Interfacing Coq+SSReflect with GAP

Vladimir Komendantsky Alexander Konovalov
Steve Linton

University of St Andrews, UK

UITP @ FLoC’10
Motivation
What can interactive TP and CAS do for each other

Related interfaces

Brief background
Term levels
The SSReflect hierarchy

Towards a concrete development
Towards a development regarding the SSReflect hierarchy
Possible development tracks of a Coq–CAS interface

1. CAS as a hint engine for Coq
2. CAS as a proof engine for Coq
3. prove in Coq correctness of CAS algorithms

The particular CAS we are working with:

GAP – Groups, Algorithms, Programs

http://www.gap-system.org/
Motivation 1: Hint engine

Mechanisms, introduced in proof assistants to improve the type inference algorithm:

- canonical structures: $\pi_i？x \equiv u$
- type classes,
- pullbacks,
- unification hints (Asperti et al. '09):

\[
\frac{?_x \equiv \vec{H}}{P \equiv Q}
\]

Problem
Provide suitable hints for the unification procedure underlying type inference. How useful would be to employ the CAS as a search tool to generate hints?
Motivation 2: Proof engine

- **Admit GAP results.** (Good scenario, although with limitations.)

 Example

 Automatically generate an axiom, e.g.,

 \[
 \text{Axiom isoG : G \text{\iso} (Zp 12)}.\]

 if we asked GAP to find a group isomorphic to a given Coq group G and the result was the Coq group Zp 12.

- **Prove GAP results** (something Coq does not know in advance but can prove if a hint is received from GAP).

 Example

 As above, but ask Coq user to prove the generated statements, i.e.,

 \[
 \text{Lemma isoG : G \text{\iso} (Zp 12)}.\]

 followed by user or automated proof and Qed, or proof is impossible.
Motivation 3: Correctness of GAP algorithms

Frequently, GAP standard library functions rely on side effects produced by other functions:

```plaintext
InstallMethod( Size,
    "cyclotomic matrix group not known to be finite",
    [ IsCyclotomicMatrixGroup ],
    function( G )
    if IsFinite( G ) then
        return Size( G ); # now G knows it is finite
    else
        return infinity;
    fi;
end );
```
Motivation 3: Correctness of GAP algorithms

Frequently, GAP standard library functions rely on side effects produced by other functions:

```
#M Size( <G> ) . . . . . for cyclotomic matrix group not known to be finite
#
InstallMethod( Size,
  "cyclotomic matrix group not known to be finite",
  [ IsCyclotomicMatrixGroup ],
  function( G )
    if IsFinite( G ) then
      return Size( G );  # now G knows it is finite
    else
      return infinity;
    fi;
  end );
```

Let’s use side effects!
A formal model of algorithm implementation would imply a formal model of its specification

```
##
#M IsFinite( G ) . . . . . . . . . . . . IsFinite for cyclotomic matrix group
##
InstallMethod( IsFinite, "cyclotomic matrix group", [ IsCyclotomicMatrixGroup ],
function( G )
  local lat, ilat, grp, mat;
  # if not rational, use the nice monomorphism into a rational matrix group
  if not IsRationalMatrixGroup( G ) then
    return IsFinite( Image( NiceMonomorphism( G ) ) );
  fi;
  # if not integer, choose basis in which it is integer
  if not IsIntegerMatrixGroup( G ) then
    lat := InvariantLattice( G );
    if lat = fail then return false; fi;
    ilat := lat^-1; grp := G^-1(ilat); IsFinite( grp );
    # IsFinite may have set the size, so we save it;
    # <code omitted>
    # IsFinite may have set an invariant quadratic form
    # <code omitted>
    return IsFinite( grp );
  else
    return IsFinite( G ); # now G knows it is integer
  fi;
end );
```
Related work

- J. Harrison and L. Théry: HOL–Maple
- H. Herbelin, M. Mayero, D. Delahaye: “Maple mode” for Coq
- S. Ould-Biha: prototype external tactic coq_gap in C
Term levels in Coq-like proof assistants

1. fully specified terms: CIC terms

\[\forall a : \mathbb{Z}, \ eq \ Z \ a \ (Zplus \ a \ Z0) \]

2. partially specified terms: CIC terms with omitted subterms

\[\forall a : \mathbb{Z}, \ eq \ ?_1 \ a \ (Zplus \ ?_2 \ Z0) \]

3. content level terms: compact, overloaded human-oriented encoding with abstract syntactic structure

\[\forall a, \ a = _ + 0 \]

4. presentation level terms: formatting structure; finite, non-extendible language (e.g., MathML for printing, TeX-like for editing)
Term level translation

- full terms
 - omitting redundancies
- partial terms
 - discrimination between proofs and formulas (forgetful)
- content terms
 - notational rules
- presentation terms
 - refinements: type inference and unification
 - fix interpretation for each ambiguous notation or overloaded identifier
 - notational rules
The choice of formalised mathematical structures: SSReflect’s packed classes

- Formalisation of mathematical concepts in type theory is not straightforward!
- There may be several ways to formalise a concept, and one is required to choose the most appropriate way.
- De Bruijn factor: formalised proof / paper proof (in lines of text)
- Formalise informal maths without making explicit too much information.
- Structures with inheritance; shared carrier and unification.
Algebraic hierarchy in SSReflect
Packed classes and mixins (Zmodule example)

Legend

\(T_1 \) inherits from (coerces to) \(T_2 \)
Representation of polynomials in OpenMath

\[x^4y^6 + 3y^5 \]

\[\text{DMP}(\text{poly_ring_d}(\mathbb{Z}, 2), \text{SDMP}(\text{term}(1, 4, 6), \text{term}(3, 0, 5))) \]

- \text{DMP}, constructor of distributed multivariate polynomials
- \text{poly_ring_d}, constructor of polynomial rings
- \text{SDMP}, constructor of formal sums
- \text{term}, constructor of monomials:
 \[\text{term}(c, e_1, \ldots, e_n) \]
 represents
 \[c \times v_1^{e_1} \times \cdots \times v_n^{e_n} \]
Univariate case of polynomial

Compute roots of $x^3 - 1$ in \mathbb{Z}_3.

1. Function call:

 \[
 \text{WS_RootsOfUPol(}
 \text{DMP(poly_ring_d_named(GFp(3), "x"),}
 \text{SDMP(}
 \text{term(power(primitive_element(3), 0), 3)},
 \text{term(power(primitive_element(3), 1))))})
 \]

2. Roots:

 \[
 \text{list(power(primitive_element(3), 0),}
 \text{power(primitive_element(3), 0),}
 \text{power(primitive_element(3), 0))}
 \]

 or, simply $[2^0; 2^0; 2^0]$.
Univariate polynomials in SSReflect

Record polynomial : Type :=
 Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

Definition Poly := foldr poly_cons (polyC 0).
Definition polyX := Poly [:: 0; 1].

Parameters (R : ringType) (p : {poly R}).
Print R.
 *** [R : GRing.Ring.type]
Print p.
 *** [p : @poly_of R (Phant (GRing.Ring.sort R))]
SSReflect polynomial example

\[x^3 - 1 \]

\[
\text{[:: -1; 0; 0; 1]}
\]

\[
\text{[:: 2^0] = [:: \expn \left(nat_{of_ord} 2\right) 0]}
\]
Term encoding of foreign data

- OpenMath terms
 - Full terms
 - Partial terms
 - Content terms
 - Presentation terms

Omitting redundancies; notational rules
Notational rules
Implementation: Use a communication protocol

SCSCP – Symbolic Computation Software Composability Protocol

http://www.symbolic-computation.org/scscp

- A computer algebra system may offer services over network and a client may employ them.
- All messages in the protocol are represented as OpenMath objects, using the new Content Dictionaries scscp1 and scscp2, developed for this purpose.
Summary

We are...

• working with a particular kind of mathematical structures in Type Theory: the packed classes of SSReflect (constructive Finite Group Theory library);

• currently implementing a prototype hint engine for Coq that employs GAP as a source of background knowledge:
 • higher-level (content-oriented) interaction with GAP;
 • support for packed classes is being developed.
Summary

We are...

• working with a particular kind of mathematical structures in Type Theory: the packed classes of SSReflect (constructive Finite Group Theory library);

• currently implementing a prototype hint engine for Coq that employs GAP as a source of background knowledge:
 • higher-level (content-oriented) interaction with GAP;
 • support for packed classes is being developed.

Thanks for listening...