
SYNTHESIS OF RING-CONSTRAINED THIAZOLYLPYRIMIDINES:
INHIBITORS OF CYCLIN-DEPENDENT KINASES

Neil A. McIntyre

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2007

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/353

This item is protected by original copyright

This item is licensed under a
Creative Commons License

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/353


 

 

 

 

 

Synthesis of Ring-constrained Thiazolylpyrimidines: 

Inhibitors of Cyclin-dependent Kinases 
 

Neil A. McIntyre 

Ph.D. Thesis 

September 2006 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 I



 
 

 

 

 

I, Neil A. McIntyre, hereby certify that this thesis, which is approximately 40,000 

words in length, has been written by me, that it is the record of work carried out by 

me and that it has not been submitted in any previous application for a higher degree. 

 

 

Signature of candidate………………………………………… 

September 2006 

 

I was admitted as a research student in October, 2002 and as a candidate for the 

degree of Ph.D. in October, 2003; the higher study for which this is a record was 

carried out in the University of St Andrews between 2002 and 2005. 

 

 

Signature of candidate………………………………………… 

September 2006 

 

I hereby certify that the candidate has fulfilled the conditions of the Resolution and 

Regulations appropriate for the degree of Ph.D. in the University of St Andrews and 

that the candidate is qualified to submit this thesis in application for that degree. 

 

 

Signature of supervisor………………………………………… 

September 2006 

 

 
 
 
 
 
 
 

 II



 

 

 

 

In submitting this thesis to the University of St Andrews I wish access to it to be 

subject to the following conditions: for a period of 3 years from the date of 

submission, the thesis shall be withheld from use. 

 

I understand, however, that the title and abstract of the thesis will be published during 

this period of restricted access; and that after the expiry of this period the thesis will 

be made available for use in accordance with the regulations of the University Library 

for the time being in force, subject to any copyright in the work not being affected 

thereby, and a copy of the work may be made and supplied to any bona fide library or 

research worker. 

 

 

Signature of candidate…………………………………... 

September 2006 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 III



Acknowledgements 

 

I would like to thank the many people who have helped me throughout my Ph.D. 

Firstly I would like to thank Dr Nicholas Westwood for his supervision during my 

research. I would also like to thank the Westwood research group, both past and 

present, for their help and support.  

 

A special word of thanks goes to Dr David Smith for his helpful advice and 

encouragement during my studies and in particular during the writing of this thesis. 

Your help has been invaluable and your experience has helped to guide me in the 

right direction. 

 

To the many members of staff at St Andrews, namely Mrs Caroline Horsburgh (mass 

spectrometry), Mrs Sylvia Williamson (elemental analysis), Professor Alexandra 

Slawin (X-Ray crystallography), Dr Tomas Lebl and Mrs Melanja Smith (NMR 

spectroscopy), I owe a special word of thanks for the help you have provided me in 

your respective fields.  

 

I would like to offer my sincere thanks to the staff at Cyclacel Ltd who I worked with 

continuously and who have always been welcoming and helpful. In particular I thank 

Professor Peter Fischer for his guidance during the project, Dr Shudong Wang for her 

helpful ideas and support in the laboratory, Dr Campbell McInnes and Dr Mark 

Thomas for their molecular modelling work, Dr George Kontopidis for the protein co-

crystallography studies and Dr Wayne Jackson for the protein kinase assays. 

  

Most importantly though I thank my parents, Arthur and Patricia, along with my 

brother Stuart and sister Julie for their combined support; not just through these three 

years but through life in general.   

 

 
 
 
 

 
 

 

 IV



Abbreviations 
 
A
 

c                                                                                                                    Acetyl 

Ar                    
  

                                                                                                          Aryl 

ATP                              Adenosine 5'-triphosphate 
 
b
 

r                                                                                                             Broad (spectral) 

C
 

DK                                                                                          Cyclin-dependent kinase 

C
 

I                                                                                                      Chemical ionization 

cm–1                                                                                                                                                                    Wavenumber 
 
δ
 
                                                                                                                 Chemical shift 

d
 
                                                                                                                           Doublet 

DBU                                                                        1,8-Diazabicyclo[5.4.0]undec-7-ene 
 
D
 

DQ                                  2,3-Dichloro-5,6-dicyano-1,4-benzoquinone 

D
 

MF                                                                                         N,N-Dimethylformamide 

DMF-DMA                                                     N,N-Dimethylformamide dimethyl acetal 
 
D
 

NA                                                                                             Deoxyribonucleic acid 

E
 

I                                                                                                             Electron impact 

E
 

SI                                                                                               Electrospray ionization 

g                                                                                                                           Gram(s) 
                                                                                                                                        
G
 

SK3                                                                                   Glycogen synthase kinase-3 

H
 

RMS                                                                      High-resolution mass spectrometry 

IC50                    Inhibition concentration affecting 50 % of specimens 
 
I
 
R                                                                                                                         Infrared 

J
 
                                                                    Coupling constant (in NMR spectrometry)  

LHMDS                                                                       Lithium bis(trimethylsilyl)amide 
 
m
 

                                                                                          Multiplet 

M
 

dm2                                                                                         Mouse double minute 2 

mol                                                                                                                       Mole(s) 
 
Ph                                                                                                                           Phenyl 
 
q
 
                                                                                                                            Quartet 

R
 

P-HPLC   Reverse phase high performance liquid chromatography 

s                                                                                                                             Singlet 
 
S
 

AR                                                         Structure-activity relationship 

t
 
                                                                                                                              Triplet 

tR                                                                              Retention time (in chromatography) 

 V



Abstract 
 

                                                              
One current approach in the treatment of cancer is the inhibition of cyclin dependent 

kinase (CDK) enzymes with small molecules. Here the discovery and development of 

2-anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors is described, including details of 

the design and successful synthesis of novel ring-constrained thiazolylpyrimidines. 

The structure-activity relationship (SAR) trends exhibited by this constrained 

thiazolylpyrimidine family of CDK inhibitors are presented and compared with those 

from an unconstrained series of analogues. One significant finding from this aspect of 

the project was that ring-constrained thiazolylpyrimidines in general inhibit CDK2-

cyclin E with greater potency than the corresponding unconstrained forms. 

Furthermore, an X-ray crystal structure of 2-methyl-N-[3-nitrophenyl]-4,5-

dihydrothiazolo[4,5-h]quinazolin-8-amine, a representative from the constrained 

thiazolylpyrimidine series, in complex with CDK2-cyclin A is reported; confirming 

the binding mode within the CDK2 ATP binding pocket. A further assessment of 

SARs through the synthesis of control compounds and an extended study into the 

synthesis of N-substituted derivatives is described.  

   

The identification of CDK inhibitors that possess a strong selectivity profile across the 

CDK family is important. For example, the identification of highly CDK4-selective 

inhibitors should enable researchers to study the biological role of this important 

enzyme and to enable a block of cell division in the G1 phase. Here synthetic attempts 

to prepare a potentially CDK4 selective inhibitor compound, namely 5-methyl-N8-[4-

(piperazin-1-yl)phenyl]thiazolo[4,5-h]quinazoline-2,8-diamine, are described. This 

approach was inspired by SAR data published on a structurally related inhibitor, 8-

cyclopentyl-5-methyl-2-[4-(piperazin-1-yl)phenylamino]pyrido[2,3-d]pyrimidin-

7(8H)-one. 
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Chapter 1 – Introduction 
 

1.1 The threat of cancer 
 
Cancer is a complex and frightening disease that accounts for more than a quarter of 

all deaths in the United Kingdom each year.1 Although cancer affects mainly older 

generations, the fact remains that it can strike at any age, and more than one in three 

of us will develop the disease at some point in our life. This statistic means few of us 

go through life without coming into contact with the disease, either through personal 

experience or through that of a friend or family member. 

 

Cancer is characterised by abnormal cell growth in a region or regions of the body 

leading, in most cases, to the formation of a mass of cells called a tumour. Although 

almost all cancers form tumours, not all tumours can be classified as cancerous; the 

greatest number are benign (not threatening to health). Benign tumours have entirely 

localized growth and are usually separated from neighbouring tissue by a surrounding 

capsule. They generally grow slowly and in structure closely resemble the tissue of 

origin. In some instances they may endanger the patient by obstructing or 

compressing neighbouring organs, but usually they can be removed through surgery 

without further complications. In contrast malignant tumours are made up of cancer 

cells which have permanently changed into a form that is not subject to normal 

control by nerves or hormones. They are invasive by nature and given time are able to 

spread beyond their site of origin. Fortunately the stages by which they do so tend to 

be orderly, with the cancer initially invading surrounding tissues. Given time cancer 

cells begin to break off from the primary tumour and float in tissue fluid which finds 

its way into a system of channels called lymphatics, which ultimately return the fluid 

(now called lymph) to the bloodstream. On its journey the lymph passes through a 

number of glands called lymph nodes, which filter out dead cells and infection. 

Cancer cells are usually trapped in the lymph nodes nearest to the primary growth 

where most of them die. Sooner or later, however, one will survive and start to grow 

in the gland forming a secondary growth. Later cancer cells are carried through the 

lymph nodes to reach the bloodstream. From here they are carried to the various 

organs of the body such as the lung, liver, bone and brain where they may form other 

secondary growths. It is this ability to invade and spread throughout the body, termed 

metastasis, which makes cancer fatal.2
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Cancer can arise in most types of cell and hence there are approximately two hundred 

different types of human cancer that exist. Some are very common, while others are 

extremely rare (Figures 1.1 & 1.2). They all have different causes, different symptoms 

and ultimately require different types of treatment. Nevertheless most cancer types 

can be classified into three major subtypes. The first, sarcomas, arise from connective 

and supporting tissue such as bone, cartilage, nerve, blood vessels, muscle and fat. 

The second, carcinomas, which include the most frequently occurring forms of human 

cancer arise from epithelial tissue such as the skin and the lining of the body cavities. 

The third subtype, leukaemias and lymphomas, include the cancers that involve 

blood-forming tissue and are typified by the enlargement of the lymph nodes, the 

invasion of the spleen and bone marrow and the overproduction of immature white 

blood cells. 

Lung 27% (20,680)

Prostate 12% (9,280)

Large bowel 11% (8,540)

Oesophagus 6% (4,300)

Stomach 5% (4,080)

Pancreas 4% (3,370)

Bladder 4% (3,200)

Non-Hodgkin's lymphoma 3% (2,330)

Leukaemia 3% (2,180)

Head and Neck 2% (1,940)

Other 23% (16,880)

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1. Ten most common causes of death from cancer in men, UK, 2000 (The number in brackets 

shows the actual number of deaths for each specific cancer). Figure taken from Ref 1. 
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Lung 18% (13,090)

Breast 17% (12,770)

Large bowel 11% (7,730)

Ovary 6% (4,430)

Pancreas 5% (3,530)

Oesophagus 4% (2,620)

Stomach 3% (2,530)

Non-Hodgkin's lymphoma 3% (2,220)

Leukaemia 2% (1,800)

Bladder 2% (1,750)

Other 29% (20,700)

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2. Ten most common causes of death from cancer in women, UK, 2000 (The number in 

brackets shows the actual number of deaths for each specific cancer). Figure taken from Ref 1. 
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The transformation of a normal cell into a cancerous one and the subsequent 

development of a tumour is a complex multistage process; often involving altered 

patterns of gene expression resulting from genetic mutations in DNA. Luckily the 

stepwise manner in which these mutations form mean that the development of cancer 

is a rare event when one considers the number of cells at risk. The requirement for an 

accumulation of mutations explains why there is an increased risk of cancer with age 

and why cancer has become more prevalent over the centuries as human lifespan has 

increased (Figure 1.3).2  

 

 

 

 

 

 

 

 

 

 
Figure 1.3. All malignant neoplasms (tumours), number of deaths by age and sex, UK, 2000. Figure 

taken from Ref 1. 
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In addition to the natural “sporadic” occurrence of cancer caused by DNA damage 

that accumulates over a person’s lifetime, other factors can induce the onset of the 

disease prematurely. Unhealthy lifestyle habits such as smoking expose the body to 

harmful carcinogens which can damage DNA increasing the chances of developing 

lethal mutations. The large numbers of deaths caused by lung cancer, in both men and 

women (Figure 1.1 and 1.2), is undoubtedly connected to the toxic chemicals people 

inhale when smoking, or as a result of passive smoking.1 Other factors such as over-

exposure to ultra-violet light from the sun and an unhealthy diet have also been linked 

to the onset of certain types of cancer. 

 

While cancer accounts for an increasing proportion of deaths in the UK each year, 

mortality rates have actually dropped by more than 10 % over the last decade.1 Better 

methods of detection combined with improved treatments are undoubtedly the biggest 

reasons for this. Recent discoveries particularly in the field of molecular cell biology 

have paved the way for the development of more effective treatments in the near 

future. Such improved treatments are aimed at tackling one of the biggest problems 

associated with cancer therapy, killing cancer cells selectively without harming 

normal cells, something which up to now has proved extremely difficult. One way to 

address this problem has been to look for general exploitable biochemical differences 

between cancer and normal cells which could be targeted with new treatments.2 

However unlike bacterial, fungal, viral and even protozoan diseases which are all 

characterised by an “evolutionary distant foreign invader”, cancer cells are related to 

normal cells (from which they develop) making them particularly difficult to target 

selectively. In addition the immune system which so often protects us from diseases 

associated with a foreign invader is often helpless against cancer. 

 

There is no doubt that cancer will continue to be a major disease in developed 

countries for some time. The last thirty years have seen some major discoveries in 

uncovering the intricacies of cell function and the molecular pathways involved in 

carcinogenesis. The identification of malfunctions in specific pathways involved in 

cancer development has provided scientists with molecular targets that can be used to 

generate new specific cancer therapeutics through a “mechanism based design” 

approach. These new treatments may one day mean we can view cancer as a disease 
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which can be controlled or cured in the majority of cases; this gives us reason to be 

optimistic about the future which is full of promise.  

 

1.2 Traditional cancer treatments 
 
The aim of all cancer treatments is to kill or remove all, or a significant proportion of, 

the cancerous growth from a patient. Before treatment can begin in a suspected cancer 

case, the diagnosis of the specific cancer must be confirmed. This usually involves X-

rays and scanning tests to show the presence of a lump inside the body. A part of the 

growth is often removed surgically and examined under the microscope to determine 

whether or not the tissue in question is cancerous. Using this information the best 

form of treatment is decided upon. The traditional means of treating cancer are 

surgery, radiotherapy and chemotherapy. 

 

Surgery 

Surgery is the oldest form of cancer treatment and is used to remove a malignant 

tumour or a collection of cancer cells from a patient. This is usually done when a 

cancer is confined to a certain area. If total removal is not possible, the surgeon may 

remove the bulk of the tumour as well as adjacent tissues and lymph nodes so that 

other treatment options such as radiotherapy and chemotherapy (see below) can work 

more effectively.1 Surgery can also be used to slow down the advance of a particular 

cancer. This is often carried out on large tumours that may be causing discomfort and 

pain. Many cancers, though, are at too advanced a stage at the time of diagnosis to be 

eradicated by surgery. If neighbouring tissues cannot be sacrificed or if distant 

metastases are already present, surgery alone will not cure the cancer.  

 

Radiotherapy 

Radiotherapy is the use of high-energy radiation, usually X-rays, gamma rays and 

radioactive isotopes, to kill cancer cells without causing undue damage to 

surrounding, normal tissues. Radiotherapy can either be administered from an external 

or internal bodily source. X-rays and gamma rays are examples of external 

radiotherapy treatments, which can be directed using a very fine beam towards the 

tumour.1 Internal radiotherapy often consists of the use of radioactive isotopes which 

are usually implanted close to the tumour for short or long periods of time depending 
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on the circumstances. Many internal radioactive isotopes can even be administered as 

a drink or injection. A variety of different isotopes can be used and with some 

tumours the isotope can be combined with a substance which the organ uses; for 

instance, radioactive iodine (131I) in the treatment of thyroid tumours. Sometimes 

radiotherapy can be given before surgery has taken place to increase the chances of a 

successful cure. Pre-operative radiation may rapidly sterilize the tumour cells and 

prevent them from seeding at surgery. It may also shrink the tumour and make 

surgery easier. Radiotherapy can even shrink an inoperable tumour so that it becomes 

operable. However in other circumstances post-operative radiation is used. Like most 

current cancer treatments, radiation produces unwanted side effects such as fatigue, 

loss of appetite and decreased blood cell counts to name just a few. 

 

Chemotherapy 

Chemotherapy means chemical therapy, involving the use of drugs, either synthetic or 

from natural sources to kill cancer cells. Since a drug is distributed throughout the 

body, chemotherapy is often prescribed to patients with tumours that have spread 

beyond the area accessible by surgery or radiotherapy. Unlike surgery and 

radiotherapy, chemotherapy involves the whole body, including all the healthy cells. 

Most current anti-cancer drugs act only on cells that are actively multiplying and 

affect dividing cancer and normal cells which can cause many side effects. Therefore 

treatment with anti-cancer drugs always requires a delicate balance between killing 

the cancer cells and minimizing the effects of the drug on normal cells. A number of 

different types of anti-cancer drugs are used today either on their own in 

monotherapy, or as part of a combination treatment.1 The main chemotherapy drugs 

used in cancer treatment can be classified as alkylating agents, antimetabolites, 

cytotoxic antibiotics and plant derivatives.3 A brief look at all four will be given here. 

 

Alkylating agents 

As their name suggests, alkylating agents are drugs which can react and form covalent 

bonds with the nitrogenous bases in DNA. Many alkylating agent drugs are 

bifunctional, that is they have two suitable alkylating groups and thereby can cause 

intra- or interchain DNA cross-linking (Scheme 1.1). This can stop cellular 

proliferation by blocking normal DNA replication. Common bifunctional cytotoxic 

nitrogen mustard alkylating agents are shown in Figure 1.4.   
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Scheme 1.1. Putative molecular mechanism of alkylation and cross-linking of DNA by a nitrogen 

mustard derivative (Figure adapted from Ref 3). The nitrogen mustard derivative 1 first reacts via a 

intramolecular SN2 reaction (neighbouring group participation) to form a highly unstable and reactive 

aziridinium salt 2, with the loss of a chloride ion. A nitrogenous DNA base (guanine in this case) 

attacks and opens the positively charged aziridinium ion intermediate and hence becomes alkylated on 

N7 3. A further intramolecular SN2 reaction leads to the formation of another aziridinium salt 4 which 

then reacts with a second base 5 leading to an intra- or interchain crosslink within the DNA molecule 6.  
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Figure 1.4. Commonly used nitrogen mustard derivatives. 

 

Antimetabolites 

An antimetabolite is a substance that closely resembles an essential metabolite and 

therefore interferes with physiological reactions involving it. In chemotherapy many 

of the antimetabolites used as treatments mimic natural nucleosides and nucleotides 

required by a cell during DNA synthesis. This has the effect of blocking DNA 

synthesis and therefore cell replication. Two common antimetabolite compounds are 

shown in Figure 1.5. 

 
NH2NH2 

HO

OH
O

HO
N

NN

N

F

Fludarabine

HO

OH
O

HO
N

N
 

O

Cytarabine

1' 1'
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4' 4'
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Figure 1.5. Chemotherapeutic antimetabolite drugs. 
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Both fludarabine and cytarabine are fraudulent analogues of naturally occurring 

nucleosides. Both furanose sugars contain an additional hydroxyl group on C2' 

(arabinose) thus differing from the deoxyribose sugar normally associated with DNA. 

In addition the nitrogenous base in fludarabine differs from adenine through the 

addition of a fluorine atom at C2. Cytarabine on the other hand contains the correct 

pyrimidone base cytosine. Upon uptake by a cell both antimetabolites are 

phosphorylated to the active triphosphate on the primary hydroxyl group at C5'. This 

allows them to be incorporated into replicating DNA and RNA strands. However their 

main cytotoxic mechanism of action comes from the role they play in inhibiting the 

action of DNA polymerase.3

 

Antibiotics 

There are many different cytotoxic antibiotics used in cancer chemotherapy, most of 

which act by binding and interfering with DNA and RNA synthesis. Both doxorubicin 

and idarubicin intercalate with DNA and inhibit its replication by inhibiting 

topoisomerase II, a key enzyme that releases torsional stress during DNA replication, 

from functioning properly.3         

 
O OH

COR                                                                  
OH

O O OH

 R = CH2OH  Doxorubicin
R = CH3  IdarubicinOH

O

OH
H2N

    

     

 
 

Figure 1.6. Structures of antibiotics used in cancer chemotherapy. 

 

Plant derivatives 

Important natural product plant derivatives used in cancer chemotherapy include the 

vinca alkaloids (vinblastine, vincristine and vindesine) and taxol (Figure 1.7). The 

vinca alkaloids are derived from the leaves of the Madagascar periwinkle plant. They 

exert their antitumour properties by inhibiting tubulin polymerisation by interacting 

with α- and β-tubulin protein dimers, which is detrimental to cell division.3 Taxol’s 

anti-tumour activity was discovered in the early 1960s by the National Cancer 

Institute in the course of research into the discovery of new anticancer agents.4 Taxol 
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is found naturally in the bark of the Pacific Yew tree, and like the vinca alkaloids also 

affects microtubule function. However in contrast to the vinca alkaloids, taxol 

disrupts microtubule function through the promotion of tubulin polymerisation and 

stabilisation of microtubules. Although several total syntheses of taxol have been 

described to date,5,6,7 its synthesis for the purposes of medication is through a semi-

synthetic process. 10-Deacetylbaccatin III (Figure 1.7), a precursor of taxol, can be 

isolated from the needles and twigs of the European Yew tree.4 Using this as a starting 

material has helped produce taxol in just three steps. 
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Figure 1.7. Plant natural products used in cancer chemotherapy. 
 

1.3 Problems associated with conventional cancer treatments 
 
Like radiotherapy, many chemotherapy drugs produce unwanted side effects such as 

fatigue, nausea, pain and hair loss (alopecia). Luckily many of these are short lived 

and only affect the patient while undergoing treatment. Of more grave concern is that 

some forms of chemotherapy can be carcinogenic due to their DNA damaging 

properties and may therefore induce the development of further tumours over time. 

However, arguably the biggest problem facing many current chemotherapy treatments 
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is their lack of efficacy. Often this is the result of drug-resistant cancer strains which 

show little or no response to the treatment. In other cases, where an established 

tumour is present, many cytotoxic drugs fail because only a small percentage of cells 

in the tumour mass are dividing and are vulnerable to the effects of the drug.3

 

In order for chemotherapy to be successful, cells must be capable of undergoing 

apoptosis (cell suicide). One of the hallmarks of cancer cells is that they evade 

apoptosis due to defects in their apoptotic pathways which leads to resistance, 

regardless of whether or not they have been exposed to the drug previously. One such 

defect, a mutation to the tumour suppressor gene TP53, renders the protein product 

p53 devoid of its cellular protective properties.8,9

 

p53 is a small 53 kDa protein which has the authority to halt cell division and/or 

induce apoptosis when activated. In normal cells p53 is kept at low levels and in an 

inactive state through its association with the negative regulator protein, mouse 

double minute-2 (Mdm2).9 Mdm2 binds physically to p53’s N-terminal 

transactivation domain forming a protein-protein interaction which inactivates the 

potent growth suppressive and proapoptotic functions of p53. In addition Mdm2 also 

participates in the nuclear export and degradation of p53 via the ubiquitin-proteasome 

pathway, helping to maintain low cellular levels. Under cellular stress, such as DNA 

damage (possibly caused by radiotherapy or chemotherapy treatments), p53 is 

released from Mdm2 causing nuclear levels of the former to rise. When this occurs, 

p53 first undergoes modifications9 (e.g. phosphorylation, acylation) which stabilise 

and activate the protein before it responds through a transcription-dependent and/or -

independent mechanism. When acting through the transcription-dependent 

mechanism, p53 binds to promoter regions of DNA and acts as a transcription factor 

capable of activating the expression of multiple target genes, which control the 

processes of cell division arrest, apoptosis or senescence.8 The cell division arrest 

activity of p53 allows the activation of the DNA repair system of the cell. In cases 

where the damage is too severe, p53 induces the expression of proteins which initiate 

apoptosis, thereby protecting the organism from lethal mutations.  

 

Only recently have reports confirmed p53’s role in a transcription-independent 

apoptotic mechanism.10,11,12 Consensus exists that when activated, p53 can also 
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translocate to cellular mitochondria where it interacts with antiapoptotic proteins. This 

has been shown to be sufficient to launch an apoptotic death signal in cells. In 

addition it is believed that this mechanism may precede p53 target gene activation in 

many instances and thus may represent a rapid first wave of cell death in response to 

DNA damage. The p53 protein has rightly been termed “guardian of the genome” due 

to the way in which it helps maintain cell integrity in response to cellular stress and 

ensure only healthy cells can divide. The function of p53 is crucial to the way that 

many cancer treatments kill cells, since radiotherapy and chemotherapy act in part by 

triggering cell suicide in response to DNA damage. Loss of function of p53 is one of 

the most common molecular events in cancer with approximately half of all human 

cancers expressing an inactive form due to mutations or deletions on the TP53 gene.8 

In cancers where p53 is not mutated, termed wild-type, DNA damaging agents can act 

as effective treatments. However in cancers where p53 is mutated, conventional 

treatments very often fail to produce an effective response making these particularly 

difficult to treat.  

 

Today researchers are tackling the problems of chemotherapy drug resistance, caused 

by mutations in the TP53 gene, through a variety of cunning initiatives aimed at 

repairing or restoring p53’s function. Already investigated have been small 

molecules13 such as CP-31398 7, a 2,4-disubstituted quinazoline, which shows the 

remarkable quality of stabilising mutant forms of p53 into an active form.14 The 

usefulness of this compound was demonstrated when it was shown to slow tumour 

growth in mice. Many examples of short peptides have also shown similar effects.15,16  
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Another exciting breakthrough in cancer therapy has come with the commercialisation 

of the world’s first gene therapy agent, gendicine, early in 2004.17 Gene therapy is a 

general term used to describe a technique for correcting defective genes to prevent, 

alleviate or cure a disease. Although seen by some as a potential radical cure for 

single gene defect diseases, it has first been developed into a treatment for cancer and 
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may in future years find wider implications in other diseases. Gendicine contains an 

adenovirus which when injected into a tumour infects the cancer cells by delivering 

the adenovirus genome carrying the therapeutic wild type p53 gene into the cell 

nucleus. This has been shown to restore the protective mechanisms of p53 and hence 

has been used in cancers which express mutant forms of the tumour suppressor 

protein. In clinical trials gendicine has shown some remarkable effects, curing 64 % 

of patients with late stage head and neck squamous-cell carcinoma when used in 

combination with radiotherapy.18 In control experiments where patients were treated 

with radiotherapy alone, the numbers with complete regression were three times 

lower. Gene therapy is sure to have a wider therapeutic potential than in the treatment 

of cancer alone. Indeed one of the great goals of modern medicine is to develop gene 

therapy treatments for the large number of genetic diseases known to man. If 

successful it may one day be possible to alleviate or indeed cure many genetic 

diseases using this technology. 

 

Another highly significant discovery, made in 2004 by members at the pharmaceutical 

company Roche, is the development of small molecule compounds, termed “Nutlins”, 

which increase nuclear p53 levels through a non-genotoxic mechanism.19 The Nutlins, 

which are highly substituted cis-imidazolines (Figure 1.8), act as competitive 

inhibitors, binding to the p53 binding domain of Mdm2 in an enantiomer-specific 

manner (Figure 1.9). In so doing they inhibit Mdm2 from binding p53 and hence 

block the processes that normally break down the tumour suppressor protein. The 

increasing cellular nuclear levels of p53 have been shown to cause cell division arrest 

in normal cells while inducing an apoptotic response in wild-type p53 cancer cell 

lines. Unfortunately these compounds show no cytotoxic effect on mutant p53 cancer 

cell lines. Nevertheless it has been proposed that if used in combination with 

cytotoxic therapies (such as Taxol), nutlins may help protect normal cells by blocking 

their cell division and hence allow the selective targeting of mutant p53 cancer cells, 

since these would continue to divide regardless of the increasing p53 levels.20,21 In the 

present author’s opinion it is conceivable, at least in principle, that the treatment of 

p53 mutant cancer cells may even be facilitated through the administration of nutlins 

to increase p53 levels before treatment with compounds or peptides that activate 

mutant p53, such as CP-31398, 7, to form a complementary treatment.  
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Figure 1.8. Some examples of the cis-imidazoline (Nutlin) family of Mdm2 inhibitors. 
 

 

  

 

 
 

 

            
 

           
 
Figure 1.9. X-ray co-crystal structure of Nutlin-2 bound to the p53 binding site of Mdm2 (Figure taken 

from Ref 21).  

 

If proved successful through clinical trials, the nutlins are expected to be most 

effective against cancers which overexpress Mdm2. They may also find applications 

in both wild-type and mutant p53 strains of cancer, where in the latter they may form 

part of a combination treatment as suggested above. 

 

Both gendicine and the nutlin family of small molecules achieve a similar outcome. 

Both raise nuclear p53 levels in cancer cells through mechanisms which do not seem 

to affect normal cells in a detrimental way. The development of these exciting novel 

“mechanism based” therapeutics represents a new wave of cancer therapies aimed 

towards correcting faulty cellular and biochemical pathways implicated in cancer. In 

the latter case a strong collaboration between biologists and chemists was needed, 

first to identify the therapeutic target (Mdm2) and then to develop and synthesize 

compounds which acted as potent and selective competitive inhibitors.  
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The identification of malfunctions in specific pathways involved in carcinogenesis 

remains one of the most important areas in cancer research. Fundamental to this cause 

has been research conducted into the cell division cycle which has undoubtedly 

helped not only to understand how normal cell proliferation occurs, but also how 

cancer arises. In 2001 the Nobel prize in physiology or medicine went to three 

independent researchers who have contributed to this important area. Sir Paul Nurse 

and Timothy Hunt of the Imperial Cancer Research Fund in London and Leland H. 

Hartwell from the Fred Hutchinson Cancer Research Center in Seattle shared the prize 

for their important discoveries of key regulators of the cell cycle.22 The contributions 

made by these three men together with many others have provided a greater 

understanding and insight into the mechanisms that control cell division along with 

flaws that ultimately lead to cancer development. 

 

1.4 The cell division cycle 
 
Cells are the basic unit of life. For an organism to survive, cell division must occur for 

the reasons of growth, repair and reproduction. Cell division can be initiated by both 

internal and external growth signals and occurs by way of a highly regulated process. 

When faults occur or signals go wrong, disorganised cell division can occur, leading 

to the development of cancer.2   

 

Unicellular organisms (e.g. bacteria and other prokaryotes) use cell division purely as 

a means to reproduce. The process of replication undertaken by bacteria, called 

fission, involves three main processes: (1) DNA replication, (2) chromosome 

separation and (3) cell division. In some rapidly dividing bacteria these three 

processes can occur in a time period of only thirty minutes. This is in sharp contrast to 

the hours and even days it takes for eukaryotes to complete cell division.23 Compared 

to unicellular organisms; multicellular organisms also undergo cell division for 

reasons of growth, and repair of damaged cells. Indeed from our first origins as a 

fertilised egg through to being an adult requires millions of cell divisions. It is 

therefore no surprise that to make something as complicated as a human requires an 

extremely efficient and organised mechanism. 
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All cells at some point have to divide or eventually die. Some cells are constantly 

replacing themselves by cell division (e.g. red blood and epithelium cells), while 

others opt out of the division process and enter a quiescent phase called G0. At other 

times, cells that are not dividing are stimulated into doing so in order to rectify a 

problem. A good example of this is when skin cells are stimulated into dividing in 

order to heal a wound. The principles governing all dividing cells are the same 

whether it is a cell type that rapidly or slowly divides. Cells that do undergo division 

enter into what is called “the cell cycle”.24  

 

  

The cell cycle is composed of two main phases termed Interphase and Mitosis. 

Interphase is itself split up into three sub-phases called G1, S and G2. G1 or gap 1 

phase (blue, Figure 1.10) is the first stage of cell division and represents a point where 

a cell “decides” either to replicate its DNA and divide or alternatively to enter into 

G0. There is usually a high rate of biosynthesis and cell growth associated with this 

phase. A restriction point represents a critical time in the cell cycle after which the 

cell becomes committed to passing through the remainder of the phases regardless of 

the external conditions.23 The S phase (synthesis phase) (red, Figure 1.10), describes 

the time period where a cell undergoes DNA replication. This is an extremely 

important process which creates a full copy of the cells genome. After the S phase is 

completed the newly synthesized DNA is verified and eventually repaired during the 

G2 phase (light blue, Figure 1.10). The G2 phase also sees the cell physically prepare 

for the progression to mitosis, by replicating its centrosomes. 

 

 

 
Restriction 

Point 

 
16 hrs / 0hrs

15 hrs
 

 

 

 

 

 

 
Figure 1.10. Representation of the cell division cycle showing the four key phases (G1, S, G2 and M). 
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In comparison to interphase, mitosis (dark green, Figure 1.10) occurs relatively 

quickly (approximately 1 hour: depending on the cell type). Mitosis is the part of the 

cell cycle whereby the cell divides and results in the formation of two daughter cells 

each having a nucleus containing the same number and kind of chromosomes as the 

mother cell. The process is divided into five key stages, namely, prophase, metaphase, 

anaphase, telophase and cytokinesis which merge into each other. Prophase is 

characterised when the chromatin begins to condense to form chromosomes. The 

centrosomes separate and the nuclear envelope begins to break down. The 

chromosomes become attached to the spindle fibres and align themselves at right 

angles to the spindle poles in a plane through the centre of the cell. Metaphase occurs 

when the chromosomes line up along the metaphase plate and connect to spindle 

fibres at sites called kinetochores. Anaphase is the most dramatic stage of the cell 

cycle and is over in a matter of minutes. Here the individual chromatids are pulled 

apart by the spindle fibres, giving both cells one of each chromatid. Telophase sees 

the chromatids collect at the poles of the spindle. A nuclear membrane forms around 

each group, producing two daughter nuclei with the same number and kind of 

chromosomes as the original cell nucleus. The last stage, cytokinesis, is where the cell 

splits and one cell becomes two. The overall process ensures that all the cells of an 

individual are genetically identical to each other. After division, both cells can enter 

the G1 phase to traverse the cell cycle once more, or they can stay in a quiescent state. 

 

Progression through the various phases of the eukaryotic cell cycle relies upon the 

sequential activation and inactivation of a number of important enzymes called 

cyclin-dependent kinases (CDKs). CDKs are a small subgroup of a larger family of 

enzymes, called protein kinases, which catalyze the transfer of a phosphate group 

from adenosine triphosphate (ATP) to specific serine (Ser) and threonine (Thr) 

residues on proteins involved in cell proliferation. CDKs are not active by themselves 

and must be bound with a second type of protein, cyclin, in addition to being 

phosphorylated in order to achieve full enzymatic activity. In contrast to CDKs, 

enzymes called protein phosphatases dephosphorylate Ser and Thr residues as shown 

schematically below.25
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Scheme 1.2. Phosphate transfer reactions, catalysed by CDK and phosphatase enzymes.  

 

Phosphate transfer reactions, first discovered by Nobel laureates Edmond Fischer and 

Edwin Krebs, control many aspects of cell signalling and hence regulate most aspects 

of cell life.26 It is estimated that around one third of mammalian proteins contain 

covalently bound phosphate, which can modify the three-dimensional structure, 

charge and hence function of a protein. The addition of a phosphate group, therefore, 

is analogous to a switch, turning a protein’s function “on” or “off” where necessary. 

 

To date, thirteen CDK enzymes (CDK1-13) and at least 25 cyclin proteins have been 

identified, although their biological functions remain incompletely understood: the 

known CDK-cyclin complexes, and cellular functions are presented in Table 1.1. 

Each phase of the cell cycle is characterised by the expression of distinct cyclins and 

hence their levels fluctuate. In comparison, CDKs are biosynthesized in constant 

concentrations and are comparatively stable.27
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CDK Main activator 
subunits Cellular functions Main cellular phosphorylation targets

CDK1 B-type cyclins Cell cycle (G2/M) Cytoskeleton proteins involved in 
mitosis, histones 

CDK2 A- and E-type 
cyclins Cell cycle (G1/S) Pocket proteins, DNA replication 

proteins, E2F, histones 

CDK3 C- and E-type 
cyclins Cell cycle  Unknown 

CDK4 D-type cyclins Cell cycle (G1) Priming phosphorylation of pocket 
proteins 

CDK5 p35 (p25) and 
p39 (p29) Cell cycle Neuroskeletal proteins 

CDK6 D-type cyclins Cell cycle (G1) Priming phosphorylation of pocket 
proteins 

CDK7 Cyclin H, 
MAT1, TFIIE 

Cell cycle and 
transcription 

CAK; CTD of promoter-bound RNAP-
II 

CDK8 Cyclin C Transcription CTD of free RNAP-II 

CDK9 K- and T-type 
cyclins Transcription CTD of stalled RNAP-II 

CDK10 Unknown Cell cycle Unknown 

CDK11 Cyclin L Cell cycle and 
transcription RNAP-II 

 

Table 1.1. Known CDK-cyclin partnerships and cellular functions. CDK = Cyclin-dependent kinase; G 

= Gap; M = Mitosis; S = Synthesis; CAK = Cyclin-dependent kinase-activating kinase; CTD = C-

terminal domain (Table adapted from Ref 28). 

 

The structure of CDK2 consists of a β-sheet rich amino-terminal lobe and a larger, 

mostly α-helical, carboxy-terminal lobe. The ATP binding site is situated in a deep 

cleft between the two lobes which contains the conserved catalytic residues (Figure 

1.11). Upon binding, cyclins A or E force the kinase into an active conformation. For 

example, the T-loop, which obstructs substrate access in monomeric CDK2, moves 

considerably after cyclin A or E binds. This conformational change also allows 

Thr160 to become phosphorylated by CDK7-cyclinH (CAK) which fully activates 

CDK2. Cyclin binding also has a major affect within the ATP-binding site where a 

reorientation of the amino acid side chains induces the alignment of the triphosphate 

of ATP necessary for phosphate transfer. Studies have shown the similarities between 

the catalytic domains of different CDKs, which suggests all share a common 3D 

structure.29
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Figure 1.11. Overlay diagram of inactive CDK2 (blue, cyclin A unbound) and active CDK2 (yellow, 

cyclin A bound) conformations (Figure taken from Ref 30). 

 

When cells are stimulated to replicate (G0-G1 transition), D-type cyclins (D1, D2 and 

D3) are initially expressed which associate with and activate their partner kinases 

CDK4 and 6 (Table 1.1, p.19). The main function of CDK 4 and 6, within the cell 

cycle, is to phosphorylate the retinoblastoma tumour suppressor protein (pRB) during 

G1.31 Under normal circumstances pRB binds physically to a family of cell cycle 

transcription factors, called E2F, inhibiting their function and consequently stopping 

cell cycle progression. Phosphorylation of pRB by CDK4/6 leads to a conformational 

change within the protein, resulting in the release of E2F. Free of its negative 

regulator, E2F then binds to promoter regions of DNA and induces the expression of 

amongst other proteins, cyclins A and E, which are needed for the G1/S transition 

(Scheme 1.3). 
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Scheme 1.3. Important signalling process in G1 phase of the cell cycle. D-type cyclins associate with 

and activate CDKs 4 and 6 (1). Phosphorylation of pRB, by CDK 4/6, (2) leads to the release of E2F 

(3). E2F binds to regions of DNA via its transactivation domain and induces the expression of 

important genes, whose protein products are needed for progression into S phase (4).   

 

The expression of cyclin E leads to the formation of the CDK2/cyclin E complex 

which fulfils another important process. CDK2/cyclin E, like CDK4/cyclin D, is able 

to phosphorylate pRB at additional Ser/Thr sites, which leads to total inactivation of 

pRB.25 The hyper-phosphorylated pRB no longer binds E2F which results in a further 

increase of E2F concentrations within the cell. In addition, E2F stimulates its own 

transcription meaning the process is governed by a positive feedback loop which 

drives the cell over the restriction point and into S phase. 

 

Later in S phase cyclin E is no longer needed and is decomposed via the ubiquitin-

proteasome pathway. The newly biosynthesized cyclin A then associates with CDK2 

and controls many aspects of DNA replication. For example, phosphorylation of 

components of the DNA replication machinery such as CDC6 by CDK2/cyclin A is 

believed to be important for initiation of DNA replication and to restrict the initiation 

to only once per cycle.31 Later in S phase CDK2/cyclin A fulfils another important 

role; the phosphorylation and deactivation of E2F. This step is necessary for cell cycle 

progression since E2F transcriptional activity in late S phase triggers an apoptotic 

response.32 CDK1/cyclin B finally controls aspects of mitosis (Figure 1.12).  
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Figure 1.12. Important CDK-cyclin partnerships responsible for progression through the various 

phases of the cell division cycle. 

 

According to Professor P.M. Fischer,33 as well as their important functions in the cell 

cycle, CDKs are also important in the regulation of messenger RNA (mRNA) 

transcription through phosphorylation of the C-terminal domain (CTD) of RNA 

polymerase-II (RNAP-II) (Table 1.1, p.19).34 The largest subunit of RNAP-II contains 

a CTD that is composed of a repeating heptad sequence of amino acids. The 

phosphorylation status of the Ser residues at positions 2 and 5 of the heptad has been 

shown to be important in the activation of RNAP-II. A number of kinases have been 

reported to phosphorylate the CTD of RNAP-II, but the most important ones appear to 

be CDK7–cyclin H and CDK9–cyclin T.35,36 Various studies have identified Ser-5 of 

the CTD as its preferred substrate site.37 CDK9, in association with cyclin T1, T2, or 

K, exists with numerous other partners in a complex known as positive transcription 

elongation factor b (P-TEFb)38 and has been shown to phosphorylate both Ser-2 and 

Ser-5 of the CTD heptad.39 Phosphorylation of these Ser residues provides the 

stimulus for efficient initiation and elongation of mRNA synthesis by the RNAP-II 

transcriptional complex (Scheme 1.4). Although there is contradictory evidence 

regarding the absolute specificity of CDK7–cyclin H and CDK9–cyclin T1 for each 

Ser residue of the CTD, consensus exists about the importance of these CDKs in the 

regulation of RNAP-II activity, and hence in the control of transcription.34,40,41 CDK1, 

CDK2, CDK8, and CDK11 have also been implicated in the phosphorylation of 
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RNAP-II, but much less is known regarding the roles of these CDKs in transcriptional 

regulation.39
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Scheme 1.4. CDKs involved in promoting efficient mRNA elongation by phosphorylating the C-

terminal domain (CTD) of RNA polymerase II (Pol II) (Figure taken from Ref 42). 

 

Increasingly it has become recognised that aberration of cell cycle checkpoints 

constitutes a hallmark of cancer.43 Tumour development is closely associated with 

genetic alterations and deregulation of CDKs and their regulators, the cyclins. For 

example the pRB pathway, which regulates the G1/S transition (see above), is 

commonly deregulated in many forms of cancer due to the overexpression and/or 

amplification of CDKs and/or cyclins.31 Cells with abnormal CDK2, 4 or 6 and/or 

cyclin E and D levels provide a stimulus to enter S phase because of over-

phosphorylation of pRB and hence the inappropriate liberation of E2F. In addition the 

inactivation of natural CDK inhibitor proteins, caused by genetic mutations, has also 

been acknowledged as a fundamental cause of cancer.44

 

Natural CDK inhibitor (CKI) proteins, under normal circumstances, provide tumour 

suppressor functions by regulating CDK activity either by binding to and inhibiting 

directly their enzymatic ability, or by disrupting the kinase substrate binding site.44 

CKIs fall into two main families; those specific for CDK2 and CDK4 complexes, 

namely p21KIP1/CIP1 and p27KIP1 and those specific for CDK4 and CDK6-cyclin 

complexes, the so called INK4 proteins. Although a complex network of signals exist 

that control the expression of these CDK regulatory proteins, one important 
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mechanism involves the tumour suppressor protein p53.31 It has previously been 

shown that when activated, p53 can induce the expression of p21KIP1/CIP1 leading to 

cell division arrest. Studies have shown that p21 binds to cyclin subunits via their 

CDK binding domain, therefore inhibiting CDK activation. This in turn prevents 

efficient phosphorylation of pRB which is detrimental to cell division. 

 

Over the past fifteen years, both pharmaceutical and academic institutes have taken a 

considerable interest in the design of novel mechanism-based treatments to block 

CDK function. The fact that CDKs, cyclins and the natural CDK inhibitor proteins are 

commonly deregulated in cancers have provided the stimulus to discover ways to 

manipulate CDK activity. Although in theory several avenues exist, the favoured 

approaches have been the design of small antagonistic CDK inhibitor compounds 

which compete with ATP for the kinase active site, and also the design and synthesis 

of peptidomimetics which mimic the natural CKI and thereby halt cell cycle 

progression.44,45,46

 

1.5 Cyclin dependent kinase (CDK) inhibitors 
 
Undoubtedly the most studied way of stopping cell division in the context of CDKs 

has been through the antagonism of the ATP binding site with small molecules. At 

present a number of different structural classes of CDK inhibitors have been 

described, with some now at the stage of clinical evaluation.47 These inhibitors 

compete with the natural substrate of CDKs, ATP, and hence block their phospho-

transfer enzymatic activity. This stops vital cell signalling processes and hence causes 

cell division arrest and in many cases induces apoptosis.44

 

The ATP binding site of CDKs is a conserved motif present throughout the protein 

kinase family (~500 proteins within the kinome). For many years scepticism existed 

as to whether selective CDK antagonistic compounds would ever be discovered that 

would not incur a host of unwanted side effects. Nevertheless it now seems that these 

initial beliefs are unfounded due to the plethora of inhibitor compounds that show 

good levels of selectivity.  
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Within the context of a thesis it is virtually impossible to examine the many families 

and individual members of CDK antagonistic inhibitors reported within the literature. 

Here a brief overview of three important families will be given, and the interested 

reader’s attention is drawn to a number of review articles that cover the subject in 

greater depth.31,44,48

 

The Purines 

Purines have one of the longest histories as CDK inhibitor compounds. Indeed the 

first ever reported CDK inhibitor was a purine, namely, 6-dimethylaminopurine 

(Figure 1.13).48 Another closely related analogue, isopentenyladenine, was shown to 

have improved potency in comparison to 6-dimethylaminopurine (IC50 = 55 μM 

versus 120 μM towards CDK1) but remained unselective towards a host of other 

kinase enzymes. Only with the discovery of 2,6,9-trisubstituted purines did extremely 

potent and selective, purine based, CDK inhibitors become available. 

 

Olomoucine was the first of the 2,6,9-trisubstituted purines to be discovered. The 

presence of a hydroxyethylamino motif at C2 combined with a benzylamino and 

methyl group at C6 and N9 respectively provided a moderately potent (IC50 = 7 μM 

towards CDK1-cyclin B and CDK2-cyclins A & E) but selective pharmacophore on 

which to base further compounds.44 (R)-Roscovitine, a slightly modified version of 

olomoucine, produced a 10-fold increase in potency towards CDK2-cyclin A and E 

(IC50 = 0.7 μM) but maintained the same selectivity profile as olomoucine. In a 

further development Schultz and co-workers produced a large library of 2,6,9-

trisubstituted purines using a combinatorial approach.49 This led to the discovery of 

purvalanol A and B; two of the most potent members of the purine family (IC50 = 70 

and 6 nM against CDK2-cyclin A respectively). Although purvalanol B remains one 

of the most potent CDK inhibitors within the purine family it lacks expected cellular 

potency, presumably due to the presence of an ionisable carboxylic acid which 

renders it unable to pass across cell membranes efficiently.  
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Figure 1.13. Purine based CDK inhibitor compounds. The numbering of the purine heterocyclic ring is 

shown for 6-dimethylaminopurine. 

 

The vast amount of data for 2,6,9-trisubstituted purines means they are one of the best 

understood families in terms of structure-activity relationships (SARs). It is known, 

for example, that the importance of the substituents ranks 2- > 6- > 9- in terms of 

potency.44 At C2 a host of acyclic or cyclic hydroxy-amino or di-amino substituents 

are well tolerated. In the case of the acyclic hydroxyethylamino substituent, a 

branching alkyl group (usually ethyl or isopropyl) positioned α- to the amino function 

has produced some of the most potent purine compounds (e.g. (R)-roscovitine and 

purvalanol A and B). At C6 benzylamino and anilino derivatives appear to serve best 

in terms of potency. The importance of the secondary amine here is essential for 

biological activity, since an important H-bond forms between the anilino or 

benzylamino NH group with the carbonyl group of Leu83 in CDK2 (see below). The 

optimal substitutions at N9, in terms of potency, tend to range from methyl, ethyl, 

isopropyl as well as cyclopentyl (Figure 1.14).44
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Figure 1.14. Substitutions found to be optimal with respect to purine CDK inhibitors (Figure taken 

from Ref 44). 

 
Although 2,6,9-trisubstituted purine analogues share the same heterocyclic template 

as ATP, surprisingly none bind to CDK2 in an analogous fashion. The orientation of 

the purine ring in these examples is rotated almost 160° relative to that of the 

adenosine ring in ATP (Figure 1.15). Also in contrast to ATP, which makes two 

critical H-bonding interactions to the backbone residues Glu81 and Leu83, 2,6,9-

trisubstituted purines form two H-bonds both through Leu83 (C=O and NH). In 

addition, olomoucine, roscovitine and purvalanol B all show an additional H-bonding 

interaction through the primary hydroxyl group of the hydroxyethylamino motif with 

Gln131 as judged by X-ray co-crystal studies with CDK2.31

        (A)                                                                   (B) 

 

 
 

 

 

 

 

Figure 1.15. Schematic representation of the CDK2 active site with its natural substrate ATP (A) and 

purine inhibitor compound purvalanol B (B) bound. Note the important H-bonds formed between the 
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ligand and protein in both cases as well as the relative orientations of the purine ring (Figures taken 

from Ref 31). 

 

Flavonoids 

Flavonoids are a large family of compounds synthesized by plants that have long been 

known to have beneficial biochemical and antioxidant effects.50 A number of 

flavonoid analogues have shown inhibitory activity against CDK enzymes, among the 

more important members being myrecetin, flavopiridol and dechlorinated flavopiridol 

(L86-8276) (Figure 1.16). 
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Figure 1.16. Flavonoid CDK inhibitor compounds. The numbering of the chromone heterocyclic ring 

is shown for myrecetin. 

 

Myrecetin exhibits a weak CDK inhibitory activity towards CDK2 (IC50 = 10 µM). 

Flavopiridol on the other hand is the most potent CDK inhibitor from the flavonoid 

family (IC50 = 20-40 nM CDK4-cyclin D; 60 nM CDK6-cyclin D; 30-40 nM CDK1-

cyclin B; 100 nM CDK2-cyclins A and E; 100-300 nM CDK7-cyclin H).31 L86-8276, 

a related analogue of flavopiridol, shows approximately ten-fold less activity than the 

parent compound.  

 

Like the purine analogues, flavonoids also act as competitive inhibitors of CDKs by 

targeting their ATP binding site.44 X-ray co-crystallography studies have revealed a 

donor-acceptor pattern of H-bonds formed between the carbonyl oxygen and C5 

hydroxyl group of L86-8276 with the backbone residues of Leu83 (NH) and Glu81 

(C=O) in CDK2 which are similar to that seen with ATP (Figure 1.17). In addition the 

chromone heterocycle of L86-8276 occupies the same region of space and occurs in 

the same plane as the purine ring in ATP. The phenyl group at C2 points out of the 

ATP binding pocket and hence occupies an area not occupied by ATP.  
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Figure 1.17. Schematic representation of the CDK2 active site with L86-8276 binding (Figure taken 

from Ref 31). 

 

To date, many flavonoid analogues have been made and tested against panels of 

CDKs. A detailed understanding of the SARs has been built and is represented in 

Figure 1.18. As would be expected, based on the X-ray co-crystal structure, 

conversion of the hydroxyl groups in the chromone heterocycle to methyl ethers leads 

to total inactivation of the flavopiridol analogues due to inherent loss of the H-bond 

donor. The adaptation of the heterocyclic ring to isocoumarins and quinolones is also 

accompanied by a loss of activity. The ortho-chlorine substituent (flavopiridol) 

appears to be optimal as other substitution patterns lead to the loss of activity. A wide 

range of other substituents positioned on the phenyl ring also show a detrimental 

effect with regards to potency but some increase the selectivity profile towards 

CDK2. With regards to the stereochemistry, the cis(-) isomer is more potent than 

either the cis(+) or the trans(+/-) isomers. Finally the secondary alcohol on the 

piperidine ring forms an important H-bond with residue Lys33 in CDK2 and hence 

any change here is detrimental to biological activity.31,44   
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Figure 1.18. SARs of flavopiridol analogues (Figure taken from Ref 31). 
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Both (R)-roscovitine (Cyclacel) and flavopiridol (Aventis-NCI) have successfully 

completed Phase I clinical trial studies in healthy volunteers as well as in patients with 

cancer. Both are now currently undergoing Phase II trials to determine, amongst other 

issues, their level of efficacy when administered as part of a combination treatment or, 

alternatively, on their own.47  

 

Staurosporine 

Staurosporine is a natural product, isolated from the bacterium Streptomyces 

staurosporeus (Figure 1.19).  
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Figure 1.19. Structure of staurosporines (Figure taken from Ref 44). 
 
Staurosporine, as well as its related analogues UCN-01 and UCN-02 (Figure 1.19), 

have long been known to possess kinase inhibitory properties. In addition, they have 

also shown cytotoxic effects on certain mammalian cancer cell lines.31 Although they 

lack kinase inhibitor specificity, due to their excellent impersonation of ATP, 

staurosporine and its relatives are believed to owe at least part of their anti-cancer 

properties to the inhibition of CDKs. Indeed the complex crystal structure represented 

in Figure 1.20 shows the binding interactions seen with CDK2.  

 

 

 

 

 

 

 
Figure 1.20. Schematic representation of the CDK2 active site with staurosporine binding (Figure 

taken from Ref 31). 
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The structural complexity of staurosporine, UCN-01 and UCN-02 means they have 

not been exploited to the same degree as, say, the purine and flavonoid templates, 

which represent simpler but equally effective CDK inhibitor pharmacophores. 

Nevertheless important insights into CDK inhibition have been gained through the 

disclosure of the staurosporine/CDK2 crystal structure51 which has helped guide other 

structure-based drug design efforts.    

 

1.6 Kinase inhibitors: numerous potential uses 
 
The development of CDK inhibitor compounds has been dominated by their potential 

use as therapeutic agents in the treatment of cancer. However within recent years it 

has been suggested that there may be numerous other therapeutic applications where 

inhibition of cell proliferation and/or transcription might be useful.28 For example 

parasitic diseases, in which the invading microorganisms express CDK-like proteins 

themselves or depend on host cell proliferation in order to continue their life-cycle, 

have been proposed as therapeutically relevant targets in which CDK inhibitors may 

prove useful. Many viruses, which also require CDKs for their replication process, 

have also attracted attention, not least because of inadequate remedies currently 

available.52 Cell proliferative disorders in areas such as nephrology, cardiovascular 

disease and neurodegeneration are also seen as future areas in which CDK inhibitors 

may also play an important role.28  

 

Another potential area in which CDK inhibitor compounds may find use is in the 

elucidation of protein kinase function. Many of the 518 protein kinases encoded by 

the human genome53 (the kinome) have unknown functions. In principle at least it 

may be possible to use a specific inhibitor compound to block the action of a kinase 

within the context of a cellular assay, before identifying any phenotypic change. This 

“reverse-chemical genetics” approach54 is aimed not at discovering a potential drug 

but rather using a chemistry tool to answer a complex biological question. In brief a 

reverse-chemical genetic screen entails the following:  

 

1. The overexpression of a protein target of interest (e.g. kinase of unknown function). 

2. The development of a screen to identify a specific compound which binds to the 

protein of interest. 
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3. Use the identified “specific” compound to determine the phenotypic consequences 

of altering the function of the protein in a cellular context (Scheme 1.5).  

 

This process is aimed at determining a protein’s function within a cell and is an 

alternative approach to classical gene knockout experiments. 
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Scheme 1.5. Reverse-chemical genetics approach (Figure adapted from Ref 54). 

 

One of the drawbacks of the reverse-chemical genetics approach has been the almost 

impossible task of identifying a truly selective kinase inhibitor compound. This 

should come as no surprise, however, given the vast numbers of proteins that use 

ATP. Recent studies have highlighted this issue, not least the work by Cohen and 

colleagues55,56 who have run parallel kinase assays against a host of reputed selective 

inhibitors, only to find that most inhibit a number of other unclaimed cellular targets 

which are not discussed in the original articles. Complementing this work have been 

researches using affinity chromatography techniques which have led to the discovery 

of a similar picture of false claims of inhibitor selectivity.57,58 

 

Although CDKs are arguably the most studied kinases with respect to the 

development of new therapeutics, they form only a small number of the total kinases 
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that are currently known to exist.53 Because aberrant regulation and mutation of 

protein kinases occurs in many human diseases, they are rapidly becoming recognised 

as one of the most important drug targets.26 Although this area of research is still in its 

infancy, a number of success stories have already emerged such as Gleevec, the first 

commercially available kinase inhibitor, which was approved for the treatment of 

chronic myelogenous leukaemia (CML) in May 2001. Gleevec, a  2,4-disubstituted 

pyrimidine compound 8 targets the Abelson tyrosine kinase (ABL) with excellent 

selectivity values. The success of gleevec has been proven clinically, resulting in 

remission values of 96 % for early-stage CML patients.59
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Common diseases such as type II diabetes may also benefit from the development of 

kinase inhibitor compounds. One particular kinase, glycogen synthase kinase-3 (GSK-

3), is attracting particular attention due to its central role in phosphorylating and 

controlling glycogen synthase (GS); a key protein which regulates the conversion of 

glucose to glycogen in skeletal muscle. It is now commonly understood that GSK3 is 

over stimulated in type II diabetics; leading to the over-phosphorylation and 

deactivation of glycogen synthase, causing blood glucose levels to rise 

inadvertently.60 Compounds that block the ATP binding site of GSK3 and therefore 

render it inactive are seen as a potential new way of treating type II diabetes and are 

therefore in high demand.61  

 

As seen through the examples above, CDK inhibitor compounds are now becoming 

recognised as important research tools in addition to their already recognized 

therapeutic potential. The broad spectrum of potential uses for CDK inhibitors has 

naturally attracted interest from pharmaceutical and academic institutes alike. Today 

the search for novel CDK/kinase inhibitor pharmacophores, displaying improved 

potency and selectivity profiles, is one of the fastest growing areas of medicinal 
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chemistry. According to Dumas62 the need for new inhibitor pharmacophores within 

this field is important for two major reasons: 

 

1. Kinase selectivity remains an issue, as most inhibitors bind in highly conserved 

ATP pockets. New pharmacophores imply new selectivity profiles and therefore a 

potential way to impact overall side effect profiles. 

 

2. In general, kinase inhibitors are flat aromatic molecules that mimic the adenine 

portion of ATP. As a consequence, these compounds tend to have high melting points 

and relatively poor drug-like properties. New pharmacophores offer medicinal 

chemists an opportunity to modulate biopharmaceutical properties, such as aqueous 

solubility, log P (octanol-water partition coefficient) and MW. 

 

The remainder of this thesis discusses the discovery, design aspects and synthesis of a 

new substituted pyrimidine CDK inhibitor pharmacophore along with some of the 

interesting biological properties it possesses.  
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Chapter 2 – Design and synthesis of novel ring-constrained 
thiazolylpyrimidines as potential CDK inhibitors 

 
2.1 Background: 2-anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors (discovery, 
synthesis and biological findings) 
 
The discovery, synthesis and biological findings of 2-anilino-4-(thiazol-5-

yl)pyrimidine CDK inhibitor compounds has recently been reported,63,64 and serves as 

an introduction to the design and synthesis of novel ring-constrained 2-anilino-4-

(thiazol-5-yl)pyrimidine compounds: a subject that has formed the basis of this thesis. 

  
Discovery 
 

N
S
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N
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N

The discovery of the ATP competitive CDK inhibitor pharmacophore, 2-anilino-4-

(thiazol-5-yl)pyrimidine, 9 was facilitated through the use of virtual screening and 

structure-based drug design methods and represents a good example of a rational drug 

design programme.63

 

 

 R3

H
 R2

R1                                                                   
                                                                               9         
        
In brief, a high-throughput virtual screen was performed, using the molecular docking 

program LIDAEUS, to identify inhibitors of the CDK2 active site.63 The geometry of 

the active site of CDK2 was encoded with so-called “site points”, weighted for 

electrostatic and hydrophobic properties, based on the known 3D structure of the 

CDK2-staurosporine complex.51  

 

In all, approximately 50,000 virtual compounds were screened against CDK2 with 

hits generated where chemical and shape complementarities between the ligand and 

enzyme active site were fulfilled. A “scoring function” for each compound was 

compiled, which accounted for van der Waals, hydrophobic and hydrogen bonding 

interactions and thus allowed a table of putative inhibitors to be constructed. The top 

scoring 120 compounds were selected, bought and screened using an in vitro CDK2-

cyclin E protein kinase assay to determine if their predicted activity was justified. 

Only 17 (14 %) displayed significant inhibition when assayed at a fixed concentration 
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(5 μM). However on re-screening to obtain full dose-response curves it was found that 

6 (5 %) of the top 120 compounds inhibited CDK2-cyclin E with IC50 values below 

20 μM. A further virtual screen was performed on the entire small molecule database 

whereby the LIDAEUS parameters were adjusted to give a more complete description 

of the van der Waals interactions before the top 28 compounds were tested for 

biological activity. Importantly at this stage 28 random compounds from the virtual 

screen were bought and tested which proved that the virtual screen did result in 

“above-random hit enrichment”.63   

 

Through the virtual screening approach several groups of structurally related 

compounds were identified that initially showed modest CDK2 and CDK4 inhibitory 

potencies.63 One such group consisted of 2-amino-4-heteroarylpyrimidines (Figure 

2.1). 
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Compound no.           10                                 11                                  12 
CDK2-cyclin E          17                                13                                   2.2 
CDK4-cyclin D1        3.1                               30                                   27 

 
Figure 2.1. Examples of 2-amino-4-heteroarylpyrimidine CDK inhibitors identified through the 

LIDAEUS virtual screen. IC50 values (μM) against CDK2-cyclin E and CDK4-cyclin D1 are shown 

below the structures ([ATP] = 100 μM).  

                                                   
With a number of new leads identified, the medicinal chemistry cycle of structural 

analysis followed by analogue design, synthesis and biological evaluation was 

undertaken in order to generate related compounds with improved potency. 13 is one 

such compound (IC50 = 0.9 μM CDK2-cyclin E) which also possessed enhanced 

cellular activity.63 Structural data collected for 13 bound to the active site of 

monomeric-CDK2 revealed its bioactive conformation together with important 

binding information (Figure 2.2).  
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Figure 2.2. Bioactive conformation exhibited by compound 13 bound to the active site of monomeric-

CDK2 (A). Schematic representation of the H-bonding interactions exhibited by ATP (B) and 13 (C) 

within the active site of CDK2 (Figures taken from Ref 63 and 64). 

  

The hydrogen-bonding interactions seen between both ATP and 13 with CDK2 are 

similar (Figure 2.2: compare B and C). In both cases a group of three hydrogen-bonds 

form between the ligand and residues Glu81 and Leu83 of CDK2. With compound 

13, the hydrogen-bonds are as follows: pyrimidine H6 (Glu81 C=O), N1 (Leu83 NH) 

and anilino NH (Leu83 C=O). The two hydrogen-bonding interactions between 13 

and Leu83 are seen in many inhibitor-CDK2 complexes such as the purine family 

members discussed in section 1.5 (p.25). However it is perhaps surprising that a 

pyrimidine H6 atom should show hydrogen bonding of this type. A polar interaction 

between the carboxyl group of Asp145 and the thiazole nitrogen atom of 13 was also 

noted from this study (Figure 2.2, A).63,64 The bioactive conformation exhibited by 13 

allows the phenyl group to point out towards the entrance of the CDK2 binding cleft 

in an area that is not occupied by ATP. Also the dimethylthiazole ring overlaps 

roughly with the space occupied by the ribose system in ATP. 

 

The promising biological results displayed by lead compound 4-(2,4-dimethylthiazol-

5-yl)-N-[4-(trifluoromethyl)phenyl]pyrimidin-2-amine 13, combined with proof of 
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CDK2 antagonism, led to a comprehensive analysis of related 2-anilino-4-(thiazol-5-

yl)pyrimidine members 9 in order to improve potency and selectivity values as well as 

build a better picture of the SARs.64

 
Synthesis  
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The synthesis of 2-anilino-4-(thiazol-5-yl)pyrimidine analogues64 9 (Scheme 2.1) was 

centred around the classical route for the synthesis of the pyrimidine ring system, 

proposed by Bredereck.65
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Scheme 2.1. Synthetic route towards 2-anilino-4-(thiazol-5-yl)pyrimidines 9. Reagents: (a) pyridine, 

MeOH; (b) N,N-dimethylformamide dimethyl acetal (DMF-DMA) or tert-butoxybis(dimethylamino) 

methane (Bredereck’s reagent); (c) HNO3, aqueous cyanamide, EtOH; (d) NaOH, 2-methoxyethanol 

(Scheme adapted from Ref 64).  



5-Acetyl-thiazoles 14, 15 and 16 were either bought, where available, or simply 

prepared by reacting 3-chloro-2,4-pentanedione with one of thioacetamide, thiourea, 

or N-substituted thiourea respectively, using the general thiazole synthesis method of 

Hantzsch and Traumann.66,67 14, 15 and 16 were then conveniently converted to the 

corresponding enaminones 17, 18 and 19 respectively through heating with N,N-

dimethylformamide dimethyl acetal (DMF-DMA) or alternatively tert-

butoxybis(dimethylamino) methane (Bredereck’s reagent) in a similar manner to that 

reported by Paul et al.68 In the case of thiazole 15, amino protection could be 

circumvented when DMF-DMA or Bredereck’s reagent was employed, since excess 

of these reagents converted the amino group to the N,N-dimethylformamidine 18.69 

 

A number of arylguanidine salts 20 were prepared by Fischer et al.64 which could be 

condensed with the enaminones described above to form the desired central 

pyrimidine heterocycle. The synthesis of arylguanidines is well reported within the 

literature68,70,71 and can be achieved through the reaction of aniline derivatives with 

aqueous cyanamide under acidic conditions; giving crystalline solids in many cases. 

 

Finally, using conditions previously reported for the synthesis of related arylamino-

pyrimidine compounds,68,71 enaminones 17, 18 and 19 were condensed with 

arylguanidine derivatives 20 in alcoholic alkali to give the desired products 9; usually 

in moderate yield. Advantageously the N,N-dimethylformamidine protecting group in 

18 was deprotected under the pyrimidine ring-forming conditions (NaOH, 2-

methoxyethanol) to yield the desired aminothiazole 9 (Scheme 2.1, R4 = NH2). 

 

Biological findings 
 
The large number of 2-anilino-4-(thiazol-5-yl)pyrimidine analogues 9 synthesized and 

subsequently tested in CDK enzymatic assays helped identify numerous potent 

inhibitor compounds (Table 2.1).64 Important SAR trends were also discovered by 

Fischer et al.64 during this work. For example compound 9a, the parent compound (R1 

= R2 = R3 = H, R4 = Me), was found to be eighty times more potent in inhibition of 

substrate phosphorylation by CDK2-cyclin E than the initial lead compound 11. In 

addition, it was found that a large number of electron-withdrawing groups positioned 

meta or para (R2 or R3) on the phenyl ring of 9a preserved or enhanced CDK2 
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inhibitory potency in most cases (Table 2.1, compounds 9b-9e). On the contrary 

Fischer et al.64 found ortho (R1) substituted analogues to be less active or inactive as 

represented by compound 9f.  

 

Compd no. R1 R2 R3 R4 R5 CDK2 CDK4
11 – – – – – 6.5 16
9a H H H Me H 0.08 2.6
9b H OH H Me H 0.06 0.21
9c H H OH Me H 0.14 0.32
9d H NO2 H Me H 0.11 >20
9e H H NMe2 Me H 0.22 0.96
9f CF3 H H Me H >20 >20
9g H NO2 H NH2 H 0.002 0.053
9h H NO2 H Me Me >20 >20

K i (μM)*
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Table 2.1. Representative members of the 2-anilino-4-(thiazol-5-yl)pyrimidine family and 

corresponding CDK inhibitory activities (Table adapted from Ref 64). *Ki values are calculated from 

IC50 values using the Cheng-Prusoff equation:72 Ki = IC50/[1 + ([ATP]/Km (app) ATP)], where [ATP] is the 

ATP concentration used for the IC50 determination and Km (app) ATP for each kinase is determined 

experimentally.     

 
Substitutions at position R4, including Me, NH2 and NHR (where R = Me, Et and 

allyl), were all found to provide potent inhibitors, especially when combined with 

optimal substituents on the phenyl ring. For example, compound 9g (R2 = NO2 and R4 

= NH2) represented the leading compound in terms of CDK2-cyclin E inhibitory 

potency. Structural data collected for 9g bound to CDK2-cyclin A linked the high 

biochemical potency with an important hydrogen-bond gained through the interaction 

of the NH2 group (H-bond donor) with the side chain carboxylate of Asp145 (H-bond 

acceptor). Interestingly this interaction is only seen in active CDK2 structures, i.e 

where cyclin is bound, and not in the monomeric form.73

 

Throughout the optimization process, the thiazol-4-yl methyl was left unchanged due 

to near-optimal hydrophobic contacts made with Phe80 of CDK2.63,64 The last 

position modified by Fischer et al.64 was the anilino nitrogen (R5) which in the case of 
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9h was methylated. Unsurprisingly 9h was found to be totally inactive. This result is 

rationally explained based on the way 2-anilino-4-(thiazol-5-yl)pyrimidine analogues 

bind to the active site of  CDK2. The anilino NH forms an important H-bond donor 

interaction with the carbonyl group of Leu83 in CDK2 (Figure 2.2, p.37). Conversion 

of the anilino NH in 9d to the tertiary amine, as in 9h, blocked this important 

interaction, thus rendering the latter compound inactive (Table 2.1, compare 9d and 

9h). This result, in addition to the X-ray co-crystal structure, confirmed the 

importance of the anilino NH in the 2-anilino-4-(thiazol-5-yl)pyrimidine 

pharmacophore 9.    

 

With regard to cellular antiproliferative potency, compound 9g, the prototype 

compound from the 2-anilino-4-(thiazol-5-yl)pyrimidine family, was found to possess 

lower activity against human tumour cell lines than might have been expected from its 

high biochemical potency. In part at least this was probably due to the high 

intracellular concentrations of ATP, which compete with CDK inhibitor compounds.74 

As observed by Fischer et al,64 the fact that compounds with poor or no activity 

against isolated CDK enzymes (e.g. 9f and 9h, Table 2.1) were also devoid of 

cytotoxic activity strongly suggested that the antiproliferative effects were a 

consequence of cellular CDK inhibition. Indeed this was proved through western blot 

analysis experiments, which showed compound 9g blocked pRB phosphorylation at 

Thr821, a CDK2 preferential phosphorylation site, in human A549 (lung 

adenocarcinoma) cells. In addition decreased phosphorylation at the Ser249/Thr252 

residues of pRB, sites preferential for CDK4-cyclin D phosphorylation, and at the 

Ser-2 and Ser-5 sites of RNAP-II, sites potentially phosphorylated by CDKs 1, 7, 8 

and 9, were noted (cf. p.22).64 This evidence supported a multiple CDK inhibitory 

block by model compound 9g. Further evidence of CDK inhibition came from 

experiments with A549 cells whereby treatment with compound 9g induced a cell 

cycle arrest at G1/early S phase, consistent with the inhibition of CDKs involved in 

the early phases of cell proliferation.64

 

2.2 Design of ring-constrained 2-anilino-4-(thiazol-5-yl)pyrimidine compounds 
 
An intriguing observation made from the CDK2-inhibitor co-crystallography studies 

was that in bound forms 2-anilino-4-(thiazol-5-yl)pyrimidine inhibitors 9 exist, in 
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practically all cases, with an almost exact coplanar conformation with regard to the 

three aromatic rings (Figures 2.2 and 2.3).33,64 This planar conformation was 

presumed to be dictated by the narrow cleft-like shape of the CDK2 ATP-binding site. 

 

 

 

 

 

 

                                                           
                                  
                                  I                                                II 
 
Figure 2.3. Typical CDK2-bound coplanar conformation of 2-anilino-4-(thiazol-5-yl)pyrimidine 

compounds illustrated here with 4-(2,4-dimethylthiazol-5-yl)-N-(3-nitrophenyl)pyrimidin-2-amine 9d 

I. The planarity of this compound is illustrated visually in the side view depicted in II. 

 
Molecular dynamic simulation studies conducted on 4-(2,4-dimethylthiazol-5-yl)-N-

(3-nitrophenyl)pyrimidin-2-amine 9d, by contrast, predicted that in energy minima 

conformations the thiazole and pyrimidine rings would not adopt a coplanar 

conformation as seen in the bioactive form above, because of steric repulsion between 

the thiazol-4-yl methyl group and the pyrimidine C5-H.33 Instead likely low-energy 

conformations predicted for 9d included structure III (Figure 2.4) whereby the 

thiazol-4-yl methyl and pyrimidine C5-H were staggered to relieve steric strain, as 

well as IV (Figure 2.4) where the thiazole is rotated in a near 180° angle relative to 

that seen in I (Figure 2.3).  

 

 

 

 

 

 
 
                                      
                                             III                                                               IV 
Figure 2.4. Some predicted energy minima conformers for 4-(2,4-dimethylthiazol-5-yl)-N-(3-

nitrophenyl)pyrimidin-2-amine 9d. The molecular modelling software used was Insight II.    
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Unlike the bioactive coplanarity of the thiazole and pyrimidine rings, coincidence of 

the planes of the “pyrimidine and aniline rings”, as observed in CDK2-bound 

inhibitor compound conformations (Figure 2.3, I and II), was expected to be favoured 

(Figure 2.4, III and IV).33 This fact lies at the heart of the success of the 2-

anilinopyrimidine, as opposed to the 2-anilinopyridine template, where clashing of 

aniline ortho-protons with the pyridine C3-H prevents coplanarity, in kinase inhibitor 

pharmacophores (Figure 2.5).71
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Figure 2.5. 2-anilinopyridine template (A) and 2-anilinopyrimidine template (B). Note in the former 

steric clash between aniline ortho-protons with pyridine C3-H (both highlighted in red) may prevent 

coplanarity of the pyridine and aniline rings. In the latter case (B) this is not an issue. 

 

Based on the above observations, it occurred to us to lock the relative orientations of 

the thiazole and pyrimidine rings into the “conformationally frozen bioactive form” 

by introducing the constraint shown in Figure 2.6, i.e. by tethering the thiazol-4-yl 

methyl to the pyrimidine C5 atom through a methylene bridge to give a fused tricyclic 

structure. These novel “ring-constrained” thiazolylpyrimidine relatives provided the 

impetus for the current project which forms the main subject matter of this thesis.  

 

 

 

 

 

 
 
 
 

Figure 2.6. Ring-constrained thiazolylpyrimidine.  
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By binding the thiazole and pyrimidine rings in their optimal “bioactive 

conformation” it was envisaged that the conformational energy cost involved in 

enzyme binding would be lowered, since the ring-constrained analogues would 

represent the “high-energy” conformation adopted by bound 2-anilino-4-(thiazol-5-

yl)pyrimidine analogues.75 Furthermore, ring-constrained thiazolylpyrimidine 

analogues were expected to show less of a detrimental loss with regard to 

conformational entropy upon protein binding. Rigid analogues prepay an entropy cost 

before binding to their receptor and therefore should bind more favourably. In 

summary, therefore, it was predicted that rigid thiazolylpyrimidines should have a 

free energy advantage when binding to CDK enzymes relative to their more flexible 

2-anilino-4-(thiazol-5-yl)pyrimidine counterparts.76 This energy advantage, we 

hypothesized, would increase the apparent strength of the ligand-protein binding 

interaction which, in turn, would lead to an increase in CDK inhibitory potency. 

  

Ring constrainment of small molecules/peptides is a popular tactic in medicinal 

chemistry in the optimization of potency and/or selectivity towards a given biological 

receptor.76 Nevertheless, any structural modification with regard to an already 

biologically active pharmacophore also entails risks e.g. the addition of constraining 

atoms, such as that shown in Figure 2.6, can lead to unpredicted and unfavourable 

interactions between the ligand and protein leading to a loss in biological activity. In 

compounds such as 9 it had previously been noted that the thiazol-4-yl methyl group 

is ideally positioned to interact with the aromatic side chain of Phe80 in CDK2 (cf. 

p.40). Identical or similar aromatic side chains are found at this so-called 

“gatekeeper” position in other CDKs,47 and this presumably constitutes a kinase 

selectivity determinant in the thiazolylpyrimidine pharmacophore. Hence the addition 

of a methylene group to ring-constrain 2-anilino-4-(thiazol-5-yl)pyrimidine analogues 

was predicted to improve the van der Waals contacts with the Phe80 gatekeeper. 

Consequently, this modest change in the structure was predicted to have binding 

effects which would be beneficial overall rather than detrimental. 

  

A general, flexible and efficient synthetic route to ring-constrained 

thiazolylpyrimidine compounds 21 was therefore sought. Based on the synthetic route 

described previously for the related unconstrained family members 9 (cf. p.38) the 

initial retrosynthesis took the form of that in Scheme 2.2. 
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Scheme 2.2. Proposed retrosynthesis of ring-constrained thiazolylpyrimidines 21. 
 

Retrosynthetic analysis of the target compound 21 suggested enaminone 22 and 

arylguanidine derivatives 20 as suitable starting materials, based on the usual 

aminopyrimidine preparation methods.68,71 Disconnection of enaminone 22 led back 

to the 2-substituted-5,6-dihydro-4H-benzothiazol-7-one derivative 23, a product 

whose synthesis, from the α-bromodiketone 24 and the appropriate thioamide, is 

reported in the literature.77  

 

In order to compare biological results with members of the unconstrained series 9 it 

was important to synthesize ring-constrained counterparts 21 which contained 

identical substituents. For this reason R4 was ideally one of Me, NH2 or NHMe, since 

most members of the unconstrained family 9 contained these substituents.64 Likewise 

the aryl group substituents (R1, R2 and R3) would match those in the unconstrained 

series in the first instance (cf. Table 2.1, p.40).  
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2.3 Synthesis of ring-constrained 2-anilino-4-(thiazol-5-yl)pyrimidines (21)  
 
The initial synthetic design toward ring-constrained 2-anilino-4-(thiazol-5-

yl)pyrimidines 21 (Scheme 2.2) mirrored the highly efficient synthesis previously 

reported for the related 2-anilino-4-(thiazol-5-yl)pyrimidine series 9 (cf. section 2.1, 

p.38).64 Indeed the most pleasing aspect of this approach was that it involved only a 

very slight modification, i.e. starting from commercially available cyclohexane-1,3-

dione; no α-bromocyclohexane-1,3-dione 24 is readily available commercially. 

 

Numerous accounts reporting the bromination of cyclohexane-1,3-dione are described 

in the literature and it was decided to follow the account of Lehmann,77 due to his 

interest in the synthesis of dihydrobenzothiazol-7-one derivatives of the type 23 

(Scheme 2.2), products that were also needed in the present synthetic effort. 

Following exactly the report by Lehmann, in all respects apart from the solvent choice 

(CH2Cl2 vs. CHCl3), cyclohexane-1,3-dione was successfully brominated in a similar 

yield to that reported (50 % vs. 63-68 %).77 Although moderate yields for this reaction 

were always achieved after purification (the crude product is crystallized from water), 

the fact that the reaction proceeded to completion, as judged by TLC analysis, signals 

that material is lost in the isolation/purification step. Nevertheless since this reaction 

could be done on a large scale, no attempt was made to recover the remaining 

product. 

 

2-Bromocyclohexane-1,3-dione 24, obtained as a cream coloured crystalline solid, 

was found to have a melting point of 161-162 °C which was not in accord with that 

reported by Lehmann (185 °C). Nevertheless upon close inspection of the literature it 

was found that a 22-degree range of melting point values are reported for 24. Proof of 

structure of the α-bromodiketone was obtained by mass spectrometry, whereby the 

two molecular ions (79Br and 81Br) were observed. Purity in this case was judged by 

TLC and RP-HPLC analysis. 

 

Using Lehmann’s methods, thioacetamide, N-methylthiourea and thiourea were all 

successfully reacted with 24 giving the required intermediate thiazole derivatives 23a 

(R4 = Me), 23b (R4 = NHMe) and 23c (R4 = NH2) (Scheme 2.2 and 2.3) in near 

identical yields to those reported.  

 46



 H2N

O

Het N
O

O O

Het N

O

O

O

O

Br

N
S

O

N
S

NH2

O

24

23a

23c

i

ii

iii

N
S

NHMe

O

23b

S 

 

 
NHMe

 H2N
S

 ii

 

 NH2
H2N

S 

 
 

 
Scheme 2.3. Synthesis of intermediate thiazole derivatives. Conditions: i) Bromine, CH2Cl2, 50 % ii) 

Py, 40 % 23a; 43 % 23b iii) EtOH, 47 %.  

 

In a slightly adapted approach, the aminothiazole 23c was synthesized by reacting one 

molar equivalent each of 24, thiourea and pyridine in refluxing methanol. These 

conditions induced 23c to precipitate out of solution during the reaction which made 

for a far easier isolation and purification procedure than described by Lehmann. This 

was noted in the improved yield for this reaction (76 % vs. 47 %).  

 

With the successful synthesis of literature compounds 23a, 23b and 23c, attention was 

next turned to their conversion into dimethylamino-enaminones 22 (Scheme 2.2, 

p.45). Since the intermediate enaminones required in the present synthetic effort were 

unreported in the literature, it was decided to adapt the chemistry reported in the 

unconstrained thiazolylpyrimidine series64 to incorporate the newly-synthesized 

thiazoles 23a, 23b and 23c. Indeed due to the vast number of accounts describing the 

synthesis of enaminones from acetyl-heteroaryl compounds, using DMF-DMA or 

Bredereck’s reagent, this step was expected to be relatively simple (Scheme 

2.4).64,68,71,74   

 

 
 

Scheme 2.4. General enaminone synthesis from acetyl-heteroaryl derivatives with DMF-DMA (Het = 

heteroaryl). 
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In an initial attempt, methylthiazole 23a was reacted with 1.2 molar equivalents of 

DMF-DMA in an analogous method to that reported by Fischer et al. for the 

corresponding 5-acetyl-2,4-dimethylthiazole 14 (cf. p.38).64 However upon heating, a 

brown solid formed almost instantaneously. Purification by flash column 

chromatography and 1H NMR analysis revealed, quite unexpectedly, the formation of 

enamine 25, whereby reaction had occurred solely on the methyl group, and not α- to 

the carbonyl (22a) as in the acetylthiazole series (Scheme 2.5). 
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Scheme 2.5. Unexpected formation of enamine 25. Conditions: 1.2 mol eq DMF-DMA, 71 %. 

 
1H NMR analysis proved categorically that 25 had formed since the disappearance of 

the methyl group signal at δ 2.73 coincided with the gain of a pair of doublets at δ 

7.55 and 5.39 (both 1H, J 13Hz) in addition to a broad singlet at δ 2.97 (6H) 

corresponding to the NMe2 group. Furthermore the signals from the three ring 

methylene groups in 25 remained effectively unchanged, relative to that of the starting 

material 23a. Further proof of structure was gained by HRMS which showed the 

correct molecular weight and formula for 25. Repeating the reaction again with a 

larger excess of DMF-DMA (2.5 eq) gave, after purification, 25 in similar yield to 

that above (78 %), with none of 22a. Efforts using Bredereck’s reagent in place of 

DMF-DMA gave similar results.  

 

In view of this unexpected result it was decided to return to the unconstrained 

thiazolylpyrimidine primary literature64 to reinvestigate the enaminone formation and, 

at the same time, verify the structure of 17 (cf. p.38). Reacting commercially available 
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14 with 1.2 molar equivalents of DMF-DMA in a method analogous to that of Fischer 

et al.64 furnished, as expected, the desired enaminone 17 in high yield (72 %), with no 

appreciable by-product (Scheme 2.6). Only with a greater excess of DMF-DMA was 

there evidence for formation of alternative products, but this was not investigated in 

detail. The structure of 17 was confirmed by comparing the analytical data with those 

reported by Fischer et al.64 and furthermore single crystal X-ray analysis (Figure 2.7). 

This showed the configuration of the enamine double bond to be E, a fact which had 

previously been assumed but not established.  
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Scheme 2.6. Formation of enaminone 17. Conditions: 1.2 mol eq DMF-DMA, 72 %. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2.7. X-Ray structure of enaminone 17. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): N(1)-C(2), 1.324(2); N(1)-C(13), 1.459(2); C(2)-C(3), 1.366(3); C(2)-
H(2A), 0.9500; C(3)-C(4), 1.436(2); C(4)-O(4), 1.246(2); C(4)-C(5), 1.482(2); C(5)-C(9), 1.379(2); 
C(5)-S(6), 1.7369(17); S(6)-C(7), 1.7232(19); C(7)-N(8), 1.301(2); C(7)-C(11), 1.500(3); N(8)-C(9), 
1.380(2); C(9)-C(10), 1.499(2).  
Selected interbond angles (°): N(8)-C(7)-S(6), 114.71(13); C(7)-N(8)-C(9), 111.35(15); C(5)-C(9)-
N(8), 115.40(15); C(9)-C(5)-S(6), 108.61(13); C(7)-S(6)-C(5), 89.93(8); C(2)-C(3)-C(4), 119.01(17). 
Selected torsion angles (°): C(4)-C(5)-C(9)-C(10), 2.5(3); C(2)-C(3)-C(4)-O(4), -2.8(3); C(13)-N(1)-
C(2)-C(3), -2.9(3). 
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The 3J coupling constants of 12.2 Hz were in accord with the results published by 

Fischer et al.64 Although low with respect to normal trans-alkene coupling constants, 

which tend to range from 14-18 Hz, the presence of an electronegative nitrogen 

substituent (NMe2) accounts for the lower value here.78 Interestingly, this result 

proves that related enaminones 18 and 19 (Figure 2.8), reported in the unconstrained 

series (cf. p.38),64 also possess the E geometry (J = 12.2 Hz). Furthermore this result 

also suggests that enamine 25 contains an E double bond since the 3J coupling 

constant in this case is 13 Hz. 
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Figure 2.8. Coupling constants and corresponding double bond geometry results for enamines 17, 18, 

19 and 25. 

 

Incidentally the 1H NMR characterization data provided by Fischer et al.64 for 

compound 17 were not in total agreement with our data. Whereas the 1H NMR of 17 

in the present study revealed two singlets at δ 2.69 and 2.65 (each 3H) representing 

the two thiazole methyl groups, Fischer reports only one singlet at δ 2.66 (6H). 

Similarly the present study revealed two broad singlets at δ 3.13 and 2.89 (each 3H) 

representing the two N-methyl groups. Conversely Fischer reports a singlet at δ 2.70 

(6H). Unlike the discrepancies between the methyl signals, the alkene signals matched 

those of Fischer, as did the 13C signals.64  

 

As mentioned above, the NMe2 1H NMR signal of 17 occurred as two broad singlets 

(each 3H). Likewise the 13C NMR of 17 showed two N-Me signals at δ 45.0 and 37.3. 

These results imply that a degree of restricted rotation occurs about the bond between 

the dimethylamino nitrogen and the terminal alkene carbon, thus rendering the two 

methylamino groups non-equivalent. 17 can therefore be thought of as a vinylogous 

amide and is represented by the resonance structures shown in Figure 2.9. In contrast 

to enaminone 17, related enamine 25 did not show non-equivalent N-Me signals in the 
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1H NMR spectrum and instead only one singlet (6H) was observed. This result 

suggests delocalization involving the NMe2 group of 17 occurs much more effectively 

than with that of 25. 
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Figure 2.9. Canonical forms of enamines 17 and 25. 
 

In summary, related thiazoles 14 and 23a react with enamine-forming reagents DMF-

DMA and Bredereck’s reagent with different regiospecificities. Although the 

underlying reason for this interesting variation in reactivity has never been 

established, it did signal the end of using DMF-DMA and Bredereck’s reagent in 

attempts to generate 22a (Scheme 2.5). This was especially true since the 

methylthiazole was needed for comparison of biological results between the 

unconstrained and constrained series. Hence an alternative approach to enaminone 

22a was required to obviate this inconvenience. 

 

With aminothiazole 23c it was anticipated that conditions could be found whereby an 

excess of DMF-DMA or Bredereck’s reagent would react both to protect the amino 

function, as seen in the unconstrained series (cf. p.38), and to generate the desired 

enaminone 22b. In an initial attempt 23c was heated with 2.5 molar equivalents of 

DMF-DMA (Scheme 2.7). After approximately 2 hours it was noted that a precipitate 

had formed: this was purified and characterized as the nitrogen-protected N,N-

dimethylformamidine 26 (96 % yield). No sign of the desired enaminone 22b was 

seen during this reaction.     

 

 

 

 

 

 

 51



 

S
N

NH2

O

O

O
N

S
N

N

O

N

S
N

N

O

N

23c

22b

26

N 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Scheme 2.7. Formation of N-protected thiazole 26. Conditions: 2.5 mol eq DMF-DMA, 96 %. 
 

Interestingly 1H and 13C NMR analysis of compound 26 revealed two non-equivalent 

N-methyl signals at δ 3.17, 3.13 (proton) and δ 41.2, 35.2 (carbon) respectively. As 

for 17, this is rationally explained by a degree of restricted rotation about the bond 

between the dimethylamino nitrogen and the imino-carbon. However unlike the 1H 

NMR spectrum of 17, where both non-equivalent methyl signals appeared as broad 

singlets, compound 26 showed one broad singlet at δ 3.17 and one doublet at δ 3.13 (J 

= 0.5 Hz). This very interesting observation can be rationally explained when 

considering the canonical forms of 26, shown in Figure 2.10.  
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Figure 2.10. Canonical forms of compound 26. 
 
It is plausible that the imino-proton in 26 (shown in red) displays long-range coupling 

(4J) to the N-methyl protons, especially when 26 is confined to the planar arrangement 

as in the resonance structure 26a. The restricted rotation would result in the cis 

(black) and trans (blue) methyl groups experiencing different coupling to the imino-

proton. The trans N-Me would undoubtedly experience the greater coupling relative 
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to the cis N-Me. Hence the broad singlet at δ 3.17 is likely to be the cis N-Me group. 

The doublet at δ 3.13, with the small coupling constant, is likely to be the trans N-Me 

group. This explanation appears to fit with the 1H NMR data for 26.  

 

In an attempt to discover whether direct enaminone formation was possible to bring 

about in the aminothiazole series, test reactions were conducted whereby 23c was 

reacted with an excess of either DMF-DMA or Bredereck’s reagent using both 

conventional and microwave heating as shown in Table 2.2. 
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Reaction Reagent (mol equiv) Solvent Heating source Temp/Time
Product yield (%)    

26              22b
1 DMF-DMA (2.5) none conventional 80 °C / 2 h 96                0
2 DMF-DMA (2.5) DMF conventional 80 °C / 8 h 88                0 
3 DMF-DMA (3.5) none conventional 80 °C / 16 h 96                0 
4 Bredereck's (3.5) EtOH conventional reflux / 48 h 61                8 
5 DMF-DMA (5.0) EtOH microwave 150 °C / 30 min  33               59
6 DMF-DMA (5.0) EtOH microwave 150 °C / 45 min  13               67 

 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2. Experiments conducted in enaminone formation. 
 

As described previously, heating 23c with 2.5 molar equivalents of DMF-DMA led to 

the formation of a precipitate, which was purified and characterized as 26 (reaction 1, 

Table 2.2). In an attempt to stop 26 from precipitating and hence failing to react 

further with the excess of DMF-DMA, it was decided to conduct an experiment using 

DMF as solvent in addition to heating for 8h (reaction 2, Table 2.2). Athough 

ultimately successful in keeping both the starting material 23c and the resulting N-

protected product 26 in solution, it was disappointing to note that no further reaction 

occurred and 26 was isolated in a yield similar to where no solvent was used. 

Increasing the excess of DMF-DMA to 3.5 molar equivalents and heating overnight 

(reaction 3, Table 2.2) also led to the N-protected thiazole 26 with none of the desired 

enaminone 22b. In one final attempt using conventional heating, DMF-DMA was 

substituted for Bredereck’s reagent, ethanol was used as a solvent and the mixture was 



heated at reflux for 2 days (reaction 4, Table 2.2). After purification, 26 was still 

obtained as the major product. However, encouragingly some of the desired product 

22b had formed, albeit in small quantities. 

 

It was decided, due to the mostly unsuccessful efforts at making 22b using 

conventional heating, to attempt the enamine formation reactions using a microwave 

reactor. One of the advantages of microwave heating is that high temperatures beyond 

the boiling point of the solvent can be employed, since the reaction vessels are kept 

under pressure. It was hoped that this would force the reaction to completion. With 

the encouraging result shown for reaction 4 in Table 2.2, it was decided as a first 

attempt to retain ethanol as the solvent, but to employ a large excess of DMF-DMA (5 

mol eq); reaction times were kept at 30 min. It was pleasing to note that although 

harsh conditions were employed, the successful synthesis of N-protected enaminone 

22b in 59 % yield was achieved (reaction 5, Table 2.2). The remainder of product 

obtained after flash column chromatography purification was the N-protected material 

26. One further attempt, whereby the time was increased to 45 min, helped to improve 

the yield of product (reaction 6, Table 2.2).    

 

Although reactions 5 and 6 (Table 2.2) were ultimately successful in the formation of 

the desired enaminone 22b, the fact that the microwave reactions were limited to 100-

500 mg quantities of starting material 23c, combined with the relatively long reaction 

times employed, signalled that this was not the best method to make compounds of 

this type. Furthermore reactions involving the use of DMF-DMA almost always 

required purification by flash column chromatography, due to the gummy crude 

product obtained once solvent had been removed. The high polarity of 22b rendered 

this compound difficult to purify. An alternative approach toward the synthesis of 

intermediate compound 22b was therefore sought. 

 

Based on the 1H NMR data for compounds 17 and 26, which both showed non-

equivalent N-Me groups, it was anticipated that the 1H NMR of compound 22b would 

show two pairs of non-equivalent N-Me groups. Surprisingly however this was not 

the case. Instead only one pair of non-equivalent N-Me groups was observed with the 

other NMe2 group appearing as a singlet as shown in Figure 2.11.   
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Figure 2.11. Expanded 1H NMR spectra (δ 3.00 – 3.30) of compounds 26 and 22b.  
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Like 26, compound 22b showed a doublet for one of the non-equivalent N-Me groups 

with a coupling constant of 0.5 Hz (Figure 2.11). Due to the similarities seen between 

the 1H NMR spectra of compounds 22b and 26 it is likely that the non-equivalent 

NMe2 group in 22b forms from the nitrogen protected formamidine group and not 

from the enaminone. Instead the enaminone NMe2 group appears as a singlet (6H) 

which is in contrast to that of compound 17. Interestingly compound 22b can be 

thought of as a cross-conjugated system whereby delocalization involving one of the 

NMe2 groups occurs much more effectively than that involving the other (Figure 

2.12). This competition gives good reason as to why one of the NMe2 groups in 22b 

appears as a singlet; and the other with non-equivalent methyl groups in the 1H NMR 

spectrum (Figure 2.11).   
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Figure 2.12. Cross-conjugated system experienced in compound 22b.  
 

As reported by Zimmermann et al.71 an alternative approach to heteroaryl-enaminones 

involves the two step procedure as outlined in Scheme 2.8. Here reaction of 

heteroaryl-acetyl derivatives with ethyl formate and sodium methoxide generates the 

1,3-dicarbonyl compound which can subsequently be converted into an enaminone 

through reaction with a secondary amine. 
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Scheme 2.8. Alternative synthesis of enaminones (Het = heteroaryl). Conditions: i) NaOMe, ethyl 

formate ii) secondary amine (R2NH). 
 

It was envisaged that the intermediate enaminones needed in the present synthetic 

effort might also be accessible this way via the 1,3-dicarbonyl compounds as shown 

in Scheme 2.9. This alternative approach to enaminone compounds was hoped to 
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prove less troublesome than with that involving DMF-DMA and Bredereck’s reagent 

and allow the scaling up of intermediate compounds. 
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Scheme 2.9. Proposed “alternative” synthesis of enaminones. 
 

The plan to convert 23a into the 1,3-dicarbonyl compound 27 seemed perfectly 

reasonable since this exact reaction had previously been reported by Fravolini et al.80 

during their studies into the synthesis of new heterocyclic ring systems. It was 

envisaged that in order to formylate 23c, in the same manner as 23a, it would first be 

sensible to protect the amine. It must be pointed out that the decision to protect the 

free amine as an acetyl 28 instead of the N,N-dimethylformamidine was taken due to 

the expense of DMF-DMA as compared to acetic anhydride. The acetamide 

protecting group was expected to hydrolyse under the final pyrimidine ring-forming 

conditions to furnish the free amine in a similar manner to that of the N,N-

dimethylformamidine protecting group in the unconstrained series (cf. section 2.1, 

p.39). Finally based on the report by Zimmermann,71 it was expected that both 27 and 

29 would react readily with secondary amines. Our decision to use morpholine as a 

first choice came purely because it was at hand during the present studies.  

 

Following exactly the report by Fravolini, in all respects apart from solvent choice 

(toluene vs. benzene), 23a was treated with sodium methoxide (2.2 mol eq) and 

reacted with ethyl formate (1.1 mol eq) under dry conditions. Surprisingly initial 

attempts at the literature-based Claisen ester condensation reaction failed,80 and 

unreacted starting material 23a was retrieved. The failure of this reaction was put 

down to the sodium methoxide, which had been purchased rather than freshly 

prepared. Instead using an adapted literature procedure,81 whereby the sodium 

methoxide was generated in situ (from sodium hydride and dry MeOH), overcame 

this minor setback and allowed enol 27 to be prepared. The success of this reaction 

was improved somewhat when vigorously dry conditions were employed, and freshly 
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distilled ethyl formate was used. Although never as successful as Fravolini, who 

reported a yield for 27 of 85 %, the present synthesis achieved the moderate yield of 

66 %. 

  

Interestingly as described by Mackie et al.82 sodium methoxide, or indeed any sodium 

alkoxide, is sufficiently basic to produce only a small equilibrium concentration of 

carbanion (enolate) in most simple ketones, including compound 23a. Sodium 

methoxide is however basic enough to deprotonate the product of the Claisen 

condensation reaction 27 which acts as the “catalyst” deprotonating more of 23a and 

driving the reaction to completion (Scheme 2.10). 
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Scheme 2.10. 23a is deprotonated by sodium methoxide forming low concentrations of the enolate. 

This reacts with ethyl formate and hence 23a is acylated α- to the carbonyl 27 (steps 1 & 2). The acidic 

proton in 27 (shown in red) can be deprotonated with sodium methoxide to give the resonance 

stabilized enolate. This can deprotonate 23a and hence drives the reaction to completion (step 3).   

 
1H NMR analysis of 27 in DMSO-d6 revealed exclusively the enol tautomer 27b 

(Figure 2.13). A singlet at δ 7.61 proved that an alkene rather than an aldehyde proton 

existed, ruling structures 27a and 27c out. As seen in structure 27b a favourable 

intramolecular hydrogen bond would likely exist if the hydroxyl group existed cis to 

the C7 carbonyl group. Although this was not proven for 27b it is generally accepted 

that many 1,3-dicarbonyl compounds exist in the enolized form whereby the hydroxyl 

and carbonyl functions hydrogen bond.83 This acts as a stabilizing factor and is a 

plausible reason why enol 27b predominates over the keto form 27a.   
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Figure 2.13. Keto and enol forms of compound 27. 

    
Heating 23c in neat acetic anhydride gave the N-acetyl protected thiazole 28 in 

excellent yield (95 %). Formylation of 28 next followed via a procedure analogous to 

the above. In this case it was noted that a large excess of both sodium methoxide and 

dry ethyl formate were desirable to generate 29 in excellent yield (91 %).  

 

Interestingly compound 29 showed two doublets at δ 10.83 and δ 7.57 (J = 6.4 Hz) in 

the 1H NMR spectrum. These signals correspond to the hydroxyl and alkene proton 

respectively. Although not seen in related compound 27, the occurrence of the two 

doublets can be explained based on a vicinal trans coupling interaction between the 

hydroxyl and alkene protons. This would almost certainly predominate when the 

stabilizing intramolecular hydrogen bond forms between the enol hydroxyl and C7 

carbonyl. Indeed the very low field OH resonance (δ 10.83) can be explained by a 

strong hydrogen bonding interaction which provides further evidence for the enol 

occurring with the Z double bond configuration as drawn for 27 and 29 (Scheme 2.9).  

 

With the successful synthesis of enol compounds 27 and 29, their conversion into 

enaminones next followed by heating each with morpholine (1.1 mol eq) in toluene.84 

This gave novel compounds 30 and 31 cleanly and in excellent yield (87 % and 89 % 

respectively). During the purification of 30 crystals suitable for XRD analysis were 

obtained (Figure 2.14). This showed the configuration of the enamine C=C bond to be 

E and hence the same as in compound 17.  

 

 

 

 

 

 

 59



 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.14. X-Ray structure of enaminone 30. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): C(10)-C(14), 1.495(7); N(9)-C(10), 1.313(7); C(10)-S(11), 1.744(5); 
S(11)-C(12), 1.715(5); C(8)-C(12), 1.386(7); C(8)-N(9), 1.398(6); C(12)-C(13), 1.473(6); C(13)-O(13), 
1.248(6); C(5)-C(15), 1.374(6). 
Selected interbond angles (°): N(9)-C(10)-S(11), 115.6(4); C(12)-S(11)-C(10), 89.3(3); C(8)-C(12)-
S(11), 110.2(4); C(12)-C(8)-N(9), 115.2(5); C(10)-N(9)-C(8), 109.7(4); C(5)-C(13)-C(12), 115.6(4); 
C(15)-C(5)-C(13), 113.2(5). 
Selected torsion angles (°): C(13)-C(5)-C(15)-N(16), 174.0(5); C(5)-C(15)-N(16)-C(21), 3.7(9); 
N(16)-C(17)-C(18)-O(19), 57.0(5). 
 

In order to achieve the synthesis of target compounds 21 (Scheme 2.2, p.45), a 

number of arylguanidine derivatives 20 were first prepared in a similar fashion to that 

discussed in section 2.1 (cf. p.38). Many of these guanidines formed as crystalline 

solids after purification. Indeed for phenylguanidine, suitable crystals of the nitrate 

salt were grown for X-ray analysis (Figure 2.15). 
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Figure 2.15. X-Ray structure of phenyl guanidine nitrate salt 20a. Non-standard numbering is used in 

this structure. 

 
Selected bond lengths (Å): N(1)-C(7), 1.343(3); N(1)-C(1), 1.430(3); C(7)-N(7), 1.325(3); C(7)-N(8), 
1.331(3); C(1)-C(2), 1.386(3); N(11)-O(11), 1.264(2); N(11)-O(12), 1.252(2); N(11)-O(13), 1.241(2). 
Selected interbond angles (°): N(7)-C(7)-N(8), 120.34(19); C(7)-N(1)-C(1), 125.36(17); C(2)-C(1)-
C(6), 120.6(2); C(2)-C(1)-N(1), 118.75(19). 
Selected torsion angles (°): C(7)-N(1)-C(1)-C(2), -132.3(2); C(1)-N(1)-C(7)-N(7), -165.83(18); C(1)-
N(1)-C(7)-N(8), 14.5(3). 
Selected hydrogen bonds (Å): N(1)-H(1A)...O(11), 1.873(5); N(7)-H(7A)...O(12), 2.118(7). 

 
As shown in Figure 2.15, the bond lengths for the nitrate NO3

– (N11-O11, N11-O12 

and N11-O13) are similar. This result proves that the phenylguanidine does exist as 

the nitrate salt, since the delocalisation of the nitrate negative charge renders all N-O 

bond lengths equivalent (Figure 2.16). Furthermore, the positive charge on the 

guanidine ought also to be delocalised to a degree, although not equally over all three 

nitrogens.    
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Figure 2.16. Canonical forms of nitrate and phenylguanidine ions. 
 

It did not pass our attention that the α-hydroxymethylene-ketone 27 had previously 

been used in a number of heterocyclic ring formation reactions. In their series of 

related studies, Fravolini et al. found 27 to be sufficiently reactive toward 



nucleophilic reagents including hydrazine, hydroxylamine, amines, semicarbazide and 

thiosemicarbazide.80,85,86 However interestingly Fravolini et al. also found 27 to be 

unreactive toward a host of amidine derivatives under a variety of conditions.86 

Although lacking in experimental detail for the reactions that failed, Fravolini’s 

counsel signalled that 27 was unlikely to react with arylguanidines 20.    

 

Nevertheless as a first attempt 27 was reacted with arylguanidine derivatives 20 in an 

analogous method to that reported by Fischer et al. for the corresponding 

unconstrained enaminones 17, 18 and 19 (Scheme 2.1, p.38), i.e. one molar equivalent 

each of 27 and sodium hydroxide with two molar equivalents of 20, heated under 

reflux in 2-methoxyethanol (Scheme 2.11). 
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Scheme 2.11. Attempted synthesis of target compounds 21. 
 

In the author’s experience base-catalysed condensation reactions between the 

methylthiazole enol 27 and arylguanidines 20 work only in a handful of cases and 

always in appalling yield (< 10 %). A possible reason for the failure of many of these 

reactions is that the enol 27 is not stable under the reaction conditions (heating in 

alcoholic alkali) as it undergoes a base-catalyzed hydrolysis reaction (Scheme 2.12) as 

shown by the observation of signals corresponding to 23a in the NMR analysis of 

crude reaction mixtures.  
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Scheme 2.12. Plausible mechanism for base-catalysed hydrolysis of enol 27. 
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In an attempt to overcome this problem milder bases were used; such as potassium 

carbonate, triethylamine and pyridine. However in very few cases did product form, 

and if it did, very low yields (< 10 %) again resulted. It is conceivable that milder 

non-nucleophilic bases deprotonate the enol 27 giving a stabilized anion (Scheme 

2.13). This would certainly render the 1,3-dicarbonyl compound non-electrophilic 

under the reaction conditions and is a possible explanation as to why no reaction was 

observed.  

 
N

S

O

 

 

O 

 27

Scheme 2.13. Deprotonation of 27 and stabilized anion. 
 

During the course of a related model study, it was found that the reaction of 

enaminone 30 and guanidine hydrochloride, using similar conditions as Fischer et 

al.64 afforded the desired aminopyrimidine 32 in very high yield (90 %) (Scheme 

2.14). However when this reaction was done with the enol 27 no product formed and 

instead decomposition resulted to 23a. This result indicated that the enaminone 30 

was more stable than 27 under the pyrimidine ring-forming reaction conditions and 

therefore offered the best way of forming the desired compounds 21. Similarly 

reaction of 30 with acetamidine hydrochloride gave methylpyrimidine 33 in high 

yield (86 %) (Scheme 2.14). 

 

N
S

O

N
O 30

N
S

N

N

NH2

N
S

N

N

32

33

NH.HCl

NH2H2N

NH.HCl

H2N

 

 

 

 

 

 

 

 
 

Scheme 2.14. Synthesis of pyrimidines 32 and 33. Conditions: 30 (1 mol eq), amidine (1.1 mol eq), 

NaOH (1.1 mol eq), ethanol, reflux 2h.  
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With the successful synthesis of aminopyrimidine 32 and methylpyrimidine 33 

achieved, the next endeavour was to synthesize target compounds 21 (Scheme 2.2, 

p.45). Condensation of the enaminone derivatives 30 and 31 with arylguanidine 

derivatives 20 using the general method of Fischer et al.64 gave the final products 21 

after purification by flash column chromatography (Scheme 2.15). Nevertheless, in 

contrast to the reactions with guanidine hydrochloride and acetamidine hydrochloride, 

which worked in excellent yield, arylguanidines gave varying results as shown in 

Table 2.3. 

 
N

S

R1

 

O

N
S

R1

 R2

N
O

30 R1 = Me
31 R1 = NHAc

+
NH

N
H

H2N
X

R3
R2

 

20
N

N

N
H

X

R3

 

 
21

Product R1 R2 R3 X Yield
21a Me H H CH 46%
21b Me OH H CH 8%
21c Me H OH CH 30%
21d Me NO2 H CH 5%
21e Me H NMe2 CH 92%
21f NH2 NO2 H CH 11%
21g Me H CF3 CH 8%
21h NH2 H H CH 68%
21i Me H morpholine CH 21%
21j Me H OMe N 8%
21k Me H Cl N 16%
21l NH2 H NMe2 CH 54%

 
Scheme 2.15. Synthesis of ring-constrained thiazolylpyrimidines 21. Conditions: 30 or 31 (1 mol eq), 

20 (2 mol eq), NaOH (2 mol eq), 2-methoxyethanol, reflux 22 h.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.3. Yields of arylguanidine condensation reactions. 
 

Reactivity and yields appeared to be dependent on the nature of the arylguanidines 20. 

Whereas reaction of 30 with phenylguanidine (20; R2 = R3 = H, X = CH) afforded the 

corresponding product 21a in an isolated yield of 46 %, ring-substituted guanidines 

generally gave lower yields (5–68 %), with the notable exception of the para-

dimethylaminophenylguanidine (20; R2 = H, R3 = NMe2, X = CH), where product 21e 

was obtained in 92 % yield after purification. 
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It was pleasing to note that the acetamide protecting group in 31 was hydrolysed 

under the conditions employed to form the pyrimidine ring, thus giving the final 

compounds 21 as the aminothiazole (R1 = NH2). Furthermore it was also found that 

by substituting the sodium hydroxide base for DBU and changing the solvent from 2-

methoxyethanol to pyridine helped to retain the acetamide protecting group in the 

final compounds (Scheme 2.16). This reaction was done using microwave irradiation 

as a heat source.  
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Scheme 2.16. Synthesis of ring-constrained thiazolylpyrimidine 21m. Conditions: 31 (1 mol eq), 20 (5 

mol eq), DBU (5 mol eq), pyridine, microwave (120 °C, 20 min), 49 %. Note: The commercially 

available arylguanidine in this case exists as the methyl sulfonate salt.  

 

The large variation in product yields for the arylguanidine condensation reactions was 

surprising and meant that overall the limiting factor in the preparation of analogs 21 

was the efficiency of the final pyrimidine ring-forming reaction. In order to improve 

the final yields in the synthesis of compounds with the general structure 21, 

alternative routes were sought that would obviate the troublesome condensation 

between enaminones 30/31 with arylguanidines 20. The simple and high yielding 

preparation of aminopyrimidine 32 indicated possible solutions to this problem: 

 
1. Use the 2-aminopyrimidine 32 in nucleophilic aromatic substitution reactions. It 

was decided not to go down this route due to the limited scope associated with these 

reactions (only electron withdrawing groups positioned ortho/para on the aryl ring 

would promote this reaction). 

 
2. Conversion of the 2-aminopyrimidine 32 to a 2-fluoropyrimidine compound 34 

before attempting nucleophilic aromatic substitution reactions with various anilines 

(opposite to the above). This strategy seemed at first to have great potential because 

of the vast number of commercially available anilines. In an initial attempt 32 was 
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converted to the 2-fluoropyrimidine 34 using an adapted literature procedure 

commonly used for converting 2-aminopurines into 2-fluoropurines.87 Using sodium 

nitrite as a diazotization reagent and fluoroboric acid as the fluorine source allowed 

34 to be prepared (19 % yield first attempt, 26 % second attempt) (Scheme 2.17). 

Unfortunately the low yield for the fluorination reaction discouraged us from this 

chemistry, especially since this strategy involved an extra three steps and hence was 

unlikely to lead to a great improvement over the enaminone arylguanidine 

condensation yields. 
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Scheme 2.17. Synthesis of 2-fluoropyrimidine 34. Conditions: 0.3 M NaNO2, HBF4, 26 %. 

 
Interestingly compounds 21g and 34 both displayed fluorine to carbon coupling in 

their respective 13C NMR spectra, as summarized in Table 2.4.  

 

δ (CDCl3) Splitting pattern J FC  (Hz) Carbon δ (CDCl3) Splitting pattern J FC  (Hz) Carbon
19.9 s – CH3 19.9 s – CH3

24 s – C5 23.8 s – C5
25.2 s – C4 24.9 s – C4

117.4 s – C5a 123.3 d 5.3 C5a
117.9 s – C2' 127.4 s – C9b
123.5 q 32.9 C4' 157.1 d 12.7 C6
124.5 q 271.2 CF3 160.5 s – C3a
126.1 q 3.6 C3' 160.5 d 13 C9a
128.5 s – C9b 162.2 d 217.3 C8
142.9 s – C1' 171.4 s – C2
155 s – C6

157.1 s – C9a
158.6 s – C8
159.4 s – C3a
169.8 s – C2
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Table 2.4. 13C NMR signals for compounds 21g and 34 (s = singlet, d = doublet, q = quartet). 
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In compound 21g the carbon atom of the CF3 group is coupled equally to all three 

fluorines and so appears as a quartet with a large 1JFC of 271.2 Hz. C4′ and C3′ on the 

aryl ring also appeared as quartets with 2JFC of 32.9 Hz and 3JFC of 3.6 Hz 

respectively. Surprisingly Fischer et al, who report the related unconstrained 

fluorinated compound 13 (cf. p.36) did not assign the splitting pattern in their 13C 

spectrum.64  

 

The carbon joined directly to fluorine in compound 34 (C8) has a very large 1JFC 

value of 217.3 Hz and occurs as a doublet. More distant coupling is evident too: all 

the carbons in the pyrimidine ring couple to the fluorine with steadily diminishing J 

values as the carbons become more distant. Remarkably even the carbon positioned 

para to the C-F bond (C5a) showed a doublet with a small coupling constant of 5.3 

Hz. 

 

3. An alternative approach considered was to use aminopyrimidine 32 in palladium 

catalyzed N-arylation reactions. Although such reactions are not extensively reported 

in the literature, a paper was discovered which described palladium-catalyzed N-

(hetero)arylations of some simple heteroarylamines including 2-aminopyridine and 2-

aminopyrimidine.88 The impressive yields reported for these C-N bond-forming 

reactions encouraged us to replicate the conditions developed by Yin and co-workers 

i.e. Pd2(dba)3 as catalyst (Figure 2.17), 4,5-bis(diphenylphosphino)-9,9-

dimethylxanthene (xantphos) as ligand (Figure 2.17), Cs2CO3 as base, and 1,4-

dioxane as the solvent, in an attempt to couple aryl and heteroaryl bromide derivatives 

to aminopyrimidine 32 (Scheme 2.18). Initial success with these reactions was 

achieved when using electron-deficient or neutral aryl bromide derivatives, as clean 

conversions of reactants to the corresponding products were observed with associated 

high yields (Table 2.5). However, when investigating the scope of this reaction further 

it was found that electron-rich aryl and heteroaryl bromides failed to react under 

identical conditions. Nevertheless, the palladium-catalyzed arylation reactions 

increased the overall yields in many cases and allowed the scaling up of ring-

constrained analogues 21. 
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Figure 2.17. Structures of dba and xantphos ligand.  
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Scheme 2.18. Palladium catalysed N-arylation of aminopyrimidine 32. Conditions: 32 (1 mol eq), aryl 

bromide (1 mol eq), Cs2CO3 (1.4 mol eq), Pd2(dba)3 (1 mol %), xantphos ligand (L/Pd = 1.1), dry 1,4-

dioxane, 115 °C, 16 h.  

 
 

Reaction Aryl Bromide Product Yield
1 Bromobenzene 21a 71%
2 4-Bromophenol NR –
3 1-Bromo-3-nitrobenzene 21d 83%
4 4-Bromo-N ,N -dimethylaniline NR –
5 4-Bromobenzotrifluoride 21g 86%
6 5-Bromo-2-methoxypyridine NR –
7 1-Bromo-4-nitrobenzene 21n 79%
8 Methyl 4-bromobenzoate 21o 86%
9 1-Bromo-2-nitrobenzene 21p 88%
10 3-Bromobenzaldehyde 21q 52%
11 3-Bromothiophene NR –

 
 
 
 
 
 
 
 
 
 
 
 
Table 2.5. Aryl Bromides used in palladium catalysed coupling reactions and corresponding yields. 

NR = no reaction.  
 
In the case of product 21d crystals suitable for XRD analysis were obtained after 

crystallization from acetic acid (Figure 2.18). 
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Figure 2.18. X-Ray structure of compound 21d. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): N(9)-C(10), 1.316(4); C(10)-S(11), 1.721(4); S(11)-C(12), 1.722(3); C(8)-
C(12), 1.371(5); C(8)-N(9), 1.375(4); C(6)-C(7), 1.523(5); C(12)-C(13), 1.431(5); N(1)-C(13), 
1.341(4); N(1)-C(2), 1.332(4); C(14)-C(15), 1.394(5); C(16)-N(16), 1.479(4); N(16)-O(2), 1.227(4); 
O(23)-C(23), 1.193(5); C(23)-O(24), 1.310(5); O(21)-C(21), 1.211(5); C(21)-O(22), 1.313(5). 
Selected interbond angles (°): N(9)-C(10)-S(11), 115.0(3); C(10)-S(11)-C(12), 89.25(16); C(8)-
C(12)-S(11), 110.1(3); C(12)-C(8)-N(9), 115.1(3); C(10)-N(9)-C(8), 110.6(3); C(8)-C(12)-C(13), 
123.3(3); C(2)-N(1)-C(13), 116.1(3); C(15)-C(14)-C(19), 119.3(3). 
Selected torsion angles (°): C(5)-C(6)-C(7)-C(8), -42.3(4); C(8)-C(12)-C(13)-C(5), -9.5(5); N(3)-
C(4)-C(5)-C(13), 3.2(5); N(1)-C(2)-N(2)-C(14), 0.2(6); C(2)-N(2)-C(14)-C(15), 13.3(6). 
Selected hydrogen bonds (Å): N(2)-H(2N)...O(21), 1.873(8); O(22)-H(22O)...N(3), 1.698(12); O(24)-
H(24O)...N(9), 1.83(4). 
 

As shown in Figure 2.18, the bond lengths for C21-O21 and C23-O23, the acetic acid 

carbonyl bonds (1.211(5) Å and 1.193(5) Å), are different to C21-O22 and C23-O24, 

the acetic acid C-OH bonds (1.313(5) Å and 1.310(5) Å). This result proves that the 

acetic acid is a genuine solvent of crystallization and not indeed the acetate anion, 

since in the latter form all C-O bond lengths would be equivalent.  
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2.4 Conclusions 
 
Ring-constrained thiazolylpyrimidine analogues 21 have been successfully prepared 

starting from commercially available cyclohexane-1,3-dione. The original synthetic 

strategy, incorporating the use of DMF-DMA or Bredereck’s reagent for the synthesis 

of intermediate enaminones 22a and 22b caused minor setbacks. In the case of 2-

methylthiazole 23a, reaction with DMF-DMA or Bredereck’s reagent led 

unexpectedly to enamine formation on the methyl group 25; whereas initial attempts 

with 2-aminothiazole 23c, gave only the N,N-dimethylformamidine protected amine 

26. Nevertheless in the latter case, successful enaminone formation was achieved 

through heating 23c with excess DMF-DMA in the microwave reactor. This 

approach, however, was limited by the scale that could be achieved.  

 

Attempts to condense the 1,3-dicarbonyl group of compound 27 with amidine 

derivatives under basic conditions proved unsuccessful in most cases. We postulate 

that the use of nucleophilic bases, such as hydroxide, induce the base catalysed 

hydrolysis of 27 to yield the breakdown product 23a plus formate. In cases where 

milder non-nucleophilic bases were used, such as potassium carbonate, triethylamine 

and pyridine, failure of the reaction could be explained by the initial de-protonation of 

the enol, rendering the compound non-electrophilic. Conversion to the morpholine 

enaminones 30 and 31 solved this problem allowing amidine derivatives, including 

aryl guanidines, to be successfully condensed, in effect forming the central pyrimidine 

heterocycle. In most cases reactions of the enaminone compounds 30 and 31 with aryl 

guanidines proceeded in low to moderate yield. 

 

Literature precedent for the N-arylation of simple heteroarylamines was identified and 

the procedure successfully adapted to incorporate 2-aminopyrimidine 32. Initial 

success with these reactions was achieved when using electron-deficient or neutral 

aryl bromide derivatives, as clean conversions of reactants to the corresponding 

products were observed with associated high yields. However, when investigating the 

scope of this reaction further it was found that electron-rich aryl and heteroaryl 

bromides failed to react under similar conditions. Nevertheless, the palladium-

catalyzed arylation reactions increased the overall yields in many cases and allowed 

scaling-up of ring-constrained analogues 21. 
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Although not investigated within this study, the use of 2-fluoropyrimidine 34 may 

prove useful in future work since it should undergo nucleophilic aromatic substitution 

reactions with aniline derivatives. This would complement the palladium-catalysed N-

arylation reactions since many of these failed when electron-rich aryl bromides were 

used. Electron-rich anilines, on the other hand, would be expected to react with 34 

successfully.  

 

It must be pointed out that following the publication of a patent protecting the novel 

ring-constrained thiazolylpyrimidines 2189 (Cyclacel, filing date: 7/7/2004) another 

patent covering the same compounds was published90 (Vertex pharmaceuticals, filing 

date: 14/10/2004). It is interesting to note that the chemistry employed by Vertex 

scientists to make compounds of general formula 21 mirrored our approach in 

practically all aspects.      
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Chapter 3 – Biological findings and exploration of structure-activity 
relationships 

 
The biological results reported here were done in collaboration with scientists at 
Cyclacel Ltd, Dundee. 
 
3.1 Structure-activity relationships 
 
Ring-constrained thiazolylpyrimidine compounds 21 were tested in CDK enzymatic 

assays. Their Ki inhibition concentrations are shown below (Table 3.1) along with 

results previously disclosed for the related unconstrained thiazolylpyrimidines 9, 13.64
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Structure CDK inhibition, Ki (μM) 
No. 

R1 R2 R3 X 1B 2E 4D 7H 9T 
21a Me H H CH 0.75 0.001 0.90 2.2 0.26 
9a Me H H CH 0.513 0.08 2.6 5.4 0.56 

21b Me OH H CH 0.36 0.011 0.58 0.053 0.032 
9b Me OH H CH 0.181 0.06 0.21 1.507 0.073 
21c Me H OH CH 0.20 0.001 0.54 0.30 0.49 
9c Me H OH CH NA 0.14 0.32 1.5 0.07 

21d Me NO2 H CH 0.32 0.023 2.0 0.79 0.002 
9d Me NO2 H CH 0.138 0.11 > 20 0.82 0.053 
21e Me H NMe2 CH 2.5 0.010 0.037 0.060 0.64 
9e Me H NMe2 CH 2.52 0.22 0.96 4.012 0.575 
21f NH2 NO2 H CH 0.018 0.001 0.13 0.14 0.003 
9g NH2 NO2 H CH 0.073 0.002 0.053 0.073 0.005 
21g Me H CF3 CH 0.96 0.16 4.9 > 10 1.9 
13 - - - - >3.4 0.29 > 20 >4.2 2.799 

21h NH2 H H CH 0.63 0.088 0.33 1.2 0.11 
9i NH2 H H CH NA NA NA NA NA 

21i Me H morpholine CH 15 0.20 > 10 1.0 0.64 
9j Me H morpholine CH 13.19 2.697 1.859 >4.2 >3.1 
21j Me H OMe N 0.078 0.049 0.12 1.1 1.0 
9k Me H OMe N 2.776 0.127 0.462 1.371 0.278 

21k Me H Cl N 0.019 0.025 0.040 1.4 1.2 
9l Me H Cl N 4.173 0.345 0.662 7.219 0.969 

21l NH2 H NMe2 CH 0.098 0.031 0.47 0.50 0.16 
9m NH2 H NMe2 CH >3.4 0.70 0.90 0.164 0.073 
21n Me H NO2 CH 0.31 0.13 > 10 4.8 0.14 
9n Me H NO2 CH 0.929 4.1 > 20 >4.2 >3.1 
21o Me H COOMe CH 0.70 0.92 2.4 6.3 0.67 
9o Me H COOMe CH NA NA NA NA NA 

 
Table 3.1. Structures and CDK inhibitory activities: (1B, CDK1-cyclin B; 2E, CDK2-cyclin E; 4D, 
CDK4-cyclin D1; 7H, CDK7-cyclin H-MAT1; 9T, CDK9-cyclin T1). NA means data is not available. 
The enzymatic assays were conducted by Dr Wayne Jackson and colleagues at Cyclacel. 
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The parent analogue 21a, which contains an unsubstituted aniline system, is a very 

potent CDK2 inhibitor. Furthermore, it is selective for CDK2 (750-fold less potent 

with regard to CDK1; 900-fold, CDK4; 2200-fold, CDK7; 260-fold, CDK9) (Table 

3.1). The related unconstrained analogue 9a, by contrast, is relatively unselective for 

CDK2: 6-fold more selective for CDK2 than CDK1. Interestingly, the introduction of 

aniline substituents in many cases preserved potency but resulted in different 

selectivity profiles. For example, the meta-hydroxy compound 21b, while 10-fold less 

potent than 21a against CDK2, is comparatively more potent with respect to CDK7 

and CDK9. The para-hydroxy isomer 21c, however, has a very similar potency and 

selectivity profile as 21a. A similar picture is seen with the meta-nitro analogues 21d 

and 21f, where potency towards CDK2, CDK7 and especially CDK9 is enhanced 

much more than with the para-nitro derivative 21n. As described in section 2.2 

(p.45), analogue design in the present ring-constrained thiazolylpyrimidine series was 

guided initially by the earlier results with the corresponding unconstrained 

compounds 9.64 There Fischer et al. noted the presence of electron-withdrawing 

groups positioned meta or para on the aniline ring, combined with an NH2 group at 

the thiazole C2 position, afforded very potent CDK inhibitors (e.g. 9g, Table 3.1). 

Within this study it was observed that the thiazol-2-yl amino versus methyl group 

(21h vs. 21a) reduced CDK2 inhibitory potency strongly but marginally enhanced 

potency with respect to the other CDKs. When combined with the aniline meta-nitro 

substituent (21f vs. 21d), however, introduction of the thiazol-2-yl amino group 

strongly enhanced activity with respect to CDK1, CDK2 and CDK4. A similar 

enhancing effect of the thiazol-2-yl amino group on CDK1 potency was observed in 

connection with the para-(dimethylamino)anilino group (21l vs. 21e). Conversely, 

however, CDK4 and CDK7 activity was somewhat better for 21e than 21l. In general, 

comparatively large substituents at the aniline para position (21i & 21o) were poorly 

tolerated in terms of activity across the board. Indeed for the former compound, 21i, it 

was pleasing to note that the corresponding unconstrained analogue 9j also suffered in 

terms of potency. Of the potent analogues, those in which the aniline was replaced 

with a substituted pyridine system (21j & 21k) are unique insofar as they exhibited 

CDK1, CDK2, CDK4 vs. CDK7, CDK9 selectivity. Indeed large potency gains 

against CDK1, CDK2 and CDK4 were noted for ring-constrained compounds 21j and 

21k when compared to their unconstrained compatriots 9k and 9l. 
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On the basis of the Ki data shown in Table 3.1 it can be concluded that constrained 

thiazolylpyrimidines 21 are somewhat more potent than the corresponding 

unconstrained derivatives 9 against CDK2. This trend is not as clear-cut when 

considering the other CDK families. However, here too, ring-constrained compounds 

outscore their unconstrained relatives more often than not. 

 

3.2 CDK2 binding mode 
 
In an effort to gain insight into interactions of ring-constrained thiazolylpyrimidine 

compounds with the CDK enzymes, compound 21d was co-crystallized with CDK2-

cyclin A and the structure solved at 2.75 Å resolution.33 The X-ray crystal structure 

revealed that the inhibitor occupies the ATP-binding cleft between the two lobes of 

the kinase subunit (Figure 3.1, a). Overall the binding mode of 21d is very similar to 

those reported in the unconstrained thiazolylpyrimidine family (cf. p.37).63,64 The 

aminopyrimidine part of the inhibitor occupies the adenine subsite of the ATP-

binding pocket, whereas the thiazole portion projects into the ribose subsite (cf. Figure 

2.2, p.37). The nitroaniline system binds in the cleft at the opening of the ATP-

binding pocket and the nitro group forms intimate electrostatic interactions with polar 

residues, such as Lys89, lining the entrance to this cleft (Figure 3.1, b). The usual 

triad of H-bonds between the CDK2 hinge region Glu81 (carbonyl) and Leu83 

(carbonyl and NH) backbone and the inhibitor aminopyrimidine system is observed 

(Figure 3.1, b).33 During the design of the constrained thiazolylpyrimidine 

pharmacophore (section 2.2, p.41) modelling suggested that the introduction of an 

additional CH2 unit would result in better van der Waals contacts with the Phe80 

gatekeeper amino acid. The crystal structure of the complex confirmed this and the 

Phe80 sidechain, especially at the Cβ position, packs closely against the methylene 

bridge (Figure 3.1, b). 
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Figure 3.1. (a) Compound 21d (space-filled CPK model) occupies the ATP-binding cleft of CDK2 

(purple ribbon) in the X-ray crystal structure complex with cyclin A (cyan ribbon). Close contacts 

between 21d and the ATP-binding pocket, including H-bonds with the Leu83 hinge region residue and 

hydrophobic interaction with the gatekeeper residue Phe80, are indicated by broken lines in (b). The 

binding of 21d in CDK2 is depicted in (c), with the mesh indicating the electron density observed in 

the crystal structure. The co-crystal structure was determined by Dr George Kontopidis, Cyclacel. One 

letter amino acid codes: L = leucine, E = Glutamic acid, F = phenylalanine, K = lysine, D = aspartic 

acid, I = isoleucine, Q = glutamine.  

 
It should be pointed out that the hydrogen bonds present within the binding 

interaction between 21d and CDK2 are similar to those seen between 21d and acetic 

acid in the single crystal X-ray structure (Figure 2.18, p.69). In the latter case 

hydrogen bonds were noted between the thiazolo-quinazoline N7 and anilino NH with 

one molecule of acetic acid (Figure 3.2, A). This same hydrogen bonding relationship 

is seen for 21d when binding to Leu83 in CDK2 (Figure 3.2, B).  
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Figure 3.2. Comparison of hydrogen bonding interactions seen between 21d with crystallizing solvent 

acetic acid (A) and when bound to the active site of CDK2 (B). 
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3.3 Exploration of structure-activity relationships 
 
In an attempt to extend the SAR trends further from those reported in section 3.1 it 

was decided to prepare additional compounds. As a first approach three compounds 

35, 36 and 37 (Figure 3.3) were synthesized to act as control compounds in CDK 

enzymatic assays. 
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Figure 3.3. Pyrazole and pyrimidine control compounds. 
 

These relatives of ring-constrained thiazolylpyrimidines 21 were predicted to be 

inactive in CDK enzymatic assays since key molecular features associated with 

biological activity were missing. For example, compound 35 contained a pyrazole 

instead of the common 2-aminopyrimidine motif commonly associated with kinase 

inhibitor pharmacophores.31,71 Compound 36, by contrast to 35, contained the 

pyrimidine and phenyl rings associated with potent CDK inhibition (as seen for 21a), 

but importantly lacked the presence of the key NH group connecting the two aromatic 

rings. 36 was therefore predicted to be inactive as a CDK inhibitor based on the fact it 

would be unable to form the critical anilino NH to Leu83 C=O hydrogen bond (cf. 

Figure 3.2, B). Likewise it was believed compound 37, the N-methylanilino version of 

21d, would also be inactive as a CDK inhibitor for the same reason as 36. Indeed as 

discussed in section 2.1 (cf. p.40) the corresponding N-methylanilino compound in the 

unconstrained thiazolylpyrimidine series 9h was found to be inactive as a CDK 

inhibitor by Fischer et al.64

 
The synthesis and biological testing of control compounds is a common tactic in 

medicinal chemistry projects, and is used primarily to increase the credibility of SAR 

correlations. This is often referred to as the, so-called, a contrario probe.91

 
Both 35 and 36 had previously been synthesized by Fravolini et al.80,86 from the 

common starting material 27. Following Fravolini’s method 27 was heated with 

hydrazine hydrate in MeOH giving pyrazole 35. Similarly, heating 27 with 
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benzamidine hydrochloride under acidic conditions in MeOH gave pyrimidine 36 

(Scheme 3.1). As discussed in section 2.3 (cf. p.61), Fravolini had noted 27 to be 

unreactive toward a host of amidine derivatives.86 Indeed the reaction between 27 and 

benzamidine hydrochloride represents the only successful pyrimidine ring-forming 

reaction reported within Fravolini’s account.86   
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Scheme 3.1. Synthesis of pyrazole 35 and pyrimidine 36. Conditions: i) Hydrazine hydrate, MeOH, 82 

% ii) benzamidine hydrochloride, AcOH/HCl, MeOH, 17 %. 

 
In order to make the N-methylanilino analogue of 21d, that is 37, we first consulted 

the relevant literature describing similar arylaminopyrimidine N-alkylation reactions. 

It should be noted that the methods employed to methylate compounds of type 38 

mirror one another in many instances.64,68,71 The addition of a strong base (sodium 

hydride) to 38 deprotonates the exocyclic nitrogen. The subsequent addition of 

iodomethane is reported to promote alkylation at this position giving compounds of 

general formula 39 (Scheme 3.2).   

 HetHet Het

N

N

N

R

N

N

N

R

H
38

Na H

Me I

N

N

N

R 

 
Me 
39

 
 
 
Scheme 3.2. General method of arylaminopyrimidine N-methylation (Het = heteroaryl). Conditions: 

38 (1 mol eq), NaH (1.1 mol eq), MeI (1.2 mol eq), dry DMF. 
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There are many known examples of arylaminopyrimidine N-alkylation reactions, of 

the type shown in Scheme 3.2. Nevertheless it is conceivable that under the reaction 

conditions, pyrimidine ring N-alkylation may also occur to give products 40 and/or 41 

(Scheme 3.3). Indeed pyrimidine ring N-alkylation reactions of this type have been 

reported before.92,93  
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Scheme 3.3. Potential side reactions during arylaminopyrimidine N-alkylation. 
 

Within the present study it was decided to use the general conditions shown in 

Scheme 3.2, substituting 38 for 21d, in an attempt to make 37. However unlike many 

of the literature accounts describing N-alkylation reactions of arylaminopyrimidine 

compounds of general formula 38, it was decided to remain aware of other isomeric 

products that could also form during this reaction, since these could easily be 

misinterpreted as the correct product.  

 

Reacting 21d with 1.1 mol eq of sodium hydride in dry DMF followed by the addition 

of iodomethane (1.2 mol eq) gave after work-up and purification two products. The 

first product, obtained as a yellow solid (38 %), was judged to be 37. 1H NMR 

analysis revealed the disappearance of the anilino NH resonance along with the 

appearance of a singlet (δ 3.64, 3H), ascribed to the N-Me. 13C NMR analysis also 

showed the appearance of a new methyl signal (δ 37.8) as compared to the starting 

material 21d. It was encouraging to note that both the 1H and 13C NMR chemical 

shifts for the N-Me group were in agreement with previous reports for related N-

methylanilino compounds of type 39.64,71 Further proof of structure was gained by 

HRMS which showed the correct molecular weight and formula for 37. 
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Nevertheless, in order to prove that methylation had occurred on the anilino nitrogen, 

as opposed to either of the pyrimidine ring nitrogens, it was decided to conduct a 

further analysis of the product by the 2-D NMR experiment Heteronuclear Multiple 

Bond Connectivity (HMBC).  

 

Shown in Figure 3.4 is the 1H,13C-HMBC spectrum of compound 37. A strong 

correlation between H2 (δ 7.52) and a carbon atom occurring at δ 146.4 is seen in the 

HMBC spectrum (line 1). Similarly H1 (δ 7.72) and H4 (δ 8.36) also show a multiple 

bond connectivity relationship with the same carbon atom (lines 2 and 3). However 

the intensity of the latter two signals is weak in comparison to that caused by H2. 

Since in aromatic systems 3J(1H,13C) coupling constants are usually larger than 
2J(1H,13C) this result suggests that the carbon atom signal, occurring at δ 146.4, is 

meta related to H2 and ortho related to both H1 and H4. Furthermore H3 shows no 

correlation relationship to this carbon. On the basis of these data it can be said with 

certainty that the carbon signal, occurring at δ 146.4, must be C10 (Figure 3.4) since 

this is the only carbon atom that would show a multiple bond connectivity 

relationship with a weak coupling relationship to H1 and H4 (2J), a strong coupling 

relationship to H2 (3J), and no coupling relationship to H3 (4J). 

  

A strong cross-peak with C10 occurring at δ 3.64 is seen in line 4. This shows there is 

a strong interaction between the N-Me protons and C10 (line 5). This result 

categorically proves that the methyl group must be on the anilino nitrogen as opposed 

to on one of the pyrimidine ring nitrogens since in the latter case no N-Me proton to 

C10 correlation would occur. Furthermore the N-Me protons also share another cross-

peak with a carbon occurring at δ 160.4 (line 6). This carbon has a cross-peak with H5 

(δ 8.17) (lines 7 and 8). This relationship signals that the 13C resonance at δ 160.4 

must be from C8 (Figure 3.4). 
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Figure 3.4. HMBC spectrum of compound 37 in CDCl3. 1H chemical shifts are on the X-axis and 13C 
chemical shifts are on the Y-axis. Non-standard numbering is used in this structure. 
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Surprisingly the second product obtained (10 %) from the alkylation reaction was 

ascertained to be the fully conjugated N-methylanilino-thiazoloquinazoline 42. 
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1H NMR analysis revealed two methyl resonances (δ 2.93 and δ 3.78) which appeared 

to be representative of the thiazole methyl and anilino-methyl respectively. 

Interestingly both methyl signals had shifted slightly downfield relative to those of 37. 

Also noted from the 1H NMR spectrum of 42 was the disappearance of the methylene 

signals ascribed to C4 and C5 which coincided with the appearance of a pair of 

doublets in the aromatic region of the spectrum (δ 7.85 & δ 7.72, J 8.7) (Figure 3.5). 

Furthermore, whereas the chemical shifts for the four anilino protons in 42 remained 

effectively unchanged compared to those of compound 37, the pyrimidine proton 

resonance shifted considerably downfield (0.92 ppm) (Figure 3.5). This dramatic 

change in the chemical shift, together with the subtle changes for the methyl signals, 

is rationalized based on the change from a dihydrothiazoloquinazoline core structure 

as in 37 to the fully conjugated thiazoloquinazoline structure as in 42. Further proof of 

structure was gained by HRMS which showed the correct molecular weight and 

formula for 42. Indeed our tentative suggestion at the structure above was proved 

correct beyond doubt when reacting compound 37 with the dehydrogenating agent 

2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)94 (Scheme 3.4). After purification 

a product was isolated (63 %) which by mp, 1H NMR and HRMS analysis matched 

that of the side-product isolated from the alkylation reaction above, i.e. 42.  
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Scheme 3.4. Conformation of compound 42 structure. Conditions: 37 (1 mol eq), DDQ (1.2 mol eq), 

toluene, 63 %. 
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Figure 3.5. 1H NMR expansion (δ 9.20 – 7.40) of related compounds 37 and 42 in CDCl3. Non-
standard numbering is used in these structures. 
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Although the mechanism by which compound 42 forms during the alkylation reaction 

of 21d has not been established, it is possible that a small portion of 21d, or perhaps 

more likely 37, undergoes aerial oxidation by the radical mechanism shown in 

Scheme 3.5.  
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Scheme 3.5. Possible aerial oxidation of 37 to give the fully conjugated product 42. 
 

The formation of the fortuitous product 42 encouraged us to try dehydrogenation 

reactions on the ring-constrained thiazolylpyrimidine compounds 21 prepared earlier. 

Indeed using the same conditions as shown in Scheme 3.4 allowed the preparation of 

fully conjugated compounds 43 and 44 starting from the related 4,5-dihydro 

analogues 21a and 21k respectively (Scheme 3.6). 

 

 

 

 

 

 
 
Scheme 3.6. Formation of fully conjugated compounds 43 and 44. Conditions: 21a or 21k (1 mol eq), 

DDQ (1.2 mol eq), dry toluene, reflux 4h, 56 % 43, 50 % 44. 

 
The oxidative mechanism of DDQ is illustrated in Scheme 3.7. In the ionic 

elimination of hydrogen, loss of hydride ion is usually the first step.95 DDQ and 

indeed other quinones act as powerful hydride-abstracting reagents and therefore 

promote this reaction. In the case of ring-constrained compounds 37, 21a and 21k, 

loss of hydride from C5 would produce a secondary carbocation which would be 

resonance-stabilized by the anilino nitrogen. A proton transfer from C4-H to the 

hydroquinone generates the fully conjugated forms 42, 43 and 44 (step 2).    
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Scheme 3.7. Ionic elimination of hydrogen using DDQ.  

 
During the purification of 43 crystals suitable for X-ray analysis were obtained 

(Figure 3.6).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6. X-ray structure of compound 43. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): N(9)-C(10), 1.298(3); C(10)-S(11), 1.747(2); S(11)-C(12), 1.726(2); C(8)-
C(12), 1.390(3); C(8)-N(9), 1.388(3); C(12)-C(13), 1.407(3); C(6)-C(7), 1.365(3); N(1)-C(2), 1.315(3);  
C(2)-N(2), 1.365(3); C(2)-N(3), 1.381(3); N(2)-C(14), 1.406(3); C(14)-C(15), 1.393(3). 
Selected interbond angles (°): C(10)-N(9)-C(8), 110.33(18); N(9)-C(10)-S(11), 115.98(17); C(12)-
S(11)-C(10), 88.69(10); C(8)-C(12)-S(11), 109.95(15); N(9)-C(8)-C(12), 115.05(18); C(8)-C(12)-
C(13), 121.96(19); C(6)-C(7)-C(8), 118.84(19); C(2)-N(1)-C(13), 116.00(18); C(15)-C(14)-C(19), 
119.35(19). 
Selected torsion angles (°): C(8)-C(12)-C(13)-C(5), 1.5(3); C(5)-C(6)-C(7)-C(8), 0.4(3); N(3)-C(4)-
C(5)-C(13), 2.4(3); C(13)-N(1)-C(2)-N(3), 4.2(3); C(2)-N(2)-C(14)-C(15), -26.6(4). 
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As can be seen from the torsion angles of 43, C(8)-C(12)-C(13)-C(5), 1.5(3)° and 

C(5)-C(6)-C(7)-C(8), 0.4(3)°, the tricyclic thiazoloquinazoline is perfectly flat. 

Furthermore the C6-C7 bond length, 1.365(3) Å, is considerably shorter than that seen 

for the equivalent bond in compound 21d (1.523(5) Å) (Figure 2.18, p.69), and is in 

agreement with a typical C=C bond length of 1.33 Å. Furthermore, in comparison to 

compound 21d, which formed a hydrogen-bonding interaction with the crystallizing 

solvent acetic acid (Figure 2.18, p.69), compound 43, which was crystallized from 

ethanol, showed a dimeric structure whereby one of the pyrimidine nitrogens is 

hydrogen bonded to the anilino NH of another molecule and vice versa (Figure 3.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

 

Figure 3.7. X-ray structure of compound 43 showing a hydrogen-bonded dimeric structure. Non-

standard numbering is used in this structure. 
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Having synthesized all three control compounds 35, 36 and 37 along with the fully 

conjugated products 42 and 43, it was decided to assess their biological activity 

(Table 3.2).  

 

                             CDK inhibition, K i (μM)
Compd No. 1B 2E 4D 7H 9T

35 > 20 > 20 > 20 > 20 > 20
36 > 20 > 20 > 20 > 20 > 20
37 2.7 0.59 >10 1.8 1.2
42 7.5 1.6 > 10 > 10 > 10
43 1.7 0.024 2.7 > 10 > 10

 

 

 

 
 

Table 3.2. CDK inhibitory activities of control compounds: (1B, CDK1-cyclin B; 2E, CDK2-cyclin E; 

4D, CDK4-cyclin D1; 7H, CDK7-cyclin H-MAT1; 9T, CDK9-cyclin T1). The enzymatic assays were 

conducted by Dr Wayne Jackson and colleagues at Cyclacel. 

 

As expected pyrazole and pyrimidine control compounds 35 and 36 were found to be 

totally inactive as CDK inhibitors. Surprisingly however compound 37 showed some 

inhibitory potency toward CDKs 1, 2, 7 and 9 although this had decreased 

considerably in comparison to compound 21d (cf. Table 3.1, p.72). Furthermore the 

fully conjugated relative of 37, that is 42, also showed some biological activity 

against CDKs 1 and 2 but was inactive toward CDKs 4, 7 and 9. Finally the fully 

conjugated version of 21a, that is 43, showed high CDK inhibitory potency levels 

against CDK2, moderate potency levels toward CDKs 1 and 4 but was inactive 

against CDKs 7 and 9. In comparison to 21a, however, compound 43 was somewhat 

less effective as a CDK inhibitor (cf. Table 3.1, p.72). 

 

Also tested in CDK inhibitory assays at this point were some of the intermediate 

compounds which had been synthesized in the present study. Since intermediate 

compounds are very often related by structure to the final products it is not 

inconceivable that they will share some pharmacological properties.96 Compounds 

23b, 23c, 26, 30 and 32 (Figure 3.8) were tested in CDK enzymatic assays. Of the 

five intermediate compounds tested all were found to be inactive up to 20 μM. 

Compound 32 was expected to show some activity since its unconstrained relative, 

compound 11, inhibited both CDK2 and CDK4; albeit with modest potency (cf. Table 
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2.1, p.40). It is not known why in the ring-constrained form this compound loses all 

activity. 
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Figure 3.8. Synthetic intermediates tested in CDK enzymatic assays. 

 
Although not active as a CDK inhibitor itself, compound 32 was seen as an interesting 

intermediate due to the fact that it could serve as a starting point in the library 

generation of potential CDK inhibitor compounds. Previously, both within the 

unconstrained and ring-constrained thiazolylpyrimidine series, N-aryl groups had 

been synthesized with little, or no, attention paid to the synthesis of other N-

substituted derivatives. To investigate whether an aromatic amine was absolutely 

essential for potent inhibition of CDKs it was decided to make a number of amide, 

amine, sulfonamide and carbamate derivatives from 32 which could subsequently be 

tested in CDK enzymatic assays (Scheme 3.8). The simple chemistry employed to 

make compounds of this type was seen as an added advantage and was expected to 

help in the generation of a library within a short period of time. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Scheme 3.8. Proposed synthesis of amide, amine, sulfonamide and carbamate derivatives from 

aminopyrimidine 32. 
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However, before a firm commitment to this project was undertaken it was first 

decided to synthesize one compound from each family and assess its biological 

activity. This early utilization of the biological results was expected to signal whether 

this approach was feasible or not. 

 

As a first attempt it was proposed to make derivatives with insertion of carbonyl 45 or 

methylene 46 functions between the amino and phenyl groups (Figure 3.9). Indeed the 

latter compound 46 was expected to be synthetically accessible from 45 via the 

reduction of the amide as outlined in Scheme 3.8. 
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Figure 3.9. Amide and amine target compounds.  
 

Treatment of 32 with benzoyl chloride in pyridine gave the corresponding amide 45 in 

moderate yield (59 %) (Scheme 3.9). After purification crystals suitable for X-ray 

analysis were obtained (Figure 3.10). Interestingly amide 45 showed a dimeric 

structure (Figure 3.11) similar to that seen with compound 43 (Figure 3.7, p.85).  
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Scheme 3.9. Synthesis of N-acylated product 45. Conditions: 32 (1 mol eq), benzoyl chloride (1.1 mol 

eq), pyridine, 59 %. 
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Figure 3.10. X-ray structure of amide 45. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): N(9)-C(10), 1.310(2); C(10)-S(11), 1.7408(14); S(11)-C(12), 1.7231(15); 
C(8)-C(12), 1.369(2); C(8)-N(9), 1.3749(19); C(6)-C(7), 1.537(2); N(1)-C(2), 1.3346(18); C(2)-N(3), 
1.3418(19); C(2)-N(2), 1.3940(18); N(2)-C(21), 1.3770(19); C(21)-O(21), 1.2129(18); C(21)-C(14), 
1.506(2); C(14)-C(15), 1.394(2). 
Selected interbond angles (°): C(10)-N(9)-C(8), 110.51(12); N(9)-C(10)-S(11), 115.04(11); C(12)-
S(11)-C(10), 88.72(7); C(8)-C(12)-S(11), 110.27(11); C(12)-C(8)-N(9), 115.45(13); C(8)-C(12)-C(13), 
122.99(14); C(2)-N(1)-C(13), 115.25(12); C(19)-C(14)-C(15), 120.03(14). 
Selected torsion angles (°): C(8)-C(12)-C(13)-C(5), 12.2(2); C(5)-C(6)-C(7)-C(8), 41.60(17); C(2)-
N(2)-C(21)-O(21), -17.5(2); C(2)-N(2)-C(21)-C(14), 162.57(14). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.11. X-ray structure of amide 45 showing a hydrogen-bonded dimeric structure. Non-standard 

numbering is used in this structure. 
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An attempt to reduce the amide derivative 45 with lithium aluminium hydride to give 

the corresponding N-benzyl derivative 46 failed;97 only cleavage of the amide bond 

was observed (Scheme 3.10). Indeed analysis of the crude reaction mixture by 1H 

NMR spectroscopy revealed benzyl alcohol suggesting that upon cleavage the 

benzaldehyde is reduced (Scheme 3.11).   
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Scheme 3.10. Attempted reduction of amide 45. Conditions: 45 (1 mol eq), LiAlH4 (3 mol eq), THF, 

0–70 °C. 
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Scheme 3.11. Cleavage of amide bond and reduction of benzaldehyde with lithium aluminium hydride. 
 

32 was successfully alkylated when reacted with benzyl bromide giving 46 (20 %) 

(Scheme 3.12). Also isolated from this reaction in pure form was the doubly alkylated 

product 47 (5 %). The low product yields for this reaction can be explained based on 
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the fact that 46 and 47 proved difficult to separate by flash column chromatography. 

Therefore after purification the majority of fractions contained a mixture of the two. It 

was envisaged that in future the employment of reductive amination reactions would 

allow the cleaner synthesis of the mono-alkylated products (Scheme 3.8, p.87). 
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Scheme 3.12. Synthesis of N-alkylated products 46 and 47. Conditions: 32 (1 mol eq), LHMDS (1 

mol eq), benzyl bromide (1.2 mol eq), THF, -78 °C – RT. 

 

Proof of alkylation at the exocyclic NH2, as opposed to at the pyrimidine ring N1 or 

N3, in compounds 46 and 47 was obtained from the 1H NMR analyses. For the mono-

alkylated product 46, the benzyl CH2 group appeared as a doublet (δ 4.64, J 5.9) 

showing coupling to the NH group. Although not proven it is possible that 46 exists 

as a dimeric structure in solution. The hydrogen-bonding in the dimeric structure 

would prevent the rapid exchange of the NH proton, and hence allow the observation 

of the doublet for the benzyl CH2 group. If compared to the alternative N-alkylated 

structures 48 and 49 (Figure 3.12) no such coupling would arise for the benzyl CH2 

group.  
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Figure 3.12. Alternative N-alkylated products. 
 

For the doubly alkylated product 47 a singlet was observed in the 1H NMR spectrum 

for the two benzyl CH2 groups (δ 4.80, 4H), indicating that both were chemically 

equivalent. This could only occur when both benzyl groups are on the exocyclic 

nitrogen and not any of the other combinations, e.g. 50 and 51 (Figure 3.13).   
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Figure 3.13. Alternative N-dialkylated products. 
 

Sulfonation of 32 was achieved by heating with benzenesulfonyl chloride in pyridine 

(Scheme 3.13). After work-up and purification crystals suitable for X-ray analysis 

were obtained (Figure 3.14). 
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Scheme 3.13. Synthesis of sulfonamide 52. Conditions: 32 (1 mol eq), benzenesulfonyl chloride (1.4 

mol eq), pyridine, 35 %. 
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Figure 3.14. X-ray structure of sulfonamide 52. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): N(9)-C(10), 1.315(2); C(10)-S(11), 1.7335(17); S(11)-C(12), 1.7192(15); 
C(8)-C(12), 1.372(2); C(8)-N(9), 1.372(2); N(1)-C(2), 1.339(2); C(2)-N(3), 1.3654(19); C(2)-N(2), 
1.345(2); N(3)-C(4), 1.353(2); C(4)-C(5), 1.353(2); C(5)-C(13), 1.425(2); N(1)-C(13), 1.337(2); N(2)-
S(2), 1.6152(13); S(2)-O(2), 1.4432(12); S(2)-C(14), 1.7692(16); C(14)-C(15), 1.383(2). 
Selected interbond angles (°): C(10)-N(9)-C(8), 110.44(13); N(9)-C(10)-S(11), 115.15(12); C(12)-
S(11)-C(10), 88.76(8); C(8)-C(12)-S(11), 110.46(12); N(9)-C(8)-C(12), 115.18(14); C(8)-C(12)-C(13), 
122.83(14); C(13)-N(1)-C(2), 117.75(13); C(15)-C(14)-C(19), 121.28(14). 
Selected torsion angles (°): C(5)-C(6)-C(7)-C(8), 42.51(18); C(8)-C(12)-C(13)-C(5), 11.2(2); N(3)-
C(4)-C(5)-C(13), -1.8(2); N(3)-C(2)-N(2)-S(2), 162.58(10); C(13)-N(1)-C(2)-N(3), -2.1(2); C(2)-N(2)-
S(2)-C(14), 66.93(14); C(13)-N(1)-C(2)-N(2), 179.12(14); C(4)-C(5)-C(13)-N(1), 4.6(2). 

 

The crystal structure of sulfonamide 52 proves that in the solid state it exists as the 
tautomeric form 52a (Scheme 3.14).  
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Scheme 3.14. Tautomers of sulfonamide 52. 
 

Also revealed by the X-ray structure was that compound 52 exists as a dimer in the 

solid state (Figure 3.15). However in contrast to compounds 43 and 45 (Figures 3.7 

and 3.11), compound 52 exists with an opposite hydrogen bonding pattern; the 
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 pyrimidine N-H hydrogen bonds to the sulfonamide nitrogen of another molecule and 

vice versa (Figure 3.15). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.15. X-ray structure of sulfonamide 52 showing a hydrogen-bonded dimeric structure. Non-

standard numbering is used in this structure. 

 

Finally 32 was converted into a carbamate by reaction with 3-butenyl chloroformate 

(Scheme 3.15). 
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Scheme 3.15. Synthesis of carbamate 53. Conditions: 32 (1 mol eq), 3-butenyl chloroformate (1.2 mol 

eq), pyridine, 84 %. 
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Compounds 45, 46, 52 and 53 were tested in CDK enzymatic assays. Unfortunately 

all were found to be inactive up to 20 μM. This result signalled the end to this section 

of the project since it was unlikely that other N-substituted amide, amine, sulfonamide 

or carbamate derivatives would show activity. This result did serve to highlight the 

importance of N-aryl groups in active ring-constrained thiazolylpyrimidine 

compounds however.  
 

3.4 Conclusions  
 
Ring-constrained thiazolylpyrimidines 21 act as potent inhibitors of CDK enzymes. 

Although lacking selectivity in many cases, all of the constrained compounds have 

been shown to inhibit CDK2 with increased potency as compared to their 

unconstrained counterparts 9. Ring-constrained compounds have also been shown to 

bind in a similar manner to their unconstrained counterparts within the ATP binding 

site of CDK2. 

 

An attempt to extend the SARs has been undertaken. First by synthesizing some 

control compounds which due to the absence of key molecular features required for 

protein binding were expected to be inactive. This was proved correct for pyrazole 35 

and pyrimidine 36 but surprisingly the N-methylanilino compound 37 retained some 

biological activity. The isolation and characterisation of the fully conjugated side 

product 42 from the N-alkylation reaction allowed us to think of ways to make the 

analogous compounds from ring-constrained thiazolylpyrimidines 21. Indeed the 

oxidation of compounds 21 using DDQ has been demonstrated as an effective way to 

synthesize the fully conjugated forms. 

 

Finally an attempt to extend the SAR trends further by synthesizing N-substituted 

derivatives other than N-aryl appeared futile since all analogues made were inactive in 

CDK enzymatic assays. 
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Chapter 4 – Towards a CDK4 Selective Inhibitor Pharmacophore 
 

4.1 Background 

A recent publication has highlighted the 2-aminopyrido[2,3-d]pyrimidin-7(8H)-one 

template 54 as a novel CDK inhibitor pharmacophore.98
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In a bid to identify both potent and selective CDK4-cyclin D ATP antagonistic 

inhibitors, Toogood and colleagues synthesized and tested more than sixty analogues 

of 54 whereby positions R1 and R2 were modified.98 Although ultimately unsuccessful 

in identifying a truly selective CDK inhibitor from their study, Toogood and 

colleagues did however manage to unearth a number of potent CDK inhibitor 

compounds. Indeed, many interesting observations were made from their work 

particularly when compared to our discoveries within the ring-constrained 

thiazolylpyrimidine series.33 For example, unlike our own study which had identified 

potent but modestly selective CDK2-cyclin E inhibitor compounds (Chapter 3); their 

study by contrast had identified potent compounds where selectivity between the 

CDKs varied as a function of the R2, and to a lesser extent R1, side chains. At R1 a 

host of acyclic and cyclic alkyl groups, from methyl to bicyclo[2.2.1]heptane, were 

found to be tolerated. Interestingly, Toogood and colleagues found a wide variety of 

alkylamines, including benzylamine, positioned at C2, detrimental to CDK inhibitory 

activity. This is analogous to our findings within the ring-constrained 

thiazolylpyrimidine family (cf. p.95). Like us they too found that substituted anilino 

groups were optimal at C2. Furthermore they also found that methylation of the 

anilino NH created an inactive inhibitor. They, like us, put the loss of activity down to 

the fact that the aniline NH forms an important hydrogen bond with Leu83 in CDK2 

(Val96 in CDK4). These results were made all the more relevant given that one of 

Toogood’s inhibitors, 55, was shown to bind to the active site of CDK2 in an 

analogous fashion to the ring-constrained thiazolylpyrimidine 21d (Figure 4.1).98  
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Figure 4.1. Schematic representation of 2-aminopyrido[2,3-d]pyrimidin-7(8H)-one 55 and the ring-

constrained thiazolylpyrimidine 21d hydrogen bonding to the ATP binding site of CDK2. 

 
Perhaps the most intriguing observation noted from Toogood’s study, however, was 

that amine-substituted anilines, positioned at C2, provided some of the most potent 

and selective CDK4 inhibitors from this series (Figure 4.2). This observation was 

tentatively put down to a potential beneficial binding interaction between the tertiary 

amine (shown in red) in compounds 56 and 57 (which would be partially or fully 

protonated under physiological conditions) and the negatively charged Asp99 in 

CDK4.  
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Compound No.                         56                                                                   57 
IC50 CDK4-cyclin D (μM)      0.160                                                             0.085 
 
Figure 4.2. Two potent CDK4 inhibitor compounds. The amine thought to be involved in an 

electrostatic binding interaction with acidic residues in CDK4 is shown in red. 

 
Indeed this general observation corresponds to the recent findings of a computational 

study by McInnes et al.99 Here too they found that one of the structural requirements 

for CDK4 potency and selectivity was the presence of a geometrically positioned 

amine, like those in compounds 56 and 57. This amine, they reasoned, would be 

protonated under physiological conditions allowing it to form an electrostatic 

interaction with the acidic residues Asp99 and/or Glu144 found in the ATP binding 

site of CDK4. However in the case of CDK2, they reasoned, an unfavourable binding 
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interaction would occur between the ionisable amine component of the inhibitor and 

the basic residue Lys89 lining the ATP binding site. CDK4 does not contain this basic 

residue, but instead the smaller and uncharged threonine (Thr102) in its place, thereby 

supporting their claim. This more detailed study backs Toogood’s observation that 

amine-substituted anilines promote CDK4 inhibitory potency and further justifies the 

incorporation of such groups within CDK4 targeted compounds. 

 
More recently Toogood and colleagues have reported follow up research, whereby 

they have investigated further modifications to the 2-aminopyrido[2,3-d]pyrimidin-

7(8H)-one template 54 (p.96); this time focusing on changes to the C5 and C6 

positions.100,101 Indeed their rationale for attempting changes here came from studies 

comparing the way purvalanol B (cf. p.25) and 2-aminopyrido[2,3-d]pyrimidin-

7(8H)-one 55 bind to the ATP binding site of CDK2. They had noted that in CDK2 

bound forms the isopropyl group at N9 of purvalanol B occupies the same region of 

space in the ATP binding pocket as the C5 hydrogen of compound 55, suggesting that 

additional potency might be realized by substitution at that position (Figure 4.3).  
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Figure 4.3. Overlay of CDK2 bound purvalanol B (orange, background) and 55 (cream, foreground). 

Notice the important H-bonds formed between the inhibitors and Leu83 of CDK2 (green) in both cases 

as well as the protruding isopropyl group on N9 of purvalanol B. This appears to be in a position close  

to C5-H in compound 55 (Figure adapted from Ref 100). 
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In an effort to improve potency values towards CDK enzymes, additional compounds 

from the 2-aminopyrido[2,3-d]pyrimidin-7(8H)-one pharmacophore were made by 

Toogood; these incorporated a methyl substituent at the position analogous to the N9 

isopropyl group on the imidazole ring of purvalanol B, i.e. at C5.100  
 

However the authors noted that in contrast to their beliefs that a C5 methyl group 

substituent would have a generally positive effect on CDK inhibitory binding, the 

opposite was indeed true, and CDK inhibition was actually lowered. Nevertheless, 

quite unexpectedly, the addition of a methyl group to the C5 position gave exquisite 

selectivity properties towards CDK4-cyclin D as compared with all other CDKs; 

something which had not been noted through N8 and C2 changes alone (Table 4.1). In 

addition this effect appeared to be quite general and independent of the nature of the 

C2 and N8 substituents. 
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X (μM) (μM) (μM) (μM)
H N-Me 0.007 NA 0.014 0.039

0.085
2 0.246

H CH(CH2)3OH 0.034 >5 NA 4.55
H NH 0.006 NA 0.024 0.08

Me N-Me 0.018 >5 >5 >5
Me O 0.116 1.12 >5 >5
Me CH2 0.18 NA >5 NA
Me CH(CH2)3OH 0.114 >5 >5 >5
Me NH 0.014 >5 >5 >5

NA means data not available.

R1

H O 0.01 0.275 0.028
H CH 0.01 0.57 0.66

 

 

  

 

 

 

 

 
Table 4.1. Effect of the C5 methyl group on CDK4 inhibition selectivity. Table taken from Ref 100.  
 

In order to rationalize this observed selectivity, McInnes102 conducted molecular 

docking experiments with the C5 methylated derivatives (shown in Table 4.1) into a 

CDK4 homology structure. This study indicated that one of the possible reasons why 

the C5-methyl derivatives show excellent selectivity is because CDK4 can 

accommodate the steric bulk of the C5 methyl group, better than CDK2 or CDK1, 

because it has a more flexible hinge region (due to the presence of the smaller amino 
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acid Val96 as compared to Leu83 in CDKs 1 and 2) (Figure 4.4). Nevertheless due to 

the absence of structural information for CDK4 this idea remains a plausible 

explanation rather than a fact. 
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Figure 4.4. Comparison of likely binding modes of C5 methylated 2-aminopyrido[2,3-d]pyrimidin-

7(8H)-one 58 in CDK2 and CDK4. In the former a steric clash between Phe80 and the C5 methyl 

group would possibly occur. However in CDK4, which contains a flexible hinge region (due to the 

presence of the smaller amino acid Val96), the C5 methyl group may be better accommodated. 

 

Achieving CDK4, or indeed any other CDK inhibitor selectivity is a significant feat. 

The cyclin D dependent kinases (CDK4 and CDK6), as outlined in Chapter 1 (p.20), 

play a key role in the cell cycle. The fact that many tumours exhibit abnormalities in 

the pRB/ cyclin D/ p16INK4A pathway has meant CDK4 has received considerable 

attention as a suitable therapeutic target in the treatment of cancer.103

 

The recent findings by Toogood intrigued us, not least since their CDK4 selective 

inhibitor pharmacophore shared the same overall structure as our own ring-

constrained thiazolylpyrimidine pharmacophore. We speculated at this time whether 

the same structural modifications to our ring-constrained thiazolylpyrimidine 

pharmacophore might also lead to the generation of CDK4 selective inhibitors (Figure 

4.5). 
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                                      58                                              59 (R = NH2 or Me) 
Figure 4.5. Overlay diagram of CDK4 selective compound 58 (light brown, background) with 

proposed ring-constrained thiazolylpyrimidine compound 59 (green, foreground). The important 

structural features attributed with CDK4 selectivity are shown in red. The molecular modelling 

software used was Insight II. 
 

4.2 Synthetic strategy 

The incorporation of a methyl substituent into the ring-constrained 

thiazolylpyrimidine pharmacophore at position C5 combined with the introduction of 

a piperazine-substituted aniline at C8, as in 59, was expected to be a straightforward 

extension of our previous synthetic efforts. In order to imitate Toogood’s CDK4 

selective compound 58 as closely as possible it was envisaged that the fully 

conjugated thiazolylpyrimidine would be required. This was expected to be 

synthetically accessible from the 4,5-dihydro-precursor by reacting with DDQ. The 

proposed retrosynthesis of 59 (R = NH2) is shown in Scheme 4.1. 
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Scheme 4.1. Proposed retrosynthesis of ring-constrained (fully conjugated) thiazolylpyrimidine 59. 
 

As shown in Scheme 4.1, target compound 59 was expected to be made from the N-

acetyl protected, fully conjugated form 60 by treatment with acid.104 Based on the 

previous good results using DDQ as a dehydrogenating agent it was expected that 60 

would be prepared from the 4,5-dihydro species 61. Indeed it was thought that these 

two steps may be interchangeable, i.e. the N-acetyl deprotection could precede the 
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oxidation step. The important conversion of 61 into 60, using DDQ, was expected to 

eliminate the stereogenic centre at C5. Indeed from a drug discovery point of view 

this was seen as a very important conversion since 61 would exist as a racemate.105 

The usual pyrimidine retrosynthesis suggested enaminone 62 and arylguanidine salt 

63 as synthetic equivalents. It was envisaged that the acetyl protecting groups would 

be retained during the pyrimidine ring-forming reaction if the non-nucleophilic base 

DBU was used in place of sodium hydroxide (cf. p.65).  

 

Fortunately the synthesis of 63 had been reported106 and was made from cyanamide 

and aniline 64 under acidic conditions. 64 was made from 65 by reduction of the nitro 

group. 65 was reported to be made from commercially available starting materials, 1-

fluoro-4-nitrobenzene and 1-acetylpiperazine. It should be noted that the use of the 

mono-acetylated piperazine as starting material allows only the 1:1 reaction with 1-

fluoro-4-nitrobenzene. 

 

Enaminone 62 was expected to be synthetically accessible from enol 66 through 

reaction with morpholine in a similar manner to that described previously (cf. p.59). 

Similarly 66 was expected to be accessible from N-acetyl protected thiazole 67, which 

itself could be made from aminothiazole 68. Although not reported in the literature, 

68 itself was expected to be made from the α-bromodiketone 69 and thiourea by the 

Hantzsch thiazole synthesis method.66 Fortunately our planned synthesis of 68 started 

from the symmetrical α-bromodiketone 69 which would give only one product in the 

thiazole synthesis. Had the methyl group been on C4 or C6 of 68 a mixture of 

regioisomers would have resulted during the thiazole synthesis. Finally the reported 

synthesis of 69107 from commercially available 5-methylcyclohexane-1,3-dione would 

serve as a convenient starting point. 

 

4.3 Attempted synthesis of the potentially CDK4 selective compound 59 

As described above, the planned synthesis of 59 was based largely on the successful 

synthesis of structurally related ring-constrained thiazolylpyrimidines 21, discussed in 

detail in Chapter 2. The initial bromination of 5-methylcyclohexane-1,3-dione using 

identical conditions to Taylor107 gave, after purification, 2-bromo-5-

methylcyclohexane-1,3-dione 69 in modest yield (39 %). Proof of structure of the α-

bromodiketone was obtained by mass spectrometry, whereby the two molecular ions 
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(79Br and 81Br) were observed. Purity in this case was judged by TLC and RP-HPLC 

analysis. Interestingly in DMSO-d6 solution the 1H NMR spectrum of 69 showed that 

only the enol form existed. A broad singlet at δ 11.82 (1H) was characteristic of the 

hydroxyl proton. Two signals at δ 2.52 and δ 2.28 (both 2H) existed as doublets of 

doublets. The geminal and vicinal coupling constants of the former signal (δ 2.52) 

measured 16.6 and 4.4 Hz respectively. For the latter signal (δ 2.28) the geminal and 

vicinal coupling constants measured 16.1 and 10.7 Hz respectively. A multiplet δ 

2.21-2.10 (1H) was characteristic of the C5-proton. Finally a doublet at δ 0.98 (J = 6.8 

Hz, 3H) was assigned as the methyl group.   

 

Based on the successful synthesis of aminothiazole 23c (cf. p.46), it was decided to 

attempt the synthesis of related compound 68 using the same conditions. Heating one 

molar equivalent each of 69, thiourea and pyridine in methanol gave after work-up 

and purification aminothiazole 68 in excellent yield (86 %). Next, protection of the 

primary amine by heating 68 in neat acetic anhydride gave, after purification, 67 

again in excellent yield (88 %). Treatment of 67 with a large excess of sodium 

methoxide and freshly distilled ethyl formate led to the formation of enol 66 (71 % 

crude). 66 was then reacted with morpholine giving the desired enaminone product 62 

(88 %). The five step synthesis of enaminone 62 proved straightforward based on the 

previous observations noted from the synthesis of the related compound 31 (cf. p.59). 

The steps are summarized in Scheme 4.2.  
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Scheme 4.2. Linear synthesis of enaminone 62. Conditions: i) Bromine, glacial acetic acid, 39 % ii) 

thiourea, pyridine, methanol, 86 % iii) acetic anhydride, 88 % iv) NaOMe, ethyl formate, THF, 71 % 

crude v) morpholine, toluene, 88 %. 

 

Before the synthesis of arylguanidine 63 was undertaken (Scheme 4.1, p.102) it was 

first decided to attempt the pyrimidine ring-forming reaction between enaminone 62 

and para-dimethylaminophenylguanidine, since the latter reagent was at hand during 

the present study. The expected product from this reaction, 70, was then to be used as 
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a model on which to try the dehydrogenation reaction. Assuming all went well in 

these reactions it was decided 63 would then be prepared and subsequently reacted 

with 62. 
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Newly prepared 62 was heated, using microwave irradiation, with para-

dimethylaminophenylguanidine, using sodium hydroxide as base and 2-

methoxyethanol as solvent (Scheme 4.3). This reaction was attempted on a scale of 

100 mg of starting material 62 and hence was repeated a further four times in order to 

scale up. After combining the reaction mixtures and purification, compound 70 was 

obtained (42 %).  

 

 

 

 

 

 
Scheme 4.3. Synthesis of ring-constrained thiazolylpyrimidine 70. Conditions: 62 (1 mol eq), para-

dimethylaminophenylguanidine (2.5 mol eq), NaOH (5 mol eq), 2-methoxyethanol, microwave (120 

°C, 20 min), 42 %.  

 
An initial attempt at heating 70 with DDQ in dry toluene, using identical conditions to 

those previously described in Chapter 3 (cf. p.81), did not lead to the formation of the 

fully conjugated product 71 (Scheme 4.4), but instead a complex reaction mixture 

resulted as judged by TLC and 1H NMR analyses.  
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Scheme 4.4. Attempted synthesis of fully conjugated ring-constrained thiazolylpyrimidine 71. 

Conditions: 70 (1 mol eq), DDQ (1.2 mol eq), dry toluene, reflux 16h.  
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A second attempt at the above dehydrogenation reaction, however this time heating 

the mixture for a shorter time period (4h), also failed to produce any of the desired 

product 71. Here, as above, a complex reaction mixture resulted. 

  

It was discovered, through a detailed study of the relevant literature, that amine 

containing compounds, including aminothiazoles, are prone to react with substituted 

quinones through conjugate addition reactions (Scheme 4.5).108-110 This finding gave 

good reason as to why the reaction between 70 and DDQ failed, and more importantly 

why a complex mixture resulted. 
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Scheme 4.5. Possible conjugate addition reactions between aminothiazole 70 and DDQ. 

 
In an attempt to overcome possible conjugate addition reactions of the type shown in 

Scheme 4.5, it was decided to protect the free amine. However, rather than protect 70 

directly it was decided to conduct the pyrimidine ring-forming reaction between 62 

and para-dimethylaminophenylguanidine again, but this time using the milder 

reaction conditions previously described in Chapter 2 (cf. p.65) i.e. using DBU as 

base and pyridine as solvent. This allowed the preparation of the N-acetyl product 72 

in 53 % yield (Scheme 4.6).   
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Scheme 4.6. Synthesis of ring-constrained thiazolylpyrimidine 72. Conditions: 62 (1 mol eq), para-

dimethylaminophenylguanidine (2.5 mol eq), DBU (5 mol eq), pyridine, microwave (120 °C, 20 min), 

53 %. 

 

With 72 in hand a further attempt at the dehydrogenation reaction was undertaken. 

Heating N-acetyl protected 72 with DDQ, again using the conditions which proved 

successful previously (cf. p.83), did not lead to the formation of the desired product 

73 (Scheme 4.7). In this case, however, no complex reaction mixture resulted and 

starting material 72 was recovered after purification. This result suggested that in the 

aforementioned attempted dehydrogenation reactions (using 70 as starting material); it 

is likely that reactions between the free amine and DDQ do occur.    
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Scheme 4.7. Attempted synthesis of fully conjugated ring-constrained thiazolylpyrimidine 73. 

Conditions: 72 (1 mol eq), DDQ (1.2 mol eq), dry toluene, reflux 4h.  

 

Based on the unsuccessful attempts to dehydrogenate compounds 70 and 72 using 

DDQ, alternative conditions were sought to bring about this conversion. Those 

attempted are summarised in Table 4.2.  
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Reaction Starting material Reagent Solvent Conditions Lit. source Outcome

1 70 10 % Pd/C – microwave, 180 oC, 20 min 111 Recovered 70
2 70 10 % Pd/C THF microwave, 120 oC, 30 min – Recovered 70
3 70 10 % Pd/C nitrobenzene 150 oC, 48 h 112 Recovered 70
4 70 Sulfur – microwave, 270 oC, 1 h 113 decomposition
5 70 Sulfur – microwave, 180 oC, 1 h – Recovered 70

Table 4.2. Attempted dehydrogenation reactions. 

 

Two well known and widely used methods for the introduction of a carbon-carbon 

double bond from the corresponding dihydro compound involve heating in the 

presence of palladium or elemental sulfur.114 These conditions have proved effective 

in dehydrogenating dihydroquinazoline compounds previously,112,113 which might be 

seen as an obvious precedent. By adapting the conditions of Buu-Hoï,111 compound 

70 was heated as an intimate mixture with 10 % Pd/C without the use of solvent 

(reaction 1, Table 4.2). Due to the high temperatures employed and the fact that the 

reaction was attempted on a small scale (20 mg of 70), a microwave reactor was used. 

Unfortunately the desired product 71 (cf. p.105) was not obtained from this reaction, 

and only starting material was recovered. Another attempt, heating at a lower 

temperature and using solvent (reaction 2, Table 4.2), gave an identical result to 

reaction 1. One final attempt using Pd/C, this time following the method of Bathini112 

(reaction 3, Table 4.2), also failed to yield product. Attempts using sulfur as a 

dehydrogenating agent also proved unsuccessful in this series. An initial attempt, 

heating an intimate mixture of 70 with sulfur, following the method of Sengupta,113 

gave a complex mixture as judged by 1H NMR analysis (reaction 4, Table 4.2). A 

further attempt conducted at a lower temperature (reaction 5, Table 4.2) gave a yellow 

sublimate at the top of the microwave tube. Both 1H NMR and HRMS analysis 

revealed this to be starting material 70.   

 

Due to the failed attempts to oxidize the ring-constrained thiazolylpyrimidines 70 and 

72, it was decided to try an alternative approach. As a final attempt it was decided to 

try the dehydrogenation reaction on intermediate 62 (Scheme 4.8). This last attempt 

was hoped, more than expected, to give 74 which could then be condensed with the 

arylguanidine salt 63 in the pyrimidine ring-forming reaction. 

 

 

 108



 

O

S
N

NH
O O

N
O 62

O

S
N

NH 

 

 

 N
O 74

 
Scheme 4.8. Proposed transformation of 62 into 74.  
 

Heating 62 with DDQ (1.1 mol eq) in dry toluene for 1.5h, gave after purification a 

product (72 %) whose structure was tentatively proposed as benzothiazole 75.  
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The 1H NMR spectrum of 75 appeared much less complex than that of 62. Most 

notable was the disappearance of the morpholino signals as well as the three 

diastereotopic C-H signals ascribed to C4 and C5 in 62. A large shift in the C5 methyl 

group downfield was seen (from δ 1.06 in 62 to δ 2.64 in 75). Interestingly the C5 

methyl resonance in 75 appeared as a doublet (J 0.5 Hz), but with a far smaller 

coupling constant than that seen for 62 (J 6.9 Hz). This implied that the C4 proton in 

75 displays long range coupling (4J) to the C5 methyl protons in a similar manner to 

that seen for compound 26 (cf. p.52). The appearance of the C4 proton in the aromatic 

region of the spectra (δ 7.14) formed additional evidence that the dehydrogenation 

had worked. Finally the appearance of an aldehyde signal (δ 10.24) and two broad 

(exchangeable) resonances (δ 12.81 and δ 12.68) helped justify the assignment of the 

structure above, i.e. 75. Further proof of structure was gained by HRMS which 

showed the correct molecular weight and formula for 75. Finally conclusive evidence 

for the proposed structure was gained by X-ray analysis (Figures 4.6 and 4.7).  
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As benzothiazole 75 was crystallized from acetic acid, two intermolecular hydrogen 

bonds (between the thiazole nitrogen and the amide NH with one molecule of acetic 

acid) were observed (Figure 4.7). In addition an intramolecular hydrogen bond 

between the aldehyde carbonyl and C7 hydroxyl proton was noted. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6. X-Ray structure of benzothiazole 75. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): C(2)-N(3), 1.306(3); S(1)-C(2), 1.745(2); S(1)-C(9), 1.735(2); C(4)-C(9), 
1.393(3); N(3)-C(4), 1.391(3); C(8)-C(9), 1.388(3); C(7)-C(8), 1.418(3); C(6)-C(7), 1.423(3); C(5)-
C(6), 1.385(3); C(4)-C(5), 1.406(3); C(8)-O(8), 1.352(3); C(7)-C(13), 1.457(3); C(13)-O(13), 1.238(3); 
C(6)-C(12), 1.517(3); C(2)-N(2), 1.379(3); C(22)-O(22), 1.231(3); C(22)-O(23), 1.322(3). 
Selected interbond angles (°): N(3)-C(2)-S(1), 117.09(18); C(9)-S(1)-C(2), 87.21(11); C(4)-C(9)-
S(1), 111.85(18); N(3)-C(4)-C(9), 113.4(2); C(2)-N(3)-C(4), 110.4(2); C(8)-C(9)-C(4), 121.4(2); C(5)-
C(6)-C(7), 120.5(2). 
Selected torsion angles (°): C(5)-C(6)-C(7)-C(8), 0.000(1); C(5)-C(4)-C(9)-C(8), 0.000(1); C(12)-
C(6)-C(7)-C(8), 180.000(1); C(12)-C(6)-C(7)-C(13), 0.000(1); O(8)-C(8)-C(9)-S(1), 0.000(1); C(4)-
C(5)-C(6)-C(12), 180.000(1). 
Hydrogen bonds (Å): N(2)-H(2N)...O(22), 1.905(8); O(8)-H(8O)...O(13), 1.634(18); O(23)-
H(23O)...N(3), 1.716(5). 

  

 

 

 

 
 
 

 

 

 

 
 

Figure 4.7. X-Ray structure of benzothiazole 75 showing H-bonding. Non-standard numbering is used 

in this structure. 
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As shown in Figure 4.6, the bond length for C22-O22, the acetic acid carbonyl bond 

(1.231(3) Å), is shorter than C22-O23, the acetic acid C-OH bond (1.322(3) Å). This 

result proves that the acetic acid is a genuine solvent of crystallization and not indeed 

the acetate anion, since in the latter form all C-O bond lengths would be equivalent. 

Interestingly the torsion angles of 75 (Figure 4.6) show the molecule to be perfectly 

flat, as one might expect for an aromatic system.  

 

Based on the observations above, a plausible mechanism by which 62 converts into 75 

is shown in Scheme 4.9. 
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Scheme 4.9. Plausible mechanism by which 62 is converted into 75. 
 

The loss of a hydride anion from C5 is likely to be the first step in the 

dehydrogenation of 62. This process most likely occurs readily because the nitrogen 

atom from the morpholine group can help to expel the hydrogen atom and its pair of 

electrons as well as stabilise the resulting tertiary carbocation (step 1, Scheme 4.9).115 

A proton transfer from C4-H to the hydroquinone would generate the aromatic 

benzothiazole (step 2). Finally due to the instability of the morpholino-iminium ion it 

is likely that hydrolysis occurs readily to give the product 75 plus morpholine (steps 

3-5).  
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In an attempt to reinforce this mechanistic suggestion, enol 66 was also subjected to 

the oxidizing conditions described above (Scheme 4.10). It was pleasing to note that 

the same product 75 resulted from this reaction in excellent yield (90 %). The 

mechanism of this reaction presumably works in a similar fashion to that in Scheme 

4.9 apart from the latter steps since no hydrolysis is necessary (Scheme 4.11). 
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Scheme 4.10. Conversion of 66 into benzothiazole 75. Conditions: 66 (1 mol eq), DDQ (1.1 mol eq), 

dry toluene, reflux 1.5 h. 
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Scheme 4.11. Plausible mechanism by which 66 is converted into 75. 
 

As a result of the unexpected formation of benzothiazole 75 (rather than 74, cf. p.109) 

in the reaction between 62 and DDQ this line of inquiry was not pursued further. 
 

In a bid to determine if compound 70 (racemate) exhibited any CDK4 

potency/selectivity properties it was decided to test this analogue in CDK enzymatic 

assays. It was found that 70 did not act as a potent or selective CDK4 inhibitor. 

Indeed potency values for this compound were higher against CDK2-cyclin E (Ki 

0.111 μM) than for CDK4-cyclin D (Ki 2.523 μM). This result may be rationally 

explained based on the fact that 70 did not contain the para-piperazinophenyl moiety 

or exist as the final fully conjugated form and hence did not imitate Toogood’s CDK4 
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selective inhibitor 58 (cf. p.101) closely enough. Until solutions to the problematic 

oxidation reaction are resolved it will be impossible to gauge whether the C5-methyl 

group has the same dramatic effect on CDK4 selectivity in the present study as was 

noted in Toogood’s work.100,101  

 

4.4 Attempted synthesis of C5-gem-dimethyl ring-constrained 
thiazolylpyrimidines 
 
Due to the problems encountered in the attempts to oxidize 4,5-dihydro compounds 

70 and 72 within the C5-methyl ring-constrained thiazolylpyrimidine series it was 

decided to leave this challenging conversion and concentrate on the synthesis of other 

products substituted at the C5 position, but which did not contain a stereogenic centre. 

One of the most obvious ways of doing this within the present study was to synthesize 

some C5-gem-dimethyl analogues.116 Indeed it was hoped that synthesizing 

derivatives with a para-piperazinophenyl unit, such as compound 76 (R = NH2, 

NHMe, Me), would still allow the production of modest CDK4 selective 

compounds.99
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Based on the previous retrosyntheses (Schemes 2.2 & 4.1, pages 45 & 102) the 

starting material for this synthetic effort was commercially available 5,5-dimethyl-

1,3-cyclohexanedione (dimedone). Following the method of McMurry117 allowed the 

preparation of 2-bromo-5,5-dimethylcyclohexane-1,3-dione 77 easily and in good 

yield (80 %). Using conditions previously described (cf. pages 47 & 104), the α-

bromodiketone 77 was reacted with both thiourea and N-methylthiourea giving 

thiazole products 78 and 79 in excellent yields (88 % and 80 % respectively) (Scheme 

4.12).     
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Scheme 4.12. Synthesis of thiazole products 78 and 79. Conditions. i) Bromine, sodium acetate, 

glacial acetic acid, 80 % ii) thiourea, pyridine, methanol, 88 % iii) N-methylthiourea, pyridine, 

methanol, 80 %. 
 
With thiazole products 78 and 79 in hand, an attempt at forming the desired 

enaminone products was undertaken. Due to time constraints it was decided to 

attempt these syntheses in one step through reaction with DMF-DMA using the 

microwave conditions which, although limited by scale, had proved successful 

previously (cf. p.53). In small scale attempts, heating thiazoles 78 and 79 (100 mg) 

with DMF-DMA did not generate the desired products. In the case of aminothiazole 

78 only protection of the amine was observed leading to 80 as the only isolable 

product (Scheme 4.13). An attempt with N-methylaminothiazole 79 failed to generate 

the desired enaminone product either and starting material was recovered.   
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Scheme 4.13. Attempted enaminone formation reactions. Conditions: i) 78 or 79 (1 mol eq), DMF-

DMA (5 mol eq), ethanol (2 mL), microwave (150 °C, 30 min) (cf. p.53). 



The failure to generate enaminone products in either of the present examples was put 

down to the steric bulk of the C5-gem-dimethyl unit which was thought to be 

interfering with the reaction at C6. The fact that this reaction had proved successful 

previously (when C5 was unsubstituted, cf. p.53) supported this notion. 

 

It was decided to conduct one further experiment in this area whereby 79 was heated 

under reflux with a large excess of DMF-DMA (10 mol eq) for a prolonged period, 

with occasional monitoring of the reaction by RP-HPLC analysis. Surprisingly, after 

16 h it was discovered that approximately half of 79 had reacted to form one new 

product. In an attempt to drive the reaction to completion, further DMF-DMA (20 mol 

eq) was added and heating under reflux continued. After a period of 63 h all of 79 had 

reacted to form one new product as judged by RP-HPLC. Surprisingly after 

purification the new product (65 %) was discovered not to be the expected enaminone 

81, but instead the unexpected N,N-dimethylated thiazole 82 (Scheme 4.14). 
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Scheme 4.14. Unexpected formation of 82. Conditions. 79 (1 mol eq), DMF-DMA (10 mol eq), reflux 

16 h. Addition of further DMF-DMA (20 mol eq), reflux 63 h. 

 
1H NMR analysis of 82 revealed two singlets (each 6H) at δ 1.02 and δ 3.12 

characteristic of the C5-gem-dimethyl and thiazole NMe2 groups respectively. In 

addition two further singlets (each 2H) at δ 2.28 and δ 2.63 were observed, 

characteristic of the two methylene groups. Additional proof of structure was gained 

by HRMS which showed the correct molecular weight and formula for 82. Finally 

conclusive proof of the above structure was gained by X-ray analysis (Figure 4.8). 
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Figure 4.8. X-Ray structure of 82. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): C(2)-N(3), 1.328(5); S(1)-C(2), 1.748(5); S(1)-C(9), 1.729(4); C(4)-C(9), 
1.380(6); N(3)-C(4), 1.341(5); C(8)-C(9), 1.432(6); C(8)-O(8), 1.228(5); C(6)-C(12), 1.526(6); C(2)-
N(2), 1.328(5); N(2)-C(10), 1.454(5). 
Selected interbond angles (°): N(3)-C(2)-S(1), 114.8(3); C(9)-S(1)-C(2), 88.5(2); C(4)-C(9)-S(1), 
109.4(3); N(3)-C(4)-C(9), 117.1(4); C(2)-N(3)-C(4), 110.1(3); C(4)-C(9)-C(8), 125.0(4); C(7)-C(6)-
C(5), 109.6(3); C(10)-N(2)-C(11), 118.5(3). 
Selected torsion angles (°): C(4)-C(5)-C(6)-C(12), 168.2(3); S(1)-C(2)-N(3)-C(4), -1.4(4); C(7)-C(8)-
C(9)-S(1), 177.2(3); C(13)-C(6)-C(7)-C(8), 67.9(4). 
 

Formamide acetals such as DMF-DMA are known to act as alkylating agents.118 

Based on the observations within the present study and those previously disclosed by 

Eschenmoser119 it has been possible to suggest a mechanism for the conversion of 79 

into 82 (Scheme 4.15).  
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Scheme 4.15. Plausible mechanism by which 79 converts into 82. 
 

It is generally accepted that DMF-DMA can transform to the highly reactive iminium 

cation plus methoxide anion (step 1, Scheme 4.15).120 It is likely that over time 79 

reacts slowly with the iminium cation via a SN2 nucleophilic substitution reaction 
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(step 2, Scheme 4.15). This would give 83 and DMF. A simple proton transfer from 

83 to the methoxide anion would give the observed product from this reaction 82. 

This mechanistic suggestion seems sensible since apart from 82 the only other 

remaining products would be trace amounts of DMF and MeOH along with unreacted 

DMF-DMA. 

 

Due to the problems incurred using DMF-DMA in the present studies it was decided 

to resort to the tried and tested method for enaminone formation, i.e. via the 

intermediate enol. Using conditions analogous to those previously described (cf. pages 

57 and 104) compound 80 was treated with a large excess of sodium methoxide and 

ethyl formate giving enol 84 in high yield (86 %) (Scheme 4.16). During the 

purification of 84 crystals suitable for X-ray analysis were obtained (Figure 4.9). As 

previously suspected this structure proved that the enol double bond geometry was Z 

and hence the intramolecular hydrogen bond between the C7 carbonyl oxygen and the 

hydroxyl proton was present (cf. p.58). Also revealed from the X-ray structure of 84 

was the geometry of the N,N-dimethylformamidine double bond, which in the solid 

state is E.  
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Scheme 4.16. Conversion of 80 into enol 84. Conditions. 80 (1 mol eq), NaOMe (20 mol eq), ethyl 

formate (20 mol eq), dry toluene.  
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Figure 4.9. X-Ray structure of 84. Non-standard numbering is used in this structure. 
 
Selected bond lengths (Å): N(9)-C(10), 1.330(2); C(10)-S(11), 1.7446(19); S(11)-C(12), 1.7313(18); 
C(8)-C(12), 1.371(3); C(8)-N(9), 1.365(2); C(12)-C(13), 1.441(3); O(13)-C(13), 1.261(2); C(4)-C(5), 
1.352(3); C(4)-O(4), 1.342(2); C(10)-N(10), 1.369(2); C(1)-N(1), 1.326(2); N(1)-C(3), 1.456(2). 
Selected interbond angles (°): N(9)-C(10)-S(11), 114.99(13); C(12)-S(11)-C(10), 88.77(9); C(8)-
C(12)-S(11), 109.75(13); N(9)-C(8)-C(12), 116.70(16); C(10)-N(9)-C(8), 109.79(15); C(8)-C(12)-
C(13), 123.87(16); C(5)-C(6)-C(7), 110.17(15); C(4)-C(5)-C(13), 117.51(17). 
Selected torsion angles (°): C(8)-N(9)-C(10)-S(11), 0.3(2); C(5)-C(6)-C(7)-C(8), -46.0(2); C(8)-
C(12)-C(13)-C(5), -9.8(3); N(1)-C(1)-N(10)-C(10), 179.59(17); S(11)-C(12)-C(13)-C(5), 174.54(14); 
S(11)-C(12)-C(13)-O(13), -6.1(3). 
Hydrogen bond (Å): O(4)-H(4O)...O(13), 1.628(16). 

 

Disappointingly attempts to convert enol 84 into the morpholino enaminone 85, using 

conditions previously described (cf. p.59), failed and unreacted 84 was recovered 

(Scheme 4.17).  
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Scheme 4.17. Attempted conversion of enol 84 into enaminone 85. Conditions. 84 (1 mol eq), 

morpholine (1.1 mol eq), toluene.   
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Likewise it was quickly discovered that using different reaction conditions and 

secondary amines also led to the same conclusion as above (Table 4.3). 

 
NMe2 NMe2 

Reaction 2° Amine Solvent Heating source Temp/Time Outcome
1 Morpholine (1.2 mol eq) Toluene microwave 150°C / 20 min Recovered 84  
2 Morpholine (10 mol eq) EtOH microwave 100 °C / 20 min Recovered 84  
3 Dimethylamine (10 mol eq) EtOH microwave 100 °C / 20 min Recovered 84  
4 Pyrrolidine (1.2 mol eq)* Toluene microwave 60 °C / 5 min Recovered 84  

S
N

Me

O
86

S
N

N

O

OH

+
S

N
N 

 

O

R2N
84 (50 mg)

HNR2
 

 

 
 

* Catalytic amount of p-TsOH used. 
Table 4.3. Attempted enaminone formation reactions. 
 
It was apparent from these reactions that enol 84 was unreactive towards secondary 

amines. This was probably because of a steric effect from the C5-gem-dimethyl 

group. The fact that these conditions had proved so successful in the synthesis of the 

morpholino enaminones where C5 was unsubstituted, or contained the mono-methyl 

group, supported this notion. Unfortunately this result signalled the end to this 

approach.  

 
4.5 Variations to the Hantzsch thiazole synthesis  
 
While investigating the synthesis of thiazoles 78 and 79 (Scheme 4.12, cf. p.114) an 

attempt to make the equivalent 2-methylthiazole 86 was also made. 

 

 

 

 

 

The sole literature reference to 86 was made by Mahajanshetti et al.121 during studies 

into the synthesis of 2-substituted 4,5,6,7-tetrahydrobenzothiazoles and their 5,5-

dimethyl-7-oxo derivatives. Therefore an initial attempt at the synthesis of 86 was 

made using the exact method of Mahajanshetti, i.e. reacting 77 (1 mol eq) with 

thioacetamide (1 mol eq) in THF, at room temperature, for 48 h. Surprisingly all 
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attempts to make 86 following this procedure failed, and instead an intractable 

mixture was obtained (Scheme 4.18). It is of interest to point out that colleagues who 

also attempted the conditions of Mahajanshetti, on analogous systems, were similarly 

unsuccessful. 

 O

O

Br S

H2N

S
N

 
+

 O
77 86 

Scheme 4.18. Attempted synthesis of 86 using conditions of Mahajanshetti.121 Conditions. 77 (1 mol 

eq), thioacetamide (1 mol eq), THF, RT 48 h. 

 

The failure to reproduce the only literature synthesis of 86 signalled that a new 

approach was needed. As discussed in detail previously, Lehmann77 had reported the 

synthesis of 2-methylthiazole 23a (cf. p.46), which was seen as an obvious literature 

precedent in the attempt to prepare 86. Nevertheless when the conditions of Lehmann 

were adapted to the present example none of the desired product was obtained, and 

once more a complex reaction mixture resulted (Scheme 4.19).   

 O

O

Br S

H2N

S
N

 
+

 
O

77 86 
Scheme 4.19. Attempted synthesis of 86 using conditions of Lehmann.77 Conditions. 77 (1 mol eq), 

thioacetamide (1 mol eq), pyridine, 50 °C, 3 h. 

 
As a final effort it was decided to attempt the preparation of 86 using the conditions 

which had proved so successful in the synthesis of both amino- and 

methylaminothiazoles 78 and 79 (Scheme 4.12, cf. p.114). Heating one molar 

equivalent each of 77, thioacetamide and pyridine in methanol gave a clean 

conversion as judged by TLC analysis. After the solvent had been removed and the 

reaction mixture dried, 1H NMR analysis revealed the presence of pyridine 

hydrobromide plus a new product. Purification by flash column chromatography gave, 

as the only product (68 %), a yellow oil; the 1H NMR spectrum of which is shown in 

Figure 4.10.       
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Figure 4.10. 1H NMR expansion (δ 5.50 – 0.90) of compound 87 in CDCl3. 



Upon close inspection of the 1H NMR spectrum (Figure 4.10) it became apparent that 

the product from this reaction was not 2-methylthiazole 86. Two pieces of evidence 

were critical in this conclusion. Firstly the methyl signal at δ 3.68 appeared too far 

downfield in order to be a thiazole methyl (typical value ~ δ 2.70 in CDCl3). Secondly 

a singlet at δ 5.36 (1H, not exchangeable) was present which could not come from 86. 

The initial evidence suggested that the signal at δ 3.68 was likely to be from an OMe 

group and that at δ 5.36 from a CH. The remaining signals, i.e. two CH2 groups (δ 

2.26 and δ 2.20) and one gem-dimethyl unit (δ 1.06) gave clues to the possible 

structure, i.e. 87. 13C NMR and HRMS analysis agreed with the above assignment. IR 

analysis showed peaks at 1656 and 1608 cm–1 characteristic of a C=O and conjugated 

C=C.  

 O

O
87

 

 

 

In order to prove the structure of 87 correct beyond doubt it was decided to prepare an 

authentic sample via an unambiguous route. Following Porta’s method for the 

preparation of β-keto enol ethers,122 87 was prepared (64 %) from 5,5-dimethyl-1,3-

cyclohexanedione (dimedone) and methanol in the presence of the Lewis acid 

titanium tetrachloride (TiCl4). Pleasingly the authentic sample matched the isolated 

product from the attempted thiazole synthesis in appearance (yellow oil) as well as by 

spectroscopic analysis (1H and 13C NMR spectroscopy). In fact a mixture of authentic 

87 with that of the unexpected product showed one clean product by 1H NMR 

analysis, proving beyond doubt that the product from the attempted thiazole synthesis 

between 77 and thioacetamide was indeed 87.  

 

It is interesting to note that a compound described by Chuang et al.123 as 2-

methoxydimedone has spectra (1H and 13C NMR spectroscopy) which provide an 

exact match with those of 87. Chuang et al. synthesized this compound by oxidation 

of dimedone with cerium (IV) ammonium nitrate (CAN) in methanol. Their reported 

structure must therefore remain open to question (Scheme 4.20). 
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Scheme 4.20. Reported conversion of dimedone into 2-methoxydimedone by Chuang.123 Conditions. 

CAN, MeOH, RT, 31 %. 

 

The fact that 87 had formed during the attempted synthesis of 2-methylthiazole 86 

intrigued us. Although the mechanism by which this occurred was not initially 

obvious it was thought that an intramolecular rearrangement reaction (in intermediate 

88) may have been responsible for the formation of 87 (Scheme 4.21). Although 

speculative at the present stage this mechanism did account for two of the key 

observations. Firstly it accounted for the disappearance of the two starting materials 

(77 and thioacetamide) during the reaction. Secondly it provided a plausible 

explanation as to why both thiourea and N-methylthiourea, when subjected to the 

same reaction conditions, gave the expected Hantzsch thiazole products 78 and 79 in 

high yield and without the formation of 87. 
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Scheme 4.21. The mechanism of the Hantzsch thiazole synthesis (top), proposed by Okamiya,124 

involves a bimolecular reaction between the α-haloketone and thioamide forming an intermediate 

isothiouronium salt. This can undergo an intramolecular dehydrocyclisation reaction to form the 

thiazole ring. A possible mechanistic suggestion for the observed product 87, in the reaction between 

77 and thioacetamide, involves an intramolecular rearrangement reaction in intermediate 88 which 

would give 87 plus thiocyanic acid (bottom, proposed by Dr D.M. Smith). 
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In an attempt to prove whether this mechanistic suggestion could be correct it was 

decided to try and synthesize 2-methylthiazole 86 again, however this time 

substituting ethanol for methanol as solvent. It was expected that if 87 did form 

during this reaction this result would almost categorically prove that the methyl group 

had come from the thioacetamide and not from the solvent. Conversely however, if an 

OEt product was formed, i.e. 89 then this would signal that the solvent was playing a 

part in the reaction. 

 
O

O

 

 
89  

Heating an equimolar mixture of 77, thioacetamide and pyridine in ethanol for the 

same length of time as had been conducted in the experiment using methanol (18 h) 

gave a clean conversion as judged by TLC analysis. After the solvent had been 

removed and the crude reaction mixture purified by flash column chromatography, the 

ethoxy product 89 was identified as the sole product (74 %) (Scheme 4.22). The 1H 

NMR quite clearly showed the presence of an ethyl signal (Figure 4.11). Furthermore 

the 1H NMR spectrum matched with an authentic sample of 89 reported by Frimer.125
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Scheme 4.22. Unusual formation of 89 during attempted synthesis of 2-methylthiazole 86. Conditions. 

77 (1 mol eq), thioacetamide (1 mol eq), pyridine (1 mol eq), EtOH, reflux 18 h.   
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Figure 4.11. 1H NMR expansion (δ 5.48 – 0.88) of compound 89 in CDCl3. 
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This result seemed to signal that the methoxy group in compound 87, and the ethoxy 

group in 89, had come from the solvent, and hence the methyl group in 87 had not 

come from the thioacetamide as originally proposed in Scheme 4.21. Nevertheless 

this result did not explain the disappearance of both the starting materials (77 and 

thioacetamide) during the reactions, nor did it help to explain the fact that both 78 and 

79 were simple to prepare using these conditions. These contradictory pieces of 

evidence led us to believe that there was a flaw in our assessment of the experiment 

conducted in Scheme 4.22, since even if 87 did form as the initial product (via the 

mechanism described in Scheme 4.21) the fact that the reaction was done in ethanol 

may have led to a conjugate addition reaction between 87 and the solvent leading, 

eventually, to the observed product 89 (Scheme 4.23). The fact that pyridine 

hydrobromide was present in the reaction may have acted as a catalyst. 
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Scheme 4.23. Possible conjugate addition mechanism by which the methoxy ether 87 is converted into 

the ethoxy ether 89.  

 

This proposed conversion was seen as a relatively easy experiment to prove and was 

achieved by heating an equimolar mixture of 87 and pyridine hydrobromide in ethanol 

(Scheme 4.24). After 18 hours the mixture was cooled, before the solvent was 

removed. After work-up the crude reaction mixture was loaded onto silica and 

purified by flash column chromatography. A product was obtained (light yellow oil, 

95 %) which by 1H NMR analysis was 89.  
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Scheme 4.24. Conversion of 87 into 89 via a conjugate addition reaction. Conditions. 87 (1 mol eq), 

pyridine hydrobromide (1 mol eq), ethanol, reflux 18 h.  
 

This experiment proved that 87 was vulnerable to conjugate addition reactions, 

particularly under the conditions described in Scheme 4.23. Hence our initial 

conclusion of the ethoxy group coming from the solvent, although correct, did not 

rule out the initial formation of 87 via the mechanism presented in Scheme 4.21. 

Therefore the postulated mechanism by which 87 formed (Scheme 4.21, p.123) may 

indeed be correct.  

 

It is of interest to note that other groups have also reported the formation of 

unexpected products during apparently routine Hantzsch thiazole syntheses. For 

example Singh et al.126,127 had noted the formation of α-thiocyanatoketones during the 

reaction of thioamide 90 with α-haloketones (Scheme 4.25). Their proposed 

mechanism of formation is detailed in Scheme 4.26 and involves the initial 

decomposition of the thioamide into thiocyanic acid plus dimethylpyrazole. Next a 

nucleophilic addition reaction through the sulfur atom of thiocyanic acid displaces the 

halogen of the α-haloketone to give the observed product. The formation of α-

thiocyanatoketones was noted on numerous occasions.  
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Scheme 4.25. Unusual formation of α-thiocyanatoketones during the reaction of α-haloketones with 90. 
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Scheme 4.26. Mechanism proposed by Singh126 for the formation of α-thiocyanatoketones. 

 

4.6 Conclusions 
 
We have reported herein the attempted synthesis of a potentially CDK4 selective ring-

constrained thiazolylpyrimidine inhibitor 59. Based on the previous synthetic efforts 

(described in Chapters 2 and 3) a successful synthesis of both 2-amino-5-methyl-N-

[4-(dimethylamino)phenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine 70 and 2-

acetamido-5-methyl-N-[4-(dimethylamino)phenyl]-4,5-dihydrothiazolo[4,5-

h]quinazolin-8-amine 72 were achieved. Whereas reaction of 4,5-dihydro ring-

constrained thiazolylpyrimidines 21 with DDQ gave the corresponding fully 

conjugated forms readily it appears C5-methyl derivatives 70 and 72 do not react as 

favourably. Attempts to overcome this using other well reported methods of 

dehydrogenation also failed. 

 

An attempt at the synthesis of the achiral C5-gem-dimethyl derivatives also proved 

unsuccessful due to the difficulty in forming the desired enaminones. It is highly 

likely that the steric bulk of the C5-gem-dimethyl group interferes in these reactions.  

 

Finally an attempt to form the seemingly simple 2-methylthiazole 86 led to a number 

of problems. Initial attempts at its synthesis using literature conditions proved 

fruitless. Using an adapted procedure which had proved successful when thiourea and 

N-methylthiourea were reacted with 77 was not successful when using thioacetamide. 

In this case an unusual product 87 was formed. A plausible mechanism for its 

formation has been described.  
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Chapter 5 – Experimental 
 

Chemical reagents and solvents were obtained from commercial sources. When 

necessary solvents were dried and/or purified by standard methods. The microwave 

reactor used was a CEM Discover™
 model with a circular single mode cavity design, 

and a maximum operating power of 300 W. Thin-layer chromatography was 

performed using glass plates coated with silica gel; developed plates were air-dried 

and analyzed under a UV lamp (254/365 nm). Flash column chromatography was 

performed using Fluorochem silica gel (35-70 μm). Magnesium sulfate was used as a 

drying agent for organic solutions. Melting points were determined in open capillaries 

using an Electrothermal 9100 melting point apparatus and are uncorrected. NMR 

spectra were recorded on a Bruker Avance 300 spectrometer (1H, 300 MHz; 13C, 75.5 

MHz) using the residual solvent as the internal reference in all cases. Assignments of 
13C resonances were made, where possible, using the PENDANT sequence. Infrared 

spectra were recorded on a Jasco FT/IR-460 instrument. Elemental microanalyses and 

high resolution mass spectrometry were performed within the School of Chemistry, 

University of St. Andrews. Target compounds for which elemental microanalysis was 

not obtained, or for which analytical results obtained were not within 0.4 % of 

calculated values, were further analyzed using two different RP-HPLC systems: linear 

gradient elution using H2O/MeCN (containing 0.1 % CF3COOH) and H2O/MeOH 

(containing 0.1 % CF3COOH). In both cases a flow rate of 1 mL/min and a gradient 

elution time of 25 min, using a Phenomenex Synergi 4μ Hydro-RP 80A (150 × 4.6 

mm) column and a diode array detector, were used. 
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5.1 Experimental for Chapter 2 

 

1. 2-Bromocyclohexane-1,3-dione (24).77

 
O

 Br

O
 

 

A suspension of cyclohexane-1,3-dione (50 g, 446 mmol) in CH2Cl2 (110 mL) was 

stirred at 5 °C (ice-bath). Bromine (56 g, 352 mmol) in CH2Cl2 (17 mL) was added 

drop-wise over a period of 5-10 min. The reaction mixture was stirred at room 

temperature for 1 h. The tan coloured precipitate that formed was collected by 

filtration, washed with CH2Cl2:PhMe (1:1) and air dried. Crystallization from water 

afforded 24 as cream-coloured crystals (42.6 g, 50 %): mp 161-162 °C (Lit.77,128 185 

°C, 163-164 °C, N.B. large discrepancies exist in the literature over the true mp of this 

compound). Anal. RP-HPLC: tR 7.9 min (0-60 % MeCN, purity 100 %). HRMS (ESI–

): [M – H]– calcd for C6H6
79BrO2 188.9551, found 188.9557. 

 

2. 2-Methyl-5,6-dihydro-4H-benzothiazol-7-one (23a).77  

 
N

S 

 
O 

A mixture of 24 (20 g, 105 mmol) and thioacetamide (7.9 g, 105 mmol) in pyridine 

(150 mL) was heated at 50 °C for 16 h. The reaction mixture was cooled before the 

solvent was removed under vacuum. NaCl solution (150 mL of 10 % w/v aq soln) was 

added and the product was extracted with CH2Cl2 (4 × 100 mL). The combined 

organic extracts were washed with 10 % aq NaCl solution (2 × 100 mL) before being 

dried and concentrated under vacuum. The dark viscous oil was purified by 

distillation (Kugelrohr) to afford 23a as a yellow oil (7.1 g, 40 %): bp 83-85 °C at 

0.19 Torr (Lit.77 85-87 °C at 0.2 Torr). 1H NMR (CDCl3): δ 2.99 (t, 2H, J 6.1, CH2), 

2.73 (s, 3H, CH3), 2.58 (t, 2H, J 6.1, CH2), 2.18 (quintuplet, 2H, J 6.1, CH2). 13C 

NMR (CDCl3): δ 192.2 (C=O), 173.3 (C), 166.9 (C), 130.9 (C), 37.9 (CH2), 27.1 

(CH2), 23.1 (CH2), 20.1 (CH3). HRMS (EI): [M]+ calcd for C8H9NOS 167.0405, 

found 167.0400. 
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3. 2-Methylamino-5,6-dihydro-4H-benzothiazol-7-one (23b).77

 
NH

NH2
N

S

O

N
S

O

 

 

 

 

A mixture of 24 (8.0 g, 42.0 mmol) and N-methylthiourea (3.8 g, 42.0 mmol) in 

pyridine (63 mL) was stirred at room temperature for 96 h. The reaction mixture was 

evaporated to dryness, NaCl solution (100 mL of 10 % w/v aq soln) was added and the 

product was extracted with CH2Cl2 (4 × 80 mL). The organic extracts were dried and 

concentrated under vacuum. Crystallization from EtOAc gave 23b as yellow crystals 

(3.26 g, 43 %): mp 180-182 °C (Lit.77 180-182 °C). 1H NMR (CDCl3): δ 7.90 (br s, 1H, 

NH), 2.99 (s, 3H, CH3), 2.72 (t, 2H, J 6.1, CH2), 2.49 (t, 2H, J 6.1, CH2), 2.10 

(quintuplet, 2H, J 6.1, CH2). 13C NMR (CDCl3): δ 191.1 (C=O), 176.6 (C), 168.1 (C), 

120.0 (C), 37.5 (CH2), 32.5 (CH3), 27.7 (CH2), 23.2 (CH2). MS (ESI+): m/z 183.07 [M 

+ H]+. 

 

4. 2-Amino-5,6-dihydro-4H-benzothiazol-7-one (23c).77  

 

 

 

 

 

A solution of 24 (1.0 g, 5.24 mmol) and thiourea (0.4 g, 5.24 mmol) in EtOH (7 mL) 

was heated under reflux for 3 h. The reaction mixture was cooled before the solvent 

was removed under vacuum. The crude solid was washed with Et2O (20 mL) before 

being dissolved in water (10 mL). 6M ammonium hydroxide solution (4 mL) was 

added drop-wise causing a yellow solid to precipitate out of solution. The yellow solid 

was collected, dried and crystallized from EtOH to give 23c as yellow crystals (0.41 

g, 47 %): mp 280-282 °C (Lit.77 280-282 °C). Anal. RP-HPLC: tR 7.2 min (0-60 % 

MeCN, purity 100 %). 1H NMR (DMSO-d6): δ 8.11 (br s, 2H, NH2), 2.66 (t, 2H, J 

6.1, CH2), 2.35 (t, 2H, J 6.1, CH2), 1.97 (quintuplet, 2H, J 6.1, CH2). 13C NMR 

(DMSO-d6): δ 189.9 (C=O), 173.8 (C), 168.5 (C), 118.8 (C), 37.1 (CH2), 27.1 (CH2), 

22.8 (CH2). HRMS (EI): [M]+ calcd for C7H8N2OS 168.0357, found 168.0352. 
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In an improved synthesis: A mixture of 24 (40 g, 209 mmol), thiourea (15.9 g, 209 

mmol) and pyridine (16.5 g, 209 mmol) in MeOH (250 mL) was heated under reflux 

for 3.5 h. The yellow precipitate was collected by filtration while the solvent was hot 

before being air dried (19.9 g). Concentration of the filtrate gave a light brown solid 

which yielded a further product crop after crystallization from MeOH (6.85 g). (Total 

product = 26.75 g, 76 %). Analytical data (mp, 1H NMR and HRMS) matched that 

above.  

 

5. 2-[2-(N,N-Dimethylamino)vinyl]-5,6-dihydro-4H-benzothiazol-7-one (25). 

 
N

N
S

O

 

 

 

 

 

A mixture of 23a (518 mg, 3.1 mmol) and N,N-dimethylformamide dimethyl acetal 

(DMF-DMA) (441 mg, 3.7 mmol) was heated at 80 °C causing a brown precipitate to 

form. After cooling, the brown crude residue was purified by flash column 

chromatography (EtOAc-hexane), through a bed of silica, affording the unexpected 

product 25 as a yellow solid (489 mg, 71 %): mp 167-169 °C. 1H NMR (CDCl3): δ 

7.55 (d, 1H, J 13.0, CH), 5.39 (d, 1H, J 13.0, CH), 2.97 (s, 6H, N(CH3)2), 2.89 (t, 2H, 

J 5.9, CH2), 2.54 (t, 2H, J 5.9, CH2), 2.15 (quintuplet, 2H, J 5.9, CH2). HRMS (EI): 

[M]+ calcd for C11H14N2OS 222.082685, found 222.082757. [Note: Using tert-

butoxybis(dimethylamino)methane (Bredereck’s reagent) in place of DMF-DMA led 

to the same result as above]. 
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6. (E)-3-(Dimethylamino)-1-(2,4-dimethylthiazol-5-yl)prop-2-en-1-one (17). 

 
N

S

O

N

 

 

 

 

 

A mixture of 1-(2,4-dimethylthiazol-5-yl)ethanone 14 (3.24 g, 20.9 mmol) and DMF-

DMA (2.98 g, 25.1 mmol) was heated under reflux for 1 h. After cooling the mixture 

was loaded onto silica and purified by flash column chromatography (EtOAc-hexane). 

17 was obtained as an orange solid (3.15 g, 72 %). Crystals suitable for X-ray analysis 

were obtained from EtOAc (cf. p.49): mp 97-98 °C (Lit.64 96-98 °C). 1H NMR 

(CDCl3): δ 7.71 (d, 1H, J = 12.2, CH), 5.36 (d, 1H, J = 12.2, CH), 3.13 (br s, 3H, 

NCH3), 2.89 (br s, 3H, NCH3), 2.69 (s, 3H, CH3), 2.65 (s, 3H, CH3). 13C NMR 

(CDCl3): δ 181.2 (C), 165.5 (C), 154.6 (C), 153.6 (CH), 133.0 (C), 94.9 (CH), 45.0 

(NCH3), 37.3 (NCH3), 19.2 (CH3), 17.8 (CH3). HRMS (ESI+): [M + H]+ calcd for 

C10H15N2OS 211.0905, found 211.0907. Found: C, 57.2; H, 6.7; N, 13.4. C10H14N2OS 

requires C, 57.1; H, 6.7; N, 13.3 %. 

 

7. N’-(5,6-Dihydro-4H-benzothiazol-7-one-2-yl)-N,N-dimethylformamidine (26). 

 
N

N
N

S

O

 

 

 

 

 

Compound 23c (2.5 g, 14.8 mmol) was suspended in N,N-dimethylformamide 

dimethyl acetal (DMF-DMA) (4.4 g, 37 mmol) and the mixture was heated at 80 °C 

for 2 h. After cooling, the excess DMF-DMA was evaporated leaving a yellow crude 

solid. Crystallization from EtOH afforded pure 26 as tan coloured crystals (3.16 g, 96 

%): mp 135-137 °C. 1H NMR (CDCl3): δ 8.31 (s, 1H, CH), 3.17 (br s, 3H, NCH3), 

3.13 (d, 3H, J 0.5, NCH3), 2.87 (t, 2H, J 6.1, CH2), 2.56 (t, 2H, J 6.1, CH2), 2.15 

(quintuplet, 2H, J 6.1, CH2). 13C NMR (CDCl3): δ 191.6 (C=O), 180.1 (C), 166.5 (C), 

156.5 (CH), 124.3 (C), 41.2 (CH3), 37.5 (CH2), 35.2 (CH3), 27.2 (CH2), 22.9 (CH2). 
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HRMS (EI): [M]+ calcd for C10H13N3OS 223.084532, found 223.084611. [Note: 

Using tert-butoxybis(dimethylamino)methane (Bredereck’s reagent) in place of DMF-

DMA leads to the same result as above]. 

 

8. N’-(6-N,N-Dimethylaminomethylene-5,6-dihydro-4H-benzothiazol-7-one-2-yl)-

N,N-dimethylformamidine (22b). 

 
N

N
N

S

O

 

 

 

 

 N
 

A mixture of 23c (0.5 g, 2.97 mmol) and N,N-dimethylformamide dimethyl acetal 

(DMF-DMA) (1.77 g, 14.8 mmol) in EtOH (2 mL) was heated under microwave 

irradiation (150 °C, 30 min). After cooling, the reaction mixture was evaporated to 

dryness to yield a brown solid. Purification by flash column chromatography (EtOAc-

hexane) through a bed of silica afforded 22b as a tan solid (489 mg, 59 %): mp 185-186 

°C. Anal. RP-HPLC: tR 9.3 min (0-60 % MeCN, purity 100 %). 1H NMR (CDCl3): δ 

8.23 (s, 1H, CH), 7.44 (s, 1H, CH), 3.13 (br s, 3H, NCH3), 3.11 (d, 3H, J 0.5, NCH3), 

3.08 (s, 6H, N(CH3)2), 3.01 (t, 2H, J 6.6, CH2), 2.83 (t, 2H, J 6.6, CH2). MS (ESI+): m/z 

279.15 [M + H]+. Also isolated from this reaction was 26 (220 mg, 33 %). 

 

9. 6-(Hydroxymethylene)-2-methyl-5,6-dihydro-4H-benzothiazol-7-one (27) 

(procedure adapted from ref 81). 

 N
S 

 
O

 
OH

 

Dry MeOH (6.1 mL) was added drop-wise to a suspension of hexane-washed NaH 

(1.08 g, 45 mmol) in dry Et2O (70 mL). After evolution of hydrogen had subsided, 

freshly distilled ethyl formate (6.67 g, 90 mmol) was added, followed by 23a (3.01 g, 

18 mmol) in dry Et2O (12 mL), causing a dark yellow solid to precipitate. The 
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reaction mixture was stirred at room temperature for 16 h, water was added (100 mL) 

with caution, and the solution was acidified to pH 5 (conc. HCl). The organic layer 

was separated and the aqueous layer was extracted with EtOAc (5 × 125 mL). The 

combined organic extracts were dried and concentrated under vacuum to leave a 

brown oily crude product. Purification by flash column chromatography (EtOAc-

hexane) afforded pure 27 as a yellow solid (2.32 g, 66 %): mp 107-108 °C (Lit.80 112-

113 °C). Anal. RP-HPLC: tR 12.6 min (0-60 % MeCN, purity 100 %). 1H NMR 

(DMSO-d6): δ 11.03 (br s, 1H, OH), 7.61 (s, 1H, CH), 2.89 (t, 2H, J 6.7, CH2), 2.73 

(t, 2H, J 6.7, CH2), 2.69 (s, 3H, CH3). 13C NMR (DMSO-d6): δ 181.9 (C), 172.2 (C), 

164.7 (C), 152.9 (CH), 132.1 (C), 111.1 (C), 25.8 (CH2), 20.9 (CH2), 20.0 (CH3). 

HRMS (ESI–): [M – H]– calcd for C9H8NO2S 194.0276, found 194.0272. 

 

10. 2-Acetamido-5,6-dihydro-4H-benzothiazol-7-one (28). 

 

NH
N

S

O

O
 

 

 

 

Compound 23c (6.46 g, 38.4 mmol) in Ac2O (35 mL) was heated under reflux. After 

2 h the mixture was cooled and evaporated to dryness. Et2O was added and the 

resulting yellow precipitate collected by filtration, washed with fresh Et2O and dried 

to afford 28 as a light yellow solid (7.69 g, 95 %): mp 267-268 °C (Lit.129,130 262-264, 

272 °C). Anal. RP-HPLC: tR 11.4 min (0-60 % MeCN, purity 100 %). 1H NMR 

(DMSO-d6): δ 12.55 (br s, 1H, NH), 2.84 (t, 2H, J 6.1, CH2), 2.48 (t, 2H, J 6.1, CH2), 

2.18 (s, 3H, COCH3), 2.07 (quintuplet, 2H, J 6.1, CH2). 13C NMR (DMSO-d6): δ 

192.0 (C=O), 169.3 (C), 164.1 (C), 162.7 (C), 123.2 (C), 37.2 (CH2), 26.3 (CH2), 22.6 

(CH3), 22.6 (CH2). HRMS (EI): [M]+ calcd for C9H10N2O2S 210.0463, found 

210.0460. 
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11. 2-Acetamido-6-(hydroxymethylene)-5,6-dihydro-4H-benzothiazol-7-one (29).  

 

NH
N

S

O

OH

O
 

 

 

 

 
 

A mixture of 28 (3.0 g, 14.3 mmol) and NaOMe (15.5 g, 286 mmol) in dry THF (100 

mL) was stirred at room temperature for 15 min under a nitrogen atmosphere. The 

reaction mixture was cooled in an ice-bath before freshly distilled ethyl formate (21.2 

g, 286 mmol) was added drop-wise. The mixture was brought to room temperature 

and stirred for 5 h. Evaporation of the solvent gave a yellow solid which was 

dissolved in water (100 mL). The solution was carefully acidified to pH 5 (conc. HCl) 

and was extracted with EtOAc (3 × 100 mL). The combined organic extracts were 

dried and concentrated under vacuum to afford 29 as a yellow solid (3.11 g, 91 %): 

mp 213-215 °C. 1H NMR (DMSO-d6): δ 12.52 (s, 1H, NH), 10.83 (d, 1H, J 6.4, OH), 

7.57 (d, 1H, J 6.4, CH), 2.88-2.69 (m, 4H, CH2-CH2), 2.18 (s, 3H, COCH3). 13C NMR 

(DMSO-d6): δ 182.0 (C), 169.1 (C), 162.1 (C), 161.4 (C), 151.3 (CH), 124.8 (C), 

110.8 (C), 25.3 (CH2), 22.6 (CH3), 20.5 (CH2). HRMS (EI): [M]+ calcd for 

C10H10N2O3S 238.0412, found 238.0407. 

 

12. (E)-2-Methyl-6-(morpholinomethylene)-5,6-dihydro-4H-benzothiazol-7-one 

(30) (procedure adapted from ref 84).  

 
N

S 

 
O 

N
O 

 

To a solution of 27 (2.00 g, 10.2 mmol) in PhMe (30 mL), morpholine (0.97 g, 11.2 

mmol) was added and the reaction mixture was heated under reflux for 2 h. 

Evaporation of the solvent gave a brown crude solid, which was purified by flash 

column chromatography (EtOAc-hexane) to afford 30 as a yellow solid (2.35 g, 87 
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%). Crystals suitable for X-ray analysis were obtained from EtOH (cf. p.60): mp 186-

187 °C. Anal. RP-HPLC: tR 12.7 min (0-60 % MeCN, purity 100 %). 1H NMR 

(DMSO-d6): δ 7.34 (s, 1H, CH), 3.66-3.60 (m, 4H, 2 × CH2), 3.52-3.46 (m, 4H, 2 × 

CH2), 2.94-2.81 (m, 4H, CH2-CH2), 2.66 (s, 3H, CH3). 13C NMR (CDCl3): δ 182.0 

(C=O), 171.6 (C), 162.3 (C), 147.9 (CH), 133.2 (C), 103.3 (C), 67.0 (2 × CH2), 51.5 

(2 × CH2), 26.8 (CH2), 25.0 (CH2), 20.3 (CH3). HRMS (CI): [M + H]+ calcd for 

C13H17N2O2S 265.1010, found 265.1007. Found: C, 58.9; H, 6.1; N, 10.9. 

C13H16N2O2S requires C, 59.1; H, 6.1; N, 10.6 %. 

 

13. 2-Acetamido-6-(morpholinomethylene)-5,6-dihydro-4H-benzothiazol-7-one 

(31).  

 

NH
N

S

O

O
 

 

 

 
N

O
 

 

To a suspension of 29 (2.5 g, 10.5 mmol) in PhMe (40 mL), morpholine (1.00 g, 11.5 

mmol) was added. The reaction mixture was heated under reflux for 2 h. After cooling 

the dark yellow precipitate was collected, washed with EtOH and dried to afford 31 as 

a yellow solid (2.86 g, 89 %). Analytically pure product was obtained after 

crystallization from EtOH: mp ca. 240 °C (dec). 1H NMR (DMSO-d6): δ 12.37 (br s, 

1H, NH), 7.28 (s, 1H, CH), 3.66-3.59 (m, 4H, 2 × CH2), 3.49-3.42 (m, 4H, 2 × CH2), 

2.93-2.75 (m, 4H, CH2-CH2), 2.16 (s, 3H, COCH3). 13C NMR (DMSO-d6): δ 181.0 

(C=O) 169.3 (C), 161.5 (C), 158.8 (C), 146.9 (CH), 125.6 (C), 102.1 (C), 66.5 (2 × 

CH2), 50.9 (2 × CH2), 26.0 (CH2), 24.0 (CH2), 23.0 (CH3). HRMS (EI): [M]+ calcd for 

C14H17N3O3S 307.0991, found 307.0999. 
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14. General procedure for the preparation of N-aryl-guanidine salts (20, X = CH 

or N).  

 R2

N
S

N

N

NH2

NH

N
H

H2N
X

R3 

 

 

The preparation of N-aryl-guanidine nitrate or hydrochloride salts has been described 

previously.64,68,70,71 In general, to an ice-cooled mixture of the appropriate aniline (25 

mmol) in EtOH (12 mL) was added nitric acid (1.8 mL of 70 % solution in water) 

drop-wise with stirring. After complete addition, cyanamide (5 mL of 50 % solution 

in water) was added and the mixture was heated at 100 °C for 22 h. After cooling to 

room temperature, the mixture was concentrated under vacuum. The resulting residue 

was purified by crystallization from EtOH. 

 

15. 2-Methyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine (32).  

 

 

 

 

 

A mixture of 30 (2.24 g, 8.47 mmol), guanidine hydrochloride (0.89 g, 9.32 mmol) 

and NaOH (0.37 g, 9.32 mmol) in EtOH (100 mL) was heated under reflux for 4 h. 

Evaporation of the solvent gave a brown solid which was purified by flash column 

chromatography through a bed of silica using 10 % MeOH-EtOAc as the eluant. The 

product 32 was obtained as a yellow solid (1.66 g, 90 %): mp 241-243 °C. Anal. RP-

HPLC: tR 8.7 min (0-60 % MeCN, purity 100 %). 1H NMR (DMSO-d6): δ 8.08 (s, 

1H, pyrimidine-H), 6.51 (br s, 2H, NH2), 2.98-2.80 (m, 4H, CH2-CH2), 2.69 (s, 3H, 

CH3). 13C NMR (DMSO-d6): δ 168.0 (C), 162.7 (C), 158.4 (C), 155.9 (C), 155.7 

(CH), 128.1 (C), 113.6 (C), 24.9 (CH2), 23.0 (CH2), 19.4 (CH3). HRMS (EI): [M]+ 

calcd for C10H10N4S 218.0626, found 218.0618. Found: C, 54.8; H, 4.7; N, 25.5. 

C10H10N4S requires C, 55.0; H, 4.6; N, 25.7 %. 
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16. 2,8-Dimethyl-4,5-dihydrothiazolo[4,5-h]quinazoline (33). 

 
N

S

N

N

 

 

 

 

A mixture of 30 (200 mg, 0.756 mmol), acetamidine hydrochloride (79 mg, 0.832 

mmol) and NaOH (33 mg, 0.832 mmol) in EtOH (10 mL) was heated under reflux for 

3 h. After cooling the solvent was removed under vacuum leaving a brown crude 

solid. Purification by flash column chromatography (EtOAc-hexane) afforded 33 as a 

white crystalline solid (141 mg, 86 %): mp 95-97 °C. Anal. RP-HPLC: tR 15.4 min (0-

60 % MeCN, purity 100 %). 1H NMR (CDCl3): δ 8.35 (s, 1H, pyrimidine-H), 3.11-

2.99 (m, 4H, CH2-CH2), 2.74 (s, 3H, CH3), 2.64 (s, 3H, CH3). 13C NMR (CDCl3): δ 

169.7 (C), 166.8 (C), 158.8 (C), 156.4 (C), 154.2 (CH), 128.6 (C), 122.2 (C), 25.7 

(CH3), 24.9 (CH2), 24.3 (CH2), 19.8 (CH3). HRMS (ESI+): [M + H]+ calcd for 

C11H12N3S 218.0752, found 218.0750. 

 

17. General procedure for the preparation of 2-methyl- and 2-amino-N-aryl-4,5-

dihydrothiazolo[4,5-h]quinazolin-8-amine (21). Method A (procedure adapted from 

ref 64).  

 
N

S

R

 

 

N

N

N
H

R
 

 

A mixture of 30 or 31 (1 equiv), the appropriate N-aryl-guanidine salt (20; 2 equiv) 

and NaOH (2 equiv) in 2-methoxyethanol was heated at 125 °C for 22 h. After 

cooling the solvent was evaporated and the residue was purified by flash column 

chromatography using appropriate mixtures of EtOAc and hexane as the eluant. The 

products were further purified by crystallization from appropriate solvents. 
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18. General procedure for the preparation of 2-methyl-N-aryl-4,5-

dihydrothiazolo[4,5-h]quinazolin-8-amine (21). Method B (procedure adapted 

from ref 88). 

 
N

S

N
S

N

N

N
H

N

N

 

 
R

 

N
H

 

 

To a dry resealable Schlenk tube purged with nitrogen was added 32 (218 mg, 1.0 

mmol), Cs2CO3 (456 mg, 1.4 mmol), xantphos ligand (3.2 mg, L/Pd = 1.1) and the 

appropriate aryl bromide (1.0 mmol) under a stream of nitrogen. Pd2(dba)3 (4.6 mg, 1 

mol %) in dry 1,4-dioxane (3 mL) was added via cannulation. The Schlenk tube was 

capped and carefully subjected to three cycles of evacuation–backfilling with 

nitrogen. The tube was sealed and immersed in a 115 °C oil bath for 16 h. After 

cooling the solvent was evaporated and the residue was purified by flash column 

chromatography using appropriate mixtures of EtOAc and hexane as the eluant. The 

products were further purified by crystallization from appropriate solvents. 

 

19. 2-Methyl-N-phenyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine (21a).  

 

 

 

 

 

 

From 30 and 20 (R2 = R3 = H, X = CH) by Method A, cream solid (46 %). From 32 

and bromobenzene by Method B (71 %): mp 223-224 °C. Anal. RP-HPLC: tR 16.0 

min (0-60 % MeCN, purity 100 %), tR 17.3 min (0-60 % MeOH, purity 100 %). 1H 

NMR (CDCl3): δ 8.19 (s, 1H, pyrimidine-H), 7.67-7.61 (m, 2H, o-Ph-H), 7.37-7.29 

(m, 2H, m-Ph-H), 7.27 (br s, 1H, NH), 7.05-6.98 (m, 1H, p-Ph-H), 3.12-2.92 (m, 4H, 

CH2-CH2), 2.76 (s, 3H, CH3). 13C NMR (CDCl3): δ 169.5 (C), 159.2 (C), 159.1 (C), 

157.0 (C), 155.2 (CH), 139.8 (C), 129.0 (CH), 128.8 (C), 122.2 (CH), 118.9 (CH), 
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116.6 (C), 25.4 (CH2), 24.0 (CH2), 19.9 (CH3). HRMS (EI): [M]+ calcd for C16H14N4S 

294.0939, found 294.0947. 

 

20. 2-Methyl-N-[3-hydroxyphenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine 

(21b). 

N
S

N

N

 

 
OH

 

N
H

 

 

From 30 and 20 (R2 = OH, R3 = H, X = CH) by Method A, yellow solid (8 %): mp ca. 

310 °C (dec). Anal. RP-HPLC: tR 13.7 min (0-60 % MeCN, purity 100 %), tR 21.2 

min (0-60 % MeOH, purity 100 %). 1H NMR (DMSO-d6): δ 9.41 (s, 1H, OH/NH), 

9.23 (s, 1H, OH/NH), 8.30 (s, 1H, pyrimidine-H), 7.29 (dd, 1H, J 2.3, 2.3, Ar-C2H), 

7.19 (ddd, 1H, J 9.0, 1.9, 0.8, Ar-H), 7.02 (dd, 1H, J 8.3, 8.3, Ar-C5H), 6.34 (ddd, 1H, 

J 7.9, 2.3, 0.8, Ar-H), 3.05-2.90 (m, 4H, CH2-CH2), 2.73 (s, 3H, CH3). 13C NMR 

(DMSO-d6): δ 168.7 (C), 159.0 (C), 158.9 (C), 157.4 (C), 156.0 (C), 155.2 (CH), 

141.7 (C), 128.8 (CH), 127.8 (C), 115.9 (C), 109.7 (CH), 108.3 (CH), 105.9 (CH), 

24.7 (CH2), 23.0 (CH2), 19.4 (CH3). HRMS (CI): [M + H]+ calcd for C16H15N4OS 

311.0967, found 311.0962. 

 

21. 2-Methyl-N-[4-hydroxyphenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine 

(21c).  

 
N

S

N

N

 

 
OH

N
H

 

 

From 30 and 20 (R2 = H, R3 = OH, X = CH) by Method A, yellow solid (30 %): mp 

268-269 °C. Anal. RP-HPLC: tR 12.3 min (0-60 % MeCN, purity 100 %), tR 19.4 min 

(0-60 % MeOH, purity 100 %). 1H NMR (DMSO-d6): δ 9.21 (s, 1H, OH/NH), 9.02 (s, 

1H, OH/NH), 8.22 (s, 1H, pyrimidine-H), 7.53-7.46 (m, 2H, AA′XX′, Ar-C3H), 6.71-

6.64 (m, 2H, AA′XX′, Ar-C2H), 3.03-2.86 (m, 4H, CH2-CH2), 2.71 (s, 3H, CH3). 13C 

NMR (DMSO-d6): δ 168.5 (C), 159.3 (C), 158.7 (C), 155.9 (C), 155.3 (CH), 152.0 
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(C), 132.3 (C), 127.9 (C), 120.6 (CH), 115.1 (C), 114.8 (CH), 24.7 (CH2), 23.1 (CH2), 

19.4 (CH3). HRMS (ESI–): [M – H]– calcd for C16H13N4OS 309.0810, found 

309.0812. 

 

22. 2-Methyl-N-[3-nitrophenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine 

(21d). 

 
N

S

N

N

 

 NO2

N
H

 

 

 

From 30 and 20 (R2 = NO2, R3 = H, X = CH) by Method A, yellow solid (5 %). From 

32 and 1-bromo-3-nitrobenzene by Method B (83 %). Crystals suitable for X-ray 

analysis were obtained from AcOH (cf. p.69): mp 227-228 °C. Anal. RP-HPLC: tR 

21.9 min (0-60 % MeCN, purity 100 %). 1H NMR (DMSO-d6): δ 10.08 (s, 1H, NH), 

8.95 (dd, 1H, J 2.3, 2.3, Ar-C2H), 8.35 (s, 1H, pyrimidine-H), 8.00 (ddd, 1H, J 8.2, 

2.3, 0.8, Ar-H), 7.74 (ddd, 1H, J 8.2, 2.3, 0.8, Ar-H), 7.52 (dd, 1H, J 8.2, 8.2, Ar-

C5H), 3.04-2.90 (m, 4H, CH2-CH2), 2.71 (s, 3H, CH3). 13C NMR (DMSO-d6): δ 169.2 

(C), 159.3 (C), 158.4 (C), 156.0 (C), 155.4 (CH), 148.0 (C), 142.0 (C), 129.6 (CH), 

127.6 (C), 124.2 (CH), 117.1 (C), 115.2 (CH), 111.9 (CH), 24.6 (CH2), 23.1 (CH2), 

19.5 (CH3). HRMS (EI): [M]+ calcd for C16H13N5O2S 339.0789, found 339.0797. 

Found: C, 56.4; H, 3.5; N, 20.8. C16H13N5O2S requires C, 56.6; H, 3.9; N, 20.6 %. 

 

23. 2-Methyl-N-[4-dimethylaminophenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-

8-amine (21e).  

 
N

S

N

N

 

 
N

N
H

 

 

 

From 30 and 20 (R2 = H, R3 = NMe2, X = CH) by Method A, dark yellow solid (92 

%): mp 176-177 °C. Anal. RP-HPLC: tR 11.9 min (0-60 % MeCN, purity 100 %), tR 
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20.4 min (0-60 % MeOH, purity 100 %). 1H NMR (DMSO-d6): δ 9.17 (s, 1H, NH), 

8.22 (s, 1H, pyrimidine-H), 7.58-7.51 (m, 2H, AA′XX′, Ar-C3H), 6.73-6.66 (m, 2H, 

AA′XX′, Ar-C2H), 3.03-2.86 (m, 4H, CH2-CH2), 2.83 (s, 6H, N(CH3)2), 2.72 (s, 3H, 

CH3). 13C NMR (DMSO-d6): δ 168.6 (C), 159.4 (C), 158.8 (C), 156.0 (C), 155.5 

(CH), 146.0 (C), 130.9 (C), 128.5 (C), 120.3 (CH), 114.9 (C), 113.0 (CH), 40.8 

(N(CH3)2), 24.8 (CH2), 23.1 (CH2), 19.5 (CH3). HRMS (CI): [M + H]+ calcd for 

C18H20N5S 338.1439, found 338.1438. 

 

24. 2-Amino-N-[3-nitrophenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine 

(21f).  

 
N

S

NH2

 

 NO2

N

N

N
H

 

 

 

From 31 and 20 (R2 = NO2, R3 = H, X = CH) by Method A, dark yellow solid (11 %): 

mp ca. 320 °C (dec). Anal. RP-HPLC: tR 14.7 min (0-60 % MeCN, purity 100 %), tR 

18.8 min (20-70 % MeOH, purity 100 %). 1H NMR (DMSO-d6): δ 9.87 (s, 1H, NH), 

9.00 (dd, 1H, J 2.3, 2.3, Ar-C2H), 8.15 (s, 1H, pyrimidine-H), 8.00 (ddd, 1H, J 8.2, 

2.3, 0.8, Ar-H), 7.85 (br s, 2H, NH2), 7.73 (ddd, 1H, J 8.2, 2.3, 0.8, Ar-H), 7.52 (dd, 

1H, J 8.2, 8.2, Ar-C5H), 2.92-2.73 (m, 4H, CH2-CH2). 13C NMR (DMSO-d6): δ 171.8 

(C), 159.9 (C), 158.4 (C), 157.4 (C), 152.9 (CH), 148.1 (C), 142.4 (C), 129.5 (CH), 

124.1 (CH), 115.9 (C), 114.8 (CH), 114.6 (C), 111.8 (CH), 25.2 (CH2), 23.0 (CH2). 

HRMS (ESI+): [M + H]+ calcd for C15H13N6O2S 341.0821, found 341.0821. 
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25. 2-Methyl-N-[4-trifluoromethylphenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-

8-amine (21g).  

N

N

S
N

N
H

 
1

2
3

4

5

6
7

8

3a

5a

9a
9b

9

 

 CF3

1'
2'

3'

4'

N
S

 

 

From 30 and 20 (R2 = H, R3 = CF3, X = CH) by Method A (8 %). From 32 and 4-

bromobenzotrifluoride by Method B (86 %). Yellow crystals from EtOAc: mp 212-

213 °C. Anal. RP-HPLC: tR 20.5 min (10-70 % MeCN, purity 100 %). 1H NMR 

(CDCl3): δ 8.22 (s, 1H, pyrimidine-H), 7.79-7.72 (m, 2H, AA′XX′, Ar-C3H), 7.60-

7.53 (m, 2H, AA′XX′, Ar-C2H), 7.46 (br s, 1H, NH), 3.15-2.94 (m, 4H, CH2-CH2), 

2.77 (s, 3H, CH3). 13C NMR (CDCl3): δ 169.8 (C2), 159.4 (C3a), 158.6 (C8), 157.1 

(C9a), 155.0 (C6), 142.9 (C1′), 128.5 (C9b), 126.1 (q, 3J(19F ,13C) 3.6 Hz, C3′), 124.5 

(q, 1J(19F ,13C) 271.2 Hz, CF3), 123.5 (q, 2J(19F,13C) 32.9 Hz, C4′), 117.9 (C2′), 117.4 

(C5a), 25.2 (C4), 24.0 (C5), 19.9 (CH3). HRMS (ESI+): [M + H]+ calcd for 

C17H14F3N4S 363.0891, found 363.0903. Found: C, 56.3; H, 3.5; N, 15.6. 

C17H13F3N4S requires C, 56.3; H, 3.6; N, 15.5 %. 

 

26. 2-Amino-N-phenyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine (21h).  

 NH2

 

 

N

N 

N
H

 

 

From 31 and 20 (R2 = R3 = H, X = CH) by Method A, tan solid (68 %): mp ca. 240 

°C (dec). Anal. RP-HPLC: tR 12.3 min (0-60 % MeCN, purity 100 %), tR 14.9 min 

(20-70 % MeOH, purity 100 %). 1H NMR (DMSO-d6): δ 9.28 (s, 1H, NH), 8.07 (s, 

1H, pyrimidine-H), 7.80-7.74 (m, 2H, o-Ph-H), 7.77 (br s, 2H, NH2), 7.27-7.19 (m, 

2H, m-Ph-H), 6.92-6.84 (m, 1H, p-Ph-H), 2.88-2.71 (m, 4H, CH2-CH2). 13C NMR 

(DMSO-d6): δ 171.5 (C), 159.3 (C), 158.8 (C), 157.2 (C), 152.9 (CH), 141.1 (C), 

128.3 (CH), 120.6 (CH), 118.2 (CH), 114.8 (C), 114.7 (C), 25.3 (CH2), 23.0 (CH2). 

HRMS (ESI+): [M + H]+ calcd for C15H14N5S 296.0970 found 296.0965. 
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27. 2-Methyl-N-[4-morpholin-4-ylphenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-

8-amine (21i).  

N
S

N

N

 

 
O

N
H

N 

 

 

From 30 and 20 (R2 = H, R3 = morpholin-4-yl, X = CH) by Method A (21 %). Dark 

orange crystals from EtOAc: mp 236-237 °C. Anal. RP-HPLC: tR 13.4 min (0-60 % 

MeCN, purity 100 %), tR 21.7 min (0-60 % MeOH, purity 100 %). 1H NMR (DMSO-

d6): δ 9.30 (s, 1H, NH), 8.25 (s, 1H, pyrimidine-H), 7.64-7.58 (m, 2H, AA′XX′, Ar-

C3H), 6.91-6.85 (m, 2H, AA′XX′, Ar-C2H), 3.77-3.70 (m, 4H, 2 × CH2), 3.05-2.99 

(m, 4H, 2 × CH2), 3.03-2.87 (m, 4H, CH2-CH2), 2.72 (s, 3H, CH3). 13C NMR 

(DMSO-d6): δ 168.6 (C), 159.1 (C), 158.8 (C), 155.9 (C), 155.4 (CH), 145.8 (C), 

133.2 (C), 127.9 (C), 119.8 (CH), 115.6 (CH), 115.2 (C), 66.1 (2 × CH2), 49.3 (2 × 

CH2), 24.7 (CH2), 23.1 (CH2), 19.4 (CH3). HRMS (CI): [M + H]+ calcd for 

C20H22N5OS 380.1545, found 380.1543. 

 

28. 2-Methyl-N-(2-methoxy-5-pyridinyl)-4,5-dihydrothiazolo[4,5-h]quinazolin-8-

amine (21j).  

 
N

S

N

N

 

 
O 

N
H

N 

 

From 30 and 20 (R2 = H, R3 = OMe, X = N) by Method A, dark yellow solid (8 %): 

mp 210-211 °C. Anal. RP-HPLC: tR 14.4 min (0-60 % MeCN, purity 100 %), tR 17.6 

min (20-80 % MeOH, purity 100 %). 1H NMR (CDCl3): δ 8.31 (d, 1H, J 2.7, Ar-

C6H), 8.15 (s, 1H, pyrimidine-H), 7.97 (dd, 1H, J 8.8, 2.7, Ar-C4H), 6.98 (br s, 1H, 

NH), 6.76 (d, 1H, J 8.8, Ar-C3H), 3.94 (s, 3H, OCH3), 3.12-2.93 (m, 4H, CH2-CH2), 

2.77 (s, 3H, CH3). 13C NMR (CDCl3): δ 169.5 (C), 160.0 (C), 159.4 (C), 159.1 (C), 

157.1 (C), 155.2 (CH), 137.9 (CH), 131.9 (CH), 130.5 (C), 128.6 (C), 116.5 (C), 
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110.3 (CH), 53.5 (OCH3), 25.3 (CH2), 23.9 (CH2), 19.8 (CH3). HRMS (ESI+): [M + 

H]+ calcd for C16H16N5OS 326.1076, found 326.1078. 

 

N
S

N

N

29. 2-Methyl-N-(2-chloro-5-pyridinyl)-4,5-dihydrothiazolo[4,5-h]quinazolin-8-

amine (21k). 

 

 

 Cl

N
H

N 

 

From 30 and 20 (R2 = H, R3 = Cl, X = N) by Method A, cream solid (16 %): mp 252-

253 °C. Anal. RP-HPLC: tR 18.9 min (0-60 % MeCN, purity 100 %), tR 22.5 min (20-

80 % MeOH, purity 100 %). 1H NMR (DMSO-d6): δ 9.93 (s, 1H, NH), 8.81 (d, 1H, J 

2.5, Ar-C6H), 8.37 (s, 1H, pyrimidine-H), 8.22 (dd, 1H, J 8.7, 2.5, Ar-C4H), 7.43 (d, 

1H, J 8.7, Ar-C3H), 3.06-2.92 (m, 4H, CH2-CH2), 2.73 (s, 3H, CH3). 13C NMR 

(DMSO-d6): δ 169.1 (C), 159.3 (C), 158.5 (C), 156.2 (C), 155.3 (CH), 141.2 (C), 

139.7 (CH), 137.0 (C), 128.6 (CH), 127.5 (C), 123.5 (CH), 117.0 (C), 24.6 (CH2), 

23.1 (CH2), 19.4 (CH3). HRMS (ESI+): [M + Na]+ calcd for C15H12ClN5NaS 

352.0400, found 352.0393. 

 

N
S

NH2

30. 2-Amino-N-[4-dimethylaminophenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-

8-amine (21l).  

 

 

N

N

N
H

N
 

 

 

From 31 and 20 (R2 = H, R3 = NMe2, X = CH) by Method A, dark yellow solid (54 

%): mp 238-239 °C. Anal. RP-HPLC: tR 9.7 min (0-60 % MeCN, purity 100 %), tR 

15.9 min (0-60 % MeOH, purity 100 %). 1H NMR (DMSO-d6): δ 8.91 (s, 1H, NH), 

7.99 (s, 1H, pyrimidine-H), 7.72 (s, 2H, NH2), 7.58-7.51 (m, 2H, AA′XX′, Ar-C3H), 

6.71-6.64 (m, 2H, AA′XX′, Ar-C2H), 2.82 (s, 6H, N(CH3)2), 2.84-2.69 (m, 4H, CH2-

CH2). 13C NMR (DMSO-d6): δ 171.3 (C), 159.1 (C), 158.9 (C), 157.1 (C), 153.0 

(CH), 145.7 (C), 131.3 (C), 120.0 (CH), 115.0 (C), 113.6 (C), 113.0 (CH), 40.8 
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(N(CH3)2), 25.4 (CH2), 23.0 (CH2). HRMS (ESI+): [M + H]+ calcd for C17H19N6S 

339.1392, found 339.1392. 

 

31. 2-Acetamido-N-[4-dimethylaminophenyl]-4,5-dihydrothiazolo[4,5-

h]quinazolin-8-amine (21m). 

 

N
S

N

N

NH

N
H

N

O
 

 

 

 

 

 

A mixture of 31 (100 mg, 0.325 mmol), 20 (R2 = H, R3 = NMe2, X = CH: 301 mg, 

0.812 mmol) and DBU (247 mg, 1.62 mmol) in pyridine (3 mL) was heated under 

microwave irradiation (120 °C, 20 min). The experiment was repeated three times in 

order to scale up the reaction. The crude reaction mixtures were combined, and 

evaporated to dryness. Purification by flash column chromatography through a bed of 

silica using 10 % MeOH-EtOAc as the eluant afforded pure 21m as a yellow solid 

(242 mg, 49 %): mp ca. 250 °C (dec). Anal. RP-HPLC: tR 10.7 min (0-60 % MeCN, 

purity 100 %), tR 16.6 min (0-60 % MeOH, purity 100 %). 1H NMR (DMSO-d6): δ 

12.43 (br s, 1H, amide-NH), 9.09 (s, 1H, NH), 8.14 (s, 1H, pyrimidine-H), 7.58-7.51 

(m, 2H, AA′XX′, Ar-C3H), 6.73-6.67 (m, 2H, AA′XX′, Ar-C2H), 2.94-2.85 (m, 4H, 

CH2-CH2), 2.83 (s, 6H, N(CH3)2), 2.18 (s, 3H, COCH3). 13C NMR (DMSO-d6): δ 

169.2 (C), 160.4 (C), 159.6 (C), 157.1 (C), 155.6 (C), 154.9 (CH), 146.3 (C), 131.3 

(C), 121.6 (C), 120.6 (CH), 114.9 (C), 113.4 (CH), 41.2 (N(CH3)2), 25.1 (CH2), 23.4 

(CH2), 22.9 (CH3). HRMS (ESI+): [M + H]+ calcd for C19H21N6OS 381.1498, found 

381.1497.  
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32. 2-Methyl-N-[4-nitrophenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine 

(21n).  

 
N

S

N

N

 

 
NO2

N
H

 

 

From 32 and 1-bromo-4-nitrobenzene by Method B, yellow solid (79 %): mp 290-292 

°C. Anal. RP-HPLC: tR 22.3 min (0-60 % MeCN, purity 100 %). 1H NMR (DMSO-

d6): δ 10.40 (br s, 1H, NH), 8.42 (s, 1H, pyrimidine-H), 8.22-8.15 (m, 2H, AA′XX′, 

Ar-C3H), 8.05-7.98 (m, 2H, AA′XX′, Ar-C2H), 3.06-2.97 (m, 4H, CH2-CH2), 2.73 (s, 

3H, CH3). 13C NMR (DMSO-d6): δ 169.4 (C), 159.5 (C), 158.1 (C), 156.4 (C), 155.3 

(CH), 147.3 (C), 140.0 (C), 127.4 (C), 124.9 (CH), 118.2 (C), 117.3 (CH), 24.5 

(CH2), 23.1 (CH2), 19.5 (CH3). HRMS (ESI+): [M + H]+ calcd for C16H14N5O2S 

340.0868, found 340.0867. Found: C, 56.4; H, 3.7; N, 20.4. C16H13N5O2S requires C, 

56.6; H, 3.9; N, 20.6 %. 

 

33. Methyl 4-(2-methyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-ylamino)benzoate 

(21o).  

N
S

N

N

 

 
O

 

N
H

O
 

 

From 32 and methyl 4-bromobenzoate by Method B (86 %). Yellow crystals from 

MeOH: mp 205-207 °C. Anal. RP-HPLC: tR 19.8 min (0-60 % MeCN, purity 100 %), 

tR 22.2 min (20-70 % MeOH, purity 100 %). 1H NMR (CDCl3): δ 8.22 (s, 1H, 

pyrimidine-H), 8.05-7.97 (m, 2H, AA′XX′, Ar-C3H), 7.76-7.68 (m, 2H, AA′XX′, Ar-

C2H), 7.51 (br s, 1H, NH), 3.89 (s, 3H, COOCH3), 3.14-2.94 (m, 4H, CH2-CH2), 2.77 

(s, 3H, CH3). 13C NMR (CDCl3): δ 169.8 (C), 166.9 (C), 159.3 (C), 158.6 (C), 157.1 

(C), 155.1 (CH), 144.2 (C), 130.9 (CH), 128.6 (C), 123.0 (C), 117.6 (C), 117.4 (CH), 

51.9 (CH3), 25.2 (CH2), 24.0 (CH2), 19.9 (CH3). HRMS (ESI+): [M + H]+ calcd for 

C18H17N4O2S 353.1072, found 353.1075. 
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34. 2-Methyl-N-[2-nitrophenyl]-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine 

(21p). 

 
N

S

N

N

 

 

N
H

 

 
O2N 

From 32 and 1-bromo-2-nitrobenzene by Method B, yellow solid (88 %): mp 219-220 

°C. Anal. RP-HPLC: tR 21.2 min (20-70 % MeCN, purity 100 %). 1H NMR (CDCl3): 

δ 10.45 (brs, 1H, NH), 8.98 (dd, 1H, J 8.7, 1.0, Ar-H), 8.28 (s, 1H, pyrimidine-H), 

8.25 (dd, 1H, J 8.4, 1.5, Ar-H), 7.63 (ddd, 1H, J 9.0, 7.2, 1.8, Ar-H), 7.04 (ddd, 1H, J 

8.4, 7.2, 1.3, Ar-H), 3.17-2.99 (m, 4H, CH2-CH2), 2.79 (s, 3H, CH3). 13C NMR 

(CDCl3): δ 170.1 (C), 159.4 (C), 158.2 (C), 157.3 (C), 155.0 (CH), 137.4 (C), 135.4 

(C and CH, two signals overlapping), 128.4 (C), 126.1 (CH), 120.7 (CH), 120.5 (CH), 

118.8 (C), 25.2 (CH2), 24.1 (CH2), 19.9 (CH3). HRMS (ESI+): [M + H]+ calcd for 

C16H14N5O2S 340.0868, found 340.0867. Found: C, 56.4; H, 3.8; N, 20.3. 

C16H13N5O2S requires C, 56.6; H, 3.9; N, 20.6 %. 

 

N
S

N

N

35. 3-(2-Methyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-ylamino)benzaldehyde 

(21q).  

 

N
H

O H
 

 

 

From 32 and 3-bromobenzaldehyde by Method B, yellow solid (52 %): mp 193-194 

°C. Anal. RP-HPLC: tR 16.8 min (0-60 % MeCN, purity 100 %). 1H NMR (CDCl3): δ 

10.02 (s, 1H, CHO), 8.37 (dd, 1H, J 1.8, 1.8, Ar-H), 8.22 (s, 1H, pyrimidine-H), 7.78 

(ddd, 1H, J 7.7, 2.3, 1.8, Ar-H), 7.56-7.43 (m, 3H, 2 × Ar-H + NH), 3.13-2.94 (m, 4H, 

CH2-CH2), 2.77 (s, 3H, CH3). 13C NMR (CDCl3): δ 192.5 (CHO), 169.8 (C), 159.3 

(C), 158.8 (C), 157.1 (C), 155.1 (CH), 140.8 (C), 137.2 (C), 129.5 (CH), 128.6 (C), 

124.3 (CH), 123.3 (CH), 119.3 (CH), 117.2 (C), 25.3 (CH2), 24.0 (CH2), 19.9 (CH3). 
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HRMS (ESI+): [M + H]+ calcd for C17H15N4OS 323.0967, found 323.0959. Found: C, 

63.2; H, 4.1; N, 17.1. C17H14N4OS requires C, 63.3; H, 4.4; N, 17.4 %. 

 

36. 8-Fluoro-2-methyl-4,5-dihydrothiazolo[4,5-h]quinazoline (34) (procedure 

adapted from ref 87).  

 

S
N

N

N

F

1

2
3
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5

6
7

8

3a

5a

9a
9b

9

 

 

 

 

A 0.3 M aqueous solution of sodium nitrite (5.2 mL) was added drop-wise to a cooled 

(–15 °C), vigorously stirred suspension of 32 (200 mg, 0.916 mmol) in fluoroboric 

acid (3.1 mL, 48 weight % in water) over 75 min. The reaction mixture was brought 

to room temperature and stirred for an additional 20 min. The solution was re-cooled 

(–15 °C) and neutralised to pH 6 with aqueous NaOH (50 weight % in water). The 

water was removed to give a cream coloured solid. Fresh water was added (20 mL) 

and the product was extracted from EtOAc (4 × 20 mL). The organic extracts were 

dried and concentrated under vacuum. Purification by flash column chromatography 

(EtOAc-hexane) gave pure 34 as a white crystalline solid (52 mg, 26 %): mp 125-127 

°C. 1H NMR (CDCl3): δ 8.29 (s, 1H, pyrimidine-H), 3.16-3.02 (m, 4H, CH2-CH2), 

2.75 (s, 3H, CH3). 19F NMR (CDCl3): δ –48.5. 13C NMR (CDCl3): δ 171.4 (C2), 

162.2 (d, 1J(19F ,13C) 217.3 Hz, C8), 160.5 (d, 3J(19F ,13C) 13.0 Hz, C9a), 160.5 (C3a), 

157.1 (d, 3J(19F ,13C) 12.7 Hz, C6), 127.4 (C9b), 123.3 (d, 4J(19F ,13C) 5.3 Hz, C5a), 

24.9 (C4), 23.8 (C5), 19.9 (CH3). HRMS (ESI+): [M + H]+ calcd for C10H9FN3S 

222.0501, found 222.0499. Found: C, 54.3; H, 3.5; N, 18.6. C10H8FN3S requires C, 

54.3; H, 3.6; N, 19.0 %. 
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5.2 Experimental for Chapter 3 

 

37. 7-Methyl-4,5-dihydro-2H-thiazolo[4,5-g]indazole (35).80

 

N
S

N

N

N
S

 

 

NH
N 

 

A mixture of 27 (300 mg, 1.54 mmol) and hydrazine hydrate (309 mg, 9.6 mmol) in 

dry MeOH (2 mL) was heated under reflux for 3 h. The reaction mixture was cooled 

and poured onto ice. The precipitate was collected and crystallized from EtOAc to 

give the title compound 35 as white crystals (241 mg, 82 %): mp 203-205 °C (Lit.80 

205 °C). Anal. RP-HPLC: tR 9.5 min (0-60 % MeCN, purity 100 %). 1H NMR 

(CDCl3): δ 7.35 (s, 1H, =CH), 3.12-2.88 (m, 4H, CH2-CH2), 2.73 (s, 3H, CH3). 13C 

NMR (CDCl3): δ 163.4 (C), 153.4 (C), 144.2 (C), 125.5 (=CH), 121.7 (C), 113.9 (C), 

26.0 (CH2), 19.2 (CH2), 19.1 (CH3). MS (ESI–): m/z [M – H]– 189.97. 

 

38. 2-Methyl-8-phenyl-4,5-dihydrothiazolo[4,5-h]quinazoline (36).86

 

 

 

 

 

 

To 27 (200 mg, 1.026 mmol) in dry MeOH (5.1 mL) was added benzamidine 

hydrochloride (161 mg, 1.026 mmol) and a few drops of AcOH/HCl solution. The 

mixture was heated under reflux for 3 h. After cooling the solvent was removed under 

vacuum and to the residue water was added (10 mL) and then alkalinized with 10 % 

Na2CO3 solution. The solution was heated under reflux for 20 min, after which brown 

crystals appeared. The crystals were collected before being crystallized from MeOH 

to give 36 as white needles (50 mg, 17 %): mp 149-151 °C (Lit.86 152 °C). 1H NMR 

(CDCl3): δ 8.55 (s, 1H, pyrimidine-H), 8.48-8.41 (m, 2H, o-Ph-H), 7.53-7.45 (m, 3H, 

m & p-Ph-H), 3.20-3.07 (m, 4H, CH2-CH2), 2.80 (s, 3H, CH3). MS (ESI+): m/z [M + 

H]+ 280.05. 
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39. N,2-Dimethyl-N-(3-nitrophenyl)-4,5-dihydrothiazolo[4,5-h]quinazolin-8-

amine (37) (Procedure adapted from ref 68). 

 N
S

N

N

 
NO2 

N
 

 

Under dry conditions sodium hydride (7.9 mg, 0.33 mmol) was added to a solution of 

21d (102 mg, 0.3 mmol) in dry DMF (2 mL). After effervescence had subsided, 

iodomethane (51 mg, 0.36 mmol) was added drop-wise and the reaction mixture was 

stirred at room temperature for 16 h. The solvent was removed, water was added (20 

mL), and the product was extracted with CH2Cl2 (3 × 30 mL). The combined extracts 

were dried, filtered, and concentrated under vacuum. Flash column chromatography 

(EtOAc-hexane) afforded 37 as a yellow solid (40 mg, 38 %): mp 203-204 °C. Anal. 

RP-HPLC: tR 17.1 min (10-70 % MeCN, purity 100 %). 1H NMR (CDCl3): δ 8.36 

(dd, 1H, J 2.3, 2.3, Ar-C2H), 8.17 (s, 1H, pyrimidine-H), 8.01 (ddd, 1H, J 8.2, 2.3, 

0.8, Ar-H), 7.72 (ddd, 1H, J 7.9, 2.3, 0.8, Ar-H), 7.52 (dd, 1H, J 8.2, 8.2, Ar-C5H), 

3.64 (s, 3H, N-CH3), 3.12-2.93 (m, 4H, CH2-CH2), 2.75 (s, 3H, CH3). 13C NMR 

(CDCl3): δ 169.6 (C), 160.4 (C), 159.0 (C), 156.8 (C), 155.0 (CH), 148.4 (C), 146.4 

(C), 131.1 (CH), 129.0 (CH) and (C) (two signals overlapping), 120.5 (CH), 119.1 

(CH), 116.3 (C), 37.8 (N-CH3), 25.3 (CH2), 23.9 (CH2), 19.8 (CH3). HRMS (ESI+): 

[M + H]+ calcd for C17H16N5O2S 354.1025, found 354.1013.  

 

An additional product from the chromatography was identified as N,2-dimethyl-N-(3-

nitrophenyl)thiazolo[4,5-h]quinazolin-8-amine (42). 

 
N

S

N

N

 

 NO2

N

 

 

 

Yellow solid (10 mg, 10 %): mp 210-211 °C. Anal. RP-HPLC: tR 23.4 min (10-70 % 

MeCN, purity 100 %). 1H NMR (CDCl3): δ 9.09 (s, 1H, pyrimidine-H), 8.41 (dd, 1H, 

J 2.3, 2.3, Ar-C2H), 8.09 (ddd, 1H, J 8.2, 2.3, 1.0, Ar-H), 7.85 (part of an AB spin 
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system, 1H, J 8.7, C4-H or C5-H), 7.80 (ddd, 1H, J 7.9, 2.0, 0.8, Ar-H), 7.72 (part of 

an AB spin system, 1H, J 8.7, C4-H or C5-H), 7.58 (dd, 1H, J 8.2, 8.2, Ar-C5H), 3.78 

(s, 3H, N-CH3), 2.93 (s, 3H, CH3). HRMS (ESI+): [M + H]+ calcd for C17H14N5O2S 

352.0868, found 352.0865. 

 

40. N,2-dimethyl-N-(3-nitrophenyl)thiazolo[4,5-h]quinazolin-8-amine (42). 
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N

N
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A mixture of 37 (16 mg, 0.045 mmol) and DDQ (13 mg, 0.057 mmol) in dry toluene 

(2 mL) was heated under reflux for 16 h. After cooling the solvent was evaporated 

and the residue was purified by flash column chromatography (EtOAc-hexane) to 

give 42 as a yellow solid (10 mg, 63 %). Analytical data (mp, 1H NMR and HRMS) 

matched those of the product isolated in the reaction above. 

 

41. 2-Methyl-N-phenylthiazolo[4,5-h]quinazolin-8-amine (43). 

 

 

 

 

 

 

A mixture of 21a (62 mg, 0.21 mmol) and DDQ (57 mg, 0.25 mmol) in dry toluene 

(10 mL) was heated under reflux for 4 h. After cooling the solvent was evaporated 

and the residue was purified by flash column chromatography (EtOAc-hexane). The 

product 43 was obtained as a light yellow solid (34 mg, 56 %). Crystals suitable for 

X-ray analysis were obtained from EtOH (cf. p.84): mp 241-243 °C. Anal. RP-HPLC: 

tR 15.1 min (0-60 % MeCN, purity 100 %). 1H NMR (DMSO-d6): δ 10.11 (s, 1H, 

NH), 9.38 (s, 1H, pyrimidine-H), 8.02-7.96 (m, 2H, o-Ph-H), 7.93 (part of an AB spin 

system, 1H, J 8.7, C4-H or C5-H), 7.84 (part of an AB spin system, 1H, J 8.7, C4-H 

or C5-H), 7.40-7.32 (m, 2H, m-Ph-H), 7.06-6.98 (m, 1H, p-Ph-H), 2.91 (s, 3H, CH3). 
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HRMS (ESI+): [M + Na]+ calcd for C16H12N4NaS 315.0680, found 315.0677. Found: 

C, 65.4; H, 4.1; N, 19.0. C16H12N4S requires C, 65.7; H, 4.1; N, 19.2 %. 

 

42. 2-Methyl-N-(2-chloro-5-pyridinyl)thiazolo[4,5-h]quinazolin-8-amine (44). 
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A mixture of 21k (50 mg, 0.152 mmol) and DDQ (41 mg, 0.182 mmol) in dry toluene 

(10 mL) was heated under reflux for 4 h. After cooling the solvent was evaporated 

and the residue was purified by flash column chromatography (EtOAc-hexane). The 

product 44 was obtained as a light yellow solid (25 mg, 50 %): mp 268-270 °C. Anal. 

RP-HPLC: tR 18.1 min (0-60 % MeCN, purity 100 %). 1H NMR (DMSO-d6): δ 10.46 

(s, 1H, NH), 9.46 (s, 1H, pyrimidine-H), 9.03 (d, 1H, J 2.8, Ar-C6H), 8.38 (dd, 1H, J 

8.7, 2.8, Ar-C4H), 7.98 (part of an AB spin system, 1H, J 8.7, C4-H or C5-H), 7.91 

(part of an AB spin system, 1H, J 8.7, C4-H or C5-H), 7.52 (d, 1H, J 8.7, Ar-C3H), 

2.92 (s, 3H, CH3). HRMS (ESI+): [M + H]+ calcd for C15H11ClN5S 328.0316, found 

328.0315.  

 

43. N-(2-Methyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-yl)benzamide (45).  

 

 

 

 

 

 

Benzoyl chloride (142 mg, 1.0 mmol) was added to a stirred solution of 32 (0.2 g, 

0.92 mmol) in pyridine (7 mL) at room temperature. After 2 h water (100 mL) was 

added and the product was extracted with EtOAc (3 × 50 mL). The extracts were 

combined, dried, and concentrated under vacuum. Purification by flash column 

chromatography (EtOAc-hexane) gave pure 45 as a yellow solid (173 mg, 59 %). 

Crystals suitable for X-ray analysis were obtained from EtOH (cf. p.89): mp 229-231 

 154



°C. Anal. RP-HPLC: tR 13.5 min (0-60 % MeCN, purity 100 %). 1H NMR (CDCl3): δ 

8.59 (br s, 1H, NH), 8.44 (s, 1H, pyrimidine-H), 7.98-7.92 (m, 2H, Ph-H), 7.62-7.46 

(m, 3H, Ph-H), 3.17-3.02 (m, 4H, CH2-CH2), 2.78 (s, 3H, CH3). 13C NMR (CDCl3): δ 

170.7 (C), 165.5 (C), 160.1 (C), 158.0 (C), 157.0 (C), 155.8 (CH), 134.9 (C), 132.7 

(CH), 129.2 (CH), 128.5 (C), 127.9 (CH), 121.4 (C), 25.4 (CH2), 24.5 (CH2), 20.3 

(CH3). HRMS (ESI+): [M + H]+ calcd for C17H15N4OS 323.0967, found 323.0968. 

Found: C, 63.0; H, 4.2; N, 17.4. C17H14N4OS requires C, 63.3; H, 4.4; N, 17.4 %. 

 

44. N-Benzyl-2-methyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine (46). 

 
N

S

N

N

N
H

 

 

 

 

 

LHMDS (458 μL of 1M THF solution, 0.46 mmol) was added to a cooled (–78 °C), 

stirred solution of 32 (100 mg, 0.46 mmol) in dry THF (10 mL). The mixture was 

stirred for 15 min before benzyl bromide (94 mg, 0.55 mmol) was added. The solution 

was warmed to room temperature and stirred for a further 16 h. Saturated ammonium 

chloride solution was added (100 mL) and the product was extracted with CH2Cl2 (3 

× 50 mL). The organic extracts were combined, dried, and concentrated under 

vacuum. Purification by flash column chromatography (EtOAc-hexane) gave pure 46. 

Orange crystals from EtOH: (28 mg, 20 %): mp 152-154 °C. 1H NMR (CDCl3): δ 

8.07 (s, 1H, pyrimidine-H), 7.42-7.22 (m, 5H, Ph-H), 5.47 (br s, 1H, NH), 4.64 (d, 

2H, J 5.9, CH2), 3.09-2.88 (m, 4H, CH2-CH2), 2.75 (s, 3H, CH3). HRMS (ESI+): [M + 

H]+ calcd for C17H17N4S 309.1174, found 309.1182. Found: C, 66.5; H, 5.1; N, 18.4. 

C17H16N4S requires C, 66.2; H, 5.2; N, 18.2 %.  
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An additional product from the chromatography was identified as N,N-dibenzyl-2-

methyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amine (47). 

 
N

S

N

N

N

 

 

 

 

 

 

Pale yellow crystals from EtOH: (10 mg, 5 %): 1H NMR (CDCl3): δ 8.09 (s, 1H, 

pyrimidine-H), 7.35-7.09 (m, 10H, Ph-H), 4.80 (s, 4H, 2 × CH2), 3.05-2.82 (m, 4H, 

CH2-CH2), 2.69 (s, 3H, CH3). HRMS (ESI+): [M + H]+ calcd for C24H23N4S 399.1643, 

found 399.1642.  

 

45. N-(2-methyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-yl)benzenesulfonamide 

(52). 

 
N

S

N

N

N
H

 

 

 
S

O O
 

 

Under dry conditions pyridine (5 mL) was added to 32 (148 mg, 0.678 mmol). The 

mixture was stirred at 60 °C for 1 h before benzenesulfonyl chloride (168 mg, 0.949 

mmol) was added. After 16 h the reaction mixture was cooled and evaporated to 

dryness. Flash column chromatography (EtOAc-hexane) gave the product 52 as a tan 

solid (86 mg, 35 %). Crystals suitable for X-ray analysis were obtained from EtOH 

(cf. p.93). mp ca. 265 °C (dec). Anal. RP-HPLC: tR 15.5 min (0-60 % MeCN, purity 

100 %). 1H NMR (DMSO-d6): δ 8.25 (s, 1H, pyrimidine-H), 8.03-7.98 (m, 2H, o-Ph-

H), 7.62–7.55 (m, 3H, m & p-Ph-H), 2.99-2.85 (m, 4H, CH2-CH2), 2.73 (s, 3H, CH3). 
13C NMR (DMSO-d6): δ 170.2 (C), 160.0 (C), 156.9 (C), 155.7 (C), 153.9 (CH), 

140.8 (C), 132.5 (CH), 128.6 (CH), 127.7 (CH), 127.0 (C), 119.0 (C), 24.3 (CH2), 

22.9 (CH2), 19.5 (CH3). HRMS (ESI+): [M + H]+ calcd for C16H15N4O2S2 359.0636, 

found 359.0641.  
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46. But-3-enyl 2-methyl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-ylcarbamate 

(53). 

 
N

S

N

N

N
H

 

 

 O
 

O 
 
3-Butenyl chloroformate (73.9 mg, 0.549 mmol) was added to 32 (100 mg, 0.458 

mmol) in pyridine (3 mL). The mixture was stirred at room temperature for 16 h. 

Ammonium chloride solution was added (50 mL) and the product was extracted with 

CH2Cl2 (3 × 50 mL). The organic extracts were combined, dried, filtered and 

concentrated under vacuum to give a yellow solid. Crystallization from EtOAc gave the 

product as yellow crystals (122 mg, 84 %): mp ca. 204 °C (dec). Anal. RP-HPLC: tR 

14.1 min (0-60 % MeCN, purity 100 %). 1H NMR (CDCl3): δ 8.36 (s, 1H, pyrimidine-

H), 7.49 (brs, 1H, NH), 5.90–5.75 (m, 1H, =CH), 5.19–5.07 (m, 2H, =CH2), 4.27 (t, 

2H, J 6.7, O-CH2), 3.17-2.98 (m, 4H, CH2-CH2), 2.77 (s, 3H, CH3), 2.50-2.41 (m, 2H, 

CH2). 13C NMR (CDCl3): δ 170.2 (C), 159.6 (C), 157.7 (C), 156.4 (C), 155.3 (CH), 

151.7 (C), 133.9 (=CH), 128.2 (C), 120.1 (C), 117.4 (=CH2), 64.5 (O-CH2), 33.2 (CH2), 

25.0 (CH2), 24.0 (CH2), 19.9 (CH3). HRMS (ESI+): [M + H]+ calcd for C15H17N4O2S 

317.1072, found 317.1061.  

 

 

5.3 Experimental for Chapter 4 

 

47. 2-Bromo-5-methylcyclohexane-1,3-dione (69).107

 O
 Br

O
 

 

Bromine (180 g, 1.12 mol) in glacial AcOH (300 mL) was added drop-wise to a 

stirred solution of 5-methylcyclohexane-1,3-dione (45 g, 0.36 mol) in glacial AcOH 

(300 mL) until the point where a precipitate began to form. At which time the addition 

was stopped. The mixture was cooled in an ice-water bath before the white precipitate 
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was collected, washed with fresh water and air dried (28.8 g, 39 %). Crystallization of 

69 from CHCl3 gave analytically pure material as white crystals: mp 176-178 °C 

(Lit.107 178 °C). Anal. RP-HPLC: tR 9.7 min (0-60 % MeCN, purity 100 %). 1H NMR 

(DMSO-d6): δ 11.82 (br s, 1H, OH), 2.52 (dd, 2H, J 16.6, 4.4, 2 × CH), 2.28 (dd, 2H, 

J 16.1, 10.7, 2 × CH), 2.21-2.10 (m, 1H, CH), 0.98 (d, 3H, J 6.8, CH3). These 

assignments are in agreement with the enol form. MS (ESI–): m/z 202.94 & 204.93 [M 

– H]–. 

 

48. 2-Amino-5-methyl-5,6-dihydro-4H-benzothiazol-7-one (68). 

 

S
N

NH2 

O

 

 

 

A mixture of 69 (14.9 g, 72.6 mmol), thiourea (5.52 g, 72.6 mmol) and pyridine (5.74 

g, 72.6 mmol) in MeOH (100 mL) was heated under reflux for 16 h. The reaction 

mixture was cooled before the solvent was removed under vacuum to leave a yellow 

solid. Water (400 mL) was added to the yellow solid before the mixture was stirred 

for 5 min. The yellow precipitate was collected and washed with fresh water before 

being dried (11.38 g, 86 %). Analytically pure 68 was obtained after crystallization 

from MeOH: mp 215-217 °C. Anal. RP-HPLC: tR 8.6 min (0-60 % MeCN, purity 100 

%). 1H NMR (DMSO-d6): δ 8.09 (br s, 2H, NH2), 2.75 (dd, 1H, J 16.6, 3.9, C-H), 

2.41-2.31 (m, 2H, 2 × C-H), 2.31-2.21 (m, 1H, C-H), 2.17 (dd, 1H, J 15.6, 11.2, C-H), 

1.04 (d, 3H, J 6.3, CH3). 13C NMR (DMSO-d6): δ 189.6 (C=O), 174.0 (C), 167.9 (C), 

118.4 (C), 45.3 (CH2), 35.1 (CH2), 30.6 (CH), 21.0 (CH3). HRMS (CI): [M + H]+ 

calcd for C8H11N2OS 183.0592, found 183.0588. 
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49. 2-Acetamido-5-methyl-5,6-dihydro-4H-benzothiazol-7-one (67). 

 

S
N

O

O

NH
 

 

 

 

 

A mixture of 68 (6 g, 32.9 mmol) and acetic anhydride (40 mL) was heated under 

reflux for 20 h. The reaction mixture was cooled and evaporated to dryness. Et2O was 

added and the resulting precipitate collected by filtration. Further washes with fresh 

Et2O yielded 67 as a light sand coloured solid (6.53 g, 88 %): mp 248-251 °C. 1H 

NMR (DMSO-d6): δ 12.59 (br s, 1H, NH), 2.94 (dd, 1H, J 16.4, 3.8, C-H), 2.61-2.25 

(m, 4H, C-H), 2.18 (s, 3H, COCH3), 1.08 (d, 3H, J 6.1, CH3). 13C NMR (DMSO-d6): 

δ 191.8 (C), 169.3 (C), 163.5 (C), 162.8 (C), 122.8 (C), 45.3 (CH2), 34.3 (CH2), 30.4 

(CH), 22.6 (CH3), 20.6 (CH3). HRMS (CI): [M + H]+ calcd for C10H13N2O2S 

225.0698, found 225.0699. 

 

50. 2-Acetamido-5-methyl-6-(hydroxymethylene)-5,6-dihydro-4H-benzothiazol-

7-one (66).  

 

S
N

O

OH

O

NH 

 

 

 

 

Under dry conditions, a mixture of 67 (6 g, 26.7 mmol) and sodium methoxide (28.85 

g, 534 mmol) in dry THF (200 mL) was stirred at room temperature for 15 min. The 

reaction mixture was subsequently cooled in an ice-bath before freshly distilled ethyl 

formate (39.56 g, 534 mmol) was added drop-wise. After complete addition, the 

mixture was allowed to reach room temperature and stirred for a further 5 h. Water 

(100 mL) was added to the reaction mixture before the THF layer was collected. The 

aqueous layer was acidified (conc. HCl), causing a yellow precipitate to crash out of 

solution, and extracted from EtOAc (3 × 80 mL). The organic extracts were combined 

and dried over magnesium sulfate. Removal of solvent gave a yellow solid (4.78 g, 71 
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%) of sufficient purity to be used in the next step. Analytically pure 66 was obtained 

after crystallization from EtOH: mp 185-187 °C. 1H NMR (CDCl3): δ 7.28 (br s, 1H, 

=CH), 3.08-2.90 (m, 2H, 2 × C-H), 2.70 (dd, 1H, J 16.1, 6.1, C-H), 2.31 (s, 3H, 

COCH3), 1.22 (d, 3H, J 6.7, CH3). HRMS (EI): [M]+ calcd for C11H12N2O3S 

252.0569, found 252.0569. Found: C, 52.1; H, 5.1; N, 11.4. C11H12N2O3S requires C, 

52.4; H, 4.8; N, 11.1 %. 

 

51. 2-Acetamido-5-methyl-6-(morpholinomethylene)-5,6-dihydro-4H-

benzothiazol-7-one (62). 

S
N

O

O

NH

 

 

 

 

 
N

O 

 

A mixture of 66 (4.78 g, 18.9 mmol) and morpholine (1.81 g, 20.8 mmol) in toluene 

(60 mL) was heated under reflux for 2 h. The reaction mixture was cooled and the 

resultant precipitate collected by filtration. After washing with fresh toluene and 

drying, compound 62 was obtained as a yellow solid (5.37 g, 88 %). Analytically pure 

material was obtained after crystallization from EtOH: mp ca. 245 °C (dec). 1H NMR 

(DMSO-d6): δ 12.30 (br s, 1H, NH), 7.21 (s, 1H, =CH), 3.73-3.58 (m, 4H, 2 × CH2), 

3.57-3.38 (m, 5H, 2 × CH2 & C-H), 2.99 (dd, 1H, J 16.6, 6.1, C-H), 2.66 (apparent d, 

1H, J 16.4, C-H), 2.16 (s, 3H, COCH3), 1.06 (d, 3H, J 6.9, CH3). 13C NMR (DMSO-

d6): δ 180.4 (C), 169.2 (C), 161.7 (C), 157.0 (C), 145.9 (CH), 124.4 (C), 107.6 (C), 

66.5 (2 × CH2), 51.1 (2 × CH2), 33.4 (CH2), 28.2 (CH), 23.0 (CH3), 22.6 (CH3). 

HRMS (ESI+): [M + H]+ calcd for C15H20N3O3S 322.1225, found 322.1235. 
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52. 2-Amino-5-methyl-N-[4-dimethylaminophenyl]-4,5-dihydrothiazolo[4,5-

h]quinazolin-8-amine (70).  

 

N

N

S
N

N
H

NH2

 

 
N 

 

 

A mixture of 62 (100 mg, 0.311 mmol), 20 (R2 = H, R3 = NMe2, X = CH: 288 mg, 

0.777 mmol) and NaOH (62 mg, 1.55 mmol) in 2-methoxyethanol (3 mL) was heated 

under microwave irradiation (120 °C, 20 min). The experiment was repeated four 

times in order to scale up the reaction. The crude reaction mixtures were combined, 

and evaporated to dryness. Purification by flash column chromatography through a 

bed of silica using mixtures of EtOAc-hexane as the eluant afforded pure 70 as a 

yellow solid (231 mg, 42 %): mp 228-230 °C. Anal. RP-HPLC: tR 10.3 min (0-60 % 

MeCN, purity 100 %), tR 16.6 min (0-60 % MeOH, purity 100 %). 1H NMR (DMSO-

d6): δ 8.93 (br s, 1H, NH), 8.02 (s, 1H, pyrimidine-H), 7.71 (br s, 2H, NH2), 7.58-7.52 

(m, 2H, AA′XX′, Ar-C3H), 6.71-6.64 (m, 2H, AA′XX′, Ar-C2H), 3.14-3.00 (m, 1H, 

C-H), 2.88 (dd, 1H, J 16.6, 6.9, C-H), 2.82 (s, 6H, N(CH3)2), 2.51 (dd, 1H, J 16.6, 7.9, 

C-H), 1.24 (d, 3H, J 6.9, CH3). 13C NMR (CDCl3): δ 170.4 (C), 159.3 (C), 157.2 (C), 

157.1 (C), 152.7 (CH), 147.1 (C), 130.0 (C), 121.7 (CH), 119.8 (C), 113.9 (C), 113.7 

(CH), 41.3 (N(CH3)2), 33.7 (CH2), 29.6 (CH), 20.2 (CH3). HRMS (ESI+): [M + H]+ 

calcd for C18H21N6S 353.1548, found 353.1553.  
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53. 2-Acetamido-5-methyl-N-[4-dimethylaminophenyl]-4,5-dihydrothiazolo[4,5-

h]quinazolin-8-amine (72).  

 

N
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A mixture of 62 (100 mg, 0.311 mmol), 20 (R2 = H, R3 = NMe2, X = CH: 288 mg, 

0.777 mmol) and DBU (237 mg, 1.55 mmol) in pyridine (3 mL) was heated under 

microwave irradiation (120 °C, 20 min). The experiment was repeated four times in 

order to scale up the reaction. The crude reaction mixtures were combined, and 

evaporated to dryness. Purification by flash column chromatography through a bed of 

silica using 10 % MeOH-EtOAc as the eluant afforded pure 72 as a yellow solid (323 

mg, 53 %): mp ca. 265 °C (dec). Anal. RP-HPLC: tR 11.3 min (0-60 % MeCN, purity 

100 %). 1H NMR (DMSO-d6): δ 12.40 (br s, 1H, amide-NH), 9.11 (s, 1H, NH), 8.18 

(s, 1H, pyrimidine-H), 7.59-7.52 (m, 2H, AA′XX′, Ar-C3H), 6.73-6.67 (m, 2H, 

AA′XX′, Ar-C2H), 3.24-3.11 (m, 1H, C-H), 3.05 (dd, 1H, J 16.6, 6.9, C-H), 2.83 (s, 

6H, N(CH3)2), 2.69 (dd, 1H, J 16.6, 7.4, C-H), 2.18 (s, 3H, COCH3), 1.25 (d, 3H, J 

6.9, CH3). 13C NMR (DMSO-d6): δ 168.8 (C), 160.1 (C), 159.1 (C), 156.0 (C), 154.1 

(C), 154.0 (CH), 145.9 (C), 130.9 (C), 120.6 (C), 120.2 (CH), 119.4 (C), 112.9 (CH), 

40.8 (N(CH3)2), 32.8 (CH2), 29.0 (CH), 22.5 (CH3), 20.0 (CH3). HRMS (ESI+): [M + 

H]+ calcd for C20H23N6OS 395.1654, found 395.1639.  
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54. 2-Acetamido-5-methyl-6-formyl-benzo[d]thiazol-7-ol (75). 
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 O
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A mixture of 62 (600 mg, 1.87 mmol) and DDQ (466 mg, 2.05 mmol) in dry toluene 

(10 mL) was heated under reflux for 1.5 h. The reaction mixture was cooled and 

evaporated to dryness. Purification of the crude product by flash column 

chromatography (EtOAc-hexane) gave the unexpected product 75 as a cream coloured 

solid (336 mg, 72 %). Analytically pure product was obtained after crystallisation 

from EtOH. Crystals suitable for X-ray analysis were obtained from AcOH (cf. 

p.110): mp ca. 255 °C (dec). 1H NMR (DMSO-d6): δ 12.81 (s, 1H, NH/OH), 12.68 

(br s, 1H, NH/OH), 10.24 (s, 1H, CHO), 7.14 (s, 1H, Ar-H), 2.64 (d, 3H, J 0.5, CH3), 

2.22 (s, 3H, COCH3). 13C NMR (DMSO-d6): δ 195.6 (CHO), 169.9 (C), 162.4 (C), 

158.3 (C), 155.7 (C), 140.1 (C), 115.9 (C), 114.4 (CH), 113.6 (C), 22.8 (CH3), 18.3 

(CH3). HRMS (CI): [M + H]+ calcd for C11H11N2O3S 251.0490, found 251.0498. 

 

In an alternative synthesis compound 66 (600 mg, 2.38 mmol) and DDQ (594 mg, 

2.62 mmol) in dry toluene (10 mL) was heated under reflux for 1.5 h. The reaction 

mixture was cooled and evaporated to dryness. Purification of the crude product by 

flash column chromatography (EtOAc-hexane) gave 75 as a cream coloured solid 

(535 mg, 90 %). Analytical data (TLC, mp, 1H NMR and HRMS) matched that 

described above. 

 

55. 2-Bromo-5,5-dimethylcyclohexane-1,3-dione (77).117

 

 

 

 

Bromine (12.47 g, 78.0 mmol) in glacial AcOH (70 mL) was added drop-wise to a 

stirred mixture of 5,5-dimethyl-1,3-cyclohexanedione (10 g, 71.3 mmol) and sodium 
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acetate (6.3 g, 76.8 mmol) in glacial AcOH (100 mL). After stirring for 1 h, water (600 

mL) was added and the deposited solid was collected and washed with fresh water. 

After drying, compound 77 was obtained as a white solid (12.5 g, 80 %): mp 167-169 

°C (Lit.117 173-174 °C, N.B. large discrepancies exist in the literature over the true mp 

of this compound). Anal. RP-HPLC: tR 12.1 min (0-60 % MeCN, purity 100 %). 1H 

NMR (CDCl3): δ 6.62 (s, 1H, OH), 2.52 (s, 2H, CH2), 2.43 (s, 2H, CH2), 1.11 (s, 6H, 2 

× CH3) These assignments are in agreement with the enol form. MS (ESI–): m/z 216.93 

& 218.93 [M – H]–. 

 

56. 2-Amino-5,5-dimethyl-5,6-dihydro-4H-benzothiazol-7-one (78). 

 

S
N

NH2 

O

 

 

 

A mixture of 77 (1.0 g, 4.56 mmol), thiourea (0.35 g, 4.56 mmol) and pyridine (0.36 

g, 4.56 mmol) in MeOH (15 mL) was heated under reflux for 18 h. The reaction 

mixture was cooled before the solvent was removed under vacuum. Water (40 mL) 

was added and the product was extracted with EtOAc (3 × 30 mL). The organic 

extracts were combined, dried, and concentrated under vacuum to give 78 as a yellow 

solid (0.79 g, 88 %). Analytically pure product was obtained after crystallization from 

EtOH: mp 209-211 °C (Lit.131 212 °C, N.B. large discrepancies exist in the literature 

over the true mp of this compound). Anal. RP-HPLC: tR 9.8 min (0-60 % MeCN, 

purity 100 %). 1H NMR (DMSO-d6): δ 8.08 (br s, 2H, NH2), 2.57 (s, 2H, CH2), 2.26 

(s, 2H, CH2), 1.02 (s, 6H, 2 × CH3). 13C NMR (DMSO-d6): δ 189.2 (C=O), 174.1 (C), 

166.9 (C), 117.3 (C), 51.0 (CH2), 40.9 (CH2), 34.7 (C), 28.3 (2 × CH3). HRMS (CI): 

[M + H]+ calcd for C9H13N2OS 197.0749, found 197.0745. 
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57. 5,5-Dimethyl-2-methylamino-5,6-dihydro-4H-benzothiazol-7-one (79). 

 

S
N

O

NH 

 

 

 

A mixture of 77 (4.03 g, 18.4 mmol), N-methylthiourea (1.66 g, 18.4 mmol) and 

pyridine (1.45 g, 18.4 mmol) in MeOH (20 mL) was heated under reflux for 5 h. The 

reaction mixture was cooled before the solvent was removed under vacuum. Water 

(20 mL) was added and the product was extracted with CH2Cl2 (3 × 30 mL). The 

organic extracts were combined and further washed with brine (20 mL) before being 

dried and concentrated under vacuum to give 79 as a yellow solid (3.11 g, 80 %). 

Analytically pure product was obtained after crystallization from MeOH: mp 215-217 

°C (Lit.132,133 208-210, 220-225 °C). 1H NMR (DMSO-d6): δ 8.65 (br s, 1H, NH), 2.88 

(d, 3H, J 4.1, NCH3), 2.62 (s, 2H, CH2), 2.28 (s, 2H, CH2), 1.03 (s, 6H, 2 × CH3). 13C 

NMR (DMSO-d6): δ 189.2 (C=O), 174.11 (C), 167.0 (C), 116.9 (C), 51.0 (CH2), 41.0 

(CH2), 34.7 (C), 31.4 (CH3), 28.3 (2 × CH3). HRMS (CI): [M + H]+ calcd for 

C10H15N2OS 211.0905, found 211.0904. 

 

58. N’-(5,5-dimethyl-5,6-dihydro-4H-benzothiazol-7-one-2-yl)-N,N-

dimethylformamidine (80). 

 
N

S
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N

 

 

 

 

 

A mixture of 78 (0.1 g, 0.509 mmol) and N,N-dimethylformamide dimethyl acetal 

(DMF-DMA) (0.303 g, 2.54 mmol) in EtOH (2 mL) was heated under microwave 

irradiation (150 °C, 30 min). After cooling, the reaction mixture was evaporated to 

dryness to yield a brown solid. Purification by flash column chromatography (EtOAc-

hexane) through a bed of silica afforded 80 as a yellow solid (112 mg, 88 %): mp 153-

155 °C. Anal. RP-HPLC: tR 11.3 min (0-60 % MeCN, purity 100 %). 1H NMR 

(CDCl3): δ 8.29 (s, 1H, CH), 3.16 (s, 3H, NCH3), 3.13 (s, 3H, NCH3), 2.75 (s, 2H, 
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CH2), 2.42 (s, 2H, CH2), 1.12 (s, 6H, 2 × CH3). 13C NMR (CDCl3): δ 191.5 (C=O), 

180.5 (C), 165.1 (C), 156.6 (CH), 123.3 (C), 51.7 (CH2), 41.4 (CH2), 41.3 (NCH3), 

35.4 (NCH3), 34.9 (C), 28.6 (2 × CH3). HRMS (CI): [M + H]+ calcd for C12H18N3OS 

252.1171, found 252.1169. 

 

A larger scale synthesis of 80 was achieved by heating a mixture of 78 (1.37 g, 6.98 

mmol) and DMF-DMA (13.4 g, 15 mL, 112.4 mmol) at 120 °C for 5 h. The reaction 

mixture was cooled before the solvent was removed under vacuum to leave an orange 

coloured solid. Purification by flash column chromatography (EtOAc-hexane) 

afforded pure 80 as a yellow solid (1.51 g, 86 %). Analytical data (1H NMR and mp 

matched that above).  

 

59. Attempted synthesis of 6-[dimethylaminomethylene]-5,5-dimethyl-2-

(methylamino)-5,6-dihydrobenzo[d]thiazol-7(4H)-one (81). 
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N

 

A mixture of 79 (368 mg, 1.75 mmol) and DMF-DMA (2.09 g, 2.33 mL, 17.5 mmol) 

was heated under reflux. After 16 h less than half of 79 had been consumed as judged 

by RP-HPLC analysis. Further DMF-DMA was added (4.18g, 4.66 mL, 35 mmol) 

and the reaction continued to reflux for another 63 h. The reaction mixture was 

evaporated to dryness before being purified by flash column chromatography (EtOAc-

petroleum ether 40/60). Surprisingly the sole product from this reaction was judged to 

be 2-Dimethylamino-5,5-dimethyl-5,6-dihydro-4H-benzothiazol-7-one (82), 

obtained as a yellow solid (256 mg, 65 %). 
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Crystals suitable for X-ray analysis were obtained from EtOAc-petroleum ether (1:5, 

v/v) (cf. p.116): mp 133-135 °C. Anal. RP-HPLC: tR 13.9 min (0-60 % MeCN, purity 

100 %). 1H NMR (DMSO-d6): δ 3.12 (s, 6H, N(CH3)2), 2.63 (s, 2H, CH2), 2.28 (s, 

2H, CH2), 1.02 (s, 6H, 2 × CH3). 13C NMR (DMSO-d6): δ 189.1 (C=O), 174.2 (C), 

167.2 (C), 117.9 (C), 50.9 (CH2), 41.0 (CH2), 40.3 (N(CH3)2), 34.8 (C), 28.3 (2 × 

CH3). HRMS (CI): [M + H]+ calcd for C11H17N2OS 225.1062, found 225.1060. 

 

60. (E)-N’-[(Z)-6-(hydroxymethylene)-5,5-dimethyl-5,6-dihydro-4H-benzothiazol-

7-one-2-yl]-N,N-dimethylformamidine (84).  

 
N

S
N

O

N

 

 

 

 

 
OH

 

Under a nitrogen atmosphere, freshly distilled ethyl formate (1.178 g, 15.9 mmol) was 

added drop-wise to a stirred mixture of fresh sodium methoxide (859 mg, 15.9 mmol) 

in dry toluene (10 mL). Compound 80 (200 mg, 0.796 mmol) was dissolved in dry 

toluene (5 mL) and added drop-wise to the reaction mixture. The reaction was stirred 

at room temperature for 18 h. The solution was acidified to pH 5 (conc. HCl) before 

being extracted with EtOAc. The combined organic extracts were dried and 

concentrated under vacuum to leave a yellow oily crude product. Purification by flash 

column chromatography (EtOAc-hexane) afforded pure 84 as a bright yellow solid 

(190 mg, 86 %). Crystals suitable for X-ray analysis were obtained from EtOH (cf. 

p.118): mp 124-126 °C. 1H NMR (CDCl3): δ 8.33 (s, 1H, N=CH), 7.31 (d, 1H, J 10.7, 

C=CH), 3.17 (s, 3H, NCH3), 3.14 (s, 3H, NCH3), 2.77 (s, 2H, CH2), 1.26 (s, 6H, 2 × 

CH3). Hydroxyl proton missing from spectrum (presumably downfield of 12 ppm). 
13C NMR (CDCl3): δ 185.5 (C=O), 181.0 (C), 164.2 (C), 160.7 (CH), 156.5 (CH), 

122.3 (C), 117.2 (C), 41.8 (CH2), 41.2 (NCH3), 35.3 (NCH3), 34.4 (C), 29.2 (2 × 

CH3). HRMS (CI): [M + H]+ calcd for C13H18N3O2S 280.1120, found 280.1120. 
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61. Attempted synthesis of 5,5-dimethyl-2-methyl-5,6-dihydro-4H-benzothiazol-

7-one (86). 

 

S
N

O

 

 

 

A mixture of 77 (4.0 g, 18.26 mmol), thioacetamide (1.37 g, 18.26 mmol) and 

pyridine (1.44 g, 18.26 mmol) in MeOH (20 mL) was heated under reflux for 18 h. 

The reaction mixture was cooled before the solvent was removed under vacuum 

leaving an oily residue with a solid contained within it. The crude reaction mixture 

was loaded onto silica and purified by flash column chromatography using mixtures 

of EtOAc-hexane as eluant. Unexpectedly the major product from this reaction was 

discovered to be 3-methoxy-5,5-dimethylcyclohex-2-enone (87) obtained as a light 

yellow oil (1.92 g, 68 %).  

 O
 

 
O

 

Anal. RP-HPLC: tR 14.7 min (0-60 % MeCN, purity 100 %). 1H NMR (CDCl3): δ 

5.36 (s, 1H, H-2), 3.68 (s, 3H, OCH3), 2.26 (s, 2H, CH2, H-4), 2.20 (s, 2H, CH2, H-6), 

1.06 (s, 6H, 2 × CH3). 13C NMR (CDCl3): δ 199.3 (C1), 176.9 (C3), 100.9 (C2), 55.6 

(OCH3), 50.6 (C6), 42.5 (C4), 32.4 (C5), 28.1 (2 × CH3). HRMS (ESI+): [M + Na]+ 

calcd for C9H14O2Na 177.0891, found 177.0895. IR (cm–1): 1656 C=O, 1608 C=C.  

 

62. 3-Methoxy-5,5-dimethylcyclohex-2-enone (87).122

 O

 

 O
 

An authentic sample of 87 was prepared according to Porta et al;122 used to confirm 

the identity of the unexpected product from the previous reaction. TiCl4 (0.15 mL of 

1M CH2Cl2 solution, 0.15 mmol) was added in one portion, with a syringe at room 

temperature, to a well stirred solution of 5,5-dimethyl-1,3-cyclohexanedione (701 mg, 

5 mmol) in MeOH (10 mL). The reaction mixture was stirred for an additional 30 min 
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before water (3 mL) was added. The reaction mixture was then extracted with Et2O (3 

× 10 mL) and the combined organic layers were successively washed with water, 

dried over Na2SO4 and evaporated under reduced pressure, giving an oil with a small 

amount of white solid in it. Purification by flash column chromatography, using 

mixtures of EtOAc-hexane afforded pure 87 (492 mg, 64 %) as a light yellow oil; 

along with unreacted 5,5-dimethyl-1,3-cyclohexanedione (162 mg). Analytical data 

for 87 (TLC, 1H & 13C NMR) matched exactly with that of the unexpected product 

from the previous reaction. A mixture of authentic 87 with that of the unexpected 

product showed one clean product by 1H NMR analysis.  

 

63. 3-Ethoxy-5,5-dimethylcyclohex-2-enone (89). 

 

O

O
 

 

 

A mixture of 77 (1.0 g, 4.56 mmol), thioacetamide (342 mg, 4.56 mmol) and pyridine 

(361 mg, 4.56 mmol) in EtOH (25 mL) was heated under reflux for 18 h. The reaction 

mixture was cooled before the solvent was removed under vacuum leaving a tan 

coloured solid. The crude reaction mixture was loaded onto silica and purified by 

flash column chromatography using mixtures of EtOAc-hexane as eluant. The major 

product from this reaction was discovered to be 3-ethoxy-5,5-dimethylcyclohex-2-

enone 89 obtained as a light yellow oil (567 mg, 74 %). 1H NMR (CDCl3): δ 5.31 (s, 

1H, H-2), 3.87 (q, 2H, J 7.2, OCH2CH3), 2.24 (s, 2H, CH2, H-4), 2.17 (s, 2H, CH2, H-

6), 1.33 (t, 3H, J 7.2, OCH2CH3), 1.04 (s, 6H, 2 × CH3). 13C NMR (CDCl3): δ 199.7 

(C1), 176.3 (C3), 101.6 (C2), 64.3 (OCH2), 50.8 (C6), 43.0 (C4), 32.5 (C5), 28.4 (2 × 

CH3), 14.2 (ethoxy CH3). HRMS (CI): [M + H]+ calcd for C10H17O2 169.1229, found 

169.1225. [Note: This compound decomposes when kept at room temperature over 

time]. 

 

In an alternative synthesis a mixture of 87 (200 mg, 1.297 mmol) and pyridine 

hydrobromide (207 mg, 1.297 mmol) in EtOH (15 mL) was heated under reflux for 18 

h. The reaction mixture was cooled before the solvent was removed under vacuum 

leaving an oily residue with a white solid in it. Water (20 mL) was added and the 

product extracted from CH2Cl2 (3 × 20 mL). The combined organic extracts were 

 169



dried and concentrated under vacuum to give a light yellow oil (206 mg, 95 %). 

Analytical data (TLC, 1H NMR and HRMS) revealed 89. 
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