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ABSTRACT

Crystalline polymer/salt complexes can conduct, in contrast to the view held for 30

years. The -phase of the crystalline poly(ethylene oxide)6:LiPF6 is composed of tunnels

formed from pairs of (CH2-CH2-O)x chains, within which the Li+ ions reside and along which

the latter migrate.1 When a polydispersed polymer is used, the tunnels are composed of 2

strands, each built from a string of PEO chains of varying length. It has been suggested that

the number and the arrangement of the chain ends within the tunnels affects the ionic

conductivity.2 Using polymers with uniform chain length is important if we are to understand

the conduction mechanism since monodispersity results in the chain ends occurring at regular

distances along the tunnels and imposes a coincidence of the chain ends between the two

strands.2 Since each Li+ is coordinated by 6 ether oxygens (3 oxygens from each of the two

polymeric strands forming a tunnel), monodispersed PEOs with the number of ether oxygen

being a multiple of 3 (NO = 3n) can form either “all-ideal” or “all-broken” coordination

environments at the end of each tunnel, while for both NO = 3n-1 and NO = 3n+1 complexes,

both “ideal” and “broken” coordinations must occur throughout the structure.

A synthetic procedure has been developed and a series of 6 consecutive (increment of

EO unit) monodispersed molecular weight PEOs have been synthesised. The synthesis

involves one end protection of a high purity glycol, functionalisation of the other end, ether

coupling reaction (Williamson’s type ether synthesis3), deprotection and reiteration of ether

coupling. The parameters of the process and purification methods have been strictly

controlled to ensure unprecedented level of monodispersity for all synthesised samples.

Thus obtained high purity polymers have been used to study the influence of the

individual chain length on the structure and conductivity of the crystalline complexes with

LiPF6. The results support the previously suggested model of the chain-ends arrangement in

the crystalline complexes prepared with monodispersed PEO2 over a range of consecutive

chain lengths. The synthesised complexes constitute a series of test samples for establishing

detailed mechanism of ionic conductivity. Such series of monodispersed crystalline

complexes have been studied and characterised here (PXRD, DSC, AC impedance) for the

first time.
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1. INTRODUCTION – POLYMER ELECTROLYTES

As natural gas and oil supplies dwindle, and also for ecological reasons, we need to

increase the number of renewable energy sources. However, most of them (e.g. wind, tidal,

solar power) are dependent on the time of day and weather conditions, which means that they

cannot supply energy 24 hours a day and 365 days per year – they are only available

intermittently. This is why we need to store energy. Many forms of energy storage are

known. When considering the storage of electricity, rechargeable batteries offer certain

potential advantages such as high efficiency and modular design. This makes them suitable

for use in electric vehicles for load levelling and for portable electronics although, of course,

the detailed characteristics and hence design will differ from one application to another.1

Despite the impressive growth in sales of batteries worldwide, the science underlying

battery technology is often criticised for its slow advancement. This applies to all battery

types: nickel-cadmium, nickel-metal hydride, Li-ion etc. Certainly, when compared with the

computer industry, energy storage struggles to keep pace with the rate of demand.

The key part of every battery is an electrochemical cell which consists of

electronically conducting positive and negative electrodes separated by an ionically

conducting electrolyte, which enables ion transfer between the two electrodes. Among the

various technologies, Li-based cells provide the highest energy density (Fig. 1). This explains

why they receive most attention at both fundamental and applied levels.

Fig. 1 Comparison of the different battery technologies in terms of volumetric and
gravimetric energy density.2
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The widely commercialised rechargeable Li-ion battery is known as a rocking-chair

battery (Fig. 2). It contains a liquid electrolyte (a lithium salt dissolved in an organic solvent).

The conductivity of the electrolyte has to be sufficient to ensure the voltage drop across the

electrolyte is minimal (Velectrolyte = i×Relectrolyte).

Fig. 2 The rocking-chair cell. The discharge process is shown. On charging the direction of
ions and electrons movement is reversed.

The main drawbacks of all liquid electrolytes are their toxicity and flammability. A

number of fire accidents or even explosions have been reported to date.3 For this reason and

also to ease construction of cells, significant research efforts are focused on development of

solid state electrolytes.2 In general, lithium-ion conducting solid electrolytes used for all-

solid-state rechargeable lithium batteries must possess the following properties:

 high lithium-ion conductivity (at least 10-3 S·cm-1 at r.t.4,5) with negligible electronic

conductivity at operating temperature. However, it would be acceptable to use a solid

electrolyte with ionic conductivity of the order of 10-4 S·cm-1 at r.t. providing that it

can be fabricated into a very thin film with large surface area.6

 wide potential window at both positive and negative electrode sides – sufficient

stability versus both electrodes,
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 mechanical and dimensional stability – sufficient to clearly separate the electrodes

from each other under the battery operating conditions, while providing good contact

with electrodes,7

 environmentally benign, non-hygroscopic, low cost, and easy processing.

Solid inorganic superionic conductors at first glance meet many of the above

requirements. They have been known since 1970s and can be divided into 2 groups:8

1. high temperature ionic conductors, e.g. Li4SiO4 (10-4-10-3 S·cm-1 at 300°C)9 or

Li14Zn(GeO4)4 (LISICON) (10-2-10-1 S·cm-1 at 300°C)10-12,

2. low temperature ionic conductors, e.g. Li3N (10-3 S·cm-1 at r.t.)13,14 or recently

reported Li10GeP2S12 (10-2 S·cm-1 at r.t.)15.

Although the latter have conductivity comparable with that of liquid electrolytes, their

use as electrolytes presents considerable challenge of establishing a good contact with the

electrodes. Only one ceramic electrolyte, LiPON, has found application in a commercially

available rechargeable battery. It was processed into a thin film by means of radio-frequency

(RF) reactive magnetron sputtering and sandwiched between electrodes.16,17 However, the

low ionic conductivity (10-6 S·cm-1 at r.t.) of this electrolyte limits the utility of such

battery.18

The possible alternative to ceramics, which would provide the desired mechanical

properties, is polymer electrolytes. In 1973, Wright et al discovered that certain salts of alkali

metals dissolved in high molecular weight poly(ethylene glycol) (PEG) were able to form

ionically conducting solid materials.19 In 1978 Armand et al highlighted the potential of these

materials as a new class of solid electrolytes for energy storage applications.20 Segmental

motion of the polymer chains above the glass transition temperature (Tg) not only enables

ionic conductivity of the complexes but makes them mechanically soft – a decisive factor to

achieve a good contact with the electrodes.6,21

Polymer electrolyte – ‘a solvent free system where the ionically conducting phase is

formed by dissolving salts in a high molecular weight polar polymer matrix’22

1.1. Application of Polymer Electrolytes

Although the main application for polymer electrolytes are rechargeable lithium

batteries, they can be also used in a number of other applications: smart windows,

electrochromic displays and ion detectors.22
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Currently, polymer electrolytes are used in batteries for mobile phones and laptop

computers, but only in the gel form, where they are plasticised with organic solvents such as

ethylene carbonate (EC). Their advantage over the completely liquid electrolytes is that the

presence of a polymer significantly increases the viscosity of electrolyte reducing the

possibility of leakages. Unfortunately thus gained advantage is accompanied by a lower

conductivity.23

1.2. Formation of polymer electrolytes

The dissolution of a salt into a host polymer is governed by the same thermodynamic

equation as for all other chemical processes – in order to occur the change in Gibbs free

energy (G) must be negative.

STHG 

The factors influencing the enthalpy term (H) are related to the energy required to

break up starting materials and the energy gained when a complex is formed. Lattice energy

of the salt introduces a positive enthalpy change while the solvation of the cation causes a

negative enthalpy change.

Two competing factors influence the entropy change term (S), which is positive due

to break up of the crystal lattice in starting components (growing disorder) and negative due

to coordination of cations by the polymer chains (growing order).

This explains why a polymer which is capable of coordinating a cation must be

selected.

1.2.1. The Hard/Soft Acid/Base Concept

The solvation enthalpy of a salt is determined by the cation-polymer interaction. This

can be understood in terms of the acid-base interaction between the solvent and the solute.

This is known as the hard/soft acid/base theory (H.S.A.B.). A hard acid is a small cation with

no easily removed or polarised valence electrons, e.g. alkaline earth metal ion like Mg2+. A

soft acid is a large cation with easily distorted or removed valence electrons e.g. partially

filled d orbital Hg2+.
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Bases can also be hard or soft; a hard base is a non-polarisable ligand with

electrostatic forces primarily responsible for bonding, e.g. oxygen in ether. A soft base

contains polarisable groups, and the orbital overlap is primarily responsible for bonding, e.g.

sulphur in thioether. A strong interaction, and hence large solvation enthalpy, is produced

when a hard-hard or soft-soft interaction occurs. For hard cations the best donors are:

-O- > -NH- >> -S-

For a soft cation, the best donors are in an order which is different but not simply

reversed because the interactions between cation and donor are no longer dominated

exclusively by electrostatic forces:24

-NH- > -S- > -O-

1.2.2. Anion Solvation

Anions in solution are stabilised by hydrogen bonds but even in the absence of the

latter they can still enter solutions. In solvents less polar than water, such as polyethers and

acetonitrile, the stability of an anion in the solution is dependent on the charge localisation.

Large delocalised anions require little solvation. The most suitable anions for aprotic, low-

dielectric-constant dipolar polymer electrolytes are given below in descending suitability:

AsF6
- ~ BF4

- > CF3SO3
- ~ ClO4

- > SCN-~ I- > Cl- >> F-

Smaller and harder anions can be forced to enter the polymer solution by 2+ and 3+

cations. The larger solvation energies associated with the larger charges make the formation

of a complex favourable. This opens the door to a number of different coordination systems.

Soft-soft salts such as AgI are totally insoluble in poly(ethylene oxide) (PEO). When

preparing a polymer electrolyte the selection of large monovalent anions with delocalised

charge is necessary. The low lattice energy of these salts is easily overcome by the enthalpy

of solvation and the positive change in entropy. The most studied anions are: ClO4
-, CF3SO3

-,

(CF3SO2)2N
-, BPh4

-, BF4
-, SCN- and XF6

- (X = P, As and Sb). A number of “non-

coordinating” anions have been recently investigated by computational modelling for a

variety of applications.25 Some of these anions are suitable for electrochemical applications,
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e.g. tris(pentafluoroethyl)trifluorophosphate, [F3P(C2F5)3]
-. Most of these anions are presently

available only in ionic liquids.

1.3. Examples of polymer electrolytes hosts

Many types of polar polymers containing atoms like oxygen, nitrogen or sulphur have

been studied as hosts for polymer electrolytes because these atoms can coordinate cations.6,22

1.3.1. Polyethers

Polyethers [-(CH2)mO-]x show remarkable variation in physical properties depending

on the number of methylene repeat units. These differences affect the ability to coordinate

inorganic salts.6

In accordance with the solubility theory (described in 1.2) a polyether, -(CH2)m-O-,

more readily solvates a salt, when m = 2. For both m = 1 and m = 3 the solubility of the salt is

reduced. When m = 1 strain is introduced into the polymer preventing easy coordination of

the cation, even though larger number of oxygen atoms provide more opportunities for

coordination. On the other hand, polyethers with m ≥ 3 prevent coordination by many oxygen 

atoms because large regions of backbone produce steric hindrances. Thus, m = 2,

poly(ethylene oxide) (PEO), also called poly(ethylene glycol) (PEG), appears to be the most

suitable matrix for polymer electrolytes. PEO is capable of solvating most cations, including

alkaline earth and transition metals. In this respect it is very similar to water. However, unlike

water, PEO cannot solvate anions. The highest reported conductivities of complexes made

with high Mw branched PEO polymer and lithium salts are slightly above 10-4 S·cm-1.26

PEO with a finite distribution of molecular weights (hereafter referred to as

‘polydispersed’) can be synthesised from ethylene oxide via anionic ring opening

polymerisation.27 Synthesis of monodispersed PEO is developed in this thesis.
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1.3.2. Poly(ethylene imine) (PEI)

Poly(ethylene imine) [-(CH2)2NH-]x can be prepared as a highly branched amorphous

polymer by the cationic ring-opening polymerisation of ethylene imine (aziridine). PEI

synthesised from 2-oxazoline through the alkaline hydrolysis of poly(N-formylethylenimine)

is a highly crystalline, linear polymer with molecular weight of approximately 104 Da.28

Shriver et al prepared a number of PEI:NaSO3CF3 complexes with various compositions. The

highest conductivities of 10-5 S·cm-1 were reached at 40°C.29

1.3.3. Poly(alkylene sulfides)

Poly(alkylene sulfides) [-(CH2)mS-]x are direct analogues of polyethers. Poly(ethylene

sulfide) (m = 2) and poly(propylene sulfide) (m = 3) can be synthesised from 3- and 4-

membered cyclic sulfides respectively by either cationic or anionic initiation.27,30 Shriver et al

described preparation and properties of poly(alkylene sulfides), m = 2–6, by the reaction of a

disodium salt of the appropriate dimercaptan with a dibromoalkane. Polymer electrolytes

prepared with each of these polymers and silver salts achieved the conductivities of only

10-9 S·cm-1 at room temperature.31

1.3.4. Rigid Polymers

Many avenues have been explored in order to find a polymer electrolyte with low Tg

which would provide high conductivity at room temperature. However, in 1994

Yamamoto et al reported a very rigid polymer (Tg = 315°C) which when mixed with an

inorganic salt exhibited the conductivity of 10-5.5 S·cm-1.32 In 1999 Imrie et al confirmed that

ionic transport can occur in certain polymeric glasses below Tg.
33

These developments encouraged Shriver et al to search for new rigid polymers which

can provide pathways for ion hopping. They investigated 2 rigid polymer systems (Fig. 3):

poly(vinylene carbonate) (PVIC) and poly(1,3-dioxolan-2-one-4,5-diyl oxalate) (PVICOX).

The polymers displayed both good mechanical properties and high conductivities (10-4 S·cm-1

for PVICOX system at room temperature).34
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Fig. 3 Structures and synthetic route for PVIC and PVICOX.34

However, attempts to reproduce those results were unsuccessful.

1.4. Ion transport

The highest reported conductivity of solid polymer electrolytes, 10-4 S·cm-1 at room

temperature, is still relatively low when compared to the conductivity of typical liquid

electrolytes (10-1 S·cm-1). That is why significant research efforts are focused on increasing

the ionic conductivity in the sold state. The success of these efforts heavily relies on the

knowledge of the detailed mechanism of conduction. 2,35,36

1.4.1. Amorphous polymer electrolytes

Since the discovery of polymer electrolytes in 1973, the established theory was that

ionic conduction occurred only in the amorphous phase above Tg of a polymer/salt complex.19

This view was demonstrated by C. Berthier et al in a study of PEO:LiCF3SO3, where the

crystalline 3:1 complex and the amorphous phase coexist above Tg.
37 Segmental motion of

the polymer chains in the amorphous phase enables diffusion of ions by means of constant

creation and destruction of free volume.

The temperature dependent conductivity in this case is expressed by the Vogel-

Tamman-Fulcher (VTF) equation:
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











 

0

5.0
0 exp

TT

B
T

,

where:  is the conductivity at temperature T, 0 is the conductivity at the equilibrium glass

transition temperature T0 and B is a constant.

The equation is generally used to describe diffusion of uncharged molecules through

disordered materials such as fluids or polymers, but it turned out to also be appropriate for the

description of ions movement in amorphous polymer electrolytes.

The theory explaining the conduction mechanism led to the design strategies for new

polymer electrolytes in which crystallinity was suppressed and segmental motion

maximised.20,38 Majority of the investigated materials were based on PEO of high molecular

weight or other polymers containing -CH2CH2-O- repeat unit because it provides an excellent

ligand for cations.39 The common salts for polymer electrolytes are: LiClO4, LiPF6, LiAsF6,

LiCF3SO3, LiN(SO2CF3)2 (LiTFSI), etc.

There are, however, other types of electrolytes which also contain polymers, although

they do not exactly obey the definition of polymer electrolyte quoted in chapter 1:

1.4.1.1. Polymer-in-salt

Polymer-in-salt materials represent a reverse concept to conventional polymer

electrolytes, since a salt is mixed with small quantity of a polymer, e.g. poly(ethylene oxide),

poly(propylene oxide) or polyacrylonitrile. Polymer-in-salt electrolytes provide the benefit of

improved mechanical flexibility at r.t. compared to glassy electrolyte, while preserving good

lithium-ion conductivities (up to 10-4 S·cm-1 at r.t.) and high electrochemical stability.40,41

1.4.1.2. Gel electrolytes

As indicated earlier, a polymer electrolyte can be plasticised with an organic solvent

to form a gel electrolyte. Commonly used liquid plasticisers are: propylene carbonate,

ethylene carbonate, dimethyl carbonate.42,43 In order to provide enough mechanical integrity

of gels, the polymer must either be cross-linked or contain crystalline domains.44 The

conductivities of gel systems reach up to 10-2 S·cm-1 at r.t.45 Although due to higher viscosity

gel electrolytes possess better mechanical properties than purely liquid electrolytes, they can

still leak solvents meaning that the related safety problems remain.



10

1.4.1.3. Hybrid polymer electrolytes

Hybrid polymer electrolytes comprise of a polymer (matrix), salt and solid filler (e.g.

TiO2, Al2O3, ZrO2, SiO2)
46-49. The latter is a plasticiser reducing the amount of crystalline

phase in the complex and hence increasing its conductivity (up to slightly over 10-5 S·cm-1 at

r.t.)

Gels with ceramic fillers have also been studied [P(VdF-HFP)+ceramic filler+liquid

electrolyte]45. They reach up to 10-2 S·cm-1 at r.t. while improving the mechanical properties.

However, they still possess the disadvantages of gels.

1.4.2. Crystalline polymer electrolytes

The view that conductivity in polymer electrolytes was confined to the amorphous

phase above the glass transition temperature was challenged by Bruce et al.50 The group

discovered crystalline polymer electrolytes formed by poly(ethylene oxide) and LiXF6

(X = P, As, Sb) with 6 ethylene oxide groups per 1 molecule of the inorganic salt

(abbreviated as PEO6:LiXF6) (Fig. 4).50-52 These complexes are ionically conducting and the

conductivity is dominated by Li+ ions transport (cation transport number t+ = 1).53,54

The crystalline phase will be hereafter referred to as  because other crystalline less

conductive phases also exist.55 The complexes are isostructural and consist of rows of Li+

ions encapsulated within columns formed by pairs of nonhelical PEO chains. The Li+ ion is

coordinated by 5 ether oxygen atoms from both chains, three ether oxygens from one and two

from the other (the 6th ether oxygen in the coordination site is located at a slightly larger

distance). Each coordinating ether oxygen coordinates only one Li+ ion. The anions reside

between the columns and do not coordinate the cations, hence cannot impede the diffusion of

the latter along the tunnels.
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Fig. 4 The structure of the polymer electrolyte PEO6:LiAsF6. Left, view of the structure along
the chain axis showing rows of Li+ ions perpendicular to the page. Right, view of the
structure showing the relative position of the chains and their conformation (hydrogens not
shown). Blue spheres, lithium; white spheres, arsenic; pink spheres, fluorine; light green,
carbon in chain 1; dark green, oxygen in chain 1; light red, carbon in chain 2; dark red,
oxygen in chain 2. Thin lines indicate coordination around the Li+ cation. The structure was
solved from powder diffraction data using a newly developed simulated annealing method.

When compared to amorphous electrolytes, the structure of crystalline complexes

implies that free volume does not need to be created in order to enable the movement of ions,

because the site to which an ion migrates is already present and aligned in the structure and

ion hopping could take place as soon as sufficient activation energy is available for the ion to

hop. The schematic Li+ diffusion pathway along the polymer tunnels is shown in Fig. 5.

Fig. 5 Schematic diffusion pathway of the Li+ cations in PEO6:LiPF6. Thin lines indicate
coordination around the Li+ cation; solid blue spheres, lithium in the crystallographic five-
coordinate site (note that the fifth thin line is very short in this view); meshed blue spheres,
lithium in the intermediate four-coordinate site; green, carbon; red, oxygen.
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In order for a Li+ ion to migrate from one stable five-coordinate site to another, it has

to pass through an intermediate site formed by four ether oxygens defining a rectangle. Such

a pathway for ion transport is an approximation, since it is based on a static model derived

from the crystal structure, whereas in reality there is undoubtedly some flexing of the

polymer chains.56 Molecular dynamics simulations also support the passage through the

intermediate site.57 It has been suggested that aligning or organising the polymer chains

should enhance the ionic conductivity.5,58-63 A series of complexes made with the same

lithium salt and PEOs of different average molecular weight (750 Da, 900 Da, 1000 Da, 1500

Da, 2000 Da, all -CH3-terminated)56,64 was reported. All those complexes form exactly the

same crystalline  phase, but the crystallite size increases with decreasing Mw of PEO. AC

impedance measurement results confirmed that the larger the crystallites, the higher the

conductivity of a complex (Fig. 6). However, it has to be noted that complexes made with

PEO of lower Mws also have larger number of chain ends than complexes made with larger

Mws. Chain ends are effectively defects in the crystal structure, thus, by analogy with

ceramic ionic conductors, higher conductivities could then be attributed to larger number of

defects.56
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Further increase of the chain-end density in crystalline PEO6:LiXF6 was achieved by

doping the complexes made of 1000 Da PEO with tetraglyme (G4). A series of different

compositions was studied in order to obtain single  phase. Only the complex in which 75%

of oxygen atoms come from PEO and the remaining 25% from tetraglyme

(PEO0.75G40.25)6:LiPF6 forms pure  phase. The conductivity of such complex is ~1.5 order

of magnitude higher compared to the undoped electrolyte.65

The influence of other defects in the crystalline polymer electrolytes on their ionic

conductivity was studied using different types of anionic doping of complexes prepared with

PEO of <Mw> = 1000 Da. An increase in conductivity of 1.5 orders of magnitude was

detected when a small amount (up to 5 mol %) of AsF6
- anions in the crystalline

PEO6:LiAsF6, was replaced by (SO2CF3)2N
- (TFSI) anions. The two anions are isovalent, but

TFSI is larger, irregular in shape and with more delocalised charges than AsF6
-. All that

causes a disruption of the potential around the Li+ ions and results in enhancement of the

ionic conductivity.36

Even doping with an isovalent anion of the same shape, but only slightly different

size – AsF6
- (ionic radius = 1.67 Å) and SbF6

- (ionic radius = 1.81 Å) – results in increase of

conductivity of 1 order of magnitude. Interestingly, disruption caused by replacing 10% of

one XF6
- anion with another exhibits the highest conductivity amongst all the different

proportions studied (0-100%). Such phenomenon was attributed to the fact that doping with

small amounts leads to strain and hence local disruption of the potential around the Li+ ions

in the 6:1 crystal structure, resulting in the observed higher conductivities. Once more than 1

out of 10 of the anions has been substituted, further doping does not lead to an increase in

conductivity.66 Similar effect was previously observed in ceramic materials AgBr1-yIy.
67

In case of isovalent doping no extra Li+ ions or vacancies are introduced into the

structure. It is generally the case that both interstitial ions and vacancies lead to increase in

conductivity.12,68-70 The level of ionic conductivity was raised by 1.5 orders of magnitude

when less than 5 mol % of the SbF6
- ions in the crystalline conductor PEO6:LiSbF6 were

replaced by SiF6
2-. Such aliovalent doping introduces additional, mobile, Li+ ions into the

structure because electroneutrality has to be maintained.70

Another way of introducing disruptions to the crystalline polymer complexes is

replacing the -OCH3 chain termini in the polymer material by -OC2H5. The structure of

complexes made with -OC2H5-terminated PEO remains that of the  phase, only with a slight

change of lattice parameters compared to the complex with -OCH3 terminated PEO.
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However, the introduction of bulkier polymer chain-ends raises the conductivity of the

crystalline complex by 1 order of magnitude.53,64

Despite all the knowledge gained from various experiments carried out in order to

increase the conductivity of crystalline polymer electrolytes, the detailed mechanism of

conduction remains unknown. The so far obtained experimental evidence suggests that

disruptions caused by the presence of the chain ends within the structure influences the

conductivity significantly and for this reason more efforts are required in investigating the

phenomena at the chain junctions.

The influence of molecular weight dispersity (distribution of chain lengths) on the

conductivity has also recently been studied by comparison of crystalline complexes prepared

with monodispersed dimethoxy end-capped PEO Mw = 1015 Da and with polydispersed

dimethoxy end-capped PEO <Mw> = 1000 Da (Fig. 7).

Fig. 7 MALDI-MS of polydispersed methoxy end-capped PEO <Mw> = 1000 Da.

In the polydispersed material the PEO tunnels, within which the Li+ ions reside, are

composed of 2 strands each built from PEO chains of varying length. The crystallite size

determined by peak shape analysis of the PXRD data (Fig. 8) is in excess of 2000 Å.
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Fig. 8 Powder X-ray diffraction patterns of PEO6:LiPF6 prepared from monodispersed
Mw = 1015 Da PEO (red) and polydispersed <Mw> = 1000 Da PEO (black).53

Considering that average length of the polymeric chains in the complex is

approximately 40 Å, there are many chain ends within each tunnel and they are distributed

randomly due to the polydispersity (Fig. 9). Such irregularity is an additional variable in the

study of chain-ends effects, thus it should be beneficial to study monodispersed materials

instead.

Fig. 9 Arrangement of polydispersed PEO chains in the crystalline complex. The PEO chains
are represented by the solid lines and are of different length, resulting in the random
occurrence of chain ends. Li+ ions are represented by circles, with the disordered Li+ ions,
near chain ends, being represented by darker shading. Anions are not shown.

Monodispersity would, at the least, result in the chain ends occurring at regular

distances along the tunnels and most likely exhibit coincidence of the chain ends between the

two strands of a tunnel (Fig. 10a). However, complete registry of the chain ends between

neighbouring tunnels is unlikely, because of the much weaker interactions between the
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tunnels (Fig. 10b). Furthermore, such complete registry is inconsistent with molecular

dynamics simulations71 and the powder X-ray diffraction data, since it is unlikely that blocks

equivalent in dimension to the chain length (42 Å) would exhibit sufficient translational

symmetry to give long range order but are more likely to be canted as shown in Fig. 10c.

Such a short coherence length of only ~40 Å is not consistent with the widths of the peaks in

the powder X-ray diffraction pattern (Fig. 8). Taking all these facts into account, the most

likely model for a monodispersed, material would be that shown in Fig. 10d. The difference

between the mono- and polydispersed materials lies in the number of chain ends per unit

length. In the polydispersed material there are more chain ends per unit length, since the

chain ends are not coincident between strands, and this in turn leads to a higher conductivity

(1 order of magnitude) compared with the monodispersed counterpart. 1,53
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a

b

c

d

Fig. 10 Schematic representation of part of the monodispersed PEO6:LiXF6 crystal structure.
The PEO chains are represented by the solid lines of the same length, resulting in the regular
occurrence of chain ends. Li+ ions are represented by circles. Anions are not shown. (a) A
single tunnel formed from monodispersed PEO and showing the coincidence of chain ends in
each of the two strands of the tunnel. (b) Model based on monodispersed PEO in which the
chain ends coincide within and between tunnels such that the ends are located in a plane
perpendicular to the tunnel axis. (c) Model based on monodispersed PEO in which the
tunnels are canted and displaced. (d) Model based on monodispersed PEO in which the
chain-ends coincide within a tunnel but not between tunnels.
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The model shown in Fig. 10d was extensively studied by Thomas et al by means of

molecular dynamics simulations and called Nematic. The authors distinguish two types of

chain-end coordination around the Li+ ions (Fig. 11).

Fig. 11 Results of the molecular dynamics simulations of the chain-ends in monodispersed
complexes.72

Nematic-A is an “ideal” coordination, in which chain termination does not disrupt either of

the polymer chains involved in the 6-fold coordination sphere of a Li+ ion. Each coordination

site contains exactly 1 lithium ion and 6 oxygen atoms – 3 from each of PEO chains. So the

ideal model is only possible if the number of oxygen atoms (NOxygen) in each polymer chain is

a multiple of 3. Otherwise, only Nematic-B “broken” coordination model can be considered.

In the “broken” model the polymer chain-ends are disrupted and such disruptions may

influence the conductivity.72 In order to verify these models, a series of monodispersed PEO

with consecutive numbers of EO repeating units is required.

It is important to emphasise at this point that all the crystalline complexes discussed in

chapter 1.4.2 preserve exactly the same crystalline  phase represented by PXRD pattern

shown in Fig. 8. Moreover, the temperature dependence of conductivity for all those

complexes follows Arrhenius rather than VTF equation, supporting the ion hopping

mechanism.
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2. THE AIM OF THE PROJECT

It is very important to explore the area of crystalline polymer electrolytes as they

exhibit promising conductivity and impose selectivity on ion transport, whereas amorphous

materials above Tg, much like conventional liquids, are not selective, and in fact their

conductivity is dominated by anion transport.1

Clearly, many various routes have been explored in order to improve the ionic

conductivity of crystalline polymer electrolytes, but the conductivity of the best systems is

still too low for application of these electrolytes in batteries. Further improvements can only

be made if the mechanism of conduction is understood. Both the conductivity data obtained

when the density of the chain-end occurrences increased and the molecular dynamics

simulations hint that thorough study of the phenomena occurring at the chain ends present in

the tunnels may help in establishing the conduction mechanism. As discussed in 1.4.2, using

monodispersed PEO would limit the number of variables in such study and enable testing

different arrangements of coordination sites of lithium ions at the chain ends – “ideal” or

“broken” coordination2. Only one complex with monodispersed PEO Mw = 1015 Da (22

repeat unit, 23 ether oxygen atoms) has been investigated so far.1 That single investigation

alone is not enough to gain a significant insight into the conductivity mechanism. Further

research of monodispersed materials with different chain lengths is necessary. Preferably the

Mws of the monodispersed PEOs to be used should be as close as possible to 1000 Da to

allow direct comparison with the reported by the Bruce group complexes prepared with

polydispersed polymers. Also, the series must contain polymers with consecutive number of

repeat units (and hence ether oxygen atoms) in order to investigate the near-end coordination

of Li+. The target PEOs are listed in the Table 1:

Number of ether oxygen atoms, (NO) Mw [Da] EO repeat units (n)

20 883.067 19

21 927.120 20

22 971.172 21

23 1015.225 22

24 1059.277 23

25 1103.330 24

Table 1: List of the target monodispersed PEOs.

Only the 23-ether-oxygens monodispersed PEO is available commercially so the first aim is

to synthesise all the polymers followed by preparation and characterisation of complexes.
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3. EXPERIMENTAL TECHNIQUES

Most experimental techniques used in this project are well established and commonly

used in our research laboratories. They include preparation of polymer electrolytes, PXRD,

DSC, AC Impedance, transport number measurements. Preparative techniques used for the

syntheses of polymers will be described separately. The principles of NMR, FTIR and mass

spectroscopy techniques will not be described in detail, because they were used only for

finger-printing.

3.1. Solution NMR

1H NMR spectra were recorded on a Bruker Avance II 400 (400 MHz) spectrometer

using deuterochloroform (unless indicated otherwise) as a reference for internal deuterium

lock. The chemical shift data for each signal are given as δH in units of parts per million

(ppm) relative to tetramethylsilane (TMS) where δ(TMS) = 0.00 ppm. The multiplicity of each

signal is indicated by: s (singlet), d (doublet), t (triplet), q (quartet) or m (multiplet). The

number of protons (n) for a given resonance signal is indicated by nH. Coupling constants (J)

are quoted in Hz and are recorded to the nearest 0.1 Hz. Identical proton coupling constants

(J) are averaged in each spectrum and reported to the nearest 0.1 Hz. The coupling constants

are determined by analysis using Bruker TopSpin software.

13C NMR spectra were recorded on Bruker Avance II 400 (101 MHz) spectrometer

using the DEPT (Distortionless Enhancement by Polarisation Transfer) Q (Quaternaries)

pulse sequences with broadband proton decoupling and internal deuterium lock. The

chemical shift data for each signal are given as δ in units of parts per million (ppm) relative to 

tetramethylsilane (TMS) where δC (TMS) = 0.00 ppm.

The DEPT experiment is used for enhancing the sensitivity of carbon observation and

for editing of 13C spectra. The sensitivity gain comes from starting the experiment with

proton excitation and subsequently transferring the magnetisation onto carbon (polarisation

transfer). This increase in signal intensity stems from the larger population differences

associated with protons. The editing feature alters the amplitude and sign of the carbon

resonances according to the number of directly attached protons, allowing the identification

of carbon multiplicities. Because quaternary carbons do not possess a directly bonded proton,

they do not produce responses in DEPT experiments. For that reason the method has been

modified and renamed to DEPT Q where “Q” stands for inclusion of Quaternaries. DEPT Q

is a variant of the above DEPT experiment in which the signals of non-protonated carbons
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(e.g. quaternary centres, hence the “Q”) are also included (although with reduced

intensities).1 The 1H and 13C spectra are assigned and reported for each synthesised

compound in relevant chapters.

3.2. FTIR

FTIR data was collected on Nicolet 6700 (Fisher Thermo Scientific) in either

transmission (CsI pellet) or reflexion (ATR) mode in a nitrogen filled glove box.

3.3. Mass spectrometry (MALDI-MS, ESI-MS)

Mass spectrometry was measured either by matrix-assisted laser desorption/ionization

(MALDI) or electrospray ionization (ESI) mass spectrometry (MS).

3.3.1. MALDI-MS

The sample, dissolved in the appropriate solvent, was applied to the MALDI target

along with a matrix and a sodium salt and allowed to dry. MALDI-MS was acquired using a

4800 MALDI TOF/TOF Analyser (ABSciex, Foster City, CA) equipped with a Nd:YAG

355 nm laser and calibrated using a mixture of peptides. The spot was analysed in positive

MS mode over the appropriate mass range, by averaging 1000 laser spots. The laser intensity

was adjusted to give in the region of 2000 counts for the most intense peak in the spectrum.

3.3.2. ESI-MS

The sample was dissolved in either 50:50 acetonitrile:water or methanol at

a concentration of 1 ng/μL and delivered to an electrospray ionisation mass spectrometer 

(LCT, Micromass, Manchester, U.K.) at 20 μL/min via a syringe pump and analysed in 

positive ionization mode, using a capillary voltage of 3200 V and a cone voltage tuned to the

specific sample. The instrument had been calibrated on a series of sodium formate adducts.
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3.4. SEC (GPC)

Synthesised polymers were analysed by means of size-exclusion chromatography

(SEC) in order to determine their molecular weight distribution and purity – details of

deficiencies of this method will be described in 4.2.

3.4.1. Sample preparation

For each sample, a single solution was prepared with a volume of solvent expected to

give a concentration of 10.0 mg/ml. The solutions were left for a minimum of 4 hours to

dissolve and were then thoroughly mixed before being filtered through a 0.2 m membrane.

3.4.2. Chromatographic conditions

Instrument: Malvern/Viscotek Model 301 TDA with associated pump and autosampler,

Columns: PLgel guard plus 2 × mixed bed-E, 30 cm, 3 m,

Solvent: tetrahydrofuran (stabilised with antioxidant),

Injection: 20 l,

Flow-rate: 1.0 ml/min (nominal),

Temperature: 30°C (nominal),

Detector: refractive index (with differential pressure and light scattering).

The data has been collected and analysed using Malvern/Viscotek “OminSec” software.

3.5. Gradient flash chromatography

When indicated, purification of a reaction product was performed on an automated

gradient flash chromatography system Biotage® SP1. The conditions were individually

tailored for particular materials and are described in appropriate sections of the synthesis

chapter 4. The separated fractions were analysed on thin layer chromatography (TLC),

carried out on Merck silica gel 60 glass-supported thin layer chromatography sheets.

Visualisation was achieved by thermal development after dipping in solution of potassium

permanganate (KMnO4).
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3.6. X-Ray Diffraction

By measuring the radiation diffracted by the sample and the variation of intensity with

direction or the wavelength, it is possible to identify the position of atoms in the structure. It

is the electrons of an atom that scatter the X-rays. Thus every atom has a unique scattering

power, which allows to establish the position of all individual atoms.

A crystal is a highly ordered repeating assembly of atoms which can be viewed as

regularly spaced planes. When X-rays hit the sample, they are diffracted by the atoms

according to the Braggs’ law:

nλ = 2d sinθ 

where: n is an integer number, λ is the wavelength of the radiation, d is the interplanar

spacing and θ is the incident angle. The law allows us to predict when a given set of planes

will diffract with constructive interference (Fig. 12).

Fig. 12 The interpratation of Braggs’ law.

A single crystal gives a diffraction pattern with discrete diffracted spots, each in a

definitive direction relative to the orientation of the crystal and the incident beam, according

to the Braggs’ equation. A stationary single crystal with fixed incident beam gives very few

reflections (if any). In order to obtain the complete diffraction pattern it is necessary to

perform the data collection in 3D, which includes all possible orientations of the

beam/crystal/detector.

In the case of a powder each of the very many randomly oriented micro-crystals

comprising the powder produces its own diffraction pattern, all of which are superimposed.

Thus, when compared to the single crystal setup, powder pattern is essentially a compression

of 3D diffraction into one dimension (scattering angle), which inevitably leads to peak

overlap.



29

Fig. 13 Diffraction patterns.

Fig. 13 shows an example of different diffraction patterns of the same material. The

pattern on the left represents the reflection produced by a single crystal. The diffraction

pattern in the middle represents the reflection received when four such crystals are

superimposed in random relative orientations. The pattern on the right is what is received

when carrying out a powder x-ray diffraction, i.e. the pattern for a very large number of

crystals. Each spot on the left diagram is now represented by a circle on the right.2

3.6.1. Powder X-ray Diffraction (PXRD) – details

Powder X-ray diffraction was carried out using a Stoe STADI/P powder

diffractometer with CuK
α1 

radiation operating in transmission mode and employing a small

angle position sensitive detector (PSD). Data were collected with a step width of 0.02° in 2θ. 

To avoid contact with air the polymer electrolyte samples were sealed in Lindemann (glass)

capillaries.

3.6.2. Single Crystal – details

Data were collected using a Rigaku MM007 High brilliance RA generator (MoKα

radiation, confocal optics) and Saturn70 CCD system. At least a full hemisphere of data was

collected using ω scans. Intensities were corrected for Lorentz-polarisation and for 

absorption. The structures were solved by direct methods. Hydrogen atoms bound to carbon

were idealised. Structural refinements were performed with full-matrix least-squares based on

F2 by using SHELXTL (Sheldrick, G. M.. SHELXTL. Version 6.14. Bruker AXS Inc.,

Madison 2004).
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3.7. Differential Scanning Calorimetry (DSC)

DSC methodology is based upon measuring the change of the difference in the heat

flow to the sample under investigation and to a reference sample while they are subjected to a

controlled temperature program.3 Different amounts of heat must be supplied to the sample

and the reference, in order to maintain both at the same temperature due to their different heat

capacity when the sample undergoes physical transformation (e.g. phase transition) or

chemical reaction.

Fig. 14 Schematic representation of a DSC instrument.

A typical DSC instrument is shown in Fig. 14. Both a sample and a reference pan are

heated (or cooled) in the way that the temperature difference between them is almost zero.

Consider a polymer sample subjected to heating at a specific rate and analysed by

DSC method. To increase the temperature (T) of the material, the instrument supplies it with

heat (Q) over the time (t). The heating rate is described as temperature increase per unit time

(T/t). If we now divide the heat flow (Q/t) by the heating rate we obtain a term called heat

capacity (Cp), which if further divided by certain amount (mass) of the material gives the

specific heat capacity (C), which is a characteristic constant value for a material.

Tm

Q
C


 [J·K-1·kg-1]

As the heat capacity of the analysed polymer is higher than that of air (or an inert

gas), we observe the difference in the amount of heat supplied to the polymer sample and the

reference pan, what is displayed on the DSC plot (Fig. 15) as a certain value.
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Fig. 15 Heat flow vs. temperature

Polymers may be amorphous, crystalline or semicrystalline depending mainly on their

intrinsic properties, but sometimes also on the way they have been treated. This is what

makes macromolecular systems very different from molecular ones. Polymers are considered

to be completely immobile below certain characteristic temperature known as glass transition

temperature (Tg). If the examined polymer sample is heated up above the Tg, some segmental

movements of polymer chains will occur and the polymer will not be ‘frozen’ anymore. To

maintain those movements, more energy must now be supplied to the polymer than in the

glassy state, which means that its heat capacity is higher. This change is represented in

Fig. 16.

Fig. 16 Glass transition temperature (Tg)

Let us assume that our polymer was “frozen” in a predominantly amorphous phase,

but possessed the intrinsic capability to create crystalline phase. This means, that it will try to

reorganise in the manner to build up some crystallites as the most preferred energetic state.

As after crossing Tg the movement of chains were enabled, we should now expect that the

polymer will do so. Indeed, during further heating the crystallisation temperature (Tc) is
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reached at which the mobility of chains is strong enough to reorganise the structure. Since the

crystalline phase is energetically more favourable, the transition, which leads to this

arrangement, will release some energy from the material. This energy is consumed to

increase the temperature of the sample, so the heater of the instrument does not have to heat

the sample as much as previously to maintain its temperature at the same level as the

reference pan. Thus it will be registered in the DSC plot as a dip (Fig. 17).

Fig. 17 Crystallisation temperature (Tc)

Moreover, the area of the dip can be integrated and if the percentage of crystalline

phase in the material and total mass of the sample are known, the calculated area will tell us

the specific heat of melting of the crystalline phase of the polymer. Similarly, if the specific

heat of melting of the polymer and mass of the sample are known, we can calculate the

percentage of crystalline phase in the material.

If the instrument keeps heating the sample, it will finally reach the temperature at

which the crystalline phase melts. Since the melting process is endothermic, the sample will

require more heat to maintain the same temperature as the reference pan. It will result in a

strong peak in the DSC plot and the top of this peak indicates the melting temperature (Tm)

(Fig. 18).
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Fig. 18 Melting temperature (Tm)

Accordingly, the area of the peak represents the latent heat of melting of the

crystalline phase.
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3.7.1. Differential scanning calorimetry (DSC) – details

The samples (2.0 mg) were placed in aluminium pans which were sealed in an argon

filled glove box and differential scanning calorimetry was carried out using a Netzsch DSC

204 Phoenix. All the samples were measured using the same temperature program (Fig. 19).

Fig. 19 DSC temperature program.
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3.8. Electrical measurements on Polymer Electrolyte

Traditionally, investigation of the electrical properties of pure polymers was almost

synonymous with the determination of their dielectric properties, since they were only

considered as insulators due to their low conductivity. Since 1977 it has been known that pure

polymers can also conduct electrons.4 The authors of that discovery were awarded the Nobel

Prize in chemistry in 2000. However, it has also been known for 30 years already, that some

of the pure, practically insulating polymers can be used to produce ionically conducting

electrolytes5 and they are the aim of this study.

Characterisation of the basic electrical properties of a polymer electrolyte involves

determination of the following:

1) the total conductivity of the electrolyte as a function of temperature,

2) identification of the different charged species contributing to conduction,

3) the transport numbers, i.e. the proportion of the current carried by each charged

species, as a function of temperature.

Three major techniques are now widely used in electrical characterisation of polymer

electrolytes:

1) direct current (DC) measurements

2) alternating current (AC) measurements

3) transport number measurements

3.8.1. Direct Current (DC) Measurements

The DC techniques represent the most straightforward method which may be

employed to measure ionic conductivity in polymers. Their use to date is significantly less

than that of AC techniques, but is still of considerable value.

Let us, as an example, consider an electrolyte in which conduction occurs by the

migration of Li+ only. The polymer electrolyte in question is sandwiched between 2 metallic

lithium (non-blocking) electrodes, so that on the application of a stable DC voltage a constant

current flows around the circuit and through the cell. At electrode 1 electrons from a power

source reduce Li+ cations from electrolyte, while at electrode 2 cations are generated by

oxidation and injected into the electrolyte phase as the electrons flow towards the power

supply. The electric field generated by the electrodes causes migration of ions through the

electrolyte. By simple measurements of the applied potential (V) and generated current (I),

the resistance of the electrolyte (Rb) may be calculated according to the Ohm’s law:
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I

V
Rb 

Knowing the cross section area of the electrolyte (A) and the distance between the electrodes

(l) we convert to the specific conductivity ():

AR

l

b 


This simple consideration does not take into account a major difficulty of this

method – the current must cross both electrode/electrolyte interfaces which add other 2

resistances (Re). Normally Re is not negligible in comparison with Rb. This problem is

difficult to overcome in real systems.

3.8.2. Alternating Current (AC) Measurements

The AC methods are currently the most popular approach to the determination of the

electrical properties of polymer electrolytes. The main advantage is, undoubtedly, that very

simple cells incorporating inert blocking electrodes may be used to determine bulk electrolyte

properties, although compared with the DC techniques both the equipment required and the

theory necessary to interpret the measurements are much more complex. On the other hand,

from AC impedance data it is also possible to gain information about long-range migration of

ions and polarisation phenomena occurring in the cell.

In an AC experiment a sinusoidal voltage is applied across a cell and the sinusoidal

current passing through the cell as a result of this perturbation is measured. Two parameters

are required to relate current to voltage which is the crucial difference from DC perturbations

as this only requires one parameter (i.e. resistance). One represents the opposition to the flow

of charge and is equal to the ratio of the voltage and current maxima (Vmax/Imax) and is

analogous to the resistance in DC measurements. The other parameter () is the phase

difference between voltage and current (Fig. 20).
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Fig. 20 Representation of sinusoidal voltage and current, at a given frequency associated with
the cell.

The combination of these two parameters represents the impedance (Z) of the cell.

Generally, for an electrochemical cell both the magnitude of the impedance (|Z|= Vmax/Imax)

and its phase angle () are functions of the applied frequency.

The most commonly used AC method for considered application involves measuring

the impedance as a function of the frequency of the applied signal over a wide frequency

range, typically from 1 mHz to 1 MHz. Since the impedance is frequency dependent, we can

extract information about the electrical properties of the cell. The impedance of a cell is a

vector quantity and can be represented by a point on a phasor diagram. The impedance for

each frequency measured is represented by a separate point on the vector diagram (Fig. 21).

Fig. 21 Representation of the impedance (Z) of a cell on a vector diagram.

The distance between the point and the origin, and the angle formed with the x-axis

correspond to the magnitude of the impedance and phase difference between the voltage and

current accordingly. This is analogous to the representation of a complex number in the

complex plane, so that the impedance may be conveniently represented by a complex

number. If that is the case, this is often termed the complex impedance (Z*). Its x and y

components equal |Z|cos and |Z|sin respectively.
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A typical AC experiment consists of determining the complex impedance of the cell

as a function of the signal frequency and presenting the results in the form of a complex

impedance plot.

3.8.2.1. AC response of cells with blocking electrodes

In a cell with blocking electrodes the mobile species in the electrolyte do not

participate in any electrode reactions and type 1 polymer electrolytes have only one mobile

ionic species. Consider this type of polymer electrolyte sandwiched between two platinum

electrodes with a lithium ion conducting polymer electrolyte. Assuming an idealised lithium

ion conducting polymer and platinum electrodes, AC voltage is applied to the cell and the

frequency is varied. The equivalent circuit to the cell is given in Fig. 22.

Fig. 22 Schematic representation of a polymer electrolyte/blocking electrode cell.

We can assume that an idealised lithium ion conducting polymer with platinum

electrodes will represent such a circuit. An AC voltage is applied to the cell and frequency is

varied, so the electrodes become alternatively positively and negatively charged. As a result

the alternating field across the electrolyte causes the Li+ ions to migrate back and forth in

phase with the voltage. This migration is represented by the resistor Rb. At the same time the

immobile polymer matrix becomes polarised in that field as a typical dielectric material what

is represented by the capacitor Cb.

As the Li+ ions move in the alternating field they are alternatively accumulated and

then depleted at each electrode. On each half-cycle, ionic charge builds up within the

electrolyte near the electrodes, these charges being balanced by an equal and opposite

electronic charge on the electrodes. Each electrode is similar to a parallel plate capacitor and

can be represented by Ce. This representation is a reasonable approximation when the ion

concentration in the electrolyte is high, ≥ 1 M 
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The bulk polarisation and ionic migration are physically in parallel hence their

representative components (Rb and Cb) are connected in parallel and both are in series with

the electrode capacitance (Ce). Since both electrodes are identical, they are combined into one

overall capacitance term, 1/Ce = 1/Ce1 + 1/Ce2. Cb is related to the dielectric constant of the

polymer according to the equation:

l

A
Cb

0


in which  is the relative dielectric constant of the polymer and 0 (8.85·10-12 F/m) is the

vacuum permittivity, A is the cross sectional surface area and l is the distance between the

two plates. Rb varies with the temperature and the particular polymer and geometric

parameters used in the experiment.

Since Ce is in series with a parallel combination of Rb and Cb the total impedance can

be calculated by adding the impedance of the capacitor Ce to the impedance of the parallel

RC combination. To do this it is necessary to know the relationship between resistance,

capacitance and their respective impedances.

In a resistor the phase difference between the voltage and the current is zero. Hence

the magnitude of the impedance equals the resistance (|Z|=R). With a capacitor the phase

difference between applied voltage and the current is -90° out of phase (= -/2). Hence

|Z|= 1/(C), as this occurs along the imaginary axis and by convention capacitances are

treated as negative values, |Z|= -j/(C). In a series circuit impedances are directly additive.

However, in a parallel only their reciprocals (admittances, Y) can be added.

Hence:

Y = Y
1+ Y

2 + Y
3+……

and
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So total admittance of a parallel combination of a resistor and capacitor is given by:

Cj
R

Ytotal 
1

and hence the total impedance of such combination:
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Now back to the original circuit depicted in Fig. 22, it can be shown that:
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The complex impedance plot given by this equation is shown in Fig. 23.

Fig. 23 Simulated complex impedance plot for the circuit of a polymer electrolyte/blocking
electrode cell.

The magnitude of all fundamental electrical properties of the cell can be obtained

from the complete impedance data, in particular the DC resistance (Rb). From that value it is

possible to calculate the specific conductivity of the material being measured using equation

from 3.8.1.
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3.8.2.2. Results evaluation

The reliability of any conductivity measurement is dependent not only on the polymer

under study but on the complete measuring cell – the two measuring electrodes as well as the

tested material sandwiched between them. The characteristics of the electrodes themselves

rarely affect the measurements, but the electrode/electrolyte interfaces often do for the

reasons described below.

 Processes occurring at the interface (non-blocking electrodes)

The processes taking place at the electrodes involving ions can impede the rapid flow of

current and affect the measurement. The main processes are:

a) Diffusion of ions to the surface of the electrode

b) Adsorption onto the surface

c) Diffusion across surface to suitable site

d) Charge transfer.

 Blocking Electrodes

In the case of blocking electrodes the conducting ions cannot cross the

electrode/electrolyte interface. In all electrode systems a double layer capacitance is

formed at the interface before any reaction can take place. With blocking electrodes this

double layer is formed with no subsequent electrochemical transformation taking place

affecting the measurement.

 There may be incomplete electrode contact

In the typical case of an electrical contact between two solids there is rarely 100% contact

since both surfaces will not be perfectly flat. Polishing can reduce the problem of

irregularities on the electrode surface, and also reduce the possibility of it being coated

with a resistive layer of an impurity. Heating the polymer when in contact with the

electrodes can also facilitate greater electrical contact by increasing the likelihood of

plastic deformation of the polymer around any imperfections on the electrode surface.

Applying pressure to the electrodes has also been used successfully to increase electrode

contact.

The samples measured by AC impedance throughout the course of my project were

sandwiched between two stainless steel electrodes in a spring loaded PTFE cell. The

measurements were carried out in an argon filled stainless steel PTFE lined gas-sealed can.
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3.8.3. Transport Number Measurements

When a polymer electrolyte possess more than one mobile charged species it is

important to determine not only the total conductivity, but also the proportion of the current

which is carried by each species. This proportion is given by the transport number (t).

Consider an electrolyte consisting of n mobile species, then:

total=1+2+…+n

tn = n/total

It is important to remember that both ions and electrons may contribute to the total

conductivity. There is a wide variety of diverse methods to measure the transport number.

The most commonly used one is the Bruce and Vincent method which is based on AC

impedance measurements.6 However, the methods will not be described in detail here,

because they have not been used in this project yet.

References

1. S. Berger, S. Braun, 200 and more NMR experiments : a practical course, 3rd rev. and expanded ed.,
Wiley-VCH, Weinheim, 2004.

2. V. K. Pecharsky, P. Y. Zavalij, Fundamentals of powder diffraction and structural characterization of
materials, 2nd ed., Springer, New York, 2009.

3. G. Höhne, W. Hemminger, H. J. Flammersheim, Differential scanning calorimetry: an introduction for
practitioners, 2nd rev. and enl. ed., Springer, Berlin ; New York, 2003.

4. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G.
Macdiarmid, Electrical Conductivity in Doped Polyacetylene. Physical Review Letters, 1977, 39(17): p.
1098-1101.

5. M. B. Armand, J. M. Chabango, M. J. Duclot, Poly-ethers as solid electrolytes, in Fast ion transport in
solids: electrodes, and electrolytes (Eds.: P. Vashishta, J. N. Mundy, G. K. Shenoy), North Holland,
Amsterdam, 1979, pp. 131-136.

6. J. Evans, C. A. Vincent, P. G. Bruce, Electrochemical measurement of transference numbers in polymer
electrolytes. Polymer, 1987, 28(13): p. 2324-2328.



43

4. MONODISPERSED PEG SYNTHESIS

The syntheses of monodispersed PEG have been explored in detail because of the

following:

 the majority of the required polymers are not commercially available,

 synthetic methods described in the literature deliver products of inferior purity.

4.1. History

Poly(ethylene glycols) (PEGs) are a class of molecules that have many applications in

chemistry, biochemistry, medicine and materials science. For some of those applications it is

very important that all macromolecules are of the same length (monodispersed). Well-

controlled anionic polymerisation can produce monofunctional PEG with polydispersity

indices (PDIs) approaching 1.04.1

Many research groups have already tried to synthesise monodispersed PEGs of

different chain lengths.2-7 First such attempt was reported in 1939 by Hibbert et al.2 However,

the method they used could only produce (semi)discrete oligomers, as many side reactions

occurred leading to inseparable by-products and ruining monodispersity. Once more

sophisticated synthetic and diagnostic methods became available, new approaches to

monodispersed PEGs were undertaken. A common feature in the majority of new approaches

is strategic desymmetrisation (e.g. protection) which prevents uncontrolled polymerisation

during the ether coupling. There are four conceptual ways to elongate ethylene glycol (EG)5:

A. iterative coupling of mono-protected building block to one end, L=x(1+g)

B. iterative coupling of mono-protected building block to both ends, L=x(1+2g)

C. chain doubling, L=2gx

D. chain tripling, L=3gx

where: L – oligo/polymer length, g – number of generations of coupling, x – number of

monomeric units in starting oligomer.

From a mathematical point of view mode D is the fastest way to obtain

poly/oligomers if g > 1. Mode C provides faster growth than linear modes A/B if g > 2.

Although it is useful to synthesise the desired poly/oligomer in the shortest possible time, our

requirements for specific lengths (e.g. 23 EO units in chain) cannot be achieved by methods

C or D. Moreover, those methods look very elegant in theory, but in practice the number of

processes required to synthesise the product is much greater, as each generation of coupling

requires additional steps of preparation (e.g. at least 2 different types of



44

protection/deprotection reactions)5, so the actual time needed from g = 0 to the end product

can be much longer than the linear modes (A, B) especially for small g’s. Thus the modes A

or B are the most appropriate methods of choice in our case. It is also very likely that g will

not be larger than 3 and hence mode B was chosen.

The procedure described by Loiseau et al3 seems to be very robust and gives most of

the necessary details to enable repetition. However, the newer procedure by Tanaka et al4,

which is based on similar chemistry, benefits from fewer purification steps, especially those

involving preparative chromatography columns for large quantities (tens of grams), which are

very time and resources consuming. The procedure described by Springer et al6 uses the

combination of both Loiseau’s and Tanaka’s methods with marginal modifications. Tanaka’s

procedure allows any lengths of PEG (up to 44 EO units) to be synthesised. However, it will

be shown in following chapters that the purity of products synthesised using this procedure

can be improved by means of modifications suggested by Davis et al5 and then even more by

our further improvements. Thus, the combination of both Tanaka’s and Davis’s recipes along

with further optimisation are the most appropriate for our application where both high purity

and reasonably high yields are required.

4.2. Analytical challenges

Development of the most efficient procedure to synthesise a monodispersed polymer

relies heavily on analytical techniques, each of which has its own advantages and limitations.

It has to be noted that the most important difference between non-polymeric organic

molecules and polymers is that qualitative analysis is not enough to evaluate monodispersed

purity. This is simply because, independently of molecular weight, polymeric

macromolecules, which differ only in the number of repeating units, are practically identical

in terms of their physicochemical properties. Hence the analytical methods to be applied must

not only provide information regarding elemental and structural purity, but must also be size

sensitive and, moreover, be able to quantify molecules of different sizes.

In terms of organic impurities and by-products which are chemically different than the

desired product, it is often enough to analyse a material by 1H NMR which is a very powerful

qualitative and quantitative tool not only for organic but also for polymer chemistry.8,9

However, for dispersity evaluation the NMR analysis alone is not sufficient, especially for

poly(ethylene glycol) in which all the protons and carbons (except those at the chain ends and

the adjacent –O-CH2- groups) produce overlapping peaks. Evaluation based on the ratio
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between the protons from chain ends and the protons from actual chains can also be very

misleading because the numbers calculated from peak areas are ambiguous for polymers. For

example, a polydispersed dimethoxy PEG may show exactly the same ratio between the

protons from the chain to those from the chain ends as a monodispersed PEG. As an example

1H NMR spectrum of polydispersed poly(ethylene glycol) of 1000 Da molecular weight is

shown (Fig. 24). The peak areas may well correspond to the monodispersed 23 repeating

units dimethoxy poly(ethylene glycol) (BMP23EO) in which there are 6 equivalent protons

from the end groups 3.38 ppm (6 H, s, -OCH3) and 92 protons from methylene groups

3.53-3.70 ppm (92 H, m, -CH2-).

Fig. 24 1H NMR spectrum of poly(ethylene glycol) Mw=1000Da.

Let us now consider elemental analysis (CHNX). The general molecular formula of a

dimethoxy PEG is CH3O(C2H4O)xCH3. It implies that carbon/hydrogen/oxygen ratios change

very insignificantly throughout different Mws (Fig. 25). For example, dimethoxy

monoethylene glycol (BMP1EO) composition is: C (53.31%), H (11.18%), O (35.51%) while

O
O

CH3
CH3

x

Average Mass = 1000 Da
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dimethoxy 30(ethylene glycol) (BMP30EO) gives: C (54.45%), H (9.29%), O (36.27%). As

the value of x in CH3O(C2H4O)xCH3 increases, the terminus methyl or methoxy groups

become more negligible and the composition of CH3O(C2H4O)∞CH3 is: C (54.53%),

H (9.15%), O (36.32%).

Fig. 25 Theoretical elemental composition of the series of dimethoxy PEGs (a) and change of
carbon content throughout that series (b). The light blue band indicates the error margins of
the elemental analysis.
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The range of different chain lengths covered by the accuracy (±0.3%) of the CHNX

analysis for carbon is represented by the light blue band in Fig. 25(b) which stretches to

x = ∞. Thus an infinitely long polymer in which the carbon content is C (54.53%) cannot be 

reliably distinguished from dimethoxy PEG molecule consisting of just 7 or 8 repeating units

C (54.22%, 54.25% respectively). A similar confusion arises when the contents of hydrogen

and oxygen are analysed. In general the CHNX method cannot distinguish between

dimethoxy PEGs when x > 12. Thus the elemental analysis can be used only to confirm

elemental purity but, like 1H NMR, does not provide reliable information regarding the

monodispersity.

Characterisation and quantification of polymers is possible using size-exclusion

chromatography (SEC) which reveals molar mass distribution.10,11 However, in case of the

synthesis of a monodispersed PEG it is necessary to quantify the discrete molecules. To find

out whether SEC can provide sufficient resolution for such quantification of PEGs, a number

of different samples consisting of either an individual monodispersed moiety or a mixture of

2 monodispersed PEGs were analysed. Since the goal of this project is to focus on chain

lengths between 19 and 25 repeating units, 2 consecutive monodispersed PEGs were selected

for analysis – 20 units (20EO) and 21 units (21EO). They were analysed on SEC both

individually and in an equimolar mixture (Fig. 26). The results show that SEC fails to resolve

signals from 20EO and 21EO. The mixture of those 2 polymers produces only 1 peak with

the maximum positioned in the middle between the maxima of 20EO and 21EO.

However, once the difference in chain length of the component PEGs in the mixture is

higher than a single repeating unit, SEC analysis becomes a useful quantitative tool. Let us

consider an example which is related to the synthesis of monodispersed PEGs. The process is

based on the chain extension reactions of shorter PEGs, thus for example, 20EO can be

obtained from 12EO. As Fig. 27 shows, the retention volumes for 12EO and 20EO are

sufficiently different to determine whether any of the starting material (12EO) is present in

the targeting product (20EO).
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Fig. 26 SEC results of: 20EO (red), 21EO (blue), equimolar mixture of 20EO and 21EO
(black).
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Fig. 27 Comparison of SEC data for 20EO (red) and 12EO (green).
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SEC is the only direct liquid-chromatography-based method to assess the chain

lengths and their distribution. Other methods rely on difference in polarity of analysed

molecules. Silica-gel based chromatography can be used when the chains of different lengths

possess sufficiently different polarity.

PEG is a very polar polymer because of both its chain structure and terminal (-OH)

groups12. It is even extracted from chloroform (already a relatively polar solvent13) with 5%

HCl4 which demonstrates its affinity to polar species. For a polymer like PEG, protection of

highly polar -OH end groups with non-polar (e.g. methyl- or benzyl-) groups gives the

opportunity of varying polarity across different chain lengths, thus opening the possibility of

using silica-gel based chromatography. However, similarly to SEC, the larger the polymer

chains are, the less pronounced is the difference in their retention factors (Rf) making the

separation of 2 consecutive chain lengths all but impossible regardless of the type of eluent

used. Further details are provided in the synthesis chapter.

All the above methods are useful for evaluating the purity but not sufficiently accurate

on their own for reliable determination of monodispersity. Because of that, mass-

spectrometry (MS) based methods were also employed to determine the purity of

monodispersed PEGs3,5,6. It is important to note that for quantification only soft ionization

techniques are suitable, because all the other ones are highly energetic and inevitably lead to

decomposition of analysed compounds14,15. That is why electrospray ionization (ESI) and

matrix-assisted laser desorption/ionization (MALDI) analyses were chosen, in which time of

flight (TOF) was measured to determine molecular weights and presence of impurities. There

have been investigations of whether these techniques can provide quantitative data for PEGs

and their derivatives of different Mws16-21, but only one group used them to analyse

monodispersed PEGs17. The general conclusion from the literature is that there is a good

agreement in Mw determination and its distribution between MS techniques and SEC, but

changes in experimental setup parameters can affect the results of dispersity evaluation. Our

own study of 12EO synthesised according to the procedure developed by Tanaka et al4, using

ESI-MS-TOF clearly showed 1 species with the main peak at 569.16 Da (and its isotopic

570.25 Da) which corresponds exactly to 12EO+Na+. Since no other molecules were detected

at all, high purity was assumed. However, when the same material was run on MALDI-TOF-

MS 2 species were detected: the desired 12EO+Na+ (569.24 Da, intensity = 100%) and

11EO+Na+ (525.21 Da, intensity = 8%). Such discrepancy between ESI and MALDI was not

acceptable and it became important to find out which method is more reliable. There were

reports in the literature that under MALDI conditions PEGs may decompose22, however no
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molecules which would be the results of such a decomposition pathway were observed in our

spectra. No matter whether the analysed xEO was -OH, methyl- or benzyl- protected, (x-1)EO

side-product was always found. Moreover, when benzyl groups had been cleaved by means

of catalytic hydrogenation, the MALDI results showed very similar amounts of (x-1)EO in

both substrate and product. These results led to the conclusion that under our MALDI

operating conditions decomposition is not observed and the (x-1)EO by-products must be

generated over the course of the synthesis. A possibility of reaction between the matrices

used in MALDI and PEG derivatives has also been reported18,23, but for -OH, -CH3 and

benzyl- terminated PEGs the side reactions were not observed in our measurements. Shimada

et al17 attempted to evaluate the quantitative capability of MALDI for an equimolar mixture

of monodispersed PEGs of x = 6–40. In their investigation laser power (LP) and species of

adduct cations were the variables. Although the general conclusion was that MALDI is not a

quantitative method, when sodium is added and LP is not higher than 5.0, the discrimination

effects are moderate and, in the worst case the intensity of 26EO was 25% greater than 30EO.

Assuming that 25% difference is spread over 5 consecutive PEGs (26–30), the error between

2 subsequent chain lengths should be much smaller. When coming back to the 12EO sample

discussed above: even if the analysis error was 25%, the amount of 11EO present in the

sample would be 6-10% which was not seen at all by ESI. Hence, from the purity

requirements point of view it was definitely more favourable to rely on MALDI as it was

much more sensitive than ESI towards impurities even if the amounts were over or under

estimated. In fact, it will be shown in further chapters that after optimisation of MALDI

conditions results of the analysis are very reproducible.

4.3. Optimisation of MALDI-MS

It was necessary to optimise MALDI-MS technique in order to achieve quantitative

and reproducible results. According to the literature the most suitable matrix for synthetic

polar polymers, such as PEO, is 2,5-dihydroxybenzoic acid (DHBA, or sometimes

abbreviated DHB)17,24,25. Sodium as an ionising agent in this case is superior to other 1st

group cations (Li+, K+, Rb+, Cs+) in terms of intensity produced in MALDI spectra25.

Aqueous ethanol was selected as the solvent. Table 2 shows the proportions of ingredients

which provide reliable MALDI-MS analysis for PEOs.
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DHBA [g] 0.0094

Ethanol [ml] 0.90

Water [ml] 0.10

NaCl [g] 0.0024

sample [g] 0.0005

Table 2: Optimised solution for MALDI-MS.

Since the ability for ion complexation by PEOs varies depending on the end groups

and is likely to be different than that of the crown ether, MALDI-MS is not suitable for

relative quantification of those.

MALDI-TOF analysis of a monodispersed PEG typically reveals the product (target)

peak and the 44 Da lighter target-(1 EO) impurity. A small peak at target-(90 Da) observed

in purified bis benzyl protected PEGs is associated with the product losing 1 benzyl group

during MALDI analysis (possibly reaction with DHBA). Occasionally a very small peak is

also observed at target+(152 Da) independent of the type of the PEG end groups. The peak is

sporadic and does not always appear in repeated runs, suggesting a methodological error. It

could be associated with the DHBA matrix molecule losing 2 protons and agglomerating with

Na+ cation and the analysed compound. Some small peaks below 600 Da, which also appear

sporadically, are also associated with the decomposition of the matrix. The peak appearing at

target+(16 Da) is associated with the product coordinating K+ cations (possibly from reaction

as KOtBu is used as a base) rather than Na+.

All the intensities in MALDI spectra are given in percents, relative to the intensity of

the strongest peak.
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4.4. Monodispersed PEG availability

At the time of writing only a few monodispersed poly/oligo(ethylene glycols) were

available commercially and even then not with sufficient purity (Table 3). The required chain

lengths, 19-24 EO units, were not available.

PEG purity [%] supplier quantity price £

HOCH2CH2OH
Ethylene glycol

C2H6O2
99.8

Sigma
Aldrich

1 L 34.00

H(OCH2CH2)2OH
Diethylene glycol

C4H10O3
≥ 99 

Sigma
Aldrich

1 L 52.30

H(OCH2CH2)3OH
Triethylene glycol

C6H14O4
≥ 99 

Sigma
Aldrich

500 mL 40.60

H(OCH2CH2)4OH
Tetraethylene glycol

C8H18O5
99.5

Fisher
Scientific

1 L 30.70

H(OCH2CH2)5OH
Pentaethylene glycol

C10H22O6
98

Fisher
Scientific

25 g 150.10

H(OCH2CH2)6OH
Hexaethylene glycol

C12H26O7
97

Sigma
Aldrich

25 g 110.10

H(OCH2CH2)8OH
Octaethylene glycol

C16H34O9
≥ 95 Polypure 25 g 455.30

H(OCH2CH2)12OH
Dodecaethylene glycol

C24H50O13
≥ 95 Polypure 25 g 780.50

H(OCH2CH2)28OH
Dodecaethylene glycol

C56H114O29
≥ 95 Polypure 5 g 351.20

H(OCH2CH2)12OH
Dodecaethylene glycol

C24H50O13

> 99
(claimed)

Quanta
Biodesign

1 g 490.00

Table 3: Commercial monodispersed poly/oligo(ethylene glycols)
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4.5. Monodispersed PEG synthesis procedure development and optimisation

As mentioned in chapter 4.1 the combination of both Tanaka’s4 and Davis’s5

synthesis recipes, combined with further optimisation, is the most appropriate for our

application, when both high purity and high yields are required. In terms of exact synthetic

procedure, method B (Fig. 28) allows the synthesis of a polymer in which the number of mers

equals the multiplicity of the number of repeating units (x) in the starting material. However,

if two different starting materials are used (mode Bm) and the glycol is built of m mers, while

elongating (coupling) agent contains x mers, any number of repeating units in the final

product can be achieved, according to the formula: L=m+2xg (Fig. 28, mode Bm).

g=0

g=1

g=2

g=2

x

x+ 2

x xx

x+ 2

x xxx x

x+ 2

x xxx xx x

m

x+ 2

m xx

x+ 2

m xxx x

x+ 2

m xxx xx x

L=x

L=3x

L=5x

L=7x

L=m

L=m+2x

L=m+4x

B

L=x(1+2g)

Bm

L=m+2xg

L=m+6x

Fig. 28 Algorithm of the synthesis of monodispersed PEGs in mode B and its modification
mode Bm. L – oligo/polymer length, g – number of generations of coupling, x – number of
monomeric units in starting oligomer.

The basis of the synthetic process is the reiteration of Williamson’s ether synthesis26

which usually proceeds via the nucleophilic substitution SN2 reaction27 (Fig. 29).

Fig. 29 Williamson’s ether synthesis.
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The synthesis route for monodispersed PEGs is shown in Fig. 30. Diols are symmetric

molecules with 2 reactive hydroxyl- groups. Hence, in order to control the growth of

polymeric chains, the mEO is reacted with an elongating agent on both ends (Fig. 30b). The

agent is a mono-protected (Pr) mono-functionalised (X) xEO (Fig. 30a). The functionalised

end is reactive towards hydroxyl- groups of the mEO. Although there is a possibility to

functionalise mEO on both ends and react it with monoprotected xEO, such route was ruled

out by Tanaka et al4 because of higher probability of generating side products. The product of

such ether coupling reaction is an elongated PEG, protected on both ends. Removal of

protective groups (Fig. 30c) leads to the next generation of PEG, consisting of (m+2x) mers,

which can be used as a substrate for reiteration of the ether coupling.

O
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protection

x

O
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XPr
xPr X
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x
+ O
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H
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O
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O
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O

OH
H

m+2x

deprotection

strong base

Fig. 30 Monodispersed PEG synthesis route: a) synthesis of an elongating agent by mono-
protection and subsequent mono-functionalisation of xEO; b) chain elongation via ether
coupling reaction; c) removal of protective group.

Considering the availability, price, purity, desire to minimise the number of synthetic

steps and the fact that the ether coupling reagent Pr-(OCH2CH2)x-X should be used in excess

to the mEO, tetraethylene glycol appears to be the best candidate for that.

4.5.1. Selective monoprotection

The protective group must be stable under both functionalisation and ether coupling

reactions conditions. Its removal (cleavage) should be selective, not destructive to the PEG

chain and efficient, in order to deliver as much as possible of the desired product.

Monotetrahydropyranyl- (THP-), tert-butyl- (t-Bu-), monotrityl- (Ph3C-) and benzyl- (Bn-)
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protective groups have already been examined by many reasearchers3-5,7 for the synthesis of

monodispersed PEGs and only Bn- was stable under both ether coupling and

functionalisation conditions4. Moreover, Bn- group can be selectively cleaved under neutral

conditions by means of catalytic hydrogenolysis, which has a yield of 95-98%4,28 .

Formation of benzyl- ether can be achieved through a variety of methods28,29, many of

which being variations of the Williamson’s synthesis (Fig. 29). Mono-protection is achieved

by using large excess of a diol, which can be easily removed by simple extraction, because

the diol has stronger affinity to the aqueous phase than to a non-polar organic solvent

(Fig. 31)4,5.

O
OH

H PhCH2Cl
O

O
H

x xstrong base

Fig. 31 Monobenzylation of PEGs.

Although the excess of a diol minimises formation of bisbenzyl protected (BBP) diol,

some always forms. Fortunately, the latter can be easily removed using column

chromatography5. The BBP diol remains intact during consecutive functionalisation and if its

content in the crude product is lower than 10%, there is no need for purification at that stage,

providing that the product of the ether coupling elongation reaction is separable from the

BBP diol4. The formation of BBP is observed in 1H NMR (400 MHz, in CDCl3). Benzyl

protons of tetraethylene glycol monobenzyl and bisbenzyl ethers manifest themselves in

NMR peaks with different chemical shifts, 4.57 and 4.56 ppm respectively. The intensities of

the peaks can be used to determine the molar ratio.

Highly selective silver(I)-oxide-mediated procedure for monoprotection of

symmetrical diols was suggested by Bouzide et al29 and also applied by Loiseau et al3. The

product was obtained in 90% yield and contained 5-10% molar of BBP diol.

Compared to the procedures involving excess of a diol, the silver(I)-oxide-mediation

is more labour-intensive (requires preparation of fresh Ag2O, filtration), more difficult

(overhead stirrer necessary due to high viscosity of the reacting mixture), more expensive and

environmentally unfriendly (uses substantial amounts of Ag2O).

Since both of the above procedures produce BBP diol as a side product the easier and

cheaper excess-of-diol method has been chosen.
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4.5.2. Functionalisation by tosylation

Functionalisation of the hydroxyl group in a mono protected diol has been extensively

studied by a number of research groups3-5. The functional group must both attach and leave

with highest possible yields and without destroying the substrate. Those requirements are met

by both mesyl- (Ms-) and tosyl- (Ts-) groups and although the former was found to perform

marginally better in subsequent reactions, the latter was attached with excellent yields (over

96%) in a less toxic environment (THF/H2O instead of pyridine) (Fig. 32). Hence, tosyl-

group was selected and no further improvements of the procedure were required at this

stage4. Purification by extraction was adequate. Impurities and unreacted substrates were

beyond detectable levels and the use of column chromatography did not affect the yield of the

purified product.

O
OHPr

x x

O
OPr

S

O

O

CH3

1. NaOH
2. p-TsCl

THF-H2O, 0 °C

Fig. 32 Tosylation of monoprotected PEGs.

4.5.3. Chain elongation – ether coupling.

The ether coupling reaction (Fig. 33) is another variation of the Williamson’s ether

synthesis.

+2

Strong base
O

OH
H

m

O
OPr

Ts

x

O
OPr

Pr

2x+m

Fig. 33 Ether coupling reaction.

Following the Bm algorithm (Fig. 28), 2 molecules of the ether coupling reagent react

with 1 molecule of mEO. The mEO is deprotonated with a strong base and the resulting

alkoxide (nucleophile) attacks the ether coupling reagent. Despite being commonly used in

organic chemistry, in this particular case this reaction requires extensive optimisation because

of the reported depolymerisation of alkoxides formed from PEGs5,30. Indeed, the

depolymerisation has been observed in this work too and the (m+2x-1) – target-(1 EO) –

practically inseparable side product always formed during the ether coupling, but as shown

later in this chapter the procedure has been refined to minimise the amount of it. Additional
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difficulties in purification may arise due to formation of mono-ether coupled product,

although for the target chain lengths of this project (≤ 24 EO units) they were separable from 

the product by means of column chromatography.

In Tanaka’s procedure NaH, mEO and dry THF were put into a flask and a solution

in dry THF of monobenzyl protected xEO tosylate (MBPxEOTos) was added dropwise. Then

the reaction mixture was refluxed for 24 hrs and cooled to room temperature. Excess of NaH

was quenched with MeOH and then H2O. After evaporation of THF, the product was

extracted with 5 wt % aqueous HCl and CHCl3. The crude product obtained by solvent

evaporation was purified by gel permeation chromatography (GPC). However, GPC was

unable to separate the target-(1 EO) from the product (Fig. 26). All the attempts to reproduce

the Tanaka’s procedure in our laboratory have revealed at least 5-10% of the target-(1 EO)

formed after 1st generation of the ether coupling reaction. Unfortunately neither mass

spectroscopy nor analytical GPC data are presented in Tanaka’s publication, while the NMR

spectra alone are insufficient to quantify the side products of different chain lengths.

Improvements to the Tanaka’s method have been reported by Davis et al5. The

authors highlight the depolymerisation problem and attempt to resolve it. The procedure

proposed by Davis has been tried in this work together with the Bm algorithm and is

described below.

mEO (1 eq), MBPxEOTos (2.6 eq) and 18-crown-6 (1.1 eq) were dried into a vessel

by co-evaporation with toluene. The mixture was taken up in dry DMF (1.5 mass of

reactants) and a solution of potassium tert-butoxide (KOtBu) (1.3 eq) in dry DMF (3 ml per

gram) was added at the slowest rate possible using a syringe pump such that the whole

addition took around 20 hours whilst the reaction was stirred vigorously under argon. For

work up, the reaction mixture was poured into a large flask containing 50 ml of water and

evaporated under high vacuum to remove DMF. The residue was dissolved in DCM and

poured into ammonium chloride solution. After separating the DCM phase, the aqueous

portion was extracted with five portions of chloroform. The combined organic extracts were

dried over sodium sulfate to give a crude product for purification by normal or reversed phase

column chromatography. Although the ESI-MS data presented by the authors of the

procedure showed excellent purity (often over 99.5%), MALDI-TOF of the product

synthesised in our laboratory using their method showed at least 1.8% of target-(1 EO).

Moreover, it turned out to be practically impossible to separate the product from the

18-crown-6 ether which was added in rather substantial amount in order to improve solubility

of KOtBu in DMF. The crown ether was clearly observed on both MALDI-TOF (18%) and
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1H NMR (27%) [δ ppm 3.69 (24H, s, CH2)] analyses – the discrepancy in quantification is

not surprising and can be explained as described in chapter 4.2. Even after subsequent

removal of protective groups and another run through chromatography column in a different

solvent system the 18-crown-6 was still found in the product.

4.5.3.1. Crown ether

In view of the above, the first step in process optimisation was to eliminate the crown

ether from the reaction. The reaction was repeated using exactly the same conditions, but

without the 18-crown-6. According to MALDI-TOF analysis, the resulting crude product

contained slightly greater amount of target-(1 EO) (2.8%). There was no significant increase

in the amount of impurities suggesting that the removal of 18-crown-6 from the procedure is

possible with further optimisation.

4.5.3.2. Optimisation of parameters

Since alkoxides formed from PEGs can undergo depolymerisation, the shorter they

are present in the reaction mixture, the smaller the amount of target-(1 EO) will be. Thus, it is

advantageous to increase the rate of the ether coupling reaction as much as possible, without

increasing the rate of depolymerisation.

The rates of SN2 reactions strongly depend on the choice of solvents31. The

requirements are that the solvent must be polar enough to dissolve the reagents, but not too

polar, because highly polar solvents solvate anionic nucleophiles and slow down the

reactions.9 It is energetically favourable to destabilise the nucleophile by using less polar

solvent.

DMF used in the Davis’s procedure is a polar aprotic solvent which is often selected

for SN2 reactions9,31. However, there are several disadvantages of using DMF (Table 4), and

THF was proposed as a replacement, because it has also been commonly used for ether

coupling of PEGs3,4,6,7,32. The main problem with using THF is a possibility of forming

peroxides, hence it should be kept away from both light and oxygen32,33.
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DMF THF

boiling point 153°C – difficulties in complete solvent
evaporation after the reaction, especially
from a polymer soluble in DMF (such as
PEG)

65-67°C – volatile, easily removed from the
product after reaction

hygroscopicity hygroscopicity together with high b.p. cause
difficulties in obtaining DMF water free
which is necessary in order to favour SN2
reaction

dry THF is obtained using a MBRAUN
GmbH MB SPS-800 solvent purification
system (by passing the solvent through two
drying columns then dispensing under an Ar
or N2 atmosphere), or from shared
distillation rigs.

toxicity thought to cause birth defects34 and
therefore in some sectors of industry women
are banned from working with DMF. It can
accumulate in the body and it is a possible
carcinogen (MSDS)

considered a relatively nontoxic solvent
(MSDS)

Table 4: DMF vs. THF for ether coupling reaction.

The monodispersity of the polymers synthesised using THF was better than when

using DMF (+crown ether) reaching target-(1 EO) level of 1.2%. The amounts of other

impurities varied but they were all separable from the main product by means of column

chromatography.

Because of the possible formation of peroxides in THF, Booth et al32 proposed

chlorobenzene as an alternative solvent. They used it with KOH at 0°C. When the reaction

was reproduced in our laboratory using the same substrates as for earlier comparison of DMF

and THF, the amount of target-(1 EO) found in the product was significantly larger (7.2%)

than for the reaction performed in THF with KOtBu. Target-(2 EO), target-(3 EO) and

target-(4 EO) were also observed bringing the overall monodispersed purity well under 90%.

The experiments prove that THF is a suitable replacement for DMF and also produces

significantly higher purity products than chlorobenzene does.

In the Davis’s procedure ether coupling reaction was performed at room temperature,

probably in a non-air conditioned laboratory thus adding another variable to the synthesis. In

order to control this parameter the synthesis was carried out at 40°C. The resulting product

contained greater amount of target-(1 EO) (3.7%) and significantly more other impurities

than in the room temperature process. This outcome led to the conclusion that lowering the

reaction temperature could be beneficial for improving the purity of the product. Indeed,

when reaction was performed at 0°C, the overall purity of the product was higher and

target-(1 EO) content dropped to 0.9%.

Davis et al also highlighted that changing the sequence of added reagents to the

reaction vessel affected the purity. They suggested that a PEG diol and a tosylate should be
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premixed first and then the base was added at a slowest possible rate. Such approach was

aimed at minimising the life time of an alkoxide which could depolymerise. However, the

elimination reaction occurs (via E2 mechanism) more readily under these conditions because

it is competitive to the desirable SN29,31. Both Tanaka and Davis reported elimination of

tosylates, while Davis also claimed that in their sequence of addition, the amount of the

eliminated side product was larger than in other synthesis procedures. We have investigated

three different sequences in order to improve the process in terms of purity and yield of the

product (Table 5). The best purity and yield were achieved when PEG diol was added to a

solution of KOtBu followed by addition of tosylate.

sequence purity of crude product yield other problems

1.diol+tosylate 2.base good, target-(1 EO) (1.2%) ≤70% difficulties in addition of 
the base solution

1.base 2.tosylate 3.diol low, target-(1 EO) (>6%),
significant amount of other
impurities

N/A E2 elimination occurs

1.base 2.diol 3.tosylate good, target-(1 EO) (0.9%) ≤80% - 

Table 5: Sequence of adding reagents.

The rate of addition was optimised to minimise the life time of alkoxide and to

prevent heating of the mixture due to addition of the chemicals.

The ratio of the reagents in the ether coupling reaction has been also investigated and

optimised. KOtBu was selected as a base because it was producing the product of higher

purity than NaH. One could think that using large excess of base would increase the yield of

the product, as it guarantees that both hydroxyl- groups from a PEG diol are deprotonated and

become attacking nucleophiles. Indeed, high yields are observed when methyl iodide (CH3I)

is used as coupling reagent, but it has to be noted that CH3I cannot undergo elimination

reaction E2. However, when the leaving functional group (X) of a coupling reagent is

attached to a primary carbon, elimination can occur, especially if tert-butoxide, a large

nucleophile anion is used as a base. The best yields, approaching 80%, are obtained with the

following ratio of reagents: PEG diol (1 eq), KOtBu (2.8 eq), tosylate (2.6 eq).

Table 6 shows optimised conditions for the ether coupling reaction, along with the

products’ purity after the first generation vs the conditions and results presented by Tanaka

and by Davis.
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Tanaka’s Davis’s optimised

strong base NaH KOtBu + 18-crown-6 KOtBu

solvent THF DMF THF

temperature reflux (66-67°C) room temperature 0°C

sequence 1.base 2.diol 3.tosylate 1.diol+tosylate 2.base 1.base 2.diol 3.tosylate

eluent for flash
chromatography

MeOH in CHCl3 various systems Acetone + DCM

inseparable
target-(1 EO)

5-10% <5% <2%

other inseparable
impurities

- 18-crown-6 -

yield ≤73% ≤70% ≤80% 

Table 6: Ether coupling reaction summary

4.5.4. Deprotection – hydrogenolysis

As mentioned in chapter 4.5.1, the benzyl protective group was chosen for this work

due to its excellent stability in various (particularly basic) conditions and selective, high yield

removal. The benzyl group can be cleaved using several methods.28 Both Tanaka and Davis

chose hydrogenolysis catalysed by Pd/C in ethanol (Fig. 34) because it provided high yields

(>95%) and did not destroy the PEG chains.

O
O

2x+m

H2, Pd/C

EtOH

O
OH

H

2x+m

Fig. 34 Benzyl group cleavage.

Table 7 compares the hydrogenolysis reaction conditions and results given by Tanaka

and Davis with the optimised conditions and results of this work. Lower temperature of the

reaction is safer, especially since thermal degradation of PEGs has been reported35-37. It was

found that lowering the temperature from 100°C to room temperature (~25°C) did not

decrease the yield or the purity of the product when 15-20 bar H2 and Pd/C (10%wt) were

used.
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Tanaka’s Davis’s optimised

solvent Ethanol Ethanol Ethanol

temperature 100°C room temperature room temperature

H2 pressure 8 bar ~1 bar 15-20 bar

catalyst Pd/C (5%wt) Pd/C (10%wt) Pd/C (10%wt)

appearance colourless oil/white solid colourless oil/white solid colourless oil/white solid

typical yields 91-98% 75-99% 95-98%

purification
N/A N/A

extraction or column
chromatography

Table 7: Hydrogenolysis reaction conditions and results

According to Tanaka and Davis, high yields of hydrogenolysis lead to high purity of

the product after simple filtration of catalyst followed by solvent evaporation and no

additional purification was necessary. However, we have found that both MALDI-MS and

1H NMR detected 2-5% of a side product which was identified as a mono methylcyclohexyl

PEG. It was 96 Da larger than the target and produced a characteristic doublet at 3.25 ppm in

1HNMR spectra corresponding to the -OCH2C6H11 protons. Formation of such side product

can be explained by hydrogenation of the aromatic ring of a benzyl group28. This was also

confirmed when the impurities from the crude 13EO, 19EO and 21EO were isolated and

analysed. It was preferred to remove those impurities before proceeding to next steps of the

process as the purification at this point was relatively easy, while it could be significantly

more difficult or even impossible after another ether coupling reaction. However, if the

subsequent synthesis step was the chain elongation followed by another hydrogenolysis

reaction, the impurity could be readily removed after the last benzyl cleavage.

4.5.5. End-capping

This project requires dimethoxy PEGs rather than hydroxyl- terminated. Hence, the

final step in the synthesis of monodispersed bis-methyl protected (BMP) PEG is an

end-capping reaction. In terms of mechanism, this is another ether coupling reaction, with the

only difference that the product cannot be selectively deprotected without uncontrolled chain

degradation. The examples of end-capping reactions are shown in Fig. 35.
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a)

b)

Fig. 35 End-capping reactions: a) with chain elongation using a tosylate (Ts), b) without
chain elongation using methyl iodide

4.5.6. Purification by column chromatography

Almost all of the synthesised products had to be purified by means of column

chromatography. It was necessary to remove both unreacted substrates and by-products with

different chain lengths. Davis’s procedure uses both normal and reversed phase column

chromatography. In this work however the latter was not employed, since the products were

found pure enough just after normal phase silica gel column. Due to high polarity of the

synthesised products, relatively polar eluents had to be selected. Many different eluents are

suggested in literature for purification of PEGs and benzyl protected PEGs. The following

eluents were used by different groups:

1) Loiseau et al3: EtOAc/acetone or EtOAc/MeOH

2) Tanaka et al4: CHCl3/MeOH

3) Davis et al5: MeOH/DCM, MeOH/acetone/toluene, EtOAc/MeOH

However, our extensive study of the influence of composition of eluents on the

separation of end-protected PEGs shows that the eluents containing MeOH as a strong

solvent provide significantly poorer resolution than the eluents containing acetone (Fig. 36).

In both cases the best results are obtained if DCM is used as a weak solvent. THF provides

similar resolution to acetone and is slightly stronger towards the PEGs, however it easily

oxidises during the course of the column chromatography introducing heavily boiling

impurities. Wherever possible, the mixtures of acetone and DCM were applied for column

chromatography in this work. Only in case of hydroxyl- or methyl terminated PEGs mixtures

of MeOH and DCM were used, since those with acetone were not strong enough.

The main disadvantage of using such polar eluents is that silica in the column can

slightly dissolve and appear in the purified product. This was occasionally observed, because

some materials turned hazy in appearance after evaporation of solvents. In order to get rid of

the unwanted silica, the materials were redissolved in toluene, left for 0.5 hr and then the
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solution was filtered through 0.2 m PTFE filter. As the result, no silica was detected by any

analytical method (1H NMR, CHNX, SEM-EDX).
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Fig. 36 Comparison of resolution of two eluents: DCM/acetone (left) and DCM/MeOH
(right) during the separation of mixtures of bis-benzyl protected PEGs (BBPxEO).
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4.5.7. Synthetic strategy

As stated in 4.5.1, tetra(ethylene glycol) is the most suitable starting material to

become the chain elongating reagent. Fig. 37 shows application of Bm algorithm leading to

the series of desired monodispersed dimethoxy PEGs ranging from 19 to 24 repeating EO

units.

+ 2 4 coupling

O
OHH

m

O
O

Bn
Bn

m+16

O
OHH

m+16
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O

Bn
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m+8

O
OHH

m+8

O
O

CH3
CH3

m+16

O
O

CH3
CH3

m+20

deprotection

deprotection

endcapping

+ 2 4 coupling

without elongation with elongation

+ 2 2×

×

×

m = 3, 4, 5, 6

Fig. 37 Synthetic strategy – the route to monodispersed dimethoxy PEGs with 19-24
repeating EO units
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4.6. Syntheses and characterisation of specific monodispersed PEGs

This chapter presents the optimised general procedures employed in this work and all

details for preparation of particular batches which provided products of satisfactory yield and

purity. The purity of the substrates is not included in the calculation tables if it is both higher

than 99% and has no influence on purity or yield of the product (e.g. when it is used in

excess).

4.6.1. Monobenzylation of tetra(ethylene glycol)

This product was always synthesised using the same amounts of the reagents for each

batch (Fig. 38).

H
O

O
H O

O
H

4 4

1. NaH

2. PhCH2Cl

THF, reflux

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

4EO 99.5% 0.400 78.08 69.4 1.125 194.23

NaH 95.0% 0.400 10.10 24.00

THF 622.28 700.0 0.889

Benzyl chloride 99.0% 0.100 12.79 11.6 1.100 126.58

THF for BnCl 48.71 54.8 0.889

Fig. 38 Monobenzylation of tetra(ethylene glycol)

NaH (10.10 g, 400 mmol, 95%) and THF (700 ml) were placed into a three-necked

flask, and then, tetraethylene glycol (78.1 g, 400 mmol, 99.5%) was then added slowly. The

mixture was heated to reflux (66-67°C), and THF solution (80 ml) of benzyl chloride (12.8 g,

100 mmol, 99%) was added dropwise. The reaction mixture was stirred for 3 hrs at reflux,

and then, it was allowed to cool at room temperature. Methanol was added to the reaction

mixture to quench the excess NaH, and 1 M HCl (50 ml) was added. After evaporation of

THF, the product was extracted using 1M HCl (60 ml) and DCM (4×200 ml). Then DCM

phase was washed with 1M HCl (3×100ml) and distilled H2O (3×80ml). The combined DCM

extracts were evaporated under reduced pressure to give 28 g of crude product (brown, free
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flowing oil) which was purified in portions by gradient flash chromatography on a

Biotage® SP1 system running at 40 ml/min; SNAP 100 g KP silica cartridge; for each column

5 g of crude product deposited on 12 g of silica and dry loaded; weak solvent A = DCM,

strong solvent B = acetone, column equilibrated with DCM (3 CV); 4 CV at 8%, then a linear

gradient over 10 CV to 60% B.

Pure product: monobenzyl protected tetra(ethylene glycol), 25.70 g (90.5% yield),

clear colourless oil. TLC (Silica gel 60): Rf MBP4EO = 0.28, 30% acetone in DCM (side product

– bis benzyl protected tetra(ethylene glycol): Rf BBP4EO = 0.73). 1H NMR (400 MHz, CDCl3) δ 

ppm 7.38-7.24 (5 H, m, Bn aromatic CH), 4.57 (2 H, s, Bn CH2), 3.76-3.57 (16 H, m,

8×ethylene glycol CH2), 2.64 (1 H, t, J = 6.3 Hz, OH); 13C NMR (101 MHz, CDCl3) δ ppm 

138.19 (Bn 4° C), 128.38, 127.80 and 127.63 (5×Bn aromatic CH), 73.26 (Bn CH2),

72.57 (HOCH2CH2...), 70.65-70.59 (multiple CH2), 70.36 (CH2), 69.41 (CH2), 61.76

(HOCH2CH2...); m/z ESI-TOF found 307.16 {[M+Na+] expected 307.15}. No impurities

were detected in purified product by 1H NMR, chromatography or mass spectroscopy, hence

purity can be assessed > 99%.

4.6.2. Tosylation of monoprotected PEGs

The reaction scheme is shown in Fig. 32. Sodium hydroxide (3.5 eq) was dissolved in

water (5 ml H2O per gram NaOH) and chilled in an ice bath. A solution of monoprotected

PEG (1 eq in 2.5 ml THF per gram) was added dropwise. A solution of paratoluyl sulfonyl

chloride (1.2 eq in 3 ml THF per gram) was then added dropwise, after which the mixture

was allowed to warm gradually to room temperature with stirring over 15 hours.

The mixture was put back on ice and 1 M HCl (to neutralise the excess of NaOH) was

also chilled on ice for 0.5 h. Then reaction mixture was poured to 1 M HCl cooled at 0°C,

THF was evaporated (at 30°C) and the product was extracted with DCM (3×200 ml). The

combined extracts were washed with 10% Na2CO3 (2×100 ml) and then with distilled water

until neutral (4×50 ml). The organic phase was dried over sodium sulfate and evaporated to

provide pure tosylate, which was additionally dried by evaporation with toluene at 60°C.

Then the product was stored under Ar and shielded from light. Typical yield > 96%.
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4.6.2.1. Monobenzyl protected tetra(ethylene glycol) tosylate

Monobenzyl protected tetra(ethylene glycol) tosylate (MBP4EOTos) was synthesised

using the procedure described in 4.6.2. The details of tosylation of MBP4EO are shown in

Fig. 39.

O
O

H
O

S

O

CH3

O

O4 4

1. NaOH
2. p-TsCl

THF-H2O, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

MBP4EO 99.0% 0.088 25.28 284.35

NaOH 0.308 12.32 40.00

THF for MBP4EO 56.18 63.2 0.889

H2O 61.61 61.6 1.000

p-TsCl 99.0% 0.106 20.34 190.65

THF for p-TsCl 53.70 60.4 0.889

HCl 1M (neutralise) 0.20 202.436

Fig. 39 Tosylation of MBP4EO

Pure product: monobenzyl protected tetra(ethylene glycol) tosylate (MBP4EOTos),

colourless free flowing oil, 38.70 g (99.6%). TLC (Silica gel 60): Rf MBP4EOTos = 0.30, 6%

acetone in DCM (substrate: Rf MBP4EO = 0.05). 1H NMR (400 MHz, CDCl3) δ ppm 7.80 (2 H, 

d, J = 8.3 Hz, Ts aromatic H), 7.38-7.24 (7 H, m, Bn and Ts aromatic CH), 4.56 (2 H, s, Bn

CH2), 4.15 (2 H, t, J = 4.8 Hz, Ts-CH2CH2O...) 3.73-3.55 (14 H, m, 7×ethylene glycol CH2),

2.44 (3 H, s, CH3);
13C NMR (101 MHz, CDCl3) δ ppm 144.79 (Ts C-S), 138.26 (Bn 4° C), 

133.01 (Ts 4° C), 129.83 and 128.00 (4×Ts aromatic CH), 128.37, 127.76 and 127.62

(5×Bn aromatic CH), 73.25 (Bn CH2), 70.85-70.45 (multiple CH2), 69.44 (CH2), 69.25

(Ts-CH2CH2O...), 68.68 (Ts-CH2CH2O...), 21.66 (Ts CH3); m/z ESI-TOF found 461.11,

MALDI-TOF found 461.17 {[M+Na+] expected 461.16}. No impurities were detected in

purified product by 1H NMR, chromatography or mass spectroscopy, hence purity can be

assessed as > 99%.
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4.6.2.2. Monomethyl protected di(ethylene glycol) tosylate

Monomethyl protected di(ethylene glycol) tosylate (MMP2EOTos) was synthesised

according to the procedure 4.6.2. The details of tosylation of MMP2EO are shown Fig. 40.

O
O

H
CH3 O

S

O

CH3

O
CH3 O2 2

1. NaOH
2. p-TsCl

THF-H2O, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

MMP2EO 99.0% 0.100 12.12 12.0 0.999 120.15

NaOH 0.350 13.98 40.00

THF for MMP2EO 26.67 30.0 0.889

H2O 69.91 69.9 1.000

p-TsCl 99.0% 0.120 23.08 190.65

THF for p-TsCl 60.94 68.6 0.889

HCl 1M (neutralise) 0.23 229.700

Fig. 40 Tosylation of MMP2EO

Pure product: monomethyl protected di(ethylene glycol) tosylate (MMP2EOTos),

colourless free flowing oil, 26.51 g (96.8%). TLC (Silica gel 60): Rf MMP2EOTos = 0.36, 5%

acetone in DCM (substrate: Rf MMP2EO = 0.00). 1H NMR (400 MHz, CDCl3) δ ppm 7.80 (2 H, 

d, J = 8.3 Hz, Ts aromatic CH), 7.34 (2 H, d, J = 8.3 Hz, Ts aromatic CH), 4.17 (2 H, t,

J = 4.8 Hz, Ts-CH2CH2O...), 3.69 (2 H, t, J = 4.8 Hz, Ts-CH2CH2O...), 3.58 (2 H, m,

H3COCH2CH2...), 3.48 (2 H, m, H3COCH2CH2...), 3.35 (3 H, s, H3CO...), 2.45 (3 H, s, Ts

CH3);
13C NMR (101 MHz, CDCl3) δ ppm 144.81 (Ts C-S), 132.98 (Ts 4° C), 129.82 and 

128.01 (4×Ts aromatic CH), 71.82 (H3COCH2CH2...), 70.69 (H3COCH2CH2...), 69.22

(Ts-CH2CH2O...), 68.72 (Ts-CH2CH2O...), 59.06 (H3CO...), 21.65 (Ts CH3); m/z ESI-TOF

found 296.84, {[M+Na+] expected 297.07}. No impurities were detected on 1H NMR or

chromatography, hence purity can be assessed > 99%.
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4.6.3. Chain elongation

Monobenzyl protected tetra(ethylene glycol) tosylate (MBP4EOTos) was used for

chain elongation along with different chain lengths PEG diols (Fig. 41).

+2
O

OH
H

m

O
O

Ts

4

O
O

m+8

KOtBu

THF, 0 °C

Fig. 41 Chain elongation with MBP4EOTos

KOtBu (2.8 eq) was dissolved in dry THF (8-10ml per gram KOtBu) and left stirred

on an ice bath for at least 0.5 h. PEG diol (1 eq) was dried with toluene and then dissolved in

dry THF (5-7 ml per gram diol). Monoprotected PEG tosylate (2.6 eq) was dissolved in dry

THF (2-4 ml per gram tosylate).

PEG diol solution was added to KOtBu from a glass syringe over 0.5 h at 0°C. Then

PEG tosylate solution was added over 2-4 hrs at 0°C and then the reaction mixture was

warmed up gradually to room temperature and left stirred for 20hrs. After that, the mixture

was cooled down again to 0°C and 1M HCl (also cooled down to 0°C) was added dropwise to

neutralise the excess of KOtBu (pH = 7). Next, THF was evaporated and the resulting slurry

dissolved in 50 ml of water. Product was extracted from aqueous phase with DCM

(4×150ml). Then the organic phase was washed with distilled water (3×75ml) and dried over

Na2SO4. After filtration and solvent evaporation, the product was purified by gradient flash

chromatography on a Biotage® SP1 (Table 8).

g = 1 (11-14 EO units) g = 2 (19-22 EO units)

cartridge SNAP 100 g KP silica SNAP 100 g KP silica

flow 40 ml/min 40 ml/min

dry load 2 g product on 8 g silica 2 g product on 8 g silica

weak solvent A DCM DCM

strong solvent B Acetone Acetone

equilibration 3 CV with DCM 3 CV with DCM

step 1 10 → 10 % B, 4 CV 15 → 15 % B, 4 CV 

step 2 10 → 60 % B, 9 CV 15 → 90 % B, 9 CV 

step 3 60 → 60 % B, 2 CV 90 → 90 % B, 2 CV 

Table 8: Biotage® SP1 purification conditions for the crude products after g = 1 (11-14 EO
units) and g = 2 (19-22 EO units).
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4.6.3.1. Bis benzyl protected 11-ethylene glycol

Bis benzyl protected 11-ethylene glycol (BBP11EO) was synthesised according to the

procedure 4.6.3. The details are shown in Fig. 42.

+2 O
OH

H

3

O
O

Ts

4

O
O

11

KOtBu

THF, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

3EO 99.0% 0.0103 1.56 1.4 1.124 150.17

THF for 3EO 9.34 10.5 0.886

MBP4EOTos 99.0% 0.0267 11.82 10.0 1.180 438.53

THF for MBP4EOTos 35.45 40.0 0.886

KOtBu 97.0% 0.0287 3.32 112.21

THF for KOtBu 29.44 33.2 0.886

HCl 1M to neutralise 0.0021 2.1

Fig. 42 Synthesis of BBP11EO

Pure product: bis benzyl protected 11-ethylene glycol (BBP11EO), colourless free

flowing oil, 5.52 g (78.8%). TLC (Silica gel 60): Rf BBP11EO = 0.25, 50% acetone in DCM (Rf

imp1 = 0.59; Rf imp2 = 0.11). 1H NMR (400 MHz, CDCl3) δ ppm 7.37-7.25 (10 H, m, Bn 

aromatic CH), 4.57 (4 H, s, Bn CH2), 3.70-3.61 (44 H, m, 22×ethylene glycol CH2);

13C NMR (101 MHz, CDCl3) δ ppm 138.29 (Bn 4° C), 128.37, 127.75 and 127.60 (10×Bn 

aromatic CH), 73.25 (CH2), 70.70-70.50 (multiple CH2), 69.44 (CH2); m/z MALDI-TOF

found: 705.35 {[M+Na+], intensity 100%, expected 705.38}, 661.33 {[target-(1 EO)+Na+]

intensity 0.8%}.
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4.6.3.2. Bis benzyl protected 12-ethylene glycol

Bis benzyl protected 12-ethylene glycol (BBP12EO) was synthesised according to the

procedure 4.6.3. The details are shown in Fig. 43.
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4
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KOtBu

THF, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

4EO 99.5% 0.0150 2.93 2.6 1.125 194.23

THF for 4EO 14.64 16.5 0.886

MBP4EOTos 99.0% 0.0390 17.28 14.6 1.180 438.53

THF for MBP4EOTos 34.55 39.0 0.886

KOtBu 97.0% 0.0420 4.71 112.21

THF for KOtBu 33.40 37.7 0.886

HCl 1M to neutralise 0.0420 42.0

Fig. 43 Synthesis of BBP12EO

Pure product: bis benzyl protected 12-ethylene glycol (BBP12EO), colourless free

flowing oil, 7.57 g (69.4%). TLC (Silica gel 60): Rf BBP12EO = 0.25, 50% acetone in DCM (Rf

imp1 = 0.59; Rf imp2 = 0.11). 1H NMR (400 MHz, CDCl3) δ ppm 7.37-7.25 (10 H, m, Bn 

aromatic CH), 4.57 (4 H, s, Bn CH2), 3.70-3.61 (48 H, m, 24×ethylene glycol CH2);

13C NMR (101 MHz, CDCl3) δ ppm 138.29 (Bn 4° C), 128.37, 127.75 and 127.60 (10×Bn 

aromatic CH), 73.25 (CH2), 70.70-70.50 (multiple CH2), 69.44 (CH2); m/z MALDI-TOF

found: 749.38 {[M+Na+], intensity 100%, expected 749.41}, 705.35 {[target-(1 EO)+Na+]

intensity 1.1%}.
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4.6.3.3. Bis benzyl protected 13-ethylene glycol

Bis benzyl protected 13-ethylene glycol (BBP13EO) was synthesised during the

course of process optimisation according to the procedure 4.6.3, but with the slightly different

ratios of the reagents (KOtBu 3.0 eq, MBP4EOTos 2.4 eq) leading to a change in the yield.

The details are shown in Fig. 44.

+2 O
OH

H

5

O
O

Ts

4

O
O

13

KOtBu

THF, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

5EO 98.0% 0.0180 4.38 3.8 1.126 238.28

THF for 5EO 21.45 24.2 0.886

MBP4EOTos 98.0% 0.0432 19.33 16.4 1.180 438.53

THF for MBP4EOTos 38.66 43.6 0.886

KOtBu 97.0% 0.0540 6.06 112.21

THF for KOtBu 42.95 48.5 0.886

HCl 1M to neutralise 0.0108 10.8

Fig. 44 Synthesis of BBP13EO

Pure product: bis benzyl protected 13-ethylene glycol (BBP13EO), colourless free

flowing oil, 7.64 g (55.1%). TLC (Silica gel 60): Rf BBP13EO = 0.24, 50% acetone in DCM

(Rf imp1 = 0.59; Rf imp2 = 0.10). 1H NMR (400 MHz, CDCl3) δ ppm 7.37-7.25 (10 H, m, Bn 

aromatic CH), 4.57 (4 H, s, Bn CH2), 3.70-3.61 (52 H, m, 26×ethylene glycol CH2);

13C NMR (101 MHz, CDCl3) δ ppm 138.29 (Bn 4° C), 128.37, 127.75 and 127.60 (10×Bn 

aromatic CH), 73.25 (CH2), 70.70-70.50 (multiple CH2), 69.44 (CH2); m/z MALDI-TOF

found: 793.49 {[M+Na+], intensity 100%, expected 793.43}, 749.47 {[target-(1 EO)+Na+]

intensity 1.3%}.
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4.6.3.4. Bis benzyl protected 14-ethylene glycol

Bis benzyl protected 14-ethylene glycol (BBP14EO) was synthesised in the course of

process optimisation. KOtBu solution was added into the mixture of hexaethylene glycol and

MBP4EOTos at room temperature (sequence from Davis’s procedure, in THF and without

18-crown-6). The details are shown in Fig. 45.

+2 O
OH

H
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O
O

Ts

4

O
O

14

KOtBu

THF, r.t.

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

6EO 97.0% 0.0138 4.017 3.6 1.125 282.33

MBP4EOTos 99.0% 0.0304 13.45 11.4 1.180 438.53

THF for PEG mix 34.93 39.4 0.886

KOtBu 97.0% 0.0414 4.79 112.21

THF for KOtBu 33.95 38.3 0.886

HCl 1M to neutralise 0.0110 11.0

Fig. 45 Synthesis of BBP14EO

Pure product: bis benzyl protected 14-ethylene glycol (BBP14EO), colourless free

flowing oil, 7.71 g (68.6%). TLC (Silica gel 60): Rf BBP13EO = 0.24, 50% acetone in DCM

(Rf imp1 = 0.59; Rf imp2 = 0.10). 1H NMR (400 MHz, CDCl3) δ ppm 7.37-7.25 (10 H, m, Bn 

aromatic CH), 4.57 (4 H, s, Bn CH2), 3.70-3.61 (56 H, m, 28×ethylene glycol CH2); m/z

MALDI-TOF found: 837.46 {[M+Na+], intensity 100%, expected 837.46}, 793.44

{[target-(1 EO)+Na+] intensity 1.2%}.
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4.6.3.5. Bis benzyl protected 19-ethylene glycol

Bis benzyl protected 19-ethylene glycol (BBP19EO) was synthesised according to the

procedure 4.6.3. The details are shown in Fig. 46.

+2 O
OH

H
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O
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O
O

19

KOtBu

THF, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

11EO 99.0% 0.0061 3.102 2.76 1.124 502.59

THF for 11EO 18.61 21.01 0.886

MBP4EOTos 99.0% 0.0159 7.04 5.96 1.180 438.53

THF for MBP4EOTos 21.11 23.83 0.886

KOtBu 97.0% 0.0171 1.98 112.21

THF for KOtBu 34.02 38.39 0.886

HCl 1M to neutralise 0.0012 1.2

Fig. 46 Synthesis of BBP19EO

Pure product: bis benzyl protected 19-ethylene glycol (BBP19EO), white solid,

4.48 g (70.8%). TLC (Silica gel 60): Rf BBP19EO = 0.11, 70% acetone in DCM (Rf imp1 = 0.59;

Rf imp2 = 0.06). 1H NMR (400 MHz, CDCl3) δ ppm 7.37-7.25 (10 H, m, Bn aromatic CH), 

4.57 (4 H, s, Bn CH2), 3.70-3.61 (76 H, m, 38×ethylene glycol CH2);
13C NMR (101 MHz,

CDCl3) δ ppm 138.29 (Bn 4° C), 128.37, 127.75 and 127.60 (10×Bn aromatic CH), 73.25 

(CH2), 70.70-70.50 (multiple CH2), 69.44 (CH2); m/z MALDI-TOF found: 1057.57

{[M+Na+], intensity 100%, expected 1057.59}, 1013.52 {[target-(1 EO)+Na+] intensity

1.2%}.
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4.6.3.6. Bis benzyl protected 20-ethylene glycol

Bis benzyl protected 20-ethylene glycol (BBP20EO) was synthesised according to the

procedure 4.6.3. The details are shown in Fig. 47.
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O
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KOtBu

THF, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

12EO 99.0% 0.0093 5.150 546.65

THF for 12EO 25.75 29.1 0.886

MBP4EOTos 99.0% 0.0242 10.74 9.1 1.180 438.53

THF for MBP4EOTos 32.22 36.4 0.886

KOtBu 97.0% 0.0261 3.02 112.21

THF for KOtBu 31.16 35.2 0.886

HCl 1M to neutralise 0.0019 1.9

Fig. 47 Synthesis of BBP20EO

Pure product: bis benzyl protected 20-ethylene glycol (BBP20EO), white solid,

6.34 g (63.0%). TLC (Silica gel 60): Rf BBP20EO = 0.11, 70% acetone in DCM (Rf imp1 = 0.59;

Rf imp2 = 0.06). 1H NMR (400 MHz, CDCl3) δ ppm 7.37-7.25 (10 H, m, Bn aromatic CH), 

4.57 (4 H, s, Bn CH2), 3.70-3.61 (80 H, m, 40×ethylene glycol CH2);
13C NMR (101 MHz,

CDCl3) δ ppm 138.29 (Bn 4° C), 128.37, 127.75 and 127.60 (10×Bn aromatic CH), 73.25 

(CH2), 70.70-70.50 (multiple CH2), 69.44 (CH2); m/z MALDI-TOF found: 1101.56

{[M+Na+], intensity 100%, expected 1101.62}, 1057.55 {[target-(1 EO)+Na+] intensity

1.3%}.
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4.6.3.7. Bis benzyl protected 21-ethylene glycol

Bis benzyl protected 21-ethylene glycol (BBP21EO) was synthesised according to the

procedure 4.6.3. The details are shown in Fig. 48.
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KOtBu

THF, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

13EO 99.0% 0.0090 5.364 590.70

THF for 13EO 26.82 30.3 0.886

MBP4EOTos 99.0% 0.0234 10.35 8.8 1.180 438.53

THF for MBP4EOTos 20.71 23.4 0.886

KOtBu 97.0% 0.0270 3.12 112.21

THF for KOtBu 21.45 24.2 0.886

HCl 1M to neutralise 0.0036 3.6

Fig. 48 Synthesis of BBP21EO

Pure product: bis benzyl protected 21-ethylene glycol (BBP21EO), white solid,

6.67 g (66.0%). TLC (Silica gel 60): Rf BBP21EO = 0.11, 70% acetone in DCM (Rf imp1 = 0.59;

Rf imp2 = 0.06). 1H NMR (400 MHz, CDCl3) δ ppm 7.37-7.25 (10 H, m, Bn aromatic CH), 

4.57 (4 H, s, Bn CH2), 3.70-3.61 (84 H, m, 42×ethylene glycol CH2);
13C NMR (101 MHz,

CDCl3) δ ppm 138.29 (Bn 4° C), 128.37, 127.75 and 127.60 (10×Bn aromatic CH), 73.25 

(CH2), 70.70-70.50 (multiple CH2), 69.44 (CH2); m/z MALDI-TOF found: 1145.60

{[M+Na+], intensity 100%, expected 1145.64}, 1101.57 {[target-(1 EO)+Na+] intensity

2.3%}.
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4.6.3.8. Bis benzyl protected 22-ethylene glycol

Bis benzyl protected 22-ethylene glycol (BBP22EO) was synthesised in the course of

process optimisation. KOtBu solution was added into the mixture of 14-ethylene glycol and

MBP4EOTos at room temperature (sequence from Davis’s procedure, in THF and without

18-crown-6). The details are shown in Fig. 49.
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KOtBu

THF, r.t.

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

14EO 99.0% 0.0044 2.840 634.75

MBP4EOTos 99.0% 0.0097 4.32 3.7 1.180 438.53

THF for PEG mix 14.31 16.2 0.886

KOtBu 97.0% 0.0133 1.54 112.21

THF for KOtBu 10.57 11.9 0.886

HCl 1M to neutralise 0.0035 3.5

Fig. 49 Synthesis of BBP22EO

Pure product: bis benzyl protected 22-ethylene glycol (BBP22EO), white solid,

3.34 g (64.6%). TLC (Silica gel 60): Rf BBP21EO = 0.11, 70% acetone in DCM (Rf imp1 = 0.59;

Rf imp2 = 0.06). 1H NMR (400 MHz, CDCl3) δ ppm 7.37-7.25 (10 H, m, Bn aromatic CH), 

4.57 (4 H, s, Bn CH2), 3.70-3.61 (88 H, m, 44×ethylene glycol CH2); additional peaks, e.g.

broad multiplets found 1.75-2.11 and 3.92-4.00 were some impurities, coming most likely

from THF which at this stage of process development was used together with DCM as an

eluent for flash chromatography (an extra spot appeared on TLC after the column); m/z

MALDI-TOF found: 1189.59 {[M+Na+], intensity 100%, expected 1189.67}, 1145.54

{[target-(1 EO)+Na+] intensity 0.6%}.
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4.6.4. Benzyl group cleavage – hydrogenolysis

The benzyl group cleavage reaction is shown in Fig. 50.

O
O

m+8

H2, Pd/C

EtOH

O
OH

H

m+8

Fig. 50 Benzyl group cleavage

Bis benzyl protected PEG was taken up in ethanol (10-20 ml per gram, depending on

solubility) and 10wt.% palladium on carbon (10% of mass of a substrate) was added to the

solution, which was degassed thoroughly by repeated cycles of vacuum and Ar, then placed

in an autoclave under a hydrogen atmosphere (15-20 bars) and stirred vigorously at room

temperature for at least 20 hrs. To work up, hydrogen was removed by repeated cycles of

vacuum and Ar, after which the catalyst was removed by filtration through a PTFE 0.2 m

filter and the solvent removed by evaporation under reduced pressure.

In order to get rid of the impurity (methylcyclohexyl end capped) the crude product

was dissolved in DCM and extracted with DI water at least 3 times followed by evaporation

of water. Alternatively, the purification was performed using gradient flash chromatography

under the conditions listed in Table 9.

11-14 ethylene glycol 19-22 ethylene glycol

cartridge SNAP 100 g KP silica SNAP 100 g KP silica

flow 40 ml/min 40 ml/min

dry load 1.5 g product on 8 g silica 1.5 g product on 8 g silica

weak solvent A DCM DCM

strong solvent B 30% MeOH in DCM 30% MeOH in DCM

equilibration 3 CV with DCM 3 CV with DCM

step 1 10 → 10 % B, 4 CV 10 → 10 % B, 4 CV 

step 2 10 → 80 % B, 12 CV 10 → 92 % B, 10 CV 

step 3 80 → 80 % B, 1 CV 92 → 92 % B, 1 CV 

Table 9: Biotage® SP1 purification conditions for the crude n-ethylene glycols.
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4.6.4.1. 11-ethylene glycol

11-ethylene glycol (11EO) was synthesised according to the procedure 4.6.4. The

details are shown in Fig. 51.
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Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

BBP11EOch 99.0% 0.0080 5.520 682.84

Palladium on carbon 10.0% 0.000519 0.552 106.42

Ethanol 0.9419 43.40 55 0.789 46.07

Fig. 51 Synthesis of 11EO

Crude product: 11-ethylene glycol (11EO), white solid, 4.00 g (99.4%). TLC (Silica

gel 60): Rf 11EO = 0.20, 12% MeOH in DCM (Rf imp1 = 0.36). 1H NMR (400 MHz, CDCl3)

δ ppm 3.75-3.60 (44 H, m, 22×ethylene glycol CH2), 2.68 (2 H, t, broad, OH); 13C NMR

(101 MHz, CDCl3) δ ppm 72.54 (CH2), 70.70-70.30 (multiple CH2), 61.74 (CH2);

m/z MALDI-TOF found: 525.27 {[M+Na+], intensity 100%, expected 525.29}, 481.22

{[target-(1 EO)+Na+] intensity 0.9%}. Low intensity (0.03 H) additional peak at 3.25 ppm

(d, J = 6.6 Hz, CH2) comes most likely from mono methylcyclohexyl 11-ethylene glycol

impurity which is in agreement with MALDI-TOF peak 621.36 Da (4.5%). The product was

not purified at this stage because it was used for another chain elongation and purified

afterwards.
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4.6.4.2. 12-ethylene glycol

12-ethylene glycol (12EO) was synthesised according to the procedure 4.6.4. The

details are shown in Fig. 52.
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Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

BBP12EOch 99.0% 0.0099 7.253 726.89

Palladium on carbon 10.0% 0.000682 0.725 106.42

Ethanol 1.2422 57.23 73 0.789 46.07

Fig. 52 Synthesis of 12EO

Pure product (purified by extraction): 12-ethylene glycol (12EO), white solid, 5.31 g

(98.3%). TLC (Silica gel 60): Rf 12EO = 0.20, 12% MeOH in DCM (Rf imp1 = 0.36). 1H NMR

(400 MHz, CDCl3) δ ppm 3.75-3.60 (48 H, m, 24×ethylene glycol CH2), 2.89 (2 H, t, broad,

OH); 13C NMR (101 MHz, CDCl3) δ ppm 72.54 (CH2), 70.70-70.30 (multiple CH2), 61.75

(CH2); m/z MALDI-TOF found: 569.27 {[M+Na+], intensity 100%, expected 569.31},

525.25 {[target-(1 EO)+Na+] intensity 1.5%}.

Crude product: low intensity (0.03 H) additional peak at 3.25 ppm (d, J = 6.6 Hz,

CH2) most likely originates from mono methylcyclohexyl 12-ethylene glycol impurity which

is also confirmed by a peak 665.35 Da found on MALDI-TOF (2.2%).
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4.6.4.3. 13-ethylene glycol

13-ethylene glycol (13EO) was synthesised according to the procedure 4.6.4. The

details are shown in Fig. 53.

O
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H2, Pd/C
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Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

BBP13EOch 99.0% 0.098 7.640 770.94

Palladium on carbon 10.0% 0.000718 0.764 106.42

Ethanol 1.3084 60.28 76 0.789 46.07

Fig. 53 Synthesis of 13EO

Pure product (purified by extraction): 13-ethylene glycol (13EO), white solid, 5.57 g

(96.1%). TLC (Silica gel 60): Rf 13EO = 0.20, 12% MeOH in DCM (Rf imp1 = 0.36). 1H NMR

(400 MHz, CDCl3) δ ppm 3.75-3.60 (52 H, m, 26×ethylene glycol CH2), 2.86 (2 H, t, J = 6.2,

OH); 13C NMR (101 MHz, CDCl3) δ ppm 72.56 (CH2), 70.70-70.30 (multiple CH2), 61.74

(CH2); m/z MALDI-TOF found: 613.27 {[M+Na+], intensity 100%, expected 613.34},

569.25 {[target-(1 EO)+Na+] intensity 1.1%}.

Crude product: low intensity (0.04 H) additional peak at 3.25 ppm (d, J = 6.6 Hz,

CH2) most likely originates from mono methylcyclohexyl 13-ethylene glycol impurity. The

peak intensity indicates approximately 2% of the impurity. MALDI found 709.40 Da (2.7%).

The isolated impurity (DCM phase): mono methylcyclohexyl 13-ethylene glycol

(MMCH13EO), colourless oil, 0.1036 g (1.8%). TLC (Silica gel 60): Rf MMCH13EO = 0.36.

1H NMR (400 MHz, CDCl3) δ ppm 3.85-3.45 (52 H, m, 13×ethylene glycol CH2), 3.25 (2 H,

d, J = 6.6 Hz, CH2), 2.80 (1 H, broad, OH), 1.79-1.53 (5 H, m, cyclohexyl ring CH and CH2),

1.33-1.09 (4 H, m, cyclohexyl ring CH2), 0.96-0.83 (2 H, m, cyclohexyl ring CH2);
13C NMR

(101 MHz, CDCl3) δ ppm 77.28 (...OCH2C6H11), 72.53 (HOCH2CH2O...), 70.80-70.18

(...OCH2CH2O...), 61.68 (HOCH2CH2O...), 37.83 (cyclohexyl ring CH), 30.03, 26.60 and

25.81 (cyclohexyl ring multiple CH2); m/z MALDI-TOF found: 709.41 {[M+Na+], intensity

100%, expected 709.43}.
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4.6.4.4. 14-ethylene glycol

14-ethylene glycol (14EO) was synthesised in the course of process optimisation. The

parameters were similar to those of the procedure 4.6.4, but 5 wt % Pd/C was used instead of

10 wt % with double of the amount. The details are shown in Fig. 54.
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Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

BBP14EOch 99.0% 0.0046 3.810 815.00

Palladium on carbon 5.0% 0.000358 0.762 106.42

Ethanol 1.3050 60.12 76 0.789 46.07

Fig. 54 Synthesis of 14EO

Pure product (purified by extraction): 14-ethylene glycol (14EO), white solid, 2.88 g

(98.0%). TLC (Silica gel 60): Rf 14EO = 0.20, 12% MeOH in DCM (Rf imp1 = 0.36). 1H NMR

(400 MHz, CDCl3) δ ppm 3.75-3.60 (56 H, m, 28×ethylene glycol CH2); m/z MALDI-TOF

found: 657.43 {[M+Na+], intensity 100%, expected 657.37}, 613.40 {[target-(1 EO)+Na+]

intensity 1.0%}.

Crude product: low intensity (0.06 H) additional peak at 3.25 ppm (d, J = 6.6 Hz,

CH2) most likely originates from mono methylcyclohexyl 14-ethylene glycol impurity.
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4.6.4.5. 19-ethylene glycol

19-ethylene glycol (19EO) was synthesised according to the procedure 4.6.4. The

details are shown in Fig. 55.
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Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

BBP19EOch 99.0% 0.0043 4.480 4.5 1035.26

Palladium on carbon 10.0% 0.000421 0.448 106.42

Ethanol 0.7672 35.35 45 0.789 46.07

Fig. 55 Synthesis of 19EO

Pure product (purified by flash chromatography): 19-ethylene glycol (19EO), white

solid, 3.51 g (95.8%). TLC (Silica gel 60): Rf 19EO = 0.20, 12% MeOH in DCM (Rf imp1 =

0.36). 1H NMR (400 MHz, CDCl3) δ ppm 3.75-3.60 (76 H, m, 38×ethylene glycol CH2), 2.63

(2 H, broad, OH); 13C NMR (101 MHz, CDCl3) δ ppm 72.51 (CH2), 70.70-70.20 (multiple

CH2), 61.69 (CH2); m/z MALDI-TOF found: 877.44 {[M+Na+], intensity 100%, expected

877.50}, 833.41 {[target-(1 EO)+Na+] intensity 1.2%}.

Crude product: low intensity (0.10 H) additional peak at 3.25 ppm (d, J = 6.6 Hz,

CH2) most likely originates from mono methylcyclohexyl 19-ethylene glycol impurity. The

peak intensity indicates approximately 5% of the impurity. MALDI found 973.54 Da (4.7%).

The isolated impurity: mono methylcyclohexyl 19-ethylene glycol (MMCH19EO),

colourless oil, 0.1635 g (4.7%). TLC (Silica gel 60): Rf MMCH19EO = 0.36. 1H NMR (400 MHz,

CDCl3) δ ppm 3.85-3.45 (76 H, m, 19×ethylene glycol CH2), 3.25 (2 H, d, J = 6.6 Hz, CH2),

2.74 (1 H, broad, OH), 1.79-1.53 (5 H, m, cyclohexyl ring CH and CH2), 1.33-1.09 (4 H, m,

cyclohexyl ring CH2), 0.96-0.83 (2 H, m, cyclohexyl ring CH2);
13C NMR (101 MHz, CDCl3)

δ ppm 77.34 (...OCH2C6H11), 72.56 (HOCH2CH2O...), 70.80-70.20 (...OCH2CH2O...), 61.73

(HOCH2CH2O...), 37.87 (cyclohexyl ring CH), 30.07, 26.64 and 25.86 (cyclohexyl ring

multiple CH2); m/z MALDI-TOF found: 973.54 {[M+Na+], expected 973.59}.
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4.6.4.6. 20-ethylene glycol

20-ethylene glycol (20EO) was synthesised according to the procedure 4.6.4. The

details are shown in Fig. 56.
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Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

BBP20EOch 99.0% 0.0058 6.340 1079.31

Palladium on carbon 10.0% 0.000596 0.634 106.42

Ethanol 1.0858 50.02 63 0.789 46.07

Fig. 56 Synthesis of 20EO

Pure product (purified by extraction): 20-ethylene glycol (20EO), white solid, 5.09 g

(97.4%). TLC (Silica gel 60): Rf 20EO = 0.20, 12% MeOH in DCM (Rf imp1 = 0.36). 1H NMR

(400 MHz, CDCl3) δ ppm 3.75-3.60 (80 H, m, 40×ethylene glycol CH2), 2.64 (2 H, broad,

OH); 13C NMR (101 MHz, CDCl3) δ ppm 72.55 (CH2), 70.70-70.30 (multiple CH2), 61.73

(CH2); m/z MALDI-TOF found: 921.50 {[M+Na+], intensity 100%, expected 921.52},

877.47 {[target-(1 EO)+Na+] intensity 1.4%}.

Crude product: low intensity (0.05 H) additional peak at 3.25 ppm (d, J = 6.6 Hz,

CH2) most likely originates from mono methylcyclohexyl 20-ethylene glycol impurity. The

peak intensity indicates approximately 2.5% of the impurity. MALDI found 1017.54 Da

(1.6%).
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4.6.4.7. 21-ethylene glycol

21-ethylene glycol (21EO) was synthesised according to the procedure 4.6.4. The

details are shown in Fig. 57.
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Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

BBP21EO 99.00% 0.006 6.670 1123.36

Palladium on carbon 10.00% 0.000627 0.667 106.42

Ethanol 1.1423 52.63 67 0.789 46.07

Fig. 57 Synthesis of 21EO

Pure product (purified by flash chromatography): 21-ethylene glycol (21EO), white

solid, 5.42 g (97.8 %). TLC (Silica gel 60): Rf 21EO = 0.20, 12% MeOH in DCM

(Rf imp1 = 0.36). 1H NMR (400 MHz, CDCl3) δ ppm 3.75-3.60 (84 H, m, 42×ethylene glycol 

CH2), 2.83 (2 H, broad, OH); 13C NMR (101 MHz, CDCl3) δ ppm 72.54 (CH2), 70.70-70.30

(multiple CH2), 61.75 (CH2); m/z MALDI-TOF found: 965.50 {[M+Na+], intensity 100%,

expected 965.55}, 921.48 {[target-(1 EO)+Na+] intensity 2.3%}.

Crude product: low intensity (0.03 H) additional peak at 3.25 ppm (d, J = 6.6 Hz,

CH2) most likely originates from mono methylcyclohexyl 21-ethylene glycol impurity. The

peak intensity indicates approximately 1.5% of the impurity. MALDI found 1061.62 (1.8%).

The isolated impurity: mono methylcyclohexyl 21-ethylene glycol (MMCH21EO),

colourless oil, 0.1222 g (2.2%). TLC (Silica gel 60): Rf MMCH21EO = 0.36. 1H NMR (400 MHz,

CDCl3) δ ppm 3.85-3.45 (84 H, m, 21×ethylene glycol CH2), 3.25 (2 H, d, J = 6.6 Hz, CH2),

2.80 (1 H, broad, OH), 1.79-1.53 (5 H, m, cyclohexyl ring CH and CH2), 1.33-1.09 (4 H, m,

cyclohexyl ring CH2), 0.96-0.83 (2 H, m, cyclohexyl ring CH2);
13C NMR (101 MHz, CDCl3)

δ ppm 77.32 (...OCH2C6H11), 72.54 (HOCH2CH2O...), 70.80-70.20 (...OCH2CH2O...), 61.72

(HOCH2CH2O...), 37.87 (cyclohexyl ring CH), 30.07, 26.64 and 25.85 (cyclohexyl ring

multiple CH2); m/z MALDI-TOF found: 1061.62 {[M+Na+], expected 1061.64}.
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4.6.4.8. 22-ethylene glycol

22-ethylene glycol (22EO) was synthesised in the course of process optimisation. The

parameters were similar to those in the procedure 4.6.4, but 5 wt % Pd/C was used instead of

10 wt % with double the amount. The details are shown in Fig. 58.

O
O

22

H2, Pd/C

EtOH

O
OH

H

22

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

BBP22EOch 99.0% 0.003 3.340 1167.40

Palladium on carbon 5.0% 0.000314 0.668 106.42

Ethanol 1.1440 52.71 67 0.789 46.07

Fig. 58 Synthesis of 22EO

Pure product (purified by flash chromatography): 22-ethylene glycol (22EO), white

solid, 2.51 g (89.8%). TLC (Silica gel 60): Rf 22EO = 0.20, 12% MeOH in DCM

(Rf imp1 = 0.36). 1H NMR (400 MHz, CDCl3) δ ppm 3.75-3.60 (88 H, m, 44×ethylene glycol 

CH2), 2.74 (2 H, t, J= 6.2 Hz, OH); 13C NMR (101 MHz, CDCl3) δ ppm 72.53 (CH2), 70.70-

70.30 (multiple CH2), 61.74 (CH2); m/z MALDI-TOF found: 1009.60 {[M+Na+], intensity

100%, expected 1009.58}, 965.58 {[target-(1 EO)+Na+] intensity 1.2%}. Crude product: not

analysed.
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4.6.5. End-capping without chain elongation

KOtBu (6 eq) was dissolved in dry THF (10-20ml per gram KOtBu) and left stirred in

an ice bath for at least 0.5 h. PEG diol (1 eq) was dried with toluene and then dissolved in dry

THF (5-6 ml per gram alcohol). Iodomethane (8 eq) was dissolved in dry THF (2-2.5 ml per

gram CH3I).

PEG alcohol solution was added to KOtBu solution from a glass syringe over 30

minutes at 0°C. Then iodomethane solution was added over 30 minutes at 0°C. The mixture

was allowed to warm up to room temperature and left stirred overnight.

The reaction mixture was poured into cold water (50 ml per gram PEG diol) and, if

required, neutralised with HCl solution. THF was evaporated and the product was extracted

with DCM (3×100ml). Next, organic phase washed with 10% Na2CO3 (8×50ml) and then

with distilled water until neutral (4×25ml). Typically the yields were over 97% and there was

no need for further purification as no impurities were detected. However, lower yields most

likely indicated that some hydroxyl- groups were not protected. If impurities were still

detected after extraction, product required further purification by flash chromatography

(Table 10). Pure product was dried by evaporating toluene, followed by filtration in

anhydrous acetonitrile (MeCN), using a 0.2 m PTFE filter. Then MeCN was evaporated

and product was left dried for minimum 72 hrs under vacuum.

bis methyl protected 19-22 ethylene glycol

cartridge SNAP 100 g KP silica

flow 40 ml/min

dry load 1.5 g product on 8 g silica

weak solvent A DCM

strong solvent B 30% MeOH in DCM

equilibration 3 CV with DCM

step 1 7 → 7 % B, 2 CV 

step 2 7 → 60 % B, 10 CV 

step 3 60 → 60 % B, 1 CV 

Table 10: Biotage® SP1 purification conditions for bis methyl protected n-ethylene glycols.
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4.6.5.1. Bis methyl protected 19-ethylene glycol

Bis methyl protected 19-ethylene glycol (BMP19EO) was synthesised according to

procedure 4.6.5. The details are shown in Fig. 59.

+2 O
OH

H

19

O
OCH3

CH3

19

KOtBu

THF, 0 °C
CH3 I

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

19EO 99.0% 0.0011 0.950 855.01

THF for 19EO 4.75 5.36 0.886 72.11

CH3I 99.5% 0.0088 1.255 0.55 2.280 141.94

THF for CH3I 2.51 2.83 0.886 72.11

KOtBu 97.0% 0.0066 0.76 112.21

THF for KOtBu 13.53 15.27 0.886 72.11

Fig. 59 Synthesis of BMP19EO

Pure product (chromatography not required): bis methyl protected 19-ethylene glycol

(BMP19EO), white solid, 0.96 g (98.8%). TLC (Silica gel 60): Rf BMP19EO = 0.30, 9% MeOH

in DCM. 1H NMR (400 MHz, CDCl3) δ ppm 3.78-3.59 (72 H, m, 36×ethylene glycol CH2),

3.59-3.52 (4 H, m, 2×ethylene glycol CH2), 3.38 (6 H, s, 2×CH3);
13C NMR (101 MHz,

CDCl3) δ ppm 71.95 (CH3OCH2...), 70.70-70.50 (multiple CH2), 59.05 (CH3); m/z MALDI-

TOF found: 905.50 {[M+Na+], intensity 100%, expected 905.53}, 861.47

{[target-(1 EO)+Na+] intensity 1.2%}.
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4.6.5.2. Bis methyl protected 20-ethylene glycol

Bis methyl protected 20-ethylene glycol (BMP20EO) was synthesised according to

procedure 4.6.5. The details are shown in Fig. 60.

+2 O
OH

H

20

O
OCH3

CH3

20

KOtBu

THF, 0 °C
CH3 I

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

20EO 99.0% 0.0014 1.307 899.07

THF for 20EO 6.54 7.38 0.886 72.11

CH3I 99.5% 0.0115 1.642 0.72 2.280 141.94

THF for CH3I 3.28 3.71 0.886 72.11

KOtBu 97.0% 0.0086 1.00 112.21

THF for KOtBu 8.85 9.99 0.886 72.11

Fig. 60 Synthesis of BMP20EO

Pure product (chromatography not required): bis methyl protected 20-ethylene glycol

(BMP20EO), white solid, 1.33 g (99.7%). TLC (Silica gel 60): Rf BMP20EO = 0.30, 9% MeOH

in DCM. 1H NMR (400 MHz, CDCl3) δ ppm 3.78-3.59 (76 H, m, 38×ethylene glycol CH2),

3.59-3.52 (4 H, m, 2×ethylene glycol CH2), 3.38 (6 H, s, 2×CH3);
13C NMR (101 MHz,

CDCl3) δ ppm 71.95 (CH3OCH2...), 70.70-70.50 (multiple CH2), 59.05 (CH3); m/z MALDI-

TOF found: 949.47 {[M+Na+], intensity 100%, expected 949.56}, 905.45

{[target-(1 EO)+Na+] intensity 2.3%}.
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4.6.5.3. Bis methyl protected 21-ethylene glycol

Bis methyl protected 21-ethylene glycol (BMP21EO) was synthesised according to

procedure 4.6.5. The details are shown in Fig. 61.

+2 O
OH

H

21

O
OCH3

CH3

21

KOtBu

THF, 0 °C
CH3 I

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

21EO 99.0% 0.0021 2.000 943.12

THF for 21EO 10.00 11.29 0.886 72.11

CH3I 99.5% 0.0168 2.384 1.05 2.280 141.94

THF for CH3I 4.77 5.38 0.886 72.11

KOtBu 97.0% 0.0126 1.41 112.21

THF for KOtBu 12.52 14.13 0.886 72.11

Fig. 61 Synthesis of BMP21EO

Pure product (chromatography not required): bis methyl protected 21-ethylene glycol

(BMP21EO), white solid, 1.99 g (97.7%). TLC (Silica gel 60): Rf BMP21EO = 0.30, 9% MeOH

in DCM. 1H NMR (400 MHz, CDCl3) δ ppm 3.78-3.59 (80 H, m, 40×ethylene glycol CH2),

3.59-3.52 (4 H, m, 2×ethylene glycol CH2), 3.38 (6 H, s, 2×CH3);
13C NMR (101 MHz,

CDCl3) δ ppm 71.94 (CH3OCH2...), 70.70-70.50 (multiple CH2), 59.04 (CH3); m/z MALDI-

TOF found: 993.55 {[M+Na+], intensity 100%, expected 993.58}, 949.54

{[target-(1 EO)+Na+] intensity 3.7%}, 905.50 {[target-(2 EO)+Na+] intensity 1.2%}.
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4.6.5.4. Bis methyl protected 22-ethylene glycol

Bis methyl protected 22-ethylene glycol (BMP22EO) was synthesised in the course of

process optimisation using the Booth’s method32. Iodomethane was added into the slurry of

KOH in chlorobenzene at 0°C. Solution of 22EO in chlorobenzene was added last. The

details are shown in Fig. 62.

+2 O
OH

H

22

O
OCH3

CH3

22

CH3 I
KOH

chlorobenzene, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

22EO 99.0% 0.0023 2.270 987.17

Chlorobenzene for 22EO 0.2456 27.650 25.0 1.106 112.56

CH3I 99.5% 0.0182 2.598 1.1 2.280 141.94

Chlorobenzene for CH3I 0.1965 22.120 20.0 1.106 112.56

KOH 0.6238 35.00 56.11

Chlorobenzene for KOH 0.6878 77.420 70.0 1.106 112.56

Fig. 62 Synthesis of BMP22EO

Pure product (purified by flash chromatography): bis methyl protected 22-ethylene

glycol (BMP22EO), white solid, 1.84 g (79.6%). TLC (Silica gel 60): Rf BMP22EO = 0.30, 9%

MeOH in DCM. 1H NMR (400 MHz, CDCl3) δ ppm 3.78-3.59 (84 H, m, 42×ethylene glycol 

CH2), 3.59-3.52 (4 H, m, 2×ethylene glycol CH2), 3.38 (6 H, s, 2×CH3);
13C NMR (101 MHz,

CDCl3) δ ppm 71.93 (CH3OCH2...), 70.70-70.30 (multiple CH2), 59.03 (CH3); m/z MALDI-

TOF found: 1037.57 {[M+Na+], intensity 100%, expected 1037.61}, 993.54

{[target-(1 EO)+Na+] intensity 2.8%}, 949.52 {[target-(2 EO)+Na+] intensity 0.8%}.
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4.6.6. End-capping with chain elongation

Monomethyl protected di(ethylene glycol) tosylate (MMP2EOTos) was used for end-

capping with chain elongation (Fig. 63).

+2 O
OH

H

m

O
O

Ts
CH3

2

O
OCH3

CH3

m+4

KOtBu

THF, 0 °C

Fig. 63 End-capping with chain elongation using MMP2EOTos

The procedure was a combination of 4.6.3 used for reaction conditions and 4.6.5 used for

purification of the crude product.

4.6.6.1. Bis methyl protected 23-ethylene glycol

Bis benzyl protected 23-ethylene glycol (BMP23EO) was synthesised according to

method described in 4.6.6. The details are shown in Fig. 64.

+2 O
OH

H

19

O
O

Ts
CH3

2

O
OCH3

CH3

23

KOtBu

THF, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

19EO 99.0% 0.0010 0.855 855.01

THF for 19EO 5.13 5.79 0.886

MMP2EOTos 99.0% 0.0030 0.82 274.33

THF for MMP4EOTos 2.47 2.79 0.886

KOtBu 97.0% 0.0030 0.33 112.21

THF for KOtBu 5.91 6.67 0.886

Fig. 64 Synthesis of BMP23EO

Pure product (purified by flash chromatography): bis methyl protected 23-ethylene

glycol (BMP23EO), white solid, 0.82 g (80.0%). TLC (Silica gel 60): Rf BMP23EO = 0.30, 9%

MeOH in DCM. 1H NMR (400 MHz, CDCl3) δ ppm 3.78-3.59 (88 H, m, 44×ethylene glycol 

CH2), 3.59-3.52 (4 H, m, 2×ethylene glycol CH2), 3.38 (6 H, s, 2×CH3);
13C NMR (101 MHz,
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CDCl3) δ ppm 71.95 (CH3OCH2...), 70.65-70.50 (multiple CH2), 59.06 (CH3); m/z MALDI-

TOF found: 1081.45 {[M+Na+], intensity 100%, expected 1081.63}, 1037.43

{[target-(1 EO)+Na+] intensity 2.5%}, 993.42 {[target-(2 EO)+Na+] intensity 1.6%}.

4.6.6.2. Bis methyl protected 24-ethylene glycol

Bis benzyl protected 24-ethylene glycol (BMP24EO) was synthesised according to

method described in 4.6.6. The details are shown in Fig. 65.

+2 O
OH

H

20

O
O

Ts
CH3

2

O
OCH3

CH3

24

KOtBu

THF, 0 °C

Compound purity n [mol] m [g] V [cm3] d [g/cm3] M [g/mol]

20EO 99.0% 0.0018 1.618 899.07

THF for 20EO 12.94 14.6 0.886

MMP2EOTos 99.0% 0.0050 1.38 274.33

THF for MMP2EOTos 4.15 4.7 0.886

KOtBu 97.0% 0.0050 0.56 112.21

THF for KOtBu 4.96 5.6 0.886

Fig. 65 Synthesis of BMP24EO

Pure product (purified by flash chromatography): bis methyl protected 24-ethylene

glycol (BMP24EO), white solid, 1.66 g (84.4%). TLC (Silica gel 60): Rf BMP24EO = 0.30, 9%

MeOH in DCM. 1H NMR (400 MHz, CDCl3) δ ppm 3.78-3.59 (92 H, m, 46×ethylene glycol 

CH2), 3.59-3.52 (4 H, m, 2×ethylene glycol CH2), 3.38 (6 H, s, 2×CH3);
13C NMR (101 MHz,

CDCl3) δ ppm 71.93 (CH3OCH2...), 70.75-70.30 (multiple CH2), 59.04 (CH3); m/z MALDI-

TOF found: 1125.62 {[M+Na+], intensity 100%, expected 1125.66}, 1081.59

{[target-(1 EO)+Na+] intensity 3.7%}, 1037.57 {[target-(2 EO)+Na+] intensity 1.0 %}.
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5. ELECTROLYTES WITH MONODISPERSED PEOs

Formation of the desired phase and the absence of unreacted starting chemicals were

verified by PXRD and DSC measurements, using diffraction and thermal signatures of the

polymer, the salt and the  phase.

5.1. Properties of the polymers and the salt used for complexes

High molecular weight polyethylene glycols are predominantly crystalline. The

polydispersed PEO (5×106 Da) is reported to contain 70-85% of crystalline phase which

melts at around 65-66°C.1,2 At the same time, the reported glass transition temperature of the

amorphous fraction appears to depend on the Mw, with the maximum value of Tg = -17°C

(<Mw> = 6000 Da) while for high molecular weight PEOs (<Mw> ≥ 225,000 Da) the value 

of Tg is in the range -53 to -63°C.1-6

As mentioned in the introductory chapter, poly(ethylene glycol) dimethyl ether of

Mw = 1000 Da (Fluka, cat. no. 81312, m.p. = 36-40°C) has been selected to study crystalline

complexes. The melting point of lower Mw PEOs depends not only on the molecular weight

but on the type of the end groups. For example, the melting point of 20 EO is reduced from

47°C to 38°C on replacing -OH end groups by -OCH3. No glass transition has been observed

in the DSC trace of the 1000 Da PEO, suggesting a high degree of crystallinity.

Monodispersed PEOs synthesised in this work are also highly crystalline, as confirmed by the

absence of a Tg in the DSC data, Fig. 66. LiPF6 is a crystalline salt with the melting point of

194°C7. The  phase of the complex is crystalline and melts at 70-90°C depending on the

Mw of the polymer.



98

-100 -80 -60 -40 -20 0 20 40 60 80 100 120

Temperature [°C]

BMP24EO

BMP23EO

BMP22EO

BMP21EO

BMP20EO

BMP19EO

Monodispersed polymer
Number of ether oxygens

NO

molecular purity
(MALDI-TOF)

m.p. [°C]

BMP24EO 25 95.7% 42.8

BMP23EO 24 96.1% 44.4

BMP22EO 23 96.6 % 39.1

BMP21EO 22 95.5% 40.1

BMP20EO 21 97.7% 38.1

BMP19EO 20 98.8% 38.5

Fig. 66 DSC and molecular purity (uniformity of the chain length determined by MALDI) of
monodispersed PEOs.
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The absence of a pure salt and polymer in the complex has been further verified by

PXRD. Powder diffraction patterns of LiPF6, PEO and the  phase are shown in Fig. 67. It is

evident from the figure that several intense peaks from each of the aforementioned phases do

not overlap with each other, permitting identification of non-reacted starting materials.

10 12 14 16 18 20 22 24 26 28 30 32 34

2 / degrees

 phase
BMP19EO
BMP24EO
Poly1000Da
LiPF

6

Fig. 67 PXRD data of  phase (black); LiPF6 (wine); dimethoxy PEO <Mw> = 1000 Da
(dark cyan); and 2 examples of monodispersed dimethoxy PEO: 19 EO (orange) and 24 EO
(blue).

The subtle differences in the PXRD patterns amongst the different grades of PEOs

(see Fig. 67) are not surprising. Analysis of the previously reported and our, monodispersed

PEO, confirms that the structures are similar but not identical. Modelling study of

poly(ethylene oxide) reported in 1964 suggested that each individual chain is a (7/2) helix
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with symmetry isomorphous to the point group D7 (Fig. 68a).8 The study relied on a

combination of the infrared absorption and X-ray diffraction methods. The crystal structure

could not be established in detail at the time and only a later study, from 1973, revealed the

coordinates of atoms in Polyox WSR-301, <Mw> = 4,000,000 Da PEO (Fig. 68b).9 As

clearly seen from the top views in Fig. 68a, b, the 1973 model is less “ideal” and markedly

different from the first reported model9.

Fig. 68 Conformation of individual PEO chains (top – side view; bottom – top view): (a) IR-
XRD model (7/2) helix;8 (b) molecular structure of Polyox WSR-301, <Mw> = 4,000,000
Da;9 (c) monodispersed 16EO monomethyl ether (PEG16), Mw = 736.88 Da;10 (d)
monodispersed 19EO dimethyl ether (BMP19EO), Mw = 883.07 Da.This study

a) b) c) d)
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atom sequence
torsion angles

Polyox WSR-301, b) PEG16, c) BMP19EO, d)

C14-O1-C1-C2 179.689 -176.813 -174.443
O1-C1-C2-O2 60.019 74.523 71.950
C1-C2-O2-C3 -177.920 -175.780 178.249
C2-O2-C3-C4 -169.312 -179.628 -174.750
O2-C3-C4-O3 79.484 75.379 72.651
C3-C4-O3-C5 178.368 179.866 174.432
C4-O3-C5-C6 177.557 179.866 -176.311
O3-C5-C6-O4 57.100 75.379 70.565
C5-C6-O4-C7 -166.194 -179.628 -172.839
C6-O4-C7-C8 -171.289 -175.780 -175.700
O4-C7-C8-O5 67.406 74.523 66.959
C7-C8-O5-C9 -176.870 -176.813 -179.812
C8-O5-C9-C10 174.429 -168.735 179.935
O5-C9-C10-O6 73.823 81.924 70.053
C9-C10-O6-C11 -154.968 -168.735 -174.859
C10-O6-C11-C12 -177.375 -176.813 -175.770
O6 -C11-C12-O7 48.365 74.523 79.795
C11-C12-O7-C13 179.967 -175.780 -176.500
C12-O7-C13-C14' -165.859 -179.628 -177.608
O7-C13-C14'-O1' 92.642 75.379 78.728
C13-C14'-O1'-C1' -173.989 179.866 -172.655

Table 11 Torsion angles of structures b, c and d from Fig. 68.

In a 2009 publication entitled “High-Purity Discrete PEG-Oligomer Crystals Allow

Structural Insight.” Davis et al stated: “exquisite purities allowed the first crystallizations of

PEGs, which in turn allowed the formation of diffracting single crystals. Single-crystal X-ray

diffraction experiments on these gave the first indication of the 3D structure and also a

unique insight into an extended helical secondary structure of PEGs”.10 The authors reported

the structure of a monodispersed 16EO monomethyl ether, Mw = 737 Da, (Fig. 68c). 19, 21

and 24 EO dimethyl ethers, synthesised in the course of this work, also formed sizeable

single crystals, whose structures were determined using laboratory single crystal diffraction.

All three structures are practically identical to each other, thus a detailed description is

provided only for the 19EO dimethyl ether (BMP19EO) (Fig. 68d). As evident from both

Fig. 68 and the list of torsion angles (Table 11), the established chain conformation is similar

to that in the originally reported structure (Fig. 68b) but very different from the one reported

by Davis et al (Fig. 68c). Differences in Mw and/or in the end groups could be a possible

explanation.
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5.2. Preparation procedure

All polymer electrolyte materials were prepared in a MBraun argon filled glove box,

due to the air/moisture sensitive nature of the starting materials and the final product. LiPF6,

Stella SC Chemifa, 99.99%, used as received and a dimethoxy endcapped poly(ethylene

oxide) was dried at temperature close to the melting point under dynamic vacuum for 3 days.

Appropriate for the formation of a 6:1 complex (ether oxygen to salt ratio) amounts of the salt

and polymer were dissolved separately in either dry acetonitrile (Sigma-Aldrich, 99.8%,

anhydrous, stored over 4Å molecular sieves) or dry methanol (Sigma-Aldrich, 99.8%,

anhydrous, stored over 4Å molecular sieves) and, following complete dissolution, mixed

together. The solvent was then evaporated slowly. The resulting white powders were dried

overnight under dynamic vacuum at room temperature. FTIR spectroscopy and 1H NMR

confirmed the absence of H2O, MeCN and MeOH in the resulting powders. The target phase

composition was confirmed by PXRD and DSC.

5.3.  phase with monodispersed PEO

The above procedure for preparation of complexes was applied to obtain the  phase

of the PEO:salt complexes. All but 1 of the monodispersed polymers studied in this work,

formed pure  phase. Trace amount of an unknown crystalline phase was found in the

complex made with BMP19EO, twenty ether oxygens (NO = 20).

5.3.1. PXRD of monodispersed complexes

PXRD patterns of the complexes are shown in Fig. 69. Following the models

discussed in chapter 1.4.2, they can be divided into 3 different groups depending on the

number of ether oxygens, NO, in the polymeric chains, i.e. (3n-1), 3n, (3n+1), where n is an

integer. The complex made with BMP19EO (NO = 20), Fig. 69 (orange), shows additional

peaks which do not belong to the  phase (e.g. at 13.480° or 15.395°, 2). Those peaks do

not belong to pure polymer or salt either, suggesting another crystalline phase, different from

.
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O
= 20 (3n-1)

Fig. 69 PXRD patterns 6:1 complexes prepared with monodispersed PEOs.

In 2007 Bruce et al reported a single example of the  phase polymer electrolyte,

prepared with a monodispersed PEO containing 22 EO units (NO = 23) and LiPF6.
11

Corresponding PXRD pattern revealed peak shifts, when compared to the pattern of the

complex prepared with polydispersed PEO of the same average Mw. Shifts of the same

diffraction peaks have been observed in all monodispersed complexes studied in this work.
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When NO = 3n+1 or 3n-1 the shifts are positive (higher 2), in agreement with the original

report11. However, in complexes with NO = 3n the same peaks are clearly shifted to lower 2

angles.

Fig. 70 PXRD patterns 6:1 complexes prepared with mono- and polydispersed PEO. See text
for further details.
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The shifts are caused by changes in the lattice parameters. Analysis of Miller indices

reveals that shifts to the higher 2 angles are caused by contraction of the a lattice parameter

and expansion of b. The a lattice parameter lies along the axis of the polymer tunnels.11 Thus

the tunnels in complexes made with PEOs of NO = 3n are expanded in length, while in both

NO = 3n+1 and NO = 3n-1 the tunnels are contracted (3n-1 shows the most significant

contraction), compared to the polydispersed material. Since the number of chain ends is very

close in the 1000 Da poly- and monodispersed materials, such changes must reflect

differences in the distribution of the polymer chain ends. Irregular arrangement of the chain

ends along PEO tunnels (each of which is formed by 2 PEO chains as described in chapter

1.4.2) does not explain the change in the dimensions of a tunnel, but coincidence of the chain

ends along both strands of the tunnels could. The widths of the peaks in all the PXRD

patterns shown in Fig. 70 are practically the same, indicating no reduction in the crystallite

size in complexes prepared with monodispersed polymers. This rules out coincidence of the

chain ends in neighbouring tunnels, as the canting, and hence reduction in size of coherently

scattering regions, does not occur (see chapter 1.4.2, Fig. 10). Thus PXRD suggest an

arrangement in which the chain ends are in registry within each individual tunnel but there is

no registry between the tunnels.

Let us now discuss possible arrangements of the coincident chain ends in the

monodispersed complexes with respect to ions. As discussed in chapter 1.4.2, the “ideal”

coordination (no disruption of the polymer chains involved in the 6-fold coordination sphere

of a Li+ ion) is possible only when the number of ether oxygen atoms in the polymeric chains

is a multiple of 3 (NO = 3n) (Fig. 71a). However, the NO = 3n complex could also adapt

“broken” coordination leading to a “broken” 6-fold coordination spheres of a Li+ ion

throughout the structure (Fig. 71b).

The arrangement of chain ends in monodispersed complexes in which NO ≠ 3n differs

significantly. No matter what the arrangement is at any end of a tunnel, there will always be

exactly the same number of “ideal” and “broken” ends across each crystallite. Moreover, this

equally applies to both NO = 3n+1 and NO = 3n-1 complexes (Fig. 71c,d) and is in agreement

with the trends in PXRD patterns, since the peaks in both cases are shifted in the same

direction by a very similar margin, Fig. 70.

Since the presence of the same number of “broken” and “ideal” coordinations leads to

contraction of the direction of a (3n±1 complexes), the expansion along the tunnel axis in 3n

complexes can only be explained by an excess of one type of coordination.
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Fig. 71 Possible arrangements of the chain ends in
the monodispersed complexes. Every oxygen atom
is involved in coordination:

a) “all-ideal” coordination, NO =21 (3n),

b) “all-broken” coordination, NO =21 (3n),

c) 2/3 “broken” and 1/3 “ideal” coordination,

NO =22 (3n+1),

d) 2/3 “broken” and 1/3 “ideal” coordination,

NO =23 (3n-1),
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In accordance with the crystal structure of 6:1 complexes established for infinite

chains (the unit cell size is smaller than the size of individual chain), the models presented in

Fig. 71 are drawn with every single oxygen atom involved in the formation of 6-fold

coordination environment for each Li+ ion. This assumption can be justified by the fact that

the complexes are prepared in exactly 6:1 ratio and no free salt or polymer are detected by

means of PXRD or DSC. However, one could envisage a situation in which every tunnel

starts from “ideal” coordination (Fig. 72). This would imply that at the chain ends Li+ ions

are coordinated by either 4 ether oxygens in the case of NO = 3n-1 complexes or 2 ether

oxygens in the case of NO = 3n+1. As a result, anions will have to be involved in

coordination as well (Fig. 72b,c), because otherwise if there is a Li+ vacancy, ~5% of the

mass of the complex will be in a salt phase, which falls within the detection limits of both

DSC and PXRD. In the majority of crystalline PEO/salt structures anions are involved in Li+

coordination.12,13 However, here such arrangement at the chain ends is very unlikely, because

for the polymers from the studied series e.g. NO = 23 or NO =22, 4 % or 8 % of the polymer

respectively would have to be non-coordinating. That gives 2.6 % and 5.3 % of the mass of

respective complexes which, most likely, would be detected by the DSC, and possibly by

PXRD – which is not the case. Furthermore, anions involvement in coordination at the chain

ends may well introduce a superstructural ordering. Let us also not forget that the

polymer/salt ratio was maintained at 6:1 during syntheses of the complexes. Thus the models

with even more free polymer should not be considered.
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a) b) c) Fig. 72 Possible arrangements of the chain ends in the
monodispersed complexes. Every tunnel starts from “ideal”
coordination:

a) “all-ideal” coordination, NO =21 (3n),

b) NO =22 (3n+1), 2 anions involved in coordination at

the every chain end resulting in 2.6 % of free

polymer left in the material,

c) NO =23 (3n-1), 4 anions involved in coordination at

the every chain end resulting in 5.3 % of free

polymer left in the material.
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5.3.2. Thermal properties of monodispersed complexes

The formation of pure  phase in all complexes has been confirmed by DSC

measurements. DSC traces for all the complexes are shown in Fig. 73. A single endotherm

corresponding to melting of the  phase is observed at 87.1°C for the complex produced with

the polydispersed PEO Mw = 1000 Da. Single endothermic peaks are also present in the DSC

traces of the complexes made with PEO of NO = 21 (m.p. = 80.7°C) and NO = 24

(m.p. = 83.1°C). For all other NO values two prominent endotherms are observed. Since

PXRD data collected at room temperature indicates the presence of  phase only, for

NO = 22, NO = 23 and NO = 25 the lowest temperature endotherm in Fig. 73 is associated

with the transition of the  phase into another crystalline phase.

A mixture of 2 phases ( and unknown) was observed in room-temperature PXRD

pattern for the complex made with BMP19EO, NO = 20, suggesting that either of the

observed endotherms (71.1°C and 79.6°C) can be associated with melting or transition of the

 phase.
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Fig. 73 DSC heating curves of the set of poly- and monodispersed complexes. The
endotherms associated with the  phase melting or transition to other, unknown phases.
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5.3.3. Conductivity of monodispersed complexes

Temperature dependent AC impedance measurements were carried out for all the

monodispersed complexes, with the exception of the mixed-phase BMP19EO (NO = 20)

complex. The upper temperature limit for the measurements was selected at the onset of the

melting or phase-transition temperature for each complex. No reliable data could be collected

for the two most resistive complexes (NO = 21 and NO = 25). The conductivity data as a

function of temperature along with the respective activation energies are shown in Fig. 74.
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Number of ether oxygens
NO

Activation energy
Ea [eV]

polydispersed 0.66

22 1.28

23 0.72

24 0.86

Fig. 74 Conductivity data of poly- and monodispersed 6:1 complexes. Activation energy of
each complex is shown in the table.
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The ionic conductivity of all monodispersed complexes studied in this work is

significantly lower than that of the polydispersed material, which is in agreement with the

suggested in ref. 11 dependence of conductivity on the density of the chain-ends. Also the

activation energies follow the trend in conductivity, i.e. the higher is the conductivity the

lower is the activation energy.

However, further investigation is required in order to explain the dependence of

conductivity on the number of ether oxygens (NO) in the monodispersed complexes. It is

unclear why the conductivities of the NO = 3n-1 and NO = 3n+1 complexes differ by 1 – 2

orders of magnitude when, the seemingly plausible, models of the chain-end arrangement

appear to be identical. Perhaps other analytical techniques, solid state nuclear magnetic

resonance (SSNMR) in particular, will provide more detailed information on mobility of

particular species in the complexes and interactions between them, which, in its turn, will

explain the trend in conductivity.

Only very high purity (as claimed by suppliers and/or verified by our synthetic and

purification methods) starting materials were used in an inert environment (Ar atmosphere) to

synthesise the complexes in this study. However, the purity of LiPF6 is notoriously difficult

to control because of the inherent instability of the salt, leading to evolution of HF, especially

at elevated temperatures7 and in the presence of even trace amounts of water14. Considering

the generally low conductivity of the monodispersed complexes, even minimal

decomposition of LiPF6 could affect the results. SSNMR should still be able to selectively

probe the mobility of the moieties, and is likely to provide information about the diffusion of

Li+ and PF6
- ions. Such decoupling from the possible influence of HF may well alter the

trends revealed by the AC impedance measurements and aid our understanding of the

mechanism of conductivity in the crystalline PEO/salt complexes.
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6. CONCLUSIONS

 Development and optimisation of the synthesis conditions yielded monodispersed

PEOs with the highest ever purity of chain lengths (>95%). A combination of several

characterisation methodologies (NMR, MALDI, GPC, etc.) used in this work,

provides correct assessment of purity.

 All 6 complexes (NO = 20, 21, 22, 23, 24, 25) formed with monodispersed PEOs and

LiPF6 in 6:1 ratio of ether oxygens to lithium in each case are purely crystalline. All

but 1 of these complexes crystallise in the desired  phase, as proven by both PXRD

and DSC.

 The number of ether oxygens in individual PEO chains (NO) has a pronounced effect

on the unit cell sizes which, together with the crystallite sizes, support the previously

suggested coincidence of the chain ends within the polymer tunnels, but not between

the tunnels.

 Several possible arrangements of the chain ends in monodispersed complexes of

different NO have been discussed and in the most likely model all oxygen atoms are

involved in creation of coordination environment, while anions remain outside the

tunnels and ion-pairing is unlikely. The complexes containing NO = 3n, can either

adapt “all-ideal” or “all-broken” coordination at the chain ends, while both NO = 3n-1

and NO = 3n+1 complexes always have both “ideal” and “broken” environments at

exact ratio 1:2.

 All 5 -phase monodispersed complexes are ionically conducting, however NO = 21

and NO = 25 are highly resistive. The temperature dependent conductivity supports

the ion hopping mechanism and there is a clear dependence between the conductivity

and activation energy – the higher the conductivity, the lower the activation energy.

 All monodispersed complexes conduct significantly worse than the complex made

with polydispersed PEO of the same average molecular weight which is likely to be

due to fewer chain-end occurrences. More investigation is required for the

dependence of conductivity on the number of ether oxygens in the PEO chains or

modelled arrangements of the chain ends. Solid state NMR could provide deeper

insight into the motions of species and thereby the mechanism of conductivity. It is

known that LiPF6 salt may be unstable, creating impurities (mainly HF) which could

affect intrinsically low conductivities of the monodispersed complexes. SSNMR
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would be helpful again because it can selectively monitor the mobility of different

species.

 The complexes prepared with monodispersed PEO are the most promising candidate

test samples for establishing the detailed mechanism of ionic conductivity in

crystalline polymer electrolytes.
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Symbols and abbreviations used

A - cross section area of electrolyte

AC - alternating current

BBPxEO - bisbenzyl protected x-(ethylene glycol)

BMPxEO - bismethyl protected x-(ethylene glycol)

Bn- - benzyl- group

BnBr - benzyl bromide

CHNX - elemental analysis (carbon, hydrogen, nitrogen, unknown element)

C - specific heat capacity

Cp - heat capacity

CV - column volume

DC - direct current

DI water - deionised water

DCM - dichloromethane

DMF - dimethylformamide

DSC - differential scanning calorimetry

EC - ethylene carbonate

EDX - energy-dispersive X-ray spectroscopy

EG - ethylene glycol

EO - repeat unit of PEO

ESI - electrospray ionization

EtOAc - ethyl acetate

EtOH - ethanol

FTIR - Fourier transform infrared spectroscopy

G - Gibbs free energy change

G4 - tetraglyme, tetra(ethylene glycol) dimethyl ether
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GPC - gel permeation chromatography

H - enthalpy change

HSAB - hard soft acid base

I - current

imp1 - impurity 1

imp2 - impurity 2

IR-XRD - combination of infrared spectroscopy and X-ray diffraction

KOtBu - potassium tert-butoxide

l - distance between electrodes

LiTFSI - lithium bis-trifluoromethanesulfonimide

MALDI - matrix-assisted laser desorption/ionization

MBPxEO - monobenzyl protected x-(ethylene glycol)

MBPxEOTos - monobenzyl-protected x-(ethylene glycol) tosylate

MeCN - acetonitrile

MeOH - methanol

MMPxEO - monomethyl protected x-(ethylene glycol)

MS - mass spectrometry

Ms - mesyl- group

Mw - molecular weight

<Mw> - average molecular weight

NMR - nuclear magnetic resonance

PDI - polydispersity index

PEG or PEO - poly(ethylene glycol) or poly(ethylene oxide)

PEI - poly(ethylene imine)

Ph3C - monotrityl- group

PhCH2Cl - benzyl chloride
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PVIC - poly(vinylene carbonate)

PVICOX - poly((1,3-dioxolan-2-one-4,5-diyl oxalate)

PSD - position sensitive detector

PTFE - polytetrafluoroethylene

PXRD - powder X-ray diffraction

Q - heat

Rb - resistance of electrolyte

Rf - retention factor

r.t. - room temperature

S - entropy change

SEC - size exclusion chromatography

SEM - scanning electron microscope

t-Bu - tert-butyl group

TFSI - bis(trifluoromethane)sulfonimide, [(CF3SO2)2N]-

T - temperature

t - time

t+ - cation transport number

Tg - glass transition temperature

THF - tetrahydrofuran

THP - monotetrahydropyranyl- group

TLC - thin layer chromatography

TMS - tetramethylsilane

TOF - time of flight

Ts - tosyl- group

TsCl - tosyl chloride

V - potential
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VTF - Vogel-Tamman-Fulchar

xEO - x-ethylene glycol

x - number of repeating units

Y - admittance

Z - impedance

 - specific conductivity

 - relative dielectric constant

0 - vacuum permittivity



120

Supplementary information

Reagents used during the syntheses of polymers:

Name
grade

structure/formula Supplier Product code Purity/
concentration

Triethylene glycol
puriss., anhydrous

H(OCH2CH2)3OH Fluka 90390 ≥99.0% (GC) 

Tetraethylene glycol H(OCH2CH2)4OH Acros Organics 14959-0010 99.5%
Pentaethylene glycol H(OCH2CH2)5OH Aldrich 335754 98%
Hexaethylene glycol H(OCH2CH2)6OH Aldrich 259268 97%
Diethylene glycol methyl
ether

CH3(OCH2CH2)2OH Sigma-Aldrich 579548 ≥99.0% 

p-Toluenesulfonyl chloride
(p-TsCl)
ReagentPlus,

Cl

S
O

O

CH3

Sigma-Aldrich 240877 ≥99% 

Benzyl chloride
puriss., Cl

Fluka 13270 ≥99.5% 

Benzyl bromide
reagent grade, Br

Sigma-Aldrich B17905 98%

Tetrahydrofuran
unstabilised

O

Fisher Scientific T/0706/PB17 99.8+% (GLC)

Chloroform
CHROMASOLV Plus, for
HPLC, contains 0.5-1.0%
ethanol as stabilizer

CHCl3 Sigma-Aldrich 650471 ≥99.9% 

Methanol
CertiFied AR

CH3OH Fisher Scientific M/4000/17 99.9+% (GLC)

Ethanol
absolute AnalaR
NORMAPUR

C2H5OH VWR 20821.330 99.8%

N,N-Dimethylformamide
(DMF)
CHROMASOLV Plus, for
HPLC

H N

O

CH3

CH3

Aldrich 270547 ≥99.9% 

Dichloromethane (DCM)
puriss.

CH2Cl2 Sigma-Aldrich 24233 ≥99% (GC) 

Iodomethane
purum

CH3I Sigma-Aldrich 67692 ≥99.0% (GC) 

Acetone
CertiFied AR

CH3COCH3 Fisher Scientific A/0600/17 99.8+% (GLC)

Chloroform-d CDCl3 Aldrich 151823 99.8 atom % D
2,5-Dihydroxybenzoic acid
(DHBA or DHB) OH

OH

OH

O Aldrich 149357 98%

Potassium tert-butoxide
(KOtBu)

(CH3)3COK Aldrich 60098 ≥97.0% (T) 



121

Palladium on carbon
extent of labelling: 5 wt. %
loading (dry basis), matrix
activated carbon support

Pd/C Aldrich 205680 5%

Palladium on carbon
extent of labelling: 10 wt. %
loading (dry basis), matrix
activated carbon support

Pd/C Aldrich 205699 10%

Hydrochloric acid
CertiFied AR

HCl Fisher Scientific H/1200/PB17 35.5-37.5%

High Purity Hydrogen H2 BOC 99.995+%
Silica gel
Geduran Si 60

SiO2 VWR 1.11567.9025

Sodium hydride
dry

NaH Aldrich 223441 95%

Sodium carbonate
anhydrous (dried)

Na2CO3 Fisher Scientific S/2880/53 99.5+%

Sodium chloride
(dried)

NaCl Fisher Scientific S/3120/60 99.5+%

Sodium hydroxide
CertiFied AR

NaOH Fisher Scientific S/4920/53 98+%

Sodium sulfate
anhydrous

Na2SO4 Fisher Scientific S/6600/60 99+%

Silver (I) nitrate
CertiFied AR

AgNO3 Fisher Scientific S/1280/46 99.9+%

Potassium iodide
CertiFied AR (dried)

KI Fisher Scientific P/5880/50 99.9+%

Reagents used during the syntheses of complexes:

Name
grade

structure/formula Supplier Product code Purity/
concentration

Lithium
hexafluorophosphate
battery grade

LiPF6 Stella Chemifa
Corp.

 ≥99.99% trace 
metals basis

Acetonitrile
anhydrous

CH3CN Sigma-Aldrich 271004 99.8%

Methanol
anhydrous

CH3OH Sigma-Aldrich 322415 99.8%


