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Abstract

Every semigroup which is a finite disjoint union of copies of the free mono-
genic semigroup (natural numbers under addition) is finitely presented and
residually finite.
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1 Introduction

Unlike the ’classical’ algebraic structures, such as groups and rings, it is well known
that a semigroup may decompose into a disjoint union of subsemigroups. Indeed
many structural theories of semigroups have such decompositions at their core.
For example:

• Every completely simple semigroup is isomorphic to a Rees matrix semigroup
over a group G, and is thus a disjoint union of copies of G; see [6, Theorem 3.3.1].

• Every Clifford semigroup is isomorphic to a strong semilattice of groups, and is
thus a disjoint union of its maximal subgroups; see [6, Theorem 4.2.1].

• Every commutative semigroup is a disjoint union (indeed a semilattice) of archimedean
commutative semigroups; see [5, Theorem 4.2.2].

It is therefore natural to ask how properties of a semigroup S which can be
decomposed into a disjoint union of subsemigroups S = T1 ⊍ ⋅ ⋅ ⋅ ⊍ Tn depend on
properties of the Ti. For instance, it is obvious that if all Ti are finitely generated
then so is S. Araujo et al. [1] discuss finite presentability in this context, and show
that there exists a non-finitely presented semigroup which is a disjoint union of
two finitely presented subsemigroups. On the other hand, it can be shown that in
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many special instances finite presentability of the Ti implies finite presentability of
S. For example, this is the case when all Ti are groups (i.e. when S is a completely
regular semigroup with finitely many idempotents; see [6, Theorem 4.1.1]); this
follows from [12, Theorem 4.1]. Further such instances are discussed in [1].

Turning to the finiteness condition of residual finiteness, we have a similar
landscape. It is easy to construct a non-residually finite semigroup which is a dis-
joint union of two residually finite subsemigroups. One such example, consisting
of a free group and a zero semigroup, can be found in [4, Example 5.6].

On the other hand, it follows from Golubov [3] that if all Ti are residually finite
groups then S is residually finite as well.

In this paper we consider semigroups which are disjoint unions of finitely many
copies of the free monogenic semigroup. Throughout the paper we will denote
this semigroup by N; hence N is a multiplicative isomorphic copy of the additive
semigroup N of natural numbers. We show that even though there is no general
structural theory for such semigroups, which would yield positive results of the
above type ‘for free’, they nonetheless display the same behaviour as unions of
groups:

Main Theorem. Every semigroup which is a finite disjoint union of copies of the free
monogenic semigroup is finitely presented and residually finite.

We remark that it immediately follows from general theory that all such semi-
groups have decidable word problem and are hopfian. In fact, our proof of finite
presentability provides an explicit solution to the word problem.

Subsemigroups of the free monogenic semigroups, and in particular the so
called numerical semigroups (subsemigroups of finite complement) have been sub-
ject to extensive investigation over the years; see [11] for a comprehensive intro-
duction. In a sense in this paper we take a complementary view-point: instead of
looking at subsemigroups of N, we investigate semigroups which are ‘composed’
of finitely many copies of N.

The paper is organised as follows. In Section 2 we undertake an analysis of
multiplication in a semigroup under investigation, exhibiting certain strong regu-
larities which are all described in terms of arithmetic progressions. These results
are utilised to prove the finite presentability part of the Main Theorem in Section
3 and residual finiteness in Section 4. Finally in Section 5 we pose some questions
which in our opinion point the way for interesting future investigations.

2 Preliminaries: multiplication and arithmetic progressions

Let S be a semigroup which is a disjoint union of n copies of the free monogenic
semigroup:

S = ⊍
a∈A

Na,

where A is a finite set and Na = ⟨a⟩ for a ∈ A. In this section we gather some
background facts about S. The common feature is that they all elucidate a strong
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regularity with which elements of S multiply. We begin with two preliminary lem-
mas.

Lemma 2.1. Let a ∈ A and q ∈ N be fixed. There can be only finitely many elements x ∈ S
such that apx = ap+q for some p ∈ N.

Proof. Suppose to the contrary that there are infinitely many such x. Two of these
elements must belong to the same block Nc. Suppose these elements are cr and
cs for r ≠ s, and suppose we have ap1cr = ap1+q and ap2cs = ap2+q. Note that these
equalities imply apcr = ap+q for all p ≥ p1, and apcs = ap+q for all p ≥ p2. Let
p = max(p1, p2), and evaluate the element apcrs twice:

apcrs = ap(cr)s = ap cr . . . cr
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

s

= ap+q cr . . . cr
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

s−1

= ⋅ ⋅ ⋅ = ap+sq,

and, similarly,
apcrs = ap(cs)r = ap+rq.

But from r ≠ s it follows that ap+sq ≠ ap+rq, a contradiction.

Lemma 2.2. If apbq = ar holds in S for some a, b ∈ A and p, q, r ∈ N then p ≤ r.

Proof. Suppose to the contrary that r = p − s < p. Note that for every t ≥ p we have

at ⋅ asbq = at+sbq = at+s−papbq = at+s−par = at+s−p+p−s = at.

Hence, for every u ≥ 1 we have

at(asbq)uas = atas = at+s.

By Lemma 2.1 we must have

(asbq)uas = (asbq)vas

for some distinct u, v ∈ N. Post-multiplying by bq we obtain

(asbq)u+1 = (asbq)v+1.

This means that the element asbq ∈ S has finite order, a contradiction.

The next result shows that multiplication by x ∈ S cannot ’reverse’ the order of
elements from the copies of N:

Lemma 2.3. If a, b ∈ A and x ∈ S are such that

apx = br, ap+qx = bs

for some p, q, r, s ∈ N, then r ≤ s.
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Proof. The assertion follows from

aqbr = aqapx = ap+qx = bs,

and (the dual of) Lemma 2.2.

The next lemma is absolutely pivotal for proofs of both finite presentability and
residual finiteness:

Lemma 2.4. If
apx = br, ap+qx = br+s (1)

for some a, b ∈ A, x ∈ S, p, q, r ∈ N, s ∈ N0, then

ap+qtx = br+st

for all t ∈ N0.

Proof. First note that from (1) we have

br+s = ap+qx = aqapx = aqbr. (2)

We now prove the lemma by induction on t. For t = 0 we get the first relation in
(1). Assume the statement holds for some t. Then, by induction and (2),

ap+q(t+1)x = aqap+qtx = aqbr+st = aqbrbst = br+sbst = br+s(t+1),

proving the lemma.

Motivated by Lemma 2.4 we introduce the sets

T(a, x, b) = {y ∈ Na ∶ yx ∈ Nb} (a, b ∈ A, x ∈ S).

The following is immediate:

Lemma 2.5. For any a ∈ A and x ∈ S we have

Na = ⊍
b∈A

T(a, x, b).

By Lemmas 2.3, 2.4, if a set T(a, x, b) contains more than one element, then it
contains an arithmetic progression, and hence is infinite. In fact, if T(a, x, b) is
infinite then it actually stabilises into an arithmetic progression:

Lemma 2.6. If T = T(a, x, b) is infinite then there exist sets F = F(a, x, b), P = P(a, x, b)
such that the following hold:

(i) T = F ⊍ P;

(ii) P = {ap+qt ∶ t ∈ N0} for some p = p(a, x, b), q = q(a, x, b) ∈ N and ap−q /∈ T;

(iii) F ⊆ {a, . . . , ap−1} is a finite set.
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Proof. Let q ∈ N be the smallest number such that ap, ap+q ∈ T for some p ∈ N.
Furthermore, let p be the smallest such; in particular ap−q /∈ T. Let P = {ap+qt ∶ t ∈
N0}. By Lemmas 2.3, 2.4 we have P ⊆ T, and by minimality of q we have ap+tq+r /∈ T
for any t ∈ N0 and any r ∈ {1, . . . , q − 1}. Hence F = T ∖ P ⊆ {a, . . . , ap−1}, and the
lemma is proved.

The next lemma discusses the values in the set T(a, x, b) ⋅ x.

Lemma 2.7. For T = T(a, x, b) we either have ∣Tx∣ ≤ 1 or else yx ≠ zx for all distinct
y, z ∈ T.

Proof. Suppose that for some p, q, r, s ∈ N we have

apx = br, ap+qx = br+s, (3)

while for some u, v, w ∈ N we have

aux = bw, au+v = bw. (4)

From (3), (4) and Lemma 2.4 we have:

ap+qtx = br+st (t ∈ N), (5)

au+vtx = bw (t ∈ N). (6)

Let t1 ∈ N be such that
r + st1 > w, (7)

and let t2 ∈ N be such that
u + vt2 > p + qt1. (8)

The inequalities (7), (8) and relations (5), (6) with t = t1 and t = t2 respectively
contradict Lemma 2.3.

The rest of this section will be devoted to proving that there are only finitely
many distinct sets T(a, x, b), a fact that will be crucial in Section 4. We accomplish
this (in Lemma 2.13) by proving that there only finitely many distinct numbers
q(a, x, b) (Lemma 2.9), finitely many distinct numbers p(a, x, b) (Lemma 2.10), and
finitely many distinct sets F(a, x, b) (Lemma 2.12). We begin, however, with an
elementary observation, which must be well known, but we prove it for complete-
ness:

Lemma 2.8. For every n ∈ N and every r ∈ Q+ the set

{(m1, . . . , mn) ∈ Nn ∶
1

m1
+ ⋅ ⋅ ⋅ +

1
mn

= r}

is finite.
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Proof. We prove the assertion by induction on n, the case n = 1 being obvious. Let
n > 1, and assume the assertion is true for n − 1. Consider an n-tuple (m1, . . . , mn) ∈

Nn such that
1

m1
+ ⋅ ⋅ ⋅ +

1
mn

= r.

Without loss of generality assume m1 ≥ ⋅ ⋅ ⋅ ≥ mn. Then we must have 1/mn ≥ r/n,
and so mn ≤ n/r. Thus there are only finitely many possible values for mn. For each
of them, the remaining n − 1 numbers satisfy

1
m1

+ ⋅ ⋅ ⋅ +
1

mn−1
= r −

1
mn

,

and by induction there are only finitely many such (n − 1)-tuples.

Lemma 2.9. The set
{q(a, x, b) ∶ a, b ∈ A, x ∈ S}

is finite.

Proof. Fix a ∈ A, x ∈ S, and notice that at least one of the sets T(a, x, b) (b ∈ A) is
infinite by Lemma 2.5. Let

m = lcm{q(a, x, b) ∶ b ∈ A, ∣T(a, x, b)∣ = ∞}.

Recall that all the sets F(a, x, b) are finite, and let r ∈ N be such that

r > max ⋃
b∈A

F(a, x, b).

Let I = {ar, ar+1, . . . , ar+m−1}, an ‘interval’ of size m. From Lemma 2.6 (iii) we have
I ∩F(a, x, b) = ∅ for all b ∈ A, so Lemma 2.5 implies that I is the disjoint union of sets
I ∩ P(a, x, b) (b ∈ A). Since for every b ∈ A with P(a, x, b) ≠ ∅ we have q(a, x, b) ∣ m,
the set I contains precisely m/q(a, x, b) elements from P(a, x, b). It follows that

∑
b∈A

m
q(a, x, b)

= m,

and hence

∑
b∈A

1
q(a, x, b)

= 1.

The assertion now follows from Lemma 2.8.

Lemma 2.10. The set
{p(a, x, b) ∶ a, b ∈ A, x ∈ S}

is finite.
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Proof. Fix a, b ∈ A, x ∈ S, and for brevity write p = p(a, x, b), q = q(a, x, b) . Recall
that p has been chosen to be the smallest possible with respect to the condition that

p + qt ∈ T(a, x, b) (t ∈ N0). (9)

Recalling Lemma 2.9, let

Q = max{q(c, y, d) ∶ c, d ∈ A, y ∈ S}.

Assume, aiming for contradiction, that

p > 2nQ.

Since Q ≥ q we have that p − 2nq > 0. Consider the n pairs

{ap−(2t−1)q, ap−2tq} (t = 1, . . . , n).

By Lemmas 2.3, 2.4 and minimality of p we cannot have both members of one of
these pairs belong to T(a, x, b). Hence at least one member in each pairs belongs to
some T(a, x, c) with c ≠ b. By the pigeonhole principle two of these must belong to
the same T(a, x, c), say

ap−uq, ap−vq ∈ T(a, x, c)

for some 1 ≤ v < u ≤ 2n. Again by Lemmas 2.3, 2.4 we have that

ap−uq+(u−v)qt ∈ T(a, x, c)

for all t ∈ N0. On the other hand for t sufficiently large (e.g. t ≥ u) we have

p − uq + (u − v)qt ≥ p,

so that
p − uq + (u − v)qt = p +wq

for some w ∈ N0, and so from (9) we have

ap−uq+(u−v)qt ∈ T(a, x, b) ≠ T(a, x, c),

a contradiction. We conclude that p(a, x, b) ≤ 2nQ for all a, b ∈ A, x ∈ S, where the
right hand side does not depend on a, b or x.

In order to prove our final ingredient, that there are only finitely many distinct
sets F(a, x, b), we require one more elementary fact:

Lemma 2.11. Consider a finite collection of arithmetic progressions:

Ri = {pi + tqi ∶ t ∈ N0} (i = 1, . . . , n).

If there exists p ∈ N such that

[p,∞) ⊆
n
⋃
i=1

Ri,

then
[p′,∞) ⊆

n
⋃
i=1

Ri,

where p′ = max{p1, . . . , pn}.

7



Proof. If p ≤ p′ there is nothing to prove. Otherwise the assertion follows from
the fact that for every m ≥ p′ and every i = 1, . . . , n we have m ∈ Ri if and only if
m + qi ∈ Ri.

Lemma 2.12. The set
{F(a, x, b) ∶ a, b ∈ A, x ∈ S}

is finite.

Proof. Fix a ∈ A, x ∈ S. Finitely many arithmetic progressions P(a, x, b) (b ∈ A,
∣T(a, x, b)∣ = ∞) eventually cover the block Na by Lemmas 2.5, 2.6. Hence, by
Lemma 2.11, they contain all elements at with

t ≥ M = max{p(a, x, b) ∶ b ∈ A}.

Hence every F(a, x, b) (b ∈ A) is contained in {a, . . . , aM−1}. Since the numbers
p(a, x, b) are uniformly bounded by Lemma 2.10 the assertion follows.

Lemma 2.13. The set
{T(a, x, b) ∶ a, b ∈ A, x ∈ S}

is finite.

Proof. This follows from Lemmas 2.6, 2.9, 2.10, 2.12.

3 Finite presentability

Let S be a semigroup, and let A be a generating set for S. Denote by A+ the free
semigroup on A; it consists of all words over A. Let ε denote the empty word, and let
A∗ = A+ ∪{ε}. Since A is a generating set for S, the identity mapping on A induces
an epimorphism π ∶ A+ → S. The kernel ker(π) is a congruence on S; if R ⊆ A+ ×A+
is a generating set for this congruence we say that ⟨A ∣ R⟩ is a presentation for S.
We say that S satisfies a relation (u, v) ∈ A+ ×A+ if π(u) = π(v); we write u = v in this
case. Suppose we are given a set R ⊆ A+ × A+ and two words u, v ∈ A+. We say that
the relation u = v is a consequence of R if there exist words u ≡ w1, w2, . . . , wk−1, wk ≡ v
(k ≥ 1) such that for each i = 1, . . . , k − 1 we can write wi ≡ αiuiβi and wi+1 ≡ αiviβi
where (ui, vi) ∈ R or (vi, ui) ∈ R.

It is well known that the following are equivalent:

(P1) ⟨A ∣ R⟩ is a presentation for S.

(P2) S satisfies all relations from R, and every relation that S satisfies is a conse-
quence of R.

(P3) S satisfies all relations from R, and there exists a set W ⊆ A+ such that π maps
W injectively into S, so that for every u ∈ A+ there exists w ∈ W such that
u = w is a consequence of R.
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[(P1)⇔(P2) is [8, Proposition 1.4.2]. (P2)⇒(P3) is proved by choosing a single
preimage for every s ∈ S, and letting the resulting set be W. (P3)⇒(P2) is obvious.]
The set W in (P3) is referred to as a set of normal forms for elements of S.

We are now ready to prove the finitely presented part of the Main Theorem.

Theorem 3.1. Every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup is finitely presented.

Proof. We continue using notation from Section 2. Thus S = ⊍a∈A Na, and Na = ⟨a⟩.
The set

W = {ak ∶ a ∈ A, k ∈ N}

is a set of normal forms for S. Hence for any a, b ∈ A and k, l ∈ N there exist unique
α(a, k, b, l) ∈ A and κ(a, k, b, l) ∈ N such that

akbl = [α(a, k, b, l)]κ(a,k,b,l). (10)

It is easy to see that generators A and relations (10) provide an (infinite) presenta-
tion for S; for instance, condition (P3) is clearly satisfied.

Now we claim that the (still infinite) presentation with generators A and rela-
tions

akb = [α(a, k, b, 1)]κ(a,k,b,1), (a, b ∈ A, k ∈ N) (11)

also defines S. Indeed, the above set of relations is contained in (10), and so S
satisfies (11). We now show that a general relation from (10) is a consequence of
(11). We do this by induction on l. For l = 1 we actually have a relation from (11),
and there is nothing to prove. Assume the assertion holds for some l. Then we
have

akbl+1 ≡ akblb
= [α(a, k, b, l)]κ(a,k,b,l)b (by induction)
= [α(α(a, k, b, l), κ(a, k, b, l), b, 1)]κ(α(a,k,b,l),κ(a,k,b,l),b,1)

(by (11))
≡ [α(a, k, b, l + 1)]κ(a,k,b,l+1). (by uniqueness of normal forms)

Therefore, every relation (10) is a consequence of (11). Since (10) is a presentation
for S, so is (11).

For any a, b, c ∈ A consider the set T(a, b, c). Note that for every ai ∈ T(a, b, c)
there exists a unique j ∈ N such that aib = cj. Let Ra,b,c be the set of all these
relations; clearly ∣Ra,b,c∣ = ∣T(a, b, c)∣.

Next we claim that for any a, b, c ∈ A there exists a finite set of relations R○
a,b,c ⊆

Ra,b,c such that all relations in Ra,b,c are consequences of R○
a,b,c. Indeed, if T(a, b, c)

is finite (i.e. ∣T(a, b, c)∣ ≤ 1) the assertion is obvious. So suppose that T(a, b, c) is
infinite. By Lemma 2.6 we have

T(a, b, c) = F ∪ P,

where P = {ap+tq ∶ t ∈ N0} and F ⊆ {a, . . . , ap−1}. Now, if

apb = cr, ap+qb = cr+s, (12)
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then by Lemma 2.4 we have

ap+tqb = cr+ts (t ∈ N0). (13)

A closer inspection of the proof of Lemma 2.4 shows that in fact relations (13) are
consequences of (12), in the technical sense above. On the other hand, relations
(13) are precisely all the relations aib = cj with ai ∈ P. There remain finitely many
relations with ai ∈ F, and the claim follows.

To complete the proof of the theorem, note that the set of defining relations (11)
is the union⋃a,b,c∈A Ra,b,c. Hence all these relations are consequences of⋃a,b,c∈A R○

a,b,c,
which is a finite set because A and all R○

a,b,c are finite.

4 Residual finiteness

A semigroup S is said to be residually finite if for any two distinct elements s, t ∈ S
there exists a homomorphism φ from S into a finite semigroup such that φ(s) ≠

φ(t). It is well known that the following are equivalent:

(RF1) S is residually finite.

(RF2) There exists a congruence ρ of finite index (i.e. with only finitely many equiv-
alence classes) such that (s, t) /∈ ρ.

(RF3) There exists a right congruence ρ of finite index such that (s, t) /∈ ρ.

[(RF1)⇔(RF2) is an immediate consequence of the connection between homo-
morphisms and congruences via kernels. (RF2)⇒(RF3) is trivial. (RF3)⇒(RF2)
follows from the fact that for a right congruence ρ of finite index, the largest two-
sided congruence contained in ρ also has finite index; see [13, Theorem 2.4].]

In this section we prove the residual finiteness part of the Main Theorem, i.e.
we prove that every semigroup which is a disjoint union of finitely many copies of
the free monogenic semigroup is residually finite. So, let S be such a semigroup,
and let all the notation be as in Section 2. Define a relation ρ on S as follows:

(x, y) ∈ ρ⇔ (∀z ∈ S1)(∃a ∈ A)(xz, yz ∈ Na).

Intuitively, two elements (x, y) of S are ρ-related if every pair of translates by the
same element of S1 belongs to a single block. In particular, if (x, y) ∈ ρ then x and
y are powers of the same generator a ∈ A, i.e.

ρ ⊆ ⋃
a∈A

Na × Na. (14)

The following is obvious from the definition:

Lemma 4.1. ρ is a right congruence.
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An alternative description of ρ is provided by:

(ai, aj) ∈ ρ⇔ (∀x ∈ S)(∃b ∈ A)(ai, aj ∈ T(a, x, b)); (15)

the proof is obvious. This description enables us to prove:

Lemma 4.2. ρ has finite index.

Proof. From (15) it follows that the ρ-class of an element ai ∈ S is

aiρ = ⋂{T(a, x, b) ∶ x ∈ S, b ∈ A, aix ∈ Nb}. (16)

By Lemma 2.13 there are only finitely many distinct sets T(a, x, b). Hence there are
only finitely many intersections (16), and the assertion follows.

For each a ∈ A, consider the restriction

ρa = ρ∣Na .

From Lemmas 4.1, 4.2 it follows that ρa is a right congruence of finite index on Na.
But Na, being free monogenic, is commutative, and so ρa is actually a congruence.
Furthermore, congruences on a free monogenic semigroup are well understood,
and we have that

ρa = {(ai, aj) ∶ i = j or (i, j ≥ pa & i ≡ j (mod qa))},

for some pa, qa ∈ N; see [6, Section 1.2].
Motivated by this, for any pair (x, y) ∈ ρ we define their distance as

d(x, y) =
∣i − j∣

qa
if x = ai, y = aj.

Lemma 4.3. If x, y, z ∈ S are such that (x, y) ∈ ρ and x ≠ y then

d(x, y) ∣ d(xz, yz).

Proof. Since ρ is a right congruence we have (xz, yz) ∈ ρ, and so d(xz, yz) is defined.
If xz = yz there is nothing to prove, so suppose xz ≠ yz. Write

x = ar, y = as,

where r, s ≥ pa, r ≡ s (mod qa), r ≠ s. Without loss of generality assume s > r so
that s = r + tqa for some t ∈ N. Notice that (ar, ar+qa) ∈ ρ; furthermore we must have
arz ≠ ar+qa z by Lemma 2.7. Therefore

arz = bu, ar+qa z = bv, (17)

for some u, v ≥ pb, u ≡ v (mod qb), u < v. Write v = u +wqb, w ∈ N. Equalities (17)
become

arz = bu, ar+qa z = bu+wqb ,
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and Lemma 2.4 yields
ar+tqa z = bu+twqb .

Therefore

d(xz, yz) = d(arz, ar+tqa z) = d(bu, bu+twqb) = tw = wd(ar, ar+tqa) = wd(x, y),

as required.

We are now ready to prove:

Theorem 4.4. Every semigroup which is a disjoint union of finitely many copies of the
free monogenic semigroup is residually finite.

Proof. Let S be such a semigroup, with all the foregoing notation remaining in
force. Let x, y ∈ S be two arbitrary distinct elements. By (RF3) it is sufficient to
prove that x and y are separated by a right congruence of finite index. If (x, y) /∈ ρ
then ρ is such a congruence by Lemmas 4.1, 4.2. So suppose (x, y) ∈ ρ, say with
x, y ∈ Nb, and let

d(x, y) = d > 0.

Let σ be the right congruence on S generated by the set

G = {(apa , apa+2dqa) ∶ a ∈ A}.

Clearly σ is a refinement of ρ (i.e. σ ⊆ ρ). Notice that G contains one pair of distinct
elements from each block Na. Hence the restriction of σ to each Na is a non-trivial
congruence, and so has finite index. Therefore σ itself has finite index too.

We claim that (x, y) /∈ σ. Suppose otherwise; this means that there is a sequence

x = u1, u2, . . . , um = y

of elements of S, such that for each i = 1, . . . , m − 1 we can write

ui = vizi, ui+1 = wizi,

for some vi, wi ∈ S, zi ∈ S1, satisfying (vi, wi) ∈ G or (wi, vi) ∈ G. (This is a well
known general fact; see for example [6, Section 8.1] .) Without loss of generality
we may assume that all ui are distinct. From σ ⊆ ρ it follows that all ui belong to
the block Nb, say

ui = bsi (i = 1, . . . , m).

By definition of G and Lemma 4.3 we have that 2d ∣ d(ui, ui+1) for all i = 1, . . . , m−1.
This is equivalent to

si ≡ si+1 (mod 2qbd) (i = 1, . . . , m − 1),

from which it follows that s1 ≡ sm (mod 2qbd), and hence 2d ∣ d(x, y) = d, a contra-
diction.
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5 Concluding remarks

Arguably, the free monogenic semigroup N is the most fundamental commutative
semigroup. It is well known that all finitely generated commutative semigroups
are finitely presented and residually finite. Finite presentability was first proved
by Rédei [10]; see also [5, Section 9]. Residual finiteness was proved by Malcev
[9]; see also [2, 7]. In this paper we have shown that disjoint unions of copies of
N (which, of course, need not be commutative) in this respect behave like commu-
tative semigroups. It would be interesting to know if this generalises to unions of
commutative semigroups:

Question 5.1. Is it true that every semigroup which is a finite disjoint union of
finitely generated commutative semigroups is necessarily: (a) finitely presented;
(b) residually finite?

By way of contrast, there is no reason to believe that our results would gener-
alise to disjoint unions of copies of a free (non-commutative) semigroup of rank
> 1.

Question 5.2. Does there exist a semigroup S which is a disjoint union of two
copies of a free semigroup of rank 2 which is not: (a) finitely presented; (b) residu-
ally finite?

Finally, it would be interesting to know how the subsemigroups of semigroups
investigated in this paper behave. Since residual finiteness is preserved under tak-
ing substructures, they are certainly all residually finite. Also, they are all finitely
generated, which follows from the observation that all subsemigroups of N are
finitely generated.

Question 5.3. Is every subsemigroup of every semigroup which is a disjoint union
of finitely many copies of the free monogenic semigroup finitely presented?
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