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Abstract

In this study we investigate the interactions between two co-rotating vortices.

These vortices are subject to rapid rotation and stable stratification such as

are found in planetary atmospheres and oceans. By conducting a large number

of simulations of vortex interactions, we intend to provide an overview of the

interactions that could occur in geophysical turbulence.

We consider a wide parameter space covering the vortices height-to-width

aspect-ratios, their volume ratios and the vertical offset between them. The vor-

tices are initially separated in the horizontal so that they reside at an estimated

margin of stability. The vortices are then allowed to evolve for a period of ap-

proximately 20 vortex revolutions.

We find that the most commonly observed interaction under the quasi-geostrophic

(QG) regime is partial-merger, where only part of the smaller vortex is incorpor-

ated into the larger, stronger vortex. On the other hand, a large number of fila-

mentary and small scale structures are generated during the interaction. We find

that, despite the proliferation of small-scale structures, the self-induced vortex en-

ergy exhibits a mean ‘inverse-cascade’ to larger scale structures. Interestingly we

observe a range of intermediate-scale structures that are preferentially sheared

out during the interactions, leaving two vortex populations, one of large-scale

vortices and one of small-scale vortices.

We take a subset of the parameter space used for the QG study and perform
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simulations using a non-hydrostatic model. This system, free of the layer-wise

two-dimensional constraints and geostrophic balance of the QG model, allows for

the generation of inertia-gravity waves and ageostrophic advection. The study of

the interactions between two co-rotating, non-hydrostatic vortices is performed

over four different Rossby numbers, two positive and two negative, allowing for

the comparison of cyclonic and anti-cyclonic interactions. It is found that a

greater amount of wave-like activity is generated during the interactions in anti-

cyclonic situations. We also see distinct qualitative differences between the in-

teractions for cyclonic and anti-cyclonic regimes.
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Chapter 1

Introduction

1.1 Background

The fluid motions of planetary atmospheres and oceans are highly complex

turbulent systems. This turbulence is partly a consequence of the interactions

between coherently defined swirling masses of fluid, commonly termed as ‘vor-

tices’. Vortices are ubiquitous features of geophysical flows, see e.g. Holton et al

(1995)[23], Garret (2000)[20] and Marcus (1988)[27]. In the oceans for example,

Ebbesmeyer et al (1986)[18] estimated from observations that between 103 and

104 vortices populate the surface layers of the North Atlantic alone.

Very early attempts to explain vortices can be found in Aristotle’s ‘Meteor-

ology’ (circa 350 B.C.E.)[2]. It is interesting to note that whilst he had already

deduced, rather eccentrically by modern standards, the existence of buoyancy,

the insistence on a fixed, non-rotating earth left him to reason that all winds

travel in straight lines wherever possible and that eddy motions were caused by

the inevitable meeting of a wind with another wind or a rigid boundary and being

forced to take the path of least resistance and curving away.

Thanks to the observations of first Copernicus and later Kepler and Galileo,
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we now know the Earth to be rotating. This rotation, along with the stable

density stratification, greatly affects geophysical turbulence in that it reduces

vortex stretching and renders the flow quasi-two-dimensional. Under rotation and

stratification it becomes useful to regard vortices as coherent masses of potential

vorticity, a conserved material tracer in the absence of diabatic and viscous effects

which are often weak on the characteristic time and space scales of geophysical

flows.

Vortex interactions, such as the merging storms in Jupiter’s atmosphere shown

in figure 1.1 are highly nonlinear and thus challenging to understand. Numer-

ical and analytical studies of vortex interactions have as a result been primarily

conducted in two-dimensional flows. Such flows are relevant to motions having

characteristic horizontal scales L in excess of the bulk Rossby deformation length

LD = NH/f , where N is the buoyancy (or Brunt-Väisälä) frequency, H is the

characteristic fluid depth and f is the Coriolis frequency, see Dritschel et al.

(1999)[15]. Much of this research has sought to explain physically the average

inverse-cascade of energy seen spectrally in two-dimensional turbulence as the

growth of vortices through merger.

Initially, interactions between two identical vortices were considered. From

this, Waugh (1992)[47] identified three different types of interaction which he clas-

sified: merger, pulsation with exchange and pulsation, adopting the terminology

used by Melander et al. (1988)[28]. These interaction regimes are comparable

with the regimes defined by Reinaud & Dritschel (2002)[36] for vortex interac-

tions in the three-dimensional context. Here one can see that merger corresponds

with complete-merger, pulsation with exchange to either partial-merger or weak-

exchange depending on the volume of potential vorticity exchanged, and pulsation

with elastic-interaction. Waugh also found that the generation of thin ‘filaments’

of vorticity was a common occurrence in vortex interactions.

Dritschel & Waugh (1992)[17] generalised the work of Waugh (1992)[47] by
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Figure 1.1: The merger of three vortical storms (FA, DE & BC) into one (BA)

between September 1997 and September 2000. Images taken by Hubble telescope.

Image credit NASA/JPL/WFPC2.

considering the interactions between vortices of different sizes. They found, in

this case, four different types of interaction and most importantly that the classic

picture of vortex merger, i.e. complete-merger, was a relatively uncommon occur-

rence. Furthermore, such interactions were often found to produce a number of

smaller vortices making association with spectral cascade theories questionable.

Dritschel (1995)[6] investigated the interactions of steadily co-rotating vortices.

He demonstrated that strong interactions arise from a linear instability of the

basic vortex configuration. Once again, complete-merger was found to be a rare

phenomenon and smaller vortices were often produced.

In a more realistic three-dimensional approach, the simplest method of simu-

lating vortex interactions whilst still maintaining the necessary geophysical con-

ditions of stable stratification and rapid rotation is through the use of the quasi-

geostrophic model. This model conveniently reduces the full equations of motion

to a single dynamical equation for the conservation of the potential-vorticity
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anomaly and a simple linear inversion relation for the recovery of the velocity

field. It should be noted here that the potential-vorticity anomaly (hereinafter

referred to as PV) in the quasi-geostrophic (QG) model represents the depar-

ture of the full PV field from the background potential-vorticity associated with

the planetary rotation in the stratified fluid, see Hoskins et al. (1985)[24]. The

QG model is based on the hydrostatic and geostrophic approximations which

neglect acceleration in the momentum equations in the rotating frame of refer-

ence. These approximations are valid providing that the background rotation

and stratification are suitably strong, i.e. the Rossby and Froude numbers are

sufficiently small, see Gill (1982)[21] or Vallis (2006)[44]. The fluid motion in QG

flows is constrained to move parallel to isopycnals. In this way it is layer-wise

two-dimensional although the PV distribution is fully three-dimensional.

The inverse energy cascade also occurs in QG turbulence making it closely

analogous to two-dimensional turbulence, and it also appears to have the same

spectral form. Charney (1971)[5] predicted an inverse energy cascade for QG

turbulence, this was shown by Hua & Haidvogel (1986)[26] who demonstrated that

PV forms isolated structures in both forced and freely evolving QG turbulence.

QG turbulence is also seen to follow the same mathematical regularity as two-

dimensional turbulence, see Tran & Dritschel (2006)[43].

Recent studies of QG vortex interactions include works by von Hardenberg et

al. (2000)[22], Dritschel (2002)[7], Reinaud & Dritschel (2002)[36], Reinaud et al.

(2003)[39] and Reinaud & Dritschel (2005)[37]. The research of von Hardenberg et

al. (2000)[22] and Dritschel[7] (2002) focused on the effects of the vortex shape,

that is the height-to-width aspect ratio, on the critical merger distance between

horizontally-aligned, equal-volume, equal-PV vortices. It was found by Dritschel

(2002)[7] that the merger of tall vortices does not tend to two-dimensional merger.

Instead, the vortices break up into three-dimensional structures due to a basic

instability affecting tall vortices (after scaling the vertical co-ordinate by the
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conventional f/N), see Dritschel & de la Torre Juárez (1996)[14], Dritschel et al.

(1999)[15] and Billant et al. (2006)[3].

Reinaud & Dritschel (2002)[36] investigated the effect of a vertical offset on the

merger distance between two equal-PV, equal-volume and unit height-to-width

aspect-ratio (again after f/N vertical scaling) vortices. They discovered that

vertically offset vortices can merge from greater horizontal separations due to the

effects of vertical shear. On the other hand the simulations of freely decaying

QG turbulence analysed in Reinaud et al. (2003)[39] show that the most robust,

long-lived vortices have a mean height-to-width aspect-ratio of 0.8, vertical shear

being the reason for the oblate shape of the vortex.

A linear stability analysis was performed by Reinaud & Dritschel (2005)[37] to

determine the critical merger distance between two equal-PV ellipsoidal vortices,

as a function of the volume ratio of the ellipsoids, their vertical offset and their

height-to-width aspect ratios. To allow them to cover such a vast parameter space

the authors used a reduced model, the ‘ellipsoidal model’ (ELM), as described in

full in Dritschel et al. (2004)[13]. This model represents vortices as ellipsoids of

uniform PV and filters out any non-ellipsoidal deformations. The ELM however,

accurately approximates the critical merger distance, based on comparisons with

the QG model, see Reinaud & Dritschel (2005)[37] for details.

The extensive use of the QG model in previous studies is attributable to its

accuracy in simulating the large scale ‘balanced’ motions, i.e. vortices, seen in the

atmosphere and oceans. The atmosphere and oceans however are more frequently

observed to be more in a state of ‘near-balance’ meaning that oscillations of

the density stratification surfaces exist but have very little impact on the large

scale vortical motions, see for example Mohebalhojeh & Dritschel (2000)[32] and

Dritschel & Viúdez (2007)[12].

These density surface oscillations are generally termed inertia-gravity waves
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(IGW) and for distinction from the part of the flow associated with vortical

motions, are often referred to as the ‘imbalanced’ part of the flow. An example of

an IGW in the atmosphere is shown in figure 1.2 where cloud rolls indicate the

crests in the IGW.

Dritschel & Viúdez (2003)[16] developed a method to model three-dimensional,

rotating, stratified flows at finite Rossby numbers. The authors used the ageo-

strophic horizontal vorticity components, representing the departure from hydro-

static and geostrophic balance, along with PV as new variables for the flow.

Several methods exist for decomposing the full flow into its balanced and

imbalanced components. Optimal potential vorticity balance (OPV), Viúdez &

Dritschel (2004)[45], uses backwards and forwards time-integrations to remove

most of the IGW’s. Another example is the nonlinear-QG (NQG) method de-

veloped in McKiver & Dritschel (2006)[31] which uses QG scaling of the non-

hydrostatic equations from Dritschel & Viúdez (2003)[16]. Computationally the

NQG method is less expensive than OPV but is seen to be less accurate in that

it attributes more of the flow to imbalance than OPV does.

The non-hydrostatic model also allows for the consideration of cyclonic and

anti-cyclonic regimes by considering positive and negative Rossby numbers re-

spectively. Arai & Yamagata (1994)[1] find a distinct asymmetry between the

evolution of cyclonic and anti-cyclonic vortices in shallow-water. In their stud-

ies the cyclonic vortices were seen to split in two when the surface displacement

exceeded a critical value. Polvani et al. (1994)[35] witness a predominance of

anti-cyclonic vortices over cyclonic vortices emerging from decaying shallow-water

turbulence. It should be noted however that the shallow water cases are signific-

antly different to the three-dimensional cases, see Stegner & Dritschel (2000)[41].

Interestingly Theiss (2004)[42] finds a predominance of cyclonic vortices in geo-

strophic turbulence using the QG shallow-water equations on a β-plane. This,

the author states, is concurrent with observations of the predominance of cyclonic
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Figure 1.2: Altocumulus Undulatus. Cloud rolls indicating the crests of a gravity

wave on the cloud deck. Image c©Harald Edens, reproduced with permission[25].

vortices in the oceans, citing Munk et al. (2000)[33] and Rudnick (2001)[40].

1.2 Motivation

As has been discussed above, vortex interactions have been widely studied

in both two and three-dimensions. The classical concept of vortex merger as

shown in figure 1.3, that is the complete merger of two vortices into one vortex is

consistent with the theory of the spectral ‘inverse-cascade’ of energy in QG flows.

However figure 1.3 shows only a fraction of the full story. Consider, for example,

the case shown in figure 1.4. This has two vortices of equal volume, with the

gap between the outer edges of the vortices being the same as for figure 1.3, The

height-to-width aspect-ratios of the vortices are 4 for the prolate vortex and 0.5

for the oblate vortex, their vertical offset (the distance between their centroids) is

80% of the sum of their vertical half-heights. Here we witness an entirely different
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behaviour, that is after merger has taken place a large filament is ejected from

the main vortex which then proceeds to roll-up into several smaller vortices at

later times. This would indicate that while much of the self-energy of the initial

vortices is contained within one larger structure – physically consistent with the

inverse-cascade – some of the self-energy is now contained at smaller scales which

contributes to the direct energy cascade..

Figure 1.4 is merely an example of the complex behaviour displayed during

vortex interactions. It does however indicate that vortex interactions are not

trivial problems as their nature can be highly complex.

It has been seen that asymmetry between cyclonic evolutions and anti-cyclonic

evolutions exists. By utilising a non-hydrostatic model it is possible to investigate

the differences between cyclonic and anti-cyclonic interactions between discrete

pairs of co-rotating vortices. Using this model we may also investigate the gener-

ation of IGW’s during the interactions and how this may differ by changing the

Rossby number.

1.3 Outline

This work will be organised as follows. In chapter 2 we will introduce the

governing equations for the models we will use namely the quasi-geostrophic

model and the non-hydrostatic model. Also in this chapter we will provide a

short discussion on the numerical methods employed in simulating these models.

Chapter 3 will focus entirely on the results of simulating two co-rotating quasi-

geostrophic vortices at an estimated margin of stability and will investigate the

resulting interactions between them.

In chapter 4 we will expand our investigation to employ the non-hydrostatic

model for investigating a subset of those cases in Chapter 3. We draw conclusions
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(a) (b)

(c) (d)

Figure 1.3: The interaction of two vertically aligned, spherical vortices. PV

anomaly q = 2π, times shown at t = 0, t = 14, t = 40 and t = 60. Viewing angle

is 60◦ from the vertical and horizontal scale is ±1.5 centred around the origin of

the domain. Light grey areas show front and back walls of the box which spans

the full height of the PV distribution.
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(a) (b)

(c) (d)

Figure 1.4: The interaction of one prolate vortex (height-to-width aspect-ratio of

4) and one oblate vortex (height-to-width aspect-ratio of 0.5) of equal volume,

offset vertically by 80% of the sum of the vortex half-heights. PV anomaly q = 2π,

times shown at t = 0, t = 14, t = 40 and t = 60. Viewing angle is 60◦ from

the vertical and horizontal scale is ±2.0 centred around the origin of the domain.

Light grey areas show front and back walls of the box which spans the full height

of the PV distribution.
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and investigate future developments in chapter 5.
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Chapter 2

Mathematical formulation and

computational methods

2.1 Introduction

In this chapter we introduce the mathematical models used in this study.

Section 2.2 provides a brief description of the quasi-geostrophic (QG) equations

and the assumptions under which they are valid. We present the “Contour-

Advective Semi-Lagrangian” algorithm in section 2.3. This algorithm is used to

solve the QG equations. We go on to present the non-hydrostatic equations in

section 2.4 and the algorithm used to solve them in section 2.5.

2.2 The Quasi-geostrophic Equations

The inviscid quasi-geostrophic equations for a rotating, stratified fluid may

be obtained by the asymptotic expansion of Euler’s equations for ε = H/L � 1

where H and L are respectively the characteristic height and length scales of the

fluid, and for Fr2 � Ro � 1 where the Froude number, Fr, and the Rossby
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number, Ro, are defined as

Fr =
U

NH
, Ro =

U

fL
, (2.1)

where N is the Brunt-Väisälä buoyancy frequency being the frequency of oscilla-

tion a fluid parcel would have if it was displaced a small amount in the vertical.

f is the Coriolis frequency. In QG, the horizontal component of the Earth’s ro-

tation is neglected, see e.g. Gill (1982)[21] or White (2002)[48]. Only the local

vertical component of the rotation vector is taken to be important, given by the

‘Coriolis parameter’,

f = 2Ω sinφ, (2.2)

where φ is the latitude and Ω is the planetary rotation rate.

We introduce the potential vorticity (PV) q = q(x, y, z, t) or more appropri-

ately the PV anomaly which represents the departure from the background PV,

i.e. q ≡ Q − f where Q is the full quasi-geostrophic potential vorticity. In the

absence of relatively weak dissipative and diabatic effects and for constant N and

f , the governing equations become

Dq

Dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0, (2.3a)

∂2ψ

∂x2
+
∂2ψ

∂y2
+
f2

N2

∂2ψ

∂z2
= q, (2.3b)

u = (u, v, 0) =

(

−∂ψ
∂y
,
∂ψ

∂x
, 0

)

, (2.3c)

where ψ is the stream function. These equations are obtained under lowest-order

hydrostatic and geostrophic balance. Hence there is no vertical advection at this

order. Moreover, inertia-gravity waves are filtered and the velocity field u is the

geostrophic velocity.
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Equation 2.3b can be further simplified by stretching the vertical coordinate

by Prandtl’s ratio N/f so that it becomes Poisson’s equation

∇
2ψ = q, (2.4)

where ∇
2 is the three-dimensional Laplacian operator. Note that the motion

is layer-wise two-dimensional although equation 2.4 is isotropic. A full discus-

sion and derivation of the quasi-geostrophic equations can be found in e.g.Gill

(1982)[21] and Vallis (2006)[44].

2.3 The Contour-Advective Semi-Lagrangian al-

gorithm

The “Contour-Advective Semi-Lagrangian” algorithm (CASL) is a computa-

tional method originally presented in Dritschel & Ambaum (1997)[8], for solving

the 2D equations. This method is a hybrid Lagrangian-Eulerian method in that it

utilises contour-advection for the advection of potential vorticity but also employs

a spectral method to solve the inversion relations in equation 2.4.

CASL is able to resolve a wide range of scales due to the way in which the

PV anomaly may be represented down to one-tenth of the actual grid scale, but

still benefits from the efficiency of spectral methods in computing the flow field.

Dritschel, Polvani & Mohebalhojez (1999)[10] show CASL in comparison with

other models in the context of the QG shallow water equations to be the most

accurate and efficient.

A summary of CASL is as follows:

(a) Initialisation: The PV distribution is defined in terms of a set of contours

in each horizontal layer. Each contour is assigned nodes, connected by a
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Figure 2.1: Example of node distribution along a PV contour.

cubic spline to define the contour’s shape see for example figure 2.1.

(b) PV Contour-to-grid conversion: The PV contours defined in the first

step are converted to a gridded field via a ‘fast-fill’ procedure described in

full in Dritschel & Ambaum (1997)[8]. The PV is converted to a horizontal

grid four times finer than the horizontal velocity grid and a vertical grid

four times the number of vertical grid points as the number of layers. The

PV is then averaged to a grid four times coarser, see figure 2.2.

(c) Inversion: CASL computes the streamfunction by inverting the Laplacian

in equation 2.4 in spectral space via a Fast Fourier Transform (FFT). The

streamfunction can then be used to obtain the velocity field. Note that for

the purposes of this research, we adapted CASL to use the “Fastest Fourier

Transforms in the West” (FFTW) version 2.1.5[19] a free, open-source FFT

library.

(d) Contour Advection: The gridded velocity field is bi-linearly interpolated

to get the velocity at each node. The nodes of the PV contours are advected

using the velocity obtained from the interpolation. The algorithm then

returns to step (b) at repeats until all 4 stages of the 4th order Runge-

Kutta integration are completed.

(e) Contour Surgery: Every other time-step ‘contour surgery’ is performed
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(a) (b)

Figure 2.2: Example of PV contour on (a) the fine-scale grid for ‘contour-to-grid’

conversion and (b) the final velocity grid 4 times coarser than the fine-scale grid.

to remove filaments of PV that are smaller than a certain width. This

can also result in the connection or disconnection of two vortices. At the

end of this step the nodes are redistributed on the PV contours in such a

way to provide the highest possible accuracy when the contours have high

curvature.

2.4 The non-hydrostatic equations

We now present the non-hydrostatic equations for a rotating, stratified fluid.

The removal of the balance restrictions in QG means that we now have access to

inertia-gravity waves and the ageostrophic velocity field.

The part of the flow characterised by relatively large-scale, vortical motions is

termed the ‘balanced’ part of the flow. The part of the flow characterised by rel-

atively small-scale, inertia-gravity wave-like motions is known as the ‘imbalanced’

part of the flow.
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Again the fluid is assumed to be inviscid and incompressible. The govern-

ing equations are recast in terms of new variables which explicitly distinguish

between the balanced and imbalanced part of the flow. The PV anomaly is again

materially conserved, that is

∂q

∂t
+ (u.∇)q = 0 (2.5)

where u = (u, v, w). Leading order imbalance is represented by the horizontal

component of the vector A, that is Ah, where

A =
ω

f
+

∇b

f2
, (2.6)

where b ≡ −gρ′/ρ0 is the buoyancy, g is the gravity, ρ′ is the anomalous density,

ρ0 is the background density and ω = ∇ × u is the vorticity. Note that Ah = 0

approximately corresponds to thermal wind balance, consequently Ah may be

thought of as the departure from this balance. The transport equation for Ah is

DAh

Dt
= −fk ×Ah +

(

1 − N2

f2

)

∇hw +
1

f
ω · ∇uh +

N2

f2
∇hu · ∇D, (2.7)

where D is the isopycnal displacement defined by D ≡ −b/N 2.

The primitive variables b and u are obtained by introducing a new vector

potential ϕ = (ϕ, ψ, φ) such that

A = ∇
2
ϕ (2.8)

and

b = f 2
∇ · ϕ (2.9a)

35



and

u/f = −∇ × ϕ. (2.9b)

The horizontal parts of ϕ, that is ϕh, can be found by directly inverting

Laplace’s operator

ϕh = ∇
−2Ah. (2.10)

We wish to use the PV as the variable to represent balance, the Rossby-Ertel PV

Π is given by

Π ≡ ωa

f
· ∇Z (2.11)

in dimensionless form. Here ωa is the absolute vorticity, that is the vorticity

plus the background vorticity fk, and Z = z − D is the reference height of an

isopycnal. Thus Π can be expressed as

Π = (k + ω/f) · (k − ∇D) = 1 +
ζ

f
− ∂D
∂z

− ω

f
· ∇D. (2.12)

where ζ is the vertical component of the vorticity. Now substituting for ω we

obtain an expression for the PV anomaly q = Π−1 in terms of the vector potential

q = LQGφ− (1 − f2

N2
)
∂Θ

∂z
− f2

N2
N (ϕ), (2.13)

where LQG is the quasi-geostrophic Laplacian operator

LQGφ ≡ ∂2φ

∂x2
+
∂2φ

∂y2
+
f2

N2

∂2φ

∂z2
, (2.14a)

also

Θ ≡ ∇h · ϕh (2.14b)
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and

N (ϕ) ≡ ∇(∇ · ϕ) · [∇2
ϕ − ∇(∇ · ϕ)]. (2.14c)

Thus φ must be found from the definition of q in equation 2.13. The result is a

double Monge-Ampère equation. A full discussion on the derivation and solution

of these equations can be found in Dritschel & Viúdez (2003)[16].

2.5 Computational method for solving the non-

hydrostatic equations.

A full and detailed description of the algorithm used to solve the non-hydrostatic

equations discussed in the previous section can be found in the appendix of

Dritschel & Viúdez (2003)[16]. We provide here an overview of the algorithm.

(a) Initialisation: The PV contours are defined but the PV anomaly they con-

tained is taken to be initially zero. The PV anomaly inside these contours

is then increased slowly compared with the buoyancy and inertial periods.

The PV contours remain fixed whilst the PV is increased. This technique

has been found to generate virtually no spurious inertia-gravity waves.

(b) PV interpolation: First the same ‘fast-fill’ routine is used as in QG that

is interpolating PV contour nodes onto a fine-scale grid (here again four

times finer than the velocity grid in each direction). Then two further

interpolations are needed first to find the relative height of the isopycnal

surface from the gridded displacement field, and second to find the PV at

the grid points lying between these surfaces. These two interpolations are

taken to be linear.

(c) Inversion: The horizontal part of the vector potential ϕh is found by in-

verting the Laplacian operator in spectral space using fast Fourier trans-
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forms. The vertical part of the potential can be expressed as a double

Monge-Ampère which can be solved using an iterative method described in

Dritschel & Viúdez (2003)[16]. Having found ϕ the primitive variables can

be recovered.

(d) Time integration: The recovered velocity field is used to explicitly advect

the nodes representing the PV contours, this is done using a third-order,

three time-level Adams-Bashforth integration procedure (see Dritschel ,

Polvani & Mohebalhojeh (1999)[10]). The imbalanced fields are evolved us-

ing an explicit leap-frog scheme with a weak time filter to avoid decoupling

of even and odd time levels, see again Dritschel, Polvani & Mohebalhojeh

(1999)[10] for details.

(e) Contour Surgery: This is identical to the method used for QG. At certain

time intervals, filaments of PV less than a prescribed width, here one-

twentieth of the horizontal grid scale, are removed and the nodes defining

the contours are re-distributed.
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Chapter 3

Interactions between two

co-rotating quasi-geostrophic

vortices

3.1 Introduction

In this chapter we investigate the interactions between two initially ellipsoidal

QG vortices. These vortices are set up so that they reside at an estimated margin

of stability which is determined using a method based on the “Ellipsoidal Model”

(ELM) developed in Dritschel, Reinaud & McKiver (2004)[13]. First we give a

brief description of the model and the method used to obtain the margin of

stability. Then we describe the parameter space chosen for this investigation and

present the results from the QG simulation. We finish with conclusions. These

results are currently submitted to the Journal of Fluid Mechanics.
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3.1.1 The quasi-geostrophic ellipsoidal model

ELM is a simplified system that models vortices as uniform ellipsoids of PV.

These vortices remain ellipsoidal for all time and any non-ellipsoidal deformation

is filtered out. ELM represents each ellipsoid i by a symmetric matrix Bi where

Bi =








(Bi)1 (Bi)2 (Bi)3

(Bi)2 (Bi)4 (Bi)5

(Bi)3 (Bi)5 (Bi)6








(3.1)

and a centroid position Xi. The surface of each ellipsoid is represented by the

set of points x such that

(x − Xi)
TB−1

i (x − Xi) = 1, (3.2)

where the superscript T represents the transpose. The governing equations of

ELM for the ith ellipsoid are

dXi

dt
= −1

κ i
L ∂H
∂Xi

, (3.3a)

dBi

dt
= SiBi + BiST

i , (3.3b)

Si = −10

κi

L∂H
∂Bi

, (3.3c)

where κi = qiVi/4π is the ‘strength’ of the vortex i, qi is the PV of vortex i and

Vi is its volume and

L =








0 −1 0

1 0 0

0 0 0







. (3.4)
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H is the Hamiltonian of the system, i.e. the total energy divided by 4π and Si is

known as the flow-matrix (see McKiver & Dritschel (2003)[30]). This Hamiltonian

formulation ensures that the vortices remain ellipsoidal.

H can be decomposed into H = Hv +Hb where Hv corresponds to the self-

energy of the vortex and Hb corresponds to the interaction energy. Hv is known

analytically,

Hv =
3

5
κRF (a2, b2, c2), (3.5)

where a, b and c are the ellipsoid axis lengths and RF is an elliptic integral of the

first kind such that

RF (a2, b2, c2) =
1

2

∫
∞

0

dt
√

(t+ a2)(t+ b2)(t+ c2)
, (3.6)

see Chandrasekhar (1969)[4]. a2, b2 and c2 are the eigenvalues of the B-matrix

and â, b̂ and ĉ are the eigenvectors of the B-matrix. The eigenvectors give the

direction of the corresponding axis of the ellipsoid, see figure 3.1.

Hb is calculated by modelling each ellipsoid as a finite sum of singular point

vortices. The position and strength of the singularities are obtained such that the

approximate streamfunction induced by them matches exactly with the stream-

function at a given order of accuracy in 1/d, d being the distance from Xi to

the point of evaluation. Table 3.1 shows the order of accuracy depending on the

number of singularities the ellipsoid is represented by.

The flow matrices can then be expressed analytically. Full details of ELM

and its derivation can be found in Dritschel, Reinaud & McKiver (2004)[13].
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b

c

Figure 3.1: Definition of ellipsoid axis length and axis direction parameters. Fig-

ure courtesy of McKiver & Dritschel (2003)[30].

Number of singularities Order of accuracy

1 O(1/d3)

4 O(1/d5)

7 O(1/d7)

13 O(1/d9)

Table 3.1: Order of accuracy in 1/d depending on the number of singularities

representing the ellipsoid.
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3.1.2 Initial conditions

Reinaud & Dritschel (2005)[37] use the ELM to determine families of equilibria

for pairs of ellipsoids that have prescribed volume-ratios, (ρV = V2/V1), vertical

offsets (∆z), and height-to-width aspect-ratios (h/r) – where h is the vertical

half height of the ellipsoid and r is its mean horizontal radius. Note that in QG

the vertical offset between two vortices is a special parameter due to the lack of

vertical advection, see for example Reinaud & Dritschel (2002)[36]. δ is defined

as the horizontal gap between the two innermost edges of the ellipsoids, given as

δ = |X1 − X2| −
√

(B1)1 −
√

(B2)1. (3.7)

Below a critical value of δ the equilibria become unstable making strong interac-

tions such as vortex merger possible in the full QG equations. The length scale

of the problem is set by the total volume of PV, 4π/3.

Starting from two well separated spheroids with fixed δ we use an iterative

method to reach the equilibrium state. Note that in referring to an equilibrium

state here we do not refer to the vortices being stationary, but they rotate steadily

without developing any deformations. Iteration continues until the r.m.s. correc-

tion to the two B-matrices is less than 10−12. The horizontal gap is then reduced

by 2×10−4 and the B-matrices of the last state are used for the first guess for the

next state. This procedure is continued until the total energy of the equilibrium

is seen to decrease since in general at the margin of stability the total energy

exhibits a maximum. A linear-stability analysis is then performed on four states

surrounding the maximum of energy to verify that this maximum does indeed

coincide with the margin of stability. The linear stability analysis is performed

by superimposing the perturbation (∆̃, B̃) on ∆̄ and B̄i=1,2 where ∆̄ = X1 − X2

describes the position of the vortices relative to each other and B̄i=1,2 are their

B-matrices at equilibrium. The perturbation is chosen to have an exponential
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time dependence

B = B̄ + B̃ = B̄ + B̂eσt, (3.8a)

∆ = ∆̄ + ∆̃ = ∆̄ + ∆̂eσt, (3.8b)

where σ = σr + iσi is a complex number with σr representing the growth rate

and σi representing the frequency of the mode. Note that ∆̂ = (∆̂x, ∆̂y, 0) and

B̂ =








B̂1 B̂2 B̂3

B̂2 B̂4 B̂5

B̂3 B̂5 0







. (3.9)

∆̂z and B̂6 are zero in QG flows due to the absence of vertical advection.

Reinaud & Dritschel (2005)[37] showed that the horizontal gap corresponding

to the state with maximum energy δm is the margin of stability.

For some cases where the ellipsoids were nearly horizontally aligned, Reinaud

& Dritschel (2005) were unable to determine the steady states due to the presence

of a spurious oscillatory mode, see in particular their figure 6. To determine these

states we modify the approach used by the authors. We start with the steady

state at the margin of stability for a vortex pair with the same height-to-width

aspect-ratio and volume-ratio but offset in the vertical by ∆z = 0.2(h1 + h2).

The same procedure is then adopted, decreasing the vertical offset instead of the

horizontal gap. When near horizontal alignment is achieved, we then revert to

the original method and search along the horizontal for the critical gap.

We illustrate the case of h1/r1 = 1.0, h2/r2 = 0.8, ρV = 1.0 and ∆z =

0.005(h1 + h2). Figures 3.2 and 3.3 respectively show the energy (E) and the

angular impulse (J) versus the horizontal gap δ. We see a maximum energy and

a minimum angular impulse at δm = 2.2318.

44



 27.003

 27.004

 27.005

 27.006

 27.007

 27.008

 27.009

 27.01

 27.011

 2.2295  2.23  2.2305  2.231  2.2315  2.232  2.2325  2.233  2.2335

E

δ

Figure 3.2: Energy (E) vs horizontal gap δ for the case h1/r1 = 1.0, h2/r2 = 0.8,

ρV = 1.0 and ∆z = 0.005(h1 + h2).
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Figure 3.3: Angular impulse (J) vs horizontal gap δ for the case h1/r1 = 1.0,

h2/r2 = 0.8, ρV = 1.0 and ∆z = 0.005(h1 + h2).
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Figure 3.4: Growth rates, σr (shown by +) and frequencies, σi (shown by ×)

vs horizontal gap δ for the case h1/r1 = 1.0, h2/r2 = 0.8, ρV = 1.0 and ∆z =

0.005(h1 + h2).

Figure 3.4 shows the results of the linear stability analysis by plotting σ

against δ. In this plot, σr is shown with a + and σi is shown with a ×. We see

that one of the mode’s frequencies (σi) collapses to zero as the horizontal gap is

decreased to δ = δm, matching to 4 decimal places the extrema in the curves for

energy and angular impulse. At this value of δ, the growth rate becomes non-zero

and increases further as δ is decreased. So we see from figure 3.4 that δm is indeed

the critical gap that corresponds to the margin of stability. The geometry of this

equilibrium state can be seen in figure 3.5.

This method was successful in all but a few cases. For these remaining cases it

was found that repeating the calculation with the vortices being approximated by

13 singularities rather than 7 as used in Reinaud & Dritschel (2005) the margin

of stability could be found successfully. This is due to the increased accuracy
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(a)

(b)

Figure 3.5: Ellipsoidal vortices at the margin of stability for the case h1/r1 = 1.0,

h2/r2 = 0.8, ρV = 1.0 and ∆z = 0.005(h1 + h2). Viewed at co-latitude 60◦ and

longitude (a) 0◦ and (b) 30◦. Minor ellipsoid axes shown by bold line, middle and

major axes shown by thin lines. Ellipses drawn on the surface perpendicular to

the major axes using dashed lines for the back sides.
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Parameter Min Max Increment

h1/r1 0.4 1.2 0.2

h2/r2 0.4 1.2 0.2

ρV 0.2 1.0 0.2

δz 0.0∗ 0.8 0.2

Table 3.2: Chosen parameter space where hi/ri, i = 1, 2 is the height-to-width

aspect ratio of each vortex, ρV is the volume ratio V1/V2 and δz, the vertical

offset, is a fraction of the sum of the half-heights, i.e ∆z = δz(h1 +h2).
∗ In these

cases the ellipsoids were not in exact vertical alignment but had δz = 0.005 since

perfectly symmetric equilibria may lead on to a spurious branch of solutions, see

Reinaud & Dritschel (2005)[37].

obtained by using a higher number of point vortices as shown in table 3.1.

3.1.3 Parameter space

ELM was an ideal tool to use for such an investigation as that of Reinaud

& Dritschel (2005). Its simplicity combined with its accuracy provide excellent

estimates for the stability margins of 5625 cases. It is our intention to investigate

the nonlinear behaviour of these pairs of vortices under time evolution. Since

ELM filters all nonlinear deformations of the vortex it is not suitable for this

study. Instead we use the CASL algorithm detailed in section 2.3. CASL however

is computationally much more expensive than ELM therefore we need to reduce

our parameter space from Reinaud & Dritschel’s 5625 cases by taking a sub-set

of their parameter space (detailed in table 3.2) leaving us with 625 cases, still

a very large sample to consider. The first unstable equilibrium state from each

family is taken as the initial conditions for the calculation.

The geometry of the problem can be seen in figure 3.6. We set the PV to
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Parameter Value

Velocity field grid resolution 1283

Fine to coarse grid ratio 4:1

Time step 0.05

Table 3.3: CASL parameters.

q = 2π for both vortices. The computational domain is a box of 2π3 (after the

rescaling of z by f/N) with periodic boundaries in x, y and z. It is necessary to

minimise the influence of the periodic images of the vortices on the interaction

(see Dritschel & Macaskill (2000)[9]). We scale the initial conditions to fit inside

a 23 box at the centre of the domain. We rescale the results back to their original

dimensions for analysis so that all cases have the same total strength,

∫∫∫

qdV = 8π2/3. (3.10)

We run the simulations up to t = 60. Recall that a spherical vortex of uniform

PV, q, has a rotation period of T = 6π/q meaning that these calculations last

for approximately 20 vortex revolutions. The initial CASL parameters are given

in table 3.3. The surgical cut-off scale δmin which is the minimum distance two

contours containing equal PV can be to each other before surgery is performed is

given by δmin = (µ2L)/4 where µL is approximately the spacing between adjacent

nodes and L is the characteristic length scale of the PV structures in the flow.

For our calculations δmin = 0.005. ∆t is set π/10q = 0.05. The results of these

calculations are presented in the next section.
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Figure 3.6: Geometry of initial conditions. Vortices (i = 1, 2) have vertical half-

heights hi, horizontal radii ri and volumes Vi. They are offset in the vertical by

a distance ∆z such that ∆z = δz(h1 + h2) and separated in the horizontal by a

distance δ.

3.2 Results

CASL outputs data sets for all PV contours in the domain at each specified

time interval, this being 1 time unit in our case. We perform two operations on

these contour sets to extract useful information. Firstly, we use a vortex identific-

ation procedure to identify the vortices present as contiguous 3D structures. Then

we use a vortex properties analysis code to analyse the vortices that have been

identified. This latter procedure returns data for the mean-radius (obtained from

the cube root of the volume), the centroid position, the height-to-width aspect

ratio and values describing the best fit of the vortex to an ellipse. This procedure

calculates the volume of vortices by contour integration and was modified in this

work to similarly compute the vortices self-energies.
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Merger type V̂1 V̂2

Elastic Interaction (EI) 1 1

Partial Straining Out (PSO) 1 < 1

Complete Straining Out (CSO) 1 0

Partial Merger (PM) > 1 < 1

Complete Merger (CM) > 1 0

Table 3.4: Criteria for classification of vortex interactions.

3.2.1 Classification of interactions

In previous studies, several methods of classifying vortex interactions have

been introduced. The most relevant to our study is the one introduced in Dritschel

& Waugh (1992)[17]. We define

V̂j =
Vf j

Vij

, (j = 1, 2) (3.11)

where Vij and Vf j are respectively the initial and final volumes of vortex j, ordered

by volume. The vortex interaction can now be classified according to table 3.4.

In the elastic interaction (EI) scenario, no PV is exchanged and both vortices

retain their original volume. When partial straining-out (PSO) occurs, filaments

of PV are ‘strained out’ from vortex 2. These filaments are not consumed by

vortex 1 however, so vortex 1 retains its original volume and vortex 2 loses volume.

Complete straining-out (CSO) is where the second vortex is entirely destroyed by

the first vortex. Vortex 2 is reduced to filaments and other small scale debris, none

of which is consumed by the first vortex which still retains its original volume.

In partial merger (PM) the vortices temporarily merge together then re-separate.

After separation, vortex 2 is seen to have reduced in volume whereas vortex 1

has grown in volume. This volume has been transferred from vortex 2 to vortex
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1. When complete merger (CM) occurs, vortex 2 has been entirely consumed by

vortex 1.

The resulting interaction regime for each simulation is plotted in figure 3.7.

We find that for ρV = 0.2, 92% of cases involve PSO with the remaining 8%

being PM. For higher initial volume-ratios, interactions are predominantly PM.

For 0.4 ≤ ρV ≤ 1.0, 85% of cases result in PM, 9.8% of cases are PSO and 4.4%

of cases are CM. Of the cases that result in a CM regime, 72.7% of these occur

when ρV = 1.0 and 72.7% occur when h1/r1 = h2/r2. Partial straining-out does

not occur at all for the equal-volume cases in this parameter space. Also we note

that no instances of complete straining-out or elastic interaction occur in this

parameter space either.

It is interesting to observe that when one vortex is considerably larger than

the other, PV is not transferred but ‘strained out’ of the smaller vortex. This

has been shown to occur also in two-dimensional cases. Dritschel (1995)[6] found

that whilst the smaller vortex always decreased in size, the larger vortex only

increased in size (i.e. displayed PM or CM) for area ratios α
>∼ 0.6 meaning that

if the vortices were originally very different in size the smaller vortex was subject

to straining-out. One explanation of the results seen both here and in Dritschel

(1995) is that for a large difference in size, i.e. a small ρV , the small vortex is

weak relative to the large vortex. It cannot adapt its shape to get close to the

large vortex. The smaller vortex is then simply strained-out by the larger vortex.

On the other hand for a larger ρV , the smaller vortex is strong enough to deform

without being strained-out thus it can deform so as to touch the larger vortex.

The most common behaviour then is for the vortices to merge into an asymmetric

– ‘dumbbell’-shaped – structure which eventually breaks asymmetrically with the

small vortex having transferred some of its PV to the large vortex.

We now illustrate some examples of the simulations with three-dimensional

snapshots of the flow at various time frames. In figure 3.8 we show four time
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h /r1 1

2h /r2

ρV

δ z

Figure 3.7: Interaction regimes for every simulation. Each graph has 0.2 ≤
h1/r1 ≤ 1.4 on the horizontal axis and 0.2 ≤ h2/r2 ≤ 1.4 on the vertical axis.

Each separate graph in the horizontal increments ρV by 0.2 starting with ρV = 0.2

on the left. Each separate graph in the vertical increments δz by 0.2 starting

with δz = 0.005 at the bottom. Partial straining-out is denoted by an ×, partial-

merger by 2 and complete-merger by 4.
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(a) (b)

(c) (d)

Figure 3.8: Vortex evolution in a PSO regime. h1/r1 = 0.8, h2/r2 = 1.0, ρV = 0.2

and δz = 0.2. Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and (d)

t = 60. Viewing angle is 60◦ from the vertical and horizontal scale is ±1.5 centred

around the origin of the domain. Light grey areas show front and back walls of

the box which spans the full height of the PV distribution.
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frames from an interaction in a partial straining out regime. The initial conditions

are h1/r1 = 0.8, h2/r2 = 1.0, ρV = 0.2 and δz = 0.2. At time t = 7 filaments

begin to be stripped away from the smaller vortex, these filaments orbit the larger

vortex but do not merge with it. By t = 60 the smaller vortex has lost 5% of

its original volume and now has h/r = 0.92. The volume and aspect ratio of the

larger vortex has remained unchanged throughout.

The simulation seen in figure 3.9 has initial conditions h1/r1 = 1.0, h2/r2 =

0.4, ρV = 1.0 and ∆z/(h1 + h2) = 0.2. In this situation the volume of PV

transfered between the vortices is sufficient to classify this interaction as partial-

merger. At t = 7 the two initial vortices merge into a “dumbbell” shaped config-

uration with an effective aspect-ratio of 0.58. At t = 13 the “dumbbell” vortex

begins to eject filaments and at t = 21 it splits into two large scale vortices with a

volume-ratio of 0.53. The larger of these vortices has h/r = 0.79 and the smaller

has h/r = 0.57. It is apparent that these small scale structures are ejected by the

larger vortex between t = 21 and t = 40 as its volume at t = 40 is 91% of what it

was at t = 21. The smaller vortex, on the other hand, has grown by 0.4% during

this time. At t = 60 the number of structures present has decreased. At this

end time the larger vortex has grown by 2% over its original volume at t = 21

whereas the smaller vortex has 2% less volume than at t = 21. The final volume

ratio of these two main vortices is 0.56.

One other interesting example is shown in figure 3.10. On first inspection

one would expect this interaction to belong in the CM class and indeed displays

behaviour described in Waugh (1992)[47] of a ‘merger’ scenario where the central

vortex ellipse has an aspect ratio greater than 3. However using the criteria set

out in table 3.4 this interaction is classified as PM due to the large quantity of

filaments ejected. The initial vortices merge by t = 2 forming a central vortex

of h/r = 0.97. Figure 3.10(b) shows filaments forming at both vertical apexes of

the central vortex at t = 14. At t = 16 these filaments begin to separate from the
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(a) (b)

(c) (d)

Figure 3.9: Vortex evolution in a PM regime. h1/r1 = 1.0, h2/r2 = 0.4, ρV = 1.0

and δz = 0.2. Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and

(d) t = 60. Viewing angle is 60◦ from the vertical and horizontal scale is ±1.5

centred around the origin of the domain. Light grey areas show front and back

walls of the box which spans the full height of the PV distribution.
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(a) (b)

(c) (d)

Figure 3.10: Vortex evolution in a PM regime. h1/r1 = 1.2, h2/r2 = 1.2, ρV = 1.0

and δz = 0.2. Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and (d)

t = 60. Viewing angle is 60◦ from the vertical and horizontal scale is ±2.0 centred

around the origin of the domain. Light grey areas show front and back walls of

the box which spans the full height of the PV distribution.
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(a) (b)

(c) (d)

Figure 3.11: Vortex evolution in a CM regime. h1/r1 = 0.6, h2/r2 = 0.6, ρV = 1.0

and δz = 0.005. Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and

(d) t = 60. Viewing angle is 60◦ from the vertical and horizontal scale is ±2.0

centred around the origin of the domain. Light grey areas show front and back

walls of the box which spans the full height of the PV distribution.

central vortex. By t = 40 the central vortex has reduced to 90% of its volume at

t = 2 and h/r is reduced to 0.89. At the end time, t = 60, the central vortex has

further decreased in volume to 81% of that at t = 2 and its h/r is now 0.81.

In figures 3.11 and 3.12 we show flow snapshots of two cases diagnosed to be

complete-merger. It is apparent in both of these cases that CM has not occurred

in full. The snapshot at t = 60 for the nearly vertically aligned case h1/r1 = 0.6,

h2/r2 = 0.6, ρV = 1.0 and δz = 0.005, that is figure 3.11(d) show two distinct

vortices which are however, still connected by a thin filament, meaning that
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computationally these structures are still counted as a single vortex. In this case

the initial vortices merge at time t = 3 and again begin ejecting filaments at

t = 15. The volume of PV lost to filamentary ejection here is small however, and

the volume of the joined pair at t = 60 is 97% the volume of the original merged

pair at t = 3.

Figure 3.12 shows another example of a case diagnosed at CM, here for h1/r1 =

0.8, h2/r2 = 0.8, ρV = 1.0 and δz = 0.2. Inspection of the flow shows that whilst

the vortices are still merged at t = 60, they are configured in a “dumbbell” shape

such as seen at earlier times in other cases, for example, in figure 3.9(b). Once

again here we see a familiar pattern in the interaction. The initial vortices merge

at time t = 2 and begin ejecting filaments at t = 14. The vortices stay merged in

a “dumbbell” configuration throughout the evolution. The merged pair’s volume

at the end time t = 60 is again 97% of the volume it was when the vortices

initially merged.

These last two examples have shown that complete merger, an already rare

occurrence, is in fact rarer still since some cases that have been diagnosed as CM

may eventually become PM once filamentary connections between vortices break

and dumbbell structures re-separate.

Another interesting point to address is why CM is more frequently seen for

vortices of equal height-to-width aspect-ratio. Figure 3.13 shows the interaction

of the vortices with h1/r1 = 1.2, h2/r2 = 0.4, ρV = 0.8 and δ = 0.8, i.e. two very

different height-to-width aspect-ratios. The vortices merge by t = 2 and stay

merged until t = 23, when 29% of the volume of the main structure is broken

away to form a new secondary vortex. As can be seen in figure 3.13(b) the merger

of the oblate (flat) vortex with the prolate (tall) vortex near the top of the prolate

vortex has caused the bottom of the prolate vortex to become unstable and it is

this part of the structure that is disconnected from the main structure at t = 23.

This occurs similarly in the example shown in figure 1.4. It could be concluded
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(a) (b)

(c) (d)

Figure 3.12: Vortex evolution in a CM regime. h1/r1 = 0.8, h2/r2 = 0.8, ρV = 1.0

and δz = 0.2. Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and (d)

t = 60. Viewing angle is 60◦ from the vertical and horizontal scale is ±2.0 centred

around the origin of the domain. Light grey areas show front and back walls of

the box which spans the full height of the PV distribution.
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then, that CM is less likely for disparate values of h/r due to this developing

instability in the tall vortex.

3.2.2 Analysis over entire parameter space

As we have seen from the previous section, vortex interactions in this para-

meter space display a wide variety of behaviours all with significant complexity.

We now turn our attention to the parameter space as a whole to seek trends in

the interactions to help better understand their general aspects.

In large-scale geophysical turbulence the average inverse-cascade is an im-

portant spectral feature. To determine whether an analogous cascade exists in

physical space we diagnose the self-energy (Es) of a vortex of uniform PV, ob-

tained by

Es = −1

2

∫∫∫

qψvdV, (3.12)

where ψv is the streamfunction induced by the vortex on itself and q is the

PV. We note here that the total energy is dominated by the self-energies as the

interaction-energy is small, see Reinaud & Dritschel (2005)[37] – in particular

their figure 8.

Figure 3.14 shows four plots at times 0, 30, 40 and 60 of the number density

of vortices of a given self-energy Es and radius r = (3V/4π)1/3 taken over the

entire parameter space. We note the very high density of small scale vortices

generated during the interactions such as can be seen in figure 3.10 for example.

The energy distribution, especially for the large vortices and to some extent

the smallest vortices, is well approximated by the energy of a uniform sphere of

PV (Q) – given by Es = (4πQ2/15)r5 – the derivation of which follows.

The self-energy of a sphere can be obtained from the self-induced part of the

61



(a) (b)

(c) (d)

Figure 3.13: Vortex evolution in a PM regime. h1/r1 = 1.2, h2/r2 = 0.4, ρV = 0.8

and δz = 0.8. Time frames shown are (a) t = 0, (b) t = 14, (c) t = 40 and (d)

t = 60. Viewing angle is 60◦ from the vertical and horizontal scale is ±1.5 centred

around the origin of the domain. Light grey areas show front and back walls of

the box which spans the full height of the PV distribution.
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Figure 3.14: Contours of the number density (n) of vortices (contoured as log10 n.

The first (outermost) contour has log10 n = 0, the innermost contour has log10 n =

11, the contour increment is log10 ∆n = 0.5. 100 intervals were used in each

direction, equally spaced in logarithmic scales. Times shown are (a) t = 0, (b)

t = 30, (c) t = 40 and (d) t = 60. We add for reference the line corresponding to

the energy of a sphere of PV Q, Es = (4πQ2/15)r5.
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Hamiltonian Hv by

Es = 4πHv = 4π.
3

5
RF (r2, r2, r2)

(
qV

4π

)2

, (3.13)

where RF is an elliptic integral of the first kind thus

RF (r2) =
1

2

∫
∞

0

dt
√
t+ r2

3 , (3.14)

therefore

Es = 4π.
3

5
.
1

2

∫
∞

0

dt
√
t+ r2

3

︸ ︷︷ ︸

r−1

.






Q
4π

3
r3

4π






2

= 4π.
3

5
.
1

32
.
r6

r
.Q2

=
4π

15
Q2r5. (3.15)

The line corresponding to equation 3.15 is included in figure 3.14 for reference.

Since the streamfunction in equation 3.12 is quadratic one would expect such a

power law dependence, however it is remarkable how well the data fit to the

energy of a spherical vortex.

An interesting feature of figure 3.14 is the formation of a gap in the distribu-

tion of the self-energy in the region 10−0.6 ≤ r ≤ 10−0.4, i.e. 0.25 ≤ r ≤ 0.40. It

would appear that in this parameter space, vortices of this size cannot survive

the interaction. We note that the energy levels for vortices in this range at earlier

times are considerably less than those of spherical vortices indicating that these

vortices have been highly deformed. There are two possibilities as to the fate of

these intermediate sized structures, they are either destroyed by shear effects, or

re-absorbed into the larger vortices.
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We attempt to analyse the shear effects on a vortex by considering a simple

case using point vortices. Initially we take two point vortices with strengths

Γ1 = Γ2 = Γ so the total strength is 2Γ. The point vortices are initially situated

a distance d apart such that they are equidistant from the origin (and hence the

global centroid) x = 0. Thus we can say x1 = −d/2 and x2 = d/2. The angular

momentum of the system will be conserved around the global centroid, the global

centroid itself will also be conserved by conservation of linear impulses. Initially

the angular momentum is given by

J = Γ1x
2
1 + Γ2x

2
2 =

Γd2

2
. (3.16)

We now say that after an “interaction” the volume of vortex 1 has increased

by a factor λ and, since Γ = qV , we can also say vortex 1 has increased its

strength by the same factor. So now

Γ̃1 = λΓ, (3.17)

and by conservation of total strength

Γ̃2 = 2Γ − λΓ = (2 − λ)Γ. (3.18)

The point vortices are now at new positions x̃1 and x̃2 such that the new distance

between them is d̃ = x̃2 − x̃1. The angular momentum can now be expressed as

J = Γ̃1x̃
2
1 + Γ̃2x̃

2
2 =

Γd2

2
. (3.19)

Remembering that Γ̃1x̃1 + Γ̃2x̃2 = 0 one can derive an expression for d̃ in terms

of the original gap d and the scale factor λ:
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Figure 3.15: Strain on point-vortex 2 by point-vortex 1 against scale factor λ.

Γ = 1, d = 1

d̃ =

√

d2

λ(2 − λ)
. (3.20)

This can then be used to calculate the strain imposed by vortex 1 on vortex 2 by

σ = λΓ

(
d2

λ(2 − λ)

)
−3/2

, (3.21)

as defined in McKiver & Dritschel (2003)[30], see in particular their equation 27.

The variation of σ with λ can be seen in figure 3.15. The strain is seen to

peak at λ = 1.25 indicating that there is a maximum strain associated with

the generation of intermediate sized vortices. Whilst this value of λ does not

correspond quantitatively to the scales seen in the ‘gap’ in figure 3.14, we see that

there is indeed a maximum strain associated with intermediate sized structures

emerging from interactions. This simplified model indicates that the vortices in
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Figure 3.16: Time evolution of the average mean-radius of the largest vortex (r̄1).

this intermediate range are preferentially destroyed by high strains.

To provide further insight into whether intermediate sized vortices are strained-

out or re-absorbed into the larger vortex, we plot the time evolution of the average

radius of the largest vortex (r̄1) in figure 3.16. We conclude from this figure that

since there are no prominent increases of mean-radius during the formation of the

gap that the intermediate sized vortices are destroyed by shear effects as sugges-

ted earlier in this section. It is also interesting to notice that the smaller vortices

are not destroyed by the same shear effects. This appears to be related to the

fact that smaller vortices can get further away from the main vortex whilst still

conserving angular impulse and thus, as seen in figure 3.15 for values of λ > 1.5,

are subject to weaker strains.

Judging by the apparently even spacing between the contours for smaller

vortices in figure 3.14 it appears that the number density of these smaller vortices

is related to the radius by a power-law. We confirm this in figure 3.17 which shows
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that the number density (n) for small vortices follows n ∝ r−4, as indicated by

the reference line in the figure. This power-law dependency in the number density

can be related to the slope of the inertial-range of the energy spectrum, as done

in Dritschel & Reinaud (2002)[11]. As has already been shown, Es(r) ∝ r5, thus

the energy density e(r) ∝ r5n(r). Integrating we get

∫

e(r)dr =

∫

n(r)Es(r)dr ∝
∫

r−4r5dr =

∫

rdr. (3.22)

We relate r to the wave number k by r ∝ k−1, this changes the integral to

∫ (
1

k

)

d

(
1

k

)

∼
∫ (

1

k

)

k−2dk ∼
∫

k−3dk ∝
∫

E(k)dk. (3.23)

Thus the resulting power-law slope for this parameter space is therefore E(k) ∝
k−3. This slope exactly matches the prediction of k−3 by Charney (1971)[5].

Another surprising result from figure 3.14 is the high quantity of small scale

structures being generated during the interaction. It is not possible from this

figure to ascertain the direction in which the energy is transfered. We define

F as the integral with respect to radius of the self-energy of all vortices in the

parameter space at a time t. Thus at a given r we can see the sum of the

self-energy contained in scales less than that value of r allowing us to have a

quantitative view of the transfer of self-energy across the parameter space

F =
1

n

∫

Es(r)dr, (3.24)

where n is the number of simulations, i.e. n = 625.

In figure 3.18 which shows the variation of F (r) with r we see two distinct

regions to the t = 60 curve. The initial increase in F (r) between r = 0.5 and

r = 0.76 shows that the amount of energy contained at scales below r = 0.76
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Figure 3.17: Number density of vortices as a function of radius. As in the previous

figure we use 100 intervals in the direction of log10 r. This is at t = 60. We add

for reference the slope r−4.

69



0

4

8

12

16

20

24

0 0.2 0.4 0.6 0.8 1.0 1.2

r

F

Figure 3.18: F plotted against r where F = (1/n)
∫
Esdr at times t = 0 (thin

line) and t = 60 (bold line).
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Figure 3.19: Time evolution of the energy-weighted mean-radius (r̄).

has increased. For r > 0.76 the curve is shifted to the right meaning that the

self-energy is contained at larger scales i.e. it has undergone an inverse-cascade.

To investigate the mean spatial scale carrying energy we define the energy-

weighted mean-radius (r̄) at a time t as

r̄ =

∑m
i=1Esiri

∑m
i=1Esi

, (3.25)

where m is the total number of vortices present in the entire parameter space at

time t. In figure 3.19 we show the variation of r̄ with time. Over the first 14 time

units, r̄ increases showing that in most cases vortex merger is occurring. After

t = 14, r̄ begins to decrease as the vortices separate and begin to eject filaments.

We see a convergence of r̄ to 0.87 by t = 50 showing that the mean-radius has,

on average, increased by 3.5%.

We define r̄0 to be the value of r̄ at time t = 0. Then, at any time, we can
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Figure 3.20: Time evolution of Esl/Esg.

define Esl as being the average self-energy of all vortices in the parameter space

at that time that have a mean-radius r such that r < r̄0. Similarly we define Esg

to be the average self-energy of all vortices in the parameter space at the same

time that satisfy r > r̄0. By plotting the time evolution of Esl/Esg in figure 3.20

we obtain a qualitative summary of the energy transfers. Note that in figure 3.20

at t = 0, Esl/Esg is not equal to 1. This is due to the fact that we only have a

discrete sample of initial conditions. As the number of cases considered tends to

∞ we would expect (Esl/Esg)t=0 → 1.0.

We see a rapid decrease in Esl/Esg at early times, once again showing that

an inverse cascade of self-energy is occurring. However, at t = 14 Esl/Esg begins

to increase again when smaller scale structure start to be ejected. By the final

time (t = 60), 70% of the self-energy is contained in structures that have r > r̄0.

We show values of Esl and Esg in table 3.5.

Figure 3.21 shows the growth of the largest vortex between t = 0 and t = 60
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Time (t) Esl Esg

0 10.41 11.45

14 0.73 23.83

30 2.49 20.32

40 3.09 18.84

60 3.30 17.09

Table 3.5: Values of Esl and Esg at times 0, 14, 30, 40 and 60.
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Figure 3.21: Ratio of the radius of the largest vortex at t = 60 ((r1)f ) to the

radius of the largest vortex at t = 0 ((r1)i) plotted against initial volume-ratio

(ρV ), ensemble averaged over all initial height-to-width aspect-ratios and vertical

offsets. The error-bars here are 2 standard-deviations high.
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depending on the initial volume-ratio; this is averaged over all height-to-width

aspect-ratios and vertical offsets. We see that the closer the initial volume-ratio

is to unity the larger the main vortex is likely to be and hence the larger its

self-energy will be. We notice that there is a high degree of variance shown by

the error bar for ρV = 1.0, the size of this error bar is not dependent on the initial

vertical offset as a similarly high variance is seen for ρV = 1.0 for any single value

of initial vertical offset.

3.3 Conclusions

In this chapter we have studied the interactions occurring between two co-

rotating QG vortices of varying initial height-to-width aspect-ratios, volume-

ratios and vertical offsets at the margin of stability. These vortices are of uniform

and equal potential vorticity.

We define five types of merger regime as done by Dritschel & Waugh (1992)[17]

and find three of these occur in our parameter space, namely complete-merger

(CM), partial-merger (PM) and partial straining-out (PSO). We see that for

initial volume-ratio ρV = 0.2, interactions are most likely to fall in to the PSO

regime - 92% of our 625 cases do. The remaining 8% of cases at ρV = 0.2 result

in PM. The predominant interaction regime for cases 0.4 ≤ ρV ≤ 1.0 is PM with

rare occurrences of CM and PSO. We also show that when vortices do undergo

complete-merger, it is mostly likely to occur when they have equal volumes and/or

equal height-to-width aspect-ratios. Upon closer inspection, CM turns out to be

even rarer than first shown since some cases diagnosed as CM display the onset

of re-separation at later times in the evolution. The vertical offset appears to

have little influence on the interaction-type between the vortices.

Generally in this parameter space vortex interactions are made up of two

distinct phases. The first of these phases is generally merger, in the majority
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of cases the vortices join together very early on in the evolution. In the second

phase, usually from about 5 characteristic vortex rotations, the vortices begin

ejecting filaments regardless of whether the pair remain merged or not.

Despite the large number of filamentary structures ejected in the second phase

of the interactions, self-energy is on average transfered to larger scales i.e. it

displays an ‘inverse-cascade’ over time. Intermediate scale vortices whose mean-

radii lie in the range 0.25 ≤ r ≤ 0.4 generally do not survive the interaction and

are destroyed (i.e. broken into filaments or smaller vortices) by the proximity of

the larger vortices. We also see that at t = 60, the remaining vortices fall into

two distinct vortex populations, those with mean-radii between 0.40 and 1.0 and

those with mean-radii below 0.25. Virtually no vortices are found between these

two populations.

A connection between the initial volume-ratio and the growth of the largest

vortex is found such that vortices are likely to grow more when ρV is closer to

unity. At unity volume-ratio however the degree of variance is so high that a vor-

tex radius can grow anywhere between 4.8% and 17.7%. However, statistically, in

a turbulent flow containing an ever-increasing number of vortices with decreasing

scale (see Reinaud et al. (2003)[39]), interactions between like sized vortices are

relatively rare compared to interactions between disparate-sized vortices as found

by Dritschel & Reinaud (2002)[11].

In this chapter we have used the quasi-geostrophic approximation. This is

valid for a vanishing Rossby and Froude numbers and filters gravity-waves from

the flow. The next chapter deals with interaction between co-rotating vortices in

regimes beyond QG that allow for finite Rossby numbers. This will allow for the

spontaneous generation of inertia-gravity waves and for ageostrophic advection

to occur. The impact of these effects on the overall flow will be investigated.
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Chapter 4

Interactions between two

co-rotating non-hydrostatic

vortices

4.1 Introduction

In this chapter we investigate the interactions occurring between two initially

ellipsoidal vortices at a finite Rossby number (Ro). Using the non-hydrostatic

(NH) equations described in section 2.4 and the algorithm described in section

2.5, we perform time evolution simulations on each given initial configuration of

vortices.

In section 4.1.1 we describe the initial conditions used in this study. The

initial conditions for the PV contours are identical to those used for QG. The

algorithm used to solve the NH equations is computationally more expensive

than the QG equations, therefore we use a velocity grid of resolution 643 for these

calculations. We also re-calculate the necessary QG simulations using a velocity

grid of resolution 643, identical to that used for the NH calculations, so that
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comparisons between NH and QG may be made. Snapshots of the flow for the QG

case h1/r1 = 0.8, h2/r2 = 0.8, ρV = 1.0 and δz = 0.2 are shown at grid resolution

643 and 1283 in figure 4.1. As can be seen, there is no qualitative difference

between the flows except for very fine-scale filaments in the high resolution case

that cannot be resolved at the lower resolution. In the absence also of quantitative

differences between the different resolutions we conclude that a velocity grid of

643 is still of sufficiently high resolution to study. Dritschel & Viúdez (2003)[16]

show comparisons between 643 and 1283 grid resolutions for non-hydrostatic cases

and demonstrate that the differences between them are negligible.

Section 4.2 presents the results of these calculations, including identification

of the interaction regimes and their dependencies on the initial conditions, the

effects (if any) of the Rossby number and the generation of inertia-gravity waves

during the evolution. We present conclusions on the study in section 4.3.

4.1.1 Initial Conditions

The spatial initial conditions for this study are taken to be exactly the same

as for the corresponding cases in QG. That is for given height-to-width aspect-

ratios, volume-ratios and vertical offsets we use an identical configuration of the

ellipsoids as in QG, with the horizontal separation being also identical. We

introduce a new dimension to the parameter space, that is the Rossby number

(Ro). The computational cost of modelling the time evolution of these cases with

finite Rossby number, however, is much higher than that for QG. To reduce the

size of the parameter space, we consider only cases where the vortices have equal

height-to-width aspect-ratios, h/r = h1/r1 = h2/r2. This effectively reduces

the parameter space by one dimension and since figure 3.7 shows these cases to

exhibit a large variety of behaviours we feel this simplification is justified. We

perform calculations for three values of h/r, three values of ρV and two values of
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Figure 4.1: Comparison of QG simulations using grid resolutions of 643 and 1283

for the case h1/r1 = 0.8, h2/r2 = 0.8, ρV = 1.0 and δz = 0.2. View is 60◦ from

the vertical and covers ±1.5 from the domain centre in the horizontal. Light grey

areas show front and back walls of the box which spans the full height of the PV

distribution.
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Parameter Minimum Maximum Increment

h/r 0.4 1.2 0.4

ρV 0.2 1.0 0.4

δz 0.2 0.6 0.4

Ro -0.5 0.5 0.25∗

Table 4.1: Parameter space for simulations at finite Rossby number. h/r ≡
h1/r1 = h2/r2 is the vortex height-to-width aspect-ratio, ρV is the volume ratio

of the vortices (V2/V1), δz is the vertical offset as a fraction of the sum of the half

heights and Ro is the Rossby number. Negative Rossby number means an anti-

cyclonic case. ∗ Note that we use a QG simulation calculated on a velocity grid

resolution of 643 to represent cases where Ro = 0.0. A total of 72 non-hydrostatic

simulations are performed.

δz. We consider 5 values of Ro – two cyclonic and two anti-cyclonic and a fifth,

at Ro = 0.0, is taken as being QG which we re-calculate on a grid resolution of

643 to coincide with the grid resolution to be used for the NH calculations. The

parameter space for this investigation is set out in table 4.1.

These calculations are performed over the equivalent of 60 QG time units, the

corresponding time for the non-hydrostatic code is given by

tNH =
tQG

(f/N)|Ro| , (4.1)

where f/N is taken as 0.1, this being typical for an oceanic case. The velocity

field grid resolution is taken as 643 and the fine-to-coarse grid-ratio is taken as

4:1. The time step is taken as 0.1 this being ∆tQG/(f/N)|Ro| at |Ro| = 0.5 and

0.5∆tQG/(f/N)|Ro| at |Ro| = 0.25.
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4.1.2 Diagnosing balance

To distinguish between the balanced part of the flow and the imbalanced part

of the flow we use two different methods. The first of these is NQG (nonlinear

QG), developed by McKiver & Dritschel (2006)[31]. This method is based on a

quasi-geostrophic scaling of the non-hydrostatic equations to directly recover the

balanced part of the flow to second order Rossby number. The second of these

is OPV (optimal PV) developed by Viúdez & Dritschel (2004)[45]. The OPV

balanced field is obtained by backwards and forwards time integrations to arrive

at the desired configuration of PV. The IGW’s are removed and the PV restored

at each loop of the integration.

4.2 Results

4.2.1 Interaction regimes

As with the QG calculations in section 3.2.1, we first investigate the types of

interaction arising from the vortex evolution under the NH equations. We use

the same criteria as we did to identify the interaction regimes in the QG cases,

that is the criteria adapted from Dritschel & Waugh (1992)[17], (see §3.2.1 for

details). We show the interaction types arising from the NH calculations and the

corresponding lower resolution QG cases in figure 4.2.

It is interesting to see that, unlike for the QG cases shown in figure 3.7, the

interaction regimes for finite Rossby number cases display a dependence on the

vertical offset as well as on the volume ratio. For a small vertical offset, PM is the

dominant regime and PSO generally only occurs when there is a large difference

between the vortex volumes. For a larger vertical offset however PSO is more

prevalent and mostly PM only occurs for equal volume vortices. For non-equal
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Figure 4.2: Merger regimes over entire parameter space for non-hydrostatic simu-

lations. Plots across the horizontal correspond to ρV = 0.2, 0.6 & 1.0 starting on

the left hand side and plots in the vertical correspond to δz = 0.2 and 0.6 starting

at the bottom. Each plot has h/r on its horizontal axis between 0.2 and 1.4 and

has Ro from −0.75 to 0.75 in the vertical. × represents partial straining-out, 2

represents partial merger and 4 represents complete-merger.
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volume vortices, PM generally only occurs when both vortices are slightly prolate

i.e. h/r = 1.2.

Figure 4.2 does not indicate any strong dependence of interaction type upon

the Rossby number. One of the few exceptions to this is the case of h/r = 1.2,

ρV = 1.0 and δz = 0.6 where for Ro = 0.25 we see a PSO regime and for Ro = 0.5

we see a PM regime emerge. To gain a qualitative view of these two cases we

show the flow diagrams in figure 4.3

We see that these cases are qualitatively very similar. The major difference

between them is that the vortices in the Ro = 0.25 case do not come as close

to one another as they do for the Ro = 0.5 case so undergo PSO rather than

PM. The reason the vortices do not come as close for Ro = 0.25 as they do for

Ro = 0.5 is likely to be due to the ‘bunching’ of the vortex lines (see figure 4.6

in section 4.2.2). At Ro = 0.5 the rotation of the vortices will be stronger, that

is the density of the vortex lines within the vortex will be higher and also the

isopycnals will be pulled closer together inside the vortices. These two effects

will make the vortices more stable for the higher Rossby number, allowing the

smaller vortex to deform sufficiently to approach closer to the larger vortex.

We now investigate closely two simulations, one resulting in PSO and the

other resulting in PM. Figure 4.4 shows the case h/r = 1.2, ρV = 0.2, δz = 0.6

and Ro = −0.25 at QG times 0, 14, 40 and 60. This case displays a partial

straining-out of the smaller vortex by the larger vortex. The larger vortex causes

a filament of PV to be strained-out from the smaller vortex. This filament begins

to become detached from the smaller vortex at QG time 7. By the end of the

simulation (tQG = 60), the smaller vortex has been reduced to 81% its original

volume while the larger vortex has not changed in volume throughout the entire

evolution.

Figure 4.5 shows the case h/r = 1.2, ρV = 0.2, δz = 0.2 and Ro = −0.25 which
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Figure 4.3: Comparison of cases for h/r = 1.2, ρV = 1.0, δz = 0.6 at Rossby

numbers Ro = 0.25 and Ro = 0.5. Views are at 60◦ from the vertical covering

±1.5 from the domain centre in the horizontal. Light grey areas show front and

back walls of the box which spans the full height of the PV distribution.
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(a) (b)

(c) (d)

Figure 4.4: Figure showing a non-hydrostatic vortex interaction resulting in a

partial straining-out regime. Initial conditions are h/r = 1.2, ρV = 0.2, δz = 0.6

and Ro = −0.25. View is 60◦ from the vertical and covers ±1.5 from the domain

centre in the horizontal. Light grey areas show front and back walls of the box

which spans the full height of the PV distribution. Times shown are QG times

(a) t = 0, (b) t = 14, (c) = 40 and (d) t = 60.
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(a) (b)

(c) (d)

Figure 4.5: Figure showing a non-hydrostatic vortex interaction resulting in a

partial merger regime. Initial conditions are h/r = 1.2, ρV = 0.2, δz = 0.2 and

Ro = −0.25. View is 60◦ from the vertical and covers ±1.5 from the domain

centre in the horizontal. Light grey areas show front and back walls of the box

which spans the full height of the PV distribution. Times shown are QG times

(a) t = 0, (b) t = 14, (c) = 40 and (d) t = 60.
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results in partial merger. Qualitatively one could expect this case to be classified

as either complete straining-out or complete merger. However, as happened with

the QG case in figure 3.10, a sufficient volume of the PV exists as filaments and

small vortices at the end of the evolution to classify this as PM. Over the first

11 QG time periods, both vortices maintain a steady volume. The larger vortex

remains approximately ellipsoidal while the smaller vortex is strained-out. At

QG time 12 the smaller vortex begins to disintegrate into smaller structures.

The larger vortex begins to absorb these structures at QG time 24 and over over

the next two time units grows to 115% of its original volume. Then at QG time

26 the large vortex ejects a smaller structure and returns again to its original

volume with the sum of the volumes of the two main vortices now being 95% of

the total volume at the beginning of the simulation, the rest of the PV existing

now in filaments and other small scale vortices. By the end of the simulation

(tQG = 60), the main vortex has reduced to 94% of its original size due to the

ejection of filaments. Why then is this interaction not classified as complete

straining-out? The reason is that, although apart from very small scale material

there is only one main vortex which has not dramatically altered its volume,

there are structures in the debris that still have sufficient volume to be classed as

the second main vortex under the tolerance we specify. Again we see, as before

in figure 3.10 that although the technique used to determine merger regimes is

quantitatively accurate, there are discrepancies between the regimes calculated

and how one may qualitatively classify interactions.

4.2.2 Effects of the Rossby number on interaction beha-

viour

In this section we investigate the effects that different Rossby numbers have

in determining the behaviour of the flow evolution. In particular we wish to see
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Cyclonic Anti−cyclonic

Figure 4.6: Vortex lines in and around a spherical cyclonic (Ro = +0.5) vortex

and a spherical anti-cyclonic (Ro = −0.5) vortex. Figure shown in x − z plane.

Used here courtesy of David Dritschel.

what effects having opposite signed Rossby numbers, that is cyclonic and anti-

cyclonic regimes, have. Figure 4.6 shows the behaviour of the vortex lines in

and around cyclonic and anti-cyclonic vortices. In cyclonic vortices the vortex

lines become ‘bunched’ tighter together, making them more robust to rotational

instabilities, whereas they are spread apart in an anti-cyclonic vortex. This effect

similarly occurs horizontally to the isopycnals in and around the vortices, making

cyclonic vortices more robust to baroclinic instabilities.

Figure 4.7 shows the comparison between Ro = 0.5, Ro = −0.5 and a QG

case for h/r = 1.2, ρV = 1.0 and δz = 0.2 for five different times. We see that

the cyclonic case (Ro = 0.5) does not begin ejecting filaments as early as the

anti-cyclonic case or indeed the QG case. In the case shown here in figure 4.7

more PV is seen to be ejected as filaments during the course of the evolution

than was seen for the QG case. In the QG case, the main vortex at the end of

the evolution was 81% of its initial volume whereas for Ro = 0.5 the main vortex
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t=40

t=14

t=2

t=5

t=9

Ro=−0.5 Ro=0.5QG

Figure 4.7: Comparison of QG, cyclonic and anti-cyclonic cases for h/r = 1.2,

ρV = 1.0, δz = 0.2 . Non-hydrostatic cases are at Rossby numbers Ro = 0.5 and

Ro = −0.5. Views are at 60◦ from the vertical covering ±2.0 from the domain

centre in the horizontal. Light grey areas show front and back walls of the box

which spans the full height of the PV distribution.88
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Figure 4.8: Evolution of the size of the largest vortex averaged over h/r, ρV and

δz for Ro = −0.5 (+), Ro = −0.25 (×), Ro = 0.25 (∗) and Ro = 0.5 (2).

at the same time is 75% of its initial volume and for Ro = −0.5 the main vortex

at this final time is 71% of its initial volume.

Figure 4.8 shows the evolution of the largest vortex against time for each

Rossby numbers averaged over all h/r, ρV and δz. We see that in each case, the

peak radius occurs around tQG = 9, being around 2 vortex rotations earlier than

was seen in QG. Again we see the size of the largest vortex decrease with time

after this initial peak indicating the re-separation of vortices and the ejection of

filaments. We note that the average size of the largest vortex in cyclonic cases

does not decrease as rapidly as anti-cyclonic cases. This again can be attributed

to the behaviour of the vortex lines and isopycnals described above, see figure

4.6.

Figures 4.9 and 4.10 show comparisons between flows at each chosen Rossby

number (and QG) at various time intervals during the first third of the total
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t=2 t=5

Ro=−0.25

Ro=−0.5

QG

Ro=0.25

Ro=0.5

t=1 t=10 t=20

Figure 4.9: Flow diagrams of the NH cases h/r = 1.2, ρV = 1.0, δz = 0.6 at

Rossby numbers Ro = 0.5, Ro = 0.25, QG, Ro = −0.25 and Ro = −0.5, at

times tQG = 1, 2, 5, 10 & 20. Span of the horizontal region shown is ±1.5 from

the domain centre. Views are 60◦ from the vertical. Light grey areas show front

and back walls of the box which spans the full height of the PV distribution.
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t=1 t=2 t=5 t=10 t=20

Figure 4.10: Flow diagrams of the NH cases h/r = 0.4, ρV = 0.2, δz = 0.2 at

Rossby numbers Ro = 0.5, Ro = 0.25, QG, Ro = −0.25 and Ro = −0.5, at

times tQG = 1, 2, 5, 10 & 20. Span of the horizontal region shown is ±1.5 from

the domain centre. Views are 60◦ from the vertical. Light grey areas show front

and back walls of the box which spans the full height of the PV distribution.
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time evolution. It is noticeable that the interactions in both of these cases are

remarkably similar. The most noticeable difference between the Rossby numbers

shown in these figures can be seen at tQG = 20 where anti-cyclonic, that is

negative Rossby number, cases show a marginally larger amount of filamentary

debris. This is again likely to be due to the weakened rotation and stratification

described above (see figure 4.6).

4.2.3 Imbalance

We now turn our attention to the imbalanced part of the flow i.e. that part of

the flow that is characterised by wave motions. In figure 4.11 we plot the r.m.s.

percentage of the vertical velocity that is imbalanced i.e.

%wimb = 100
||wimb||rms

||w||rms

, (4.2)

averaged over all h/r, ρV and δz for each Rossby number as calculated by NQG.

We see a generally similar trend to the amount of imbalance for all Rossby

numbers except in the strongly anti-cyclonic caseRo = −0.5 where approximately

10% more of the vertical velocity is given over to the imbalanced part of the flow.

With the rotation and stratification weakened within the strongly anti-cyclonic

vortices (see figure 4.6) it is reasonable to expect a greater degree of imbalance

to be generated here. It is also interesting to note that all Rossby numbers

have the trend that the percentage of imbalanced vertical velocity increases over

approximately the first 15 QG times steps and is then seen to more or less level

out with variations in the amount of imbalance being around ±2.5%. The first

14–15 QG time units, as we have seen previously, correspond to the times when

the initial vortices are usually merged together in the first part of the interaction

process, it is not surprising that this is when a large amount of the imbalance is

generated.
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Figure 4.11: R.m.s. percentage of vertical velocity that is imbalanced (%wimb)

averaged over all h/r, ρV and δz for Ro = −0.5 (+), Ro = −0.25 (×), Ro = 0.25

(∗) and Ro = 0.5 (2) plotted against time (t). Time given in QG time units
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Ro=−0.25 Ro=−0.5

t=14

t=40

t=60

Figure 4.12: Flow diagrams of the NH cases h/r = 0.4, ρV = 0.2, δz = 0.6 at

Rossby numbers Ro = −0.25 and Ro = −0.5 at times tQG = 14, 40 & 60. Span

of the horizontal region shown is ±1.5 from the domain centre. Views are 60◦

from the vertical. Light grey areas show front and back walls of the box which

spans the full height of the PV distribution.
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Figure 4.13: Horizontal slices showing contours of wimb for cases h/r = 0.4,

ρV = 0.2, δz = 0.6 at Rossby numbers Ro = −0.25 and Ro = −0.5 at times

tQG = 14, 40 & 60. Contour intervals are ∆ = 2 × 10−6 at Ro = −0.25 and

∆ = 10−5 at Ro = −0.5. Slices are in the x − y plane at constant z = −π/32

and span the full horizontal domain, i.e. ±π from the domain centre. Solid lines

show positive values and broken lines show negative values. Dashed bold contours

show the PV contours for this layer.
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t=60

Ro=0.25 Ro=0.5

Figure 4.14: Flow diagrams of the NH cases h/r = 1.2, ρV = 0.2, δz = 0.6 at

Rossby numbers Ro = 0.25 and Ro = 0.5 at times tQG = 14, 35 & 60. Span of

the horizontal region shown is ±1.5 from the domain centre. Views are 60◦ from

the vertical. Light grey areas show front and back walls of the box which spans

the full height of the PV distribution.
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Figure 4.15: Horizontal slices showing contours of wimb for cases h/r = 1.2,

ρV = 0.2, δz = 0.6 at Rossby numbers Ro = 0.25 and Ro = 0.5 at times

tQG = 14, 35 & 60. Contour intervals are ∆ = 2 × 10−6 at Ro = 0.25 and

∆ = 10−5 at Ro = 0.5. Slices are in the x − y plane at constant z = −π/16

and span the full horizontal domain, i.e. ±π from the domain centre. Solid lines

show positive values and broken lines show negative values. Bold contours show

the PV contours for this layer.
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We now present examples of the simulations to compare the nature of the

full flow to the imbalanced flow. In figure 4.12 we plot an orthographic view of

the full flow of the cases h/r = 0.4, ρV = 0.2, δz = 0.6 for Rossby numbers

Ro = −0.25,−0.5. The flow is plotted at QG times tQG = 14, 40 & 60. For

comparison, we plot contours of the imbalanced part of the vertical velocity, wimb

in the x−y plane at constant z = 0 for the same cases in figure 4.13. We similarly

show the case h/r = 1.2, ρV = 0.2, δz = 0.6 for Rossby numbers Ro = 0.25, 0.5

which also evolves in a PSO regime, in figures 4.14 and 4.15 at times tQG = 14, 35

& 60.

We see that the vortices in each case undergo a standard PSO type interaction

for both Rossby numbers. Part of the smaller vortex is strained-out by the larger

vortex but does not merge with it, thus the smaller vortex decreases in volume

whilst the larger vortex maintains a constant volume. In the imbalanced part

of the flow plotted in figures 4.13 and 4.14, we see definite wave-like structures

propagating from both vortices. In this plane these waves generally appear to

propagate in a direction parallel to the horizontal radial axis of the vortex. In the

case of the smaller, orbiting vortex, these waves are most prominent in a direction

parallel to the orbital direction of the vortex. We see that the amplitude of the

waves is higher for larger values of |Ro|.

In figures 4.16 and 4.18 we show a three-dimensional view of the full flow for

two PM interactions with the corresponding contours of wimb in the x− y plane

at constant z = 0 in figures 4.17 and 4.18. Figures 4.16 and 4.17 are for the cases

h/r = 0.8, ρV = 0.6, δz = 0.2 and Ro = 0.25, 0.5 and figures 4.18 and 4.19 are

for the cases h/r = 0.8, ρV = 1.0, δz = 0.2 and Ro = −0.25,−0.5.

In figures 4.17 and 4.19 we see a large amount of imbalance occurring in the

regions where the smaller vortex is being destroyed. Again we see here that the

imbalanced part of the vertical velocity is larger for higher values of |Ro|. In these

cases, it appears that imbalance is more prevalent at earlier times than later in
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Figure 4.16: Flow diagrams of the NH cases h/r = 0.8, ρV = 0.6, δz = 0.2 at

Rossby numbers Ro = 0.25 and Ro = 0.5 at times tQG = 14, 40 & 60. Span of

the horizontal region shown is ±1.5 from the domain centre. Views are 60◦ from

the vertical. Light grey areas show front and back walls of the box which spans

the full height of the PV distribution.
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Figure 4.17: Horizontal slices showing contours of wimb for cases h/r = 0.8,

ρV = 0.6, δz = 0.2 at Rossby numbers Ro = 0.25 and Ro = 0.5 at times

tQG = 14, 40 & 60. Contour intervals are ∆ = 2 × 10−6 at Ro = 0.25 and

∆ = 10−5 at Ro = 0.5. Slices are in the x− y plane at constant z = 0 and span

the full horizontal domain, i.e. ±π from the domain centre. Solid lines show

positive values and broken lines show negative values. Bold contours show the

PV contours for this layer.
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Figure 4.18: Flow diagrams of the NH cases h/r = 0.8, ρV = 1.0, δz = 0.2 at

Rossby numbers Ro = 0.25 and Ro = 0.5 at times tQG = 14, 40 & 60. Span of

the horizontal region shown is ±1.5 from the domain centre. Views are 60◦ from

the vertical. Light grey areas show front and back walls of the box which spans

the full height of the PV distribution.
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Figure 4.19: Horizontal slices showing contours of wimb for cases h/r = 0.8,

ρV = 1.0, δz = 0.2 at Rossby numbers Ro = −0.25 and Ro = −0.5 at times

tQG = 14, 40 & 60. Contour intervals are ∆ = 5 × 10−6 at Ro = −0.25 and

∆ = 2 × 10−5 at Ro = −0.5. Slices are in the x − y plane at constant z = 0

and span the full horizontal domain, i.e. ±π from the domain centre. Solid lines

show positive values and broken lines show negative values. Dashed bold contours

show the PV contours for this layer.
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the evolution.

The contour plots of wimb above have only considered a horizontal slice of the

domain. In figure 4.20 we present contours of wimb in the x−z plane for constant

y = 0 for the cases h/r = 0.8, ρV = 0.6, δz = 0.2 and Ro = 0.25, 0.5 which maybe

compared with the view of the full flow in figure 4.16 and the contours of wimb in

the x− y plane in figure 4.17. Again we see a larger amount of imbalance for the

higher Rossby number case. We see that the angle of the contours is around 30◦

to 45◦ from the vertical here. Viúdez & Dritschel (2006)[46] showed that IGW’s

are consistent with the theory of plane waves which in the x−z plane are complex

solutions of the form

g̃ = g̃0e
i(kx+mz−ωpt), (4.3)

where k and m are horizontal and vertical wavenumbers. This satisfies the rela-

tions

ũ = iωpmk
−1D̃, ṽ = fmk−1D̃, w̃ = −iωpD̃, (4.4)

where D̃ is the vertical isopycnal displacement. The frequency ωp satisfies

ω2
p =

f2m2 +N 2k2

k2 +m2
. (4.5)

This predicts that |ũ0|/|w̃0| = m/k. When m/k ' N/f = 10, the angle of the

IGW’s will be 45◦. The ratios seen for the example in figure 4.20 justify the range

of angles seen in the waves.

We now turn our attention to one single configuration of vortices being h/r =

1.2, ρV = 1.0, δz = 0.2 and Ro = 0.5.. Firstly, to ensure that inertia-gravity

waves are not being generated spuriously as a consequence of a low resolution
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Figure 4.20: Vertical slices showing contours of wimb for cases h/r = 0.8, ρV = 0.6,

δz = 0.2 at Rossby numbers Ro = 0.25 and Ro = 0.5 at times tQG = 14, 40 & 60.

Contour intervals are ∆ = 2× 10−6 at Ro = 0.25 and ∆ = 5× 10−6 at Ro = 0.5.

Slices are in the x− z plane at constant y = 0 and span the full vertical domain,

i.e. ±π from the domain centre. Solid lines show positive values and broken lines

show negative values.
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Figure 4.21: Comparison of the r.m.s. percentage of imbalanced vertical velocity

against QG time for the case h/r = 1.2, ρV = 1.0, δz = 0.2 and Ro = 0.5 for grid

resolutions of 1283 (solid line) and 643 (broken line).

we perform a test calculation using a 1283 grid (i.e. doubling the number of grid

points in each direction).

Figure 4.21 shows the r.m.s. %wimb for both the standard resolution and

the high resolution cases. We see that whilst the local maxima and minima,

corresponding to the generation and propagation of IGW’s, are not synchronised

and tend to be slightly larger for the standard resolution, the order of magnitude

of imbalance is similar thus we conclude that the imbalance we see at lower

resolutions here is not being generated spuriously during the simulation.

In figure 4.22 we compare contours of imbalanced vertical velocity obtained

from NQG at a horizontal slice through the centre of the domain, z = 0, for grid

resolutions of 643 and 1283 at time tQG = 29. These slices are noticeably different

in that very definite wave-like motions are apparent in the 1283 case i.e. in the
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643 1283

Figure 4.22: Contours of imbalanced vertical velocity obtained using NQG in the

x − y plane at z = 0 for grid resolutions of 643 and 1283. Initial conditions are

h/r = 1.2, ρV = 1.0, δz = 0.2 and Ro = 0.5. Contour interval is ∆ = 10−5, solid

contours show positive values and broken contours show negative values. Figures

generated at QG time tQG = 29.
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bottom right of the figure. It should be noted by referring back to figure 4.21

that these figures were generated at a local maximum in the r.m.s. %wimb for the

1283 which does not correspond with a maximum for the 643 case.

In figure 4.23 we show a comparison of using NQG and OPV to obtain the

imbalanced vertical velocity at two different times tQG = 29 and tQG = 57. As

can be seen from the figure, a lot less of the field is attributed to imbalance using

OPV than NQG. We do however see that OPV still resolves the apparent wave

structures seen bottom right at tQG = 29 and centre left at tQG = 57. It seems

then that for a qualitative view of the imbalanced field, NQG is a sufficiently

accurate tool.

4.3 Conclusions

In this chapter we have investigated the interactions of two co-rotating non-

hydrostatic vortices of uniform and equal potential vorticity over a parameter

space of the vortices’ height-to-width aspect-ratio, taken to be equal for both

vortices, the volume-ratio of the vortices, their vertical offset and the Rossby

number. The vortices are initially situated at the margin of stability as described

in section 3.1.2.

Over the parameter space investigated we found that the type of interaction

occurring during the vortex evolution is dependent on both the volume-ratio

and the vertical offset. This is in contrast to the interaction regimes occurring

between two co-rotating QG vortices which appeared only to depend on the

volume ratio – see section 3.2.1. In this parameter space, non-hydrostatic co-

rotating vortices mostly underwent partial-merger at small vertical offsets with

partial straining-out mostly only occurring when the vortices were of disparate

sizes. At larger vertical offsets the interaction types were generally seen to be

PSO with PM generally only occurring for equal volume vortices. Partial mergers
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NQG

OPV

Figure 4.23: Comparison of imbalanced vertical velocity obtained from NQG and

OPV at QG times t = 29 and t = 57 for the case h/r = 1.2, ρV = 1.0, δz = 0.2,

Ro = 0.5 with grid resolution 1283. Contour intervals are ∆ = 10−5 at t = 29

and ∆ = 5 × 10−6 at t = 57. All figures are shown in the x − y plane taken at

z = 0. Solid contours show positive values and broken contours show negative

values.
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are frequently seen in this parameter space, not as the merger then re-separation

of the two initial vortex but as the destruction of the smaller vortex by the larger

vortex. This type of interaction is still classed as PM under the test adapted

from Dritschel & Waugh (1992)[17] due to the large volume of small vortices and

filaments generated during the destruction of the smaller vortex. No significant

dependence of the interaction regime on the Rossby number was seen.

The size of the largest vortex averaged over all non-hydrostatic cases for each

Rossby number did not exhibit the same growth as seen for QG interactions. This

does not necessarily mean that the non-hydrostatic cases generate more debris,

more that the amount of PV gained by the largest vortex from the smaller vortex

is less, particularly since a higher percentage of cases in this parameter space

result in PSO.

By studying the evolution of the average r.m.s. imbalanced part of the vertical

velocity over time we see that the amount of imbalance increases over the first

15 QG time units. This period is interestingly similar to the period that the

vortices undergo the first phase of their interaction as described in section 3.3.

After this period the amount of imbalance remains roughly steady with variations

of around ±2.5%. We also see that around 10% more imbalanced vertical velocity

is generated at Ro = −0.5 than any other Rossby number used in this study and

also that more imbalanced vertical velocity is seen for Ro = −0.25 than for

Ro = 0.25. Furthermore, it is shown that more imbalance is generated for high

absolute values of Ro.

We consider horizontal slices of the domain and view contours of the imbal-

anced part of the vertical velocity wimb. In cases of PSO, structures resembling

wave-trains are seen to be generated by both vortices during the interaction.

These wave-trains are generated in a radial direction to the vortex, and in the

case of the smaller, orbiting vortex in a PSO regime, are most prominent in the

direction of orbit. In PM regimes, where the smaller vortex is destroyed by the
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larger vortex to generate a large volume of debris, strong IGW generation is seen

in the region that the smaller vortex is being destroyed in.

Comparing identical initial conditions simulated at two different velocity grid

resolutions produces qualitative differences in the imbalanced field. However, no

order of difference was found in the r.m.s. imbalanced vertical velocity when

comparing these simulations. This serves to satisfy us that the imbalance seen is

not an unphysical consequence of too low a resolution.

OPV diagnosis was performed at two separate times on one simulation for

comparison with NQG. It was seen that whilst OPV provided better separation

of the balanced and imbalanced part of the flows, no great qualitative difference

was apparent. Since OPV is computationally much more expensive than NQG,

the latter is considered as being sufficiently accurate for the current study.
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Chapter 5

Conclusions

5.1 Conclusions

In this thesis we have investigated the interactions between two co-rotating

vortices of varying volume-ratios, height-to-width aspect-ratios and vertical off-

sets residing separated in the horizontal so that they reside at the margin of

stability under the QG approximation. This margin of stability was determined

using a method based on the Ellipsoidal Model (see §3.1.1 and Dritschel, Reinaud

& McKiver (2004)[13]).

Firstly in chapter 3 we studied the time evolution of these vortices over a four-

dimensional parameter space consisting of 625 cases under the quasi-geostrophic

model. We identified three different types of strong interaction occurring between

the vortices, these being partial straining-out (PSO), partial merger (PM) and

complete merger (CM) as defined in Dritschel & Waugh (1992)[17]. We found

that when vortices are more unequal in size, that is they have a low volume-ratio

ρV = 0.2, the predominant interaction was where the smaller vortex loses some of

its volume but the larger vortex did not increase in volume. We conjectured that

this occurred due to the smaller vortex being incapable of deforming sufficiently
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to get close enough to the larger vortex to allow merger to occur. For cases where

0.4 ≤ ρV ≤ 1.0, the main interaction regime emerging was partial-merger where

some of the volume of the smaller vortex was transfered to the large one. We found

that the classical view of vortex merger, that is complete merger, was extremely

rare over this parameter space. When complete merger did occur it did so mainly

when the vortices were of equal volume and equal height-to-width aspect-ratio.

Interestingly we did not find any particular dependence of the interaction type

on the vertical offset of the vortices.

Over the parameter space considered in this study, vortex interactions gen-

erally underwent two stages in the evolution. The first interaction tended to be

merger, this happened extremely quickly usually in less than one characteristic

vortex rotation. After around 5 characteristic rotations (t = 15) the pair would

either separate in PM cases or remain merged in CM cases but would regardless

begin ejecting a large quantity of small scale structures. Despite the large number

of small scale structures produced, energy was seen to exhibit an ‘inverse-cascade’

that is the transfer of self-energy to larger physical scales over time.

We find that vortices in an intermediate range of scales, here between r ≈ 0.25

and r ≈ 0.40 were unlikely to survive the interaction. By considering the trend

in strain from a simple point-vortex model and the absence of significant growth

of the larger vortex at the times when this gap became apparent, we concluded

that vortices in this range were sheared out into filaments by the larger vortices.

We were then left with two distinct vortex populations – those with r < 0.25

and those with 0.4 < r < 1.0. Almost no vortices were found between these two

populations.

The largest vortex in an interaction tended to grow by a greater amount the

closer the volume-ratio of the initial vortex pair was to unity. At unity ρV how-

ever there was a high degree of variance in the growth with the radius growing

any where between 4.8% and 17.7%. It should be noted that this variance was
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not dependent on the vertical offset. In a turbulent flow containing an increas-

ing number of vortices of decreasing scale (see Reinaud, Dritschel & Koudella

(2003)[39]) statistically interactions between similar sized vortices are rare com-

pared to the interactions between disparate sized vortices, the latter of these

leading to only small growth of the largest vortex.

In chapter 4 we consider the interactions arising from a subset of the parameter

space used in chapter 3 using non-hydrostatic dynamics. We considered vortices

of three separate equal height-to-width aspect-ratios, three volume-ratios and

two vertical offsets for different Rossby numbers. The Rossby numbers were

chosen such that we had two cyclonic and two anti-cyclonic, i.e. Ro = ±0.25 and

Ro = ±0.5.

As previously for QG, we investigated the types of interactions arising from

the vortex evolutions. We found no cases of CM at all over this parameter space.

Furthermore, we witnessed a dependence of the interaction regime on the vertical

offset as well as the volume-ratio. Dependence on vertical offset was seen as being

negligible in the QG cases. For larger vertical offsets the interaction regimes were

seen to be more frequently PSO, with PM only occurring when the vortices were of

equal volume. At lower vertical offsets PM was the more predominant interaction

regime and PSO occurred mainly when the difference in the volumes between the

vortices was very high, i.e. a low volume-ratio. No significant dependence of the

interaction regime on the Rossby number was witnessed.

Many of the partial mergers seen in this parameter space showed CSO type

behaviour. The smaller vortex in these cases was destroyed by the larger vor-

tex. However, since this vortex was torn into filaments and smaller vortices, the

interaction was classed quantitatively as PM due to the size of the structures

remaining from the destroyed vortex.

The evolution of the average percentage of the vertical part of the imbal-
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anced velocity field, %wimb, was seen to grow over the first 15 QG time units.

As has been seen previously this corresponded to the initial interaction phase of

the vortices. After tQG = 15 the amount of %wimb was seen to plateau. Neg-

ative Rossby numbers, showing an anti-cyclonic situation, were seen to generate

more imbalance than their positive, cyclonic counterparts. It was also seen that

more imbalance was generated at higher Rossby numbers than for lower Rossby

numbers of the same sign.

Structures in the imbalanced part of the flow resembling wave-trains were seen

to be generated during the interactions. In PSO interactions these wave-trains

were seen to be aligned in the horizontal with the radial axis of the vortex and

for the smaller vortex were particularly prevalent in the direction of the vortex

orbit.

We compared NQG, the method we used to separated the balanced flow from

the full flow, to another method, OPV. We concluded that while OPV is a more

accurate method of separating the flow fields, its computational cost is such that

using it for the study conducted in chapter 4 is infeasible.

5.2 Future Developments

This work has covered in detail a very wide parameter space. This parameter

space has been chosen to represent a good cross-section of the types of struc-

tures commonly seen in decaying turbulent flows (see Reinaud et al. (2003)[39]).

While this is the case, we have naturally had to limit our parameter space to

reasonable bounds. Work is currently in progress concerning both the interac-

tions between un-equal strength co-rotating QG vortices, Özugurlu, Reinaud &

Dritschel (2007)[34], and the interactions between counter-rotating QG vortices,

Reinaud & Dritschel (2007)[38]. Expansions on these topics would also include

investigations in the NH model.
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Further developments would also include the comparison of the results ob-

tained for QG vortices in chapter 3 with a larger scale flow populated by many

vortex structures chosen randomly from the parameter space given here. A sim-

pler development could also include the study of QG vortex interactions in the

presence of a background shear flow to represent the influence of distant vor-

tices as done for a single vortex in McKiver (2003)[29] and McKiver & Dritschel

(2003)[30].

The non-hydrostatic cases studied have only covered the interactions between

equal height-to-width aspect-ratio vortices at two different Rossby numbers for

cyclonic and anti-cyclonic situations. This study is open for expansion into in-

teractions between vortices of different aspect-ratios and also at more extreme

Rossby numbers.
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