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ABSTRACT

Context. Relaxation theory offers a straightforward method for estimating the energy that is released when a magnetic field becomes
unstable, as a result of continual convective driving. Thus, an upper limit to the heating caused by ensembles of nanoflaring coronal
loops can be calculated and checked against the level of heating required to maintain observed coronal temperatures (T & 106 K).
Aims. We present new results obtained from nonlinear magnetohydrodynamic (MHD) simulations of idealised coronal loops. All of
the initial loop configurations discussed are known to be linearly kink unstable. The purpose of this work is to determine whether
or not the simulation results agree with Taylor relaxation, which will require a modified version of relaxation theory applicable to
unbounded field configurations. In addition, we show for two cases how the relaxation process unfolds.
Methods. A three-dimensional (3D) MHD Lagrangian-remap code is used to simulate the evolution of a line-tied cylindrical coronal
loop model. This model comprises three concentric layers surrounded by a potential envelope; hence, being twisted locally, each loop
configuration is distinguished by a piecewise-constant current profile, featuring three parameters. Initially, all configurations carry
zero-net-current fields and are in ideally unstable equilibrium. The simulation results are compared with the predictions of helicity-
conserving relaxation theory.
Results. For all simulations, the change in helicity is no more than 2% of the initial value; also, the numerical helicities match
the analytically-determined values. Magnetic energy dissipation predominantly occurs via shock heating associated with magnetic
reconnection in distributed current sheets. The energy release and final field profiles produced by the numerical simulations are in
agreement with the predictions given by a new model of partial relaxation theory: the relaxed field is close to a linear force free state;
however, the extent of the relaxation region is limited, while the loop undergoes some radial expansion.
Conclusions. The results presented here support the use of partial relaxation theory, specifically, when calculating the heating-event
distributions produced by ensembles of kink-unstable loops. The energy release increases with relaxation radius; but, once the loop
has expanded by more than 50%, further expansion yields little more energy. We conclude that the relaxation methodology may be
used for coronal heating studies.
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1. Introduction

The energy required to heat the solar corona is thought to orig-
inate from the magnetic fields that permeate the Sun’s atmo-
sphere. The geometry of these fields is revealed by coronal
loops, where the emitting plasma is constrained to follow the
magnetic field: the plasma beta is extremely low (β≈ 0.01).
Coronal loops are closed structures that emerge from the pho-
tosphere at one location and re-enter the solar surface at another.
The convective motions at these photospheric boundaries (or
footpoints) are thought to reconfigure coronal fields and thereby
cause free magnetic energy to accumulate, making the fields
more susceptible to instability. Essentially, the kinetic energy of
the convection zone is transported, via a Poynting flux, through
the photosphere and stored within the coronal loop. In the case of
a single loop, currents are created by those convective motions
that cause the footpoints to be twisted. The approximate time
scale for the twisting motions is long compared to the Alfvén
time, and so the coronal loop (not necessarily illuminated) tran-
sitions through a series of force-free equilibria, which can be
expressed as ∇ × B =α(r)B; where r is a position vector, and
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α= (µ0 j · B)/|B|2 is related to the parallel electric current density
(i.e., α is a measure of the twist).

Energy release might be triggered when a loop-like mag-
netic field, driven by continual convective motions, reaches the
threshold for kink instability (Hood 1992; Browning & Van der
Linden 2003, Haynes & Arber 2007; Srivastava et al. 2010).
Coronal magnetic fields cover many thousands of kilometers
(L ≈ 50 Mm) and exist within a highly conductive environment:
therefore, in the absence of instability, magnetic fields diffuse
slowly (td ≈ 103 yr). Nevertheless, through an ideal kink instabil-
ity, a coronal loop may be deformed such that magnetic flux sur-
faces are brought together. As the deformation continues, areas
of high current are produced, allowing magnetic reconnection
to take place. Hence, energy is released from the magnetic field
during the nonlinear phase of an ideal kink instability, as shown
by many three-dimensional (3D) magnetohydrodynamic (MHD)
models (Baty & Heyvaerts 1996; Velli et al. 1997; Arber et al.
1999; Baty 2000; Browning et al. 2008; Hood et al. 2009).

The coronal heating problem is most pronounced within ac-
tive regions, where the heating requirement is approximately
107 erg cm−2 s−1, significantly higher than that necessary for the
quiet Sun (Withbroe & Noyes 1977; Aschwanden & Acton
2001). These regions are often observed as dense thickets of
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transient coronal loops, the composition of which changes over
the course of hours to days. Sudden reconfigurations are coinci-
dent with large-scale solar flares (∼ 1034 erg). The signal strength
of such phenomena means these events are more readily ob-
served — detailed investigations have revealed strong evidence
for magnetic reconnection (Fletcher 2009; Qiu 2009). Miniscule
(nano)flares, far weaker than ones commonly observed, could
maintain coronal temperatures if these less dramatic events oc-
cur with sufficient frequency (Hudson 1991). This type of flaring
might be the sort initiated by the kink instability; however, the
amount of energy released (i.e., the difference between the en-
ergy at instability onset and that of the relaxed field) depends
on how much the magnetic field has altered before it relaxes.
Bareford et al. (2010, 2011) identified the threshold for linear
kink instability with respect to an idealised coronal loop model
(both with and without net current). This work determined the
subset of field configurations accessible via convective driving
that are linearly kink unstable. One approach to calculating the
energy release, is to represent each of these configurations within
a nonlinear MHD code, allow the instability to take place and
follow the reconnection dynamics until a relaxed state emerges.
However, it is simply not feasible to run such a computationally-
intensive process for more than a few examples. Hence, Bareford
et al. (2010, 2011), used relaxation theory to identify the relaxed
states for all of the threshold (i.e., marginally unstable) configu-
rations.

An unstable field obeys relaxation theory if it relaxes to-
wards the lowest energy state that conserves total magnetic ax-
ial flux and global magnetic helicity (Taylor 1974, 1986). This
minimum energy state is a linear force-free field; i.e., α(r) is
invariant and ∇ × B =αB. The helicity (K) indicates how in-
tertwined a magnetic field is with itself (Berger 1999). Coronal
loops have a non-zero normal flux at the footpoints; hence, the
gauge-invariance of relative helicity (Berger & Field 1984; Finn
& Antonsen 1985) makes it the more useful property:

K =

∫
V

(A + A′) · (B − B ′) dV, (1)

where A is the magnetic potential, B′ is the potential field with
the same boundary conditions and A′ is the corresponding vec-
tor potential. Helicity-conserving relaxation has been seen in
many laboratory experiments (Heidbrink & Dang 2000; Taylor
1986). It must be noted that helicity is subject to global resis-
tive diffusion. Nevertheless, if localised dissipation occurs on
small spatial scales (i.e., across shock fronts or within thin cur-
rent sheets), the reduction in helicity will be negligible compared
to the decrease in magnetic energy (Browning 1988, Browning
et al. 2008). The original intention of relaxation theory was to
explain laboratory plasma phenomena; but latterly, it has been
frequently applied to the solar corona (Heyvaerts & Priest 1984;
Browning et al. 1986; Vekstein et al. 1993; Zhang & Low 2003;
Priest et al. 2005).

The relative ease with which relaxation theory can be ap-
plied meant that Bareford et al. (2010, 2011) were able to gener-
ate heating-event distributions from ensembles of idealised coro-
nal loops, representing, albeit crudely, the population of coro-
nal loops that exist within an active region. Each energy release
is determined by where a loop crosses the instability threshold;
this location is the outcome of a defined stochastic process. The
distributions lead to an estimate for the heating rate that is just
sufficient for coronal heating. However, the assumptions of this
work regarding instability and relaxation theory have yet to be
tested by a nonlinear 3D MHD code. The purpose of this paper
is to elucidate further (Browning et al. 2008; Hood et al. 2009)

the relaxation process and to understand how it can be applied to
coronal loops that lack a conducting wall. We simulate a set of
zero-net-current coronal loops that sample the linear instability
threshold calculated by Bareford et al. (2011). This is a larger set
than the one investigated by Hood et al. (2009), and futhermore,
the loops represented here feature a current-neutralisation layer
that maintains zero net current even if the currents inside the
loop are predominantly single signed. (Loops that carry zero net
current are preferred since the convective motions that twist the
loop and thereby create azimuthal field are spatially localised;
the field outside the loop is unaffected by motions within the
loop cross-section and therefore remains purely axial.)

A long-standing problem has been how to apply relaxation
theory in astrophysical contexts without the presence of con-
ducting walls: simplistically, the relaxation should extend out to
infinity and lead always to potential fields. Browning (1988) and
Dixon et al. (1989) showed that relaxation theory could apply to
volumes with free boundaries, but did not give a prediction for
the spatial extent of the relaxed state. We find that a modification
to Taylor relaxation theory is required before it can be used to es-
timate the energy released by a kink-unstable loop. In contrast to
previous work, we calculate the helicity directly at specific times
during each simulation (Browning et al. 2008 integrated the time
differential of the helicity in order to show the change in δK);
thus, we are able to verify the extent of helicity conservation.
We also examine the performance of the MHD code with regard
to energy conservation. Any numerical dissipation will have im-
plications for the modelling of plasma processes associated with
heating, such as radiation. However, the plasma-β is sufficiently
low that any artificial resistivity should not influence the energy
released by an unstable magnetic field, nor should it affect the
evolution of a relaxing field.

The paper is structured in the following manner. Section 2
describes the numerical code used for the nonlinear MHD simu-
lations, along with the loop model and the equations used to cal-
culate the magnetic field. The corresponding instability thresh-
old for the linear kink mode is introduced, as are the positions
of the simulated loop configurations. Section 3 presents the re-
sults: specifically, how the different forms of energy vary over
the course of the simulation, when the loop goes unstable, and
how these results are affected by changes in the code parameters,
such as spatial resolution and background resistivity. Following,
the evolution of the loop is presented as regards magnetic field
and current magnitude. Section 4 discusses how well the results
fit a modified Taylor relaxation theory. Finally, in the last sec-
tion, the results are summarised and our conclusions are given.

2. Numerical code

The nonlinear simulations are conducted using a 3D MHD
Lagrangian Remap Cartesian code, called LARE3D (Arber et al.
2001). It is written in Fortran 90 and uses the Message Passing
Interface (MPI) to achieve parallelisation. The Lagrangian step
uses a second-order accurate predictor-corrector step that also
incorporates artificial viscosity, ensuring shocks are captured ac-
curately. Van Leer (1997) gradient limiters are used at the remap
step in order to preserve monotonicity. The divergence-free con-
dition (∇ ·B = 0) is maintained to machine precision by Evans &
Hawley (1988) constrained transport.
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LARE3D solves the resistive MHD equations given by

∂ρ

∂t
= −∇ · ( ρv ) , (2)

∂

∂t
(
ρv

)
= −∇ · ( ρvv ) +

1
µ0

(
∇ × B

)
× B − ∇P + ∇σ , (3)

∂B
∂t

= ∇ ×
(

v × B
)
− ∇ ×

(
η
∇ × B
µ0

)
, (4)

∂

∂t
(
ρε

)
= −∇ · ( ρεv ) − P∇ · v + ηJ 2 + εσ , (5)

with specific energy density,

ε =
P

(γ − 1)ρ
, (6)

where ρ is the mass density, v is the plasma velocity, B the mag-
netic field, P the thermal pressure, η is the resistivity (not mag-
netic diffusivity), J is the current density, γ= 5/3 is the ratio of
specific heats, and µ0 is the magnetic permeability. Viscous heat-
ing is represented by the last term of equation (5), which also in-
corporates artificial viscosity (Wilkins 1980) in order to capture
the heating effect of shocks. This heating term is expressed as
the product of the rate of strain tensor,

εi j =
1
2

(
∂ vi

∂ j
+

∂ v j

∂ i

)
, (7)

and the shock tensor,

σi j = ρ l
(
ν1 cf + ν2 l |s|

) (
εi j −

1
3
δi j ∇ · v

)
, (8)

where cf is the fast magnetoacoustic speed, l is the distance
across a grid cell in the direction normal to the shock front, s
is a similarly localised strain rate (the subscripts i and j denote
the different spatial coordinates), and the artificial viscosity co-
efficients ν1 = 0.1 and ν2 = 0.5 are constants. The form of equa-
tion (8) is derived from the Rankine-Hugoniot jump conditions
and the values of the coefficients have been chosen such that nu-
merical oscillations behind shock fronts are prevented. Note, the
force equation (3) also acquires a viscous term. Gravitational ef-
fects are ignored in this study, as are thermal conduction and ra-
diation. The simulations are concerned with how the magnetic
field changes in response to the kink instability; specifically,
how much magnetic energy is released and how the field subse-
quently evolves. Conduction becomes important some time after
the energy release and later, radiation is the dominant process.
Note, numerical studies have shown that conduction can act on
MHD time scales (Botha et al. 2011): the amount of energy re-
leased from the field is unaffected, but the kinetic energy parallel
to the field is much reduced.

The MHD equations are made dimensionless by replacing
the variables with dimensionless equivalents. For example,

r =
r∗

Rb
, ρ =

ρ∗

ρ0
, B =

B∗

B1
,

where asterisks denote dimensional variables, Rb is the loop ra-
dius, ρ0 the initial mass density, and B1 the initial axial field at
r = 0. The other variables are expressed in a similar manner;

L =
L∗

Rb
, t =

t∗

tA
, v =

v∗

vA
, P =

P∗

P0
,

where L∗ = 20 Rb is the loop length, tA = Rb/vA is the ra-
dial Alfvén transit time, vA = B1/

√
µ0ρ0 the Alfvén speed, and

P0 = B2
1/µ0 the magnetic pressure. The specific energy density,

current density and resistivity (ε, J and η) also have reference
variables that can be expressed in terms of Rb , ρ0 and B1:

ε0 =
B2

1

µ0ρ0
= v2

A , J0 =
B1

µ0Rb
, η0 = µ0RbvA .

Values appropriate for a coronal active region can be ob-
tained by setting Rb = 1 Mm, ρ0 = 1.6726× 10−13 kg m−3 and
B1 = 50 G. Hence, the length becomes 20 Mm, vA ≈ 10 Mm s−1

and η0 ≈ 4π× 106 Ω m.
The resistivity is taken to be non-uniform in these simula-

tions,

η = ηb , | J | < Jcrit ,

η = ηb + ηc , | J | ≥ Jcrit ,

where ηb is the background resistivity (normally set to zero,
since actual coronal resistivities are approximately µ0 m2 s−1)
and ηc = 0.001 is the anomalous resistivity, which is only
switched on when the current reaches or exceeds Jcrit = 15. The
value of Jcrit is set so that it is significantly higher than the maxi-
mum current at the start of the simulation. Super-critical currents
appear when, during the nonlinear evolution of the kink instabil-
ity, current sheets begin to form and decrease in thickness. The
anomalous resistivity is intended to capture the dissipation oc-
curring at scales below the grid resolution: at this scale, resistiv-
ity is enhanced by small-scale plasma instabilities.

The computational domain is a 3D staggered grid: physical
variables are not calculated at the same place for each cell in the
domain. This approach improves numerical stability and allows
conservation laws to be included in the computation. The do-
main size is Lx = Ly = 6 (-3:+3) and Lz = 20 (-10:+10). Initially,
the loop axis follows the z-axis and the loop radius is r = 1; there-
fore, the simulated loops all have an aspect ratio of 20. The loop
is line-tied at z = −10, +10, which means, at those z-coordinates,
the velocity components are set to zero. The velocity compo-
nents are zero at the boundaries for all directions. The normal
derivatives of magnetic field, energy and density are zero at all
boundaries. The simulations are run with two grid resolutions:
1282 × 256 (low) and 2562 × 512 (high). It is assumed that a re-
sult is not a numerical artefact if it is consistent across both res-
olutions.

2.1. Initial configuration

Some previous studies have used LARE3D to simulate the ap-
plication of kink perturbations to a straightened line-tied coro-
nal loop, see Gerrard et al. (2002), Gerrard & Hood (2003),
Browning et al. (2008) and Hood et al. (2009). The initial equi-
librium model used in the latter two studies was extended by
Bareford et al. (2011) to include an outer current-neutralising
layer so as to ensure the loop has (at least initially) zero net
current: this improves on the model used by Browning & Van
der Linden (2003) and Bareford et al. (2010), which allowed
loops to have net current (i.e., an azimuthal field was usually
present in the potential envelope). All currents are now created
by convective motions local to the loop footpoints. Hence, a cur-
rent neutralisation layer is introduced here, defined such that the
azimuthal field (Bθ) always falls to zero at the loop boundary
(Rb ); therefore, Bθ is zero in the potential envelope. The loop’s
radial α-profile is approximated by a piecewise-constant func-
tion featuring three parameters (Figure 1): the ratio of current

3



M. R. Bareford et al.: Coronal heating by partial relaxation

Fig. 1. Schematic of a straightened coronal loop in the x-z plane (left)
and in the x-y plane (right). The loop, comprises a core (dark grey),
an outer layer (light grey) and a current neutralisation layer (blue); the
whole loop is embedded in a rectangular potential envelope. The core
radius is half the loop radius (R1:R2:Rb :RB = 0.5:0.9:1:3, where RB is
the distance from the initial loop axis to the edge of the envelope). The
loop aspect ratio (L/Rb ) in this figure is 20.

to magnetic field is α1 in the core, α2 in the outer layer, α3 in
the neutralisation layer and zero in the potential envelope. The
free parameters are α1 and α2, whereas α3 is dependent on the
first two and is determined by the requirement of zero net cur-
rent. The magnetic field is continuous everywhere, whereas the
current has discontinuities, and the outer surface of the poten-
tial envelope, representing the background corona, is placed at
RB = 3 (three times the loop radius); this is far enough away that
the boundary conditions do not influence the plasma evolution.

The fields are expressed in terms of the well-known Bessel
function model, generalised to the concentric layer geome-
try (Melrose et al. 1994; Browning & Van der Linden 2003;
Browning et al. 2008). The field equations for the four regions
(core, outer layer, neutralisation layer and envelope) are as fol-
lows:

B1z = B1J0(|α1|r) , (9)
B1θ = σ1B1J1(|α1|r) , 0 ≤ r ≤ R1 , (10)

B2z = B2J0(|α2|r) + C2Y0(|α2|r) , (11)
B2θ = σ2(B2J1(|α2|r) + C2Y1(|α2|r)) , R1 ≤ r ≤ R2 , (12)

B3z = B3J0(|α3|r) + C3Y0(|α3|r) , (13)
B3θ = σ3(B3J1(|α3|r) + C3Y1(|α3|r)) , R2 ≤ r ≤ Rb , (14)

B4z = B4 , (15)
B4θ = 0 , Rb ≤ r ≤ RB , (16)

where σi = αi
|αi |

(i = 1, 2, 3) represents the sign of αi. The fields
must be continuous at the inner radial boundaries, R1, R2 and Rb .
(The positions are R1 = 0.5, R2 = 0.9 and Rb = 1, so that most of
the loop is similar to the one described by Bareford et al. (2010),
but with a thin current neutralisation layer between R2 and Rb .)
Therefore, the coefficients Bj and Cj ( j = 2, 3, 4) are determined
by the requirement of continuity of the magnetic field at all inter-
faces (Bareford et al. 2011). The value of α3 (the neutralisation

layer current) is found, for a given (α1, α2), by numerical solu-
tion of B3θ(Rb ) = 0, ensuring that the net current is zero and that
the azimuthal field vanishes outside the loop, see Eq. (14). From
the nondimensionalisation of the magnetic field, the field coeffi-
cient at the core is B1 = 1.

The linear kink instability threshold for this current-
neutralised loop was determined by the CILTS code (Van der
Linden 1991; Browning & Van der Linden 2003) — it uses a
bicubic Hermite finite element method to calculate the growth
rates and eigenfunctions for specific line-tied α-configurations.
In contrast to the stability space for a loop of net current
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z
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Fig. 2. The linear kink instability thresholds for L/Rb = 20. These
thresholds have been cropped by a pair of dashed lines that indicate
where Bz(r) starts to acquire a mixed polarity. The right threshold is
sampled by a selection of five marginally unstable configurations (black
circles).

(Bareford et al. 2010), the instability threshold is open, see
Figure 2. This is very similar to the threshold found for a close-
fitting conducting shell (Browning & Van der Linden 2003),
since in the case of zero net current, perturbations quickly fall
to zero beyond the loop radius. A consequence of the Bessel
function model is that the axial field changes sign if the values
of α1 and α2 are too large. This reversal is unphysical and hence,
introduces a restriction to the stable region of Figure 2; namely,
all stable configurations should have Bz(r) of uniform sign. The
new stability space is closed by excluding those field profiles that
have a Bz(r) of mixed polarity, since this could not be achieved
directly by footpoint motions of an initially unidirectional field.
The filled circles of Figure 2 identify the loop configurations (see
also Table 1) that will be simulated by the LARE3D code (the
initial field profiles for Loops B and D are given in Figure 3). All
of these configurations are unstable to the ideal kink instability.

Loops of uniform twist (loops A–C) are a more likely result
of correlated convective driving (Bareford et al. 2011), where
the threshold is approached via a series of steps with δα1 ≈ δα2
— this is the reason why the part of the threshold curve where
α2 > 0 is more finely sampled compared to α2 < 0. Note, the sec-
tion of threshold on the left of Figure 2 is merely the negative of
the section on the right; hence, it is not necessary to sample both
threshold sections.

The configurations listed in Table 1 encompass two types of
loop; one class where α1 and α2 have the same sign (A–C) and
the other where these parameters have opposing signs (D and E).
Loop B has been chosen as representative of the first loop type
and Loop D of the second. Henceforth, Loop B will be referred
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Table 1. The α-profiles, axial fluxes and field coefficients for the simulated loops.

Loop α1 α2 α3 ψB B2 C2 B3 C3 B4

A 2.42 2.4 -13.08 15.3 0.1 -0.0079 2.42 -0.59 0.55
B (Luni) 2.25 1.5 -8.71 18.1 0.79 -0.2 -0.27 2.37 0.64
C 2.15 0.53 -4.95 20.8 0.61 -0.15 -0.94 -1.85 0.74
D (Lmix) 2.54 -1.0 -0.84 21.0 0.91 0.50 0.92 0.38 0.74
E 2.8 -2.7 3.82 20.4 0.26 1.32 -1.79 0.026 0.72
Stable 0.5 0.1 -0.96 27.8 0.97 -0.0078 1.21 0.63 0.98
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Fig. 3. The initial analytically-determined Bz (solid) and Bθ (dashed) profiles for Luni and Lmix. The field profiles for the stable loop (last row of
Table 1) are also shown.

to as Luni (uniform twist) and Loop D will be denoted by Lmix
(mixed twist).

Each of the loops indicated in Figure 2 is subjected to a dis-
turbance of the form,

vr = c1e−4r4
[

cos
(
π

L
z
)

cos
(
kz − θ

)]
, (17)

where vr is the radial component of the perturbed velocity, L
is the loop length, r =

√
x2 + y2 is the radial coordinate, k = 1.1

is the wave number, θ= arctan(x/y), and the constant c1 = 0.01
reduces the amplitude so that the perturbation is initially linear.
This disturbance initiates the kink instability.

Both Luni and Lmix are simulated for low and high resolu-
tions; only the high resolution is used for the other loop configu-
rations. Each simulation runs until the magnetic field appears to
have settled into a lower energy state.

3. Numerical results

3.1. Energy and resistivity

Loop Luni (α1 = 2.25, α2 = 1.5) is linearly kink unstable, and the
numerical simulation (Figure 4, middle row) shows that it is also
nonlinearly unstable. The magnetic energy, W, has an initial (di-
mensionless) value of 155.3 when integrated over the entire sim-
ulation domain,

W =
1

2µ0

∫
B2 dV ;

the internal (U) and kinetic (E) energies are also volume inte-
grals,

U =
1

γ − 1

∫
P dV , E =

1
2

∫
ρv2 dV .

The initial magnetic energy integrated over the loop Luni only is
much less (Wb ≈ 20). All magnetic energies can be dimension-
alised by making a simple correction to equation (27) given in

Bareford et al. (2010): since here the axial flux is not normalised
to 1, the dimensionalising multiplier must first be divided by ψ2

B ,
which is the square of the non-dimensional axial flux over the ra-
dius RB (Table 1, column 5). For loop Luni, this gives a multiplier
of 4.8× 1019 (assuming a radius of 1 Mm and a mean axial field
strength of 50 G): thus, the dimensionalised initial loop energy
is roughly 1021 J.

At the onset of instability, W undergoes a decrease, coinci-
dent with a rise in U and with a much more modest increase
in kinetic energy (Emax ≈ 0.2). The maximum current, Jmax, also
rises just before the decrease in W, indicating the formation of
a helical current sheet. The nonlinear instability starts at around
t = 50 tA and within the next 50 tA, approximately 70% of the to-
tal energy release has been achieved. Magnetic energy reduces
more slowly after t = 100 tA. The release of magnetic energy is
of a similar size for both resolutions, and significantly, larger
currents are recorded at high resolution, which is expected; oth-
erwise, spatially-confined changes in current are missed and
anomalous resistivity is reduced. The fact that the maximum cur-
rent increases with resolution is indicative of current sheet for-
mation. These structures have (possibly) infinite current density,
so higher resolutions should reveal larger values of the maxi-
mum.

In the top two cases of Figure 4, ideal MHD and zero back-
ground resisitivity, it can be seen that there is no detectable
change in energy until around 40 tA — this is the time when
a current sheet starts to form. The adjective ideal is italicised
because the rate of magnetic diffusion in the corona is easily ex-
ceeded by numerical resistivity; therefore, any reduction in mag-
netic energy associated with a stable configuration is artificial.
Hence, for the stable case, in which no current sheets ever form,
there is no sudden onset of dissipation, only gradual dissipation
as expected. In the bottom row of Figure 4 (ηb = 10−4), there is a
continual dissipation of magnetic energy due to Ohmic effects;
however, even here, there is a clear onset of enhanced dissipation
at the point of current sheet formation. This all agrees with pre-
vious work (Browning et al. 2008; Hood et al. 2009) and clearly
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Fig. 4. Loop Luni: the temporal variation in energy (magnetic, internal and kinetic), heating (Ohmic and viscous) and maximum current for ideal
MHD (top row), for resistive MHD with ηb = 0 (middle row), and for ηb = 10−4 (bottom row). The initial magnetic energy has been subtracted from
the magnetic energy plots (solid lines, left column). The critical current (Jcrit = 15) is indicated by the grey dashed horizontal lines (right column).
For the ηb = 0 case, the maximum current plots are from the high (black) and low (grey) resolution simulations.

indicates that energy dissipation (conversion from magnetic en-
ergy to internal energy) is closely associated with the existence
of current sheets.

However, Figure 4 also shows that energy is not conserved
for the two cases mentioned (ideal MHD and ηb = 0). At high
resolution, only ∼ 68% of the energy released from the magnetic
field is converted to internal energy, and by the end of the simu-
lation, less than one percent of the energy release is in the form
of kinetic energy. Halving the spatial resolution worsens the en-
ergy conservation by almost 10%. This loss of energy is due to
spatially unresolved current sheets, resulting in numerical diffu-
sion. The results for Ideal MHD (i.e., zero magnetic diffusivity)
are very similar to the ones produced for the resistive MHD case
with no background resistivity. This shows that, for these cases,
Ohmic dissipation does not contribute significantly to the rise
in internal energy, which is instead mainly caused by viscous
heating. The use of a non-zero background resistivity (ηb = 10−4)
changes the plots. The reduction in magnetic energy starts right
away and is more drawn out and the maximum current is much
less than when ηb = 0. These differences are all consistent with
an increased resistivity. Crucially, Ohmic heating is now clearly
present and accounts for nearly all of the previously missing en-
ergy. In terms of energy conservation, LARE3D performs better
when ηb > 0: the internal energy increase is now approximately
96% of the magnetic energy decrease (the final kinetic energy is
less than 0.2% of δW). A background resistivity of 10−4 appears
to be the smallest value that effectively minimises the effect of
the numerical resistivity, such that the results are likely to be a
reasonable description of the thermodynamics. If ηb is halved,

the percentage of the magnetic energy release lost to the sim-
ulation increases to around 10%. Further tests have shown that
energy conservation is not improved by a lowering the critical
current and thereby causing the anomalous resistivity (ηc) to be
applied earlier in the simulation.

A sufficiently large background resistivity does substantially
mitigate the amount of energy lost by numerical resistivity, at
least for Luni; but ηb = 10−4 is not realistic by coronal standards,
and Figure 4 (bottom left) reveals a significant drop in field en-
ergy before the kink instability takes effect. This initial decline
is caused by global Ohmic diffusion rather than magnetic recon-
nection, since current sheets have not yet formed. The numerical
resistivity comes about when current sheet widths begin to fall
below the grid resolution; although magnetic energy continues to
be dissipated, it is not converted to other forms of energy (e.g.,
internal or kinetic). However, shocks can still be resolved during
the unstable phase, and these contribute to the internal energy
via viscous heating. If the background resistivity is large enough
it will limit currents and thereby prevent current sheets from be-
coming too thin. Numerical (that is to say artificial) resistivity
will be a factor during the conversion process when ηb = 0: ap-
proximately 32% of the reduction in magnetic field energy is not
accounted for by the final internal energy — this is also true for
the other loop configurations. However, virtually all of this arti-
ficial resistivity is occurring during the energy conversion. The
drop in magnetic energy is a robust result. To demonstrate fur-
ther, we have used ideal MHD to simulate a loop (α1 = 0.5 and
α2 = 0.1, see Table 1, bottom row) that is well within the stable
region (as shown in Figure 2). In the absence of an instability
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Fig. 5. Loop Lmix: the temporal variation in energy (magnetic, internal and kinetic), heating (Ohmic and viscous) and maximum current (low and
high resolution) for resistive MHD with ηb = 0. The different plot lines follow the same scheme as that used for Figure 4.

(and any applied resistivity), the energy declines by around one
thousandth of one percent over 300 tA; this reduction is three or-
ders of magnitude smaller than the energy release caused by the
kink instability.

Loop Lmix (α1 = 2.54, α2 =−1.0) has a core that is oppositely
twisted with respect to its outer layer. Figure 5 shows the same
correspondence between the magnetic and internal energies that
was seen for the previous loop. Again, the magnetic energy re-
lease is of the same size for both resolutions and, at the higher
resolution, significantly larger currents are recorded; although
the size of the release is around half that found for Luni. Note,
the initial magnetic energy is higher than the value given for the
other loop. This is a consequence of setting B1 = 1: Lmix is less
twisted and therefore has a higher axial flux, which results in a
lower dimensionalised magnetic energy.

The general trends for magnetic, internal and kinetic ener-
gies are consistent between resolutions (for both loops), and
most importantly, so is the size of the magnetic energy re-
lease. Therefore, simulations at higher resolution are not re-
quired — this paper will proceed with results taken only from
the 2562 × 512 simulations. The results for the other loop con-
figurations on the threshold (Figure 2) also suggest that linear
instability evolves to a nonlinear stage, which gives rise to cur-
rent sheets, magnetic reconnection and most importantly, shock
heating. The following sections will present results based on
a current-dependent resistivity and zero background resistivity
— this is more compatible with the coronal environment. The
breakdown of energy conservation associated with this parame-
ter choice can be ignored since we are only interested in how the
magnetic field behaves during and after the instability. However,
this issue will have to be addressed for detailed studies of the
thermodynamic evolution.

3.2. Magnetic field and current magnitude

Now we examine the magnetic field (and critical current dis-
tribution) at specific times during the simulations. Figure 6
shows how field lines, originally located within the core, be-
come kinked as the instability takes hold. The dark grey field
lines are drawn from the bottom boundary (or footpoint) and
the light grey field lines are drawn from similar locations at the
upper boundary. Loops Luni and Lmix follow the same course
of events. Initially, the field lines are intertwined; then, during
the growth of the instability, the currents become critical (in-
dicated by the yellow, orange and red areas) and anomalous
resitivity is applied. The dissipative effects of this anomalous
resistivity have a minimal contribution to the internal energy
(Section 3.1); instead magnetic energy is dissipated by the ap-
plication of viscous heating at shock fronts. Hence, we also

show a proxy for viscous heating, |σ∗ |, which is equivalent to
σ shock

i j / (ρ L (ν1 cf + ν2 L |s|)) — it is represented by the cyan,
blue and purple colours. In general, shocks are coincident with
current sheets: i.e., the areas of high viscous heating, as indi-
cated by |σ∗ |, are cospatial with the largest currents. Note, the
kink instability is more pronounced for Luni than for Lmix. In
terms of azimuthal field, Lmix is the weaker of the two (Figure
3), however, some importance should be attached to the fact that
Lmix is twisted both ways. Opposing twists appear to mitigate
the growth of the instability and thereby limit the energy release.
If we increase the values of α1 and α2 but keep the opposite
signs, such that the total azimuthal field strength is comparable
to Luni (e.g., Loop E), the energy release increases only slightly
(δW ≈ 2.6).

Figure 7 shows cross sections of Luni at z = 0 (halfway along
the loop) and Lmix at z = − 2, which is roughly the centre of
the only patch of significant viscous heating for Lmix at t = 60 tA,
see bottom row of Figure 6. Again, the colours represent current
magnitudes (left column) and viscous heating (right column),
and the plot times are the same as those used for Figure 6; i.e.,
shortly after the start of the kink instability. At this time, cur-
rent sheets of narrow width start to form; furthermore, nearly all
of these current sheets are associated with shock formation and
viscous heating.

The unstable phase is over quickly (∆t≈ 50 tA) and by the
end of the simulation the (reconnected) field lines have straight-
ened considerably, indicative of a low constant-α configuration.
The areas where shocks have formed must be dispersed through-
out the loop volume in order for helicity to be more evenly re-
distributed and thereby create a linear α-profile. The reduction in
the azimuthal components of the field lines should cause a radial
expansion of the loop. At the initial equilibrium, the inward ten-
sion force of the azimuthal field is balanced by the outward mag-
netic pressure of the axial field; thus, if the tension decreases, the
loop must expand before equilibrium can be regained. This be-
haviour is clearly demonstrated by Figure 8; note the change in
scale for the x and y axes. The expansion of the loop is mostly
associated with the reconnection of initially twisted field lines
inside the loop with the ambient axial field. In Figure 8, the fi-
nal state calculated by the numerical simulation is overlaid with
magnetic field vectors in the x-y plane, which are consistent with
a cylindrical configuration, bounded by a current-neutralising
layer: the arrows follow each other and the arrow sizes initially
increase away from the axis, and then diminish before the loop
edge.

Loop Lmix expands less than Luni, which is possibly due to
the fact that the latter releases more energy. A single weakly-
twisted flux tube best describes the final state for both loops. The
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Fig. 6. Magnetic field lines originating from the bottom left footpoint (dark grey) and from the upper right footpoint (light grey) are shown at
t = 60 tA for Luni (top) and Lmix (bottom). At the onset of instability, two plots are shown: one with isosurfaces of current (left) and the other with
isosurfaces of |σ∗ |, a proxy for viscous heating (right).
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Fig. 7. The spatial variation of current magnitude (left) and a viscous heating proxy (right) across the loop cross section at the apex (i.e., where
z = 0) for Luni (top) and at z = − 2 for Lmix (bottom).

Fig. 8. The spatial variation of current magnitude across the loop cross section at the final time of the simulation for Luni (left) and Lmix (right).
All currents are now well below the critical value. The arrows are magnetic field vectors.

following sections will show that the properties of these loops
are consistent with relaxation theory.

3.3. Helicity conservation

DeVore (2000) showed how to calculate the magnetic helicity
over an entire coronal volume above a photospheric bounding
surface. The first step is to work out the magnetic vector poten-
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tial for a current-free field that has the same distribution of verti-
cal magnetic flux at the lower boundary. DeVore begins by deriv-
ing an expression for the scalar potential, using Green’s function
for Laplace’s equation as the integration kernel,

φc(x, y, z′, t) =
1

2π

∫ +3

−3
dx′

∫ +3

−3
dy′

Bz
(
x′, y′,−10, t

)
r′

, (18)

where r′ =
√

(x − x′)2 + (y − y′)2 + (z′)2. The grid domain used
by LARE3D has a Cartesian geometry: the coronal loop is ini-
tially represented as a straight cylinder within a rectangular box.
The x and y axes extend between −3 and +3; hence, the integral
limits given above. The photospheric boundaries are located at
the limits of the z axis (z =−10, +10) and z = 0 is the loop apex;
Eq. (18) uses the first boundary position. The vector potential is
constructed using,

Ac(x, y, z, t) = ∇ × ẑ
∫ +10

z
dz′ φc(x, y, z′, t) ; (19)

which becomes,

Ac(x, y, z, t) =
1

2π

∫ +10

z
dz′

∫ +3

−3
dx′

∫ +3

−3
dy′

×
Bz

(
x′, y′,−10, t

)
(r′)3

[(
x − x′

)
ŷ −

(
y − y′

)
x̂
]

(20)

when the derivatives are moved inside the integral. Now the
gauge-invariant vector potential can be specified as,

A
(
x, y, z, t

)
= Ac

(
x, y, z, t

)
− ẑ ×

∫ z

−10
dz′ B

(
x, y, z′, t

)
, (21)

by subtracting the helicity due to the potential field, and Eq. (21)
can be re-expressed by expanding the cross product of the sec-
ond term,

A
(
x, y, z, t

)
= Ac(x, y, z, t) +

∫ z

−10
dz′

×
[
By

(
x, y, z′, t

)
x̂ − Bx

(
x, y, z′, t

)
ŷ
]
. (22)

Finally, the gauge-invariant magnetic helicity is

K =

∫
V

A · B dV

=

∫ +3

−3
dx

∫ +3

−3
dy

∫ +10

−10
dz A

(
x, y, z, t

)
· B

(
x, y, z, t

)
. (23)

The geometry used by DeVore differs significantly from that
used here (Figure 1), which features two separate photospheric
boundaries at the limits of the z axis. Fortunately, the relative po-
sitions of the two boundaries mean that if the flux is cancelled
for one it will be cancelled for the other, and so the lower bound
z coordinate can simply be set to −10.

Equations (18)–(23) have been implemented, using the five-
point Newton-Cotes integration formula. The marginally unsta-
ble loops (Figure 2) have zero net current initially and should
continue to do so during the simulation; thus, outside the loop
the helicity is zero. This means the helicity, calculated using a
straightforward cylindrical geometry, can be compared easily to
that calculated for a Cartesian geometry, where the loop is en-
closed within a rectangular box. The helicity is zero everywhere
in the additional volume between the surface of the rectangular
box and the outer edge of a cylindrical potential envelope.

Table 2. Helicity at three times during the simulations (ηb = 0)
of all five kink-unstable loops.

Loop Initial Instability Final ∆K/∆W
A 12.3 12.26 (t = 50 tA) 12.22 0.09
B (Luni) 12.29 12.27 (t = 60 tA) 12.28 0.03
C 10.47 10.46 (t = 100 tA) 10.5 0.19
D (Lmix) 6.12 6.12 (t = 60 tA) 6.11 0.13
E 1.16 1.14 (t = 50 tA) 1.18 1.32

Table 2 gives the helicities for each loop at three different times.
The second time is the time of instability; i.e., when the loop is
furthest from equilibrium. The helicity appears to be conserved:
it varies little over the course of the simulation. For loops A–D,
the helicity varies by less than one percent; whereas for Loop E
the helicity increases by ∼ 2%.

Next, we calculate the ratio of the helicity variation to the
change in magnetic energy,

∆K
∆W

=

∣∣∣∣∣∣ ln(Kfinal/Kinitial)
ln(Wfinal/Winitial)

∣∣∣∣∣∣ ; (24)

both ∆K and ∆W are weighted by initial value. For four of the
five loops, ∆K is around one order of magnitude lower than
∆W (Table 2, fifth column); these results are comparable with
Browning et al. (2008). The relationship ∆K� ∆W implies that
magnetic energy dissipation is taking place on small spatial
scales (i.e., shock fronts). One of the loops (E) has ∆K >∆W;
however, it is no coincidence that this loop also has the lowest
helicity (Kinitial = 1.16). The coarseness of the grid sampling used
to calculate Eq. (23) — the x and y dimensions are sampled at
every fourth cell and the z dimension at every other cell — is
too great for such a small helicity. Hence, for this last loop, the
grid sampling is increased from 4×4×2 to 2×2×2, which gives
∆K/∆W ≈ 0.44. A finer sampling and/or higher resolution is re-
quired to bring this ratio down to below 0.1.

4. Partial relaxation model

4.1. Analytical calculation

In Browning & Van der Linden (2003), Browning et al. (2008)
and Bareford et al. (2010), a loop with net current was assumed
to relax such that it expanded to fill the entire potential enve-
lope: the α-profile was invariant between r = 0 and r = 3 (RB ).
The relaxed alpha was identified by assuming that ψ (axial flux)
and K/ψ2 (the normalised helicity) were conserved over the loop
and envelope, in accordance with Taylor relaxation. The only
limit to the relaxation is the position of an (unphysical) bound-
ing wall. Hence, the relaxed state always represented a threefold
radial expansion of the initial state. Later, Bareford et al. (2011),
considered a range of relaxation radii: Rb ≤ r≤RB . Some form
of partial relaxation is more likely to be relevant to the zero-net-
current case; it is known from simulation results, presented here
and in Hood et al. (2009), that reconnection is of limited extent,
leaving much of the external field undisturbed. This contrasts
with previous results for loops carrying net current (Browning et
al. 2008), in which the disturbances in the nonlinear phase of the
kink generally extended to the boundary of the simulation.

Bareford et al. (2011) maintained zero net current by fix-
ing a neutralising loop surface at a specified radius (r = Rl ). The
neutralising surface is imposed by fixing the field coefficients of
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Fig. 9. The unstable and relaxed loop. K/ψ2 is conserved over the re-
gion enclosed by the dashed circle, which is the outer boundary (Rl ) of
the relaxed loop.

the potential envelope, so that they do not change during relax-
ation. In the relaxed state, the envelope is the region between Rl
and RB . Naively, it might have been expected that the partially-
relaxed state would consist of a constant α field embedded di-
rectly in a potential field (α= 0) with no layer of reversed cur-
rent. However, such an arrangement does not match the simula-
tion results, see Section 4.1.1. Furthermore, it would be unphysi-
cal for the partially-relaxed state to include a region of azimuthal
field extending to infinity, which is the consequence of allowing
net current, since in the initial state, the azimthal field is zero
outside the loop. The existence of current sheets (here broadened
into a narrow current-neutralising layer) bounding localised re-
laxed states has also been noted by Gimblett et al. (2006). The
axial flux is conserved such that ψl of the threshold state is equal
to ψl of the relaxed state. The subscript l denotes the relaxation
radius, Rl ; it is the radial upper bound over which the associ-
ated property is calculated — the lower bound being the axis.
For example, ψl is the axial flux from r = 0 to r = Rl (similarly,
KB is the helicity from r = 0 to r = RB , the outer edge of the po-
tential envelope). This method of conservation is illustrated by
Figure 9. Left, is the marginally unstable threshold state; the ra-
dius that this loop will expand to is indicated by the dashed cir-
cle; right, is the expanded relaxed loop. We might expect that, ei-
ther the relaxed loop flux (ψl ) matches the initial loop flux (ψb ),
or it matches the initial flux within the radius (Rl ) eventually at-
tained. The former is correct if the field freely expands into the
surrounding field. The latter choice is made if the loop radially
expands by reconnection; i.e., the loop eats into the surrounding
axial field. This outcome agrees much better with the simulation
results (again see Section 4.1.1). If the loop did not reconnect
with its surroundings and expand to a radius of 1.8 Rb (as for
Luni), then the axial field would drop by a factor of 1.82, which is
not observed. (The slight mismatch between the numerical and
analytical axial field profiles seen in Figure 11 is probably due
to some limited free expansion of the loop.)

The relaxation alpha (αl ) is determined by ensuring that the
axial flux and helicity integrated over the dashed circle in Figure
9 (left), match the values obtained when these same proper-
ties are integrated over 0≤ r≤Rl of the relaxed loop (Figure 9,
right). Also, helicity is absent from the potential envelope sur-
rounding a zero-net-current loop; hence, Kb = KB (unlike mag-
netic energy, Wb ,WB ). Thus, we do not need to choose which
value of helicity to use. Once αl is known, the energy release
can be determined analytically;

δW = Wl (αi1, αi2) −Wl (αl ) , (25)

where Wl (αi1, αi2) is the energy of the threshold state and Wl (αl )
is the energy of the relaxed state.
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Fig. 10. The variation with relaxation radius (Rl ) of relaxed alpha (αl ,
left) and of dimensionless energy release (δW, right) for Luni (solid line)
and for Lmix (dashed line).

The relaxation radius (Rl ) remains as a free parameter, al-
though sensible values can be inferred from the numerical re-
sults. Figure 10 shows how αl and δW vary with relaxation ra-
dius. As expected, these figures show an inverse relationship be-
tween αl and δW. In general, δW increases with Rl , however,
this relationship is not linear; beyond a moderate expansion of
50% (Rl = 1.5) the energy release is ∼99% of its maximum for
Lmix and ∼80% for Luni. This property of diminishing returns
is also true for the other three loops indicated in Figure 2. This
means that the energy release is insensitive to the choice of re-
laxation radius, so long as it is assumed that Rl & 1.5.

4.1.1. Numerical Relaxed States

The final numerically-determined state is merely the last snap-
shot provided by the simulation; it is expected to be close to the
analytically-determined relaxed state. Each loop is simulated for
at least 300 tA; so, the sooner the instability occurs, the closer the
loop will be to a fully relaxed state by the end of the simulation.
The Cartesian components of the analytical relaxed field are as
follows,

Bx(r) = −Bθ(r)(y/r) , (26)
By(r) = Bθ(r)(x/r) , (27)
Bz(r) = B1J0(|αl |r) , (28)

where Bθ(r) = (αl /|αl |) B1J1(|αl |r) and r≤Rl . We generate re-
laxed configurations for every value of Rl between 0.9 and 3.0 in
increments of 0.01. Then, for each field component, it is checked
which of the 211 possibilities has the lowest chi-squared value
when compared with the numerical values for the same com-
ponent. These field comparisons (Bx, By and Bz) are performed
over the x dimension for a selection of fifteen y-z coordinate
pairs (y ∈ {−1,−0.5, 0,+0.5,+1}, z ∈ {−5, 0,+5}) — the horizon-
tal dashed lines of Figure 13 (left) indicate the y positions of the
field plots.

As a result of the kink instability, the loop axis will be shifted
from the origin in the x-y plane. The new axis position will be z-
dependent and can be recalculated by assuming that the relaxed
loop is current neutralised (Figure 8): moving inwards from the
edge of the envelope, the loop boundary is detected whenever the
α-value rises above some minimal value. Any axis shift is taken
into account before the analytical results are compared with the
numerical data. Figure 11 presents a subset of the analytical-
numerical comparisons for Luni at y = 0.

In general, the analytical plots, such as the ones in Figure
11, show a good agreement with the numerics; however, the Rl
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Fig. 11. Loop Luni: a comparison between the Bx (top row), By (middle row) and Bz (bottom row) magnetic field profiles obtained numerically
(red line) and analytically (black line). The latter is calculated from the αl and Rl that best fit the numerical plot, which is taken from the final
frame (t = 400 tA) of the high resolution LARE3D simulation (ηb = 0). The comparisons are done at y = 0 for different z coordinates, z = − 5 (left
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and αl that best fit the red lines are independently chosen for
each of the forty-five subplots (there are fifteen y-z positions and
three field components). Figure 12 (left) shows the variation in
these best-fit parameters: each symbol, by virtue of its position,
gives the Rl −αl pair that best fits the numerical data extracted at
specific y and z coordinates within the simulation domain — the
symbol type denotes which field component is being matched.
The use of two x-axes (one for Rl , the other αl ) means that all
forty-five symbols can be clearly distinguished (the y-axis has no
meaning beyond a simple sorting of the data points). The derived
averages are 〈Rl 〉= 1.76 ± 0.29 and 〈αl 〉= 0.28 ± 0.31; these
two properties have a one-to-one mapping. The dimensionless
energy release is 5.87 ± 1.11. Despite the large scatter for αl ,
the deviation for δW is comparatively modest, this is because
d(δW)/d(Rl ) is small when Rl ≈ 1.8 (Figure 10, right). Figure
12 suggests that the final numerically-calculated state is tending
towards a relaxed loop that can be characterised by a localised
invariant α-profile. (Note, all points would lie on a single ver-
tical line if there were a perfect match between the analytical
and numerical models.) The outlying points on the left have αl
values that are further from 〈αl 〉 than those on the right, since
the relationship between αl and Rl is not linear (Figure 10, left)
- this explains the large deviation for the relaxation alpha. Low
levels of magnetic field that fluctuate around the zero line tend to
be fitted by low αl values; whereas values significantly greater
than the mean imply that high currents still exist within the fi-
nal numerical state. Both of these effects can be ameliorated
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Fig. 12. Loop Luni: the best-fit Rl -αl pairs when ηb = 0 (left) and when
ηb = 10−4 (right). Black circles are for those best fits determined from
Bz profiles, red plus signs are for Bx and blue crosses By.

by re-running the simulation with background resistivity; once
again, ηb = 10−4. Figure 12 (right) yields 〈Rl 〉= 1.74 ± 0.11 and
〈αl 〉= 0.23 ± 0.09. The mean dimensionless energy release be-
comes 〈δW〉= 6.06 ± 0.32. The resistivity smooths out low-level
noise and restricts the current, and thereby reduces the deviation
associated with the analytical fit.
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Table 3. Analytical and numerical comparison for the kink-
unstable loops A–E.

Analytical Numerical
Simulation Rl αl K |δW | K |δW |
A 1.9 0.25 12.89 8.47 ± 0.42 12.19 8.31
B (Luni) 1.76 0.28 12.92 5.87 ± 1.11 12.3 5.8
C 1.8 0.2 11.03 3.7 ± 0.42 10.52 3.15
D (Lmix) 1.59 0.19 6.45 2.38 ± 0.28 6.14 2.15
E 1.18 0.19 1.22 2.63 ± 0.11 1.15 2.58

The overall impressive level of agreement demonstrated for
Luni, also extends to other positions along the instability thresh-
old, see Table 3. This table also confirms that the analytically-
calculated helicities of Loops A–E are in approximate agree-
ment with the numerical values, which were derived accord-
ing to the procedure discussed in Section 3.3. The correspon-
dence between the numerical and analytical energy releases is
the most significant finding. There is evidence to suggest that
this correlation persists even when different settings are used for
the LARE3D parameters controlling resistive MHD (Section 3.1
and Figure 4). In addition, these results are consistent with pre-
vious work (Browning et al. 2008; Hood et al. 2009).

4.2. Final Current Distribution

The jaggedness of the numerical field profiles shown in Figure
11 clearly indicates that there are deviations from a simple
locally-constant α profile. We show the value of α computed
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Fig. 13. The value of α (left) and plasma-β (right) over the x-y plane
for Luni (ηb = 0). The grey circle approximates the loop cross section at
z = 0 and t = 400 tA.

over the midplane (z = 0) of Luni, see Figure 13. A grey cir-
cle based on the current magnitude plot of Figure 8 (left) has
been used to approximate the shape of the cross section. There
are many, albeit confined, areas that are far from the calculated
mean, αl = 0.28. The influence of the initial α3 (the α-value for
the current neutralisation layer) can be seen in the limits of the
colour bar. In addition, plasma-β (Figure 13, right) has, com-
pared to initial values of 10−3, undergone localised increases of
up to two orders of magnitude.

The cosine of the angle between the current and the mag-
netic field is plotted in Figure 14; note, positions outside the
loop are left unplotted. The current is either parallel (white)
or anti-parallel (black) to the field for a high percentage of
the cross sectional area (positions that are far from parallel,
20◦ < j∠B< 160◦, account for approximately 30% of the loop
cross section). Almost three quarters of the energy released from
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Fig. 14. Left, the cosine of the angle between the current and the mag-
netic field over the x-y plane. Right, the cosine of the angle between
the magnetic field and the gradient of the pressure over the same area.
Positions outside the grey circle, representing the loop cross section,
have not been assigned a colour. The background resistivity is zero.

the field becomes internal energy (i.e., thermal pressure), which
may be associated with departures from a force-free state (al-
though Taylor relaxation would predict a uniform pressure dis-
tribution). However, it seems that the loop is heading towards
an approximate balance of forces ( j× B =∇P): Figure 14 (right)
shows that the angle between the field and the pressure gradient
is on average close to zero. Interestingly, the parallel and anti-
parallel areas are often found next to each other and therefore
might be expected to cancel at later simulation times. The plots
of Figures 13 and 14 are qualitatively similar to those taken at
other z coordinates that are not too close to the footpoints (e.g.,
−5< z< 5).

5. Summary and conclusions

A nonlinear 3D MHD code has been used to simulate the evo-
lution of a set of zero-net-current cylindrical loops. These loop
configurations have been identified by a linear analysis as be-
ing marginally kink unstable (Bareford et al. 2011). The sim-
ulations show that the instability quickly enters a nonlinear
phase and magnetic energy declines sharply before leveling off.
Furthermore, the amount of energy released matches the amount
predicted by Taylor relaxation (Table 3), taking account of the
fact that the relaxation is localised. Evidence for helicity conser-
vation was presented, and the change in helicity was shown to be
much smaller than the drop in magnetic energy. The implication
of this result is that energy diffusion is occuring on small scales
compared to the global length scale; i.e., within shocks associ-
ated with magnetic reconnection. The low values of kinetic en-
ergy during the unstable phase (compared to the internal energy)
imply that these shocks occur near to reconnection sites. (We
find that dissipation within current sheets only becomes signifi-
cant when ηb = 10−4.) Further research could reveal exactly how
magnetic reconnection spreads through the loop volume in re-
sponse to a kink instability, which would also reveal where the
loop is heated and when. It is this widespread dispersal of recon-
nection and shock heating that ensures helicity conservation. At
present, we cannot confirm the nature of the shocks: slow-mode
shocks are expected since only shocks of this type can reduce
magnetic field strength.

Relaxation theory also predicts that the final relaxed state
should have a constant α-profile. Although the final numerical α-
profile still retains much fine structure, the final magnetic fields
are well-modelled by a (localised) constant-α profile with some
fluctuations superposed — this suggests the fine-scale structure
is self-cancelling (i.e., it integrates out). Furthermore, the en-
ergy of the final numerical state is very well matched by the
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energy of the same constant-α state (the field energy is insen-
sitive to the spikeness of the numerical data). The property of
zero net current is retained after the instability. Typically, the
loop expands radially, the field reconnecting with that present in
the potential envelope. These results justify the choices made
by Bareford et al. (2011) regarding the details of the relax-
ation process. Nevertheless, we were concerned that the thin-
ness of the current neutralisation layer (Figure 1) might have
influenced the results. Hence, we also ran a resistive MHD sim-
ulation (with ηb = 0) for a zero-net-current equilibrium that pos-
sessed a smooth α-profile, see Case 3 of Hood et al. (2009). The
constant parameter, λ= 1.62, was set such that the equilibrium
was on the threshold of instability. We found that the simula-
tion results were similar to those produced by Lmix. Numerically,
the energy release was 1.2, which was again consistent with the
analytically-determined value.

It appears that the assumption of a Taylor-relaxed state, sub-
sequent to a kink instability, has been verified by the work pre-
sented here. The relaxation does not extend over the full numer-
ical volume, but over a region of smaller extent (out to a ra-
dius Rl , which is less than the full radius, RB ). In this sense,
the relaxation is partial. A relaxed state can only be identified if
the relaxation radius is known; at present, it is unclear how Rl
can be precisely determined from the field configuration at insta-
bility onset. However, the analytical work has revealed that for
marginally-unstable loops, the energy release varies little with
relaxation radius once Rl ≥ 1.5 (Figure 10); hence, a calculation
of the energy release does not necessarily require a precise pre-
diction for Rl .

Energy release could be limited if the unstable loop attains
an equilibrium that is less than fully relaxed (i.e., the α-profile
remains nonlinear) and still conserves helicity. There is perhaps,
for some field configurations, another constraint that decides the
relaxed state, such as the topological degree of the field line map-
ping between the ends of the loop, as investigated by Yeates et
al. (2010). They examined two braided magnetic field config-
urations (one based on the simple pigtail braid and the other
more complex). Both configurations underwent turbulent relax-
ation, leading to a final state that conserved topological degree
and was less relaxed than that predicted by Taylor theory — the
final state for the pigtail braid featured two flux tubes of oppo-
site twist. Nevertheless, it is possible for the Taylor-relaxed state
and the state that preserves topological degree to coincide. In our
case the invariants given by Yeates et al. do not provide any extra
constraint, making our results consistent with their predictions.
This would explain the level of agreement between the LARE3D
simulations and Taylor relaxation.

An issue for further research concerns the interaction of con-
vective driving with the relaxation process. The LARE3D code
could be used to help resolve this issue. It should be possible
to choose a loop configuration (i.e., a set of α-parameters) that
is just inside the threshold for linear kink instability and then,
trigger the instability by applying a pre-determined velocity pro-
file (vθ) at one of the footpoints. Loop curvature has also not
been considered. The linear stability codes require an analytical
form for the magnetic fields. If a loop is to retain its curvature, it
can only be simulated numerically, which means choices have to
be made concerning loop parameters (e.g., length, radius and α-
profile). Usefully, those straightened loop configurations that are
kink unstable and are likely to be reached by convective driving
have been identified. These configurations could be adapted to
include curvature and re-simulated within LARE3D. This would
reveal what effect, if any, curvature has on the energy release
precipitated by kink instability. Of course, this procedure could

also be applied to other improvements; e.g., gravity (with ρ(z)),
conduction and radiation. However, a feature that improves the
realism of the loop model may not be important as regards kink
instability and Taylor relaxation.
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