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ABSTRACT 

Management and conservation of populations of animals requires 

information on where they are, why they are there, and where else they 

could be. These objectives are typically approached by collecting data on the 

animals’ use of space, relating these to prevailing environmental conditions 

and employing these relations to predict usage at other geographical regions. 

Technical advances in wildlife telemetry have accomplished manifold 

increases in the amount and quality of available data, creating the need for a 

statistical framework that can use them to make population-level inferences 

for habitat preference and space-use. This has been slow-in-coming because 

wildlife telemetry data are, by definition, spatio-temporally autocorrelated, 

unbalanced, presence-only observations of behaviorally complex animals, 

responding to a multitude of cross-correlated environmental variables. 

 I review the evolution of techniques for the analysis of space-use and 

habitat preference, from simple hypothesis tests to modern modeling 

techniques and outline the essential features of a framework that emerges 

naturally from these foundations. Within this framework, I discuss eight 

challenges, inherent in the spatial analysis of telemetry data and, for each, I 

propose solutions that can work in tandem. Specifically, I propose a logistic, 

mixed-effects approach that uses generalized additive transformations of the 

environmental covariates and is fitted to a response data-set comprising the 

telemetry and simulated observations, under a case-control design.  

 I apply this framework to non-trivial case-studies using data from 

satellite-tagged grey seals (Halichoerus grypus) foraging off the east and 

west coast of Scotland, and northern gannets (Morus Bassanus) from Bass 

Rock. I find that sea bottom depth and sediment type explain little of the 

variation in gannet usage, but grey seals from different regions strongly 

prefer coarse sediment types, the ideal burrowing habitat of sandeels, their 

preferred prey. The results also suggest that prey aggregation within the 

water column might be as important as horizontal heterogeneity. More 

importantly, I conclude that, despite the complex behavior of the study 

species, flexible empirical models can capture the environmental 

relationships that shape population distributions. 
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1. GENERAL INTRODUCTION 

______________________________________________________________ 

 

 

1.1 Studies of space use and habitat preference 

Animals meet their requirements for survival, growth and reproduction 

by exploiting available resources within the restrictions imposed by their 

physiology and environment. Management and conservation of animal 

populations require a scientific understanding of this process attained only 

by viewing it in its spatial context (Levin 1992). That is why an increasing 

number of papers in applied ecology are concerned with where a particular 

organism is (Kernohan et al. 1998, Blundell et al. 2001, Matthiopoulos 

2003a, Matthiopoulos et al. 2004), why it is there (Johnson 1980, Manly et 

al. 1993, Arthur 1996, Boyce and McDonald 1999) and where else it is likely 

to be (Buckland and Elston 1993, Guisan & Zimmermann 2000, Guisan et al. 

2002, Scott et al. 2002, Wiens 2002). These objectives are typically 

approached by collecting data on the animals’ use of space, relating these 

observations to prevailing environmental conditions and employing these 

relations to predict usage at other points in space. 

Traditionally, space-use data were obtained from transect surveys 

(Buckland et al. 1993) which record animals in the vicinity of a set of 

sampling locations. For example, in aerial or ship-based surveys the 

sampling locations are arranged along line transects while in trapping grids 

the sampling locations are point transects. Since this approach focuses on 

individual points in space, sightings of animals can be low, particularly for 

rare species living in inaccessible environments. Alternatively, wildlife 

tracking techniques focus on the individual animal. Radio- and satellite-

telemetry have made full use of recent advances in communication and 
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information technology (White and Garrot 1990, Priede & Swift 1992, Fedak 

et al. 2002), increased the volume of data on animal usage, the spatio-

temporal range of observation and, consequently, the number of field studies 

on space-use and habitat preference. 

The concept of habitat preference (also known as resource selection) 

attempts to quantify the inherent needs of animals, as expressed in the 

environment in which they were observed (Johnson 1980, Manly et al. 1993). 

Studies on preference originally used hypothesis testing to compare between 

sets of contrasting environmental conditions. More recently, environmental 

conditions have been incorporated as covariates in spatial models of usage 

(Boyce and McDonald 1999, Buckland and Elston 1993). In addition to 

searching for the relevant environmental variables, these studies also 

quantify the animals’ response to them. Because of their perceived potential 

for prediction, these statistical developments are fuelling the explosive 

increase of quantitative analyses in applied, spatial ecology (Guisan and 

Zimmermann 2000, Latimer et al. 2006, Pearce and Boyce 2006, Redfern et 

al. 2006).  

However, these analyses are faced with inherent problems such as the 

cross-correlation between environmental variables, spatial autocorrelation in 

animal distribution, variable detectability of animals in different 

environments, various imbalances in sampling effort, unequal accessibility 

of different points in space and the animals’ complex responses to their 

environment. Furthermore, the increasing power of telemetry methods 

presents additional demands for covariate data at the appropriate temporal 

and spatial scale and the focus of telemetry studies on a few individuals 

presents new challenges for population-level inference. Although these 

problems are shared by most studies of space-use and habitat preference 

there have been few comprehensive attempts to identify them, review 

existing solutions and draw on recent advances in statistical modeling for 

new ones. Hence, although most of these problems have, individually, 

received attention in the statistical literature, I am not aware of any 

analyses of wildlife telemetry data that deal with all of these problems 

simultaneously. 
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1.2 Definitions 

In this thesis, I draw heavily from three areas of research: general 

spatial modelling, the study of habitat preference and the analysis of 

movement of individuals. Each of these areas has developed its own 

terminology that, in this study, would lead to redundancy (more than one 

term for the same concept) and confounding (more than one meaning to the 

same term) (Hall et al. 1993). To aid clarity and consistency, at least within 

this thesis, I precede the main body of this work with a brief section of 

definitions. 

Geographical space comprises the three dimensions of latitude, longitude 

and altitude/depth, usually projected onto a Cartesian system of coordinates. 

Without loss of generality, I restrict my attention to the two dimensions of 

longitude and latitude. The spatial distribution of a species is the density of 

animals (or of their usage) over geographical space. According to Turchin 

(1998), this typifies the Eulerian, or coordinate-based approach, followed by 

most studies in this field, as opposed to the Lagrangian, or individual-based 

approach, taken by many behavioral studies. 

Environmental space comprises multiple dimensions each of which 

represents a biotic or abiotic environmental variable. The environmental 

variables that correlate with the density of a species in space are called 

covariates to that species’ spatial distribution. In some studies, longitude 

and latitude (or flexible functions of longitude and latitude) are used as 

candidate covariates instead of unknown environmental variables (e.g. 

Borchers et al. 1997). Also, altitude and depth which are generally not used 

for mapping usage and preference, are often used as candidate covariates 

(e.g. Sjoberg and Ball 2000, Wright et al. 2000). A resource is an 

environmental variable that can be depleted by an organism. An 

environmental condition is a particular value of an environmental variable. 

An environment is defined as a combination of conditions – a single point in 

environmental space.   

The term habitat is more ambiguous. Traditionally (Whittaker & Root 

1973) and in common use, it signified the entire region in geographical or 

environmental space within which a particular organism lives. So, for 

example, wildlife documentaries will refer to a rolling grassland scattered 
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with shrubs and isolated trees, that can be found between a tropical 

rainforest and a desert as “lion habitat”. This species-specific definition of 

habitat is not very useful for modeling usage or preference because it does 

not account for gradations in density or usage.  Alternatively, habitat can be 

defined as any collection of environments. Hence, grassland scattered with 

shrubs and isolated trees, that can be found between a tropical rainforest 

and a desert could be called “savannah”. This enables us to identify it as the 

grouping of environmental conditions used by lions, but also by African 

elephants, wild dogs and nigriceps ants. This species-independent definition 

of habitat means that different organisms will use a particular habitat to 

variable degrees and different habitats will be used by different groups of 

organisms.  

I prefer the second definition of habitat because it allows comparisons 

between species. In the simplest case, a habitat is a cuboid in environmental 

space defined by ranges along each of the environmental variables. Such a 

classification scheme groups similar environments under the same habitat 

and is the same for all species. The resolution of the classification (i.e. the 

inverse of the volume enclosed by the cuboid) gives rise to two trivial cases: 

Under the coarsest classification scheme possible, all environments belong to 

the same habitat. Conversely, in the finest classification scheme possible, 

each environment is a unique habitat and every point in geographical space 

is a unique habitat. 

Intuitively, preference can be defined as the process that determines the 

animals’ response to different habitats. However, for the purposes of 

statistical analysis, a usable definition for a response variable must be 

quantitative and measurable in the field. Deriving such a measure for 

habitat preference is not trivial because the term refers to a complicated, 

unobservable, process driven by physiological, behavioral and energetic 

constraints and demands. As such, habitat preference can only be measured 

by proxy, via observations of the individuals’ use of different habitats, 

wherever they occur. 

Early work using hypothesis testing, pointed out that preference is 

revealed by unequal usage of two habitats offered to the animals in equal 

amounts (Johnson 1980). This was later generalized by defining the lack of 
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preference as the use of each habitat in proportion to its overall availability 

in geographical space (Manly et al. 1993). This definition, implicitly and, 

perhaps, inappropriately (Matthiopoulos 2003b and problem 2 below) 

identifies overall availability of habitats with availability to the study 

animals. 

Attempts to quantify preference as a function of environmental 

covariates have led to the development of Resource Selection Functions 

(RSFs – reviewed in Boyce and McDonald (1999)). These relate a species’ 

spatial distribution (presence or density) to environmental variables that 

may or may not be depleted by the animals (so, Environmental Selection 

Functions might have been a more intuitive name). 

With all of the above in mind, I adopt the following working definition: 

Given a habitat classification scheme (including the two trivial schemes 

outlined above), habitat preference is the ratio of the use of a habitat over its 

availability, conditional on the availability of all habitats to the study 

animals. 

Further to enhance clarity, I use the same notational conventions and 

symbols throughout the thesis. I have collected these in Appendix 1.A.  

 

 

1.3 PhD objectives  

The overall thrust of this PhD is to understand which environmental 

variables influence the spatial distribution of top-marine predators and to 

employ such relationships to make spatial predictions of usage. I use the 

grey seal (Halichoerus grypus) and the gannet (Morus bassanus) as two case 

studies. Due to the lack of detailed quantitative information on causal 

environmental variables and the aspects of behaviour and life history that 

shape the decision of the individual I've chosen to construct an empirical 

model at the level of the population rather than a mechanistic, individual-

based simulation  (see also §6.3.1). Currently, no statistical model-

framework exists that can use telemetry data to answer these biological 

questions. As a consequence, development of a model-framework forms a 



 

 

INTRODUCTION 6 
................................................................................................................................................................................................................................ 

 

prerequisite for the biological objectives and a valid research aim in itself. 

The objectives of this PhD in the order in which they are addressed are: 

 

1   ...to provide a comprehensive review of existing statistical methods 

historically used to analyse habitat preference and space use 

2   ...to provide an overview of analytical challenges faced by studies on 

habitat preference that uses wildlife telemetry data, to review 

solutions and suggest appropriate alternatives where needed and 

combine those into a single unified statistical framework 

3   ...to validate the proposed model framework using a total of three 

case studies which allow for both inter-species and inter-region 

comparisons 

4   ...to gain biological insights about the relationship between the 

environment and the distribution of top marine predators 

5   ...to place the work of this PhD in a wider context and to recommend 

future directions of habitat preference and space use studies 

 

 

1.4 Thesis structure 

In chapter 2, I review statistical methods that have traditionally been used 

to analyse habitat preference and I discuss their limitations. I next show 

how the basic framework can be extended in stages to overcome its 

limitations. I then discuss eight problems that have an adverse effect on the 

framework’s ability to estimate, infer and predict habitat preference and 

space use. These problems are 1) missing environmental data, 2) unequal 

accessibility of points in space, 3) unbalanced sampling effort across 

individuals, 4) multi-colinearity of environmental covariates, 5) spatial  and 

6) temporal autocorrelation in wildlife telemetry observations, 7) unequal 

detectability of animals in different habitats and 8) the animals’ complex 

response to the their environment. I review existing, and, where necessary, 

propose alternative solutions to these problems. 

 

In chapter 3, I apply the proposed statistical model framework to a telemetry 

data set from grey seals foraging off the east coast of Scotland between 1991 
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and 2001. Static environmental covariates (similar to those used in a 

qualitative study by McConnell et al. (1999)), such as sediment type and 

depth were used to investigate the grey seals’ habitat preference. The model 

was fitted to data from the Farne Isle, but was also used to make spatial 

predictions of usage for Abertay, a different, albeit neighbouring haul-out 

site. 

 

In chapter 4, I analyse data from adult Gannets making foraging trips from 

Bass Rock during the breeding season of 1998. As well as static 

environmental covariates, I have used dynamic variables such as satellite-

derived weekly composites of sea surface temperature and chlorophyll 

concentrations as candidate covariates in the model. 

 

In chapter 5, I investigate space use and habitat preference of grey seals 

foraging off the west coast of Scotland using data collected in 2002 and 2003.  

One key characteristic of this study region is that a large number of 

environmental variables are available, which have entered the model as 

candidate covariates. I have used this model, its parameter estimates and 

August counts of grey seals on land made throughout the region, to make 

predictions of absolute at-sea density. 

 

Finally, in chapter 6, the general discussion, I have provided a summary of 

my model framework and illustrated its advantages and limitations. I take 

the opportunity to discuss the biological results of the three case studies and  

make comparisons across species (chapter 3 and 4) and regions (chapter 3 

and 5).  Finally, I discuss the wider context of my work and make 

suggestions for future research. 
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Appendix 1.A 

 
VARIABLES AND PARAMETERS 

 

ui Number of telemetry observations or the number of used spatial-grid 

cells occurring in the ith habitat 

ai total area taken up by the ith habitat 

oi number of unoccupied spatial-grid cells in the ith habitat 

c area of a cell in the spatial grid 

wi selectivity or preference index for the ith   habitat 

pi relative availability of habitat i or probability of selecting a cell belonging 

to the ith  habitat from all cells in the study area 

r average number of empty cells selected for each used cell, or the 

number of absence points generated, on average, per telemetry location 

h expected proportion of used cells in the case-control sample 

ni the total number of cells in the case-control data set that belong to the 

i'th habitat 

s point in space corresponding to coordinates (x,y) 

ka the user-defined quantity of expected number of absences generated in 

space 

ku expected size of telemetry data set 

υ(s) underlying distribution of space-use, such that 1)( =∫ x
xx

All
dυ    

α(s) assumed distribution of accessibility, such that 1)( =∫ x
xx

All
dα  

A the study region 

A total area of study region A (km2) 

x explanatory variable 

z random effect covariate 

η linear predictor 

( )⋅g  Link function 

β Fixed-effect model parameter 

b Random-effect variable 
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ψ Variance-covariance matrix of the random effect 

ν Random-effects error term 

s(x) Smooth of an explanatory variable x  

( )⋅h  Individual basis function of a b-spline 

i,j,l,m,k Subscripts used to index habitats, covariates, the case-control data point, 

individual and spline basis function, respectively. 

^ observed value of a variable (e.g. iû ) 

~ predicted value of a variable (e.g. iu~ ) 

 
 



  

____________________________________________________________________ 

 

2. MODELLING HABITAT PREFERENCE 

AND 

SPACE-USE OF ANIMALS IN THE WILD 

____________________________________________________________________ 

 

 

 

Experimental studies measure how a “dependent” variable responds to one 

or a few explanatory variables, while the values of all other, possibly 

influential, variables are kept constant. Data collection studies conducted in 

the wild have only limited control over environmental conditions. Analysis of 

such data must therefore model the effect of all variables simultaneously. 

This gives rise to many challenges, the exact nature of which depends on the 

objectives of the study, the method of data collection and the biology of the 

study species. The objective of this thesis is to find out how the spatial 

distribution of animals relates to the distribution of environmental 

variables. In this chapter, I develop a unified framework for modelling space-

use and environmental preference (§2.1), and make appropriate adaptations 

to deal with the particular challenges associated with achieving this 

objective using telemetry data (§2.2).  

 Traditionally, this is done by classifying habitats on the basis of relevant 

environmental variables and testing for differences in use between those 

habitats while taking into account the unequal availability of habitats 

(§2.1.1). Alternatively, linear relationships between usage and those 

environmental variables that characterize habitats, can be estimated by 

means of linear regression models (for Gaussian response variables) and 

Generalized Linear Models (GLMs) (§2.1.2 and §2.1.3, respectively) with 
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categorical covariates. Such models have the additional advantage that they 

can make spatial predictions of usage. In §2.1.4, I show that by changing the 

study design (to a case-control) and the response variable (to binomial), 

reliance on an arbitrary habitat classification can be avoided. I fit a GLM 

with continuous covariates to such data. This type of model forms the 

foundation on which further extensions are built to deal with the difficulties 

that complicate the assessment of the true effect of environmental variables 

on the observed spatial distribution of animals. These result from the facts 

that raw environmental data don’t usually cover all of space and time 

(§2.2.1), not all points in space are equally accessible to all animals (§2.2.2), 

sampling effort is not balanced across individuals or types of animals (§2.2.3)  

strong correlation between environmental variables makes it complicated to 

unravel their effect on the response (§2.2.4), spatial (§2.2.5) and   temporal 

(§2.2.6) autocorrelation in animal movement causes data to be non-

independent, particular habitats can directly or indirectly impede telemetry 

observation (§2.2.7) and the nonlinearity of the relationships between 

animal distribution and environmental variables makes the use of linear 

models inappropriate  (§2.2.8) 

 

2.1 The Statistical Analysis of Habitat Preference 

2.1.1 Hypothesis testing 

Given sufficient time for movement, the expected spatial distribution of a 

population of unconstrained random walkers within a region of space is 

approximately uniform. Although the random walk is rarely a realistic 

description of animal movement it is, nevertheless, a convenient null model 

against which hypotheses about individual movement can be tested (Turchin 

1998, Morales et al. 2004). Consequently, the uniform distribution is a 

convenient null model for testing hypotheses about space-use and habitat 

preference (Manly et al. 1993). By definition, a species of random walkers 

show no habitat preference. Their uniform use of space means that they are 

expected to be observed in each habitat in proportion to its availability, the 

total area occupied by the habitat in geographical space. Deviations from 
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direct proportionality between usage and availability are interpreted as the 

tell-tale sign of habitat preference. The statistical significance of these 

deviations can be investigated using Chi-squared tests (Alldredge and Ratti 

1986, Alldredge and Ratti 1992). Alternatively, the null model of 

proportional use can be employed to derive selectivity indexes ( iw ) for the  

ith habitat such as the ratio between the expected number ( iu ) of wildlife 

telemetry observations occurring in the ith habitat over the total area ( ia ) 

taken up by that habitat (Manly et al. 1993), 

 

i

i
i a

u
w =                       ( 0>ia )                            (2.1) 

 

 The ratio of observed usage over availability ( ii aû ) can be treated as an 

estimate of iw  and analyzed by means of classic parametric techniques such 

as ANalysis Of VAriance (ANOVA) (Aebischer et al. 1993, Fox 1997) .  

 This approach suffers from three drawbacks. Firstly, while the 

hypothesis tests may provide useful insights, ANOVA is based on a 

simplistic model (i.e. nominal covariates only) and it is therefore rarely used 

and almost never useful for prediction. Secondly, it assumes that iw  is 

normally distributed with constant variance across different habitats. These 

assumptions rarely hold. Thirdly, it relies on an a-priori classification of 

habitats which may be arbitrary with respect to the study-animals. These 

problems can be incrementally dealt with by building on the basic ANOVA 

framework. 

 

2.1.2 Linear Regression with discrete covariates 

The ANOVA framework can firstly be extended into linear regression with 

discrete covariates (Agresti 1996, Fox 1997). This model can incorporate both 

ordinal and nominal covariates and can be used to generate predictions 

about the response variable. The ratio ii aû  of observed usage per unit area 

for the ith habitat is modeled as a normal variable with mean iw  and 
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constant variance 
2σ . The mean iw  is modeled as a linear combination of a 

total of n environmental conditions ijx  ( nj ,,1K= ) prevailing in the i th 

habitat  

 

          

jijii

iii

ii
i

i

xx

gw

aw
a

u

,1,10

1
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)(
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ˆ
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ηη

σ

+++=
==

>

−

L

                 (2.2) 

 

The term iη  is known as the linear predictor. In general, the function )(⋅g  

is called the link function. In the case of linear regression the link, and 

therefore its inverse )(1 ⋅−g , is the identity function.  Finally, x  denotes a 

discrete or discretized environmental variable, ijx  denotes the value taken 

by the j th environmental variable in the ith habitat under the habitat 

classification scheme employed and jβ  is the coefficient of the j th 

environmental variable. In discretized environmental variables, the values 

ijx  are conventionally (but not always, see Agresti 1996) the midpoints of the 

interval of discretization. Subject to the normality assumption in eq. 2.2 the 

coefficients jβ  are equivalently estimated either by least squares or 

maximum likelihood. The fact that the coefficients jβ  are subscripted by 

environmental variable and not by habitat, hints at the reason why eq. 2.2 is 

a predictive model: it attempts to describe a trend across environmental 

space and therefore provide estimates for the response variable in 

unobserved habitats. 

 Although this approach is capable of generating predictions, it still relies 

on an arbitrary classification and assumes normal errors with constant 

variance. These limitations can lead to poor overall predictions and 

misleading inferences about the significance of particular covariates.  In the 

next section, I discuss how this approach can be further expanded by 

relaxing the normality assumptions associated with the model’s response 

variable.  
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2.1.3. Generalized Linear Models with discrete covariates 

The number of telemetry locations observed in a particular habitat is a 

count. Further, if, for the purposes of data collection, storage, or analysis, 

geographical space is represented by a grid then the number of grid-cells 

belonging to a particular habitat will also be a count. Therefore, the response 

variable in eq. 2.1 will always be non-negative and usually a rational 

number. Furthermore, this response will have a skewed distribution for low 

counts. This contradicts the requirement for a real-valued response variable 

with constant variance, an essential part of the normality assumption made 

by ANOVA and linear regression alike. The number of telemetry 

observations in the ith habitat is more naturally modeled as a heterogeneous 

Poisson process with rate iii wau =  

 

jijii

ii

iii

xx

egw

wau
i

,1,10

1 )(

)(Poisson~ˆ

βββη
η η

+++=
== −

L

                                  (2.3) 

 

where iη  is the linear predictor, as in eq. 2.2. The expected number of 

telemetry observations in the ith habitat is also written as 

 

iia
i eu η+= )log(

                                                   (2.4) 

 

Eq. 2.3 is a Generalized Linear Model (GLM) which requires likelihood 

methodology for parameter estimation (Agresti 1996, Fox 1997). In the GLM 

terminology, eq. 2.3 and 2.4 describes a log-linear model and the term 

)log( ia  is known as the model’s offset.  

 This approach still requires a habitat classification. This is often 

constructed arbitrarily, prior to modeling and can severely prejudice the 

results of the analysis: If the classification is too fine, then the number of 

observations associated with each habitat may be too small to detect any 

differences between them. Conversely, making the classification too coarse 

merges habitats that appear similar to a human observer but may be 
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perceived differently by the animals. The trade-offs associated with the 

resolution of the habitat classification become more acute in studies with 

many environmental variables because the data become more thinly spread 

over a higher-dimensional environmental space. 

 Furthermore, the Poisson error distribution in eq. 2.3 may be unrealistic 

either due to a superabundance of zeros (e.g. resulting from a very fine 

habitat classification) or disproportionately high counts (e.g. resulting from 

unexplained aggregations of telemetry observations). This can be remedied 

by using a zero-inflated or otherwise over-dispersed Poisson error 

distribution (Lambert 1992, Welsh et al. 1996, Fox 1997) or by abandoning 

classification in geographical and environmental space, as described in the 

following section.   

 

2.1.4 Generalized Linear Models with continuous covariates 

In Appendix 2.A I explain how the discretization of geographical and 

environmental space can be abandoned in favor of a case-control design. This 

produces a binomial response variable ( lu ) which takes the values 1 for lth 

case-control data point if it belongs to the telemetry data, and 0 for a control 

data point. This response can be modeled as a Bernoulli process with 

probability of success lh  
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                                    (2.5) 

 

There are two points of contention concerning the response variable in eq. 

2.5 when it is fitted to case-control data. First, because the number of 

absences used to fit the model is determined arbitrarily, the case-control 

approach can quantify the relative importance of different covariates but not 

the absolute abundance of animals. Second, it has been suggested (Manly et 

al. 1993, Boyce and McDonald 1999) that in logistic models lh  is 
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proportional to space-use. Keating and Cherry (2004) have argued that this 

is not the case. In Appendix 2.A, I show that, for a large number of controls, 

lh  is, in fact, proportional to preference. An approximate relationship 

between the response variable and usage can be derived as follows: I assume 

that the telemetry observations ( 1=lu ) are generated from an 

heterogeneous, spatial Poisson process whose rate is proportional to the 

unknown, spatial probability density function )(sυ , where s is a position in 

geographical space (Fig. 2.1a). Similarly, the control observations ( 0=lu ) 

are generated from a user-defined spatial Poisson process with a rate )(sα  

(Fig. 2.1b). In the simplest case, where all points within a study area are 

assumed to be equally accessible, 
1)( −= Asα , where A is the total area of the 

study region. More complex spatial density functions can be used when such 

an approximation is inappropriate (e.g. for central-place foragers). 

 Indefinitely increasing the resolution of both spatial and environmental 

grid (operations O1 and O2, respectively in Appendix 2.A), means that the 

expected number of telemetry observations in the ith habitat iu  can be 

approximated by ( )cskuυ , where c is the area of a grid cell in geographic 

space and the proportionality constant υk  depends on the sampling intensity 

(number of animals tagged and frequency of telemetry locations) and can be 

thought of as the expected size of the telemetry data set. Similarly, the 

expected number of controls in the ith habitat ia pk  (see Appendix 2.A), can 

be approximated by ( )cskaα , where αk  is the user-defined quantity of the 

total, expected number of absences generated in space. Therefore it follows 

that after O1 and O2 the response variable ( )sXh  in eq. 2.5 as defined in 

A3, tends to  

 

( )
)()(

)(

ss

s
s υα

υ
υα

υ

kk

k
Xh

+
=                                             (2.6) 

 This probability ( )sXh depends on the values for the environmental 

covariates ( )LL ,,,1 jxxX =  observed at spatial location s (Fig. 2.1c). These 
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environmental conditions vary spatially (Fig. 2.1d) and so does ( )sXh  (Fig. 

2.1e). Finally, and most importantly, I can use the estimated dependence 

between h and X, to estimate spatial usage at location s. Equation 6. can be 

re-arranges as 

 

( )
( ) )(

1
)( ss

s

s αυ r
Xh

Xh

−
=                                            (2.7) 

 

Where, υα kkr =  is the number of controls selected per telemetry 

observation.  

 This is a local estimate of usage. Since it is only based on a random 

sample of controls, the cumulative of estimated usage over all space will 

usually deviate from unity and will need to be normalized. Experimentation 

with test data sets has indicated that this does not bias the estimates of 

usage. This would still need to be proven theoretically as part of future work. 

The normalized map of usage can be used to calculate the proportion of 

animals within a specified region (e.g. a Special Area of Conservation (SAC)), 

by integrating )(sυ  over that region. If the total number of animals in the 

region is also known from other sources, relative usage can be scaled up to 

create a map of absolute population density. 

 The case-control design also raises the issue of false absences (Boyce et 

al. 2002) which is an important problem for small-scale studies using spatial 

grids. However, the larger spatial scales covered by telemetry data, allow us 

to consider individual animals as practically dimensionless. This implies 

that the probability of encountering an animal at the exact coordinates of 

any arbitrarily chosen point in space is zero.  

 GLMs with continuous covariates accept non-normal response data, do 

not rely on arbitrary habitat classifications, and can make spatial 

predictions. Thus, they address all three of the problems historically 

associated with hypothesis testing in studies of habitat preference. I 

therefore use them as the foundation of our model framework.  
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Fig. 2.1 The thesis’ fundamental concepts illustrated with the aid of an 

artificial example. The underlying, unknown surface of space-use ( )sυ , 

described by the contours in (a), is sampled to generate the telemetry 

observations ( 1ˆ =u ), shown as black dots. Pseudo-absence data ( 0ˆ =u ) can 

be generated according to a spatial rate ( )sα . In (b), I have modeled the 

accessibility of different points in space from the simulated animals’ central 

place, to generate this rate. The distribution of usage in (a) is assumed to 

result from the animals’ response to a single, heterogeneously distributed 

environmental covariate (c). This unknown response is the expectation 

modeled by the response h in one-dimensional environmental space (d). 

Predictions of the response variable in geographical space (e) give a visual 

representation of preference . The use of simulated data in this example, 

allows us to perform a spatial comparison between predicted 

usage ( )sυ~ (filled contours) and true, unobserved usage ( )sυ  (bold contour 

lines) (f). 

 

2.2 Modeling habitat preference:  Problems and solutions 

The quality of a statistical model is determined by its accuracy, precision 

and parsimony (Buckland et al. 1997, Burnham and Anderson 2002). 

Specific properties of the environment, the characteristics of the study 

animals and the ways that both are sampled, can cause one or more of these 

characteristics to suffer. Loss of accuracy implies biased parameter 

estimates and predictions, and loss of precision leads to increased 

uncertainty in parameters and predictions. Loss in parsimony leads to over-

parameterized models capable of predicting a particular data set well, but 

liable to predict new data poorly. Below, I discuss eight problems that can 

cause such detrimental effects and propose appropriate solutions.  

 

2.2.1 Environmental data rarely coincide with usage data 

In trying to relate wildlife telemetry data to environmental variables I 

implicitly assume that the study animals experience the same conditions 

described by our environmental data sets and respond to them by being 
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present or absent from a particular location at a given time. If there are no 

delays in the animals’ response to local environmental conditions, this 

assumption requires that environmental data are available for those places 

and instances. However, environmental data are usually collected 

independently of wildlife telemetry data. Further, unwanted interference in 

environmental data collection (e.g. cloud cover obscuring remote sensing) 

and logistical constraints (e.g. limited observation time in transect surveys) 

mean that spatial coverage is rarely complete. Consequently, it is rarely 

known exactly what conditions the animals are responding to, at any given 

point in space and time. This reduces model precision and its effect becomes 

more acute with highly heterogeneous and dynamic environmental variables 

(Isaaks and Srivastava 1990). 

 To address the lack of environmental data, some modern tags also collect 

data about the animals’ environment (Fedak 2004, Cooke et al. 2004) but 

such valuable technological improvements tell us nothing about conditions 

at points not visited by the tagged animals. This information is just as 

important for the analysis of preference. 

 If there is temporal replication in the data collection for highly dynamic 

environmental variables (e.g. meteorological variables) it may be possible, to 

interpolate prevailing conditions at the time the wildlife telemetry data were 

being collected. However, modeling space-use and preference under changing 

environmental conditions still presents big challenges (Arthur 1996, 

Hjermann 2000, and discussions in Boyce et al. 2002). It is possible to avoid 

these difficulties by using only environmental variables whose spatial 

distribution remains constant over time (e.g. altitude or sea bottom depth) 

or, at least, stationary during the temporal scope of the study (e.g. January 

snow cover, over a decade). This still leaves the problem of incomplete 

spatial coverage. 

 If the measurement errors produced by the environmental survey 

method are negligible and the environmental variable is time-invariant (as 

is often the case with geophysical variables) then spatial interpolation 

methods (Ripley 1981, Kafadar and Horn 2002) can be used to estimate the 

values of the variable in-between the survey locations. The interpolated 

surface is constrained to pass through the observations at the survey 
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locations. However, if, the environmental data are affected by measurement 

error (e.g. data on prey density) or process stochasticity (e.g. meteorological 

variables), smoothing techniques are a more appropriate estimation method 

(Ripley 1981, Silverman 1986). Approaches such as kernel-smoothing 

(Silverman 1986), combined with cross-validation for the selection of the 

smoothing coefficient, attempt to reproduce the mean and underlying 

distribution of the stationary process that generated the survey data. Both 

interpolation and smoothing use the spatial autocorrelation in the 

environmental data (see §2.2.5 below) and can be seen as the two extremes 

of the methodological spectrum for density estimation. A third estimation 

technique, kriging (Isaaks and Srivastava 1990), first models spatial 

autocorrelation in the form of the variogram (the covariance between the 

values at sampling locations as a function of their distance) which it then 

uses for estimation. The intercept of the variogram, also known as the 

nugget, expresses the amount of stochasticity and measurement error in the 

data and can either be set by the user or estimated from the data – 

particularly if replicate measurements exist for the same survey locations. 

An appealing aspect of kriging is that it can behave as a spatial interpolator 

as well as a smoother depending on the variogram intercept. A shortcoming 

that ordinary kriging shares with many smoothing techniques is that it 

assumes the extent of spatial autocorrelation to be constant throughout the 

range of the data, i.e. the spatial process is assumed to be stationary. This 

can smooth out strong local gradients in certain regions of geographical 

space, as a result of weaker gradients elsewhere.  

 

2.2.2 Points in space are not equally accessible to the animals 

The precise definition of availability is important when modeling preference 

(eq. 2.1). The most obvious measure of availability is the total area taken up 

by a particular habitat. This either implies that animals have equal access to 

all points in geographical space (perfect mixing) or that, within their range 

of sensory perception, they experience a sample of habitats that is 

representative of the habitat composition of entire space (representative 

perception).  
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 The assumption of perfect mixing can only ever be approximately true 

and, in certain cases, it will be so seriously violated as to prejudice the 

analysis of preference. For example, in the case of central place foragers, 

accessibility of points in space decays with distance from the central place. 

At the population level, this is particularly evident in colonial animals 

(Matthiopoulos et al. 2004). The assumption of representative perception 

will be violated if the animals move little and the environmental conditions 

in neighboring sites are more similar than in sites further apart.  

 Most studies of preference take a pragmatic approach by focusing on 

arbitrarily-defined regions of geographical space (Manly et al. 1993). In some 

cases (e.g. lake-dwelling fish), it is easy to define such regions, but generally 

it is not. This issue was first addressed by Johnson (1980) who identified 

accessible space with an animal’s home range. This suffers from three 

problems: First, the usage threshold involved in the definition of home 

ranges is often arbitrary (Aebischer et al. 1993), second, not all points in the 

home range are equally accessible from its center and third, certain points 

may be outside the home range because, although they are accessible, they 

are not preferred. 

 Other researchers have taken a more mechanistic approach by 

calculating the accessibility of points in space from the animals’ starting 

position, speed and mode of movement, travel duration and travel 

medium/obstacles. Such models have been developed for both nomadic 

(Arthur 1996, Hjermann 2000) and central-place foragers (Matthiopoulos 

2003b), and although they vary in complexity (from simple diffusion models 

to complex individual-based simulations), they can all be parameterized 

from readily available, independent data. Their output is a spatial surface, 

which represents the likelihood of observing an animal at a given point, in 

the absence of habitat preference. It can be treated as a probability density 

function, from which random points can be sampled to construct the set of 

absence points in the case-control binomial model of eq. 2.5. In geographical 

space, the response variable can be interpreted as the probability that an 

accessible point is visited by the animals. Equivalently, in environmental 

space, the response variable is interpreted as the probability that a habitat 

that is available to the study animals is used by that animal. Therefore, 
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selecting the absence data from an accurate accessibility surface keeps the 

response variable (eq. 2.5) in agreement with the definition of preference (eq. 

2.1). 

 Certainly, accessibility surfaces will never be perfect and discrepancies 

between the response variable and true preference will cause the model to 

over- or under-predict. To absorb these residuals some measure of 

accessibility (e.g. distance from the central place) can be incorporated into 

the model as a candidate covariate. 

 

2.2.3 Sampling effort in telemetry studies is rarely balanced across 

individuals 

With the exception of studies focusing on rare or threatened species, where 

the focus is on the particular animals carrying the telemetry tags, most 

habitat preference studies aim to make inferences about the behavior of the 

entire population to which the tagged animals belong. All population-level 

inferences are subject to sampling uncertainty. In telemetry studies 

sampling uncertainty is usually large because, due to logistical constraints, 

the ratio of tagged to un-tagged animals is generally small and because 

sampling effort between tagged individuals is almost never balanced.  

Hence, different tags will provide us with different numbers of observations 

simply because tag-life is a stochastic variable, or because the behavior of 

individual animals may, for some reason, facilitate or impede information 

transmission. Also, capture and tagging effort may not be spatially uniform 

and might not sample animals of different ages and genders 

representatively. Therefore, estimating habitat preference by pooling 

telemetry data from all individuals is likely to bias the results towards 

certain data-rich individuals, types of individuals or regions of geographical 

space. The alternative, is to recognize the natural hierarchy of sampling 

units (Fig. 2.2) and to use an error structure that more accurately reflects 

the variability within and between different levels of this hierarchy (Gillies 

et al. 2006).  Multi-level or Mixed-effects models (Pinheiro and Bates 2000, 

Fox 2002), can simultaneously model the behavior of the average individual 

using the population mean (fixed-effect) and the variability in the behavior 
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across individuals using random effects.  Eq. 2.5 can be modified into a 

mixed-effects model as follows: 
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The coefficients b  are, themselves, random variables that can either be 

specified with a mean and variance, or modeled as functions of class-member 

characteristics. For example, to capture the individual variation within a 

group of animals, the class must be defined as the group of individuals. 

Class-member characteristics appropriate for that class might be an 

individual’s age, sex or mass. Hence, the coefficient mjb ,  that quantifies how 

the mth individual responds to the jth environmental variable can be given as 

a linear combination of individual-specific characteristics ( mkz , ) using 

coefficients ( jβ ) that refer to the entire group 

 

jmkkjmjjmj zzb νβββ +++++= KK ,,,11,0,,                          (2.9) 

 

Combining eq. 2.8 and 2.9 reveals that the inclusion of individual-specific 

characteristics ( mkz , ) enter the linear predictor as interactions with the 

environmental covariate ( jlx , ) 

 

( )LKKL jljlmkkjjlmjjljlmml xxzxzxxbb ,,,,,,11,,0,1,,1,0 νβββη ++++++++=  

(2.10) 

 

The coefficients β  are also known as the fixed effects. The random effect 

accounts for the within-class, in our application, between-individual 

variability. They are denoted as KK ,,,, 10 jννν  and are commonly assumed 

to have a joint multivariate normal distribution with mean zero and a 
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variance-covariance matrix Ψ , representing within-class variability  

(Pinheiro and Bates 2000). The estimation procedure for mixed-effects model 

returns values for the fixed effects and estimates of  Ψ  for the distribution 

of the random effects.  
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Fig. 2.2 Illustration of the hierarchy of sampling units in a telemetry data 

set. The population of animals (a) can be subdivided into many sub-

populations (b) each of which contains several individuals (c). Every 

individual makes foraging trips (d) to sea during which telemetry 

observations (e) are collected. 

 

In some cases, the responses of individuals to environmental variables are 

distributed non-normally around the population mean response. Specifically, 

a few individuals may have extreme responses (implying a non-normal 

kurtosis for the random effect) or their responses may be asymmetric around 

the average population response (giving rise to a skewed distribution for the 

random effect). These two deviations from normality cause imprecision in 

the estimates of variance for the random effects and biases in the estimates 

of the fixed effects, respectively. If these deviations are a consistent result of 

particular characteristics of the individual, then the properties of the 

random effects distribution will be directly attributable to the relative 

frequency of different types of animals in the study sample. If these 

individual characteristics can be identified, they can be included in the 

model so as to explicitly account for individual variation and yield normally 

distributed random effects. However, if they are unknown, then a more 

appropriate random-effects distribution may be required. 

 

2.2.4 Some environmental variables may be correlated 

Certain large-scale processes (e.g. meteorological or geological) may 

influence most of the environmental variables that might be used to explain 

the spatial distribution of animals. Furthermore, interactions between 

environmental variables are often just as strong as the links between them 

and usage. Both of these mechanisms may lead to candidate covariates of 

usage that are strongly correlated with one another. In the simplest case of 

colinearity, strong correlation occurs between two variables. In the more 

general case, known as multi-colinearity, a strong correlation occurs between 

one variable and a linear combination of other variables (Cramer 1985). 
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 Using n environmental variables requires fitting a model in n-

dimensional environmental space. However, in the presence of strong 

correlations between environmental variables there is often insufficient 

information in the data to support such a model. An intuitive illustration of 

this is provided by bivariate, linear regression, where a planar response is 

fitted in two-dimensional environmental space. Strong correlation between 

the two environmental variables means that the fitted plane balances 

unstably on data arranged approximately along a line (Fox 1997), which 

results in unstable parameter estimates. It also leads to parameter 

estimates that have large standard errors and are even more sensitive to 

outliers. This corresponds to a loss in both accuracy and precision and is a 

general consequence of colinearity in multivariable models. Furthermore, 

since colinearity indicates lack of support for a high-dimensional model, it 

results in a loss in parsimony. Colinearity is a problem for the estimation of 

individual parameters and, consequently, for drawing inferences about the 

relative importance of individual environmental variables on usage. If the 

objective of the modeling study is focused on getting the best fitting model of 

a particular dataset, there is an argument for ignoring colinearity. However, 

if biological interpretation of the results (based on the parameter estimates 

and associated variances) and predictions elsewhere are of the essence, then 

colinearity needs to be detected and treated. 

 The most evident relationships in the explanatory data are usually seen 

when inspecting pair-wise correlations, but this ignores multi-colinearities. 

An alternative is to use Variance Inflation Factors (VIFs) (Fox 1997), given 

in terms of 
2

jR , the un-adjusted Pearson correlation coefficient, obtained 

when the j th explanatory variable is modeled as a linear function of  all 

other explanatory variables. 

 

( )
j

j R
VIF 21

1ˆ
−

=β                                               (2.11) 

 

Generally, VIFs greater than 6 indicate strong multi-colinearity and 

variance estimates of the affected parameters need to be adjusted.  
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 Traditional treatments of colinearity involve either dropping as many 

environmental variables as required to get to a lower-dimensional 

environmental space, or transforming the variables so that they are 

uncorrelated. Dropping environmental variables can be done automatically 

by means of model-selection criteria such as the change in deviance, 

approximate F-tests, or ICs (McCullagh and Nelder 1989, Hastie and 

Tibshirani 1990, Augustin et al. 1996). Automatic model-selection may be 

augmented by models based on auxiliary biological knowledge on causal 

relationships between variables. Treating colinearity by transformation of 

the candidate covariates can be achieved with techniques such as principal 

components analysis (Jolliffe 1990). In practice, this also leads to a lower-

dimensional environmental space because the last few principal components 

usually contribute little to the model. A disadvantage of this technique is 

that relationships between response and the principal components of several 

environmental variables are difficult to interpret biologically. 

 More recent approaches, using simple GLMs, have instead sought to 

treat the consequences rather than the causes of multi-colinearity (Fox 

1997).  It is possible to use VIFs to correct for the effect of multi-colinearity 

on the standard errors of model parameters, as follows, 

 

)ˆ(
)1(

)var( 2

2

j
j

j
j VIF

sn
β

σ
β

−
=                                     (2.12) 

 

where 
2
jσ  is the estimated variance for the model parameter corresponding 

to the j th explanatory variable, 
2
js  is the sample variance estimated from 

the n observations on that variable. This is a very promising approach and I 

look forward to its further development for use in mixed-effect models.  

 

2.2.5 Species distributions are spatially autocorrelated 

Positive spatial autocorrelation is a typical characteristic of animal 

distributions. It leads to nearby points having more similar values of usage 

than would be expected by chance. In telemetry data, this is manifested as 



 

 

STATISTICAL MODELLING OF USAGE AND PREFERENCE 33 
................................................................................................................................................................................................................................ 

 

clusters of observations in space. In itself, this is not problematic. In fact, 

this interdependence between points in space is usefully employed by all 

usage estimation techniques (such as interpolation, smoothing and kriging, 

discussed in §2.2.1, above) (Blundell et al. 2001, Matthiopoulos 2003a). In 

habitat preference studies, it is hoped that autocorrelation in usage is a 

result of autocorrelation in the available covariates and therefore that it will 

be captured by the model (Diniz et al. 2003). However, sometimes the best-

fitting model presents residual autocorrelation: It systematically over/under-

estimates usage in entire regions of geographical space.  

 Residual autocorrelation violates the central assumption of 

independence in the parameter’s standard errors. If spatial autocorrelation 

is positive this leads to underestimates of the standard errors for the 

parameters (a loss in model precision) and a more likely inclusion of 

irrelevant environmental variables (i.e. a loss in model parsimony).  

 To deal with the problem it is first necessary to detect it, using two well-

established statistics, Moran’s I and Geary’s C (Cliff & Ord, 1973), or by 

constructing spatial variograms of the model residuals (Isaaks & Srivastata 

1990). If there is no significant residual spatial autocorrelation, then no 

action needs to be taken because, even when usage itself is known to be 

spatially autocorrelated, this is entirely accounted for by the model’s 

covariates. On the other hand, if residual spatial autocorrelation is detected, 

it could be due to either extrinsic (e.g. autocorrelated environment) or 

intrinsic (e.g. conspecific attraction, dispersal limitations) factors (Legendre 

1993, Keitt et al. 2002, Overmars et al. 2003).  

 An intrinsic form of spatial autocorrelation means that the value of the 

response at a point in space is a direct consequence of its values at 

neighboring points.  If intrinsic causes are suspected, a natural choice is to 

use autoregressive linear models (also called spatial lag models (Anselin 

2002)). For each point in space, the model’s linear predictor is augmented 

with an auto-covariate that is derived as a weighted function of values of the 

response variable from the neighborhood of that point.  The weights that 

specify the relative contribution of each neighboring point, can be obtained 

from different functions of distance, such as the exponential, Gaussian or 
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inverse (see derivation in Cliff and Ord 1973 and application in Keitt et al. 

2002 and Lichstein et al. 2002). 

 Extrinsic factors give rise to residual autocorrelation for one of two 

reasons: Either an important, autocorrelated covariate has been omitted 

from the analysis, or the model has been mis-specified (Cliff and Ord 1973). 

So, when extrinsic causes are suspected, the first step is to introduce new 

covariates or to ensure that the model is sufficiently flexible by including 

non-linear terms or interactions between existing covariates. If residual 

spatial autocorrelation persists and no additional environmental variables 

are available, this may warrant the use of conditional or simultaneous 

autoregressive models (CAR and SAR, respectively - Keitt et al. 2002), also 

known as models with spatially filtered variables. They are similar to 

autoregressive models, except that the spatial covariate is a function of 

neighboring model residuals (i.e. the difference between the observed 

response values and those predicted by the model). An alternative to CAR 

and SAR, are geostatistical models such as co-kriging  (Stein and Corsten 

1991). Geostatistical Models account for spatial pattern by modeling the 

correlation between the errors as a function of distance (Keitt et al. 2002). 

 However, these only apply if the response variable is normally 

distributed. (Cliff and Ord 1973, Keitt et al. 2002). Very recently, 

autoregressive linear models have been extended to autoregressive GLMs, 

such as the auto-logistic (Augustin 1996) or the auto-Poisson (Huffer & Wu 

1998) and geostatistical models have been extended by including auto-

correlated random effects within GLMMs (Diggle et al. 1998, Stephenson et 

al. 2006). However, parameter estimation of such models by traditional 

likelihood methods is difficult due to the high-dimensional numerical 

integration it requires. This is especially true for telemetry studies where 

the number of data points is generally large. Therefore, parameter 

estimation needs to rely on other methods such as generalized estimating 

equations (GEE - see Hanley et al. (2003)), penalized quasi-likelihood 

methods (Dean et al. 2004) or Bayesian estimation using MCMC (Thomas et 

al. 2004). The choice of spatial model and structure of spatial lag operator 

will also lead to different spatial predictions and different conclusions about 
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which environmental variables are important (Griffith 2005, and see Keitt et 

al. 2002 for normal response models).      

 The main advantage of successfully modeling spatial autocorrelation is 

that standard information criteria (e.g. AIC) can, once again, be used for 

model selection. However, although the use of these spatial models will 

become increasingly important in future studies, the current lack of 

guidelines for model structure and estimation software makes them an 

impractical proposition. A more practical method is to use a conservative 

model selection protocol involving a higher penalty in the information 

criteria, or to implement model selection by re-sampling (e.g. bootstrapped p-

values, cross-validation). 

 Using information criteria to systematically search the entire set of 

possible covariate combinations for a good model is a scientifically 

vulnerable practice, referred to as “data dredging” (Burnham and Anderson 

2002). Indeed, a large set of candidate models increases the probability that 

a model accidentally finds pattern in stochasticity and over-fits the data. It 

has therefore been argued (Burnham and Anderson 2002) that model 

selection should be carried out from within a small set of models (<20) that 

are directly interpretable as biological hypotheses (Burnham & Anderson 

2002).  

 Although this is sound advice for studies where a small number of 

hypotheses exist, it does not help with exploratory analyses of habitat 

preference where it may be better to directly address the problem of over-

fitting. This can be done by cross-validating the predictions of a model with a 

subset of the data not used for fitting. The choice of how to subdivide the 

data for cross-validation depends on the objectives of the study: If the aim is 

to construct the best descriptive model for a population of animals, the data 

should first be organized by animal and the animals should then be split 

randomly into two groups. If the objective is to construct the best predictive 

model that also applies elsewhere or at a different time, then the available 

sample of animals should be disaggregated by space or time. It should be 

noted that cross-validation and the use of models that explicitly model 

residual spatial autocorrelation are not mutually exclusive. In fact, I believe 
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that their combination, in the future, will make for a very powerful modeling 

approach. 

 

2.2.6 Telemetry locations from the same individual are serially correlated 

The term “serial autocorrelation” refers to the dependence between two 

observations made at instants t and tt ∆+  along a time series (Swihart & 

Slade 1985). The degree of autocorrelation in telemetry data depends on how 

fast the study animal moves and how often its movement is sampled. If, 

additionally, the environmental variables are spatially autocorrelated, then 

the closer two telemetry observations are in time, the more likely they are to 

occur at similar environmental conditions. This similarity between 

contemporaneous locations will increase as the scale of spatial 

autocorrelation increases (Fig. 2.3). Biologically, this may give the 

impression of preference for these conditions when, in fact, they are due to 

slow movement and frequent sampling in a spatially autocorrelated 

environment. Statistically, the presence of positive serial autocorrelation, 

will lead to underestimation of standard errors for model parameters (loss in 

precision) and some irrelevant environmental variables being retained 

during model selection (loss in parsimony).  
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Fig. 2.3 The extent of inter-dependence in the data used for models of 

habitat preference is determined by how fast the animals move and how 

frequently the observations are collected (serial correlation) but, also, by the 

degree of similarity in conditions between neighboring points in space. High 

serial autocorrelation (right-hand column) means that successive 

observations will be too close to be considered independent and high spatial 

autocorrelation (bottom row) implies that the conditions facing the animals 

will tend to be similar between successive observations. The assumption of 

independence is most severely violated when usage data obtained by 

frequent telemetry sampling are regressed against strongly autocorrelated 

environmental variables (part d). 
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 The most direct solution is to remove the spatial dependency among 

observations either by filtering out the spatial structure or by removing 

observations based on the so-called "time to independence" (Swihart & Slade 

1985). However, this has three drawbacks: First, it treats independence 

between two points as either present or absent. In reality, there are degrees 

of independence and this is particularly true for observations of animal 

movement. Even if inter-dependence between observations decays 

monotonically with time, no-two points in an animal’s path can ever be 

assumed to be entirely independent. By the same token, irrespective of how 

close in time two observations are, one can never be exactly predicted from 

the other. Therefore, censoring the data leads to a data-set that is not 

completely free of autocorrelation and poorer in information since the highly 

autocorrelated points that were removed contained some useful information 

(e.g. Rooney et al. 1998). The second problem is that the time to 

independence calculated from a telemetry data set depends non-trivially on 

the overall time of observation and the geometry of the animal’s path (Solow 

1989).  Finally, censoring relies on hypothesis-testing with an arbitrary 

critical value which makes it sensitive to the underlying distribution of 

telemetry locations (Solow 1989) and therefore unreliable without previous 

power analysis (Swihart and Slade 1985). An alternative is to use 

permutation tests (Legendre et al. 1990) or to correct the degrees of freedom 

used in estimating the standard errors of the model’s parameters (Clifford et 

al. 1989). 

  Aebischer et al. (1993), point out that the objective of most ecological 

studies is to draw inferences about the population, and therefore that 

biological hypotheses must be tested at the level of the individual animal 

rather than the telemetry observation. The problem of temporal 

autocorrelation is therefore thought to be circumvented by using the animal 

as the sampling unit (Aebischer et al. 1993, Otis & White 1999). For 

example, a GLM, could be fitted to data from each animal separately and 

parameter estimates (the βj's, in eq. 2.5) from all individuals pooled into a 

sample leading to a mean and associated individual variation for each 

parameter. These point- and interval-estimates could be used to make 

population-level inferences about the significance of specific terms in the 
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model. In this example, significant deviations of the individual-specific 

parameters (βj's) from the population mean would occur either because 

individuals are truly different or because they appear to be different due to 

the natural stochasticity in the data. The degree of stochasticity depends 

critically on the number of observations obtained for each animal. As a 

consequence, the between-individual variability may be over-estimated and 

this approach may be too conservative.  

 Mixed-effect models, can distinguish between these two cases by 

explicitly modeling individual variation and stochasticity as the random 

effects and the variance of the fixed effects, respectively. Results based on 

simulated data indicate that, in mixed-effects models, serial correlation still 

causes under-estimation of the variance of the fixed effects, but leads to 

increases in the variance of the random effects. This is because deceptively 

low, within-individual variability caused by serial correlation makes 

individuals appear less similar with each-other. Using hypothesis-testing to 

make population level inferences based on the random effects, rather than 

standard errors of fixed-effects models, is therefore more conservative.  

 Model selection is increasingly being used over hypothesis-testing to 

draw inferences about the distribution of a species but, if autocorellation is 

not modeled in the likelihood, use of  ICs for model selection leads to a loss 

in parsimony. Explicitly modeling the autocorrelation in the data involves 

specifying a matrix containing all pair-wise correlations between the data 

points, with each correlation being specified as a function of the time 

between those points. This is computationally very demanding, because it 

requires the estimation of a nn × correlation matrix for a total number of n 

data points.  

 As illustrated in Fig. 2.3, serial dependence is aggravated by the 

existence of strong spatial autocorrelation in the covariates of usage. 

Therefore, the use of autoregressive or spatial error models for treating the 

effects of spatial autocorrelation (discussed in §2.2.5) could also help reduce 

the consequences of serial autocorrelation. This would involve specifying the 

correlation as a function of spatio-temporal displacement between two 

telemetry observations but to our knowledge no studies have, as yet, 

implemented these ideas for GLMMs.  
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 In the absence of the technical and computational capability to model 

serial autocorrelation for large and complicated datasets, it is imperative to 

find a practical treatment of its consequences for model selection. I advocate 

the use of cross-validation, on the basis of arguments similar to those 

presented for spatial autocorrelation.  

 

2.2.7  Animals are not equally detectible in different habitats. 

If telemetry observations are received at a constant rate, their number in 

each habitat is an unbiased estimate of the proportion of time spent in that 

habitat. However, the rate of telemetry data acquisition may be affected by i) 

behavior (e.g. different detectability of individuals when traveling or 

foraging), ii) the environment (e.g. reduced signal transmission caused by 

dense forest canopy), and iii) satellite reception (e.g. orbital variability in 

satellite coverage), (Frair et al. 2004). The environment in which the animal 

lives can directly (e.g. forest canopy) or indirectly (i.e. change of behavior) 

affect detectability, biasing estimates of usage, and models of preference. 

 To treat environmental and reception-related biases, Frair et al. (2004) 

suggested quantifying the rate of data acquisition as a function of 

environmental variables and then incorporating this into the habitat 

preference model. However, independently measuring the probability of 

detection for inaccessible (e.g. marine) areas is difficult. Accounting for 

behaviorally-induced changes in detection probability is, generally, not 

possible.  

 Alternatively the path of the individual can be reconstructed using either 

interpolation or smoothing techniques, to obtain a sample of locations at 

regular time intervals. Although this reduces the bias in parameter 

estimates, the precision with which the position of the animal can be 

obtained from a reconstructed path, at any given instant, varies with the 

number of observations around that instant. Consequently, the response 

data in data-poor habitats or during cryptic modes of movement will be less 

precise. On the other hand, path reconstructions based on smoothing can 

improve overall precision by correcting some of the erroneous outliers in the 

raw data. 
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2.2.8 Animals respond non-linearly to their environment 

Ecologists are interested in whether animals prefer or avoid certain 

environments but, also, in the, often non-linear, shape of their response to 

environmental variables. Although linear models (e.g. GLMs) can include 

non-linear transformations of covariates, it is often unknown a-priori what 

these functional relationships should be. Under a suitably flexible modeling 

framework, the appropriate functional form can be dictated by the data. 

Generalized Additive Models (GAMs) are extensions of GLMs that use 

scatter-plot smoothers to determine the appropriate functional form (Hastie 

and Tibshirani 1990, Wood 2006) between response and explanatory 

variables. The GAM equivalent of the linear predictor in eq. 2.8 is:  
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 Smoothers are classified as either parametric (e.g. b-splines, natural 

splines) or non-parametric (e.g. running mean, bin & kernel). Most 

parametric smoothers apply a set of pre-defined (e.g. cubic polynomial) 

transformations )(⋅f , known as basis functions or the column of a spline, to 

an explanatory variable. Each basis function is constructed from the 

explanatory variable and a set of pre-specified points on the x-axis, known as 

knots, which are often based on quantiles of the explanatory variable (de 

Boor 1978). Each basis function is specified using a different set of knots and 

therefore behaves differently at different parts of the range of values taken 

by the explanatory variable (Fig. 2.4). The set of basis functions, evaluated 

at the covariate values, can be implemented as a new set of covariates, 

replacing each of the original environmental variables in eq. 2.8. 
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Fig. 2.4 B-spline values for a randomly generated explanatory variable that 

is normally distributed with a mean 0 and variance 4. Knot positions are at 

the 33% and 66% quantiles of the explanatory variable at -0.75 and 0.83, 

respectively. 

 

 In a mixed-model approach, the b's are random variables rather than 

parameters (eq. 2.8 and 2.9). Since each basis function, applies to a 

particular range of the covariate, the mixed-effects approach models the 

amount of individual variation at different values of the covariate. This 

detects whether different individuals are affected by particular covariates 

but, also, whether the functional form of this relationship differs between 

individuals.  
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Appendix 2.A 

To derive a model that does not require discrete geographical space or 

covariates, I envisage two distinct, limiting operations: Operation 1 (O1) 

involves indefinitely increasing the resolution of the spatial grid. 

Eventually, this will lead to most spatial-grid cells being empty of 

observations and occupied cells containing, at most, one observation. 

Operation 2 (O2) corresponds to an arbitrary increase in the resolution of 

the grid in environmental space. This will eventually lead to each cell in 

space being a unique habitat.  

 I first increase the resolution of the spatial grid (O1) which means 

that the number of telemetry observations occurring in the ith habitat 

tends to become the same as the number ( iu ) of cells of that habitat that 

contain an observation. Using eq. 2.1, I can rewrite preference as 
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where io  is the number of unoccupied spatial-grid cells of the ith
 habitat 

and c is the area of a cell in the spatial grid.  

 Operation O1 leads to an ever-increasing number of cells to a level 

beyond practical use. To overcome this problem, I use a case-control 

approach (Prentice and Pyke 1979, Stephenson et al. 2006) that was 

originally used for the analysis of rare diseases and is designed to deal 

with data sets containing presence and absence data (the cases and 

controls, respectively). To obtain the controls, an arbitrary number of 

absences are retrospectively selected from the same population as the 

cases. In the context of telemetry studies, this implies the random 

selection of a number of points in space. Because O1 leads to an 

increasing number of unoccupied cells and a finite number of used cells, 

the probability of selecting a used cell tends to zero. Furthermore, the 

asymptotic theory on case-control studies (Prentice and Pyke 1979) 
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ensures that, as long as the sample of controls is a) sufficiently large 

compared to the number of telemetry locations and b) representative of 

all accessible points in geographical space, the estimates of all 

coefficients (except the intercept) will not be sensitive to sample size. 

 I denote by ak the total number of spatial-grid cells selected as 

controls and by ip  the probability of selecting a cell of the ith habitat. I 

assume that this probability is given by the relative availability of that 

habitat 
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Then, ia pk  gives the expected number of cells of habitat i  contained in 

the control. The expected proportion of used cells of the ith habitat in the 

case-control sample is 
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Comparing the values of these proportions for any two given habitats as 

ak  gets very large yields 
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indicating that, under the case-control paradigm, the quantity ih  defined 

in eq. A3 can be treated as proportional to preference, 
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I can model the observed number of presences in the case-control sample 

of cells from the i th habitat as a realization from a Binomial process with 

probability ih  and number of trials in  (the total number of cells in the 

case-control data set that belong to the ith habitat). 

 

),(B~ˆ iii hnu                                                     (A6) 

 

Now, consider performing O2. As a result, habitat i in environmental 

space is either present or absent in geographical space, 

 

}1,0{∈in                                                       (A7) 

 

The implication of  0=in  is that this habitat was not available to the 

animal and is therefore not considered in further analysis. Thus, the 

process in eq. A6 becomes a Bernoulli 
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Originally the subscript i referred to a specific habitat available to the 

animal. To avoid confusion, I replace i by the subscript l referring to a 

specific habitat or data point in the case-control sample.  
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3. MODELLING SPACE-USE AND  

HABITAT PREFERENCE IN GREY SEALS 

(HALICHOERUS GRYPUS) OFF THE EAST 

COAST OF SCOTLAND 

______________________________________________________________ 

 

 

3.1 Grey seal natural history 

An estimated 130,000 grey seals inhabit the coasts and seas around the 

British Isles (SMRU 2005). They spend long periods of time on land during 

the breeding (October to November) and moulting (January to March) 

seasons (Bonner 1981). During the remainder of the year, individuals 

frequently aggregate on coastal sites, known as haul-outs. When setting out 

to forage at sea, grey seals perform predominantly (88% of times) return 

trips each lasting, on average, 2.33 days. However, they are not completely 

site-faithful, occasionally performing transition trips to other haul-outs 

which can be hundreds of kilometres away (McConnell et al. 1999).  

 Grey seals are generalist predators, feeding on more than 20 prey species 

(Hammond et al. 1994a, Hammond et al. 1994b, Thompson et al. 1996). 

There is considerable individual, spatial and temporal variation in their diet, 

which is partly believed to be due to spatio-temporal variation in the 

abundance of different prey. Nevertheless, sandeels (Ammodytes marinus), a 

small cryptic species that spend part of their time buried in coarse sediment 
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(Wright et al. 2000), are a major component of grey seal diet (Thompson et 

al. 1991, Thompson et al. 1995, McConnell et al. 1999). 

3.2 Methods 

3.2.1 Response variable.  

In the period 1991 to 2001 a total of 58 grey seals were caught at the Farne 

Isles (55°38’ N, 1°37’ W), Abertay (56º24’ N 3º05’ W) and Isle of May (56˚19’ 

N, 2˚56’ W) haulout sites (Fig. 6a). Each animal was anaesthetized, fitted 

with a Satellite Relay Data Logger (SRDLs) and released (McConnell et al. 

1999).  

 During their lifetime, the SRDLs sent UHF signals to two polar-orbiting 

satellites with an Argos satellite system. The location of the animal was 

determined using the frequency Doppler shift of the signal (Argos 1989). 

These estimates are vulnerable to bias and imprecision when they are based 

on a low number of successive uplinks.  In particular, because the 

distribution of the Argos observation error for poor-quality locations is thick-

tailed (Vincent et al. 2002) the data contained a small number of highly 

erroneous location fixes which were removed by applying the filtering 

algorithm described by (McConnell et al. 1992), using a maximum speed 

parameter of 5 m/s. To treat observation error in the remaining data I used a 

smoothing algorithm developed (M. Lonergan unpublished) within the 

MGCV (Wood 2001) package in R.  Briefly, this uses a Generalized Additive 

Model to produce a smooth path in space as a parametric function of time. In 

this, Location Quality (LQ) is accounted for by weighting the influence of 

different locations by the inverse of their associated error variance (as 

measured experimentally by (Vincent et al. 2002)). I used the output of this 

algorithm to interpolate the animals’ positions at 3-hourly intervals. 

Obtaining temporally regular estimates of the animal’s position also helped 

to reduce bias due to variable observability of the animals (see §2.2.7). 

 Habitat preference depends on the type of activity performed by the 

animals. Different habitats may be suitable for different activities such as 

resting, breeding, migrating or foraging. I was primarily interested in 

foraging behaviour and therefore restricted my attention to return trips from 
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the same haul-out and removed all locations that were at, or close to, the 

haulout-sites.  For the purposes of this work a return-trip was defined as a 

foray outside the 5km radius around the haul-out site. For the analysis I 

only included individuals for which I had in-excess of 7 days of return-trip 

data. I used the data from the Farne Isles for fitting and model-selection and 

those from Abertay as a validation data set.  

 The error-corrected and temporally interpolated data set of satellite 

locations represented a sample of points in geographical space visited by the 

tagged grey seals (presence data). However, they were only part of the data-

set for the response variable. Under the case-control paradigm, to provide 

the contrast necessary for modelling preference, these had to be 

complemented with a set of points not visited by the study animals (absence 

data). The Bernoulli response variable in eqs 2.14 took the value 1 wherever 

there was an animal present and 0 where there was not. 

 I selected the absence points from the surface of accessibility calculated 

by Matthiopoulos (2003) using information from the entire population of UK 

grey seals and described by the simple relationship  

 

98.1

5

−








= dα                                                     3.1 

 

where d is the distance (in km) between every point in space and the 

haulout. Rather than Euclidean distance, I used an algorithm developed in-

house (J. Matthiopoulos, unpublished) to calculate at-sea distance, defined 

as the shortest distance needed to travel between any point at sea and the 

haulout without crossing land. 

 The mathematical results pertaining to case-control studies (Prentice 

and Pyke 1979) are asymptotic, meaning, in this context, that habitat 

availability is only approximately represented in the sample of response 

data, the approximation improving with an increasing number of absence 

data. The number of absence data necessary to obtain a sufficiently good 

approximation will vary from study to study. By experimenting with 

different proportions of presence and absence data I concluded that, for the 



 

 

CASE STUDY: EAST COAST GREY SEALS 54 
................................................................................................................................................................................................................................ 
 

 

data, model parameters remained effectively unchanged when the absence 

data were at least twice as many as the presence data.  

 

3.2.2 Explanatory variables 

For each set of spatial coordinates included in the response data I collated a 

set of values for the explanatory variables corresponding to local 

environmental conditions. I selected environmental variables on the basis of 

possible biological relevance and the availability of data. As is often the case 

with studies of habitat preference, the variables that are seen as the most 

relevant to the study-species are rather data-poor. In studies of higher 

marine predators, such as the grey seal, this predicament is particularly 

evident in the sparsity of prey data. Since the primary off-shore activity of 

seals is foraging, it is certain that their off-shore distribution is influenced 

by the distribution of their prey. This is likely to be a complex relationship 

because grey seals feed on a large number of prey species, each having its 

own patterns of spatial and temporal variation. I found little readily usable 

data on these patterns. Instead, I opted for three static variables: sediment 

type, sea depth and distance from the haulout. Although this decision was 

primarily motivated by current data availability, it was further justified by 

the requirements for a parsimonious, predictive and, yet, biologically 

relevant model: A model using static environmental variables is more 

parsimonious because it only requires that the distribution of foragers is the 

result of time-invariant environmental cues, rather than an 

optimised/adaptive foraging strategy (Ollason 1980). 

 Furthermore, developing a predictive model on grey seal distribution 

that relied on the continued measurement of species that are just as variable 

would defeat the purpose of the modelling exercise. So, even if distributional 

data were currently available for all or some prey species, they would be of 

little use for future model predictions.  On the other hand, if prey 

distributions are predictable, either by the seals or by human observers, it 

will partly be from cues provided by geophysical variables such as the ones I 

have used  
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 Indeed, grey seals are suspected to prefer foraging in certain sediment 

types. This is either a direct consequence of the seals’ bio-turbating search 

tactics (Bowen et al. 2002) or an indirect consequence of the habitat 

preference of sediment-burrowing prey such as sandeels (Wright et al. 2000, 

Holland et al. 2005). Sediment type was derived from British Geological 

Survey (BGS) data obtained from core samples, spaced, on average, at 5km 

intervals throughout the study area.  For every core sample, the data were 

given as a percentage-by-weight of gravel (defined as particles greater than 

2.0mm in diameter), sand (particles 0.0625-2.0mm in diameter) and mud 

(particles smaller than 0.0625mm in diameter). I used a random sub-sample 

of cores to calculate the semi-variogram (Isaaks and Srivastava 1990) 

characterising the spatial autocorrelation of each of the three sediment 

components. The semi-variograms were then used to generate kriged 

estimates of each sediment component throughout the study region, at a 

resolution of 1km2. I kriged the three sediment components independently 

despite the fact that they are measured as complementary percentages. To 

check that the three kriged maps were approximately complementary, I 

checked the distribution of the sum of estimated percentages over all grid 

cells in the study region. This had an average value of 101% with standard 

deviation of 5%. These estimates were then normalised to 100% for each cell 

in the study area. In the analysis, I only used two (i.e. the percentage mud 

and gravel) out of three sediment components to avoid severe problems of 

multi-collinearity (see §2.2.5). 

  I also included sea depth as a potential covariate. Although grey seals 

probably take fish from the entire water column, they spend a large 

proportion of their dives foraging close to the seabed. It is conceivable that 

seals have a preference for a particular range of depths. This could be due to 

physiological restrictions in maximum dive depth, the need to make efficient 

use of maximum dive duration, or possible depth-segregation between 

various prey. The two primary sources of bathymetry are the British 

Geological Survey (BGS - 200,000km of geophysical line-transects collected 

from 1966 to 1987) and United Kingdom Hydrographic Office Admiralty 

Charts and Survey data. These were combined and collated by the BGS into 

1:250,000 geological maps and digitised into Digbath250. This digitised data 
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is represented in the form of bathymetric contour lines every 10 meters 

between 0 and 100m, every 20m between 200m and 400m and every 100m at 

depths exceeding 400m. I transformed these maps using an equal-distance 

projection (National Grid of Great-Britain). I placed points at 1km intervals 

along the bathymetric contour lines and interpolated linearly between these 

points to obtain depth estimates for every point of the regular, 1 km grid (see 

also Fig. 3.4a).  

 Finally, to account for residual issues of accessibility, I used distance 

from the seals’ haulout as the final environmental variable.  This was 

obtained over a grid of 1km resolution (See also Fig. 3.3a). 

 

3.2.3 Model structure 

The basic structure of the model follows from using a binomial response 

variable (h) with a logit link 
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To increase the model’s flexibility (problem 8), the linear predictor ( lη ) was 

structured as a GAM with a maximum of four explanatory variables 
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where each spline )( ⋅s  is a flexible function of each explanatory variable, 

and kjb ,  is the random effect parameter for the kth out of 6 basis function of 

the spine for the jth explanatory variable.  I used b-splines because they 

afford local control in modelling the response at different domains of the 

explanatory variable and produce robust result in data-poor regions of 

environmental space (Ramsay 2004). For each explanatory variable, I used a 
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composite spline with 6 df, two internal knots at the 33% and 66% quantiles 

of the frequency distribution of observed values for the environmental 

variable at the animal locations. Although it is possible by means of cross-

validation (Wood 2001, 2006) to automatically select the most appropriate 

number of splines and knot positions, computational restrictions forced me 

to pre-specify these. However, as a minimum preventative measure against 

over-fitting, I compared the performance of the GAM with the output of a 

GLM. 

 To account for unbalanced sampling effort (2.2.3) I implemented eq. 3.3 

as a mixed-effects model. Each model parameter kjb ,  was treated as a 

normal variable, containing a fixed effect kj ,β  (applicable to the entire 

population of animals), and a random effect error term ),0(~ ,, kjkj N σν , 

representing the variability in the response of different animals to the kth 

spline of the jth explanatory variable. This model is similar to a Generalized 

Additive Mixed Model (GAMM - Zhang and Davidian 2004, Wood 2006). 

 Part of this variability may be due to characteristics of the animals such 

as age, sex, weight or body length. Incorporating these in the model is 

important for two reasons: First, it helps account for biases in sampling 

effort across different types of animals, particularly so for the purposes of 

population-level predictions (see §3.2.6). Second, it is a practical way of 

modelling deviations from normality using random effect (§2.2.3). 

  In the most saturated form of the model, each model parameter, was 

expressed as a function of individual characteristics 

 

kjmkjmkjkjmkj vlengthsexb ,2,,1,,0,,,, +++= βββ                            3.4 

 

where m refers to an individual animal and the individual characteristic 

“length” is measured from nose to tail and kjv ,  denotes the random effects. 

Other candidate individual characteristics were mass and age of the animal. 

I chose to exclude mass because it is strongly correlated with length and 

because it is harder than length to observe remotely (e.g. via aerial survey). 

Age was excluded because it wasn't recorded for 5 individuals and its 
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inclusion would therefore necessitate a reduction in the number of animals 

used in the analysis. 

 

3.2.4 Parameter estimation 

The parameters that needed to be estimated were the model’s coefficients 

lj,β  and the elements 
2
jσ  of the random effects. The estimation methods 

that are most often used for GAMMs are penalized quasi-likelihood (PQL) or 

maximum-likelihood methods (ML). PQL is generally fast, produces nearly 

unbiased parameter estimates, but doesn’t produce a likelihood estimate 

that can be used for model selection.  ML techniques, on the other hand, 

produce exact marginal likelihood estimates, but are computationally 

intensive because, for every candidate set of parameter values, the 

likelihood-maximization algorithm needs to perform a numerical 

approximation of the likelihood over all possible realizations of the model’s 

random effects term. In general, the likelihood function is written (Pinheiro 

and Bates 2000).  

 

( ) ( ) ( ) m

M

m
mmm db|ψbp,β|bupuβ,ψ|L ∏ ∫

=

=
1

,ˆˆ ψ                          3.5 

 

where bm is a vector of random effects, each applying to a kth basis function 

for the spline of the jth covariate (eq. 3.3) of the mth of a total of M 

individuals. The integrand in eq. 3.5 consists of the response and the random 

effect components. The random effects component ( ( )ψ|bp m ), is a 

multivariate normal probability density function with means 0 and variance-

covariance matrix ψ. The random effect variances (diagonal elements of ψ) 

represent the individual variation in the animals’ response to environmental 

variables. The covariances (off-diagonal elements of ψ) quantify within-

individual correlations in the response to different environmental covariates. 

If q is the number of random effects included in the model, then the 

variance-covariance matrix ψ is a qq ×  matrix. For flexible models such as 

GAMMs, q is generally large and estimating ψ is numerically difficult. To 
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reduce complexity, I restricted estimation to the diagonal terms (variances) 

and set the off-diagonal elements of ψ to zero. 

 In this study, the response component of the likelihood function is a 

binomial probability density function 

 

( ) ( )( )∏
=

−−=
n

l

u
l

u
lmm

lmlm hhψ,|bup
1

ˆ1ˆ ,, 1,ˆ β                                 3.6 

 

where lmu ,ˆ  is lth observation from the mth individual and lh  is the predicted 

response as defined in eqs. 3.2-3.4. 

 The ML estimates are those values of the parameters β and ψ, that 

maximize eq. 3.5. I used the Automatic-Differentiating Model-Builder 

(ADMB) and its Random Effects module (Otter Research Ltd 2004, Skaug & 

Fournier 2003) to minimize the quantity ( )u|β,L- ˆψ   (see Appendix A). 

ADMB-RE first approximates the likelihood function using the Laplace 

approximation and Importance sampling. It then uses automatic 

differentiation to obtain exact derivatives of this likelihood approximation, 

which is maximized with a quasi-Newton method with line search (Skaug 

2002, Fletcher 1987). 

 

3.2.5 Model selection and model validation 

Model-selection examines if the improvement in the quality of fit, gained by 

adding model variables, justifies the associated increase in model 

complexity. This trade-off between parsimony and goodness-of-fit is 

adjudicated by metrics known as model-selection criteria. The choice of 

model-selection criterion is not straightforward, not least because parsimony 

is difficult to quantify, and depends on the study’s objectives. 

 All information criteria (IC) such as the Akaike Information Criterion 

(AIC) or the Bayesian Information Criterion (BIC) (Burnham and Anderson 

2002) achieve parsimony by penalizing the likelihood of the model by the 

number of parameters it contains. However, the effectiveness of IC relies on 

the correctness of the assumptions underpinning the likelihood function. In 
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telemetry studies, violation of the independence assumption can lead to 

over-fitted models. To avoid this problem, I used IC only as a rough guide 

and relied on cluster-level cross-validation for final model selection. I 

initially fitted GAMMs to a subset of the data (19 out of 29 individuals) from 

the Farne Isles. I started with an intercept-only model and used forward 

model-selection (with AIC) to arrive at a model containing all four 

environmental variables. This reduced the number of models to be 

investigated by cross-validation from a possible 41 to 5. From these five 

models I selected the one that best predicted the data from the remaining 10 

animals. This procedure still left room for over-fitting because the number of 

knots used for each environmental variable was pre-specified. I therefore 

replaced the spline-based models with linear terms, if these simpler models 

attained a higher likelihood under the validation data set.  

 The model obtained via this selection process was then extended with 

individual characteristics (i.e. sex and body-length). Again, forward model 

selection based on AIC was used to arrive at a set of candidate models, each 

of which was validated against the test data set to yield a final model. To 

assess the predictive performance of this model, I estimated its likelihood 

under data from 13 individuals from a neighbouring sub-population, in 

Abertay. I compared this value with, similarly calculated, likelihoods for 5 

other candidate models. Goodness-of-fit and predictive performance was also 

visually assessed by generating spatial predictions for both the Farne and 

Abertay. 

 

3.2.6 Predicting spatial usage 

The major objective of this study is to estimate the spatial usage of the 

entire sub population using data from only a sample of individuals. Eq. 3.2 

can be used to calculate the expected usage ( )sυ  of every point in space s, 

with known values for the environmental variables and known 

accessibility ( )sα . 

 This requires predicting lh  which, for random-effects models, is not 

straightforward: Assuming, for simplicity, that individual characteristics are 
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not included in the model, the random effects bj are normally distributed 

with mean jjb β=  and variance 
2

jσ  (Fig. 3.1a). The response variable lh  is 

modelled as a non-linear function (i.e. the inverse of the logit) of the linear 

predictor which contains these random effects. This means that the 

distribution of the random effects viewed on the scale of the response is 

transformed (Fig. 3.1b) and, therefore, the fixed effects part jβ  is no-longer 

the mean of this distribution. Consequently, the predictions of usage 

generated from the model using the fixed effects alone, are not the same as 

the average of prediction generated using multiple realizations of the 

random effects.    

  

  

a.      b. 

 

Fig. 3.1 The normal probability density function of the random effects (with 

mean and variance equal to 1) on the scale of the linear predictor. The mean 

of the random effects’ distribution is equal to the fixed-effect component (i.e. 

β = 1) of the random effect (a). The probability density function of the 

random effect on the scale of the response. The mean of this random effects 

distribution is not equal to the fixed effect component of the random effect on 

the scale of the response (i.e. inverse logit of β  = 1 - b) 

 



 

 

CASE STUDY: EAST COAST GREY SEALS 62 
................................................................................................................................................................................................................................ 
 

 

In practice, the best way to calculate lh , is as the average of a random 

sample of predictions generated from the estimates for the fixed effects jβ , 

incremented by a value drawn from a normal distribution with mean zero 

and variance 
2

jσ . 

  For models that include individual characteristics, such as sex and body 

length, the values for these can be drawn from within the pool of observed 

values associated with the sample of tagged individuals. However, biases in 

catching effort will still lead to biased predictions in usage. A better 

alternative is to use samples of individual characteristics from other sources. 

For example, the age- or sex-structure could be obtained from demographic 

models and the distribution of length within the population could be derived 

from aerial surveys of haulout sites if it can be assumed that the animals at 

a haulout are representative of the population.  

 I predicted usage )(sυ  on a 1 km resolution grid. Every such map 

obtained for a single realization of the model’s random effects can be thought 

of as the space-use of one individual from the population. However, such 

surfaces did not exactly add up to 1 (and needed to be normalized) primarily 

for two reasons: First, the environmental conditions at some points in space 

were outside the range of the data used to fit the model. Predictions for these 

points in space are equivalent to extrapolation in environmental space and 

can lead to spurious, local over-estimates of usage. In this study, the 

distribution of values for the sediment and depth variables was heavily 

skewed to the right. I therefore excluded predictions outside the ranges of 

these environmental variables. Second, only a sample of points was included 

in the analysis and therefore, by chance, relatively more (or less) preferred 

environmental conditions might be present within the study area compared 

to the data.  

 For conservation purposes, not the relative, but the absolute population 

density at sea is often of main interest. If the population size N is known as 

well, multiplying ( )xυ  by this scalar will normally yield an absolute 

measure of population density for each grid cell at sea. For the Farne Islands 

the total population size is estimated to be 2950 (CI: 2742-3159 - 
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Matthiopoulos et al. 2004). The estimated population density at sea would be 

correct if predictions were made for all points in space. This is not the case, 

since the area within 5 km of the haul-out site,  points in space for which no 

environmental data is available (e.g. points on or very close to the shore) and 

all points in space that are outside the prediction interval, are excluded. The 

proportion of time spend in the excluded areas by the population can be 

approximated by the fraction p of animal locations that fall inside these 

regions. Next, usage in a region c (e.g. a 1 km² cell) in space can be estimated 

as follows 

 

xs
s

dpNu
c

c ∫
∈

−= )()1( υ                                                   3.7 

 

One note of caution is that such estimates of usage might be underestimated 

in some regions. Due to the error in the animal location estimates, locations 

at sea but close to land have a higher probability of falling on land and 

therefore being excluded from the analysis. 

 

3.2.7 Predicting preference 

Grey seals spend a considerable portion of their time offshore. Those areas in 

which they spend relatively more time than expected by chance (taking into 

account accessibility §2.2.2), are said to be preferred. Spatial plotting of 

preference is useful, because it indicates the position and extent of these 

areas, also known as 'hotspots'. Preference w at a point s in space can be 

calculated as follows  

 

η

α
υ

re
h

h
rw

l

l =
−

==
1)(

)(
)(

s
s

s                                          3.8 

 

 

Eq. 3.8 holds for all values of r.  As the number r of controls per observation 

increases, the response variable h becomes small, usually much smaller than 
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0.5. For these values of h the ratio )1( −hh  is approximated well by h. I can 

therefore write that for large r,  

 

( ) ll
l

l hrh
h

h
rw ∝≅

−
=

1
s                                            3.9 

 

Which is in agreement with the statement in eq. A4 in chapter 2, derived for 

r tending to infinity. Eq. 3.8 relies on accurately modelling accessibility 

( )sα . To account for biases in ( )sα , I included distance to the haulout as an 

additional covariate in the model. Hence, plotting )(sw  from eq. 3.8, does 

not purely reflect the animals’ preference for environmental variables.  By 

breaking up the linear predictor into three additive components, preference 

can be re-written 

 

)exp()exp()exp(
)(

)(
 variablestalenvironmendistance0 ηηβ

α
υ

r=
s
s

                  3.10 

 

which implies 

 

)exp(
)exp()(

)(
 variablestalenvironmen

distance

η
ηα

υ ∝
s

s
                      3.11 

 

The expression on the left is preference, corrected for the biases in the 

accessibility model, and therefore )exp(  variablestalenvironmenη  can be used to 

generate spatial plots of preference. 

 

3.2.8 Software 

All data manipulation, analyses and plotting (including spatial plotting) was 

done using R (R Development Core Team 2004). ML parameter estimation 

was done using ADMB-RE (Otter Research Ltd. 2004). 
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3.3 Results 

3.3.1 Response and environmental variables 

From a total of 58 individuals caught on the Farne Isles, Abertay and the 

Isle of May, 42 made return trips to and from the Farne Isles and Abertay 

for a sufficiently long time to be included in the analysis. Tag life varied 

greatly between those individuals (minimum 2.5d, maximum  329d, average: 

109d) leading to large differences in sampling intensity between individuals. 

These variations were accommodated by the mixed effects structure of the 

model (§2.2.3). Sampling intensity also varied temporally, with the most 

data in August and the least in February (Fig. 3.2). This means that pooling 

the data across the year will tend to bias the results if habitat preference of 

grey seals has a seasonal component. 
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Fig. 3.2 Data collection intensity within a year and between individuals 

from the Farne Isles. This figure shows the cumulative number of location 

fixes for every day within a year. Estimates for each day were obtained using 

a 30d moving average. Each grey shade represents a different individual. 
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 Following pre-processing of the satellite data (error-correction and path 

reconstruction), the Farne data set comprised a total of 2315 animal 

locations (Fig. 3.3a). I randomly select twice as many (i.e. 4630) points from 

the accessibility surface (Fig. 3.3b). The combined presence and absence data 

constituted the response data that were to be regressed against the 

environmental variables (examples shown in Fig. 3.4). 
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a. 

 

b. 

 

Fig. 3.3 Spatial distribution of filtered grey seal locations (a - response = 1) 

and locations drawn from the accessibility surface (b - response = 0). The 

accessibility of each point in space is plotted in the background (a and b).  
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Fig. 3.4 Spatial plots of % mud in the sediment (a) and sea bottom depth (b).  
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3.3.2 Model selection 

Forward model selection using the Farnes data suggested that a model 

containing all environmental variables (see Appendix B, table 1 for the 

parameter estimates) explained a significant proportion (31%) of the 

observed variation in the response data, taking model parsimony into 

account (Figs 3.5 and 3.6). The variables distance to the haulout site and % 

mud in the sediment explained most, accounting for 87% of the explained 

deviance. The saturated model also performed best in explaining the 

observed variation in the response for the Farnes validation data set. It was 

conceivable that the saturated model was too flexible due to the use of 

splines. According to the AIC, the sequential replacement of the splines by 

the un-transformed environmental variables led to a deterioration of the 

model. However, the model with no splines for gravel had the highest 

likelihood under both validation data sets. This model was used for further 

extensions.  

 I included individual characteristics to the random effects in an attempt 

to explain some of the observed individual variability in the response to 

different environmental variables. Based on the AIC an interaction between 

%mud and length, %mud and sex, distance to the haulout and length and 

%gravel and length led to better models (Figs 3.7 and 3.8). Under the 

validation data set, only the interaction between the nose-to-tail length of 

the individual and % mud in the sediment led to an improvement. This 

model was used to investigate the relationship between the response and the 

different environmental variables and to make spatial predictions of usage 

and preference. 

 Finally I assessed the predictive performance of the candidate models. 

For the Abertay data the saturated model was outperformed slightly by a 

simpler model not containing depth. However all inclusions of individual 

characteristics lead to a deterioration of the model. 
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Fig. 3.5 Forward model selection on environmental variables. The length of 

the arrows indicates the change in AIC from the current model (horizontal 

line) as a result of adding an environmental variable not yet included in the 

model. Arrows for variables that lead to the largest improvement in AIC are 

coloured in blue. 
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Fig. 3.6 Validation of models with only environmental variables, using test 

data from the same (Farnes Isles) and a different (Abertay) sub-population. 

Note that all parameter estimates used to calculate the likelihood are based 

on the 19 model-individuals from the Farnes Islands. Different models are 

arranged in order of increasing number of environmental variables along the 

x-axis. The y-axis represents the log-likelihood of the data under each model, 

standardised by the number of data points (n) in each of the three datasets. 

A black cross indicates the best model for each data set. 
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Fig. 3.7 Forward model selection on the interactions between individual 

characteristics (i.e. sex and nose-to-tail length) and environmental variables. 

The starting position is the best model arrived at by using environmental 

variables alone. In this case, this coincides with the saturated model (i.e. 

distance to the haulout, % mud, % gravel and depth) with splines for all 

variables except gravel. The arrows indicate the change in AIC from the 

current model (horizontal line) as a result of adding an interaction between 

an individual characteristic and environmental variable. Arrows for 

variables that lead to the largest improvement in AIC are coloured in blue. 
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Fig. 3.8 Validation of models with added individual characteristics, using 

test data from the same (Farnes Isles) and a different (Abertay) sub-

population. See also the legend of Fig 3.6. The x-axis indicate different 

models with increasing complexity (i.e. increasing number of interactions 

between individual characteristics and environmental variables) from left to 

right. The cross indicates the model with the lowest log(likelihood) for the 

corresponding data set. 

 

It is possible that some important environmental variables were omitted 

from the analysis. This would reveal itself in the presence of spatial 

autocorrelation in the residuals (2.2.5). I constructed semi-variograms to 

investigate the spatial autocorrelation in the response and residuals for 

large (<40,000 m) and small (<10,000 m) spatial scales (Fig. 3.9) 
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b. 

 

Fig. 3.9 Semi-variogram of the response data (0 and 1) and the residuals 

(observed response - predicted) for up to 40km (a) and 10km (b) with the 

range of distance being partitioned into 100 distance classes in both cases. 

The plotted lines are linear regression models fitted to the data. 
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3.3.3  The effect of environmental variables on the response 

The most important covariate is the distance to the haulout which has a 

negative relationship with the response, meaning that the observed usage 

far away from the haulout site is less than predicted by the accessibility 

model (Fig. 3.10a). The second most important environmental variable is 

mud and its interaction with the length of individuals. Fig. 3.10b shows that 

the animals’ preference is highest for areas with mud content of approx. 3%.  

While small individuals change their response relatively little with 

increasing mud-contents (Fig. 3.10c), large animals have a well-defined peak 

in preference for those areas (Fig. 3.10d). Fig. 3.10e shows that grey seals 

also prefer gravely areas. Finally, the least important environmental 

variable depth, reveals that Grey seals have an increasing preference for 

areas up to 80 meters, after which the mean population preference decreases 

slightly. However, this pattern is confounded by large individual variability 

(Fig. 3.10f).  
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Fig. 3.10 The effect of the covariates “distance to the haulout (km)” (a), the 

interaction between “%mud” and the individual characteristic “nose-to-tail 

length (cm)” (b), “%mud” for small (c) and large (d) individuals (“nose-to-tail 

length” is 100 and 180cm, respectively), “%gravel” (e) and “depth (m)” (f). In 

the plots for the single environmental variables (a, c, d, e and f) the 95% 

confidence limits are represented by the shaded areas, the grey lines (in a, e 

and f) represent individual specific responses and the black line the mean 

population responses (i.e. fixed effect).  

 

3.3.4  Spatial prediction of usage and preference 

Using the relations between the response and the environmental variables 

as outlined in the previous paragraph, I can estimate the rate of usage ( )sυ , 

for every point in space with known values for the environmental conditions 

(Fig. 3.11a). It is often difficult to interpret the absolute scale of a variable 

using colour plots alone. I therefore plotted one possible realization of a data 

set of observations that would be obtained from a heterogeneous spatial 

Poisson process with that rate (Fig. 3.11b). To indicate which areas Grey 

seals would use if all points in space were equally accessible, I plotted 

preference in space (Fig. 3.12). Finally, I used the model whose  parameters 

were estimated using data from the Farnes, to make a spatial prediction of 

usage for seals making return trips from the Abertay (Fig. 3.13) 
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a. 

 

b. 

 

Fig. 3.11 Spatial prediction of usage for the Farnes with the animal 

locations (a) and one possible realization for that same total number of 

locations using the usage predictions (b), plotted on top.  
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Fig. 3.12  Spatial prediction of preference corrected for unequal accessibility. 

Red indicates high preference and blue indicates low preference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # #

# # # # # # # # # # # # #
# # # # # # # # # # # #

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

# # # # # # # #

# # # #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

# # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # #

# # # # # # # # # # # # #
# # # # # # # # # # #

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # #

# # # # # # # # # # # # #
# # # # # # # # # # # #

# # # #

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

# # # # # # # # # # #
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

-2 -1 0 

55 

54 



 

 

CASE STUDY: EAST COAST GREY SEALS 80 
................................................................................................................................................................................................................................ 
 

 

 

a. 

 

b. 

 

Fig. 3.13 Spatial prediction of usage for Abertay using the Farnes Island 

model with the animal locations (a) and one possible realization for the same 

total number of locations using the usage predictions (b), plotted on top. 
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3.4 Discussion 

Spatial ecologists generally try to understand where animals are, why they 

are there and where else they are likely to be.  Matthiopoulos et al. (2004) 

focused on the first question for grey seals. Here, I extended that 

investigation to the other two questions. To achieve this, I relate their 

observations to prevailing environmental conditions and individual specific 

covariates and use these relationships to make predictions in space. 

 

3.4.1 Habitat preference; why are Grey seals where they are? 

All of the environmental variables examined in this case study helped to 

account for the variation in the response. Distance to the haulout and %mud 

were the most important. The negative relationship between the response 

variable h and distance indicates that grey seals concentrate their usage 

closer to the haulout than might be expected under the accessibility model. 

Avoidance of muddy areas could either be due to the fact that the seals’ 

strategy to forage for sandeels by bio-turbation may not be effective in 

muddy substrates because of the rapid loss of visibility or due to the fact 

that sandeels also avoid muddy areas because it impairs  the functionality of 

their gills (Wright et al. 2000, Holland et al. 2005).  

 Sea bottom depth might have been expected to be an important predictor 

of spatial usage because seals are predominantly benthic feeders whose 

useful foraging time at the sea bed decreases with increasing depths. 

However, the entire North Sea is relatively shallow and therefore unlikely to 

test the grey seals’ diving capability. A second reason why depth might also 

have been expected to be important is its strong correlation with the density 

of sandeels.  Wright et al. (2000) have shown that most sandeels around the 

Shetland Isles, in the North of Scotland, occur around depths of 50 to 60m.  

However, this relationship does not necessary hold across the North Sea. 

Also, if sandeels occurred in relatively deeper areas around the Farnes Isles, 

this might counter the additional cost of diving to such depths as described 

earlier. 
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3.4.2 Spatial predictions of usage and preference; Where else are grey seals 

likely to be? 

The second major objective of this study was to make spatial predictions of 

usage (υ). Those predictions can be classified into three categories in order of 

decreasing reliability: i) predictions within the area for which data is 

collected,  ii) predictions outside the study area, but for similar 

environmental conditions as those used in constructing the model and iii) 

predictions outside environmental space.  

 In this study, I have shown that a model fitted to a subset of individuals, 

was able to capture the preferences and space-use of other individuals from 

that same sub-population. This carries the caveat that if patterns of space-

use and preference change seasonally, then temporal variability in sampling 

effort will have biased the model’s predictions towards the most intensively 

sampled months. 

 I have also shown that it is possible to predict the distribution of 

individuals from a different, albeit neighbouring, sub-population. This is 

particularly fortuitous because it has been known that differences in 

absolute availability of environmental conditions between areas can 

invalidate predictions of usage (Mysterud and Ims 1998). The similarity in 

environmental conditions facing the Farnes and Abertay sub-populations 

meant that the model’s predictions were extrapolations in geographical, but 

not environmental space.  

 Extrapolations in environmental space are likely to be particularly 

unreliable. For example, the current data provide no hint as to the 

maximum depth that grey seals can dive to. Applied to the east coast of 

Scotland, this model would predict seal usage beyond the continental shelf. 

 

3.4.3 Future research: additional environmental variables as candidate 

covariates 

Generally there are two aspects that constitute a good candidate covariate: it 

must be relevant and knowable. A candidate covariate is relevant if it 

believed to have a strong relationship with the response variable. A 

covariate is knowable if it can be measured precisely in both space and time 
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or, alternatively, remains relatively constant. The main reason for choosing 

the environmental variables used in this study was the fact that they remain 

relatively constant. An alternative strategy would be to put more emphasis 

on the anticipated link between a candidate covariate and the response.  

Since grey seals go offshore to forage, their distribution is likely to be 

strongly related to fish distributions. Unfortunately, estimates of fish 

distributions are generally poorly known. A solution to this problem would 

be to first model fish distribution as a function of geophysical variables and 

then relate these modelled fish distribution with distribution with of grey 

seals.  

 

3.4.4 Future research: Mechanistic modelling 

In Chapter 2, I outlined the methodological progression from hypothesis 

testing to regression, GLMs, GAMs up to GAMMs. A similar process in 

biology where current knowledge on physiological, behavioural and 

ecological processes is used to form the basis for future research is less 

common and generally more difficult. This is especially true for studies on 

environmental preference, where e.g. different studies might include 

different environmental covariates, absolute availability of environmental 

conditions might be different between different study areas, individuals 

might behave differently at different times of the year and individuals and 

even sub-population might have different physiological restrictions and 

therefore show differences in environmental preference. Even if two sub-

populations under study would behave identical, due to the stochastic nature 

of the data, fitting flexible regression functions to those data will generally 

lead to different functional forms. As a consequence it is extremely difficult 

to make proper comparisons between different studies presented in the 

literature. 

An alternative approach is to use mechanistic models. For grey seals 

physiological models can be used to specify the cost of travelling to particular 

places and diving to specific depths. Dietary studies could be used to 

estimate the expected distribution of grey seals on the basis of the 

distribution of fish species. Alternatively grey seal distributions could be 
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related with spatial distributions of total nutrients on the basis of fish 

densities. Using such methods, one could more easily include prior 

knowledge and make more robust comparisons with other studies.   
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4. MODELLING SPACE-USE AND HABITAT 

PREFERENCE IN NORTHERN GANNETS 

(MORUS BASSANUS) 

____________________________________________________________________ 

 

 

Animals need food resources to meet their requirements for survival, growth 

and reproduction (Manly et al. 1993). The distribution of food in the marine 

environment varies considerably in both space and time and is therefore 

hard to predict (Barnes and Hughes 1999). Correctly gauging the 

spatiotemporal availability of food is essential for seabirds because they 

have to contend with the high energetic costs of flight while foraging. This is 

particularly true for Northern Gannets, the largest pelagic seabirds breeding 

in the north Atlantic, whose size brings a high mass-specific expenditure 

during flight (Birt-Friesen et al. 1989). During the breeding season, when 

adults also need to provision for their chick, an efficient foraging strategy is 

even more important. 

 Burger (1980) postulated that the delayed sexual maturation observed in 

gannets may be due to the lack of experience of young adults in efficiently 

provisioning for offspring. If this were true, it would indicate that foraging 

efficiency increases with age and experience. Although this could be due to 

an increase in the birds’ skill at catching prey, it could equally be due to an 

increase in their ability to locate it, for example by more successfully reading  

environmental cues. The first objective of this chapter is to investigate if 

space use in gannets correlates with static environmental variables or 

changing visual cues. Its second objective is to use this information to make 
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predictions of space use to be employed in the management and conservation 

of the species. 

 

4.1 Gannet natural history 

The largest population of northern Gannets is on Bass Rock in the Frith of 

forth, SE Scotland (56˚6'N, 2˚36'W). The colony contains more than 70,000 

breeders and several thousand non-breeders and is still increasing at ~5% 

per year. From their breeding site, chick-rearing adults make trips to sea 

lasting, on average, 32.2 h  (SD = 13.2 h).  The furthest points of these trip 

are an average 232 km (SD = 100 km) from the breeding site (Hamer et al. 

2000).  

 During these trips in 1998, Gannets from Bass rock predominantly fed 

on Mackerel (Scomber scrombrus - 30.8 % of biomass in regurgitates), 

Herring  (Clupea harengus - 20.3%), Sandeel (Ammodytes marinus - 17.9%), 

Sprat (Sprattus sprattus - 12.6%) and Gadidae (16.4%) such as haddock 

(Melangogrammus aeglefinus), whiting (Melangogrammus merlangus) and 

cod (Gadus morhua) (Hamer et al. 2000).  

 

4.2 Methods 

4.2.1 Response variable 

In 1998, 17 chick-rearing adults were caught on Bass Rock (56˚6'N, 2˚36'W), 

SE Scotland (Hamer et al. 2000, Hamer et al. 2001). Only individuals with 

hatching dates ± 2 wk from the modes were captured and Platform Terminal 

Transmitters (PTTs) were attached to each bird for a duration of  14 to 23 

days (average 16 days). Similar to the SRDLs used in the grey seal case 

study (see chapter 3 and 5), the PTTs also rely on the Argos satellite system. 

The set of animal telemetry locations contained a small number of highly 

erroneous location fixes which were removed by applying the filtering 

algorithm described by McConnell et al. (1992), using a maximum speed 

parameter of 22.5 m/s (Hamer et al. 2000), well above the average flight 

speed of 15.3 m/s (Pennycuick 1987). Some remaining error in the data was 
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treated using a smoothing algorithm developed (M. Lonergan unpublished) 

within the MGCV (Wood 2001) package in R (see §3.2.1). I used the output of 

this algorithm to interpolate the animals’ positions at 3-hourly intervals. 

Obtaining temporally regular estimates of the animal’s position also helped 

to reduce biases due to the variable observability of the animals (§ 2.2.7).  

Because I was primarily interested in foraging behaviour I restricted my 

attention to those locations that were outwith 5km distance of their breeding 

site.  

 The error-corrected and temporally interpolated data set of satellite 

locations represented a sample of points in geographical space visited by the 

tagged gannets (presence data). Under the case-control paradigm, to provide 

the contrast necessary for modelling preference, these had to be 

complemented with a set of points not visited by the study animals (absence 

data). The Bernoulli response variable in eq. 2.5 took the value 1 wherever 

there was an animal present and 0 where there wasn’t. 

 To account for the unequal accessibility of points in space, the absence 

points can be drawn from a spatial surface of accessibility (see also §2.2.2) 

which is either based on an individual movement (Matthiopoulos 2003) or a 

diffusion model. Alternatively, if the necessary parameters of movement are 

not readily available as is the case here, absences can be selected uniformly 

randomly from space and the distance to the central-place included as an 

explanatory variable. This uniform selection of absences results in areas 

close to the breeding site being as well-sampled as the more remote, less 

accessible ones. This means that a large number of absences are required in 

total to represent fine-scale patterns of usage close to the central-place, 

leading to insurmountable computational problems with the full model. To 

bypass these problems, as a prequel to the analysis, I set up a model using 

uniformly selected absences and distance from the breeding site as the only 

covariate of usage. I then used the predictions of this model as the 

accessibility surface from which the absence data for the full model were 

randomly selected. 
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4.2.2 Explanatory variables 

For each set of spatial coordinates contributing to the response data, I 

provided values for the explanatory variables corresponding to conditions at 

these coordinates. I selected environmental variables on the basis of possible 

biological relevance and availability of data. I opted for three static 

variables: sediment type, sea depth, distance to coast and distance to the 

breeding site and two non-static variables that are visible from the air: 

chlorophyll-a concentration and water opaqueness, also known as diffuse 

attenuation.  

 Gannets might have a preference for certain sediment types as an 

indirect consequence of the habitat preference of sediment-burrowing prey 

such as sandeels (Wright et al. 2000, Holland et al. 2005). Sediment type is 

also a reflection of prevailing current conditions (e.g. high mud content in 

the sediment reflects slow currents). Strong currents imply a large net influx 

of zooplankton on which fish can feed but they also increase the energetic 

cost of mobility for fish. I used the same GIS layers for sediment generated 

for the grey seal analysis (§3.2.2). 

  The relationship between the spatial distribution of gannets and sea 

depth is difficult to anticipate. Shallow areas among deeper areas will 

generally be characterised by stronger currents and therefore higher net 

influx of plankton. On the other hand, these regions might be a more 

exposed to breeding seabirds and hence characterised by higher risk. Deeper 

areas might also offer a wider variety of currents within the water column 

giving the fish more options from which to chose in trying to improve their 

foraging success. I used the GIS layer for bathymetry derived for the grey 

seal analysis (§3.2.2). 

 Because diving gannets catch prey using visual cues at depths of up to 34 

meters (Brierley & Fernandes 2001), the clarity of water will improve the 

probability of catching a fish conditional on it being there. On the other 

hand, clear water might be the result of low plankton concentration and 

therefore indicate a low probability of fish being there. The variable “diffuse 

attenuation” was used as an indicator of water clarity, while chlorophyll-a 

concentration is an indicator of primary productivity.  Both variables were 

derived from weekly composite of Seawifs satellite images and measured at 
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approximately 9km spatial resolution. Due to cloud cover, data did not exist 

for all cells. However with the aid of  spatial and temporal correlation in the 

data, these missing values could be interpolated in both space and time from 

neighbouring cells. To do this, I fitted a GAM with a smooth interaction 

between latitude and longitude and the date at which the data was collected, 

by means of tensor product smoothers available in the MGCV package in R 

(Wood 2001). The tensor product function in MGCV works by first 

constructing a set of k basis spline functions for each variable in the model 

(in this example, latitude, longitude and time). It then calculates the 

products of all possible combinations of basis functions (in this case, leading 

to a total of k3 interaction terms). I used the resulting model to make 

predictions for every cell for which data was missing due to cloud cover. The 

effect of tensor product smoothing is clearly visible in Fig. 4.3 b and e. The 

Pixel Intensity (PI) was stored using values 1 to 255, but could be converted 

into absolute measures of chlorophyll-a concentration (CHLO) and diffuse 

attenuation (K490) using the following functions 

 

CHLOPICHLO ⋅+−= 01.0210                                             4.1 

 

490011.0210490 KPIK ⋅+−=                                             4.2 

 

Finally, there might be several reasons why distance to coast is important to 

the gannets. They might avoid coastal areas as a result of inter-specific 

competition with short-ranging species or prefer them because of their 

higher productivity. They might also use the coast line as an orientation aid. 

Distance from the gannet’s breeding site was included to account for residual 

issues of accessibility. 

 

4.2.3 Model structure 

The basic structure of the model follows from using a binomial response 

variable (h) with a logit link 
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To make the model flexible (§2.2.8), the linear predictor ( lη ) follows the 

structure of a GAM for a total of six explanatory variables 
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where each spline )( ⋅s  is a flexible function of each explanatory variable, 

and kjb ,  is the random effect parameter for the kth out of 6 basis function of 

the spline for the jth explanatory variable. Construction of splines followed 

the protocol developed for grey seals (§3.2.3).   

  In the most saturated form of the model, each parameter, was expressed 

as a function of individual characteristics 

 

kjmkjmkjkjmkj masssexb ,3,,2,,0,,,, νβββ +++=                            4.5 

 

where m refers to a specific individual and the individual characteristic 

mass was recorded at re-capture.  

 

4.2.4 Parameter estimation 

The parameters that needed to be estimated were the model’s coefficients jβ  

and the variances 2

jσ  of the variance-covariance matrix ψ , of which the 

covariances were assumed to be 0. Parameter estimation was done using 

maximum likelihood methods which are described in detail in §3.2.4. 
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4.2.5 Model selection and model validation 

I adhered to the model selection protocol derived for grey seals. I used data 

from 11 individuals for model fitting and the remaining 6 individuals for 

model selection. 

 

4.2.6 Spatial prediction of usage 

I used the same rationale behind the grey seal usage predictions. Because 

the total population size of breeding adults on Bass Rock was known and the 

proportion of time spent foraging outside the 5km zone ( seaatp ) could be 

estimated from the telemetry data, I was able to estimate the at-sea density 

of gannets within a spatial unit c (e.g. a 1 km cell) as follows 

 

 

xs
x

dNpu
c

c ∫
∈

= )(sea at υ                                                4.6 

 

4.2.7 Spatial prediction of preference 

As in the grey seal study, predictions of preference were generated from the 

relationship 
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                             4.7 

 

 

4.2.8 Software 

All data manipulation, analyses and plotting (including spatial plotting) was 

done using R (R Development Core Team 2004). ML parameter estimation 

was done using ADMB-RE (Otter Research Ltd. 2004a, b). Transformation of 

satellite images in .hdf  format to ASCII raster was done using Manifold. 
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4.3 Results 

4.3.1 Response and environmental variables 

A total of 17 individuals were caught, equipped with satellite transmitters 

and released within a 45 day period (11 July to 25 August). Following track 

filtering the raw data yielded a total of 1293 locations.  I augmented these 

with twice as many (i.e. 2586) points selected uniformly randomly from 

space for which environmental data is available (Fig. 4.1a). I then extracted 

the relationship between the response variable presence/absence and 

distance. This model was used to calculate the rate of usage ( )sυ  at all 

points in space which was than treated as the accessibility surface from 

which new absences were extracted (Fig. 4.1b) for the full model.  

 The combined presence and absence data constituted the response data 

that were to be regressed against the environmental variables (examples 

shown in Figs 4.1b, 4.2 & 4.3). 

 

  

a. b. 

 

Fig. 4.1 Distance to the breeding site and absences drawn uniformly from 

within the study area (a). Surface of accessibility and absences drawn 

uniformly from it (b).  
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a. b. 

 

 

c. 

 

Fig. 4.2 Spatial representation of % mud in the sediment (a), depth (b) and 

distance to the coast line (c).  
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a d 

  
b e 

  
c f 

 

Fig. 4.3 Satellite images of Chlorophyll concentrations (a, b & c) and diffuse 

attenuation (d, e & f) for three weeks each starting with the on day 193 (a & 

d), 209 (b & e) and 225 (c & f) of 1998.  
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4.3.2 Model selection 

Forward model selection suggested that a model containing all 

environmental variables explained a significant proportion of the variation 

in the response (Figs 4.4 & 4.5), but this was only 7%. Due to computational 

restrictions I was limited to fitting models containing up to 5 (instead of 7) 

covariates. Validation of the candidate models generated by this process 

(Fig. 4.4) indicated that a simpler model (see Appendix B, table 2 for the 

parameter estimates) containing distance to the coast, depth and distance to 

the breeding site best explained the response data from the validation 

individuals. This model was used for further analysis.  

 It was conceivable that this model was too flexible due to the use of 

splines. The sequential replacement of splines by the un-transformed 

environmental variables led to a deterioration of the model’s AIC under both 

the fitting and test data sets.  

  To explain some of the residual variation I also included individual 

characteristics (eq 4.5). Based on the AIC, an interaction between depth and 

gannet mass led to a slightly improved model (2683.2 compared to 2683.6). 

However, under the validation data set the log-likelihood of the model 

decreased from -819 to -832.  Therefore, I used the model with no individual-

specific covariates to investigate the relationship between the response and 

the different environmental variables and to make spatial predictions of 

both usage and preference. 
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Fig 4.4 Forward model selection on the environmental variables; depth, 

distance to the breeding site, percentage mud and gravel in the sediment, 

chlorophyll concentration, diffuse attenuation and distance to the coastline 

denoted by “depth”, “distance, “mud”, “gravel”, “CHLO”, “K490” and “coast 

distance”. The arrows indicate the change in AIC between models (horizontal 

lines) as a result of adding an environmental variable. Arrows for variables 

that lead to the largest improvement in AIC are coloured in blue. 
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Fig 4.5 Validation of models containing only environmental variables using 

the test data set. Note that all parameter estimates used to calculate the 

likelihood are based on the 11 individuals from Bass Rock. Different models 

are arranged in order of increasing number of environmental variables along 

the x-axis. The y-axis represents the log-likelihood of the data under each 

model, standardised by the number of data points (n) in each of the three 

datasets. The black crosses indicate the best model for each data set. 
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 It is possible that some important environmental variables were omitted 

from the analysis. This would reveal itself in the presence of spatial 

autocorrelation in the residuals (§ 2.2.5). I constructed semi-variograms to 

investigate the spatial autocorrelation in the response and residuals for 

large (<40,000 m) and small (<5,000 m) spatial scales (Fig. 4.6). These 

indicated that spatial autocorrelation is present only on large spatial scales, 

although some some of it is accounted for by the covariates.  
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a. b. 

 

Fig 4.6  Semi-variogram of the response data (0 and 1) and the residuals 

(observed response - predicted) for up to 40km (a) and 5km (b) with the 

range of distance being partitioned into 100 distance classes in both cases. 

The plotted lines are linear regression models fitted to the data. This trend 

is not significant (p-value = 0.41). 

 

4.3.3 The effect of environmental variables on the response. 

The most important covariate was the distance to the coast which had a 

negative relationship with the response for distances up to 20 km, meaning 

that the observed usage away from the coast is less than predicted by the 

accessibility model (Fig. 4.7a). The second most important environmental 
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variable was depth. Fig. 4.7b shows that the animals’ preference is highest 

for areas with a depth of about 80 meters. Finally Fig. 4.7c shows that 

gannets generally prefer areas that are closer to the breeding site than 

predicted by the accessibility model. This could be due to the fact that the 

knot positions of the splines used for this variable are different from those 

used to estimate the accessibility surface. 

0 50 100 150 200 250 300

-5
0

5
10

coastdistance

lo
gi

t(r
es

po
ns

e)

 

-150 -100 -50 0

-6
-4

-2
0

2
4

6

depth

lo
gi

t(r
es

po
ns

e)

 
a. b. 

0 100 200 300 400 500

-6
-4

-2
0

2
4

6

distanceb

lo
gi

t(r
es

po
ns

e)

 
c. 

 

Fig. 4.7 The effect of the covariates distance to the coast-line (a), depth (b) 

and distance to the breeding site (c). The 95% confidence limits are 

represented by the shaded areas , the grey lines represent individual specific 

responses and the black line the mean population responses (i.e. fixed effect). 



 

 

CASE STUDY:  GANNETS 102 
................................................................................................................................................................................................................................ 

 

4.3.4 Spatial prediction of usage and preference  

Using the relations between the response and the environmental variables 

as outlined in the previous paragraph, I can estimate the rate of usage (υ), 

for every point in space with known values for the environmental conditions 

(Fig. 4.8a and b). It is often difficult to interpret the absolute scale of a 

variable using colour plots alone. I therefore plotted one possible realization 

of a data set of observations that would be obtained from a heterogeneous 

spatial Poisson process with that rate (Fig. 4.8c). This realization was based 

on a total adult population size of 70,000 and a proportion spent at sea of 

50%.  
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a. b. 

 
c. 

 

Fig 4.8 Spatial prediction of usage for the Bass rock without (a) and with (b) 

telemetry locations and one possible realization for the adult breeding 

population of Bass Rock using the usage predictions (c) plotted on top 
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To indicate which areas Gannets would use if all points in space were 

equally accessible, I plotted preference in space (Fig. 4.9).  

 

 

Fig 4.9  Spatial prediction of preference accounted for unequal accessibility 

and the effect of distance to the haulout site on the response.  

 

 

4.4 Discussion 

4.4.1 Habitat preference; Why are Gannets where they are? 

Probably the most important conclusion of this study is that the biological 

and physical environmental variables I considered to be of importance (i.e. 

sediment type, depth, chlorophyll concentrations and diffuse attenuation), 

explain relatively little of the observed distribution of gannets at sea, 

especially when compared with the effect of these covariates on the spatial 

distribution of grey seals. There are several reasons for this:  

 Gannets predominantly feed on pelagic prey, such as mackerel, herring 

and sandeel (mostly 0-group individuals). The spatial and temporal 

distribution of prey items for those fish species (such as phytoplankton, 
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zooplankton and mesoplankton)  is largely driven by physical oceanographic 

and atmospheric processes. These processes vary strongly in both space and 

time, and so do the distributions of the pelagic fish species that depend on 

them. If gannets cannot rely on predictable cues like the ones used in this 

study, they might spend considerable time searching for those resources, and 

the gannets’ spatial distribution might strongly match the expected 

distribution under the accessibility model. Even if the spatial distribution of 

undisturbed prey is predictable by means of environmental cues, these may 

not be as useful if prey hotspots have been depleted by the prolonged action 

of gannets or other marine predators.  Indeed, Lewis et al. (2001) show that  

intraspecific competition in larger gannet colonies increases the duration of 

foraging trips as individuals search for food further afield. 

 The covariates that partly explain the gannet’s  spatial distribution, are 

in order of importance, distance to the coast, depth and distance to the 

breeding site. Preference is high near the coast and declines sharply within 

the first 20km away from it. This may be due to higher levels of primary 

productivity originating from nutrient input from rivers and the strong 

vertical mixing (upwells) occurring near the coast. Another, explanation for 

the importance of distance from the coast can be found in the way gannets 

orientate to offshore foraging areas by flying parallel to the coast for a 

considerable part of their trip (Hammer et al. 2001).  

 Although previous studies have shown that there is sex-differentiation in 

dive depth (Lewis et al 2002), we found that neither the mass nor the sex of 

the individuals explained individual variability in habitat preferences. 

 

4.4.2 Spatial predictions of usage and preference; Where else are Gannets 

likely to be? 

Although few of the environmental variables and none of the individual 

characteristics were retained in the final model, it nevertheless provided an 

accurate description of total at-sea distribution. Whether this information is 

appropriate for managing the population depends on the objectives of 

management and conservation. For example, investigating the extent of 

seabird - fisheries competition might require more specific information about 
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the spatial distribution of actual feeding events. In contrast, risk assessment 

for other human activities in the North Sea such as oil drilling or the 

development of offshore wind farms, might require estimates about the 

overall at-sea distribution, such as the ones provided here.  

 

4.4.3 Future research: additional environmental variables as candidate 

covariates 

One of the main spatial features seen in the raw telemetry data is the 

gannets’ tendency to forage in areas south-east and north-east off Bass-rock 

(Hamer et al. 2001), a pattern that is not reflected in this model’s spatial 

predictions. In addition there might be more fine-scale features in the 

telemetry location data that changes over time caused by changing 

environmental conditions and that are therefore not revealed by the total 

composite of the telemetry locations (fig 4.2). We will discuss which other 

variables could explain those patterns.  

Previous studies have shown that fish densities accumulate at fronts, which 

act as a natural barrier (Barnes and Hughes 1999). Also, during the summer 

months, regions with strong upwelling brings both nutrients and plankton, 

and therefore also fish assemblies closer to the surface. Both fronts and 

upwelling regions will be visible on Sea Surface Temperature satellite 

imagery from NOAA-Advanced Very High Resolution Radiometer (AVHRR) 

as strong temperature gradients and cold spots, respectively. Another 

covariate that could explain the observed distribution would be an 

autoregressive term, which would not only deal with problems of spatial and 

temporal autocorrelation in the response data (see §2.2.5 and §2.2.6),  but 

might also explain potentially existing positive (e.g. aggregate feeding) or 

negative (e.g. resource competition) density dependent effects.  Another 

variable that might explain the direction of flight and therefore also the 

actual at sea distribution is wind direction and velocity.  

 Gannets forage at sea to feed, and although their distribution is most 

likely to be related to fish, one could argue that gannets might actually 

respond to other cues like the ones presented above. However, this 

distinction can only be resolved using model selection techniques like the one 
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suggested in this paper and only if estimates of fish distributions are 

available. Such data is generally sparse in both space and time. 

Alternatively fish distributions could be related to environmental variables, 

using a similar approach as the one suggested in this study. In recent years 

considerable progress is made in developing physical oceanographic and 

biological models such as POL2dERSEM (Allen et al. 2001) and ECOSMO 

(Schrum et al in press). Predictions include, estimates for both phyto- and 

zoo-plankton biomass and productivity. Future research should focus on 

modelling fish distribution either empirically or mechanistically using these 

models, if we are ever able to understand the structure and functioning of 

marine ecosystem of which gannet form an important component. 

 

4.5 References 

Allan, J. I., Blackford, J., Holt, J., Proctor, R. Ashworth, M., and J. Siddorn. 

2001. A highly spatially resolved ecosystem model for the North West 

European Continental Shelf. Sarsia 86: 423-440. 

Barnes, R. S. K., and R. N. Hughes. 1999. An introduction to Marine 

Ecology, Third edition. University Press, Cambridge. 

Birt-Friesen V.L., Montevecchi W.A., Cairns D.K., and S.A. Macko. 1989. 

Acitvity-specif metabolic rates of free-living northern gannets and 

other seabirds. Ecology 70: 357-367 

Brierley, A., and P.G. Fernandes. 2001. Diving depths of Northern Gannets: 

Acoustic observations of Sula bassana from an autonomous underwater 

vehicle. The Auk 118(2): 529-534. 

Burger, J. 1980. The transition to independence and post-fledging parental 

care in seabirds. Behav. Mar. Anim 4: 366-447. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel 

inference. A practical Information-Theoretic Approach., 2nd edition 

edition. Springer-Verlag, New York. 

Hamer, K. C., R. A. Phillips, J. K. Hill, S. Wanless, and A. G. Wood. 2001. 

Contrasting foraging strategies of gannets Morus bassanus at two 

North Atlantic colonies: foraging trip duration and foraging area 

fidelity. Marine Ecology-Progress Series 224:283-290. 



 

 

CASE STUDY:  GANNETS 108 
................................................................................................................................................................................................................................ 

 

Hamer, K. C., R. A. Phillips, S. Wanless, M. P. Harris, and A. G. Wood. 2000. 

Foraging ranges, diets and feeding locations of gannets Morus 

bassanus in the North Sea: evidence from satellite telemetry. Marine 

Ecology-Progress Series 200:257-264. 

Holland, G. J., S. P. R. Greenstreet, I. M. Gibb, H. M. Fraser, and M. R. 

Robertson. 2005. Identifying sandeel Ammodytes marinus sediment 

habitat preferences in the marine environment. Marine Ecology-

Progress Series 303:269-282. 

Lewis, S., Sherratt, T.N., Hamer, K.C., and S. Wanless. 2001. Evidence of 

intra-specific competition for food in a pelagic seabird. Nature 412: 

816-819. 

Lewis, S., Benvenuti, S., Dall'Antonia, L., Griffiths, R., Money, L., Sherratt, 

T.N., Wanless, S., and K.C. Hamer. 2002. Sex-specific foraging 

behaviour in a monomorphic seabird. Proc. R. Soc. London. B 269: 

1687-1693. 

Manly, B. F. J., L. L. McDonald, and D. L. Thomas. 1993. Resource selection 

by animals: statistical design and analysis for field studies. Chapman 

and Hall, London. 

Matthiopoulos, J. 2003. The use of space by animals as a function of 

accessibility and preference. Ecological Modelling 159:239-268. 

McConnell, B. J., C. Chambers, K. S. Nicholas, and M. A. Fedak. 1992. 

Satellite Tracking of Gray Seals (Halichoerus-Grypus). Journal of 

Zoology 226:271-282. 

Otter Research Ltd. 2004a. An introduction to AD Model Builder Version 

7.1.1. For use in Non-linear Modelling and statistics. Otter Research 

Ltd, Sidney B.C. 

Otter Research Ltd. 2004b. Random effects in AD Model Builder. ADMB-RE 

user guide. Otter Research Ltd, Sidney B.C. 

Pennycuick, C.J. 1987. Flight of aucks (Alcidae) and other northern seabirds 

compared with southern Procellariiformes: ornithodolite observations. 

J Exp Biol 128: 335:347 

Pinheiro, J. C., and D. M. Bates. 2000. Mixed-effects models in S and S-plus. 

Springer-Verlag, New York. 



 

 

CASE STUDY:  GANNETS 109 
................................................................................................................................................................................................................................ 

 

R Development Core Team 2004. R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. ISBN 3-900051-00-3, URL http://www.R-project.org. 

Schrum, C., Alekseeva, I., and M. St. John. In prep. Development of a 

coupeled physical-biologicl ecosystem model ECOSMO Part I: Model 

description and validation for the North Sea. 

Wood, S. N. 2001. mgcv: GAMs and Generalized Ridge Regression for R. R 

News Vol 1:20-25. 

Wood, S. N. 2006. Generalized Additive Models: an introduction with R. in 

press. 

Wright, P. J., H. Jensen, and I. Tuck. 2000. The influence of sediment type 

on the distribution of the lesser sandeel, Ammodytes marinus. Journal 

of Sea Research 44:243-256. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CASE STUDY:  GANNETS 110 
................................................................................................................................................................................................................................ 

 

 

 

 

 

 

 

 

 

 

 

 



   

____________________________________________________________________ 

 

5. MODELLING SPACE-USE AND HABITAT 

PREFERENCE IN GREY SEALS 

(HALICHOERUS GRYPUS) OFF THE WEST 

COAST OF SCOTLAND 

____________________________________________________________________ 

 

 

Human exploration and exploitation of the marine environment through 

activities such as fishing (Wickens et al. 1992; Lunneryd et al. 2003; Read & 

Brownstein 2003), military exercises (Jepson et al. 2003; Goold 1998; Goold 

& Fish 1996), drilling for oil and gas and development of wind farms (Wursig 

& Greene 2002; Harwood & Wilson 2001), can often come into conflict with 

marine mammal populations. This can be particularly acute in regions 

where intensive human activities overlap with hotspots in the distribution of 

marine mammals. A simple but effective mitigation measure is to reduce 

human activities in areas with high densities of marine mammals.  

 Estimates of the distribution of many marine mammal species can be 

made using visual line-transect methods (Hammond et al. 2002; Macleod et 

al. 2003). However, these are not very effective for grey seals because they 

spend most of their time under water,  they are difficult to detect while at 

the surface, they forage at remote areas and are relatively sparse. Instead, 

grey seals can be individually tracked using Satellite Relay Data Loggers 
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(SRDL - Fedak and McConnell 1993). A major disadvantage of this 

technique is that, due to logistic and financial constraints, very few such 

devices can be deployed and sampling effort is often unbalanced across 

different geographic regions and types of animals. This is problematic, 

because conservation and management of grey seals requires unbiased 

estimates of their spatial distribution within an entire region of interest. 

 Although individual grey seals vary considerably in how they use space, 

their collective space-use is ultimately shaped by the availability of 

resources and environmental restrictions. In this chapter I firstly aim to 

model the effect of environmental variables (both static and time-variant) on 

the distribution of grey seals foraging off the west coast of Scotland. 

Secondly, I aim to combine the predictions of the habitat model with aerial 

counts of animals at haulouts in order to estimate the expected abundance of 

grey seals at sea.  

  

5.1 Facts about the natural history of  grey seals on the west coast of 

Scotland. 

The Inner and outer Hebrides are the most important regions for grey seals, 

containing an estimated 49% of the total UK population (Hammond et al. 

1994). During the breeding season (late September to early October), which 

starts approximately 1 ½ months earlier than in the east coast, large 

numbers aggregate on land (King 1983). During the remainder of the year, 

individuals frequently aggregate on coastal sites, known as haulout sites.  

 From these haul-out sites they make foraging trips to sea, feeding on a 

variety of fish species. Most grey seal telemetry data came from seals 

foraging from halout-sites in the southern part of the Inner Hebrides (area 1 

Fig 5.1). In this region, the diet of Grey seals (determined from scat-samples 

collected from April until September 2002), predominantly consists of 

Sandeels (Ammodytes marinus - 59.57% of diet expressed in weight), 

Atlantic Cod (Gadus morhua - 14.86%), Lemon Sole (Microstomus Kitt - 

10.09%) and Bullrout (Myoxocephalus scorpius - 8.12%) (SMRU 

unpublished).  
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Fig. 5.1 Haul-out sites from which scat samples were collected in 2002. Area 

1 contains the haul-out sites from which individuals were caught and 

equipped with satellite transmitters.  

 

5.2 Methods 

5.2.1 Response variable 

In March and April 2003 and 2004 grey seals were caught at Islay (55°54N, 

6°20W), Collonsay (56°01N, 6°15W) and Tiree (56°30N, 7°00W). Seals were 

anaesthetised, measured and equipped with Satellite Relay Data Loggers 

(SRDLs). The SRDLs sent UHF signals to two polar-orbiting satellites with 

an Argos satellite system. The location of the animal was determined using 

the frequency Doppler shift of the signal (Argos 1989). These estimates 

contained a small number of highly erroneous location fixes which were 

removed by applying the filtering algorithm described by (McConnell et al. 

1992), using a maximum swim speed parameter of 5 m/s. Some remaining 

error in the data was treated using a smoothing algorithm developed (M. 

Lonergan unpublished) within the MGCV (Wood 2001) package in R (see 

§3.2.1). I used the output of this algorithm to interpolate the animals’ 

positions at 6-hourly intervals. Obtaining temporally regular estimates of 

the animal’s position also helped to reduce biases due to the variable 

observability of the animals (§ 2.2.7).   
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 Not every telemetry observation was used in defining the response 

variable. In summary, only those telemetry locations collected in July, 

August or September that were further than 5km from the haulout site and 

observed during a return trip were used to model habitat preference. The 

motivation for each of these decisions is given below: 

 

Excluding locations within 5km of a haulout sites.— Many of the smoothed 

animal locations are on, or very close to land. Grey seals tend to aggregate 

on land, as well as in the water close to land, to rest and perhaps socialise 

(pers. obs.).  Such activities are unlikely to be related to the physical and 

biological variables used in this study, and if they are, the complex 

topography of inshore areas and the lack of fine-scale environmental data 

combined with the relative large errors in the estimated animal locations, 

would not allow me to correctly model habitat preference. Therefore, I 

restricted my attention to those telemetry locations further than 5km from 

any haul-out site.  

 

Excluding telemetry observations outwith July, August and September.— 

The grey seal preference for prey changes as a consequence of seasonal 

changes in prey availability (Smout 2006). It is therefore likely that the 

spatial distribution of grey seals will also vary seasonally. Accounting for 

these changes would require including interaction terms between (a possibly 

non-linear function of) time and every environmental variable. This would 

make unfeasible computational demands on parameter estimation. 

Furthermore, under the second objective of this chapter, estimates of at-sea 

abundance will be made with the aid of haulout counts. These are only 

available for the month of August. Finally, these months immediately 

precede the breeding season during which females need to facilitate a 

growing foetus and build up large energy supplies for milk production later 

in the year. Hence, this period may play an important role in determining 

some of the population’s demographic rates and is therefore very important 

from a conservation and management perspective.  
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Return trips observations only.— Under the case-control paradigm, to 

provide the contrast necessary for modelling preference, the error-corrected 

and temporally-smoothed data of satellite locations (presence data) has to be 

complemented with a set of points not visited by the study animals (absence 

data). For central-place foragers, the absence points can be drawn from a 

spatial surface of accessibility (Matthiopoulos 2003b). The accessibility of a 

point in space is defined as the likelihood of that point being visited by 

individuals that show no preference for environmental conditions, but are 

subject to physical restrictions to movement (obstacles, swimming speed, 

trip durations, and the start and end point of a trip). The start and end 

points of a trip can be different (transitory trips), but are more often 

(McConnell et al. 2000) the same (return trips). Matthiopoulos (2003b) 

estimated the likelihood of a point in space being visited by individuals 

making return trips and showed how to calculate the equivalent likelihood 

for transitory trips. Generating a map of aggregate spatial use for the 

population using both return and transitory trips, requires appropriate 

weighting of trips performed between all pair-wise combinations of haulouts. 

The weights for this operation must relate to the relative frequency of 

occurrence of trips between any two haulouts. This information is not yet 

available.  I therefore restricted my attention to return trips and excluded 

transitory trips from my analysis data frame. On the east coast of Scotland 

the proportion of transitory trips was small, namely 14%. In contrast, the 

proportion of transitory trips might be greater for grey seals foraging off the 

west coast of Scotland. This may be because, the larger number of haulout 

sites on the western coast results in smaller average distances between them 

and makes it less costly for seals to travel between them or they appear to 

have travelled between them due to observation error. To prevent excessive 

censoring of data, I clustered haulout sites into groups. Model-based 

clustering techniques exist that can automatically determine the  number of 

clusters by means of theoretical information criteria (e.g. BIC - Ter Braak et 

al. 2000). Because I had to calculate the at-sea distance to every cluster, I 

was not just interested in the the optimum number of clusters, but I was 

also restricted by computational costs. Therefore, I assumed a fixed (though 
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arbitrary) number of 25 clusters. The clustering method is described in 

Appendix 5.A.  

 

5.2.2 Explanatory variables 

I provided values for the explanatory variables corresponding to conditions 

at each set of spatial coordinates contributing to the response data. I 

selected environmental variables on the basis of possible biological relevance 

and availability of data. Since grey seals go out to sea to forage, a useful set 

of covariates would be the spatial distributions of their prey. However, fish 

distributions are notoriously variable in space and time and the data and 

models that could be used to describe these distributions are scarce or 

unavailable. Instead, I opted for more precisely measured covariates such as 

the abundance and accessibility of phyto-and zooplankton (the major food 

source for species such as sandeel), the distribution of sediment components 

(a determinant of the burying conditions for ground-fish) and time 

restrictions on horizontal and vertical movement of grey seals. 

 

Phyto- and zooplankton abundance.— The fish species on which grey seal 

prey, feed on phytoplankton, zooplankton and other species of fish and this 

may lead to a positive correlation between the distribution of seals and the 

distribution of their prey’s food sources. One proxy for the abundance of 

phytoplankton is chlorophyll concentration which can be measured remotely 

by MODIS (MODerate resolution Imaging Spectroradiometer) and 

SEAWIFS (Sea-viewing Wide Field-of-view Sensor) satellite images which 

were extracted from http://oceancolor.gsfc.nasa.gov/. For every value of the 

response, given its spatial position and time of observation, I extracted the 

corresponding chlorophyll values from 8-daily composites. If, due to 

extensive cloud cover, satellite observations were missing I used values from 

monthly composites instead. The chlorophyll concentrations from both 

satellite sources were averaged.  

 Zooplankton concentrations cannot be measured remotely and their 

abundance is not necessary proportional to phytoplankton abundance due to 

delayed responses. Instead, I used estimates of zooplankton abundance 
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generated by a hydrodynamic model, the POL-3DB (Proctor & James 1996; 

Holt & James 2001) baroclinic model with the European Regional Seas 

Ecosystem Model, ERSEM (Baretta et al. 1995). This model describes the 

biogeochemical cycling of carbon, nitrogen, phosphorous and silicate through 

both the pelagic and benthic ecosystem and the coupling between them 

(Allen et al. 2001).  

 

 

Fig 5.2 The pelagic food web of the ERSEM model (from Allen et al. 2001). 

 

Phyto and zooplankton accessibility.— For fish to able to exploit the 

abundance of phyto- and zoo-plankton efficiently these resources need to be 

aggregated in sufficiently high densities. The measures on zooplankton and 

phytoplankton abundance described in the previous section do not quantify 

spatial (described by latitude and longitude) aggregations within cells 

neither do they quantify vertical aggregations in the water column. 

Aggregations generally occur in places with steep temperature, salinity and 

density gradients.  

Although temperature is measured at the same spatial resolution as 

chlorophyll concentrations, measuring horizontal variability in temperature 

can reveal information about the dynamic nature of that cell and therefore 
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provide an indiciation of the amount of heterogeneity within that cell. 

Horizontal gradients can be observed remotely using satellite imagery. 

Using satellite measures of sea surface temperature, I estimated the 

gradient α for every cell in space using the eight surrounding cells by means 

of the following equations (Burrough 1986)  
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where z is the SST value and xl∂  and yl∂ are the width of the cells in the x 

and y directions respectively.  

Vertical aggregations in the the water column cannot be visualized using 

satellite imagery. Instead, I used the POL-3DB model predictions to 

estimate the difference in surface and sea-bottom temperature as a measure 

of stratification. On average, deeper areas will have larger differences 

between surface and bottom temperature independently of the amount of 

mixing that takes place. But, because depth is also included as a candidate 

covariate in the model, it should account for some of this effect.  

 

Fish burying habitat preference.— Benthic species are the main sources of 

food for grey seals. For the Shetland islands and East coast, Wright et al. 

(2000) and Holland et al. (2005) have shown that the sandeel distribution is 

closely related to sediment type: Sandeels appear to avoid mud. It is believed 

that this strategy prevents their gills from getting clogged.  

Sediment type data come from 3 sources: i) maps of kriged sediment core 

samples (see §3.2.2), ii) BGS classified sediment conditions and iii) UKHO 

sea bottom texture side-scan data. The latter two sources were stored as 

categorical data in both environmental and geographical space and the 

classes were transformed to values for the percentages of mud, gravel and 

sand in the sediment using the Folk-classification (Folk 1980). For any point 
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in space, use of these data sets, yielded at least one and usually three 

estimates of sediment composition. When more than one estimates were 

available I used the mean percentage of each category (gravel, mud or sand). 

Some points were classified as “Rock” by either the UKHO side-scan or BGS 

habitat classification. I treat rock as a dummy variable; its value is 1 if rock 

is present and 0 if absent.   

 

Grey seal foraging restrictions.— Since grey seals predominantly dive to the 

sea bottom, they spend more time travelling to depth in deeper waters, 

shortening their effective foraging duration. In the extreme, some depths 

might not be accessible at all and should therefore be avoided. Depth was 

therefore a relevant candidate covariate. In addition to these physiological 

and temporal restrictions, some studies (Wright et al. 2000, Holland et al 

2005) have shown that fish distributions are not uniformly distributed with 

depth. For example, Wright et al. 2000 showed that sandeels have a peak 

preference for depths in the range of 50 to 60 meters. 

 Distance from the haulout might also impose limitations to usage. This 

should, to a large extent, be captured by the accessibility model. This model 

includes information on the distribution of trip durations derived from 

tagging data collected around the UK. However, Matthiopoulos et al. (2004) 

indicate that these can be different between haulout sites, leading to slightly 

different accessibility surfaces. These deviations from the accessibility model 

will lead to residual under/over-prediction as a function of distance from the 

haulout.  To account for the these effects, I included the swimming distance 

to the haul-out site as a covariate. 

 

5.2.3 Model structure 

The basic structure of the model follows from using a binomial response 

variable (h) with a logit link 
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To make the model flexible (§2.2.8), the linear predictor ( lη ) follows the 

structure of a GAM for a total of twelve explanatory variables 
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where each spline )( ⋅s  is a flexible function of each explanatory variable, 

and kjb ,  is the random effect parameter for the kth out of 6 basis function of 

the spline for the jth explanatory variable. Construction of splines followed 

the protocol developed for grey seals (§3.2.3). In the most saturated form of 

the model, each parameter, was expressed as a function of individual 

characteristics 

 

ljmkjmkjkjmkjb ,3,,2,,0,,,, lengthsex νβββ +++=                             5.4 

 

where m refers to a specific individual.  

 

5.2.4 Parameter estimation 

I estimated the model’s coefficients jβ  and the variances 2
jσ  of the random 

effects by maximum likelihood. Parameter estimation is described in detail 

in §3.2.4   
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5.2.5 Model selection and model validation 

I adhered to the model selection protocol derived for grey seals from the East 

coast of Britain, in section §3.2.5. I used data from 14 individuals for model 

fitting and the remaining 13 individuals for model selection. 

 

5.2.6 Spatial prediction of usage 

I used the same rationale behind the grey seal usage predictions made for 

the east coast of Scotland (§3.2.6). To scale prediction of usage up to total 

abundance at sea, I first needed to calculate the total population size Ni 

associated with each haul-out site i,  

       
land

i
i

p

n
N =                                                       5.5 

 

where in  is the number of seals observed during the 96-97 aerial survey and 

21.0≅landp  is the proportion of animals that are expected to be hauled-out 

during these counts. It is calculated by dividing the total number of 

individuals observed during the 96-97 survey, which is 24,047, by the total 

UK population size (116,000) which is based on annual pup-production (Sea 

Mammal Research Unit 2002). The expected density of seals at sea within a 

spatial unit c (e.g. a 1km grid cell) can be estimated as follows  
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Where 613.0≅seaatp  is the proportion of time spent foraging outside a 5km 

range of the haul-out. 

 

5.2.7 Spatial prediction of preference 

As in the east coast study (§3.2.7), predictions of preference were generated 

from the relationship 
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5.2.8 Software 

Most data manipulation, analyses and plotting (including spatial plotting) 

was done using R (R Development Core Team 2004). ML parameter 

estimation was done using ADMB-RE (Otter Research Ltd. 2004a, b). 

Transformation of satellite images in .hdf to ASCII raster was done using 

Manifold. Extracting of the environmental conditions for points in space and 

time was done using an ArcGis extension developed in-house by the Scottish 

Association of Marine Science (SAMS). 

 

5.3 Results 

5.3.1 Response and environmental variables 

A total of 27 individuals were caught, equipped with satellite transmitters, 

released and observed from July 1st to September 30th in either 2002 or 2003. 

Following track filtering, a total of 38.7% locations were within 5km of a 

haulout site and were therefore excluded from the analysis (see §5.2.1). The 

remaining locations were part of a trip returning to the same haulout (i.e. 

return-trip) or a different one (i.e. transitory trip). To determine which ones 

would be classified as return trips I grouped the total number haul-out sites 

(483) into 25 clusters (Fig. 5.3a).  
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b. 

Fig. 5.3 All haul-out sites on which grey seals were observed in August 1996 

or 1997, colour-coded by cluster which are identified by a black dot (a). All 25 

clusters with point sizes being proportional to the number of individuals. 

Orange points are clusters for which some telemetry data used in this study 

was available (b). 
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After clustering the haul-sites, 65% of the at-sea locations belonged to 

return-trips (Fig. 5.4a) corresponding to a total of 4947 locations. Every 

location (with known latitude, longitude and time), was augmented by one 

absence point in space selected from the accessibility surface of the relevant 

haulout cluster, and a time, identical to the time of  the corresponding 

animal location (Fig. 5.4b).  

 The combined presence and absence data constituted the response data 

that were to be regressed against the environmental variables (examples 

shown in Fig. 5.5). 
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Fig. 5.4 All animal locations used in this study (a) and pseudo-absences 

drawn from the accessibility surfaces (b) plotted on top of the swimming 

distance from the Tiree haulout (cluster 6 in Fig. 5.3b). 

 

 

 

a. Bottom speed b. Temperature stratification 

 

c. Zooplankton d. Phytoplankton 
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e. 8-day sea surface temperature f. Monthly sea surface temperature 

 

g. 8-day temperature gradient h. Monthly temperature gradient 
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i. 8-day chlorophyll concentration j. Monthly chlorophyll concentration 

k. Gravel concentration l. Depth 

 

Fig. 5.5 Spatial representation of the bottom speed in m/s (a), temperature 

stratification expressed as the difference between surface and bottom 

temperature (b), zooplankton (c) and phytoplankton (d) concentrations, 

MODIS satellite derived 8 day (e) and monthly (f) sea surface temperature, 

estimated 8 day (g) and monthly (h) temperature gradient in degrees, 

MODIS satellite derived 8-day (i) and monthly (j) chlorophyll 

concentrations, percentage gravel in the sediment (colour coded) and the 

presence of rock (grey) (k) and depth (l). 

 

# # # # #
# # #

# #
# # # # #

# # #
# # #

# #
# # # # # #

# # #
# # #

# # # # # #
# # # #

# # #
# # # #

# # # # # # # #
# # # #

# # # # #
# # # # # # # # # #

# # # # #
# # # # # # #

#
# # #

# #
# # #

# # # # #
# #

# # #
# # # # #

# # #
# # #

# # #
# # # # # #

# # #
# # # #

# # # # # # #
# # #

# # # #
# # # #

# # # # # # # # #
# # # # #

# # # # # #
# # # # # #

# # # # # # # # # # # # # # #
# # # # # # # #

#
# # #

# # # #
# # #

# #
# # #

# # # # #
# # #

# # #
# # # # # #

# # #
# # #

# # #
# # # # # # #

# # #
# # # #

# # # #
# # # # # # # #

# # # # #
# # # #

# # # # # # # # # # # #
# # # # # #

# # # # # # # #
# # # # # # # # #

# #

# # # #
# #

# # #
# #

# # # # #
# # #

# # #
# # # # #

# # #
# # #

# # #
# # # # # # #

# # #
# # # #

# # # # # # #
# # # #

# # # #
# # # # #

# # # # # # # # # #
# # # # #

# # # # # #
# # # # # # # # # # # # # # # #

# # # # # # #

# #
# #

# # # # #
# # #

# #
# # #

# # # # #
# # #

# # #
# # # # # #

# # #
# # #

# # # #
# # # # # # #

# # # #
# # # #

# # # # # # # #
# # # # #

# # # # #
# # # # #

# # # # # # # # # # # # #
# # # # # # #

# # # # # # # # # #
#

# # # #
# # #

# #
# # # # #

# # #
# # #

# # #
# # # # # #

# # #
# # #

# # # # # #
# # # #

# # #
# # # #

# # # # # # # #
# # # #

# # # # #
# # # # # # # # # #

# # # # # #
# # # # # #

# # # # # # #
# # # # # # # # # # # # # #

# # # # #
# # #

# # # #
# # # # #

# # # # # # # # #
# # # # #

# # # # # #
# # # # # #

# # # # # # # # # # # # # #
# # # # # # # # #

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

 -9 -8 -7 

55 

54 

56 

# # # # #
# # # # #

# # # # #
# # # # # #

# # # # #
# # # # # #

# # # # # #
# # # # # # #

# # # # # # #
# # # # # # # #

# # # # # # # # #
# # # # # # # # # #

# # # # # # # # # # # #

# # # #
# # # # #

# # # # #
# # # # #

# # # # #
# # # # # #

# # # # # #
# # # # # #

# # # # # # #
# # # # # # #

# # # # # # # #
# # # # # # # # #

# # # # # # # # # # #
# # # # # # # # # # # # #

# # # # # # # # # # # # # # # #

# # # #
# # # #

# # # # #
# # # # # #

# # # # #
# # # # # #

# # # # # #
# # # # # #

# # # # # # #
# # # # # # #

# # # # # # # #
# # # # # # # # #

# # # # # # # # # #
# # # # # # # # # # # #

# # # # # # # # # # # # # # # # #
# #

#
# # # # #

# # # # #
# # # # #

# # # # # #
# # # # #

# # # # # #
# # # # # # #

# # # # # #
# # # # # # #

# # # # # # # #
# # # # # # # # #

# # # # # # # # # #
# # # # # # # # # # #

# # # # # # # # # # # # # # # #
# # # # # # #

# # # #
# # # # #

# # # # #
# # # # #

# # # # # #
# # # # # #

# # # # # #
# # # # # # #

# # # # # # #
# # # # # # # #

# # # # # # # #
# # # # # # # # # #

# # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # #

# #
# # # # #

# # # # #
# # # # #

# # # # # #
# # # # # #

# # # # # #
# # # # # #

# # # # # # #
# # # # # # # #

# # # # # # # #
# # # # # # # # # #

# # # # # # # # # # #
# # # # # # # # # # # # #

# # # # # # # # # # # # # #

#
# # # # # # #

# # # # # # # # #
# # # # # # # # #

# # # # # # # # # # #
# # # # # # # # # # # #

# # # # # # # # # # # # # # # # #

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

 -9 -8 -7 

55 

54 

56 



 

 

CASE STUDY: WEST COAST GREY SEALS 129 
................................................................................................................................................................................................................................ 

 

5.3.2 Model selection 

Due to computational constraints, I was limited to fitting models containing 

up to 5 (instead of all 12) covariates. Forward model selection suggested that 

a model containing the first five most important environmental variables 

explained 51% of the variation in the response (Figs 5.6 & 5.7). Validation of 

the candidate models generated by this process indicated that all five 

covariates significantly explained some of the variability in the response of 

the test data (Fig. 5.7).  

 It was conceivable that this model was too flexible due to the use of 

splines. The sequential replacement of splines by the un-transformed 

environmental variables led to a deterioration of the model’s AIC under both 

the fitting and test data for all variables, except  for the covariate sand. In 

that case, replacing the smooth function of sand by its linear term reduced 

the AIC from 3272.88 to 3267.94 

 To explain some of the residual variation, I also included individual 

characteristics (eq 5.4). Including an interaction between depth and sex of 

the animal, lead to a decrease in AIC from 3270 to 3244. An additional 

interaction between stratification and sex reduced the AIC even further to 

3234. However, including the individual-specific effects led to a deterioration 

of the model under the test data; the negative log-likelihood of the test data 

set increased from 2038 to 2052 and to  2066, respectively. Therefore, I used 

the model with no individual-specific covariates to investigate the 

relationship between the response and the different environmental variables 

and to make spatial predictions of usage and preference. The parameter 

estimates, the parameter standard deviations and correlations of a simpler 

model, one which excludes the covariate sand, are shown in Table 3 from 

Appendix B. Unfortunately, it turned out that the Hessian matrix of the full 

model was not positive definite. Therefore the standard deviations and 

correlations of the parameters could not be calculated. However, this did not 

influence the parameter estimates of both random and fixed effects and all 

futher analysis and results could be based on the full model. 
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Fig 5.6 Forward model selection on the environmental variables; depth, 

distance to the haul-out site, satellite-derived Chlorophyll concentrations, 

Sea Surface Temperature (SST), Bottom current speed, Zooplankton 

concentrations, an interaction between the Bottom current speed and 

zooplankton concentrations, temperature gradient, Stratification, 

Phytoplankton concentration, Gravel and Sand. The arrows indicate the 

change in AIC between models (horizontal lines) as a result of adding an 

environmental variable. Arrows for variables that lead to the largest 

improvement in AIC are coloured in blue. 
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Fig 5.7 Validation of models using the test data set. Note that all parameter 

estimates used to calculate the likelihood are based on the 14 individuals 

from 6 haulout sites and are compared with the remaining individuals. 

Different models are arranged in order of increasing number of 

environmental variables along the x-axis. The y-axis represents the log-

likelihood of the data under each model, standardised by the number of data 

points (n) in each of the three datasets. The black crosses indicate the best 

model for each data set. 

 

It is possible that some important environmental variables were omitted 

from the analysis. This would reveal itself in the presence of spatial 

autocorrelation in the residuals (§ 2.2.5). I constructed semi-variograms to 

investigate the spatial autocorrelation in the response and residuals for 

large (<40,000 m) and small (<5,000 m) spatial scales (Fig. 5.8). These 

revealed the presence of spatial autocorrelation in both the small and large 

spatial scales, meaning that some covariates were missing from the model or 

the accessibility surface was inappropriately represented by the smooth 

function of distance. 
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b. 

 

Fig 5.8  Semi-variogram of the response data (0 and 1) and the residuals 

(observed response - predicted) for up to 40km (a) and 5km (b) with the 

range of distance being partitioned into 100 distance classes in both cases. 

The plotted lines are linear regression models fitted to the data. The trend is 

significant (p-value <<0.001). 
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5.3.3 The effect of environmental variables on the response. 

The most important covariate was distance to the central-place which had a 

negative relationship with the response, meaning that the observed usage 

away from the haul-out site is less than predicted by the accessibility model 

(Fig. 5.9a). The second most important environmental variable was depth. 

Fig. 5.9b shows that animals avoid deeper areas. Fig. 5.9c shows that grey 

seals prefer areas that are characterized by high stratification. Finally, the 

last variables to be included were descriptors of sediment type. Grey seals 

appear to prefer a mixture of gravely (Fig. 5.9d) and sandy (Fig. 5.9e) areas. 

Rock, which is treated as a factor, has a positive parameter value of 1.2. 

However, both sand and gravel concentrations are zero at those places. On 

average, the gravel and sand concentrations of the model data were 24.9% 

and 66%, respectively. The cumulative increase of the response on the scale 

of the link-function at those sand and gravel concentrations (Figs 5.9d and 

5.9e) compared to a sediment type with no sand and gravel, is approximately 

6.4 (gravel: +2.9 and sand: +3.5). So, even though the parameter value for 

rock is positive, compared to the mean sediment type, rock is on average, 

avoided.  
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Fig. 5.9 The effect of the covariates distance to the haul-out site (a), depth 

(b), temperature stratification (c), percentage gravel (d) and sand (e) and 

whether the substrate is rocky or not (f). The 95% confidence limits are 

represented by the shaded areas, the grey lines represent individual specific 

responses and the black line the fixed effect population responses. 

 

5.3.4 Spatial prediction of usage and preference  

Using the relations between the response and the environmental variables 

outlined in the previous section, I estimated the usage )(sυ  generated by 

animals performing trips from every haulout cluster at every point in space 

for which environmental data were available. However, environmental data 

do not exist for all points in space. This means that an unknown proportion 

of usage is outside the range of the environmental data and therefore )(sυ  

cannot directly be scaled to an estimate of absolute density (eq. 5.6). To 

overcome this problem, I first predicted )(sυ  using a simpler model 

containing distance to the central-place and depth only, values for which are 

available throughout the study area. I standardised )(sυ  over space such 



 

 

CASE STUDY: WEST COAST GREY SEALS 137 
................................................................................................................................................................................................................................ 

 

that 1)( =∫
s

ss
All

du . I then used this model to obtain a crude estimate of the 

proportion of overall usage that fell outside the geographical range of the 

environmental variables. I found this to be equal to 0.12. Finally, I estimated 

)(sυ  using the full model, weighted this estimate by 1-0.12 and used the 

predictions of )(sυ  generated by the simpler model for those places in space 

for which environmental data on sediment type and temperature 

stratification was missing. Using these estimates of )(sυ , the number of 

individuals associated with each haulout site (see eq. 5.3) and the proportion 

of time spent at sea (61.3%), I calculated the number of individuals expected 

to be in any given km2 (see eq. 5.7 and Fig. 5.10a). It is often difficult to 

interpret the absolute scale of a variable using colour plots alone. I therefore 

plotted one possible realization of the distribution of individuals that would 

be obtained from a heterogeneous spatial Poisson process with rate equal to 

the expected number of individuals per unit area (Fig. 5.10b).  
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b. 

 

Fig 5.10 Spatial prediction of the average density of individuals (km-2) on 

August 15th 2003 (a) and one possible realization of the distribution of all 

individuals on that day (b) plotted on top.  
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The predictions of usage might be incorrect due to model mis-specification. 

Fig. 5.8 shows that that there is spatial autocorrelation in the residuals, 

indicating the model may be mis-specified (e.g. too little flexibility or a 

missing covariate). To map the geographical regions in which over- or under-

prediction occurs, I used the variogram (Fig. 5.8), fitted a spherical model to 

it (intercept = 0.095, sill = 0.13 and range = 46308) and kriged the residuals 

(Fig. 5.11) 

 
a. 

 
b. 

 

Fig 5.11 Kriged residuals (a), red indicating model underprediction and blue 

indicating model overprediction and variance of kriged residuals (b).  
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To indicate which areas grey seals would use if all points in space were 

equally accessible, I plotted preference in space (Fig. 5.12).  

 

 

Fig 5.12  Spatial prediction of preference accounted for unequal accessibility 

and the effect of distance to the haulout site on the response. 
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5.4 Discussion 

 

5.4.1 Habiat preference; Why are west coast Grey seals where they are? 

The candidate environmental covariates used in this study (12 in total) 

provide a description of the biological and physical processes and 

characteristics of both the benthic and pelagic components of the shelf-sea 

west of Scotland. Although the choice of these variables was largely driven 

by data availability, they were also chosen on the basis of existing scientific 

information about marine ecological processes that might be important and 

the biology of the grey seal in particular (see §5.2.2).  

 The first most important covariate is distance to the central-place, which 

indicates that grey seals avoid areas far away from the haul-out site more 

than estimated by the accessibility model.  

 The relationship between the response variable and depth, the second 

most important covariate, shows that grey seals tend to avoid deeper areas. 

Grey seals predominantly feed on or close to the bottom and do have a 

limited oxygen store capacity. In deeper regions, they spend more time 

travelling to the bottom which reduces the effective forage duration 

(Thompson and Fedak 2001), which might explain the negative relationship 

between the response and depth. In contrast, the study on the east coast of 

Scotland did not show a strong effect of depth on the response. There, it was 

postulated (see §3.4), that this was due to the lack of deep areas in close 

proximity of the haulout such that the physiological restrictions were less 

likely to have a significant effect.  

 The third most important covariate was temperature stratification 

expressed as the difference in temperature between the surface and bottom. 

Some studies, mostly in oceanic systems, have shown that marine organisms 

including top marine predators such as mammals and birds are found close 

to frontal systems (Olson  & Brackus 1985, Schneider 1990, Baumgartner et 

al. 2001, Daunt et al. 2003, Franks 1992).  However, Spear et al. (2001) as 

well as others (Hunt 1990, Turner & Dagg 1983, Hunt et al. 1990, Gould & 

Piatt 1993, Reilly & Fiedler 1994) have shown that the distribution of higher 

predators was more strongly related to existence of strong temperature 
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gradients in the vertical, rather than the horizontal direction. This might 

suggest that total productivity is less important than the aggregation of 

phyto- and zooplankton in high densities such that species of fish can 

efficiently exploit them. Although sandeels (mostly 1+ year-old individuals) 

do burrow in the sediment, they predominantly forage in the water column. 

The aggregation of their food sources into tight layers might facilitate 

feeding and therefore increase their growth, survival and reproduction.  

 Finally, there is concensus between the results of this chapter and 

chapter 3 in that grey seals prefer coarse sediment. In addition to the fact 

that sediment type might influence the grey seals’ bioturbating foraging 

strategy (see §3.2.2), sandeels (comprising 60% of their diet in the west 

coast) are also known to prefer coarse sediment. The consistent relation 

between sediment type and grey seal distribution on both the east and west 

coast of Scotland is an interesting result. Although the sandeel distribution 

is said to vary considerably in both space and time (Wright et al. 2000) 

making it almost impossible to use as a covariate in a regression model, 

surrogates such as sediment type measured at a fine spatial resolution 

might be a more useful alternative. 

 In contrast to the environmental variables mentioned above, some 

covariates explain very little of the variation in the response, even though 

they are measured at a fine spatial and temporal resolution. This is 

especially true for the satellite-derived variables such as chlorophyll 

concentration, sea-surface temperature and spatial gradients in surface 

temperature, which relate to primary productivity and phytoplankton 

biomass. This is not unexpected given that seals are 2 trophic levels removed 

from zooplankton and 3 trophic levels removed from phytoplankton, 

implying that the correlation between plankton and seal abundance should 

be weak.  

 

5.4.2 Spatial predictions of usage and preference; Where else are west-coast 

grey seals likely to be 

The final objective of this chapter was to estimate the at-sea distribution of 

the population of grey seals within the area of interest. Using telemetry data 
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alone to do so, would strongly bias the estimates to those regions from which 

animals were tagged. For many regions no telemetry data is available. This 

problem was recognised by Matthiopoulos et al. (2004) who used model-

supervised kernel smoothing; a technique that supports density estimation 

from the telemetry observations with auxiliary information such as the 

accessibility of each point in space relative to a particular haulout site as 

well as estimates on the numbers of individuals associated with that haulout 

site. A major limitation of this approach as well as all methods that are not 

based on covariate modelling is that estimates in areas for which there are 

few or no telemetry observations, are poor.  

 The major contribution of this chapter to estimating usage in the west 

coast is that I investigated the relationship between the distribution of  grey 

seal and environmental covariates first, and then used those relationships to 

predict usage at different points in space. So, although this is technically an 

extrapolation in geographical space, in practice it is actually interpolation in 

environmental space. I have shown by means of cross-validation that these 

models fitted in one region are capable of significantly explaining much of 

the observed variation in usage elsewhere.   

 However, under certain circumstances, predictions can be incorrect. This 

could be the result of measurement error in the environmental data. 

Generally, the precision of measurements on environmental covariates can 

be derived from the variability in repeated, local measurements and the 

spatial distribution of sampling stations. However some of my covariates 

(such as sediment type and depth) were stored as polygon or poly-line files 

and one cannot derive the actual underlying sampling distribution. The 

biggest haulout-cluster on the West coast of Scotland is the Monarch Isles 

(cluster 12 in Fig 5.3b). According to the BGS sediment survey these areas 

are predominantly characterized by the presence of rock. However, some 

finer-scale survey contained within the UKHO data set show that this area 

shows much more variability than suggested by the BGS dataset. As a 

consequence, the predictions in these regions might be incorrect. 

 A second reason why predictions elsewhere can be poor is if habitat 

preference changes with changes in absolute availability of habitats. For 

example, this could happen if a particular type of habitat becomes less 
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available and so does a particular species of fish that depends on it, 

potentially causing grey seals to switch to alternative prey. Diet studies 

based on scat samples show strong regional differences in prey consumption 

(Hammond et al. 1994, SMRU unpublished). However, this might be a 

consequence of an increased encounter rate and consumption of locally 

available prey, rather than an active redistribution to different habitats. 

Studies on the east coast and west coast of Scotland as well as a study of 

grey seals foraging from Sable island, Canada (Bowen et al. unpublished), 

have shown a consistent preference for coarse sediment substrates. This 

suggest that the effects of differences in absolute availability might be 

relatively small.  

 Finally, predictions outside the range of the environmental data for 

which the model was constructed (extrapolation in environmental space) can 

be extremely unreliable. In this chapter, the areas from which most 

telemetry data come from, contain relatively little rock. Many seals haulout 

on the outer Hebrides (clusters 10-14). This area is characterized by the 

presence of rocky substrate which might be the explanation for the relatively 

poor predictions in this region. 

 

5.4.4 Future research: 

Improving the accessibility model.― Because grey seals are central place 

foragers, points close to the haul-out site are more likely to be used than 

those far away. I accounted for the unequal accessibility of different points in 

space using a pre-specified function of the distance of those points relative to 

a haul-out site. This model is a simplified version of the underlying 

individual movement model (Matthiopoulos 2003) and has some limitations. 

A first shortcoming is that it does not capture some of the variation in null-

usage such as the increased usage in a channel leading out to a big stretch of 

sea. Secondly, the current model considers return trips only. Including 

transitory trips would require knowledge of the full matrix of transition 

probabilities between any two haulouts. This may be a complicated function 

of the distance between, and attractiveness of individual haulout sites.  

Finally, the accessibility model does not include error in the telemetry 
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locations. Error, can cause a telemetry observation (or an estimated location 

generated from track-smoothing) to appear on land and therefore to be 

removed from the analysis. As this is more likely when the animal is nearer 

to land, it may incorrectly lead to a data set containing relatively fewer 

locations close to land.  

Although this chapter used a larger number of candidate covariates 

compared to chapters 3 and 4, distance to the central-place was again the 

first covariate to be retained in the model. This not only implies that the 

accessibility model is not describing the true movement processes, it also 

means that its effect is more important than any of the other covariates used 

in these studies. Considerable work has been put into collating 

environmental variables, but these results suggest that perhaps more effort 

should be put into addressing the inadequacies of the current accessibility 

model. This could be done by constructing different movement models 

(perhaps with the aid of GPS telemetry devices) and next to use model 

information criteria to select among these models in a similar way as is 

currently done for the environmental covariates. See §6.1.2 and §6.3.1 for 

more extensive discussion on this. 

 

Correctly defining stratification.― The covariate temperature stratification 

explained a considerable amount of the variation in spatial usage, even 

though the variable was estimated at a relatively coarse resolution (9km) 

and was based on model predictions rather than empirical collected data. 

Also, the variable was specified as the difference in temperature between the 

surface and sea-bottom,  rather than the temperature gradient at the 

thermocline (the separation between mixed and stratified water) where most 

aggregation of phyto- and zooplankton is believed to take place (Turner & 

Dagg 1983). Correctly specifying the level of prey aggregation, requires 

oceanographic data collected at a fine spatial and temporal resolution, which 

is expensive. However, the SRDLs used in this study do measure 

temperature profiles as well. The major shortcoming of this data is that its 

collection is not uniformly distributed in space and might be biased towards 

certain oceanographic features (as suggested by this study). In contrast, a 

major advantage is that data collection is focussed in those areas that are 
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important for grey seals. As previously discussed (also see Spear et al. 2001), 

the underlying process (i.e. aggregation of prey) might influence the spatial 

distribution of many species of top predators. Therefore, data collected by 

temperature sensors on seals might not only improve our understanding of 

the spatial distribution of grey seals, but also of other marine mammals and 

birds. 
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Appendix 5.A 

Counts of grey seals on haulout sites are available for August 1996 and 

1997, including a total of 483 haul-out sites (Fig 5.3). These haul-out sites 

are divided into clusters on the basis of their spatial position and number of 

individuals using the following algorithm: 

 

1) Designate every haulout site as a unique cluster, (i.e. create the 

cluster data set) 

2) Remove one haulout from the cluster data set. 

3) Calculate for each individual from each haulout the squared 

Euclidean distance to the nearest cluster 

4)  Calculate the sum of squared distances for all individuals 

5) Place this haulout back in the cluster data set 

6) Repeat steps 2-5 for all other haul-out sites. 

7) Select that combination of n-1 clusters with the lowest squared 

distance value.  In practice, this means that a haulout with both a 

low number of individuals and in close proximity to another 

haulout site is most likely to be incorporated into a neighbouring 

cluster. 

8) Repeat steps 2-7 until the required number of clusters are left. 

    

 

 



_____________________________________ 
 

6. GENERAL DISCUSSION 

_____________________________________ 

 

 
The recognition of the importance of space in shaping population dynamics 

(Tilman and Kareiva 1997, Bolker 2004) and ecological interactions (Hilborn 

1975, McLaughlin and Roughgarden 1992, Holmes et al. 1994, Jansen 1995, 

Farnsworth and Beecham 1997) has greatly advanced the development of 

techniques for the collection of data on species distribution. For transect 

data, this increase in activity has been matched by the development of 

analytical techniques (Buckland et al. 2001, Buckland et al. 2004).   

Modelling of telemetry data has been a less active area of research 

mainly for two reasons: first, work has been dogged by multiple, conflicting 

interpretations of model components as crucial as the response variable and 

second, none of the off-the-shelf statistical frameworks can address the large 

number of problems encountered when working with telemetry data.  

Many applied studies proceed with the analysis of telemetry data 

without acknowledging these problems and ambiguities. Although this may 

not always affect their results, there is nevertheless a distinct risk that 

conservation and management of some populations is being based on false 

premises. Therefore, the four most important contributions of this thesis are 

1) to highlight these conceptual ambiguities and propose a functional and 

consistent framework of definitions for terms old and new, 2) to trace the 

evolution of statistical analysis  of space-use and habitat preference, 3) to 

enumerate, describe and propose solutions for eight fundamental challenges 

of analysing telemetry data and 4) provide illustrations for the practitioner 

using real case studies.  
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The framework brings together case-control, mixed-effects and generalized-

additive modeling. I believe that this combination best addresses the problems listed in 

chapter 2 and is also flexible enough to benefit from forthcoming advances in computer 

speed, estimation software and statistical methodology. 

 

6.1 Empirical models of usage and preference 

The presentation of the framework was structured around the problems 

encountered when analyzing telemetry data. I opted for this less 

conventional presentation because I assumed that most practitioners would 

be familiar with the fundamental components of empirical modeling 

(response variable, explanatory variables, model structure, parameter 

estimation, model selection, validation and prediction). However, at this 

point, it is useful to collect my insights of each component in the context of 

telemetry studies: 

 

6.1.1 Response variable 

Obtaining a response variable from wildlife telemetry data is challenging 

because, by definition, they only provide information about the presence of 

animals. Some studies (Drake et al. 2006) have regressed the density of 

telemetry observations against environmental covariates, a technique known 

as niche-based analysis. This method makes the strict assumption that 

sampling effort is uniformly distributed in space and ignores variations in 

the relative availability of different habitats. In practice, even if an animal 

showed no preference, it would still be observed more frequently in more 

abundant habitats. This has long been recognized by the habitat-preference 

literature and has been resolved by classifying environmental space into 

habitats and correcting usage for their relative availability in geographical 

space (Manly et al. 1993).    

My work and other, related, studies (Boyce et al. 1999), have replaced 

habitat classification by a case-control design, allowing the model to capture 

the finest variations in usage, within the limits of computational power. This 

causes some ambiguity in the interpretation of the response variable in the 
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resulting models. Keating & Cherry (2004) have shown that the response 

variable in a case-control design is not proportional to usage. Here, I have 

shown how usage can be estimated from it.  

Confusion also exists about the total number and position of controls 

that are required under the case-control design. Anecdotal advice is to use a 

number of controls equal to the number of telemetry observations. However, 

the objective of the controls is to reflect the relative availability of habitats 

in space. A larger number of zeros leads to a more accurate representation of 

the environment. Indeed, Prentice and Pyke (1979) showed that all model 

parameters except the intercept remain unaffected by the number of controls 

as long as a sufficiently large sample is taken. 

The positions of the controls can be selected uniformly randomly from 

within the postulated range of the animals. It may also be possible to use 

biological knowledge to account for the unequal accessibility of points in 

space, as was done in this study. Different sampling designs (α(s)) will 

produce comparable estimates of usage )(sυ  provided a sufficiently large 

sample of control data is included in the analysis (eq. 2.7). Using a model of 

accessibility is preferable for large data sets because it can direct more 

computational power to those areas that are more likely to be visited by the 

animals.   

 

6.1.2 Covariates 

Environmental variables.—— Including too many covariates in a regression 

model can lead to ‘a subjective and iterative search for data patterns and 

significance’ (Burnham and Anderson 2002). Statistical inference might, 

instead, be conducted among models with a small number of covariates that 

are believed to be proximately related to the response variable. However, 

excluding particular combinations of covariates a priori, is no less subjective. 

If, contrary to biological intuition, a covariate is retained by out-competing 

others in the model selection process, this would hint at an ecological process 

that was not previously considered and thus enhance our understanding of 

the mechanisms underlying the distribution of the species. Given the 
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exploratory nature of most telemetry studies it is perhaps better to examine 

as many candidate covariates as permitted by sample size and computer 

power, and allow issues of parsimony to be dealt with entirely by model 

selection. 

 

Accessibility.——  Points in space are not necessarily equally accessible to all 

animals and relating wildlife telemetry observations with environmental 

variables may incorrectly suggest a preference for those habitats that 

happen to be more accessible. Limited effort has been directed at accounting 

for this effect in habitat preference studies (Arthur 1996, Hjermann 2000, 

Matthiopoulos 2003). 

Correctly defining accessibility is complicated, because it depends on the 

individual’s physiological restrictions, life-history and spatial perspective of 

its environment. Matthiopoulos et al. (2004) simulated individual movement 

of grey seals in the absence of preference and showed that, for their data, the 

resulting surface of null-usage was closely approximated by a simple 

function of at-sea distance from the haulouts. For the case study on the east 

coast of Scotland (Chapter 3), an area characterized by relatively few 

obstacles to seal movement, this approximation was good. In contrast, the 

west coast of Scotland is characterized by a more complex topography 

comprising many islands and peninsulas. Because grey seals appear to 

memorize their environment and follow specific short-distance routes 

(Thompson et al. 1991), spend a large proportion of time in proximity to 

haul-out sites (an obstacle in itself) and frequently move between them, the 

simple function of distance which quantifies the accessibility of points in 

space, might be insufficient. This can cause biases in the parameters of the 

model. One solution to the problem might be to simulate movement under 

multiple scenarios (e.g. movement of individuals with or without spatial 

memory), and to use all maps of null-usage as candidate covariates in the 

model. This idea and extensions are discussed further in § 6.3.1 

  



 

 

GENERAL DISCUSSION 157 
................................................................................................................................................................................................................................ 

 

 

6.1.3 Model structure. 

The binary, case-control data were modeled using a logit link with a 

Bernoulli likelihood. In wildlife telemetry only a few animals are sampled 

and observations within individuals are more likely to occur at similar 

environmental conditions than between individuals. To capture this 

hierarchical structure in the data, I've used a mixed-effects model (Pinheiro 

and Bates 2000). This type of model does not only estimate the amount of 

between-individual variability, a necessity for making population level 

inferences, it can also model the effect of individual specific characteristics 

(such as sex and length) on the observed individual variability. If there is a 

bias in catching effort towards certain types of individuals (e.g. young 

males), independent information on population structure can be used to 

correct these biases and generate balanced predictions of population 

distribution. 

Due to variations in the availability of, and preference for different 

habitats, response data will always form clusters in particular regions of 

environmental space. When using linear models with such data sets, these 

data-rich regions will tend to dominate model estimates and result in biased 

or imprecise predictions in the rest of environmental space. For example, use 

of a GAM in my case study indicated that the preference of grey seals is 

highest for depths of about 80m. Consequently, the final model comprises a 

positive trend down to depths of 80m and a negative trend below that depth. 

In contrast, a GLM would have been dominated by data close to shore, at 

shallower depths, and would have unrealistically predicted a continued 

positive trend. An advantage of using GAMs together with mixed models is 

that differences in the functional form of the responses of different 

individuals (e.g. Figs. 3.10, 4.7 and 5.9) are highlighted. 

 

6.1.4 Model selection and model validation 

Detection of preference in early, test-based analyses required a high average 

number of observations per habitat to maintain sufficient power, i.e. reduce 

type II errors. Therefore, for a telemetry data set of a given size, it was 

necessary to divide the observations between a small number of habitats. 
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This could be achieved either by using a coarse habitat classification scheme, 

or by a-priori pruning of the dimensionality of environmental space, at the 

risk of losing important covariates.  

The case-control design which makes it unnecessary to discretize 

environmental space, and the use of model selection, leads to a fundamental 

different way of drawing inferences. Not only does it provide an answer to 

whether a covariate significantly contributes in explaining the response 

(taking model parsimony into account), but more importantly, it provides an 

objective way of ranking their explanatory power, a feature particularly well 

illustrated in  Figs. 3.5, 4.4 and 5.6. 

Model selection is often implemented using information criteria (IC) 

which penalize the likelihood of a candidate model by the number of 

parameters it contains. Although there are theoretical justifications for the 

severity of the penalty (Burnham & Anderson 2002), their validity is 

sensitive to mis-specification of the likelihood function. For computational 

reasons, the likelihood of most non-linear models assumes that the data are 

independent. When, as with telemetry studies, the data are spatially and 

temporally autocorrelated, model selection by IC leads to over-fitted models. 

This can be overcome either by modeling autocorrelation as part of the 

likelihood, or by using alternative approaches, such as cross-validation, for 

model selection. Cross-validation prevents over-fitting by using one data set 

for fitting the model and another for assessing its predictive power. In my 

case-study, cross-validation led to a reduction of the number of 

environmental and individual-specific covariates, compared to the models 

suggested by the IC.  

 

6.1.5 Predictions of usage and preference 

Spatial predictions can be classified into three categories in order of 

decreasing reliability; i) predictions for the area and time in which the 

telemetry data were collected (interpolation), ii) predictions from a different 

place or time, but for similar environmental conditions as those used to 

construct the model (geographical extrapolation) and iii) predictions outside 
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the region of environmental space for which data exist (environmental 

extrapolation).  

Despite being the most reliable, interpolation is still subject to biases in 

catching effort towards certain types of animals, large individual variation 

and a small sample size. Mixed-effects models with individual-specific 

covariates can account for some of these biases and the use of cross-

validation ensures that a model fitted to one group of individuals is 

applicable to other individuals from that same sub-population. 

I have also shown that it is possible to predict the distribution of 

individuals from a different, albeit neighbouring, sub-population (see §3.3.2). 

This is particularly useful because differences in absolute habitat 

availability between different geographical regions can weaken predictions 

of usage (Mysterud and Ims 1998). My ability to predict the distribution of 

Abertay animals using data from the Farnes was probably the result of 

similarity in the conditions experienced by these two sub-populations, 

implying that my predictions were extrapolations in geographical, but not 

environmental space.  

Extrapolations in environmental space are likely to be less reliable. For 

example, the current grey seal data collected on the east coast of Scotland 

provide no hint as to the maximum depth that grey seals can dive to. 

Applied to the west coast of Scotland, this model might predict seal usage 

beyond the continental shelf, while the case-study carried out in this area 

indicates that this is not the case. Therefore, extrapolation in environmental 

space is generally less reliable and is best avoided. However, this may also 

restrict the geographical coverage of predictions. Because an unknown 

proportion of population usage lies outside the prediction area, predictions of 

usage cannot be scaled up to reflect absolute population densities. An 

approximate solution is to use a simpler model (e.g. a model with distance to 

the central-place as only covariates) to calculate the proportion of usage that 

is inside environmental space of the full model and then rescale predictions 

of usage from the full model by that proportion  (see also §5.3.4). 
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6.2 Habitat preference of two marine top-predators: a comparison 

accross species and regions 

In addition to serving as showcases and validation data sets for the 

statistical framework, the three case studies in this thesis also permitted a 

comparison of UK marine usage and preference across species and regions.  

Data availability varied between regions and only the covariates “distance to 

the central-place”, “depth” and “sediment type” were in common to all three 

case studies. Hence, although ideally the same set of environmental 

covariates would be used for all case studies to facilitate comparisons, I 

placed the emphasis on getting the best model for each data set. Therefore, I 

did not restrict the west coast analysis to this small set of covariates. 

6.2.1 A comparison between grey seals and gannets on the east coast 

The results of this study indicate that the distribution of grey seals is both 

more heterogeneous and predictable than that of gannets. Predictability of 

usage depends on the relevance and accuracy of the covariates included in 

the analysis. Diet studies show that grey seals predominantly feed on 

benthic species of fish such as sandeel and gadoids (Prime & Hammond 

1990, Hammond et al. 1994), which often prefer particular types of sediment. 

Because this environmental characteristic is more static compared to some 

of the physical oceanographic variables such as temperature, the 

distribution of these benthic fish species can be reasonably well-predicted 

(Wright et al. 2000, Holland et al. 2005). In contrast, gannets predominantly 

feed on pelagic species such as mackerel, herring and 0-group sandeel 

(Hamer et al. 2000) whose distributions are patchy and dynamic and 

consequently, gannets might spend more time moving randomly in space in 

search of their food resources.  

Another reason why the gannet distribution is less spatially 

heterogeneous than the grey seals, could be the result of density dependent 

effects in consumption. Lewis et al. (2001), showed evidence for density 

dependent effects in foraging from larger colonies. Gannets aggregate on 

land in sufficiently large numbers to induce depletion of the 'good' foraging 

areas near the colony. As a consequence, the distribution of prey which is 

normally heterogeneous in space, might start to approximate uniformity.  
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However, this explanation relies on the untested assumption that the rate of 

regeneration of prey, migration and growth isn’t also spatially 

heterogeneous.  

There are some interesting, independent observations of the interactions 

between the top-predators that could be used in the search for insights. 

Thompson et al. (1991) observed an individually-tracked grey seal repeatedly 

moving directly towards the location of feeding seabird aggregations that 

included gannets. Others have also observed aggregations of grey seals and 

gannets off the east coast of Scotland (Simon Greenstreet pers. comm.). It is 

possible that grey seals and gannets both respond to environmental 

covariates not included in this study. The case-study conducted on the west 

coast of Scotland shows that grey seals have a strong preference for 

stratified water. Studies on the distribution of oceanic sea birds (Hunt 1990, 

Turner & Dagg 1983, Hunt et al. 1990, Reilly & Fiedler 1994, Spear et al. 

2001) have also found that areas of stratified water were preferred to areas 

of well-mixed water. So, perhaps a measure of stratification that was 

missing from the east coast case studies in this thesis is an important 

potential covariate for future work.  

  

6.2.2 A comparison between east and west coast seals 

It has been postulated (e.g. see §6.1.5), that changes in the absolute 

availability of habitats may lead to changes in estimated preference. 

Understanding the impact of variability in habitat availability is important 

because it determines the validity of predictions in other regions of space.  In 

this thesis, I investigated environmental preference and space use of grey 

seals from both the east and west coast of Scotland. Although these regions 

differ substantially in terms of the common covariates “sediment type” (Fig. 

3.4a and Fig. 5.5k) and “depth” (Fig 3.4b and Fig. 5.5l), seals showed similar 

patterns of preference.  

In particular, grey seals were shown to prefer coarse substrates in both 

regions. This finding isn’t unexpected given that sandeels prefer coarse 

substrates (Wright et al. 2000, Holland et al. 2005) and they are the seals’ 

most important prey species in both regions (Hammond & Prime 1990, 
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Hammond et al. 1994, SMRU unpublished). In contrast, while depth is the 

second most important covariate in shaping the distribution of grey seals on 

the west coast, it is the last variable to enter the east coast model. This 

might be because grey seals on the east coast are not exposed to sufficiently 

deep areas for depth to reveal itself as an important covariate.  So, this 

result is primarily the result of sparse data to support this trend (i.e. there is 

very large variability in this region of the covariate, see Fig. 3.10d).  

  

 

6.3  Wider context 

6.3.1 Empirical v  mechanistic modelling 

Science is the organized body of knowledge accumulated through 

observation, experimentation, analysis and modelling (verbal or 

quantitative). This is an iterative process of proposals, refutations and 

improvements. In this thesis,  I relied extensively on this knowledge by 

using recent technical advances in data collection and statistical analysis, 

but also used natural history information about which covariates could affect 

the spatial distribution of the species. My approach to modelling was 

primarily empirical because it relied on regression techniques. I chose 

empirical modelling because there was not sufficient scientific knowledge to 

enable me to adopt a mechanistic approach. Hence, I used flexible models 

(GAMMs) because they are ideal for modelling unknown non-linear 

relationships.  

However, using such flexible models also carries two penalties: First, 

the outcomes of model fitting and selection can be sensitive to stochasticity. 

Especially when multi-collinearity is present, the explained deviance of two 

or more explanatory variables can be similar and which one gets selected 

will be largely driven by stochasticity.  Therefore, given scientific 

publications alone, the use of flexible empirical models hampers comparisons 

between published inferences from different studies. Second, environmental 

extrapolation is based on pattern instead of process and is therefore 

unreliable.  
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For some species it may be possible to construct more mechanistic 

models describing some of the causal relationships between space-use and 

its covariates. For example, in grey seals the results of physiological 

experiments might be used to construct energetic models of the cost of 

traveling to particular depths or distances from the haulout (Thompson et al. 

1993, Thompson and Fedak 2001). This information could than be translated 

into mechanistic models. 

There are different ways to increase the mechanistic content of a model. 

The traditional approach is to construct a theoretical model that merges old 

and new experimental data (collected for that or a similar species) with well-

founded ecological first-principles. Generally the model includes all 

processes that are assumed to be important a priori. The model can then be 

used to make spatial predictions of usage and those predictions can be 

validated with actual observations (e.g. wildlife telemetry data). One 

limitation of this approach is that it can’t help identify the importance of 

other processes (i.e. those covariates that are not included a priori), a 

property which is the distinctive quality of inferential modelling, 

traditionally associated with regression. 

An alternative route, that can be viewed as a convergence between 

empirical and mechanistic models, is to construct functions describing the 

anticipated relationship between a covariate or group of covariates and the 

response. For example, one could construct different movement models 

based on the isotropic random walk, levy flight or correlated random walk, 

and use simulations to make spatial predictions of usage, that can then 

enter the empirical model as candidate covariates. If physiological 

experiments suggest a specific relationship with depth this could be used as 

a candidate covariate. Covariates for which a priori suppositions about the 

structure of the functional form are absent, can enter the model as 

unspecified smooth functions. The advantage of this approach is that the 

covariates (e.g. those that are based on different movement models) can 

naturally compete with one another in model selection. Importantly 

however, the a priori specification of the mechanistic functions means that 

their parameters are not estimated from the telemetry data.   
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The reasons why statistical estimation and inference were not 

traditionally associated with mechanistic models were a) that the error in 

the observation process could not easily be modelled along with process 

stochasticity and b) that fitting such models was computationally prohibitive 

(Harwood & Stokes 2003). These restrictions have been alleviated, but not 

removed, by the introduction of state-space models (Durbin and Koopman 

2001, Johnsen et al. 2003), more powerful computers and new model fitting 

algorithms such as the Kalman Filter (Brown & Hwang 1992), Monte Carlo 

Markov Chain (Gilks et al.1996) and Sequential Importance Sampling 

(Doucet et al. 2001).  Adopting the Bayesian approach to state-space 

modelling has the additional advantage that parameter estimates and 

uncertainties derived from previous studies can enter the model as 

parameter priors. Although this is a promising area of research, currently 

only simple models with few covariates can be fitted, model selection is 

computationally expensive and population-level predictions rely on 

individual-based simulation. 

 

6.3.2 Eulerian or Lagrangian models 

Eulerian models focus on the density of animals in the neighbourhood of a 

point in space. Eulerian movement is phrased as the flux of density between 

neighbouring points in space. In contrast, the Lagrangian approach focuses 

on individuals as they move across different points in space. Lagrangian 

movement is generally characterized by velocity, direction and acceleration 

(Turchin 1998). There is a direct correspondence between Eulerian density 

and transect data just as there is congruence between Lagrangian 

trajectories and wildlife telemetry data. Trying to shoe-horn telemetry data 

into the Eulerian approach, is the cause of many of the problems addressed 

in this thesis, such as the unequal accessibility of points in space and spatio-

temporal correlation of telemetry observations. This prompts the question of 

why I chose to use a Eulerian model in the first place. I did so firstly because 

the Eulerian approach considers the density of individuals at both used and 

un-used locations, while most Lagrangian models consider changes in 
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movement as a function of local environmental characteristics. Lagrangian 

models consequently, use no information about habitats not visited by the 

individual. Also, Eulerian approaches are better suited to population-level 

inferences than the more behaviorally-orientated Lagrangian modeling. 

They are therefore ideal for large-scale, exploratory studies with an applied 

agenda. 

 

6.3.3 Hierarchical decisions in space use and habitat  preference 

The results of my analyses were predicated on the animals’ capture 

locations, but the very fact that an animal was caught at a particular 

location, was already a consequence of historical processes and decisions 

that were to some extent, driven by environmental variables. Generally, 

animals are born at places characterized by favourable environmental 

conditions that are intended by their parents to increase their fitness. If 

environmental conditions are more favourable elsewhere, individuals might 

decide to relocate to a different colony or establish a new territory. At some 

point in their life, some animals were caught and fitted with a telemetry 

device, after which they were observed for a relatively short duration.  It is 

only during this period of its life, the telemetry data provide an insight into 

the individuals behaviour and decisions.  

The existence of multiple layers of decisions in space use and preference 

has been recognized in the literature. Johnson (1980) identifies the existence 

of a natural ordering of selection processes. "First-order selection can be 

defined as the selection of the physical or geographical range of a species. 

Within that range, second-order selection determines the home range of an 

individual or social group. Third-order selection pertains to the usage made 

of various habitat components within the home range. Finally, if third-order 

selection determines a feeding site, the actual procurement of food items 

from those available at that site can be termed fourth-order selection."  

Specifically for telemetry data, Aebischer et al. (1993) recommend the 

investigation of both second and third order selection. Both investigations 

rely on a correct quantification of the position and size of individual home 

ranges, which is not only driven by the distribution of all individuals from 
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the population during the capture event and the movement of individuals 

after the capture event, but also by the probability of catching a specific 

individual from that population. For the position of home-ranges to be a 

representative sample of the population, the capture probability has to be 

identical for all individuals. In practice, the capture probability is often 

driven by the environmental conditions surrounding an animal. For 

example, it might be easier to catch a particular species in more exposed 

habitats. Also the distance to urban features (e.g. towns or roads) might 

increase the probability of capture.  As a consequence, the distribution of 

home-ranges and therefore conclusions about second and third order habitat 

preference, will be biased towards those habitats that facilitate capture. Due 

to this inappropriateness, I suggest a different approach to modelling the 

hierarchical decisions in space use and environmental preference.  

The first expression of environmental preference is not made by the 

individual in question, but by its parents. Parents decide to produce 

offspring at a location characterised by particular, most often, favourable 

environmental conditions. Especially for short-lived, slow-moving species 

this decision can impose considerable restrictions on the future distribution 

of that individual. To capture this first habitat selection process, one could 

investigate the spatial distribution of pup production (e.g. in grey seals) as a 

function of environmental variables. This somewhat corresponds to the first 

order selection type of investigation proposed by Johnson (1980). 

If the offspring survives, it may decide to relocate to a different colony, 

territory or region of space. These decisions will also largely be driven by 

local environmental conditions and can be modelled as such. For grey seals 

the spatial distribution of the number of individuals at haulout-sites could 

be modelled as function of environmental conditions. I define this as second 

order selection.  

From these colonies (or regions of space), some individuals are caught 

and tagged. The data can then be used to investigate space use and 

environmental preference, conditional on the individual starting at that 

capture location. This is the type of investigation carried out in this thesis 

and closely resembles the third order selection defined by Johnson (1980). 

The only, though major difference is that the approach used in this thesis 
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does not rely on an arbitrary definition of home-ranges to decide what is 

accessible and therefore available to the animal. 

Finally, as a result of recent technical advances in remote sensing of 

individual behaviour and physiology (Cooke et al. 2004), it has been possible 

to remotely measure the rate of food acquisition in some species. For 

example, Beringer et al. (2004) measure plant consumption by white-tailed 

deer using real-time video recordings and Bowen et al. (2002) investigate 

prey indigestion by grey seals. Studies that could not directly measure food 

acquisition, have recorded behavioural and physiological changes instead. 

For example, Xaviers et al. (2006) investigated changes in stomach 

temperature in Wandering Albatrosses, Biuw et al. (2003) measured changes 

in body composition based on drift dives in Southern Elephant seals and 

Miller et al. (2004) used hydrophones to measure prey capture attempts. All 

of these can be considered as studies of fourth order selection and can be 

particularly well formulated as state-space models (Morales et al. 2002, 

Johsen et al. 2003 and see also §6.3.1).  

 

 
first order: 

Spatial distribution of births (parental choice) 

second order: 
Spatial distribution of adults prior to capture (animal’s choice) 

third order: 
Spatial distribution of tagged individuals after capture (animal’s 

and experimenter’s choice) 

fourth order: 
Resource acquisition (animal’s choice) 

 

Fig. 6.1 Diagram of the hierarchical decision on space use and 

environmental preference.  
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When setting out to investigate space use and environmental preference 

it is important to choose the appropriate sampling design, which can be line 

or point transects (for 1st  and 2nd order), wildlife telemetry (for 3rd order) 

possibly in combination with physiological sensors (for 4th order). The 

appropriateness of a sampling design depends on the study species. Some 

central-place foragers such as rabbits might carefully choose to make 

burrows that are completely surrounded by good foraging areas (except those 

living on the SMRU car park). After this decision has been made, usage 

within the rabbit’s territory may appear uniform to a wildlife telemetry 

study. In that case, a second order type of study, modelling the spatial 

distribution of burrows, might be more appropriate. Similarly, species with 

no spatial memory or those relying on uniformly random, ephemeral 

resources, might search randomly through space, but the actual occasional 

procurement of food might not be uniformly distributed. In that case, a 

fourth order type of study, modelling food selection, might be more 

appropriate. Equally, the objective of the study is an important 

consideration. For local interactions with fisheries one might want to know 

the multispecies functional response of a generalist predators such as seals 

(fourth order selection). However, if spatial prediction of usage is of the 

essence and estimates of total population size on land are known (as was the 

case in this study), wildlife telemetry is probably most valuable.  

 

6.4 Future Directions 

6.4.1 Multilevel modelling 

Based on the classification of section 6.3.3, the work presented in this thesis 

is a study in third order selection, an investigation of the space use and 

environmental preference of individuals making foraging trips from a given 

central-place. In this thesis, I only examined the effect of individual 

characteristics on usage and preference but the mixed-effect approach can be 

extended to account for all the variance components outlined in Fig. 2.2. I 

consider the hierarchy of these extensions below: 
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Sub-populations.—— The sub-population can also be treated as a random-

effect. Similar to the individual level, variation across sub-populations can 

be explicitly modelled as a function of sub-population characteristics, such as 

the number of individuals using the haul-out on average, its geographical 

position (i.e. latitude and longitude) or a measure of the relative availability 

of particular environmental conditions in proximity to the haulout site. 

Including sub-population characteristics might be particularly advantageous 

when making predictions for haul-out sites for which no wildlife telemetry 

data is available. 

 

Foraging trips.——  A second extension is to treat the variability between 

trips as a random effect. Animals may perform different functions in trips of 

different duration and this could be included as a trip characteristic to model 

its effect on spatial usage.  

 

Locations.—— Finally, at the lowest level, variability between single 

observations could be treated as a random effect. Most model approaches 

assume that the observation process for both the response as well as the 

environmental covariates is error free but this is not generally the case. For 

example, ARGOS provides a Location Quality (LQ) index for each 

observation which can be recast into an estimate of precision. With some 

additional work, this can also be obtained for spatio-temporally smoothed 

and regularized data. Similarly, the estimates of the environmental 

covariates at a point in space are characterised by variable, often known, 

precision. This information can be included by explicitly modelling the 

random effect errors between locations as a function of LC or the local 

standard errors in the estimates environmental covariates. This is 

particularly beneficial, because it allows some residual noise (due to the 

above errors) to be accounted for by the model.  

All of these extensions to the mixed-effect model are conceptually 

simple, but difficult to fit because the computation required for the 

approximation of the model’s likelihood increases exponentially with the 

number of random effects included. This is particularly relevant when 
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treating individual telemetry observations as random effects because of their 

large number.  

 

6.4.2 Spatio-temporal models 

Spatial and temporal autocorrelation generally leads to an over-fitted model 

(i.e. loss in model parsimony) and underestimation of the standard errors 

(§2.2.6 and §2.2.7). These effects depend on the scale of spatial 

autocorrelation in both the response (i.e. the distribution of the species) and 

the explanatory variables. In a highly heterogeneous landscape, the values 

for the explanatory variables are likely to be different for neighbouring 

telemetry observations, and as a consequence, the detrimental effect of 

spatial autocorrelation will be small (see also Fig. 2.3). In practice though, 

environmental variables are almost always spatially autocorrelated.  

A solution to the problem as suggested in §2.2.6 and §2.2.7, is to 

explicitly model the spatial autocorrelation in the response (using an auto-

logistic models (Augustin et al. 1996)) or the residual errors (using a 

geostatistical models model (Diggle et al. 1998)). Doing this, results in an 

appropriate likelihood function, and therefore allows for the use of standard 

model selection criteria such as AIC, but most importantly, it also provides 

information about potential causes of spatial autocorrelation in the species 

distribution. These can be intrinsic (e.g. inter- or intra-specific competition 

or coexistence) or extrinsic, due to a missing environmental variable. 

Autoregressive models use response values of neighbouring observations 

as a candidate covariate. However, there is a potential risk that if the 

response data are measured very precisely relative to environmental data,  

the auto-covariate may outcompete many other covariates. This would be an 

interesting future research topic. 

Geostatistical models are essentially random effect models, similar to 

the multi-level mixed model that describe the variability in the residuals as 

random effects. They express random variability in terms of the value and 

distance of neighbouring residual errors. Predictably, they are 

computationally very difficult to fit due to the high-dimensional integration 

over all random effects. 
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6. 5 Modelling space use and habitat preference from wildlife 

telemetry data 

Observing how individuals move through space and use the resources that 

are available to them, generally broadens our understanding of the biology of 

the species and is therefore of great academic interest. However, if the 

research exercise does not lead to population predictions, this information is 

of limited scientific value and of no practical use to conservationists and 

wildlife managers. In contrast, measuring the distribution of non-

identifiable individuals from a population (e.g. using transect surveys) 

allows population-level predictions, but cannot quantify individual 

variability in behaviour. For example, such studies cannot tell whether an 

animal observed at extreme environmental conditions (e.g. a grey seal off the 

continental shelf) reflects a one-off event for that individual or a one-off 

individual for that population. Identifying the ability of certain members of 

the population to exist in marginal habitats is important in trying to gauge 

the ability of the species to adapt in changing conditions. Wildlife telemetry 

combined with the present statistical framework can produce population 

estimates and measures of individual variability aimed at addressing the 

needs of practitioners at a time of pressing issues in conservation and 

management.  
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APPENDIX A: ADMB CODE 

 
 
// Modelling environmental preference 
 
DATA_SECTION 
  init_int n      // Number of observations 
  init_vector y(1,n)     // Response vector; 0 or 1  
  init_int p      // Total number of fixed effects 
  init_matrix X(1,n,1,p)     // Covariate matrix fo r fixed effects 
  init_int r      // Total number of random effects  
  init_matrix Z(1,n,1,r)     // Covariate matrix fo r random effects 
  init_int M      // Total number of individuals 
  init_vector nobs_i(1,M)     // The total number o f observations for each individual 
 
PARAMETER_SECTION 
  init_bounded_vector beta(1,p,-50,50,1)  

// Fixed effects parameters 
  init_bounded_vector sd_b(1,r,0.00000000000001,50, 2) 

// standard devations of random effects, covariance s between random effects are here assumed to be 
0 

  
  random_effects_matrix b(1,M,1,r,2) 

// Unscaled individual random effects matrix;see ne sted4.tpl  
  objective_function_value g    // g will become th e log-likelihood function to be minimised 
 
PRELIMINARY_CALCS_SECTION   
  cout << setprecision(4);    
 
GLOBALS_SECTION 
  #include <df1b2fun.h>   
 
PROCEDURE_SECTION 
  int i,ii; 
  g = 0.0; 
  ii = 0; 
 
  for(i=1;i<=M;i++) 
    fit_individual(beta,b(i),sd_b,i,ii); 
 
SEPARABLE_FUNCTION void fit_individual(const dvar_v ector& beta, const dvar_vector& b_i, const dvar_vec tor& sd_b,int i, int& ii)  
          
    int j, q; 
 
    dvariable eta; 
  



    for(q=1;q<=r;q++) 
    { 
      g -= -log(sd_b(q)) - .5*square(b_i(q)/sd_b(q) ); //LogL(b|sd_b) 
    }   
 
 
    for(j=1;j<=nobs_i(i);j++)      //so j is the j' th observation of the i'th individual 
    { 
      ii++;      //ii is the unique identifier for an observation (ii++ means ii+1) 
  
      eta = X(ii)*beta + Z(ii)*b_i;   //eta is the predictor on the scale of the link(ie logit)-functi on 
      g -= y(ii)*eta - log(1+mfexp(eta));    //LogL (y|b_i) 
    } 
 
REPORT_SECTION 
  report << beta << endl; 
  report << sd_b << endl; 
  report << b << endl; 
 
RUNTIME_SECTION 
  maximum_function_evaluations 20000 
  convergence_criteria 1.e-5 
 
TOP_OF_MAIN_SECTION 
  arrmblsize = 950000; 
  gradient_structure::set_GRADSTACK_BUFFER_SIZE(300 000); 
  gradient_structure::set_CMPDIF_BUFFER_SIZE(310000 ); 
  gradient_structure::set_MAX_NVAR_OFFSET(1000000);  
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Table 1. Parameter estimates of the final model fitted to grey seal data from the Farnes Isles. The table contains mean estimates, standard deviations and parameter correlations of the fixed-

effects parameters β and the variances ν of the random-effects b. 
index name estimate std dev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

1 β-intercept -1.56E+01 5.16E+00 1                                             

2 β-distance1 5.94E+00 2.97E+00 -0.5796 1                                            

3 β-distance2 4.33E+00 2.98E+00 -0.5802 0.9882 1                                           

4 β-distance3 6.51E+00 2.96E+00 -0.5831 0.9916 0.9924 1                                          

5 β-distance4 3.66E-01 4.10E+00 -0.4561 0.7456 0.7565 0.7483 1                                         

6 β-distance5 -1.64E+01 5.41E+00 -0.2233 0.389 0.3821 0.3952 0.1963 1                                        

7 β-distance6 -1.19E+01 4.80E+00 -0.095 0.1429 0.1427 0.1418 0.1188 -0.0061 1                                       

8 β-mud1 -6.11E+00 6.59E+00 -0.2169 -0.0134 -0.0129 -0.0109 -0.0246 0.0067 0.0068 1                                      

9 β-mud2 2.83E+00 3.63E+00 -0.4326 -0.0092 -0.0061 -0.0079 -0.0029 0.0022 0.0074 0.2787 1                                     

10 β-mud3 6.53E-01 3.30E+00 -0.4731 -0.0142 -0.0133 -0.0109 -0.0264 0.0056 0.013 0.4649 0.8425 1                                    

11 β-mud4 1.41E+01 6.71E+00 -0.2718 0.0056 0.009 0.003 -0.0083 0.013 0.0039 0.2045 0.5114 0.4226 1                                   

12 β-mud5 1.62E+01 2.58E+01 -0.061 -0.0165 -0.0187 -0.014 -0.0341 0.0051 -0.0054 0.1011 0.0909 0.198 -0.2261 1                                  

13 β-mud6 -1.36E+01 2.09E+01 0.0875 -0.0119 -0.0101 -0.0121 -0.0132 0.0122 0.0278 -0.0572 -0.1118 -0.1186 0.0074 -0.1798 1                                 

14 β-gravel 3.60E-02 6.94E-03 -0.0389 -0.0153 -0.0128 0.0309 0.0741 -0.037 0.0032 0.0022 0.0016 -0.0115 -0.0049 -0.0174 -0.006 1                                

15 β-depth1 3.45E+00 4.29E+00 -0.0417 -0.0146 -0.012 -0.0105 -0.0072 -0.0091 0.0042 0.0162 0.0295 0.0301 0.0131 0.01 0.0359 0.0221 1                               

16 β-depth2 -1.20E+00 4.72E+00 -0.2703 -0.0009 0.0004 0.0031 -0.0238 0.0117 0.0089 -0.0058 0.002 -0.0023 -0.0038 0.0204 -0.0021 -0.0134 -0.0188 1                              

17 β-depth3 6.08E+00 3.15E+00 -0.572 0.0153 0.012 0.0117 0.0255 -0.0065 0.0045 -0.0263 -0.031 -0.042 -0.0031 -0.0372 -0.0331 0.0479 0.0503 0.3906 1                             

18 β-depth4 3.40E+00 3.03E+00 -0.5776 0.0155 0.0115 0.0116 0.0235 -0.0028 0.0083 -0.0273 -0.0327 -0.0427 -0.0078 -0.0277 -0.0284 0.0023 0.0462 0.4741 0.9728 1                            

19 β-depth5 2.56E+00 3.13E+00 -0.5653 0.0116 0.0135 0.014 0.0231 -0.0007 0.0046 -0.0243 -0.027 -0.0378 -0.0057 -0.032 -0.0327 0.0181 0.0494 0.4161 0.9742 0.9635 1                           

20 β-depth6 3.26E+00 3.06E+00 -0.5746 0.0157 0.013 0.0136 0.0271 -0.0036 0.0094 -0.0259 -0.0297 -0.0395 -0.0059 -0.0295 -0.0289 0.0227 0.0496 0.4562 0.9735 0.9844 0.9578 1                          

21 β-mud1*length 4.93E-02 3.82E-02 -0.0216 0.0165 0.0159 0.0155 0.0259 -0.0019 -0.0031 -0.8812 0.0654 -0.1008 0.0033 -0.0406 0.0147 0.0063 -0.0018 0.0106 0.0108 0.0134 0.0088 0.0114 1                         

22 β-mud2*length 1.88E-02 1.47E-02 -0.0365 0.0092 0.0083 0.0071 -0.0052 0.0189 0.0075 0.0953 -0.5613 -0.1977 -0.1996 0.0578 0.0344 -0.0155 -0.0014 0.0093 0.0074 0.0151 0.0006 0.0081 -0.1035 1                        

23 β-mud3*length 2.85E-02 1.04E-02 -0.0586 0.0339 0.0351 0.0294 0.0701 0.0043 0.0006 -0.1905 -0.2769 -0.4377 0.0043 -0.1159 0.0445 0.0033 -0.0025 0.0203 0.0161 0.0341 0.0127 0.0225 0.2296 0.5007 1                       

24 β-mud4*length -1.32E-01 3.94E-02 0.0208 -0.0107 -0.014 -0.0078 0.0111 -0.0125 0.0086 -0.0146 -0.1698 -0.0281 -0.8681 0.3148 -0.0671 0.0399 0.0074 -0.008 -0.0028 -0.0012 -0.0075 -0.003 -0.0077 0.2535 0.0035 1                      

25 β-mud5*length -9.85E-02 1.78E-01 0.0232 0.019 0.0215 0.0158 0.0336 -0.004 0.0041 -0.067 -0.0323 -0.1305 0.2415 -0.9669 0.1659 0.0012 -0.0162 -0.0225 0.034 0.0245 0.0305 0.0259 0.0376 -0.0668 0.1059 -0.3145 1                     

26 β-mud6*length 1.22E-01 1.27E-01 -0.1203 0.0226 0.0211 0.0233 0.0244 -0.0081 -0.0324 0.0741 0.1409 0.1497 0.0068 0.1931 -0.9792 0.0125 -0.0442 -0.0009 0.044 0.037 0.0425 0.0379 -0.0173 -0.0342 -0.0429 0.0727 -0.1828 1                    

27 b-distance1 1.00E+00 3.85E-01 -0.0183 -0.0187 -0.0001 -0.0024 0.0012 -0.014 0.0053 0.0213 0.0009 0.0135 0.006 0.0077 -0.008 0.0323 0.0146 0.0043 0.0024 0.0019 0.0054 -0.0031 -0.0063 0.0375 0.0285 0.0046 -0.0021 0.0065 1                   

28 b-distance2 9.42E-01 4.21E-01 -0.0345 0.034 0.0452 0.0264 0.0635 0.013 -0.012 -0.0585 -0.0164 -0.0851 0.0315 -0.028 0.0276 0.0104 0.0016 0.0167 0.0397 0.0315 0.0244 0.0353 0.0635 0.0179 0.1504 -0.0322 0.0193 -0.0243 0.0329 1                  

29 b-distance3 3.30E-05 4.50E-01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1                 

30 b-distance4 1.11E+01 2.38E+00 0.0357 -0.0229 -0.0328 -0.0175 -0.2483 0.0042 0.0095 0.0248 -0.0062 0.0398 0.0216 0.0303 -0.0038 -0.0205 0.0071 0.0295 -0.025 -0.0305 -0.0237 -0.0304 -0.0221 0.0042 -0.0906 -0.0282 -0.0299 0.0014 0.0053 -0.0776 0 1                

31 b-distance5 1.71E+01 3.59E+00 -0.0893 0.1412 0.1447 0.1411 0.1484 -0.2044 -0.0269 0.0027 -0.0123 -0.0021 -0.0043 0.0064 -0.0003 0.0283 0.0045 -0.0117 0.0065 0.0031 0.0025 0.004 0.0049 0.0148 0.0142 0.0055 -0.0065 -0.0006 0.0103 0.0225 0 0.0218 1               

32 b-distance6 1.27E+01 4.28E+00 -0.0532 0.0918 0.0907 0.0938 0.0665 0.0538 -0.1985 0.0024 0.0142 0.0069 -0.0006 0.0174 0.0022 0.0055 -0.0006 -0.0002 -0.0092 -0.0102 -0.0091 -0.0109 0.0023 -0.0134 0.0048 -0.001 -0.0146 -0.0008 0.0007 0.009 0 -0.0123 0.0772 1              

33 b-mud1 3.98E+00 1.23E+00 -0.0599 0.0174 0.0182 0.0156 0.0191 -0.0064 0.0093 -0.0669 0.0488 0.0452 0.0083 0.0165 -0.017 -0.0152 0.0003 0.0004 0.0112 0.0149 0.0111 0.0129 0.0094 0.0587 0.0439 0.0349 -0.0159 0.0219 0.0001 0.0112 0 -0.0224 -0.0157 0.015 1             

34 b-mud2 1.04E-04 1.70E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1            

35 b-mud3 6.10E-01 2.92E-01 -0.04 0.0045 -0.0037 0.0097 -0.035 0.0004 0.005 0.0325 -0.0338 0.1031 -0.0146 0.076 0.0119 -0.0169 -0.0043 0.0138 -0.0091 -0.0074 -0.0082 -0.0052 -0.0063 0.0997 -0.0626 0.0265 -0.0847 -0.0124 0.0032 -0.0666 0 0.1437 0.022 -0.0047 -0.0463 0 1           

36 b-mud4 3.96E+00 1.40E+00 -0.0411 0.0239 0.0243 0.0243 -0.0055 0.0162 -0.023 -0.0045 0.0252 0.012 0.0753 0.0364 -0.0054 -0.0305 -0.0033 0.0169 0.0209 0.0242 0.0283 0.0219 0.0275 -0.0225 0.0341 -0.1327 -0.047 0.0042 0.0198 -0.0208 0 0.0498 -0.0064 -0.0101 -0.0514 -0.0001 0.0768 1          

37 b-mud5 1.49E+01 5.77E+00 -0.092 -0.0232 -0.0263 -0.0225 -0.0313 -0.0025 0.0001 0.0594 0.092 0.146 -0.0125 0.3448 0.0087 -0.0082 0.0116 -0.0015 0.0056 0.011 0.0055 0.0089 0.0123 0.0855 0.0263 0.1067 -0.4306 -0.012 -0.0056 0.0062 0 0.0227 0.0169 0.0244 0.0242 0 0.1266 -0.0549 1         

38 b-mud6 1.63E-05 4.35E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1        

39 b-gravel 2.11E-02 5.67E-03 -0.0152 0.0028 0.0005 0.0093 -0.0054 -0.0197 -0.003 -0.0122 -0.0481 -0.0436 0.0037 0.0077 -0.0119 0.0894 0.0041 0.0245 0.0137 0.0078 0.0093 0.0096 0.0198 0.0708 0.099 -0.0104 -0.0145 0.0137 0.1509 0.0798 0 0.0879 0.0334 0.0144 -0.0318 0 0.2216 0.0202 0.047 0 1       

40 b-depth1 1.94E-05 4.57E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1      

41 b-depth2 1.23E+01 4.37E+00 -0.1364 0.026 0.0256 0.0248 0.039 0.0397 -0.0137 -0.0237 -0.0612 -0.0206 0.0184 0.0388 0.0884 -0.0056 -0.0205 -0.1004 0.1273 0.1375 0.1202 0.1333 0.0484 0.2028 0.1892 0.0041 -0.0503 -0.1034 -0.0042 -0.0109 0 -0.0789 -0.0204 0.0084 0.0964 0 0.0707 -0.0348 0.1433 0 -0.0122 0 1     

42 b-depth3 9.85E-01 7.45E-01 0.0841 -0.0436 -0.0432 -0.0437 -0.0876 -0.012 0.0008 0.1324 0.2582 0.266 0.0994 0.0061 -0.0668 0.0044 0.0053 -0.0008 -0.0368 -0.0615 -0.0315 -0.0496 -0.16 -0.4715 -0.6591 -0.1226 0.0015 0.0693 -0.0004 0.0001 0 0.1302 -0.0141 -0.0194 -0.0563 0 -0.0361 -0.0166 -0.0708 0 -0.029 0 -0.3837 1    

43 b-depth4 1.20E+00 3.89E-01 0.0481 -0.0265 -0.0265 -0.0237 -0.0733 -0.031 0.0165 0.0653 0.1222 0.0969 0.054 0.011 -0.0357 0.0491 0.0196 0.0088 -0.0122 -0.025 -0.0099 -0.0192 -0.0752 -0.2447 -0.289 -0.0803 -0.0094 0.0362 0.0497 0.0555 0 0.1956 0.0034 -0.0087 -0.0996 -0.0001 -0.0371 0.0687 -0.0303 0 0.2318 0 -0.2278 0.3683 1   

44 b-depth5 2.34E+00 7.47E-01 -0.037 0.0229 0.0106 0.0112 0.0425 -0.0077 -0.0102 -0.0865 -0.1687 -0.1749 -0.1323 0.0024 0.0184 0.0028 0.0201 0.0339 0.01 0.0339 -0.0247 0.0276 0.1024 0.306 0.4192 0.1559 -0.0062 -0.0192 0.0239 0.0069 0 -0.0675 0.0128 0.0173 0.0342 0 -0.0087 0.0196 0.0396 0 0.0539 0 0.1744 -0.4941 -0.1861 1  

45 b-depth6 1.77E+00 4.93E-01 -0.0141 0.0003 -0.0082 -0.0046 0.0091 -0.0216 -0.0074 -0.086 -0.1413 -0.1724 -0.0966 -0.0183 -0.0151 -0.0044 0 0.0034 0.0346 0.0345 0.043 -0.0032 0.0911 0.2288 0.3512 0.1015 0.0181 0.0163 0.0585 -0.0966 0 -0.0254 0.0191 0.0259 0.0353 0 -0.133 0.0274 0.0026 0 0.0462 0 0.0465 -0.2653 -0.1244 0.1516 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Parameter estimates of the final model fitted to gannet data from the Bass Rock. The table contains mean estimates, standard deviations and parameter correlations of the fixed-

effects parameters β and the variances ν of the random-effects b. 
index name value std dev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

1 β-intercept -1.10E+01 5.68E+00 1                                     

2 β-coastdistance1 6.51E+00 3.24E+00 -0.5682 1                                    

3 β-coastdistance2 5.97E+00 3.21E+00 -0.5668 0.9827 1                                   

4 β-coastdistance3 7.12E+00 3.23E+00 -0.5641 0.9863 0.9918 1                                  

5 β-coastdistance4 6.85E+00 3.29E+00 -0.5508 0.9525 0.9697 0.9578 1                                 

6 β-coastdistance5 6.31E+00 3.59E+00 -0.5162 0.9027 0.902 0.9173 0.8478 1                                

7 β-coastdistance6 5.71E+00 3.62E+00 -0.4652 0.8009 0.8187 0.8066 0.8205 0.6707 1                               

8 β-depth1 4.20E+00 3.68E+00 -0.4482 -0.0079 -0.0106 -0.0096 -0.0171 -0.0033 -0.0079 1                              

9 β-depth2 2.70E-01 4.20E+00 -0.4435 -0.0016 -0.0071 -0.0123 -0.0065 -0.0001 0.0028 0.5491 1                             

10 β-depth3 6.76E+00 3.41E+00 -0.5649 0.0136 0.0079 0.0086 0.0106 0.0074 -0.0023 0.7853 0.7211 1                            

11 β-depth4 3.24E+00 3.34E+00 -0.5679 0.0107 0.0018 0.0009 0 0.0104 -0.0034 0.7786 0.7957 0.9627 1                           

12 β-depth5 4.55E+00 3.39E+00 -0.5627 0.0053 0.0087 0.0076 0.0095 0.0098 0.0062 0.7795 0.7481 0.9714 0.968 1                          

13 β-depth6 2.38E+00 3.36E+00 -0.5521 -0.0004 0.0083 0.0031 0.007 0.0089 0.0052 0.7639 0.7679 0.9408 0.9708 0.9359 1                         

14 β-distance1 -5.44E-01 3.40E+00 -0.5731 -0.0004 -0.0025 -0.0035 0.0002 -0.0067 0.0047 -0.0153 -0.0218 -0.0237 -0.0346 -0.0319 -0.033 1                        

15 β-distance2 7.38E-01 3.38E+00 -0.5798 0.0095 0.0033 0.0017 0.0074 -0.0037 0.0131 -0.0082 -0.0144 -0.0172 -0.0265 -0.0238 -0.0298 0.991 1                       

16 β-distance3 -1.04E+00 3.44E+00 -0.5744 0.0021 -0.0013 -0.0078 0.0005 -0.0106 0.0049 -0.0142 -0.0134 -0.0233 -0.0298 -0.0275 -0.0321 0.995 0.9884 1                      

17 β-distance4 -2.35E+00 3.35E+00 -0.5668 0.0121 0.0064 0.0052 -0.0034 0.0075 0.0151 -0.0061 0.0011 -0.0361 -0.0197 -0.0272 -0.0271 0.9643 0.9713 0.9589 1                     

18 β-distance5 5.29E-02 3.96E+00 -0.5316 0.0004 -0.0033 -0.0123 0.0064 -0.0402 -0.0064 -0.015 -0.0421 -0.0074 -0.0339 -0.0284 -0.0332 0.9281 0.9152 0.938 0.8509 1                    

19 β-distance6 -5.58E+00 3.69E+00 -0.4132 0.0505 0.0386 0.0469 0.0241 0.069 0.0166 -0.0313 0.0186 -0.0211 -0.0012 -0.0155 -0.0161 0.656 0.6685 0.64 0.717 0.4523 1                   

20 b-coastdistance1 7.94E-01 4.05E-01 -0.0505 0.0427 0.0707 0.0682 0.0646 0.0553 0.0696 0.0782 0.043 0.059 0.0667 0.0577 0.0459 -0.0531 -0.0343 -0.0531 -0.0182 -0.0641 -0.0052 1                  

21 b-coastdistance2 2.18E-06 2.75E-01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1                 

22 b-coastdistance3 2.98E-01 4.19E-01 -0.0641 0.0469 0.0519 0.0375 0.0564 0.0325 0.0462 0.0397 0.0474 0.0644 0.0731 0.0707 0.0778 -0.0162 -0.005 -0.0155 0.0139 -0.0222 -0.0499 0.0202 0 1                

23 b-coastdistance4 2.04E+00 6.57E-01 0.0179 -0.0114 -0.02 -0.0131 -0.0027 0.0011 -0.0146 -0.016 -0.0129 0.0023 -0.0061 -0.0024 -0.0044 -0.0103 -0.0086 -0.0166 -0.0291 -0.0157 -0.0323 -0.0789 0 0.1012 1               

24 b-coastdistance5 3.60E+00 1.15E+00 0.0007 -0.0292 -0.0185 -0.0316 0.0061 -0.0822 0.0912 -0.0044 0.0152 0.014 0.0104 0.018 0.0146 0.0096 0.0084 0.0136 -0.0065 0.0054 0.0075 -0.0077 0 -0.0267 -0.1003 1              

25 b-coastdistance6 4.47E+00 2.34E+00 -0.089 0.1211 0.1139 0.127 0.0863 0.2079 -0.1722 0.0112 0.0314 0.0134 0.024 0.0209 0.0168 0.0135 0.0188 0.0063 0.0408 -0.0458 0.0082 -0.0003 0 0.0885 0.0834 -0.2925 1             

26 b-depth1 1.26E-04 2.12E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1            

27 b-depth2 6.97E+00 1.98E+00 -0.0339 0.0135 0.0127 0.0174 0.0056 0.0238 0.017 0.0282 -0.0674 0.0705 0.0426 0.0624 0.0456 -0.0083 -0.004 -0.0136 0.0037 -0.0387 -0.0188 0.026 0 0.0987 0.015 0.004 0.0474 0 1           

28 b-depth3 1.34E+00 6.50E-01 -0.0559 0.0904 0.0802 0.0828 0.0806 0.0792 0.0756 0.062 0.0564 0.0596 0.0964 0.0713 0.0859 -0.0863 -0.0573 -0.0923 -0.0104 -0.126 -0.0077 0.1468 0 0.4456 0.1413 -0.0681 0.129 0 0.1066 1          

29 b-depth4 3.51E-07 1.85E-01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1         

30 b-depth5 7.97E-01 8.59E-01 -0.0268 0.0578 0.0393 0.0469 0.0347 0.0314 0.0469 0.082 0.0329 0.0361 0.0617 0.0056 0.0307 -0.0599 -0.0359 -0.0619 -0.009 -0.0722 0.0093 0.3261 0 0.0482 -0.0447 -0.0239 -0.0078 0 0.0156 0.3166 0 1        

31 b-depth6 2.14E-05 8.84E-01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1       

32 b-distance1 1.22E-04 2.71E-01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0002 0 0 0 0 0 0 0 0.0001 0 0.0003 0 1      

33 b-distance2 6.83E-01 4.63E-01 -0.0826 0.0975 0.0919 0.0901 0.0853 0.0781 0.0863 0.1047 0.0708 0.0889 0.1212 0.0887 0.0978 -0.0787 -0.0448 -0.0779 -0.0013 -0.1024 -0.0025 0.3928 0 0.361 -0.0141 -0.0508 0.0737 0 0.1089 0.6045 0 0.5822 0 0.0002 1     

34 b-distance3 4.30E-04 3.36E-01 -0.0001 0 0 0.0001 0.0001 0.0001 0 0.0001 0 0 0 0 0 0 0 0 0 -0.0001 0 0.0001 0 0 0.0002 -0.0001 0.0001 0 0 -0.0002 0 -0.0001 0 0 0.0001 1    

35 b-distance4 1.31E+00 8.78E-01 0.0458 -0.0804 -0.0743 -0.0748 -0.05 -0.0685 -0.0534 -0.065 -0.0611 -0.0302 -0.0848 -0.0485 -0.0713 0.0791 0.0535 0.0786 -0.0234 0.1152 -0.039 -0.2209 0 -0.3006 0.2203 0.0786 -0.0982 0 -0.0757 -0.5461 0 -0.3503 0 -0.0001 -0.5776 -0.0001 1   

36 b-distance5 2.36E+00 9.86E-01 -0.0217 0.0024 0.0012 0.0064 -0.0075 0.0584 -0.0203 0.0037 0.062 0.0267 0.0328 0.0375 0.0319 0.0009 0.0064 -0.0079 0.032 -0.1256 0.0789 -0.0232 0 0.0619 -0.0042 0.0708 0.294 0 0.0754 0.0186 0 -0.1277 0 0 -0.0304 0.0002 -0.0103 1  

37 b-distance6 2.09E+00 2.87E+00 -0.1254 -0.0485 -0.0458 -0.0582 -0.041 -0.0846 -0.0027 0.032 -0.0245 -0.0087 -0.0231 -0.0205 -0.0151 0.2794 0.2681 0.2949 0.2195 0.398 -0.3379 -0.0278 0 0.0879 -0.0467 -0.0089 -0.0018 0 0.0224 -0.0393 0 -0.0686 0 0 -0.0267 -0.0001 0.0166 -0.1033 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Parameter estimates of the model containg the covariates distance to the haul-out site, depth, temperature stratification, gravel and rock. This model is fitted to grey seals data from 

the west coast of Scotland. The table contains mean estimates, standard deviations and parameter correlations of the fixed-effects parameters β and the variances ν of the random-effects b. 

 
index name value std dev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

1 β-intercept -30.00 0.01 1.00                                                   

2 β-distance1 26.20 1.29 0.00 1.00                                                  

3 β-distance2 30.00 0.00 0.00 0.00 1.00                                                 

4 β-distance3 27.50 1.84 0.00 0.50 0.00 1.00                                                

5 β-distance4 3.38 16.16 0.00 -0.02 0.00 -0.08 1.00                                               

6 β-distance5 -30.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00                                              

7 β-distance6 -30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00                                             

8 β-depth1 -30.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00                                            

9 β-depth2 10.76 20.73 0.00 -0.02 0.00 -0.01 -0.01 0.00 0.00 0.00 1.00                                           

10 β-depth3 10.15 17.42 0.00 -0.02 0.00 -0.01 -0.01 0.00 0.00 0.00 0.96 1.00                                          

11 β-depth4 14.02 17.88 0.00 -0.02 0.00 -0.01 -0.01 0.00 0.00 0.00 0.98 0.99 1.00                                         

12 β-depth5 13.43 17.55 0.00 -0.03 0.00 -0.01 -0.01 0.00 0.00 0.00 0.98 0.99 1.00 1.00                                        

13 β-depth6 16.99 18.08 0.00 -0.03 0.00 -0.01 -0.01 0.00 0.00 0.00 0.97 0.98 0.99 0.99 1.00                                       

14 β-T-stratification1 -6.44 17.71 0.00 -0.02 0.00 -0.02 0.01 0.00 0.00 0.00 -0.97 -0.99 -0.99 -0.99 -0.99 1.00                                      

15 β-T-stratification2 -10.37 17.73 0.00 -0.02 0.00 -0.02 0.01 0.00 0.00 0.00 -0.97 -0.99 -0.99 -1.00 -0.99 0.99 1.00                                     

16 β-T-stratification3 -11.61 18.00 0.00 -0.02 0.00 -0.02 0.00 0.00 0.00 0.00 -0.96 -0.98 -0.98 -0.98 -0.98 0.98 0.98 1.00                                    

17 β-T-stratification4 -12.90 17.70 0.00 -0.02 0.00 -0.02 0.01 0.00 0.00 0.00 -0.97 -0.99 -1.00 -1.00 -0.99 1.00 1.00 0.98 1.00                                   

18 β-T-stratification5 -12.87 17.72 0.00 -0.02 0.00 -0.02 0.01 0.00 0.00 0.00 -0.98 -0.99 -1.00 -1.00 -0.99 1.00 1.00 0.99 1.00 1.00                                  

19 β-T-stratification6 -11.96 17.74 0.00 -0.02 0.00 -0.02 0.01 0.00 0.00 0.00 -0.97 -0.99 -0.99 -1.00 -0.99 0.99 1.00 0.98 1.00 1.00 1.00                                 

20 β-gravel1 0.78 36.00 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00                                

21 β-gravel2 1.47 35.98 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00                               

22 β-gravel3 2.52 35.99 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00                              

23 β-gravel4 1.30 35.98 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00                             

24 β-gravel5 2.39 36.02 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00                            

25 β-gravel6 1.24 36.01 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00                           

26 β-rock 1.80 35.99 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00                          

27 b-distance1 1.78 0.98 0.00 -0.04 0.00 -0.01 0.01 0.00 0.00 0.00 -0.02 0.02 0.01 0.01 0.00 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.01 1.00                         

28 b-distance2 3.14 1.10 0.00 -0.15 0.00 -0.11 0.03 0.00 0.00 0.00 0.04 0.00 0.01 0.01 0.02 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 -0.49 1.00                        

29 b-distance3 4.99 1.27 0.00 -0.05 0.00 -0.12 -0.01 0.00 0.00 0.00 -0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 -0.18 1.00                       

30 b-distance4 47.15 14.40 0.00 0.08 0.00 0.13 -0.41 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.01 0.00 -0.05 0.06 1.00                      

31 b-distance5 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00                     

32 b-distance6 0.02 68.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00                    

33 b-depth1 19.98 14.10 0.00 -0.02 0.00 -0.01 -0.01 0.00 0.00 0.00 0.74 0.75 0.75 0.75 0.75 -0.75 -0.75 -0.74 -0.75 -0.75 -0.75 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 0.03 -0.01 0.02 0.01 0.00 0.00 1.00                   

34 b-depth2 10.44 3.93 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 -0.30 -0.23 -0.24 -0.23 -0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 -0.16 0.09 0.01 0.00 0.00 -0.21 1.00                  

35 b-depth3 6.71 2.27 0.00 0.02 0.00 -0.02 0.01 0.00 0.00 0.00 -0.07 -0.11 -0.09 -0.10 -0.08 0.09 0.09 0.09 0.09 0.09 0.10 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.02 -0.31 0.27 -0.17 -0.02 0.00 0.00 -0.11 -0.10 1.00                 

36 b-depth4 3.40 1.08 0.00 -0.03 0.00 -0.02 0.00 0.00 0.00 0.00 -0.04 -0.02 -0.02 -0.02 -0.03 0.02 0.02 0.03 0.02 0.02 0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 0.48 -0.30 0.32 0.02 0.00 0.00 0.00 0.13 -0.19 1.00                

37 b-depth5 0.85 2.31 0.00 0.00 0.00 -0.01 0.01 0.00 0.00 0.00 -0.04 -0.09 -0.08 -0.08 -0.07 0.08 0.08 0.07 0.08 0.08 0.08 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 -0.60 0.53 -0.36 -0.03 0.00 0.00 -0.11 -0.17 0.54 -0.48 1.00               

38 b-depth6 3.96 3.23 0.00 -0.06 0.00 -0.03 0.01 0.00 0.00 0.00 0.16 0.13 0.14 0.13 0.15 -0.13 -0.14 -0.14 -0.14 -0.14 -0.13 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 -0.07 0.19 -0.12 -0.01 0.00 0.00 0.11 -0.16 0.08 -0.09 0.12 1.00              

39 b-T-stratification1 0.00 4.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00             

40 b-T-stratification2 2.76 1.10 0.00 0.00 0.00 -0.02 0.03 0.00 0.00 0.00 -0.02 -0.01 -0.02 -0.02 -0.01 0.01 0.02 0.00 0.02 0.02 0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 -0.11 0.06 -0.02 -0.04 0.00 0.00 -0.02 0.01 0.08 -0.06 0.06 0.03 0.00 1.00            

41 b-T-stratification3 8.46 3.14 0.00 -0.02 0.00 -0.03 0.03 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.02 -0.02 -0.01 -0.06 0.00 -0.02 0.00 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 0.02 -0.08 0.03 0.00 0.00 0.00 0.00 0.01 0.00 -0.02 -0.05 0.02 0.03 0.00 0.09 1.00           

42 b-T-stratification4 1.08 1.01 0.00 0.03 0.00 0.04 -0.04 0.00 0.00 0.00 -0.04 -0.03 -0.03 -0.03 -0.04 0.03 0.03 0.06 0.01 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 -0.02 0.31 -0.21 0.06 0.01 0.00 0.00 -0.02 0.06 -0.07 0.18 -0.17 -0.11 0.00 -0.27 -0.32 1.00          

43 b-T-stratification5 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00         

44 b-T-stratification6 3.17 1.69 0.00 0.00 0.00 0.04 -0.04 0.00 0.00 0.00 -0.02 -0.02 -0.01 -0.02 -0.02 0.02 0.01 0.03 0.01 0.02 0.00 0.03 0.03 0.03 0.03 0.03 0.03 -0.03 0.12 -0.01 0.03 0.02 0.00 0.00 -0.01 0.00 -0.02 0.08 -0.06 0.00 0.00 -0.15 -0.25 0.39 0.00 1.00        

45 b-gravel1 2.51 0.66 0.00 -0.02 0.00 -0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.01 0.01 0.00 0.01 0.00 0.00 -0.01 -0.02 0.03 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.03 0.01 0.00 0.03 0.02 0.00 0.00 0.00 1.00       

46 b-gravel2 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00      

47 b-gravel3 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00     

48 b-gravel4 1.25 0.55 0.00 -0.04 0.00 -0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 -0.01 -0.01 -0.01 0.00 -0.01 0.00 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 0.03 -0.05 0.03 -0.01 -0.01 0.00 0.00 0.00 -0.02 0.04 -0.03 0.04 0.02 0.00 0.01 0.02 -0.07 0.00 -0.09 -0.01 0.00 0.00 1.00    

49 b-gravel5 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00   

50 b-gravel6 3.88 1.54 0.00 -0.01 0.00 -0.01 -0.07 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 0.01 -0.04 0.04 0.02 0.05 0.00 0.00 0.01 -0.01 0.04 0.00 0.04 0.01 0.00 0.01 0.01 -0.04 0.00 -0.04 0.01 0.00 0.00 -0.01 0.00 1.00  

51 b-rock 1.37 0.48 0.00 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 -0.01 -0.13 0.16 0.00 0.01 0.00 0.00 -0.01 0.02 0.06 0.02 0.09 -0.07 0.00 0.00 -0.04 0.05 0.00 0.07 0.06 0.00 0.00 -0.16 0.00 0.08 1.00 

 


