donor-acceptor

interactions’ or “charge transfer” [103].

Relativistic corrections

Relativistic effects are important for calculations that require high accuracy results even
for light atoms like hydrogen. The relativistic effect can be determined as the difference
between electronic properties obtained from calculations that take into account the true
velocity of light and electronic properties that assume that the velocity of light is
infinite, as donein traditional treatments of quantum chemistry [104].

The Schrédinger equation does not contains relativistic information and the unification
of quantum mechanics with special relativity was accomplished by Dirac in 1928 [105].

The Dirac free particle equation is:
(cdp + fmc?)W = EY, 1.7-5

where m is the rest mass of the electron, p is the momentum operator, ¢ is the speed of

light, and oo and B are vector operators. The Dirac equation is computationally more
difficult to solve than the Schrédinger equation and because the negative part of the
spectrum (the positronic part with the energy eigenvalues less than or equa to -mc?)
cannot be treated variationally. Moreover the Dirac equation can be solved only for one-
electron systems, thus a generaization of the Dirac equation is necessary to construct
the N-particle Hamiltonian. This Hamiltonian is called the Dirac-Coulomb-Breit

Hamiltonian which is applied using a four-component spinor formalism [104] and
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represents the full-relativistic approach. This approach was used to develop the Dirac-
Hartree-Fock (DHF) theory. Unfortunately, a DHF calculation is 64 times more
expensive than a corresponding non-relativistic Hartree-Fock calculation. Thus,
additional approximations are necessary to calculate relativistic effects for heavy atoms
and systems containing a large number of electrons. The expensive four-component
spinor part can be transformed into a two-component form [104, 106], and the resulting
equations are usually used in first-order perturbation theory [104] which gives the Pauli
Hamiltonian:

H, = Hy + Hyy + Hpy42 + Hso. 1.7-6

where H, is the non-relativistic Coulomb Hamiltonian, Hyy is the mass-velocity
operator, Hp, ., is the one- and two-electron Darwin operator and Hg is the spin-orbit
operator. For light atoms, the spin-orbit interactions and the two-electron Darwin term
are not so important and can be neglected [106]. Cowan and Griffin showed that the
resulting one-electron mass-velocity-Darwin (MVD) Hamiltonian can be used to
calculate the relativistic corrections in a good agreement with the DHF method [107].
The mass velocity (MV) term, which describes the energy correction E¥Y to the kinetic
energy of the electrons is always negative [106]. In contrast, the energy corrections of
one-electron term E°* are always positive. The D1 term describes the correction to the
distance between the electrons and the nuclei [106]. The Cowan-Griffin approach [107]
will be used here as the method to calculate the relativistic corrections.
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2 Molecular vibrations

2.1 Theoretical introduction.

Classical approach

In the limit of infinitely small amplitudes the vibration of a molecule can be represented
mathematically by classical expressions for the kinetic and potential energies of the
molecule. Initially a molecule is treated as N coupled masses and analyzed in terms of
vibration, rotation and translation motion. The simple form of the kinetic energy (as
seen in eq. 2.1-1) employs the Cartesian coordinates xi, y; and z, which are

displacements from the equilibrium position of the point massi,
1 : . .
T=: Lymi(xf +yf +272), 2.1-1

and where my is the atomic mass. A dot over a symbol means the time derivative. The
equation can be rewritten in a compact form where for simplicity the coordinates x;, i
and z are replaced by a new set of coordinates g, where g, = \Vm;x;, g, = Vmyy;

g3 = Jmyz;, g, = Jmyx, etc. (mass-weighted Cartesian displacement coordinates)
[108]. Then the equation is:

1 .
T=_%T8. 2.1-2
For small amplitudes of vibration the equation of the potential energy is:

1
V= E ijn=1 fl,]glg] . 2.1-3

Thetermsfj; in eq. 2.1-3 are the “force constants’.

It is now possible to write Newton’ s equations of motion, since we have obtained T and
V. V isafunction of the displacements and T is a function of the velocities only, so the
equation of motion is[108]:

gi+X " fgi=0,i=12 .., 3N 2.1-4

The solution of this set of 3n simultaneous second-order differential equations, are the

well known harmonic oscillator equations [109]:

g, = A;cos(2mewit + &) 21-5
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where w; is the vibrational “frequency” (in cm™), ¢ is a phase factor and A, is the
amplitude of the motion of the atom. If we substitute equations 2.1-5 into the

differential equations, then we can obtain the expression:

where A=4°w°C” and &; is the Kronecker delta.

Equation 2.1-5 shows that each atom is oscillating near its equilibrium position with a
simple harmonic motion [108]. In a polyatomic nonlinear molecule with N atoms 3N-6
normal modes can be found which are commonly known as the normal modes of
vibration or fundamental frequencies of the molecule. A normal mode is a motion of all
atoms in the molecule: the motion of each atom is described by three Cartesian
displacements (along the x, y and z direction) [110]. We can find translational and
rotational modes in a molecule. The translational modes refer to the modes where all the
atoms are moving in the same direction. The rotational modes refer to the change of the
orientation of the molecule (rotations). Three harmonic frequencies corresponding to
trandational modes and three harmonic frequencies corresponding to rotational modes
(of the molecule as awhole) are zero in anonlinear molecule. In alinear molecule three
harmonic frequencies corresponding to trandational modes and two harmonic
frequencies corresponding to rotational modes (of the molecule as a whole) are zero, as
rotation around its molecular axis does not exist. Thus, a nonlinear molecule with N
atoms has 3N — 6 while alinear molecule has 3N — 5 normal modes of vibration.

Normal coordinates

In order to solve the Schrédinger equation for the harmonic oscillator, the kinetic and
potential energies need to be present as a sum of separate terms. Thus, the Cartesian
coordinates need to be replaced by a new coordinate system. The conventiona “normal
coordinates’” Q will be used [108]. The “normal coordinates’ are the displacement of
atoms from their equilibrium positions, and correspond to a norma mode vibration. The
“normal coordinates’ (Qx) can be defined in terms of the mass-weighted Cartesian

coordinates g;:
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Qx = 2?21 I{dgi, wherek=1, 2... 3n. 21-7

In terms of the new coordinates, we can express the kinetic and potential energiesin

diagonal form as:
1 : 1 .
T=_Yis; Qand V=338, %Qf - 2.1-8

where Kk=4n20)k202 )

Quantum mechanical approach

To a reasonable approximation the rotational and vibrational parts of the Hamiltonian
can be treated separately in the wave mechanics approach [108]. Thus the vibrational
wavefunction yy and rotational wavefunction y, combine as a product to give the total

wavefunction y, and can be written as:

g = Y. 2.1-9
yr is a function of the rotational coordinates and , is a function of the vibrational
coordinates.

The vibrational Hamiltonian in terms of the normal coordinates Qx can be obtained from
the classical approach as a vibrational wave equation:

—h? 3N-6 %Wy | 153N-64 (2. _
e k=1 gz 2=k MQicWv = Eviby, 2.1-10

Where h is Planck’s constant and E, is the vibrational energy.

Equation 2.1-10 can be written as 3N—6 independent equations one for each Qx since

Yy = P(QOW(Q2) .. W(Qzn-s) . 2111
and the vibrational energy E, can be expressed as the sum of 3N-6 terms
EV:E1+ E2+E3+ . +E3N—6 2.1-12

Thus, it is possible to express the equations 2.1-10 and 2.1-11 as 3N-6 independent

equations each in one variable for k=1 to 3N-6,

I 4 22008 (Qu) = EQO(Qu). 2113

gnz  dQZ

Eq. 2.1-13 is the well-known harmonic oscillator, in terms of the normal coordinates Q.

Thus, the solution {, of the vibrational problem can be expressed as a product of
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harmonic oscillator functions y(Qy) [108] and the total vibrational energy E, can be

expressed as the sum of the energies of 3N—6 harmonic oscillators.

The energy levels for a harmonic oscillator are
E,, = hcw; (vi + %) , 21-14

where “v;” is the vibrational quantum number v; = 0,1,2, ... . Thus a molecule vibrates
even at 0 K and occupies the lowest energy level of the potential energy surface.

Anharmonicity

The harmonic vibrations discussed above are very useful for describing small
displacements from equilibrium at the bottom of the potential energy well. However, in
reality the molecular vibrations are more complex. When higher vibrational excitations
of a molecule need to be considered anharmonic vibrations are important for a proper
description of the potential energy curve. Higher terms such as cubic and quartic terms
of the potential function need to be taken into account [109].

Nielsen [109, 111] used the perturbation method to obtain a general form of the

1
anharmonic oscillator. Thus, when normal coordinates “q” (q; = A, / 2Q;h) are used to

express the harmonic and anharmonic terms in the same units (cm™), the potential

energy equation iswritten

V= %hC Yiwiqf +he X ¥ Xk Kijedidjai + he X X Xk 2 Kija 4i9qe s +
2.1-15
Unfortunately an exact solution for the Schrodinger equation cannot be obtained if the
above equation is introduced. Nevertheless, it was noticed that the quadratic part of the
potential energy is much larger than the cubic part for small but finite displacements of
the nuclei. Thus perturbation theory can be used to calculate corrections to the
vibrational energy for higher-order parts of the vibrational Hamiltonian [109]. The first
and second-order corrections to the energy for a non-degenerate system can be

evaluated quite easily, so the potential and the total energies can be written in the form:

VvV =vO 4 v® 4 32y®@) 2.1-16
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E =Y hcw; (ui + %) +AEM 4+ Q2E@) 2.1-17

where

v — %hc Y wiq? 2.1-18
V) = he Y Kkiidigidx 2.1-19
V® =hcTijia Kipaqig;d 1 » 2.1-20

and EW,E@ arethe first and second-order corrections [109]. Thus, the energy equation

can be rewritten in the form

E = ),;hcw; (Ui + %) + he X5 x5 (Ui + %) (U]- + %) + - 2.1-21

where x;;and y;; are the anharmonic constants and the mathematical forms of these can

be found in [109].
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2.2 Variational method

The variational method is the other main approach used to compute vibrational quantum
state energies and wave functions and can be used instead of perturbation theory. In fact
a variational approach is essential when large amplitude motions are involved:
perturbation theory breaks down when the assumption of small amplitude vibrations is
not justified. The idea of the variational method is to choose a "trial" wavefunction for
the problem, which must have adjustable parameters. These parameters are varied until
the energy of the wavefunction is minimized. The resulting wavefunction and its
corresponding energy are the variational approximations to the exact wavefunction and
energy. The variational approach has been generalised to give upper bounds to each of
the lowest n energy levels of asystem [112].
To perform avariational calculation we need to have [112]:

e apotential energy surface for the molecular system;

e acoordinate system to describe all relevant molecular geometries;

e basisfunctions which will be combined to give the trial wavefunction.

Basis functions for each coordinate (ry, r2, 61, 02 €tc.) for a many-atomic problem can be
represented as: Qm(r1), Ra(r2), Pi(01), P(62) etc, where the angular functions (of ) could
be Legendre polynomials and the stretching functions could be Morse or harmonic
oscillator functions for example [112]. An alternative to this finite basis representation
(FBR) is the discrete variable representation (DVR) which considers the wavefunction
at fixed values of the vibrational coordinates[113].

The computational approach then includes the following steps:

e The chosen basis set is used to compute the elements of the Hamiltonian matrix.
e The Hamiltonian matrix is constructed from the matrix elements prepared above.
The Hamiltonian matrix can be written asi Hyy = (PPQu - [H|PyrPyrQpy - ),
where s is a compound index running over the basis functions, H is the
Hamiltonian operator, Qm, R.,P, P, are the functions dependent on the

vibrationa coordinates (r1, 2, 01, 62) and the integration runs over al of these
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coordinates [112]. The large number of basis functions allows one to obtain
vibrational energies close to the true ones. To be sure that the calculated energy
is reliable, the convergence needs to be demonstrated, and this can be checked
by systematically increasing the basis set size.

e Thelast step is diagonalization of the Hamiltonian matrix. This step is often the
longest in the whole calculation. To speed up the diagonalization an iterative
procedure [112], or a diagonalization-truncation method [114] can be employed
instead of direct-diagonalization [115].

In the following studies | will use the WAV R4 program [116] which combines DVR and
FBR basis sets and use a diagonalization-truncation method. The FBR is used for the
angular coordinates while the DVR is used for radial coordinates and is obtained as a
transformation from a corresponding FBR [112, 117]. A more detailed explanation can
be found in Ref. [116, 117].



Applications

“The most exciting phrase to hear in science, the one that heralds the most
discoveries, is not "Eureka!" but "That's funny..."

Isaac Asimov



3 Acetylene/vinylidene

3.1 The C2H; isomers.

Silicon belongs to the carbon group (group 14) in the periodic table; therefore it may
have similar physical and chemical properties as carbon and can form similar
compounds. A comparison of the acetylene/vinylidene isomers with substituted silicon

structures is an interesting topic in the context of bonding properties.

Computational methods

The acetylene/vinylidene isomers have been studied by Zou and Bowman [118]. They
performed full-dimensional quantum-chemical calculations of acetylene/vinylidene
isomerisation. First, we attempted to reproduce the results achieved by Zou and
Bowman. Coupled—cluster level of theory including the single and double excitations
with perturbative treatment of triple contributions — CCSD(T) [61] and Dunning's
correlation consistent basis set of triple-{ quality with diffuse functions (aug-cc-pVTZ)
were applied [58, 119]. The same level of theory was used by Zou and Bowman. All
computations were performed with MOLPRO version 2006.1 [120]. The MP2 [121] and
HF [122] levels of theory (with the same basis set) were used to compare with the
CCSD(T) method. The results obtained are listed in Table 3.1-1.



Table 3.1-1. Geometric properties of the acetylene/vinylidene isomers with the
corresponding picture of the structure. Bond distances are listed in angstrom and angles
in degrees. The aug-cc-pV TZ basis set was used.

Acetylene HCCH

CCSD(T) MP2 HF Literature®
2 PP o Hwcl 1.0639 1.0617  1.0625 1.0640
C-C 1.2102 12121  1.1921 1.2102

Vinylidene HHCC

o CCSD(T) MP2 HF Literature
H1C2" 1.0872 1.0845 1.0836 1.0872
c-C 1.3069 1.2993 1.2979 1.3068
o CCH1 120.12 119.66 119.70 120.10
energy [cm ] @ 15407 18158 12340 15407

¢ energy relative to the HCCH minimum.
b C2-refer to the carbon atom connected to terminal hydrogens

TSL HCHC
‘ S I CCSD(T) MP2 HF Literature®
& H1C1°¢ 1.0732 1.0706 1.0693 1.0733
H2C1°¢ 1.3910 1.2378 1.3276 1.3910
c-C 1.2604 1.2669 1.2549 1.2604
o CCH1 178.55 179.21 178.14 178.50
o CCH2 53.70 58.31 56.05 53.70

energy [cm '] 2 16408 17131 20085 16408
¢ energy relative to the HCCH minimum

® values calculated at CCSD(T) were taken from reference [118]

¢ Cl1-refer to the carbon atom connected to terminal hydrogen (H1)

Vinylidene lies 15406.9 cm™' above acetylene, whereas the transition state linking these
minima (TS1) lies 16407.8 cm ' above acetylene (at the CCSD(T) level of theory). The
calculated bond distances, angles and energies agree with those obtained by Zou and
Bowman as shown in Table 3.1-1.

The geometric properties obtained with the MP2 and HF methods are similar to those
calculated by CCSD(T) except for the TS1 structure (at the MP2 level). The MP2
method underestimates the H2C2 bond distance by about 0.1532 A (in comparison to

46



the CCSD(T) level) and overestimates the CCH2 angle by about 4.6°. The MP2 TS1
energy (17131.0 cm ') is smaller than the corresponding vinylidene energy (18158.1
cm '), which is unexpected as a transition state should have larger energy than both
minima connected by the transition state. It could mean that TS1 calculated at the MP2
level of theory is not the real TS1 structure but a new critical point. Thus, additional
minimization and frequency calculations at the CCSD(T)/aug-cc-pVTZ level were
employed to investigate this issue.

During the above studies a third minimum was found (no imaginary frequencies) with
an energy 15969.9 cm ' larger than that of acetylene (at the CCSD(T)/aug-cc-pVTZ
level). The third minimum represents a monobridged structure reported previously by
Chesnut and others [123-125]. Figure 3.1-1 shows the structure of this monobridged

minimum.

Figure 3.1-1. Monobridged isomer obtained at the CCSD(T)/aug-cc-pVTZ level (the
structureis planar).

A1=69.14°

1.1847 A }—<

A2=121.45°

&
\—{ 1.0725 A

A comparison of the geometries of the monobridged and TS1 isomers shows that the Al
angle in the monobridged isomer (CCH2 in Table 3.1-1) is about 15° larger than in TS1;
however, the A2 angle (CCH1 in Table 3.1-1) is about 6° smaller. The C—C distance in
the monobridged minimum is 0.0133 A longer than in TS1, however, the H2C2 distance
(3H2C in Figure 3.1-1) is 0.2063 A shorter.

1.2737A
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We used the Quadratic Steepest Descent (QSD) reaction path method implemented in
MOLPRO to obtain the whole reaction path from acetylene through TS1, monobridged,
and TS2 (a new transition state between the monobridged and vinylidene isomers, see
below) to vinylidene. The QSD agorithm was formulated by Sun and Ruedenberg
[126]. The reaction path is obtained from serial exact steepest—descent lines of local
quadratic approximations to the potential energy surface [126].

This achieves a good accuracy and more efficiently evaluates the energy—gradient—
Hessian set (where the Hessian is calculated exactly) and no additional corrective
optimizations off the steepest—descent line are required [126]. All the QSD reaction path
method cal cul ations were done with CCSD(T)/aug-cc-pVTZ.

The energy is plotted as a function of the A1 angle (see Figure 3.1-1) for several points
obtained by the QSD reaction path method. The whole reaction path is presented in
Figure 3.1-2. The QSD reaction path calculation reveals a second transition state, TS2,

which connects the monobridged and vinylidene minima.

Figure 3.1-2 does not show clearly all information such as the exact position of the new
transition state (TS2), which lies between the monobridged and the vinylidene isomers.
An expanded view of the part between the TS1 and vinylidene is therefore presented in
Figure 3.1-3. It can be clearly seen that the TS2 structure occurs at 79.2°. The energy
difference between the monobridged and the TS2 structures is very small (0.11
kcal/mol) and the energy difference between vinylidene and TS2 is 1.72 kcal/mol. The
energy difference between TS1 and vinylidene is 2.86 kcal/mol and between
monobridged and vinylidene 1.61 kcal/mol.



Figure 3.1-2. Variation of energy along the reaction path between the acetylene and
vinylidene isomers. The cal culations were done at the CCSD(T)/aug-cc-pVTZ level.
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The C;H, isomers were re-optimized with CCSD(T) in conjunction with the family of
Dunning’s correlation—consistent basis set augmented with diffuse functions aug-cc-
pVXZ (with cardina numbers X=2-5) [58, 119]. The aug-cc-pVXZ basis set will be
abbreviated as AVXZ (where X=2-5), respectively. The minimization method
(Quadratic Steepest Descent) implemented in MOLPRO was used in all calculations.
The convergence comparisons of all minimum structures obtained with increasing basis

set size are shown below in Figure 3.1-4 to Figure 3.1-5.

49



0S

Figure 3.1-3. Extended view of the energy along the reaction path between the acetylene and vinylidene isomers. The cal culations were
done at the CCSD(T)/aug-cc-pVTZ level.
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Note that the monobridged structure was not found with the aug-cc-pVDZ basis set.
CCSD(T)/aug-cc-pVDZ optimization starting from the monobridged structure led to the
vinylidene form. However, al three isomers were found with the aug-cc-pVXZ (X=3—
5) basis sets.

The experimental (obtained using microwave spectroscopy) acetylene C—-C bond length
is 1.202 A (re equilibrium internuclear distance) [127] and 1.208 A (ro effective
internuclear distance) [127]. The C—C bond lengths obtained with the aug-cc-pV5Z
(1.2059 A), aug-cc-pvVQZ (1.2069 A) and aug-cc-pVTZ (1.2103 A) basis sets agree
very well with the experimental data but the aug-cc-pVDZ basis set appears to
overestimate the bond length (CCSD(T)/aug-cc-pVDZ vaue: 1.2301 A).

It can be seen that the bond lengths differences have a similar pattern for C-C and H-C
distances. a larger difference is found between the results obtained with the aug-cc-
pVDZ/aug-cc-pVTZ than with the aug-cc-pV TZ/aug-cc-pVQZ basis sets and aug-cc-
pV QZ/aug-cc-pV5Z basis sets. Only small changes can be seen with increasing basis set

size beyond aug-cc-pVTZ.

We aso considered the energy difference between the global minimum (acetylene) and
the local minima (monobridged and vinylidene), which is shown in Figure 3.1-6. The
known experimental energy difference between acetylene and vinylidene is 46.4 + 5.5
kcal/mol [19]. The aug-cc-pVXZ (X=3-5) basis sets give energy results close to the

experimental data, whereas aug-cc-pV DZ underestimates the experimental value.
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Figure 3.1-4. Variation of the C—C distance with increasing basis set at the CCSD(T) level of theory.
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Figure 3.1-5. Variation of the H1—C1 distance with increasing basis set at the CCSD(T) level of theory.
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Figure 3.1-6. Energy difference between the acetylene, vinylidene and monobridged isomers at the CCSD(T) level.

48.00
46.00 N —
.,7
—
44.00
©
S
=
s 42.00
=
w
<
40.00 /
38.00
36.00
aug-cc-pvDZ aug-cc-pVTZ aug-cc-pvQz aug-cc-pV5Z
——&—acetylene-vinylidene 39.52 44.05 44.76 44.95
—l-acetylene-monobridged 45.66 46.16 46.32




Figure 3.1-2 shows that there is only a small energy difference between TS2 and the
monobridged isomer. Table 3.1-2 shows the energy difference as a function of basis set

size and with zero-point-energy (ZPE) correction included.

Table 3.1-2. Relative energy of the monobridged and TS2 structures, calculated with
CCSD(T)/aug-cc-pV XZ (X=3-5). The calculations include ZPE corrections.

monobridged-TS2 aug-cc-pVTZ  aug-cc-pvQZ aug-cc-pv5sZ
AE [kcal/mol] 0.1657 0.1512 0.1625

It can be seen that the energy difference remains, even when using the large aug-cc-
pV5Z basis set (0.1625 kcal/moal).

Conclusions

Our calculated geometries are in good agreement with those of Zou and Bowman [118]
and the experimental values [127]. Zou and Bowman [118], however, did not present
the monobridged structure that exists on the C,H, PES. The monobridged isomer has
however been reported in the literature before by Bittner and Koppel, Palaudoux and
Hochlaf and others [124, 125, 128, 129]. In the most of these publications the titles and
abstracts did not refer to the monobridged structure with the result that the existence of
the monobridged structure on the C;H, PES is not commonly known. The CCSD(T)/
aug-cc-pV5Z level used here to calculate the geometric and isomerisation properties for
the monobridged and TS2 structures is higher than that used by Bittner and Kdppel
(CCSD(T)/aug-cc-pVTZ), Palaudoux and Hochlaf (CCSD(T)/cc-pVQZ) but lower than
used by Joseph and Varandas (CCSD(T)-Fl2a/aug-cc-pVQZ) and Boyé-Péronne,
Gauyacq, and Liévin (MRCl/aug-cc-pV QZ).

A comparison of the bonding properties of the C,H,, SioH», SioHLi and Si,Li; structures
will be done at the end of Chapter 4.
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4 The SizHX and Si:Li: critical points (where X=H, Lj, F and Cl).

The Si,HX and Si;Li, systems (where X= H, Li, F and Cl) exhibit unusual structura
isomerism, and this aspect in particular has attracted the interest of both
experimentalists and theoreticians. Our computational studies of the Si,HX and Si,Li>
structures can provide extensive knowledge of their physicochemical properties. The
Si;H> structures were studied theoretically and experimentally before [24, 43, 52]. The
Si,HX and SisLi; structures (where X=Li, F and Cl) were studied in Ref. [24, 43] and
using a low level of theory in Ref. [30]. However, these structures will be studied for
the first time here using the recently developed CCSD(T)-F12a method [66, 68].
Additionally the transition states and reaction paths between the minima for the Si;HX
and Si;L i, systems (where X= Li, F and Cl) will be also studied for the first time here.

4.1 The Si;H;isomers.

Silicon-containing species are of vital importance in many high technology industries,
and the Si;H, system is particularly fascinating. It is an interesting molecule to compare
with its carbon analogue, acetylene. Electronic structure calculations have shown that
the ground-state electronic structure of Si;H, is different from C;H,. The most
influential work on Si;H, was done by Grev and Schaefer [24]. They performed
coupled—cluster theory investigations and the isomers obtained are as follows: dibridged
(Cyz), monobridged (Cs), disilavinylidene (Cyy) and trans (Cn). The dibridged and
monobridged isomers have been observed experimentally by microwave and IR

spectroscopy [25, 26].
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Figure 4.1-1.The structures optimized by Grev and Schaefer [24] which were used as

starting points for the optimizations performed here.

monobridged

disilavinylidene

trans dibridged

Computational methods

Initially al the SioH, isomers were optimized with the CCSD(T)/AVXZ, CCSD(T)-
F12a/V XZ-F12 (see later for details), B3LY P/6-311+G(d) and MP2/6-31G(d) level of
theories (where X=2—-4). The Si,H, structures optimized by Grev and Schaefer [24]
were taken as the starting geometries (Figure 4.1-1).

Harmonic vibrational frequency computations were performed for the optimized
structures to characterise these as minima or transition states (TS). The frequency
calculations were also done at the CCSD(T)-F12a/VXZ-F12 and B3LY P/6-311+G(d)
level of theory. The frequency values calculated at the CCSD(T)/aug-cc-pVTZ level
were taken from Ref. [52]. Note, that the B3LYP/6-311G(d) level does not contains
polarization functions for the H atom which might introduce some inaccuracies for the

bridged structures.
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The HSISH, HSIHSI, HHSISI and SIHHS formulae refer, respectively, to the trans,
monobridged, vinylidene and dibridged isomers. The DM_TS, MV_TS and MT_TS
formulae represent the transition states on the paths between the dibridged and
monobridged structures, monobridged and vinylidene and between the monobridged
and trans structures, respectively. The optimized structures of the isomers and transition
states of Si,H, are depicted in Figure 4.1-2. The energies relative to the dibridged
isomer (the global minimum) are listed at the bottom of Figure 4.1-2. The reaction paths
between the critical points are represented schematically by lines. The picturesin Figure
4.1-2 show (multiple) bond properties obtained from Natural Bond Orbital (NBO) [102,
103] calculations. The NBO calculations were performed at the CCSD/cc-pV (T+d)Z
level of theory using the Gaussian 98 [130] software package. We use the $SCHOOSE
keylist in the NBO program to specify aternative bonding patterns for the Si>H,
species. This procedure allows us to verify that the NBO program has not inadvertently
missed the "true” multiply-bonded structure. More details about this procedure can be
found in Ref. [115, 130]. The results of these calculations correspond well with those
by Chesnut and Jursic [47, 123], who suggested that the SioH, isomers contain the same
multi or single bonds as our analysis. The same procedure of obtaining the multiple
bonded properties will be employed in the following sub-chapters.

The calculated geometric parameters for the minima and saddle points are given in
Table 4.1-1 and Table 4.1-2, respectively. Note that in the monobridged structure values
of bond distance and angle of a bridged atom will be present as Si2H1 and Si1Si2H1,
respectively, where Si2 represents the silicon connected to the terminal hydrogen atom.

Similar approach will be employed in the next sub-chapters.

It can be seen that the shortest S—Si bond length occurs in the triply-bonded trans
structure (2.1231 A) followed by the doubly-bonded monobridged (2.1352 A) and the
doubly-bonded vinylidene (2.2201 A) isomers. The singly-bonded dibridged isomer
contains the longest Si-Si bond length (2.2281 A).
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6S

Figure 4.1-2. The optimized structures of the Si;H, isomers and transition states with energies relative to the global minimum (the

dibridged isomer). The calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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Table 4.1-1. Geometric properties of the Si,H, minima calculated at the CCSD(T)/ aug-
cc-pVTZ level.

HHSS, C,, HSISH, Cx SIHHSI, Cy  HSIHSI, C

Si2H1? 1.6416
Sig @ 2.2201 2.1231 2.2281 2.1352
H2Sj22 1.4865 1.4922 1.6762 1.4910
B HSISIH b 180.00 180.00 104.59 0.00
a Si1Si2H1 " 52.29
o Si1Si2H2 P 123.81 124.90 48.35 159.22
& angstrom

® degrees

Table 4.1-2. Geometric properties of the Si;H, transition states calculated at the
CCSD(T)/ aug-cc-pVTZ level.

DM-TS,C; MV-TS G MT-TS, Cs

Si2H1 , 1.7071 1.5244 1.5386
SiS ., 2.2250 2.1625 1.1412
H2Si1, 1.5169 1.4817 1.4979
B HSISIH, 82.54 180.00 180.00
a Si1Si2H1 ¢, 48.18 82.03 80.18
o Si1Si2H2 95.91 164.18 165.4
2 dngstrom

b degrees

The dibridged form has the lowest energy followed by the monobridged form with AE=
10.04 kcal/moal, then vinylidene with AE=12.51 kcal/mol and the trans isomer with AE=
17.83 kcal/mol. Coupled—cluster theory investigations of the SiH, isomers performed
by Grev and Schaefer [24] showed the energies relative to the dibridged isomer as
follows: monobridged (8.7 kcal/mol), vinylidene (11.6 kcal/mol) and trans (16.3
kcal/mol). The relative energies calculated here are about 1.3 kcal/mol higher than those
obtained by Grev and Schaefer. However, note that the basis sets employed are
different. Grev and Schaefer used TZ2P/TZ2df, whereas we employed aug-cc-pVTZ. A

more detailed comparison of the relative energies will be done later in this sub—chapter.
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CCSD(T)- F12 cdlculations

The performance of the recently developed CCSD(T)-F12 method [66, 68] (referred to
as F12 in thisthesis), asimplemented in MOLPRO version 2010.1 [85], was studied for
the SiH, system. According to the literature [66, 68, 132], the F12 method has faster
convergence properties and gives more accurate results than CCSD(T) calculations with
similar basis set size. They even suggested that CCSD(T)/aug-cc-pV5Z quality results
can be achieved with CCSD(T)-F12 using the aug-cc-pVTZ basis. A detailed
explanation of the CCSD(T)-F12a method can be found in Chapter 1.5. We were
interested in the accuracy of the geometric properties, relative energies and harmonic
vibration frequencies when the F12 method was employed. Comparison of the
calculated results with the experimental values can be helpful to estimate the most
effective level of theory. The chosen level of theory will be used to compute the
energies required for constructing the SisLi, potential energy surface (PES) (Chapter
7.2).

In the first step the geometric properties were investigated with increasing basis set size.
The CCSD(T)-F12a method in conjunction with the specially developed basis sets
denoted as cc-pVXZ-F12 (X= 2-4) [133] was employed. In the following, these basis
sets will be further abbreviated as VXZ-F12. The VXZ-F12 orbital basis set was
combined with the OptRI auxiliar basis set [134], which is necessary for the CABS
resolution of the identity step [79]. The cc-pVXZ/IKFIT (X= 2-4) [135] basis set of
Weigend was used for density fitting of the Fock and exchange matrices, while the
density fitting of the remaining integral quantities employed the aug-cc-pVXZ/MP2FI T
(X= 2-4) basis sets of Weigend et al. [136]. The approximation 3C(FIX) [66, 68, 81],
which is the default in MOLPRO 2010.1, was employed in the preliminary density-
fitting MP2-F12 computations. The Geminal Slater Exponent value of y=1 for the cc-
VXZ-F12 (X=2-4) basis sets was employed here. The triples energy was automatically
scaled, see equation 1.5-22, as suggested in the MOLPRO manual in al calculations
performed here. The F12 approach described above will be also used in the other (F12)

calculations done here.
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The geometric properties for the Si,H, minima calculated at different levels of theory
are shown in Table 4.1-3.

Table 4.1-3. Geometric properties of the SioH, isomers at the CCSD(T)-F12a/cc-pV XZ-
F12 (X=2-4) level of theory.

HSHS SIHHS
VvDZ- VTZ- VQZ- VDZ- VTZ- VQZ-
F12 F12 F12 F12 F12 F12
Si2H1*® 1.6315 16334 1.6332
Sisi 2 21217 2.1182 2.1170 | Sisi 2 22104 2.2073 2.2061
H2Si22 1.4876 14976 14872 | HS? 1.6650 1.6675 1.6679

B HSISIH® 0.00  0.00 0.00 |PBHSISIHP 10435 10415 104.06
a Si1Si2H1® 5211 5231  52.38
a Si1Si2H2® 15853 15026 15945 | o SISHP 4841 4856  48.60

& angstrom
® degrees
HHSIS HSISIH
VDZ- VTZ- VQZ- VDZ- VTZ- VQZ-
F12 F12 F12 F12 F12 F12
Sisi 2 22004 22056 2.2047 | SiSi? 2.1116 2.1073 2.1064
HS @ 1.4816 14822 14818 | HS? 1.4868 1.4872 1.4870

BHSISIH®  180.00 180.00 180.00 |pHSISIHP 180.00 180.00 180.00
a SISIH® 12355 12358 12357 | o SISHP 12444 12479 124.82

& dngstrom
® degrees

Upon basis set extension in the VXZ-F12 (X=2-4) series, all S—Si bond lengths are
reduced, but the amount of the reduction depends on the type of structure considered.
The difference (from X=2 to 4) is 0.0047 A for the monobridged and vinylidene, 0.0043
A for the dibridged and 0.0052 A for the trans structure. There is no similar pattern in
the Si—H bond length and angles. The Si—H bond Iengths increased or decreased (upon

basis set extension); the same situation can be seen with the angles.

To investigate the convergence properties of the CCSD(T)/aug-cc-pV XZ and CCSD(T)-
F12a/cc-pV XZ-F12 methods (where X=2-4), a comparison of the energies relative to
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the global minimum was made. The CCSD(T)/aug-cc-pVXZ and CCSD(T)-F12a/cc-
pVXZ-F12 levels of theory will be abbreviated as AVXZ and VXZ-F12, respectively.

The results can be seen in Figure 4.1-3 to Figure 4.1-5.

Figure 4.1-3. Energy of the HSIHSI isomer (relative to the dibridged isomer) as function
of VXZ-F12 and AVXZ basis set size.
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Figure 4.1-4. Energy of the HHSISI isomer (relative to the dibridged isomer) as function
of VXZ-F12 and AV XZ basis set size.
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Figure 4.1-5. Energy of the HSISIH isomer (relative to the dibridged isomer) as function
of VXZ-F12 and AV XZ basis set size.

18.50
% 18.00 \ — "
€ C
= /
©
(8]
X 17.50
> /
o
S
Q
$ 17.00
Q /
2
)
[}
@ 16.50
S

Basis set
16.00
D T Q
—=0=—\/XZ-F12 18.35 18.06 18.03
——AVXZ 16.53 17.83 17.90

The differences in the isomerisation energy with respect to increasing basis set size are
larger at the standard CCSD(T)/AV XZ level than at the CCSD(T)-F12a/VXZ-F12 level



of theory. The largest difference for the AVXZ level is 1.57 kcal/mol (between double
and triple—C ); this is reduced with further basis set extension by 0.16 kcal/mol (both
differences for the vinyl isomer). In the VXZ-F12 calculations the largest difference
between double and triple—C is 0.43 kcal/mol then a further 0.09 kcal/mol from VTZ-
F12 to VQZ-F12 (both differences for the vinyl isomer). Thus, a larger change can be
seen upon basis set extension from the VDZ to VTZ level, than from the VTZ to VQZ
level. This pattern exists in al of the studied Si;H, isomers, and shows that the
Isomerisation energies are converging with increasing basis set size.

Comparisons of the S—Si bond distances of the calculated isomers with respect to
increasing basis set size were made. The CCSD(T)/AVXZ and CCSD(T)-F12a/VXZ-
F12 (where X=2-4) levels of theory were employed. Note, that the S—-Si distance
values calculated at the AVQZ level were taken from reference [52]; the rest of the
calculations were performed here. The results are shown in Figure 4.1-6 to Figure 4.1-9.
The CCSD(T)-F12 method gives shorter Si—Si distances than conventional CCSD(T),
and the distances vary less with basis set size. The AVQZ result is achieved aready by
the VDZ-F12 level in al of the isomers. This confirms the statement by Werner et al.
[66], who suggested that CCSD(T)-F12 calculations are usually more accurate and
convergence is reached faster, as compared to CCSD(T) calculations with the same
basis set limit (the standard Dunning’s types of basis sets). The largest difference
between distances calculated with basis sets of double and triple—¢ quality is 0.0043 A
(in the trans isomer) for the VXZ-F12 level and 0.0362 A (in the dibridged isomer) for
the AVXZ level. Moreover, the largest difference when the basis set is increased from
triple to quadruple-¢ quality is 0.0012 A (in the dibridged isomer) for the VXZ-F12
level and 0.0135 A (in the dibridged isomer) for the AVXZ level. It is likely that the
complete basis set (CBS) limit has been nearly achieved at the VQZ-F12 level.

The geometric properties were calculated using different ab initio and DFT methods
with various levels of basis set. The equilibrium semi-experimental values of the
dibridged geometric properties were taken from reference [52]. The semi-experimental
results presented here were produced by applying anharmonic corrections to the
experimental rotational constants [137] of the dibridged and monobridged spiecies. The
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anharmonic corrections were calculated using second order perturbation theory from the
CCSD(T)/cc-pV (Q+d)Z potential energy surface of Law et a. [52]. More details can be
found in Ref [52]. Thus, the geometric properties and harmonic vibration frequencies
used as references here are semi-experimental. Below CCSD(T)/V(6+d)Z is used as an
abbreviation for the CCSD(T)/cc-pV (6+d)Z calculations performed by the authors of
Ref. [52]. In the following discussion the B3LYP/6-311+G(d), MP2/6-31G(d),
CCSD(T)/AVTZ and CCSD(T)-F12a/VTZ-F12 methods will be abbreviated as B3LYP,
MP2, CCSD(T) and F12, respectively. The results are shown in Table 4.1-4.

The calculated S-S distance agrees well with the semi-experimental value for all
theoretical methods used here. The largest difference can be seen for CCSD(T)/AVTZ
(0.0291 A) and the smallest for the MP2/6-31G(d) level (0.0065 A). The
CCSD(T)/V(6+d)Z level and the MP2/6-31G(d) method reproduced the semi-
experimental Si-H value to 0.0037 A and 0.0059 A, respectively. The AVTZ and
B3LY P methods give larger errors for the Si—H distance. The HSISIH dihedral angle
values computed with the CCSD(T) and CCSD(T)/V (6+d)Z levels agree well with the
semi-experimental HSISIH dihedral angle value; the error is only 0.53° and 0.07°,
respectively. However, it can be seen that the MP2 method overestimates the dihedral
angle by 6.33° while the B3LYP method underestimates by 1.45°. Both the F12
methods employed here (VDZ-F12 and VTZ-F12) reproduce well the semi-
experimental values (distances and angles). Whereas, VTZ-F12 gives a more accurate
angle. Note, that by using the VTZ-F12 level we are able to reproduce with good
accuracy the results calculated at the CCSD(T)/V (6+d)Z level.
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Figure 4.1-6. Si—Si bond length variation with increasing basis set size for the SIHHSi

isomer.
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Figure 4.1-7. Si—Si bond length variation with increasing basis set size for the HSiHSi

isomer.
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Figure 4.1-8. Si—Si bond length variation with increasing basis set size for the HHSiSi

isomer.
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Figure 4.1-9. Si—Si bond length variation with increasing basis set size for the HSiSiH

isomer.
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Table 4.1-4. Comparison of the calculated geometric properties of the dibridged isomer
with the semi-experimental values.

Sisi @ HSi 2 B HSISIH®

B3LY P/6-311+G(d) 21896 16877 102.61
MP2/6-31G(d) 2.2055 1.6696 110.39
CCSD(T)/IAVTZ 2.2281 1.6762 104.59
CCSD(TYV(6+d)Z * 22067 16674 104.13
CCSD(T)-F12a/lvVDZ-F12 2.2104 1.6650 104.35
CCSD(T)-F12alVTZ-F12 2.2073 1.6675 104.15
Semi-Expt. * 2.1990 1.6637 104.06
& dngstrom

b degrees

* taken from reference [52]

The ground-state values (ro) of the geometric properties of the monobridged isomer
were taken from Ref. [25, 26]. A comparison of the CCSD(T)-F12a/VXZ-F12 results
with available literature valuesis shown in Table 4.1-5.

Table 4.1-5. Comparison of the calculated geometric properties of the monobridged

isomer with literature values.

monobridged
CCSD(T)-F12a/  CCSD(T)-F12a/ Semi-
VDZ-F12 VTZ-F12 Experimental *

Ss ® 2.1217 2.1182 2.119
Si2H1*® 1.6315 1.6334 1.629
2Hsi2° 1.4876 1.4976 1.474
o Si1Si2H1 " 52.11 52.31 52.50
o Si1Si2H2" 158.53 159.26 157.50
& angstrom
b degrees

* taken from reference [26]. Note that the experimental geometry was obtained
by fixing the Si1Si2H1 angleto its CISD/TZ2P value of 52.5 degrees. These are

ro” vaues.

Both F12 levels (VDZ-F12 and VTZ-F12) reproduce well the semi-experimental values
(distances and angle). However, the VTZ-F12 level gives dlightly better results (for both
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distances and angles) for the bridged hydrogen atom and for the Si—Si bond length,
whereas VDZ-F12 gives better values for the terminal hydrogen atom (both distances
and angles). Note, that the semi-empirical values are ground-state values (rp), while the
values calculated here are equilibrium ones. Thus, the calculated and semi-empirical

values are not exactly comparable.

A comparison of the relative energies for the Si,H, minima using the popular DFT
B3LY P/6-311+G(d), standard CCSD(T)/AVTZ and the F12 (CCSD(T)-F12a/V TZ-F12)
methods is shown in Table 4.1-6.

Table 4.1-6. Relative energy (kcal/mol) of the Si,H, isomers computed at different
levels of theory.
dibridged monobridged disilavinylidene  trans

CCSD(T)/AVTZ 0.00 10.57 13.34 18.35
CCSD(T)-F12a/VTZ-F12 0.00 10.22 12.91 18.06
B3LY P/6-311+G(d) 0.00 9.54 8.34 16.68

The work of Grev and Schaefer [24] shows that the relative energy (at the
CCSD(T)/TZ2df/TZ2p level of theory) of the monobridged isomer relative to the
dibridged global minimum is 10.0 kcal/mol. The vinyl isomer lies 12.2 kcal/mol above
the dibridged isomer and the trans isomer lies 17.3 kcal/mol above the global minimum.
Both ab initio methods used here agree well with the results of Grev and Schaefer.
However, the DFT method underestimates all values computed by Grev and Schaefer
(with an average absolute difference is 1.7 kcal/mol). Moreover, according to the DFT
method the vinyl isomer is more stable than the monobridged structure. Thus, the DFT
method does not reproduce the order of stability of the Si;H, isomers properly in
comparison with the CCSD(T) results by Grev and Schaefer and the ab initio

calculations done here.
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Freguencies

Harmonic frequencies were computed for the optimized structures using various DFT
and ab initio methods. We used the same methods as employed for calculating the
relative energies (Table 4.1-6). In the following discussion the B3LY P/6-311+G(d),
CCSD(T)/AVTZ and CCSD(T)-F12a/VTZ-F12 methods will be abbreviated as B3LYP,
CCSD(T) and F12 respectively. The calculated harmonic frequencies are listed in Table
4.1-7.

The frequencies will be discussed separately for each isomer.

In the dibridged structure both the ab initio (CCSD(T) and F12) sets of vibrational
frequency values are similar: the largest difference between the results calculated with
the two different methods is 19 cm ' (for the highest frequency vibration mode). A
comparison of the frequencies calculated with the B3LYP level with the ab initio
results shows large underestimations using B3LYP for the vibrationa frequencies,
especialy for the higher frequency modes: for the first to fourth modes the average
differenceis 89 cm™'. However, the fifth vibration is overestimated (average difference
between B3LYP and ab initio) by about 69 cm™. All these methods calculated similar
values for the lowest frequency (sixth) vibrationa mode. The average absolute
difference between the frequencies calculated with B3LY P and the ab initio (CCSD(T)
and F12) methodsis 72 cm™".
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Table 4.1-7. Harmonic frequencies for the Si;H, isomers calculated at different levels of
theory; the results are listed in descending order of wavenumber (cm ') units.

SioH>
CCSD(T)/ CCSD(T)-F12a/ B3LYP/
AVTZ?® VTZ-F12 6-311+G(d)

dibridged

1631 1650 1592 SiH sym. str.

1544 1562 1500 SiH antisym. str.

1221 1236 1119 SiH antisym. str.

1152 1167 1013 SiH antisym. str.

909 921 985 Butterfly

515 529 522 SiSi str.
monobridged

2186 2195 2172 SiH; str.

1644 1664 1620 SioHp sym. str.

1136 1163 997 SioHp antisym. str.

602 611 610 SiSi str.

454 460 446 H,SiH; scissors

159 153 41 out of plane
vinyl

2235 2247 2220 SiH antisym. str.

2207 2221 2193 SiH sym str.

887 895 895 SiH, scissors

517 523 520 SIS str.

334 337 334 SiH, wag

263 270 268 SiH; rock
trans

2192 2210 2171 SiH antisym. str.

2187 2201 2165 SiH sym. str.

609 603 626 SiH sym. bend

561 568 561 SiSi str.

287 265 225 SiH antisym. bend

242 211 204 HSISIH torsion

¢ taken from reference [51]

For the monobridged isomer, the CCSD(T) and F12 levels of theory give similar
frequency values; the average differenceis 12 cm'. The largest difference (26 cm™) is

found for the third mode. The B3LYP frequencies show better agreement with the
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corresponding ab initio results than for the dibridged isomer, except the third and last
vibrations which are hugely underestimated (more than 100 cm'); however, the

average difference (55 cm ') is lower than that of the dibridged isomer.

All methods give similar frequency results for the vinyl structure. The average
difference is between 8.5 cm™' (from CCSD(T) to F12) and 10 cm ' (from B3LYP to
F12).

Five of the calculated vibration frequencies for the trans isomer (the first four and the
last mode) have similar values, for al three methods. The average difference is between
15 cm™' (from CCSD(T) to F12) and 26 cm™' (from B3LYP to F12). However,
significant differences in the fifth vibration can be seen. The B3LYP method
overestimates the fifth vibration frequency by 62 cm™' compared to the CCSD(T) level.

We compared our results with the values presented in two papers from the literature: the
very recent paper by Law et al. [52] and the paper by Grev and Schaefer [24]. We chose
the CCSD(T)/cc-pCV (T+d)Z method (Law et al.) and CCSD(T)/TZ2df/TZ2p (Grev and
Schaefer) as references. CCSD(T)/cc-pCV (T+d)Z will be abbreviated as CVTZd and
CCSD(T)/TZ2df/TZ2p as TZ2df.

The CCSD(T) results obtained here agree perfectly with the CCSD(T)/AVTZ results
from Law et a. [52] (as they of course should). The average absolute difference for the
frequencies of al isomers calculated with F12 and CVTZd is 9 cm' and the average
absolute difference between the F12 and TZ2df resultsis 23 cm . A similar difference
with comparison to the CVTZd calculation (10 cm™') can be seen for the CCSD(T)
level. From all methods considered here, DFT showed the largest differences: 44 cm!
(between B3LYP and CVTZd) and 28 cm ' (between B3LY P and TZ2df).

The semi-experimental values of the dibridged harmonic frequencies were taken from
[52]. Caculations of harmonic frequencies using different ab initio and DFT methods
with various sizes of basis sets were performed. The CCSD(T)/cc-pV (Q+d)Z method
will be abbreviated by VQZd. The B3LYP/6-311+G(d), CCSD(T)/aug-cc-pVTZ and
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CCSD(T)-F12alcc-pVTZ-F12 abbreviations remain the same as in the previous
paragraphs. A comparison of the calculated harmonic frequencies with the semi-

experimental values can be seen in Table 4.1-8.

Table 4.1-8. Comparison of calculated harmonic frequencies with literature values.

Dibridged
B3LYPF/ CCSD(T)/  CCSD(T)-F1zal  CCSD(T)/
6-311+G(d) AVTZ VTZ-F12 V(Q+d)Z*  Semi-Expt. *
522 529 514 528
985 921 909 918 922
1013 1167 1152 1170
1119 1236 1221 1239 1226
1500 1562 1543 1560 1552
1592 1650 1631 1649

* values taken from reference [52]

The B3LYP method gives the largest error (average absolute difference of 74 cm™)
especially for the fourth vibration mode. All the ab initio methods reproduced the semi-
experimental values with similar accuracy. The average absolute error for AVTZ is 7
cm ', for F12 9 cm ™' and for VQZd 8 cm'. Moreover, for the highest vibration modes
the F12 level reproduced the semi-experimental values with the best accuracy (with an
average error of 7 cm'), whereas for the AVTZ and VQZd levels the average error is
10 cm™'. Thus, we can conclude that the ab initio methods employed here reproduced
the literature frequency values well and it is hard to determine the most accurate
method.
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4.2 The SizHF isomers.

The next studied structures are compounds similar to the Si;H, species;, however, a
hydrogen atom will be substituted by a fluorine atom. The Si;H, isomers of Grev and
Schaefer [24] will be taken as starting geometries. Two different monobridged
structures (one with a hydrogen as a bridged atom, the second one with a bridged
fluorine) were considered. Average literature (theoretical) values of the Si—F bond

distances were used in the fluorine substituted starting geometries.

Computational methods

The structures were optimized again with the CCSD(T)/aug-cc-pVXZ, CCSD(T)-
Fl2alcc-pVTZ-F12 and B3LYP/6-311+G(d) levels of theory (where X=2-4). All ab
initio calculations were performed using MOLPRO versions 2006.1-2010.1 [85, 120]

software packages whereas the DFT calcul ations were done using Gaussian 03 [138].

Harmonic vibrational frequency computations were done at the optimized structures to
characterise these as minima or transition states (TS). The frequency calculations were
done at the CCSD(T)/aug-cc-pVTZ and B3LY P/6-311+G(d) levels of theory.

The HSISIF, FSIHSI, HFSISI and SIHFS formulae refer to, respectively, the trans,
monobridged, vinylidene and dibridged isomers, respectively. TheVD_TS, MV_TS and
MT_TS symbols represent the transition states on the paths between the vinyl and
dibridged structures (surprisingly), between the monobridged and vinylidene structures
and between the monobridged and trans structures, respectively. Note, that in the
following discussion all the correlation consistent basis sets employed here (such as
aug-cc-pVXZ (where X=2-4)) will be abbreviated as AV XZ, and the methods such as:
CCSD(T)/aug-cc-pVTZ, CCSD(T)-F12alcc-pVTZ-F12 and B3LY P/6-311+G(d) will be
abbreviated as CCSD(T), F12 and B3LY P, respectively. We used the NBO [102, 103]
method to establish the (multiple) bonded properties (only for the minima) as presented
in the previous Si;H, sub—chapter (4.1). The CCSD/cc-pV(T+d)Z level of theory
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utilizing the Gaussian 03 software package was employed. The isomers and transition
states obtained are listed in Table 4.2-1 and Table 4.2-2.

All the calculated isomers of Si;HF and transition states are depicted in Figure 4.2-1.
The energies relative to the monobridged structure (global minimum) are listed at the
bottom of Figure 4.2-1. The reaction paths between the critical points are represented

schematically by lines.

Table 4.2-1. Geometric properties of the calculated Si,HF minima.

CCSD(T)/AVTZ

HFSSi,Cs HSISF,Cs SHFS, Cs FSIHSI, Cs
SF? 1.6163 1.6049 1.9003 1.6069
SiS @ 2.2348 2.1546 2.2696 2.1395
HSi 2 1.4855 1.5100 1.7108 1.7002°
B HSISIF® 180.00 180.00 106.60 0.00
o SISEP 126.16 142.46 53.34 160.83
o SISiIH® 126.03 95.95 48.45 50.27°
& angstrom
b degrees

¢ The Si2H and Si1Si2H values between the silicon (connected to the
terminal fluorine atom) and the bridged hydrogen atom.

Table 4.2-2. Geometric properties of the calculated Si,HF transition states.

CCSD(T)/AVTZ

VD_TS,Ci MV TS Cs MT_TS,Cs
SiF? 1.8033 1.6056 1.6039
SiSi @ 2.2314 2.1584 2.1519
HSi ¢ 1.4931 1.5286 1.5274
B HSISIF b 84.10 180.00 180.00
o SISEP 60.94 165.73 154.55
o SISIH ? 126.9 81.91 82.80
& dngstrom
P degrees

76



Ll

Figure 4.2-1. The optimized structures of the Si;HF isomers and transition states with energies relative to

(monobridged). The calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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Note that the F-bridged starting structure (HSIFSI) converged to the vinylidene form, so

apparently there is no fluorine-bridged structure as a minimum.

The shortest Si—Si bond Iength occurs in the the doubly-bonded monobridged structure
(2.1395 A) followed by the triply-bonded trans structure (2.1546 A), the doubly-bonded
vinylidene structure (2.2348 A) and then the singly-bonded dibridged structure (2.2696
A). Note, that it is unusual that a doubly-bonded structure has a shorter Si-Si bond
length than a triply-bonded structure. It is not clear why this issue occurs here.
Additional studies are necessary to explain thisissue. The calculation shows that the Si—
F distances have a length of around 1.6 A, except that of the dibridged structure, which
is1.90 A (the bridged atoms usually have longer bond lengths). The Si—H distances in
the vinylidene and the trans isomers have a length around 1.5 A whereas the bridged
structures (monobridged and dibridged) show Si—H distances of around 1.71 A. All the

isomers except the dibridged structure are planar.

The monobridged form has the lowest energy followed by the vinylidene form with
AE= 3.59 kcal/moal, then the trans form with AE=7.30 kcal/mol and the dibridged form
with AE= 7.53 kcal/mol. On the reaction paths between the minima three transition
states were found: MV_TS is the transition state between the monobridged and
vinylidene structures (7.80 kcal/mol above the global minimum), MT_TS is the
transition state between the monobridged and trans structures (7.41 kcal/mol above the
global minimum) and VD_TS is the transition state between the vinyl and dibridged
structures (19.86 kcal/mol above the global minimum).

A comparison of the geometric properties calculated with increasing basis set level was
performed. The calculated geometric properties at the CCSD(T)/AVXZ (where X=2-4)
levels of theory are listed in Table 4.2-3. The “Si2” in the table represents the silicon
connected to the terminal fluorine atom.
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Table 4.2-3. Geometric properties of the Si;HF
CCSD(T)/AVXZ (X=2-4) levd of theory.

isomers caculated a the

HFSIS FSIHS

AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ
SFa 16618 16163 16055 | goF @ 16533 16069 1.5967
giSi @ 22613 22348 22244 | gigj2 21783 2.1395 21281
HSi @ 14956 1.4855 1.4826 | Hgj2? 1.7173 1.7002 1.6920
BHSISF® 18000 180.00 180.00 | gngsE® 000 000  0.00
Jpp— 12424 12616 12562 | , gqgpFb 158.64 160.83 160.59
LSiSHb 12820 12603 12628, gigon® 4973 5027 5032
& dngstrom
P degrees

HSISIF SIHFS

AVvDZ AVTZ AVQZ AVDZ AVTZ AVQZ
SFa 16510 16049 15046 | gp @ 19338 1.9003 1.8857
giSi @ 21856 2.1546 2.1437 | gjgj@ 23111 2.2696 2.2549
HSi @ 15187 15100 15043 | Hgi@ 1.7255 1.7108 1.7051
BHSSF® 18000 180.00 180.00 | gyggF® 10630 106.60 106.80
Jpp— 13857 14246 14049 |, ggE® 5345 5333 5328
o SiSiH 9045 9595 97.69 |, ggyb 4802 4844 4861
& dngstrom
P degrees

The change in the bond lengths (S—-Si, Si—H and Si—F) is larger from AVDZ to AVTZ
than from AVTZ to AVQZ. This indicates that the bond lengths are converging with

increasing basis set size. The Si—Si distance and the relative energy are shown in Figure
4.2-2 and Figure 4.2-3.
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Figure 4.2-2. Si—Si bond length variation with increasing basis set size for the Si;HF

isomers.
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Figure 4.2-3. Relative energy of the Si,HF isomers (relative to the monobridged isomer)

as afunction of AV XZ basis set size.
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The S-S distance appears to converge with increasing basis set size for all four
isomers which is clearly illustrated in Figure 4.2-2. Figure 4.2-3 shows a picture of the
dependence of the isomerisation energy on basis set size; a significantly large
improvement for the AVDZ to AVTZ basis set extension can be seen for the dibridged
structure (5.43 kcal/mol) with a smaller increase (0.60 kcal/mol), when extension from
the AVTZ to AVQZ level was performed. The vinyl and trans structures also show
significant improvement for the AVDZ to AVTZ basis set extension; however, the
change is not as large as for the dibridged isomer (1.62 kcal/mol and 1.19 kcal/moal,
respectively). The very small change (actually a decrease) of the isomerisation energies
from the AVTZ to AVQZ basis set shows that the vinyl and trans isomers have nearly
reached convergence. Whereas, the AVDZ basis set gives the wrong isomerization
energies and different minima ordering. It can be concluded then that AVDZ basis set is

too small to properly calculate isomerization energies of the Si,HF species.

CCSD(T)- F12 cdlculations

In addition to CCSD(T)-F12a/cc-pVTZ-F12, the CCSD(T)/cc-pVTZ and B3LYP/6-
311+G(d) levels of theory were also employed for comparison. We used MOLPRO
2010.1 [85] and Gaussian 09 [138, 139]. Note, that in the following discussion the
CCSD(T)/cc-pVTZ level will be abbreviated as CCSD(T), the CCSD(T)-F12al/cc-
pVTZ-F12 level as F12 and the B3LY P/6-311+G(d) level of theory as B3LYP. The

“Si2” in table represents the silicon connected to the terminal fluorine atom.
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Table 4.2-4. Geometric properties computed at various levels of theory.

Si,HF
CCSD(T)/ CCSD(T)-F124a/ B3LYP/
AVTZ VTZ-F12 6-311+G(d)

dibridged
SiF? 1.9003 1.8812 1.9292
Sisi @ 2.2696 2.2477 2.2763
HSi 2 1.7108 1.7026 1.7212
B HSISIF® 106.60 106.74 105.42
o SISIFP 53.33 53.31 53.85
o SISIH® 48.44 48.70 48.61
monobridged
Si2F 2 1.6069 1.5911 1.6249
Sisi @ 2.1395 2.1213 2.1228
HSi2?2 1.7002 1.6892 1.7173
B HSISIF® 0.00 0.00 0.00
o Si1Si2F P 160.83 160.91 160.95
o Si1Si2HP 50.27 50.41 50.91
vinyl
SiF? 1.6163 1.5997 1.6356
Sisi @ 2.2348 2.2195 2.2299
HSi @ 1.4855 1.4816 1.4868
B HSISIF® 180.00 180.00 180.00
o SISIF® 126.16 125.34 125.33
o SiSIH P 126.03 126.40 126.83
trans
SiF? 1.6049 1.5892 1.6222
Sisi @ 2.1546 2.1379 2.1435
HSi @ 1.5100 1.5030 1.5145
B HSISIF® 180.00 180.00 180.00
o SISIF® 142.46 140.61 146.07
o SiISIH P 95.95 97.42 92.67
& angstrom
P degrees

The good general agreement in the bond lengths for all the methods used here can be
seen in Table 4.2-4. However, it was shown in the Si;H, Chapter 4.1 that the F12
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method gives the most accurate result with comparison to the experimental values, and
thus, this method will be taken as a reference. The largest average absolute differenceis
0.033 A (for the dibridged structure between the B3LYP and F12 methods) and the
smallest is 0.008 A (for the vinyl structure between the AVTZ and F12 methods). For
the first three isomers the angle values obtained by the F12 method are reproduced (by
the B3LYP and CCSD(T) methods) with an average accuracy of 0.41° however, in the
trans structure a different picture can be seen. The B3LY P method shows a difference as
large as 5.5° for the SISIF angle and the CCSD(T) as small as 1.5° for the SiSIH angle.
Nevertheless the average absolute difference is 3.4° (when the differences between the
F12 and the B3LY P and CCSD(T) methods are considered).

A comparison of the relative energies for the Si,HF minima calculated using the DFT
(B3LYP/6-311+G(d)) method, the CCSD(T)/AVTZ and F12 (CCSD(T)-F12a/lVTZ-
F12) methods was made and is shown in Table 4.2-5.

Table 4.2-5. Relative energies (kcal/mol) of the Si;HF isomers calculated by various
methods.

dibridged monobridged  vinyl trans

CCSD(T)/AVTZ 7.53 0.00 3.59 7.30
CCSD(T)-F12a/VTZ-F12 8.71 0.00 3.72 7.37
B3LYP/6-311+G(d) 2.29 0.34 0.00 5.64

Both ab initio methods show similar values of the relative energy except for the
dibridged structure. The CCSD(T) level underestimates the relative energy (with
comparison to the F12 method) by around 1.2 kcal/mol (dibridged). The DFT method
underestimates al of the relative energies. Moreover, the DFT method shows that the
globa minimum is the vinyl structure followed by the monobridged, dibridged and trans
structures. Thus, the DFT method does not reproduce the isomerisation energies

properly with comparison to the ab initio calculations.
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Freguencies

Harmonic vibrational frequencies were calculated at the B3LY P/6-311+G(d) level in
addition to the CCSD(T)/AVTZ level of theory. The calculated results are listed in
Table 4.2-6.

Table 4.2-6. Harmonic frequencies for the Si;HF isomers calculated at different levels
of theory; the results are listed in descending order of wavenumber (cm™') units.

Si;HF
CCSD(T)/ B3LYP/
AVTZ  6-311+G(d)

dibridged
1473.6 1432.4 SiH sym. str.
969.8 877.3 SiH antisym. str.
839.9 854.0 butterfly
570.3 548.0 SiSI/SIFin-phase str.
448.5 444.1 SISI/SIF out-of -phase str.
166.6 144.3 HF antisym. twist
monobridged
1628.2 1602.1 SiH sym. str.
1053.0 940.3 SiH antisym. str.
920.2 888.5 SiSI/SiF out-of-phase str.
481.7 4774 SISI/SIF in-phase str.
193.6 191.8 SiSiFin-plane bend
118.7 35.5 out-of-plane
vinyl
2222.3 2202.8 SiH dtr.
880.1 850.5 SiFdtr.
778.7 773.4 SiSH bend
472.4 466.1 SiSi str.
302.3 293.3 out-of-plane
136.7 137.2 SiHF rock
trans
2108.8 2072.3 SiH str.
908.1 8779 SiFdtr.
503.6 518.2 SIS str./H in-plane-bend
423.6 431.6 H in-plane-bend
124.8 65.4 out-of-plane
93.4 58.7 SISIF/SISIH out-of-phase bend




In the dibridged isomer the B3LY P method reproduced the CCSD(T) results quite well
only for the fifth vibration mode: with a difference of 4.3 cm™. However, the rest of the
vibration frequencies calculated by the B3LYP method have larger differences. for
example the first vibration is underestimated by 41.2 cm™' and the second vibration by
92.5 cm'. Nevertheless, the average absolute difference is only 32.8 cm™' when all

vibration modes are considered.

The monobridged isomer is a bizarre example of reproduction of harmonic frequencies
by the B3LY P method. Firstly we have the fourth and fifth vibrations reproduced with
an average difference of only 3.0 cm™' and secondly, the second and last vibration
modes have large differences of 112.7 cm ' and 83.2 cm ', respectively. The average
absolute difference for all vibrations is 43.3 cm™, which is the largest difference of all

the SioHF isomers.

The B3LYP method gives the smallest difference for the vinyl isomer; the average
difference for al vibrations is only 11.7 cm™'. The best accuracy occurs for the last
vibration mode (0.6 cm ') and the worst for the second vibration (29.6 cm ).

The third and fourth vibration modes in the trans isomer are reproduced with an average
accuracy of about 11 cm™'. Nevertheless a large difference (59.4 cm ') can be seen for
the fifth vibration and the average absolute difference (when all the vibrations modes

are considered) is 30.6 cm .

Comparison of calculated geometries with the literature

As was mentioned in the Introduction chapter the Si,HF structures calculated by Bei
and Feng [30] were obtained with too low-level of theory to do reliable comparison
with the results calculated here. To the author’s knowledge no other literature results
(spectroscopic or theoretical) exist for the Si;HF species. Experimental studies of
similar compounds such as SiH,F, [140] or SiF; [141] can be found in the literature
since the late 50's; however, the recent paper by Wilson et a. [34] on the SiHCly and

SiHxFy (where x=0-3 and y=1-3) compounds is the most useful for our purpose as their
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studies contain both experimental and theoretical values. The SiF,, SIHF and SiH3F
species from this publication were chosen for comparison. The caculated Si—F
distances in the above species (computed at the CCSD(T)/aug-cc-pV (Q+d)Z level of
theory) are: 1.598 A, 1.611 A and 1.599 A respectively and the experimental
(equilibrium) Si—F bond lengths are 1.591 A, 1.603 A and 1.5945 A respectively. Our
calculated Si—F values are in the range 1.5892 A (in the trans isomer for F12) to 1.6356
A (in the vinyl isomers for the B3LY P method). The calculated Si—H distances in the
above (SIHF and SiH3F) species (computed at the CCSD(T)/aug-cc-pV (Q+d)Z level of
theory) are: 1.528 A and 1.475 A respectively and the experimental (equilibrium) Si—H
bond lengths are: 1.529 A and 1.4761 A respectively. Our calculated Si—H values arein
the range: 1.4816 A (in the vinyl isomer for AVTZ) to 1.5145 A (in the trans isomers
for the F12 method). Note, that we consider here only the values of termina atoms as
the bond distances for bridged atoms are generally longer. It can be seen that our

calculated results are in good agreement with the literature.
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4.3 The SizHCIl isomers.

The procedure of calculations of the Si,HCI structures is the same as for Si;HF. Initially
the Si;H, structures optimized by Grev and Schaefer [24] were used but with one
hydrogen atom substituted by a chlorine atom. Two different monobridged structures
(one with a hydrogen as a bridged atom, the second one with a bridged chlorine) were
considered. Average literature (theoretical) values of the Si—Cl bond distances were

used in substituted-chlorine starting geometries.

Computational methods

Initially we were interested in the isomerisation properties of structures and relative
energies calculated with the CCSD(T)/aug-cc-pV XZ, CCSD(T)-F12a/cc-pVTZ-F12 and
B3LY P/6-311+G(d) levels of theory (where X=2-4). All the ab initio calculations were
performed using MOLPRO versions 2006.1-2010.1 [85, 120] whereas the DFT
calculations were performed with Gaussian 03 and 09 [138, 139]. The minimization and
transition state (TS) searching was performed by using the quadratic steepest descend
algorithm implemented in the MOLPRO computational programs. Harmonic
frequencies were done at the optimized structures at the CCSD(T)/aug-cc-pVTZ, and
B3LYP/6-311+G(d) levels of theory, and the structures were verified as minima or
transition states by the absence or presence of imaginary vibrational frequencies. Asin
the previous chapter, the correlation consistent basis sets used (aug-cc-pVXZ (where
X=2-4)) will be abbreviated as AVXZ, and the methods such as. CCSD(T)-F12a/cc-
pVTZ-F12 will be abbreviated as F12, CCSD(T)/AVTZ as CCSD(T) and B3LYP/6-
311+G(d) as B3LYP. The NBO [102, 103] caculations were performed at the
CCSD/cc-pV(T+d)Z level of theory using the Gaussian 03 software package. The NBO
calculations of the optimized minima were done to establish (multiple) bonded
properties as presented in the earlier Si,H, sub—chapter (4.1). The calculated geometric
properties using the CCSD(T)/AVTZ method are listed in Table 4.3-1 and Table 4.3-2.
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Table 4.3-1. Geometric properties of calculated Si,HCl minima.

CCSD(T)/AVTZ

SHCIS,Cs  CISIHS,Cs HCISIS, Cs HSISICI, Ce
sicl @ 2.3392 2.0613 2.0750 2.0567
Sis @ 2.2880 2.1398 2.2306 2.1512
HSi 2 1.7120 1.6857°¢ 1.4844 1.5040
B HSISICI® 101.62 0.00 180.00 180.00
o SiSicl® 60.72 160.65 122.28 137.66
o SISiH " 48.07 50.61° 128.47 104.56
& dngstrom
P degrees

¢ The Si2H and Si1Si2H values between the silicon (connected to the
terminal chlorine atom) and the bridged hydrogen atom.

Table 4.3-2. Geometric properties of calculated Si,HCI transition states.
DM_TS,C; DV_TS, Cs MT_TS, Cs

SiCl @ 2.2299 2.0556 2.0543
SiSi @ 2.1798 2.1626 2.1515
HSi 2 1.4848 1.5257 1.5322
B HSISICI b 54.90 180.00 180.00
o Sisicl P 70.84 164.49 158.76
o SISHP 173.02 82.66 81.46
& angstrom

P degrees

The HSISICI, CISIHSI, HCISISI and SIHCIS formulae refer to: the trans, monobridged,
vinylidene and dibridged isomers, respectively. The DM_TS, DV_TS and MT_TS
formulae represent the transition states on the paths between: the dibridged and
monobridged structures, dibridged and vinyl and between the monobridged and trans
structures, respectively.

The same structure types as found in the Si;H, system were obtained. The calculation
were done at the CCSD(T)/AVTZ level of theory. The Si,HCI system possesses four
minima. The global minimum is the Si—Si singly-bonded dibridged structure and 4.38
kcal/mol above lies the Si—Si doubly-bonded monobridged structure. The energy

relative to the global minimum of the Si—Si doubly-bonded vinyl structure is 8.01
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kcal/mol and the relative energy of the Si—Si triply-bonded trans structure is 11.79
kcal/mol. Three transition states were found, the first one lies on the reaction path
between the dibridged and monobridged isomers. Two further transition states connect
the dibridged isomer with the vinyl and monobridged with trans isomers, respectively.
The reaction path showing relative energies and pictures of the calculated structures can
be seenin Figure 4.3-1.

A comparison of the geometric properties of the four isomers calculated with CCSD(T)
and increasing basis set level (AVXZ where X=2—4) isshown in Table 4.3-3. The“Si2"
in table represents the silicon connected to the terminal chlorine atom.

Table 4.3-3. Geometric properties of the Si,HCl isomers calculated with
CCSD(T)/AVXZ (where X=2-4) level of theory.

SIHCISI CISIHSI
AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ
SiCl ® 23979 2.3392 23239 | Si2Cl*® 2.1000 20613 2.0496
Sisi ® 23279 22880 22746 |SIS*® 21740 21398 2.1278
HSi ® 17267 17120 1.7057 | HSi2® 1.7004 1.6857 1.6790

BHSISICI® 10118 10162 10165 |BHSSCI® 000 000 000
o SiSiCl® 6096 6072 6070 | Si1Si2CI® 15076 160.65 160.66
aSSH® 4762 4807 4818 |0 S1S2H® 5030 5061 5063

& dngstrom

P degrees
HCISISi HSISIC
AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ
SiCl ® 21135 20750 2.0620 | SICI*® 20044 20567 2.0447
Sisi ® 22558 22306 22201 |SIS® 21779 21512 2.1399
Hsi® 14939 14844 14811 |HS*® 15143 15040 1.4992

BHSISICI® 18000 180.00 180.00 |BHSISICI® 18000 18000 180.00
aSISICI® 12078 12228 12237 |aSSCI® 13617 13766 136.95
o SISH" 13021 12847 128.06 | SISIH" 105.45 10456 105.18

& angstrom

b degrees
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Figure 4.3-1. The optimized structures of the Si,HCl isomers and transitions states with energies relative to the global minimum
(dibridged). The calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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The variations of the relative energies and Si—Si bond distance with increasing basis set

size are shown in Figure 4.3-2 and Figure 4.3-3, respectively.

Both figures show the same convergence pattern. The largest change occurs from
AVDZ to AVTZ, whereas only a smal change happens upon further basis set

improvement. This shows that the results are converging.

Figure 4.3-2. Si—Si bond length variation with increasing basis sets size for the SioHCI

isomers.
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Figure 4.3-3. Relative energy of the Si,HCI isomers (relative to the dibridged isomer) as
afunction of AVXZ basis set size.
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CCSD(T)- F12 cdlculations

A comparison of the results obtained with the CCSD(T)/AVTZ method, the recently
developed CCSD(T)-F12a/VTZ-F12 method and the B3LY P/6-311+G(d)) method is
shown in Table 4.3-4. The “Si2” in table represents the silicon connected to the terminal
chlorine atom.

The F12 method will be taken as the reference. Table 4.3-4 shows that all the methods
give similar Si—Cl bond distances with differences ranging from 0.0623 A (difference
between the F12 and B3LYP results in the dibridged isomer) to 0.0191 A (difference
between the F12 and CCSD(T) results in the monobridged isomer). The F12 S-S
distance is reproduced by the CCSD(T) and B3LY P methods with good accuracy. The
largest difference (0.0207 A between the F12 and CCSD(T) results) occurs for the
dibridged isomer while the smallest (0.0028 A between the F12 and B3LYP results)
occurs for the monobridged isomer. The average absolute difference for the S-S
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distances (when differences between the F12 and the CCSD(T) and B3LY P methods are
considered) is 0.0115 A and the average absolute difference for the calculated Si—H
distance is 0.0084 A.

Table 4.3-4. Geometric properties computed at various levels of theory.

Si,HCI
CCSD(T)/ CCSD(T)-F12a/ B3LYP/
AVTZ VTZ-F12 6-311+G(d)

dibridged
sicl @ 2.3392 2.3124 2.3747
Sisi @ 2.2880 2.2673 2.2876
HSi 2 1.7120 1.7035 1.7187
B HSISICI® 101.62 101.74 101.38
a SiSiCl ® 60.72 60.64 61.21
o SISIH " 48.07 48.28 48.29
monobridged
Si2cl @ 2.0613 2.0422 2.0720
Sisi @ 2.1398 2.1220 2.1248
HSi2?2 1.6857 1.6751 1.6941
B HSISICI® 0.00 0.00 0.00
o Si1Si2Cl P 160.65 160.79 161.33
o Si1Si2H ° 50.61 50.73 51.28
vinyl
sicl @ 2.0750 2.0544 2.0846
Sisi @ 2.2306 2.2159 2.2234
HSi 2 1.4844 1.4800 1.4852
B HSISICI® 180.00 180.00 180.00
o SiSiCl P 122.28 12257 122.98
o SiSIH P 128.47 127.67 127.86
trans
sicl @ 2.0567 2.0372 2.0648
Sisi @ 2.1512 2.1350 2.1430
HSi @ 1.5040 1.4979 1.5091
B HSISICI® 180.00 180.00 180.00
o SiSiCl P 137.66 137.14 141.57
o SiISIH P 104.56 104.94 99.94
& dngstrom
P degrees
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The CCSD(T) and B3LY P methods reproduced the angles obtained by the F12 method
(in the dibridged, monobridged and vinyl isomers) well. The average absolute
difference is 0.40°, however, in the trans isomer the B3LY P method fails. The angles
computed at this level are underestimated (SISIH) by about 5.0° or overestimated
(SISICI) by about 4.4°, whereas the CCSD(T) method reproduced the angles with
average absolute error around 0.45°. A similar situation was seen for the Si;HF species
where the B3LY P method reproduced the angle values with an average absolute error
around 4°. Thus, we can conclude that the B3LYP method employed here is not
accurate enough in calculation of the trans species.

A comparison of the relative energies for the Si,HClI minima using the B3LY P/6-
311+G(d) method, the CCSD(T)/AVTZ method and the F12 (CCSD(T)-F12a/VTZ-
F12) method was made and is shown in Table 4.3-5.

Table 4.3-5. Relative energies (kcal/mol) of the Si,HCI isomers calculated by various
methods.

dibridged monobridged  vinyl trans

CCSD(T)/AVTZ 0.00 4.38 801  11.79
CCSD(T)-F12a/VTZ-F12 0.00 4.31 812 1179
B3LY P/6-311+G(d) 0.00 5.46 532 1099

Both ab initio methods show similar values of the relative energy. However, the DFT
method underestimates the relative energy. Moreover, the DFT method shows that the
vinyl structure is the second minimum above the global minimum (dibridged) instead of
the monobridged structure. Thus, the DFT method does not reproduce the isomerisation
energies properly in comparison to the ab initio calculations.

Freguencies

The harmonic frequencies were calculated using the CCSD(T)/AVTZ and B3LYP/6-
311+G(d) methods. Theresults are listed in Table 4.3-6.
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Table 4.3-6. Calculated harmonic frequencies for the Si,HCl isomers computed at

different levels of theory; the results are listed in descending order in wavenumber

(cm ") units.
Si;HCl
CCSD(T)/ B3LYP/
AVTZ 6-311+G(d)
dibridged
1440.7 1421.8 SiH sym. str.
951.3 876.6 SiH antisym. str.
828.3 844.6 Butterfly
501.9 491.5 SIS str.
353.0 333.3 SiCl sym. str.
217.7 192.5 HCI antisym. twist
monobridged
1624.0 1604.1 SiH sym. str.
1067.2 935.7 SiH antisym. str.
686.0 671.5 SiSI/SICl in-phase str.
389.3 379.0 SiSI/SICI out-of-phase str.
153.8 1554 CISiH bend
97.0 44.3 out-of-plane
vinyl
2224.1 2203.4 SiH str.
730.8 741.9 SiSiH bend
583.9 565.8 SiSI/SICl in-phase str.
441.6 432.0 SiSI/SICI out-of-phase str.
278.2 270.0 out-of-plane
88.8 92.9 SiSICI rock
Trans
2132.0 2098.2 SiH str.
647.5 631.2 SiSI/SICI out-of-phase str.
472.9 491.7 H in-plane bend
396.0 383.0 SiS/SiCl in-phase str.
90.5 74.8 SiISIH/SISICl out-of-phase bend
49.4 73.3 out-of-plane

In the dibridged isomer the B3LY P method reproduced the CCSD(T) frequencies for
the first, and third to fifth vibrations quite well, with an average absolute difference of
16 cm'. However, the second vibrational frequency calculated by the B3LY P method

has an error of 75 cm ' and the last vibration frequency has an error of 25 cm™'
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(compared to the CCSD(T) value). Nevertheless, the average absolute difference is only

27 cm ! when all vibration modes are considered.

The monobridged isomer is another bizarre example of reproduction of harmonic
frequencies by the B3LY P method. Firstly we have the fifth vibration with an error of
only 1.5 cm ' and secondly, the second vibration mode with a difference of 131.5 cm™'
and the last vibration frequency with a difference of 53 cm™'. The worst agreement (for
al the Si;HCI isomers) can be seen for the monobridged structure, for which the

average absolute differenceis 38 cm .

The vinyl isomer shows an entirely different picture. The B3LYP method gives the
smallest differences compared with CCSD(T); the average absolute difference is 12
cm . The best accuracy occurs for the last vibration mode (4.1 cm™) and the worst for
first vibration (21 cm ).

From the second to the fifth vibration mode in the trans isomer, the B3LYP method
reproduced the CCSD(T) results with an agreement of 16 cm '. Nevertheless, the largest
error (34 cm™') can be seen for the first vibration and the average absolute difference

(when all the vibrational modes are considered) is 20 cm .

It was noticed that the B3LY P method reproduced poorly the frequencies assigned as
the SiH antisymmetric stretch and out-of-plane vibration in the H-bridged and dibridged
structures. This pattern was aso seen in the Si;H, and Si,HF species and will be seen in
the subsequent Si;HLi and Si;Li, sub-chapters. Furthermore, a similar situation where
the B3LY P method reproduced poorly the frequencies assigned as out-of-plane can be

seen in the trans structures in the Si,HF and Si,HCI species.

Comparison of calculated values with literature

As was mentioned in the Introduction chapter the Si,HCI structures calculated by Bei
and Feng [30] were obtained with too low a level of theory to do areliable comparison

with the results calculated here. Nevertheless, although no structural and freguency
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information is available for Si,HCI from either experiment or theory (except the above
one), we will compare with similar structures such as SiH3Cl, SiIHCl3 or SiCls.
Experimental work on the SiH3Cl and SiCl;z molecules has been done since 1956 [ 35,
142, 143] . The theoretical work of Wilson et al. [34] is the most useful. They showed
theoretical results and experimental results (done by [35]) of the SIHCly.n (where
m=1-4 and n=0-m) molecules such as the SICl, SiCl;, SHCl3; SiH3Cl or SiH.Cl,
species. The calculated (CCSD(T)/aug-cc-pV(Q+d)Z level of theory) Si—ClI bond
distances range from 2.069 A (SiCl) to 2.021 A (SiCl,). For the experimental results,
the distances range from 2.020 A (SiH3Cl) to 2.057 A (SiCl). The next most important
work was done by Ding and Zhu [50]. They calculated a potentia energy surface (PES)
which they used to study Si—H stretching-bending overtones in SiHCI3. The calculated
Si—Cl equilibrium distance is 2.0306 A. The Si—Cl distances calculated here range from
2.1135 A (the vinyl isomers calculated with the CCSD(T)/AVDZ level) to 2.0372 A
(the trans isomer at the CCSD(T)-F12a/VTZ-F12 level). Comparison of the Si-H
distances calculated here with the theoretical work of Wilson et al. [34] follows. The
calculated Si—H distances in the SIHCI3, SIH3Cl and SiH,Cl, species (computed at the
CCSD(T)/aug-cc-pV(Q+d)Z level of theory) are: 1.462 A, 1.474 A and 1.468 A
respectively and the experimental (equilibrium) Si—H bond lengths are: 1.464 A, 1.4749
A and 1.4671 A respectively. Our calculated Si—H values are in the range 1.4800 A (in
the vinyl isomer for AVTZ) to 1.5091 A (in the trans isomers for the F12 method).
Note, that we did not consider the dibridged structure in this comparison as the bridged
atoms generally have longer bond distances. It can be seen that our calculated results are

in good agreement with the experimental and theoretical literature for similar molecules.
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4.4 The SizHLi isomers.

Substituted silicon hydride isomers are very interesting from a technological point of
view, especially when the substituted atom is lithium. This is because of the growing
importance of lithium and its connection with the silicon atom in modern industry, such
as the development of silicon lithium-ion batteries. However, a lithium-ion battery has
limitations: it is less reversible than carbon-lithium batteries at room temperature [144-
146] and fading of capacity was observed [147]. An investigation of electronic and
bonding properties for small molecules consisting of Li and Si atoms can be very
valuable and helpful to solve the overwhelming problems occurring now and in the

future in research involving compounds containing Si and Li atoms.

Computational methods

The calculations were carried out with MOLPRO versions 2006.1-2010.1 and Gaussian
versions 98-03 [120, 130, 138]. The Si;H, structures optimized by Grev and Schaefer
[24] were taken as the starting geometries, where one of the H atoms was replaced by
the Li atom. We explored two different monobridged structures: with Li as the bridging
atom and with H as the bridging atom. Average literature (theoretical) values of the
Si—Li bond distances were used in the substituted-lithium starting geometries. All
geometry optimization calculations were performed at the CCSD(T)-F12alcc-pVTZ-
F12 [133, 134, 148] and B3LY P/6-311+G(d) levels of theory and with CCSD(T) with
the aug-cc-pVXZ, cc-pVXZ and aug-cc-pV (X+d)Z basis sets (where X=2-4) [58, 149,
150]. The vibrational frequency calculations were performed at the CCSD(T)/aug-cc-
pVXZ and B3LYP/6-311+G(d) levels of theory. The frequencies were used for the
identification of transition states (TS) and minima. The correlation consistent basis sets
used here, aug-cc-pV XZ cc-pV XZ and aug-cc-pV (X+d)Z will be abbreviated as AVXZ,
VXZ and AV (X+d)Z (where X=2-4). The methods such as. CCSD(T)-F12a/cc-pVTZ-
F12 will be abbreviated as F12, CCSD(T)/AVTZ as CCSD(T) and B3LY P/6-311+G(d)
as B3LYP respectively. Natural Bond Order (NBO) calculations were done at the
CCSD/aug-cc-pV(T+d)Z level of theory using Gaussian 98 with NBO 3.1 implemented.
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The LiSIHSI, HSILiSI and SIHLiS formulae refer to the H—bridged, Li—bridged and
dibridged isomers, respectively. The D-LIM_TS, LiIM-HM_TS formulae refer to the
transition states on the paths between the dibridged and Li—bridged structures, and the
Li—bridged and H—bridged structures, respectively.

The optimized structures of the Si;HLi isomers and transition states are depicted in
Figure 4.4-1. The pictures show the multiple-bonding properties of the optimized
isomers obtained from the NBO calculations. The energies relative to the dibridged
structure (global minimum) are listed at the bottom of Figure 4.4-1. The reaction paths
between critical points are represented schematically by lines.

Figure 4.4-1 shows the optimized isomers with the bonding properties taken from NBO
calculations. All the isomers are bridged structures. The global minimum is a dibridged
(SIHLiSi) form and Li—bridged (HSILiSi) and H—bridged (LiSIHSI) local minima were
found. The energy differences between the global minimum and the local minima are
4,12 kcal/mol and 891 kca/mol for the Li-bridged and H-bridged structures,
respectively. The Li- and H-bridged isomers contain a double Si=Si bond, whereas the
dibridged isomer is a single-bonded structure. In all the isomers lone pairs can be found
on one or two silicon atoms. We aso investigated cis and linear forms but they were

found to be higher—order transition states.
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Table 4.4-1. Geometric properties of the calculated Si,HLi minima.

CCSD(T)/AVTZ

SiHLIiSi, Cs HSLiSi, Cs LiSIHSI, Cs
SiLi 4 2.6291 2.5306 ° 2.4349
SiSi 4 2.1994 2.1188 2.1582
HSi 4 1.6800 1.4954 1.6383 ¢
B HSISILip 86.73 180.00 0.00
a SiSiLip 65.28 68.48 ¢ 156.49
a SiSiH p 49.11 168.75 51.47 ¢
& dngstrom
® degrees

° The Sil1Li and Si2Si1Li values between the silicon and the bridged
lithium atom.

9 The Si2H and Si1Si2H values between the silicon (connected to the
terminal lithium atom) and the bridged hydrogen atom.

Table 4.4-2. Geometric properties of the calculated SioHLIi transition states

CCSD(T)/AVTZ
D-LIM_TS, C, LIM-HM TS, Cs
SiLi, 25851 2.4245
SiSi . 2.2055 21987
HSi , 15354 1.5167
B HSISiLip 84.75 0.00
o SISiLi 4 67.75 137.40
@ SISH ; 91.80 97.50
& angstrom
® degrees
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TOT

Figure 4.4-1. The optimized structures of the Si,HLi isomers and transition states with energies relative to the global minimum (dibridged).

The calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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Table 4.4-1 presents the geometric properties of the structures optimised at the
CCSD(T)/aug-cc-pVTZ level of theory. The “Si2” or “Si1” in table represents the
silicon connected or not connected to the terminal atom.

We see that the shortest Si-Si bond occurs in the Li-bridged structure (2.1188 A),
followed by the H-bridged (2.1582 A) and the di-bridged (2.1994 A) structures. In the
previous sub-chapters it was found that the bridged atom has longer bond lengths. This
is aso found here: the calculated S—Li and Si—H bonds in the bridged isomers have
lengths of 2.6291 A (SiHLiSi), 2.5306 A (HSILiSi), 1.6800 A (SiHLiSi) and 1.6383 A
(LiSIHSI). The Si—Li and Si—H bond lengths of the terminal atoms are shorter: 2.4349 A
and 1.4954 A for LiSIHSI and HSILiSi, respectively. All isomers except the dibridged
structure are planar.

We aso performed a more extended investigation of disilynes substituted by Li atoms
in comparison to the Si;HF and SioHCI structures, as these are particularly interesting

for the high-tech industry as shown in the Introduction chapter.

We performed calculations with several series of basis sets to choose the most effective
basis set. The performance of the AVXZ and VXZ basis sets was first assessed,
followed by a comparison of the results obtained with the AVXZ and AV (X+d)Z basis
sets (where X=2—4). The CCSD(T) method was employed in all of the calculations. The
CBS limit has aso been evaluated using the model proposed by Halkier et al [151].
Details of this model will be discussed later.

The comparison of the results obtained with the AVXZ and VXZ basis sets aims to
investigate the importance of the inclusion of diffuse functions in the basis sets. The
geometric properties calculated with the VXZ basis sets can be found in Table 4.4-3 to
Table 4.4-5. The relative energies calculated with these basis sets are presented in the
form of graphs (Figure 4.4-2 and Figure 4.4-3). The “Si2” or “Si1” in table represents
the silicon connected or not connected to the terminal atom.
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Table 4.4-3. Geometric properties of the SIHLiS isomer at the CCSD(T)/AVXZ and
CCSD(T)/VXZ (where X=2-4) levels of theory.

SHLISi

AVDZ AVTZ AVQZ VDZ VTZ VQZ
SiLi @ 2.6633 26291 26235 26505 26257 2.6228
Sis @ 22306 21994 21866 22272 21989 2.1858
HSi @ 1.6957 1.6800 16738 1.6965 1.6802 1.6729
BHSISILI® 8840 8673 8730 8473 8580  86.79
o SiSiLi ° 6524 6528 6537 6516 6523 6537
o SISH® 4887 4911 4922 4897 4913  49.21
& dngstrom
b degrees

Table 4.4-4. Geometric properties of the LISHS isomer at the CCSD(T)/AVXZ and
CCSD(T)/VXZ (where X=2-4) levels of theory.

LiSIHS

AVDZ AVTZ AVQZ VDZ VTZ VQZ
Si2Li? 24563 24349 24350 24518 24320 2.4337
SiSi @ 21873 21582 21471 21820 2.1571 2.1466
HSi22 1.6612 16383 1.6421 1.6588 1.6470 1.6415
BHSSILI b 0.00 0.00 0.00 0.00 0.00 0.00
o Si1Si2Li®  155.01 156.49 15556 15525 156.27 155.97
o Si1Si2H P 51.36 5147 51.45 51.42 51.43 51.45
& dngstrom
b degrees
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Table 4.4-5. Geometric properties of the HSILiS isomer at the CCSD(T)/AVXZ and
CCSD(T)/VXZ (where X=2-4) levels of theory.

HSILiS
AVDZ AVTZ AVQZ VDZ VTZ VQZ
SilLi® 25702 25306 25245 25620 25281 25234
Sisi @ 21483 21188 21079 21460 21187 2.1075
HSi22 15070 14954 14930 15053 14952 1.4928

B HSISILI b 180.00 180.00 180.00 180.00 180.00 180.00
o Si2SiLi P 68.17 68.48 68.62 68.15 68.45 68.63

o Si1Si2H P 167.84 168.75 168.08 168.14 168.39 167.86
& angstrom

P degrees

Figure 4.4-2. Energy of the HSILiS isomer (relative to the dibridged isomer) as a
function of VXZ and AV XZ basis set size.

CCSD(T)
4.40
= 420 /
e /
E /
> *r—
@© 4.00
(8]
=
> /
80 3,30
(]
[ o
g /
o 3.60
2 ./
e
o
Y 340
Basis set
3.20
D T Q
=== AVXZ 4.05 4.12 4.32
== \/XZ 3.49 3.96 4.25

104



Figure 4.4-3. Energy of the LISIHS isomer (relative to the dibridged isomer) as a
function of VXZ and AV XZ basis set size.
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A large difference between the relative energies calculated with the VDZ and AVDZ
basis sets can be seen for both isomers: the energy difference is 0.56 kcal/mol (HSILiSi)
and 1.38 kcal/mol (LiSIHSI). The energy difference decreases (VXZ) or increase
(AVXZ) with increasing basis set size. At the quadruple— quality level, the differences
are only 0.07 kcal/mol (HSILiS) and 0.10 kcal/mol (LiSIHSI). The VXZ basis set
significantly under- or over-estimates the relative energies at the double and triple—
¢ quality level of theory. However, at the quadruple— quality level the differences are
so small that we can conclude that at this level and above diffuse functions are not
necessary for calculating good-quality isomerisation energies in “SiHLI” systems. A
similar pattern can be see for the Si—Si bond distances: at the quadruple—¢ quality level
the differences are as small as 0.0004 A (HSILiSi) and not larger than 0.0008 A
(SIHLiSI).

A comparison of the results obtained with the AVXZ and AV (X+d)Z basis sets ams to

assess the importance of inclusion of tight d functions on the heavy atoms (silicon in our

case) in the basis sets for calculation of geometric and energetic properties. All
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calculations were performed using the CCSD(T) method. The calculated geometric
properties of the Si;HLi isomers are listed in Table 4.4-6 to Table 4.4-8. The “Si2” or

“Si1” in table represents the silicon connected or not connected to the terminal atom.

Table 4.4-6. Geometric properties of the SIHLiS isomer at the CCSD(T)/AVXZ and
CCSD(T)/AV (X+d)Z (where X=2-4) levels of theory.

SIHLISi
AVDZ AVTZ AVQZ AV(D+d)Z AV(T+d)Z AV(Q+d)Z

SiLi @ 26633 26291 26235 26597 2.6270 2.6232
Sisi ? 22306 21994 2.1866  2.2166 2.1933 2.1827
HSi 1.6957 1.6800 16738  1.6841 1.6753 1.6711
BHSISILI® 8840 8673 87.30 88.40 86.76 86.92
o SiSiLi ® 65.24 6528 65.37 65.37 65.32 65.41
o SISHP 4887 4911 49.22 48.84 49.11 49.22
& dngstrom
b degrees

Table 4.4-7. Geometric properties of the LISHS isomer at the CCSD(T)/AVXZ and
CCSD(T)/AV(X+d)Z (where X=2-4) levels of theory.

LiSIHS

AVDZ AVTZ AVQZ AV(D+d)Z AV(T+d)Z AV(Q+d)Z
Si2Li? 24563 24349 2.4350 2.4559 2.4361 2.4333
Sk 21873 21582 2.1471 2.1756 2.1530 2.1452
HSi22 1.6612 1.6383 1.6421 1.6518 1.6439 1.6402
BHSSILI b 0.00 0.00 0.00 0.00 0.00 0.00
o Si1Si2Li® 155.01 156.49 155.56 154.37 156.03 154.76
o Si1Si2H P 51.36 51.47 51.45 51.19 51.40 51.41
& dngstrom
P degrees

Theresults listed in Table 4.4-6 to Table 4.4-8 showed that the bond lengths (Si-Si H-Si
and Si-Li) decrease upon increasing basis set size for both the AVXZ and AV (X+d)Z
basis set series. In contrast, there is no clear pattern for the angles; the results fluctuate
upon increasing basis set size. The variations in the Si—Si bond lengths upon increasing

AV XZ and AV (X+d)Z basis set size are shown in Figure 4.1-6 to Figure 4.1-9.
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Table 4.4-8. Geometric properties of the HSILiS isomer at the CCSD(T)/AVXZ and
CCSD(T)/AV (X+d)Z (where X=2-4) levels of theory.

HSILiS

AVDZ AVTZ AVQZ AV(D+d)Z AV(T+d)Z AV(Q+d)Z
SilLi? 2.5702 25306 2.5245 2.5653 2.5287 2.5236
SiSi @ 2.1483 21188 2.1079 2.1382 2.1144 2.1057
HSi22 1.5070 1.4954 1.4930 1.5021 1.4934 1.4921
B HSSILI b 180.00 180.00 180.00 180.00 180.00 180.00
o Si2Si1Li® 68.17 68.48 68.62 68.27 68.51 68.70
o Si1Si2H P 167.84 168.75 168.08 167.40 168.66 167.96
& dngstrom
® degrees

The variations in the isomerisation energies and Si—Si bond lengths upon increasing
AV XZ and AV (X+d)Z basis set size are shown in Figure 4.4-4 and Figure 4.4-5.

The change in the HSILiSi isomerisation energy with increasing basis set size from
double to triple is larger for the AV(X+d)Z than for the AVXZ the basis set (0.34
kcal/mol for AV (X+d)Z and 0.07 kcal/mol for AV XZ). However, when increasing the
size of the basis set from triple to quadruple-{ the conclusions are opposite: the

difference is larger for the AVXZ basis set (0.2 kcal/mol) than for the AV (X+d)Z basis
set (0.10 kcal/mal).

The AV XZ basis sets show larger changes in the LiSIHSI isomerisation energy than the
AV (X+d)Z basis sets over the whole range of basis set sizes. The energy changes by
0.13 kcal/mol from AVDZ to AVTZ and by 0.16 kcal/mol from AVTZ to AVQZ.
However, for the AV (X+d)Z basis set series the same changes of the basis set size
(from DZ to TZ and TZ to QZ) give energy differences of only 0.01 kcal/mol and 0.10
kcal/mol, respectively.
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Figure 4.4-4. Energy of the HSILiSI isomer (relative to the dibridged isomer) as a
function of AVXZ and AV (X+d)Z basis set size.
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Figure 4.4-5. Energy of the LiSIHSI isomer (relative to the dibridged isomer) as a
function of AVXZ and AV (X+d)Z basis set size.
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Figure 4.4-6. S—Si bond length variation with increasing basis set size for the HSILiS

isomer.
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Figure 4.4-6 to Figure 4.4-8 show the variation of Si-Si bond distance with increasing
basis set size (employing the AVXZ and AV (X+d)Z basis set families) for the three

minimum-energy structures. A smooth convergence pattern is observed for al three

isomers and for both basis set series. Note also that the difference between the results
obtained with the AVQZ and AV (Q+d)Z basis sets is quite small: from 0.0019 A (for
LiSiIHSI) to 0.0039 A (for SIHLiSi). It can be seen that the addition of tight d functions

to the heavy atoms does not significantly improve the geometric properties when basis

sets as large as quadruple— are employed.
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Figure 4.4-7. The Si—Si bond length variation with increasing basis set size for the

LiSIHS isomer.
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Figure 4.4-8. The Si—Si bond length variation with increasing basis set size for the

SIHLiS isomer.
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Complete Basis Set (CBS) limit

Knowledge of the Complete Basis Set (CBS) limit provides insight into the basis set
error of a computational method. The CBS limits were estimated by extrapolating the
AVTZ-AVQZ and AV (T+d)Z-AV(Q+d)Z correlation energies using the extrapolation
model proposed by Halkier et al. [151]. Equation 4.4-1 shows the CBS model by
Halkier et al., where Ex represents the correlation energy calculated with the X basis set
and Ex., represents the correlation energy calculated with the X—1 basis set. The
correlation energies were obtained as a difference between the HF energy and the
CCSD(T) (total) energy at the X or X-1 basis set level. The extrapolated Ecgs energy
was then added to the HF energy at the X basis set level to obtain the CBS limit. More
details can be found in Ref. [151]. Figure 4.4-9 and Figure 4.4-10 show the calculated
CBS limits (using the highest QZ level employed in this work) compared with the
AVXZ and AV(X+d)Z relative energies for the isomers that lie above the global
minimum.

E . X3 X-1)3
CBS ™ x3_(x-1)3 X x3_(x-1)3 X1

4.4-1
It can be seen that the AV XZ calculations are quite far away from the CBS limit, even
for the quadruple— basis set; the error is 0.18 kcal/mol for LiSIHSI and 0.17 kcal/mol

for HSILiSI. This suggests that calculations with larger basis sets, such as AV5Z or
AV6Z arerequired to yield results close to the CBS limit.

Figure 4.4-9 and Figure 4.4-10 show that the AV (X+d)Z results are much closer to the
CBS limit than the AVXZ results. The error is 0.05 (HSILiS) kca/mol and 0.10
kcal/mol (LiISHSI), so it is possible to achieve results close to the CBS limit using the
AV (Q+d)Z basis set.
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Figure 4.4-9. Energies of LiSIHSI (relative to the dibridged isomer) calculated with the
AVXZ and AV(X+d)Z basis sets. The CBS limit obtained by extrapolation of the
AVTZ/AVQZ and AV (T+d)Z/AV (Q+d)Z resultsis shown as well.
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Figure 4.4-10. Energies of HSILiSi (relative to the dibridged isomer) calculated with the
AVXZ and AV(X+d)Z basis sets. The CBS limit obtained by extrapolation of the
AVTZ/AVQZ and AV (T+d)Z/AV (Q+d)Z resultsis shown as well.
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CCSD(T)- F12 cdlculations

We performed cal culations using the recently developed CCSD(T)-F12a method.

Note, that in the following discussion the CCSD(T)/cc-pVTZ level will be abbreviated
as CCSD(T), the CCSD(T)-Fl2alcc-pVTZ-F12 level as F12 and the B3LYP/6-
311+G(d) level of theory as B3LY P, respectively. The geometric properties calculated
by the above methods can be found in Table 4.4-9. The “Si2” or “Si1” in table
represents the silicon connected or not connected to the terminal atom.

Table 4.4-9 shows that all three methods give similar results for the S—Si, Si—Li and Si—
H bond distances. However, the F12 method will be taken as a reference here. The
difference between the results obtained with the F12 and CCSD(T) methods ranges
from 0.0005 A (H-bridged structure) to 0.0195 A (dibridged structure). The results
obtained with the F12 and B3LY P methods range from 0.0031 A (H-bridged structure)
to 0.0215 A (dibridged structure). The average absolute difference is 0.0127 A when the
difference between F12 and CCSD(T)-B3LYP methods and bond distances are
considered. For the dibridged and Li—bridged structures The CCSD(T) and B3LYP
methods reproduced the angles obtained by the F12 method well; the average absolute
difference is no higher than 0.97° (difference between the F12 and B3LY P methods in
the dibridged structure), whereas it is only 0.41° in the Li—bridged structure. However,
in the H-bridged structure the B3LY P method fails to accurately reproduce the SISILi
angle obtained by the F12 method. The B3LYP method overestimates this angle by
5.56° while the difference between the F12 and CCSD(T) results is only 1.15°. The
SiSiH angle predicted by the B3LY P method in the H—bridged structure has an average

absolute difference of 2.2°.
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Table 4.4-9. Geometric properties computed at various levels of theory.

SiHLi
CCSD(T)/ CCSD(T)-F12a/ B3LYP/
AVTZ VTZ-F12 6-311+G(d)
dibridged
SiLi @ 2.6291 2.6214 2.6043
Sisi @ 2.1994 2.1798 2.1854
HSi 1.6800 1.6704 1.6919
| . . .

B HSISILi® 86.73 86.95 84.77
o SiSiLi ° 65.28 65.43 65.19
o SiSiH" 49.11 49.27 49.77
Li—bridged
SiiLi® 2.5306 2.5224 2.5055
Sis @ 2.1188 2.1027 2.0961
HSi2? 1.4954 1.4924 1.4958

HSISILi 180.00 180.00 180.00
§
o Si2SiiLi® 68.48 68.70 68.52
o Si1Si2H P 168.75 167.99 167.35
H-bridged
Si2Li? 2.4349 2.4344 2.4130
Sis @ 2.1582 2.1417 2.1448
HSi2? 1.6383 1.6399 1.6542
B HSISILi® 0.00 0.00 0.00
o Si1Si2Li® 156.49 155.34 160.90
o Si1Si2H ° 51.47 51.45 52.53
& angstrom
P degrees

A comparison of the relative energies for the Si,H, minima computed using the DFT
(B3LYP/6-311+G(d)) method, the CCSD(T)/AVTZ and F12 (CCSD(T)-F12a/VTZ-
F12) methodsis shown in Table 4.4-10.

114



Table 4.4-10. Relative energy (kcal/mol) comparison of the Si;HLi isomers calcul ate by
various methods.

dibridged Li-bridged H-bridged

CCSD(T)/AVTZ 0.00 4.12 8.91
CCSD(T)-F12a/VTZ-F12 0.00 4.40 9.23
B3LYP/6-311+G(d) 0.00 3.22 8.66

The two ab initio methods show similar values of the relative energies. On the other
hand, the DFT method underestimates the relative energies (by about 0.9 kcal/mol

average in both of the cases).

Frequencies

Harmonic vibrational frequencies were calculated at the B3LYP/6-311+G(d) level as
well as the CCSD(T)/AVTZ level of theory. The calculated results are listed in Table
4.4-11.

The discussion on the frequencies will be presented in the same manner as in the

previous sub-chapters.

The B3LY P method reproduced the third, fourth and fifth vibration frequencies in the
dibridged structure calculated with CCSD(T) with an average absolute difference of 2.9
cm '; however, the second and last vibrations are underestimated by 114.4 cm™' and
113.6 cm ', respectively. Nevertheless, the average absolute difference for the B3LYP
method isonly 44.5 cm ' if we consider all calculated vibrational frequencies.

The B3LY P frequency values of the Li-bridged structure show the best agreements with

the corresponding CCSD(T) results; the average absolute difference (when al vibrations
are considered) is only 9.6 cm™' and is the lowest of all the Si,HLi isomers.
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Table 4.4-11. Harmonic frequencies for the Si,HLi isomers calculated at different levels
of theory; the results are listed in descending order of wavenumber (cm™).

SioHLI
CCSD(T)/AVTZ  B3LYP/6-311+G(d)
dibridged
1496.9 1466.7 SiH sym. str.
1182.5 1068.1 SiH antisym. str.
540.3 546.2 SiSi/SiH out-of -phase str.
392.8 394.9 SiLi/SiH in-phase str.
319.5 320.2 Butterfly
1704 56.8 HLi twist
Li—bridged
2156.9 2143.6 SiH str.
592.8 610.8 SiSi/SiH out-of-phase str.
415.6 414.2 SiLi/SiH in-phase str.
362.7 369.9 H in-plane bend
238.3 222.3 out-of-plane
223.5 221.5 LiH bend
H—bridged
1563.0 1531.8 SiH sym. str.
1119.9 975.6 SiH antisym. str.
606.9 614.6 SiSi/SiLi out-of -phase. str.
415.5 415.3 SiSi/SiLi in-phase str.
85.6 97.9 LiH bend
39.5 62.2 out-of-plane

The H-bridged structure shows a similar picture as in the dibridged structure; the third,

fourth and fifth frequencies are reproduced by the B3LYP method with an average

absolute difference of only 6.7 cm !, whereas the second vibration is significantly
underestimated compared to the CCSD(T) value by 144.2 cm . The average absolute

difference, 36.4 cm™' (when all vibration frequencies are considered) is however,

smaller than in the dibridged structure.
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Anharmonicity

Anharmonic properties were calculated using second order perturbation theory. The
MP2/aug-cc-pVTZ level of theory was employed (the Gaussian 09 software package).
The calculated rotational constants, anharmonic constants and dipole moments are given
in Table 4.4-12. The harmonic and fundamental vibration frequencies are listed in Table
4.4-13.

The A«Ce. rotational constants show that all the Si,HLi isomers are asymmetric top
molecules, however, the LiSIHSI isomer is a nearly-symmetric top molecule as the Be

and Ccrotational constant are almost the same.

The A symbol in Table 4.5-10 represents the difference between harmonic and
fundamental vibrations (An=w—vn). In general, anharmonic effects decrease the
frequencies. However, negative values A, can be seen in the HSILiSI and SIHLISI
isomers. Negative values of A are unusua but examples of such vibrational modes are
known in the literature [152, 153].
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Table 4.4-12. Calculated rotational and anharmonic constants of the Si>HLi isomers.

HSILiSi LISIHSI SIHLIiS
Dipole 1 [D] 57191 9.0900 6.2548
Rotational Constants (cm )
Ac 0.487003 3.151909 0.452632
Be 0.241140 0.124859 0.244121
Ce 0.161282 0.120102 0.163333
Ao 0.483976 3.020182 0.451167
Bo 0.241048 0.126223 0.243649
Co 0.160389 0.120481 0.162358
Anharmonic Constants (cm )
11 -36.11 —24.77 -16.26
12 —1.04 —23.12 —40.76
13 -1.75 —4.62 —5.58
114 ~5.02 ~1.06 ~0.16
x15 —0.83 —1.02 =7.79
x16 -3.37 —13.80 5.16
22 —-2.25 —54.28 —53.03
123 ~0.13 5.39 3.94
¥ 24 —0.94 —0.03 0.18
125 0.02 ~0.93 ~11.70
126 3.25 6.91 ~7.28
133 ~1.59 253 228
x34 —3.58 -3.02 —0.99
35 —16.39 —2.73 —-1.28
%36 1.50 —0.29 0.86
44 —1.62 —1.62 -1.62
745 —4.79 1.10 ~2.44
746 2.14 4.28 18.92
%55 -1.73 —2.26 0.78
56 —0.21 —46.62 —0.41
66 2.66 3.52 -1.72
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Table 4.4-13. Calculated harmonic and fundamental frequencies at the MP2/ aug-cc-

pVTZ level. A isthe difference between the fundamental and harmonic frequencies.

HSILiS LiSIHSI SIHLISi
Harmonic vibration frequencies (cm ™)
®1 2200.71 1629.64 1545.35
%) 589.89 1248.63 1312.39
®3 424.11 602.69 539.39
4 398.75 409.33 391.13
®s 323.48 77.30 324.39
06 224.24 60.50 173.23
Fundamental s vibration frequencies (cm ™)
\2 2122.50 1558.29 1488.26
V2 585.98 1134.17 1178.52
V3 398.71 595.01 533.32
V4 389.42 406.72 403.57
Vs 330.45 42.79 314.14
Vo 209.67 37.47 178.42
A (cm?)
A 78.22 71.35 57.09
Ay 3.92 114.46 133.86
A3 25.40 7.68 6.08
Ay 9.33 2.61 —12.43
As —6.97 34.51 10.25
As 14.57 23.04 -5.19
(An=00n—Vn)

Corrections

In this section, we investigate how core-valence contributions, zero-point vibrational

motion and relativistic corrections affect the Si,HLi isomerisation energy.

Most calculations focus on correlating only the valence electrons as these dominate the
properties of atoms and molecules. However, correlation effects involving the electrons
in low-lying core orbitals may be important if the goal of a calculation is to achieve
chemically accurate isomerization energies or thermochemical properties (with errors
less than 1 kcal/mol). The structures optimized at the CCSD(T)-F12a/VTZ-F12 level of

theory were taken as starting structures.
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To calculate core-valence interactions the CCSD(T) method was employed with the
aug-cc-pCV XZ (where X=2-3) basis sets [154, 155], which were specifically designed
to recover core-core and core-valence electron correlation. The CCSD(T)/aug-cc-
pCVXZ (where X=2-3) basis sets will be abbreviated as ACVXZ. An appended label
“fc” or “cc’ indicates frozen-core or correlated-core. The core-valence correlation
contribution (Ecore Acvxz) Was obtained as the energy difference between frozen-core
ACVXZ-fc and correlated-core ACVXZ-cc (Si 2s, 2p and Li 1s orbitals correlated)
calculations. The differences were then added to the energies calculated at the
CCSD(T)-F12a/VTZ-F12 level. This allowed the evaluation of relative energies of the
Si;HLi isomers that include core-valence correlation contributions. The calculated
CCSD(T)/ACVDZ and CCSD(T)/ACVTZ results are compared to CCSD(T)-F12/VTZ-
F12 relative energiesin Table 4.4-14.

Table 4.4-14. Comparison of the relative energies computed at the VTZ-F12 level and
the ACV XZ relative energies (where X=2-3) with core-valence contributions. Energies
in kcal/mol.

HSILiS LiSIHS SIHLIiS
ACVDZz 4521 9.432 0.000
ACVTZ 4.658 9.451 0.000
VTZ-F12 4.400 9.231 0.000

The differences between the ACVTZ and VTZ-F12 relative energies are 0.258 and
0.220 kcal/mol for HSILiSI and LiSIHSI, respectively, whereas the differences between
the ACVDZ and VTZ-F12 relative energies are 0.121 and 0.201 kcal/mol for HSILiSi
and LiSIHSI, respectively.

The neglect of relativistic corrections can lead to an incorrect prediction of the
isomerisation energy. Recently even the potential energy surface calculation of light
molecules such as H3 included relativistic corrections; for H an overal 9-figure
accuracy was achieved [156]. The work of Tarczay et a. [106] shows the effect of the
relativistic contribution to the SiH3™ inversion barrier and on the isomerisation barriers

of (H, Cand N) systems, so we were eager to calculate such corrections in our work.
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The relativistic correction was evaluated (at the CCSD(T) level) as the sum of the
expectation values for the mass-velocity and the one-electron Darwin terms. This type
of relativistic correction is suggested by Tarczay et al. [106] as fast and effective for
small molecules. Thiel et al. [157] used this approach as the relativistic correction in
their NH3 6D-PES cal culations (employing the CCSD(T)/AVTZ-fc level of theory). The
AVTZ-DK basis set [58, 149, 158], which is specialy designed for relativistic
corrections and the standard AVTZ basis set were employed. A comparison of the
CCSD(T)/AVTZ-DK (E;a_pk), CCSD(T)/AVTZ (Era avrz) and CCSD(T)-F12/VTZ-
F12 results can be found in Table 4.4-15. However, Tarczay et al. suggested that the
correlation-consistent basis sets of Dunning may not yield converged results for either
the relativistic HF energies or the related correlation contribution for the mass-velocity
and Darwin energy corrections [106]. The calculated relativistic contributions were
added to the energies calculated at the CCSD(T)-F12a/VTZ-F12 level. This alowed the

evaluation of relative energies of the Si,HLi isomers that include relativistic effects.

Table 4.4-15. Comparison of the relative energies at the VTZ-F12 levels with the
corrected energies: Eqg_avrzand Eq pk. Energiesin kcal/mol.

HSILiSI LISIHS SIHLiS
AVTZ-DK 4.661 9.222 0.000
AVTZ 4.629 9.467 0.000
VTZ-F12 4.400 9.231 0.000

For HSILiSi, the relative energies with the relativistic contributions are larger than the
corresponding uncorrected results (0.229 and 0.261 kcal/mol). However, for LiSIHSI,
the corrected relative energies are smaller for the AVTZ-DK level (by 0.009 kcal/mol)
but larger for the AVTZ level (by 0.236 kcal/mol) compared to the uncorrected results.
The relative energies computed with the AVTZ-DK and AVTZ relativistic corrections
differ from each other; dightly for the HSILiS isomers (0.032 kcal/mol) and
significantly for the LiSIHSI isomer (0.245 kcal/mol). We assume that the relativistic
effects calculated at the AVTZ-DK level are more accurate, as the AVTZ-DK basis set

Is designed for use with Douglas-Kroll-Hess Hamiltonians [159].
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The zero-point vibrational correction (Epe) Was obtained from cal cul ations performed at
the MP2/aug-pVTZ level of theory. The Epe includes anharmonic corrections.

All the corrections are added to the energies calculated at the VTZ-F12 level (E in
Hartree). The final corrected energies are given by Ecor pk=E+EcoretEra pk+Ezpe OF
Ecor aAviz=E+EcoretErg avtz+Eze. These results are compared to the isomerisation
energies obtained at the CCSD(T)-F12/VTZ-F12 and CCSD(T)/AV(Q+d)Z levels of
theory (see Table 4.4-16).

Table 4.4-16. Comparison of the relative energies at the AV(Q+d)Z, and VTZ-F12
levels with the corrected energies: Econr avrzand Ecor pk. Energiesin kcal/mol.

AV(Q+d)Z VTZ-F12 E corr AVTZ E corr DK
HSLiS 4.469 4.400 4.612 4.765
LiSIHSI 9.135 9.231 9.105 9.061

The corrected relative energies of the HSILiS species are larger than the corresponding
uncorrected results. However, the corrected relative energies of the LiSIHSI species are
smaller when compared to the uncorrected results. The isomerization energies computed
with the AVTZ-DK and AVTZ relativistic corrections differ significantly from each
other. The AVTZ-DK correction gives larger relative energies (by 0.153 kcal/mol) for
the HSILiS species, whereas lower relative energies (by 0.044 kcal/mol) are obtained
for the LiISIHS species compared to the AVTZ correction. Note, that we did not
encounter convergence problems for the AVTZ basis set during the calculations as
suggested by Tarczay et al [106]. It is assumed that the AVTZ-DK basis set gives more
accurate results. However, to say this conclusively comparison with experimental

resultsis necessary.

Comparison of calculated geometries with the literature

As was mentioned in the Introduction chapter, the Si,HLi structures calculated by Bei
and Feng [30] were obtained at a too low a level of theory to do reliable comparison
with the results calculated here. There are no other experimental or theoretical data
available for Si;HLi. On the other hand, experimental data exist for bigger molecules

containing Si—Li bonds. Many of these were synthesized by Sekiguchi’s research group
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[160-162] but the Si or Li atoms are usually connected to big bulky groups like '‘Bu. We
took a number of crystallographic data of XSi—Li bond distances (as close to our
structures as possible where X=H or Si) as a reference for comparison to our
calculations. These works show the range of Si—Li distances (Li in bridged position)
from 2.645 A to 2.657 A [163] and where Li is in a terminal position of 2.580 A and
2.531 A [164, 165]. Thus, our calculations are in good agreement with experimental

data.
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4.5 The Si;Li; isomers.

Computational methods

The Si;H, structures optimized by Grev and Schaefer [24] were taken as the starting
geometries, where both of the H-atoms were replaced by Li-atoms. Average literature
(theoretical) values of the Si—Li bond distances were used in the substituted-lithium
starting geometries. The these structures were optimized with the CCSD(T)/aug-cc-
pVXZ, CCSD(T)-F12alcc-pVTZ-F12 and B3LY P/6-311+G(d) methods (where X=2—
4).

Harmonic vibrational frequency computations were performed for the optimized
structures to characterise these as minima or transition states (TS). The frequency
calculations were also done at the CCSD(T)/aug-cc-pVTZ, CCSD(T)-F12alcc-pVTZ-
F12 and B3LY P/6-311+G(d) levels of theory.

All the calculated isomers and transition states are depicted in Figure 4.5-1. The
LiSILiS and SiLiLiS formulae refer to the monobridged and dibridged isomers,
respectively. The D-PL_TS and DM_TS abbreviations represent the transition states on
the paths between the dibridged and dibridged-planar structures and between the
dibridged and monobridged structures, respectively. The energies relative to the
dibridged structure (global minimum) are listed at the bottom of Figure 4.5-1. The
reaction paths between critical points are represented schematically by lines. The
pictures in Figure 4.5-1 show (multiple) bonded properties (minima and TS) obtained
from Natural Bond Orbital (NBO) calculations [102, 103]. The NBO calculations were
performed at the CCSD/cc-pV(T+d)Z level of theory using the Gaussian 98 [138]
software package.

Note, that in the following discussion all the employed correlation consistence basis sets
(such as aug-cc-pVXZ (where X=2-4)) will be abbreviated as AVXZ, and the methods
such as. CCSD(T)-F12alcc-pVTZ-F12 and B3LYP/6-311+G(d) will be abbreviated as
F12 and B3LY P, respectively.
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Figure 4.5-1. The optimized structures of the Si,Li, isomers and transition states with energies relative to the global minimum (dibridged). The
calulations were done at the CCSD(T)/aug-cc-pVTZ level of theory.
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Two minima and two transition states (TS) were found on the Si;Li, potential energy
surface (PES). The global minimum is the singly-bonded dibridged structure and above
with an energy difference of 10.28 kcal/mol lies the Li—bridged structure. Figure 4.5-1
shows two TS; DM_TS connects the dibridged and monobridged structures. D—PL_TS
IS a transition state on the reaction path where the non-planar structure (dibridged)
becomes planar (D—PL_TYS) and then turns in to a symmetrically equivalent (dibridged)
structure. Similar “flip over” motions can be found on the PESs of the Si,H, species or
the NH3 species [24, 157].

The geometric properties of the optimized structures are listed in Table 4.5-1.

Table 4.5-1. Geometric properties of the calculated Si,Li, structures. The calulations
were done at the CCSD(T)/aug-cc-pVTZ level of theory.

SILiLiSi, C» LiSLiS,Cs D_PL TS,C;» DM _TS,C,

Si2Li2® 2.5616 2.5738 2.5286 2.5671
SiSi @ 2.1848 2.1494 2.1812 2.1541
Li1Si2? 2.4105 2.4028
B LISISILI b 101.85 180.00 180.00 118.24
o Si1Si2Li1P 165.90 140.56
a Si1Si2Li2P 64.76 63.90 64.44 64.36
& angstrom

P degrees

Table 4.5-1 shows that the shortest S—Si bond length is found in the Li—bridged
structure (2.1494) followed by DM_TS (2.1541 A), D-PL_TS (2.1812 A) and the
dibridged structure (2.1848 A). The Si—Li bond distances in the dibridged structures
(the SILiLiS and D_PL_TS structures) are equal as the structures are symmetrical. The
bridged Li atoms in both monobridged structures (the Li—bridged and DM_TS
structures) have longer bond distances (2.5738-2.5671 A, respectively) than the
terminal Li atoms (2.4105-2.4028 A, respectively), which was seen before in the
previous sub-chapter (4.4).

126



Table 4.5-2. Geometric properties of the SisLi, isomers calculated at the
CCSD(T)/AVXZ (X=2-4) levd of theory.

SILILiS LiSiLiSi

AVDZ AVTZ AVQZ AVDzZ AVTZ AVQZ
SioLi2 2 25950 25616 25553 | go|joa 2.6003 25738 25718
Sg @ 22133 21848 21713 | gigj 2 21763 21494 21383
Lilsi2? Li1Si2® 24315 24105 2.4100
B HSISILi b 100.27 101.85 102.47 B HSISIL| b 180.00 180.00 180.00
o SiSiLi1® 0 Si1Si2Lil? 166.38 165.92 164.59
4 SiSLi2P 6476 6476 6486 |, gigoLio® 6430 6390 63.87
& angstrom
P degrees

Figure 4.5-2 and Figure 4.5-3 show the variations in the isomerisation energies and Si—
Si bond lengths upon increasing AV XZ basis set size.

Figure 4.5-2 shows that the largest change occurs from AVDZ to AVTZ, whereas only
a small change happens upon further basis set improvement. In contrast, the Figure
4.5-3 shows the opposite picture the smallest change occurs from AVDZ to AVTZ,
whereas a large change happens upon further basis set improvement. Thus, larger basis

sets are required to achieve convergence.
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Figure 4.5-2. S—Si bond length variation with increasing basis set size for the SioLi,

iSOMers.
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Figure 4.5-3. Energy of the LiSILiSi isomer (relative to the dibridged isomer) as a
function of AVXZ basis set size.
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CCSD(T)- F12 cdlculations

A comparison of the results obtained with the CCSD(T)/AVTZ method, the recently
developed CCSD(T)-F12a/VTZ-F12 method and the B3LY P/6-311+G(d)) method is
shown in Table 4.5-3.

Table 4.5-3. Comparison of geometric properties calculated by various methods.

SisLis
CCSD(T)/ CCSD(T)-F12&/ B3LYP/
AVTZ VTZ-F12 6-311+G(d)

dibridged
Si2Li2? 2.5616 2.5524 2.5363
Sis @ 2.1848 2.1660 2.1635
B LiSISILi " 101.85 102.58 98.76
a SiSiLi2® 64.76 64.90 64.75
monobridged
Si2Li2® 2.5738 2.5697 2.5671
Sis @ 2.1494 2.1335 2.1291
Li1Si2® 2.4105 2.4098 2.3915
B LiSISILi® 180.00 180.00 180.00
o Si1Si2Li1® 165.92 164.22 165.78
o Si1Si2Li2® 63.90 63.85 64.36
& dngstrom
® degrees

The three methods produce bond distance values in the dibridged structure with good
agreement to each other. However, assuming the F12 method presumably gives the
most accurate results, these will be taken as a reference. The calculated bond distance
differences vary from 0.0025 A (Si—Si bond length difference between the B3LYP and
F12 methods) to 0.0188 A (Si-Si length difference between the CCSD(T) and F12
methods). The average absolute difference of the calculated bond distances is 0.014 A
(difference between the CCSD(T) and F12 methods) and 0.0093 A (difference between
the B3LYP and F12 methods), respectively. The SiSILi angles are reproduced with
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good agreement as well. The larges difference is 0.15° (difference between the B3LYP
and F12 results and between the CCSD(T) and F12 results), and the smallest is found
for the F12 and CCSD(T) methods (0.14°). However, it can be seen that the B3LYP
method underestimates the dihedral angle by 3.82° (compared with F12) while, the
CCSD(T) method gives adifference of 0.73°.

The bond distances for the monobridged structure are reproduced by the methods
employed with good agreement to each other. Once again the F12 method will be taken
as areference. The smallest calculated difference is 0.0007 A (Li1-Si2 lengths between
the CCSD(T) and F12 methods) and the largest is 0.0183 A (Li1-Si2 lengths between
the BALYP and F12 methods). The average absolute difference of the calculated bond
distances is 0.0069 A (difference between the CCSD(T) and F12 methods) and 0.0084
A (difference between the B3LYP and F12 methods), respectively. Both methods
overestimate the SiSiLil angle by about 1.72° (for the CCSD(T) method) and about
1.58° (for the B3LY P method) with comparison to the F12 method. The SiSiLi2 angle
is reproduced by the employed methods with good agreement to each other; the largest
difference is 0.05° (between the CCSD(T) and F12 methods) and the smallest is 0.51°
(between the B3LY P and F12 methods).

A comparison of the relative energies of the Si,Li, minima calculated using the DFT
(B3LYP/6-311+G(d)) method, CCSD(T)/AVTZ and F12 (CCSD(T)-F12a/VTZ-F12)
methods is shown in Table 4.5-4.

Table 4.5-4. Relative energy (kcal/mol) comparison of the Si,Li, isomers calculated by
various methods.

dibridged  Li-bridged

CCSD(T)/AVTZ 0.00 10.03
CCSD(T)-F12a/VTZ-F12 0.00 10.45
B3LY P/6-311+G(d) 0.00 9.19

The ab initio methods show similar values of the relative energy. On the other hand the
DFT method underestimates the relative energy by 1.26 kcal/mol.
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Freguencies

The same methods as in the previous paragraphs were employed to compare cal culated
harmonic frequencies. The results can be found in Table 4.5-5. The results are listed in

descending order in wavenumber units (cm™).

Table 4.5-5. Calculated harmonic frequencies for the Si,Li, isomers calculated at
diffelrent levels of theory; the results are listed in descending order in wavenumber units
(cm™).

SisLi;
CCSD(T)/ CCSD(T)-F12/ B3LYP/
AVTZ VTZ-F12  6-311+G(d)

dibridged
543.4 553.9 556.0 SIS str.
420.2 423.8 415.8 SiLi antisym. str.
406.5 408.9 403.0 SiLi sym. str.
197.1 196.6 184.0 SiLi antisym. str.
1894 191.0 178.7 SiLi antisym. str.
113.2 106.6 116.8 butterfly
monobridged
610.6 617.0 623.1 SiSi/SiLi; in-phase str.
420.9 425.1 422.6 SILi/SILi antisym. str.
420.4 423.6 416.9 SILi/SILi sym. str.
210.0 212.7 203.5 SiSiLiy, bend
60.1 60.2 65.8 LiSiLi bend
38.6 39.8 50.8 out-of-plane

In the dibridged structure both ab initio (CCSD(T) and F12) methods give similar
vibration wavenumber values: the largest difference is 10 cm™' (the first vibrational
mode). The average absolute difference between the CCSD(T) and F12, B3LYP and
CCSD(T) and B3LYP and F12 methods is 42 cm', 79 cm ' and 85 cm ',
respectively.

For the monobridged isomer the CCSD(T) and F12 levels of theory give similar

frequency values, the average absolute difference is only 2.9 cm'. The largest
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difference (6 cm ') can be seen for the first vibration mode and the smallest difference
(0.1 cm') for the fifth vibration mode. The B3LYP frequency calculations show
dlightly better agreement with the two ab initio methods than in the dibridged structure
except the first and last vibrations (12.5 cm ' and 12.2 cm ') for the difference between
the B3LYP and CCSD(T) methods and the last vibration (11 cm ') for the difference
between the B3LYP and F12 methods. However the average absolute differences (7
cm ' and 8 cm™') between the B3LYP and ab initio results are lower than in the
dibridged case.

Anharmonicity

Anharmonic properties were calculated using perturbation theory. The MP2/aug-cc-
pVTZ level of theory and the Gaussian 09 software package were used. The calculated
rotational constants, anharmonic constants and dipole moments are given in Table
4.5-5. The harmonic and fundamental vibrations are listed in Table 4.5-6.

The AC. rotational constants show that all the Si;Li, isomers are asymmetric top
molecules. Note the presence of large positive values for the anharmonic constants 23
and ¢26 in Table 4.5-6. Thiswill be discussed in more detail in Chapter 8.

The A (cm™) symbol in Table 4.5-7 represents the difference between the harmonic and
fundamental vibrations (Ar=mn—vn). In genera, anharmonic effects decrease the
frequencies. However, negative values A, can be seen for the SILiLiSI isomers.
Negative values of A are unusual but examples of such vibrational modes are known in
the literature [152, 153].
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Table 4.5-6. Calculated rotational and anharmonic constants of the SisLi» isomers.

LiSILiSi SiLiLiSi
Dipole u [D] 8.70 6.29
Rotational Constants (cm )
Ae= 0.4910 0.2432
Be= 0.1187 0.1880
Ce= 0.0956 0.1505
AO= 0.4880 0.2421
BO= 0.1193 0.1883
CO= 0.0957 0.1490
Anharmonic Constants (cm ')
(11 ~2.03 223
x12 —0.76 -1.25
13 ~3.40 0.80
714 0.81 0.20
x15 —-1.25 —0.78
716 ~0.33 0.49
722 -1.77 ~0.83
23 ~0.41 30.16
724 0.55 ~0.89
725 ~0.01 ~3.32
726 -1.01 20.69
133 ~1.74 ~0.69
134 ~0.32 ~0.73
35 0.90 0.28
136 1.55 ~4.04
144 ~2.02 ~2.63
745 ~0.19 0.44
746 ~0.16 ~1.24
155 ~0.75 ~1.06
%56 0.05 0.79
766 231 ~1.19
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Table 4.5-7. Calculated harmonic and fundamental frequencies. A is the difference
between the fundamental and harmonic frequencies.

LiSLiS SILiLiSi
Harmonic vibration frequencies (cm™")
®] 610.03 548.39
(0%} 424.53 422.22
®3 416.39 408.37
o 216.03 196.36
s 57.96 193.51
6 40.33 104.06
Fundamental vibration frequencies (cm™)
Vi 603.50 543.65
% 400.75 433.85
V3 412.06 442.40
V4 212.34 208.21
Vs 56.21 199.47
Ve 35.75 97.69
A(cm™)
Ay 6.52 4.74
Ay 23.78 —11.63
As 4.32 —34.04
Ay 3.68 —11.86
As 1.76 -5.96
As 4.58 6.37
(An=0n=Vy)
Corrections

We investigated the same set of corrections as in the Si;HLi sub-chapter: core-valence

interactions, zero-point vibrational corrections and relativistic corrections.

The CCSD(T)-F12a method and the specially designed cc-pCVTZ-F12 basis set [166]
was employed to calculate the core-valence interactions. An appended label “fc” or “cc”
indicates the frozen-core or correlated-core approximation. The core-valence correlation
contribution (Ecore) Was obtained as the energy difference between frozen-core CVTZ-
F12-fc and correlated-core CVTZ-F12-cc (S 2s, 2p and Li 1s orbitals correlated)
calculations. The differences were then added to the energies calculated at the
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CCSD(T)-F12a/VTZ-F12 level. This allowed the evaluation of relative energies of the
SisLi, isomers that include core-valence correlation contributions. The calcul ated results
are compared to VTZ-F12 relative energiesin Table 4.5-8.

Table 4.5-8. Comparison of the relative energies computed at the VTZ-F12 level and
the CVTZ-F12 relative energies with core-valence contributions. Energies in kcal/mol.

LiSiLiSi
CCSD(T)-F12a
CVTZ-F12 10.9515
VTZ-F12 10.4472

Table 4.5-9 shows a difference of 0.5 kcal/mol between the CVTZ-F12 and VTZ-F12
relative energies. The difference is larger than in the Si;HLi case by about 0.25
kcal/mol.

The relativistic correction was evaluated at the CCSD(T) level as the sum of the
expectation values for the mass-velocity and the one-electron Darwin terms. The
specialy designed AVTZ-DK basis set and the ordinary Dunning's AVTZ basis set
were employed and a comparison of the results obtained with these two basis sets and
the effects of these on the isomerisation energies was made. A comparison of the
CCSD(T)/AVTZ-DK (Ere pk), CCSD(T)/AVTZ (Ere_avtz) and CCSD(T)-F12/VTZ-
F12 results can be found in Table 4.5-9. The calculated relativistic contributions were
added to the energies calculated at the CCSD(T)-F12a/VTZ-F12 level. This alowed the
evaluation of relative energies of the Si;Li, isomers that include relativistic effects.

Table 4.5-9. Calculated relativistic correction for the SioLi, isomers at the CCSD(T)
IAVTZ-DK and CCSD(T)/AVTZ level. Theresults are listed in kcal/mol.

LiSILiSi
AVTZ-DK 10.403
AVTZ 10.477
VTZ-F12 10.447

For LiSILiSI, the relative energies with the relativistic contributions are larger by 0.044
kcal/mol (for AVTZ) but smaller by 0.03 kcal/mol (for AVTZ-DK), compared to the

135



uncorrected results. The relative energies computed with the AVTZ-DK and AVTZ
relativistic corrections differ from each other (by 0.074 kcal/mol) for the LiSILiS
isomer. Again, we assume that the relativistic effects calculated at the AVTZ-DK level
are more accurate, as the AVTZ-DK basis set is designed for use with Douglas-Kroll-
Hess Hamiltonians.

It can be seen that for both Si;HLi and SioLi, the biggest changesin relative energies are
when core-valence contributions are added, whereas the relativistic effects corrections
only dlightly change the relative energies. Thus, it can be concluded that for the SioXLi
species (where X=H or Li) core-valence contributions are more important than
relativistic effects.

The zero-point vibrational corrections (Eze) were obtained from anharmonic
calculations performed at the MP2/aug-pVTZ level of theory. The Ege includes

anharmonic corrections.

All the corrections are added to the energies calculated at the CCSD(T)-F12a/VTZ-F12
level of theory (E in Hartree). The fina corrected energy is given by Ecor-

pk=E+EcoretEre bkt Ezpe or Ecorr-avTz=E+EcoretEre _avtzt Ezpe-

A comparison of the uncorrected energies with the corrected energies calculated at the
different levels of theory islisted Table 4.5-10.

CCSD(T)/AVQZ and CCSD(T)-F12/VTZ-F12 level with the corrected energies:
Ecorr avtz and Ecorr pk. Energieslisted in kcal/mol.

AVQZ VTZ-F12 E(:orr_AVTZ Ecorr_DK
LiSILiSI  10.283 10.447 10.846  10.920

The corrected energies Ecor avz @nd Ecor pk ShOw an increase in the relative energy , in
comparison to AVQZ, of 0.563 kcal/mol and 0.637 kcal/mol, respectively and, in
comparison to, of VTZ-F12 0.399 kcal/mol and 0.473 kcal/mol, respectively. The basis
sets employed (AVTZ-DK and AVTZ) yield different isomerization energies. The
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AVTZ-DK basis set gives arelative energy (for the LiSILiS species) that is larger by
0.074 kcal/mol than the results obtained with AVTZ basis set. However, the difference
between the two basis sets is smaller than that obtained in the Si;HLi sub-chapter. Also
convergence problems have not been seen during the AVTZ calculations as suggested
by Tarczay et al. [106]. In this case the relative energy difference between the AVTZ
and AVTZ-DK islessthan 0.1 kcal/mol.

Comparison of calculated geometries with literature

Both SiLi and SioLi, were studied in the gas phase by mass—spectrometry [46, 103,
167]. Unfortunately, we could not access the paper, as it was published in a limited
conference edition. There are no other experimenta results on Si,Li, structures known
to the author. However, (as was shown in the Si;HLi sub—chapter) experimental results
can be found for bigger molecules that contain Si or Li atoms connected to bulky groups
like 'Bu. The crystallographic data of Si—Li bond distances of these structures
synthesized by several research groups [163, 165] were taken as the experimental
reference. These works show the range of the Si—Li distances (Li in bridged position)
from 2.645 A to 2.657 A [163] and where Li isin aterminal position from 2.531 A to
2.580 A [164, 165]. Our calculated Si—Li distances are in the range of 2.3915 A (the
B3LY P method) to 2.4315 A (CCSD(T)/AVDZ) for terminal Li atoms. The range of the
Si-Li distances for the bridged Li atom is from 2.5009 A (the B3LYP method) to
2.5951 A (CCSD(T)/AVDZ). Thus, our calculations are in good agreement with the

experimental data.

Aswas mentioned in the Introduction chapter the Si,L i, structures calculated by Bei and
Feng [30] were obtained with a too low a level of theory to allow a meaningful
comparison with the results calculated here. Nevertheless, theoretical work on the SiyLiy
structures (where x=1-6 and y=1-2) done by others can be found [42-45]. The most
important is the series of articles by Rabilloud et al. [43]. These studies are mostly
focused on electron affinity, charge transfer, dipole moment and Li—binding energies of
the SiyLiy clusters rather than geometric or vibrational properties. Nevertheless the

articles report the dibridged structure (SILiLiSI) as the global minimum followed by the
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dibridged planar structure (11.23 kcal/mol above the global minimum) and Li—bridged
structure (29.93 kcal/mol above the global minimum) [43]. Rabilloud et al. reported the
dibridged planar structure as an isomer (minimum) but our work shows that this is a
transition state. The reported Si—Li bond distance (calculated at the B3LY P/6-31G(d)
level of theory) of the dibridged structure is 2.53 A and angle (LiSiLi) is 46.5° [43]. It
can be seen that our calculated Si—Li bond distances agree well with the literature
however, the (LiSiLi) angle (obtained by Rabilloud et a.) is around 43° too small with
comparison to our calculations.
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4.6 Discussions and conclusions for the Si:HX and Si:Li: systems

(where X=H, Li, F and Cl) and comparison with the CzH: species.

The Si—Si bond distances calculated at the CCSD(T)-F12a/VTZ-F12 level of theory will
be taken as reference in the comparisons below. The multiply-bonding properties in the
Si,HX and Si,Li, structures studied here (where X= H, Li, F and Cl) were obtained
from NBO analyses. The NBO procedure is explained in Chapters 1.7 and 4.1.

Vinyl

There are similar bonding properties in the HHSISI, HCISIS| and HFSISi vinylidene-
like structures. All structures have nominally doubly-bonded Si—Si bond. The shortest
Si—Si bond is found in the HHSiSi structure (2.2056 A) and the longest one in the
HFSIS structure (2.2195 A). There is no vinylidene form in the Si,Li, and Si;HLi

cases.

Trans

A triply-bonded trans structure is found in the HSISiH, CISISIH and FSiISiH cases. The
shortest Si—Si bond is found in the HSiSiH structure (2.1073 A) and the longest one in
the FSISIH structure (2.1379 A). There is no trans form for SisLi, and SioHLi.

The trans structure is nominally triply-bonded between the Si atoms but the bonding
interaction is rather weaker than afull triple bond. This will be explained in more detail
below.

Dibridged

The dibridged form occursin al Si;HX and Si,Li, systems (where X=H, Li, F and Cl).
These structures contain nominally a singly-bonded Si—Si bond. The longest Si—Si bond
occursin SICIHSI (2.2673 A) and the shortest onein SiLiLiSi (2.1660 A).

The Si—Si bond in the dibridged structure actually has between singly- and doubly-
bonding character as the bonding interaction is rather stronger than a full single bond.

Thiswill be explained in more detail below.
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Li-bridged

Li-bridged structures occur in the Si;HLi and SioLi, cases. Both Li-bridged forms are
Si-Si doubly-bonded and the shortest Si—Si bond (2.1027 A) occurs in HSiLiSi
followed by LiSiLiSi (2.1335 A). Additionally the Si—Si bond in the HSiLiSi structure
Is the shortest from al Si;HX and Si,Li, molecules (where X=H, Li, F and ClI).

H-bridged

All H-bridged structures have a doubly-bonded Si—Si. The shortest Si—Si bond occurs in
the HSIHS structure (2.1182 A) and the longest one in the LiSIHSI structure (2.1417
A). The H-bridged structure is found in all cases except the Si,Li, species.

The Si—Si bond in the H- or Li-bridged structure has between doubly- and triply-
bonding character as the bonding interaction is rather stronger than a full double bond.

Thiswill be explained in more detail below.

Bonding properties of the Si,HX and Si,Li, molecules (where X=H, Li, Fand Cl)

Lein et a. [14] discussed the bonding in SizH; in terms of bond formation between two
SiH moieties. We will use the results of Lein et al. to help us attempt an explanation for
the bonding properties of the Si,HX and Si;Li, molecules (where X= H, Li, F and Cl).
The pictures shown here will be presented in a similar manner to those presented in
reference [14].

In the vinyl structures we have one o-type and one m-type Si—Si bond that create a
doubly-bonded structure; the terminal Si atom has also one lone-pair. The vinyl
structures found here are not significantly different from the other vinylidene-type
structures found in the literature [11, 14, 168]. It is not clear why there is no vinyl form
for Si,Li, and SipHLI.

In the dibridged structures empty p(m) orbitals interact with the Si—H/Si—X bond and

with the electron lone-pair of the other Si—H/Si—X bond as shown in Figure 4.6-1. The

stabilization of the bridged structure comes from the donor-acceptor interactions as
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Si—H — p(m) is stronger than the electron lone-pair — p(m) orbital. The Si—H/Si—X
bonds are also better donors than the lone-pairs as the lone-pairs are built from s type
orbitals and H, Cl and F have higher electronegativities than Si [14]. Thus, in the
dibridged structures the Si—H/Si—X bonds are tilted toward the empty p(m) orbitals of
the other SIH/SIX moiety; this leads to the butterfly type of structure. Folding of the
Si—H/Si—X bonds along the Si—Si bond is presumably reducing repulsion between the

hydrogen and silicon valence s orbitals[11].

Figure 4.6-1. Qualitative model for the orbital interactions between two SiH—SiX
moieties in the dibridged orientation. Si—H/Si—X Don. represents the Si—H/Si—X donor
to the empty p orbital interaction; overlap of unpaired electrons yields a ¢ bond.

NBO analyses also showed that in the lithium substituted dibridged structures both Si
lone-pairs interact strongly with the SiLiSi bridged parts. This can explain the shorter
Si—Si bond distance in the lithium substituted dibridged structures than in the Cl-, F-
and H-substituted dibridged structures.

In the monobridged structures a lone-pair on the second of the SIH/SIX (right-side lone-
pair on both (a) and (b) in Figure 4.6-2) moieties creates a ¢ type bond with the empty p
orbital of the first SiH/SiX moiety. Additionally we have a Si-Si © bond, as shown in
Figure 4.6-2. Besides the above bonding interactions we have aso the lone-pair from
the first SIH/SiLi moiety (left-side lone-pair on both (a) and (b) in Figure 4.6-2) which
can interact partialy as alone-pair donor to the empty p orbital of the second SiH/SiX
moiety. This interaction does not create a bond but might be responsible for some
bonding properties in the monobridged structures and is presented in Figure 4.6-2 as a

dotted arrow. Similar interactions were seen during NBO calculations in the LISHS as

141



well as HSILiSi structures. The charge transfer (donor-acceptor) energy between the
lone-pair of Si (as shown in Figure 4.6-2-(a)/(b)) and the antibond of SiH/SILi is 23.7
kcal/mol (HSILiSi), and 2.9 kcal/mol (LiSIHSI). The energy differences between H-
bridged and Li-bridged shown above can be explained by the higher electronegativity of
hydrogen (2.20) compared with lithium (0.98). The higher electronegativity makes the
interacting Si-H and empty p orbital twist toward each other. The tilting of the empty p
orbitals of the acceptor SIX moiety moves the termina Li, Cl or F atom towards the
bridging H atom. In the Li-bridged structures this tilting movement was not found
because of the lower electronegativity of lithium. The lack of the twisting of the
SiH/SiLi moieties in the Li-bridged structures makes the distances between the lone-
pair of the SiLi moiety and the empty p orbital of the SIH/SiLi moiety and between the
n bond (connecting both moieties) shorter which gives a higher interaction energy.
These stronger interactions, combined with the higher electronegativity of the H moiety
compared with the Li moiety (right-part of Figure 4.6-2-(b)), reduce the Si—Si bond
distance in HSiLiSi and may explain why this Si—Si bond distance is the shortest from

all of the Si,HX and Si,Li, structures (where X=Li, Fand Cl).

In the trans structures the lone-pair (SiH/SiX) — n (SiH/SiX) donation is enhanced by
outwardly tilting the Si—H/Si—X bond which leads to the trans-bent form [14] as shown
in Figure 4.6-3.

The above analyses explain why the bond lengths in the monobridged isomers are
shorter or dightly longer (SizH>) than in the triply-bonded trans isomers, as in the trans
structures the SIH/SIX moieties are too far away to interact as strongly as in the
monobridged structures.

142



Figure 4.6-2. Qualitative model for the orbital interactions between two SiH-SIX
moietiesin (a) H-bridged and (b) Li-bridged orientations. Si-H/Si-X Don. represents the
Si-H/Si-X donor — empty p orbital interaction; overlap of the unpaired electrons yields
a m bond and LP Don. represents lone-pair donor to the empty p orbital interaction.
Explanation of the dotted arrows can be found in the text above.

Figure 4.6-3. Qualitative model for the orbital interactions between two SIH-SIX
moieties in the trans orientation. LP Don. represents the lone-pair donor to the empty p
orbital interaction and the overlap of the unpaired electrons yields a @ bond.

LP Don.

2R

X

L

Comparison of the CoH,, SioHp, SioHLI and SioLi, structures

The bonding differences between C,H, and Si;H, have been discussed in the literature
before [11, 14, 168] and so we have not attempted to explain this in detail again. The
bonding differences between the Si,HX and Si;Li, (where X= H, Li, F and Cl)
structures were discussed above. Comparison of the C;H,, SioHp, SioHLI and SisLis
structures shows that the disilynes (Si;Hz, SioHLi and SisLip) have significantly
different isomerisation properties than the CyH, species. the global minimum is

143



dibridged (in all the disilynes) instead of alinear acetylene structure (which is the global
minimum for C;H,), followed by the monobridged isomer (in al cases) and vinyl
isomer (in the C,H, and Si;H, species). The trans-bent structure exists only in the SioH,
case. Monobridged structures (with hydrogen or lithium as the bridged atom) occur in
all cases. However, the monobridged structures in the C;H, and SizLi, species lie in
shallow potential energy wells on the respective potential energy surfaces. The energy
differences between the transition state and monobridged structure are 0.16 kcal/mol
(CoHy; CCSD(T)/AV5Z) and 0.06 kcal/mol (SisLiz; CCSD(T)-F12a/VTZ-F12). Thus, it
isunlikely that these monobridged structures can be observed experimentally.

Differences in the vibrational frequencies of the different species are also observed. In
the SioH, and Si;HLi structures the Si—H stretches have the highest frequency values
(between 1500-2200 Cm_l), while in the SisLi, structures the Si—Si stretches have the
highest frequency values (between 500-620 cm ). Most of the Si—Li vibration motions
lie below 500 cm ', except the Si—Li stretches in LiSiHSi (606 cm ') and LiSILiSi (617
cm®). These can be partialy explained by the higher atomic mass of the Li atom than
the H atom. It is not clear why the presence of the Li atom in the disilynes (Si>HLi and
SioLiy) decreases the number of isomers found and we have not attempted to explain
this issue in detail. Nevertheless, it was noticed during our calculations that the trans
and vinyl structures occurred only as higher-order transition states on the Si;Li, and
Si;HLi potential energy surfaces.

The comparisons of the different level of theories used to study the Si,HX and SisLi»
species (where X= H, Li, F and Cl) calculations tell us that diffuse function are not
essential when we used the level CCSD(T)/VQZ and above. Moreover, the results
calculated at the CCSD(T)/AV(Q+d)Z level with the additional thigh d functions were
shown to be very close to the CBS limit. The CCSD(T)/VDZ and B3LY P/6-311G(d)
levels of theory are in some cases not accurate enough to describe the isomerization
energies, geometric properties or harmonic vibrations. Note, that the B3LY P/6-311G(d)
level does not contains polarization functions for the H atom which might give wrong
results for the bridged structures. The CCSD(T)-F12/VTZ-F12 level of theory yielded
an accuracy comparable to CCSD(T)/V(6+d)Z for geometric properties and to
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CCSD(T)/V(Q+d)Z for harmonic vibration frequencies as shown in chapter 4.1. Thus, |
recommend this level of theory as the most accurate in calculations of small silicon
clusters. The CCSD(T)-F12/VTZ-F12 level of theory will be used in subsequent full-
dimensional potential energy surface calculations.
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5 Electron affinity and Li* and H* binding energy.

5.1 Electron affinity.

The electron affinity is a very important physical-chemical property used, for instance,
in thermochemical cycles to determine molecular bond energy or electron detachment
energy which can be used in the advanced €electronics industry. Electron affinity also
plays a role in silicon and quantum dot (nanocrystal) semiconductor chemistry [169],

molecular clusters[170] and flat panel displays[171].

In general electron affinity can be described as the energy difference between an
uncharged atomic or molecular species and its negative ion [172]. A clear definition of
electron affinity was provided in review work by Hotop and Lineberger [173, 174]:
“The electron affinity, EA, of an atom A is the difference between the total energies

(Etwot) Of the ground state of A and its negativeion A™” and is expressed by the equation:

EA(A) = Etot (A) - Etot (A_) 51-1

Thus, for example, when the neutral atom lies energeticaly above the anion then
electron affinity is positive [172]. Anions of atoms with positive electron affinities exist
long enough to be studied experimentally, whereas anions of atoms with negative
electron affinities exist only for a few picoseconds and so, are of less interest to
chemists [172]. The electron affinity usually depends on the nuclear charge, electronic

configuration and size of the atom.

Atomic and molecular electron affinities can also be described as the binding energy of
an electron to the atom or molecule [172]. Molecular systems (and atoms) can have
positive as well as negative electron affinities. For instance, benzene has a negative
electron affinity, whereas anthracene and pyrene have positive electron affinities [172].
Interestingly, diamond and diamond-like carbon materials have a negative electron
affinity and thus, can be used as electron field emitters [175, 176].

To measure molecular or atomic electron affinities experimentally photo-detachment

spectroscopy is used. This technique uses the photoelectric effect and gives electron
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affinity results with an accuracy of around 0.25 kcal/mol [172]. However, sometimes it
is hard to find the electron affinity using experimental methods, and then computational

methods can be very helpful.

Several levels of theory were proposed in the literature for the calculation of electron
affinities. The first method used to get electron affinities with good accuracy is the
Gaussian-2 (G2) method [177]. G2 theory is a technique which consists of a sequence
of well-defined ab initio calculations to obtain a total energy of a given molecular
species [178]. Geometries are optimized using second—order Maller—Plesset
perturbation theory. For the energy, correlation level calculations are done using
Mgller—Plesset perturbation theory up to fourth-order and with quadratic configuration
interaction. The G2 method uses large basis sets, including multiple sets of polarization

functions in the correlation cal cul ations.

Other authors suggest that ab initio methods such as Cl and CC are the best tool for the
calculation of electron affinities [172, 179]. However, to obtain good accuracy, one
needs to use basis sets that are close to the CBS limit.

Pople and co-workers presented a comparison between electron affinities calculated
with the G2 method and severa DFT methods [177]. The paper shows that DFT
methods are quite good in comparison with the G2 level, which is still the most
accurate, but also computationally more expensive. Schaefer considers the DFT
methods as efficient for the calculation of electron affinities, as they are fast and still
yield good accuracy [172]. Jensen compared four methods for calculation of electron
affinities: HF, BHHLY P, B3LY P and BLY P with the aug-pc-2 basis set (though similar
results can be obtained using the 6-311+G(d) basis set) [180]. Jensen claims that

B3LYP gives an accuracy with comparison to experimental values of =1 kcal/mol.

To choose the most effective method and basis set, benchmark tests were performed on
the Si—Si molecule and the Li atom, and the results were compared with experimental
electron affinities. The following three methods were used: MP2/aug-cc-pvVTZ, M06-
2X/6-311+G(d) and B3LYP/6-311+G(d). Unrestricted reference wavefunctions were
used in al calculations done here. We aso used the MP2/aug-cc-pVDZ and MP2/aug-

cc-pVQZ methods. However, we encountered convergence difficulties during the
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optimization calculations, and this issue will be discussed later. All calculations were

performed with the Gaussian 09 program [139].
The adiabatic EA is defined as:

EA= E(optimized neutral system) — E(optimized anion system) 51-2

In both types of calculations (except those on the Li atom) the zero point energy (ZPE)

was included.

Table 5.1-1. Electron affinity of the Si, molecule.

MP2/ B3LYPF/ M06-2X/
AVTZ  6-311+G(d) 6-311+G(d) Exp.® Exp.”
EA [eV] 227 2.16 215 2.199(0.012) 2.176(0.002)
¢ value taken from reference [ 181]
® value taken from reference [182]

Table 5.1-2. Electron affinity of the Li atom.

MP2/ B3LYP/ MO62X/
AVTZ 6-311+G(d)  6-311+G(d) Exp.2
EA [eV] 0.35 0.56 0.52 0.62

¢ value taken from reference [172]

The B3LY P/6-311+G(d) level of theory gives electron affinities that are closest to the
experimental values for the Si; and Li species. The difference between the calculated
and experimental values is only 0.039 eV or 0.016 eV (for Si;) and 0.06 eV (for Li).
MO06-2X/6-311+G(d) gives dightly worse results with the differences between the
calculated and experimental results being around 0.049 or 0.026 eV (for Si») and 0.10
eV (for Li). The MP2/aug-cc-pVTZ results are worse than the DFT results. the
differences between the experimental and computational results are 0.071 or 0.094 eV
(for the Si; molecule) and 0.27 eV (for the Li atom). The calculated B3LY P/6-311+G(d)
Li electron affinity showed a difference of 0.002 €V compared with the result obtained
by Jensen at the B3LYP/aug-pc-2 level of theory [180]. However, the MP2/aug-cc-
pVTZ and M06-2X/6-311+G(d) levels of theory give differences of 0.21 eV and 0.037
eV, respectively.
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Electron affinities of the Si,HLi isomers

To calculate the electron affinities for the Sio>HLi minima the same methods were used

as in the previous section.

Table 5.1-3. Electron affinities of the Sio,HLi isomers.

MP2/ B3LYP/ M06-2X/
AVTZ 6-311+G(d)  6-311+G(d)

HSILiS

EA [eV] 0.59 1.01 0.88
LiSIHSI

EA [eV] 0.64 1.05 0.90
SHLISi

EA [eV] 0.66 0.74 0.58

If we consider only the DFT methods, we can see that the two monobridged structures,
HSIiLiSi and LiSiHSi, have electron affinities of = 0.9-1.0 eV, whereas the SiHLiSi
electron affinity is smaller (= 0.58-0.74 eV). It was noticed during the DFT calculations
(B3LYP/6-311+G(d) and M06-2X/6-311+G(d)) that electron attachment changed the
nature of the global minimum. The global minimum of the Si,HLi~ species is the Li-
bridged structure followed by the dibridged (relative energies of 3.07 kcal/mol and 0.55
kcal/mol for B3LY P and M06-2X, respectively) and H-bridged (3.62 kcal/mol and 2.85
kcal/mol, respectively) structures, respectively. The MP2 method shows a different
pattern: the HSILISI structure has a smaller electron affinity in comparison with
LiISIHS and SIHLiSi. The electron affinities computed with MP2 have very similar
magnitudes for all three isomers.

We investigated this issue in more detail. The investigation showed that the M P2/aug-
cc-pVXZ caculations (where X=2-4) fail for the anionic HSILiSi structure. The
MP2/aug-cc-pvVDZ and MP2/aug-cc-pVTZ calculations optimized to different local
minima and the optimization calculation at the MP2/aug-cc-pVQZ level was not
successful (calculations crashed several times). The SiISiH angle in the anionic structure
optimized at the MP2/AVDZ level is 180° (linear), whereas the MP2/AVTZ level gives
a SISIH angle of 139° (bent). It was seen in chapter 4 that the AVDZ basis set is not
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accurate enough for obtaining reliable geometric properties, and thus, only the
MP2/AVTZ results are listed in Table 5.1-3. It was also noticed, that calculations at the
MP2/AVDZ and MP2/AVQZ levels suffered from convergence problems. Trying to
overcome this issue, we calculated the force constants at the start of the geometry
optimization, used tight convergence criteria and different optimization algorithms
(Newton-Raphson, GDIIS and quadratic convergent SCF). HF/aug-cc-pV XZ (where X=
2 and 4) with the stable=opt keyword was used to ensure that the calculated structure
was a minimum. Additionally an initial guess was read using the Guess=Read keyword
at the start of the MP2/aug-cc-pVXZ calculation (where X= 2 and 4) in an effort to

determine areal minimum. All the endeavours failed.

To avoid further convergence problems we decided to just use the B3LY P method for
the electron affinity calculations for Si;Li,, as this method gave results that were closest

to the experimental values (for Si; and Li).

Electron affinities of the Si,Li, isomers

In sub-chapter (4.5) it was mentioned that the Si;Li, PES contains two minima: a
dibridged isomer (SILiLiSi), which is the global minimum and a monobridged isomer
(LiSiLiSI) which lies 0.43 eV (10.037 kcal/moal) above the global minimum.

Table 5.1-4. Electron affinities of the Si>Li, isomers.

B3LYP/
6-311+G(d)
LiSILiSi
eV 0.98
SLILiSi
eV 0.70

The calculated EA values show a similar pattern as for the Si;HLi isomers: the electron
affinity for the monobridged structure (LiSiLiSi) is much larger than that of the
dibridged structure (SILiLiSi): 0.98 eV and 0.70 eV, respectively. The attachment of an

electron does not change the nature of the global minimum for the Si,Li, species.
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Discussion — comparison of calculated values with literature and conclusions

There are a number of previous papers on electron affinities, which can be used for
comparison. The work of Schaefer et al. [183] on the Si;H/Si;H™ structures used many
different computational methods, however, we only take the CCSD(T)/AVTZ results as
the most relevant to our studies. The Si;H electron affinity computed with the
CCSD(T)/AVTZ level is 2.30 eV which is very close to the experimental value (2.31
eV) [183]. Note that the calculated electron affinities for the Si,HLi isomers are about 1
eV smaller. The same issue holds for Si;Li,. Yang and co-workers [45] calculated the
electron affinity for SiyLi molecules (where n=2-8) using G3 and MP2(full)/6-31G(d).
The calculated electron affinity of the Si,Li is 1.87 eV and 1.88 eV for G3 and
MP2(full)/6-31G(d), respectively. Our calculated electron affinity for SipLiz is between
0.70 eV and 0.98 eV. It is not clear why the electron affinities calculated here are
around 1 eV smaller than those computed for Si,H and Si,Li. Clearly, for the Si,H and
SioLi~ systems the detachment of an electron requires more energy than for the SioHLi™

and Si;Li, systems. We have not attempted to explain thisin detail.

We can conclude that the B3LY P/6-311+G(d) method gives the most accurate el ectron
affinity results of all the methods employed here in comparison to experimental and
high-quality literature results. It is probably possible to get more accurate electron
affinity results than those obtained with B3LY P/6-311+G(d) by using the G2 or G3
methods, however, these methods are more demanding of CPU time.
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5.2 Li*binding energy.

The mechanism of lithium storage in silicon type materials has been studied for many
years as these materials are important in developing high—density Li rechargeable
batteries. Li* can be adsorbed on, or inserted into, different types of layered Si
structures or Si surfaces. Our calculations on small Si-containing molecules can provide
new insight into the Li* binding. The Li" binding energy can be defined as:

Ep= — [E(SioHLi) — E(SioHY) — E(Li")]. 5.2-1

The Li* binding energy in the Si;HLi structures was calculated as shown in eq. 5.2-1.
The Si,HLi and Si;H™ structures were optimized and the ZPEs were included. The
geometry optimisation of SioH™ yielded bent and bridged structures. The calculations
were performed at the CCSD(T)/aug-cc-pVTZ and B3LY P/6-311+G(d) levels of theory
but counterpoise corrections were not included here. The unrestricted reference
wavefunctions were used for the ionic species. The computed Li* binding energies for
the Si;HLI structures are listed in Table 5.2-1.

Table 5.2-1. Li* binding energies of the Si,HLi isomers.

CCSD(T)/  B3LYP/
AVTZ 6-311+G(d)

HSILiS

ev 2.54 2.68
LiSIHS

ev 2.03 1.79
SIHLiS

ev 2.39 2.15

Table 5.2-1 shows that the Li* binding energy is larger for the HSILiSi and SiHLISi
isomers (Li-as the bridged atom) than for the LiSIHSI isomer (Li-as the terminal atom).
The B3LYP/6-311+G(d) method gives Li* binding energies of 2.68 eV, 2.15 eV and
1.79 eV for HSILiSi, LiSIHSI and SIHLiSI, respectively, whereas the CCSD(T)/aug-cc-
pVTZ level of theory gives binding energies of 2.54 eV, 2.39 eV and 2.03 eV,
respectively.
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Note that the Li+ binding energies were not corrected for BSSE. BSSE tends to be very
small in DFT calculations. CCSD(T) is however much more sensitive to BSSE, and
whereas we use a relatively large basis set in the CCSD(T) calculations (aug-cc-pVTZ),
the BSSE may ill be sufficiently large to affect the Li* binding energies. For
comparison, CCSD(T)/cc-pVTZ calculations on N, yielded a BSSE value of about 0.08
eV [184], of similar magnitude as the differences between the B3LY P and CCSD(T) Li*
binding energies. Thus, it may be that the CCSD(T) binding energies are dightly
overestimated.

The calculations of the Li* binding energy were done for the Si;Li, structures using the
same levels of theory as employed for Si;HLi. The Si;Li; and SioLi™ structures were
optimized and the ZPEs were included but the counterpoise corrections were not
included. Equation 5.2-2 was used to calculate the Li* binding energies of the SisLis
structures. To avoid optimization of SioLi~ towards the bridged (SILiSi™) structure,
terminal Li angle (LiSiSi-bent) was frozen (at 165.0°). The calculated Li* binding
energy results arelisted in Table 5.2-2.

Ep= — [E(SisLiz) — E(SisLi7) — E(Li] 5.2-2

Table 5.2-2. Li* binding energy of the Si;Li» isomers

CCSD(T)/ B3LYP/
AVTZ 6-311+G(d)

LiSiLiSi @

eV 231 1.48
LisiLisi P

eV 1.62 0.84
SILILiS

eV 2.05 1.24

®Li*- SILiSi-bridged
bLi* - LiSiSi-bent

The same pattern can be seen as was observed for Si;HLi: the B3LY P/6-311+G(d)
method yields larger binding energies for the LiSILiSI and SILiLiS isomers (SILiSI-
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respectively. The CCSD(T)/aug-cc-pVTZ method gives binding energies of 2.31 eV,
2.05 eV and 1.62 eV, respectively. Thus, the B3LY P/6-311+G(d) results are smaller
than the CCSD(T)/aug-cc-pV TZ results by about 0.72-0.83 eV. It therefore appears that
B3LYP underestimates the Li* binding energies.
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5.3 H+*binding energy.

The H* binding energy was also investigated for the SiHLi isomers. The equation to
calculate the H* binding energy is similar to that for the Li* binding energy and can be
written as shown in equation 5.3-1.

Ep=—[E(SioHLi) —E(Si,Li") ] 53-1

Obviously there is no H in this equation because the electronic energy of H' is 0. The
Si,HLi and Si,Li~ structures were optimized and the ZPEs were included. The geometry
optimisation of Si,Li" yielded a bent and bridged structures similar to the Si,H™ case.
The calculated H* binding energy results are listed in Table 5.3-1.

Table 5.3-1. H" binding energy of the Si,HLi isomers

CCSD(T)/  B3LYP/
AVTZ 6-311+G(d)

LISIHSI

eV 12.48 15.35
HSILiSI

eV 11.60 14.49
SIHLIS

eV 11.96 14.86

It can be seen that there is a large difference between the CCSD(T)/aug-cc-pVTZ and
B3LY P/6-311+G(d) results (about 3 €V), but once again the pattern is the same as for
the Si,HLi and Si,Li, isomers. the H" binding energy is larger for the LiSIHSI and
SIHLiS isomers (H-as the bridged atom), than for the HSILiS isomers (H-as the
terminal atom). It therefore appears that B3LY P overestimates the proton affinities.
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5.4 Comparison of calculated values with literature and conclusions

The smaller binding energy for terminal atoms (in LiSIHSI, LiSILiSi and HSILiSI) can
be explained by the weaker connection between the Si and X atoms (where X=Li or H)
as compared to the bridged structures for which the stabilization energy of the SIXSi 3-
centre-2-electron bond is larger. Furthermore, two bonds need to be broken to detach a
bridged atom instead of one for the terminal atom. Nevertheless, it is not clear why the
binding energy of the monobridged structures is larger (by about 0.25-0.50 eV) than
that of the dibridged structure. Note, that we tried to calculate the Li* and H* binding
energies using a larger basis set (aug-cc-pvVQZ) for the CCSD(T) method but we
encountered convergence problems during the Si,H™ and Si,Li™ optimization

cal culations which could not be solved.

The calculated Li* binding energy is similar in magnitude to those of typical Li
substituted hydrocarbon structures reported in the literature [185, 186]. Unfortunately,
there are no experimental or calculated results for the Li* binding energy for Si
structures but there are some for carbon structures. For example, Yang and co-workers
[186] have done experimental and theoretical work on lithium complexes of polycyclic
aromatic hydrocarbons. They used ZEKE (zero-electron-kinetic-energy) spectroscopy
[186] and the B3LY P/6-311+G(d,p) method. They obtained Li* binding energies of 1.7
eV (experimental) and 1.59 eV (computational) for the Li-naphthalene species and 2.16
eV (experimental) and 1.93 eV (calculated) for the Li-perylene species. Decouzon et al.
[187] used the B3LY P/6-311+G(3df,2dp) level of theory to calculate the Li* binding
energy for alkylo-benzene derivatives. The calculated Li* binding energies are in the
1.8-1.9 eV range.

Kramer and van Santen [188] showed that the H* binding energy for zeolite structures
ranges between 14.63-12.49 eV [188]. Iton and co-workers [189] used the G1 and G2
methods to calculate the H* binding energy of Si—H for H3SIO™ and H3SiOsH, and
calculated values of 15.44 eV and 7.7 eV, respectively. Our calculated values (for Si—H)
are about 12 eV for CCSD(T)/aug-cc-pVTZ and about 15 eV for B3LY P/6-311+G(d).
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We can conclude that calculated H* and Li* binding energy results obtained by the
CCSD(T)/AVTZ level of theory give reasonable values which are in good agreement
with those in the literature. The B3LYP/6-311+G(d) method in some cases
underestimates or overestimates the H” and Li* binding energy. Thus, B3LYP is not
reliable for calculating the H" and Li* binding energy in small silicon clusters.
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6 SiGeHLi

6.1 The SiGeHLi isomers.

The next element below silicon in group 14 of the periodic table is germanium. The
Ge;H; structures were studied extensively in the 1990's by Schaefer and co-workers
[168, 190, 191]. Their work shows that germanium compounds (such as Ge,H,) possess
similar properties as the corresponding SioH; structures. We are interested in S—-Ge
compounds as the superlattices are quite important in the atomically controlled

semiconductor hetero-structures [192]. In particular we consider SiIGeHL..

Computational methods

The Si;H, structures optimized by Grev and Schaefer [24] were used as starting
structures for the geometry optimizations. One Si atom was substituted by a Ge atom
and one H atom by a Li atom. Average literature (theoretical) values of the Si—Li and
Si—Ge bond distances were used in the starting geometries.

Nine starting geometries were prepared: two H-bridged structures (where the Li atom is
terminal to the Ge or Si atom), two Li—bridged structures (where the H atom is terminal
to the Ge or Si atom), two vinyl structures (where the Li and H atoms are both
connected to the Ge or the Si atom and the H atom is connected to the other atom), two
trans structures (where the Li atom is connected to the Ge or the S atom) and one
dibridged structure. These structures were optimized at the B3LY P/6-311+G(d) level of
theory. Harmonic vibrationa frequencies were computed from the optimized structures
at the B3LY P/6-311+G(d) level, which were verified as minima or transition states by
the absence or presence of imaginary vibrational frequencies. It is known from Chapter
4 that the B3LYP/6-311+G(d) level of theory can give imprecise geometric and
energetic properties and vibrational frequencies. However, this method is fast and
accurate enough to perform the preliminary calculations. A higher level of theory will

be employed in the future if necessary.

We located a dibridged, two Li-bridged and one H-bridged structure (see Figure 6.1-1).
The energies relative to the dibridged structure (the global minimum) are listed at the
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bottom of Figure 6.1-1. The calculated geometric properties of the SiGeHLi structures
aregivenin Table 6.1-1.

The HSILiGe, SiLiGeH, LiSHGe and LiSiGeH formulae refer to, respectively, the Li-
bridged_1, Li—bridged 2, H-bridged and dibridged isomers, respectively.

The dibridged form has the lowest energy followed by the Li—bridged 1 form with AE=
5.60 kcal/mol, then the Li—bridged_2 form with AE=7.75 kcal/mol and the H-bridged
form with AE= 9.51 kcal/mol. The geometric properties calculated at the B3LY P/6-
311+G(d) level of theory arelisted in Table 6.1-1.

Table 6.1-1. Geometric properties of the SiGeHLi isomers at the B3LY P/6-311+G(d)
level of theory.

B3LY P/6-311+G(d)

LiSiGeH HSILiGe LiSIHGe

SiLi a 2.58 2.62 241

SiGea 2.24 214 2.20

HS a 1.66 1.49 1.62

bHSIGeLi b 75.9 180.0 0.0

aSiGelLib 67.0 64.4 163.0

aSiGeH b 47.0 166.3 45.9
SiLiGeH

SiLi 4 2.52

SiGe 4 2.13

HGe, 1.55

b HSIGeLip 180.0

aSiGelip 69.3

aSiGeH p 169.8

¢ Angstrém

P degrees
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Figure 6.1-1. The SiGeHL.i isomers located by B3LY P/6-311+G(d) with energies relative to the global minimum (dibridged).
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It can be seen that the shortest Si—-Ge bond length occurs in the SiLiGeH structure (2.13
A) followed by the HSILiGe structure (2.14 A), the LiSiHGe structure (2.20 A) and the
LiSiGeH structure (2.24 A). The two Li—bridged structures differ in the connection of
the H atom. It is interesting, that ssimple geometric difference significantly affect the
isomerization energy significantly. This should be investigated in more detail.

The results show that the Si-Li distances vary from 2.41 A (LiSIHGe) to 2.62 A
(HSILiGe). The shortest Ge-H bond distance is found in the SiLiGeH structure (1.55
A). The smallest Si-H bond distance is found in the HSILiGe structure (1.49 A)
followed by the LiSIHGe structure (1.62 A) and the LiSiGeH isomers (1.66 A). All of

the isomers except SILiHGe are planar.

Harmonic vibrational frequencies were calculated at the B3LY P/6-311+G(d) level. The
results arelisted in Table 6.1-2 below.
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Table 6.1-2. Calculated harmonic frequencies for the SiGeHLi isomers at B3LYP/6-
311+G(d) level of theory; the results are listed in descending order in wavenumber

(cm ") units.

B3LYP/
6-311+G(d)

dibridged

1492.9
947.0
453.7
389.9
196.4
150.2
Li_bridged 1

2142.0
521.7
401.4
275.9
203.6

105.9
Li bridged 2

2074.8
515.8
404.6
354.8
229.7

205.0
H_bridged

1592.2
820.7
554.8
382.7

78.7
58.3

SiH sym. str.

SiH antisym. str.

GeSi/SiH/SILi str.

SiLi/SiH str.

butterfly

SiLi/GeLi out of phase str./butterfly

SiH str.

GeSi/SiH in-phase str.
SiLi str.

H in-plane bend
SiHLi bend
out-of-plane

GeH dtr.

HGeSi bend/GeSi str.
SiLi str.

H in-plane bend
out-of-plane

GeHLi bend

SiH sym. dtr.

SiH antisym. str.
GeSi/SiLi/SiH str.
SiH/SiLi str.
SiHLi bend
out-of-plane
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Comparison of calculated values with literature and conclusion

To the best of our knowledge no literature results (spectroscopic or theoretical) exist for
the SiGeHLi species. However, data for similar molecules, such as Ge;H; or SiGeHg
exist in the literature [190, 191]. The most relevant work done by Leszczynski et al.
[190] was taken as reference. The work of Leszczynski et al. contains both theoretical
and experimental results (using microwave spectroscopy) of the SiGeHg structure. The
Si—-Ge, Si—H and Ge-H bond distances calculated at the CCSD(T)/TZP level of theory
are 2.385 A, 1.478 A and 1.531 A, respectively, whereas the experimental bond
distances are 2.358(3) A, 1.494(6) A and 1.538(3) A, respectively. The Si—-Ge bond
distances calculated in this chapter for SiGeLiH isomers range from 2.13 A to 2.24 A.
While the Si-H and Ge—H bond distances are; 1.49 A and 1.55 A, respectively. We used
only the bond distances of terminal H atoms in this comparison, as the bond distances
for bridged atoms are generally longer. It can be seen that our calculated results are in

good agreement with the literature values.

A comparison of the Si;HLi and SiGeHLi structures shows significant geometric and
energetic similarities: the global minimum is the dibridged structure followed by the Li-
bridged and H-bridged structures in the two (Si;HLi and SiGeHLi) species. A
comparison of the B3LYP/6-311+G(d) results for the Si-Li bond distances and the
XSiLi and XSiH (where X=Si or Ge) angles in the two (Si;HLi and SiGeHLi) species
shows significant similarities too. The harmonic frequency values for the Si-H stretch in
the two species are also similar. However, in the SiGeHLi species the harmonic
frequency values are generally lower which may be explained by weaker bonding in the
Ge containing compound and because of the higher mass of Ge. The bonding properties
of the SIGeHL.i structures are similar to the Si;HLi structures and these are explained in

the conclusions section at the end of Chapter 4.
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7 SizLiz beyond the critical points - constructing and fitting the

potential energy surface.

7.1 Theoretical introduction.

The potential energy surface (PES) is a concept that uses the Born—Oppenheimer
approximation to represent the relationship between the energy of a molecule and its
geometry [110]. In the Born—-Oppenheimer approximation the solution of the nuclear
Schrodinger equation can be presented as movement of the nuclel on the potentia
energy surface. Also the PES is independent of the nuclear masses [55].

The “ball and spring model” is used in the following discussion. If we start to stretch or
compress the spring (bond) of our model then the potential energy will increase and this
behaviour can be plotted as a curve as shown in Figure 7.1-1. There is no distortion of
the bond length at the ge point, which is the equilibrium bond length. Real molecules
behave similarly to the ball and spring model; however, they constantly vibrate even at
0 K. As aresult of this a molecule never stays at the bottom of the curve, but rather
occupies one of the vibrational levels [110] as shown in Figure 7.1-1. Near the
equilibrium bond length (ge), the bottom of the curve is described well by a quadratic
equation (corresponding to a simple harmonic oscillator). However, when we move
avay from Q. the potential energy deviates from the quadratic curve due to
anharmonicity [110].
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Figure 7.1-1. Model of a potential energy surface. The horizontal lines represent the
vibrational levels. More detailed explanation of the figure can be found in the text.
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Figure 7.1-1 shows a curved (one-dimensional) representation of a PES suitable for a
diatomic molecule. However, if the molecule is constructed from more than two atoms
then additional dimensions appear. For example a triatomic molecule has three
geometric parameters; two bond lengths (g: and gz) and one angle (gs). Thus, a
triatomic PES is a 3-D “surface” and is called a potential energy hypersurface. An n—
dimensional hypersurface can be defined as E=f(q, 0z,...q;), where f is the function that

describes how the energy varies with g [110].

If the first derivatives (gradient) of a point on the potential energy surface is zero then
this point is a stationary point. A stationary point can be described as a point where a
marble placed on the surface would remain balanced. A stationary point can be

described mathematically as shownineq. 7.1-1.
dE AE
a_ql:a_qzz...:() 7.1-1
Consider a 2-D hypersurface (two geometric parameters ¢ and @) of a reaction
including one reactant and one product as depicted in Figure 7.1-2. This visualisation of
the PES can be helpful to describe various types of stationary points. Locally the
lowest-energy points of the surface are energy minima and any small changes of one of
the geometric parameters (g or gy) increases the energy. The global minimum (here
minimum for reactants) has the lowest energy on the whole PES. The pathway
connecting the two lowest energy points through a saddle-shaped surface is called a

reaction path. The “centre” of the saddle-shaped region is caled a transition state
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(Transition Structure in Figure 7.1-2) or saddle point and is also a stationary point
[110]. A minimum and transition state can be mathematically distinguished by
calculating the second derivatives of the energy. A transition state has one negative
second derivative, whereas for a minimum all second derivatives are positive. When
more than one of the second derivatives are negative, the stationary point is called a
higher-order saddle point. For example, a second-order saddle point corresponds to the

maximum along two paths connecting stationary points [110].

Figure 7.1-2. 3D model of a potential energy surface generated using the Mathematica
program [193] (function V=q1*sin(ql)* cos(ql+q2)).

Higher-Order Saddle Point

Transition Structure

Minimum for Product

Minimum for Reactant

It can be said that the essence of chemistry is the study of the stationary points on the

potential energy surface and the reaction paths between them.
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The concept of the chemical potential energy surface was introduced by the dissertation
of Marcelin [194] before groundwork of the transition state by Eyring [195]. The first
PES of the Hs" species was cal culated by Eyring and Polanyi in 1931 [196] .

Even for a smple three-atom system at least several thousand single-point calculations
are needed to construct a reasonable potential energy surface. To accurately
approximate the shape of a potential energy surface from the calculated points,
commonly these points are fitted numerically to a multidimensional function. This
function has the form of a mathematical equation, and evaluation of the equation can be
used to establish any stationary points on the potential energy surface.

The easiest way to describe a simple two-body potential is by the following

equation: V = %kz (r — ro)? wherer is the internuclear distance between the two atoms,

re is the equilibrium bond distance and k is a constant. When anharmonic motions are
included the equation can be rewritten as:

V = —ky(r —1e)? + ks (r —re)3 + . 7.1-2
The above equation is written in the form of a Taylor series. However, to describe areal
PES curve the equation needs to contain an large number of terms, thus, from a practical
point of view this approach is inefficient and the Morse potential [197] is commonly
used instead. Nevertheless, these approaches are true only for two-body systems, thus,
other mathematical concepts are necessary to describe a many-body PES. For example:
Coallins et al. [198] represent the PES as a weighted sum of force fields, which are
represented by Taylor series and centred at numerous reference geometries [199].
Meyer et a. [200] used an n-mode representation of the PES in their Multiconfiguration
Time Dependent Hartree (MCTDH) quantum calculations [201]. A many-body PES can
also be described: using the Morse-spline [202], Shepard interpolation [203], pot-fit
[204] or interpolated moving least squares (IMLS) methods [205]. On the other hand,
Carrington et al. [206] showed that an artificial Neural Network tool can be used to fit
any function. Thus, the Neural Network concept is very useful as a potential energy
surface least squares fitting tool and will be used here. A more detailed explanation can

be found bel ow.
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Neural Network (NN)

The artificial Neural Network concept developed in the 90's [207, 208] has recently

become very popular as it gives efficient and effective fits.

The learning ability of a brain inspired scientists to create artificial Neural Networks
(ANNSs) which are represented by a mathematical model.

A simple mathematical implementation can be seen in eq. 7.1-3. Figure 7.1-3 is

basically a graphical representation of equation 7.1-3.
y(x) = QL Wix;) 7.1-3

Equation 7.1-3 and Figure 7.1-3 can be explained as follows:. x is aneuron with i inputs
(Xo...Xi) and one output y. The input is weighted (wo...w;) and f isatransfer function
that determines the output [209].

Figure 7.1-3. Simple representation of a Neural Network. The x; represent inputs, w;
weights, y output and f(x) atransfer function, respectively.
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The most effective and popular transfer function is a sigmoid function. There are two
types of sigmoid functions employed; logsig and tansig, which differ in their output

range. The logsig output is in the range from 0 to 1 and tansig is from -1 to +1. The

logsig function can be described mathematically as. f(x) = logsig = m and the

tansig is represented as f(x) = tansig = — 1. A graphical representation of

1+exp (—2x)

the sigmoid functions can be seen in Figure 7.1-4.
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Figure 7.1-4. The figure on the left represents the logsig function and the one on the
right the tansig function. The figure was generated using the Mathematica program
[193].
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For computational purposes the feed-forward Neural Network (FNN) is commonly
used. The FNN is composed of layers of neurons. The artificial neuronsin the FNN are
organized as layers of nonlinear “nodes’. The signal from the inputs travels only
forward to the outputs. There is no feedback so the layers of the “nodes’” do not affect
each other [209]. For a given node each of the inputs (x;) is weighted (w;), then the sum
of the weighted inputs and the bias (b) is passed through the transfer function (f), which
produces the corresponding scalar output. The final network output is a linear

combination of the node scalar outputs.

A graphica representation of the FNN can be seen in Figure 7.1-5 and the

corresponding mathematical equation is including the tansig transfer function:

VE) =a+35,C, <( 2 7 1) . 7.1-4

14+e-2(WpXE+bp)

The X is a vector representation of coordinates and W, is the corresponding vector of
weights.
Equation 7.1-4 and Figure 7.1-5 represent the type of the Neural Network employed

here.
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Figure 7.1-5. Graphical representation of the feed—forward Neural Network (FNN).
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In NN terminology the “a’, “C,” and “w," are all “weights’ and the “b,” are biases. The
X; represent the internal coordinates of the system. The neurons are functions of linear
combinations of the coordinate (input) values. The output of the FNN is a linear
combination of the chosen sigmoid functions [206]. In this work the chosen sigmoid
functions are tansig.

Carrington et a. [206] presented a series of NN least sguares fits of the H,O, HOOH
and H,CO PESs with comparisons to the literature. They showed that the fits obtained
by the Neural Network approach give more accurate results than fits obtained by other
potential functions [206]. Eq. 7.1-4 is highly nonlinear in the parameters “w," and “by,”
so, Carrington et al. suggested (after severa tests) the Levenberg—Marquardt (LM)
algorithm [210] as the most accurate training algorithm. The same Levenberg—

Marquardt training algorithm will be used here.
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7.2 Potential energy surface of the Si;Liz molecule.

The Si,Li, molecule was chosen for extensive full-dimensional potential energy surface
(PES) studies. The PES is very interesting from a dynamical point of view, asit displays
shallow potential well between the monobridged minimum and the corresponding
transition state. In addition, the dibridged and monobridged isomers are close in energy
with alow energetic barrier for interconversion. These features could lead to interesting
vibrational dynamics such as wide-amplitude vibrational motions with relatively low
energies. Additionally, the molecule was experimentally studied using mass
spectrometry in the 1970's [46]. The PES calculations done here could be helpful for
further insightful experimental studies like microwave or infrared spectroscopy. A
similar approach has been seen in the Si;H, case where the critical point calculations of
Grev and Schaefer [24] were used as the starting point for experimental studies of
Destombes et a. [25, 26] which ended up with successful detection of two SioH»

isomers.

All the single-point calculations were performed at the CCSD(T)-F12a/cc-pVTZ-F12
level of theory using the MOLPRO version 2010.1 computational package. The
CCSD(T)-F12alcc-pVTZ-F12 method will be abbreviated as F12 below. The ground
state (singlet) surface only was considered. Extrapolation to the CBS limit was not
attempted here; however, the discussion presented in Chapter 4.1 illustrated that the F12
method allows achieving the same level of accuracy as the CCSD(T)/cc-pV (6+d)Z level
used for example in the work of Law et a. [52]. Discussion in the previous chapters for
SioH», SizHLI and Si;Li», showed that the F12 method gives results with good agreement
to experimental values and convergence with increasing basis set size is faster than for
ordinary CCSD(T) calculations. Relativistic, core-valence and higher-order electron
correlation corrections were not included here. The cc-pVTZ-F12 basis set contains
7s7p4d2f basis functions for each Si atom and 6s6p3d2f basis functions for each Li
atom. The average time of a single-point calculation for C; symmetry on one node of
the new EastChem computational cluster (12-core Westmere nodes - 2.93 GHz for each

core) at the University of St Andrews was around 400 s.
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Energies for 45501 geometries were calculated at the F12 level. 18829 points were used
in the final least-sgquares fit. Of these 720 points were calculated on alocal grid, 17387
points were generated by the diffusion Monte Carlo (DMC) method (see below) and
722 points were calculated on a wider grid. The PES includes the two known minima
(dibridged and monobridged) and the two transition states (dibridged-planar and
dibridged—monobridged). These critical points will be abbreviated as SILiLiSi,
LiSILiSi, D-PL_TSand DM _TS, respectively.

The procedure for generation of the PES contains the following steps:

Initially 244 geometries were calculated near each critical point. These points were
generated as displacements (as shown in Table 7.2-1) from the critical points. The bond
length-bond angle coordinate system was used at this stage. 268 points from a total of
988 were excluded in the final fit as (by symmetry) they duplicated geometries. The
PES is invariant to permutation of the atoms that lead to equivalent geometries and

identical energies.

Table 7.2-1. Displacement steps (middle column), used in first step of sampling.

Step unit
SiSi 0.01 A
SiLi 0.0225 A
SiLi 0.0225 A
SISiLi 1 degrees
SISiLi 1 degrees
LiISSLi 5 degrees

These 720 points were used to fit an initial potential energy surface. Theinitial PES was
used to sample further geometries near each of the critical points by taking the random
positions of the walkers in vibrationa quantum diffusion Monte Carlo (DMC)
calculations. The simple diffusion Monte Carlo method developed by Anderson [211]
was employed. A key aspect of the concept is the similarity between the Schrodinger
equation and the diffusion equation [211]. The diffusion Monte Carlo method involves
the random movement of imaginary particles (psi—particles). This random walk method

allows the calculation of the ground state energy of a system [211]. The distribution of
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psi-particles is connected to the ground state wave-function. When a DMC calculation
is repeated for example with artificialy low atomic masses then the distribution of psi-
particles will be much further from the equilibrium geometry. Separate DMC
calculations at different atomic masses (4m, 2m, m, and m/4) were performed. The “m”
represents the masses of 2Si and ’Li. This approach hel ps to sample the geometries over
a wider range. Each batch of the calculated points (sampled by the DMC method) was
refitted before preparation of a new batch. 17387 points were calculated at this stage.
The DMC software was written by Law et al. [212].

The DMC calculations were performed using 1000 iterations with 1000 of the psi—
particles. Initially a value of 10™'® swas used as the time step and then reduced to 10"’
sduring the calculation.

The procedure of wider sampling of geometries in the final step was as follows. The fit
of the 18107 points calculated at the previous sampling steps was used in an initia
sampling procedure. Satellite coordinates were used at this stage, asillustrated in Figure
7.2-1. M is the centre of the mass of the two silicon atoms, SiAMLi1 and SIIMLi2 are
the vector angles and ¢ is the angle between the SSILi1 and SISiLi2 planes.
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Figure 7.2-1. Graphical representation of the satellite coordinates. The Si; and Li;
symbols represent silicon and lithium atoms. M is the centre of the mass of the two
silicons.

Only geometries with energies predicted to be below 50000 cm™' (relative to the
dibridged structure) were selected for the ab initio calculations in both the DMC and

wider grid procedure.

Two sampling grids were used as the first grid sampling approach showed huge
inefficiency. The radial coordinate ranges for these sampling grids are given in Table
7.2-2. Only 900 points were useful from the first batch of 6000 points. These 900 points
match our criteria: the 7; diagnostic was below 0.08 and the energy below 50000 cm™!
(relative to the dibridged isomer). The 7; threshold value employed (0.08) was
suggested by papers of Martin et a. and Ca et a. [64, 65], who suggested that
CCSD(T) gives reasonable results for 7; diagnostic values as high as 0.08. Note, that
most points experienced convergence problems as they sample the surface at extreme
geometries. For example the S—Si bond length was very short or very long (below 1.5
A or above 3.5 A), the same situation was observed for the Si—Li and Li—Li distances.
To overcome these problems the second coordinates range (as seen in Table 7.2-2) was
implemented. A total of 27126 points were calculated for both wide grid sampling
approaches. 16699 points converged and 9067 of these were below 50000 cm™'. 8575
points (from a total of 27126) had a 7; diagnostic above 0.08 and 2597 of them

converged. Thus, these 2597 points contain considerable multireference character.
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Table 7.2-2. Coordinates sampling ranges.

first grid second grid
Sisi @ 1.2-42 1.5-3.9
MLi12 1.45-3.95 1.75-35
MLi2 2 17— 32 1.9-29
a SIMLi1®  10-100 10— 100
a SIMLi2®  20-170 20-170
P 0-180 0—180
& angstrom
® degrees

The ranges of 7; diagnostic values obtained during the PES calculations are listed in

Table 7.2-3 for geometries around the four critical points considered here.

Table 7.2-3. 7; diagnostic of the Si,Li; structures.

7, diagnostic
Range from min to max values
SILIiLiSi 0.0163-0.0324
LiSILiS 0.0182-0.0412
D PL_TS 0.0162-0.0292
DM_TS 0.0182-0.0700

The 7; diagnostic values around most of the critical points are below 0.042. However, a

few points with 7; diagnostic above 0.055 were found near the DM_TS structure.

Fitting procedure

The Neural Network method, described above was used in the fitting procedure.

To construct a PES precisely, it must be invariant with respect to al permutations of
identical atoms [213]. The concept of polynomial invariants developed by Bowman
[213] was used here. The polynomial invariant approach is constructed from basis
functions which contain the internuclear distances R;. These functions are invariant with
respect to permutations of like atoms and can be obtained in terms of primary and
secondary polynomials [213]. If the atoms of the Si,Li, species are labeled as Si(1),
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Si(2), Li(3) and Li(4), respectively, and six internuclear distances represent the
distances between these atoms (shown in

Table 7.2-4), then auxiliary variables are given as.

&= (R2+Rs)/2,

e1= (Ri+Ry)/2,

fo= (R2+Ry)/2,

f1= (R1+Rs)/2,

The degree-1 invariant polynomial can be written as:

P1= (RstRx+R1+tRy)/4,

The three degree-2 primary invariant polynomials are given below:

P,= (er’+€1%)/2,

P, = (fo?+19)/2,

Ps = (Rs*+R.*+R4*+Rs’)/4,

and degree-3 invariant polynomials:

P7= (R*+R+R, RS’ /4

We have also polynomials which are equal to the S—Si and Li—Li internuclear
distances.

P:=Rs,

Ps= R,

Table 7.2-4. Internuclear distances R1—Rg of the SiLi» structures.

I nternuclear

Ri distances

Ry Si(2-Li(3)
Ro Si(D)-Li(3)
Rs Si(D)-Si(2)
R4 Si(2)-Li(4)
Rs Si(D-Li(4)
Rs Li(3)-Li(4)

The potential energy surface was determined using the Neural Network toolbox
implemented in MATLAB 2009 [214] provided by the University of Aberdeen. The
default feed forward Neural Network code (implemented in MATLAB) was modified

for our purpose and can be found in Appendix. Equation 7.1-4 is the functional form
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used to fit the ab initio points. This functional form is a sum of tan-sigmoid functions.
The wp, C, etc. parameters were defined earlier. The x represents the vector of internal
coordinates. The coordinates were automatically scaled to (-1, +1) by the MATLAB
program. The Cartesian coordinates (DMC), the bond length and angle coordinates
(local grid) and the satellite coordinates (wider grid) were transformed firstly to the six
internuclear distances then to the seven polynomial invariants. This was done by a
FORTRAN subroutine program which can be found in Appendix. These polynomial
invariants were used in each fitting process.

The Neural Network toolbox divided the sampled data into three subsets: atraining set,
a validation set and a test set. The main subset is the training set. At this stage the
gradient of the performance function is computed and used for updating the network
weights and biases. The validation set measures network generalization and is used to
stop training when generalization is not improving. The test set provides an independent
measure of training performance and has no effect on the training procedure. The points
used in the fitting procedure (training, validation and test) are randomly divided in the
Neural Network tool box according to the percentage of points defined for each subset.
To construct the most accurate fit (according to the number of points used in each
subset), benchmark tests were performed. The benchmark showed that 80% of the
points used in the training, 10% in the validation and 10% in the test set, gives the most
accurate and smooth fits. The influence of the number of neurons used during the
training process on the accuracy of fits was also studied. It was found that 96 neurons
gave the best results. In the Neural Network procedure the geometry of each point was

represented by the values of the seven invariant polynomials and the energy was fitted.

Initially three fits were performed: for the points with relative energies below 50000
cm ', 35000 cm™' and 30000 cm ', respectively. 27174 points were used in the 50000
cm ' fit, 24530 points in the 35000 cm ' fit and 23668 points in the 30000 cm ' fit.
Unfortunately these fits showed bad training performance as the best root mean square
error achieved was 408.6 cm . It was noticed that our wider grid sampling approach did
not properly cover the surface above relative energy of 16000 cm'. Thus, we did not

get enough points (on the surface above 16000 cm™') to provide a reasonable fit. Note
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that 16000 cm ' is the maximum energy achieved by the DMC sampling process. To
overcome this issue another four fits were performed, with relative energy cut-offs at
6000 cm™', 12000 cm ' 15000 cm ' and 20000 cm', respectively. 18277 points were
used in the 6000 cm ' fit, 18829 pointsin the 12000 cm ' fit, 19522 pointsin the 15000
cm ! fit and 21055 points in the 20000 cm™* fit.

The 6000 cm ' fit showed the best training performance with root mean square error of
11.7 cm . However, this fit did not cover the part of the surface which contains the
vinyl and trans type geometries and these are crucial for the ro-vibrational calculations.
Thus, the fit of 12000 cm™" in the order of the next best performance was chosen. The
12000 cm ' fit has a performance of 33.7 cm™' (root mean square error). This fit covers
the whole surface needed for further calculations. The NN outputs on the 12000 cm ™ fit
are given in Figure 7.2-2. The plot includes all of the training, validation and test data
sets, The root mean square error for the validation and test sets (combined) is 53.5 cm™.
As expected this is larger than the corresponding value for the training set but still
reasonable. It was noticed that several dozen points are outliers. Moreover, for the
points in the range 0-4000 cm™' the maximum difference (between calculated and fitted
energies) is 822 cm!, for the points between 4000-8000 cm ™' the maximum difference
is 2058 cm !, and for the points in range 8000-12000 cm ' the maximum difference is
2707 cm '. However, the average absolute difference between calculated and fitted
energies for the points up to 4000 cm ' is 1.29 cm 'and 91.65 cm ' for the points
between 4000 cm ' and 8000 cm '. The average absolute difference for points above
8000 cm ' is 322.25 cm . The outlier points were generated by the wider grid sampling
procedures, for which the sampling was quite sparse. Thus, the Neural Network toolbox
had not enough points in those regions to achieve much better fitting. Nevertheless the
12000 cm' fit is sufficiently accurate to be used for reasonable vibration-rotation

calculations using the WAV R4 program [215] (but see comment below about a“hol€e”).
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Figure 7.2-2. Relationship between the outputs of the network and the targets (input
energies). R is the regression value between outputs and targets. The circles represent
the data. The numbers on the x and y axes are in cm ', The plot includes all of the
training, validation and test data sets.
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The fit reproduced the calculated geometric properties well as seen in Table 7.2-5. The
differences in bond distances obtained by the fit with comparison to those calculated at
the F12 level arein the range of 0.0005 A (for the LiSiLiSi isomer) to 0.0024 A (for the
D_PL_TS structure). The angles are reproduced in the range of 0.01° to 0.7° (both in
the LiSILiSi isomer).
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Table 7.2-5. Geometric properties of the SioLi, isomers on the fitted potential and

optimized at the CCSD(T)-F12a/VTZ-F12 level of theory.

SisLis
Fit CCSD(T)-F12a/
VTZ-F12
SILILiSi
SiLi ® 25538 2.5524
Sisi 2.1680 2.1660
o SiSiLi ° 64.95 64.90
B LISISILI" 102.60 102.58
LiSILiSi
SilLi2? 2.5136 25141
Li1Si2® 2.4082 2.4098
Sisi @ 2.1330 2.1335
a Si1Si2Li1® 163.50 164.22
a Si2SilLi2® 66.08 65.58
B LiSISILi® 180.00 180.00
D PL TS
SiLi @ 2.5228 2.5217
SiSi @ 2.1603 2.1627
o SiSiLi ® 64.63 64.62
B LiSISILi" 180.00 180.00
DM_TS
SilLi2? 2.5265 2.5249
Li1Si2® 2.3998 2.4017
Sisi @ 2.1354 2.1372
a Si1Si2Li1® 141.88 142.49
o Si2Si1Li2® 65.75 66.15
B LiSISILi ® 122.75 123.38
& angstrom
® degrees

The contour plot depicted in Figure 7.2-3 represents the final fitted PES. The arrowed

line shows the reaction path between the SILiLiSi and the LiSILiSi isomers.
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Figure 7.2-3. A two-dimensional cut through the six-dimensional potentia energy
surface using the bond-length, bond-angles coordinate system.
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Discussion and Conclusions

The DMC calculations for the critical points did not show any holes in the PES.
However, with the addition of a correction term to avoid unphysically low energies at
phi angles below 60°, the calculated full-dimensiona potential energy surface was of
sufficient quality to perform variational-vibrational calculations using the WAVR4

program. This issue will be discussed in more detail in the next chapter.
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8 Vibrational properties of the Si:Li; isomers.

8.1 Vibrational calculations.

The perturbation theory discussed in section 2.1 (theoretical introduction to molecular
vibrations) is used to approximate diagonalization of the Hamiltonian matrix, and solve
the Schrodinger equation in a fast and efficient way. However, if more accurate results
are required, other methods should be employed. Thus, the variational method of
diagonalization of the Hamiltonian matrix, which alows solving the Schrddinger
equation “exactly”, can be used instead of perturbation theory. The WAVR4 program
[215], which is based on the variationa method, will be used here to calculate

vibrational spectrafor the Si,Li, potential energy surface.

The WAV R4 program employs primitive basis set functions which are composed of the
following: abending basis set defined by jmax, Imax and kmax and aradial basis set defined
by n;, n; and nz for the M—Li stretches and Si—-Si stretch where M is the orthogonal
canonical point, see Figure 8.1-1. M is close to the centre-of-mass of the molecule. The
radial functions employ the discrete variables representation (DVR) [117, 215]
approach. A product of either Morse-oscillator or spherical oscillator functions is used
for the radial coordinates. Morse-oscillator functions will be used here for all the radial
coordinates. The angular basis for the bending-rotation functions is a non-direct—
product finite basis representation (FBR) [117, 215]. An explicit sequential-
diagonalisation and truncation approach and the mixed FBR-DVR basis representation
are used in the WAV R4 program. The sequential-diagonalisation and truncation method
is employed to avoid problems caused by large Hamiltonian matrices, which can arise
during the calculations. If the primitive basis set is large enough for convergence then it
is possible to calculate accurate wavefunctions and eigenvalues for the Schrodinger
equation [117, 215].

To avoid large changesin the radial coordinates, including those involving the Li atoms,
orthogonal satellite coordinates were employed here. Orthogonal satellite coordinates
were developed by Mladenovic [216] and are shown in Figure 8.1-1. These coordinates
are very useful to study isomerising systems.
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Figure 8.1-1. Graphical representation of the orthogonal satellite coordinates for SioLis>,
where M is the orthogonal canonical point.

@

All calculations were performed using the 12000 cm™' potential energy surface
calculated previously at the CCSD(T)-Fl2alcc-pVTZ-F12 level of the theory. All
calculations were carried out on the new EastChem Research Computing Facility,
which provides access to a 2376-core Intel Xeon cluster hosted by the School of
Mathematics and Statistics at the University of St Andrews.

It was shown in the previous chapter that the 12000 cm™' potential energy surface (PES)
contains a region of unphysical low (negative) potential energy. This issue was also
noticed during the ro-vibrational calculations as the ZPE of the global minimum was
found to be negative, because the wavefunction is localized at the negative region. This
can be explained by the sparse sampling for Si;Li, geometries with phi (dihedral) angles
below 60°. Thus, a correction term was implemented to the program code to avoid the
appearance of the negative potential energy region on the surface during vibrational
calculations.

The term 2-10%-e*™* where x is the phi angle value was added to the potential energy as

afunction of the phi angle as seenin Figure 8.1-2.
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Figure 8.1-2. The energy value added as a function of phi angles of the Si,Li, structures.
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A test was performed to check the improvement achieved by this approach. We
calculated the energy in the phi angle range 72° to 32°, at the CCSD(T)-F12a/VTZ-F12
level of theory using the MOLPRO package. Table 8.1-1 compares the differences
between the energies calculated by MOLPRO and the energies calculated by the
original fitted surface as well as the surface with the additional term added.
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Table 8.1-1. Difference between values calculated with CCSD(T)-F12/VTZ-F12 and the
surface with the correction term added as well as the original fitted surface.

Differences between
CCSD(T)-F12/VTZ-F12

phi angle? energy and the potential Differences between CCSD(T)-
augmented with the F12/VTZ-F12 energy and the
correction term ” original fitted potential
36.00 —4414.7 33711.7
41.14 23434 23997.4
46.29 4062.4 16360.8
51.43 3547.0 10531.9
56.57 2326.5 6293.7
61.71 1157.0 3410.2
66.86 337.7 1617.4
72.00 —85.0 641.8
®degrees
by

It can be seen that after introduction of the correction term to the potential the
appearance of the negative well is avoided. However, the potential energy rises too

steeply, so the vibrational energies calculated here will be too high.

The primitive vibrational basis sets were modified to achieve approximate convergence,
in particular so that the calculated ZPE value was close to the value obtained by a
second-order perturbation theory anharmonicity calculation done at the MP2/aug-cc-
PVTZ level of theory which is 943.02 cm™'. Table 8.1-2 shows the ZPE calculated with
different sizes of the radial and angular basis sets. It can be seen the large changesin the
ZPE occurred when the angular basis was increased. The same pattern was observed
when higher energy levels were analysed. For instance, when the radial basis n;, n, and
nz (5, 5, 5) and angular basis jmax, Imax @nd Kmax (10, 10, 8) were employed the first
calculated energy level above the ground state was 306.1 cm ' and the eighth one was
964.9 cm', whereas with the radia basis ny, n, and ns (5, 5, 5) and angular basis jmax,
Imax @nd kKmax (20, 20, 14), the first calculated energy level above the ground state
dropped to 130.6 cm™' and the eighth one went to 626.5 cm ™.
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Table 8.1-2. ZPE calculated with different sizes of the radial and angular basis sets.

ZPE*® radial basis” angular basis® cpu time[g]
1781.8 4,4, 4 8,8,7 3
17104 55,5 88,7 6
1411.9 55,5 10, 10, 8 54
1131.2 55,5 14, 14, 10 888
1022 55,5 18, 18, 12 12030

992 55,5 20, 20, 14 43323
972.7 6, 6,5 21,21, 15 141017
966.2 6, 6, 6 22,22, 15 396958

a Cm—l

® basis defined by ny, n, and ng the first two correspond to the M—Li stretches
and the last one to the S—Si stretch

 basis defined by jmeax max aNd Ko

Approximate convergence was achieved when 6 radial basis functions each for all three
stretches were used and angular basis jmax, Imax and Kmax (22, 22, 15) values for the
bending basis where employed. The zero point energy calculated at this level was 966
cm', 23 cm ' higher than that calculated by the MP2/aug-cc-pVTZ second-order
perturbation theory calculations. It was not possible to achieve more accurate zero-point
energies, as the variationa vibrational calculations are very CPU-time demanding and

the final calculation already took several days.

We investigated the changes in the calculated energy levels above the ground state with
respect to increasing size of the radial and angular basis sets. The comparison can be
seen in Table 8.1-3. Only the lowest 2400 totally symmetric energy levels (vibrational
states of A1 symmetry) were calcul ated.

The first six and 8™-9" energy levels show small differences with respect to the
increasing size of the radial and angular basis sets, however, for the 7" and 10™-12"
energy levels the differences are significantly larger. A similar picture can be seen for
the higher (above 12") energy levels as well. The average difference for the first 35
totally symmetric energy levelsis 14.5 cm . Thus, we decided to assign only the lower
reasonably converged energy levels. Additionally the 1000" energy level has energy
3143.9 cm™', and the 2400" energy level has energy 4121.9 cm . The differences with
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respect to the increasing size of the radial and angular basis sets for these levels are:

76.7 cm ' and 152.9 cm™!, respectively.

The identification of the energy levels was difficult as the vibrational levels were very
close to each other as seen in Table 8.1-3. To solve this issue, a program developed by
Kozin et a. [217] was used. The program analyses the wave functions calculated by
WAV R4 and produces probability densities with respect to the phi or theta angles which
are very helpful to assign an energy level. The information provided by the MP2
anharmonicity calculations were also used as additiona references and can be seen in
Table 8.1-4.
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Table 8.1-3. Energy levels calculated using two different combinations of the radial and
angular basis sets

angular radia angular radia
ZPE basis basis ZPE basis basis
966.2 6,6,6 2222 15 972.7 6,6,5 21,21, 15| difference
energy Ivl. energy [cm'] | energy IV, energy [cm™'] [em ']
1 0.00 1 0.00
2 102.96 2 106.40 —3.44
3 249.71 3 252.59 —2.88
4 289.18 4 290.98 —1.80
5 412.10 5 413.43 —1.32
6 457.66 6 462.77 —5.11
7 491.79 7 518.13 —26.34
8 523.67 8 528.33 —4.66
9 554.14 9 554.85 —0.70
10 571.64 10 609.62 -37.97
11 631.45 11 646.63 —15.18
12 641.85 12 659.95 —18.10
13 657.25 13 663.60 —6.35
14 661.77 14 668.74 —6.97
15 708.38 15 718.49 -10.12
16 716.66 16 760.97 —44 .31
17 768.51 17 771.61 -3.10
18 777.37 18 774.32 3.06
19 782.10 19 811.37 —29.27
20 810.62 20 824.76 —14.14
21 836.07 21 839.35 —3.28
22 838.26 22 847.42 —9.16
23 846.37 23 861.11 —14.74
24 853.90 24 894.55 —40.65
25 882.62 25 899.93 —17.32
26 898.40 26 918.82 -20.42
27 912.81 27 925.41 —12.61
28 918.93 28 947.32 —28.39
29 926.29 29 956.91 —30.62
30 958.02 30 962.13 —4.11
31 967.88 31 969.43 —1.55
32 970.55 32 1020.17 —49.62
33 999.41 33 1021.60 —22.19
34 1017.55 34 1027.23 —9.68
35 1021.64 35 1038.07 —16.43
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Table 8.1-4. Vibrational information on the dibridged Si,Li, isomer provided by
anharmonicity calculations at the MP2/aug-cc-pVTZ level of theory and second order
perturbation theory.

MP2/AVTZ
anharm_onlc harmonic vibration  vibrational motion
mode Symmetry vibration 2 I
_1;  wavenumber [cm ] descriptions
wavenumber [cm ]

Vi A 543 548 SiSi str.
Ve B> 433 422 SiLi antisym. str.
V) A1 442 408 SiLi sym. str.
V4 Ao 208 196 SiLi antisym. str.
Vs B: 199 193 SiLi antisym. str.
V3 A1 97 104 Butterfly

Note, that the anharmonic vibration levels for the v, v4, vs and vg vibration modes have
higher energies than their corresponding harmonic vibration levels. This effect could be
caused by Fermi resonances (for the v,/2v4, v2/2vs and ve/v4+vs vibration modes) which
can be responsible for the breakdown of the second order perturbation theory (which
assumes weak interactions between vibrations) in the calculation of the anharmonic
corrections (for the v,, v4, vs and ve vibration modes). Fermi resonances could also
explain the presence of large positive values for anharmonic constants. ¥23 and 26
shown in Table 4.5-6 (Chapter 4.5).
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Table 8.1-5. The assigned energy levels of the Si,Li, dibridged structure calculated
using the WAV R4 program.

energy levels  energycm' mode?®  mode”

1 0.00 Ground state

2 102.96 !

3 249.71 2v3

4 289.18 3v;

5 412.10 Vs

6 457.66 4vs

7 491.79 2v4/2Vs
8 523.67 V3t+Vo

9 554.14 Vi
10 571.64 2v4/2vs
11 631.45 V3+2V4/2Vs

& conclusive assignment of modes
® not easy to define mixture of modes

The wave function analysis allowed us to assign the first 11 energy levels which are all
vibrational levels of the dibridged structure. The results are shown in Table 8.1-5. Note
that al of the states can be only approximately assigned. Thus, the higher vibrations are
a mixture of the states shown in last column of the table. Nevertheless, the
wavefunction analysis allows us to identify with reasonable accuracy these low-lying

energy levels of the dibridged structure.

We had to limit our analysis to the vibration levels of the dibridged isomer only, as the
PES contains holes even after the correction term and this prohibited us doing
vibrational calculations that cover the monobridged vibrational states (higher than 4200
cm®). However, it gave us an opportunity to locate the regions with sparse sampling on

the PES which could be fixed by introducing a wider grid sampling procedure.

The program developed by Kozin et a. [217] used in the above assignment process
gives us an opportunity to create probability-density plots for the phi, MSILil and
MSILi2 angles. The MSILi1 and MSILi2 angles will be abbreviated as thetal and
theta2, respectively. The probability-density plots were created for the 3¢, 7™, 8" and
10" energy levels and can be seen in Figure 8.1-3 to Figure 8.1-6. We have a conclusive

assignment of the modes for the 3" and 8" energy levels. However, the 7" and 10"
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energy levels are composed from a mixture of states, and thus, the assignment of the
modes is not straightforward. The plots below can help areader to understand the issues

we were struggling with during the process of assignment of the modes.

Figure 8.1-3 shows no quantum excitation for the thetal and theta2 angles however, a
two-quantum excitation can be found for the phi angle. These give conclusive
assignment of mode as 2vs;. A similar picture can be found for the 8" energy level
(Figure 8.1-5). There is no quantum excitation for the thetal and theta2 angles however,
a one-quantum excitation is observed for the phi angle including one quantum of

excitation in vs;. These is consistent with the vs+v,.

191



¢61

Figure 8.1-3. Probability densities for the phi, thetal and theta2 angles of the 3" energy level.

120

110 A

100 A

90 +

theta2

80 A

70 A

60
60

70

80

90
thetal

100

110

120

400

350

300

250

200

150

probability density

100

50

A

80

.

100

120 140

160

180

phi [degree]




Figure 8.1-4. Probability densities for the phi, thetal and theta2 angles of the 7" energy level.
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12"

Figure 8.1-5. Probability densities for the phi, thetal and theta2 angles of the 8" energy level.
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Figure 8.1-6. Probability densities for the phi, thetal and theta2 angles of the 10™ energy level.
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Figure 8.1-4 shows a one-quantum excitation for the thetal angle and a one-quantum
excitation for the theta2 angle, whereas no quantum excitation was observed for the phi
angle. Thus, these can be assigned as a mixture of two states 2v, and 2vs (which involve
respectively antisymmetric and symmetric distortions of the thetal and theta2 angles).
A similar picture is observed for the 10™ energy level (Figure 8.1-6): a one-quantum
excitation for the thetal angle, a one-excitation for the theta2 angle, and no quantum
excitation for the phi angle. Thus, these can be aso assigned as a mixture of the states

2v4 and 2vs.

Discussion and conclusions:

The calculated full-dimensional potential energy surface was used to perform
varational-vibrational calculations using the WAV R4 program. We are aware of a hole
in the PES for phi values below 60°, however, the implementation of the additional term
of 2.10%e™ to the potential allowed us to calculate successfully the lowest 2400
energy levels of the Si;Li, structure. The low-lying energy levels are qualitatively
corrected.

The hole in the potential energy surface prevented us from performing successful
variational-vibrational calculations for energy levels above 4200 cm™' which would
cover the monobridged isomer. A potential energy surface accurate over a wider range

Isrequired to do so.
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9 Conclusions

Calculations of the Si;HX and Si,Li; systems (where X=H, Li, F and Cl) showed that
bridged minima occur in al cases while trans and vinyl minima can be found only in the
X=H, F and Cl systems. The bridged structures (monobridged or dibridged) are global
minima in all cases. The disilynes have significantly different isomerisation properties
compared with the C;H, species. The CCSD(T)-F12a/cc-pVTZ-F12 level of theory
showed accuracy comparable to the CCSD(T)/cc-pV(6+d)Z level for geometric
properties and to the CCSD(T)/cc-pV(Q+d)Z level for harmonic vibrationa
frequencies. Thus, | recommend the CCSD(T)-F12a/cc-pVTZ-F12 level of theory asthe
most accurate for calculation on small silicon systems including full dimensional
potential energy surface calculations. It was concluded that core-valence contributions
are more important than relativistic corrections for SioXLi structures (where X=H or
Li). The B3LYP/6-311+G(d) method gives the most accurate electron affinity results.
However, the B3LY P/6-311+G(d) method is not reliable for calculating the H and Li*
binding energies.

The Neural Network approach proved to be an effective and fast potential energy
surface fitting tool. The DMC sampling procedure employed here was successful.
However, the coordinate sampling ranges used in the wider grid sampling procedure
were too ambitious and many calculated points were found in regions with energies
above 50000 cm'. Thus, not enough points were available to fit the potential energy
surface above 12000 cm '. Additional calculations using smaller coordinate sampling
ranges will be required to obtain more accurate results. The calculated full-dimensional
potential energy surface was of sufficient quality to perform variational-vibrational
calculations using the WAV R4 program. The SioLi, system possesses a high density of
vibrational energy levels, which makes identification of the vibrational modes difficult.
Nevertheless, conclusive assignments of the vibrational modes of Si,;Li, were made for

the eleven lowest-lying energy levels.
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10 Publication and presentations resulting from this thesis

10.1 Publication

"Theoretical studies of bridging structures and isomerism in substituted disilynes"
Lukasz M. Serafin, Tanjavan Mourik and Mark M. Law

Manuscript in preparation (for submission to Organometallics)

10.2 Presentations and posters

13" May 2009, ScotCHEM Computational Chemistry Symposium, Heriot-Watt
University Edinburgh — POSTER

8" April 2010, ScotCHEM Computational Chemistry Symposium, University of
Strathclyde — POSTER

6™ July 2010, RSC Theoretical Chemistry Group Conference, University of Nottingham
—POSTER

14"M-18"™ February 2011, Workshop on Theoretical Chemistry — Explicitly correlated
methods, Mariapfarr, Austria— TALK

7™ June 2011, ScotCHEM Computational Chemistry Symposium, University of
Edinburgh — TALK

27M-29" June 2011, RSC Theoretical Chemistry Group Conference, University of
Nottingham — TALK

26" January 2012, University of St Andrews— TALK
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12 Appendix
Fortran subroutine programs and MATLAB script written by Lukasz M. Serafin for the

work described in thisthes's:

12.1 The Neural Network MATLAB script.

function net = mine_new(PES,energy)

% CREATE_FIT_NET Creates and trains afitting neural network.

%

% NET = CREATE_FIT_NET(PES(inputs),energy(targets) takes these arguments:
% PES- RxQ matrix of Q R-element input samples

% energy - SxQ matrix of Q S-element associated target samples

% arranged as columns, and returns these results:

% NET - Thetrained neural network

%

% net = ming(PES,energy);

net.numlnputs=7, % input of each NN is acombination of i variables
net.input{ 1} .size=7,

net.numLayers=2;

net.layers{ 1} .size=7,

net.layers{ 2} .size=10;

net.inputConnect(1)=1, % connect the input to the input layer
net.layerConnect(2,1)=1;

net.outputConnect(2)=1;

% Transfer Functions
net.layers{ 1} .transferFcn="tansig’; % Transfer function of 1st layer
net.layers{ 2} .transferFcn="purelin’; % Transfer function of 2nd layer

% weights biases
net.biasConnect=[1;1];

net.initFcn="initlay";
net.layers{ 1} .initFcn="initnw’;
net.layers{ 2} .initFen="initnw';

% Create Network

numHiddenNeurons = 96; % Adjust numer of neurons as desired

net = newfit(PES,energy,numHiddenNeurons);

net.divideParam.trainRatio = 80/100; % Adjust atrainning ratio as desired
net.divideParam.valRatio = 10/100; % Adjust avalidation ratio as desired
net.divideParam.testRatio = 10/100; % Adjust atest ratio as desired
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net.trainFcn = "trainlm’; % Training function Levenberg-Marquardt

% For alist of all training functions type: help nntrain

% Choose a Performance Function

% For alist of all performance functions type: help nnperformance
net.performFcn = 'mae’; % Mean absolute error

% Train and Apply Network
[net,tr] = train(net, PES,energy);
outputs = sim(net,PES);

biasl=net.b{ 1}
bias2=net.b{ 2}
iweight=net.IW{ 1,1}
lweight=net.LW{ 2,1}

% write down out'sinto a*.dat file

dimwrite('outbw.dat', biasl,-append','delimiter’, \t', 'precision’, '%.6f");
dimwrite('outbw.dat', bias2,'-append','delimiter’, \t', ‘precision’, '%.6f");
dimwrite('outbw.dat’, iweight,'-append’,'delimiter’, '\t', 'precision’, '%.6f");
dimwrite('outbw.dat’, lweight,-append’,'delimiter’, \n', ‘precision’, '%.6f");

% max and min for all input data
dimwrite('outbw.dat’,min(PES,[],2),-append’,'delimiter’, \t', ‘precision’, '%.6f");
dimwrite('outbw.dat’,max(PES|[],2), -append','delimiter’, \t', ‘precision’, '%.6f");
dimwrite('outbw.dat',;min(energy,[],2),-append’,'delimiter’, \t', ‘precision’, '%.6f");

dimwrite('outbw.dat’,;max(energy,[],2),-append','delimiter’, \t', ‘precision’, '%.6f");

% output energy after fitting
dimwrite('out_ene.dat’, outputs,’-append'’,'delimiter’, \t', ‘precision’, '%.6f");

% Plot
plotperf(tr)
plotregression(energy,outputs)
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12.2 Fortran programs.
Program to transform the Cartesians to the polynomials coordinates and create inputs
files, which will be used in MATLAB NEURAL NETWORK tool box.

PROGRAM READER

!

IMPLICIT NONE

DOUBLE PRECISION

STLAXLAY1,AZ1,AX2AY2,AZ2,AX3,AY3AZ3 AX4,AY4,AZ4,SCFENERGY ,BOHR,C
M,MINIMUM_F12MINIMUM _SCF

CHARACTER(LEN=*), PARAMETER :: FMT1 =
"(T1,F10.8,1X,F7.4,1X ,F7.4,1X F7.4,1X F6.2,1X F6.2,1X F7.2,1X ,F13.6,1X ,F13.6)"
CHARACTER(LEN=*), PARAMETER :: FMT2 ="(/))"

PARAMETER (MINIMUM _F12=-593.0647637D0)

PARAMETER (MINIMUM _SCF=-592.7489725D0)

PARAMETER (BOHR=0.0174532925D0)

PARAMETER (CM = 219474.63D0)

!

INTEGER :: nDATA,i

!

OPEN (unit=5,FILE="print.temp2’)

OPEN (unit=9,FILE="in_atom.dat")

OPEN (unit=10,FIL E="poly.dat")

OPEN (unit=11,FIL E="target.dat")

!

WRITE (6,*) MINIMUM_F12,CM

!

READ (5,*) nDATA

!

DO i=1,nDATA

READ(5,*) TLAXLAY1AZ1,AX2,AY2AZ2,AX3AY3AZ3AX4AY4,AZ4,SCF.ENERGY

IF (T1.GT.0.0500) THEN

WRITE (6,*) ' WARNING !!!! T1 DIAGNOSTIC TO HIGH!!!"
END IF
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IF (T1.GT.1.0D-6) THEN
CALL IN_ATOMICS
CALL TARGET_CM
END IF
END DO
!
CLOSE (5)
CLOSE (9)
CLOSE (10)
CLOSE (11)
!
CONTAINS
!
I Subroutine to calculate inter atomics and transfor them to polynomias
!
SUBROUTINE IN_ATOMICS
!
IMPLICIT NONE
DOUBLE PRECISION R1,R2,R3,R4,R5,R6,BOHR
DOUBLE PRECISION P1,P2,P3,P4,P5,P6,P7,e0,e1,f0,f1

PARAMETER (BOHR=0.0174532925)
!

602 FORMAT (1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12,1X,F15.12,1X ,F15.12,1X ,F15.12)

|
R1=sqrt((AX1-AX2)**2 +(AY 1-AY 2)** 2+(AZ1-AZ2)**2)
R2=sqrt((AX1-AX3)**2 +(AY 1-AY 3)** 2+(AZ1-AZ3)**2)
R3=sqrt((AX1-AX4)**2 +(AY 1-AY 4)** 2+(AZ1-AZ4)** 2)
RA=sgrt((AX2-AX3)**2 +(AY 2-AY 3)**2+(AZ2-AZ3)**2)
R5=sgrt((AX2-AX4)**2 +(AY 2-AY 4)** 2+(AZ2-AZ4)** 2)
R6=sgrt((AX3-AX4)**2 +(AY 3-AY 4)**2+(AZ3-AZ4)**2)

!

€0=(R2+R5)/2

el=(R3+R4)/2

fO=(R2+R4)/2

f1=(R3+R5)/2
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P1=(R5+R2+R3+R4)/4

P2=(e0** 2+e1**2)/2

P3=R1

PA=(fO** 2+f1** 2)/2
P5=(R3**2+R2** 2+R4** 2+R5** 2)/4
P6=R6

P7=(R3** 3+R2** 3+R4** 3+R5* * 3)/4
!

WRITE (10,602) P1,P2,P3,P4,P5,P6,P7
END SUBROUTINE IN_ATOMICS

!

I Subroutine to get cm-1

!

SUBROUTINE TARGET_CM
IMPLICIT NONE

602 FORMAT (1X,F14.7)

DOUBLE PRECISION F12

!
F12=(ENERGY-MINIMUM_F12)*CM
WRITE (11,602) F12

END SUBROUTINE TARGET_CM
END PROGRAM
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Program to transform the satellite coordinates to the polynomials coordinates and
create inputs files, which will be used in MATLAB NEURAL NETWORK tool box.

PROGRAM READER2
!

IMPLICIT NONE

DOUBLE PRECISION ::Rr2,Rr3,Rr1,A1,A2,D1
CHARACTER(LEN=*), PARAMETER :: FMT1 =
"(T1,F10.8,1X,F7.4,1X,F7.4,1X F7.4,1X ,F6.2,1X F6.2,1X ,F7.2,1X,F13.6,1X,F13.6)"
CHARACTER(LEN=*), PARAMETER :: FMT2 ="())"
IPARAMETER (MINIMUM_F12= -593.0647637D0)
IPARAMETER (MINIMUM_SCF= -592.7489725D0)
IPARAMETER (MAX_E= -592.8369477D0) 50k
IPARAMETER (MAX_E= -592.9280736D0) 30k
IPARAMETER (MAX_E= -592.9052920D0) ! 35k
IPARAMETER (MAX_E= -593.0374257D0) 6k
IPARAMETER (MAX_E= -593.0192003D0) ! 10k
PARAMETER (MAX_E= -593.0100877D0) !12k
IPARAMETER (MAX_E= -592.9736370D0) ! 20k

|

INTEGER :: nDATA,|

!

OPEN (unit=5,FI L E='satelite.dat’)

OPEN (unit=9,FILE='R1-R6.dat)

!

READ (5,5) nDATA

!

DOi=1,nDATA

READ(5,*) Rr1,Rr2,Rr3,A1,A2,D1

!

CALL IN_ATOMICS

| CALL TARGET CM

END DO

|

CLOSE (5)
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CLOSE (9)

!

CONTAINS

!

I' Subroutine to calculate inter atomics and transfor them to polynomials

!

SUBROUTINE IN_ATOMICS

!

IMPLICIT NONE

DOUBLE PRECISION R1,R2,R3,R4,R5,R6,X1,Y1,71,Rxy,X2,Y 2,22,BOHR,PI
DOUBLE PRECISION P1,P2,P3,P4,P5,P6,P7,0,e1,f0,f1

PARAMETER (BOHR=0.0174532925)

PARAMETER (P1=3.141592654D0)

!

602 FORMAT (1X,F15.12,1X,F15.12,1X,F15.12,1X ,F15.12,1X ,F15.12,1X ,F15.12,1X ,F16.12)
!

R3=Rr3

R1=SQRT((Rr3/2.0D0)** 2+Rr1** 2-(2* (Rr3/2.0D0)* Rr1* COS(BOHR* A1)))
R2=SQRT((Rr3/2.0D0)** 2+Rr2** 2-(2* (Rr3/2.0D0)* Rr2* COS(BOHR* (180.0D0-A2))))
R4=SQRT((Rr3/2.0D0)** 2+Rr1** 2-(2* (Rr3/2.0D0)* Rr1* COS(BOHR* (180.0D0-A1))))
R5=SQRT((Rr3/2.0D0)** 2+Rr2** 2-(2* (Rr3/2.0D0)* Rr2* COS(BOHR* A2)))
X1=Rr1* SIN((A1)*PI1/180.0D0)

Y 1=0.0D0

Z1=Rr1* COS((A1)*PI1/180.0D0)

X2=Rr2* SIN(A2*P1/180.0D0)* COS(D1* P1/180.0D0)

Y 2=Rr2* SIN(A2* P1/180.0D0)* SIN(D1* PI/180.0D0)

Z2=Rr2* COS(A2*P1/180.0D0)

!

R6=DSQRT((X1-X2)**2+(Y 1-Y 2)**2+(Z1-22)**2)

!

WRITE (9,602) R1,R2,R3,R4,R5,R6

!

END SUBROUTINE IN_ATOMICS

I Subroutine to get cm-1 same like in the program above

END PROGRAM
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Example of a print.temp2 input file which is needed for the above Fortran subroutine programs.

Tl D1 Cartesians SCF F12
0.023 0.319 0.0650 -1.1958 0.3647 -0.0455 1.0625 -1.2064 1.9903 -0.1639 -1.2641 -1.8029 -0.0584 -592.7429 -593.0586
0.023 0.339 -0.0185 -1.1264 0.2567 0.0305 1.1338 -1.4013 1.8652 0.1234 -1.1342 -1.8508 0.0911 -592.7429 -593.0592
0.023 0.335 0.0866 -1.1155 0.4139 0.1245 1.1036 -1.4551 1.8298 0.0279 -1.3543 -1.8043 -0.0769 -592.7435 -593.0569
0.023 0.306 -0.0072 -1.0997 0.2928 -0.1194 1.1254 -1.4763 1.7567 -0.0160 -1.4811 -1.8854 -0.0786 -592.7432 -593.0568
0.023 0.198 0.0409 -1.1583 0.2013 -0.0356 1.1193 -1.3495 1.9121 -0.2775 -1.2799 -1.8425 -0.1190 -592.7419 -593.0590
0.022 0.338 0.0792 -1.0185 0.2830 -0.0470 1.2179 -1.3211 1.8268 0.1108 -1.2586 -1.9216 -0.0843 -592.7447 -593.0598
0.023 0.290 -0.0382 -1.2200 0.2820 0.1176 1.0340 -1.2287 1.6580 0.0978 -1.4548 -1.9289 -0.1446 -592.7376 -593.0545
0.023 0.457 0.0212 -1.1128 0.2261 0.0375 1.0915 -1.3519 1.8937 0.0797 -1.5657 -1.6342 -0.0137 -592.7440 -593.0577
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The table can be easily created using the table command in molpro:

table gl abel, ii, ti, di, ax1l, ayl, azl, ax2, ay2, az2, ax3, ay3, az3
ax4, ay4, az4, escf, e
head gl abel, ii, t1, di, ax1l, ayl, azl, ax2, ay2, az2, ax3, ay3, az3,

ax4, ay4, az4, scf, energy

Then by using the "grep” and "cat” UNIX commands:

e grep QQ *.out | grep -v QLABEL > print.temp (>> append)
e cat print.temp | sed '¢[\ ][\ ]*/\t/g' | cut -f4,6-19 > print.temp2
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